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A youthful Rüdiger

To the memory of Rüdiger Göbel – a beloved friend and distinguished colleague
who inspired generations of young mathematicians

Rüdiger in more recent years



Preface

When Rüdiger Göbel died in July 2014, his many friends and colleagues from
around the world felt it appropriate to acknowledge his contributions to a wide-
ranging area of group theory and model theory by organising a conference in his
honour. Out of this developed the conference New Pathways Between Group Theory
and Model Theory which took place in Mülheim an der Ruhr, Germany, during
February 1–4, 2016. The enthusiastic response to this conference led directly to this
volume; we are most thankful to all the participants of that conference who helped to
make it an unforgettable event that Rüdiger would certainly have enjoyed. However,
the material appearing in this book is not of the usual conference proceedings type:
the editors have tried to present a balanced mix of survey papers, which will enable
expert and non-expert alike to get a good overview of developments across a range
of areas of group, module and model theory, along with research papers presenting
some of the most recent developments in these same areas. Every effort has been
made to make these research papers easily accessible in their introductory sections.
We would hope that the material is of interest to both beginning graduate students
and experienced researchers alike. The topics covered are, inevitably, just a cross
section of the vast areas of group, module and model theory, but they reflect in
a strong way the areas in which Rüdiger Göbel contributed so much. The book
is divided into two sections, surveys and recent research developments, with each
section containing material from all the areas of the title.

Finally, we would like to express our sincere thanks to the colleagues who
contributed papers so enthusiastically, to the many experts who acted as referees
for all the papers, to the professional staff at Springer and in particular to Dimana
Tzvetkova, for their help in producing a volume which we hope is an appropriate
commemoration of our late friend Rüdiger Göbel. A special word of thanks goes
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to Katrin Leistner for her invaluable help during the organisation of the conference
and also during the preparation of this memorial volume. We would also like to
acknowledge the help given by Gabor Braun and Daniel Herden at various stages of
the organisation of both the conference and this volume.

Leipzig, Germany Manfred Droste
New Orleans, LA, USA László Fuchs
Dublin, Ireland Brendan Goldsmith
Mannheim, Germany Lutz Strüngmann
November 2016
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Rüdiger Göbel—An Appreciation

Rüdiger Göbel, who died on July 28, 2014, was one of the leading algebraists of
his generation. He was the only child of Gotthard and Ruth Göbel and was born in
Fürstenwalde, Germany (later in the German Democratic Republic), on December
27, 1940, during World War II. His family eventually fled the German Democratic
Republic settling in what was then West Germany. Rüdiger went on to study
mathematics and physics at the Johann Wolfgang Goethe University in Frankfurt
am Main, receiving his doctorate in 1967 under the supervision of Reinhold Baer;
he was Baer’s last doctoral student, and the two remained good friends for the rest
of Baer’s life even though they still maintained the very formal means of address:
Rüdiger often joked that despite his new position as a professor, he was still Herr
Göbel, while Baer remained Herr Professor Baer.

Rüdiger’s academic career began with positions in Würzburg, Germany, and
Austin, Texas, working in the area of physics and particularly in relativity theory.
His habilitation followed in 1974 with the title ‘General Relativity Theory and
Group Theory’. He moved in the same year to the University of Essen as a professor
of applied mathematics, eventually changing to pure mathematics; he remained in
the University of Essen (or Duisburg-Essen as it became) for the rest of his career.

On his way to the university in Frankfurt on December 3, 1964, he met a fellow
student (of English and history) Heidi Drexler, and they married in 1969 and have
one daughter Ines, who also studied mathematics. Rüdiger often commented that
that trip to the university was his ‘lucky day’; he and Heidi had an enduring,
warm and loving relationship which was so evident to the numerous visitors who
enjoyed the hospitality of Rüdiger, Heidi and Ines (and James, the dog) in the Göbel
family home; the wonderful aroma of freshly brewed FortMason tea at breakfast
is never to be forgotten. (Incidentally, this tea was the drink he carried in his
flask at conferences, seminars and colloquium talks and jokingly referred to as his
‘whiskey’.) Rüdiger and Heidi had another bond: they were co-authors in 1978 of a
paper on an old English riddle in the Exeter book—see [202].

At the outset, let us stress that it is impossible in a few pages to give a detailed
overview of the many research contributions made by Rüdiger Göbel, and it will be
for a later generation to assess his impact on the world of algebra. His publication

xvii
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list numbers 211 papers, and of these, three could be viewed as historical, four
are unpublished manuscripts and one (with Heidi) non-mathematical; in addition,
there are two important research books with Jan Trlifaj [1, 2] and 11 books, mainly
conference proceedings, where he was a coeditor, and we know of six further works
which he had listed prior to his death as ‘in preparation’—see the publication section
at the end of this Appreciation.

An obvious feature of Rüdiger’s research output is the number of co-authors,
some 53 in total, but perhaps more surprising is the number of co-authors with
whom he wrote multiple papers and the duration of these collaborations. Four co-
authors had more than 10 joint papers with him, and these collaborations endured
for more than 25 years: Saharon Shelah co-authored 35 papers between 1985 and
2014; Manfred Dugas co-authored 28 papers from 1979 to 2007; Manfred Droste
co-authored 18 papers in the 34-year period 1979–2013 and Brendan Goldsmith
co-authored 11 papers between 1984 and 2010. Many others had collaborations
resulting in more than 5 joint papers. Rüdiger always enjoyed this joint approach to
working on a problem and often expressed the view that ‘it’s fun working together’;
in fact, just 23 of his listed papers are singly authored. He was a generous co-
author, quick to share ideas but always demanding in terms of getting the best
results possible. His ability to move from one topic to another was impressive. His
research work can be split crudely into a number of categories; the definition of such
categories is, of course, somewhat arbitrary, and many other divisions are possible;
nor could the categories ever be regarded as disjoint. We look at each of these briefly:

(1) Physics
Rüdiger published just four papers in the area of physics [194, 203, 204, 208],

and these relate mainly to topological issues arising in general relativity theory.
Despite his comparatively small output in physics, Rüdiger was very proud of his
work in this area, particularly as it had drawn praise from no less a figure than
Stephen Hawking.

(2) Informatics
Rüdiger also worked in an area that can be broadly described as informatics

with Manfred Droste—see, for example, [130, 136, 147, 148, 149, 151, 152]. These
papers are mainly concerned with domain theory, the mathematics underpinning
denotational semantics of programming languages and the application of model
theoretic methods to systematically construct universal Scott domains. Broadly,
similar ideas influenced the later probabilistic approach to the classical Ulm-Zippin
theorem on reduced p-groups [16].

(3) Non-commutative Group Theory
Rüdiger’s earliest works in algebra were, not surprisingly as a student of Baer,

in the area of group theory, specifically on products of groups. Interestingly, his
earlier paper ‘On stout and slender groups’ [206] would indirectly lead him into
the study of cotorsion-free Abelian groups, an area where he made significant
contributions—see (4) below. His later work on non-commutative groups, mainly
with Braun, Droste, Dugas and Paras, dealt largely with the construction of groups
with prescribed automorphism groups—see, for example, [63, 66, 68, 79, 82, 91,
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97, 105, 111, 114, 122, 137, 143]. He also retained a long-term interest in infinite
permutation groups and related matters—see, for example, [7, 54, 76, 192, 199].
In many of these works, one can see the influence of his work in Abelian groups.
Rüdiger, like his close friend László Fuchs, had a strong belief that Abelian group
theory provides a powerful source of ideas and techniques that can be applied in
other areas of algebra, an approach he outlined in [115]. The validity of this belief
can be seen in his approach to the works just listed and also to papers such as [32, 86,
89, 109, 123, 162, 166] which are actually outside of the realm of pure group theory;
incidentally, Rüdiger was very proud of the $25 prize for solving C.U. Jensen’s
problem in [162] and for many years had the cheque from Jensen pinned to the wall
in his office.

(4) Abelian Group Theory
For many, the name of Rüdiger Göbel is synonymous with Abelian group

theory. A detailed evaluation of his contributions to this area alone would require
many pages. A characteristic feature of his many contributions in this area was
his pioneering use of techniques from set theory and infinite combinatorics; these
techniques, in growing levels of sophistication, can be traced throughout his work.
At the risk of omitting some of his significant research outputs—and it is important
to stress that the selection made below reflects the tastes and knowledge of the
editors; it is not intended to suggest that papers not specifically mentioned below are
in any way of lesser value than those mentioned—we shall consider the following
broad areas:

(a) Products, Slenderness and the Baer-Specker Group
As mentioned above, Rüdiger was initially interested in products of noncommu-

tative groups, but by the late 1970s, his interests had turned to questions relating
to the notion of slenderness and its interconnections with the Baer-Specker group,
Z

@0 and its higher analogues, Z� , for arbitrary cardinals �. Working independently
with Manfred Dugas and Burkhard Wald, he established many interesting results in
this area—see, for example, [189, 190, 191, 193, 196, 197, 198, 200]; his paper with
Wald [196] was, for many Abelian group theorists, their first taste of Martin’s axiom
used by an algebraist rather than a logician. In some sense, this paper was a prelude
to Rüdiger’s importation into Abelian group theory of many of the ideas arising
in set theory and infinite combinatorics, which, as noted above, became one of his
characteristics. The Baer-Specker group and the wonderful complexity of its set of
subgroups were a topic of constant interest to Rüdiger, and he had many subsequent
works in this area—see, for example, [24, 25, 31, 84, 85, 100, 103, 107, 119].

(b) Endomorphism Rings
In the early 1960s, the theory of Abelian groups had been thrown into a certain

amount of disarray by the dramatic results, (A), of the late A.L.S. Corner on the
realisation of rings as endomorphism rings of torsion-free Abelian groups. Soon
after arriving in Essen, Rüdiger embarked on a serious study of this area, visiting
Corner in Oxford on several occasions to discuss the topic. Probably during this
period, he learned of Corner’s unpublished conjecture that every cotorsion-free ring
is an endomorphism ring, and the proof of this conjecture in conjunction with
Manfred Dugas became one of his most significant early achievements; the proof
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in [187] worked in V D L, while [185] exploited a combinatorial principle due to
Shelah to settle the question in ZFC. At around this time, Rüdiger was introduced to
the notion of inessential endomorphisms; this was a very general concept developed
by Corner in an unpublished paper presented at the 1967 Montpellier Conference
and later refined by Goldsmith in his doctoral thesis. This notion turned out to
be the key to realising rings as ‘almost’ the endomorphism rings of groups
possessing many projections that cannot be suppressed. Starting with [181], Rüdiger
and various co-authors turned the notion into a key concept in the theory of
realisations—see, for example, [135, 139, 141, 150, 155, 161, 173, 177]—and in the
process, the abbreviation ‘Iness’ was transformed to ‘Ines’, the name of Rüdiger’s
daughter! The paper [177] became an important introduction to the whole area
and was the origin of many subsequent far-reaching works by Rüdiger, often in
conjunction with Shelah, involving more sophisticated combinatorial arguments—
his books with Jan Trlifaj [1, 2] are an excellent source of more up-to-date
information on these developments. It seems fitting that Corner’s original work,
(B), introducing the notion of inessential now appears in this volume.

(c) Modules with Distinguished Submodules
Rüdiger also had a keen interest in the area of representation theory that arose

from an early work, (C), of Sheila Brenner and Michael Butler on what might be
loosely described as ‘vector spaces with distinguished subspaces’. Corner’s sub-
sequent generalisation of that work, (D), involving five distinguished submodules,
intrigued Rüdiger, and he produced several interesting papers on the topic, showing
that four submodules suffice and investigating the situation when a lesser number
of submodules is used—see [103, 110, 116, 131, 132, 140, 153, 157, 163, 167,
168, 169].

(d) E-Rings
The notion of an E-ring was introduced by Phill Schultz, (E), in 1973 and was a

topic which, with subsequent generalisations, interested Rüdiger for a long time; in
fact, his second-last published paper [2] was on this topic, and we are aware that he
was considering a further paper in the same area at the time of his death.

(e) Cellular Covers
The notion of a cellular cover arises from homotopy theory and is dual to the

notion of localisation investigated by Rüdiger and Shelah in [77] in the context
of simple groups—see also [72]. Rüdiger began working on this topic in 2007
with Farjoun and Segev, [42], and retained an interest in it right up to the time
of his death: a paper on cellular covers of h-divisible modules is listed as being ‘in
preparation’—see [3] in the appropriate section below. See also the papers [11, 13,
22, 27, 36].

(f) Other Topics in Module Theory
As noted at the beginning of this Appreciation, it is not really possible to give a

complete survey of Rüdiger’s work in just a few pages. His interests were extensive,
and in addition to the topics mentioned in the preceding subsections, he produced
important papers in a wide range of other areas including Butler groups [9, 108],
entropy [12], torsion and mixed modules [15, 67, 138, 145, 164, 171, 180, 188],
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Crawley modules [47, 49], group algebras [34, 65], cotorsion theories [28, 34,
83, 93], cotilting modules [54, 88, 92] and measure theoretic algebra [70, 95,
124, 125].
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Personal Comments

Manfred Droste:
Rüdiger Göbel was a great teacher as well as a supportive colleague. He had so

many interesting and difficult research works but was always so modest. In spite
of the demands of this research work, he also had time for personal talks. We will
always remember his enthusiasm and personal friendship.

László Fuchs:
It was quite an experience to work with Rüdiger. I admired his huge knowledge,

his quick responses to difficult questions and his good judgement in selecting
important features. We lost a prominent mathematician, a good friend. He will be
sorely missed.

Brendan Goldsmith:
When Rüdiger Göbel died, the world of mathematics lost an important member

of its community, but his colleagues lost more than this: a generous friend always
with a word of encouragement and a smile.

Ní bheidh a leithéid arís ann!

Lutz Strüngmann:
Rüdiger has been my mentor for 25 years. I took linear algebra courses from him

when I was a freshman, and ever since then, he has become not only a colleague,
but a true friend. I will never forget his passion for mathematics, his unique way of
teaching and his warm friendship.

Rüdiger, du warst ein großartiger Lehrer!
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Students of Rüdiger Göbel

Rüdiger’s students were very important to him, and he was always generous in
sharing his ideas and motivating his students. For many years, the students’ office
in the Mathematics Department at the University of Duisburg-Essen has been a
stimulating and comfortable one for both students and visitors alike, in no small
measure due to the influence of Simone Wallutis and her three ‘Jungs’. Rüdiger
was very proud of this and devoted time and energy to ensuring that this tradition
remained alive.

The students whom he formally supervised for doctorates are listed below,
but it is important to say that others regarded themselves as being his ‘informal’
students and were active participants in his research seminars at various times;
Ulrich Albrecht (professor at Auburn University, Alabama) and Berthold Franzen
(professor at Technische Hochschule Mittelhessen, Gießen, Germany) certainly fall
into this category.

Burkhard Wald, 1979
Manfred Droste, 1982 Professor at Universität Leipzig,

Germany, Institut für Informatik
Claudia Böttinger, 1990
Klaus Kowalski, 1990
Simone Wallutis, (née Pabst) 1994
Anja Elter, 1996
Lutz Strüngmann, 1998 Professor at Hochschule

Mannheim, Germany, Fakultät
für Informatik

Georg Hennecke, 1999
Ansgar Opdenhövel, 1999
Gábor Braun, 2003
Daniel Herden, 2005 Professor at Baylor University,

Texas, Department of Mathe-
matics

Sebastian Pokutta, 2005 Professor at Georgia Institute
of Technology, Atlanta, ISyE,
ARC and ML@GT

Nicole Hülsmann, 2006
Héctor Gabriel Salazar
Pedroza,

2012

Montakarn Petapirak, 2014
Katrin Leistner, 2015
Christian Müller, open
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Part I
Survey Articles

In this chapter we present a collection of survey articles and introductory articles on
various topics within the theory of groups, modules and models.



Properties of Abelian Groups Determined
by Their Endomorphism Ring

Ulrich Albrecht

Abstract The goal of this paper is to give a survey of how endomorphism rings can
be used to study the behavior of modules. While the first part considers modules over
arbitrary rings, the second half focuses mainly on the case of torsion-free Abelian
groups. Although there are many applications of endomorphism rings to the theory
of mixed Abelian groups, a comprehensive discussion of this subject is beyond the
framework of a survey article. In particular, we only present core results, and provide
an extensive literature list for those who want to get deeper into the subject.

Keywords Abelian Groups • Endomorphism Rings • Flatness • Adjoint
Functors

1 Introduction

This paper has been motivated to a large part by Rüdiger’s seminal work on
endomorphism algebras. Since his contributions to this subject are discussed in
another paper in this volume, it is our goal to highlight the connections between
Rüdiger’s work and the many ways endomorphism rings are used in Abelian Group
Theory.

Traditionally, the goal of Abelian Group Theory has been to describe as large
classes of Abelian groups as possible in terms of meaningful numerical invariants.
The first major class of groups characterized in this way were the countable p-groups
[50]. Ulm’s work directly lead to the discussion of the totally projective p-groups
as the largest class of torsion groups which are determined by their Ulm-Kaplansky
invariants [32]. Baer published a similarly important result for torsion-free groups
in 1937 [27]. He showed that the subgroups of the rational numbers are determined
up to isomorphism by their types. Moreover, he showed that their rank 1 summands
completely determine the completely decomposable groups.
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Unfortunately, the hopes of the 1940s that it is possible to develop a compre-
hensive description of the structure of torsion-free groups (of finite rank) were
disappointed by a series of examples which Jonsson gave in the 1950s [46, 47].

Example 1.1 ([46]) There exists a torsion-free Abelian group G such that
G D A ˚ B D C ˚ D where A, B, C, and D are indecomposable groups with
r0.A/ D 1, r0.B/ D 3, and r0.C/ D r0.D/ D 2.

Furthermore, even the pure subgroups of completely decomposable groups
cannot be classified in any meaningful way [39]. These and many other results,
which cannot be mentioned within the framework of this survey, clearly indicate
that a variety of approaches are needed to understand the behavior of torsion-
free Abelian groups (of finite rank) better. Although numerical invariants, albeit
in a more general form, have been found for large classes of Butler groups, even
subgroups of finite index of completely decomposable groups have a structure which
is too complex to describe comprehensively in this way [39].

One way to overcome the previously mentioned difficulties is to consider
methods and tools from other areas of Mathematics. Rüdiger was one of the pioneers
using tools from set-theory and infinite combinatorics to construct large classes
of Abelian groups with prescribed properties. We follow a similar approach, but
focus on applications of non-commutative ring-theory to Abelian groups instead, an
approach initiated by Arnold in the 1970s [24]. Rüdiger’s realization theorems for
endomorphism ring clearly play a central role in this as is shown in Sect. 3.

Studying Abelian groups via their endomorphism rings takes a point of view
which is radically different from the traditional approach. Instead of developing
a structure theory, it views an Abelian group A as an object that is best studied
by looking at its interaction with other objects. This approach is philosophically
related to the one taken in modern Physics where objects like elementary particles
are studied through their interaction with other particles. To study this interaction,
methods from homological algebra and ring-theory are employed. To facilitate this
type of investigation, one usually relies on an adjoint pair of functors between
the category of Abelian groups and the category of right modules over the
endomorphism ring of A. Section 2 looks at these functors, and introduces some
of the basic concepts.

Applications are discussed in Sects. 4 and 5. We give several examples of
A-solvable Abelian groups which will answer questions concerning the size and
generality of this class. Given the constraints of a survey paper, many interesting
topics have to be omitted. Since it is the goal to relate our discussions to Rüdiger’s
work, we concentrate mostly on torsion-free groups of arbitrary rank. In particular,
the discussion of quasi-properties of torsion-free groups of finite rank as well as
properties of mixed groups which are described in terms of endomorphism rings
have to be omitted in spite of the large amount of literature related to these topics.
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2 Adjoint Functors

The interaction of a right R-module A with other R-modules is often described
by the functors HomR.A;�/ and HomR.�;A/. Each of these functors actually
carries a structure which is richer than that of an Abelian group, namely that
of a right, respectively left, module over the endomorphism ring E D EndR.A/
of A. These module structures are induced by A since the latter can be viewed
as an E-R-bimodule. Although many properties of a module, e.g., its direct sum
decompositions, can be described in terms of its endomorphism ring, the classical
theory of Abelian groups makes very little use of the information which can be
obtained from this ring. This is quite surprising in view of the Baer-Kaplansky
Theorem which states that two Abelian p-groups are isomorphic exactly if they
have isomorphic endomorphism rings [28, 48]. The situation is quite different in
the torsion-free case. Rüdiger’s work shows that there exist proper classes of non-
isomorphic torsion-free groups with isomorphic endomorphism rings [41].

Our discussion concentrates on the covariant functor HA.�/ D HomR.A;�/
between the categories MR of right R-modules and ME of right E-modules. It forms
one component of the adjoint pair .HA;TA/ of functors between MR and ME where
TA is defined by TA.X/ D X ˝E A for all right E-modules X. Associated with
this adjoint pair are natural transformations �M W TAHA.M/ ! M for M 2 MR

and ˚X W X ! HATA.X/ for X 2 ME defined by �M.˛ ˝ a/ D ˛.a/ and
Œ˚X.x/�.a/ D x˝ a. The image of �M is called the A-socle of M, and is denoted by
SA.M/.

The idea to consider the category ME to investigate properties of a torsion-free
Abelian group A originated in two papers which appeared in 1975. Arnold and Lady
showed in [25] that HA and TA induce an equivalence between the category of A-
projective modules of finite A-rank and the category of finitely generated projective
right E-modules. Here a right R-module P is A-projective (of finite A-rank) if it is a
direct summand of a (finite) direct sum of copies of A. Arnold and Murley removed
the finiteness conditions in [26] in case that A is a self-small module where a right
R-module A is self-small if, for every index-set I and every ˛ 2 HA.˚IA/, there is
a finite subset I0 of I such that ˛.A/ � ˚I0A. Every torsion-free Abelian group of
finite rank is self-small, and so is every R-module with a countable endomorphism
ring [26]. In contrast to slenderness, which arises in the discussion of the contra-
variant functor HomR.�;A/, self-smallness is not affected by the existence of large
cardinals.

A right R-module M is (finitely, respectively �-) A-generated if it is an epimorphic
image of a module of the form˚IA for some index-set I (with jIj <1, respectively
jIj < �). Since TA is right exact, all R-modules of the form TA.X/ with X 2ME are
A-generated, and it is easy to see that M is A-generated if and only if SA.M/ D M.
We say that a right R-module M has an A-projective resolution if we can find an
exact sequence

: : :PnC1

˛nC1

�! Pn
˛n
�! : : :

˛1
�! P0

˛0
�! M ! 0

in which each Pn is A-projective.
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Proposition 2.1 ([2]) Let A be a self-small right R-module. A right R-module M
has an A-projective resolution if and only if M Š TA.X/ for some right E-module X.

However, not every A-generated module has an A-projective resolution, nor is the
class of modules described by the last result closed with respect to direct summands
as the following example shows:

Example 2.2 Let A be an Abelian group which fits into a non-splitting exact
sequence 0 ! Z ! A ! Q ! 0. Then, E.A/ D Z by Arnold [24, Section 3].
If G is a torsion-free Abelian group of finite rank, then r0.TA.G// D 2r0.G/ since
r0.A/ D 2. In particular, every finite rank group with an A-projective resolution has
to have even rank by Proposition 2.1. Therefore, Q does not have an A-projective
resolution although it is a direct summand of TA.Q/ Š Q ˚ Q which has an
A-projective resolution by Proposition 2.1.

The reason for the difficulties illustrated by the last example is that the module A
need not be projective with respect to the sequences

0! ker ˛n ! Pn
˛n
�! im ˛n ! 0

induced by an A-projective resolution of an R-module M. Adopting a standard
notion from Abelian Group Theory, we say that an exact sequence

0! U ! V ! W ! 0

of right R-modules is A-balanced if the induced sequence

0! HA.U/! HA.V/! HA.W/! 0

is exact. The R-module M has an A-balanced A-projective resolution if it admits an
A-projective resolution

: : :PnC1
˛n
�! Pn

˛n�1
�! : : :

˛1
�! P0

˛0
�! M ! 0

for which the induced sequences 0 ! ker ˛n ! PnC1

˛n
�! im ˛n ! 0 are

A-balanced for all n < !.

Proposition 2.3 ([2]) Let A be a self-small Abelian group. If a module M has an
A-balanced A-projective resolution, then �M is an isomorphism.

Although this is a survey article, a brief proof of this result is included since it
nicely illustrates the use of the adjointness of .HA;TA/ without having to deal with
the complexities of some of the later results:

Proof An A-balanced A-projective resolution of M induces an A-balanced exact
sequence

0! U ! P0 ! M ! 0
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in which U is A-generated as an image of P1. Applying the functors HA and TA

successively induces the commutative diagram

TAHA (U) TAHA (P0) TAHA (M) 0

0

−−−−→ −−−−→ −−−−→
⏐
⏐
�qU qP0 qM�

⏐
⏐
�

⏐
⏐
�

0 −−−−→ U −−−−→ P0 −−−−→ M −−−−→

in which �U is onto, and �P0 is an isomorphism by Arnold and Murley [26]. The
Snake-Lemma yields that �M is an isomorphism.

A right R-module M is A-solvable if �M is an isomorphism; and the class of
A-solvable right R-modules is denoted by CA. By Arnold and Lady [25] and Arnold
and Murley [26], A-projective modules are A-solvable if A is self-small. Arnold and
Murley also showed in [26] that every locally A-projective module M is A-solvable
if the endomorphism ring of A is discrete in the finite topology. Here M is locally
A-projective (locally A-free) if every finite subset of M is contained in an
A-projective direct summand (isomorphic to An for some n < !) of M. The
endomorphism ring E of a module A is discrete in the finite topology if there
is a finitely generated E-submodule of A with HomR.A=U;A/ D 0. By Arnold
and Murley [26], A is self-small if its endomorphism ring is discrete in the finite
topology.

An A-projective resolution of an A-solvable module need not be A-balanced
without additional conditions on A. For instance, if A D Q ˚ Z, then all groups
are A-generated; and there exists an exact sequence 0! U !˚!A! A! 0 with
respect to which A is not projective. Before continuing our discussion, we want to
remind the reader that a left R-module A is faithful if X ˝R A ¤ 0 for all non-zero
finitely generated right R-modules X. It is fully faithful if this holds for all right
R-modules. Faithfully flat modules are fully faithful.

Theorem 2.4 ([2] and [3]) The following conditions are equivalent for a right R-
module M:

(a) A is fully faithful as a left R-module.
(b) A right R-module M admits an A-balanced exact sequence

0! U !˚IA! M ! 0

with SA.U/ D U if and only if M 2 CA.

(c) An exact sequence 0! U
˛
�! M ! P! 0 splits if ˛.U/C SA.M/ D M and

P is A-projective.

Baer had shown in [27] that every subgroup A of Q satisfies condition (c) for
P D A. Hence, condition (c) is often referred to as Baer’s Lemma. Arnold and Lady
established the equivalence of (a) and (c) in [25] if A is a torsion-free Abelian group
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of finite rank and M D A. Unfortunately, neither Baer’s nor their arguments carry
over to the case that P is an arbitrary A-projective group.

It is well known from category theory that the kernel of a map An ! A need not
be A-generated unless A is flat as a module over its endomorphism ring (Ulmer’s
Theorem [51]). In particular, if ˛ 2 HomR.M;N/ for A-solvable modules M and N,
then neither ker ˛ nor im ˛ need to be A-solvable. Therefore, we call a class C of
A-generated groups A-closed if

(i) C is closed with respect to finite direct sums and A-generated submodules, and
(ii) ker ˛ 2 C for all M;N 2 C and all ˛ 2 HomR.M;N/.

Theorem 2.5 ([7]) The following are equivalent or a self-small right R-module A:

(a) A is flat as a module over its endomorphism ring.
(b) There exists an A-closed class C containing A.
(c) CA is the largest A-closed class containing the A-projective modules.

However, there exit R-modules A which are flat as modules over their endomor-
phism ring, but not faithful. For instance, the group A D Q ˚ Z has this property.
Therefore, A may not be projective with respect to exact sequences in CA even if the
latter is A-closed. Since the existence of sequences in CA which are not A-balanced
makes it difficult to develop a comprehensive homological algebra for CA, we call
an A-closed class C A-balanced if every exact sequence 0 ! B ! C ! M ! 0

with B;C;M 2 C is A-balanced.

Theorem 2.6 ([7]) The following are equivalent for a self-small right R-module A:

(a) A is faithfully flat as a left E-module.
(b) There exists an A-balanced, A-closed class containing all of the A-projective

modules.
(c) CA is the largest A-balanced, A-closed class containing all of the A-projective

modules.
(d) A right R-module has an A-balanced A-projective resolution if and only if it is

A-solvable.

In particular, A-balanced A-projective resolutions of an A-solvable module M
induce derived functors Bextn

A.�;�/ on CA such that

Bextn
A.M;N/ Š ExtnE.HA.M/;HA.N//

for all A-solvable modules M and N [9].
Finally, the concept of A-solvable modules carries over naturally to the quasi-

category of Abelian groups. Unfortunately, the discussion of quasi-concepts is
beyond the framework of this survey.
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3 Realization Theorems

The results of the last section raise the question whether it is possible to construct
self-small modules A such that

(a) A is flat (or, e.g., faithfully flat or projective) when viewed as an E-module, and
(b) the endomorphism ring of A can be prescribed to belong to a specific class of

rings, e.g., principal ideal domains, hereditary rings, or polynomial rings?

[38, Chapter 111] is dedicated to this question, and [38, Problem 84] particularly
asks for criteria for certain types of rings to be endomorphism rings. However, the
following example shows that one has to be somewhat careful when combining
properties of the module EA in (a) with ring-theoretic properties of E in (b):

Example 3.1 Suppose that A is a right R-module such that E is a principal ideal
domain. Then, A is an indecomposable Abelian group since E does not contain any
non-trivial idempotents. If EA were projective as a left E-module, then EA Š ˚IE
for some index-set I which is only possible if jIj D 1. Thus, EA Š E. For instance,
all Murley groups A have a principal ideal domain as an endomorphism ring [24].
Here a torsion-free groups A of finite rank is a Murley-group if dimZ=pZA=pA � 1
for all primes p.

Fortunately, module-theoretic properties like faithfulness and flatness are not
nearly as restrictive as projectivity. To see this, we are going to look at some of the
standard construction methods of modules with a prescribed endomorphism ring.
Although most of them have their origin in Abelian Group Theory, they actually
hold for substantially more general classes of rings. For instance, Rüdiger and the
author extended the construction of E-algebras to a non-commutative setting in [15].
The methods used in this extension can also be applied to the realization theorems
for endomorphism rings in [31] and [34]. As in the commutative setting, some
restrictions on R are necessary to avoid immediate counterexamples.

An element c of a ring R is regular if cr D 0 or rc D 0 implies r D 0. For any
ring R, let

C.R/ D fs 2 R j rs D sr for all r 2 Rg

denote the center of R. Clearly, C.R/ is a subring of R and 1R 2 C.R/. As in
[41], we consider a countable, multiplicatively closed subset X � C.R/ of regular
central elements of R which contains precisely one unit of R, the identity 1R. The
notions of X-density, X-purity, X-torsion-freeness, and X-cotorsion-freeness carry
over literally from the commutative setting [41]. In particular, bR denotes the X-
completion of R.

Theorem 3.2 Let S be an extension ring of R which is X-cotorsion-free and torsion-
free as a C.R/-module. If �C � � � � are cardinals such that jSj D �, � is regular,
and �� D �@0 , then there exists an X-cotorsion-free right R-module A such that
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(a) EndR.A/ D S, and
(b) every countably generated S-submodule of SA is contained in a free S-

submodule.

In particular, the endomorphism ring of A is discrete in the finite topology, and A is
flat as a left E-module. Moreover, if S is countable, then A is also faithful.

Proof Since the description of the actual construction of A is beyond the framework
of this survey, the interested reader is referred to [15] to identify which modifications
need to be made to the proof of [41, Theorem 12.3.4] in order to obtain A. In
particular, Rüdiger had pointed out during the writing of [15] that the module A
can be constructed in [41, Theorem 12.3.4] in such a way that it contains a family
F of countably generated free submodules with the following properties:

(a) Every countable subset of A is contained in an element of F .
(b) ˙n<!Fn 2 F for all families fFn j n < !g � F .

Clearly, the existence of F guarantees that A is flat as an S-module. To see
that the endomorphism ring of A is discrete in the finite topology, observe that A
is constructed as an X-dense submodule of the X-completion of a free S-module.
Therefore, we can find a left S-module monomorphism ˛ W S ! A. Consider
ˇ 2 S D EndR.A/ with 0 D ˇ.˛.1A//. Since ˛ is S-linear, we have ˇ.˛.1A// D

˛.ˇ1A// D ˛.ˇ/. Thus, ˇ D 0 since ˛ is one-to-one.
To see that A is faithful if S is countable, let I be a maximal right ideal of S with

IA D A, and select F0 2 F . There is a countable S-submodule Y0 of A such that
F0 � IY0. Select F1 2 F with IY0;Y0 � F1. Continuing inductively, we obtain an
ascending chain fFn 2 F j n < !g such that Fn � IFnC1 � FnC1 for all n < !.
Hence, F0 D [n<!Fn is a free submodule of A such that IF0 D F0. However, this is
only possible if I D E.

The countability condition in the last result can be removed under V = L by
adapting the arguments of [34] to the non-commutative setting:

Corollary 3.3 (ZFC + Þ�) Let S be an extension ring of R which is X-cotorsion-
free and torsion-free as a C.R/-module. If � is a regular uncountable cardinal
such that jSj < �, then there exists an X-cotorsion-free right R-module A with the
following properties:

(a) EndR.A/ D S, and
(b) Every �-generated S-submodule of SA is contained in a free S-submodule.

In particular, the endomorphism ring of A is discrete in the finite topology, and A is
faithfully flat as left E-module [7].

We want to point out that Faticoni used a Black Box construction similar to the
one in Theorem 3.2 to construct an Abelian group A which is faithful, but not fully
faithful as a module over its endomorphism ring [36].

Theorem 3.2 and Corollary 3.3 can be used to construct large class of A-solvable
groups which are not A-projective:



Properties of Abelian Groups Determined by Their Endomorphism Ring 11

Theorem 3.4 ([7]) Let A be a cotorsion-free self-small Abelian group which is
faithfully flat as a module over its endomorphism ring.

(a) If A is countable, then there exist a proper class of A-solvable groups with
endomorphism ring Eop.

(b) (ZFC + V = L) There exist a proper class of A-solvable groups with endomor-
phism ring Eop.

Proof We use either Theorem 3.2 or Corollary 3.3 to obtain a proper class of
Abelian groups G with End.G/ D Eop. Then, Gop is a right E-module and TA.Gop/

is A-solvable. An application of the Adjoint-Functor-Theorem completes the proof.

However, there are several question arising from the last results:

Problem 3.5 Can the Black Box be used directly to construct arbitrarily large
classes of A-solvable groups in case A is countable instead of using Eop?

In [37], Franzen and Rüdiger used the Black Box to obtain modules over
commutative rings R with prescribed endomorphism rings which contain a module
of the form˚IB as a dense and pure submodule where B is a cotorsion-free faithful
R-module. Combining this construction with the arguments from [15] should yield
the desired result by replacing the free modules in the definition of the family F by
B-projective modules.

Problem 3.6 Show directly that large classes of A-solvable groups exist assuming
V D L instead of using Eop.

In addition to the previously mentioned realization theorems, there are also
the classical results by Zassenhaus and Corner from the 1960s, each of which
will also produce Abelian groups which are faithfully flat as modules over their
endomorphism ring:

Theorem 3.7 Let R be a countable ring whose additive group is torsion-free and
reduced.

(a) There exists a countable Abelian group A with E.A/ D R [30].
(b) If r0.R/ D n, then A can be chosen to have rank 2n [30].
(c) If RC is a free group of rank n, then A can be chosen to have rank n too [53].

In either case, A has an endomorphism ring which is discrete in the finite topology,
and is faithfully flat as an E-module [7].

Finally, we want to remark that the contra-variant functor HomZ.�;A/ induces
a duality between the direct summands of cartesian powers of A and projective left
E-modules if A is a slender Abelian group. This duality was initially discussed by
Huber and Warfield in [45] in case that A is a torsion-free group of finite rank, while
the author considered the general case in [4]. Again, Rüdiger’s realization theorems
provide us with large classes of slender groups with a prescribed endomorphism
ring.
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4 Torsion-Free Abelian Groups

We now turn our discussion to Abelian groups, although many of our results will
carry over to a more general setting, e.g., to modules over Dedekind domains. [38,
Problem 84] asks to find criteria for certain types of rings to be endomorphism rings,
but does specify what form these criteria should take, e.g., whether or not they are
to be numerical invariants or properties describing the interaction of a group with a
certain type of endomorphism ring with other groups. In the following, we interpret
this problem to have two parts, namely

(a) How are ring-theoretic properties of the endomorphism ring of an Abelian group
A reflected in the structure and the homological properties of A?

(b) How are structural and homological properties of an Abelian group A reflected
in ring-theoretic properties of its endomorphism ring?

If A is fully faithful as an E-module, then HA and TA induce a one-to-one and onto
correspondence between the right ideals of E and the A-generated subgroups of A.
Because of this, it is frequently possible to address these questions for properties of
a ring, which are definable in terms of ideals and submodules of projective modules.
On the other hand, properties like commutativity, or more generally those given by
polynomial identities, are virtually impossible to describe as can, for instance, be
seen in [23] which looks at Abelian groups with commutative endomorphism rings.

We begin our discussion by investigating the connection between ring-theoretic
properties of A and some of the fundamental properties of homogeneous completely
decomposable groups which Baer considered in his 1937 paper [27]. For instance,
if G is a subgroup of a homogeneous completely decomposable group of type � and
G D G.�/, then G is homogeneous completely decomposable.

Theorem 4.1 ([1] and [25]) The following conditions are equivalent for a self-
small torsion-free Abelian group A:

(a) A is faithfully flat as an E-module and E is right hereditary.
(b) (i) A satisfies the conclusions of Baer’s Lemma (see Theorem 2.4).

(ii) A-generated subgroups of A-projective groups are A-projective.

Arnold and Lady had investigated the conditions in (b) in the case that A is a
torsion-free group of finite rank [25]. However, their arguments do not carry over to
the general case. Furthermore, condition (b.ii) alone need not imply that E is right
hereditary as was shown in [11].

Rings satisfying chain conditions are of particular interest in ring-theory, and they
are often considered in conjunction with the requirement that the ring is right or left
non-singular [43, 49]. However, when describing groups whose endomorphism ring
satisfies chain conditions, we need to be aware of several facts that make it difficult
to describe these groups in terms of numerical invariants:

• The endomorphism ring of torsion-free groups of finite rank has finite right and
left Goldie-dimension.
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• A semi-prime subring of a finite dimensional Q-algebra is right and left
Noetherian [24, Chapter 9].

• Descending chain conditions on right or left ideals are usually too restrictive to
yield interesting classes of groups [38, Theorem 11.3].

• Standard group-theoretic concepts like types and purity have only limited
bearings on ring-theoretic properties of an endomorphism ring unless we restrict
our discussion to the finite rank case [6].

To avoid immediate restrictions on the rank of E, we turn to the notion of non-
singularity introduced by Goodearl and Stenstrom [43, 49]. Taking this approach,
the author was able to give a description of the Abelian groups A with a right
and left Noetherian, hereditary endomorphism ring in [1, Theorem 5.1]. Since
these groups have many of the homological properties usually associated with
rank 1 groups, they are called generalized rank 1 groups, and play an important
role in the theory of A-solvable groups. An important class of generalized rank 1
groups are the finitely faithful S-groups, which consists of all finite rank torsion-
free groups A such that rp.E/ D Œrp.A/�2 for all primes p [42]. Goeters showed
that each finally faithful S-group has a hereditary endomorphism ring [42]. Hence,
Bextn

A.G;H/ Š ExtnE.HA.G/;HA.H// D 0 for all A-solvable groups G and H and all
n > 1. Moreover, we can describe how Bext1A.G;A/ is embedded into ExtZ.G;A/ in
this case.

Proposition 4.2 ([14]) If A is a finitely faithful A-group, then the group

ExtZ.G;A/=Bext1A.G;A/

is torsion-free and divisible for all torsion-free A-solvable groups G.

For a right R-module M, the singular submodule of M is

Z.M/ D fx 2 MjxI D 0 for some essential right ideal I of Rg

which takes the place of the torsion submodule in the general setting. The module
M is called non-singular if Z.M/ D 0, and singular if M D Z.M/. The ring R is
right non-singular if it is non-singular as a right R-module. A ring is a right p.p.-
ring if all principal right ideals are projective. Right p.p.-ring play an important role
in the theory of non-singular rings and modules, e.g., see [22, 29, 33, 44], and [18].
Finally, a submodule U of an R-module M is S -closed if M=U is non-singular.

However, the endomorphism ring E of a non-singular module M over a non-
commutative non-singular ring may behave quite different from that of a torsion-free
module over an integral domain. For instance, R need not be a subring of E, and M
may not be non-singular over its endomorphism ring as Rüdiger and the author
showed in [16].

Problem 4.3 Abelian groups whose endomorphism ring is a right p.p.-ring were
described in [6]. Is it possible to give a description of the torsion-free Abelian groups
with a right non-singular endomorphism ring?
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However, finitely generated non-singular modules over a non-singular ring need
not be submodules of free modules in contrast to the situation in the case of integral
domains. Rings having this properties are called strongly right non-singular, and
include the semi-prime right and left Goldie-rings. In particular, a ring is right
and left strongly non-singular if it is a semi-prime subring of a finite dimensional
Q-algebra. For Abelian groups A with a strongly non-singular endomorphism ring,
it is possible to define more meaningful notions of torsion-freeness and purity for
the class of A-generated groups.

An A-generated group G is A-torsion-free if every finitely A-generated subgroup
U is isomorphic to a subgroup of an A-projective group (which need not be a
subgroup of G). An A-generated subgroup U of an A-torsion-free group G is
A-pure if .U C P/=U is A-torsion-free for all finitely A-generated subgroups P of
G. We want to emphasize that A-pure subgroups need not be A-balanced. Using
the concept of the S -closure of a submodule of a non-singular module it is also
possible to introduce the notion of the A-closure of an A-generated subgroup of a
A-torsion-free group.

Theorem 4.4 ([6]) Let A be a self-small torsion-free Abelian group which is E-flat
such that E is a right strongly non-singular ring.

(a) A group G is A-torsion-free if and only if G is A-solvable and HA.G/ is non-
singular. In particular, A-generated subgroups and direct sums of A-torsion-free
groups are A-torsion-free.

(b) An A-generated subgroup U of an A-torsion-free group G is A-pure if and only
if HA.G/=HA.U/ is non-singular.

Problem 4.5 Define the notions of A-torsion-freeness and A-purity in case that E
is not a strongly non-singular ring.

C. Walker called a subgroup U of an Abelian group G A�-pure if it is a direct
summand of all subgroups H of G which contain U and have the property that H=U
is an image of A [52]. It is P�

A-pure if it is a direct summand of all subgroups H of
G which contain U and have the property that H=U is finitely A-generated.

Theorem 4.6 ([6]) The following conditions are equivalent for an Abelian group
A which is E-flat and has a right strongly non-singular endomorphism ring:

(a) E is a right p.p.- (right semi-hereditary) ring.
(b) If ˛ 2 E (˛ 2 E.An/ for some n < !), then ker ˛ is a direct summand.
(c) An A-generated subgroup U of an A-torsion-free group is A�-pure (P�

A-pure) if
and only if it is A-pure.

Furthermore, the question arises how A-purity and the standard notion of purity
are related.

Theorem 4.7 ([6]) The following conditions are equivalent for a self-small E-flat
Abelian group A with a strongly right non-singular endomorphism ring:
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(a) If G is a torsion-free A-solvable group, then G is A-torsion-free, and every pure
A-generated subgroup of G is A-pure in G.

(b) A=U is torsion for all A-generated subgroups U of A with HomZ.A=U;A/ D 0.

The last condition is, for instance, satisfied if QE is a semi-simple Artinian ring.

Problem 4.8 Do the last two results remain true if E is not strongly non-singular?

We conclude this section by looking at locally A-projective groups and their
A-pure subgroups. In particular, we obtain a version of Pontryagin’s criterion for
A-solvable groups:

Theorem 4.9 ([8]) Let A be an E-flat Abelian group with a right strongly non-
singular, right semi-hereditary endomorphism ring which is discrete in the finite
topology.

(a) A-pure subgroups of locally A-projective subgroups are A-projective.
(b) An A-pure subgroup of a locally A-projective group is A-projective if it is an

epimorphic image of˚!A.
(c) A countably A-generated A-torsion-free group G is A-projective if every finitely

A-generated subgroup of G is contained in a finitely A-generated A-pure
subgroup of G.

In particular, SA.AI/ is locally A-free if E is left Noetherian [20]. Surprisingly,
the converse holds too:

Corollary 4.10 ([20]) Let A be a slender Abelian group of non-measurable
cardinality whose endomorphism ring is discrete in the finite topology. If SA.AI/

is locally A-free for all index-sets of non-measurable cardinality, then E is left
Noetherian.

Problem 4.11 Can the various Black Box methods used in [41] to construct
separable Abelian groups be adapted to obtain large classes of locally A-projective
groups?

In view of Corollary 4.10, some additional ring-theoretic restrictions on E may
be necessary.

5 Applications

We want to remind the reader that the class CA of A-solvable groups consists
of all Abelian groups G for which the evaluation map �G W TAHA.G/ ! G
is an isomorphism. When looking at CA, the question immediately arises which
groups, in addition to A-projective groups, belong to CA? Arguing as in the
proof of Theorem 3.2 or Corollary 3.3, it is easy to see that CA contains the
�-A-projective groups whenever � > jAj is a regular cardinal and A is faithfully
flat as an E-module [7]. Here, an A-generated group G is �-A-projective if every
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�-A-generated subgroup U of G can be embedded into an A-projective subgroup of
G. If jAj < � and E is right hereditary, then this is equivalent to the condition that all
A-generated subgroups U with jUj < � are A-projective. However, CA may contain
cotorsion groups even if A is cotorsion-free.

Proposition 5.1 (a) If A is subgroup of Q of type � , then all torsion-free groups G
with G D G.�/ are A-solvable, and so is Z=pZ for all primes p with A ¤ pA.
However, CA need not be closed under direct sums unless A has idempotent
type [5].

(b) If A is a generalized rank 1 group, then Q is A-solvable if and only if A is
homogeneous completely decomposable [5].

We now turn to the case that r0.A/ > 1, and focus on the following questions
raised by the last example:

• Can we find indecomposable generalized rank 1 groups A such that all A-solvable
groups are (co-) torsion-free? Which indecomposable generalized rank 1 groups
other than subgroups of Q admit torsion A-solvable groups?

• Can we find cotorsion-free indecomposable generalized rank 1 groups other
than subgroups of Q such that all A-generated reduced torsion-free groups are
A-solvable?

The first of these is answered by

Theorem 5.2 ([5]) The following are a equivalent for a generalized rank 1-group
A and a prime p with A=pA ¤ 0.

(a) Every bounded p-group is A-solvable.
(b) Œrp.A/�2 D rp.E/ <1.

In particular, A a torsion-free Abelian group of finite rank is a finitely faithful
S-group if and only if it is fully faithful as an E-module and Z=pZ is A-solvable
for all primes p with A ¤ pA. On the other hand, Corner’s realization theorem in
Theorem 3.7b always produces a torsion-free group A of finite rank with rp.A/ D
rp.E/ [7]. Thus, if A is a group of rank 4 with E Š ZC iZ which is constructed in
this way, then the elements of CA are torsion-free and reduced.

Surprisingly, the question whether there exits A-solvable torsion groups also is
closely related to categorical properties of CA. However, since CA is not an Abelian
category unless A is a subgroup of Q of idempotent type [5], we investigate when
the category of A-solvable groups is pre-Abelian.

Theorem 5.3 ([5]) The following conditions are equivalent for an indecomposable
generalized rank 1-group A with r0.A/ > 1:

(a) CA is a pre-Abelian category which does not contain Jp for any prime p.
(b) If rp.A/ <1 for some prime p with A ¤ pA, then Œrp.A/�2 ¤ rp.E/.
(c) The elements of CA are cotorsion-free.

The realization theorems discussed in Sect. 3 allow the construction of large
classes of groups such that CA is pre-Abelian:
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Example 5.4 Let A be an indecomposable generalized rank 1 such that QE is semi-
simple and rp.A/ � 2@0 for all primes p with A ¤ pA. One of the Göbel’s realization
theorems guarantees that there exist proper classes of Abelian groups satisfying
these conditions. Since rp.A/ � 2@0 , there is a subgroup U of A such that A=U Š
Jp. If Jp 2 CA, then U is A-generated since A is a generalized rank 1 group. By
the results of Sect. 4, U is a direct summand of A which is not possible since A is
indecomposable. Hence, CA is pre-Abelian by the last result.

Furthermore, since the realization theorems produce proper classes of groups
with isomorphic endomorphism rings, the question arises which categorical prop-
erties are shared by Abelian groups A and B with isomorphic, or more generally
Morita-equivalent, endomorphism rings. Surprisingly, the categories CA and CB

need not be equivalent:

Example 5.5 Let A be a subgroup of Q with E.A/ Š Z whose type is not
idempotent. By Albrecht [5], the category CA is not pre-Abelian. On the other hand,
we can use one of the Rüdiger’s construction methods to obtain a group B with
E.B/ Š Z such that rp.A/ � 2@0 for all primes p. Arguing as in Example 5.4, we
obtain that CB is pre-Abelian. Clearly, CA and CB are not equivalent.

On the other hand, the categories of locally A-projective and locally B-projective
groups are equivalent if A and B are Abelian groups with End.A/ Š End.B/ whose
endomorphism rings are discrete in the finite topology. Every locally A-projective be
longs to the class T LA of A-torsion-less groups which consists of the A-generated
subgroups of cartesian powers of A.

Theorem 5.6 Let A and B be torsion-free Abelian groups which are faithfully flat
as modules over their endomorphism rings, and whose endomorphism rings are
discrete in the finite topology. If End.A/ is left Noetherian, and End.B/ is Morita-
equivalent to End.A/, then the categories T LA and T LA are equivalent.

Proof Since being Noetherian is a Morita-invariant property, End.B/ is left Noethe-
rian too. Moreover, Morita-equivalence preserves torsion-less modules. Because
End.A/ is left Noetherian, SA.AI/ is A-solvable [20]. Therefore, T LA is equivalent
to the category of torsion-less right End.A/-modules since A is faithfully flat as an
End.A/-module. Because a similar result holds for T LB, the theorem follows.

The author investigated Abelian groups with Morita-equivalent endomorphism
rings in [10] showing that any equivalence of CA and CB is induced by a Morita-
equivalence between End.A/ and End.B/. This and Example 5.5 give rise to

Problem 5.7 Let A and B be Abelian groups with Morita equivalent endomorphism
ring. Identify (the largest) subclasses C1 � CA and C2 � CB for which the
Morita-equivalence between End.A/ and End.B/ induces an equivalence between
C1 and C2.

We now turn to the question when CA is pre-Abelian if it contains Jp for some
prime p.
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Theorem 5.8 ([5]) The following conditions are equivalent for an indecomposable
generalized rank 1-group A with r0.A/ > 1 for which P.A/ D fp j Jp 2 CAg is not
empty:

(a) CA is a pre-Abelian category.
(b) (i) There exists an exact sequence 0 ! Ea ! A ! G ! 0 such that

G D tG˚ Œ˚IQ� for some index-set I and GŒp� D 0 for all p 2 P.A/.
(ii) If rp.A/ < 1 for some prime p with A ¤ pA and Œrp.A/�2 D rp.E/, then

p 2 P.A/.

To see that P.A/ may be not empty, we consider the class of irreducible Murley
groups. A group A is irreducible if it does not have any proper, non-zero pure fully
invariant subgroups. A torsion-free group A is a Murley group if rp.A/ � 1 for all
primes p. A homogeneous Murley group is indecomposable; and irreducible Murley
groups are homogeneous [24, Chapter 15].

Theorem 5.9 ([17]) If A is an irreducible Murley group, then every reduced
A-generated torsion-free group G is A-solvable. In particular, P.A/ ¤ ; in this
case.

Problem 5.10 Is an indecomposable finitely faithful S-groups A for which Jp is
A-solvable for all primes p with A ¤ pA an irreducible Murley group?

Problem 5.11 Can we describe the structure of the A-solvable groups if A is a
Murley group?

A particular interesting class of @1-A-projective groups are the A-coseparable
groups. Here, an A-generated group G is said to be A-coseparable if it is
@1-A-projective and every subgroup U of G such that G=U is finitely A-presented
contains a direct summand V of G such that G=V is A-projective of finite A-rank. In
particular, every A-projective group is A-coseparable, and it is undecidable in ZFC
if there exist A-coseparable groups which are not A-projective [35].

Theorem 5.12 ([14]) Let A be a torsion-free finitely faithful S-group. A reduced
torsion-free A-generated group G such that Ext.G;A/ is torsion-free is locally
A-projective.

An Abelian group B is said to be finitely projective with respect to A if it is
projective with respect to all sequences 0! U ! An ! G! 0 with SA.U/ D U.

Theorem 5.13 ([14]) Let A be a torsion-free finitely faithful S-group. Then, the
following are equivalent for a torsion-free reduced A-generated group G:

(a) Ext.G;A/ is torsion-free.
(b) G is finitely A-projective.
(c) G is A-coseparable.
(d) G is A-coseparable and locally A-projective.
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Similarly, an A-generated group G is said to be @1-A-coseparable if it is
@1-A-projective and every A-generated subgroup U of G such that G=U is countable
contains a direct summand V of G such that G=V is countable.

Theorem 5.14 ([12, Theorem 3.3]) Let A be a self-small countable torsion-free
generalized rank 1 group. A group G is @1-A-coseparable if and only if G is
A-solvable, and every exact sequence

0! P! X ! G! 0

such that P is a direct summand of˚!A and X is A-generated splits.

We conclude this paper with an application of endomorphism rings to mixed
Abelian groups. While a detailed discussion of this interesting topic is beyond
the framework of this survey, we want to mention that self-small mixed groups A
such that r0.A=tA/ naturally arise in various problems concerning mixed groups.
For instance, Rüdiger and the author discussed cellular covers of Abelian groups
in 2014. Here, a cellular covering sequence for an Abelian group A is an exact

sequence 0! K ! G
	
�! A! 0 for which the induced map

	� W HomZ.G;G/! HomZ.G;A/

is an isomorphism. Every group A admits a cellular covering sequence

0! 0! A
	
�! A! 0

with 	 an automorphism of A, called a trivial cellular cover. In this discussion,
Rüdiger asked whether there exist (large classes of) honest, i.e., non-splitting, mixed
groups without any non-trivial covering sequences. This question was answered
positively in [13]. In the following, tA denotes the torsion subgroup of A, and Ap

its p-torsion subgroup.

Theorem 5.15 (a) No self-small Abelian group A such that A=tA is a divisible
group of finite rank has a non-trivial cellular cover.

(b) Let A be a mixed Abelian group of finite torsion-free rank such that Ap is finite
for all primes p. If A=pA is finite for all primes p with Ap ¤ 0 and A D pA
for all primes p with Ap D 0, then A has no non-trivial covering sequence
0! K ! G! A! 0 with tE.G/ Š tE.A/.

(c) There exist honest self-small mixed groups A1 and A2 of torsion-free rank n � 2
with tA1 Š tA2 and E.A1/ Š E.A2/ such that A1 admits a non-trivial cellular
cover 0 ! K ! G ! A1 ! 0 with E.G/ Š E.A1/, while A2 admits no
non-trivial cellular covering sequences at all.

Problem 5.16 In [40], Rüdiger and Laszlo Fuchs showed that a subgroups of Q
has a non-trivial cellular cover if and only if it does not have idempotent type. Is
it possible to determine which self-small mixed groups A with r0.A/ D 1 have a
non-trivial cellular cover?
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We did not discuss self-small mixed groups A such that r0.A=tA/ is finite in this
paper mostly because we were mainly focused on topics that are closely related to
Rüdiger’s work. The endomorphism rings of these groups were investigated in a
series of papers by the B. Wickless, S. Breaz and the author, e.g., see [21] and [19].

Problem 5.17 Let A be a self-small mixed group such that r0.A=tA/ is finite. When
is CA pre-Abelian?

Acknowledgements I had known Rüdiger since 1976 when I took Linear Algebra from him as a
freshman. I want to use this opportunity to express my appreciation for his support and friendship
during almost 40 years.
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The Zero-Divisor Graph of a Commutative
Semigroup: A Survey

David F. Anderson and Ayman Badawi

Abstract Let S be a (multiplicative) commutative semigroup with 0. Associate to S
a (simple) graph G.S/ with vertices the nonzero zero-divisors of S, and two distinct
vertices x and y are adjacent if and only if xy D 0. In this survey article, we collect
some properties of the zero-divisor graph G.S/.

Keywords Zero-divisor graph • Semigroup • Poset • Lattice • Semi-lattice •
Annihilator graph

Mathematical Subject Classification (2010): 20M14; 05C90

1 Introduction

Let R be a commutative ring with 1 ¤ 0, and let Z.R/ be its set of zero-divisors.
Over the past several years, there has been considerable attention in the literature
to associating graphs with commutative rings (and other algebraic structures)
and studying the interplay between their corresponding ring-theoretic and graph-
theoretic properties; for recent survey articles, see [13, 17, 18, 29, 56, 58], and
[61]. For example, as in [11], the zero-divisor graph of R is the (simple) graph
� .R/ with vertices Z.R/ n f0g, and distinct vertices x and y are adjacent if and
only if xy D 0. This concept is due to Beck [23], who let all the elements of R
be vertices and was mainly interested in colorings (also see [7]). The zero-divisor
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graph of a commutative ring R has been studied extensively by many authors. For
other types of graphs associated to a commutative ring, see [2–4, 8–10, 16, 19–
21, 24, 43, 55, 57, 59, 63, 67], and [73].

The concept of zero-divisor graph of a commutative ring in the sense of
Anderson-Livingston as in [11] was extended to the zero-divisor graph of a
commutative semigroup by DeMeyer, McKenzie, and Schneider in [33]. Let S be
a (multiplicative) commutative semigroup with 0 (i.e., 0x D 0 for every x 2 S), and
let Z.S/ D f x 2 S j xy D 0 for some 0 ¤ y 2 S g be the set of zero-divisors of
S. As in [33], the zero-divisor graph of S is the (simple) graph G.S/ with vertices
Z.S/nf0g, the set of nonzero zero-divisors of S, and two distinct vertices x and y are
adjacent if and only if xy D 0. The zero-divisor graph of a commutative semigroup
with 0 has also been studied by many authors, for example, see [8, 9, 15, 30, 32–
38, 41, 44, 46, 49, 51–54, 68, 69, 71], and [74–81].

The purpose of this survey article is to collect some properties of the zero-divisor
graph of a commutative semigroup with 0. Our aim is to give the flavor of the
subject, but not be exhaustive. In Sect. 2, we give several examples of zero-divisor
graphs of semigroups. In Sect. 3, we give some properties of G.S/ and investigate
which graphs can be realized as G.S/ for some commutative semigroup S with 0. In
Sect. 4, we continue the investigation of which graphs can be realized as G.S/ and
are particularly interested in the number (up to isomorphism) of such semigroups
S. Finally, in Sect. 5, we briefly give some more results and references for further
reading. An extensive bibliography is included.

Throughout, G will be a simple graph with V.G/ its set of vertices, i.e., G is
undirected with no multiple edges or loops. We say that G is connected if there is a
path between any two distinct vertices of G. For vertices x and y of G, define d.x; y/
to be the length of a shortest path from x to y (d.x; x/ D 0 and d.x; y/ D1 if there is
no path). The diameter of G is diam.G/ D supfd.x; y/ j x and y are vertices of G g.
The girth of G, denoted by gr.G/, is the length of a shortest cycle in G (gr.G/ D1
if G contains no cycles).

A graph G is complete if any two distinct vertices of G are adjacent. The complete
graph with n vertices will be denoted by Kn (we allow n to be an infinite cardinal
number). A complete bipartite graph is a graph G which may be partitioned into
two disjoint nonempty vertex sets A and B such that two distinct vertices of G are
adjacent if and only if they are in distinct vertex sets. If one of the vertex sets is a
singleton, then we call G a star graph. We denote the complete bipartite graph by
Km;n, where jAj D m and jBj D n (again, we allow m and n to be infinite cardinals);
so a star graph is a K1;n.

Let H be a subgraph of a graph G. Then H is an induced subgraph of G if every
edge in G with endpoints in H is also an edge in H, and G is a refinement of H if
V.H/ D V.G/. For a vertex x of a graph G, let N.x/ be the set of vertices in G that
are adjacent to x and N.x/ D N.x/ [ fxg. A vertex x of G is called an end if there
is only one vertex adjacent to x (i.e., if jN.x/j D 1). The core of G is the largest
subgraph of G in which every edge is the edge of a cycle in G. Also, recall that a
component, say C, of a graph G is a connected induced subgraph of G such that
a � b is not an edge of G for every vertex a of C and every vertex b of G n C. It is
known that every graph is a union of disjoint components.
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Let S be a (multiplicative) commutative semigroup with 0. A ; ¤ I � S is an
ideal of S if xI � I for every x 2 S. A proper ideal I of S is a prime ideal if xy 2 I
for x; y 2 S implies x 2 I or y 2 I. An x 2 S has finite order if f xn j n � 1 g

is finite. Recall that S is nilpotent (resp., nil) if Sn D f0g for some integer n � 1

(resp., for every x 2 S; xn D 0 for some integer n D n.x/ � 1). Thus, a nilpotent
semigroup is a nil semigroup, and a finite nil semigroup is a nilpotent semigroup. If
every element of S is a zero-divisor (i.e., Z.S/ D S), then we call S a zero-divisor
semigroup. Note that we can usually assume that a commutative semigroup S with 0
is a zero-divisor semigroup since Z.S/ is an (prime) ideal of S and G.S/ D G.Z.S//.
Clearly, a nonzero nil semigroup, and hence a nonzero nilpotent semigroup, is a
zero-divisor semigroup.

A general reference for graph theory is [26], and a general reference for
semigroups is [42]. Other definitions will be given as needed.

2 Examples of Zero-Divisor Graphs

Let S be a (multiplicative) commutative semigroup with 0. Associate to S a (simple)
graph G.S/ with vertices the nonzero zero-divisors of S, and two distinct vertices x
and y are adjacent if and only if xy D 0. Note that G.S/ is the empty graph if and
only if S D f0g or Z.S/ D f0g (i.e., f0g is a prime semigroup ideal of S). To avoid
any trivialities, we will implicitly assume that G.S/ is not the empty graph.

In this section, we give several specific examples of “zero-divisor” graphs that
have appeared in the literature and show that they are all the zero-divisor graph
G.S/ for some commutative semigroup S with 0. This illustrates the power of this
unifying concept and explains why these “zero-divisor” graphs all share common
properties related to diameter and girth.

Example 2.1 Let R be a commutative ring with 1 ¤ 0.

1. The “usual” zero-divisor graph � .R/ defined in [11] has vertices Z.R/ n f0g, and
distinct vertices x and y are adjacent if and only if xy D 0. Thus, � .R/ D G.S/,
where S D R considered as a multiplicative semigroup.

2. Let I be an ideal of R. As in [63], the ideal-based zero-divisor graph of R with
respect to I is the (simple) graph �I.R/ with vertices f x 2 R n I j xy 2 I for some
y 2 R n I g, and distinct vertices x and y are adjacent if and only if xy 2 I. Thus,
�I.R/ D G.S/, where S D R=I is the Rees semigroup of (the multiplicative
semigroup) R with respect to I (i.e., the ideal I collapses to 0). In particular,
�f0g.R/ D � .R/.

3. Define an (congruence) equivalence relation � on R by x � y , annR.x/ D
annR.y/, and let RE D f Œx� j x 2 R g be the commutative monoid of (congruence)
equivalence classes under the induced multiplication Œx�Œy� D Œxy�. Note that
Œ0� D f0g and Œ1� D R n Z.R/; so Œx� � Z.R/� for every x 2 R n .Œ0� [ Œ1�/.
The compressed zero-divisor graph of R is the (simple) graph �E.R/ with
vertices RE n fŒ0�; Œ1�g, and distinct vertices Œx� and Œy� are adjacent if and only if
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Œx�Œy� D Œ0�, if and only if xy D 0. Thus, �E.R/ D G.RE/. This zero-divisor
graph was first defined (using different notation) in [57] and has been studied in
[8, 9, 29], and [67]. The semigroup analog has been studied in [35] and [38].

4. Let � be a multiplicative congruence relation on R (i.e., x � y ) xz � yz
for x; y; z 2 R). As in [10], the congruence-based zero-divisor graph of R with
respect to � is the (simple) graph ��.R/ with vertices Z.R=�/ n fŒ0��g, and
distinct vertices Œx�� and Œy�� are adjacent if and only if Œxy�� D Œ0��, if and
only if xy � 0. Thus, ��.R/ D G.R=�/, where R=� D f Œx�� j x 2 R g is
the commutative monoid of congruence classes under the induced multiplication
Œx��Œy�� D Œxy��. The congruence-based zero-divisor graph includes the three
above zero-divisor graphs as special cases.

5. Let S be the semigroup of ideals of R under the usual ideal multiplication. As in
[24], AG.R/ D G.S/ is called the annihilating-ideal graph of R (this zero-divisor
graph was first defined in [73]). Similarly, as in [32], define the annihilating-
ideal graph of a commutative semigroup S with 0 to be AG.S/ D G.T/, where
T is the semigroup of (semigroup) ideals of S under the usual multiplication of
(semigroup) ideals.

6. Let .S;^/ be a meet semilattice with least element 0. As in [60], the zero-divisor
graph of S is the (simple) graph � .S/ with vertices Z.S/ n f0g D f 0 ¤ x 2 S j
x ^ y D 0 for some 0 ¤ y 2 S g, and distinct vertices x and y are adjacent if and
only if x ^ y D 0. Recall that S becomes a commutative (Boolean) semigroup
S0 with 0 under the multiplication xy D x ^ y; so � .S/ D G.S0/. Similar zero-
divisor graphs have been defined for posets and lattices [see [39, 40, 46, 48, 53],
and Theorem 4.1(1)].

However, not all “zero-divisor” graphs can be realized as G.S/ for a suitable
commutative semigroup S with 0. For example, as in [19], the annihilator graph of a
commutative ring R with 1 ¤ 0 is the (simple) graph AG.R/with vertices Z.R/nf0g,
and two distinct vertices x and y are adjacent if and only if annR.x/[ annR.y/ ¤
annR.xy/. Then � .R/ is a subgraph of AG.R/, and may be a proper subgraph (e.g.,
� .Z8/ D K1;2, while AG.Z8/ D K3). Thus, AG.R/ need not be a G.S/. Similarly, as
in [1], one can also define the annihilator graph AG.S/ of a commutative semigroup
S with 0. The zero-divisor graph G.S/ is a subgraph of AG.S/.

As in [81], for a commutative semigroup S with 0, let G.S/ be the (simple) graph
with vertices Z.S/ n f0g, and distinct vertices x and y are adjacent if and only if
xSy D f0g. Then G.S/ is a subgraph of G.S/, and may be a proper subgraph (e.g., if
S D f0; 2; 4; 6g � Z8, then G.S/ D K1;2, while G.S/ D K3).

3 Some Properties of the Zero-Divisor Graph G.S/

In this section, we give some properties of the zero-divisor graph G.S/ of a
commutative semigroup S with 0 and are particularly interested in which graphs
can be realized as G.S/ for some commutative semigroup S with 0. We start with
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some basic properties of G.S/. Parts (1)–(3) of Theorem 3.1 were first proved for
� .R/ (cf. [11, 12, 31], and [57]).

Theorem 3.1 Let S be a commutative semigroup with 0.

1. ([33, Theorem 1.2]) G.S/ is connected with diam.G.S// 2 f0; 1; 2; 3g.
2. ([33, Theorem 1.3]) If G.S/ does not contain a cycle, then G.S/ is a connected

subgraph of two star graphs whose centers are connected by a single edge.
3. ([33, Theorem 1.5]) If G.S/ contains a cycle, then the core of G.S/ is a union

of triangles and squares, and any vertex not in the core of G.S/ is an end. In
particular, gr.G.S// 2 f3; 4;1g.

4. ([30, Theorem 1(4)]) For every pair x; y of distinct nonadjacent vertices of G.S/,
there is a vertex z of G.S/ with N.x/ [ N.y/ � N.z/.

Remark 3.2 (1) In Theorem 3.1(4), it is easily shown that N.x/[N.y/ ¨ N.z/ (for
any such z), and either case z 2 N.x/ [ N.y/ or z 62 N.x/ [ N.y/ may occur.
Moreover, we can always choose z D xy, but there may be other choices for z.

(2) In [53], a (simple) connected graph which satisfies condition (4) of Theorem 3.1
is called a compact graph. In [53, Theorem 3.1], it was shown that a simple
graph G is the zero-divisor graph of a poset if and only if G is a compact graph.

For small graphs, conditions (1), (3), and (4) of Theorem 3.1 actually characterize
zero-divisor graphs.

Theorem 3.3 ([30, Theorem 2]) Let G be a (simple) graph with jV.G/j � 5

satisfying conditions (1), (3), and (4) of Theorem 3.1. Then G Š G.S/ for some
commutative semigroup S with 0.

([30, Example 2]). In view of Theorem 3.3, Fig. 1 is a graph with six vertices
which satisfies conditions (1), (3), and (4) of Theorem 3.1, but G is not the zero-
divisor graph of any commutative semigroup with 0. (Also, see [35, Fig. 2, p. 3372].)

The next theorem gives several classes of graphs which can be realized as the
zero-divisor graph of a commutative semigroup with 0. As to be expected, many
more graphs can be realized as G.S/ for a commutative semigroup S with 0 than as

Fig. 1 A graph with six
vertices which satisfies
conditions (1), (3), and (4) of
Theorem 3.1, but G is not the
zero-divisor graph of any
commutative semigroup
with 0 x3

y3 y2

y1

x1

x2
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� .R/ for a commutative ring R with 1 ¤ 0 (cf. [11, 12, 64], and [65]). For example,
Kn and K1;n (for an integer n � 1) can be realized as a G.S/ for every n � 1, but can
be realized as a � .R/ if and only if nC 1 is a prime power [11, Theorem 2.10 and
p. 439].

Theorem 3.4 ([30, Theorem 3]) The following graphs are the zero-divisor graph
of some commutative semigroup with 0.

1. A complete graph or a complete graph together with an end.
2. A complete bipartite graph or a complete bipartite graph together with an end.
3. A refinement of a star graph.
4. A graph which has at least one end and diameter � 2.
5. ([33, Theorem 1.3(2)]) A graph which is the union of two star graphs whose

centers are connected by a single edge.

([30, Example 3]). By (3) and (5) of Theorem 3.4, the refinement of a star graph
and the union of two star graphs whose centers are connected by an edge are each
the zero-divisor graph of a commutative semigroup with 0. The graph in Fig. 2 is
also a refinement of the union of two star graphs with centers at vertex a and vertex
b. However, it is not the zero-divisor graph of any commutative semigroup with 0.
The vertices a and f do not satisfy condition (4) of Theorem 3.1 since vertex a is
adjacent to d and vertex f is adjacent to c, but there is no vertex adjacent to both c
and d.

The following theorem gives necessary and sufficient conditions on the semi-
group S for G.S/ to be a refinement of a star graph (cf. [11, Theorem 2.5] for
commutative rings).

Theorem 3.5 ([79, Theorem 1.1]) Let S be commutative semigroup with 0 and
Z.S/ ¤ f0g. Then G.S/ is a refinement of a star graph if and only if either Z.S/ is an
annihilator ideal (and hence a prime ideal) of S or Z.S/ D A[B, where A Š .Z2; �/,
A \ B D f0g, and A, B are ideals of S.

For a vertex c of a graph G, let G�
c be the induced subgraph of G with vertices

V.G�
c / D V.G/ n f u 2 V.G/ j u D c or u is an end vertex adjacent to c g.

Theorem 3.6 ([79, Theorem 2.3]) Let S be a set with a commutative binary
operation and a zero element 0 such that S D f0g [ fcg [ T [ S1 is the disjoint
union of four nonempty subsets. Assume further that Z.S/ D S, whose zero-divisor

Fig. 2 A graph which is a
refinement of the union of
two star graphs with centers
at vertex a and vertex b.
However, it is not the
zero-divisor graph of any
commutative semigroup
with 0

d e f

a b c
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graph G.S/ is a refinement of a star graph with center c such that S1 D V.G�
c / and

G�
c has at least two components. Then the following statements are equivalent.

1. S is a commutative zero-divisor semigroup (i.e., the binary operation is associa-
tive).

2. S21 D f0; cg, T2 � f0; cg, c2 D 0, and ts1 D c for every t 2 T and s1 2 S1.
3. S2 D f0; cg and S3 D f0g.

Recall that a vertex x of a graph G has degree m, denoted by deg.x/ D m, if
jN.x/j D m. For an integer k � 1, let Gk be the induced subgraph of G with vertices
V.Gk/ D f x 2 V.G/ j deg.x/ � k g. For a commutative semigroup S with 0 and an
integer k � 1, let Ik D f x 2 V.G/ j deg.x/ � k g [ f0g. Results in the next two
theorems from [30] were stated for nilpotent semigroups, but their proofs show that
they hold for nil semigroups (i.e, every element is nilpotent).

Theorem 3.7 Let S be a commutative semigroup with 0.

1. ([30, Theorem 4]) Ik is a descending chain of ideals in S.
2. ([30, Corollary 1]) The core of G.S/ together with f0g is an ideal of S whose

zero-divisor graph is the core of G.S/.
3. ([30, Corollary 2]) If S is a nil semigroup, then G.S/k D G.Ik/ for every integer

k � 1.
4. ([30, Corollary 3]) Let G be a graph and assume that Gk is not the zero-divisor

graph of any commutative semigroup with 0 for some integer k � 1. Then G is
not the zero-divisor graph of any commutative nil semigroup.

5. ([30, Corollary 4]) Let G be a graph which is equal to its core, but is not the
zero-divisor graph of any commutative semigroup with 0, and let H be the graph
obtained from G by adding ends to G. Then H is not the zero-divisor graph of
any commutative semigroup with 0.

Sharper results hold when S is a nil semigroup. A well-known special case is for
� .R/ when Z.R/ D nil.R/ (e.g., when R is a finite local ring).

Theorem 3.8 Let S be a commutative semigroup with 0.

1. ([30, Theorem 5]) Assume that S is a nil semigroup. Then

a. diam.G.S// 2 f0; 1; 2g.
b. Every edge in the core of G.S/ is the edge of a triangle in G.S/. In particular,

gr.G.S// 2 f3;1g.

2. ([30, Corollary 5]) If every element of S has finite order and some edge in the
core of G.S/ is the edge of a square, but not a triangle, then S contains a nonzero
idempotent element.

In [35], the authors gave several criteria for a graph G to be a zero-divisor graph in
terms of the number of edges of G and adding or removing edges from a given zero-
divisor graph G.S/. In the next theorem, we are removing edges from Kn (which has
n.n � 1/=2 edges).
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Theorem 3.9 ([35, Theorem 2.5(1)]) Let G be a connected graph with n vertices
and n.n � 1/=2 � p edges. Then G is the zero-divisor graph of a commutative
semigroup with 0 if 0 � p � dn=2eC1 (i.e., if G has at least n.n�1/=2�dn=2e�1
edges).

Theorem 3.10 ([35, Theorem 3.22]) Let G D G.S/ be a zero-divisor graph with
cycles for a commutative semigroup S with 0 .

1. If a is an end adjacent to x in G, then adding another end adjacent to x results in
a zero-divisor graph.

2. Removing an end from G results in a zero-divisor graph.

For a commutative semigroup S with 0, let G�.S/ be the (simple) graph with
vertices the nonzero zero-divisors of S, and distinct vertices x and y are adjacent if
and only if xy ¤ 0 [in [36], 0 was allowed to be a vertex of G�.S/]. As in [36],
a graph G is called admissible if G Š G�.S/ for some commutative zero-divisor
semigroup S. In [36], the authors study G.S/ by studying G�.S/.

Theorem 3.11 ([36, Theorem 2]) Given a connected graph G, let G0 be the graph
obtained by the following procedure: For every edge a � b in G, add a vertex ca;b

and edges a � ca;b, b � ca;b. Then G0 is connected and admissible.

For a graph G, let G be the complement graph of G (i.e., V.G/ D V.G/ and a�b
is an edge in G if and only if a� b is not an edge in G for every two distinct vertices
a; b of G). Thus, G�.S/ D G.S/. The next theorem gives some necessary conditions
on G for G to be admissible.

Theorem 3.12 ([36, Theorem 4], cf. Theorem 3.1) Let G be an admissible
graph.

1. G has at most one nontrivial component, i.e., with more than one vertex.
2. For every connected pair a; b 2 V.G/, d.a; b/ � 3.
3. The induced cycles in G are either 3-cycles or 4-cycles.
4. For every pair a; b of distinct nonadjacent vertices of G, there is a vertex c of G

such that N.a/ [ N.b/ � N.c/.

Let G be a simple connected graph, and let S � V.G/. Then a vertex x of G is
said to bound S if for every y 2 N.x/, we have d.y; t/ � 1 for every t 2 S. The set of
boundary vertices of S is denoted by BG.S/. A set S � V.G/ is said to be bounded
if BG.S/ 6D ;; otherwise, S is said to be unbounded (see [36]).

Theorem 3.13 ([36, Theorem 3 and Corollary (p. 1490)]) Let G be an admissible
graph and a; b 2 V.G/, not necessarily distinct. Then ab 2 BG.fa; bg/ [ f0g. In
particular, if a � b is an edge of G, then BG.fag/ ¤ ; and BG.fa; bg/ ¤ ;.

The following theorem gives some connections between elements in an admissi-
ble graph.
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Theorem 3.14 Let G be an admissible graph. Then

1. ([36, Lemma 1]) If a � b is an edge of G, then d.ab; a/ � 2 and d.ab; b/ � 2.
2. ([36, Proposition 5]) For every a 2 V.G/, a2 2 BG.fag/ [ f0g.
3. ([36, Proposition 6]) If a � b is an edge of G and a2 D b2 D 0, then a and b are

adjacent to a common vertex of G.
4. ([36, Proposition 7]) If a � b is an edge of G and a2 D 0, then ab 62 N.a/.
5. ([36, Proposition 8]) If a � b is an edge of G and a2 D a, then ab 2 N.a/.
6. ([36, Corollary (p. 1495)]) If a � b is an edge of G such that a2 D 0 and b2 D b,

then ab 2 N.b/ n N.a/.

4 The Number of Zero-Divisor Semigroups

Not only is it of interest to know which graphs can be realized as G.S/ for some
commutative semigroup S with 0, but more precisely, what are the choices for
such semigroups S? The case for commutative semigroups S with 0 and G.S/ is
somewhat different than for commutative rings R with 1 ¤ 0 and � .R/. It is well
known that jRj � jZ.R/j2 when Z.R/ ¤ f0g; so (up to isomorphism) there are
only finitely many commutative rings with 1 ¤ 0 that have a given (nonempty)
finite zero-divisor graph. However, for semigroups, one can always adjoin units;
so if there is a commutative semigroup S with 0 and G Š G.S/, then for every
cardinal number n � jSj, there is a commutative semigroup S.n/ with 0 [and
Z.S.n// D Z.S/] such that G Š G.S.n// and jS.n/j D n. Thus, to determine
which commutative semigroups with 0 realize a given graph G, we will restrict
our attention to commutative zero-divisor semigroups [i.e., S D Z.S/].

While it is usually not true that G.S/ Š G.T/ implies that S Š T for commutative
semigroups S and T with 0, we can get better results when we restrict to certain
classes of zero-divisor semigroups. We first consider the case when S is reduced (i.e.,
xn D 0 implies x D 0). The zero-divisor graph of reduced commutative semigroups
with 0 has been studied in [8, 9, 38, 46], and [53]. The next theorem shows that this
case reduces to Boolean semigroups (i.e., x2 D x for every element). Call a monoid
S with 0 a zero-divisor monoid if S n f1g D Z.S/. Special cases of the next theorem
have been proved in [53, Theorem 4.3] for (1) and [51, Theorem 4.2] for (2).

Theorem 4.1 1. ([46, Corollary 1.2]) The following statements are equivalent for
a graph G with at least two vertices.

a. G Š G.S/ for some reduced commutative semigroup S with 0.
b. G Š G.S/ for some commutative Boolean semigroup S with 0.
c. G Š G.S/ for some meet semilattice S.

2. ([8, Theorem 2.1]) Let S and T be commutative Boolean zero-divisor monoids.
Then G.S/ Š G.T/ if and only if S Š T.

We next give several classes of graphs for which one can determine all possible
commutative zero-divisor semigroups with a given graph. However, we will be
content to just give the number (up to isomorphism) of such semigroups rather than
list them all explicitly.
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In [76], the authors gave recursive formulas for the number (up to isomorphism)
of commutative zero-divisor semigroups whose zero-divisor graphs are either Kn or
Kn C 1 (a Kn with an end adjoined) and compute these numbers up to n D 10. For
example, there are (up to isomorphism) 139 commutative zero-divisor semigroups
with zero-divisor graph K10 and 7; 101 with zero-divisor graph K10C 1. We give the
explicit formula for Kn; let p.m; r/ be the number of partitions x1C � � � C xr D m of
the integer m with x1 � x2 � � � � � xr � 1.

Theorem 4.2 ([76, Theorem 2.2]) For every integer n � 1, there are (up to
isomorphism)

1C

n
X

r

D 1

n�r
X

eD0

p.n � e; r/

commutative zero-divisor semigroups whose zero-divisor graph is Kn.

We next consider star graphs.

Theorem 4.3 ([71]) Let n � 1 be an integer and f .n/ be the number (up to
isomorphism) of commutative semigroups with n elements. Then there are (up to
isomorphism) nC2C2f .n�1/C2f .n/ commutative zero-divisor semigroups whose
zero-divisor graph is K1;n.

Theorem 4.4 ([79, Theorem 2.13])

1. If S is a nilpotent commutative semigroup with G.S/ a star graph, then S4 D f0g.
2. For every cardinal number n � 2, there is a unique (up to isomorphism) nilpotent

commutative semigroup S.n/ such that G.S.n// D K1;n and S.n/3 ¤ f0g.

Theorem 4.5 Let n be an integer.

1. ([79, Theorem 3.6]) For every n � 2, there are (up to isomorphism) n C 2

nilpotent commutative semigroups with 0 whose zero-divisor graph is the star
graph K1; n.

2. ([69, Theorem 2.1]) There are (up to isomorphism) 12 commutative zero-divisor
semigroups whose zero-divisor graph is the star graph K1; 2.

3. ([69, Theorem 2.2]) There is (up to isomorphism) a unique commutative zero-
divisor semigroup whose zero-divisor graph is the path graph P4: a� b� c� d.

4. ([69, Theorem 2.5]) There are (up to isomorphism) 35 commutative zero-divisor
semigroups whose zero-divisor graph is the graph K1; 3.

5. ([69, Theorem 2.7]) There are (up to isomorphism) 31 commutative zero-divisor
semigroups whose zero-divisor graph is the graph in Fig. 3.

By [79, p. 339], the number of commutative zero-divisor semigroups whose zero-
divisor graph is K2 (resp., K3;K4, and K3C 1) is 4 (resp., 7; 12, and 22). Combining
this with Theorem 4.5 gives all commutative zero-divisor semigroups whose zero-
divisor graph has at most four vertices.
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Fig. 3 There are (up to
isomorphism) 31
commutative zero-divisor
semigroups with this
zero-divisor graph

d

a b

c

Fig. 4 F3, i.e., a friendship
graph with jIj D 3

Recall that a graph G is a friendship graph if G is graph-isomorphic to .[IK2/C
K1, for some set I; this graph is denoted by FjIj. For example, Fig. 4 is a friendship
graph with jIj D 3. We call G a fan-shaped graph if G is graph-isomorphic to
Pn [ fcg, where Pn is the path graph on n vertices and c is adjacent to every vertex
of Pn, and denote this graph by F0

n.

Theorem 4.6 ([79, Lemma 3.1]) For every integer n � 2, there are (up to
isomorphism) .nC1/.nC2/

2
commutative zero-divisor semigroups whose zero-divisor

graph is the friendship graph Fn.

Theorem 4.7 ([79, Theorem 3.2]) Let G be the friendship graph Fn together with
m end vertices adjacent to its center, where n � 2, m � 0. Then there are (up
to isomorphism) .nC1/.nC2/.mC1/

2
commutative zero-divisor semigroups whose zero-

divisor graph is the graph G.

The number of fan-shaped graphs F0
n for n � 6 is a special case of the next

theorem (let T D ;, so the number is g.n/). For n D 2 (resp., 3; 4, and 5), the number
(up to isomorphism) of commutative zero-divisor semigroups whose zero-divisor
graph is F0

n is 4 (resp., 12; 47, and 26) (see [68] for n D 4 and [80, Theorem 3.1] for
n D 5).

Theorem 4.8 ([79, Theorem 3.5]) For every integer n � 6 and any finite set T,
let G D .Pn [ T/ C c be the graph with G�

c D Pn, where Pn is the path graph
with n vertices. Then there are (up to isomorphism) .jTj C 1/g.n/ commutative
zero-divisor semigroups whose zero-divisor graph is the graph G, where g.n/ D
(

1
2
.2n C 2

n
2 / if n is even

1
2
.2n C 2

nC1
2 / if n is odd:

The next two theorems from [77] concern the complete graph Kn with an end
adjoined to some vertices of Kn.
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Theorem 4.9 Let n be an integer.

1. ([77, Theorem 2.1]) For n � 4, there is (up to isomorphism) a unique
commutative zero-divisor semigroup whose zero-divisor graph is the graph Kn

together with two end vertices.
2. ([77, Theorem 2.2]) For n � 4, there is no commutative semigroup with 0 whose

zero-divisor graph is the graph Kn together with three end vertices.
3. ([77, Proposition 3.1]) There are (up to isomorphism) 20 commutative zero-

divisor semigroups whose zero-divisor is the graph K3 together with an end
vertex.

Theorem 4.10 ([77, Theorem 3.2]) For integers n and k with 1 � k � n, let Mn;k D

Kn [ fx1; : : : ; xkg be the complete graph Kn with vertices fa1; : : : ; ang together with
k end vertices fx1; : : : ; xkg, where ai is adjacent to xi for every 1 � i � k.

1. For every integer n � 4, there is a unique commutative zero-divisor semigroup
whose zero-divisor graph is either M3;3 or Mn;2 .

2. ([30, Theorem 3(1)]) For every integer n � 1, there are multiple commutative
zero-divisor semigroups whose zero-divisor graph is either Mn;0 (i.e., Kn) or Mn;1.

3. For every integer n � 4 and k � 3, there is no commutative zero-divisor
semigroup whose zero-divisor graph is Mn;k.

4. There are (up to isomorphism) three commutative zero-divisor semigroups whose
zero-divisor graph is M3;2.

For an integer n � 4, let Tn.2; 2/ D Kn [ fx1; x2g be the complete graph Kn with
vertices Mn D fa1; : : : ; ang together with the edges: x1 � a1, x1 � a2, x2 � a3, and
x2� a4. For example, Fig. 5 is the graph T4.2; 2/. The following two theorems from
[41] give the number (up to isomorphism) of commutative zero-divisor semigroups
with zero-divisor graph Tn.2; 2/ for every integer n � 4.

Theorem 4.11 1. ([41, Lemma 2.1]) There is no commutative zero-divisor semi-
group whose zero-divisor graph is T4.2; 2/.

2. ([41, Theorem 2.2]) There are (up to isomorphism) 18 commutative zero-divisor
semigroups whose zero-divisor graph is T5.2; 2/.

Theorem 4.12 ([41, Theorem 2.3]) Let n � 6 be an integer and Mn.2; 2/ D

fa1; : : : ; ang [ f0; x1; x2g. Then Mn.2; 2/ is a commutative zero-divisor semigroup
whose zero-divisor graph is Tn.2; 2/ if and only if the following conditions hold.

Fig. 5 The graph T4.2; 2/

a1

x1 x2

a3

a2 a4

T4 (2,2)
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1. aix1 D 0 (i D 1; 2), ajx2 D 0 (j D 3; 4), x2i D xi (i D 1; 2), aiaj D 0 for every
i 6D j, a2i 2 f0; a1; a2g (i D 1; 2), and a2j 2 f0; a3; a4g (j D 3; 4).

2. x1x2 2 fa5; : : : ; ang. If x1x2 D at, then atxi D at (i D 1; 2), a2t D at and a2r D 0

for every r � 5 and r 6D t.
3. arx1 2 fa3; a4g for every r 6D 1; 2; t. If arx1 D a3.a4/ for r 6D 3.4/, then a3x1 D

a3 (a4x1 D a4) and a32 D 0 (a42 D 0/). In particular, if a4x1 D a3 (a3x1 D a4),
then a24 D 0 (a23 D 0).

4. arx2 2 fa1; a2g for every r 6D 3; 4; t. If arx2 D a1.a2/ for r 6D 1.2/, then a1x2 D
a1 (a2x2 D a2) and a21 D 0 (a22 D 0). In particular, if a2x1 D a1 (a1x2 D a2),
then a22 D 0 (a21 D 0).

Moreover, if Pn is the number (up to isomorphism) of commutative zero-
divisor semigroups with zero-divisor graph Tn.2; 2/, then

Pn D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

1
48
.n3 � 6n2 C 89nC 204/ if n D 4mC 1

1
48
.n3 C n2 C 64n � 12/ if n D 4mC 2

1
48
.n3 � 3n2 C 71nC 219/ if n D 4mC 3

1
48
.n3 � 6n2 C 80nC 144/ if n D 4m:

5 Other Results

We conclude this survey article by referencing a few other results on zero-divisor
graphs. Many topics related to associating graphs to algebraic systems have been left
untouched; the interested reader may consult the seven survey articles mentioned in
the introduction, unreferenced papers in the bibliography, and MathSciNet for many
more relevant articles.

Remark 5.1 Some more results.

1. In [27, 62], and [74], the authors studied directed zero-divisor graphs of a
noncommutative semigroup with 0.

2. It was shown in [51] that a graph G with more than two vertices has a unique
corresponding commutative zero-divisor semigroup if G is a zero-divisor graph
of some Boolean ring.

3. In [9], the authors determined the monoids RE for which �E.R/ D G.RE/ is a
star graph.

4. For other types of graphs associated to semigroups, see, for example, [1, 5, 6,
25, 32], and [81].

5. The authors in [35, 52], and [54] studied commutative zero-divisor semigroups
whose zero-divisor graphs are complete r-partite graphs.

6. In [70], the authors determined the number (up to isomorphism) of commutative
rings and semigroups whose zero-divisor graphs are regular polyhedra.
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7. The authors in [78] studied sub-semigroups determined by the zero-divisor
graph.

8. The authors in [15] studied minimal paths in commutating graphs of semi-
groups.

9. For graphs associated to groups, see, for example, [14, 22], and [50].
10. For graphs of posets, lattices, semilattices, or Boolean monoids, see, for

example, [8, 39, 40, 44, 46, 48], and [53].
11. The authors in [27] (resp., [28]) studied the zero-divisor graph (resp., annihila-

tor graph) of near rings.
12. The author in [47] studied the zero-divisor graph of a groupoid.
13. In [45, 66], and [72], the authors gave algorithms for determining if a given

graph can be realized as the zero-divisor graph of a commutative ring with
1 ¤ 0.

14. In [33, 40, 44, 53, 54], and [60], the authors studied colorings of commutative
semigroups with 0.

References

1. M. Afkhami, K. Khashyarmanesh, S.M. Sakhdari, The annihilator graph of a commutative
semigroup. J. Algebra Appl. 14, 1550015, 14 pp. (2015)

2. D.F. Anderson, A. Badawi, The total graph of a commutative ring. J. Algebra 320, 2706–2719
(2008)

3. D.F. Anderson, A. Badawi, The total graph of a commutative ring without the zero element. J.
Algebra Appl. 12, 1250074, 18 pp. (2012)

4. D.F. Anderson, A. Badawi, The generalized total graph of a commutative ring. J. Algebra Appl.
12, 1250212, 18 pp. (2013)

5. D.D. Anderson, V. Camillo, Annihilator-semigroup rings. Tamkang J. Math. 34, 223–229
(2003)

6. D.D. Anderson, V. Camillo, Annihilator-semigroups and rings. Houston J. Math. 34, 985–996
(2008)

7. D.D. Anderson, M. Naseer, Beck’s coloring of a commutative ring. J. Algebra 159, 500–514
(1993)

8. D.F. Anderson, J.D. LaGrange, Commutative Boolean monoids, reduced rings, and the
compressed zero-divisor graph. J. Pure Appl. Algebra 216, 1626–1636 (2012)

9. D.F. Anderson, J.D. LaGrange, Some remarks on the compressed zero-divisor graph. J. Algebra
447, 297–321 (2016)

10. D.F. Anderson, E.F. Lewis, A general theory of zero-divisor graphs over a commutative ring.
Int. Electron. J. Algebra 20, 111–135 (2016)

11. D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring. J. Algebra 217,
434–447 (1999)

12. D.F. Anderson, A. Frazier, A. Lauve, P.S. Livingston, The zero-divisor graph of a commutative
ring II, in Ideal Theoretic Methods in Commutative Algebra (Columbia, MO, 1999). Lecture
Notes in Pure and Applied Mathematics, vol. 220 (Dekker, New York, 2001), pp. 61–72

13. D.F. Anderson, M.C. Axtell, J.A. Stickles, Zero-divisor graphs in commutative rings, in
Commutative Algebra, Noetherian and Non-Noetherian Perspectives, ed. by M. Fontana et al.
(Springer, New York, 2010), pp. 23–45

14. D.F. Anderson, J. Fasteen, J.D. LaGrange, The subgroup graph of a group. Arab. J. Math. 1,
17–27 (2012)



The Zero-Divisor Graph of a Commutative Semigroup: A Survey 37

15. J. Araújo, M. Kinyonc, J. Konieczny, Minimal paths in the commuting graphs of semigroups.
Eur. J. Comb. 32, 178–197 (2011)

16. A. Ashraf, H.R. Miamani, M.R. Pouranki, S. Yassemi, Unit graphs associated with rings.
Commun. Algebra 38, 2851–2871 (2010)

17. M. Axtell, N. Baeth, J. Stickles, Survey article: graphical representations of fractorization in
commutative rings. Rocky Mountain J. Math. 43, 1–36 (2013)

18. A. Badawi, On the total graph of a ring and its related graphs: a survey, in Commutative
Algebra: Recent Advances in Commutative Rings, Integer-Valued Polynomials, and Polynomial
Functions, ed. by M. Fontana et al. (Springer Science and Business Media, New York, 2014),
pp. 39–54

19. A. Badawi, On the annihilator graph of a commutative ring. Commun. Algebra 42, 108–121
(2014)

20. A. Badawi, On the dot product graph of a commutative ring. Commun. Algebra 43, 43–50
(2015)

21. Z. Barati, K. Khashyarmanesh, F. Mohammadi, K. Nafar, On the associated graphs to a
commutative ring. J. Algebra Appl. 11, 1250037, 17 pp. (2012)

22. M. Baziar, E. Momtahan, S. Safaeeyan, N. Ranjebar, Zero-divisor graph of abelian groups. J.
Algebra Appl. 13, 1450007, 13 pp. (2014)

23. I. Beck, Coloring of commutative rings. J. Algebra 116, 208–226 (1988)
24. M. Behboodi, Z. Rakeei, The annihilating-ideal graph of a commutative ring I. J. Algebra Appl.

10, 727–739 (2011)
25. D. Bennis, J. Mikram, F. Taraza, On the extended zero divisor graph of commutative rings.

Turk. J. Math. 40, 376–399 (2016)
26. B. Bollaboás, Graph Theory. An Introductory Course (Springer, New York, 1979)
27. G.A. Canon, K.M. Neuberg, S.P. Redmond, Zero-divisor graphs of nearrings and semigroups,

in Nearrings and Nearfields, ed. by H. Kiechle et al. (Springer, Dordrecht, 2005), pp. 189–200
28. T.T. Chelvam, S. Rammurthy, On the annihilator graph of near rings. Palest. J. Math. 5(special

issue 1), 100–107 (2016)
29. J. Coykendall, S. Sather-Wagstaff, L. Sheppardson, S. Spiroff, On zero divisor graphs, in

Progress in Commutative Algebra II: Closures, Finiteness and Factorization, ed. by C.
Francisco et al. (de Gruyter, Berlin, 2012), pp. 241–299

30. F. DeMeyer, L. DeMeyer, Zero divisor graphs of semigroups. J. Algebra 283, 190–198 (2005)
31. F. DeMeyer, K. Schneider, Automorphisms and zero divisor graphs of commutative rings, in

Commutative Rings (Nova Science Publications, Hauppauge, NY, 2002), pp. 25–37
32. L. DeMeyer, A. Schneider, An annihilating-ideal graph of commutative semigroups, preprint

(2016)
33. F.R. DeMeyer, T. McKenzie, K. Schneider, The zero-divisor graph of a commutative semi-

group. Semigroup Forum 65, 206–214 (2002)
34. L. DeMeyer, M. D’Sa, I. Epstein, A. Geiser, K. Smith, Semigroups and the zero divisor graph.

Bull. Inst. Comb. Appl. 57, 60–70 (2009)
35. L. DeMeyer, L. Greve, A. Sabbaghi, J. Wang, The zero-divisor graph associated to a semigroup.

Commun. Algebra 38, 3370–3391 (2010)
36. L. DeMeyer, Y. Jiang, C. Loszewski, E. Purdy, Classification of commutative zero-divisor

semigroup graphs. Rocky Mountain J. Math. 40, 1481–1503 (2010)
37. L. DeMeyer, R. Hines, A. Vermeire, A homology theory of graphs, preprint (2016)
38. N. Epstein, P. Nasehpour, Zero-divisor graphs of nilpotent-free semigroups. J. Algebraic

Combin. 37, 523–543 (2013)
39. E. Estaji, K. Khashyarmanesh, The zero-divisor graph of a lattice. Results Math. 61, 1–11

(2012)
40. R. Halaš, M. Jukl, On Beck’s coloring of posets. Discrete Math. 309, 4584–4589 (2009)
41. H. Hou, R. Gu, The zero-divisor semigroups determined by graphs Tn.2; 2/. Southeast Asian

Bull. Math. 36, 511–518 (2012)
42. J.M. Howie, Fundamentals of Semigroup Theory (Clarendon Press, Oxford, 1995)



38 D.F. Anderson and A. Badawi

43. K. Khashyarmanesh, M.R. Khorsandi, A generalization of the unit and unitary Cayley graphs
of a commutative ring. Acta Math. Hungar. 137, 242–253 (2012)

44. H. Kulosman, A. Miller, Zero-divisor graphs of some special semigroups. Far East J. Math.
Sci. (FJMS) 57, 63–90 (2011)

45. J.D. LaGrange, On realizing zero-divisor graphs. Commun. Algebra 36, 4509–4520 (2008)
46. J.D. LaGrange, Annihilators in zero-divisor graphs of semilattices and reduced commutative

semigroups. J. Pure Appl. Algebra 220, 2955–2968 (2016)
47. J.D. LaGrange, The x-divisor pseudographs of a commutative groupoid, preprint (2016)
48. J.D. LaGrange, K.A. Roy, Poset graphs and the lattice of graph annihilators. Discrete Math.

313, 1053–1062 (2013)
49. Q. Liu, T.S. Wu, M. Ye, A construction of commutative nilpotent semigroups. Bull. Korean

Math. Soc. 50, 801–809 (2013)
50. D.C. Lu, W.T. Tong, The zero-divisor graphs of abelian regular rings. Northeast Math. J. 20,

339–348 (2004)
51. D.C. Lu, T.S. Wu, The zero-divisor graphs which are uniquely determined by neighborhoods.

Commun. Algebra 35, 3855–3864 (2007)
52. D.C. Lu, T.S. Wu, On bipartite zero-divisor graphs. Discrete Math. 309, 755–762 (2009)
53. D.C. Lu, T.S. Wu, The zero-divisor graphs of posets and an application to semigroups. Graphs

Comb. 26, 793–804 (2010)
54. H.R. Maimani, S. Yassemi, On the zero-divisor graphs of commutative semigroups. Houston

J. Math. 37, 733–740 (2011)
55. H.R. Maimani, M. Salimi, A. Sattari, S. Yassemi, Comaximal graph of commutative rings. J.

Algebra 319, 1801–1808 (2008)
56. H.R. Maimani, M.R. Pouranki, A. Tehranian, S. Yassemi, Graphs attached to rings revisited.

Arab. J. Sci. Eng. 36, 997–1011 (2011)
57. S.B. Mulay, Cycles and symmetries of zero-divisors. Commun. Algebra 30, 3533–3558 (2002)
58. K. Nazzal, Total graphs associated to a commutative ring. Palest. J. Math. (PJM) 5(Special 1),

108–126 (2016)
59. R. Nikandish, M.J. Nikmehr, M. Bakhtyiari, Coloring of the annihilator graph of a commutative

ring. J. Algebra Appl. 15, 1650124, 13 pp. (2016)
60. S.K. Nimbhorkar, M.P. Wasadikar, L. DeMeyer, Coloring of meet-semilattices. Ars Comb. 84,

97–104 (2007)
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1 Introduction

The basis theorem for finite abelian groups completely classifies these groups. There
is a countable set of directly indecomposable finite abelian groups (the cyclic groups
of prime power order) and every finite abelian group is up to isomorphism uniquely
the direct sum of indecomposable groups. This result served as a model for the
study of infinite abelian groups. It soon turned out that not even primary abelian
groups are direct sums of cyclic subgroups. Torsion-free groups of finite rank are
trivially the direct sums of indecomposable subgroups but here one problem is the
hopeless abundance of indecomposable groups of finite rank and the other problem
is “pathological decompositions”, i.e., indecomposable decompositions that are not
unique up to isomorphism. The most striking result in this direction is due to A.L.S.
Corner: Given integers n � k � 1, there exists a torsion-free group X of rank n
such that for any partition n D r1 C � � � C rk, there is a decomposition of X into a
direct sum of k indecomposable subgroups of ranks r1; : : : ; rk respectively. E.g., for
n D 10, k D 2, n D 1C9 D 2C8 D � � � D 5C5 and Corner’s result says that there
is a group G that has indecomposable decompositions G D G1 ˚ G2 such that the
ranks of the summands are 1 and 9, 2 and 8, . . . , 5 and 5. Kaplansky called the theory
of torsion-free abelian groups a strange subject that largely consists of a collection
of examples, in particular, examples of pathological decompositions, proving all
wrong that one might hope for. Thus to obtain results one has to consider subclasses
of torsion-free groups. A first such class is the class of completely decomposable
groups, direct sums of rank-one groups. This is a Remak-Krull-Schmidt class, i.e.,
it has unique decompositions with indecomposable summands, namely rank-one
subgroups. This was settled in 1940 by Reinhold Baer. It may be considered a
warning sign that there are 2@0 non-isomorphic rank-one groups (necessarily inde-
composable). A sophisticated, yet amenable class is the class of almost completely
decomposable groups, e.g. Jonsson in the 1950s and possibly Baer. However, first
studied in depth by Lady[9]. These are finite extensions of completely decomposable
groups of finite rank. Even in the case of almost completely decomposable groups
there are pathological decompositions. In fact, Corner’s examples were almost
completely decomposable groups. For almost completely decomposable groups a
weakening of isomorphism, also due to Lady, called “near-isomorphism”, proved
to be essential. Arnold [1] showed that nearly isomorphic groups have the same
decomposition properties. If one is indecomposable, then so is the other. If one is
the direct sum of two subgroups, then so is the other with summands that are nearly
isomorphic to the summands of the one. This means that nothing is lost by way
of decompositions if instead of isomorphism one works with the coarser notion of
near-isomorphism. We finally arrive at a Remak-Krull-Schmidt Category as follows.
Every almost completely decomposable group G contains by definition a completely
decomposable subgroup A of finite index. If the index ŒG W A� is least possible
among indices of completely decomposable subgroups, then A is called a regulating
subgroup and ŒG W A� is the regulating index of G. Given a prime p, the category of
all almost completely decomposable groups whose regulating index is a p-power
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with near-isomorphism as equivalence relation is a Remak-Krull-Schmidt category.
This is the Faticoni-Schultz Theorem [8]: The “indecomposable” decompositions
of an almost completely decomposable group G with p-power regulating index
are unique up to near-isomorphism. In such a Remak-Krull-Schmidt category a
classification up to near-isomorphism is achieved as soon as the indecomposable
groups in the class are found. As was shown in [2] most of these classes contain
indecomposable groups of arbitrarily large rank in which case it is hopeless to try
to describe all near-isomorphism classes of indecomposable groups. This leaves
some special classes that may have a finite number of near-isomorphism classes of
indecomposable groups. The class considered in this paper is shown to be such a
class and the indecomposables are explicitly determined.

Any torsion-free abelian group G is an additive subgroup of a Q-vector space V .
The Q-subspace of V generated by G is denoted by QG and dim.QG/ is the rank
of G. A torsion-free abelian group R of finite rank is completely decomposable
if R is the direct sum of rank-1 groups. A type is an isomorphism class ŒX� of a
rank-one group X and � D ŒX� is the type of X. The set of all types is partially
ordered where ŒX� � ŒY� if there is a non-zero homomorphism X ! Y . Given
a completely decomposable group R, we get a decomposition R D

L


2Tcr.R/
R


where R
 is obtained by combining the rank-1 summands of type 
 of R into a
summand R
.¤ 0/. The set Tcr.R/ is the critical typeset of R, e.g. [1] or [11].

An almost completely decomposable group G contains a well-understood
fully invariant completely decomposable subgroup of finite index, the regulator
R.G/, [7]. In fact, the regulator is the intersection of all regulating subgroups. The
critical typeset of G is the critical typeset of R.G/, Tcr.G/ D Tcr.R/. If the critical
typeset is an inverted forest, then there is a unique regulating subgroup that equals
the regulator. This is the case for the class studied in this paper.

A type � is p-locally free if pX ¤ X for any rank-1 subgroup X of G with ŒX� D � .
Given a finite poset S of p-locally free types, an almost completely decomposable
group G is an .S; pk/-group if S D Tcr.G/ and the exponent of the regulator quotient
G=R.G/ is pk, i.e., exp.G=R.G// D pk. In the survey article [6] we used a more
general definition of .S; pk/-groups, namely Tcr.G/ � S and pkG � R.G/, so that
the class .S; pk/ is closed under direct summands. Our approach here is motivated
by obtaining a complete list of indecomposables. Two .S; pk/-groups G and H are
nearly isomorphic c.f. Lady[10] if there is an integer n relatively prime to p and
homomorphisms f W G! H and g W H ! G with fg D n and gf D n. Consequently,
a classification of all indecomposable .S; pk/-groups up to near isomorphism results
in a classification of all .S; pk/-groups up to near isomorphism. Hence, for almost
completely decomposable groups G with G=R.G/ p-primary, the main question is
to determine the near-isomorphism classes of indecomposable .S; pk/-groups.

There is an interesting connection between almost completely decomposable
groups and representations of finite partially ordered sets.

Let G be an almost completely decomposable group with regulator R D
L


2S R
, critical typeset S, and regulator quotient G=R that is a finite abelian
group of exponent pk. We assume that the critical types are p-locally free. Set



44 D.M. Arnold et al.

R.�/ D
L

��
2Tcr.A/
R
. Let 	 be an element defined to be incomparable to any

element in S. Then

UG D
�

R
pkR
;

R.�/CpkR
pkR

; pkG
pkR
j � 2 Sopp [ f	g

�

is a representation of the poset Sopp [ f	g in the category of Z =pk
Z-modules

where � 7! R.�/CpkR
pkR

and 	 7! pkG
pkR

. Two representations UG and UH are
isomorphic (as representations) if and only if G and H are nearly isomorphic,
and UG is indecomposable if and only if G is indecomposable. The terms “bounded
representation type” and “unbounded representation type” stem from the theory of
representation of posets. Details are in [6] that also contains a complete survey of
the known and open problems in the subject.

In the representation UG the term R
pkR

is a free Z =pk
Z-module. Choosing a basis

of R
pkR

and a basis of the finite p-group pkG=pkR the crucial module pkG=pkR can

be encoded by a “representing matrix” with coefficients in Z =pk
Z. In this way

representation problems are turned into matrix problems.
Similarly, by choosing a (suitable) basis of the finite p-group G=R and expressing

its elements in terms of a (suitable) basis of R one encodes the group G by an
integral matrix, its coordinate matrix. In this matrix the entries are determined
only modulo pk, and therefore the matrix may be considered to be a matrix with
coefficients in Z =pk

Z. Doing so makes the coordinate matrix identical with the
representing matrix.

We denote by .1; n/ the poset f�0; �1 < � � � < �ng where �0 is incomparable to
any one of the other elements. In this paper we study homocyclic ..1; 5/; p3/-groups,
where G 2 ..1; 5/; p3/ is homocyclic if G=R.G/ is a direct sum of cyclic groups all
of the same order, p3 D exp.G=R.G//. We present a complete catalogue of near-
isomorphism types of indecomposable homocyclic groups in ..1; 5/; p3/. There are
precisely 20 near-isomorphism classes, and all have rank 7; 8; 9. The proof includes
finding a normal form for coordinate matrices of ..1; 5/; p3/-groups, see Sect. 3.

For example, there are infinitely many indecomposable ..1; 5/; p3/-groups when
the regulator quotient is not required to be homocyclic [6] but there are only 20 if
the regulator quotient is homocyclic (this paper).

Open Problems In [6] there is a list of nine classes of groups that are not known
to have finitely many near-isomorphism classes of indecomposables or not, and
the solution of those few problems would complete our theory of groups with an
inverted forest as a critical typeset. Meanwhile three of those open problems have
been solved, including the class dealt with in the present paper, c.f. [12, 13].

A few classes play a key role among the classes of groups with an inverted
forest as a critical typeset. These “boundary classes” are such that classes that
are in a (suggestive) sense “below” such a boundary class have finitely many
indecomposables up to near-isomorphism and those “above” do not.

To emphasize: Our theory of almost completely decomposable groups with an
inverted forest as a critical typeset is complete if and only if we know whether the
remaining boundary classes have finitely many indecomposables or not. Moreover,
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it seems that in each of the remaining six problematic boundary classes the
difficulties aggregate. If the following six classes are shown to be bounded or not,
then our theory is complete.

1. ..1; 2/; p5/; ..1; 4/; p3/; ..2; 3/; p2/; ..2; 4/; p2/ if the regulator quotient is not
required to be homocyclic;

2. ..1; 3/; p5/; ..2; 4/; p2/ if the regulator quotient is homocyclic.

2 Matrices

We deal with integer matrices. A line of a matrix is a row or a column. Trans-
formations of matrices are successive applications of elementary transformations.
Matrices are simplified by making entries equal to 0. While annihilating an entry,
other entries that were originally zero may become nonzero; such entries are called
fill-ins and must be removed, i.e., the original 0 must be restored. There is a fixed
exponent pk and entries may be changed modulo pk, in particular ph D 0 if h � k.
A unit in our context is an integer that is relatively prime to p. An integer matrix
A D Œai;j� is called p-reduced (modulo pk) if

1. there is at most one 1 in a line and all other entries are in pZ,
2. if an entry 1 of A is at the position .is; js/, then ais;j D 0 for all j > js and ai;js D 0

for all i < is, and ais;j; ai;js 2 pZ for all j < js and all i > is.

Thus in a p-reduced matrix, the entries left of and below an entry 1 are in pZ.

Lemma 2.1 (cf. [5, Lemma 1]) Let A be an integer matrix.

1. The matrix A can be transformed into a p-reduced matrix by elementary row
transformations upward and elementary column transformations to the right, i.e.,
interchange of lines is not used.

2. If in addition row transformations down are allowed, then the matrix A can be
transformed into a p-reduced matrix where all entries are 0 below a 1.

3 Homocyclic ..1; n/; pk/-Groups and Coordinate Matrices

The following terminology is used in this paper. Details, equivalent formulations,
and confirmation of assertions can be found in [1] or [11]. For a general treatment
of .S; pk/-groups see [6].

Let G be an almost completely decomposable group. The isomorphism types
of the regulator R.G/ and the regulator quotient G=R.G/ are near-isomorphism
invariants of G. In particular, the rank r of the regulator quotient is an invariant
of G. Given a prime p, G is p-reduced if the localization G.p/ of G at p is a free
Z.p/-module, or, equivalently, if each type � 2 Tcr.G/ is p-locally free, i.e., pX ¤ X
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for any rank-1 subgroup X of G with ŒX� D � . (ŒX� denotes the isomorphism class
of X.) An almost completely decomposable group without summands of rank 1 is
called clipped.

A coordinate matrix of G is obtained by means of bases of R and G=R. Write
R D S1x1 ˚ � � � ˚ Smxm with xi 2 R, Si D fs 2 Q W sxi 2 Rg, and p�1 … Si. In this
case, fx1; : : : ; xmg is called a p-basis of R.

A matrix M D Œmi;j� is a coordinate matrix of G modulo R if M is integral, there
is a basis .	1; : : : ; 	r/ of G=R, there are representatives gi 2 G of 	i, and there is a
p-basis fx1; : : : ; xmg of R such that

gi D p�ki.
Pm

jD1 mi;jxj/ where h	ii Š Zpki ; 1 � ki � k D exp.G=R/:

A coordinate matrix M of G is of size r 
 m and coordinate matrices that are
congruent modulo pk describe equal groups. Since .	1; : : : ; 	r/ is a basis of G=R,
a coordinate matrix M of size r 
 m has (p-)rank r, i.e., the r rows of M are
linearly independent modulo pk. Each column of a coordinate matrix corresponds
to a type. So we speak of the type of a column and of � -columns of M. So there
corresponds the sequence .�1; �2; : : : ; �m/ of the column types to the coordinate M.
The number r� .G/ of � -columns of M is called the � -homogeneous rank of G. This
is a near-isomorphism invariant of G.

A matrix M is said to be decomposable if there are permutation matrices X;Y ,
such that XMY D M1 ˚ M2. There are the special cases XMY D ŒM1

ˇ

ˇ0� and

XMY D

�

M1

0

�

. The following lemma is a well-known fact and we include the simple

argument for the convenience of the reader.

Lemma 3.1 (cf. [6, Lemma 3.1]) The almost completely decomposable group G
is decomposable if and only if there exists a decomposable coordinate matrix of G.

In particular, if G has a decomposable coordinate matrix M, i.e., XMY D M1 ˚

M2 with permutation matrices X;Y, then G D G1˚G2 where Gi has the coordinate
matrix Mi.

Clearly, a 0-column of M displays a summand of rank 1, i.e., G is not clipped.

Proof The coordinate matrix is obtained by means of a p-basis B of R D R.G/.
Each column of M corresponds to a basis element and the columns of the Mi

determine a partition B D B1 [ B2 of the p-basis and there is a corresponding direct
decomposition R D R1 ˚ R2. It is easy to see that G D G1 ˚G2 where Gi D hRii�,
the purification of Ri in G.

Henceforth let G be a homocyclic ..1; n/; pk/-group of rank m with regulator
R D R.G/ and critical typeset Tcr.G/ D f�0; �1 < � � � < �ng, where Tcr.G/ is a poset
of p-locally free types, and G=R is a homocyclic group of rank r and of exponent pk,
and we write M D

�

M�0

ˇ

ˇ

ˇ

ˇ M�1

ˇ

ˇ � � �
ˇ

ˇ M�n

�

where M�i contains all �i-columns.
We call transformations of rows and of columns of a coordinate matrix of G

allowed if the transformed coordinate matrix is the coordinate matrix of a near-
isomorphic group. In particular, transformations are allowed if they are due to
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changes of the two bases involved. The following transformations are allowed in
our case (see [6, p. 11], [3, Theorem 12])

(a), (b) Add an integer multiple of a row of M to any other row of M (this is because
our groups are homocyclic);

(c) multiply a row of M by a unit modulo pk;
(d) interchange any two rows of M;
(e) for j � i, add an integer multiple of a column of M�i to a column of M�j ;
(f) multiply a column of M by a unit modulo pk;
(g) interchange any two columns of M�i .

If the coordinate matrix M is formed with respect to the regulator R, then the
submatrices of M formed by all �0-columns and the rest matrix both have rank equal
to the rank r of the regulator quotient. Conversely, if the coordinate matrix M is
formed with respect to a completely decomposable subgroup R of finite index and M
satisfies the stated rank conditions, then R is the regulator ([11, Theorem 8.1.10], [3,
Lemma 13]). These rank conditions are called the Regulator Criterion.

For clipped groups the �0-columns of a coordinate matrix always can be
transformed to the identity matrix without any change of the rest, because of
the Regulator Criterion. By Lemma 2.1 the part

�

M�1

ˇ

ˇ � � �
ˇ

ˇ M�n

�

of a coordinate
matrix M can be changed into p-reduced form, cf. Proposition 4.1.

4 Standard Coordinate Matrices

We establish a standard form for coordinate matrices of homocyclic ..1; n/; pk/-
groups. If A D ŒAi;j� is a block matrix, then we denote by A�;j and by Ai;� the
jth block column and the ith-block row of A, respectively. Integer entries that are
prime to p are called units.

Our main technique is forming Smith Normal Forms and variations thereof. Two
matrices A;B are said to be equivalent if there are invertible matrices X;Y such that
B D XAY . It is well known that every integral matrix is equivalent to a matrix in
Smith Normal Form, diag.a1;1; : : : ; ak;k; 0; : : : ; 0/ where ai;i divides aiC1;iC1. Here
we consider integer (coordinate) matrices and deal with them modulo pk, because in
our setting matrices that are congruent modulo pk describe the same group. So we
have the (modified) Smith Normal Form

2

6

4

I

pI

:
:
:

pk�1I

0

3

7

5

where the empty space indicates 0-blocks and I stands for identity matrices of

various sizes. We often call
h

phI 0

0 phC1I

i

the (partial) Smith Normal Form. In our case

p3 D 0, and the possible (partial) Smith Normal Forms are
h

I 0

0 pX

i

;
h

pI 0

0 p2X

i

;
h

p2I 0

0 0

i

.
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An integer matrix is said to be reduced if it is either 0 or of the form plI, l
some nonnegative integer. A block matrix A D ŒAi;j� with blocks Ai;j is said to be
completely reduced if all blocks are reduced. Let ŒAi;j� be an integer block matrix. A
single block Ai;j is either reduced or it is called a placeholder.

Let ŒA1
ˇ

ˇA2
ˇ

ˇ : : :
ˇ

ˇAr� be a sequence of blocks in a block row of a block matrix M.
The situation occurs often where arbitrary row transformations in the block row
can be applied, arbitrary column transformations can be applied in each Ai-column
and all column transformations to the right can be done. Suppose that all Smith

Normal Forms of the Ai are of the form
h

I 0

0 0

i

. Then we form the Smith Normal Form

of A1. Annihilate, assuming that this is possible, with I � A1 in all A2;A3; : : :. This

splits A2 D
h

0

X2

i

. Actually 8 i W Ai D
h

0

Xi

i

. Then form the Smith Normal Form

of X2 D
h

I 0

0 0

i

and annihilate with I � X2 in A3;A4; : : :. Continue so through the

sequence of the Ai’s. We obtain the so-called iterated Smith Normal Form of the
sequence ŒA1

ˇ

ˇA2
ˇ

ˇ : : :� starting with A1. The iterated Smith Normal Form looks like:

ŒA1
ˇ

ˇA2
ˇ

ˇA3
ˇ

ˇ � � � � D

2

6

6

6

4

I 0
ˇ

ˇ 0 0
ˇ

ˇ 0 0
ˇ

ˇ � � �

0 0
ˇ

ˇ I 0
ˇ

ˇ 0 0
ˇ

ˇ � � �

0 0
ˇ

ˇ 0 0
ˇ

ˇ I 0
ˇ

ˇ � � �

0 0
ˇ

ˇ 0 0
ˇ

ˇ 0 0
ˇ

ˇ � � �

3

7

7

7

5

:

There is an obvious variant for columns instead of rows and the start is from
below. In general, if we form the iterated Smith Normal Form we tacitly assure
that the already obtained “reduced blocks” of the whole coordinate matrix can be
reestablished.

Changing the block matrix ŒAi;j� by a collection W of allowed transformations a
block matrix ŒAW

i;j � is obtained. Let i0; j0 be fixed and let Ai0;j0 be a 0-block. The
0-block Ai0;j0 is called restorable if there is always a collection U of allowed
transformations leaving all blocks AW

i;j unchanged if .i; j/ ¤ .i0; j0/ and changing
the block AW

i0;j0
back to 0. In particular, if W caused fill-ins in the 0-block Ai0;j0 , then

these fill-ins can be removed by U without additional change of the other blocks.
We improve the notation of [5, Proposition 2] and, for the convenience of the

reader, we give an adapted proof.

Proposition 4.1 Let n be a natural number and let p be a prime and .1; n/ D
.�0; �1 < � � � < �n/. A homocyclic ..1; n/; pk/-group without summands of rank � 3
has a coordinate matrix of the form

ŒI

ˇ

ˇ

ˇ

ˇpA

ˇ

ˇ

ˇ

ˇI� D

2

6

6

6

6

6

6

6

6

6

6

6

6

4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ pA2;1 0 0 � � � 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ I.�2/ 0 � � � � � � 0
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ pA3;1 pA3;2 0 � � � 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 I.�3/ 0 � � � 0

I
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:
:
:

:
:
:

:
:
:

:
:
:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:
:
:

:
:
:

:
:
:

:
:
:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:
:
:

:
:
:

:
:
:

:
:
:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:
:
:

:
:
:

:
:
:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ pAn;1 pAn;2 � � � � � � pAn;n�1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0 � � � � � � I.�n/

�0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �1 �2 �3 � � � �n�1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �2 �3 � � � � � � �n

3

7

7

7

7

7

7

7

7

7

7

7

7

5

�

2

6

6

6

6

6

6

6

6

6

6

6

4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ pA2;1 I 0 0 � � � � � � 0 0
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ pA3;1 0 pA3;2 I � � � � � � 0 0

I
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ pAn;1 0 pAn;2 0 � � � � � � pAn;n�1 I

�0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �1 �2 �2 �3 � � � � � � �n�1 �n

3

7

7

7

7

7

7

7

7

7

7

7

5

(1)

The lower triangular block matrix ŒAi;j� (ŒpAi;j� is stripped to ŒAi;j�) is p-reduced.
For the block pAn;1 there is a matrix D such that pAn;1 D p2D. The blocks pAi;j are
of the form
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pAi;j D

2

6

6

6

4

0

ˇ

ˇ

ˇ 0 0

0

ˇ

ˇ

ˇ pI 0

0

ˇ

ˇ

ˇ 0 p2A0

i;j

3

7

7

7

5

; where lines may be absent:

In particular, if G is a homocyclic ..1; 5/; p3/-group, then the standard coordinate
matrix has the form

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 0 pI 0
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0 0 0
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0 0
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0
ˇ

ˇ

ˇ

�2
0 0 0 A

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0 0 0
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0 0
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0
ˇ

ˇ

ˇ

0 pI 0 0
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0 0 0
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0 0
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0
ˇ

ˇ

ˇ

0 0 B1 B2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0 pI 0
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0 0
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0
ˇ

ˇ

ˇ �3

0 0 B3 B4
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0 0 E
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0 0
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0
ˇ

ˇ

ˇ

pI 0 0 0
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0 0 0
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0 0
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0
ˇ

ˇ

ˇ

0 C1 C2 C3
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 pI 0 0
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0 0
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0
ˇ

ˇ

ˇ

�4
0 C4 C5 C6

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0 F1 F2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 pI 0
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0
ˇ

ˇ

ˇ

0 C7 C8 C9
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0 F3 F4
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0 H
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0
ˇ

ˇ

ˇ

D1 D2 D3 D4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ pI 0 0 0
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0 0
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0
ˇ

ˇ

ˇ

D5 D6 D7 D8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 G1 G2 G3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ pI 0 0
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0
ˇ

ˇ

ˇ

�5
D9 D10 D11 D12

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 G4 G5 G6

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 J1 J2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ pI 0
ˇ

ˇ

ˇ

D13 D14 D15 D16

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 G7 G8 G9

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 J3 J4
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 K
ˇ

ˇ

ˇ

�1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �4

ˇ

ˇ

ˇ

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(2)

where, saving space, we write the coordinate matrix differently. We omit the identity
matrix in front formed by the �0-columns, and �i in the last column indicates the
location of I.�i/. matrix in the back. All placeholders, like C9, have entries all
in p2 Z.

Proof Let G be given by a coordinate matrix M where the columns are ordered as
their types. As G is clipped, the �0-columns form a square matrix N that by the
Regulator Criterion is invertible. Hence N can be transformed by column transfor-
mations alone to the identity matrix without changing the rest, cf. [3, Proposition 4].
So M D ŒI j M0� and we disregard the leading identity matrix and call M0 the
coordinate matrix. The regulator quotient is homocyclic. This allows arbitrary row
transformations and Lemma 2.1(2) applies. So this coordinate matrix M0 can be
transformed to a p-reduced matrix, and by the Regulator Criterion M0 contains
columns forming a permutation matrix of size r, where r is the number of rows
of M0.
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We move the columns of the included permutation matrix to the right, keeping
the order of the types, and rearrange this matrix by a row permutation of the full
coordinate matrix to I. As the coordinate matrix M0 is p-reduced we obtain the
complete coordinate matrix in the form ŒI j M0� D ŒI0 j pA j I1�. The identity
matrix I1 contains all the remaining units in M0. Note that the columns of pA and
of I1 are ordered as their types, respectively. Since each column of the identity
matrix I1 allows to annihilate with its entry 1 in all columns of type greater or equal
we obtain the lower triangular form of pA.

By Lemma 2.1(1) the (stripped) part A can be transformed to a p-reduced matrix.
The induced row transformations of the identity matrix I0 can be compensated by
column transformations alone. The induced row transformations (upward) of the
identity matrices I0; I1 can be undone by column transformations alone, respectively,
and give a block structure due to the types. This and the ordering of the columns
of pA define a block structure on pA as shown in (1).

A �n-column in pA is 0, as A is p-reduced. So there cannot be a �n-column if G is
clipped. By Lemma 3.1 a �1-column in I1 displays a summand of rank 2, hence there
is no such column. As A is p-reduced, Ai;j D 0 if j � i. Thus we get the claimed
block matrix for ŒI0 j pA j I1�. A p 2 pAn;1 allows to annihilate in its whole row and
in its whole column displaying a summand of rank 3, by Lemma 3.1. So there is a
matrix D such that pAn;1 D p2D.

Since arbitrary column transformations are allowed in the first block column A�;1

and since arbitrary row operations are allowed in each block row Ai;� we may form
the iterated Smith Normal Form of the first block column A�;1, starting with An�1;1.
So we already obtained the first block column of the coordinate matrix (1). Then we
annihilate with all p 2 pA�;1 horizontally to the right in the rows of pA.

Arbitrary column transformations are allowed in the second block column A�;2.
If we leave the 0-rows unchanged that are due to the p’s in the first block column,
then arbitrary row operations are allowed in the remaining rows of each block
row Ai;�. So excluding the rows that we leave unchanged we may form the iterated
Smith Normal Form of the remaining rows of the second block column A�;2,
starting with An;2. Again we annihilate with the p’s in the second block column
horizontally to the right in the rows of pA. So we obtain the second block
column of the coordinate matrix (1). We continue to treat all block columns to
the right successively and we get the claimed coordinate matrix. This procedure
automatically transforms the blocks pAi;j as indicated.

A coordinate matrix as in Proposition 4.1 is called standard. The block format
of a standard coordinate matrix of G and the number of entries p in each block pAi;j

of pA are near-isomorphism invariants of G.

Proposition 4.2 (cf. [5, Proposition 5]) Let G be a homocyclic ..1; n/; pk/-group
with the standard coordinate matrix. Then the size of the I.�i/’s, the size of the
blocks Ai;j and the numbers of entries p in a block pAi;j are near-isomorphism
invariants of G for all i; j.
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5 Indecomposable Groups in the Class of Homocyclic
..1; 5/; p3/-Groups

.1; 5/-groups are of rank � 6 because the critical typeset consists of 6 types. Inde-
composable .1; 5/-groups have a regulator quotient of rank � 2. Thus coordinate
matrices of indecomposable .1; 5/-groups must have at least two rows. This means
that �0 contributes at least two ranks and the remaining five critical types �i must
contribute at least one rank each, so the rank of an indecomposable .1; 5/-group
must be � 7.

We denote groups by their scheme. With placeholders, like G6, we refer to the
coordinate matrix (2) or the Basic Template (3) below. Recall that all entries in a
placeholder matrix are in p2 Z. For instance,

�

1 0
ˇ

ˇ

ˇ

ˇ p 0 1 0 0

0 1
ˇ

ˇ

ˇ

ˇ p2 p2 0 p 1

�0 �0
ˇ

ˇ

ˇ

ˇ �1 �2 �3 �4 �5

�

D

�

1 0
ˇ

ˇ

ˇ

ˇ p 0 0
ˇ

ˇ

ˇ

ˇ 1 0

0 1
ˇ

ˇ

ˇ

ˇ p2 p2 p
ˇ

ˇ

ˇ

ˇ 0 1

�0 �0
ˇ

ˇ

ˇ

ˇ �1 �2 �4
ˇ

ˇ

ˇ

ˇ �3 �5

�

with scheme

�

p 0 0
ˇ

ˇ �3
D10 G6 p

ˇ

ˇ �5

�1 �2 �4
ˇ

ˇ

�1

7

D Œ7:1�

denotes a group of rank 7 by its coordinate matrix and its scheme where 7 indicates
the rank and 1 is a running number. There are five groups of rank 7, so Œ7:1� till Œ7:5�
denote all groups of rank 7 in the list below by their schemes.

List of Indecomposable Homocyclic ..1; 5/; p3/-Groups

(rank 7)

2

6

4

p 0 0
ˇ

ˇ �3
D10 G6 p

ˇ

ˇ �5

�1 �2 �4
ˇ

ˇ

3

7

5

1

7

,

2

6

4

C6 0 p
ˇ

ˇ �4
D4 p 0

ˇ

ˇ �5

�1 �2 �3
ˇ

ˇ

3

7

5

2

7

,

2

6

4

B2 p 0
ˇ

ˇ �3
0 G5 p

ˇ

ˇ �5

�1 �2 �4
ˇ

ˇ

3

7

5

3

7

,

2

6

4

C9 0 0
ˇ

ˇ �4
D8 G3 p

ˇ

ˇ �5

�1 �2 �3
ˇ

ˇ

3

7

5

4

7

,

2

6

4

C3 p 0
ˇ

ˇ �4
0 G7 J4

ˇ

ˇ �5

�1 �2 �3
ˇ

ˇ

3

7

5

5

7

,

(rank 8)

2

6

6

6

4

0 p
ˇ

ˇ �3
p 0

ˇ

ˇ �4
D13 G8

ˇ

ˇ �5

�1 �2
ˇ

ˇ

3

7

7

7

5

1

8

,

2

6

6

6

4

p 0
ˇ

ˇ �2
C8 0

ˇ

ˇ �4
D7 p

ˇ

ˇ �5

�1 �3
ˇ

ˇ

3

7

7

7

5

2

8

,

2

6

6

6

4

p 0
ˇ

ˇ �3
C7 0

ˇ

ˇ �4
D14 G9

ˇ

ˇ �5

�1 �2
ˇ

ˇ

3

7

7

7

5

3

8

,

2

6

6

6

4

p 0
ˇ

ˇ �2
C5 p

ˇ

ˇ �4
0 J3

ˇ

ˇ �5

�1 �3
ˇ

ˇ

3

7

7

7

5

4

8

,

2

6

6

6

4

B4 0
ˇ

ˇ �3
C3 p

ˇ

ˇ �4
0 G7

ˇ

ˇ �5

�1 �2
ˇ

ˇ

3

7

7

7

5

5

8

,

(rank 9)

2

6

6

6

4

p 0 0
ˇ

ˇ �3
D10 0 p

ˇ

ˇ �5
D14 G9 0

ˇ

ˇ �5

�1 �2 �4
ˇ

ˇ

3

7

7

7

5

1

9

,

2

6

6

6

4

C6 0 p
ˇ

ˇ �4
D4 p 0

ˇ

ˇ �5
0 0 J3

ˇ

ˇ �5

�1 �2 �3
ˇ

ˇ

3

7

7

7

5

2

9

,

2

6

6

6

4

p 0 0
ˇ

ˇ �3
C7 0 0

ˇ

ˇ �4
D10 G6 p

ˇ

ˇ �5

�1 �2 �4
ˇ

ˇ

3

7

7

7

5

3

9

,

2

6

6

6

4

0 B2 p
ˇ

ˇ �3
p 0 0

ˇ

ˇ �4
D13 0 G8

ˇ

ˇ �5

�1 �1 �2
ˇ

ˇ

3

7

7

7

5

4

9

,

2

6

6

6

4

p 0 0
ˇ

ˇ �2
0 C9 0

ˇ

ˇ �4
D7 D8 p

ˇ

ˇ �5

�1 �1 �3
ˇ

ˇ

3

7

7

7

5

5

9

,

2

6

6

6

4

p 0 0
ˇ

ˇ �3
C7 F4 0

ˇ

ˇ �4
0 G3 p

ˇ

ˇ �5

�1 �2 �3
ˇ

ˇ

3

7

7

7

5

6

9

,

2

6

6

6

4

p 0 0
ˇ

ˇ �2
C8 0 0

ˇ

ˇ �4
D7 G3 p

ˇ

ˇ �5

�1 �2 �3
ˇ

ˇ

3

7

7

7

5

7

9

,

2

6

6

6

4

B4 0 0
ˇ

ˇ �3
C3 p 0

ˇ

ˇ �4
0 G7 J4

ˇ

ˇ �5

�1 �2 �3
ˇ

ˇ

3

7

7

7

5

8

9

,

2

6

6

6

4

B2 0 p
ˇ

ˇ �3
C3 p 0

ˇ

ˇ �4
0 0 G8

ˇ

ˇ �5

�1 �2 �2
ˇ

ˇ

3

7

7

7

5

9

9

,

2

6

6

6

4

0 p 0
ˇ

ˇ �4
C6 0 p

ˇ

ˇ �4
0 G7 J3

ˇ

ˇ �5

�1 �2 �3
ˇ

ˇ

3

7

7

7

5

10

9

,

Proposition 5.1 The homocyclic ..1; 5/; p3/-groups in the list above are indecom-
posable and pairwise not near-isomorphic.

Proof By Proposition 4.2 the groups in the list are pairwise not near-isomorphic. We
illustrate the details with examples. First of all near-isomorphic groups have equal
ranks so we only need to consider groups in the subsets of equal rank. Secondly,
the types in the bottom row and the last column of the schemes have to coincide
for near-isomorphic group (Proposition 4.2) because these encode the sizes of the
I�i and the blocks Ai;j. This says by itself that the group [9.1] is not near-isomorphic
with any other group of rank 9 and hence of any other group in the list. On the other
hand, this does not say that [9.6] and [9.8] are not near-isomorphic. But [9.6] has
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A1;3 D Œp� while [9.8] has A1;3 D Œp2�, so the number of entries p is different in the
block and therefore [9.6] and [9.8] are not near-isomorphic.

To show that the groups in the list are indecomposable we utilize the connection
with representations. We restrict ourselves to the situation at hand and let S WD
.�0; �1 < � � � < �n/ where the �i are p-free types.

Let G 2 .S; pk/ with regulator R WD R.G/ D
L


2Tcr.G/
R
 and suppose that

Tcr.G/ � S and pkG � R. Define W R! R=pkR W x D xCpkR, so R D R=pkR. The
(anti)-representation UG of G is given by UG D .R;R.�/; pkG W � 2 S/. Let G0 be
another group of .S; pk/with regulator R0 and representation UG0 . A homomorphism
f W UG ! U0

G is a Zpk D Z =pk
Z-module homomorphism f W R ! R0 such that

8; � 2 S W f .R.�// � R0.�/ and f .pkG/ � pkG0. The following facts are well-
known and can be found in [1, 11] and [4].

• R is a finite free Zpk -module.

• In general, pkG is a finite Zpk -module, and in the homocyclic case it is free.

• pkG Š G=R.
• G is nearly isomorphic with G0 if and only if UG and UG0 are isomorphic.
• G is indecomposable if and only if End UG contains no idempotents other than 0

and 1.

For simplicity, we assume in the following that our groups are homocyclic. We
associate with a representation UG a Zpk -matrix that encodes pkG. Let fx1; : : : ; xmg

be a p-basis of R and let fg1; : : : ; grg be a basis of pkG. Then fx1; : : : ; xmg is a basis
of the free module R. Expressing the generators gi in terms of the basis fx1; : : : ; xmg

we obtain the representing matrix of G. This matrix (in the homocyclic case) is
identical with the earlier (integral) coordinate matrix except that instead of “working
modulo pk”, the entries are considered elements of Zpk .

Exemplarily we show that the group G of rank 9 with scheme Œ9:10� is
indecomposable. Its representing matrix is

M D

�

1 0 0
ˇ

ˇ

ˇ

ˇ 0
ˇ

ˇ p
ˇ

ˇ 0
ˇ

ˇ 1 0
ˇ

ˇ 0

0 1 0
ˇ

ˇ

ˇ

ˇ p2
ˇ

ˇ 0
ˇ

ˇ p
ˇ

ˇ 0 1
ˇ

ˇ 0

0 0 1
ˇ

ˇ

ˇ

ˇ 0
ˇ

ˇ p2
ˇ

ˇ p2
ˇ

ˇ 0 0
ˇ

ˇ 1

�

D

�

1 0 0 0 p 0 1 0 0

0 1 0 p2 0 p 0 1 0

0 0 1 0 p2 p2 0 0 1

�

The representing matrix comes with basis of R and we view the elements of R
as coordinate vectors with respect to this basis. In particular, p3G is simply the row
space of M. To show that G is indecomposable we show that any idempotent endo-
morphism of UG D .R;R.�/; p3G W � 2 f�0; �1; : : : ; �5g/ is either the zero map 0
or the identity 1. In terms of coordinates an endomorphism of R is a Zp3 -matrix that
acts by right multiplication on the elements .x01; x02; x02; x1; x2; x3; x41; x42; x5/ of R.
The requirement that f .R.�// � R.�/ implies that f , as a matrix, is of the form
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f D

2

6

6

6

6

4

a11 a12 a13 0 0 0 0 0 0

a21 a22 a23 0 0 0 0 0 0

a31 a32 a33 0 0 0 0 0 0

0 0 0 b11 b12 b13 b14 b15 b16
0 0 0 0 c11 c12 c13 c14 c15
0 0 0 0 0 d11 d12 d13 d14
0 0 0 0 0 0 e11 e12 e13
0 0 0 0 0 0 e21 e22 e23
0 0 0 0 0 0 0 0 h11

3

7

7

7

7

5

:

The additional requirement that f .p3G/ � p3G, i.e., that the row space of M is
invariant under right multiplication by f , has a very handy description due to the fact

that M has the right inverse M� D

2

6

6

6

6

4

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

3

7

7

7

7

5

. In fact, [4, Theorem 4.3], f .p3G/ � p3G

if and only if Mf D MfM�M. Using a computer algebra program we find that (in
our example) Mf D MfM�M if and only if

�

e13 � a13 C pc15
b16p2 C d14p C e23 � a23

h11 � a33 C p2c15 C p2d14

�

D 0;

�

�p2a12
p2b11 � p2a22

�p2a32

�

D 0;

�

pc11 � pa11 � p2a13
p2b12 � p2a23 � pa21
p2c11 � p2a33 � pa31

�

D 0;

�

pc12 � pa12 � p2a13
pd11 � pa22 � p2a23 C p2b13

p2c12 � p2a33 � pa32 C p2d11

�

D 0;

�

e11 � a11 C pc13
b14p2 C d12p C e21 � a21

p2c13 � a31 C p2d12

�

D 0;

�

e12 � a12 C pc14
b15p2 C d13p C e22 � a22

p2c14 � a32 C p2d13

�

D 0:

It follows immediately that p2a12 D 0, p2a21 D 0, pa31 D 0, pa32 D 0.
Furthermore, we get immediately that h11 � a33 mod p, b11 � a22 mod p,
c11 � a11 mod p, d11 � a22 mod p, e11 � a11 mod p, e22 � a22 mod p. Using
these results we find in two steps that c11 � a33 mod p, p2c12 D p2a12 D 0,
p2e12 D p2a12 D 0, and finally, in three steps that a33 � d11 mod p. We obtain that
˛ WD a11 � a22 � a33 � b11 � c11 � d11 � e11 � e22 � h11. In particular, we

get
h

e11 e12
e21 e22

i

�
h

˛ 0

e21 ˛

i

mod p and
h

˛ 0

e21 ˛

i2

D
h

˛ 0

e21 ˛

i

. It now follows that ˛ 2 f0; 1g and

e21 � 0 mod p. For the full matrix f we have

f 2 D f �

2

6

6

6

6

4

˛ a12 a13 0 0 0 0 0 0

0 ˛ a23 0 0 0 0 0 0

0 0 ˛ 0 0 0 0 0 0

0 0 0 ˛ b12 b13 b14 b15 b16
0 0 0 0 ˛ c12 c13 c14 c15
0 0 0 0 0 ˛ d12 d13 d14
0 0 0 0 0 0 ˛ 0 e13
0 0 0 0 0 0 0 ˛ e23
0 0 0 0 0 0 0 0 ˛

3

7

7

7

7

5

mod p

with ˛ 2 f0; 1g. Finally, from f 2 D f and either f D pf 0 or f D 1C pf 0 it follows
that f 2 f0; 1g and that G is indecomposable.

All other indecomposability proofs are similar, somewhat lengthy, but straight-
forward.
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6 The Class of Homocyclic ..1; 5/; p3/-Groups is Bounded

Theorem 6.1 There are precisely the 20 near-isomorphism types of homocyclic
..1; 5/; p3/-groups of rank 7, 8 and 9 in the list above that are indecomposable.

Proof Let G be an indecomposable ..1; 5/; p3/-group with coordinate matrix in
standard form, cf. (2). Recall that an indecomposable .1; 5/-group has rank � 7.
Thus summands of rank � 6 are contradictory.

Moreover, if the coordinate matrix displays a summand, then this summand is
near-isomorphic to G. If this summand occurs in the indecomposables list, then it
can be omitted without loss of generality due to the tacit assumption that the starting
group is not the one that appeared. The starting group is then the last indecom-
posable group that appears. In particular the following transformations are allowed.
With the blocks pI in the columns with number 1; 2; 3; 6; 7; 10 we annihilate D1;D5,
D9, C1;C4;D2;D6, B1;C2;D3, G1;G4, F1;G2 and J1, respectively. The fill-ins in
the identity matrix to the right can be deleted by the respective pI to the left. The
0-blocks obtained this way always can be restored and we indicate this by leaving
such blocks empty meaning that fill-ins in those blocks can be ignored.

Now we show that some additional blocks can be seen to be 0. A p2 2 D16

allows to annihilate in its complete row and then in its complete column. This leads
to a summand of rank 3. Thus D16 D 0. In turn a p2 2 D15 allows to annihilate
in its complete row and then in its column, except for the pI above. This leads to
a summand of rank 5. Thus D15 D 0. Further, as D16 D 0, a p2 2 D12 allows to
annihilate in its row, except of in pI to the right, and then in its complete column.
This leads to a summand of rank 4. Thus D12 D 0. A p2 2 D11 allows to annihilate
in its row except of in pI to the right and then in its column except of in pI above
This leads to a summand of rank 6. Thus D11 D 0.

Moreover, we show that the A-row is not present. We form the iterated Smith

Normal Form of
h

D4
D8

i

. Above the 0-columns of
h

D4
D8

i

we form the iterated Smith

Normal Form of this part of

�

C3
C6
C9

�

. Above the 0-columns of this part of

�

C3
C6
C9

�

we

form the iterated Smith Normal Form of
h

B2
B4

i

. Now we annihilate with all of the just

obtained p2I’s in A. First with those of B, then with those of C and lastly with those
of D. So all nonzero entries of A are above 0-columns and they cause summands of
rank 3. Hence A D 0 and the A-row is not present.

By similar arguments, switching from rows to columns, we conclude that the K-
column is not present. For this we form the iterated Smith Normal Form of ŒD13 j

D14� starting with D14. We form the iterated Smith Normal Form of the part of
ŒG7 j G8 j G9� that continues the 0-rows of ŒD13 j D14�, starting with G9. Then
we form the iterated Smith Normal Form of the part of ŒJ3 j J4� that continues the
0-rows of ŒD13 j D14 j G7 j G8 j G9�, starting with J4. Now we annihilate in K with
the just obtained p2I’s. First with those of J, then with those of G and lastly with
those of D. So all nonzero entries of K are to the right of 0-rows and they cause
summands of rank 3. Hence K D 0 and the K-column is not present. So we get
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Basic Template

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

� � pI �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �2

� pI � �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ � � � �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� � � B2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ � � pI �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �3

� � B3 B4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ � � � E
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pI � � �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ � � � �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ � � �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� � � C3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ � pI � �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ � � �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�4
� � C5 C6

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ � � � F2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ � pI �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� C7 C8 C9

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ � � F3 F4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ � � H
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� � � D4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ pI � � �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ � � �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� � D7 D8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ � � � G3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ pI � �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�5
� D10 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ � � G5 G6

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ � � J2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ pI
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D13 D14 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ � G7 G8 G9

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ � J3 J4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(3)

Note that the meanings of placeholders, for instance F4, changes in the various
matrices. In the coordinate matrix displayed next the name F4 denotes a part of
the F4 in (3). Doing so avoids a proliferation of indices.

Completely Reduced Forms of
h

C5 C6
C8 C9

i
and of

h
G5 G6
G8 G9

i

The completely reduced forms of
h

C5 C6
C8 C9

i

and of
h

G5 G6
G8 G9

i

can be produced indepen-

dently although both processes split the F-blocks in various ways.
Annihilations in the adjoint blocks C3;C7 and G3;G7, respectively, also can be

done independently and, in particular, without any effect to the block pI where the
C3-row and the G7-column are crossing. We get

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ pI
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �2

ˇ

ˇ

ˇ pI
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ B12 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ pI
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ B22 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ pI
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �3
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ B32 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ pI
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ B3 0 0

ˇ

ˇ

ˇ B4 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ E 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pI
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ C3 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ pI
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0 0

ˇ

ˇ

ˇ 0 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ F2 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ pI
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 p2I 0

ˇ

ˇ

ˇ 0 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ pI
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �4
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0 0

ˇ

ˇ

ˇ 0 p2I 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ pI
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ C7

ˇ

ˇ

ˇ 0 0 0

ˇ

ˇ

ˇ 0 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ F3 0 0

ˇ

ˇ

ˇ F4 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ H
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0

ˇ

ˇ

ˇ 0 0 p2I
ˇ

ˇ

ˇ 0 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0 0

ˇ

ˇ

ˇ 0 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0

ˇ

ˇ

ˇ 0 0 0

ˇ

ˇ

ˇ 0 0 p2I
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0 0

ˇ

ˇ

ˇ 0 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ D14 D24 D34

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ pI
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ D17 D27 D37

ˇ

ˇ

ˇ D18 D28 D38

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ G3 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ pI
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ D110

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0 0

ˇ

ˇ

ˇ 0 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ J2
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Note that empty blocks can be kept to be 0 and the explicitly denoted 0-blocks
are created by forming Smith Normal Forms or if nonzero entries would create low
rank summands.

By successively forming Smith Normal Forms and assuming that the group G is
not one of the indecomposables list, we show in three steps that several blocks are 0.
This causes certain block lines of the coordinate matrix to be absent.

Blocks D1
8
; D2

8
, D1

14
; D2

14
, D1

4
; D1

13
, D3

4
; D3

13
, D1

7
; D1

10
, D2

7
; D2

10
are 0

We show that those blocks are 0 in the indicated sequence. A p2 2 D1
8 allows to

annihilate in its complete column and then in its complete row except of p to the
right, causing a summand of rank 4. Thus D1

8 D 0.
In turn a p2 2 D2

8 allows to annihilate in D2
7;D

3
7;D

3
8. We annihilate first in G3;D1

7

and then in D2
4 and in p2I above. This displays a summand of rank 4. Thus D2

8 D 0.
A p2 2 D1

14 allows to annihilate in its complete row and then in its complete
column except of p above, causing a summand of rank 5. Thus D1

14 D 0.
In turn a p2 2 D2

14 allows to annihilate in D2
10;D

3
10;D

3
14. We annihilate first in

C7;D1
10 and then in D2

13 and in p2I to the right. This displays a summand of rank 5.
Thus D2

14 D 0.
A p2 2 D1

4 allows to annihilate in D2
4;D

3
4;C3;B2. So there is no 0-column in B4

above such a p2 2 D1
4, to avoid a summand of rank 4. We form the Smith Normal

Form of D1
4 and do all the possible annihilations with this p2I � D1

4. Then we form
the Smith Normal Form of that part X of B4 above the 0-columns of D1

4. Further
we annihilate with p2I � X in B4 and in turn we form the Smith Normal Form of
the part Y of B4 above p2I � D1

4. Since a p2 2 Y , i.e., above a p2 2 D1
4, allows to

annihilate in B3;E, we get a summand of rank 6. Hence D1
4 D 0.

A p2 2 D1
13 allows to annihilate in D2

13;D
3
13;G7; J3. So there is no 0-row in J4

to the right of such a p2 2 D1
13, to avoid a summand of rank 5. We form the Smith

Normal Form of D1
13, and do all the possible annihilations with this p2I � D1

13.
Then we form the Smith Normal Form of that part X of J4 to the right of the 0-rows
of D1

13. Further we annihilate with p2I � X in J4 and in turn we form the Smith
Normal Form of the part Y of J4 to the right of p2I � D1

13. Since a p2 2 Y , i.e., to
the right of a p2 2 D1

13, allows to annihilate in J2;H, we get a summand of rank 5.
Hence D1

13 D 0.
A p2 2 D2

4 allows to annihilate in D3
4 and a p2 2 D3

8 allows to annihilate in D3
4,

hence a p2 2 D3
4 leads to a summand of rank 6. Thus D3

4 D 0.
A p2 2 D2

13 allows to annihilate in D3
13 and a p2 2 D3

14 allows to annihilate in D3
13,

hence a p2 2 D3
13 leads to a summand of rank 5. Thus D3

13 D 0.
An entry p2 2 D1

7 allows to annihilate in D2
7;D

3
7;G3 and after that it allows to

annihilate in B3. Fill-ins above D3
8 in the B3-row can be removed by p2I � C9 below.

We form the Smith Normal Form of D1
7, then we form the Smith Normal Form of
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the part X � D3
8 to the right of the 0-rows of D1

7. We annihilate with p2I � X
in D3

8 and form the Smith Normal Form of the rest of D3
8. After that we annihilate

with p2I � D1
7 in D2

7 and in G3. A row with p2 2 D1
7 does not continue to a 0-row

in D3
8 to avoid a summand of rank 6. Hence this p2 2 D1

7 displays a summand of

rank 9 with scheme

"

p 0 0
ˇ

ˇ �2
0 C9 0

ˇ

ˇ �4
D7 D8 p

ˇ

ˇ �5

�1 �1 �3
ˇ

ˇ

#

, Œ9:5�. Thus D1
7 D 0.

An entry p2 2 D1
10 allows to annihilate in D2

10;D
3
10;C7 and after that it allows

to annihilate in J2. Fill-ins to the right of D3
14 in the J2-column can be removed by

p2I � G9 to the left. We form the Smith Normal Form of D1
10, then we form the

Smith Normal Form of the part X � D3
14 below the 0-columns of D1

10. We annihilate
with p2I � X in D3

14 and form the Smith Normal Form of the rest of D3
14. After that

we annihilate with p2I � D1
10 in D2

10 and in C7. A column with p2 2 D1
10 does not

continue to a 0-column in D3
14 to avoid a summand of rank 5. Hence this p2 2 D1

10

displays a summand of rank 9 with scheme

"

p 0 0
ˇ

ˇ �3
D10 0 p

ˇ

ˇ �5
D14 G9 0

ˇ

ˇ �5

�1 �2 �4
ˇ

ˇ

#

, Œ9:1�. Thus D1
10 D 0.

We form the Smith Normal Form of D2
7, then we form the Smith Normal Form

of the part X � D3
8 to the right of the 0-rows of D2

7. We annihilate with p2I � X
in D3

8 and form the Smith Normal Form of the rest Y � D3
8. There is no 0-row

in Y , because p2I � D2
7 allows to annihilate in D3

7;G3 and in p2I above, creating
summands of rank 6. So the Smith Normal Form of Y is Œp2I j 0�. Fill-ins above D3

8

in the C6-row can be removed by p2I � C9 below. Hence a p2 2 D2
7 displays a

summand of rank 9 with scheme

"

p 0 0
ˇ

ˇ �2
0 C9 0

ˇ

ˇ �4
D7 D8 p

ˇ

ˇ �5

�1 �1 �3
ˇ

ˇ

#

, again Œ9:5�. Thus D2
7 D 0.

We form the Smith Normal Form of D2
10, then we form the Smith Normal Form

of the part X � D3
14 below of the 0-columns of D2

10. We annihilate with p2I � X
in D3

14 and form the Smith Normal Form of the rest Y � D3
14. There is no 0-column

in Y , because p2I � D2
14 allows to annihilate in D3

14;C7 and in p2I to the right,

creating summands of rank 5. So the Smith Normal Form of Y is
h

p2I

0

i

. Fill-ins to

the right of D3
14 in the G8-column can be removed by p2I � G9 to the right. Hence

a p2 2 D2
10 displays a summand of rank 9 with scheme

"

p 0 0
ˇ

ˇ �3
D10 0 p

ˇ

ˇ �5
D14 G9 0

ˇ

ˇ �5

�1 �2 �4
ˇ

ˇ

#

, again Œ9:1�.

Thus D2
10 D 0.

We include those 0-blocks and obtain the new coordinate matrix
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ˇ
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ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
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ˇ

ˇ
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ˇ

ˇ
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ˇ
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ˇ
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ˇ pI
ˇ
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ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
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ˇ �3
ˇ

ˇ

ˇ

ˇ
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ˇ

ˇ

ˇ

ˇ B32 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ pI
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ B3 0 0

ˇ

ˇ

ˇ B4 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ E 0 0

ˇ

ˇ

ˇ

ˇ

ˇ
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ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
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Blocks J2; B3; H; E; J2
3
; B2

2
; F2; J1

3
; F3; B1

2
are 0

We form the iterated Smith Normal Form of
h

J2
J4

i

, starting with J4, and annihilate

with p2I � J2 in H. This displays summands of rank 4. Thus J2 D 0.
We form the iterated Smith Normal Form of ŒB3

ˇ

ˇB4�, starting with B4, and
annihilate with p2I � B3 in E. This displays summands of rank 5. Thus B3 D 0.

We form the Smith Normal Forms of C7 and of that part X � F4 that continues
the 0-rows of C7. Then we annihilate with p2I � C7 in F3 and with p2I � X
we annihilate in F4;F3. We form the Smith Normal Form of the part Z � F3 that
continues the 0-rows of ŒC7

ˇ

ˇF4�.
Further we form the Smith Normal Form of J4. With all p2I’s in C7;Z; J4;X we

annihilate in H. There remains a rest Y � H with lines that are 0 outside of H.
Forming the Smith Normal Form of Y summands of rank 2; 3 occur. So we get
H D 0.

We form the Smith Normal Forms of G3 and of that part X � F4 that continues
the 0-columns of G3. Then we annihilate with p2I � G3 in F2 and with p2I � X we
annihilate in F4;F2. We form the Smith Normal Form of the rest Z � F2. Further
we form the Smith Normal Form of B4. With all p2I’s in G3;Z;B4;X we annihilate
in E. There remains a rest Y � E with lines that are 0 outside of E. Forming the
Smith Normal Form of Y summands of rank 2; 3 occur. So we get E D 0.

We form the Smith Normal Form of G7 and we form the Smith Normal Form of
the part X � J4 that continues the 0-rows of G7. With p2I � X we annihilate in J4
and in J3. Then we form the iterated Smith Normal Form of the part Y of ŒJ13

ˇ

ˇJ23
ˇ

ˇJ33 �
that continues the 0-rows of ŒG7

ˇ

ˇJ4�, starting with J33 . Further we annihilate with
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p2I � G7 in ŒJ13
ˇ

ˇJ23 �. Hence non-zero rows of J13 continue to 0-rows outside of J13
and non-zero rows of J23 continue to 0-rows outside of J23 . Thus an entry p2 2 J23

displays a summand of rank 8 with scheme

"

p 0
ˇ

ˇ �2
C5 p

ˇ

ˇ �4
0 J3

ˇ

ˇ �5

�1 �3
ˇ

ˇ

#

, Œ8:4�. Thus J23 D 0.

We form the Smith Normal Form of C3 and we form the Smith Normal Form of
the part X � B4 that continues the 0-columns of C3. With p2I � X we annihilate

in B4 and in B2. Then we form the iterated Smith Normal Form of the part Y of

�

B12
B22
B32

�

that continues the 0-columns of
h

B4
C3

i

, starting with B32. Further we annihilate with

p2I � C3 in
h

B12
B22

i

. Hence non-zero columns of B12 continue to 0-columns outside

of B12 and non-zero columns of B22 continue to 0-columns outside of B22. Thus an

entry p2 2 B22 displays a summand of rank 7 with scheme

�

B2 p 0
ˇ

ˇ �3
0 G5 p

ˇ

ˇ �5

�1 �2 �4
ˇ

ˇ

�

, Œ7:3�. Thus

B22 D 0.
We form the Smith Normal Form of G3 and we form the Smith Normal Form

of the part X � F4 that continues the 0-columns of G3. Then we annihilate with
p2I � X in F4. After that we annihilate with p2I � G3 and with p2I � X in F2. The

part Y � F2 that continues the 0-columns of
h

F4
G3

i

and the block J13 are connected.

Note that non-zero columns of Y (and so of F2) are 0 outside of Y . Up to now we
did not change the completely reduced form of that part of ŒJ13

ˇ

ˇJ23
ˇ

ˇJ33 � that continues
the 0-rows of ŒG7

ˇ

ˇJ4�, obtained proving J23 D 0. The non-zero rows of J13 are of the
form Œp2I

ˇ

ˇ0�. The columns with p2 2 J13 are 0 except of the entry p above, and all

other entries in such a row are 0. The form J13 D Œp
2I
ˇ

ˇ0� splits Y D
h

Y1
Y2

i

, where Y2 is

connected with the 0-columns of J13 . An entry p2 2 Y1 allows to annihilate in Y1;Y2,
where the intermediate block pI between Y and J13 can be reestablished without
changing J13 because all fill-ins in pI can be removed by entries of pI that are above
a 0-column of J13 . So an entry p2 2 Y1 leads to a summand of rank 6, thus Y1 D 0.
We form the Smith Normal Form of Y2. The Smith Normal Form of J13 can be
reestablished. An entry p2 2 Y1 displays a summand of rank 4. Thus Y D 0, hence
F2 D 0. But then an entry p2 2 J13 displays a summand of rank 5. Thus J13 D 0.

We form the Smith Normal Form of C7 and we form the Smith Normal Form of
the part X � F4 that continues the 0-rows of C7. Then we annihilate with p2I � X
in F4. After that we annihilate with p2I � C7 and with p2I � X in F3. The part Y �
F3 that continues the 0-rows of ŒC7

ˇ

ˇF4� and the block B12 are connected. Note that
non-zero rows of Y (and so of F3) are 0 outside of Y . Up to now we did not change

the completely reduced form of that part of

�

B12
B22
B22

�

that continues the 0-columns of

ŒC3
ˇ

ˇB4�, obtained proving B22 D 0. The non-zero columns of B12 are of the form
h

p2I

0

i

.

The rows with p2 2 B12 are 0 except of the entry p to the right, and all other entries in

such a column are 0. The form B12 D
h

p2I

0

i

splits Y D ŒY1
ˇ

ˇY2�, where Y2 is connected

to the 0-rows of B12.
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An entry p2 2 Y1 allows to annihilate in Y1;Y2, where the intermediate block pI
between Y and B12 can be reestablished without changing B12 because all fill-ins in pI
can be removed by entries of pI that are to the right of a 0-row of B12. So an entry
p2 2 Y1 leads to a summand of rank 6, thus Y1 D 0. We form the Smith Normal
Form of Y2. The Smith Normal Form of B12 can be reestablished. An entry p2 2 Y2
displays a summand of rank 5. Thus Y D 0, hence F3 D 0. But then an entry p2 2 B12
displays a summand of rank 4. Thus B12 D 0.

By the discussion above, that certain blocks are 0, we get that some block lines
are not present. The B3-, the J13- and the J23-block column are not present. The B12-,
the B22- and the J2-row are not present. Further, if there are blocks pI or p2I in a block
line that is no more present, also the crossing block line through this pI or p2I is not
present. Moreover, we include E D 0 and H D 0 and obtain the new coordinate
matrix
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ˇ
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ˇ
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This 16
 16 matrix is decomposable displaying two 8
 8 matrices, M1 and M2.
We have to discuss both parts separately.
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ˇ

ˇ

ˇ 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ J33

ˇ

ˇ

ˇ J4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �5

D213

ˇ

ˇ

ˇ 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0

ˇ

ˇ

ˇ p2I
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0

ˇ

ˇ

ˇ 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3

7

7

7

7

7

7

7

7

7

7

5
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Discussion of M1

The blocks D3
10;D

3
14 have no 0-row and a p2 2 D3

14 allows to annihilate in D3
10, so the

completely reduced form of
h

D310
D314

i

is
h

0 p2I 0

p2I 0 0

i

. A 0-column in C7 leads to summands

of rank 3, or rank 6 or, if there is a p2 2 D3
10 in this column, then a summand of

rank 7 is displayed with scheme

�

p 0 0
ˇ

ˇ �3
D10 G6 p

ˇ

ˇ �5

�1 �2 �4
ˇ

ˇ

�

, Œ7:1�. Thus C7 has no 0-columns and

we get the completely reduced form of

�

C7
D310
D314

�

D

2

6

4

0 0 p2I

0 p2I 0

p2I 0 0

0 0 0

0 p2I 0

p2I 0 0

3

7

5 :

The blocks D3
7;D

3
8 have no 0-column and a p2 2 D3

8 allows to annihilate in D3
7,

so the completely reduced form of ŒD3
7

ˇ

ˇD3
8� is

�

0
ˇ

ˇ p2I

p2I
ˇ

ˇ 0

0
ˇ

ˇ 0

�

. A 0-row in G3 leads to

summands of rank 3, or rank 6 or, if there is a p2 2 D3
7 in this row, then a summand

of rank 8 is displayed with scheme

"

p 0
ˇ

ˇ �2
C8 0

ˇ

ˇ �4
D7 p

ˇ

ˇ �5

�1 �3
ˇ

ˇ

#

, Œ8:2�. Thus G3 has no 0-rows and we

get the completely reduced form of

ŒD3
7

ˇ

ˇD3
8

ˇ

ˇG3� D

"

0

ˇ

ˇ

ˇ p2I
ˇ

ˇ

ˇ 0 0 p2I 0

p2I
ˇ

ˇ

ˇ 0

ˇ

ˇ

ˇ 0 p2I 0 0

0

ˇ

ˇ

ˇ 0

ˇ

ˇ

ˇ p2I 0 0 0

#

:

We include these completely reduced forms and obtain the new coordinate matrix

M1 D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

ˇ

ˇ

ˇ pI
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �2

pI
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �3

0 0 p2I
ˇ

ˇ

ˇ 0

ˇ

ˇ

ˇ 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ F14 F24 F34 F44 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 p2I 0

ˇ

ˇ

ˇ 0

ˇ

ˇ

ˇ 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ F54 F64 F74 F84 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p2I 0 0

ˇ

ˇ

ˇ 0

ˇ

ˇ

ˇ 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ F94 F104 F114 F124 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 0 0

ˇ

ˇ

ˇ 0

ˇ

ˇ

ˇ 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ F134 F144 F154 F164 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �4

0 0 0

ˇ

ˇ

ˇ p2I
ˇ

ˇ

ˇ 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0 0 0 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 0 0

ˇ

ˇ

ˇ 0

ˇ

ˇ

ˇ p2I
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0 0 0 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0

ˇ

ˇ

ˇ p2I
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0 p2I 0 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ p2I
ˇ

ˇ

ˇ 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 p2I 0 0 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ pI
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0

ˇ

ˇ

ˇ 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ p2I 0 0 0 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �5

0 p2I 0

ˇ

ˇ

ˇ 0

ˇ

ˇ

ˇ 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0 0 0 p2I 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ pI
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p2I 0 0

ˇ

ˇ

ˇ 0

ˇ

ˇ

ˇ 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ 0 0 0 0 0 p2I
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Discussion of F4

In F4 annihilation is allowed upward and to the left. All 0-lines of F4 immediately
lead to summands. Obviously F164 D 0.



62 D.M. Arnold et al.

Discussion of 0-Lines of F4

A 0-row in the F134 -row leads to a summand of rank 2. A 0-row in the F94-row leads

to a summand of rank 8 with scheme

"

p 0
ˇ

ˇ �3
C7 0

ˇ

ˇ �4
D14 G9

ˇ

ˇ �5

�1 �2
ˇ

ˇ

#

, Œ8:3�. A 0-row in the F54-row leads

to a summand of rank 8 with scheme

"

p 0 0
ˇ

ˇ �3
C7 0 0

ˇ

ˇ �4
D10 G6 p

ˇ

ˇ �5

�1 �2 �4
ˇ

ˇ

#

, Œ9:3�. A 0-row in the F14-row

leads to a summand of rank 5.
A 0-column in the F164 -block column leads to a summand of rank 1. A 0-column

in the F154 -block column leads to a summand of rank 7 with scheme

�

C9 0 0
ˇ

ˇ �4
D8 G3 p

ˇ

ˇ �5

�1 �2 �3
ˇ

ˇ

�

,

Œ7:4�. A 0-column in the F144 -block column leads to a summand of rank 9 with

scheme

"

p 0 0
ˇ

ˇ �2
C8 0 0

ˇ

ˇ �4
D7 G3 p

ˇ

ˇ �5

�1 �2 �3
ˇ

ˇ

#

, Œ9:7�. A 0-column in the F134 -block column leads to a summand

of rank 4. Thus, altogether, the whole block F4 has no 0-line.

Discussion of the Blocks F15
4

; F12
4

; F14
4

; F8
4
; F4

4
; F13

4

A p2 2 F154 leads to a summand of rank 9 with scheme

"

0 F4 0
ˇ

ˇ �4
C9 0 0

ˇ

ˇ �4
D8 G3 p

ˇ

ˇ �5

�1 �2 �3
ˇ

ˇ

#

. This group

decomposes into summands of rank 3 and 6.

A p2 2 F124 leads to a summand of rank 9 with scheme

"

p 0 0
ˇ

ˇ �3
C7 F4 0

ˇ

ˇ �4
D13 0 G9

ˇ

ˇ �5

�1 �2 �2
ˇ

ˇ

#

. This group

decomposes into summands of rank 3 and 6.

A p2 2 F144 leads to a summand of rank 11with scheme

2

4

p 0 0
ˇ

ˇ �2
0 F4 0

ˇ

ˇ �4
C8 0 0

ˇ

ˇ �4
D7 G3 p

ˇ

ˇ �5

�1 �2 �3
ˇ

ˇ

3

5. This group

decomposes into summands of rank 3 and 8.

A p2 2 F84 leads to a summand of rank 10 with scheme

"

p 0 0 0
ˇ

ˇ �3
C7 F4 0 0

ˇ

ˇ �4
D10 0 G6 0

ˇ

ˇ �5

�1 �2 �2 �4
ˇ

ˇ

#

. This

group decomposes into summands of rank 3 and 7.
Entries p2 2 F44 and p2 2 F134 lead to summands of rank 5 and 6, respectively.

Thus the F164 -row and the F164 -column are not present.

Discussion of the Blocks F11
4

; F10
4

; F9
4
; F7

4
; F3

4

A p2 2 F114 leads to a summand of rank 15 with scheme

2

6

4

p 0 0 0 0
ˇ

ˇ �3
C7 0 F4 0 0

ˇ

ˇ �4
0 C9 0 0 0

ˇ

ˇ �4
0 D8 0 0 p

ˇ

ˇ �5
D14 0 0 G9 0

ˇ

ˇ �5

�1 �1 �2 �2 �3
ˇ

ˇ

3

7

5. This

group decomposes, one summand of rank 3 and two summands of rank 6.

A p2 2 F104 leads to a summand of rank 17 with scheme

2

6

6

4

0 p 0 0 0
ˇ

ˇ �2
p 0 0 0 0

ˇ

ˇ �3
C7 0 F4 0 0

ˇ

ˇ �4
0 C8 0 0 0

ˇ

ˇ �4
0 D7 G3 0 0

ˇ

ˇ �5
D14 0 0 G9 0

ˇ

ˇ �5

�1 �1 �2 �2 �3
ˇ

ˇ

3

7

7

5

. This

group decomposes into summands of rank 3, 6 and 8.
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A p2 2 F94 leads to a summand of rank 12 with scheme

2

4

p 0 0 0
ˇ

ˇ �3
C7 F4 0 0

ˇ

ˇ �4
0 G3 0 p

ˇ

ˇ �5
D10 0 G6 0

ˇ

ˇ �5

�1 �2 �2 �3
ˇ

ˇ

3

5. This

group decomposes into summands of rank 6.

A p2 2 F74 leads to a summand of rank 16 with scheme

2

6

4

p 0 0 0 0 0
ˇ

ˇ �3
C7 0 F4 0 0 0

ˇ

ˇ �4
0 C9 0 0 0 0

ˇ

ˇ �4
0 D8 G3 0 p 0

ˇ

ˇ �5
D10 0 0 G6 0 p

ˇ

ˇ �5

�1 �1 �2 �2 �3 �4
ˇ

ˇ

3

7

5.

This group decomposes into summands of rank 3, 6 and 7.

A p2 2 F34 leads to a summand of rank 12 with scheme

2

4

p 0 0 0
ˇ

ˇ �3
C7 0 F4 0

ˇ

ˇ �4
0 C9 0 0

ˇ

ˇ �4
0 D8 G3 p

ˇ

ˇ �5

�1 �1 �2 �3
ˇ

ˇ

3

5. This

group decomposes into summands of rank 6. Thus the F114 -block row and the F114 -
block column are not present.

Discussion of the Blocks F6
4
; F5

4
; F2

4
; F1

4

A p2 2 F64 leads to a summand of rank 18 with scheme

2

6

6

4

0 p 0 0 0 0
ˇ

ˇ �2
p 0 0 0 0 0

ˇ

ˇ �3
C7 0 F4 0 0 0

ˇ

ˇ �4
0 C8 0 0 0 0

ˇ

ˇ �4
0 D7 G3 0 p 0

ˇ

ˇ �5
D10 0 0 G6 0 p

ˇ

ˇ �5

�1 �1 �2 �2 �3 �4
ˇ

ˇ

3

7

7

5

. This

group decomposes into summands of rank 3, 7 and 8.

A p2 2 F54 leads to a summand of rank 13 with scheme

2

4

p 0 0 0 0
ˇ

ˇ �3
C7 F4 0 0 0

ˇ

ˇ �4
0 G3 0 p 0

ˇ

ˇ �5
D10 0 G6 0 p

ˇ

ˇ �5

�1 �2 �2 �3 �4
ˇ

ˇ

3

5. This

group decomposes into summands of rank 6 and 7.

A p2 2 F24 leads to a summand of rank 14 with scheme

2

6

4

0 p 0 0
ˇ

ˇ �2
p 0 0 0

ˇ

ˇ �3
C7 0 F4 0

ˇ

ˇ �4
0 C8 0 0

ˇ

ˇ �4
0 D7 G3 p

ˇ

ˇ �5

�1 �1 �2 �3
ˇ

ˇ

3

7

5. This

group decomposes into summands of rank 6 and 8.

A p2 2 F14 leads to a summand of rank 9 with scheme

"

p 0 0
ˇ

ˇ �3

C37 F4 0
ˇ

ˇ �4

0 G3 p
ˇ

ˇ �5

�1 �2 �3
ˇ

ˇ

#

, Œ9:6�. Thus

F14 D 0.
So we finally got the contradiction F4 D 0. Hence we obtained all indecompos-

able groups that come with the coordinate matrix M1.

Discussion of M2

G7 and C3 are connected, and the Smith Normal Form G7 D
h

p2I
ˇ

ˇ 0

0
ˇ

ˇ 0

i

splits C3 D
h

C13
C23

i

where C2
3 is connected with the 0-columns of G7. We form the Smith Normal Form

of C1
3 D

h

p2I 0

0 0

i

and annihilate with p2I � C1
3 in C2

3. Note that C2
3 has no 0-row

to avoid a summand of rank 3. Thus the Smith Normal Form of the rest X � C2
3

is Œp2I
ˇ

ˇ0�. Doing this G7 does not change and we obtain in completely reduced form
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h

C3
ˇ

ˇ pI

0
ˇ

ˇ G7

i

D

2

6

4

p2I 0 0
ˇ

ˇ pI 0 0

0 0 0
ˇ

ˇ 0 pI 0

0 p2I 0
ˇ

ˇ 0 0 pI

0 0 0
ˇ

ˇ p2I 0 0

0 0 0
ˇ

ˇ 0 p2I 0

0 0 0
ˇ

ˇ 0 0 0

3

7

5 :

We show

(1) G7 has no 0-row and ŒJ33
ˇ

ˇJ4� has no 0-column,

(2) C3 has no 0-column and
h

B32
B4

i

has no 0-row.

Ad (1): We form the Smith Normal Form of G7 and we form the Smith Normal
Form of the part X � J4 that continues the 0-rows of G7. Then we annihilate with
p2I � X in J4 and in J33 . A p2 2 X displays a summand of rank 3, thus X D 0.

The blocks D2
4; J

3
3 are connected. The Smith Normal Form of D2

4 is Œp2I
ˇ

ˇ0�

because D2
4 has no 0-rows. The Smith Normal Forms of D2

4;G7; J4 split the block

J33 D
h

Z1 Y1
Z0 Y0

i

where
h

Y1
Y0

i

is connected with the 0-columns of D2
4 and ŒZ0

ˇ

ˇY0� continues

the 0-rows of ŒG7

ˇ

ˇJ4�. We form the Smith Normal Form of Y0 and annihilate with
p2I � Y0 in Y1 and in Z0. There is no change in the blocks D2

4;G7. The entries
p2 2 Y0 display summands of rank 6, thus Y0 D 0.

Now we form the Smith Normal Form of Z0 and annihilate with p2I � Z0 in Z1.
There is no change in G7 and p2I � D2

4 can be reestablished by row transformations.

So a p2 2 Z0 displays a summand of rank 9 with scheme

"

C6 0 p
ˇ

ˇ �4
D4 p 0

ˇ

ˇ �5
0 0 J3

ˇ

ˇ �5

�1 �2 �3
ˇ

ˇ

#

, Œ9:2�. Thus

Z0 D 0. Hence ŒZ0
ˇ

ˇY0� D 0 displaying summands of rank 2. Thus the ŒZ0
ˇ

ˇY0�-block
row is not present, i.e., ŒG7

ˇ

ˇJ4� has no 0-row. Moreover, if a p2 2 J4 continues to a
0-row of G7, then a summand of rank 3 is displayed. Thus G7 has no 0-row.

A 0-column of Y1 displays a summand of rank 4, and a 0-column of Z1 displays

a summand of rank 7 with scheme

�

C6 0 p
ˇ

ˇ �4
D4 p 0

ˇ

ˇ �5

�1 �2 �3
ˇ

ˇ

�

, Œ7:2�. Thus J33 has no 0-column.

Clearly J4 has no 0-column. This shows .1/.
Ad (2): We form the Smith Normal Form of C3 and we form the Smith Normal

Form of the part X � B4 that continues the 0-columns of C3. Then we annihilate
with p2I � X in B4 and in B32. A p2 2 X displays a summand of rank 3, thus X D 0.

The blocks D2
13;B

3
2 are connected. The Smith Normal Form of D2

13 is
h

p2I

0

i

because D2
13 has no 0-columns. The Smith Normal Forms of D2

13;C3;B4 split the

block B32 D
h

Y1 Z1
Y0 Z0

i

where ŒY0
ˇ

ˇZ0� is connected to the 0-rows of D2
13 and

h

Z1
Z0

i

continues the 0-columns of
h

B4
C3

i

. We form the Smith Normal Form of Z0 and

annihilate with p2I � Z0 in Z1 and in Y0. There is no change in the blocks D2
13;C3.

The entries p2 2 Z0 display summands of rank 6, thus Z0 D 0.
Now we form the Smith Normal Form of Z1 and annihilate with p2I � Z1

in Y1. There is no change in C3 and p2I � D2
13 can be reestablished by column

transformations. So a p2 2 Z1 displays a summand of rank 9 with scheme
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"

0 B2 p
ˇ

ˇ �3
p 0 0

ˇ

ˇ �4
D13 0 G8

ˇ

ˇ �5

�1 �1 �2
ˇ

ˇ

#

, Œ9:4�. Thus Z1 D 0. Hence
h

Z1
Z0

i

D 0 displaying summands of rank 1.

Thus the
h

Z1
Z0

i

-block column is not present, i.e.,
h

B4
C3

i

has no 0-column. Moreover,

if a p2 2 B4 is above a 0-column of C3, then a summand of rank 3 is displayed.
Hence C3 has no 0-column.

A 0-row of Y1 displays a summand of rank 8 with scheme

"

0 p
ˇ

ˇ �3
p 0

ˇ

ˇ �4
D13 G8

ˇ

ˇ �5

�1 �2
ˇ

ˇ

#

, Œ8:1�.

Thus B32 has no 0-row. Clearly B4 has no 0-row. This shows .2/.
So we obtain the completely reduced form

h

C3
ˇ

ˇ pI

0
ˇ

ˇ G7

i

D

2

4

p2I 0
ˇ

ˇ pI 0 0

0 0
ˇ

ˇ 0 pI 0

0 p2I
ˇ

ˇ 0 0 pI

0 0
ˇ

ˇ p2I 0 0

0 0
ˇ

ˇ 0 p2I 0

3

5 :

Next we show

(3) ŒJ33
ˇ

ˇJ4� has no 0-line,

(4)
h

B32
B4

i

has no 0 -line.

We know already that ŒJ33
ˇ

ˇJ4� has no 0-column and that
h

B32
B4

i

has no 0-row.

Ad (3): We show that ŒJ33
ˇ

ˇJ4� has no 0-row. We form the Smith Normal Form of
that part X � B4 that continues the columns of the lower p2I � C3 and annihilate
with p2I � X in B4;B32.

There is a rest Y � B4 that continues the columns of the upper p2I � C3. We
form the Smith Normal Form of Y and annihilate with p2I � Y in B32.

A p2 in the upper p2I � C3 allows to annihilate in B32. We show how to remove
the occurring fill-ins because this is quite lengthy. Annihilating with p2 in B32 creates
a first fill-in to the left of pI in the B32-block row. This first fill-in is in pZ. We
annihilate this fill-in with p to the left. This creates a second fill-in below the upper
p2I � G7. This second fill-in is in p2 Z. We annihilate this second fill-in with a
p2 2 G7 above. This creates a third fill-in to the right of p2I in the D2

13-block row
below J. This third fill-in is in p2 Z and we annihilate it using p2I to the right. The
created fourth fill-in in the J-block column and the B-block row can be removed
by the identity matrix to the right with �3-columns. Thus the non-zero columns of
h

B32
B4

i

that continue the upper p2I � C3 contain only one non-zero entry p2 2 B4,

respectively.
A p2 2 G7 that continues to a 0-row of ŒJ33

ˇ

ˇJ4� displays a summand of rank 5 or
of rank 8, depending on if its column is connected with a 0-row of C3 or not. The

summand of rank 8 has the scheme

"

B4 0
ˇ

ˇ �3
C3 p

ˇ

ˇ �4
0 G7

ˇ

ˇ �5

�1 �2
ˇ

ˇ

#

, Œ8:5�. Thus ŒJ33
ˇ

ˇJ4� has no 0-row. This

shows .3/.
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Ad (4): We show that
h

B32
B4

i

has no 0-column. We form the Smith Normal Form of

that part X � J4 that continues the rows of the lower p2I � G7 and annihilate with
p2I � X in J4; J33 .

There is a rest Y � J4 that continues the rows of the upper p2I � G7. We form
the Smith Normal Form of Y and annihilate with p2I � Y in J33 .

A p2 in the upper p2I � G7 allows to annihilate in J33 . We show how to remove
the occurring fill-ins because this is quite lengthy. Annihilating with p2 in J33 creates
a first fill-in above pI in the J33-block column. This first fill-in is in pZ. We annihilate
this fill-in with p below. This creates a second fill-in to the right of the upper p2I �
C3. This second fill-in is in p2 Z. We annihilate this second fill-in with a p2 2 C3 to
the left. This creates a third fill-in above p2I in the D2

4-block column to the right of B.
This third fill-in is in p2 Z and we annihilate it using p2I below. The created fourth
fill-in in the J-block column and the B-block row can be removed by the identity
matrix to the right with �3-columns. Thus the non-zero rows of ŒJ33

ˇ

ˇJ4� that continue
the upper p2I � G7 contain only one non-zero entry p2 2 J4, respectively.

A p2 2 C3 that continues to a 0-column of
h

B32
B4

i

displays a summand of rank 4 or

of rank 9, depending on if its column is connected with a 0-column of G7 or not. The

summand of rank 9 has the scheme

"

B4 0 0
ˇ

ˇ �3
C3 p 0

ˇ

ˇ �4
0 G7 J4

ˇ

ˇ �5

�1 �2 �3
ˇ

ˇ

#

, Œ9:8�. Thus
h

B32
B4

i

has no 0-column.

This shows .4/.

Blocks G7 D p2I, C3 D p2I, J3
3

D 0, B3
2

D 0, D2
4

D 0, D2
13

D 0

We show G7 D p2I. The Smith Normal Form of G7 is Œp2I
ˇ

ˇ0�. Let N denote the
0-part of G7. Let X denote the lower block p2I � C3. Then N is connected with X.
We form the Smith Normal Form of the part Y � B4 above X and annihilate with
p2I � Y in B4;B32. An entry p2 2 Y displays a summand of rank 6. Thus Y D 0.
We form the Smith Normal Form of the part Z � B32 above X and annihilate with
p2I � Z in B32. The Smith Normal Form of Z is p2I because B32 has no 0-row and
because a 0-column of Z displays a summand of rank 4. So the 0-part N of G7 is

connected with D2
13. We form The Smith Normal Form of D2

13, i.e.,
h

p2I

0

i

, because D2
13

has no 0-column. All intermediate blocks between D2
13 and N can be reestablished.

A 0-row of D2
13 displays a summand of rank 9 with scheme

"

B2 0 p
ˇ

ˇ �3
C3 p 0

ˇ

ˇ �4
0 0 G8

ˇ

ˇ �5

�1 �2 �2
ˇ

ˇ

#

, Œ9:9�. We

get D2
13 D p2I, and this displays summands of rank 12with scheme

2

4

0 B2 0 p
ˇ

ˇ �3
p 0 0 p

ˇ

ˇ �4
0 C3 p 0

ˇ

ˇ �4
D13 0 0 G8

ˇ

ˇ �5

�1 �1 �2 �2
ˇ

ˇ

3

5.

This group decomposes into summands of rank 6. Finally the 0-part N of G7 is not
present, i.e., G7 D p2I.

We show C3 D p2I. The Smith Normal Form of C3 is
h

p2I

0

i

. Let N denote the

0-part of C3. Let X denote the part p2I � G7 that is connected with N. We form
the Smith Normal Form of the part Y � J4 to the right of X and annihilate with
p2I � Y in J4; J33 . An entry p2 2 Y displays a summand of rank 6. Thus Y D 0.
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We form the Smith Normal Form of the part Z � J33 to the right of X and annihilate
with p2I � Z in J33 . Doing this G7 can be reestablished. The Smith Normal Form
of Z is p2I because J33 has no 0-row to avoid a summand of rank 6 and because J33
has no 0-column. So the 0-part N of C3 is connected with D2

4. We form The Smith
Normal Form of D2

4, i.e., Œp2I
ˇ

ˇ0�, because D2
4 has no 0-row. All intermediate blocks

between D2
4 and N can be reestablished. A 0-column of D2

4 displays a summand

of rank 9 with scheme

"

0 p 0
ˇ

ˇ �4
C6 0 p

ˇ

ˇ �4
0 G7 J3

ˇ

ˇ �5

�1 �2 �3
ˇ

ˇ

#

, Œ9:10�. Thus D2
4 D p2I, and this displays

summands of rank 12 with scheme

2

4

0 0 p 0
ˇ

ˇ �4
C6 0 0 p

ˇ

ˇ �4
D4 p 0 0

ˇ

ˇ �5
0 0 G7 J3

ˇ

ˇ �5

�1 �2 �2 �3
ˇ

ˇ

3

5. This group decomposes into

summands of rank 5 and 7. Finally the 0-part N of C3 is not present, i.e., C3 D p2I.
We show J33 D 0. Since G7 D p2I we may annihilate J33 . This creates fill-ins in

the J33-block column that are in pZ. We annihilate these fill-ins by pI below. This
creates fill-ins to the right of C3 that can be deleted by C3. Again there are fill-ins to
the right of B32;B4 that can be removed by p2I below. Hence J33 D 0.

We show B32 D 0. Since C3 D p2I we may annihilate B32. This creates fill-ins in
the B32-block row that are in pZ. We annihilate these fill-ins by pI to the right. This
creates fill-ins below G7 that can be deleted by G7. Again there are fill-ins below
J33 ; J4 that can be removed by p2I to the left. Hence B32 D 0.

We form the Smith Normal Form of D2
4, i.e, Œp2I

ˇ

ˇ0�. The 0-columns of D2
4

display summands of rank 4, because J33 D 0. The non-zero columns of D2
4 display

summands of rank 7 with scheme

�

C6 0 p
ˇ

ˇ �4
D4 p 0

ˇ

ˇ �5

�1 �2 �3
ˇ

ˇ

�

, Œ7:2�. Thus D2
4 D 0.

We form the Smith Normal Form of D2
13, i.e,

h

p2I

0

i

. The 0-rows of D2
13 display

summands of rank 5, because B32 D 0. The non-zero rows of D2
13 display summands

of rank 8 with scheme

"

0 p
ˇ

ˇ �3
p 0

ˇ

ˇ �4
D13 G8

ˇ

ˇ �5

�1 �2
ˇ

ˇ

#

, Œ8:1�. Thus D2
13 D 0.

By the discussion above, that certain blocks are 0, we get that some block lines
are not present. The D2

4-, the D2
13-block lines, the J23-block column and the B32-block

column are not present. Further, if there are blocks pI or p2I in a block line that is
no more present, also the crossing block line through this pI or p2I is not present.
Moreover, we include C3 D p2I and G7 D p2I and obtain the new coordinate matrix

"

B4
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ �3

p2I
ˇ

ˇ pI
ˇ

ˇ

ˇ

ˇ �4

0
ˇ

ˇ p2I
ˇ

ˇ J4
ˇ

ˇ �5

�1
ˇ

ˇ �2
ˇ

ˇ �3
ˇ

ˇ

#

We form the Smith Normal Form of J4 D
h

p2I

0

i

. Since J4 and B4 are connected,

the block J4 splits B4 D ŒB14
ˇ

ˇB24� where B24 is connected with the 0-rows of J4.
We form the Smith Normal Form of B41 and annihilate with p2I � B14 in B24.
After that we form the Smith Normal Form of the rest of B24. The intermediate
blocks between B4 and J4 can be reestablished without changing the Smith Normal
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Form of J4, because B24 is connected with the 0-rows of J4. Eventually we obtain a
completely reduced matrix and four cases

If a 0-column of B4 is connected with a 0-row of J4, then a summand of rank 6 is
obtained.

If a 0-column of B4 is connected with a non-zero row of J4, then a summand of

rank 7 is obtained with scheme

�

C3 p 0
ˇ

ˇ �4
0 G7 J4

ˇ

ˇ �5

�1 �2 �3
ˇ

ˇ

�

, Œ7:5�. Thus B4 has no 0-column.

If a non-zero column of B4 is connected with a 0-row of J4, then a summand of

rank 8 is obtained with scheme

"

B4 0
ˇ

ˇ �3
C3 p

ˇ

ˇ �4
0 G7

ˇ

ˇ �5

�1 �2
ˇ

ˇ

#

, Œ8:5�.

Thus a non-zero column of B4 is connected with a non-zero row of J4, and then

a summand of rank 9 is obtained with scheme

"

B4 0 0
ˇ

ˇ �3
C3 p 0

ˇ

ˇ �4
0 G7 J4

ˇ

ˇ �5

�1 �2 �3
ˇ

ˇ

#

, Œ9:8�.

We obtained all groups in the list above, finishing the proof of the theorem.
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Rigid @1-Free Abelian Groups with Prescribed
Factors and Their Role in the Theory
of Cellular Covers

Gábor Braun and Lutz Strüngmann

Abstract In Rodríguez and Strüngmann (J. Algebra Appl. 14, 2016) Rodríguez and
the second author gave a new method to construct cellular exact sequences of abelian
groups with prescribed torsion-free kernels and co-kernels. In particular, the method
was applied to the class of @1-free abelian groups in order to complement results
from Rodríguez–Strüngmann (Mediterr. J. Math. 6:139–150, 2010) and Göbel–
Rodríguez–Strüngmann (Fundam. Math. 217:211–231, 2012). However, @1-free
abelian groups G with trivial dual but Hom.G;R/ ¤ f0g for all rational groups
R � Q not isomorphic to Z had to be excluded. Here we give two constructions of
such groups, e.g., using Shelah’s Black Box prediction principle.

Keywords Cellular cover • @1-Free group • Black Box

Mathematical Subject Classification (2010): Primary: 20K20, 20K30; Secondary:
16S50, 16W20

1 Introduction

The theory of cellular covers, in particular of cellular covers of (abelian) groups, has
been under intensive investigation over the last decade. Especially, cellular covers
of torsion-free abelian groups are of interesting complexity and variety. This paper
contributes another piece to the global picture of cellular covers.

Originating from homotopy theory by the work of Dror Farjoun [4] the theory
of cellular covers merged into algebra. In general, a cellular cover is a group
(module) homomorphism cWG ! M such that composition with c induces an

G. Braun (�)
ISyE, Georgia Institute of Technology, 755 Ferst Drive, NW, Atlanta, GA 30332, USA
e-mail: gabor.braun@isye.gatech.edu

L. Strüngmann
Faculty for Computer Sciences, Mannheim University of Applied Sciences,
68163 Mannheim, Germany
e-mail: l.struengmann@hs-mannheim.de

© Springer International Publishing AG 2017
M. Droste et al. (eds.), Groups, Modules, and Model Theory - Surveys
and Recent Developments, DOI 10.1007/978-3-319-51718-6_4

69

mailto:gabor.braun@isye.gatech.edu
mailto:l.struengmann@hs-mannheim.de


70 G. Braun and L. Strüngmann

isomorphism of sets between Hom.G;G/ and Hom.G;M/. Cellular covers are the
algebraic counterpart of cellular approximations of topological spaces in the sense
of J.H.C. Whitehead, or the more general cellularization maps extensively studied in
homotopy theory in the 1990s by, e.g., Bousfield [1]. As for the dual case, namely
for localizations, there is sometimes a good interplay between cellularization of
spaces and cellularization of groups and modules. This motivated a careful study of
the algebraic setting. For applications in homological algebra, see, e.g., Rodríguez–
Scherer [14] or [15] and topological applications can be found in, e.g., Farjoun [4],
Shoham [18] and the references cited there. A good reference for the basic facts of
cellular covers is the book by Göbel and Trlifaj [12]. See Sect. 2 for a brief summary
on cellular covers of and [10] for a reference on abelian groups.

Here we are considering abelian groups only, but definitions naturally extend
for other categories. Recall that a homomorphism � WG ! H of abelian groups
is a cellular cover over H, if every homomorphism 'WG ! H lifts to a unique
endomorphism e' of G such that �e' D '. (Note that maps are written on the left.)
If additionally the mapping � WG! H is an epimorphism we say that

0! K ! G
�
! H ! 0 (1)

is a cellular exact sequence and K is the cellular kernel of � . Obviously, for the
sequence (1) to be cellular exact we necessarily have Hom.G;K/ D f0g. A very
useful criterion to prove cellular exactness of a sequence (1) was given in [6] stating
that (1) is cellular exact if

(i) End.H/ D Z;
(ii) K is a fully invariant subgroup of G;

(iii) Hom.K;H/ D f0g D Hom.G;K/.

In this case also the endomorphism ring of G will be Z. In principle using
this criterion, Göbel, Rodríguez and the second author gave in [13] and [16]
constructions of cellular exact sequences of modules (over a commutative ring of
size less than the continuum) with prescribed co-kernel. However, in order to prove
the cellular exactness of the sequences it was assumed that the co-kernel H did not
have any non-trivial homomorphisms into @0-free modules. The reason for this was
the criterion above, i.e., the @0-freeness of the constructed module G in the cellular
exact sequence. Recall that an R-module is @0-free if all its finite rank submodules
are free. For abelian groups, applying Pontryagin’s Criterion [9, IV.2.3], this is
equivalent to saying that the group is @1-free, i.e., all its countable subgroups are
free. Hence the problematic case is when H itself is @1-free. As a detour, an
alternative construction for abelian groups was given in [17] and the following was
proved in Gödel’s constructible universe.

Theorem 1.1 ([17, Theorem 3.8]) Assume .V D L/. Let H be an @1-free abelian
group such that End.H/ D Z. Assume that there is a countable torsion-free abelian
group K with End.K/ � Q and Hom.H;K/ D f0g D Hom.K;H/. Then there is a
cellular exact sequence
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0! K ! G! H ! 0

such that End.G/ D Z.

The set-theoretic assumption of .V D L/ was needed because the construction
of G is based on the fact that Ext.H;K/ is non-torsion in this case. The authors
remarked the following in [17]: Let H be an @1-free abelian group with End.H/ D Z

and R � Q be any subgroup of the rational numbers such that R © Z. Then
automatically End.R/ � Q and Hom.R;H/ D f0g. Thus the only remaining
assumption in Theorem 1.1 is Hom.H;R/ D f0g.

Corollary 1.2 (VDL) Let H be an @1-free abelian group with End.H/ D Z and
let Z © R � Q such that Hom.H;R/ D f0g. Then there is a cellular exact sequence

0! R! G! H ! 0

such that End.G/ D Z.

The following open problem, which asks for the existence of @1-free groups H
violating the assumption in Corollary 1.2, was stated in [17]:

Problem 1.3 Given any @1-free group H with End.H/ D Z, is there a subgroup
Z © R � Q such that Hom.H;R/ D f0g or at least a countable torsion-free group
K such that End.K/ D Z and Hom.H;K/ D f0g D Hom.K;H/?

In this paper we will give two constructions of counterexamples H, showing that
the answer to Problem 1.3 is negative. The first construction (Theorem 4.1 in Sect. 4)
is an easy push-out construction reusing known pathological abelian groups, at the
price of only achieving Hom.H;Z/ D f0g instead of End.H/ D Z. The second
construction (Theorem 5.6 and Corollary 5.7 in Sect. 5.2) is a variant of the well-
known Black Box construction of abelian groups, and thus more involved.

2 Overview of Cellular Covers

In this section we provide a short overview of classification of cellular covers.
As mentioned above, reversing arrows cellular covering can be seen as dual to

localization (see, e.g., Dugas [7] and the literature cited therein). The general goal
is to completely classify up to isomorphism all possible cellular exact sequences
with fixed kernel or co-kernel, respectively. For groups, the study of cellular covers
was initiated by Rodríguez–Scherer in [14] and more systematically by Farjoun–
Göbel–Segev in [5] and extended in Chachólski, Dror Farjoun, Göbel, Segev [3]
and Dror Farjoun–Göbel–Segev–Shelah [6]. Basic results on cellular covers of
groups have been established in Dror Farjoun–Göbel–Segev [5], while Chachólski–
Dror Farjoun–Göbel–Segev [3] deals with the case of divisible abelian groups, and
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provides a complete characterization of all possible surjective covers of such groups
(see also [11]): Given a divisible abelian group D, any cellular cover of D is of the
form G D D0 ˚

L

p2X Dp ˚Hom.Q;
L

p2Y Dp/˚H where D0;Dp are the torsion-
free and torsion parts of D respectively, X and Y are disjoint sets of primes and H is
some subgroup of a direct product of the form

Q

p2Y DŒpkp �.
In general, cellular exact covers induce covers of the reduced and divisible parts

which implies that the general case can be split into the direct sum of the divisi-
ble and reduced cases. Naturally, most efforts have thus been made to investigate
the reduced case. Again, the reduced case splits into the torsion and torsion-free
case since for reduced mixed groups every cellular covering map already induces
an isomorphism between the torsion subgroups involved (see Fuchs–Göbel [11]).
However, from Buckner–Dugas [2] and Dugas [8] it follows that the only cellular
covers of reduced torsion groups are the trivial ones. Therefore, the reduced torsion-
free case is of most interest.

Buckner–Dugas [2] and Dugas [8] investigated the kernels of cellular covering
maps under the name of ‘co-local’ subgroups proving that these kernels are always
torsion-free and reduced. Moreover, every cotorsion-free abelian group appears as
the kernel of a cellular covering map. Hence, for torsion-free groups, the situation
is far more complex. This was also evidenced by Fuchs–Göbel [11] who showed
that the collections of non-equivalent cellular covers of certain torsion-free groups
of rank one form proper classes complementing a result by Dror Farjoun–Göbel–
Segev–Shelah [6] showing that the kernels of cellular covering maps for some fixed
torsion-free group may be arbitrarily large. However, this cannot happen whenever
the kernel is a free abelian group. In fact, Rodríguez and the second author proved in
[16] that no subgroup of Q admits cellular covers with free kernel. In contrast they
showed in [16] that every cotorsion-free abelian group of finite rank is the kernel of
some cellular exact sequence with co-kernel of rank two.

Realizing groups as the co-kernel of cellular exact sequences is even more
delicate. In [13] Göbel–Rodríguez and the second author gave a realization theorem
for certain cotorsion-free abelian groups with Z as endomorphism ring as the co-
kernel of cellular exact sequences. However, the main assumption on those groups
H was that they do not allow non-trivial homomorphisms into any @1-free abelian
group. The construction was based on Shelah’s Black Box principle and therefore
the constructed groups G in a sequence like (1) were @1-free. The assumption on H
thus was needed to ensure that there are no homomorphisms from H into G in the
end. This case was then attacked in [17] where a simple construction principle for
cellular covering maps was given that can be applied to @1-free groups, as mentioned
above.
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3 Preliminaries

Recall that a subgroup A of an abelian group G is pure if for all x 2 A which is
divisible by an integer n in G there is an y 2 A with x D ny. For a prime p, the
subgroup A is p-pure if this holds for all p-power n.

Given a torsion-free group G and a subgroup A � G, let Ap� denote the
p-purification of the subgroup A, i.e., the smallest p-pure subgroup of G contain-
ing A:

Ap� :D fx 2 G j 9kW pkx 2 Ag:

Similarly, let A� denote the purification of A:

A� :D fx 2 G j 9nW nx 2 Ag:

4 Rigid @1-Free Groups with Rational Groups
as Prescribed Factor

Here we prove that there is indeed an @1-free group H such that Hom.H;R/ ¤ f0g
for any rational group R � Q with R © Z but Hom.H;Z/ D f0g. This is a weaker
version of what is required in Problem 1.3 since we do not achieve that End.G/ D Z

but only get a trivial dual of G. Hence Theorem 1.1 does not cover all @1-free groups.
The construction is based on a push out and does not involve any set-theoretic tools
but is purely algebraic. In contrast, we will extend Theorem 4.1 below to a more
general setting using Shelah’s (strong) Black Box prediction principle, which is
valid in ZFC.

Theorem 4.1 There exists an @1-free abelian group H of size 2@0 such that
Hom.H;Z/ D f0g and Hom.H;R/ ¤ f0g for all rational groups R � Q with
R © Z.

Proof Fix a prime p and let T D fR � Q W 1p … R;R © Zg and put C D
L

R2T R be
the direct sum of all rational groups R � Q which are p-reduced and not isomorphic
to Z. We choose a short exact sequence

0! K ! F! C! 0

with free abelian groups K and F. Clearly, F must be of rank 2@0 . By standard
constructions, see, e.g., [12, Corollary 12.3.42, Theorem 12.3.4 with Construc-
tion 12.3.6], we may extend the kernel K to an @1-free abelian group L such that
End.L/ D Z and the quotient L=K is isomorphic to a direct sum A D

L

ZŒ1=p� of
copies of the rational ring ZŒ1=p� D f 1pn W n 2 Ng. Thus we have another short exact
sequence
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0! K ! L! A! 0

We now construct the push out H of L and F over K.

0 0

0 K F C 0

0 L H C 0

A A

0 0

�

Obviously, since A and C are epimorphic images of H, there are non-trivial
homomorphisms from H into all rational groups R � Q which are not isomorphic
to Z. Note that a rational group is either p-reduced or contains ZŒ1=p�. Thus
Hom.H;R/ ¤ f0g for all R � Q with R © Z. Moreover, since End.L/ D Z we
conclude that Hom.L;Z/ D f0g. Hence any ' 2 Hom.H;Z/ restricted to L must
be trivial, so ' induces a map Q'WH=L D C ! Z which must be trivial as well
since Hom.R;Z/ D f0g for all R 2 T . Therefore Hom.H;Z/ D f0g.

It remains to prove that H is @1-free. By the push-out property we may assume
that H D FCL and that F\L D K. Thus let H0 � H be a finite rank pure subgroup
of H. We have to prove that H0 is free. Choose maximally independent elements
h1; : : : ; hn 2 H0 such that H0 D hh1; : : : ; hni� � H. Since H D FCL we can choose
finitely generated subgroups F0 � F and L0 � L such that fh1; : : : ; hng � F0 C L0
and .F0 C L/=L is p-pure in C as well as .L0 C F/=F is q-pure in A for all q ¤ p.
Note that such a choice is possible since C is p-reduced and A is q-reduced for all
q ¤ p. Choose a finitely generated pure subgroup K0 of K such that L0 \ K � K0
and F0 \ K � K0. We finally put

L1 D hL0;K0i� � L and F1 D hF0;K0i� � F

Then L1 is a finitely generated pure subgroup of L and F1 is a finitely generated pure
subgroup of F. Note that L is @1-free. Moreover, we have

L1 \ K D K0 and F1 \ K D K0

as well as the fact that .F1C L/=L is still p-pure in C and .L1CF/=F is q-pure in A
for all q ¤ p. We claim that F1CL1 is pure in H, thus F1CL1 is a finitely generated
pure (hence free) subgroup of H containing H0, which will finish the proof.

We first show that F1 C L1 is q-pure for all q ¤ p. Let x 2 H and assume that
mx 2 F1 C L1 with gcd.m; p/ D 1. Then mxC F 2 .L1 C F/=F. Since the latter is
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q-pure and q-torsion-free for all q ¤ p we conclude that xC F 2 .L1C F/=F. Thus
there is l 2 L1 such that x � l 2 F. Hence

m.x � l/ 2 .F1 C L1/ \ F D F1 C .L1 \ F/ D F1 C .L1 \ K/ D F1 C K0 D F1

However, F1 is pure, so x � l 2 F1 and so x 2 L1 C F1.
Similarly, it follows that F1 C L1 is also p-pure in H, and thus F1 C L1 is a pure

subgroup of H, as claimed. ut

5 Rigid @1-Free Groups with Large Prescribed Factor

In this section we construct counterexamples to Problem 1.3 using Shelah’s Black
Box principle. First we recall the Black Box, and then we proceed with the
construction.

5.1 Black Box

Here we recall the version of Black Box used in our construction. As a preliminary,
we recap support arguments, a key tool for verifying linear independence in an
abelian group, e.g., to show that the rank of a block diagonal matrix is the sum
of the rank of the blocks. We shall use support arguments for the p-adic closurebB of
a free group B D

L

i2I Zei with a fixed basis feigi2I . Recall that every element ofbB
can be uniquely written as infinite sums x D

P

i2I niei where the ni 2 Jp are p-adic
integers, such that for every k > 0 all but finitely many of them is divisible by pk.
The support of x is the set of coordinates with non-zero coefficient: supp

P

i niei D

fi W ni ¤ 0g. The elements of B have finite support, but there are elements ofbB with
infinite support if I is infinite, e.g., supp

P1
nD0 pnein D fi0; i1; : : : ; in; : : : g where the

in are pairwise distinct elements of I.
For a subset X � I of indices, let BX denote the subgroup of B of all elements

with support in X, i.e., BX is generated by the ei with i 2 X. The set I will be a set of
ordinals below. To measure the size of X, recall that the norm of a set X of ordinals
is the smallest ordinal strictly upper bounding X, i.e., kXk :D sup˛2X ˛ C 1. The
norm of a function WBX !bB is the norm of its domain: kk :D kXk.

Now we are ready to state the Black Box.

Proposition 5.1 ([12, Strong Black Box 9.2.2, Corollary 9.2.7]) Let p be a prime
number, and � be a cardinal with �@0 D �. Let E be a stationary set of �C consisting
only of ordinals with cofinality !. Let B :D

L

˛<�C Ze˛ , and BX :D
L

˛2X Ze˛ for
any set X of ordinals. Then there is a family f˛WBX˛ !bBX˛ g˛<�C such that

(i) k˛k 2 E
(ii) k˛k � kˇk and kX˛ \ Xˇk < kXˇk for ˛ < ˇ < �C

(iii) k˛.x/k < kX˛k for all x 2 BX˛
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(iv) PREDICTION: For any homomorphism  WB ! bB and for any subset X � �C

with jXj � @0, the following set is stationary on �C:

f˛ 2 E j 9ˇ < �CW kˇk D ˛; ˇ �  ;X � Xˇg:

Remark 5.2 Condition (iii) is not present in the original theorem; it has been added
for the sole purpose of simplifying applications by omitting traps, which are actually
not useful. The condition can be easily arranged by simply omitting traps not
satisfying this condition. With the omission of traps, Condition (iv) still holds, as
the set of ordinals ˛ with k .x/k < ˛ for all x 2 B with kxk < ˛ form a closed
unbounded set.

For applications of the Black Box, some auxiliary results are needed. We shall
often use the next folklore lemma:

Lemma 5.3 Let WH ! G be a homomorphism into a torsion-free abelian group
G from a subgroup H of G. If .b/ 2 Zb for all b 2 H, then  is multiplication by
an integer n, i.e., .b/ D nb for all b 2 H.

The main step of the construction, getting rid of a single unwanted endomor-
phism, is summarized as follows.

Lemma 5.4 ([12, Step Lemma 12.3.5 Simplified]) Let P :D
L

i2I Zei be an
infinite rank free group, and WP ! bP be a homomorphism from P to its p-adic
completion, and b 2 P a pure element with b … Zb. Let i0; i1; : : : ; in; : : : be
countable many pairwise different indices from I, such that supp.x/ contains only
finitely many elements from the sequence for all x 2 P. Then there is a p-adic integer
� 2 Jp such that the element y :D

P1
nD0 pnein C �b 2bP satisfies y … hP; yip�.

Remark 5.5 Actually, [12, Step Lemma 12.3.5] states only the existence of a
suitable b, but from its proof it is clear that any pure element b 2 P will do. Note
also that the lemma states that y is either

P1
nD0 pnein C �b or

P1
nD0 pnein but the

latter case is included in the former one as the special case � D 0.

5.2 Rigid @1-Free Groups with Large Prescribed Factors

Here we state and prove our main theorem on the existence of rigid @1-free groups
with prescribed factors.

Theorem 5.6 Let H be a torsion-free abelian group such that Hom.H;M/ D f0g
for all @1-free abelian groups M. Let � be a cardinal with � D �@0 and jHj � �.
Then there is an @1-free abelian group G of cardinality �C such that End G D Z

and H is a factor of G.

Proof We start by applying Proposition 5.1 for the � given in the theorem and an
arbitrary prime p and stationary set E. Let FG :D

L

˛<� Ze˛ be the free subgroup
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of B generated by the first � basis elements. As jHj � �, the group H can be written
as a factor H D FG=FK of FG by a free subgroup FK of FG of rank �. Then also
H D B=F for F :D FK ˚

L

�<˛��C Ze˛ . Note that as H is torsion-free, F is a pure
subgroup of B.

For ˇ � �C with kXˇk > �, we inductively choose p-pure elements yˇ 2 bB
satisfying

(i) For a sequence 	.ˇ; 0/; 	.ˇ; 1/; : : : ; 	.ˇ; n/; : : : 2 Xˇ of indices, a p-adic
integer �ˇ 2 Jp and a bˇ 2 F \ BXˇ we have

yˇ D
1
X

nD0

pne	.ˇ;n/ C �ˇbˇ;

and the support supp bˇ of bˇ does not contain any of the 	.ˇ; n/;
(ii) yˇ 2 bF;

(iii) kyˇk D kXˇk, and supp yˇ has order type !;
(iv) yˇˇ …

˝

BXˇ ; yˇ
˛

p�
unless ˇ is multiplication by an integer on F \ BXˇ .

The existence of the yˇ easily follows by induction from Lemma 5.4, as we explain
now.

We choose bˇ with Condition (iv) in mind, so that it is a witness for ˇ not
being a multiplication by an integer if that is the case. More precisely, if ˇ is a
multiplication by an integer on F \ BXˇ , then we can choose bˇ arbitrarily, e.g.,
bˇ :D 0. Otherwise we choose bˇ 2 F \ BXˇ pure with bˇˇ … Zbˇ , which is
possible by Lemma 5.3.

Recall that every kXˇk 2 E has cofinality !, hence there is a strictly increasing
sequence � < 	.ˇ; 0/ < 	.ˇ; 1/ < � � � < 	.ˇ; n/ < : : : of ordinals, with
supn 	.ˇ; n/ D kXˇk. As the support of bˇ is finite, we can assume that none of
the 	.ˇ; n/ lie in the support of bˇ .

If bˇˇ … Zbˇ , then we choose �ˇ 2 Jp such that yˇˇ …
˝

BXˇ ; yˇ
˛

p�
. Such

a �ˇ exists by Lemma 5.4. Otherwise we choose �ˇ arbitrarily, e.g., �ˇ :D 0.
Condition (iv) is satisfied in both cases. Conditions (i), (ii) and (iii) hold by
construction.

Finally, we define our desired group G, which will satisfy the claims of the
theorem, together with a kernel K � G with the intent H D G=K. Both G and
K are defined as subgroups ofbB:

G :D
˝

B; yˇ W ˇ 2 E
˛

p�
;

K :D
˝

F; yˇ W ˇ 2 E
˛

p�
:

Note that the p-purification in the definition of K and G can be computed ‘by hand’:
the key observation is that B and F are pure subgroups, while the yˇ are p-divisible

modulo F, so we define p-pure elements y.k/ˇ approximating ‘yˇ=pk modulo F’.
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To find these new elements, we first approximate the p-adic integers �ˇ by writing
them as infinite sums

�ˇ D

1
X

nD0

mˇ;npn; mˇ;n 2 Z:

Now the y.k/ˇ are defined as ‘approximations for yˇ=pk’ with the fractional part
removed:

y.k/ˇ :D
1
X

nD0

pne	.ˇ;nCk/ C

 

1
X

nD0

mˇ;nCkpn

!

bˇ:

Note that y.0/ˇ D yˇ . In particular,

y.k/ˇ � py.kC1/
ˇ D e	.ˇ;k/ C mˇ;kbˇ D: xˇ;k 2 F \ BXˇ : (2)

Thus

G :D
D

FG; e˛; y
.k/
ˇ W � < ˛; ˇ 2 E; k 2 N

E

;

K :D
D

FK ; e˛; y
.k/
ˇ W � < ˛; ˇ 2 E; k 2 N

E

:

Having determined the generators of G, we now determine the relations between
the generators of G. Actually, we claim that all relations between the generators are
generated by the basic relations (2), i.e., G has the following presentation in terms
of generators and relations:

G D
D

FG; e˛; y
.k/
ˇ W � < ˛; ˇ 2 E; k 2 N

ˇ

ˇ

ˇ y.k/ˇ D xˇ;k C py.kC1/
ˇ

E

:

In particular, this shows H D G=K.
The proof is a well-known standard support argument, which we reproduce here

for completeness. Given a linear relation

X

j

mjej C
X

i

niy
.ki/

ˇi
D 0 (3)

between the generators, it can be reduced to the case where all the ˇi are different
using the relations from (2). Now we compare the support of the summands. As
yˇi � pki 2 B, the supports of yˇi and y.ki/

ˇi
differ only on finitely many elements (i.e.,

the symmetric difference supp yˇi 4 supp y.ki/

ˇi
is finite). As supp yˇi is infinite, we

have that supp yˇi \ supp y.ki/

ˇi
is infinite.

However, for i ¤ j, we have that supp yˇi \ supp y
.kj/

ˇj
is finite. It follows that we

must have ni D 0 as otherwise supp yˇi would intersect the support of the left-hand
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side of (3) in an infinite set. Thus the linear relation (3) collapses to
P

j mjej D 0,
and as the ej are linearly independent, we must have mj D 0.

A standard extension of this support argument shows that G is @1-free, i.e., every
finite subset Y � G is contained in a finitely generated pure subgroup of G (applying
Pontryagin’s Criterion [9, IV.2.3]). As Y is finite, it is contained in a subgroup
generated by finitely many generators e˛j , y.ki/

ˇi
with j 2 J, i 2 I. The main trick

for achieving purity is to adjust the generators to have essentially pairwise disjoint
support. To this end, first we choose integers li � ki so that 	.ˇi; li/ is not contained
in the support of the e˛j and the yˇi0

for i0 ¤ i. Let J0 :D J [ f	.i; n/ W i 2 I;m � lig;

and consider the subgroup A generated by the finitely many elements e˛j , y.li/ˇi
for

j 2 J0, i 2 I. The choice of J0 ensures that A contains the e˛j for j 2 J, and the

y.ki/

ˇi
for i 2 I. In particular, A contains Y . Moreover, the only generator of A where

e	.ˇi;li/ has non-zero coefficient is y.li/ˇi
, where it has coefficient 1.

To prove that A is a pure subgroup of G, consider an arbitrary element a D
P

j2J0 nje˛j C
P

i2I miy
.li/
ˇi

of A divisible by an integer N in G, i.e.,

X

j2J0

nje˛j C
X

i2I

miy
.li/
ˇi
D N

0

@

X

j2J00

n0
je˛j C

X

i2I

m0
iy
.mi/

ˇi

1

A

for a finite index set J00, and integers n0
j, m0

i. (Here we use linear independence of the
e˛ , yˇ for ruling out the occurrence of yˇ with ˇ ¤ ˇi on the right-hand side.) We
will show that a is already divisible by N in A, i.e., all the nj and mi are divisible
by N. Comparing the coordinates e	.ˇi;li/ on both sides, the coefficient on the left-
hand side is mi, while the one on the right-hand side is an integer divisible by N,
hence mi is divisible by N. It follows that

P

j2J0 nje˛j is already divisible by N in G,
i.e., using linear independence of the e˛ and yˇ again,

X

j2J0

nje˛j D N

0

@

X

j2QJ

Qnje˛j

1

A

for some QJ and integers Qnj. It follows that the nj are divisible by N, too, as claimed.
This finishes the proof of pureness of A, and hence that G is @1-free.

Finally, we prove that End G D Z. Let  be any endomorphism of G, and x 2 F.
By Proposition 5.1(iv), there is a ˇ 2 E with ˇ > �, ˇ �  and supp x � Xˇ . In

particular, yˇ 2bBXˇ and yˇ D yˇˇ 2 G \bBXˇ . Now yˇ ˇ D bC
Pk

iD1 mky.nk/

ˇk

for some b 2 B, ˇk < �C and integers mk, nk. As supp yˇ ˇ � Xˇ , by a support

argument the expression of yˇ ˇ reduces to yˇ ˇ D b C my.n/ˇ with b 2 BXˇ ,

i.e., yˇˇ 2
˝

BXˇ ; yˇ
˛

p�
. It follows that ˇ is a multiplication by an integer, i.e.,

x D xˇ D nxx for some nx 2 Z. Therefore  is a multiplication by an integer n
on the group F by Lemma 5.3.
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As yˇ 2 bF for all ˇ, the group F is dense in K in the p-adic topology. It follows
that is multiplication by n on K. Hence �n factors through the natural projection
q to G=K D H: i.e.,  � n D fq for some f 2 Hom.H;G/. As G is @1-free,
Hom.H;G/ D f0g by assumption, leading to f D 0 and  D n. ut

As a corollary we obtain a negative answer to Problem 1.3. Recall that by Stein’s
lemma any countable abelian group C is a direct sum C D C0 ˚ F where F
is free abelian and C0 has trivial dual, i.e., Hom.C0;Z/ D f0g. Clearly, since C0

is countable, any homomorphism from C0 into an @1-free group must be zero.

Corollary 5.7 Let H D
L

fC W C torsion-free, Hom.C;Z/ D f0g and jCj D @0g.
Then there are arbitrarily large @1-free abelian groups G with End.G/ D Z and
H is a factor of G. In particular, Hom.G;C/ ¤ f0g for all torsion-free countable
abelian groups C with Hom.C;Z/ D f0g.
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Definable Valuations Induced by Definable
Subgroups

Katharina Dupont

Abstract In his paper Definable Valuations (1994) Koenigsmann shows that every
field that admits a t-henselian topology is either real closed or separably closed
or admits a definable valuation inducing the t-henselian topology. To show this
Koenigsmann investigates valuation rings induced by certain (definable) subgroups
of the field. The aim of this paper, based on the author’s PhD thesis (Dupont,
PhD thesis, University of Konstanz, 2015), is to look at the methods used in
Koenigsmann (Definable Valuations, 1994) in greater detail and Koenigsmann
(Definable Henselian Valuations, J. Symb. Log. 80(01):85–99, 2015).

Keywords Valuations • Definable valuations • q-Henselian valued fields •
t-Henselian topologies

Mathematical Subject Classification (2010): 03C40 03C60 12J10 12L12

1 Introduction

In this paper we will show that any non-real closed, non-separably closed field K,
which admits a t-henselian topology, admits a non-trivial definable valuation (see
Theorem 6.19). Our main tool will be to construct valuation rings using subgroups
of K. More precisely we will treat simultaneously additive subgroups of K and
multiplicative subgroups of K�.

This paper arose as follows. Motivated by recent considerations on definable
valuations under model theoretic assumptions the author reconsidered in her PhD
thesis, [6], an unpublished preprint of Koenigsmann, see [16]. This paper is mainly
a revised version of the preprint. In Proposition 6.14, using [12], we will give an
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alternative proof for one case in [16, Theorem 3.1] for which the original proof
was incorrect. Corollary 6.16 provides the crucial idea for the model theoretic
investigation, which will be pursued in a forthcoming paper, see [7].

The research on definable valuations has been very active lately. Recent works
include [1] and [10] on the complexity of the formulas defining valuations. In [12]
conditions are given under which a definable valuation is henselian. Further [4, 13]
and [11] deal with uniformly definable valuation rings. As well [14] and [15] on
dp-minimal fields include sections on definable valuations.

The paper is organized as follows.
We will start with some preliminaries on fractional ideals on valued fields,

topologies induced by valuations and absolute values and discrete valuations, that
we will refer to later on.

In Sect. 2, for every additive or multiplicative subgroup of a field K we will define
the valuation ring OG and prove some of its basic properties.

In Sect. 3 we will give criteria under which OG is non-trivial.
In Sect. 4 we will examine under which criteria OG is definable.
In Sect. 5 we will bring together the results of the previous two sections for the

group of qth powers .K�/q for q ¤ char.K/ and for the Artin-Schreier group
K.p/ for p D char.K/. That way in Theorem 6.17 we will show that (under
additional assumptions) if K admits a non-trivial q-henselian valuation for some
prime q, then it admits a non-trivial definable valuation. From this we will finally
establish Theorem 6.19 on t-henselian fields as announced at the beginning of the
Introduction.

Notation: In this paper K will always denote a field and O a valuation ring
on K with M its maximal ideal. By % W K �! O=M DW K we denote the
residue homomorphism. By v we will denote a valuation on K and by Ov WD

fx 2 K j v.x/ � 0g the valuation ring induced by v with maximal ideal Mv . A
valuation will be called discrete, if its value group contains a minimal positive
element. Without loss of generality, we shall assume that Z is a convex subgroup
of the value group and hence 1 is the minimal positive element.

Some of the following definitions and theorems will be slightly different
for additive and multiplicative subgroups. Often we will write the differences
for multiplicative subgroups in square brackets “Œ: : :�” if there is no danger of
misunderstanding. If we say G is a subgroup of K, this can mean either a subgroup
of the additive group .K;C/ or the multiplicative group .K�; �/, unless explicitly
otherwise noted. We will say G is a proper subgroup of K if G ¨ K Œresp: G ¨ K��.

2 Preliminaries

The following can be shown by simple calculation.

Remark 2.1 Let v W K � � [ f1g be a valuation. Let f0g ¨ A ¨ K.
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(a) A is a fractional ideal of Ov if and only if for every x 2 K, if there exists a 2 A
such that v .x/ � v .a/, then x 2 A .

(b) The fractional ideals of Ov are linearly ordered, i.e. if A1 and A2 are fractional
ideals of Ov , then A1 � A2 or A2 � A1.

(c) Let A ¨ Ov . A is a prime ideal of Ov if and only if for every x 2 Ov , if there
exists a 2 A and an n 2 N with n � v .x/ � v .a/, we have x 2 A .

Lemma 2.2 Let O2 ¨ O1 be two valuation rings on K with maximal ideals M1

and M2. Let A be an O2-ideal with
p

A DM2. Then M1 ¨ A .

Proof Suppose A �M1. Then M2 D
p

A �M1. But this contradicts O2 ¨ O1.
Hence M1 ¨ A by Remark 2.1 (b). ut

Lemma 2.3 Let O be a valuation ring and A an O-ideal. Then .1CA / is a
multiplicative subgroup of O�.

Proof It is clear that 1 C A � O�. Let a 2 A . Then 1 C a 2 O�. Hence
.1C a/�1 2 O�. Therefore a � .1C a/�1 2 A and hence .1C a/�1 D
1 C a � .1C a/�1 2 1 C A . Further for a; b 2 A we have .1C a/ � .1C b/ D
1C aC bC a � b 2 1CA . ut

Lemma 2.4 Let v1; v2 be independent valuations on K. Let A1 be a non-trivial
Ov1-ideal and A2 a non-trivial Ov2-ideal. Then K D A1CA2 and K� D .1CA1/ �

.1CA2/.

Proof Let b1; b2 2 K and c1; c2 2 K�. From the Approximation Theorem (see
[9, Theorem 2.4.1]) follows with Remark 2.1 .b1 C c1 �A1/ \ .b2 C c2 �A2/ ¤ ;.

Let x 2 K. With b1 D x; c1 D �1; b2 D 0 and c2 D 1 follows that there exist
a1 2 A1 and a2 2 A2 such that x�a1 D a2. Thus x D a1Ca2 2 A1CA2. Therefore
K D A1 CA2.

Now let x 2 K�. Then with b1 D c1 D x and b2 D c2 D 1 follows that
there exist a1 2 A1 and a2 2 A2 such that x C x � a1 D 1 C a2. We have x D
.1C a1/

�1 �.1C a2/ 2 .1CA1/
�1 �.1CA2/ D .1CA1/�.1CA2/ by Lemma 2.3.

Hence K� D .1CA1/ � .1CA2/. ut

Lemma 2.5 Let O1 and O2 be two non-comparable valuation rings on a field K.
Let O be the finest common coarsening of O1 and O2 and M the maximal ideal of
O . Let A1 be an O1-ideal with M ¨ A1 and A2 an O2-ideal with M ¨ A2. Then
O D A1 CA2 and O� D .1CA1/ � .1CA2/.

Proof Apply Lemma 2.4 to the valuation rings O1 and O2 induced by O1 and O2 on
K D O=M . ut

Lemma 2.6 Let A be an O-ideal.

(a) Let x 2 K� such that x�1 … A . Then for every 0 ¤ a 2 A we have
�

x � a�1
	

�1 2 A .
(b) The multiplicative group generated by the non-zero elements of A is K�.
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Proof (a) Let 0 ¤ a 2 A . Let x 2 K� with x�1 … A . Let v be a valuation with
O D Ov . By Remark 2.1 follows v

�

x�1
	

< v .a/ and therefore v .x/ > v
�

a�1
	

.
Hence v

�

x � a�1
	

Dv
�

a�1
	

and therefore v
��

x � a�1
	

�1
	

D v .a/. Again by
Remark 2.1 follows

�

x � a�1
	

�1 2 A .
(b) Let 0 ¤ x 2 O . Let 0 ¤ a 2 A . Then a � x 2 A . Therefore x D a�1 � a � x is

contained in the multiplicative group generated by the non-zero elements of A .
For x … O we have x�1 2 O . Therefore as shown above x�1 and hence

as well x is contained in the multiplicative group generated by the non-zero
elements of A . ut

Lemma 2.7 Let K be a field and N �P .K/ such that

(V 1)
T

N WD
T

U2N U D f0g and f0g … N ;
(V 2) 8U; V 2 N 9W 2 N W � U \ V;
(V 3) 8U 2 N 9V 2 N V � V � U;
(V 4) 8U 2 N 8 x; y 2 K 9V 2 N .xC V/ � .yC V/ � x � yC U;
(V 5) 8U 2 N 8 x 2 K� 9V 2 N .xC V/�1 � x�1 C U;
(V 6) 8U 2 N 9V 2 N 8 x; y 2 K x � y 2 V �! x 2 U _ y 2 U.

Then TN WD fU � K j 8 x 2 U 9V 2 N xC V � Ug is a Topology on K.
N is a basis of zero neighbourhoods of TN .

Definition 2.8 A topology such that (V 1) to (V 6) hold for the set of neighbour-
hoods of zero is called V-topology.

Remark 2.9 By Prestel and Ziegler [20, Theorem 1.1] (V 1) to (V 6) hold for
the set of neighbourhoods of zero if and only if they hold for any basis of the
neighbourhoods of zero.

The following was first shown in [8]. A proof can be found in [9, Appendix B].

Theorem 2.10 A topology is a V-topology if and only if it is induced by a non-trivial
valuation or by a non-trivial absolute value.

A detailed proof of the following claim can be found in [6, Claim 3.8]. As it is
very technical and of not much interest for the rest of the paper, we will only give a
brief idea of the proof here.

Proposition 2.11 Let K be a field and j : j an archimedean absolute value on K.

(a) Let G be an additive subgroup of K. If G is open with respect to j : j, then G D K.
(b) Let G be a multiplicative subgroup of K�. If G is open with respect to j : j, then

either G D K� or G [ f0g is an ordering on K.

Proof (idea) As any field which admits an archimedean absolute value embeds into
R or C, we can assume without loss of generality K � R or K � C.

If G is open, it contains an open neighbourhood U of 0 Œresp: 1�. As G is closed
under addition [resp. multiplication] for any g 2 G g C U Œresp: g � U� is still
contained in G. By recursively approximating all the elements of K [resp. K� or
K>0 if K is an ordered field with g > 0 for all g 2 G], we show the claim. ut
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The following lemma is well known. A proof can be found, for example, in
[6, Claim A.43]

Lemma 2.12 Let v W K � � [ f1g be a discrete valuation on K.

(a) Let x 2 K. Then x � Ov DMv if and only if v .x/ D 1. In particular there exists
x 2 K with x � Ov DMv .

(b) Let x 2 K� such that v.x/ D 1. Then for every y 2 K� with v .y/ 2 Z there
exists z 2 O�

v such that y D xv.y/ � z.

Proposition 2.13 Let O be a non-trivial valuation ring on a field K.

(a) If eO is a maximal non-trivial coarsening of O , then eO has rank-1.
(b) If there exists no maximal non-trivial coarsening of O , then the non-zero prime

ideals of O form a basis of the neighbourhoods of zero of the topology TO .

Proposition 2.13 is a shortened version of [9, Proposition 2.3.5].

3 The Valuation Ring OG Induced by a Subgroup G

In this section for every (additive or multiplicative) subgroup G of a field, we want
to define a valuation ring OG. For this valuation we will first define when a valuation
is coarsely compatible with a subgroup. We will define OG as the intersection over
all valuation rings that are coarsely compatible with G. Before we will come to
the definition we will prove some lemmas that we will need to show that with this
definition OG is a valuation ring. We will conclude the section with defining three
cases that will reappear in the subsequent sections.

Definition 3.1 Let G be a subgroup of K.

(a) O is compatible with G if and only if M � G Œresp: 1CM � G�.
(b) O is weakly compatible with G if and only if there exists an O-ideal A withp

A DM such that A � G Œresp: 1CA � G�.
(c) O is coarsely compatible with G if and only if v is weakly compatible with G

and there is no proper coarsening eO of O such that eO� � G.

Let v be a valuation on K. We call v compatible (respectively weakly compatible,
coarsely compatible) with G if and only if Ov is compatible (respectively weakly
compatible, coarsely compatible) with G.

We omit “with G” whenever the context is clear.

Remark 3.2 If O� � G, then O is compatible. Further if G is an additive group,
then O � G.

Proof If G is an additive group, �1 2 O� � G and hence M D 1 CM � 1 �

O� � 1 � G. Hence O is compatible and O � G.
If G is a multiplicative subgroup, then 1 CM � O� � G and hence O is

compatible. ut
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Lemma 3.3 Let char .Ov=Mv/ D q. Let G be a subgroup of K. Let v be weakly
compatible. Then there exists n 2 N such that qn �Mv � G Œresp: 1C qn �Mv � G�.

Proof Let A be an Ov-ideal with A � G Œresp: 1CA � G� and
p

A D Mv .
As q 2 Mv there exists n 2 N such that qn 2 A . Let x 2 qn � Mv . Then
v.x/ > v.qn/ and therefore by Remark 2.1 (a) x 2 A . Hence qn � Mv �

G Œresp: 1C qn �Mv � 1CA � G�. ut

Lemma 3.4 Let G be a subgroup of a field K. Then any two coarsely compatible
valuation rings are comparable.

Proof Let O1 and O2 be two weakly compatible valuation rings on K. For i D 1; 2

let Mi be the maximal ideal of Oi and Ai Oi-ideals with Ai � G Œresp: 1CAi � G�
and
p

Ai D Mi. Suppose O1 and O2 are not comparable. Let O be the finest
common coarsening of O1 and O2. Let M be the maximal ideal of O . From
Lemma 2.2 follows that M ¨ A1 and M ¨ A2. By Lemma 2.5 we have
O� � A1 CA2 � G Œresp: O� D .1CA1/ � .1CA2/ � G�. Hence by definition
O1 and O2 are not coarsely compatible. ut

Set OG WD
T

fO j Ocoarsely compatible with Gg.

Theorem 3.5 (a) OG is a valuation ring on K.
(b) OG is coarsely compatible.

Proof (a) This follows from Lemma 3.4.
(b) Let C WD fO j Ocoarsely compatible with Gg. For every O 2 C let MO be

the maximal ideal of O and let AO be an O-ideal with
p

AO D MO and
AO � G Œresp: 1CAO � G�. Define AG WD

S

fAO j O 2 C g : Let MG be
the maximal ideal of OG.

Let a; b 2 AG and x 2 OG. There exist O1;O2 2 C such that a 2 AO1 DW A1

and b 2 AO2 DW A2. By Lemma 3.4 let without loss of generality O1 � O2.
Then A2 � A1 and therefore a; b 2 A1. As A1 is an ideal aC b 2 A1 � AG.
Further x 2 OG and therefore x 2 O1. Therefore x � a 2 A1 � AG. For every
valuation O 2 C AO �MO �MG. Hence AG �MG and thus

p
AG �MG.

On the other hand, let x 2 MG. It is easy to see that there exists O 2 C
such that x 2 MO D

p
AO . Therefore there exists an n 2 N such that

xn 2 AO � AG and hence x 2
p

AG. Therefore MG �
p

AG. As AO �

G Œresp: 1CAO � G� for every O 2 C we have AG � G Œresp: 1CAG � G�.
Hence OG is weakly compatible.

Assume OG is not coarsely compatible. Let O be a valuation ring such that
OG ¨ O and O� � G. Without loss of generality let O be coarsely compatible.
Let x 2 O n OG. Then there exists a valuation ring eO 2 C with x … eO . By
Lemma 3.4 eO and O are comparable. As x 2 O n eO we have eO ¨ O . But this
contradicts eO coarsely compatible. This shows that OG is coarsely compatible.

ut

Definition 3.6 We call OG the valuation ring induced by G.

In the whole paper let MG denote the maximal ideal of OG and let vG be a
valuation with OvG D OG.
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Theorem 3.7 For any subgroup G of a field K one of the following cases holds:

group case There is a valuation ring O with O� � G.
In this case OG is the only coarsely compatible valuation ring with this property.
All weakly compatible valuations are compatible.

weak case There exists a weakly compatible valuation ring which is not compat-
ible.
In this case OG is the only valuation ring with this property.

residue case All weakly compatible valuations are compatible and there is no
valuation ring O with O� � G.
In this case OG is the finest compatible valuation ring.

Proof group case Let O be a valuation ring with O� � G. Let
eO WD

S

fO j Ovaluation ring suchthat O� � Gg. Let x; y 2 eO . Then there
exist O1; O2 2 fO j O� � Gg such that x 2 O1 and y 2 O2. If O1 and
O2 are comparable x C y; x � y 2 eO is clear. Otherwise let O be the finest
common coarsening of O1 and O2. By Lemma 2.5, O D M1 C M2 �

G Œresp: O� D .1CM1/ � .1CM2/ � G�. As x; y 2 O we have xC y; x � y 2 O
and therefore xCy; x �y 2 eO . Further if x 2 eO then x 2 O for some valuation ring
O such that O� � G. Hence �x 2 O � eO . Hence eO is a ring. By assumption it
is clear that eO is a valuation ring.
Now let x 2 eO�. As above we can find a valuation ring O such that x; x�1 2 O
and O� � G. Hence eO� � G. Further by definition, eO is coarsely compatible.
Hence OG � eO . As OG is by Theorem 3.5 (b) coarsely compatible, it follows
that OG D eO . In particular OG is compatible.
By Lemma 3.4 follows that there can be at most one coarsely compatible
valuation ring O with O� � G.
Let O be weakly compatible.
If O� � G then O is compatible.
If O� 6� G we have OG ¨ O . Hence M �MG and therefore O is compatible.

weak case Let O be weakly compatible but not compatible.
By the group case O� 6� G. Hence O is coarsely compatible and therefore OG �

O . From Lemma 2.2 follows OG D O as otherwise O would be compatible.
residue case OG is the finest coarsely compatible valuation ring. By assumption

in the residue case the coarsely compatible valuation rings are exactly the
compatible valuation rings. ut

In the group case the O�
G , and in the additive case even OG, is contained in the

subgroup. In the residue case G induces a proper subgroup on the residue field
OG=MG. In Sect. 6, when proving the definability of OG under certain conditions,
in the residue case for part of the proof we will be working in the residue field. The
name weak case does not need any further motivation.
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4 Criteria for the Non-Triviality of OG

In the whole section let G � K Œresp: G � K�� be a subgroup of K.
The valuation ring OG, that we have defined in the last section, is not necessarily

non-trivial. In this section we will give criteria under which OG is non-trivial. In
particular we will show that we can express the non-triviality of OG in a suitable
first order language.

Lemma 4.1 OG is non-trivial if and only if G ¤ K Œresp: G ¤ K�� and there exists
a non-trivial weakly compatible valuation.

Proof Assume that G ¤ K Œresp: G ¤ K�� and O is a non-trivial weakly
compatible valuation ring.

If we are in the group case we have OG � G ¨ K
�

resp: O�
G � G ¨ K�

�

and
therefore OG non-trivial.

If we are in the weak case MG 6� G Œresp: 1CMG 6� G�. Hence MG ¤ f0g and
thus OG is non-trivial.

In the residue case we have OG � O ¨ K and hence OG is non-trivial.
Conversely assume OG ¨ K is non-trivial. Then OG is a non-trivial weakly

compatible valuation ring.
Further suppose G D K Œresp: G D K��. For the trivial valuation Otr D K we

have O�
tr � G. Therefore no non-trivial valuation can be coarsely compatible. ut

Definition 4.2 We denote the coarsest topology for which G is open and for which
Möbius transformations [resp. linear transformations] are continuous, by TG. We
call TG the topology induced by G.

Theorem 4.3 Let

SG WD





a � xC b

c � xC d

ˇ

ˇ

ˇ

ˇ

x 2 G; c � x ¤ �d

� ˇ

ˇ

ˇ

ˇ

a; b; c; d 2 K; a � d � b � c ¤ 0

�

�

resp:SG WD fa � GC b j a 2 K�; b 2 Kg
�

:

Then SG is a subbase of this topology.

Proof As G 2 SG it is open in the topology induced by SG.
The inverse functions and compositions of a Möbius transformation [resp. linear

transformations] are again a Möbius transformation [resp. linear transformations].
Hence Möbius transformations [resp. linear transformation] are continuous in the
topology induced by SG.

On the other hand, every Möbius transformation [resp. linear transformation] is
the inverse function of a Möbius transformation [resp. linear transformation] and
therefore every element of SG is the preimage of G under a Möbius transformation
[resp. linear transformation]. Hence there can be no coarser topology for which G
is open and for which Möbius transformations [resp. linear transformations] are
continuous. ut
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We will denote the topology induced by a valuation v by Tv and the topology
induced by a valuation ring O by TO . We will examine the relation between TG

and TOG .

Claim 4.1 Let v be weakly compatible. Then G is open with respect to the
topology Tv .

Proof Let A be an Ov-ideal with A � G Œresp: 1CA � G� and
p

A DM . Let
a 2 A . Then by Remark 2.1 A 0 WD fx 2 K j v .x/ > v .a/g is an open subset of A .

If G is an additive subgroup of K, then for every x 2 G as well x C A 0 is open
in Tv . As x C A 0 � x C A � x C G � G for all x 2 G and 0 2 A 0, we have
G D

S

x2G .xCA 0/.
If G is a multiplicative subgroup of K�, g � .1CA 0/ � g � .1CA / � G for all

g 2 G. As 1 2 1CA 0 this implies G D
[

g2G

g �
�

1CA 0
	

.

A 0 is open in Tv and therefore, as Tv is a field topology, G is open. ut

Proposition 4.4 Assume O is weakly compatible.

(a) Let G � K be an additive subgroup. Then SG is a basis of TO .
(b) Let G � K� be a multiplicative subgroup. Then
f.a1 � GC b1/ \ .a2 � GC b2/ j a1; a2 2 K�; b1; b2 2 Kg is a basis of TO .

Proof First note that f˛ �MG C ˇ j ˛ 2 K�; ˇ 2 Kg is a basis of TvG .

(a) Let a; b; c; d 2 K such that a�d�b�c ¤ 0. As G 2 TO by Claim 4.1, Gn
˚

� d
c

�

2

TO . As field operations are continuous in TO

˚

a�xCb
c�xCd

ˇ

ˇ x 2 G; x ¤ � d
c

�

2 TO .
Hence SG � TO and therefore TG � TO .

To prove TO � TG let A be an OG-ideal with A � G and
p

A D MG.
We can choose d 2 K n G with d�1 2 A as follows. Choose ed 2 K n G.
If 0 ¤ ed�1 2 A , set d WD ed. If 0 ¤ ed�1 … A , choose 0 ¤ e 2 A . By
Lemma 2.6 (a) 0 ¤

�

ed � e�1
	

�1 2 A .
If e�1 … G, set d WD e�1.
If e�1 2 G, we haveed � e�1 … G. In this case set d WDed � e�1.
Let 0 ¤ea;eb 2 A . Let a WD d�1 �ea; b WD a �eb and U WD

˚

a�xCb
xCd

ˇ

ˇ x 2 G
�

.
We have a �d�b D a �

�

d �eb
	

¤ 0. Hence a �d�b ¤ 0. Further x ¤ � d
1

for
all x 2 G. Therefore U 2 SG. Note that vG .d/ < 0 and vG

�

eb
	

> 0. Let x 2 G.
Let us first assume vG .x/ < vG .d/. Then vG .xC d/ D vG.x/. Further

vG .a � x/ < vG .a/ < vG .a/ C vG
�

eb
	

D vG .b/. Therefore vG .a � xC b/ D
vG .a/C vG .x/. Hence vG

�

a�xCb
xCd

	

D vG .a/ > 0.
Now assume vG .x/ � vG .d/. Then vG .a � x/ � vG .a/C vG .d/ D vG .ea/.
Asea 2 A by Remark 2.1 (a) we have a � x 2 A and therefore a � xC b 2 A .

As x C d … G we have x C d … A � G. Again by Remark 2.1 (a) follows
vG .a � xC b/ > vG .xC d/ and therefore vG

�

a�xCb
xCd

	

> 0. Hence a�xCb
xCd 2MG.

That shows U �MG. For ˛ 2 K� and ˇ 2 K we have ˛ �UCˇ � ˛ �MGCˇ

and ˛ �U C ˇ 2 SG.
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(b) Let n 2 N, a1; : : : ; an 2 K� and b1; : : : ; bn 2 K. By Claim 4.1 G 2 TO . As field
operations are continuous in TO and TO is a topology,

Tn
iD1 .ai � GC bi/ 2

TO . Hence SG � TO and therefore TG � TO .
To show TO � TG let A be an OG-ideal with 1CA � G and

p
A DMG.

Suppose c 2 K� and A � c � G [ f0g. Then for all 0 ¤ a 2 A f0g there
exists x 2 G with a D c � x. As A is an ideal we have 0 ¤ .c � x/2 2 A . Hence
.c � x/2 2 c � G and therefore c � x2 2 G. Hence c 2 G as x�2 2 G. Therefore
c � G � G. Hence G contains all non-zero elements of A and hence the group
generated by them. But by Lemma 2.6 (b) this contradicts G ¤ K�.

Therefore there exist c; d 2 K� with A \ c � G ¤ ;, A \ d � G ¤ ; and
c � G \ d � G D ;.

Let a 2 A \c�G and b 2 A \d �G. Suppose .a � c � G/\.b � d � G/ 6�MG.
Let x 2 ..a � c � G/ \ .b � d � G// nMG. Then there exist g1; g2 2 G with
x D a� c � g1 D b� d � g2. As x�1 2 OG we have a � x�1 2 A and b � x�1 2 A .
Therefore �c � g1 D x � a D x �

�

1 � a � x�1
	

2 x � .1CA / � x � G and
�d � g2 D x � b D x �

�

1 � b � x�1
	

2 x � .1CA / � x � G: Hence there exist
h1; h2 2 G with �c � g1 D x � h1 and �d � g2 D x � h2. We have g1 � h�1

1 2 G and
g2 � h�1

2 2 G and therefore �x D c � g1 � h�1
1 2 c �G and �x D d � g2 � h�1

2 2 d �G.
Hence �x 2 c � G \ d � G but this contradicts c � G \ d � G D ;.

Therefore U WD .�c � GC a/ \ .�d � GC b/ �MG and U 2 SG.
For ˛ 2 K� and ˇ 2 K we have ˛ �UCˇ � ˛ �MGCˇ and ˛ �U Cˇ 2 SG.

ut

Lemma 4.5 Let G ¨ K Œresp: G ¨ K��. Then TO D TG if and only if
there exists a non-trivial weakly compatible coarsening O 0 of O . In this case
BG WD SG

�

resp: BG WD
˚

.a � GC b/ \ .c � GC d/
ˇ

ˇ a; c 2 K�; b; d 2 K
��

is a
basis of TG.

Proof Let us first assume TO D TG. As G is open in TG D TO and the O-ideals
form a basis of neighbourhoods of zero of TO , there exists an O-ideal A ¤ f0g

such that A � G Œresp: 1CA � G�. O 0 WD Op
A � O is a valuation ring with

maximal ideal M 0 D
p

A and O � O 0. Hence O 0 is weakly compatible.
Now assume O 0 � O is weakly compatible. By Proposition 4.4 BG is basis of

TO0 and hence TO0 D TG. As O 0 and O are dependent TO D TO0 D TG (see [9,
Theorem 2.3.4]). ut

Theorem 4.6 Let K be a field with a proper additive subgroup G or with a proper
multiplicative subgroup G such that G [ f0g is not an ordering. Then there is a
non-trivial weakly compatible valuation ring if and only if TG is a V-topology.

Proof Let O be a weakly compatible valuation ring. Then by Lemma 4.5 TO D TG

and therefore by Theorem 2.10 TG is a V-topology.
On the other hand, let TG be a V-topology. As G is open with respect to TG by

Proposition 2.11 TG cannot be induced by an archimedean absolute value. Hence
by Theorem 2.10 TG is induced by a valuation ring O . By Lemma 4.5 there exists a
non-trivial weakly compatible coarsening of O . ut
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Corollary 4.7 Let G ¨ K be a proper additive subgroup of K. [Resp. let G ¨ K�

be a proper multiplicative subgroup of K such that G [ f0g is not an ordering on
K.] The following are equivalent

(i) OG is non-trivial.
(ii) There exists a non-trivial weakly compatible valuation ring O on K.

(iii) TG is a V-topology.
(iv) BG is a basis of a V-topology.

This follows at once by Lemma 4.1, Theorem 4.6 and Lemma 4.5.

Lemma 4.8 Let G ¨ K be a proper additive subgroup of K. [Resp. let G ¨ K� be
a proper multiplicative subgroup of K such that G [ f0g is not an ordering on K.]
Let LG WD fC;�; � I 0; 1IGg, where G is a unary relation symbol. Then any of the
equivalent assertions is an elementary property in LG.

Proof We can express in LG, that the axioms (V 1) to (V 6) hold for BG and hence
by Remark 2.9 that BG is a basis of a V-topology. ut

5 Criteria for the Definability of OG

Let L always denote a language and L .K/ the extension of the language L by
adding a constant for every element of K.

Definition 5.1 (a) We call O L -definable (with parameters) or definable in L , if
there exists an L .K/-formula '.x/ such that O D fx 2 K j ' .x/g. We say '
defines O .

(b) We call v L -definable if Ov is L -definable.
(c) We call O (resp. v) L -;-definable or parameterfree L -definable, if the formula

' above, is an L -formula.
(d) We call O (respectively v) definable if it is Lring-definable.

In some of the theorems in Sect. 5 we need assumptions that might only be
fulfilled in a finite field extension of K but not in K itself. With the following theorem
we will still obtain a definable valuation on K.

Proposition 5.2 Let L=K be a finite field extension. If O is a non-trivial definable
valuation ring on L, then O \ K is a non-trivial definable valuation ring on K.

Proof As L=K is algebraic, if O is non-trivial, then O \ K is also non-trivial.
As L=K is finite, L is interpretable in K and hence O \ K is definable. ut

Note that if O in the proposition above is parameter-free definable, it does not
follow that O \ K is parameter-free definable in K.

Example 5.3 For every prime number q 2 N the q-adic valuation is definable in the
q-adic numbers Qq. The valuation ring is Oq D

˚

x 2 Qq j 9y y2 � y D q � x2
�

.

This follows from [2].
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We now want to explore under which conditions OG is definable in LG WD

f0; 1IC;�; � IGg. We will first look at the group case, then at the weak case and
at last at the residue case.

The proofs all follow the same pattern. Let L 0 WD LG.O/, the language LG

extended by a unary relation symbol. We will show that under certain assumptions
for .K0;G0;O 0/ � .K;G;OG/ we have O 0 D OG0 . Hence for every .K0;G0/ �

.K;G/ there exists at most one O 0 such that .K0;G0;O 0/ � .K;G;OG/ and therefore
O is implicitly defined in Th.K;G;OG/. By Beth’s Theorem (see, for example, [18,
Theorem 9.3]) O is explicitly defined in Th.K;G;OG/. Hence there exists an LG-
formula ' such that Th.K;G;OG/ ` 8x '.x/$ O.x/ and hence O is LG-definable.

We will further prove that the assumptions for the existence of an LG-formula '
such that ' defines OG0 for all .K0;G0/ � .K;G/ that we give, are not only sufficient
but also necessary. For this we will use the following easy observation.

Remark 5.4 Let LG WD f0; 1IC;�; � IGg and L 0 D LG.O/. If there exists
.K0;G0;O 0/ � .K;G;OG/ such that O 0 ¤ OG0 , then there exists no LG-formula
' such that ' defines OG0 for all .K0;G0/ � .K;G/.

For the proof of Theorem 5.6 we will need the following lemma.

Lemma 5.5 (a) Let G ¨ K be an additive subgroup of K such that the group case
holds. Let OG be discrete. Let x0 2 K such that MG D x0 �OG. Then there exists
n 2 N such that x�n

0 � OG � G and x�.nC1/
0 � OG ª G.

(b) Let G ¨ K� be a multiplicative subgroup of K such that the group case holds.
Let x 2MG. Then MG n x �MG 6� G.

Proof (a) As we are in the group case by Theorem 3.7 OG � G and therefore
for all y 2 K n G we have vG

�

y�1
	

> 0. Assume for all y 2 K n G we have
vG
�

y�1
	

> n for all n 2 N. Let p WD fz 2 K j vG .z/ > nfor all n 2 Ng ¤ ;. By
Remark 2.1 (c) p is a prime ideal of OG and hence Op WD .OG/p is a valuation
ring on K with OG ¨ Op. Let z 2 Op. Then there exist a; b 2 OG with b … p

and z D a � b�1. As b … p there exists n 2 N with vG .b/ � n. We have
vG
�

z�1
	

D vG .b/ � vG .a/ � n � vG .a/ � n. Hence by assumption z 2 G.
Hence OG ¨ Op � G. This contradicts Theorem 3.5 (b). Choose y 2 KnG such
that vG.y�1/ > 0 is minimal. Then vG.y�1/ 2 N. By Lemma 2.12 vG .x0/ D 1

and there exists a 2 O�
G such that y�1 D xnC1

0 �a. Hence G 63 y D x�.nC1/
0 �a�1 2

x�.nC1/
0 � OG. Hence G 6� x�.nC1/

0 � OG.
Assume z 2

�

x�n
0 � OG

	

n G. Then z D x�n
0 � b for some b 2 OG. As vG .z/ D

vG
�

x�n
0

	

C vG .b/ � �n we have vG
�

z�1
	

� n < n C 1 D vG .y/. But this
contradicts the minimality of vG

�

y�1
	

.

Hence we have found n 2 N with x�n
0 � OG � G and x�.nC1/

0 � OG ª G.
(b) Assume there exists x0 2MG such that MG n x0 �MG � G. Let

p WD fy 2 K j vG .y/ > n � vG .x0/ for all n 2 Ng. By Remark 2.1 (c) p is a
prime ideal of OG and therefore .OG/p DW Op is a coarsening of OG. As x�1

0 2

OpnOG we have Op © OG. Let hMGnx0�MGi denote the smallest multiplicative
subgroup of K� which contains MG n x0 �MG. As MG n x0 �MG � G we have
hMG n x0 �MGi � G. Let y 2 K such that 0 < vG .y/ � m � vG .x0/ and
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.m � 1/ � vG .x0/ < vG .y/ for some m 2 N. Then y � x�.m�1/
0 2 MG. Further

vG

�

y � x�.m�1/
0

�

� m � vG .x0/� .m � 1/ � vG .x0/ D vG .x0/. Thus y � x�.m�1/
0 2

MG n x0 �MG. As x0 2MG n x0 �MG and therefore xm�1
0 2 hMG n x0 �MGi it

follows that y D xm�1
0 � y � x�.m�1/

0 2 hMG n x0 �MGi.
Now let y 2 O�

p nO�
G . Then y … p and y�1 … p. Hence there exist n1; n2 2 N

such that vG .y/ � n1 � vG .x0/ and vG
�

y�1
	

� n2 � vG .x0/. As y … O�
G by

assumption, we have vG.y/ ¤ 0. If vG .y/ > 0, then y 2 hMGnx0 �MGi as shown
above. If vG .y/ < 0, then y�1 2 hMG n x0 �MGi and hence y 2 hMG n x0 �MGi.
Therefore O�

p n O�
G � hMG n x0 �MGi. As O�

G � G and hMG n x0 �MGi � G
we have O�

p � G. But this contradicts 3.5(b). ut

Theorem 5.6 (a) Let G be an additive subgroup of K such that the group case
holds. Then there exists an LG-formula ' such that ' defines OG0 for all
.K0;G0/ � .K;G/ if and only if OG is discrete or x�1 �OG 6� G for all x 2MG.

(b) Let G ¨ K� be a multiplicative subgroup of K such that the group case holds.
Then there exists an LG-formula ' such that ' defines OG0 for all .K0;G0/ �

.K;G/.

Proof (a) Let .K0;G0;O 0/ � .K;G;OG/ be an L 0-structure. Let M 0 denote the
maximal ideal of O 0. As OG � G, we have O 0 � G0. Hence we are in the group
case and therefore by Theorem 3.7 we have OG0 � G0 and O 0 � OG0 .

Let us first assume that OG is discrete. By Lemma 2.12 there exists x0 2 K
such that MG D x0 � OG. By Lemma 5.5 (a) there exists n 2 N such that
x�n
0 � OG � G and x�.nC1/

0 � OG ª G. As .K0;G0;O 0/ � .K;G;OG/ there exists
x0 2 K0 such that x0 � O 0 DM 0, .x0/

�n
� O 0 � G0 and .x0/

�.nC1/
6� G0. Assume

x0 … MG0 . Then .x0/
�1
2 OG0 and thus .x0/

�.nC1/
� O 0 � .x0/

�.nC1/
� OG0 �

OG0 � G0. But this contradicts the choice of x0. Hence x0 2 MG0 and therefore
x0 �OG0 �MG0 . Thus M 0 D x0 �O 0 � x0 �OG0 �MG0 and therefore OG0 � O 0.
Altogether follows OG0 D O 0.

Now assume x�1 � OG 6� G for all x 2 MG. Assume O 0 ¨ OG0 . Let x 2
M 0 nMG0 . Then x�1 2 O�

G0 and therefore x�1 � O 0 � x�1 � OG0 D OG0 � G0.
But as .K0;G0;O 0/ � .K;G;OG/ this is a contradiction. Therefore O 0 D OG0 .

Hence in both cases by Beth’s Theorem there exists an LG-formula ' such
that ' defines OG0 for all .K0;G0/ � .K;G/.

Finally assume x 2MG such that x�1 �OG � G and OG is not discrete. Then
for every n 2 N there exists yn 2 MG n f0g such that vG .x/ � n � vG .yn/ �

k � vG .yn/ for all k � n. For all a 2 OG we have x � a � y�k
n 2 OG and therefore

y�k
n � a 2 x�1 �OG. Thus y�k

n �OG � x�1 �OG � G for all k � n. Hence ˚ .y/ D
fy 2MG ^ 0 ¤ y ^ y�n � OG � G j n 2 Ng is a finitely satisfiable type. Thus
there exists an elementary extension .K0;G0;O 0/ of .K;G;OG/ and y0 2 K0

such that y0 realizes ˚ .y/. Let O 00 D
S1

nD0 .y
0/

�n
� O 0. As .y0/

�n
� O 0 � G0

for every n 2 N, we have O 00 � G0 . Further O 0 � O 00. As y0 2 M 0 we have
.y0/

�1
… O 0 but .y0/

�1
2 .y0/

�1
� O 0 � O 00 and therefore O 0 ¨ O 00 � G0. Thus

O 0 ¤ OG0 . Hence by Remark 5.4 there exists no LG-formula ' such that '
defines OG0 for all .K0;G0/ � .K;G/.
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(b) Let .K0;G0;O 0/ � .K;G;OG/. As O�
G � G we have .O 0/

�
� G0. By

Theorem 3.7 we have O 0 � OG0 and O�
G0 � G0. Assume O 0 ¨ OG0 . Let

x 2M 0 nMG0 . As x 2 O�
G0 we have x �MG0 DMG0 . Therefore M 0 n x �M 0 �

M 0 n x �MG0 DM 0 nMG0 � O�
G0 � G0. Hence there exists x 2M 0 such that

M 0 n x �M 0 � G0. But as by Lemma 5.5 (b) MG n x �MG 6� G, this contradicts
.K0;G0;O 0/ � .K;G;OG/.

Therefore O 0 D OG0 and hence by Beth’s Theorem there exists an LG-
formula ' such that ' defines OG0 for all .K0;G0/ � .K;G/. ut

Theorem 5.7 Let G ¨ K Œresp: G ¨ K�� be a subgroup of K such that the weak
case holds. Then there exists an LG-formula ' such that ' defines OG0 for all
.K0;G0/ � .K;G/ if and only if OG is discrete.

Proof Let us first assume that OG is discrete. Let A be an O-ideal with A �

G Œresp: 1CA � G� and MG D
p

A . Let x0 2 MG with vG .x0/ D 1. Let
a 2 A and k 2 N such that xk

0 D a. Then vG .a/ D k 2 N. Choose y0 2
MG n G Œresp: y0 2MG n G � 1� such that vG .y0/ is maximal. Such a y0 exists
as vG .MG n G/ Œresp: vG .MG n G � 1/� is bounded by vG .a/ by Remark 2.1 and
vG is discrete. As y0 … G � A Œresp: y0 … G � 1 � A � by Remark 2.1 we have
0 < vG .y0/ < vG .a/ D k. Hence vG .y0/ 2 N. From Lemma 2.12 follows that
there exists n 2 N and b 2 O�

G such that y0 D xn
0 � b. Hence y0 2 xn

0 � OG n

G
�

resp: y0 2 xn
0 � OG n .G � 1/

�

and therefore G 6� xn
0 �OG

�

resp: G � 1 6� xn
0 � OG

�

.
Assume there exists z 2 xnC1

0 � OG n G
�

resp: z 2 xnC1
0 � OG n G � 1

�

. Let z0 2 OG

such that z D xnC1
0 � z0. We have vG .z/ � nC 1 > vG .y0/. But this contradicts the

maximality of vG .y0/. Hence xnC1
0 � OG � G

�

resp: 1C xnC1
0 � OG � G

�

.
Now let .K0;G0;O 0/ � .K;G;OG/. Let M 0 be the maximal ideal of O 0. As OG

is not compatible with G, O 0 is not compatible with G0. Further there exists x0 2 K0

such that x0 � O 0 DM 0, .x0/
n
� O 0 6� G0 and .x0/

nC1
� O 0 � G0

h

resp: x0 � O 0 DM 0,

1C.x0/
n
�O 0 6� G0 and 1C.x0/

nC1
�O 0 � G0

i

. Let v0 be a valuation with Ov0 D O 0. Let

A WD
n

a 2 K
ˇ

ˇ

ˇ v0 .a/ > v0
�

.x0/
nC1
�o

. A is an O 0-ideal with A � .x0/
nC1
� O 0 �

G0
h

resp: 1CA � 1C .x0/
nC1
� O 0 � G0

i

. Further for every z 2 M 0 there exists

a 2 O 0 such that z D x0 � a. We have v0
�

znC2
	

D v0 .x0/
nC1
C v0 .x0/C v0

�

anC2
	

>

v0
�

.x0/
nC1
�

and hence z 2
p

A . Therefore
p

A D M and thus O 0 is weakly

compatible with G0. By Theorem 3.7 O 0 D OG0 . Hence by Beth’s Theorem if OG

is discrete there exists an LG-formula ' such that ' defines OG0 for all .K0;G0/ �

.K;G/.
Now assume OG is not discrete. Let x0 2 MG n G Œresp: x0 2MG n G � 1�.

Then x0 � OG ª G Œresp: x0 � OG ª G � 1�. As OG is not discrete, for every n 2 N

there exists y 2 MG n f0g such that vG .x0/ � n � vG .y/ � k � vG .y/ for all
k � n. For a 2 OG we have x0 � a � y�k 2 OG. Therefore x0 � a 2 yk � OG.
Hence yk � OG � x0 � OG 6� G

�

resp: yk � OG � x0 � OG 6� G � 1
�

for all k � n. Let
z 2 yn �OGnG Œresp: z 2 yn � OG n .G � 1/�. As y 2 OG we have yn �OG � yk �OG and
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therefore z 2 yk � OG for every k � n. Thus there exists z 2
Tn

kD1 yk � OG D yn � OG

with z … G. Therefore˚ .y; z/ D fy 2MG ^ 0 ¤ y ^ z 2 yn � OG ^ z … G j n 2 Ng

Œresp: ˚ .y; z/ D fy 2MG ^ 0 ¤ y ^ z 2 yn � OG ^ z … G � 1 j n 2 Ng� is a finite-
ly satisfiable type. Hence there exist an elementary extension .K0;G0;O 0/ and
y0; z0 2 K0 such that .y0; z0/ realizes ˚ .y; z/. Let p D

T1
nD1.y

0/n � O 0. Let a; b 2 p.
Then for all n 2 N there exist an; bn 2 O 0 such that a D .y0/n � an and b D .y0/n � bn.
We have a C b D .y0/n � .an C bn/ 2 .y0/n � O 0. Hence a C b 2 p. Let c 2 O 0.
For every n 2 N we have c � a D c � .y0/n � an 2 .y0/n � O 0. Hence c � a 2 p. Now
let a; b 2 O 0 with a � b 2 p. Assume a … p. Then there exists n0 2 N such that
a … .y0/n0 �O 0. Hence vG

�

a � .y0/
�n0
	

< 0. Let m 2 N. We have a � b 2 .y0/n0Cm �O 0

and thus 0 � vG .a � .y0/�n0 / C vG .b � .y0/�m/. Hence we have vG .b � .y0/�m/ > 0

and therefore b 2 .y0/m � O 0. Thus b 2 p. Hence p is an O 0-prime ideal. As z0 2 p

we have p 6� G0 Œresp: p 6� G0 � 1�. As .y0/n � O 0 � M 0 for all n 2 N we have
p � M 0. As .y0/�1 … O 0 we have y0 … .y0/2 � O 0. Hence p ¨ M 0. By Remark 2.1
for every ideal A � G0 Œresp: A � G0 � 1� we have A � p and therefore ap

A � p ¨ M 0. Hence O 0 is not coarsely compatible with G0. In particular
O 0 ¤ OG0 . By Remark 5.4 there exists no LG-formula ' such that ' defines OG0 for
all .K0;G0/ � .K;G/. ut

For every subgroup G of K, G WD %.G/ is a subgroup of the residue field K. We
will show the following lemma.

Lemma 5.8 Let G be a subgroup of K such that the group case or the residue case
holds.

(a) Let G � K be an additive subgroup of K. Let x 2 K. Then x 2 G if and only if
x 2 G.

(b) Let G � K be a multiplicative subgroup of K. Let x 2 O�
G . Then x 2 G if and

only if x 2 G.

Proof (a) Let x 2 G. Then there exists y 2 G with y D x hence x D yC˛ for some
˛ 2MG � G. As ˛; y 2 G, we have x D yC ˛ 2 G.

The other direction is clear.
(b) Let x 2 O�

G . Assume x 2 G. Then there exists y 2 G with y D x hence
x D yC ˛ for some ˛ 2MG. Let vG be a valuation with OG D OvG . We have
vG .y/ D minfvG.x/; vG.˛/g D 0 and therefore y 2 O�

G . Hence y�1 2 OG

and therefore ˛ � y�1 2 MG. As 1 CMG � G 1 C ˛ � y�1; y 2 G. Therefore
x D y �

�

1C ˛ � y�1
	

2 G.
The other direction is again clear. ut

Theorem 5.9 Let G � K be a subgroup of a field such that the residue case holds.
Then there exists an LG-formula ' such that ' defines OG0 for all .K0;G0/ � .K;G/
if and only if G is additive or G is multiplicative and G [ f0g is no ordering.

Proof Let us first assume G is additive or G is multiplicative and G [ f0g
is no ordering. Assume O� is a non-trivial valuation ring on K which is
weakly compatible with G. Let eO WD %�1 .O�/. As O� is non-trivial, eO is
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a valuation ring on K with eO ¨ OG. Let M � denote the maximal ideal
of O� and fM the maximal ideal of eO . Let A be an O�-ideal such thatp

A D M � and A � G
�

resp: 1CA � G
�

. Then %�1 .A / is an eO-

ideal with
p

%�1 .A / D fM . With Lemma 5.8 %�1 .A / � %�1
�

G
	

D

G
�

resp: 1C %�1 .A / � %�1 .1/C %�1 .A / D %�1 .1CA / � %�1
�

G
	

D G
�

.
Therefore eO is a weakly compatible refinement of OG. As we are in the residue case
by Theorem 3.7 this is a contradiction. Hence there exists no non-trivial valuation
ring on K which is weakly compatible with G.

Now let .K0;G0;O 0/ � .K;G;OG/. O 0 is coarsely compatible with G0 and hence
OG0 � O 0. Assume OG0 ¨ O 0. Let %0 denote the residue homomorphism %0 W O 0 �!

O 0=M 0. Then %0.OG0/ is a non-trivial valuation ring on K0 WD O 0=M 0. We have
%0 .MG0/ � %0 .G0/ D G0

�

resp: 1C %0 .MG0/ D %0 .1CMG0/ � %0 .G0/ D G0
�

.
Therefore OG0 is a non-trivial valuation ring on K0 which is weakly compatible with
G0. But this contradicts .K0;G0;O 0/ � .K;G;OG/ by Corollary 4.8.

Now assume G is a multiplicative subgroup of K� and G[f0g an ordering on the
residue field K of .K; OG/. Assume G[ f0g is not archimedean. Then the valuation
ring O� WD

˚

x 2 K
ˇ

ˇ there exists a 2 Z a � x 2 G; aC x 2 G
�

on K is non-trivial
(compare [9, page 36]). Let % W OG �! K denote the residue homomorphism. Then
%�1 .O�/ WD eO is a valuation ring on K with OG © eO . Denote by M � the maximal
ideal of O� and by fM the maximal ideal of eO .

O� is
�

G [ f0g
	

-convex. Hence 1 CM � � G (see, for example, [9, Proposi-
tion 2.2.4]). As by Lemma 5.8 %�1

�

G
	

D G 1 C fM � %�1 .1/ C %�1 .M �/ D

%�1 .1CM �/ � %�1
�

G
	

D G. Hence eO ¨ OG is a coarsely compatible valuation
ring on K. This is a contradiction. Therefore G [ f0g must be an archimedean
ordering. Let ˚ .y/ WD

˚

y 2 K ^ n � y … G
ˇ

ˇ n 2 N
�

. For every n 2 N there exists
y 2 K such that n � y … G and therefore k � y … G for all k � n. Therefore ˚ .y/
is a finitely satisfiable type. Hence there exists an elementary extension .K0;G0;O 0/

and y0 2 K0 such that y0 realizes ˚ .y/. G0 [ f0g is a non-archimedean order on K0

as y0 > n for all n 2 N. As above from G0 [ f0g non-archimedean follows that there
exists a valuation ring eO ¨ O 0 which is compatible with G0. As we have O�

G 6� G we
have .O 0/

�
6� G0. Hence O 0 has a proper refinement which is coarsely compatible

with G0 and hence O 0 ¤ OG0 . By Remark 5.4 there exists no LG-formula ' such
that ' defines OG0 for all .K0;G0/ � .K;G/. ut

The following table summarizes Theorem 5.6, Theorem 5.7 and Theorem 5.9.

Theorem 5.10 Let G ¨ K Œresp: G ¨ K�� be a subgroup of K.
Then there exists an LG-formula ' such that ' defines OG0 for all .K0;G0/ �

.K;G/ if and only if
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G	 K additive G	 K� multiplicative

Group case Iff either OG is discrete Always

or for all x 2 MG x�1 � OG 6	 G

Weak case If and only if OG is discrete

Residue case Always Iff G [ f0g is no ordering

6 OG for Groups of Prime Powers and the Artin
Schreier Group

In this section we want to apply the results from the previous sections to the Artin-
Schreier group G D K.p/ for p D char.K/ > 0 and the group of prime powers
G D .K�/q for q ¤ char.K/ prime. As these groups are Lring-;-definable, any
LG-;-definable valuation will be Lring-;-definable.

We will start with a lemma that shows that for these groups the weak case can
only occur if G D .K�/q for q D char

�

K
	

.

Lemma 6.1 Let O be a valuation ring on a field K.

• Let G be an additive subgroup of K and K.p/ � G for p WD char .K/ > 0 or
• let G be a multiplicative subgroup such that there exists n 2 N with .K�/n � G

and gcd
�

n; char
�

K
	 	

D 1 if char
�

K
	

¤ 0.

Then v is compatible if and only if it is weakly compatible.

Proof It is clear that if O is compatible, then it is weakly compatible.
Assume O is weakly compatible but not compatible. Let A be an O-ideal withp
A D M and A � G Œresp: 1CA � G�. By Remark 2.1 we can choose A

maximal with A � G Œresp: 1CA � G�. Let a 2M nA . Let k 2 N with ak … A
and akC1 2 A . Define the O-ideal B WD ak � O . As ak 2 B nA we have B 6� A
and hence by Remark 2.1 A ¨ B. Let x 2 B2. Then there exists y 2 O with

x D
�

ak � y
	2

. As ak�1 � y2 2 O and akC1 2 A , we have x 2 A . Hence B2 � A .
Let us first show that if G is an additive subgroup of K then B � G. Let b 2 B.

As p D char.K/ � 2, we have bp�2 2 O . Further b2 2 A . Therefore bp 2 A . As
.�b/p C b 2 K.p/ � G, therefore .�b/p C b˙ bp 2 G. Thus B � G .

Now assume that G is a multiplicative subgroup. We will show 1C B � G.
Let b 2 B. Then

G 3



b

n
C 1

�n

D 1C bC

 

n

2

!

�



1

n

�2

� b2C b �

 

n�3
X

iD0

 

n

iC 3

!

�



1

n

�iC3

� bi

!

� b2:

As gcd
�

n; char
�

K
	 	

D 1 we have n 2 O�. Furthermore b 2 O and for all i; j 2

N with i � j we have
�i

j

	

2 N � O . Hence
Pn�3

iD0

� n
iC3

	

�
�

1
n

	iC3
� bi 2 O and

�n
2

	

�
�

1
n

	2
2 O . As B2 is an O-ideal, from this follows

�n
2

	

�
�

1
n

	2
� b2 2 B2 � A
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and
�

Pn�3
iD0

� n
iC3

	

�
�

1
n

	iC3
bi
�

� b2 2 B2 � A . Therefore
�

b
n C 1

	n
2 1C bCA C

b �A D .1C b/ � .1CA /. By Lemma 2.3 .1CA /�1 D 1CA . Hence 1C b 2
.K�/q � .1CA /�1 � G � .1CA /�1 D G � .1CA / � G. Hence 1C B � G.

Therefore B is an O-ideal with B � G Œresp: 1C B � G� and A ¨ B. But this
contradicts the choice of A . ut

Theorem 6.2 Let K be a field with char .K/ D p > 0 and G WD K.p/. Then OG is
;-definable.

Proof As the case OG D K is trivial we can assume OG ¤ K and hence as well
G ¤ K.

By Lemma 6.1 there exists no valuation which is weakly compatible but not
compatible. Hence by the definition of the cases (Theorem 3.7), we are not in the
weak case.

If we are in the residue case OG is ;-definable by Theorem 5.10.
Now assume we are in the group case. Suppose for a contradiction, there exists

an x0 2 MG such that x�1
0 � OG � G. Then x�1

0 � OG is a fractional OG-ideal and
therefore there exists a maximal fractional OG-ideal A with A � G. We have
OG ¨ x�1

0 � OG � A . Let A˛ WD fx 2 K j vG .x/ � ˛ � vG .y/ for some y 2 A g.
Let x 2 A . If vG.x/ � 0 D ˛ � vG .1/, then x 2 A˛ . If vG .x/ < 0, then
vG .x/ > ˛ � vG .x/ and therefore x 2 A˛ . Hence A � A˛ . Assume for all
x1 2 A n O there exists x2 2 A such that

�

1C p�1
	

� vG.x1/ � vG.x2/. Define
p WD fx 2 K j �vG.x/ < vG.a/for all a 2 A g. Let a 2 A n O ¤ ;. Then for all
x 2 p vG.x/ > �vG.a/ > 0 and hence x 2 M . As further a�1 2 M n p we have
p ¨ M . Let x; y 2 p. Then �vG.x C y/ � �maxfvG.x/; vG.y/g < vG.a/ for all
a 2 A . Hence xC y 2 p. Let x 2 p and k 2 O . For all a 2 A we have k � a 2 A .
Hence �vG.x/ > vG.k � a/ and therefore vG.a/ < �vG.k � x/. Thus k � x 2 p. Let
x; y 2 O n p. Let a; b 2 A such that �vG.x/ � vG.a/ and �vG.y/ � vG.b/.

If a 2 O or b 2 O we have a � b 2 A . As �vG.x � y/ � vG.a/C vG.b/ we have
x � y … p.

If a; b 2 A n O let a0 2 fa; bg such that vG.a0/ D minfvG.a/; vG.b/g 2 A n O .
By assumption there exists a1 2 A such that 0 >

�

1C p�1
	

� vG.a0/ � vG.a1/.
Recursively for all n � 0 we can define anC1 2 A n O with

�

1C p�1
	

� vG.an/ �

vG.anC1/. We then get
�

1C p�1
	n
�vG.a0/ �

�

1C p�1
	n�1
�vG.a1/ � : : : � vG.an/.

As
�

1C p�1
	n
�! 1 for n ! 1, for some n 2 N we have

�

1C p�1
	n
� 2 and

thus 2 �vG.a0/ �
�

1C p�1
	n
�vG.a0/ � vG.an/. Hence�vG.x �y/ � vG.a/CvG.b/ �

vG.an/. As an 2 A from this follows x � y … p.
Altogether we see that for all x; y 2 O if x � y 2 p then x 2 p or y 2 p.
Hence p is a prime ideal. Therefore Op is a proper coarsening of O .
Let x � y�1 2 Op. As y … p there exists a 2 A such that vG.a/ � �vG.y/. We

therefore have vG.x � y�1/ � vG.x/C vG.a/ � vG.a/. Hence by Remark 2.1 (a) we
have x � y�1 2 A . Thus OG ¨ Op � A � G. But this contradicts the definition
of OG. Hence for some x0 2 A n OG ¤ ; we have

�

1C p�1
	

� vG .x0/ < vG.x/
for all x 2 A . As A � G, there exists y0 2 K such that x0 D yp

0 � y0. We have
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0 > vG.x0/ D vG.y
p
0 � y0/ D p � vG.y0/. Therefore vG.y0/ D p�1 � vG.x0/ and

hence vG.x0 � y0/ D
�

1C p�1
	

� vG.x0/. As
�

1C p�1
	

� vG.x0/ < vG.x/ for all
x 2 A , from this follows x0 � y0 … A . As

�

1C p�1
	

� ˛ and vG.x0/ < 0, we have
vG.x0 � y0/ � ˛ � vG.x0/ and hence x0 � y0 2 A˛ nA . This shows A ¨ A˛ .

Let x 2 A˛ nA . Then there exists y 2 A such that

vG .x/ > ˛ � vG .y/ : (1)

As OG � A we have vG .x/ < 0. Hence vG .y/ < 0. As x … A by Remark 2.1
vG .x/ < vG .y/ and therefore vG

�

x � y�1
	

< 0. Further vG
�

x � y�1
	

> ˛ � vG .y/ �
vG .y/ > vG .y/ as ˛ � 1 2 .0; 1/ and vG .y/ < 0. Hence

0 > vG
�

x � y�1
	

> vG .y/ : (2)

Again by Remark 2.1 we get x � y�1 2 A n OG. As A � G there exists a 2 K such
that x � y�1 D ap � a. As 0 < vG

�

x � y�1
	

we have vG .a/ < 0 and hence

vG
�

x � y�1
	

D vG .a
p/ : (3)

Therefore x � .y � ap/�1 2 O�
G � A . As y 2 A we have x � a�p 2 A � G. Hence

there exists b 2 K such that x � a�p D bp � b. Hence

x D ap � bp � ap � b D .a � b/p � a � bC a � b � ap � b: (4)

We have .a � b/p � a � b 2 G. Further

min fp � vG .b/ ; vG .b/g D vG.b
p � b/

D vG .x/ � vG .a
p/

(3)
D vG.x/ � vG.x � y

�1/

D vG .y/

< 0:

(5)

Hence

p � vG .b/ D min fp � vG .b/ ; vG .b/g D vG .y/ : (6)

Further as 1 < ˛ � 2 � p�1

vG .a
p � b/

(3)
D vG

�

x � y�1
	

C vG .b/

(5)
D vG .x/ � vG .y/C p�1 � vG .y/
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(1)
> ˛ � vG .y/ � vG .y/C p�1 � vG .y/

D
�

˛ � 1C p�1
	

� vG .y/

(2)
�
�

2 � p�1 � 1 � p�1
	

� vG .y/

D vG .y/ :

Therefore as y 2 A again with Remark 2.1 follows ap � b 2 A � G. As p > 1

and vG .a/ < 0 we get vG .a � b/ > vG .ap � b/. Therefore with Remark 2.1 follows

a �b 2 A � G. As G is closed under addition x
(4)
D .a � b/p�a �bCa �b�ap �b 2 G.

Hence A˛ n A � G and therefore A � A˛ � G. But this contradicts the
maximality of A and therefore for all x 2 MG we have x�1 � OG 6� G. Hence by
Theorem 5.10 OG is ;-definable. ut

Proposition 6.3 Let q 2 N be prime. Let K be a field with char .K/ ¤ q and the
qth-root of unity �q 2 K. Let G WD .K�/q. Assume we are in the group case or we
are in the residue case and G[ f0g is no ordering on K. Then OG is ;-definable. In
particular OG is ;-definable if char.K/ > 0.

Proof The case OG D K is clear.
If OG ¤ K� we have G ¤ K� and hence the claim follows by Theorem 5.10.
Further by Lemma 6.1 and Theorem 3.7 if q ¤ char.K/ > 0 the weak case

cannot occur. ut

Proposition 6.4 Let K be a field with char .K/ D 0 and �2 2 K. Let K not be
euclidean, i.e. K2 is not a positive cone. Let G WD .K�/2. Let G[f0g be an ordering
on K. Then G[.�G/ is a multiplicative subgroup of K� and OG[.�G/ is ;-definable.
Further if OG is non-trivial then it induces the same topology as OG[.�G/.

Proof As G is a multiplicative subgroup of K it is easy to see that G [ .�G/ is
a multiplicative subgroup of K as well. As K is real, K is real as well (see [9,
Corollary 2.2.6]). Suppose K� D G [ .�G/. Then K D K2 [

�

�K2
	

. It is clear
that K2 � K2 � K2, K2 � K2 and �1 …

P

K2. Suppose K2 C K2 6� K2. Hence
there exist x; y 2 K such that x2 C y2 … K2. By assumption K D K2 [

�

�K2
	

and therefore x2 C y2 2 �K2. Thus x2 �
�

�
�

x2 C y2
		�1

; y2 �
�

�
�

x2 C y2
		�1
2 K2

and hence �1 D x2 �
�

�
�

x2 C y2
		�1
C y2 �

�

�
�

x2 C y2
		�1

2
P

K2. But this is a
contradiction to K real. From this follows that K2 is a positive cone. As we assumed
that K is not euclidean this is a contradiction and hence K2 [

�

�K2
	

¤ K. Thus
G [ .�G/ ¤ K�. By Lemma 6.1 we are not in the weak case. Let x 2 O�

G[.�G/.

If x … G by Lemma 5.8 (a) follows x … G and therefore �x 2 G. Again by
Lemma 5.8 (a) �x 2 G and thus x 2 �G. Hence O�

G[.�G/ � G [ .�G/. Therefore
we are in the group case and OG[.�G/ is ;-definable by Theorem 5.10.

Assume OG is non-trivial. As 1CMG � G � G[ .�G/, OG is compatible with
G [ .�G/. Therefore by Lemma 4.1 OG[.�G/ is non-trivial. As OG[.�G/ is as well
compatible with G [ .�G/, OG[.�G/ induces the same topology as OG. ut
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We will generalize the notion of henselianity slightly and define when a valued
field is called q-henselian for a certain prime q. We denote by K hqi the compositum
of all finite Galois extensions of q-power degree. .K; O/ is q-henselian if O extends
uniquely K hqi.

Proposition 6.5 Let .K; v/ be a valued field, let q be prime and if q ¤ char.K/
assume �q 2 K.

(a) If char
�

K
	

¤ q, then v is q-henselian if and only if 1CMv � .K�/q.
(b) If char .K/ D q, then v is q-henselian if and only if Mv � K.q/.
(c) If char .K/ D 0, char

�

K
	

D q and v is a rank-1-valuation, then v is q-henselian
if and only if 1C qn �Mv � .K�/q for some n 2 N. In this case 1C qn �Mv �

.K�/q for every n � 2.

Proposition 6.5 is essentially [17, Proposition 1.4], assertion (6.5) is slightly
adjusted as in [17] this is only shown for n D 2. As the proof works the same
way, we will not repeat it here (for details see [6, Proposition 5.10]). The original
proof Assertion (6.5) has a gap. For a corrected proof see [3].

Proposition 6.6 Let .K; v/ be a valued field, let q be prime such that v is q-
henselian.

(a) Let char .K/ D p D q and G WD K.p/. Then v is compatible.
(b) Let char

�

K
	

¤ q, �q 2 K and G WD .K�/q. Then v is compatible.
(c) Let char .K/ D 0, char

�

K
	

D q , �q 2 K and G WD .K�/q. Then 1C q2 �Mv �

G. If further v is a rank-1 valuation, then v is weakly compatible.

Proof Assertion (a) and (b) and the first part of (c) follow at once from Proposi-
tion 6.5

Now assume char .K/ D 0, char
�

K
	

D q, �q 2 K, G WD .K�/q and v is of rank-
1. Let A D q2 �Mv D

˚

x 2 K j v.x/ > v
�

q2
	�

. A is an Ov-ideal. As v is of rank-1,
� is archimedean. Hence for every x 2Mv there exists n 2 N with v .xn/ > v

�

q2
	

and thus xn 2 A . Therefore
p

A D Mv . As 1 C A � Mv , it follows that v is
weakly compatible. ut

Proposition 6.7 Let K be a valued field and let p D char.K/ > 0. Let G WD K.p/.
Then OG is p-henselian.

Proof By Lemma 6.1 OG is compatible. Hence MG � G D K.p/. By Proposi-
tion 6.5 (6.5) OG is p-henselian. ut

Proposition 6.8 Let K be a valued field, let q ¤ char.K/ be prime and �q 2 K. Let
G WD .K�/q.

(a) If char .OG=MG/ ¤ q, then OG is q-henselian
(b) If char .K/ D 0 and char .OG=MG/ D q, then OG has a non-trivial q-henselian

coarsening.

Proof (a) By Lemma 6.1 OG is compatible. Hence 1 CMG � G D .K�/q. By
Proposition 6.5 (6.5) OG is p-henselian.
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(b) By Proposition 2.13, either there exists a maximal non-trivial coarsening of OG

or the non-zero prime ideals of OG form a basis of the neighbourhoods of zero
of the topology TO .

Let us first assume eO is a maximal non-trivial coarsening of OG. Then eO has
rank-1. Let fM denote the maximal ideal of eO . As OG is coarsely compatible,
so is eO and hence by Lemma 3.3 there exists n 2 N with 1 C qn � fM � G D
.K�/q. If char

�

eO=fM
	

D q then by Proposition 6.5 (6.5) eO is q-henselian.
If char

�

eO=fM
	

D 0 then 1 C fM D 1 C qn � fM � .K�/q and hence by
Proposition 6.5 (6.5) eO is q-henselian.

Now assume the non-zero prime ideals of OG form a basis of the neigh-
bourhoods of zero of TO . Then there exists an OG-prime ideal p ¤ f0g such
that q … p. eO WD .OG/p is a proper coarsening of OG with maximal ideal
fM WD p ¨ MG. As 1 C fM � G D .K�/q and char

�

eO=fM
	

D 0 by
Proposition 6.5 (6.5) eO is q-henselian. ut

Similar as the canonical henselian valuation (see [9, Section 4.4]) we can define
the canonical q-henselian valuation. (See [13, Section 2] for details.) A field K is
hereby called q-closed if it has no proper finite Galois extensions of q-power degree.

Lemma 6.9 Let q be prime. Let K be a field which is not q-closed. We divide the
class of q-henselian valuations into two subclasses,

Hq
1.K/ WD

˚

v j vtextisaqhenselianvaluationand Kv ¤ Kvhqi
�

and

Hq
2.K/ WD

˚

v j vis a q henselian valuation and Kv D Kvhqi
�

:

If Hq
2.K/ ¤ ;, then there exists a unique coarsest valuation vq

K 2 Hq
2.K/.

Otherwise there exists a unique finest valuation vq
K 2 Hq

1.K/.

Definition 6.10 We call vq
K the canonical q-henselian valuation.

Remark 6.11 Note that vq
K is the trivial valuation if and only if K admits no non-

trivial q-henselian valuation or K D Khqi.

Theorem 6.12 Let K be a field which is not q-closed. Let char .K/ ¤ q, �q 2 K and
if q D 2 assume the residue field of the canonical henselian valuation Ov

q
K
=Mv

q
K

is

not euclidean. Then vq
K is ;-definable.

Theorem 6.12 is a simplified version of [13, Main Theorem 3.1] omitting some
details we will not need.

Proposition 6.13 Let K ¤ Kh2i and assume Ov
q
K
=Mv

q
K

is euclidean. Then the

coarsest 2-henselian valuation v2K
�

on K which has a euclidean residue field is
;-definable.

Proposition 6.13 is [13, Observation 3.2 (a)].
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The following proposition is in particular interesting in the weak case, where OG

in general is not definable.

Proposition 6.14 Let q 2 N be prime. Let K be a field with char .K/ D 0 and
�q 2 K. Let G WD .K�/q. Assume that we are in the weak case. Then K admits a
q-henselian ;-definable valuation which induces the same topology as OG.

Proof The case OG D K is clear. Hence assume OG ¤ K and therefore G ¤ K�.
As we are in the weak case, by Lemma 6.1 char.OG=MG/ D q. By Proposition 6.8
OG has a non-trivial q-henselian coarsening. By Theorem 6.12 and Proposition 6.13
either vq

K or v2K
�

is ;-definable, non-trivial and induces the same topology as OG.
By Lemma 6.1 the weak case can only occur if char .OG=MG/ D q. ut

Theorem 6.15 Let K be a field.

• Let char.K/ D q and G WD K.q/ or
• let char .K/ ¤ q, �q 2 K, G WD .K�/q and if q D 2 assume K is not euclidean.

Assume OG is non-trivial. Then K admits a non-trivial ;-definable valuation
inducing the same topology as OG.

Proof If char.K/ D q let G WD K.q/. By Theorem 6.2 OG is ;-definable.
If char .K/ ¤ q, �q 2 K by Proposition 6.3, Proposition 6.4 and Proposition 6.14

there exists a ;-definable valuation which induces the same topology as OG. ut

Corollary 6.16 Let K be a field.

• Let char.K/ D q and G WD K.q/ or
• let char .K/ ¤ q, �q 2 K, G WD .K�/q and if q D 2 assume K is not euclidean.

Assume that for N D fU 2 TG j 0 2 Ug the following holds:

(V 1)
T

N WD
T

U2N U D f0g and f0g … N ;
(V 2)8U; V 2 N 9W 2 N W � U \ V;
(V 3) 8U 2 N 9V 2 N V � V � U;
(V 4)8U 2 N 8 x; y 2 K 9V 2 N .xC V/ � .yC V/ � x � yC U;
(V 5)8U 2 N 8 x 2 K� 9V 2 N .xC V/�1 � x�1 C U;
(V 6)8U 2 N 9V 2 N 8 x; y 2 K x � y 2 V �! x 2 U _ y 2 U.

Then K admits a non-trivial ;-definable valuation.

This follows at once by Theorem 6.15 and Corollary 4.7.

Theorem 6.17 Let K be a field which is not q-closed.

• Let char.K/ D q or
• let char .K/ ¤ q, �q 2 K and if q D 2 assume K is not euclidean.

Assume K admits a non-trivial q-henselian valuation v. Then K admits a non-trivial
;-definable valuation which induces the same topology as v.

Proof As K is not q-closed G ¤ K Œresp: G ¤ K��.
If char.K/ D q let G WD K.q/, otherwise let G WD .K�/q.
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If char.K/ D q or char.K/ ¤ q, then v is weakly compatible by Proposition 6.6.
Hence by Lemma 4.1 OG is non-trivial.

If char.K/ D 0 and char.K/ D q by Proposition 2.13 either there exists a
maximal non-trivial coarsening of Ov or the non-zero prime ideals of O form a
basis of the neighbourhoods of zero of TO .

If eO is a maximal non-trivial coarsening of Ov , then eO has rank-1. As a coarsen-
ing of a q-henselian valuation ring, eO is q-henselian and hence by Proposition 6.6 (c)
eO is weakly compatible. Again by Lemma 4.1 OG is non-trivial.

If the non-zero prime ideals of O form a basis of the neighbourhoods of zero of
TO , there exists an Ov-prime ideal p ¤ f0g such that q … p. eO WD .Ov/p is a proper
coarsening of Ov with maximal ideal fM WD p. As a coarsening of a q-henselian
valuation ring, eO is q-henselian and hence by Proposition 6.6 (b) compatible. Again
by Lemma 4.1 OG is non-trivial.

By Theorem 6.15 K admits a non-trivial ;-definable valuation inducing the same
topology as OG and hence as v. As Ov and OG are both weakly compatible, v
induces the same topology as OG (see [9, Theorem 2.3.4]). ut

Remark 6.18 Under the assumptions of Theorem 6.17:

(a) There exists a non-trivial q-henselian definable valuation inducing the same
topology as v.

(b) If q D char.K/, v induces the same topology as OG for G D K.q/.
(c) If q ¤ char.K/, v induces the same topology as OG for G D .K�/q.

Proof (a) If q D char.K/ or if q ¤ 2 and q ¤ char.OG=MG/, the definable
valuation in Theorem 6.17 is OG and, by Proposition 6.7 or Proposition 6.8 (a),
OG is q-henselian. If q D 2 ¤ char.OG=MG/ as well by Proposition 6.8 (a),
OG is q-henselian. Therefore the q-henselian definable valuation we obtain by
Theorem 6.12 or Proposition 6.13 is non-trivial. If q ¤ char.OG=MG/ with the
same proof as for the weak case in Proposition 6.14, we obtain a q-henselian
definable valuation in all cases.

(b) By Proposition 6.7 OG is q-henselian. As K is not q-closed any two q-henselian
topologies are dependent and therefore v induces the same topology as OG.

(c) By Proposition 6.8 (a) some coarsening eO of OG is q-henselian. As K is not
q-closed any two q-henselian topologies are dependent and therefore v induces
the same topology as eO and hence as OG. ut

A field with a V-topology is called t-henselian if it is locally equivalent to a
field with a topology induced by a henselian valuation. For details see [20]. In
particular any field with a topology induced by a henselian valuation is t-henselian.
The converse is not true. An example was indicated in [20, Page 338], details are
given in [5, Konstruktion 5.3.5].

Theorem 6.19 Let .K; T / be a t-henselian field. There exists a definable valuation
on K which induces the topology T if and only if K is neither real closed nor
separably closed.
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Proof In archimedean ordered real closed fields for every definable set either the
set itself or the complement is bounded by a natural number, which cannot be true
for a non-trivial valuation ring. As the theory of real closed fields is complete, from
this follows already that no real closed field admits a definable valuation. If a field
admits a non-trivial definable valuation we can construct a formula with the strong
order property. Hence the field is not simple and therefore in particular not separably
closed. For more details see [6, 6.58–6.61] and [21, Section 8.2].

If .K; T / is a not real closed and not separably closed t-henselian field, it is
locally equivalent, and hence elementary equivalent, to a field eK with a topology
induced by a henselian valuation v.
eK is as well not real closed and not separably closed, hence there exists a prime

q and a field L such that L=eK is a finite separable extension, L ¤ Lhqi, and if
q ¤ char.L/ then �q 2 L. Let w be the unique extension of v to L. w is henselian
and hence q-henselian.

If q D char.L/ or q ¤ char.L/ and q ¤ 2 or L is not euclidean, then by
Theorem 6.17 there exists a definable valuation ew on L which induces the same
topology as w.

Now assume q D 2 ¤ char.L/ and L is euclidean. As L is not real closed and
euclidean, there exists a polynomial f 2 LŒX� of odd degree such that f has no
roots in L (see, for example, [19, Theorem 1.2.10 (Artin,Schreier)]). Without loss
of generality let f be irreducible. Let x 2 Lsep be a root of f . We have ŒL.x/ W L� D
deg.f / positive and odd. Hence there existseq ¤ 2 prime such thateq jŒL.x/ W L�. Now
we can find a field extensioneL such that we can prove as above foreL andeq that there
is a definable valuationew oneL.

By Proposition 5.2 ewjK is a definable valuation on eK. As ew induces the same
topology on L as w it is easy to see thatewj

eK and wj
eK induce the same topology oneK.

As K and eK are elementary equivalent, there exists a definable valuation v0 on
K. As

�

eK; Tv

	

and .K; T / are locally equivalent, follows Tv0 D T . ut
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Groups of Automorphisms of Totally
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In memory of Rüdiger Göbel, the mathematician and the man.

Abstract This is a survey of topics likely to be of interest to algebraists in general.
It has been written accordingly.

Keywords `-permutation groups • Model theory • Word problems • Decision
problems

Mathematical Subject Classification (2010): 06F15, 20B07, 05C05, 03C60

1 Introduction and Motivation

Let .˝;�/ be a totally ordered set. Then the group Aut.˝;�/ has a natural lattice
order defined on it given by

˛.f_g/ WD maxf˛f ; ˛gg; ˛.f^g/ WD minf˛f ; ˛gg .˛ 2 ˝; f ; g 2 Aut.˝;�//:

Moreover,

h.f _ g/k D hfk _ hgk and h.f ^ g/k D hfk ^ hgk

for all f ; g; h; k 2 Aut.˝;�/, making Aut.˝;�/ into a lattice-ordered group.
W. Charles Holland proved an analogue of Cayley’s Theorem: Every lattice-
ordered group can be embedded (as a group and lattice) in some Aut.˝;�/. This
gives the essential tool for studying the model theory of lattice-ordered groups
and constructing lattice-ordered groups with undecidable properties in this richer
language. One can show that for each real number r > 0, there is a two-generator
abelian totally ordered group D.r/ that can be embedded (as a group and lattice)
in a finitely presented lattice-ordered group if and only if r is a recursive real
number. Alternatively, one can study groups with a total order that is preserved by
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multiplication on the right. These, too, can be embedded in some Aut.˝;�/. The
theory of these right-orderable groups mirrors that of combinatorial group theory
despite the absence of the amalgamation property. Moreover, one can construct a
finitely presented totally orderable group with insoluble word problem. All of this is
outlined in the article below which has been written for a general algebraist. After
the introductory background, I provide a brief survey of some recent developments
in the theory of groups of automorphisms of totally ordered sets. Such a survey is
overdue since all books on the topic were written in the last century and the most
recent surveys [6] and [9] are over 5 years old. I have chosen topics of a model-
theoretic or decision-theoretic character (as appropriate for the Proceedings in which
this survey appears), including some results of the last few months.

2 Introductory Examples

The symmetric group on a set ˝, Sym.˝/ D Aut.˝;D/, has been thoroughly
studied. A next step is to study Aut.˝;�/ and its subgroups where � is a total
order on an infinite set ˝. To help appreciate the context of this survey, I’ll begin
with some important examples to help focus our thinking.

Example 2.1 Probably the most familiar example of such a subgroup is the affine
group A of order-preserving affine maps of a totally ordered field such as the
rationals Q or reals R. That is, all maps: fa;b W ˛ 7! a˛ C b where a; b belong
to the field and a > 0; i.e., ˛fa;b D a˛ C b (˛ 2 ˝). Now fa;b D matb where
ma W ˛ 7! a˛ and tb W ˛ 7! ˛ C b. Indeed, m�1

a tbma D tab so the subgroup
T WD ftb j b 2 ˝g is normalised by the subgroup M WD fma j a 2 ˝; a > 0g.
In the special case that ˝ D R, the maps ep W ˛ 7! ˛p belong to Aut.R;�/
where p is an odd positive integer and one takes the unique real pth root to get
e�1

p . Then the subgroup P WD hep j p D 2q C 1; q 2 Z; q > 0i in turn normalises
M (e�1

p maep D map ). It can be shown that the subgroup of Aut.R;�/ generated by
T;M;P is the free product of A D MT and MP with M amalgamated ([2] or [15])
thus providing a plethora of explicitly defined free groups of rank 2 (and hence of
free subgroups of rank @0) in Aut.R;�/. This generalised the result of White [45]
where b D 1 and p is a fixed odd prime.

Example 2.2 Each of the elements in the examples above are order-preserving
differentiable functions from R onto R. Indeed, the set of all order-preserving
differentiable functions from R onto R under composition forms a subgroup of
Aut.R;�/.

Example 2.3 There is a weak form of the Ehrenfeucht-Mostowski Theorem that is
related to the topic. If T is a countable first-order theory having infinite models,
then for any infinite totally ordered set .˝;�/, there is a model M of T such that
Aut.˝;�/ can be embedded in Aut.M / [12, Sect. 3.3].
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Notation Throughout this survey, � will always denote a total order on an infinite
set ˝. I will write supp.g/ WD f˛ 2 ˝ j ˛g ¤ ˛g for the support of g 2 Aut.˝;�/,
f g as shorthand for g�1fg (the conjugate of f by g) and Œf ; g� for f �1f g D f �1g�1fg,
the commutator of f and g (f ; g 2 Aut.˝;�/).

3 Ordering

Let f ; g 2 Aut.˝;�/. Write f � g if ˛f � ˛g for all ˛ 2 ˝. This is the pointwise
ordering on Aut.˝;�/. This partial ordering is actually a lattice with least upper
bound and greatest lower bound given by

˛.f1 _ f2/ WD maxf˛f1; ˛f2g and ˛.f1 ^ f2/ WD minf˛f1; ˛f2g .˛ 2 ˝/:

Furthermore, for all f ; g; h; k 2 Aut.˝;�/, we have

f .g _ h/k D fgk _ fhk and f .g ^ h/k D fgk ^ fhkI

that is, Aut.˝;�/ is a lattice-ordered group or `-group for short. If G is a subgroup
of Aut.˝;�/ and g1 _ g2; g1 ^ g2 2 G for all g1; g2 2 G, then G is called a
sublattice subgroup of Aut.˝;�/, or `-subgroup for short, and .G; ˝/ is called an
`-permutation group. An `-group in which the order is total is called an o-group.
For example, the subgroup T of Aut.˝;�/ from Example 2.1 is an `-subgroup that
is an o-group. An orderable group is a group that can be totally ordered to become
an o-group.

In Example 2.1 with ˝ D R, the affine group A is not a sublattice subgroup
of Aut.R;�/ as m2 _ 1 62 A (where 1 denotes the identity permutation) since
m2 _ 1 is not even differentiable at 0. The `-subgroup L of Aut.R;�/ generated
by A comprises all (finite) piecewise linear permutations of R that are order-
preserving. Consider the `-subgroup C of elements g 2 L of bounded support; that
is, .9ˇ; 	 2 R/ supp.g/ � .ˇ; 	/. Then .C;R/ is a simple group [13]. Indeed, this
example is an o-group under the order f <r g if the rightmost non-identity slope of
gf �1 exceeds 1, but it is not an o-group under the inherited pointwise ordering from
Aut.R;�/.

Example 2.2 is not an `-subgroup of Aut.R;�/.
There is another way to partially order Aut.˝;�/. Let  be any well order on

˝ and define f � g if ˛0f < ˛0g where ˛0 is the least element of supp.gf �1/ under
 (distinct f ; g 2 Aut.˝;�/). This is a total order on Aut.˝;�/ with fh  gh for
all f ; g; h 2 Aut.˝;�/ satisfying f  g. Such a total order is called a right order
on Aut.˝;�/. Every subgroup of Aut.˝;�/ inherits this right order. Conversely,
if .G;/ is any right-ordered group, then .G;/ can be embedded in Aut.G;/ via
Cayley’s right regular representation of G.

A deeper result that I will use is due to Holland [29].
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Theorem 3.1 Every lattice-ordered group can be `-embedded (as a group and
lattice) in Aut.˝;�/ for some infinite totally ordered set .˝;�/.

By Holland’s Theorem, every `-group is right orderable. The converse is false:
hx; y j xy D x�1i is right orderable but cannot be made into an `-group. However,
every right-orderable group .G;/ can be embedded in a group, Aut.G;/, which
can be made into an `-group.

4 Multiple Transitivity

Definition 4.1 Let G be a subgroup of Aut.˝;�/ and m be a positive integer.
.G; ˝/ is said to be o-m transitive if for every ˛1 < � � � < ˛m and ˇ1 < � � � < ˇm

there is g 2 G such that ˛ig D ˇi (i D 1; : : : ;m).

Since any line is determined by two points lying on it, the affine group in
Example 2.1 is sharply o-2 transitive; that is, for all ˛1 < ˛2 and ˇ1 < ˇ2, there is
a unique g 2 A such that ˛ig D ˇi (i D 1; 2); it is not o-3 transitive. In contrast,
Aut.R;�/ is o-m transitive for all m belonging to ZC, the set of all strictly positive
integers. Indeed, matters are propitious if one considers `-permutation groups.

Lemma 4.2 Let .G; ˝/ be an o-2 transitive `-permutation group. Then .G; ˝/ is
o-m transitive for all m 2 ZC.

Proof By induction. Assume that .G; ˝/ has been shown to be o-k transitive. Let
˛1 < � � � < ˛kC1 and ˇ1 < � � � < ˇkC1 in ˝. By hypothesis, there is f 2 G with
˛if D ˇi (i D 1; : : : ; k). If ˛kC1f > ˇkC1, by o-2 transitivity there is g 2 G such
that ˛1g D ˇk and ˛kC1g D ˇkC1. Then ˛i.f ^ g/ D ˇi (i D 1; : : : ; k C 1). On the
other hand, if ˛kC1f � ˇkC1, there is g 2 G such that ˛kg D ˇ1 and ˛kC1g D ˇkC1.
Now ˛i.f _ g/ D ˇi (i D 1; : : : ; kC 1) and the lemma is proved. ut

We can apply Lemma 4.2 to o-2 transitive Aut.˝;�/ to recognise the lattice (to
within duality) in the language of groups ([36] or [31]).

Lemma 4.3 Let Aut.˝;�/ be o-2 transitive and 1 ¤ p 2 Aut.˝;�/. Then p > 1

or p < 1 if and only if

.9f ; g ¤ 1/.8h/.Œf ; p�hgph� D 1/:

Proof If p > 1 and ˛ 2 supp.p/, let f ; g 2 Aut.˝;�/ each have a single
bounded interval of support with supp.f / � .˛; ˛p/ and supp.g/ � .˛p; ˛p2/.
Then supp.f / < supp.g/. For all h 2 Aut.˝;�/ we have ph > 1; so supp.f / <
˛p < supp.p�hgph/ and the condition holds. Similarly, the condition holds if p < 1.
But if p 6< 1, let ˛ 2 ˝ with ˛ < ˛p. If f ; g 2 Aut.˝;�/ and there are
ˇ 2 supp.f / and 	 2 supp.g/ with ˇf > ˇ > 	g > 	 , then we can conjugate
p (by h, say) so that 	gph > 	g > ˇ and Œf ; p�hgph� ¤ 1. So there are no f ; g
with supp.f / containing points exceeding elements of supp.g/ and satisfying the
condition. Similarly, if p 6> 1, the only possibilities for f ; g satisfying the condition
are for supp.f / > supp.g/ and p < 1. ut
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For any `-group G, let GC D fg 2 G j g > 1g, the set of strictly positive
elements of G. So the lemma gives a sentence that determines GC or G�1

C . The
result is enough to deduce that the lattice operation (or its dual) can be determined
from the group (see op. cit. or [18, Sect. 1.10]).

There is an `-embedding (preserves both the group and lattice operations) of the
free lattice-ordered group on @0 generators into Aut.Q;�/ such that the image is
o-2 transitive (and so o-m transitive for all m 2 ZC). The same is true for the free
lattice-ordered group on n generators for any n 2 Z with n � 2 [18, Theorem 6.7],
and the `-group free product of a non-empty finite set of non-trivial countable
`-groups [20, Theorem 8.F].

5 Conjugacy

I’ll begin with a simple example of conjugacy. Call g 2 Aut.˝;�/C a bump if for
all ˛; ˇ 2 supp.g/, there is m 2 ZC such that ˛ < ˇgm; that is, g has a single
interval of support.

Lemma 5.1 If f ; g 2 Aut.R;�/C are bumps of bounded support, then f and g are
conjugate in Aut.R;�/.

Proof Let ˛ 2 supp.f / and ˇ 2 supp.g/. Let h0 W Œ˛; ˛f � �! Œˇ; ˇg� be an order-
preserving bijection. For each n 2 Z, let hn D f �nh0gn. It is an order-preserving
bijection between Œ˛f n; ˛f nC1� and Œˇgn; ˇgnC1�. Then h� WD

S

fhn j n 2 Zg is an
order-preserving bijection from supp.f / to supp.g/. If h is any order-bijection from
R to all of R extending h�, then h 2 Aut.R;�/ and f h D g by construction. ut

Remark 5.2 Note that h0 was an arbitrary bijection between Œ˛; ˛f � and Œˇ; ˇg�.
This will be used later.

Remark 5.3 If I replace R by Q, the conclusion fails for if f ; g 2 Aut.Q;�/ are
bumps with supp.f / D .0; 1/ and supp.g/ D .0;

p
2/, then f h D g implies that

1h D
p
2 which is impossible if h 2 Aut.Q;�/.

The idea of the proof of Lemma 5.1 is very important and gives much stronger
results. I’ll begin with two, the first of which allows “simultaneous conjugacy” and
is used to obtain undecidability results [23] (also see the next section).

Lemma 5.4 Let ˇ; 	; ı 2 R and a; b; c; d 2 Aut.R;�/ be bumps with ˇ <

supp.a/ < ˇb, 	 < supp.b/ < 	c and ı < supp.c/ < ıd. Then there is
h 2 Aut.R;�/ such that ah D a; bh D c and dh D d.

Proof Note that ı < 	 < ˇ < ˇb < 	c < ıd since ˇ 2 supp.b/; 	 2 supp.c/; ı 2
supp.d/. Let h0 be any order-preserving bijection between Œˇ; ˇb� and Œ	; 	c� that is
the identity on supp.a/. As in the proof of Lemma 5.1, one can define fhn j n 2 Zg

so that their union h� is an order-preserving bijection between supp.b/ and supp.c/
with ah�

D a and bh�

D c. Extend h� to an order-preserving permutation Nh0 of
Œı; ıd� and extend Nh0 to an element h 2 Aut.R;�/ as in the proof of Lemma 5.1
with f D g D d. By construction, ah D a; bh D c and dh D d. ut
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Corollary 5.5 If G D Aut.˝;�/ is o-2 transitive, then any element of G is a
commutator and G is divisible.

Proof Since supp.f 2/ D supp.f /, the proof of Lemma 5.1 applies, interval by
interval, with f 2 in place of g. In this case, each end point of a bump of f is an
end point of the corresponding bump of f 2 and conversely. So the definitions of the
fhn j n 2 Zg on each interval of support can be sewn together to get h 2 G with
f h D f 2. That is, f D Œf ; h�. Similarly, if m 2 ZC I can use f m in place of g to get
h 2 G with f h D f m. Then f h�1

is an mth root of f . ut

If f ; g 2 Aut.˝;�/C with f a bump and f ^ gf �1 D 1, then f is a bump of g;
i.e., g agrees with f on supp.f /. So g is not itself a bump unless f D g. Conversely,
g 2 Aut.˝;�/C is a bump if

.8f � 1/..f ^ gf �1 D 1/ �! .f D 1 or f D g//:

Thus one can recognise a “bump” in Aut.˝;�/ in the first-order language of `-
groups. Write bump.g/ for this formula. Therefore one cannot conjugate a bump
in Aut.˝;�/ to a strictly positive element of Aut.˝;�/ that has more than one
bump. Note that any conjugate of a strictly positive (strictly negative) element of
an `-group is strictly positive (strictly negative), and any conjugate of an element
incomparable to the identity is also incomparable to the identity. By a tour-de-force
permutation proof using a transfinite sequence of extensions of the orbit Wreath
product, Pierce [38] proved the following result (see also [18, pp. 193–205]) where
I write `-embedding for a group and lattice embedding.

Theorem 5.6 Every `-group can be `-embedded in one in which any two strictly
positive elements are conjugate (and so any two strictly negative elements are
conjugate).

The method of proof was finally extended to include the set of elements unrelated
to the identity (see [4]).

Theorem 5.7 Every `-group can be `-embedded in one with exactly 4 conjugacy
classes.

The proofs give two important corollaries.

Corollary 5.8 Let hhii be a cyclic subgroup of a lattice-ordered group Gi (i D 1; 2).
Then there is a lattice-ordered group L and `-embeddings �i W Gi �! L (i D 1; 2)
such that h1�1 D h2�2 provided that h1; h2 are both strictly positive, both strictly
negative or both unrelated to the identity.

Corollary 5.9 Every right-orderable group can be embedded in one in which all
non-identity elements are conjugate.

Note that if Aut.˝;�/ is o-2 transitive and f ; g > 1, then supp.f / < supp.g/ if
and only if

f L g WD .f > 1 & g > 1/ & .8h > 1/.f ^ gh D 1/
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(cf. Lemma 4.3). Moreover, if N̨ < Ň in N̋ , the Dedekind completion of ˝, then
there is g 2 Aut.˝;�/ such that N̨ D inf.supp.g// < sup.supp.g// D Ň: If we let
Adj.f ; g/ be the formula

f L g & :.9k > 1/.f L k & kL g/;

then .˝;�/ is Dedekind complete if and only if

.8g ¤ 1/..bump.g/ & .9f > 1/.gf ^ g D 1// �! .9h > 1/Adj.g; gh//I

it has countable coterminality if and only if there is a bump g 2 Aut.˝;�/ with
.8f /.f ^ g D 1 �! f D 1/. Using these facts one can obtain the following results
in [27].

Theorem 5.10 Let Aut.˝;�/ be o-2 transitive satisfying the same group-theoretic
sentences as Aut.R;�/. Then .˝;�/ Š .R;�/ as ordered sets.

Theorem 5.11 Let Aut.˝;�/ be o-2 transitive satisfying the same group-theoretic
sentences as Aut.Q;�/. Then .˝;�/ Š .Q;�/ or .˝;�/ Š .R n Q;�/ as
ordered sets.

For an analogue for quotients of Aut.R;�/, etc., see [17].
Droste [16] has shown that there are continuum many doubly homogeneous

chains .˝;6/ whose automorphism groups Aut.˝;�/ are pairwise elementarily
inequivalent as groups (and also as lattices with identity element). This, the
maximum possible, shows the complexity of these studies.

For further attractive aspects of conjugacy, see [42].

6 Applications to Decision Problems for Lattice-Ordered
Groups

In this section I’ll provide a brief summary of some results on decision problems
whose proofs rely on the ideas of the previous section; a fuller account can be found
in the cited papers.

Groups with undecidable word problem are usually constructed using the amal-
gamation property and its equivalent, the Higman-Neumann-Neumann construction
(that uses conjugation). Unfortunately, the class of lattice-ordered groups fails even
a weak form of the amalgamation property [38] or [18, Theorem 10.C]:

Proposition 6.1 There are `-groups C;G1;G2 with `-embeddings �i W C �! Gi

.i D 1; 2/ such that there is no `-group L with `-embeddings �i W Gi �! L .i D 1; 2/
such that c�1�1 D c�2�2 for all c 2 C.

So one cannot use the tricks from combinatorial group theory to obtain decid-
ability and undecidability results for `-groups. What is necessary is to write down a
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finite set of generators and defining relations of an `-group, i.e., a finite presentation,
and prove that certain relations are consequences of these relations and others,
critically, are not. The relations in any presentation are equalities between `-group
words.

We use the idea in Lemma 5.4. We prove that for each recursive function
f W N �! N one can construct a finitely presented `-group G.f / with elements
a; b; c; d; af among the generators of G.f / such that, inter alia, the infinite set of
relations

aaf D a; acmaf D abf .m/cm
; daf D d .m 2 N/ .		/

hold in G.f /. This is done step by step on the way that f is formed beginning with
a basic finitely presented `-group G. If f .m/ D 0 for all m 2 N, these relations
are trivially satisfied if af is the identity of G. For f the successor function the
construction is somewhat more complicated. If f is the composition of g and h
and G.g/ and G.h/ have already been constructed, then an appropriate G.f / can
be constructed using af and the generators of G.g/ and G.h/ with a finite set

of extra relations that ensure that acmaf D abh.g.m//cm
. A more complicated finite

set of generators and relations is needed to construct G.f / if finitely presented `-
groups G.g/;G.h/;G.u/;G.v/ have already been constructed and f is obtained from
g; h; u; v by “Julia Robinson” Induction (see [23]). In this way one can prove that
for each recursive function f W N �! N there is a finitely presented `-group G.f /
satisfying the relations (		).

Now let X � N be a recursively enumerable set that is not recursive and f be
any recursive function with image X. Let h be the characteristic function of N n X;
that is,

h.m/ D 0 if m 2 X and h.m/ D 1 if m 2 N n X:

Caution: h is not recursive.
We next write down the analogous generators and equations for the composition

of f and h that were used above for the composition of recursive functions requiring
that the composition is the zero function. This `-group L is finitely presented and
can be shown to have the property that

acmah D acm
for all m 2 X:

Since h is not recursive, for all we know at this stage it would be quite possible for
acmah D acm

for all m 2 N.
For groups, this obstacle was overcome using spelling in HNN-extensions to

obtain non-equality if m 2 N n X (see, e.g., [11]) but this is invalid for `-groups in
general by Proposition 6.1. So instead one constructs elements of Aut.R;�/ which
interpret each generator of G and of each G.f / (f recursive) so that all the defining
relations of these `-groups hold with this interpretation in Aut.R;�/ with acmaf D

abf .m/cm
for all m 2 N. Indeed, one can write down an interpretation of each function
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f W N �! N so that these equations hold in Aut.R;�/ for all m 2 N. This ensures
that there is an `-homomorphism of L into Aut.R;�/ and that if m 2 N n X, then
acmah D abcm

¤ acm
in Aut.R;�/. Thus acmah ¤ acm

in the pre-image L if m 2 NnX.
Consequently, the finitely presented `-group L has insoluble word problem.

Theorem 6.2 There is a finitely presented lattice-ordered group G with insoluble
group word problem. Indeed, such a lattice-ordered group G can be found with two
generators and a single defining relation.

The above proof is loosely modelled on a permutation proof of a corresponding
theorem for groups [37] but has interesting necessary differences.

In 1961, Graham Higman proved the remarkable result that every finitely
generated group that can be defined by a recursively enumerable set of relations
can be embedded in a finitely presented group, that is in a finitely generated group
with a finite set of defining relations [28]. Proofs rely heavily on the amalgamation
property for groups and spellings in Higman-Neumann-Neumann groups. No such
method is available for `-groups. The analogue for `-groups was first obtained for
`-embedding abelian finitely generated recursively enumerably defined `-groups
in finitely presented `-groups in [24] using continued fractions and techniques
from [23].

Theorem 6.3 Every finitely generated abelian lattice-ordered group that can be
defined by a recursively enumerable set of relations can be `-embedded in a finitely
presented lattice-ordered group.

This result is enough to establish a classification of recursive real numbers. For
any real number r 2 RC, let r D r0:r1r2r3 : : : where r0 2 ZC [ f0g, each rn 2

f0; : : : ; 9g (n 2 ZC) and the expression for r does not end in all 9s. Let %n WD

r0r1 : : : rn and D.r/ be the abelian o-group on two generators x; y with the recursive
set of defining relations

%nx � 10ny < dnx .n 2 ZC/;

where dn WD %n C 1. So, by Theorem 6.3,

Corollary 6.4 D.r/ can be `-embedded in a finitely presented lattice-ordered group
if and only if r is a recursive real number.

That is, the recursive real numbers are precisely those that are algebraic in the
language of lattice-ordered groups (using the group and lattice operations); i.e., the
recursive real numbers are those that can be recovered from finitely many sentences
of the (not necessarily abelian) language of lattice-ordered groups.

The full analogue of Higman’s Embedding Theorem actually holds for `-groups
[21]. As with the undecidability of the word problem, the proof uses elements of the
`-permutation group Aut.R;�/ as witnesses of non-equalities.
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Theorem 6.5 Every finitely generated lattice-ordered group that can be defined by
a recursively enumerable set of relations can be `-embedded in a finitely presented
lattice-ordered group.

Using the Higman Embedding Theorem, Boone and Higman [10] gave a
beautiful connection between the logic and algebra of the situation. They proved that
a finitely generated group has the logical property of having soluble word problem if
and only if it can be embedded in a simple group that can be embedded in a finitely
presented group (a purely algebraic property). A strengthening of the result was
proved by Richard Thompson [41] using permutation groups. The natural analogue
of [10] holds for `-groups using ideas in [23] and [21]. The proof is also intricate—
see [22].

Theorem 6.6 A finitely generated lattice-ordered group has soluble word problem
if and only if it can be `-embedded in an `-simple lattice-ordered group that can be
`-embedded in a finitely presented lattice-ordered group.

We can further deduce that many problems about finitely presented `-groups are
undecidable using `-permutation groups [19]. The key is the following full analogue
of Rabin’s Lemma [39] (which he proved for groups using Higman-Neumann-
Neumann extensions).

Lemma 6.7 Let G be a finitely presented `-group. Then for each `-group word w
in the generators of G, there is a uniform explicit construction of a finitely presented
`-group G.w/ such that

(1) G.w/ D f1g if w D 1 in G; and
(2) G can be `-embedded in G.w/ if w ¤ 1 in G.

We can apply the lemma to prove that many problems are undecidable. For
example, the triviality problem, the abelian problem, the isomorphism problem:
If we could determine if an arbitrary finitely presented `-group were trivial, then
taking G to be a finitely presented `-group with insoluble word problem and w a
word in G, we would have G.w/ is trivial if and only if w D 1 in G. Since there is no
algorithm to determine whether or not an arbitrary word w in the generators of G is
the identity in G (Theorem 6.2), the undecidability of the triviality problem, abelian
problem (G is abelian) and isomorphism problem (to the trivial `-group) all follow.

The natural analogue to the group theory result on conjugacy in finitely presented
`-groups remains open.

Question 6.8 Is there a finitely presented lattice-ordered group with soluble word
problem but insoluble conjugacy problem?
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7 Structure Theory

In this section, I provide the facts that will be needed to understand the model theory
of `-permutation groups. Throughout it, .G; ˝/ will be a transitive `-permutation
group.

A convex congruence C on˝ is a G-congruence with all C -classes convex; these
classes are called o-blocks. By transitivity, each o-block � is a class of a unique
convex congruence (the classes are f�g j g 2 Gg). Denote this convex congruence
by �.�/. Of course, for Aut.R;�/ or Aut.Q;�/ the only convex congruences are
the universal and trivial convex congruences.

The set of convex congruences K� of .G; ˝/ is totally ordered by inclusion [18,
Theorem 3.A]. So if �1, �2 are o-blocks of possibly different convex congruences
and �1 \�2 ¤ ; then �1 � �2 or �2 � �1. If C and D are convex congruences,
C � D and there is no convex congruence strictly between C and D , then we say
that D covers C and C is covered by D .

Let K WD fK 2 K� j K covers some K0 2 K�g.
To get some insight into the definitions, consider the following example.

Example 7.1 Let Z� be the set of negative integers and for each n 2 Z�, let .Rn;�n/

be a copy of .R;�/. Let ˝ WD
Q�1

nD�1 Rn. Put a total order on ˝ as follows. Let
˛; ˇ 2 ˝ be distinct. Define ˛ < ˇ if ˛m <m ˇm where m WD maxfn 2 Z� j ˛n ¤

ˇng. Then Aut.˝;�/ is transitive and has convex congruences K WD fKn j n 2 Z�g

where ˛ Kn ˇ if ˛m D ˇm for all m > n. Note that 	Kn�1 D fı 2 ˝ j 	m D

ım for all m � ng for all 	 2 ˝ and K D K� n E , where E is the trivial convex
congruence.

In general, K� is generated by K in the following sense.

Proposition 7.2 ([18, Theorem 3D]) For any transitive `-permutation group
.G; ˝/, the following holds. Every convex congruence of .G; ˝/ other than the
trivial convex congruence E is the union of all covering convex congruences of
.G; ˝/ that are contained in it, and every convex congruence of .G; ˝/ other than
the universal convex congruence U is also the intersection of all covered convex
congruences of .G; ˝/ containing it.

In Example 7.1, the universal congruence U equals K�1 2 K but E 2 K� n K.
Let �n D 5 if n � �10 and �n D 1 otherwise, and �n D 5 if n � �7 and �n D 0

otherwise. Then �K�8 � but � and � belong to distinct o-blocks of Kn if n < �8.
Let ˛; ˇ 2 ˝ be distinct. Then both the union U.˛; ˇ/ of all convex congruences

C for which ˛, ˇ lie in distinct o-blocks and the intersection V.˛; ˇ/ of all convex
congruences C for which ˛, ˇ lie in the same o-block are convex congruences.
So U.˛; ˇ/ is covered by V.˛; ˇ/. (In the above example, V.�; �/ D K�8 and
U.�; �/ D K�9.) Hence

K D fV.˛; ˇ/ j ˛; ˇ 2 ˝;˛ ¤ ˇg � K�:
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Now K inherits the total order (inclusion) from K� and is called the spine of .G; ˝/.
For all ˛; ˇ 2 ˝ we have ˇ D ˛g for some g 2 G by transitivity. Therefore K can
also be described as follows. Fix ˛ 2 ˝. Then

K D fV.˛; ˛g/ j g 2 G; ˛g ¤ ˛g:

Write T for the set of o-blocks of elements of K. If � 2 T , then �.�/ 2 K; so �
restricts to a surjective map from T to K. For each C 2 K, write �.C / for both the
convex congruence covered by C and its set of o-blocks; the latter inherits a total
order from ˝. If � is a C -class, let �.�/ be the set of all �.C /-classes contained
in �. In the above example, �K�3 D f˛ 2 ˝ j ˛�1 D ˛�2 D 5g and �.�K�3/ D

f�K�4 j ��1 D ��2 D 5g.
Define the stabiliser st.�/ and rigid stabiliser rst.�/ of an o-block� of a convex

congruence by:

st.�/ WD fg 2 G j �g D �g; and rst.�/ WD fg 2 G j supp.g/ � �g:

So st.�/ and rst.�/ are convex `-subgroups of G and rst.�/ � st.�/.
Let� 2 T . Each g 2 st.�/ induces an action g� on the ordered set �.�/ given by

� g� D � g .� 2 �.�/; g 2 st.�//:

Let

G.�/ WD fg� j g 2 st.�/g:

In our example, G.�K�3/ Š Aut.R4;�4/ Š Aut.R;�/.
Note that .G.�/; �.�// is transitive and o-primitive. Furthermore, if K 2 K and

�;�0 are both K-classes, then .G.�/; �.�// and .G.�0/; �.�0// are isomorphic,
the isomorphism being induced by conjugation by any f 2 G with �f D �0 since
.� f /.f �1gf / D .� g/f for all g 2 rst.�/; � 2 �.�/. It is customary to write
.GK ; ˝K/ for any of these `-permutation groups; they are independent of� to within
`-permutation isomorphism.

Let g 2 G and � be a union of g-invariant convex subsets of ˝. Write
dep.g; �/ for the element of Aut.˝;6/ that agrees with g on� and with the identity
elsewhere; thus

˛ dep.g; �/ D

(

˛g if ˛ 2 �

˛ if ˛ 62 �:

Of course, in general the automorphism dep.g; �/ need not belong to G. Now
.G; ˝/ is said to be depressible to covering o-blocks or abundant if for each� 2 T ,
and each g 2 st.�/, we have dep.g; �/ 2 G. So if .G; ˝/ is abundant and � 2 T ,
then for each g 2 st.�/, the elements g and dep.g; �/ 2 rst.�/ induce the same
action on �.�/: � dep.g; �/� D � g� for all � 2 �.�/. Clearly, .Aut.˝;6/;˝/
is abundant.

It is easy to see that
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Lemma 7.3 Suppose that .G; ˝/ is abundant. Let � 2 T and � 2 �.�/. If � is
not a minimal element of T, then rst.� / ¤ 1.

Let .G; ˝/ be a transitive `-permutation group, g 2 G and ˛ 2 supp.g/. I will
denote the supporting interval of g containing ˛ by �.˛; g/ WD fˇ 2 ˝ j .9m; n 2
Z/.˛gn < ˇ < ˛gm/g. Then .G; ˝/ is said to be depressible if dep.g; �.˛; g// 2 G
for all g 2 G and ˛ 2 supp.g/ (c.f. bump in Sect. 4).

McCleary provided a classification of all o-primitive transitive `-permutation
groups (McCleary’s Trichotomy Theorem, [35], or [18, Theorem 4A] or [20,
Theorem 7E]). In the special case that the transitive o-primitive `-permutation group
is depressible, this reduces to a dichotomy.

Proposition 7.4 (S.H. McCleary) Let .G; ˝/ be a transitive depressible `-
permutation group. Then .G; ˝/ is o-primitive if and only if

(i) .˝;6/ is order-isomorphic to a subgroup of the reals and the action of G is the
right regular representation on ˝I or

(ii) .G; ˝/ is o-2 transitive.

Remark 7.5 The o-primitive `-permutation groups arising in Proposition 7.4(i) are
abelian o-groups, whereas those in (ii) have trivial centre and are o-m transitive for
all m 2 ZC (Lemma 4.2).

8 Model Theory

Gurevich and Holland showed how to recognise .R;�/ and essentially .Q;�/ from
their automorphism groups in the language of `-groups from among o-2 transitive
Aut.˝;�/. I stated this as Theorems 5.10 and 5.11 in Sect. 4 and outlined the proof.
Recently, John Wilson and I showed how to achieve this under the much weaker
hypothesis that Aut.˝;�/ is merely transitive [25] (version 1). I spoke on this at the
Conference and now give a summary of what I said incorporating some subsequent
simplifications we have managed.

For ease of presentation and for the rest of this section, let .G; ˝/ be a
depressible, abundant transitive `-permutation group such that K either has no least
element or the least o-primitive component is o-2 transitive.

For each � 2 T , let

Q� WD fh 2 rst.�/ j h� ¤ 1g:

Equivalently, we have Q� D fh 2 rst.�/ j .9˛ 2 �/.V.˛; ˛h/ D �.�//g ¤ ;: For
h 2 Q�, let

Xh WD fŒh
�1; hg� j g 2 Gg; and Wh D

[

fXhg j g 2 G; ŒXh;Xhg � ¤ 1g;

where ŒA;B� D fŒa; b� j a 2 A; b 2 Bg:
Write C2G as shorthand for CGCG. The key result to date in [25] is
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Proposition 8.1 For every � 2 T and h 2 Q�,

C2G.Wh/ D rst.�/:

Thus if ˇ 2 � and h0 2 rst.�/ with V.ˇ; ˇh0/ D �.�/, then

C2G.Wh/ D C2G.Wh0/:

In particular,

C2G.Wh/ D C2G.Wh0/ for all h; h0 2 Q�:

To prove this, we need a lemma.

Lemma 8.2 Let � 2 T and h 2 Q�. Then

Wh D
[

fXhg j g 2 st.�/g;

and CG.Wh/ is the pointwise stabiliser of �.

The first statement of Lemma 8.2 is proved by reducing to o-primitive `-permu-
tation groups and this in turn is proved in the o-2 transitive case by establishing that
for any g; h 2 G with h ¤ 1 and supp.h/\supp.hg/ D ;, there are f ; k 2 G such that
Œh�1; hf �Œh�g; hgk� ¤ Œh�g; hgk�Œh�1; hf �. Our proof of the existence of f ; k uses o-8
transitivity which we have seen follows from the o-2 transitivity of an `-permutation
group .G; ˝/ (Lemma 4.2).

Since .G; ˝/ is abundant and depressible, for each � 2 T , there is h 2 Q�

with bump.h/ and any element h 2 GC that is a bump must belong to Q� for some
� 2 T . Since Xh is first-order definable, so is Wh by Proposition 8.1. I can therefore
immediately obtain a first-order formula 	.h; x/ that holds in G if and only if h is
a bump and x 2 C2G.Wh/ D rst.�/ where � is the o-block of V.ıh; ı/ containing
ı 2 supp.h/; and also derive a formula #.h0h/ which holds if and only if h; h0

are bumps and C2G.Wh0/ � C2G.Wh/ and a formula �.h0; h/ that is the conjunction
of #.h0; h/ and the universal formula: .8 bump h00/:.#.h0; h00/ & #.h00; h//. Since
C2G.Wh/ D rst.�/, it is therefore straightforward to determine the first-order theory
of the totally ordered spine KG of G from the first-order language of the `-group G.
Thus

Proposition 8.3 Let .G; ˝/ and .H; �/ be transitive, depressible `-permutation
groups that are abundant but not locally abelian. If G and H satisfy the same first-
order sentences in the language of lattice-ordered groups, then KG and KH satisfy
the same first-order sentences in the language of totally ordered sets. Moreover, if
the first-order theory of G is decidable, then so is the first-order theory of KG.

Hence if .G; ˝/ is a depressible o-2 transitive `-permutation group and .H; �/ is
a transitive, depressible, abundant `-permutation group with H and G satisfying the
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same sentences in the language of `-groups, then KH has only one element since KG

does, whence .H; �/ is o-primitive (and so o-2 transitive by Proposition 7.4). From
this and Theorems 5.10 and 5.11, we can immediately deduce

Theorem 8.4 If Aut.˝;�/ is transitive and satisfies the same `-group-theoretic
sentences as Aut.R;�/, then .˝;�/ Š .R;�/ as ordered sets.

and

Theorem 8.5 If Aut.˝;�/ is transitive and satisfies the same `-group-theoretic
sentences as Aut.Q;�/, then .˝;�/ Š .Q;�/ or .˝;�/ Š .R n Q;�/ as
ordered sets.

But we can prove more. We want to translate `-group formulae from G.�/ to
equivalent ones in G. We need to set up conditions on .G; ˝/ that make this possible.
I will do this here under the restriction that every element of K has a predecessor in
K. That is, if K 2 K covers K0 2 K�, then K0 2 K. This can be expressed in our
first-order language by Proposition 8.3: .8 bump h/.9 bump h0/�.h0; h/.

Let h 2 Q� be a bump and Nx D fx1; : : : ; xng be a finite set of variables. First
replace u.Nx/ D v.Nx/ by u.Nx/v.Nx/�1 D 1 and u.Nx/ ¤ v.Nx/ by u.Nx/v.Nx/�1 ¤ 1. Next
replace

t.Nx/ D 1 by .9 bump h0/.�.h0; h/ & 	.h0; t.Nx///;

and

t.Nx/ ¤ 1 by .9 bump h0/.�.h0; h/ & :	.h0; t.Nx///:

For any formula 
.Nx/ free in Nx, let 
�
h .Nx/ be the result of replacing each basic

subformula of 
 as above. For a formula

�.x1; : : : ; xj�1; xjC1; : : : ; xn/ W� 9xj
.Nx/;

let

��
j;h.x1; : : : ; xj�1; xjC1; : : : ; xn/ W� 9xj.	.h; xj/ & 
�

h .Nx//;

and for �.x1; : : : ; xj�1; xjC1; : : : ; xn/ W� 8xj
.Nx/, let

��
j;h.x1; : : : ; xj�1; xjC1; : : : ; xn/ W� 8xj.	.h; xj/! 
�

h .Nx//:

For example, if ˛ 2 ˝ and h 2 H� with �.�/ D V.˛; ˛h/, then we can express
that G.�/ is abelian by modifying the sentence � W� .8f ; g/Œf ; g� D 1: In this case,
��

h is the sentence

.8f ; g/.Œ	.h; f / & 	.h; g/�! .9 bump h0/.�.h0; h/ & 	.h0; Œf ; g�//;

and G.�/ ˆ � if and only if G ˆ ��
h .
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We say that a transitive `-permutation group .G; ˝/ is locally abelian if K has
a minimal element with the corresponding o-primitive component abelian. By the
above, we obtain the following result.

Proposition 8.6 Let .G; ˝/ be a transitive depressible abundant `-permutation
group that is not locally abelian. If every element of KG has a predecessor, then
for any bump h 2 Q� and sentence � of the language of `-groups,

G.�/ ˆ � if and only if G ˆ ��
h :

Definition 8.7 A coloured chain is a totally ordered set .C;6/ together with a
countable set fPi j i 2 Ig of unary predicates called colours such that for all c 2 C
the set fi j Pi.c/g is non-empty. One says that c has colour i if Pi.c/ holds. (Elements
of C are allowed to have more than one colour.)

Let ˙ be the set of all sentences in the first-order language of `-groups. The
coloured chain CG associated with an `-permutation group .G; ˝/ is the totally
ordered set KG together with the set fP� j � 2 ˙g, such that P� .K/ if and only
if GK ˆ � (for K 2 K, � 2 ˙ ) ; cf. the first-order theory of coloured chains
associated with abelian o-groups [26].

We note that if 
; � 2 ˙ and F ˆ 
 �! � for every `-group F, then P
.c/ �!
P� .c/ is an axiom for the theory of coloured chains of `-groups.

In [25] (version 1), we prove a stronger version of the following theorem (which
is not quite as much as I claimed in my conference lecture).

Theorem 8.8 Let .G; ˝/ and .H; �/ be transitive depressible `-permutation
groups that are abundant but not locally abelian. If G � H, then the totally
ordered spine KG of G is elementarily equivalent to the totally ordered spine KH of
H and if every element of KG has a predecessor, then CG � CH.

This applies to many examples, in particular to many wreath and Wreath
products of o-primitive `-permutation groups (dependent on finiteness conditions or
otherwise of the set of supporting intervals) for those familiar with these concepts
(see [18] or [30] for definitions).

Corollary 8.9 Let .G; ˝/ and .H; �/ be transitive abundant `-permutation groups
that are depressible but not locally abelian with KG D fKn W n 2 Z�g where
Kn > Kn�1 for all n 2 Z�. If G � H, then KH D fK0

n W n 2 Z�g [ K0 for some
totally ordered set K0 with K0

n > K0
n�1 > K0 for all n 2 Z� and K0 2 K0 and

GKn � HK0

n
for all n 2 Z�.

In particular, Corollary 8.9 applies when .G; ˝/ is given by Example 7.1. In this
case, the resulting o-primitive components of .H; �/ satisfy the same first-order
sentences as Aut.R;�/; if H D Aut.�;�/, then all o-primitive components of
.H; �/ are isomorphic to Aut.R;�/.

Corollary 8.10 Let .G; ˝/ and .H; �/ be transitive, depressible `-permutation
groups that are abundant but not locally abelian. If G � H and the totally ordered
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spine KG of G is fK1; : : : ;Krg where K1 < � � � < Kr, then the totally ordered spine
KH of H is fK0

1; : : : ;K
0
rg where K0

1 < � � � < K0
r and GKi � HK0

i
(i D 1; : : : ; r).

This corollary even holds when .G; ˝/ is locally abelian.
The converse to Theorem 8.8 fails.
Recent improvements of [25] (version 1) are being written up and incorporated

to form [25] (version 2). They involve working only in the group language. The
strengthening of Theorems 8.4 and 8.5 to satisfying the same group-theoretic
sentences can be found in A. M. W. Glass, J. S. Wilson, Recognizing the real line,
arxiv:1701.07235.

9 Amalgamation for Right-Orderable Groups

In Sect. 5 we obtained undecidability results for lattice-ordered groups. In the next
two sections of this survey we consider undecidability for orderable and right-
orderable groups. The context is generators and relations in group words. For this,
Higman-Neumann-Neumann constructions can be used and we will need to show
that each resulting group can be made into an o-group or a right-ordered group.

The class of orderable groups is closed under isomorphisms, subgroups and
ultraproducts. It is therefore definable in the first-order theory of groups. The same
is true for the class of right-orderable groups. This is in sharp contrast to the class of
lattice-orderable groups; there are groups G;H satisfying exactly the same sentences
in group theory with only G being lattice orderable [44].

To begin, consider the amalgamation of just the trivial subgroup; i.e., the free
product. In 1949, A. A. Vinogradov proved [43]

Proposition 9.1 The free product of orderable groups is orderable.

In 1990, George Bergman provided other special cases when amalgamation
is possible for orderable groups and also for right-orderable groups, [3]. The
analogue of Vinogradov’s result easily follows from Bergman’s work (see, e.g., [32],
Corollary 6.1.3).

Proposition 9.2 If fGi j i 2 Ig is a family of right-ordered groups, then their free
product 	i2I Gi is right orderable with a right order extending that on each Gi.

Although the classes of orderable and right-orderable groups fail to be closed
under free products with amalgamation in general, amalgamation is possible in
the class of right-orderable groups when the amalgamated subgroup is cyclic by
the same proof as that for Corollary 5.8; for details, see [4]. In contrast to the
classes of orderable groups and `-groups, it has been possible to give necessary and
sufficient conditions for amalgamation in the class of right-orderable groups [5].
The necessary and sufficient conditions are complicated; they involve the existence
of normal families of right orders on the constituent groups that are compatible
under the isomorphisms between the amalgamated subgroups. The amalgamation of
cyclic subgroups for `-groups and right-orderable (or right-ordered) groups required
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a permutation tour-de-force (see Corollaries 5.8 and 5.9 at the end of Sect. 5). The
proof that the conditions are necessary and sufficient for amalgamation for right-
orderable groups also requires a very delicate and different inductive permutation
proof; I do not know how to prove it without using automorphism groups of totally
ordered sets. For details, see [5, Theorem A].

Natural analogues hold for HNN-extensions. The ideas and conditions also
extend to graphs of groups [14].

Although the necessary and sufficient conditions are complicated, the results
easily imply all previously known cases. To give a flavour of what can be deduced,
here are three consequences that I’ll use in the next section; the first two are easy

to state. As is standard, I will write 	i2IGi .Hi
'i
Š H/ for the group free product of

fGi j i 2 Ig with the subgroups Hi amalgamated via 'i (i 2 I).

Corollary 9.3 Let Hi be a subgroup of a right-ordered group Gi such that any right
order on Hi is extendable to a right order on Gi .i 2 I/. Suppose that each Hi

is isomorphic to a group H. Then L WD 	i2IGi .Hi
'i
Š H/ is right orderable for

any amalgamating isomorphisms 'i .i 2 I/. Moreover, the initial right orders on
Gi .i 2 I/ extend to a right order on L if 'i'

�1
j preserves the induced orders on Hi

and Hj for all i; j 2 I.

Corollary 9.4 Let G be a right-ordered group with normal convex subgroup N. Let
' W H1 Š H2 be an order-preserving isomorphism between subgroups H1 and H2.
Assume that H1 \ N D H2 \ N D f1g and the induced isomorphism N' W H1N=N Š
H2N=N is the identity. Then K D hG; t j ht

1 D h1' .h1 2 H1/i is right orderable
with an order extending that of G.

Corollary 9.4 is a special case of the third corollary which is only needed to
establish that B.T/3 in the next section is right orderable.

Corollary 9.5 Let H1 and H2 be isomorphic subgroups of a right-ordered group G;
say ' W H1 Š H2. Let N be a convex normal subgroup of G such that .N \ H1/' D

N \ H2. Let NG WD G=N and NHi WD HiN=N .i D 1; 2/. Define N' W NH1 Š NH2 by
Nh1 N' WD .h1'/N, where Nh1 WD h1N 2 NH1. If K1 WD h NG; Nt j Nh

Nt
1 D
Nh1 N' .Nh1 2 NH1/i and

K2 WD hG; t j ht
1 D h1' .h1 2 H1\N/i are right orderable, then K WD hG; t j ht

1 D

h1' .h1 2 H1/i is right orderable with a right order extending that on G.

I’ll close this section with the analogue of a result about countable groups. Using
Wreath products, one can actually replace three by two (cf. [18], Theorem 10.A)
but I want to demonstrate a further application of our necessary and sufficient
conditions for right orderability. The result suffices for proving Corollary 10.6 and
Theorem 10.7.

Corollary 9.6 (cf. [34], Corollary IV.3.1) Every countable right-ordered group C
can be embedded in a three-generator right-ordered group which is defined by a
finite or recursively enumerable set of relations if C is.



Groups of Automorphisms of Totally Ordered Sets 127

10 Applications to Decision Problems for Right
Orderable Groups

I’ll now apply these corollaries to derive undecidability results for right-orderable
groups. Unlike the case for lattice-ordered groups where the group and lattice
operations were allowed in forming words (see Sect. 6), the words in this context
are just group words.

If T is any Turing machine, there is a recursively enumerable set of semigroup
words (numbers) E WD E.T/ in the alphabet of symbols fa1; : : : ; amg associated
with T . Let 	.T/ be the finitely presented semigroup associated with T (see [40],
Chap. 12). It has generators s1; : : : ; sM (symbols) and q0; : : : ; qN (states), and
defining relations ˙i D �i (i D 1; : : : ; I), where each ˙i and �i is special; i.e., has
the form wqjw0 where w;w0 are semigroup words in fa1; : : : ; amg � fs1; : : : ; sMg and
j 2 f0; : : : ;Ng. One can build a finitely presented group B.T/ associated with 	.T/.
This was done originally by P. S. Novikov and independently by W. W. Boone,
then simplified by J.L. Britton in [11]. Britton’s finitely presented group B.T/ is
a homomorphic image of Boone’s original group. It is built from the free group
F2 on 2 generators x; y by a succession of HNN-extensions each of which is finitely
presented over its predecessor and involves the generators of 	.T/ inter alia, subject
to a finite set of relations. Now

Lemma 10.1 The free group on x; y is orderable (and hence right orderable).

Proof Each quotient 	n.F2/=	nC1.F2/ in the lower central series is torsion-free
abelian and so orderable. Define f < g in F2 if and only if gf �1 2 	n.F2/n	nC1.F2/
for some (necessarily unique) n and gf �1 > 1 in the order on 	n.F2/=	nC1.F2/. ut

Each of the successive HNN-extensions in forming B.T/ can be shown to
successively satisfy the hypotheses for right orderability in the requisite corollaries
of the previous section. Thus

Theorem 10.2 Let T be a Turing machine and B.T/ be the Britton group associated
with T. Then B.T/ is right orderable.

Remark There are distinct a; b 2 B.T/ having the same square. In any o-group,
a D b whenever a2 D b2 (since a < b implies that a2 < ab < b2). Hence B.T/
cannot be made into an o-group for any Turing machine T.

By taking T to be any Turing machine yielding a recursively enumerable but
non-recursive set E.T/, we obtain a right-orderable finitely presented group with
insoluble word problem. Thus

Corollary 10.3 (cf. [23]) There is a right-orderable finitely presented group with
insoluble word problem.

Theorem 10.4 (cf. [21]) A finitely generated group can be embedded in a right-
orderable finitely presented group if and only if it is right orderable and can be
defined by a recursively enumerable set of relations.
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Outline of Proof It is immediate that any finitely generated subgroup of a finitely
presented right-orderable group must be right orderable and definable by a recur-
sively enumerable set of relations.

To prove the converse, follow Aanderaa’s proof of the Higman Embedding
Theorem in [1]. (A slight oversight in the proof of Lemma 8 of [1] can easily be
remedied.)

Let U be any finitely generated right-orderable group that is defined by a
recursively enumerable set of relations. By increasing the set of generators and
relations, I may assume that each of these relations is a semigroup word in the
generators. Let the resulting set of generators for U be fu1; : : : ; umg. Let a1; : : : ; am

be formal symbols. For w any word in a1; : : : ; am, let wu be the word obtained from
w by replacing each ai by ui (i D 1; : : : ;m/. Let T be the Turing machine that
enumerates the set of all words w in a1; : : : ; am such that wu D 1 in U. So E D E.T/
and

U WD hu1; : : : ; um j wu D 1 .w 2 E/i:

Let B.T/ be the Britton group of the previous proof with the right order so
constructed. So a1; : : : ; am 2 fs1; : : : ; sMg. B.T/ also contains k0; t0 with t0 > 1

and all powers of t0 less than k0 in the right order on B.T/. Now take a sequence of
three HNN-extensions (Britton extensions) B.T/2 embedded in B.T/3 embedded in
B.T/4 embedded in B.T/5 starting with

B.T/2 WD U 	 B.T/:

Specifically,

B.T/3 WD hB.T/2; c1; : : : ; cm j u
ci
j D uj; aci

j D aj; kci
0 D k0u

�1
i .i; j 2 f1; : : : ;mg/i;

B.T/4 WD hB.T/3; d j .ajcj/
d D aj; kd

0 D k0 .j D 1; : : : ;m/i;

and

B.T/5 WD hB.T/4; p j a
p
j D aj; kp

0 D k0; tp
0 D t0d .j D 1; : : : ;m/i:

Now B.T/2 is right orderable by Proposition 9.2 with an order extending that of
B.T/. It can be shown that the constructed right-order on B.T/2 extends to a right
order on B.T/3 using Corollary 9.5. This is the more difficult step in the proof.
Corollary 9.4 can be used to prove that successively B.T/4 and then B.T/5 are right
orderable. Aanderaa’s very clever proof relies on showing that (like the Higman
Rope Trick—see [34], Lemma IV.7.6.) the relations defining U are not necessary in
B.T/5 and so B.T/5 can actually be finitely presented. Since U embeds in B.T/5,
Higman’s Embedding Theorem follows for right-orderable groups.

The proof of Theorem 10.4 actually gives (cf. Theorem 6.5 in Sect. 6)
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Corollary 10.5 A finitely generated right-ordered group can be embedded (as a
right-ordered group) in some finitely presented right-ordered group if and only if it
can be defined by a recursively enumerable set of relations.

We obtain the standard consequence of the Higman Embedding Theorem by
taking the free product of all finitely presented right-ordered groups (to within
isomorphism), embedding this countable recursively generated and related right-
ordered countable group in a three-generator recursively defined right-ordered group
(Corollary 9.6), and then applying Theorem 10.4. This gives a universal finitely
presented right-orderable group.

Corollary 10.6 There is a finitely presented right-ordered group in which every
finitely presented right-ordered group can be embedded (as a right-ordered group).

The natural analogue of the Boone-Higman Theorem also follows for right-
orderable groups by the same proof (also cf. Theorem 6.6).

Theorem 10.7 (cf. [10]) A finitely generated right-orderable group has soluble
word problem if and only if it can be embedded in a simple group which can be
embedded in a finitely presented right-orderable group.

Again one can milk the proof and obtain

Corollary 10.8 A finitely generated right-ordered group has soluble word problem
if and only if it can be embedded in a simple right-ordered group which can be
embedded in a finitely presented right-ordered group (all the embeddings preserving
order).

Being right orderable is a Markov property for finitely presented groups (see [34],
Sect. IV.4): isomorphic finitely presented groups are either both right orderable or
neither is, there is a right-orderable finitely presented group (e.g., hx j x D 1i) and
there is a finitely presented group (e.g., hy j y2 D 1i) that cannot be embedded in any
right-orderable group. Therefore, there is no algorithm to determine if an arbitrary
finitely presented group is right orderable or not ([34], Theorem IV.4.1).

The question arises whether one could solve the isomorphism problem for right-
orderable finitely presented groups, assuming that one were provided with an oracle
which would tell us (truthfully) that the finitely presented groups we are considering
are right orderable. Unfortunately, the construction given by Rabin (see the proof
of Theorem IV.4.1. in [34]) does not fit the hypotheses of our corollaries, so this
remains open.

The existence of a finitely presented right-orderable group with insoluble word
problem (Corollary 10.3) can be used to construct a stronger result [7].

Theorem 10.9 There is a finitely presented orderable group with insoluble word
problem.
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11 Sketch of the Proof of Theorem 10.9

I now provide a sketch of Vasily Bludov’s beautiful idea to prove Theorem 10.9.
Take a finitely presented right-orderable group with insoluble word problem, e.g.,
Britton’s group B.T/. Write it as the quotient of the free group F on generators
x1; : : : ; xm, say, by the normal subgroup N generated by the finite set of relations
u1; : : : ; un. So F=N is a finitely presented right-orderable group with insoluble word
problem. Let G0 be a semidirect product of F by a free group on 2m generators
that normalises N. Take a Higman-Neumann-Neumann-extension G1 of G0 with
stable letter t that fixes each element of N. Let T0 be the normal closure of hti by
G0 (equivalently, in G1). We use Higman-Neumann-Neumann-extensions to add 2m
endomorphisms of G1 that fix each element of G0 but map t appropriately. This is
our group G which can be finitely presented. We derive the infinite set of relations
t�1ut D u for all u 2 N from the finite set of defining relations of G which include
t�1uit D ui (i D 1; : : : ; n). Since t commutes (in G) with x 2 F if and only if
x 2 N, and F=N has insoluble word problem, G will provide the requisite group
in Theorem 10.9 once we establish that G is an orderable group. To achieve this,
we use the right order on F=N to give a right order � on G0 and thence an order
on the generators of the free group T0 by tf1 < tf2 if and only if f1 � f2. We will
give an ordering of basic commutators in a free group and derive a G1-invariant
order on T , the normal closure of hti in G, using groups on each of which the
endomorphisms become automorphisms. This ordering of T is also invariant under
these automorphisms. We will realise G as an extension of T by an orderable group.
Hence G will be orderable.

Specifically, G0 is generated by x1; : : : ; xm; b1; : : : ; b2m and has defining relations

x
bj

i D x
xj

i ; x
bmCj

i D x
x�1

j

i .i; j D 1; : : : ;m/: (1)

By (1), x
bj

j D xj (j D 1; : : : ;m). This immediately gives

x
b�1

j

i D x
x�1

j

i .i; j D 1; : : : ;m/: (10)

So G0 is a semidirect product of the free group F.Nx/ by the free group F.Nb/ with
free generators b1; : : : ; b2m, and N is normalised by F.Nb/ in G0.

Let G1 be generated by x1; : : : ; xm; b1; : : : ; b2m; and the extra generator t and
have defining relations (1) and

Œt; ug
j � D 1 .j D 1; : : : ; nI g 2 F.Nx//: (2)

So G1 is a Higman-Neumann-Neumann-extension of G0. Now G0 (and hence F.Nx/
and F.Nb/) can be embedded in G1 in the natural way. We will regard N, F.Nx/ and
F.Nb/ as subgroups of G1. By Britton’s Lemma,
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Lemma 11.1 If w 2 F.Nx/, then Œt;w� D 1 in G1 if and only if w 2 N:

For i D 1; : : : ; 2m, let Ai be the subgroup of G1 generated by G0[fŒbi; t�g. Since
Nbi D N, we have

uŒbi;t� D u if and only if u 2 N:

Hence G1 Š Ai. We can therefore define the requisite group G as the sequence of
Higman-Neumann-Neumann-extensions starting from G1 and obtained by succes-
sively adjoining stable letters y1; : : : ; y2m subject to

Œxi; yj� D 1 .i D 1; : : : ;mI j D 1; : : : ; 2m/; (3)

Œbi; yj� D 1 .i; j D 1; : : : ; 2m/; (4)

tyi D Œbi; t� .i D 1; : : : ; 2m/: (5)

We will regard G1 as a subgroup of G in the natural way.
We now show that the infinite set of relations (2) can be deduced from these three

finite sets of relations, (1) and the finite subset (6) of (2) where

Œt; uj� D 1 .j D 1; : : : ; n/: (6)

Lemma 11.2 The group G can be finitely presented. It is generated by the 5mC 1
elements

x1; : : : ; xm; b1; : : : ; b2m; t; y1; : : : ; y2m;

and can be defined by the 8m2 C 2mC n relations (1)–(6).

Proof We derive (2) from the remaining relations. Conjugating Œt; uj� D 1 by yi and
then by b�1

i (and by yiCm and then by b�1
iCm) and using (5), (3) and (1), we obtain

Œt; u
x˙1

i
j � D 1 in G (j D 1; : : : ; nI i D 1; : : : ;m). An easy induction now gives that

Œt; uw.Nx/
j � D 1 in G for all j 2 f1; : : : ; ng and w.Nx/ 2 F.Nx/. Hence (2) follows and the

lemma is proved. ut

Also note that since G was formed from G1 by successively adding y1; : : : ; y2m

as stable letters, by Britton’s Lemma

Lemma 11.3 hy1; : : : ; y2mi is a free subgroup of G of rank 2m.

We will write F.Ny/ for the free group with free generators y1; : : : ; y2m and identify
it with the subgroup of G given by the lemma.

Let w 2 F.Nx/. Since Œt;w� D 1 in G if and only if w 2 N, it follows that G has
insoluble word problem.

We must now show that G is an orderable group. This is technical. Let T0
be the normal subgroup of G0 generated by t. This is also the normal subgroup
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of G1 generated by t. It can be shown that T0 is the free group on tvh (v 2
F.b1; : : : ; b2m/; h 2 F=N). In Lemma 10.1 we proved that a free group can be made
into an o-group. One can give a special central ordering of each abelian quotient
	k.T0/=	kC1.T0/ and thereby an order on T0 that is preserved by G1 (see [7]). But
y1; : : : ; y2m are only endomorphisms of T0. Let T�

0 be the topological completion of
T0 under the interval topology. Then T�

0 is an o-group with a total order extending
that of T0 such that the endomorphisms y1; : : : ; y2m of T0 extend to order-preserving
automorphisms of T�

0 . From this and the given defining relations, one can obtain the
following result.

Lemma 11.4 T has generators

t˛.Ny/v.Nb/h.Nx/; (7)

where h.Nx/ 2 H, v.Nb/ 2 F.Nb/ and ˛.Ny/ is either empty or, for some i 2 f1; : : : ; 2mg,
˛.Ny/ is a non-trivial element of F.Ny/ that begins with y�1

i and v.Nb/ does not begin
with b˙1

i .

Using this lemma, an intricate argument can be provided to show that T is a
G-invariant o-group under the induced ordering on T . This uses linear algebra in
torsion-free abelian quotient groups and Nielsen’s method to lift to the non-abelian
case. Since G=T is clearly an o-group under the natural ordering, Theorem 10.9
follows. ut

12 A Model-Theoretic Consequence

Corollary 10.3 can also be combined with the Ehrenfeucht-Mostowski Theorem (see
Example 2.3 in Sect. 2) to prove the following purely model-theoretic result [8].

Theorem 12.1 If T is a first-order theory having infinite models, then T has a model
M whose automorphism group has undecidable universal theory (in the language
of groups).

Finally, we mention that S. Lemieux has proved that Novikov’s finitely presented
groups (which have soluble word problem and insoluble conjugacy problem) are
right orderable [33].
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Algebraic Entropies for Abelian Groups
with Applications to the Structure
of Their Endomorphism Rings: A Survey

Brendan Goldsmith and Luigi Salce

Abstract The algebraic entropies most frequently used for endomorphisms of
Abelian groups are illustrated, their properties and mutual relationships are dis-
cussed, and several applications to endomorphism rings, both of torsion and
torsion-free Abelian groups, are presented.
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1 Introduction

In dynamical systems, entropy is a notion that measures the rate of increase in
dynamical complexity as the system evolves with time. Well-known entropies in
mathematics are the measure-theoretic entropy for probability spaces introduced
by Kolmogorov in 1958 [42] and Sinai in 1959 [61], and the topological entropy
for continuous endomaps of compact spaces, first defined by Adler-Konheim-
McAndrew in 1965 [1]. The iteration of an endomorphism of an Abelian group
also generates a discrete-time dynamical system. The complexity of such a system
may be measured in ways that are clearly analogous to the more classical concepts
of entropy mentioned above; the resulting concepts are generally referred to as
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algebraic entropies. In this survey paper we will present the algebraic entropies
most frequently used for endomorphisms of Abelian groups; the differing notions
of algebraic entropy that arise are, of course, related to the differing algebraic
properties of the underlying groups.

Algebraic entropies may be regarded as a further step in a long-standing approach
to the study of algebraic structures endowed with an endomorphism. This approach
started with vector spaces and linear transformations, was extended to modules over
commutative rings, and then to categories of modules over arbitrary rings R and their
endomorphisms (see, for instance, Sect. 12 in [40] and Chap. VII, Sect. 5 of [3]). We
refer to Sect. 2.1 below for more information on this subject. Algebraic entropies
provide the right tools to measure the complexity of Abelian groups viewed as ZŒX�-
modules, and more generally of R-modules viewed as RŒX�-modules, by means of
the additional structure produced by an endomorphism.

Algebraic entropies can be defined also for other algebraic structures, e.g.,

1. endomorphisms of modules over arbitrary rings R, once a length function on
Mod.R/ is available (see Salce-Zanardo [58], Salce-Vámos-Virili [60] and Salce-
Virili [56]);

2. self-maps of finite length of local Noetherian rings (see Majidi Zolbanin-
Miasnikov-Szpiro [47]);

3. group actions on RŒ� �-modules of amenable and sofic groups � (see Li-Liang
[44, 45] and Virili [67] and the references therein);

4. rational maps, i.e., homogeneous polynomials acting on homogeneous coordi-
nates of the projective completion of an affine space (see Bellon-Viallet [5]);

5. product MV-algebras and MV-algebras (see Petrovicova [52] and Riecan [54]);
6. entropy for non-commutative groups has been studied in [14] and has been used

to establish connections with the classical notion of growth developed by Milnor
in the context of Geometric group theory [16].

We note at the outset that the word ‘group’ will mean an additively written
Abelian group unless specified to the contrary.

The development of the theory of entropies in an algebraic setting started in
1969 with a sketched definition of the algebraic entropy ent for endomorphisms
of Abelian groups; this appeared at the end of the paper [1] where the topological
entropy was introduced. The precise definition and the first basic properties of ent
were given by Weiss in 1975 [70], where also a connection with the topological
entropy via the Pontryagin-Van Kampen duality was established. The relationship
between a variation of ent, denoted by h, for automorphisms of discrete countable
groups and the topological entropy of their duals was proved by Peters in 1979 [51].

We list below, in chronological order of their appearance in the literature, the five
algebraic entropies we are going to illustrate:

– the algebraic entropy ent, the first algebraic entropy sketched in [1]; research on
algebraic entropy has flourished since the appearance of the paper [19] in 2009,
where ent was thoroughly investigated, and many new directions and applications
have subsequently emerged; ent works non-trivially only on torsion groups;



Algebraic Entropies for Abelian Groups 137

– the rank-entropy entrk introduced by Salce-Zanardo in 2009 [58], which works
non-trivially only on torsion-free groups; Rüdiger Göbel and the second author
investigated this entropy in 2012 [32], obtaining interesting applications to
endomorphism rings of torsion-free groups, that will be illustrated at the end
of Sect. 4;

– the adjoint entropy ent� investigated by Dikranjan-Giordano Bruno-Salce in
2010 [20] and Goldsmith-Gong in 2012 [34], which is related to ent by means of
the Pontryagin-Van Kampen duality;

– the intrinsic entropy fent, introduced by Dikranjan-Giordano Bruno-Salce-Virili
in 2015 [25], which probably offers the most attractive tool for algebraists in the
dynamical study of endomorphisms of arbitrary groups;

– the entropy denoted by h, still sometimes called algebraic entropy since it
coincides with ent on torsion groups (but referred to also as Peters entropy),
which takes non-trivial values also outside of torsion groups; this entropy
is of more combinatorial character, and was recently deeply investigated by
Dikranjan-Giordano Bruno in [18]; its interest arises in part due to its remarkable
connection with a famous open question in algebraic number theory, namely,
Lehmer’s problem.

The aim of this paper is to provide an up-to-date general overview of the theory
of the above algebraic entropies.

One of our main goals is to show how algebraic entropies help in understanding
the structure of the endomorphism rings of Abelian groups, in the case of p-groups
as well as in the case of torsion-free groups. In particular, classical results and
examples of endomorphism rings will be revisited with the new tool of the suitable
algebraic entropies, with special emphasis on celebrated theorems obtained in the
1960s by Pierce and Corner.

We will not discuss the connections with the topological entropy for topological
groups, even if its interactions with the algebraic entropies are very strong, as
mentioned above and as many “Bridge Theorems” testify (see [15, 17]). For readers
interested in this aspect of the subject, we refer to the survey papers by Dikranjan-
Giordano Bruno [14] and Dikranjan-Sanchis-Virili [21], and to the paper by Virili
[66], who studies the algebraic entropy of continuous endomorphisms of locally
compact groups, appropriately modifying Peters’s definition.

The present survey has unavoidable overlaps with parts of these papers, but here
we focus more on the role of length functions and on applications to the structure of
endomorphism rings of discrete groups. In order to eliminate overlaps, we will omit
proofs, or even outlines of proofs, of most results concerning the algebraic entropy
h, which was already discussed in [14, Sect. 5] and in [21, Sects. 3.1, 3.2]. Needless
to say, the choice of the results presented in this survey reflects our own taste on the
subject. We dedicated this work to the memory of our late friend Rüdiger Göbel who
influenced both authors with his own interest in the subject. His insight, as reflected
in [32], provided a stimulus to further ongoing work in the area of algebraic entropy.
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2 Preliminaries

2.1 The RŒX�-Module Associated with an Endomorphism
of an R-Module

It is an old and classical point of view to look at a vector space V over a field K
endowed with a K-linear map  as a KŒX�-module, and to denote it by V . When
V is finite dimensional, the decomposition of the finitely generated KŒX�-module
V as a direct sum of cyclic modules gives rise to the canonical rational form of
the matrix associated with . We refer to Chap. 10, Sect. 5 in [28], or to [69] for
a detailed description of this matter. Also Kaplansky, in his “Little Red Book”
[40], devotes Sect. 12 to this subject, in order to apply the theorems on Abelian
p-groups developed in the previous sections (Ulm’s theorem included) to vector
spaces endowed with a K-linear map, viewed as modules over the PID KŒX�.

This point of view, extended in Chap. VII, Sect. 5 of [3] to modules over
commutative rings, and in [60] to modules over arbitrary unitary rings R, is the most
fruitful when one works with the algebraic entropies of endomorphisms of modules.
So in this preliminary section we describe it, considering the category of RŒX�-
modules and recalling the basic results proved in [60]; no particular complication
arises at this stage in considering general R-modules instead of Z-modules.

Let M be a left module over the ring R, and let  W M ! M be an endomorphism.
The map RŒX� 
 M ! M defined by .f .X/; x/ 7! f ./.x/ makes M a left RŒX�-
module, denoted by M . Conversely, if MX is an RŒX�-module, multiplication by X
induces an R-endomorphism  of MR, i.e., MX viewed as an R-module, and MX D

.MR/ .
If X denotes the RŒX�-endomorphism of RŒX�˝R M induced by , we have the

exact sequence of RŒX�-modules

0! RŒX�˝R M
�
! RŒX�˝R M

˚
! M ! 0

where � and ˚ are defined by setting � D X � X and ˚.f .X/ ˝ x/ D f ./.x/.
Note that � is injective, since

�.
X

k

.Xk ˝ xk// D
X

k

Xk ˝ .xk�1 � .xk//

hence, if
P

k.X
k ˝ xk/ 2 Ker.�/, then xk�1 D .xk/ for all k, and this implies that

the xk are all 0, since almost all xk are 0 (see also Proposition 2.2 in [55]).
The properties relating the structures as R-module and as RŒX�-module of M 2

Mod.R/ endowed with the endomorphism  are listed below.

(1) A homomorphism of RŒX�-modules ˛ W M ! N is a homomorphism ˛ W

M ! N of R-modules such that ˛ ı  D  ı ˛;
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(2) M is isomorphic to N if and only if there is an isomorphism ˛ W M ! N of
R-modules such that  D ˛�1 ı  ı ˛, that is,  and  are conjugated under ˛;

(3) a submodule N of the R-module M endowed with the endomorphism  is an
RŒX�-submodule if and only if it is -invariant; if this is the case, this submodule
is denoted by N , and  induces an endomorphism N of the factor RŒX�-module
M=N ;

The Bernoulli shifts are a fundamental tool in the study of the various algebraic
entropies. Given an R-module M, the right Bernoulli shift for M is the endomor-
phism ˇ W

L

N
M !

L

N
M defined by setting

ˇ.x0; x1; x2; � � � / D .0; x0; x1; x2; � � � /;

where the xi 2 M are almost all 0. The left Bernoulli shift is the endomorphism
� W

L

N
M !

L

N
M defined by setting �.x0; x1; x2; � � � / D .x1; x2; � � � /.

The RŒX�-module RŒX� ˝R M is isomorphic to .
L

N
M/ˇ via the isomorphism

which sends .a0Ca1XC� � �CanXn/˝x into .a0x; a1x; � � � ; anx; 0; 0; � � � / for ai 2 R
and x 2 M. The converse isomorphism sends .x0; x1; x2; � � � / into

P

n
0 Xn ˝ xn.

Thus the exact sequence 0 ! RŒX� ˝R M
�
! RŒX� ˝R M

˚
! M ! 0 can be

viewed as

0! .
M

N

M/ˇ
�
! .

M

N

M/ˇ
˚
! M ! 0

with ˚..x0; x1; x2; � � � // D
P

n
0 
n.xn/ and �.0; � � � ; 0; x; 0; � � � / D .0; � � � ; 0;

�.x/; x; 0; � � � /, where, if x takes the k-th place in .0; � � � ; 0; x; 0; � � � /, it takes the
.kC 1/-st place in its image .0; � � � ; 0;�.x/; x; 0; � � � /.

2.2 Cyclic ZŒX�-Modules

We will apply the above approach to the ring of integers Z and the category Mod.Z/
of Abelian groups. In this context it is relevant to know the prime ideals of the
domain ZŒX�, which is a 2-dimensional Noetherian ring. Besides the null ideal
.0/, the prime ideals of ZŒX� can be distinguished by being maximal or (non-zero)
minimal.

The maximal ideals are 2-generated of the form .p; f .X//, where p is a prime
integer and f .X/ is a polynomial of ZŒX� which is irreducible modulo p (hence, in
particular, irreducible in ZŒX�). Notice that the cyclic ZŒX�-module ZŒX�=.p; f .X//
is isomorphic to the finite ring FpŒX�=.fp.X//, where Fp is the Galois field with p
elements and fp.X/ is the reduction mod p of f .X/.

The minimal prime ideals of ZŒX� are principal, either of the form .p/, for p
a prime integer, or of the form .f .X//, for f .X/ an irreducible polynomial of ZŒX�
(hence, in particular, primitive). In the first case we have ZŒX�=.p/ Š FpŒX�, in the
latter case ZŒX�=.f .X// is a torsion-free group of rank equal to the degree of f .X/.
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The four types of cyclic ZŒX�-modules with prime ideal annihilators described
above will play a central role in the theory of the algebraic entropies for Abelian
groups.

2.3 Trajectories and Partial Trajectories

Let  W M ! M be an endomorphism of a left module M over an arbitrary ring R.
Let F be a submodule of M. The minimal -invariant submodule of M containing
F is

T.;F/ D F C F C 2F C � � �

which is called the -trajectory of F. The submodule T.;F/ can be viewed as
the RŒX�-submodule of M generated by F. If we stop the infinite sum at the nth
summand, we obtain what is called the nth partial -trajectory:

Tn.;F/ D F C F C � � � C n�1F:

Note that, if F is finite, then Tn.;F/ is also finite for any n, and that the finitely
generated RŒX�-submodules of M are exactly the -trajectories of finitely generated
R-submodules of M. Similarly, if R is a commutative integral domain and F is a
submodule of finite rank, then also Tn.;F/ has finite rank. Less usual, but crucial
for our purposes, is to consider when F is not a submodule, but just a finite subset. In
this case Tn.;F/ is also a finite subset (the sum of two finite subsets consists of the
elements obtained by summing one element in the first summand and one element
in the second summand in all possible ways). The only operation needed in this case
is the addition, and not the multiplication by scalars in R, so the fact that M is an
R-module is redundant, and only the Abelian group structure of M is needed. From
now on, we will focus on endomorphisms  of Abelian groups G.

If F is a subgroup of G, of particular interest is when F D Zx is cyclic, in
which case we call T.;Zx/ the cyclic -trajectory generated by x and we denote
it simply by T.; x/. Cyclic trajectories are strongly related to the finite topology
on the endomorphism ring End.G/ of an Abelian group G. Recall that the finite
topology on End.G/, denoted by finG, has as basis of neighbourhoods of zero the
left ideals KF D f˛ 2 End.G/j˛.F/ D 0g, ranging F over the finite subsets of G.
The topological ring .End.G/; finG/ is Hausdorff and complete—see, for example,
[27, Theorem 107.1]. When F D fgg is a singleton, we write simply Kg. Obviously
End.G/=Kg is isomorphic through the evaluation map at g to the orbit Og D f.g/ W
 2 End.G/g. The next lemma, which will be used later on, provides a connection
between cyclic -trajectories and the subring of End.G/ generated by .

Lemma 2.1 Let  W G ! G be an endomorphism of the group G and ZŒ� the
subring of End.G/ generated by . Then:
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(1) T.; g/ is isomorphic as ZŒX�-module to ZŒ�=.ZŒ� \ Kg/, for all g 2 G;
(2) if F D fgij1 � i � ng is a finite subset of G, there is a monomorphism of

ZŒX�-modules � W ZŒ�=.ZŒ� \ KF/!
L

1�i�n T.; gi/.

The isomorphism in .1/ is the restriction of the evaluation map at g; the
embedding in .2/ is the diagonal map of the isomorphisms arising from (1) for
each of the gi’s.

2.4 Invariants and Length Functions

Given an arbitrary ring R, an invariant on Mod.R/ is a function i W Mod.R/! R
� D

R
0 [ f1g satisfying the two conditions: i.0/ D 0 and i.M/ D i.N/ when M Š N.
In the following, we will use an invariant i to define algebraic entropies, but two
additional properties are needed for i:

(i) N � M implies i.M/ � i.M=N/;
(ii) N1;N2 � M implies i.N1 C N2/ � i.N1/C i.N2/.

An invariant i is subadditive if it satisfies (i) and (ii); it is faithful if i.M/ D 0 implies
M D 0; it is discrete if the set of its values in R

� is order isomorphic to N.
The invariants we are going to investigate in this paper, introduced by Northcott-

Reufel [50] and investigated also by Vámos [63, 64], satisfy much stronger
conditions.

Definition 2.2 Let R be a ring. A length function on Mod.R/ is an invariant L W
Mod.R/! R

� satisfying the two conditions:

(A) L is additive on short exact sequences, that is, given an exact sequence: 0 !
A! B! C! 0 in Mod.R/, the equality L.B/ D L.A/C L.C/ holds;

(U) L is upper continuous, that is, for every R-module M, L.M/ D supF L.F/, where
F ranges over the set of the finitely generated submodules of M.

Note that an additive invariant L satisfies conditions (i) and (ii), and also:

(iii) N � M implies L.N/ � L.M/.

A useful characterization of upper continuity was given by Vámos in [64], who
proved that an invariant L satisfying (iii) is upper continuous if and only if L.M/ D
supi L.Mi/ whenever M D [iMi, where fMigi is a directed system of submodules of
M. This characterization will be used to prove that the entropies investigated below
are upper continuous invariants.

The three most popular examples of length functions and invariants on Mod.Z/
are given below.

Example 2.3 1) Let R D Z. Then a length function L W Mod.Z/! R
� is the rank-

function rkZ.�/, that can be defined, for any Abelian group G, as rkZ.G/ D
dimQ.Q˝Z G/. The rank-function rkZ.�/ is not faithful, since rkZ.G/ D 0 for
any torsion group G.
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2) Another length function L W Mod.Z/! R
� is defined by setting L.G/ D log jGj,

where it is understood that, if G is infinite, then log jGj D 1. The additive
property of log j�j follows by Lagrange’s theorem. Obviously log j�j is faithful
and it differs from the classical length function just by the factors log p on each
elementary group Z=pZ.

3) A faithful invariant on Mod.Z/ which is subadditive but not additive is gen,
defined by setting gen.G/ equal to the minimum number of generators of G, if
G is finitely generated, or gen.G/ D 1 otherwise. In this case gen is upper
continuous and satisfies condition (iii).

Some basic results for length functions on commutative rings proved in [50] and
[64] are collected in the next proposition; the interested reader may also wish to
consult [72], where length functions over arbitrary valuation domains have been
investigated.

Proposition 2.4 Let R be a commutative ring and L W Mod.R/ ! R
� a length

function. Then:

(1) if P1 < P2 are prime ideals of R with L.R=P2/ > 0, then L.R=P1/ D1;
(2) if R is an integral domain and1 > L.R/ D r > 0 (r 2 R), then L is essentially

the rank-function, in the sense that L D r � rk.�/;
(3) if R is Noetherian and F is a finitely generated R-module, then F has a finite

chain of submodules:

0 D F0 < F1 < F2 < � � � < Fn�1 < Fn D F

such that Fi=Fi�1 Š R=Pi for all 1 � i � n, where the Pi’s are prime ideals;
consequently, L.F/ D

P

1�i�n L.R=Pi/.

The important consequence of the preceding proposition is that, given a com-
mutative Noetherian ring R, like Z or ZŒX�, a length function L on Mod.R/ is
determined by the values it takes on the cyclic modules L.R=P/, where P ranges
in the prime spectrum Spec.R/. In fact, these values determine the values of L.F/
for every finitely generated module F, by (3), and these values determine the value
L.M/ of any module M, by upper continuity.

Example 2.5 1) Let R D Z. Then a length function L W Mod.Z/ ! R
� is

determined by the values L.Z=pZ/ (p a prime integer) and L.Z/. If 1 >

L.Z=pZ/ > 0 for all p, then necessarily L.Z/ D 1 by Proposition 2.4 (1),
and L coincides (up to multiplication by a positive real) with the classical length
function (which is equivalent to the function log j � j). If L.Z=pZ/ D 0 for all
p and1 > L.Z/ > 0, then L coincides (up to multiplication by a positive real)
with the function rkZ.�/.

2) Let R D ZŒX�. A length function L W Mod.ZŒX�/ ! R
� is determined by the

values on the cyclic modules ZŒX�=.p; f .X//, ZŒX�=.p/, ZŒX�=.f .X// and ZŒX�
(see Sect. 2.2). If 1 > L.ZŒX�/ > 0, then L essentially coincides with the
function rkZŒX�.�/, and L.R=P/ D 0 for all non-zero prime ideals.



Algebraic Entropies for Abelian Groups 143

Let R be an arbitrary ring and L W Mod.R/ ! R
� a length function. Following

[65], given an R-module M we call its fully invariant submodule zL.M/ D fx 2
MjL.Rx/ D 0g the L-singular submodule of M. This notion is useful only if L is
not faithful, since zL.M/ D 0 for all M when L is faithful. The module M is called
L-singular if zL.M/ D M and the class of the L-singular modules is denoted by
KerL. Clearly M 2 KerL if and only if L.M/ D 0.

Setting FL D fM 2 Mod.R/jL.Rx/ > 0 for all 0 ¤ x 2 Mg, the pair .KerL;FL/

is a hereditary torsion theory and zL is its associated idempotent radical. One of the
main concerns in this paper will be the investigation of the L-singular submodules
zL.G/ of the ZŒX�-modules G , and of the L-singular modules of the torsion class
KerL, when L coincides with one of the algebraic entropies we are going to introduce
in the next section.

3 Algebraic Entropies for Abelian Groups

3.1 Definition of the Algebraic Entropies

We start defining the three entropies ent, entrk and h, which use in their definition
the partial trajectories. The difference between ent and h is that the former considers
trajectories of finite subgroups, while the latter of finite subsets; they share the length
function logj � j to evaluate the size of the partial trajectories. The entropy entrk

considers trajectories of subgroups of finite rank, and it makes use of the length
function rkZ.�/ to evaluate the size of the partial trajectories.

The definition of the three entropies relies on the existence of certain limits of
sequences of non-negative real numbers, which is ensured by the following well-
known lemma due to Fekete [26]. Recall that a sequence of non-negative real
numbers fangn is subadditive if amCn � am C an for all m; n.

Lemma 3.1 (Fekete) Let fangn be a subadditive sequence of non-negative real
numbers. Then the limit lim

n!1
an=n exists finite and it coincides with infnfan=ng.

Now let  W G ! G be an endomorphism of the Abelian group G. Let F be a
finite subgroup of G; then the partial -trajectories of F form the ascending chain
of finite subgroups

F D T1.;F/ � T2.;F/ � � � � � Tn.;F/ � � � �

from which we derive the sequence of non-negative real numbers flog jTn.;F/jgn.
From the equality

TmCn.;F/ D Tm.;F/C 
mTn.;F/

and from the fact that mTn.;F/ is an epic image of Tn.;F/, we get that

log jTmCn.;F/j � log jTm.;F/j C log jTm.;F/

for all m; n, that is, the sequence flog jTn.;F/jgn is subadditive, so we can apply
Fekete’s lemma.
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If we replace the finite subgroup F by a finite subset S of G (resp., by a subgroup
of finite rank H), we get the subadditive sequence of non-negative real numbers
flog jTn.; S/jgn (resp., frk.Tn.;H//gn). We can now collect the definitions of the
three entropies considered up to now.

Definition 3.2 (1) The algebraic entropy of  with respect to the finite subgroup F
is the limit

ent.;F/ D lim
n!1

log jTn.;F/j=n:

The algebraic entropy of  is ent./ D supF ent.;F/, the sup taken over the
set of the finite subgroups of G.

(2) The rank-entropy of  with respect to the subgroup of finite rank H of G is the
limit

entrk.;H/ D lim
n!1

rk.Tn.;H//=n:

The rank-entropy of  is entrk./ D supH entrk.;H/, the sup taken over the
set of subgroups of finite rank of G.

(3) The algebraic entropy h of  with respect to the finite subset S of G is the limit

h.; S/ D lim
n!1

log jTn.; S/j=n:

The algebraic entropy h of  is h./ D supS h.; S/, the sup taken over the set
of the finite subsets of G.

A first comment is immediately in order. Since finite non-zero subgroups of G
are contained in its torsion part t.G/, it follows that ent./ D ent. � t.G//; so
the algebraic entropy ent is useful for torsion groups only and it vanishes for all
endomorphisms of torsion-free groups.

Dually, since for an arbitrary group G we have rk.G/ D rk.G=t.G//, it follows
that entrk./ D entrk. N/, where N W G=t.G/! G=t.G/ is the map induced by ; so
the rank-entropy entrk is useful for torsion-free groups only and it vanishes for all
endomorphisms of torsion groups.

The definition of the intrinsic entropy fent./ is based on a characterization
of the algebraic entropy ent./, which makes its computation limit-free. This
characterization relies on the observation that, given a subgroup F of G, and setting,
for the sake of simplicity, Tn D Tn.;F/, one has two surjective homomorphisms

Tn=Tn�1 ! Tn=.Tn�1 C .Tn \ Ker// Š nF=.Tn�1 \ 
nF/!

! nF=.Tn \ 
nF/ Š TnC1=Tn:

So we get for every n > 1 an epimorphism Tn=Tn�1 ! TnC1=Tn. This implies
that, if F is finite, then the decreasing sequence flog jTn=Tn�1jgn>1 is stationary,
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and similarly, if F has finite rank, then the sequence frk.Tn=Tn�1/gn>1 is stationary.
From these facts, an easy calculation (for details we refer to [58, Proposition 1.10])
gives the following

Proposition 3.3 Let  W G! G be an endomorphism of the Abelian group G.

(1) If F is a finite subgroup of G, then ent.;F/ D log jTnC1.;F/=Tn.;F/j for
all n large enough.

(2) If H is a subgroup of finite rank of G, then entrk.;H/ D rk.TnC1.;H/=
Tn.;H// for all n large enough.

As a byproduct of Proposition 3.3 we derive an easy way to compute the algebraic
entropy and the rank-entropy of Bernoulli shifts.

Corollary 3.4 Let ˇ W
L

N
G!

L

N
G be the right Bernoulli shift for the group G.

Then

(1) ent.ˇ/ D log jt.G/j;
(2) entrk.ˇ/ D rk.G/.

Proof We just sketch the proof. Let F be a finite subgroup of
L

N
G. Then

F � K D
L

i�n F0 for F0 a finite subgroup of t.G/. A basic property of the
entropy ensures that ent.ˇ;F/ � ent.ˇ;K/, and clearly for each n � 1 we have
ent.ˇ;K/ D log jTnC1.ˇ;K/=Tn.ˇ;K/j D log jF0j. Taking suprema, from this fact
it is not difficult to prove (1). Replacing F and F0 by subgroups of finite rank of G,
from the similar equality rk.TnC1.ˇ;K/=Tn.ˇ;K// D rk.F0/ one derives (2). ut

A consequence of Proposition 3.3 (1) and of the fact that TnC1=Tn is a quotient of
T2=T1 for all n, is that, in order to have the finiteness of ent.;F/, we do not need F
finite, but rather T2.;F/=T1.;F/ D .F C F/=F finite will suffice. Thus we are
led to the following:

Definition 3.5 Let  W G ! G be an endomorphism of the Abelian group G. A
subgroup H of G is -inert if .H C H/=H is finite.

An inductive argument shows that, if H is -inert in G, then Tn.;H/=H is finite
for all n. Finite subgroups, as well as subgroups of finite index, and fully invariant
subgroups are examples of subgroups which are -inert for all endomorphisms .
For more details of this and the related concept of fully inert subgroups, see [22, 24,
37] and [38].

We can now give the definition of intrinsic entropy.

Definition 3.6 Let  W G ! G be an endomorphism of the Abelian group G. The
intrinsic entropy of  with respect to the -inert subgroup H is the limit

fent.;H/ D lim
n!1

log jTn.;H/=Hj=n:

The intrinsic entropy of  is fent./ D supH fent.;H/, the sup taken over the set of
the -inert subgroups of G.
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An argument parallel to that used in the proof of Proposition 3.3 gives the next
result, which makes also the computation of fent./ limit-free and shows that the
algebraic entropy and the intrinsic entropy may be computed in the same way, with
the only difference that in the first case we consider finite subgroups, while in the
latter case we consider the larger family of -inert subgroups.

Proposition 3.7 Let  W G ! G be an endomorphism of the Abelian group G. If
H is a -inert subgroup of G, then fent.;H/ D log jTnC1.;H/=Tn.;H/j for all n
large enough.

The first question arising from the above definition is: can we compare the
intrinsic entropy of an endomorphism with the algebraic entropy ent and with the
entropy h? The answer is given by the following proposition.

Proposition 3.8 Let  W G ! G be an endomorphism of the Abelian group G.
Then

(1) ent./ � fent./ � h./;
(2) if G is a torsion group, then the two inequalities are indeed equalities.

Proof (1) Since the family of finite subgroups of G is contained in the family of
-inert subgroups, and since ent and fent may be computed in the same way,
as Proposition 3.3 and Proposition 3.7 show, the inequality ent./ � fent./
holds. To prove the latter inequality, let H be a -inert subgroup of G. Then
.H C H/=H is finite, hence there exists a finite subset S of G such that
H C H D H C S; an easy inductive argument shows that Tn.;H/ D
HCTn.; S/ for all n, hence jTn.;H/=Hj D j.HCTn.; S//=Hj � jTn.; S/j.
Taking logarithms, dividing by n and passing to the limit we get fent.;H/ �
lim

n!1
log jTn.; S/j=n � h./, consequently fent./ � h./.

(2) If G is torsion, every finite subset of G is contained in a finite subgroup, from
which it immediately follows that ent./ D h./. ut

We will see that also the inequality entrk./ � fent./ holds. Instead than giving
a direct proof, we prefer to postpone it after the Addition Theorem will be available.

In analogy with Proposition 3.3, Proposition 3.7 can be used to compute the
intrinsic entropy of Bernoulli shifts. As the case of torsion groups is covered by
Corollary 3.4, since in that case the intrinsic entropy coincides with the algebraic
entropy, by Proposition 3.8, we consider only the case of torsion-free groups.

Corollary 3.9 Let ˇ W
L

N
G!

L

N
G be the right Bernoulli shift for the torsion-

free group G. Then fent.ˇ/ D1, and consequently h.ˇ/ D1.

Proof One can easily restrict to the case G D Z; so consider the right shift on
L

n2N Zn, with Zn D Z for each n. Fix an integer k > 1 and set Hk D Z0 ˚

.
L

n
1 kZn/. For each n � 1 we have

Tn.ˇ;Hk/ D Z0 ˚ � � � ˚ Zn�1 ˚ kZn ˚ kZnC1 ˚ � � � ;
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therefore jTn.ˇ;Hk/=Hkj D j.Z1˚ � � � ˚ Zn�1/=.kZ1˚ � � � ˚ kZn�1/j D kn�1. This
shows that the subgroup Hk is -inert in G. Now

fent.ˇ;Hk/ D lim
n!1

log jTn.ˇ;Hk/=Hkj=n D lim
n!1

log.kn�1/=n D log k:

Consequently fent.ˇ/ � supHk
fent.ˇ;Hk/ D supk log k D1. ut

Basic properties satisfied by the four algebraic entropies defined in this section
are listed below; their proofs are straightforward. Denoting by Ent an arbitrary
entropy among ent; entrk;fent; h, and  W G ! G,  W K ! K endomorphisms
of groups, the following hold:

(i) if  and  are conjugated endomorphisms of the isomorphic groups G;K(i.e.
there exists an isomorphism � W G ! K such that � ı  D  ı � ), then
Ent./ D Ent. /;

(ii) Ent.k/ D k � Ent./ for every k � 1;
(iii) Ent. ˚  / D Ent./C Ent. /;
(iv) if H is a -invariant subgroup of G, then Ent./ � Ent. N/, where N W G=H !

G=H is the induced map;
(v) if H is a -invariant subgroup of G, then Ent./ � Ent. � H/;

(vi) if G is the union of a directed system of -invariant subgroups Gi (i 2 I), then
Ent./ D supi Ent. � Gi/.

Some of the above properties are used to prove the Addition Theorem (see next
section), and, except (ii) and (vi), they are obvious consequences of it.

3.2 The Addition Theorem

Let Ent denote any function among entrk;fent and h. We look at Ent as a function

Ent W Mod.ZŒX�/! R
�

defined by setting Ent.G/ D Ent./. In a similar way we look at ent as the function

ent W Tor.ZŒX�/! R
�

defined by ent.G/ D ent./, where Tor.ZŒX�/ consists of those ZŒX�-modules G

such that G is a torsion group.
Note that property (i) in the preceding section ensures that the functions Ent W

Mod.ZŒX�/ ! R
� and ent W Tor.ZŒX�/ ! R

� are invariants. Furthermore,
properties (iii) and (iv) ensure that Ent and ent are subadditive invariants, property
(v) ensures that they satisfy property (iii) in Sect. 2.4, and property (vi) that they are
upper continuous invariants.
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Definition 3.10 We say that the function Ent (respectively, ent) satisfies the
Addition Theorem (AT, for short) if it is additive on Mod.ZŒX�/ (respectively, on
Tor.ZŒX�//.

Recalling property (III) in Sect. 2.1, this amounts to say that, if H is a -invariant
subgroup of the group G endowed with the endomorphism , then Ent./ D
Ent. � H/C Ent. N/, where N W G=H ! G=H is the map induced by  (similarly
for ent with G torsion).

Notice that we cannot hope that ent satisfies AT on the whole category
Mod.ZŒX�/. In fact, let ˇ W

L

N
Z !

L

N
Z be the right Bernoulli shift; consider

the induced map Ň W
L

N
Z=nZ !

L

N
Z=nZ, where n > 1 is a fixed integer.

From Corollary 3.4 we know that ent. Ň/ D log n, while ent.ˇ/ D 0, since
L

N
Z is

torsion-free; therefore, ent is not additive on the exact sequence of ZŒX�-modules

0! .
M

N

nZ/ˇ ! .
M

N

Z/ˇ ! .
M

N

Z=nZ/ Ň ! 0:

The main achievements of the whole theory of the algebraic entropies, one for
each different entropy, are collected below in a single statement.

Theorem 3.11 (Addition Theorem) The functions entrk;fent and h satisfy AT on
Mod.ZŒX�/, and the function ent satisfies AT on Tor.ZŒX�/.

The first proof of AT, given for the entropy ent in [19], was by induction on
the values of ent. N/, where N W G=H ! G=H is the map induced by  on the
factor group G=H of G modulo the -invariant subgroup H of G. This approach
is possible since ent is a discrete invariant. The proof of AT for the four entropies
always requires hard work, and there is no room in a survey like this to give full
details of them. But we think that it is useful for the interested reader to have an idea
of the tools and of the techniques used to prove AT; therefore we will outline:

A) the adaptation to ent of the proof of AT given in a recent paper [56] for
entropies induced by arbitrary length functions. This result covers, with the due
modifications, also AT for the rank-entropy entrk. However, it is worthwhile
remarking that in [58], using the properties of the rank-entropy, it is proved that
entrk.G/ D rkZŒX�.G/. From this equality AT for entrk follows as an immediate
corollary;

B) the proof of AT for fent given in [25], with an improvement at a certain step
given in [30].

We do not offer even a sketch of the more complicated proof of AT given in [18]
for the entropy h. It is worthwhile recalling that this proof was available some years
before the submission for publication of [18], and offered a basis and inspiration for
the proof of AT for fent in [25].

Outline A The proof that, given an endomorphism  W G! G of a torsion group G
and a -invariant subgroup H of G, then ent./ D ent. � H/Cent. N/, is achieved
via the following steps:
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A.1. Reduction to an injective endomorphism passing from  to N, where N W
G=K1 ! G=K1 is the map induced by  on the quotient of G modulo the
hyperkernel K1 D [nKern, showing that ent./ D ent. N/.

A.2. Reduction to an automorphism by means of the functor � ˝ZŒX� ZŒX˙1�

(localization at ZŒX˙1�); setting N D G ˝ZŒX� ZŒX˙1�, one can prove that
ent./ D ent. /, using the fact that N is isomorphic to the direct limit of the

directed system: G


! G


! � � �


! G


! � � � .

A.3. Proof of AT in case  is an automorphism, using the fact that, in this case, one
can avoid the limit calculation, since it is possible to prove that

ent./ D sup
N
flog jN=�1Njg;

where the sup is taken over the set of �1-invariant subgroups N of G having
the property that N=�1N is finite.

The proof outlined above is completely different from the proof of AT given in
[19] for ent and from that in [60] for algebraic entropies induced by discrete length
functions. However, non-discrete length functions appear as soon as the Noetherian
condition on the ground ring is no longer assumed [73], and in this non-discrete
case the new proof in [56] is needed. We recall that a limit-free computation of the
entropy ent for endomorphisms of p-groups was found also in [12].

Outline B The proof that, given an endomorphism  W G ! G of an arbitrary
group G and a -invariant subgroup H of G, then fent./ D fent. � H/C fent. N/,
is achieved via the following steps.

B.1. Reduction from the general case to the case when G D T.;F/, for F a
finitely generated subgroup of G. This reduction follows from the general
fact, holding over a Noetherian ring like ZŒX�, that the additivity of an upper
continuous invariant can be tested looking only at finitely generated modules.
Of course, this needs the preliminary proof that the invariant fent is upper
continuous. This fact is proved using basic simple properties of fent and
Vámos’s characterization of upper continuity mentioned after Definition 2.2.

B.2. Proof of AT in case G D T.;F/ in two different cases, according to whether
G has finite or infinite rank. In the crucial case that G has finite rank, one
can consider separately the torsion-free and the torsion case, via a thorough
inspection of the structure of G. The torsion-free case is treated using next
steps B.3 and B.4; the torsion case uses AT for ent.

B.3. If  W G! G is an endomorphism of a torsion-free group G, and  W D.G/!
D.G/ is the unique extension of  to its divisible hull, then fent./ D fent. /.

B.4. Proof of AT in case G D T.;F/ is torsion-free of finite rank and H is a
-invariant pure subgroup; by means of B.3 one can pass to an endomorphism
 of Q

n and a  -invariant Q-vector subspace K, and show that fent. / D
fent. � K/ C fent. N / (where N W Qn=K ! Q

n=K is the induced map).
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This step for Q-vector spaces was proved in [25] with the aid of the Intrinsic
Yuzvinski Formula (see next Sect. 3.3), and in a direct simpler way in [30].

Remark 3.12 The proof of AT for the algebraic entropy h given in [18] requires at
a certain step ([18, Proposition 3.12]) the Algebraic Yuzvinski Formula (AYF for
short; see next section). This step is analogous to step B.4 above for h. It would be
interesting to have a proof of this step for the algebraic entropy h similar to that
given in [30] for fent.

We already mentioned in step B.1 above that fent is an upper continuous invariant
on Mod.ZŒX�/. Observe that ent is upper continuous by definition on Tor.ZŒX�/.
Furthermore, the upper continuity on arbitrary ZŒX�-modules G of entrk depends
on the fact that, given a subgroup H of finite rank of G, there exists a finitely
generated subgroup F of H such that rk.H/ D rk.F/. Finally, the proof that h is
upper continuous makes use, as in case of fent, of Vámos’s characterization of upper
continuity mentioned after Definition 2.2, and of basic properties of h. So we have
the following

Proposition 3.13 The entropies entrk;fent and h are upper continuous, therefore
they are length functions on Mod.ZŒX�/. The algebraic entropy ent is upper
continuous, therefore it is a length function on Tor.ZŒX�/.

The four entropies considered in Proposition 3.13 are not faithful invariants. The
investigation of the consequences of this fact will be made in Sect. 3.5.

Looking at Sect. 2.2 on cyclic ZŒX�-modules, the advantage of having at disposal
Proposition 3.13 is that entrk;fent and h are completely determined by the values
they assume on the cyclic ZŒX�-modules ZŒX�=.p; f .X// (f .X/ irreducible mod p),
ZŒX�=.p/ (p prime integer), ZŒX�=.f .X// (f .X/ irreducible) and ZŒX�; also, their
comparison follows easily from the comparison of their values on these cyclic
modules. Concerning the algebraic entropy ent, it is enough to consider the values
it assumes on the ZŒX�-modules which are torsion groups, namely, ZŒX�=.p; f .X//
and ZŒX�=.p/.

The following table shows the different values on these cyclic ZŒX�-modules of
the four entropies. In the fourth row, where log s and

P

j�ij>1

log j�ij appear, s � 1

denotes the leading coefficient of the irreducible polynomial f .X/ 2 ZŒX�, and the
�i denote its (complex) eigenvalues.
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TABLE OF THE VALUES OF THE 4 ENTROPIES ON THE CYCLIC MODULES
ZŒX�=P

entrk ent fent h

ZŒX�=.p; f.X// 0 0 0 0

ZŒX�=.p/ 0 log p log p log p

ZŒX�=.f.X// 0 0 log s log sC
P

j�ij>1

log j�ij

ZŒX� 1 0 1 1

The comparison between the four entropies, included the inequality entrk � fent,
can be easily deduced from the preceding table. We remark that some computation
in the above table is obvious, as the 0’s in the first row, due to the fact that
ZŒX�=.p; f .X// Š FpŒX�=.fp.X// is a finite group. Some other computation is
easy and has already been made, as the value log p in the second row [since
ZŒX�=.p/ Š FpŒX�—see Corollary 3.4 (1), and Proposition 3.8 (2)], or the value
entrk.ZŒX�/ D 1 [see Corollary 3.4 (2)]. Some other computation is less easy, such
as fent.ZŒX�/ D 1 D h.ZŒX�/ proved in Corollary 3.9. Finally, the computations of
the values different from 0 in the third row are challenging, and are the subject of
the next Sect. 3.3.

3.3 Algebraic Yuzvinski Formulas and Uniqueness Theorems

Let f .X/ 2 ZŒX� be a primitive polynomial of degree n � 1, not necessarily
irreducible, with leading coefficient s � 1 and (complex) eigenvalues �1; � � � ; �n

(counted with their multiplicities). The (additive) Mahler measure of f .X/ is

m.f .X// D log sC
X

j�ij>1

log j�ij:

The Mahler measure was first considered by Lehmer in 1933 [43] and later on
defined independently by Mahler in 1962 [46]. The famous Lehmer’s Problem in
number theory asks whether the infimum of the positive Mahler measures of monic
integral polynomials is strictly positive. The paper [39] reports that Mossinghoff
et al. verified by computer that the number log�, where � D 1:17628 : : : :: is the
Lehmer number, i.e., the largest real root of the palindromic polynomial

f�.X/ D X10 C X9 � X7 � X6 � X5 � X4 � X3 C X C 1;

is the smallest positive Mahler measure for all monic integral polynomials of degree
up to 40. We refer to [39, 49] and [62] for more information on this subject.
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The Algebraic Yuzvinski Formula, proved recently by Giordano Bruno-Virili in
[29], relates the algebraic entropy h of an endomorphism of a finite dimensional
Q-vector space to the Mahler measure of its characteristic polynomial over Z, which
is nothing other than the (monic) characteristic polynomial over Q multiplied by the
minimal common multiple s of the denominators of its rational coefficients.

Theorem 3.14 (Algebraic Yuzvinski Formula-AYF) Let  W Qn ! Q
n be a

linear transformation. Then h./ D m.f .X//, where f .X/ is the characteristic
polynomial of  over Z.

It is worth mentioning that a first step in demonstrating the Algebraic Yuzvinski
Formula was done proving the case zero of AYF in [23], with arguments exclusively
of linear algebra. Indeed, Corollary 1.4 in [23] shows that h./ D 0 if and only if
m.f .X// D 0.

The Intrinsic Algebraic Yuzvinski Formula, proved in [25], is a simplified
variation of the Algebraic Yuzvinski Formula, related to the intrinsic algebraic
entropy fent rather than to the algebraic entropy h.

Theorem 3.15 (Intrinsic Algebraic Yuzvinski Formula-IAYF) Let  W Qn ! Q
n

be a linear transformation. Then fent./ D log s, where s is the leading coefficient
of f .X/, the characteristic polynomial of  over Z.

It is not difficult to see that AYF and IAYF are equivalent to the equalities
h.ZŒX�=.f .X// D m.f .X// and fent.ZŒX�=.f .X// D log s, respectively, which are
the values different from 0 in the third row of the table in the preceding Sect. 3.2.

The source of AYF is the nice formula obtained by Yuzvinski in 1968 [71], which
states that the topological entropy of a continuous endomorphism  W OQn ! OQn

( OQ is the Pontryagin dual of Q) equals the Mahler measure of the characteristic
polynomial over Z of the dual endomorphism O W Qn ! Q

n. We refer to the papers
by Giordano Bruno-Virili [29] and [30] for detailed descriptions, comparison and
comments on these theorems.

It is outside of our objectives to enter into the very complicated proof of the Alge-
braic Yuzvinski Formula concerning the algebraic entropy h; the interested reader
can consult directly the papers [29] and [30]. In this survey we confine ourselves
to sketch the proof of the Intrinsic Algebraic Yuzvinski Formula concerning the
intrinsic entropy fent, which explains in some sense the somewhat mysterious term
log s appearing in AYF. We will not follow the original proof in [25], but the simpler
and direct proof provided recently in [30].

Outline of the Proof of IAYF

(i) The core of the proof is the case of f .X/ irreducible. Under this hypothesis,
for any 0 ¤ x 2 Q

n, the nth partial -trajectory F D Tn.; x/ has rank n,
and a simple argument shows that fent./ D fent.;F/. Since f ./.x/ D 0, we
get sn.x/ 2 F, hence .F C F/=F is a quotient of Z=sZ and consequently
fent.;F/ � log j.F C F/=Fj � log s. To prove the converse inequality, one
first needs to prove that every polynomial p.X/ 2 ZŒX� such that p./.x/ D 0

is a multiple in ZŒX� of f .X/. Then, assuming by way of contradiction that
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jTkC1.;F/=Tk.;F/j D t < s for some k, one obtains a primitive polynomial
p.X/ 2 ZŒX� with leading coefficient t such that p./.x/ D 0. So, from the fact
that f .X/ divides p.X/, one derives that s divides t, a contradiction. Henceforth,
jTkC1.;F/=Tk.;F/j D s for all k and from Proposition 3.7 one concludes
that fent./ D log s.

(ii) The passage from the irreducible case to the general case when f .X/ is just
primitive makes use of a typical argument of finite dimensional vector spaces.
The Q-vector space Q

n D V is the union of a finite chain of -invariant
subspaces 0 D V0 < V1 < � � � < Vk < VkC1 D V such that each map
i W ViC1 ! Vi induced by  has characteristic polynomial fi.X/ over Z

which is irreducible. Let si be the leading coefficient of fi.X/ for each i. Then

f .X/ D
k
Q

iD0
fi.X/ and s D

k
Q

iD0
si, so from step B.4 in Outline B in Sect. 3.2 we

deduce from (i) that fent./ D
kC1
P

iD1

fent.i/ D
k
P

iD0
log si D log s.

Recall that from Proposition 2.4 we deduced that a length function L W

Mod.ZŒX�/ ! R
� is determined by the values it takes on the cyclic modules

ZŒX�=P, where P ranges over the prime spectrum Spec.ZŒX�/. From this fact we
can derive uniqueness results for the various entropies considered up to now.

The simplest case is when L D entrk, because of the result by Northcott-Reufel
[50] mentioned earlier, which states that a length function L on a domain R such that
L.R/ D 1 necessarily coincides with the function rk.�/. When R D ZŒX�, the fact
that entrk.ZŒX�/ D 1 gives the following

Theorem 3.16 The rank entropy entrk is the unique length function L W

Mod.ZŒX�/! R
� such that L.ZŒX�/ D 1; consequently entrk D rkZŒX�.

Note that entrk.ZŒX�/ D 1 implies that entrk.ZŒX�=P/ D 0 for all non-zero prime
ideals of ZŒX�, by Proposition 2.4 (1). Also the case of the algebraic entropy ent
is very simple, since only its values on the torsion groups ZŒX�=.p/ Š FpŒX� (p a
prime integer) must be checked.

Theorem 3.17 The entropy ent is the unique length function L W Tor.ZŒX�/ ! R
�

such that L.ZŒX�=.p// D log p for every prime integer p.

Finally, the uniqueness results for the intrinsic entropy fent and the algebraic
entropy h take care of the fact that the two entropies coincide with ent on torsion
groups, and of AYF and IAYF.

Theorem 3.18 The intrinsic entropy fent is the unique length function L W

Mod.ZŒX�/ ! R
� such that L.ZŒX�=.p// D log p for every prime integer p

and L.ZŒX�=.f .X// D log s for every primitive polynomial f .X/ with leading
coefficient s.

Theorem 3.19 The algebraic entropy h is the unique length function L W

Mod.ZŒX�/ ! R
� such that L.ZŒX�=.p// D log p for every prime integer p
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and L.ZŒX�=.f .X// D log sC
P

j�ij>1

log j�ij for every primitive polynomial f .X/ with

leading coefficient s and eigenvalues �i.

3.4 Adjoint Algebraic Entropy, Hopficity and Co-Hopficity

It is well known in measure-theoretic approaches to entropy that, in certain
circumstances, measure-preserving transformations having zero entropy are nec-
essarily invertible—see, for example, Chap. IV of the notes by Ward [68]. An
obvious algebraic analogue of this result asks if monomorphisms having zero
algebraic entropy are necessarily invertible. The global version of this question:
“if G is a group all whose endomorphisms have zero algebraic entropy, is every
monomorphism necessarily invertible?”, is of interest since groups with this type
of invertibility property have long been studied under the name of co-Hopfian
groups. Recall that a group is said to be co-Hopfian if every monomorphism is an
automorphism. In the case of p-groups, the following connection was observed in
[19] in a Note after Proposition 2.9:

Proposition 3.20 If G is a p-group and ent./ D 0 for all  2 End.G/, then G is
co-Hopfian.

The proof of Proposition 3.20 is an immediate consequence of the fact that
ent./ D 0 if and only if  is strongly recurrent, that is, for every x 2 G there
exists an integer n > 0 such that n.x/ D x, and this fact follows immediately from
the equivalence of (1) and (2) in Theorem 3.38 in the next section.

Proposition 3.20 motivates the following definition, of general interest also for
the other entropies.

Definition 3.21 Let Ent 2 fent; entrk;fent; hg be one of the entropies discussed
above. Given a group G, the global entropy of G is the supremum of Ent./, where
 ranges over End.G/, in symbols:

gl:Ent.G/ D supfEnt./ W  2 End.G/g:

From the basic result (ii) at the end of Sect. 3.1, which says that Ent.k/ D k �Ent./
for every k � 1, it immediately follows that the global entropy of every group G is
either 0 or1. Using this terminology, Proposition 3.20 says that for a p-group G, if
gl:ent.G/ D 0 then G is co-Hopfian.

There is, of course, a notion weakly dual to co-Hopficity: a group G is said to
be Hopfian if every surjective endomorphism of G is an automorphism. (For further
discussion of these notions, particularly in the context of Abelian groups, see, for
example, [35] and the references therein.)

In trying to connect the notion of Hopficity to the vanishing of some type of
entropy, a ‘weakly dual’ notion of entropy was used; this entropy was introduced
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in [20] and investigated in [59] and [34]. In this ‘weakly dual’ notion, one replaces
finite subgroups by subgroups of finite index and trajectories utilize inverse images
of an endomorphism rather than images. The resulting notion is called adjoint
entropy—the reason for the choice of name will become apparent below.

Specifically let G be a group and N a finite index subgroup of G,  an
endomorphism of G, and for every fixed positive natural number n set

Cn.;N/ D N \ �1N \ �2N \ � � � \ �.n�1/N:

It is pointed out in [20, 34] that Cn.;N/ is a finite index subgroup in G. The
subgroup Cn.;N/ is called the nth partial co-trajectory of N with respect to , and
the subgroup C.;N/ D \n
0

�nN is called the co-trajectory of N with respect
to .

Denote log jG=Cn.;N/j by In.;N/, then the following limit exists as shown in
[20, 34]:

I.;N/ D lim
n!1

In.;N/

n
:

Let N .G/ denote the family of all finite index subgroups of G. Then the adjoint
entropy of  is defined as

ent�./ D supfI.;N/ j N 2 N .G/g:

A word is in order about the choice of name: if G is a group,  2 End.G/ and OG is
the Pontryagin dual of G (the continuous characters of G), O denotes the Pontryagin
adjoint of  (so O.�/ D � ı  for all � 2 OG). Then the following main result was
shown in [20].

Theorem 3.22 If  W G ! G is an endomorphism of a group G, then ent�./ D
ent. O/.

Notice that, unlike the algebraic entropy which works non-trivially only for
torsion groups, the adjoint entropy is of interest in the category of all reduced
groups; since a divisible group has no subgroups of finite index other than the whole
group itself, adjoint entropy is trivial for divisible groups. We shall see shortly that
a non-reduced group has adjoint entropy equal to that of its reduced summand.

The adjoint entropy has many interesting properties, but it is worth pointing out
immediately that it fails to satisfy the fundamental property of the other entropies
discussed in this survey: the Addition Theorem fails for adjoint entropy. Indeed,
adjoint entropy does not even satisfy the weaker monotonicity property: suppose
B D

L

n
1 Z.p
n/ is a standard p-group and � is the left Bernoulli shift on B, then it

is easy to show that ent�.�/ D 1. However, if D denotes a divisible hull of B, the
endomorphism � of B extends to an endomorphism  of D. However, ent�. / D 0
as D is divisible, while ent�. � B/ D ent�.�/ D1.

When H is a -invariant subgroup of a group G and ent�.H/ D 0, we do,
however, get a weak analogue of the Addition Theorem:
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Proposition 3.23 Let  be an endomorphism of a group G, H a -invariant
subgroup of G, and  W G=H ! G=H the induced endomorphism. If ent�. �
H/ D 0, or H is of finite index in G, then ent�./ D ent�./.

For a proof see [20, Lemma 4.10] and [34, Proposition 2.9]. Notice that an
immediate consequence is that if G D D˚R, where D is divisible and R is reduced,
then for any endomorphism  of G, we have ent�./ D ent�./, so that the adjoint
entropy for a non-reduced group is the same as the adjoint entropy for the reduced
part.

The situation improves, however, if one works with pure subgroups. In particular,
the following holds:

Proposition 3.24 Let G be a group and  2 End.G/. If H is a -invariant pure
subgroup of G and N is the induced endomorphism on G=H, then

(i) ent�./ � ent�. � H/;
(ii) ent�./ � ent�. N/;

(iii) if ent�. � H/ D 0, then also ent�./ D ent�. N/.

The proof of Proposition 3.24 is straightforward, if a little computational; see,
for example, [20, Lemma 4.8], [59, Proposition 1.2] or [34, Proposition 2.9]. The
significance of pure subgroups in this context is, in part, explained by the following
fact observed in the last two of the preceding references.

Proposition 3.25 If H is a pure subgroup of a group G, then there is an injection
from N .H/ into N .G/. Moreover, if H is also dense in the natural topology on G,
then the injection is actually a bijection.

The proof of Proposition 3.25 follows easily from the observation that if H is
pure in G and M is a finite index subgroup of H with nH � M, then G=nH splits as
H=nH˚X=nH for some X. The injection is then given by M 7! MCX. When H is
also dense, the mapping M C X 7! .M C X/ \ H is the required inverse.

The import of Proposition 3.25 is that if H is a pure dense -invariant subgroup of
G, then ent�./ D ent�. � H/. If G is a reduced p-group, then a basic subgroup B
of G is pure and dense but not in general -invariant for an arbitrary endomorphism
 of G. However, by utilizing an old result of Szele—a basic subgroup of a p-group
is always an endomorphic image of the group—one can establish the following
interesting result:

Theorem 3.26 A reduced p-group G satisfies gl:ent�.G/ D 0 if, and only if, it is
finite.

Details of the proof may be found in [59, Theorem 2.6] or [34, Corollary 2.24].
Recall that the first Ulm subgroup of a group G is U.G/ D

T

n
1

nG (see [27,

Sect. 6]); it is well known that U.G/ is the intersection of all the finite index
subgroups of G. The following observation—see, for example, [34, Lemma 2.19]—
is key to establishing a link between adjoint entropy and Hopficity.
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Lemma 3.27 Suppose that an epimorphism  of a group G has zero adjoint
entropy, then for any finite index subgroup N of G, the kernel of  is contained
in N.

The precise connection is given by the following:

Theorem 3.28 If G is a reduced group such that gl:ent�.G/ D 0 and U.G/ is
Hopfian, then G is Hopfian. In particular, if G is reduced torsion-free such that
gl:ent�.G/ D 0, then G is Hopfian.

Proof Suppose that  is an epimorphism of G. Then  has zero adjoint algebraic
entropy and so, by Lemma 3.27, letting N range over the finite index subgroups of
G, we have Ker �

T

N D
T

nG D U.G/. Since  is epic, G Š G=Ker and
so U.G/ Š U.G=Ker/. However, Ker � U.G/ and as U is a radical, we have
U.G=Ker/ D U.G/=Ker. Thus, U.G/ Š U.G/=Ker. If Ker ¤ 0, then U.G/
would have a proper isomorphic quotient, contrary to U.G/ being Hopfian. So we
conclude Ker D 0 and G is Hopfian as required.

The final observation follows immediately from the fact that a reduced torsion-
free group has trivial first Ulm subgroup. ut

We hasten to remark that the converse of Theorem 3.28 is not true: Corner [9]
gives an example of a Hopfian group which has an endomorphism of infinite adjoint
entropy—see [34, Sect. 3].

The observant reader may have noticed that we have only exhibited groups
having endomorphisms with zero or infinite adjoint entropy. This is no coincidence
since we have the following striking result ([20, Theorem 7.6]) establishing a
dichotomy for the adjoint entropy, which has no counterpart in algebraic entropy.

Theorem 3.29 If G is a group and  2 End.G/, then either ent�./ D 0 or
ent�./ D1.

The proof of Theorem 3.29 relies on the fact that, if ent�./ > 0, then there exists
a prime p such that ent�.p/ > 0, where p W G=pG ! G=pG is the induced map.
Then the core of the proof is contained in the next remarkable result of independent
interest on vector spaces.

Theorem 3.30 Let  W V ! V be a linear transformation of the vector space V
over the finite field Fp. Then ent�. / <1 if and only if ent�. / D 0, if and only if
 is algebraic over Fp (i.e., V is a bounded FpŒX�-module).

The reader interested in a more extensive treatment of the rank-entropy of linear
transformations of vector spaces should consult [31].

Theorem 3.28 motivates the study of the reduced torsion-free and mixed groups
G such that gl:ent�.G/ D 0. The classification of torsion-free groups with this
property is essentially an impossible task since the groups exist in such abundance.
A good method of generating interesting examples is via the so-called Realization
Theorems. These theorems have their origin in Corner’s famous result [6]: every
countable reduced torsion-free ring is the endomorphism ring of a countable reduced
torsion-free group (see Sect. 4.3 for more details). There have been numerous
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generalizations of this result, for a good survey of results see the book by Göbel
and Trlijaj [33]. Typical results obtained in this way are the following which may be
found in [59] and [34] (recall that a group is said to be superdecomposable if every
nonzero direct summand admits a non-trivial decomposition as a direct sum).

Example 3.31 (i) There exist arbitrary large indecomposable torsion-free groups
G such that gl:ent�.G/ D 0 and arbitrary large indecomposable groups with
endomorphisms of adjoint entropy1.

(ii) There exist countable superdecomposable torsion-free groups G such that
gl:ent�.G/ D 0 and countable superdecomposable torsion-free groups with
endomorphisms of adjoint entropy1.

As far as mixed groups are concerned, results are sparse unless we impose the
restriction that the reduced mixed group G have countable torsion-free rank. This
restriction enables the use of a result of Corner which is analogous to Szele’s
theorem on basic subgroups being endomorphic images. Details may be found in
[34, Sect. 4]; we restrict ourselves to one result:

Theorem 3.32 Let G be a reduced mixed group of countable torsion-free rank
having torsion subgroup a p-group T. Then gl:ent�.G/ D 0 if, and only if,
G D T ˚ X, where T is finite and X is a reduced countable torsion-free group
with gl:ent�.X/ D 0.

There is one other special class of mixed groups that is easily handled from
the viewpoint of adjoint entropy. Recall that a group G is cotorsion if it satisfies
Ext.Q;G/ D 0 – details of such groups may be found in [27, Sect. 54]. The
following may be found in [59, Theorem 3.4] or [34, Proposition 4.4] (recall that the
natural topology on a group G has as basis of neighbourhoods of 0 the subgroups
nG, n ¤ 0).

Theorem 3.33 A reduced cotorsion group G has gl:ent�.G/ D 0 if, and only if, it
has the form G D

Q

p Gp where, for each prime p, Gp is a finitely generated p-adic
module, equivalently, if G is compact in the natural topology.

3.5 Ent-Singular Submodules and Ent-Singular Modules

Let R be an arbitrary ring and L W Mod.R/ ! R
� a length function. Given an

R-module M, at the end of Sect. 2.4 we considered its fully invariant submodule
zL.M/ D fx 2 MjL.Rx/ D 0g, called the L-singular submodule of M. The first
goal in this section is to describe the L-singular submodule of a given ZŒX�-module
G , when the length function L is an algebraic entropy, that is, when L D Ent for
some Ent 2 fentrk;fent; hg, or L D ent and G is a torsion group. Our second goal
is to characterize the Ent-singular modules, that is, the ZŒX�-modules G such that
Ent./ D 0, and the ent-singular modules, that is, those G 2 Tor.ZŒX�/ such that
ent./ D 0.
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Inspired by the topological Pinsker factor of a topological flow .X; / (see [2]
and [41]), Dikranjan-Giordano Bruno defined in [13] the Pinsker subgroup of an
algebraic flow .G; /, where  W G! G is an endomorphism of an Abelian group.
In our notation and terminology, given a ZŒX�-module G , the Pinsker subgroup of
G is the h-singular submodule of G , that is,

zh.G/ D fx 2 G j h. � T.; x// D 0g:

This is the greatest ZŒX�-submodule H of G such that h. � H/ D 0.
One characterization of zh.G/ given in [13] needs the following notions. Define

by induction on n � 0 an increasing chain of -invariant subgroups of G as follows:

P0.G/ D 0 I PnC1.G/ D fx 2 G j r.x/ � x 2 Pn.G/; for some r � 1g

and let P1.G/ D [nPn.G/. Then define by induction on n � 0 another increasing
chain of -invariant subgroups of G as follows:

Q0.G/ D 0 I QnC1.G/ D fx 2 G j r.x/ � s.x/ 2 Qn.G/; for some r > s � 0g

and let Q1.G/ D [nQn.G/. The subgroup Q1.G/ D fx 2 G j r.x/ D
s.x/ for some r > s � 0g is the set of quasi-periodic points of G.

It is not difficult to prove that

P1.G/ D fx 2 G j .n1 � 1/ � � � .nk � 1/.x/ D 0I for some k � 1; ni � 1g

Q1.G/Dfx 2 Gjn
k
Y

1

.ni �1/.x/D0 orn.x/D0I for some k � 1; n � 0; ni�1g:

Then, recalling that Ker1./ D [nKer.n/ denotes the hyperkernel of , the
following characterization of the h-singular submodule of G is proved in [13].

Theorem 3.34 Let  W G ! G be an endomorphism of an Abelian group G. Then
the Pinsker subgroup zh.G/ of G coincides with Q1.G/ D P1.G/˚ Ker1./.

Replacing the algebraic entropy h by the intrinsic entropy fent, we may consider
in a similar way the fent-singular submodule of G , which is the greatest ZŒX�-
submodule H of G such that fent. � H/ D 0. This subgroup, denoted by z

eent.G/,
is called intrinsic Pinsker subgroup of G in [36]. From the definition of L-singular
submodule, applied to L D fent, we get

z
eent.G/ D fx 2 G j fent. � T.; x// D 0g:

We have the following characterizations of the fent-singular submodule of G

(see [36]).
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Theorem 3.35 Let  W G ! G be an endomorphism of an Abelian group G. Then
the fent-singular submodule of G satisfies: z

eent.G/ D fx 2 G j f ./.x/ D 0,
for some f .X/ monic 2 ZŒX�g D fx 2 G j T.; x/ D Tn.; x/; for some n � 1g.

The subgroup

t.G/ D fx 2 G j T.; x/ D Tn.; x/ for some n � 1g

was defined for torsion groups G in [19]. It coincides with zent.G/. It follows from
the above characterization of z

eent.G/ and from [14] that

t.G/ D t.G/ \ zh.G/ D t.G/ \ z
eent.G/:

When G is an arbitrary group, we can also define zentrk.G/, namely, the entrk-
singular submodule of G , which coincides with the torsion part of the ZŒX�-module
G , that is,

zentrk.G/ D fx 2 G j f ./.x/ D 0 for some 0 ¤ f .X/ 2 ZŒX�g:

Since we have the inequalities of length functions: entrk � fent � h, for the
corresponding radicals the following inequalities hold: zh � z

eent � zentrk . So for
the three Ent-singular submodules of G we have zh.G/ � z

eent.G/ � zentrk.G/.
These inclusions may be strict, as the next simple examples show.

Example 3.36 Let G D Ze0 ˚ Ze1 be the free group of rank 2, and let  W G! G
be the endomorphism defined by setting:

.e0/ D e1 ; .e1/ D e0 C e1:

The characteristic polynomial of  over Z is f .X/ D X2 � X � 1, so the eigenvalues
of  are .1C

p
5/=2 and .1�

p
5/=2. It follows that 2.x/ D .x/Cx for all x 2 G,

consequently T.; x/ D T2.; x/ and so z
eent.G/ D G D zentrk.G/. On the other

hand,  is injective, hence Ker1./ D 0, and an easy check gives Pn.G/ D 0 for
all n � 0, consequently zh.G/ D 0 by Theorem 3.34. Note that from the AYF and
the IAYF we get that h./ D log..1C

p
5/=2/ and fent./ D 0.

Example 3.37 Let G D Qe0 ˚ Qe1 be the Q-vector space of dimension 2, and let
 W G! G be the endomorphism defined by setting:

.e0/ D e1 ; .e1/ D e0 C 3=2 e1:

The characteristic polynomial of  over Z is f .X/ D 2X2�3X�2, so the eigenvalues
of  are 2 and�1=2. It follows that 22.x/ D 3.x/C2x for all x 2 G, consequently
jTnC1.; x/=Tn.; x/j D 2 for all n. From the characterization above of z

eent we
obtain that z

eent.G/ D 0 D zh.G/, while zentrk.G/ D G , since G is a torsion
ZŒX�-module. Note that from the AYF and the IAYF we get, respectively, that
h./ D log 2C log 2 D log 4 and fent./ D log 2.
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We pass now to consider the Ent-singular modules, where Ent denotes one of
the three entropies in the set fentrk;fent; hg, that is, the ZŒX�-modules G such that
Ent.G/ D 0; these modules form the hereditary torsion class KerEnt. The following
inclusions for the three torsion classes are clear, in view of the inequalities entrk �
fent � h:

Kerh � Ker
eent � Kentrk :

We will also consider the ent-singular modules G , assuming that G is a p-group,
since ent is a length function only on the subcategory Tor.ZŒX�/ (it is well known
that a torsion group decomposes into its p-primary components, which are fully
invariant subgroups, so the investigation of the endomorphisms of a torsion group
can be reduced to the case of p-groups).

The next result is Proposition 2.4 in [19].

Theorem 3.38 Let  W G! G be an endomorphism of a p-group G. The following
are equivalent:

(1) G is ent-singular (i.e., ent./ D 0);
(2) the -trajectory T.; x/ of each element x 2 G is finite;
(3)  is point-wise integral, that is, for every x 2 G there exists a monic polynomial

f .X/ 2 ZŒX� such that f ./.x/ D 0;
(4) G D Q1.G/ D fx 2 G j r.x/ � s.x/ D 0 for some r > s � 0g.

In point (3) of the preceding theorem one may replace the monic polynomial
f .X/ 2 ZŒX� with a monic polynomial of JpŒX�, where Jp denotes the ring of the
p-adic integers. Recall that the elements in Q1.G/ are called quasi-periodic.

Although we shall not make use of it, it seems appropriate to quote from [20,
Corollary 7.7] a similar result for the adjoint entropy ent�.

Theorem 3.39 Let  W G ! G be an endomorphism of the reduced group G and
let p W G=pG! G=pG be the endomorphism induced by  for every prime p. The
following are equivalent:

(1) G is ent�-singular (i.e., ent�./ D 0);
(2) for every prime p there exists a monic polynomial fp 2 ZŒX� such that

fp./.G/ � pG;
(3) ent�.p/ D 0 for every prime p;
(4) p is algebraic (i.e., .G=pG/p is a bounded FpŒX�-module for every prime p);
(5) p is quasi-periodic for every prime p (i.e., r

p D 
s
p for some r > s � 0).

The next result is Theorem 3.6 in [57].

Theorem 3.40 Let  W G ! G be an endomorphism of a group G. The following
are equivalent:

(1) G is entrk-singular (i.e., entrk./ D 0);
(2) the rank of the -trajectory T.; x/ of each element x 2 G is finite;
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(3)  is point-wise algebraic, that is, for every x 2 G there exists a polynomial
f .X/ 2 ZŒX� such that f ./.x/ D 0;

(4) G is the union of a well-ordered ascending chain of -invariant pure subgroups:

t.G/ D G0 < G1 < � � � < G� < � � � <
[

G� D G

such that rk.G�C1=G� / is finite for all � .

The next result is contained in Proposition 3.3 and Corollary 5.11 in [25].

Theorem 3.41 Let  W G ! G be an endomorphism of a group G. The following
are equivalent:

(1) G is fent-singular (i.e., fent./ D 0);
(2) for every -inert subgroup H of G, T.;H/=H is finite;
(3) for each element x 2 G, there exists n � 1 such that T.; x/ D Tn.; x/, i.e., 

is point-wise integral;
(4) ent.t.G// D 0 and G is the union of a well-ordered ascending chain of -

invariant pure subgroups:

t.G/ D G0 < G1 < � � � < G� < � � � <
[

G� D G

such that rk.G�C1=G� / is finite for all � and the characteristic polynomial over
Z of each induced map � W D.G�C1=G� /! D.G�C1=G� / is monic.

In the preceding theorem D.G�C1=G� / denotes the divisible hull of the torsion-
free group of finite rank G�C1=G� and � its endomorphism which is the unique
extension of the endomorphism of G�C1=G� induced by . The next result is an
immediate consequence of Theorem 3.34.

Theorem 3.42 Let  W G ! G be an endomorphism of a group G. The following
are equivalent:

(1) G is h-singular (i.e., h./ D 0);
(2) for each element x 2 G there exists n � 0 such that either n.x/ D 0, or

n
Qk
1.

ni � 1/.x/ D 0 for certain integers ni � 1.

4 Applications to the Structure of Endomorphism Rings

4.1 The Three Faces of Algebraic Entropies

We can look at each entropy Ent 2 fent; entrk; ent�;fent; hg discussed above from
three different points of view, which reveal the three different faces of algebraic
entropies.
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According to the first point of view, each entropy Ent defines a function EntG W
End.G/ ! R

�, which sends the endomorphism  to Ent./. This point of view
was applied, for instance, in [57], where the “kernel” ent0.G/ D f 2 End.G/ W
ent./ D 0g of the map entG W End.G/! R

� was investigated. It was proved, inter
alia, that, if G is a p-group and Es.G/ is the two-sided ideal of End.G/ consisting of
the small endomorphisms, then the subset ent0.G/ is a subring of End.G/, provided
the factor ring End.G/=Es.G/ is commutative (see Sect. 4.2 for definitions and more
details).

This point of view gives rise naturally to the following question.

Question 4.1 If two groups G and H have isomorphic endomorphism rings, is
there a relationship between the two maps EntG W End.G/ ! R

� and EntH W
End.H/! R

�?

If the two groups G and H are p-groups and the considered algebraic entropy
is ent, the Baer-Kaplansky theorem (see Theorem 108.1 in [27]) gives the answer
to the above question. This theorem states that every isomorphism ˚ W End.G/ !
End.H/ between the two endomorphism rings is induced by an isomorphism ˛ W

G ! H of the two groups. This implies that two corresponding endomorphisms
 2 End.G/ and ˚./ 2 End.H/ are conjugated under ˛, that is, the image ˚./
is given by ˚./ D ˛ ı  ı ˛�1. As conjugated endomorphisms have the
same algebraic entropy, it follows that ent./ D ent.˚.// for every  2 End.G/,
equivalently, entG D entH ı˚ . We will see that the situation is completely different
when the entropies entrk;fent; h are considered in general.

The second point of view considers the global entropy function gl:Ent W
Mod.Z/ ! f0;1g, sending a group G into gl:Ent.G/ (we have seen that these
maps take only the two values 0 and 1). This point of view gave rise to several
results of Sect. 3.4. As another application of this approach, in [19] it was proved
that for each n � 1 there exist p-groups G of length !n such that gl:ent.G/ D 0 (see
Theorem 4.7 in Sect. 4.2 for more details).

The third point of view of the algebraic entropies, which produces most relevant
consequences and was developed in Sect. 3.2, considers the category of ZŒX�-
modules. Accordingly, the algebraic entropy can be viewed as a map Ent W
Mod.ZŒX�/ ! R

� sending the ZŒX�-module G to Ent./. We have seen that
in this way one can express nicely the facts that the entropies are invariants, that
they are upper continuous (except ent�), that entrk;fent; h are length functions on
Mod.ZŒX�/ (and ent on Tor.ZŒX�/). Furthermore, in this setting the notions of Ent-
singular submodule and of Ent-singular modules come up, and these will be a main
tool in the investigation of endomorphism rings in Sect. 4.3.
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4.2 Endomorphism Rings of p-Groups

If  W G ! G is an endomorphism of a p-group G, we have seen that ent./ D
fent./ D h./, and that entrk./ D 0. Therefore applications of algebraic entropies
to endomorphism of p-groups will concern only the entropy ent.

We recall some basic facts concerning endomorphisms of p-groups G. The centre
of End.G/ is Z=pk

Z � 1 (where 1 denotes the identity map of G) if G is bounded of
exponent k, otherwise it is Jp � 1.

Pierce [53] called an endomorphism  small if for every positive integer k there
exists an integer n � 0 such that .pnGŒpk�/ D 0 (as usual, pnGŒpk� D pnG\GŒpk�).
Obvious examples of small endomorphisms are the bounded endomorphisms and
the projections on cyclic summands. Pierce proved that the small endomorphisms
form a two-sided ideal of End.G/, denoted by Es.G/, and that End.G/ is a direct
sum of Es.G/ by a torsion-free Jp-module A, which is the completion of a free Jp-
module.

Recall Corner’s notion [8] that End.G/ is a split extension of a Jp-algebra A by
the two-sided ideal Es.G/: this means that A is a subring of End.G/ and there exists
a ring homomorphism End.G/! A that is the identity map on A, with kernel Es.G/.
So we get the direct group decomposition:

End.G/ D A˚ Es.G/:

Motivated by these results, Corner proved in [8] and [9] several beautiful
realization theorems, stating that, under suitable conditions, there exists 22

@0 non-
isomorphic p-groups G, such that there is a ring split extension End.G/ Š A˚Es.G/.
It is worthwhile remarking that in Corner’s realization theorems the multiplicative
structure of the factor ring End.G/=Es.G/ Š A plays no role, while it is the crucial
factor in computing the global entropy gl:ent.G/, as the next results in this section
will show.

In the applications of the algebraic entropy ent a relevant role is played by the
semi-standard groups. Recall that Corner [8] called a reduced p-group G semi-
standard if its Ulm-Kaplansky invariants of finite index are all finite, that is, for
all integers n � 0:

˛n.G/ D dimFp.p
nGŒp�=pnC1GŒp�/ < @0:

The relevance of semi-standard groups in connection with ent is clear from the
following:

Lemma 4.2 If G is a reduced p-group which is not semi-standard, then there exist
endomorphisms of G of positive algebraic entropy.

Proof If ˛n.G/ is infinite, then G contains a summand B Š
L

N
Z=pnC1

Z, so the
right Bernoulli shift on B extends to an endomorphism  of G such that ent./ D
log.pnC1/. ut
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The following proposition collects results, proved in [19], that are samples
of the role of semi-standard groups; recall that a p-group is essentially finitely
indecomposable if it does not admit direct summands which are infinite direct sums
of cyclic groups.

Proposition 4.3 (1) A reduced p-group G such that gl:ent.G/ D 0 is necessarily
semi-standard and essentially finitely indecomposable; in particular, jGj � 2@0 .

(2) If G is semi-standard and � is a small endomorphism, then � is point-wise
integral, hence ent.�/ D 0.

(3) If G is unbounded semi-standard, then all the endomorphisms of the subring
Jp � 1˚ Es.G/ are point-wise integral, hence have zero entropy.

An example of a semi-standard group G such that End.G/ D Jp � 1˚ Es.G/ was
first constructed by Pierce [53]. Megibben proved [48] that quasi-complete groups
G (defined by the property that the closure in the p-adic topology of a pure subgroup
is still pure) such that NG=G Š Z.p1/ ( NG is the torsion-completion of G) also satisfy
End.G/ D Jp � 1˚ Es.G/. Hence for all these groups we have that gl:ent.G/ D 0.

Notice that the converse of Proposition 4.3 (1) is not true. In fact, using the
Corner’s realization result proved in [8, Theorem 2.1], it is possible to construct
a p-group G (with all its Ulm-Kaplansky invariants equal to 1 and essentially
indecomposable, i.e., if G D G1 ˚ G2, then one of the two summands is finite)
admitting an endomorphism of infinite algebraic entropy (see [19, Theorem 4.4]).
This property of having an endomorphism of infinite algebraic entropy is shared
by semi-standard groups belonging to many important classes of p-groups, such
as totally projective, p!C1-projective and torsion-complete groups (see [19, Theo-
rem 4.5]).

The above discussion shows that a crucial question is whether, besides the
quasi-complete groups studied by Megibben mentioned above, which form a
relatively small class, there exist other reduced semi-standard p-groups G such that
gl:ent.G/ D 0.

Bearing in mind the restriction on the cardinality of these groups imposed by
Proposition 4.3 (1), we first look for a classification of countable reduced p-groups
G with gl:ent.G/ D 0: such a group is necessarily finite. This follows from
[19] (Proposition 4.1 and Theorem 4.4, for the bounded and unbounded cases,
respectively).

If we allow groups of cardinality the continuum, then examples of groups G
with gl:ent.G/ D 0 exist in such abundance that no reasonable classification
seems possible—see [19, Sect. 5] and [57, Sect. 3]. Nevertheless, we can offer nice
sufficient conditions in order that gl:ent.G/ D 0 when jGj D 2@0 .

Theorem 4.4 If G is an unbounded semi-standard p-group such that the ring
End.G/=Es.G/ is integral over Jp, then gl:ent.G/ D 0.

The hypothesis of Theorem 4.4 is certainly satisfied if the Jp-module A Š
End.G/=Es.G/ has finite rank. If we look for Jp-algebras A of infinite rank, another
one of Corner’s realization theorem proved in [8] helps us. This theorem states that
if the Jp-algebra A has a countable chain of left ideals A � A1 � A2 � � � � such that
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Ai=AiC1 is a free Jp-module of finite rank for all i, and if pA D \i.pA C Ai/, then
there exists a separable semi-standard p-group G such that End.G/ D A˚ Es.G/.

Using this theorem of Corner, it is possible to construct a torsion-free Jp-algebra
A, the completion of a free Jp-module of countable rank, which is integral over
Jp and satisfies the conditions of the Corner’s theorem mentioned above. This Jp-
algebra is the Nagata idealization of Jp by the completion of a free Jp-module of
countable rank (see [19, Example 5.12]). Thus the p-group G constructed in this
way satisfies gl:ent.G/ D 0.

Surprisingly enough, if we consider reduced p-groups G of size @1 and
gl:ent.G/ D 0, we find ourselves in set-theoretic trouble. Indeed we have the
following:

Theorem 4.5 The following statements are consistent with ZFC:

(i) there is a reduced p-group G of cardinality @1 with gl:ent.G/ D 0;
(ii) every reduced p-group G of cardinality < 2@0 with gl:ent.G/ D 0 is finite.

This result follows from a recent work of Braun and Strüngmann [4] on Hopfian
and co-Hopfian groups. For part (i) they worked in the forcing extension of the
universe by Fin.!1; 2/, but for our purposes it suffices to assume the Continuum
Hypothesis (CH): as we have seen, the example of Pierce of a standard reduced
p-group G with End.G/ D Jp1 ˚ Es.G/ is a group of size 2@0 D @1 and satisfies
gl:ent.G/ D 0. Thus (i) holds in ZFC + (CH).

For (ii) we exploit Martin’s Axiom (MA), specifically we work in ZFC + (MA) +
:(CH). It follows from [4, Theorem 1.1(2)] that an infinite reduced p-group of size
strictly less than the continuum cannot be co-Hopfian. Since a reduced p-group with
zero global entropy is necessarily co-Hopfian by Proposition 3.20, in this model of
set theory, no infinite reduced p-group of cardinality less than the continuum can
have zero global entropy, i.e., (ii) holds.

Since both ZFC + (CH) and ZFC + (MA) + :(CH) are consistent with ZFC,
it follows that the existence of a reduced p-group G of size @1 and of zero global
entropy, gl:ent.G/ D 0 is undecidable.

Another multiplicative property of the factor ring End.G/=Es.G/ is crucial for
a different purpose, namely, its commutativity (see [57, Theorem 3.6]). Recall that
ent0.G/ D f 2 End.G/ W ent./ D 0g denotes the “kernel” of the map entG W
End.G/! R

�.

Theorem 4.6 If G is an unbounded semi-standard p-group such that the ring
End.G/=Es.G/ is commutative, then ent0.G/ is a subring of End.G/.

It is easy to see that the hypothesis that G is semi-standard in Theorem 4.6
cannot be omitted, and to provide examples of groups satisfying the hypotheses of
Theorem 4.6 such that ent0.G/ is a proper subring of End.G/. Note that ent0.G/ �
pEnd.G/, since, given any  2 End.G/, p annihilates the socle GŒp�, from which
it easily follows that ent.p/ D 0. Thus the factor group End.G/=ent0.G/ is an Fp-
vector space, whose dimension measures how far is G from having gl:ent.G/ D 0.
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Theorem 4.6 can be improved, replacing the ideal Es.G/ by the two-sided
ideal of the socle-finite endomorphisms. Recall that the endomorphism  is called
socle-finite if .GŒp�/ is finite. The socle-finite endomorphisms form the two-sided
ideal of End.G/ denoted by Esf .G/, which obviously contains pEnd.G/. It is not
difficult to prove that G is semi-standard exactly when Esf .G/ � Es.G/ (see [57,
proposition 4.1]), so the commutativity of the factor ring End.G/=Esf .G/ is a weaker
assumption than the commutativity of End.G/=Es.G/, ensuring that ent0.G/ is a
subring of End.G/.

The restricted cardinality of a reduced p-group G having global algebraic entropy
gl:ent.G/ D 0 automatically restricts the possible length of the group to be the
continuum also. Exhibiting groups G having global algebraic entropy gl:ent.G/ D 0
of length up to the continuum seems to be difficult and the best results to date are in
[19, Theorem 5.18] where the following is established; recall that an endomorphism
 W G! G is thin if, for every positive integer k, there is an integer n � 0 such that
..pnG/Œpk�/ � p!G.

Theorem 4.7 Given an ordinal � < !2, there exists a family of 22
@0 p-groups

G, each of length � and with gl:ent.G/ D 0, such that there are only thin
homomorphisms between the different members of the family.

The proof of Theorem 4.7 relies on the fact that, if G is a semi-standard p-group
of length< !2 such that End.G=p!G/ D Jp˚Es.G=p!G/, then gl:ent.G/ D 0; this
fact shows that for such a group, in order to get zero global algebraic entropy, it does
not matter what the subgroup p!G is, since only the quotient G=p!G is relevant. So
one can reduce to the consideration of separable groups and apply results proved by
Corner [9] connecting properties of G to properties of G=p!G.

4.3 Endomorphism Rings of Torsion-Free Groups

This section is devoted to surveying the results obtained in the two papers [32]
and [36] on algebraic entropies applied to endomorphism rings of torsion-free
groups. The problem considered in both papers is to give a satisfactory answer to
Question 4.1, for the entropy entrk in [32], and for the entropy fent in [36].

The difference between the two papers, besides the fact that they apply the two
different entropies entrk and fent, is two-fold: with respect to the realization results
they use, and with respect to the rings they realize as endomorphism rings via these
results.

In [32], a powerful realization result contained in the 1985 Corner-Göbel paper
[11] is used, that provides constructions of groups of large cardinalities, and a
complete topological ring is realized that has no primitive idempotents; hence the
groups which have endomorphism ring isomorphic to it are superdecomposable.

In [36], the original Corner theorems of the 1960s on endomorphism rings
of countable torsion-free groups are used, and the realized rings are the integral
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polynomial ring ZŒX� and the power series ring ZŒŒX��; these rings are integral
domains, hence the groups which have endomorphism ring isomorphic to them are
indecomposable.

We start illustrating first the results in [36], since its simpler approach gives
considerable advantages when applying algebraic entropies.

The following result proved by Corner in [7] characterizes the rings which
are endomorphism rings of countable reduced torsion-free groups; recall that finG

denotes the finite topology on the endomorphism ring of a group G. It is well known
that this topology makes End.G/ a complete topological ring - see, for example, [27,
Theorem 107.1].

Theorem 4.8 (Corner 1967) A topological ring .A; �/ is isomorphic to the topo-
logical ring .End.G/; finG/, for G a countable reduced torsion-free group, if, and
only if, .A; �/ is complete and Hausdorff and � admits a basis of neighbourhoods of
0 consisting of a countable descending chain of left ideals N1 � N2 � � � � such that
A=Nk is a countable reduced torsion-free group for all k.

When the topology � is the discrete one, then the ring A itself is countable
reduced torsion-free, so we obtain the first realization result, already mentioned
earlier, proved by Corner in [6].

Theorem 4.9 (Corner 1963) Every countable reduced torsion-free ring is isomor-
phic to the endomorphism ring of a countable reduced torsion-free group.

If we look now at some countable reduced torsion-free rings A, which are to be
realized as endomorphism rings via Theorem 4.9, the easiest possible candidate is
A D Z. It is well known that there exist torsion-free groups G of arbitrary cardinality
such that End.G/ Š Z. But all these groups provide trivial examples with respect to
the entropical behaviour, since their subgroups are fully invariant, hence their global
entropies are trivially zero, whatever entropy among entrk;fent one chooses.

A more interesting example, which provides non-trivial outcomes, is A D ZŒX�.
In the following proposition the properties satisfied by any group G such that
End.G/ Š ZŒX� are collected. We identify End.G/ with ZŒX� and we denote
by ! the distinguished endomorphism of G induced by the multiplication by the
indeterminate X.

Proposition 4.10 Let G be a group such that End.G/ D ZŒX�. Then:

(1) G is indecomposable, torsion-free and reduced;
(2) the finite topology of End.G/ is discrete;
(3) there exist elements g 2 G such that, for every endomorphism  of G

different from the multiplication by an integer, T.; g/ Š .
L

N
Z/ˇ , hence

fent.T.; x// D1;
(4) if there exists x 2 G such that rkZ.T.!; x// D n < @0, then:

(4.1) Tn.!; x/ D
L

0�i�n�1 !
ixZ

(4.2) there exists a minimal positive integer s such that sk!nCk�1x 2 Tn.!; x/
for all k � 1

(4.3) fent.T.!; x/!/ D log s.
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It is possible that the case considered in point (4) above does not occur, as
Theorem 4.12 below shows. Of course, more can be said when the countable
reduced torsion-free group G such that End.G/ Š ZŒX� is constructed in a
specific way, e.g., by means of Theorem 4.9. But this theorem is not the only one
available for constructing G. In fact, Corner proved also the following result in [10,
Example 1] explicitly for the ring ZŒX�. The relevance of this theorem is due to the
fact that, if R is a countable reduced torsion-free integral domain, then any group
realizing R as its endomorphism ring via Theorem 4.9 is Hopfian.

Theorem 4.11 (Corner 1965) The ring ZŒX� is isomorphic to the endomorphism
ring End.H/ of a torsion-free non-Hopfian group H of countable rank.

The next theorem compares the properties of two groups G and H with
endomorphism ring isomorphic to ZŒX� constructed by means of Theorem 4.9 and
Theorem 4.11, respectively.

Theorem 4.12 (1) A group G such that End.G/ Š ZŒX�, constructed by means of
Theorem 4.9, is a torsion-free ZŒX�-module of countable rank, so it contains a
free ZŒX�-module F Š

L

@0
ZŒX�, and G=F is a torsion group. Furthermore,

the fent-singular submodule of G! is 0.
(2) The non-Hopfian group H such that End.H/ Š ZŒX�, constructed by means of

Theorem 4.11, has rank 2 as ZŒX�-module. The fent-singular submodule of H!

is isomorphic to
L

N
Z.r1/ (r a prime integer) endowed by the left Bernoulli

shift.

The reader interested in a more detailed description of the structure as ZŒX�-
module of the non-Hopfian group H above can consult [36, Proposition 3.6].

In order to apply Theorem 4.8, a natural ring to be considered is the integral
power series ZŒŒX�� with the X-adic topology �. However, we can consider ZŒŒX��
endowed also with the discrete topology ı, in view of the following theorem proved
in [36], whose key idea goes back to Corner.

Theorem 4.13 Let .A; �/ be a topological ring satisfying the conditions of Theo-
rem 4.8. Then there exists a reduced torsion-free group H of cardinality 2@0 such
that .End.H/; finH/ Š .A; ı/.

The next theorem compares the properties of two groups G and H with
endomorphism ring isomorphic to ZŒŒX�� constructed by means of Theorem 4.8 and
Theorem 4.13, respectively.

Theorem 4.14 (1) A group G such that .End.G/; finG/ Š .ZŒŒX��; �/, constructed
by means of Theorem 4.8, is countable and all its orbits ZŒŒ!��g (g 2 G)
equal the trajectories T.!; g/ D ZŒ!�g. Furthermore, gl:fent.G/ D 0, so, in
particular, G! coincides with its fent-singular submodule.

(2) The group H such that .End.H/; finH/ Š .ZŒŒX��; ı/, constructed by means of
Theorem 4.13, has rank 2@0 as ZŒx�-module, it contains elements g such that
T.!; g/! Š .

L

N
Z/ˇ , so fent.!/ D 1 and the fent-singular submodule of H!

is properly contained in H.
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The reader interested in more information on the structure of the groups G and
H as ZŒX�-modules should consult [36]. A consequence of the above results is the
following:

Corollary 4.15 There exist reduced torsion-free groups G;H such that G is
countable, H has rank 2@0 as ZŒX�-module, End.G/ Š ZŒŒX�� Š End.H/, but
gl:fent.G/ D 0, while gl:fent.H/ D1.

The above results show that, given any isomorphism ˚ W End.H/ ! End.G/,
fent.!/ D 1 and fent.˚.!// D 0; so the entropical behaviour of a ring isomorphic
to the endomorphism ring of a torsion-free group depends on the group and not on
the ring itself. Thus, in this case, the answer to Question 4.1 is completely different
from the torsion case.

We pass now to illustrate the results in [32], starting with the description of the
complete topological ring OA realized in two different ways as endomorphism ring of
torsion-free groups.

Let � denote the countable set of the finite subsets of N. Let A D
L

�2� Ze� be
the free group generated by the symbols e�. Define a multiplication on the generators
of A by setting:

e� � e� D e�[�

and extending it by linearity on A. Note that A is commutative and e� � e; D e� D
e� �e�, so e; D 1A and every generator is idempotent. This implies that every element
of A is the root of an integral polynomial. For every � 2 �, let

N� D he� j � ª �i ; A� D he� j � � �i

be generated as subgroups. The subgroup N� is an ideal of A and A� is a finitely
generated subgroup (even subring), hence free of finite rank; furthermore, it is easily
seen that A is a split extension of A� by N�. Since \�2�N� D 0, A is a Hausdorff
topological ring with the topology � having the N� as neighbourhoods of 0. Let OA
denote the completion of A with respect to the topology � , and ON� the closure of N�
in it. Since N�\A� D 0, OA is a split extension of its discrete subring A� by the ideal
ON�. In particular, OA= ON� Š A� is free of finite rank.

The ring OA can be embedded into
Q

�
OA= ON� Š

Q

� A�. Since
Q

� A� is isomorphic
to the Baer-Specker group

Q

N
Z, OA is @1-free, by [27, Theorem 19.2], hence

cotorsion-free (i.e., torsion-free, reduced and with no subgroups isomorphic to Jp

for all p). This condition is necessary, in view of the results in [11], to realize OA as
endomorphism ring.

The two noteworthy properties of the ring OA are that it has no primitive
idempotents, hence the groups which have endomorphism ring isomorphic to OA are
superdecomposable, i.e., they have no indecomposable non-zero direct summands,
and that it contains a family of 2@0 D j OAj algebraically independent elements over
Z. With this ring OA at ones disposal, and using the powerful realization Theorem 6.3
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of [11], the main result proved in [32] is the following theorem, in which OBM and
OBH denote completions in the p-adic topology for a fixed prime p, and �� denotes
pure embeddings.

Theorem 4.16 Let . OA; �/ be the topological ring constructed above and let �;� be
two infinite cardinals such that � D �@0 ; � D �@0 . Then:

(i) there are two @1-free abelian groups G;H of cardinality jGj D �, jHj D
�, with . OA; �/ Š .End.G/; finG/ and (denoting by ı the discrete topology)
. OA; ı/ Š .End.H/; finH/;

(ii) if BM D
L

i<� ei.
L

˛2�
OA= ON˛/ and BH D

L

i<� ei OA, then BM � M ��
OBM

and BH � H ��
OBH. Moreover jM n BMj D � and jH n BHj D �;

(iii) for all a 2 OA; g 2 M there is 0 ¤ f .x/ 2 ZŒx� with f .a/.g/ D 0;
(iv) if a 2 OA is a transcendental element and 0 ¤ f .x/ 2 ZŒx�, there exist suitable

elements g 2 H (called “generating elements”), such that f .a/.g/ ¤ 0. There
are 2@0 D j OAj such elements a 2 OA and � D jHj such elements g 2 H.

A consequence of Theorem 4.16, similar to Corollary 4.15, with entrk replacing
fent, is the following:

Corollary 4.17 There exist two reduced @1-free groups G and H with End.G/ Š
A Š End.H/, such that gl:entrk.G/ D 0 and gl:entrk.H/ D1.

The fact that gl:entrk.G/ D 0 is a direct consequence of Theorem 4.16 (iii), which
shows that every endomorphism of G is point-wise algebraic (see Theorem 3.40).
Theorem 4.16 (iv). says that entrk.a/ > 0 for all transcendental elements a 2 OA,
when viewed as endomorphisms of H, hence gl:entrk.H/ D1 follows.

A much more powerful result than Theorem 4.16 (iv) is proved in [32, Corol-
lary 4.9]; it states that, for every “generating element” g 2 H, there exist two
families fa�g�22@0 and fb�g�22@0 of distinct elements of OA, such the orbit OAg
contains the direct sum of fully invariant cyclic trajectories T� D

L

� T.a�; b�.g//,

and this happens for 2@0 transcendental elements a�.

5 Concluding Remarks

Although notions of algebraic entropy have been around for some 50 years, serious
investigation of them seems to have been sparked by the appearance of [19] in 2009.
The growth of interest in the subject can be witnessed by the fact that almost 50%
of the references below post-date the appearance of the first preprint of [19]. Thus,
in some sense, the subject is comparatively new but its natural interaction with
many classical algebraic notions such as Kaplansky’s approach to Abelian group
theory via the notion of ZŒX�-modules or Corner’s approach to realizing rings as
endomorphism rings, along with clear similarities to wider-established notions in
physics, communications theory and computing, give it the feel of a central topic
in modern algebra. This, of course, presents the survey writer with a key problem:
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many areas of interest are still emerging and the deep connections with topological
entropy make the setting of key open problems a difficult task. Faced with this and
the confines of space, we have decided, at this stage, not to try to lay out specific
problems for future study, even though it is clear that many such problems arise
naturally from our discussions above. We have no doubt that with the current level
of interest in algebraic entropy, such paths for future study will emerge in the not
too distant future.
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We are interested in conditions under which each of these subsets forms a
subgroup.

These topics have drawn considerable attention in recent years. This survey
should be of interest to group theorists who are experts in the described areas of
research, as well as to those who wish only to take a glimpse at the topic.

In Sect. 2 we address these questions for the subset of commutators. We can be
brief here, since a comprehensive survey by R.F. Morse and the first author [30]
on this topic appeared in 2007. We will focus here on new developments in recent
years, such as the Ore Conjecture.

Subsets defined by commutator identities and conditions when such a set forms
a subgroup are discussed in Sect. 3. We do not claim that this is a complete survey
of all known results on this topic. This has to wait for a future publication.

Finally, in Sects. 4–6 we present some results concerning the subset of autocom-
mutators in a group and under what conditions these subsets form a subgroup. This
is a fairly new topic which is also of interest for abelian groups. In addition to some
recent results, we also include some work in progress, by the authors of this survey,
in particular concerning answers to this question in infinite abelian groups.

2 Commutators and the Commutator Subgroup

Let G be a group, x; y elements of G. The commutator of x and y is the element

Œx; y� WD x�1y�1xy D x�1xy:

We will first give a brief historic overview of the problem on when the set of
commutators forms a subgroup. For further details we refer to [30]. Our focus then
will be on the Ore Conjecture, which was completely solved only in 2010 after the
appearance of [30] in 2007.

The fundamental concept of the commutator was introduced by R. Dedekind
in 1880, while he was interested in extending group characters from abelian to
nonabelian groups. But only in 1896 it appeared in a paper by F.G. Frobenius [15].
There he wrote that the element F such that BA D ABF was called “commutator of
A and B” by Dedekind. He said that Dedekind had proved the following:

The conjugate of a commutator is again a commutator, therefore the commuta-
tor subgroup generated by the commutators of a group is a normal subgroup of
the group, and also that any normal subgroup with abelian quotient contains the
commutator subgroup; and the commutator subgroup is trivial if and only if the
group is abelian.

These results were first published by G.A. Miller in [40] in 1896, where he spoke
about “the operation sts�1t�1”.

The word commutator, again attributed to Dedekind, was used by Miller only in
a paper [41] of 1898, where he expanded the basic properties of the commutator
subgroup and introduced the derived series of a group; he also showed that the
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derived series is finite and ends with 1 if and only if the group is solvable. The year
after, in [42], Miller investigated commutators, in particular when the product of two
commutators is again a commutator. He proved that every element in the alternating
group An on n letters, n � 5, is a commutator, and that the same happens for every
element in the commutator subgroup of the holomorph of a cyclic group Cn of order
n. In particular, the commutator subgroup of the holomorph is Cn, if n is odd, and
the subgroup of index 2 in Cn, if n is even.

The first textbook in which commutators and the commutator subgroup were
introduced is H. Weber’s 1899 Lehrbuch der Algebra [60], the last important
textbook on algebra published in the nineteenth century. In this book there appears
for the first time explicitly the question:

Is the set of all commutators a subgroup, i.e. does the commutator subgroup
consist entirely of commutators?

Weber stated that the set of commutators is not necessarily a subgroup, but no
example was provided.

The first example of a group in which the set of commutators is not equal to the
commutator subgroup appeared in 1902, in a paper by W.B. Fite [14], a student of
Weber, where the term “metabelian” in the title is used to denote nilpotent groups
of class � 2.

Fite constructed an example of a group G of order 1024, attributed to Miller, and
also provided a homomorphic image H of order 256 of G which is again an example.
The group H D hg1; g2; g3; g4i is a subgroup of S16, where

g1 D .1; 3/.5; 7/.9; 11/; g2 D .1; 2/.3; 4/.13; 15/;

g3 D .5; 6/.7; 8/.13; 14/.15; 16/; g4 D .9; 10/.11; 12/:

Commutators appear also in a paper by W. Burnside in 1903 [7], where characters
are used to obtain a criterion for when an element of the commutator subgroup is
the product of two or more commutators.

The first occurrence of the commutator notation probably is in a paper by F.W.
Levi and B.L. van der Waerden [36] in 1933, where the commutator of two group
elements i; j is denoted by

.i; j/ D iji�1j�1:

The first book in which this notation is used is the Lehrbuch der Gruppentheorie by
H.J. Zassenhaus [61] in 1937, where the famous paper by P. Hall [23] on groups of
prime power order is quoted for definitions, notation, and results.

Now, let G be a group and denote with

K.G/ WD fŒg; h� jg; h 2 Gg;

the set of commutators of G. Then the commutator subgroup G0 of G, i:e: the derived
subgroup of G, is

G0 D< K.G/ > :
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Some natural questions arise:

When is G0 D K.G/‹

Which is the minimal order of a counterexample‹

Only in 1977, in his PhD Thesis [21], R.M. Guralnick gave the answer to the last
question.

He proved that there are exactly two nonisomorphic groups G of order 96 such
that K.G/ ¤ G0. In both cases G0 is nonabelian of order 32 and jK.G/j D 29. The
groups are:

G D HÌ < y >; where H D< a > 
 < b > 
 < i; j >; a2 D b2 D y3 D 1;

< i; j >' Q8; a
y D b; by D ab; iy D j; jy D ijI

G D HÌ < y >; where H D NÌ < c >;N D< a > 
 < b >;

a2 D b4 D c4 D 1; ac D a; bc D ab; y3 D 1; ay D c2b2; by D cba; cy D ba:

Much more information about all of these questions is contained in [30]. The
final section there is devoted to the so-called Ore Conjecture, made by O. Ore in
1951 in [46], where finite groups with every element in the commutator subgroup
a commutator are investigated. Ore rediscovered Miller’s result [42] (see also the
paper [28] by N. Ito) that every element in the alternating group An on n letters,
n � 5, is a commutator and conjectured:

Every element in a non-abelian finite simple group is a commutator:

Much work on this conjecture has been done over the years. Important contri-
butions are due to R.C. Thompson [55–57], K’en-ch’eng Ts’eng and Ch’eng-hao
Hsü [58], K’en-ch’eng Ts’eng and Chiung-sheng Li [59], Gow [18, 19], Neubüser
et al. [45], Bonten [6], Blau [5], Ellers and Gordeev [13], as well as Shalev [53].
But in 2007 the conjecture was still open for some of the finite simple groups of Lie
type over small fields, and the survey [30] could furnish only a precise account of
which cases were settled and which were still open at that time. Finally, in 2010,
the conjecture has been completely solved by Liebeck et al. [37]. Using character
theory, induction on the dimension, and certain computer calculations with very
deep arguments, they have been able to settle all the cases.

3 Subsets Defined by Commutator Identities

In this section we study kind of a dual problem to the one of the preceding section.
The most familiar example here is the center of a group G as follows:

Z.G/ D fa 2 G j Œa; g� D 1;8g 2 Gg:
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We can generalize this concept by starting from a word w D w.x1; : : : ; xt/. One
says that this word is a law in G if w.g1; : : : ; gt/ D 1 for every t-tuple .g1; : : : ; gt/

of elements of G. For instance, w D Œx1; x2� is a law for every abelian group.
For any word w D w.x1; : : : ; xt/, we can look at the following subsets in a

group G:

Wi.G/ D fai 2 G j w.g1; � � � ; gi�1; ai; giC1 � � � gt/ D 1;8gj 2 G; j 6D ig:

In case w D Œx; y�, we have W1.G/ D W2.G/ D Z.G/, the center of G. As we will
see, Wi.G/ in general need not be a subgroup. So the question arises under which
conditions do we have that the subset Wi.G/ forms a subgroup of G for a given word
w D w.x1; : : : ; xt/. We should mention here that Wi.G/ is always a normal set in G
and hence hWi.G/i is a normal subgroup.

The simple commutator word of weight n is defined recursively as

Œx1; x2; : : : ; xn� D ŒŒx1; x2; : : : ; xn�1� ; xn�

with Œx1; x2� D x�1
1 x�1

2 x1x2. Consider w.x1; � � � ; xnC1/ D Œx1; � � � ; xnC1�. Then it is
easy to show that Wi.G/ is always a subgroup and W1.G/ D Zn.G/, the n-th term of
the upper central series.

The focus of investigations on the sets Wi.G/ has been in context with the n-
Engel word wn.x; y/ D Œx;n y� , recursively defined as

Œx;n y� D ŒŒx;n�1 y� ; y� ; n � 2;

and

Œx;1 y� D Œx; y� :

We mention here that this question has been considered in context with other
words, e.g. the n-commutator word w.x; y/ D .xy/ny�nx�n, n � 2 an integer (see
[4] and [31]).

An element a of a group G is called a right n-Engel element of G if it belongs to
the set

Rn.G/ D fb 2 G j Œb;n g� D 1;8g 2 Gg;

and a left n-Engel element of G if it belongs to the set

Ln.G/ D fb 2 G j Œg;n b� D 1;8g 2 Gg:

Obviously R1.G/ D Z.G/ D L1.G/.
A celebrated result of 1961 by W.P. Kappe [34] ensures that R2.G/ is always a

subgroup. In 1970, however, I.D. Macdonald in [38] gave an example that shows
that right 3-Engel elements do not form a subgroup in general. This result was



180 L.-C. Kappe et al.

generalized in 1999 by W. Nickel [44]. For each n � 3 he constructed a group with
a right n-element a where neither a�1 nor a2 is a right n-Engel element. Therefore
Rn.G/ need not be a subgroup, for n � 3.

The same is true for the set L2.G/. The left 2-Engel elements of a group do not
need to form a subgroup in general. For instance, the standard wreath product of a
group of order 2 with an elementary abelian group of order 4 is generated by left
2-Engel elements but does not consist of such elements. Furthermore, for n > 2 the
first author gave examples of metabelian groups in which Ln.G/ does not form a
subgroup (see [29]).

In contrast to that P.M. Ratchford and the first author showed in [32] that Rn.G/
is a subgroup of G whenever G is metabelian or center-by-metabelian with certain
extra conditions attached. In [2] A. Abdollahi and H. Khosravi proved that the set
of right 4-Engel elements of a group G is a subgroup for locally nilpotent groups G
without elements of orders 2, 3, or 5. See also the survey [1] by Abdollahi.

An element a of a group G is called a right Engel element of G if for each g 2 G
there is an integer n D n.a; g/ � 0 such that Œa;n g� D 1, a left Engel element if
Œg;n a� D 1. Now set

NR.G/ D
[

n
2

Rn.G/ and NL.G/ D
[

n
2

Ln.G/;

and consider also the following sets:

R.G/ D fa 2 Gja a right Engel element of Gg

and

L.G/ D fa 2 Gja a left Engel element of Gg:

In 1966, T.A. Peng [47] generalized results previously obtained by B.I. Plotkin
[49], R. Baer [3] and E. Schenkman [51] and proved that if G satisfies the
maximal condition on abelian subgroups, then the previous four subsets are actually
subgroups. Precisely he proved that R.G/ and NR.G/ coincide with the hypercenter
of G, and L.G/ and NL.G/ coincide with the Fitting subgroup of G.

K.W. Gruenberg in [20] showed that in any soluble group G the subsets NR.G/,
L.G/ and NL.G/ are subgroups, in particular the latter coincides with the Baer radical
of G. See also [50] for many results on this topic.

In the paper [48], Peng defined a group G to be an E-group if, for every x 2 G,
the set of all y 2 G such that Œy;n x� D 1 for some positive integer n (depending on x
and y) is a subgroup. He studied finite soluble E-groups.

H. Heineken in [22] continued the study of E-groups, and showed in particular
that the class of finite E-groups is a formation.

A generalization of the word w.x; y/ D Œx; y� has been considered by W.P. Kappe
in 2003 [35]. He started from the word

w.x; y; x1; : : : ; xn/ D Œx; y; x1; : : : ; xn; y�
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and, for any n > 1, studied the set

Bn.G/ D fb 2 G j Œb; g; a1; : : : ; an; g� D 1;8g; a1; : : : ; an 2 Gg:

He proved that Bn.G/ is always a subgroup of G.

4 The Set of Autocommutators and the Autocommutator
Subgroup

Let G be a group, g 2 G and ' 2 Aut.G/. The autocommutator of g and ' is the
element

Œg; '� D g�1g':

Obviously, the autocommutator Œg; '� is the commutator of g and ' in the
holomorph of G. We denote by

K?.G/ D fŒg; '� j g 2 G; ' 2 Aut.G/g

the set of all autocommutators of G and, following P.V. Hegarty [26], we write

G? D hK?.G/i;

where G? is called the autocommutator subgroup of G.
At “Groups in Galway 2003” D. MacHale brought the following problem to the

attention of the first author:

Is G?always equal to K?.G/‹

He added that there might be even a finite abelian counterexample.
D. Garrison, D. Yull and the first author showed in 2006 that the answer to this

conjecture is negative. In fact they proved the following result:

Theorem 4.1 ([17]) Let G be a finite abelian group. Then the set of autocommuta-
tors always forms a subgroup.

MacHale also suggested that the two groups of order 96 given by Guralnick [21]
as the minimal counterexamples to the conjecture G0 D K.G/might also be minimal
counterexamples to the conjecture G? D K?.G/. In this case the answer is also
negative. In fact, in [17] the following result is proved.

Theorem 4.2 ([17]) There exists a finite nilpotent group of class 2 and order 64 in
which the set of autocommutators does not form a subgroup, namely

G D< a; b; c; d; eja2 D b2 D c2 D d2 D e4 D 1; Œa; b� D Œa; c� D

Œa; d� D Œb; c� D Œb; d� D Œc; d� D e2; Œa; e� D Œb; e� D Œc; e� D Œd; e� D 1 > :
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In fact, G is unique of that order and for all groups of order less than 64 the set of
autocommutators forms a subgroup.

Many of these results were obtained with the help of GAP (see [54]). It was
also proved there that in the two groups of order 96 given by Guralnick in [21] as
minimal counterexamples for K.G/ 6D G0 we have K?.G/ D G?. This result was
also obtained with the help of GAP.

In [17], the authors were able to give a complete description of K?.G/, if G is a
finite abelian group. In fact, they proved the following theorem.

Theorem 4.3 ([17]) Let G be a finite abelian group

G D B 
 O;

where O is of odd order, and B is a 2-group. Then we have:

(i) If either B D 1 or B D hb1i 
 hb2i 
H with jb1j D jb2j D 2n, expH � 2n, then
K?.G/ D G? D G.

(ii) If B D hb1i
H, with jb1j D 2n, expH � 2n�1, then K?.G/ D G2n�1 
O, where
G2n�1 D fx 2 G j x2

n�1
D 1g.

In any case, K?.G/ is a subgroup of G.

Notice that Theorem 4.3 implies immediately the following corollary, a result
obtained by C. Çis, M. Çis and G. Silberberg:

Theorem 4.4 ([8]) Every finite abelian group is the autocommutator subgroup of
some finite abelian group.

Similar as in the case of the commutator subgroup G0, there exist non-abelian
finite groups that are not the autocommutator subgroup of any group. For example,
M. Deaconescu and G.L. Walls showed in [11] that this is the case for the symmetric
group S3. In the same paper they also classified all finite groups G such that G? is
infinite cyclic or cyclic of prime order. There are only three groups G such that G?

is infinite cyclic, the group Z of the integers, Z 
 Z2 and D1, the infinite dihedral
group. Only G ' Z4 has the property K?.G/ ' Z2. However, if p is odd, the
equation G? ' Zp has the solution: G ' Zp;Zp 
 Z2;T or T 
 Z2, where T is a
partial holomorph of Zp containing Zp. Furthermore, Hegarty showed in [27] that
for any finite group H there are only finitely many finite groups G such that G? ' H.

The group S3 is a complete group. More generally, M. Naghshineh, M. Farrokhi
D.G., and M.R.R. Moghaddam showed in [43] that if H is a finite complete group
and G? ' H, then H is perfect and G ' H or G ' H 
 Z2. In the same paper
the authors studied the groups G such that G? ' H for other finite groups H and
conjectured that there is no finite group G such that G? is the finite dihedral group
of order 2n.

In the paper [26] Hegarty also defined the absolute center of a group G as

Z?.G/ D fg j Œg; '� D 1;8' 2 Aut.G/g:
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He proved the analogue of the classical result of I. Schur [52] that G=Z.G/ finite
implies G0 finite. In fact he showed that if G=Z?.G/ is finite, then G? is finite and
Aut.G/ is finite.

Schur’s theorem was extended by A. Mann in [39], who showed that if G=Z.G/
is locally finite of exponent n, then G0 is locally finite of n-bounded exponent. H.
Dietrich and P. Moravec in [12] proved the analogue result for G=Z?.G/ and G?.
They showed that if G=Z?.G/ is locally finite of exponent n, then G? is locally finite
of n-bounded exponent.

5 The Set of Autocommutators and the Autocommutator
Subgroup in Infinite Abelian Groups

In this section we report some recent results on the autocommutators in infinite
abelian groups, obtained by the three authors of this survey in [33], and by Dietrich
and Moravec in [12]. Since we will deal with abelian groups, we will use additive
notation for the operation of G.

Hence, if g 2 G and ' 2 Aut.G/, we will write the autocommutator of g and
' as

Œg; '� WD �gC g':

It is an easy exercise to prove the following two propositions.

Proposition 5.1 Let G be an abelian torsion group without elements of even
order. Then

K?.G/ D G? D G:

Proposition 5.2 In any abelian group G, we have 2G � K?.G/.

First, notice that in infinite abelian groups the autocommutators do not always
form a subgroup, as shown by the following example.

Example 5.3 ([33]) Let G D hai ˚ hci, where hai is infinite cyclic and jcj D 2.
Then K?.G/ is not a subgroup of G.

Proof Let ' 2 Aut.G/, then '.c/ D c, and '.a/ D 	aC ıc, where 	 2 f1;�1g and
ı 2 f0; 1g. Therefore we have: Aut.G/ D f1; '1; '2; '3g, where 1 D idG, '1.a/ D
�a; '1.c/ D c, '2.a/ D aC c; '2.c/ D c, '3.a/ D �aC c; '3.c/ D c.
For any g D ˛aC ˇc 2 G, where ˛ 2 Z and ˇ 2 f0; 1g, we have

�gC g'1 D .�˛/aC .�ˇ/cC .�˛/aC ˇc D, .�2˛/a;
�gC g'2 D .�˛/aC .�ˇ/cC ˛aC ˛cC ˇc D ˛c;
�gC g'3 D .�˛/aC .�ˇ/cC�˛aC ˛cC ˇc D .�2˛/aC ˛c.
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In particular, 2a 2 K?.G/, 2a C c 2 K?.G/, but 4a C c 6D .�2	/a C 	c, for any
integer 	 . ut

More generally, for finitely generated abelian groups we have the following
result.

Theorem 5.4 ([33]) Let G be a finitely generated abelian group. Set

G D ha1i ˚ � � � ˚ hasi ˚ B˚ O;

where a1; � � � ; as are aperiodic, O is a finite group of odd order, B is a finite 2-group.
Then we have:

(i) If s > 1, then K?.G/ D G? D G:
(ii) If s D 0 and either B D 0 or B D hb1i ˚ hb2i ˚ H with jb1j D jb2j D 2n, and

expH � 2n then K?.G/ D G? D 2.ha1/i ˚ B˚ O. Then K?.G/ is a subgroup
of G.

(iii) If s D 0 and B D hb1i ˚ H with jb1j D 2n and expH � 2n�1, then K?.G/ is
not a subgroup of G.

(iv) If s D 0 and either B D 0 or B D hb1i ˚ hb2i ˚ H with jb1j D jb2j D 2n and
expH � 2n, then K?.G/ D G? D G. If s D 0 and B D hb1i˚H with jb1j D 2n

and expH � 2n�1, then K?.G/ D G2n�1 ˚ O where G2n�1 D fx 2 G j 2n�1

x D 0g.

In any case, if s D 0, then K?.G/ is a subgroup of G.

In order to study the autocommutators in infinite abelian groups, we start from
the case G periodic. In this case the autocommutators do form a subgroup, in fact
we have the following result.

Theorem 5.5 ([33]) Let G be a periodic abelian group.
Set G D O˚D˚ R, where D is a divisible 2-group, R is a reduced 2-group and

every element of O has odd order.
Then

K?.G/ D O˚ D˚ K?.R/;

where

(i) K?.R/ D R if R is of infinite exponent;
(ii) K?.R/ D R if R is of finite exponent 2n, and R D hai ˚ hbi ˚ H, with jaj D
jbj D 2n;

(iii) K?.R/ D R2n�1 if R is of finite exponent 2n, and R D hai ˚ H, with jaj D 2n

and expH D 2n�1.

In particular, K?.G/ is a subgroup of G.

In the mixed case, generalizing our previous example, it is easy to construct many
other examples of mixed abelian groups G in which K?.G/ is not a subgroup. In fact,
we have:
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Theorem 5.6 ([33]) Let T be a periodic abelian group with K?.T/ � T and
consider the group G D T ˚ hai, where hai is an infinite cyclic group. Then K?.G/
is not a subgroup.

In the group G of the previous theorem the torsion subgroup T.G/ D T is
contained in K?.G/, but K?.T/ � T . Thus it is not true that T \ K?.G/ � K?.T/.
Surprisingly, the reverse inclusion holds. In fact we have the following result.

Theorem 5.7 ([33]) Let G be a mixed abelian group and write T D T.G/ for the
torsion subgroup of G. Then

K?.T/ � K?.G/:

The study of the automorphism group of a torsion-free abelian group is usually
very complicated.

In the following section we restrict our investigation to torsion-free abelian
groups with finite automorphism group.

6 Autocommutators and the Autocommutator Subgroup
in Torsion-Free Groups with Finite Automorphism Group

In this section we study autocommutators in a torsion-free group G with Aut.G/
finite. Notice that in this case G is abelian. In fact, we have G=Z.G/ ' Inn.G/ �
Aut.G/ , thus G=Z.G/ is finite. Then G0 is finite by Schur’s theorem. Thus G0 is
trivial, since G is torsion-free.

Torsion-free abelian groups with finite automorphism group have been studied
by A. de Vries and A.B. de Miranda in [10], as well as by J.T. Hallet and K.A.
Hirsch in [24] and [25], and recently by A.L.S. Corner in [9].

The final description of the automorphism group of these groups refers to six
groups, which are called primordial groups. They are the basic building blocks for
the groups under consideration. Besides the cyclic groups Z2;Z4;Z6, the following
groups are the primordial groups:

(1) the quaternion group Q8 of order 8;
(2) the dicyclic group DC12 D< a; bja3 D b2 D .ab/2 > of order 12;
(3) the binary tetrahedral group BT24 D< a; bja3 D b3 D .ab/2 > of order 24.

We have the following:

Theorem 6.1 ([9]) A finite group H is the automorphism group of a torsion-free
abelian group if and only if

(i) it is a subdirect product of primordial groups, and
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(ii) if H has no cyclic direct factor of order 2, then G contains an element whose
centralizer is a 2-group and f˛ 2 H j ˛3 D 1g is a direct product of groups
whose 3-Sylow are trivial or cyclic of order 3.

Next we will give a brief survey on the results obtained in [33] concerning
autocommutators and the autocommutator subgroup in torsion-free abelian groups
with finite automorphism group. We start with the following useful remark.

Let ' 2 Aut.G/, then the map

�' W x 2 G 7�! �xC x' 2 G

is a homomorphism of G. Hence Im�' is a subgroup of G, contained in K?.G/.
Moreover,

K?.G/ D
[

'2Aut.G/

Im�':

We start from the case Aut.G/ primordial and first consider the case that Aut.G/
is cyclic.

Theorem 6.2 ([33]) Let G be a group with cyclic automorphism group. Then
K?.G/ is a subgroup of G.

Another positive result is the following.

Theorem 6.3 ([33]) Let G be a group with Aut.G/ ' BT24. Then K?.G/ is a
subgroup of G.

The case Aut.G/ ' Q8 is more complicated. In fact, we have the following result.

Theorem 6.4 ([33]) Let G be a group with Aut.G/ ' Q8 D h˛; ˇ j˛
2 D ˇ2 D

.˛ˇ/2i and let F D Im�˛ \ Im�ˇ \ Im�˛ˇ:
Then K?.G/ is a subgroup of G if and only if either K?.G/ D Im�' for some

' 2 Aut.G/ or G?=F ' V4.

The group A in Example 129.6 of [16] has Aut.A/ ' Q8 and K?.A/ is a subgroup
of A. In fact, we have: A=2A D haC 2Ai ˚ hbC 2Ai ˚ hcC 2Ai ˚ hd C 2Ai and
A=F D fF; aCbCF D cCdCF; aCcCF D bCdCF; bCcCF D aCdCFg.

We mention here that it is possible to construct a group G with Aut.G/ ' Q8,
G=2G of rank 8 such that K?.G/ is not a subgroup of G.

Concerning the primordial group DC12, we notice that the group A in Exam-
ple 129.7 of [16] has Aut.A/ ' DC12 and K?.A/ is a subgroup of A. So far we
have not been able to find a torsion-free abelian group with Aut.G/ ' DC12 and
K?.G/ 6D G?.

In conclusion, we notice that de Vries and de Miranda [10] as well as Hallett and
Hirsch [24] constructed many examples of abelian groups G, indecomposable or
not, of rank � 2 with Aut.G/ ' V4. In their examples we have K?.G/ D 2G. Thus
K?.G/ is always a subgroup of G. But we have been able to show the following.
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Theorem 6.5 ([33]) There exists a torsion-free abelian group G of rank 2 such that
Aut.G/ ' V4 and K?.G/ is not a subgroup of G.
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Recent Progress in Module Approximations
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Abstract We present two recent developments in the approximation theory of
modules. The first one investigates boundaries of this theory, namely the classes nat-
urally occurring in homological algebra, but not providing for approximations (e.g.,
the class of all flat Mittag-Leffler modules). We introduce the key tools for their
study which involve set-theoretic methods combined with (infinite dimensional)
tilting theory. The second development concerns tilting classes, their structure over
commutative rings, and the recent generalization to silting modules and classes.

Keywords Approximations of modules • Infinite dimensional tilting theory •
Set-theoretic homological algebra • Silting classes and modules
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1 Introduction

Since the solution of the Flat Cover Conjecture [9], a number of classes C of
(right R-) modules were shown to be deconstructible, that is, each of their modules
expressible as a transfinite extension of small modules from C. The deconstructibil-
ity implies existence of C-precovers, hence makes C fit in the machinery of relative
homological algebra [15].

Though deconstructible classes may appear ubiquitous, some important non-
precovering classes of modules have gradually emerged. First, an extension of
ZFC was constructed in [13] such that the class of all Whitehead groups is not
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precovering. In ZFC, the class of all flat Mittag-Leffler (= @1-projective) modules
has recently been shown to be precovering, if only if R is a right perfect ring, [28].

The first part of this survey studies these boundaries of the approximation theory
in more detail. We introduce tree modules, a key tool used to prove non-existence
of approximations, and more in general, non-existence of factorizations of maps.
The construction of tree modules goes back to [12] and [17], but it is now available
in much broader contexts: the flat Mittag-Leffler (tree) modules are just the zero
dimensional instances, for T D R and n D 0, of locally T-free (tree) modules,
where T is any n-tilting module. The phenomenon of non-precovering occurs for
locally T-free modules, if and only if T is not

P

-pure split. In particular, the
phenomenon can be traced even to the setting of finite dimensional hereditary
algebras: it occurs when R is of infinite representation type and T is the Lukas tilting
module [29]. We will also see that the same tools apply to the (non-tilting) setting
of very flat modules. The latter modules have recently been introduced in algebraic
geometry [25].

In the second part of the survey, we present recent results on the structure of
tilting classes which directly continue the research presented in [18, Vol. 1]. We
start with a natural extension of the classification of tilting classes over commutative
noetherian rings to the general commutative setting [2]. Then we deal with a recent
generalization originating in representation theory: the theory of silting modules
and classes [1, 5], and pursue the analogies with the tilting setting: e.g., the
finite type result for silting classes [23], and the classification of silting classes
over commutative rings [2]. We finish by presenting Saorín’s problem on 1-tilting
modules from [24], and its recent solution in [8].

2 Preliminaries

2.1 Module Approximations

In order to present the new developments, we need to recall briefly the relevant basic
notions and facts from the approximation theory of modules. For more details, we
refer the reader to [18, Part II].

For an (associative, but not necessarily commutative) ring R with unit, we denote
by Mod-R the category of all (unitary right R-) modules. Moreover, given an infinite
cardinal � and a class of modules C, we will use the notation C<� and C�� to
denote the subclass of C consisting of all less than �-presented modules, and at most
�-presented modules, respectively.

The notation mod–R stands for the category of all strongly finitely presented
modules, i.e, the modules possessing a projective resolution consisting of finitely
generated projective modules. Note that if R is right coherent, then mod–R D
.Mod–R/<! is the category of all finitely presented modules.

Definition 2.1 Let C be a class of modules. A module M is said to be C-filtered (or a
transfinite extension of the modules in C), provided there exists an increasing chain
M D .M˛ j ˛ � �/ of submodules of M with the following properties: M0 D 0,
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M˛ D
S

ˇ<˛ Mˇ for each limit ordinal ˛ � � , M˛C1=M˛ Š C˛ for some C˛ 2 C
for each ˛ < � , and M� D M.

The chain M is called a C-filtration of the module M of length � . If � is finite,
then M is said to be finitely C-filtered. The class of all C-filtered modules will be
denoted by Filt.C/. We will say that C is closed under transfinite extensions provided
that C D Filt.C/.

For example, if C is the class of all simple modules, then Filt.C/ is the class of
all semiartinian modules, and finitely C-filtered modules coincide with the modules
of finite length.

Given a class of (infinitely generated) modules C and M 2 C, it is rarely possible
to decompose M into a direct sum of small, or even indecomposable, modules from
C. Deconstructibility is much more feasible:

Definition 2.2 Let C be a class of modules and � an infinite cardinal. Then C is �-
deconstructible provided that C D Filt.C<�/. The class C is called deconstructible,
if C is �-deconstructible for some infinite cardinal �.

Example 2.3 If R has cardinality � � where � is an infinite cardinal, then the class
Fn of all modules of flat dimension at most n is �C-deconstructible.

The class of all projective modules P0 is @1-deconstructible, because each
projective module is a direct sum of countably generated projective modules by
a classic theorem of Kaplansky.

Let n � 0 be finite, and � be an infinite cardinal. If each right ideal of R is
� �-generated, then the class Pn of all modules of projective dimension at most n is
�C-deconstructible. As recently proved in [29, §3], the latter fact can substantially
be generalized:

Theorem 2.4 Assume that � is an infinite cardinal such that each right ideal of R
is � �-generated. Let n � 0 be finite, and C be any �C-deconstructible class of
modules. Then the class of all modules possessing a C-resolution of length � n is
also �C-deconstructible.

Right and left approximations of modules were introduced by Auslander,
Reiten and Smalø in the setting of finitely generated modules over artin algebras.
Independently, Enochs and Xu studied them in the general setting of Mod–R, but
they used the terminology of precovers and preenvelopes, respectively. Since we
will primarily be interested in the general setting, we prefer the latter terminology
(following [15] and [18]):

Definition 2.5 (i) A class of modules A is precovering if for each module M
there is f 2 HomR.A;M/ with A 2 A such that each f 0 2 HomR.A0;M/ with
A0 2 A has a factorization through f :

A
f

M

A′
f ′

g
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The map f is called an A-precover of M (or a right A-approximation of M).
(ii) An A-precover is special in case it is surjective, and its kernel K satisfies

Ext1R.A;K/ D 0 for each A 2 A.
(iii) Let A be precovering. Assume that in the setting of (i), if f 0 D f then each

factorization g is an automorphism. Then f is called an A-cover of M. The
class A is covering in case each module has an A-cover.

We note that each covering class containing P0 and closed under extensions is
necessarily special precovering. The class P0 is easily seen to be precovering, while
F0 is covering by Bican et al. [9]. Recall that by the classic Bass’ Theorem P, P0 is
covering, iff P0 D F0, i.e., iff R is a right perfect ring.

Dually, we define (special) preenveloping and enveloping classes of modules. For
example, I0, the class of all injective modules, is an enveloping class.

Precovering classes are ubiquitous because of the following basic facts due to
Enochs and Št’ovíček:

Theorem 2.6 Let S be a set of modules and C D Filt.S/. Then C is precovering.
Moreover, if C is closed under direct limits, then C is covering.

The first claim of Theorem 2.6 implies that each deconstructible class closed
under transfinite extensions is precovering.

The converse of the second claim, namely whether each covering class of
modules is necessarily closed under direct limits, is still open—this is the Enochs
Problem. (For a case where the Enochs Problem has recently been solved in the
positive, see Sect. 3.3 below.)

Example 2.7 The classes Pn (n < !) for any ring R, as well as GP , the class of
all Gorenstein projective modules over an Iwanaga–Gorenstein ring R, are special
precovering. The classes Fn (n < !) over any ring, and GF of all Gorenstein flat
modules over an Iwanaga–Gorenstein ring R, are covering. The classes In (n < !)
of all modules of injective dimension � n for any ring R (resp. GI for R Iwanaga–
Gorenstein) are special preenveloping (resp. enveloping).

Precovering classes C, and preenveloping classes E , can be employed in devel-
oping relative homological algebra, where the (absolute) classes of all projective
and injective modules are replaced by the (relative) classes C and E , respectively,
cf. [15].

Besides the formal duality between the definitions of precovering and preen-
veloping classes, there is also an explicit duality discovered by Salce, mediated by
complete cotorsion pairs:

Definition 2.8 Let R be a ring. A pair of classes of modules C D .A;B/ is a
(hereditary) cotorsion pair provided that

1. A D ?B WD fA 2 Mod-R j ExtiR.A;B/ D 0 for all i � 1 and B 2 Bg, and
2. B D A? WD fB 2 Mod-R j ExtiR.A;B/ D 0 for all i � 1 and A 2 Ag.
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In this case A is closed under transfinite extensions. If moreover

3. For each module M, there exists an exact sequence 0! B! A! M ! 0 with
A 2 A and B 2 B,

then C is called complete.

Condition 3 implies that A is a special precovering class. In fact, 3 is equivalent
to its dual:

3’. For each module M there is an exact sequence 0 ! M ! B ! A ! 0 with
A 2 A and B 2 B.

The latter condition implies that B is a special preenveloping class.
Complete cotorsion pairs, and hence special precovering and special preenvelop-

ing classes, are abundant:

Theorem 2.9 For each set of modules S , there is a complete cotorsion pair of the
form .?.S?/;S?/ in Mod-R.

Remark 2.10 The rich supply of complete cotorsion pairs yields a variety of ways to
do relative homological algebra. This is certainly not restricted to module categories:
the modern way of doing homological algebra is working with the derived category
of a given Grothendieck category G. In order to compute morphisms between two
objects A and B in the derived category, it suffices to introduce a model category
structure on C.G// (= the category of unbounded chain complexes on G). Morphisms
between A and B are then computed as the C.G/-morphisms between cofibrant and
fibrant replacements of A and B modulo chain homotopy. Hovey [20] has shown that
compatible model category structures correspond 1–1 to certain complete cotorsion
pairs in C.G/, and the latter arise naturally from complete cotorsion pairs in G,
[34]. We refer to the survey [31] for more on this link between approximation
theory and homological algebra for general Grothendieck categories, notably for
quasi-coherent sheaves over schemes. A further extension of (parts of) the theory
to approximations over locally presentable abelian categories has recently been
obtained in [26].

2.2 Tilting Theory

Next, we recall the basics of (infinite dimensional) tilting theory. For more details,
we refer to [18, Part III].

For a module T , denote by Add.T/ (resp. add.T// the class of all direct
summands of arbitrary (resp. finite) direct sums of copies of T .

Definition 2.11 A module T is tilting provided that

(T1) T has finite projective dimension.
(T2) ExtiR.T;T

.�// D 0 for all 1 � i and all cardinals �.
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(T3) There exist r < ! and an exact sequence 0 ! R ! T0 ! � � � ! Tr ! 0

where Ti 2 Add.T/ for each i � r.

The class TT WD T? is the right tilting class, AT WD
?TT the left tilting class, and

the (complete) cotorsion pair CT WD .AT ; TT/ the tilting cotorsion pair, induced by
T . If T has projective dimension � n, then the tilting module T is called n-tilting,
and similarly for TT , AT , and CT . If T and T 0 are tilting modules, then T is equivalent
to T 0 in case T and T 0 induce the same tilting class.

If n D 1, then TT is a torsion class in Mod–R, so there is a tilting torsion pair
.TT ;FT/ in Mod–R.

Tilting theory originated in the realm of finitely generated modules/representations
of finite dimensional algebras, but many of its aspects extend to the general setting
of possibly infinitely generated modules over arbitrary rings. Such extension is
especially desired for commutative rings, because all finitely generated tilting
modules over a commutative ring are projective, that is, 0-tilting.

The main focus of the classical tilting theory is on category equivalences induced
by tilting modules. Here, we will need to recall only the approximation properties of
the corresponding tilting classes. The first one concerns (1-) tilting torsion classes:

Proposition 2.12 Let R be a ring and T be a torsion class of modules. Then T is a
right 1-tilting class, iff T is special preenveloping.

A much more complex argument is needed to prove the following characteriza-
tion of general tilting classes and tilting cotorsion pairs:

Theorem 2.13 Let R be a ring and C D .A;B/ be a cotorsion pair. Then C is
tilting, iff A � Pn for some n < !, and B is closed under arbitrary direct sums.

Even though tilting modules are allowed to be infinitely generated, there is
always a grain of finiteness preserved. A class of modules T is said to be of
finite type, in case there exists n < ! and a set S consisting of strongly finitely
presented modules of projective dimension � n such that T D S?. Then T is also
axiomatizable, by a (possibly infinite) set of formulas of the language of the first
order theory of modules. Also, T is definable, that is, T is closed under arbitrary
direct products, direct limits, and pure submodules.

Theorem 2.13 easily implies that each class of finite type is a right tilting class.
The converse is a major accomplishment of (infinite-dimensional) tilting theory:

Theorem 2.14 Let R be a ring, T be an n-tilting module, and .AT ;BT/ be the
induced tilting cotorsion pair. Then AT is @1-deconstructible, and BT is of finite
type.

Theorem 2.14 makes it possible to classify tilting modules and classes over
Dedekind domains, because finitely presented modules are classified in this case.
Further tools are needed to handle the general commutative noetherian case. The
main result from [4] offers the following classification:

A sequence .P0; : : : ;Pn�1/ consisting of subsets of the Zariski spectrum Spec.R/
is called characteristic provided that P0 � P1 � � � � � Pn�1, and for each i < n,
Pi is an upper subset of the poset .Spec.R/;�/ such that Pi contains no associated
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primes of ˝�i.R/, where ˝�i.R/ denotes the ith cosyzygy in the minimal injective
coresolution of R.

Theorem 2.15 Let R be a commutative noetherian ring and n < !. Then right n-
tilting classes in Mod–R are parametrized by characteristic sequences: the class T
corresponding to a characteristic sequence .P0; : : : ;Pn�1/ is defined by the formula

T D fM 2 Mod–R j TorR
i .M;R=p/ D 0 for all i < n and p 2 Pig:

In Chap. 4, we will present recent generalizations of Theorem 2.15, both for
the commutative, but not necessarily noetherian, tilting setting, and for the silting
setting.

3 Boundaries of the Approximation Theory

3.1 Locally T-Free Modules

Having defined tilting modules T , we can now proceed to the locally T-free ones.
We start with a slightly more general notion:

Definition 3.1 Let R be a ring. A system S consisting of countably presented
submodules of a module M is a dense system provided that S is closed under
unions of well-ordered countable ascending chains, and each countable subset of
M is contained in some N 2 S .

Let F be a class of countably presented modules. Denote by C the class of all
modules possessing a countable F-filtration. A module M is locally F-free provided
that M contains a dense system of submodules consisting of elements of C.

Notice that if M is countably presented, then M is locally F-free, iff M 2 C.
Also, each locally F-free module is a directed union of the modules in C. A less
trivial fact proved in [29] is

Lemma 3.2 Let F be a class of countably presented modules. Then the class of all
locally F-free modules is closed under transfinite extensions.

Definition 3.3 Consider the particular case of Definition 3.1 when F D A�! for
a cotorsion pair C D .A;B/. Then C D F , and a module is locally F-free, iff it
admits a dense system of countably presented submodules from A.

In particular, if T is a tilting module with the induced tilting cotorsion pair
.AT ;BT/, then the locally A�!

T -free modules are simply called locally T-free.

Example 3.4 If T D R, then the locally T-free modules coincide with the @1-
projective modules in the sense of [11]. By Herbera and Trlifaj [19], they also
coincide with the flat Mittag-Leffler modules, that is, the modules M such that the
functor M ˝R � is exact, and for each sequence of left R-modules .Ni j i 2 I/, the
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canonical map M ˝R
Q

i2I Ni !
Q

i2I M ˝R Ni is monic. We will denote by FM
the class of all flat Mittag-Leffler modules. Clearly P0 � FM � F0.

Lemma 3.2 suggests the question of whether the classes of locally F-free
modules are deconstructible (if so, they are even precovering by Theorem 2.6).

This is true in the setting of Example 3.4 when R is a right perfect ring, because
then all flat (Mittag-Leffler) modules are projective. However, the picture changes
completely in the non-right perfect case. In [16], the following result was proved in
ZFC: the class of all flat Mittag-Leffler (= @1-free) abelian groups is not precovering.
The proof used an idea from [13], where it was proved that the assertion ‘the class
of all Whitehead groups is not precovering’ is consistent with ZFC. But the latter
assertion is not provable in ZFC, because it is also consistent with ZFC that all
Whitehead groups are free. The ZFC result from [16] mentioned above has gradually
been extended from the case of R D Z to all countable non-right perfect rings R,
[7]. Also, it turned out that other classes of locally T-free modules exhibit non-
precovering properties in ZFC. Tree modules provide a key tool for proving these
properties.

3.2 Tree Modules

In order to define a tree module, we first have to introduce its basic combinatorial
component—a tree.

Definition 3.5 Let � be an infinite cardinal, and T� be the set of all finite sequences
of ordinals less than �, or equivalently, all maps � W n! � with n < !. The symbol
`.�/ will denote the length of � (so `.�/ D n for � W n! �).

We define a partial order on T� by letting � 0 � � , iff `.� 0/ � `.�/ and � �
`.� 0/ D � 0. This partial order gives T� the structure of a tree, called the tree on �;
the maps � are the nodes of T� .

Let Br.T�/ denote the set of all branches of T� . Each branch � 2 Br.T�/ can be
identified with an !-sequence of ordinals less than �, so Br.T�/ D f� W ! ! �g:

Notice that card .T�/ D �, while card .Br.T�// D �! . Also, at each node � , the
tree T� branches to � successive nodes, but T� has only short branches, of length !.

Next, we turn to the basic algebraic component: the Bass module.

Definition 3.6 Let R be a ring and F be a class of countably presented modules.
A module B is a Bass module over F , provided that B is a countable direct limit of
modules from F . W.l.o.g., such B is the direct limit of a chain

F0
f0
! F1

f1
! : : :

fi�1
! Fi

fi
! FiC1

fiC1

! : : : (1)

where Fi 2 F and fi 2 HomR.Fi;FiC1/ for all i < !.
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Example 3.7 Consider the particular setting when F D P�!
0 is the class of all

countably presented projective modules. Then the Bass modules over F coincide
with the countably presented flat modules, hence they have projective dimension at
most 1.

If R is not right perfect, then the classic Bass module is a particular instance of
the direct limit above when Fi D R and fi is the left multiplication by ai (i < !),
where Ra0 © � � � © Ran : : : a0 © RanC1an : : : ao © : : : is a strictly decreasing chain
of principal left ideals in R. Bass proved that in this case, the projective dimension
of B equals 1. In particular, B 2 F0 n FM.

Returning to the general setting, we observe that since our tree T� has branches
of length !, and the Bass module B is a direct limit of the system of modules .Fi j

i < !/ indexed in !, we can use B to decorate T� . The resulting tree module L will
be contained in the product P D

Q

�2T�
F`.�/ as follows:

Definition 3.8 For each � 2 Br.T�/, i < !, and x 2 Fi, we define x�i 2 P by

���i.x�i/ D x;

���j.x�i/ D fj�1 : : : fi.x/ for each i < j < !;

�� .x�i/ D 0 otherwise;

where �� 2 HomR.P;F`.�// denotes the � th projection for each � 2 T� .
Let X�i D fx�i j x 2 Fig. Then X�i is a submodule of P isomorphic to Fi.

Further, let X� WD
P

i<! X�i, and L D
P

�2Br.T� / X� . L is called the tree module
corresponding to � and to the presentation (1) of B above.

Let D D
L

�2T�
F`.�/. Then D � L, and D is �-presented. Despite the fact that

L=D is isomorphic to a large direct sum of copies of B, L inherits the property from
D of being locally F-free:

Lemma 3.9 [29] There is an exact sequence 0 ! D ,! L ! B.Br.T� // ! 0.
Moreover, the module L is locally F-free; this is witnessed by the dense system
S D fXC j XC D

P

�2C X�; C a countable subset of Br.T�/g.

Lemma 3.9 is used in [28] to determine the crucial role of Bass modules in testing
for existence of approximations:

Lemma 3.10 (Šaroch’s Lemma) Let F be a class of countably presented modules,
and L the class of all locally F-free modules. Let B be a Bass module over F , such
that B is not a direct summand in any module from L. Then B has no L-precover.

Remark 3.11 The construction of tree modules above can be generalized further:
the trees T� are replaced by ones whose branches have length �, where � is a
regular infinite cardinal, and the decorating Bass modules by well-ordered direct
limits of small modules indexed in �. Such generalized tree modules have recently
been employed in proving results on non-existence of factorizations of maps, whose
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applications include the solution of Auslander’s Problem concerning almost split
sequences in Mod–R. For more details, we refer to [27].

3.3 Locally T-Free Modules and Approximations

Let us now have a closer look at the particular case of locally T-free modules where
T is a tilting module (see Definition 3.3). By Angeleri Hügel et al. [6], Bass modules
play a central role in deciding further questions here:

Theorem 3.12 Let T be a tilting modules and AT be the corresponding left tilting
class (so AT D Filt.CT/ where C D A�!

T by Theorem 2.14). Let LT denote the class
of all locally T-free modules. Then the following are equivalent:

1. LT is a (pre-) covering class.
2. All Bass modules over CT are contained in CT .
3. The class AT is closed under direct limits.
4. T is

P

-pure split.

Here, a module T is
P

-pure split provided that each pure embedding T0 ,!
T1 with T1 2 Add .T/, splits. For example, any

P

-pure injective module is
P

-pure split.
Since AT � LT � lim

�!
CT , condition (3) above is further equivalent to LT being

closed under direct limits. This shows that the Enochs Problem from Theorem 2.6
has a positive solution for all left tilting classes of modules.

We note the following corollary of Theorem 3.12 for the zero-dimensional case
of T D R (cf. Examples 3.4 and 3.7). It may be viewed as an approximation theoretic
extension of the classic Bass’ Theorem P:

Corollary 3.13 The following are equivalent for a ring R:

1. The class FM of all flat Mittag-Leffler modules is (pre-) covering.
2. All (classical) Bass modules over P�!

0 are projective.
3. P0 D F0 (i.e., R is a right perfect ring).
4. The regular module R is

P

-pure split.

We note that even in the particular setting of Corollary 3.13, the regular module
R satisfying 4 need not be

P

-pure injective, since there exist right artinian rings that
are not pure-injective, [35].

Next, we present an application of Theorem 3.12 to an unexpected setting,
namely to hereditary finite dimensional algebras of infinite representation type.
Here, the relevant tilting module is the Lukas tilting module. In order to define it, we
recall some terminology for this particular setting (for more details, we refer to [3]):

We denote by p the representative set of all indecomposable finite dimensional
preprojective modules, i.e., the indecomposable projective modules and their ��1-
shifts, where ��1 is the inverse of the AR-translation, given in this setting by the
formula ��1.M/ D Ext1R.D.R/;M/ where D is the standard duality. Dually, the
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set q of all indecomposable finite dimensional preinjective modules is defined. The
remaining indecomposable finite dimensional modules are called regular.

The class p? is clearly of finite type, hence it is a right tilting class for a (1-)
tilting module L, called the Lukas tilting module. In fact, a module M belongs to p?,
iff M has no direct summands from p.

The left tilting class induced by L is the class B of all Baer modules. The locally
L-free modules are called locally Baer modules, their class is denoted by L. With
this notation, we have

Theorem 3.14 ([3, 6]) Let R be a hereditary finite dimensional algebras of infinite
representation type. Then

1. B D Filt.p/.
2. The Lukas tilting module L is countably generated, but has no finite dimensional

direct summands, and it is not ˙ -pure split.
3. L is not precovering (and hence not deconstructible).

Remark 3.15 By Theorem 3.12, there exists a Bass module over B�! which is not

a Baer module. Such Bass module can be constructed as the union of a chain P0
f0
,!

P1
f1
,! : : :

fi�1
,! Pi

fi
,! PiC1

fiC1

,! : : : such that all the Pi are direct sums of the modules
from p, but the cokernels of all the fi are direct sums of regular modules.

3.4 Very Flat and Locally Very Flat Modules

As mentioned above, the results in [6] are quite general, and apply far beyond the
tilting setting. We now present one such application, concerning a new class of flat
modules discovered recently in algebraic geometry. We only sketch the motivation
here, leaving details to [25]:

As shown in [14], quasi-coherent sheaves over a scheme X with the structure
sheaf OX can equivalently be studied as certain ‘quasi-coherent’ representations of
the quiver Q whose vertices are affine open subschemes U of X, and arrows U ! V
are pairs of affine open subschemes V � U. A quasi-coherent representation M
assigns to each vertex an OX.U/-module M.U/, and to each arrow U ! V an
OX.U/-homomorphism fVU W M.U/! M.V/, such that

idOX.V/ ˝ fVU W OX.V/˝OX.U/ M.U/! OX.V/˝OX.U/ M.V/ Š M.V/

is an OX.V/-isomorphism, and fWVfVU D fWU whenever U ! V ! W.
This representation theoretic approach to quasi-coherent sheaves has recently

been dualized by Positselski in [25]:

Definition 3.16 Let X be a scheme and OX its structure sheaf. A contraherent
cosheaf P on X is defined by assigning

(i) to every affine open subscheme U � X, an OX.U/-module P.U/, and
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(ii) to each pair of affine open subschemes V � U � X, an OX.U/-homomorphism
gUV W P.V/! P.U/ such that

HomOX.U/.OX.V/; gUV/ W P.V/! HomOX.U/.OX.V/;P.U///

is an OX.V/-isomorphism, and Ext1OX.U/
.OX.V/;P.U// D 0:

(iii) gUW D gUVgVW for each triple of affine open subschemes W � V � U � X.

The condition on P.U/ involving vanishing of Ext1 in (ii) is imposed because
the OX.U/-module OX.V/ is not projective in general, so (unlike the functor
OX.V/˝OX.U/� which is exact, because OX.V/ is a flat OX.U/-module), the functor
HomOX.U/.OX.V/;�/ need not be exact. The crucial observation here is that the
OX.U/-module OX.V/ is always very flat:

Lemma 3.17 [25] Let ' W R! S be a homomorphism of commutative rings such
that the induced morphism of affine schemes '� W Spec.S/ ! Spec.R/ is an open
embedding. Then S is a very flat R-module.

Here, a module M over a commutative ring R is very flat provided that M 2
?.S?/ where S D fRŒs�1� j s 2 Rg, and RŒs�1� denotes the localization of R at the
multiplicative set fsi j i < !g.

The class of all very flat modules is denoted VF . It fits in the complete cotorsion
pair .VF ; CA/ where CA D S? is the class of all contraadjusted modules.

It is easy to see that P0 � VF D Filt.VF�!/ � F0 \ P1. If we view very flat
modules as analogs of projective modules, then the locally very flat modules are
analogs of the flat Mittag-Leffler ones:

Definition 3.18 Let R be a commutative ring and C D VF�! . Then the locally C-
free modules are called locally very flat. The class of all locally very flat modules is
denoted by LV .

Clearly, ML � LV � F0. Lemma 3.10 makes it possible to pursue the analogy
further, at least in the case of noetherian integral domains (cf. Corollary 3.7):

Corollary 3.19 ([30]) The following are equivalent for a noetherian integral
domain R:

1. The class LV of all locally very flat modules is (pre-) covering.
2. All Bass modules over VF�! are very flat.
3. VF D F0.
4. The Zariski spectrum Spec.R/ is finite.

Note that Condition 3 implies that LV is closed under direct limits, so we have
yet another particular instance where Enochs Conjecture holds.

Condition 4 implies that R has Krull dimension at most 1. Moreover, if R is a
Dedekind domain, then it even implies that R is a PID. In the Dedekind domain
case, there is more information available on the structure of very flat and locally
very flat modules:
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Theorem 3.20 ([30]) Let R be a Dedekind domain and M a torsion-free module of
rank r.

1. If r is finite, then M is very flat, iff there exists 0 ¤ s 2 R such that the localization
M ˝R RŒs�1� is a projective RŒs�1�-module (of rank r).

2. M is very flat, iff M has a T -filtration (of length r), where T denotes the set of
all non-zero submodules of the localizations RŒs�1� with 0 ¤ s 2 R.

3. M is locally very flat, iff each finite rank submodule of M is very flat.

Notice that the statement 3 above is the analog of Potryagin’s Criterion for @1-
freeness of torsion-free abelian groups.

4 Tilting and Silting Theory

4.1 Tilting Classes Over Commutative Rings

Theorem 2.15 gives a characterization of right tilting classes over commutative
noetherian rings in terms of the characteristic sequences of subsets of their Zariski
spectra. It has recently been generalized to arbitrary commutative rings in [22]. In
order to state this generalization, we need more terminology:

Definition 4.1 Let R be a commutative ring with the Zariski spectrum Spec.R/.

(i) A subset X � Spec.R/ is Thomason provided there is a set S consisting of
finitely generated ideals of R such that X D

S

I2S V.I/ where V.I/ D fp 2
Spec.R/ j I � pg.

(ii) For a module M, let CM denote the smallest subclass of Mod–R containing
M and closed under submodules and direct limits. A prime p 2 Spec.R/ is a
vaguely associated prime of M, in case R=p 2 AssR.CM/, i.e., R=p embeds in
a module from CM .

(iii) A sequence .P0; : : : ;Pn�1/ consisting of subsets of the Zariski spectrum
Spec.R/ is called characteristic provided that P0 � P1 � � � � � Pn�1, and
for each i < n, Pi is a Thomason subset of Spec.R/ such that Pi contains no
vaguely associated primes of ˝�i.R/.

We note that if R is noetherian, then Thomason subsets coincide with the upper
subsets of .Spec.R/;�/, and vaguely associated primes coincide with the associated
primes of M, [21]. So in the particular case when R is noetherian, the definition of a
characteristic sequence above coincides with the one given in Sect. 2.2.

Theorem 4.2 ([22]) Let R be a commutative ring and n < !. Then right n-
tilting classes in Mod–R are parametrized by characteristic sequences: the class T
corresponding to a characteristic sequence .P0; : : : ;Pn�1/ is defined by the formula

T D fM 2 Mod–R j TorR
i .M;R=I/ D 0 for each i < n and each

finitely generated ideal I such that V.I/ � Pig:
(2)

In the particular case of 1-tilting classes, we obtain
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Corollary 4.3 ([21]) Let R be a commutative ring. Then right 1-tilting classes in
Mod–R correspond to Thomason subsets P of Spec.R/ such that P contains no
primes vaguely associated with R. The right 1-tilting class corresponding to such
P is fM 2 Mod–R j MI D M for all finitely generated ideals I such that V.I/ � Pg.

In the one-dimensional case, instead of Thomason subsets, one can use the better
known Gabriel filters of ideals of R in order to characterize right 1-tilting classes:

Definition 4.4 Let R be a commutative ring. A filter G consisting of ideals of R is a
Gabriel filter provided that

(i) If I 2 G, then the ideal .I W x/ D fr 2 R j x � r 2 Ig belongs to G for each x 2 R.
(ii) If J is an ideal in R such that there exists I 2 G with .J W x/ 2 G for all x 2 I,

then J 2 G.

A Gabriel filter G is said to be of finite type in case G has a filter basis consisting
of finitely generated ideals, and G is faithful provided that Ann.I/ D 0 for all I 2 G.

Theorem 4.5 ([21]) Let R be a commutative ring. Then right 1-tilting classes in
Mod–R correspond to faithful Gabriel filters of finite type. Given such a filter G, the
corresponding right 1-tilting class is fM 2 Mod–R j MI D M for all I 2 Gg.

Notice that in the latter formulation, the characterization of right 1-tilting classes
is a direct generalization of the known characterization—due to Bazzoni and
Salce—for the particular case of Prüfer domains (see, e.g., [18, §14.2]).

Remark 4.6 We briefly comment on some recent developments in cotilting theory
of commutative rings: recall that dually to Definition 2.11, one can define n-cotilting
modules and classes, see [18, Chap. 15]. In the commutative noetherian case, the
dual of Theorem 2.15 holds, whence characteristic sequences parametrize also
all cotilting classes: the left n-cotilting class corresponding to the characteristic
sequence P D .P0; : : : ;Pn�1/ is CP D fM 2 Mod–R j ExtiR.R=p;M/ D
0 for all i < n and p 2 Pig. In fact, in this case each n-cotilting module is equivalent
to an n-cotilting module which is a dual (or character module) of an n-tilting
module, [4].

Recently, it was shown in [32] that among all n-cotilting modules inducing CP
there is one, MP , which is minimal, that is, MP is isomorphic a direct summand in
any other cotilting module inducing CP . This minimal cotilting module is unique up
to isomorphism; its construction is presented in [32].

Relations between cotilting modules over commutative noetherian rings and their
localization at maximal ideals have recently been studied in [33]—for example,
each cotilting module C is equivalent to the direct product

Q

m2mSpec.R/ Cm where
Rm denotes the localization of R at m and Cm D HomR.Rm;C/ 2 Mod–Rm the
colocalization of C at m.
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4.2 Silting Modules and Classes

Silting modules and classes generalize 1-tilting modules and classes. They have first
appeared in the representation theory of artin algebras, cf. [1].

In the following, Gen T will denote the class of all homomorphic images of all
direct sums of copies of the module T .

Definition 4.7 Let R be a ring and T be a module.

(i) Let ˚ D f'i j i 2 Ig be a set of morphisms between projective modules. We
denote by D˚ the class of all modules M such that HomR.'i;M/ is surjective
for each i 2 I. If ˚ contains only one element, ˚ D f'g, we will simply use
D' in place of D˚ .

(ii) T is a � -rigid module provided there exists a projective presentation

P1
'
! P0 ! T ! 0 (3)

such that D' � Gen T .
(iii) T is silting provided that there exists a projective presentation (3) such that

D' D Gen T . In this case, Gen T is called the silting class generated by T , and
the map ' is said to witness that T is a silting module.

The peculiar terminology in (ii) comes from the case when R is an artin algebra:
there, a finitely generated module is � -rigid, iff HomR.T; �T/ D 0 where �

denotes the AR-translation, cf. [1]. Equivalently, Gen T � T?1 , where T?1 D

Ker Ext1R.T;�/.
The latter equivalence holds more in general, when R is any right perfect ring

(or R is semiperfect and T is finitely generated), and also when T is a module of
projective dimension � 1 over any ring (in particular, when R is right hereditary).
However, Gen T � T?1 is a weaker condition in general than � -rigidity, cf. [8].

Let Pres T (� Gen T) denote the class of all modules M such that there exist
cardinals � and � and an exact sequence T.�/ ! T.�/ ! M ! 0.

Definition 4.8 Let R be a ring and T be a module.

(i) T is finendo, provided T is finitely generated over its endomorphism ring
(equivalently, Gen T is a preenveloping class, see [18, 13.52]).

(ii) T is quasi-tilting provided that Pres T D Gen T � T?.

The following Lemma gives basic relations among the notions defined above (for
its proof, we refer to [5]):

Lemma 4.9 Let R be a ring and T be a module.

1. Each silting module is finendo, quasi-tilting, and � -rigid.
2. T is finendo and quasi-tilting, iff T is a 1-tilting R=Ann.T/-module.
3. T is 1-tilting, iff T is faithful silting, iff T is faithful finendo and quasi-tilting.
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Example 4.10 Assume that R is an artin algebra and T is a finitely presented
module. Then, as mentioned above, T is � -rigid, iff Gen T � T?1 . Since T is always
finendo, the notions of a silting and quasi-tilting module coincide, namely with the
notion of a 1-tilting R=Ann.T/-module.

In general, by Marks and Št’ovíček [23], silting modules can equivalently be
studied as 1-tilting modules, but over a different ring: the upper triangular 2 
 2
matrix ring S D UT2.R/. Recall that Mod–S is equivalent to the morphism category
of R, that is, the category whose objects are morphisms in Mod–R, and morphisms
between two objects f and f 0 are pairs .g; g0/ of morphisms in Mod–R, where g (g0)
maps the domain (codomain) of f into the domain (codomain) of f 0, which satisfy
f 0g D g0f .

Theorem 4.11 ([23]) Let R be a ring and T be a module with a projective
presentation (3). Then ' witnesses that T is silting, if and only if ' ˚ idR is a 1-
tilting object in the morphism category, i.e., the S-module T 0 D P1˚ R˚ P0˚ R is
1-tilting.

Here, the S-module structure on T 0 is given by

.p1; r1; p0; r0/:A D .p1:u; r1:u; '.p1/:v C p0:w; r1:v C r0:w/

for A D . u v
0 w / 2 S.

Notice that the finite type of right 1-tilting classes (see Theorem 2.14) can be
restated as follows: a class D is right 1-tilting, iff D D D˚ for a set ˚ consisting
of monomorphisms between finitely generated projective modules. The following
result from [23] extends this to all silting classes:

Theorem 4.12 Let R be a ring and D � Mod–R. Then D is silting, iff D D D˚ for
a set ˚ consisting of morphisms between finitely generated projective modules.

It easily follows that each silting class is a preenveloping (and definable) torsion
class (cf. Proposition 2.12). For left noetherian rings, also the converse holds:

Theorem 4.13 ([2]) Let R be a left noetherian ring. Then silting classes coincide
with the preenveloping definable torsion classes.

However, Theorem 4.13 does not extend to non-noetherian rings:

Example 4.14 ([2]) Let R be a commutative local ring with an idempotent maximal
ideal m ¤ 0, and D D Mod–R=m be the class of all completely reducible R-
modules. Then D is a preenveloping and definable torsion class, but it is not silting.

We finish this section by returning to the commutative noetherian setting (cf. the
particular case of n D 1 of Theorem 2.15):

Theorem 4.15 ([2]) Let R be a commutative noetherian ring. Then silting classes
D in Mod–R correspond 1–1 to upper subsets P of the Zariski spectrum. For such
P, D is defined by D D fM 2 Mod–R j Mp D M for all p 2 Pg.
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The language of Gabriel filters makes it possible to extend the latter characteri-
zation further, to all commutative rings:

Theorem 4.16 ([2]) Let R be a commutative ring. Then silting classes in Mod–R
correspond 1–1 to (not necessarily faithful) Gabriel filters of finite type. The silting
class corresponding to such filter G is fM 2 Mod–R j MI D M for all I 2 Gg.

4.3 Saorín’s Problem

We finish our survey by considering a particular recent problem on 1-tilting modules
motivated in the theory of Grothendieck categories. We only sketch the motivation
here, referring the interested reader to [24] for more details.

The paper [24] deals with the torsion pairs t D .T ;F/ in Grothendieck categories
G, such that t is induced by a self-small 1-tilting object in G, or equivalently, T is a
cogenerating class in G, and the heart Ht of the Happel-Reiten-Smalø t-structure on
the bounded derived category Db.G/ is a module category. This is shown to imply
that t is a tilting torsion pair with F closed under direct limits, but the converse
implication fails in general. (By the Addendum to [24], the condition of F being
closed under direct limits is equivalent to Ht being a Grothendieck category.)

For the particular case of G D Mod–R, the validity of the converse implication is
equivalent to a positive answer to [24, Question 5.5], stated here as

Problem 4.17 (Saorín’s Problem) Let R be a ring and T a 1-tilting module. Let
.TT ;FT/ the corresponding tilting torsion pair. Are the following conditions (i) and
(ii) equivalent?

(i) The class FT is closed under direct limits.
(ii) T is equivalent to a finitely generated tilting module.

Clearly (ii) always implies (i), because if T is equivalent to a finitely generated
tilting module T 0, then FT D Ker HomR.T ;�/ D Ker HomR.T 0;�/ is closed under
direct limits, since T 0 is even finitely presented, cf. [18, 2.7 and 13.3].

So the question is whether (i) implies (ii). It turns out that the answer depends
on the ring R in case. The key point, due to Bazzoni, is that Condition (i) can be
translated into a more accessible one, for any ring R.

Theorem 4.18 ([8]) In the setting of Problem 4.17, Condition (i) is equivalent to

(iii) T is pure-projective, i.e., a direct summand in a direct sum of finitely presented
modules.

So restated in terms of the properties of T , Saorín’s Problem just asks whether
each pure-projective 1-tilting module is equivalent to a finitely generated one. On
the positive side, we have

Theorem 4.19 ([8, 21]) Assume that either R is commutative or right artinian.
Then the Conditions (i)–(iii) above are equivalent.



208 J. Trlifaj

However, the answer may be negative even for (non-commutative) two-sided
noetherian domains:

Example 4.20 [8] Let R be the universal enveloping algebra of sl.2;C/, i.e.,
R D C.x; y; z/=K where K is the ideal generated by x � yz C zy, 2y � xy C yz
and �2z � xz C zx. Let I denote the idempotent ideal generated by x C K, y C K
and z C K. Then the class DI of all I-divisible modules (i.e., the modules M such
that MI D M) is a tilting class induced by a pure-projective 1-tilting module which
is not equivalent to any finitely generated tilting module.

Another counter-example is provided by the Dubrovin-Puninski ring:

Example 4.21 Let R be a nearly simple uniserial domain, and S be the Dubrovin-
Puninski ring, i.e., S is the endomorphism ring of (any) cyclically presented
non-projective right R-module, [10]. Then S is a left and right coherent ring with
a unique finitely presented simple injective left S-module M. Moreover, M has a

projective resolution 0 ! S ! P ! P
�
! M ! 0 where P is countably

presented. Let P0 be the kernel of � . Then T1 D P ˚ P0 is a pure-projective
1-tilting left S-module which is not equivalent to any finitely presented tilting left
S-module. For a classification of all the tilting (and other definable) classes of left
S-modules, we refer to [8].
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Part II
Research Articles

In this chapter we present a collection of recent research articles on various topics
within the theory of groups, modules and models.



A Class of Pure Subgroups of the Specker Group

A.L.S. Corner

Abstract This paper seeks to extend results realizing rings as endomorphism rings,
to situations where one cannot hope to prescribe the endomorphism ring completely.
The notion of an inessential endomorphism is introduced and exploited in the
context of subgroups of the higher Specker groups, the product over an infinite
cardinal of copies of the group of integers.
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1 Introduction

This paper was originally delivered by A.L.S. Corner at the Montpellier conference
on Abelian groups in June 1967; see ‘Liste des participants et des conferences’ in
[1] below. The paper was never published but as it contained the first concept of
an inessential endomorphism, its influence in subsequent years was significant. The
version below has been transcribed by Brendan Goldsmith from a typescript given
to him by Tony Corner when he was a doctoral student of Corner. Some of the final
pages of the typescript were missing but a number of hand-written replacements by
Corner exist; the part reproduced below closely follows the earliest of these versions.
Some explanations which Corner had indicated on the manuscript as being required
have been included in italics.
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2 Definition and Preliminary Results

Let D be a divisible torsion group of (infinite) cardinal m < @� (= the first strongly
inaccessible cardinal). Consider any short exact sequence

0 �! X1 �! X0
"X
�! D �! 0 (X)

in which X0, and therefore also X1, is free Abelian of rank m; we call such a short
exact sequence an admissible resolution of D. Then we have an induced short exact
sequence

0 �! X�
0 �! X�

1

ıX
�! K �! 0; (X�)

where ./� D Hom.;Z/, and K D Ext.D;Z/.
The exact sequence 0! Z! Q! Q=Z! 0 induces an exact sequence
0 D Hom.D;Q/ ! Hom.D;Q=Z/ ! Ext.D;Z/ ! Ext.D;Q/ D 0; therefore

we may (and shall) make the identification

K D Hom.D;Q=Z/: (1)

Since K is torsion-free, we may regard X�
0 as a pure subgroup of X�

1 . Note further
that X�

0 and X�
1 are isomorphic copies of the ‘higher’ Specker group Z

m, namely the
direct product of m copies of the group Z of integers.

Given any pure subgroup S of K, we now define

G.S/ D G.S;X/ D Sı�1
X :

It is immediate that

X�
0 � G.S;X/ � X�

1 ; (2)

where both inclusions are pure. As a pure subgroup of the homogeneous separable
group X�

1 , G.S/ is homogeneous and separable, its type being of course the type
of Z. For future reference we note that

G.S;X/=X�
0 Š S; X�

1 =G.S;X/ Š K=S: (3)

Proposition 2.1 (i) Up to isomorphism, G.S;X/ depends only on the pure sub-
group S of K (and its embedding in K), and not on the admissible resolution X.

(ii) G.S;X/ Š G.S;X/˚ Z
m.

The proof depends on two simple lemmas.

Lemma 2.2 Let Y0 be a direct summand of X0 such that Y0"X D D. Then Y0 admits
a direct complement U in X0 such that U � Ker "X.

Proof Write X0 D Y0˚U0, where U0 is an arbitrary direct complement. Since U0 is
free, the condition on Y0 guarantees the existence of a homomorphism  W U0 ! Y0
such that ."X � Y0/ D "X � U0 W U0 ! D. Then the subgroup U D U0.1 � / is a
direct complement of Y0 contained in Ker "X .



Subgroups of Specker Group 215

Lemma 2.3 There exists a direct summand Y0 of corank m in X0 such that
Y0"X D D.

Proof Choose a free basis ei .i 2 I/ of X0, and write di D ei"X , so that di .i 2 I/ is
a generating system for D indexed by a set I of cardinal m. Note that any generating
system for D remains a generating system if a single element is removed; for the
quotient of D by the subgroup generated by the diminished system is both divisible
and cyclic, and, as such, must vanish. Now consider the set of pairs .J; ˙/, where
J is a subset of I and ˙ is a function that assigns to each j 2 J a finite subset ˙J

of the complement I n J such that dj 2 hdi W i 2 ˙Ji. We order the pairs in the
usual way: .J; ˙/ � .J0; ˙ 0/ if and only if J � J0 and ˙j D ˙ 0

j for all j 2 J. The
ordering is visibly inductive; so Zorn’s Lemma provides a maximal pair, say .J; ˙/.
By construction, di .i 2 I n J/ is a generating system for D. Consider any index
j0 2 InJ. By our previous remark, di .i 2 In.J[fj0g// is still a generating system for
D, so there exists a finite subset˙j0 of In.J[fj0g/ such that dj0 2 hdi W i 2 ˙j0i. Thus
I is the union of J and the finite subsets˙j .j 2 J/; which implies that jJj D jIj D m.
The subgroup Y0 of X0 generated by the ei .i 2 I n J/ is then a direct summand of
corank m in X0 such that Y0"X D D; and the lemma is proved.

Remark 2.4 The argument just given shows that if fgi W i 2 Ig is any generating
system for a group G which admits no non-zero cyclic quotient, then there is a
subset J of I such that jJj D jIj and fgi W i 2 I n Jg is still a generating system; the
converse is also true, trivially.

We are now in a position to prove Proposition 2.1.

Proof To establish (ii), it is enough to show that G.S;X/ has a direct summand
isomorphic with Z

m; for then (say) G.S;X/ Š H˚Z
m Š H˚Z

m˚Z
m Š G.S;X/˚

Z
m. Now, by the two lemmas just proved, we may choose a direct decomposition

X0 D Y0 ˚ U, where U is free Abelian of rank m, U � Ker "X . Write "Y D "X �
Y0; Y1 D Ker "Y . Then we have a commutative diagram with exact rows and split
exact columns

0 0
⏐
⏐
�

⏐
⏐
�

0 −−−−→ −−−−→ eY

eX

−−−−→ D −−−−→ 0
⏐
⏐
�

⏐
⏐
�

∥
∥
∥

0 −−−−→ X1

Y1 Y0

X0−−−−→ −−−−→ D −−−−→ 0
⏐
⏐
�

⏐
⏐
�

U U
⏐
⏐
�

⏐
⏐
�

0 0
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and this induces another such diagram

0 0
�
⏐
⏐

�
⏐
⏐

0 −−−−→ ∗ −−−−→ ∗ −−−−→ K −−−−→ 0
�
⏐
⏐

�
⏐
⏐p

∥
∥
∥

0 −−−−→ X0

Y0 Y1

X1
∗ −−−−→ ∗ dX

dY

−−−−→ K −−−−→ 0
�
⏐
⏐

�
⏐
⏐

U∗ U∗
�
⏐
⏐

�
⏐
⏐

0 0

In this second diagram, the kernel of � W X�
1 ! Y�

1 is a direct summand of X�
1 ,

isomorphic with U� and contained in X�
0 . Therefore Ker � is a direct summand of

G.S;X/ and as � clearly maps G.S;X/ onto G.S;Y/, it follows that

G.S;X/ Š G.S;Y/˚ U�
0 ; (4)

where .Y/ is the admissible resolution 0! Y1 ! Y0 ! D! 0. But U� Š Z
m; so

we have established (ii). Applying (ii) with .Y/ in place of .X/, we deduce from (4)
that G.S;X/ Š G.S;Y/, which establishes a special case of (i).

Now consider any two admissible resolutions .X/; .Y/ of D. Put W0 D X0 ˚
Y0; "W D ."X; "Y/ W W0 ! D; W1 D Ker "W . Then the short exact sequence

0 �! W1 �! W0

"W
�! D �! 0 is an admissible resolution .W/ of D, and we may

clearly identify X1; Y1 with the subgroups Ker ."W � X0/;Ker ."W � Y0/ of W0.
Therefore, by the special case just considered, G.S;X/ Š G.S;W/ Š G.S;Y/. The
proposition is proved.

Proposition 2.1 justifies our use of the simplified notation G.S/ for G.S;X/ when
we are interested only in the isomorphism class and not in the admissible resolution
being used. In the remaining sections of the paper, homomorphisms of the G.S/ into
slender groups play an important role. Such homomorphisms are made manageable
by the following technical lemma.

Lemma 2.5 Let Y� be a direct summand of finite corank in X�
0 (so that the quotient

U D X�
0 =Y� is free of finite rank). Then there is a direct decomposition

G.S;X/=Y� D S0 ˚ V;

such that V Š U and the epimorphism G.S;X/=Y� ! S induced by ıX maps S0
isomorphically onto a subgroup of finite index in S.



Subgroups of Specker Group 217

(Note that every direct summand of X�
0 is isomorphic with a group of the form

Y� for some free group Y of rank � m.)

Proof First consider the commutative diagram with exact rows,

0 −−−−→ X1

X1

X0

X0

−−−−→ eX−−−−→ D −−−−→ 0
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

0 → K∗ −−−−→ ∗∗ −−−−→ ∗∗ −−−−→ Ext(K,Z)

(5)

where the bottom row is induced from .X�/ and the first two vertical rows are the
evaluation maps which are known to be isomorphisms (due to the slenderness of Z
and the fact that the first !-measurable cardinal, if it exists, is strongly inaccessible).
It is immediate that K� D 0, and that the image of X��

0 in Ext.K;Z/ is (canonically)
isomorphic with D.

Write C D X�
1 =Y�. Then we have a commutative diagram with exact rows

0 −−−−→ ∗ −−−−→ X1X0
∗ dX−−−−→ −−−−→ 0

⏐
⏐
�

⏐
⏐
�

∥
∥
∥

0 −−−−→ U C K

K

−−−−→ −−−−→ −−−−→ 0

(6)

in which the first two vertical arrows are the canonical epimorphisms. This induces
another commutative with exact rows

0 −−−−→ ∗∗ −−−−→ ∗∗ −−−−→ Ext(K,Z)
�
⏐
⏐

�
⏐
⏐

∥
∥
∥

0 −−−−→ C U

X0X1

∗ −−−−→ ∗ −−−−→ Ext(K,Z)

(7)

The top row of .7/ coincides with the bottom row of .5/. Therefore the image E
(say) of U� in Ext.K;Z/ is a torsion group, because it lies in an isomorphic copy of
D; since U�.Š U/ is finitely generated, E is even a finite group. Extracting from the
bottom row of .7/ the exact sequence

0! C� ! U� ! E! 0; (8)

we find that C� is free of the same finite rank as U�, whence the (non-canonical)
isomorphisms C�� Š C� Š U� Š U.

Let C0 be the kernel of the evaluation map C ! C��. Then C=C0 is isomorphic
with a subgroup of the free group C��; so the canonical exact sequence 0! C0 !
C ! C=C0 ! 0 splits. Hence C�

0 D 0; for otherwise we could extend a non-zero
element of C�

0 to a homomorphism C ! Z that would not vanish on the whole
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of C0, contrary to the definition of C0. Therefore we have canonical isomorphisms
C� Š .C=C0/�; C�� Š .C=C0/��. It follows that we have a commutative diagram
with exact rows and split exact middle column,

0
⏐
⏐
�

0 C0
⏐
⏐
�

⏐
⏐
�

0 −−−−→ U

U

−−−−→ C −−−−→ K −−−−→ 0
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

0 −−−−→ ∗∗ −−−−→ C∗∗ −−−−→ Ext(E,Z) −−−−→ 0
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

0 0 0

where the bottom row is induced from (8) and all other arrows represent inclusions,
canonical epimorphisms or evaluation maps. A simple diagram-chase reveals that
U;C0 generate their direct sum in C, and that the quotient C=.C0˚U/ is isomorphic
with Ext.E;Z/. But E is finite, so Ext.E;Z/ Š E. Thus C0 ˚ U is of finite index
in C.

Now the quotient H D G.S;X/=Y� is a subgroup of C containing U. Therefore
the evaluation map C ! C�� carries H onto a subgroup of the free group C��;
which implies that there is a direct decomposition H D S0˚V , where S0 D C0\H,
and V Š C�� Š U (non-canonically). Since C0 ˚ U is of finite index in C, the
subgroup S0˚U .D .C0˚U/\H/ is of finite index in H. But U is the kernel of the
epimorphism H D G.S;X/=Y� ! S induced by ıX; consequently, this epimorphism
carries S0 isomorphically onto a subgroup of finite index in S. The lemma is proved.

3 Inessential Homomorphisms: A Splitting Theorem

Let P be a non-empty class of Abelian groups that is closed under finite direct
sums, at least up to isomorphism. Given Abelian groups G;H we shall say that a
homomorphism  W G ! H is P-inessential if, for some P 2 P , there exists
a homomorphism � W P ! H such that G � P� . If 1; 2 W G ! H are
two P-inessential homomorphisms, say Gi � Pi�i where Pi 2 P , then it is
clear that G.1 � 2/ � .P1 ˚ P2/.�1; �2/, so that 1 � 2 is P-inessential;
thus the set InessP.G;H/ of all P-inessential homomorphisms G ! H is a
subgroup of Hom.G;H/. An equally obvious argument shows that a composite of
homomorphisms is P-inessential whenever one of the factors is P-inessential. In
particular, InessP.G/ D InessP.G;G/ is always an ideal of the endomorphism
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ring E.G/ of G; and, more generally, it is clear what we mean by saying that
the class of all P-inessential homomorphisms is an ideal InessP of the additive
category of all Abelian groups. Although we shall make no formal use of the
fact, we observe that we may obtain an additive category EssP by taking its
objects to be (all) Abelian groups, and regarding the quotient group EssP.G;H/ D
Hom.G;H/=InessP.G;H/ as the group of morphisms G ! H in EssP , with the
obvious rule for composition of morphisms; note that an Abelian group G is a zero
object of EssP if and only if the identity map on G is P-inessential, that is, if and
only if G is a homomorphic image (in the usual sense) of some group P 2P .

From now on, we take P to be the class of all higher Specker groups Zm .m <

@�/; as this is the only case we need, we drop the prefixed and suffixed P and write
simply inessential, Iness.G;H/, etc.

Proposition 3.1 Let D D M ˝ .Q=Z/, where M is a free Abelian group of rank
m < @�. Let S be a pure subgroup of K D Hom.D;Q=Z/ D Hom.M; OZ/, where
OZ D E.Q=Z/, and suppose that S has the following properties:

(i) S is slender;
(ii) for any subgroup S0 of finite index in S, every homomorphism S0 ! S extends

to an endomorphism of S;
(iii) there is an anti-homomorphism E.S/ ! E.M/, written ˛ ! M˛, such that,

for each ˛ 2 E.S/, ˛ coincides with the restriction to S of the endomorphism
.M˛/

� of K induced by M˛.
Then E.G.S// is a split extension of E.S/ by Iness.G.S//.

Proof We take advantage of Proposition 2.1 to choose a convenient admissible
resolution of D. Take an admissible resolution of Q=Z,

0! Y1 ! Y0 ! Q=Z! 0; (Y)

so that Y0 and Y1 are free Abelian of countable rank. Then

0! M ˝ Y1 ! M ˝ Y0 ! M ˝ .Q=Z/ D D! 0 (X)

is an admissible resolution of D, which induces the exact sequence

0! .M ˝ Y0/
� ! .M ˝ Y1/

� ! Hom.M; OZ/ D K ! 0: (X�)

Write A D E.S/. We use the anti-homomorphism of (iii) to endow M with the
structure of a left A-module, by setting ˛x D x M˛ for x 2 M; ˛ 2 A; then M ˝ Y0
and M ˝ Y1 are canonically left A-modules, while .X�/ is canonically an exact
sequence of right A-modules if in each of the terms scalar multiplication by ˛ 2 A is
taken to be the endomorphism induced by M˛. Visibly, by (iii), S is a sub-A-module
of K, so its inverse image G D G.S/ is a sub-A-module of .M ˝ Y1/�. We write
˛G D .M˛/

� � G .˛ 2 A/, so that ˛G 2 E.G/ is scalar multiplication by ˛ in the
A-module G, and we write AG D f˛G W ˛ 2 Ag for the ring of scalar multiplications
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of G. Then the map A ! AG given by ˛ 7! ˛G is a ring homomorphism. The
proposition will be proved once we have shown that

E.G/ D AG ˚ Iness.G/; AG Š AI

and for this it is clearly enough to show that (a) the kernel of the composite map
A! AG � E.G/! E.G/=Iness.G/ is trivial, and (b) E.G/ D AG C Iness.G/.

(a) Consider any ˛ 2 A such that ˛G is inessential; we must prove that ˛ D 0.
By hypothesis, for some n < @�, there is a homomorphism � W Zn ! G such
that G˛G � Z

n� . Therefore S˛ D G˛GıX � Z
n�ıX . But S is slender, so the

restriction on n implies that Zn�ıX is free (of finite rank). Consequently S˛ is
also free. Assume for a contradiction that S˛ ¤ 0. Then S admits a non-zero
homomorphism into Z, which means that S must have an infinite cyclic direct
summand, say S D T ˚ hsi. Then the subgroup S0 D T ˚ h2si is of finite index
in S and it is easy to define a homomorphism ! W S0 ! S such that .2s/! D s.
Obviously ! cannot extend to an endomorphism of S. This contradicts (ii); so
˛ D 0, as required.

(b) Consider any endomorphism  2 E.G/. Since S is slender, the composite map

X�
0 � G


�! G

ıX
�! S

must vanish on some direct summand Y� of finite corank in X�
0 . By Lemma 2.5,

we have a direct decomposition G=Y� D S0 ˚ V , where V is free of finite rank
and S0 is isomorphically mapped by ıX onto a subgroup of finite index in S.
Hence a commutative diagram (of Abelian groups) in which ıX D Nıı0

G −−−−→ G

¯
⏐
⏐
�

⏐
⏐
�dX

d0

d

S0⊕V −−−−→
f0

f

S
⏐
⏐
�

S

and where all the maps that have not so far been defined are canonically induced
from the others. Applying (ii) and (iii) to the homomorphism S0ı0 ! S induced
by 0 � So, we find that there is an ˛ 2 A such that .ı0 � S0/˛ D 0 � S0. Since
˛GıX D ıX˛, we have G. � ˛G/ıX D G Nı.0 � ı0˛/ D V.0 � ı0˛/. But V is
free; so there exists a homomorphism � W V ! G such that �ıX D 0 � ı0˛.
Therefore G. � ˛G/ � .X�

0 ˚ V/.1; �/; and since X�
0 ˚ V Š Z

m, this proves
that  � ˛G is inessential. Thus E.G/ D AG C Iness.G/; and the proof of the
proposition is complete.
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4 A Ring-Realization Theorem

Theorem 4.1 Let A be a ring whose additive group is free Abelian of rank � m <

@�. Then there exists a pure subgroup G of Zm whose endomorphism ring E.G/ is a
split extension of A by Iness.G/.

Proof Let V;F be free Abelian groups of rank m and set M D A˝ V . Now A may
be regarded either as a left or a right A-module. We use these module structures
to regard M and A ˝ F as a left and a right A-module, respectively, so that M� D

.A˝V/� is a right A-module. We prove first that M� has a sub-A-module isomorphic
with A ˝ F that is pure as a subgroup. To this end choose free bases ai .i 2 I/ of
the additive group of A, f � .� 2 �/ of F and bj

� .j 2 I; � 2 �/ of M. Define
aj 2 A�; e� 2 M� by setting

aia
j D ı

j
i ; .ai ˝ bj

�/e
� D ı

j
iı
�

� ;

so that

.˛ ˝ bj
�/e

� D ı
�

� .˛aj/ .˛ 2 A/:

Now suppose that we have elements ˛� .� 2 �/, almost all zero, and an integer q
such that

X

e�˛� 2 qM� D q.A˝ V/�:

Applying this homomorphism on the basis element ai ˝ bj
� of A˝ V , we find that

qZ contains the image

.ai ˝ bj
�/
X

�

e�˛� D
X

�

.˛�ai ˝ bj
�/e

� D .˛�ai/a
jI

therefore ˛�ai D
P

j.˛�ai/ajaj 2 qA, whence a� 2 a�A � qA. In particular, taking
q D 0, we find that the e� form a free basis for a free right sub-A-module of M�.
Clearly this submodule is isomorphic with A˝F under the isomorphism

P

e�˛� 7!
P

˛� ˝ f �. If we use this isomorphism to identify A ˝ F as a submodule of M�,
then the case q > 0 shows that A˝ F is embedded as a pure submodule of M�.

Reverting to the notation of Proposition 3.1, we now have pure embeddings of
Abelian groups

A˝ F � M� D Hom.M;Z/ � Hom.M; OZ/ D K;

and the embeddings respect the right-A-module structures. Here OZ D E.Q=Z/
may be identified with the natural or Z-adic completion of Z; so K is complete
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in its natural topology. Consequently, K contains the natural completion of its pure
subgroup A˝ F,

.1A˝ F/ �� K:

Utilizing ideas from [3], one can find a finite set U D fU1; : : :U5g of direct
summands of A˝F such that (i) A˝F D

P

Ui and (ii) E.A˝FI U / D A (acting
as right multiplication on A˝F), where the ring on the left-hand side of (ii) consists
of all Z-endomorphisms  of A˝ F such that Ui � Ui .1 � i � 5/.

Following the notation of [2], choose elements �1; : : : �5 in the subring P of OZ
which are algebraically independent over Z and take S to be the pure subgroup of
.1A˝ F/ generated by A˝ F; �iUi .1 � i � 5/, i.e.,

S D .1A˝ F/ \ Q.A˝ F ˚
5
M

iD1

�iUi/:

Then S �� K. We check the conditions (i),(ii), (iii) of Proposition 3.1.

(i) S lies in the pure subgroup of .1A˝ F/ generated by A˝F; �i.A˝F/ .1 � i �
5/, which may be identified with˘ ˝A˝F, where˘ is the pure subgroup of
OZ generated by 1; �1; : : : �5. Thus S is a subgroup of a direct sum of copies of
the countable reduced torsion-free group ˘ . As such, S is slender.

(iii) Obviously S is a faithful right sub-A-module of .1A˝ F/. But any Z-module
endomorphism  of S extends by continuity to a OZ-endomorphism O of OS D
.1A˝ F/; and the choice of the �i then easily forces  � A ˝ F 2 E.A ˝
FI U / D A. Hence an identification E.S/ D A (acting as right multiplication
on S). Since M is a left A-module, there is a natural ring anti-homomorphism
E.S/ D A! E.MZ/: and the way in which A˝ F was embedded as a sub-A-
module of Hom.M; OZ/ D K guarantees that (iii) is satisfied.

(ii) Let S0 be a subgroup of finite index q in S, and  W S0 ! S any homomorphism.
Then by (iii) the composite

.S
q
�! qS ,! S0


�! S/ D scalar multiplication by some b 2 A:

Choose a basis fi .i 2 I/ of FZ. Since I is infinite, there exist distinct i; j 2 I
such that 1˝ fi � 1˝ fj mod S0. Then f D fi� fj generates a free cyclic direct
summand Zf of F, and 1˝ f 2 S0. Applying q we obtain b˝ f 2 .A˝ F/\
qS D q.A˝ F/, whence b 2 qA. Say b D qa. Then scalar multiplication by a
gives a Z-endomorphism of S which extends , as required.

It now follows by Proposition 3.1 that E.G.S// D A ˚ Iness.G.S//: and the
theorem is proved.
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Countable 1-Transitive Trees

Katie M. Chicot and John K. Truss

Abstract We give a survey of three pieces of work, on 2-transitive trees (Droste,
Memoirs Am Math Soc 57(334) 1985), on weakly 2-transitive trees (Droste et al.,
Proc Lond Math Soc 58:454–494, 1989), and on lower 1-transitive linear orders
(Barbina and Chicot, Towards a classification of the countable 1-transitive trees:
countable lower 1-transitive linear orders. arXiv:1504.03372), all in the countable
case. We lead on from these to give a complete description of all the countable
1-transitive trees. In fact the work of Barbina and Chicot was carried out as a
preliminary to finding such a description. This is because the maximal chains in
any 1-transitive tree are easily seen to be lower 1-transitive, but are not necessarily
1-transitive. In fact a more involved set-up has to be considered, namely a coloured
version of the same situation (where ‘colours’ correspond to various types of
ramification point), so a major part of what we do here is to describe a large class of
countable coloured lower 1-transitive linear orders and go on to use this to complete
the description of all countable 1-transitive trees. This final stage involves analyzing
how the possible coloured branches can fit together, with particular attention to the
possibilities for cones at ramification points.
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1 Introduction

The main aim of this paper is to give a complete ‘description’ of all the countable
1-transitive trees (we use this expression since it is unclear whether what we provide
really constitutes a ‘classification’). We also give a survey of the work leading up
to this, which is taken from three main sources, [11] on 2-transitive trees, [10] on
weakly 2-transitive trees, and [5] on lower 1-transitive linear orders. The reason
for considering lower 1-transitive linear orders at all is that they arise naturally as
branches (that is, maximal chains) of countable 1-transitive trees, which are the
structures we are really aiming to describe.

In the literature, several authors have studied 2-transitive trees in a variety of
contexts. For instance, they arise naturally in the analysis of Jordan groups, see
[1], on their own merits, and also via B-, C-, and D-relations. See also [4], where
reducts of 2-transitive trees have been studied. Bodirsky and co-authors have used
2-transitive trees in the context of constraint satisfaction problems in theoretical
computer science [3], and they were used by Andreka, Givant, Nemeti [2] to show
that the lattice of varieties of representable relation algebras embeds the power
set of the integers, hence has a complicated structure. We also mention that there
are natural countable homogeneous relational structures, obtained from these trees
over a slightly expanded language, whose automorphism groups have 22

@0 normal
subgroups [10].

A tree is taken to be a partially ordered set in which any two elements have a
common lower bound, and the set of all lower bounds of any one element is linearly
ordered (and for non-triviality we also suppose that there are incomparable points,
so it is not a chain, which is called being proper). These are also called lower
semilinear orders (for instance in [1]), since they are linear going downwards.
Droste initiated the study of sufficiently transitive trees in [11]. Let us say that a
tree is k-transitive if for any two isomorphic k-element substructures, there is an
automorphism taking the first to the second. He showed that in non-trivial cases,
no tree can be 4-transitive, and he classified the countable 2- and 3-transitive trees.
Unless stated otherwise, all the trees and linear orders we consider are countable.

Now in a tree A there are two different kinds of 2-element substructure,
chains and antichains, so it is required by the definition of 2-transitivity that the
automorphism group of A act transitively both on the set of 2-element chains and
on the set of 2-element antichains. If we relax the condition, and only require
transitivity on the former, then we arrive at the class of weakly 2-transitive trees, as
defined and studied in [10]. The key and immediate difference that this makes is that
there need no longer be a constant value throughout the tree of ‘ramification order’
(degree of branching; see below for the formal definition). Any ramification point is
the greatest lower bound of a 2-element antichain, and so if we require transitivity
on 2-element antichains, it easily follows that the ramification order is the same
throughout.

To understand the definitions in the previous paragraph, it is helpful to explain
the notion of ramification point more precisely. For this, and since we shall need
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it later anyhow, we introduce the notion of the ‘completion’ AD of A (D here for
‘Dedekind’). This is also called the ‘Dedekind–MacNeille completion’ in [14],
though as this term is used in more than one sense in the literature, we just call
it ‘completion’ here. An ideal is a non-empty bounded subset I of A, which is
equal to the set of lower bounds of its set of upper bounds. For instance, in Q,
I D fq 2 Q W q < �g is an ideal since its set of upper bounds is fq W q > �g, and the
set of lower bounds of this is again I. Also fq W q � 4g is an ideal but fq W q < 4g is
not. Then AD is defined to be the set of all ideals partially ordered by inclusion. One
can check that this is again a tree, and A may be viewed as a subset of AD, via the
embedding a 7! Afag (which preserves the ordering). It is called the completion of
A. If A D AD, then A is complete.

If X � A, let AX D fa 2 A W .8x 2 X/a � xg. If X is non-empty and bounded
below, this is an ideal, so lies in AD. We write AC for the set of all AX for finite
non-empty X. Thus A � AC � AD. If A is infinite, then jAj D jACj, but usually
jAj < jADj. If X is finite having a least member (including the case that it is a finite
chain), then AX D Afmin Xg. Otherwise, there are at least two minimal members of
AX , which must form an antichain, and then AX is called a ramification point. As
A is a tree, it is easy to see that such X may be taken to be an antichain of size 2.
A ramification point may equal Afag for some a 2 A, in which case it is said to be
of positive type, or it may not, in which case it lies in AC n A and is said to be of
negative type. There are natural induced actions of Aut.A;�/ on AC and AD.

In a tree there is a notion of ‘cone’, which plays a crucial role in describing its
structure. If x is a ramification point, then a cone at x is an equivalence class under
the relation on points above x given by y � z if for some t, x < t < y; z. In a tree this
is easily seen to be an equivalence relation (in general partial orders it may not be).
The ramification order of x is the number of cones at x. If x is not a ramification
point, then we may say that it has ramification order 1 (so in a sense, has just one
cone). Throughout, by branch of a tree we understand a maximal chain.

Given these definitions, we are already in a position to state Droste’s main
results for the 2-transitive case. He shows that in any 2-transitive tree A, either
all ramification points are of positive type or all are of negative type, and the
ramification order is constant. For every countable cardinal � between 2 and @0
inclusive, there is a 2-transitive tree, unique up to isomorphism, in which all
branches have order-type Q, and all ramification points are of positive type, and
have ramification order �. Similarly for negative type. Every 2-transitive tree is of
one of these kinds, or else has a root and all other points are immediate successors of
the root. These last examples are technically 2-transitive, but are not 1-transitive, and
are not of interest (for instance, their automorphism groups are symmetric groups
on the set of non-root points). A proof of Droste’s result is sketched in [13].

A key difference between 2-transitive and weakly 2-transitive trees is that in the
latter, ramification order does not need to be constant. In fact, it can vary wildly
throughout the tree, and this enables us to build 2@0 non-isomorphic countable
examples. It used to be thought that the uncountability of a class of structures
would render its classification futile. However, it is still quite easy to describe fairly
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explicitly what all the weakly 2-transitive trees are, in terms of a ‘real parameter’
(or an arbitrary subset of !), and so one can regard this as good as a classification.
(Another famous example of a classification of an uncountable class of structures is
Cherlin’s [8], where the countable homogeneous directed graphs are given, again in
terms of a real parameter.)

We focus a little further on the structure of a weakly 2-transitive tree A, as part of
our survey, and also because this will lead on naturally to the more complicated
classification in the 1-transitive case. To keep track of the way the ramification
points arise and interact, we view AC as ‘coloured’, where two points have the same
colour if and only if they lie in the same orbit under Aut.A;�/. In the 2-transitive
case there are at most 2 orbits (ramification points and in the negative type case, the
points of A), but in the weakly 2-transitive case there can be many more. First note
that (assuming there is a chain of length at least 3) weak 2-transitivity at once implies
that branches are densely ordered without endpoints, hence order-isomorphic to Q;
it is not however immediately clear that the same is true in the coloured case (that
is, whether all branches of AC need be isomorphic). If X is a branch of A, XC will
stand for the coloured linear order obtained from the branch of AC containing X.
This need not now be dense; however, the only possibility for consecutive elements
x < y is that y 2 X and x 62 X, as is easy to see. If these pairs are ‘collapsed’ and
viewed as single points, the result is densely ordered, and indeed is QC where C is
a colour set, the ‘C-coloured version of the rationals’ (defined below). The point y
may be described as the least member of a cone at x. As mentioned above, at any
ramification point x there will be cones: some may have least elements, but not all,
and the numbers arising sum to the total ramification order: both need to be taken
into account in specifying what the ‘colour’ is at x. Any ramification point having a
cone with a least member is called ‘special’. Note that all special ramification points
have the same colour, since they are immediate predecessors of points of A.

Giving a few more details from [10], the ‘type’ of a tree is specified by the
following information:

(1) a list of all the ramification orders which arise at non-special ramification
points (which will be numbers between 2 and1 inclusive),

(2) whether the points of A ramify; if so there will be no special ramification
points, but the ramification order of points of A should be given,

(3) if the points of A do not ramify, whether there are any special ramification
points; if so then the number of cones there with or without a least element
should be given.

In [10] this information is realized as a certain triple. Given this notion, the
following steps are then required: (1) any weakly 2-transitive tree has a type,
(2) any two countable weakly 2-transitive trees having the same type are isomorphic,
(3) any type satisfying certain stated properties is the type of some weakly
2-transitive tree. This then provides a classification of all the weakly 2-transitive
trees. There are 2@0 non-isomorphic structures in the ‘list’, since any subset of
f2; 3; 4; : : : ;@0g may arise as the possible ramification orders (even not taking into
account the issue of special ramification points), but given this, the description is
concrete enough to constitute a ‘classification’.
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Now we move on to the 1-transitive case. Since the weaker the hypothesis on
a structure, the more complicated one expects any classification of such structures
to be, it is unsurprising that this presents many difficulties. An immediate problem
is as follows. For weakly 2-transitive trees, it is easy to check that all the branches
are order-isomorphic to the ordered rationals Q, because one checks directly that
they are densely ordered without endpoints. If we drop 2 to 1, then we would expect
that the branches B should be 1-transitive. This is however not clear, since if we
seek to show that x 2 B can be mapped to y 2 B, all we can say is that there is
an automorphism of A taking x to y, but there seems to be no obvious reason why
it should fix B setwise. Similarly, it seems impossible to demonstrate that all the
branches will be isomorphic. Thus we are inevitably led to revised definitions; the
most we can say is that if x; y 2 B, then there is an isomorphism between the initial
segments determined by x and y, which we call being lower 1-transitive, and that
if B1 and B2 are branches, then there is an isomorphism between initial segments of
B1 and B2, which we call being lower isomorphic.

Now the countable 1-transitive linear orders are described by Morel [12].
They are Z

˛ and Q:Z˛ for countable ordinals ˛ (where we are taking restricted
lexicographic powers). The class of lower 1-transitive linear orders is however vastly
bigger than this. As part of our survey, we outline the main ideas of [5], where
a description is given, and since a modified version is required in this paper. The
principal ‘base’ examples of lower 1-transitive linear orders are Z and Q (which
are actually 1-transitive) and !� (the least infinite ordinal ! under the reversed
ordering) and PQ (the rationals with an extra point on the right). The main result of
[5] is that all countable lower 1-transitive linear orders can be built up from these,
by an admittedly complicated process, but generalizing the way in which Z

˛ and
Q:Z˛ are built up from Z and Q.

A key method of construction which is definitely new in the lower 1-transitive
case involves taking ‘Qn- or PQn�combinations’. Here for 2 � n � @0, Qn is the
‘n-coloured version of the rationals’, obtained by colouring Q by n colours (usually
taken to be 0; 1; 2; : : : ; n � 1), each of which occurs densely. This is easily seen
to exist and to be unique up to isomorphism; PQn is obtained by adding one extra
point on the right. Since Qn and PQn are coloured, they are not lower 1-transitive
linear orders. However they are used in the construction of such. If Y0;Y1; : : : ;Yn�1

are linear orders, then Qn.Y0;Y1; : : : ;Yn�1/ is the linear order obtained from Qn by
replacing each point coloured i by a copy of Yi, and similarly for PQn.Y0;Y1; : : : ;Yn/.
Then if all the Yi are lower isomorphic and lower 1-transitive, one can easily check
that Qn.Y0;Y1; : : : ;Yn�1/ and PQn.Y0;Y1; : : : ;Yn/ are also lower 1-transitive. For
instance, !� and Z are lower isomorphic, and Q2.!

�;Z/ is lower 1-transitive, since
all its initial segments are isomorphic to Q2.!

�;Z/C !�.
The natural way to represent a general construction of a lower 1-transitive linear

order built up from the base structures by Qn or PQn combinations, and by taking
‘limits’ (in a similar way to passing from Z

n for n 2 ! to Z
! , formally expressed

by the use of the symbol lim) is via ‘coding trees’, to keep track of how this is
done. This technique was introduced in [6] and used more heavily in [7]; there the
class of structures to be described was the 1-transitive coloured linear orders. This
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use of the word ‘tree’ is not quite the same as for the class of structures we are
trying to classify, so in order to avoid confusion, we use ‘downward growing’ trees
as coding trees (just reverse the ordering in all definitions about trees), which are
meant to describe the way in which the linear orders are built up iteratively from
singletons (following the intuition as in computer science, for instance parse trees).
Such a tree will have a root (now at the top), which corresponds to the encoded
structure. There will be leaves (minimal elements) which encode singletons, and at
intermediate stages, each vertex has a label which tells us how the structure encoded
at that vertex is determined from the encoded structures below it. Because it is
important to distinguish the two uses of trees in our work, as coding trees, forming
one ingredient in the classification, and also as the structures being classified, we
use A for the 1-transitive tree, and T for a coding tree; also T (but not A) will be
labelled, the labels telling us how the linear order is built up in stages.

A major discovery in [5] was that coding trees must necessarily be ‘levelled’,
meaning that they may be partitioned into a union of maximal antichains, called
‘levels’ in such a way that the set of levels is itself linearly ordered, and if x < y
in the tree, then the level that x lies in is less than the one that y lies in. The sense
in which coding trees then provide a classification of the class in question is that
first, any coding tree does encode a uniquely determined member of the class (here
a lower 1-transitive linear order), and second, any member of the class is encoded
by some coding tree. The first task is the easier in the sense that, once the correct
definition of coding tree is found, it is then just necessary to show that it does
encode a lower 1-transitive linear order, by suitably interpreting the labels. This is
not completely straightforward since the tree needn’t be well-founded or conversely
well-founded, so a method of coping with limits in either direction must be found.
The second task involves finding a way of recognizing inside the lower 1-transitive
linear order which coding tree it came from; a key notion here is that of ‘invariant
partitions’, which correspond to the levels of the resulting tree.

Providing a few more details, for technical reasons (associated with the ‘second
task’) we insist that the coding tree be complete, though most of its points (irrational
cuts) have no actual impact on the encoding procedure. A coding tree is then a
complete (not necessarily countable) labelled levelled tree, with a greatest element
(root), countably many minimal elements (leaves) such that every element is a leaf
or above a leaf, with possible labels &.v/ of a non-leaf vertex Z, !�, Q, PQ, Qn,
PQn, or lim. It is also required that if &.x/ D Z or Q, it has one child (a vertex
immediately below it which is � y for any y < x), if &.x/ D !� or PQ, it has
2 children, if &.x/ D Qn it has n children, if PQn, it has n C 1 children, and if
&.x/ D lim, it has no children, and exactly one cone. For vertices x and y on the
same level, if &.x/ ¤ &.y/ then &.x/ and &.y/ are lower isomorphic. (There are two
further technical conditions.) A simple example of a coding tree is given in Fig. 1,
and the (labelled, and levelled) tree shown is clearly intended to encode the lower
1-transitive linear order Q2.!

�;Z/ mentioned above.
For a finite coding tree, an easy recursion tells us how it is meant to be interpreted.

Since however, coding trees can in general be infinite, and very complicated, we
have to have an alternative method of describing what they are meant to encode.
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Fig. 1 Coding tree for Q2.!
�;Z/

For this purpose it is helpful to introduce an auxiliary notion, called an expanded
coding tree, whose definition parallels that of coding tree in many respects, but
which describes more explicitly the implementation of the intended encoding
procedure. The definition is that an expanded coding tree is a complete labelled
levelled tree, with a greatest element (root), countably many minimal elements
(leaves) such that every element is a leaf or above a leaf, with possible labels &.v/
of a non-leaf vertex Z, !�, Q, PQ, Qn, PQn, or lim. If &.x/ D Z, Q, !�, PQ, Qn, or PQn,
its children are ordered in type Z, Q, etc. In the first two cases, the trees rooted at
the children are all isomorphic (where isomorphisms of labelled levelled trees are
required to preserve labels and levels, as well as the partial ordering), for !� and
PQ the trees rooted at all the children except the greatest are isomorphic, for Qn, the
trees rooted at the children are isomorphic if and only if they have the same colour,
and for PQn the same applies except for the greatest point. If &.x/ D lim, it has no
children, and exactly one cone. For any two vertices on the same level, if one is a
parent vertex, so is the other, and if one is a leaf, so is the other; if they are parent
vertices, the order-types of their children are lower isomorphic. (Again there are
other technical conditions.)

Any expanded coding tree gives rise to an encoded linear order as its set of leaves.
For if x and y are distinct leaves, their least upper bound z is a ramification point,
which has at least two cones and is not a leaf, so is labelled by one of the first
six labels, and the ordering between x and y is determined by the ordering of the
children of z. To say how a coding tree encodes a linear order, there is a notion of an
expanded coding tree being ‘associated’ with a coding tree, which essentially means
that the expanded coding tree is obtained from the coding tree by ‘carrying out’ all
the instructions it requires. (See the definitions given in Sect. 3 in the coloured case.)
This therefore tells us what it means for a coding tree to encode a linear order.

The main theorems proved in [5] about this situation are as follows:

Theorem 1.1 Any coding tree encodes some linear order, and any two countable
linear orders encoded by the same coding tree are isomorphic.

Theorem 1.2 The linear order encoded by any coding tree is countable and lower
1-transitive.

Theorem 1.3 Any countable lower 1-transitive linear order is encoded by some
coding tree.
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Theorem 1.1 is proved by constructing an expanded coding tree .E;�/ associated
with the given coding tree .T;�/. Since each member of E represents a choice of
interpretation of the labels of T , we view members of E as functions on branches of
T , called ‘decoding functions’. In order to stop this family becoming uncountable,
we require such functions to take the same (‘default’) value on all except finitely
many points. Then the encoded linear order is taken to be the set of leaves of the
resulting tree. Uniqueness of the encoded (countable) linear order is proved by back-
and-forth.

In view of the previous theorem, we may refer to the order encoded, and to prove
the properties of it stated in Theorem 1.2, we may assume that it is given by the
particular decoding functions just mentioned.

By far the most complicated step is in Theorem 1.3. We have to recover the
(expanded coding) tree .E;�/ from the linear order .X;�/. In fact the levels of
E precisely correspond to partitions of X into convex subsets which are invariant
under automorphisms and lower isomorphisms of .X;�/, and it is this property
which provides a way of recovering E from X—one shows that the family of all
subsets of X occurring in some invariant partition forms an expanded coding tree
for .X;�/. There are quite a number of technical details to be verified along the
way, in particular the fact that the resulting tree is levelled. Finally, a coding tree
for X is obtained from E by ‘coalescing’ all the children of a vertex which will be
identified in the coding tree.

Much of this material will arise again in the more complicated situation described
in this paper, where (a class of) lower 1-transitive coloured linear orders has to be
described.

2 Strategy for Classifying Countable 1-Transitive Trees

Having surveyed the work leading up to this paper, we now outline our strategy for
analyzing countable 1-transitive trees. As explained when discussing the weakly 2-
transitive case, we need to consider coloured branches, to keep track of how and
where the tree ramifies. Section 3 is devoted to a description of the required class
of lower 1-transitive coloured linear orders, using a modification of coding trees as
explained in the (monochromatic) lower 1-transitive case. Since it turns out that not
all coloured chains can arise, it suffices to classify those which actually do, which we
call ‘branch-coloured chains’. Even here things are considerably more complicated
than in the monochromatic case. Coding trees need not be levelled (they will be
‘nearly levelled’, defined below), and we require three new labels for the vertices.
Despite this, the main outline is as before.

We now give some more precise details. A coloured linear order is a triple
.X;�;F/ where .X;�/ is a linear order, and F is a function from X onto a set C,
called the set of ‘colours’. It is lower 1-transitive if 8x; y 2 X.F.x/ D F.y/ !
.�1; x� Š .�1; y�/, and two coloured linear orders X and Y with the same colour
set are lower isomorphic if there are x 2 X; y 2 Y such that .�1; x� Š .�1; y�
(where the isomorphisms must preserve the ordering and colours). As explained in
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Sect. 1, for any branch X of a 1-transitive tree .A;�/, the corresponding coloured
branch XC of AC must be lower 1-transitive, where the colours are the orbits of the
action of Aut.A/ on AC, and any two branches are lower isomorphic. A branch-
coloured chain is defined to be a coloured chain without maximal or minimal
elements, such that one designated colour c occurs densely (meaning that for any
x < y there is z coloured c with x � z � y) and if x < y are consecutive points
of X then y is coloured c. It can be verified (see Lemma 5.2) that any branch
of a countable 1-transitive tree is a branch-coloured chain. It turns out that this
precisely characterizes the possible (coloured) branches of countable 1-transitive
trees (see Corollary 6.5). It eases the technical details of the proof (specifically of
Corollary 3.25) if we also encode initial segments at points coloured Nc, so in certain
places we relax the requirements to allow this.

At this stage we just give one example of what a branch of a 1-transitive tree
could be, namely Q:.1 C Z/, which is Q ‘copies’ of a singleton followed by Z.
Here the singletons are coloured ‘red’, and are ramification points, and all the other
points will be points of the tree (which we initially are assuming do not themselves
ramify). This is indeed lower 1-transitive, as is easy to verify; the maximal chains
of the resulting tree have order-type Q:Z, and the only (but vital) role of the red
points is to tell us where the tree branches. To specify the tree, further information
such as ramification order must be given. Variants on this example are Q:.Z C 1/

and Q:.1CZC1/ which ramify immediately above each copy of Z, and below and
above each copy, respectively. In each of these examples it is also possible for the
points of the tree to ramify. If we wish to emphasize the fact that the singletons are
coloured, we may also write Q:.redC Z/, Q:.Z C blue/, and Q:.redC Z C blue/
for these three (and similarly in other cases).

In modifying the classification of countable lower 1-transitive linear orders for
branch-coloured chains, we have to alter the definition of ‘coding tree’. First the
labels allowed are as before, together with _, ^, �, and members of a set C of
colours including c. Vertices labelled_ or^ have two children (they will correspond
to concatenation), and � one child (included for technical reasons, to retain the
levels, see Fig. 3a for an example). To make some of the definitions run more
smoothly, we may view each of _ and ^ as 2-element linear orders, coloured
by distinct colours, and � as a singleton linear order. The colour labels are used
for labelling the leaves. Further, the tree is required to be nearly levelled, which
means that the tree obtained by removing all leaves labelled by colours, other than
Nc, is levelled, which, to recap, means that it can be expressed as a disjoint union
of maximal antichains (‘levels’) in such a way that for any two levels l1 and l2,
either every member of l1 is below some member of l2, or the other way round.
We illustrate some colour coding trees in Figs. 2 and 3, also indicating the coloured
orders that they are meant to encode.

For ease we extend the function F which colours leaves, to all vertices, by saying
that F.x/ is the set of all colours of leaves below x. An additional requirement is
that for any non-leaf x, c 2 F.x/, and several clauses govern the use of the labels
_, ^, and �. A key point is that the left child of any vertex labelled _ and the right
child of any vertex labelled ^ are leaves not coloured c, but their other children are
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Fig. 3 Colour coding trees for (a) Q2.Z
2 C red; !�:Z/, (b) Q2.red; red C Z/

not leaves. Also any two leaves having the same colour are on levels that are at most
one apart; if they are one apart, then the vertex on the lower level is the left child of
a vertex labelled _. The reader may verify the truth of these clauses in the examples
given. For the full definition, see Sect. 3.

Now that we have introduced colour coding trees, we can reproduce the material
sketched at the end of Sect. 1 for (ordinary) coding trees and the way in which
they encode lower 1-transitive coloured linear orders. There is again a notion of
‘expanded coding tree’, and a colour coding tree encodes a coloured linear order
if there is an associated coloured expanded coding tree whose set of leaves, under
the induced ordering, is colour- and order-isomorphic to the given coloured linear
order. Our task once again is to prove the analogues of Theorems 1.1–1.3. The first
two require fairly straightforward adaptations of the previous methods. We should
take a little time to explain the modification of ‘invariant partitions’ which are now
used for Theorem 1.3.

For the monochromatic case, a partition � of a linearly ordered set .X; </ into
convex subsets is invariant if for any lower isomorphism f W .�1; a� ! .�1; b�
of X, and any x; y � a, x and y lie in the same member of � if and only if f .x/
and f .y/ do. It is then shown that if .X; </ is countable and lower 1-transitive, the
members of all invariant partitions form an expanded coding tree of .X; </ under
a suitable labelling. For instance, in the example Q2.!

�;Z/ given in Sect. 1, there
are just three invariant partitions, two of them trivial, into singletons, and into just
one set X, and one non-trivial one, into the maximal discrete blocks, which are all
ordered like !� or Z. The corresponding expanded coding tree therefore has three
levels (and the ‘coalesced’ coding tree is shown in Fig. 1).
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The first difficulty in the coloured case is that the members of invariant partitions
(defined in precisely the same way, with respect to colour-preserving isomorphisms)
need no longer form a tree. For instance in X D Z:.1 C Z/, there are invariant
partitions into convex subsets of order-type ZC 1, and 1C Z, and the members of
these overlap but are incomparable. This problem also arose in [7], and the solution
adopted there was to take a maximal subtree. Here we can be more explicit, and
favour one of these two partitions over the other, giving the notion of a ‘restricted’
invariant partition. The other complication over the monochromatic case is that the
tree we get need no longer be levelled, as illustrated in the examples given in Figs. 2
and 3. Examining those examples, we can see that the trees do become levelled if we
remove the leaves having non-Nc labels, so they are nearly levelled. The only vertices
x not lying in a level are therefore leaves labelled by some colour ¤ Nc. However,
even these can be ‘assigned’ a level, as it turns out that such leaves are children of
a vertex labelled _, ^, PQ, Qn, or PQn, whose other child or children do lie in a level;
and x is also assigned to this level. This is intuitively correct (see the examples of
coding trees provided) but the definition of ‘levelled’ is strictly speaking violated,
as x may lie in more than one of the maximal antichains which form the levels,
and we have chosen to assign it to the highest possible one. The rather mysterious
label � features in Fig. 3a; without that the tree would not even be nearly levelled.
The invariant partitions corresponding to the two non-trivial levels in Fig. 2a are into
copies of 1CZ, and into red singletons and copies of Z. In the next tree they are into
copies of 1C ZC 1, into red singletons and copies of ZC 1, and into red and blue
singletons and copies of Z, respectively. (Note that we have favoured red singletons
and copies of ZC 1 over the other possibility which would be blue singletons and
copies of 1CZ, ruled out by the correct definition of ‘restricted’.) One can similarly
trace through the other examples. Notice from the examples that _ is used when we
are concatenating a non-c colour on the left, and ^ when we are doing this on the
right. In the final part of Sect. 3, we describe how colour coding trees for lower
isomorphic colour lower 1-transitive linear orders are related. This is important,
because this is the situation which applies to the branches of a 1-transitive tree.
A surprising, but vital piece of information is that the lower isomorphism class of
any branch-coloured chain is countable (without this, we would be unable to ‘build’
countable trees exhibiting all branch-coloured chains in some lower isomorphism
class).

In Sect. 4 we describe and analyze the notion of ‘cone type’. As we have seen,
this is a crucial ingredient in giving the structure of a weakly 2-transitive tree. In
that situation, there were two cases, ‘special’ and ‘normal’ ramification points. For
the 1-transitive case one takes into account which level of the colour coding tree of
a branch ramification occurs. The cone type is then a list telling us how many cones
there are at a ramification point of all possible types.

Since the precise characterization of 1-transitive trees is complicated, the most
significant aspects are singled out in Sect. 5, where the notion of ‘structured tree’
is introduced. This is a countable tree .A;�/ with a colouring function on AC such
that the points coloured c are precisely those of A, points with equal colours have the
same cone type, all coloured branches are lower isomorphic, and every final segment
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of the isomorphism type of any branch occurs above every point of A. These are
clearly necessary conditions for A to be 1-transitive, and the strengthening required
to make them also sufficient is explored in Sect. 6.

The ‘classification’ in the final section is carried out by means of the ‘type’ of a
tree A, which comprises the following information:

the set � of isomorphism types of branches of AC,
the colour set of AC,
for each colour, the cone type of points having that colour.

The main theorem of Sect. 5 then says that two 1-transitive trees are isomorphic
if and only if they have the same type. It is clear that any 1-transitive tree has a type,
and Sect. 6 is devoted to describing which types actually arise, the tricky point being
whether � has to be the whole of a lower isomorphism class of lower 1-transitive
coloured chains, or just part of it (which can happen).

3 A Class of Lower 1-Transitive Coloured Linear Orders

The general structure of the coloured linear orders we need can be extremely
complicated, and we use an auxiliary notion to help describe how they are built up,
namely that of ‘coding tree’, as outlined for the monochromatic and coloured cases
in the previous sections. For lower 1-transitive coloured linear orders, we require
three extra labels, _, ^, and �, over the monochromatic situation and additional
colours are allowed. To motivate how this comes about, we begin by analyzing the
structure of a branch-coloured chain in terms of its invariant partitions, show how
this leads naturally to the idea of a (colour) ‘coding tree’, starting with the expanded
version, and then ‘collapse it’ to derive a coding tree.

3.1 Finding a Tree Corresponding to a Coloured Linear Order

Let .X;�;F/ be a lower 1-transitive branch-coloured chain or an initial segment of
such a chain at a Nc-coloured point. Unlike for the monochromatic case the family of
members of all invariant partitions of .X;�;F/ need not form a tree, as explained in
Sect. 2, and that is why we formulate the notion of ‘restricted’ invariant partition
below. A further complication over the monochromatic case is that we have to
replace ‘levelled’ by ‘nearly levelled’.

The definition is that an invariant partition � of X is restricted if whenever p 2 �
is covered in � by q (that is, has q as an immediate successor) which has a least
member a, then a is coloured Nc. For instance, in Q:.1 C Z C 1/ (see Fig. 2b), the
partition into the copies of red C Z and blue singletons is not restricted, since the
condition is violated by taking p to be a copy of redCZ (which is covered by a blue
singleton). Nor is the partition into copies of Z and red and blue singletons. First
we establish some properties of arbitrary invariant partitions, and then look in more
detail at the restricted ones.
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Lemma 3.1 The parts of any invariant partition � of X are lower 1-transitive
coloured linear orders which are lower isomorphic to each other (provided their
colour sets intersect).

Proof Let x; y 2 � , and suppose a 2 x; b 2 y, and F.a/ D F.b/. By lower
1-transitivity of X there is an isomorphism ' W .�1; a� ! .�1; b�. Since � is
invariant, ' takes .�1; a� \ x to .�1; b� \ y, so the desired isomorphism is the
restriction of ' to .�1; a� \ x, and x and y are lower isomorphic. To deduce that
the parts of � are lower 1-transitive coloured linear orders, use the same argument
starting with x D y. ut

Lemma 3.2 Any invariant partition � of a lower 1-transitive coloured linear order
X is also lower 1-transitive, when it is re-coloured by saying that two members of �
have the same colour if they have at least one colour in common in X.

Proof First we show that ‘have a colour in common’ is an equivalence relation on � .
Suppose x < y < z in � , where a1 2 x and b1 2 y are both coloured c1 and a2 2 y
and b2 2 z are both coloured c2. If b1 � a2, we use lower 1-transitivity of X to
find g 2 Aut.X/ taking a2 to b2, and then as � is invariant, g.b1/ 2 z, so x and z
have a colour in common (at a1 and g.b1/). If a2 � b1, we instead take b1 to a1 and
consider the image of a2 in x. Hence the ‘re-colouring’ F0 of � is well-defined.

We show that .�;<;F0/ is lower 1-transitive. Let x; y 2 � be such that F0.x/ D
F0.y/, and let a 2 x and b 2 y have the same colour under F. Let ' W .�1; a� !
.�1; b� be an isomorphism. Since � is invariant, ' induces an isomorphism from
.�1; x� to .�1; y�. ut

Lemma 3.3 If � is an invariant partition of X and � is coloured as in Lemma 3.2,
then the colour containing c is dense in the rest.

Proof Let � be the colour containing c. Then by the density of points coloured Nc in
X, if distinct x; y 2 � are not coloured � there is a point of � in between coloured �.

ut

Definition 3.4 The restricted refining invariant tree IRR is the family of all
subsets of X which are members of some restricted invariant partition of X, partially
ordered by �.

We shall see that this is a tree (see Theorem 3.8), and by adding some extra
vertices, we shall be able to turn it into an expanded coding tree for .X;�/. Note
that it clearly has root X and the leaves are the singletons fxg for x 2 X. The next
two lemmas show that it is nearly levelled.

Lemma 3.5 If �1 and �2 are restricted invariant partitions, one is a refinement of
the other.

Proof If not, there must be x < y and a < b such that x and y lie in the same
member p11 of �1 but in different members p21, p22 of �2, and a and b are in the same
member p23 of �2 but different members p12, p13 of �1. Let us first suppose that there
are points b1 � b and y1 � y coloured Nc which are greater than all members of p12,
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p21, respectively. Note that since a < b1 � b, b1 2 p23 and similarly y1 2 p11. By
lower 1-transitivity, there is an isomorphism � from .�1; y1� to .�1; b1�. Since
� preserves �1 and �2 below y, �x and b1 are in the same member of �1, which
implies that a < �x, but different members of �2, which implies that �x < a, which
gives a contradiction.

Since the Nc points are dense, if there is no such b1 then b must be the least
member of p13 and it is not coloured Nc, and in addition, p12 and p13 must be consecutive
members of �1. This however violates the definition of �1 restricted, so cannot arise.
Therefore a suitable b1 exists, and similarly, so does y1. ut

Lemma 3.6 If �1; �2 are restricted invariant partitions, �1 a proper refinement of
�2, and p 2 �1 \ �2, then p is a singleton not coloured by Nc.

Proof Suppose for a contradiction that p 2 �1 \ �2 which is either not a singleton
or is a singleton coloured by Nc. In each case there is x 2 p coloured by c. Since �1
is a proper refinement of �2, there are p1 2 �1 and p2 2 �2 such that p1 � p2. If
p1 has a member y coloured Nc, there is an isomorphism � from .�1; x� to .�1; y�.
Since �1 and �2 are invariant, p1 \ .�1; y� D p2 \ .�1; y�, so p1 and p2 agree ‘on
the left’. Since p1 � p2 and �1 is restricted, there is p0

1 ¤ p1 in �1 having a member
coloured Nc such that p0

1 � p2. The same proof shows that p0
1 and p2 also agree on the

left, contrary to p1 and p0
1 disjoint.

If however p1 has no member coloured c, then it must be a singleton fbg say.
If �1 has a member p0

1 to the left of b with a point coloured c, we may apply the
same argument to p0

1 instead. Otherwise b must be the least member of p2, and since
p1 � p2, there is b1 > b in p2 coloured c. Now map b1 to x by a lower isomorphism,
and this must take p2 to p on the left, but it also takes p2 on the left to at least two
members of �1, giving a contradiction. ut

The tree IR we actually require as an expanded coding tree for X is obtained from
IRR by adding some more points. This entails that some invariant partitions which
are not restricted are allowed, but in the process, certain points need to be duplicated.
For instance, in Q2.Z

2 C 1; !�:Z/ (see Fig. 3a), there are invariant partitions into
copies of Z2 C 1 and !�:Z (restricted), and into copies of Z2 and !�:Z and red
singletons (not restricted); since the copies of !�:Z occur in both, we have to ‘count’
them twice. Notice that if p lies in the invariant partition � , then, by invariance, for
any other q 2 � which has a colour in common with p, p has a least element under
the induced ordering if and only if q does (and then they have the same colour),
but it is possible for one to have a greatest element but not the other; this situation
precisely corresponds to the introduction of the � label.

Definition 3.7 If � is a restricted invariant partition, then it is a fbg-partition if for
some p 2 � , max p exists but min p does not. The refining invariant tree IR, still
partially ordered by � (except that some vertices may be duplicated), is obtained
from IRR by adding as new sets all fmax pg and p n fmax pg for p 2 � where � is a
fbg-partition (and if max q is not defined for q 2 � , then we include q twice, once
in � and once for the new partition).
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This tells us what the vertices and levels are of IR are, and we can now prove the
following basic result.

Theorem 3.8 The refining invariant tree for X is a complete nearly levelled tree.

Proof First we see that IRR is a tree. For let x; y; z 2 IRR with x � y; z. Thus y \
z ¤ ¿. Let y 2 �1, z 2 �2, where �i are restricted invariant partitions. Since by
Lemma 3.5 one of these refines the other, and y \ z � x, y � z or z � y. So
ft 2 IRR W x � tg is linearly ordered as required. To see that it stays a tree when
we add in the additional vertices as in Definition 3.7, let x � y; z lie in IR. We may
suppose that x is a singleton, so lies in IRR. If y; z 2 IRR, then they are comparable
as already shown. If y; z 62 IRR, then y D p n fmax pg, z D q n fmax qg for some
p; q 2 IRR whose maxima exist. Suppose that p � q. Then we see that y � z by
treating the two cases max p D max q and max p ¤ max q. Otherwise assume that
y 2 IR n IRR but z 2 IRR. Hence y D p n fmax pg for p 2 IRR for which max p exists.
Now p � z or z � p. In the former case, y � z, and in the latter, if z 6� y then
max p 2 z giving p D z, a contradiction.

The fact that IR is nearly levelled follows from Lemma 3.6, noting that in passing
from IRR to IR, we have taken care to retain levels, apart from leaves not coloured
by Nc. The root is X itself.

The fact that IR is complete is verified as in [5]. The key point is that the infimum
of a descending sequence of restricted invariant partitions is also a restricted
invariant partition, and this is not altered by the addition of extra levels in passing
from IRR to IR. ut

We wish to use IR to ‘encode’ .X;�;F/, and for this purpose, we have to assign
labels so that it contains information about how .X;�;F/ can be recovered, and
also linearly order the children of each parent vertex. The ordering is immediate
from the fact that the set of children of each parent vertex is a subset of a level,
which is a partition of X into convex subsets, so receives an induced linear ordering.
The assignment of labels is motivated by the examples given in Figs. 2 and 3.
A descendant of x is any y � x.

First consider the ‘exceptional’ duplicated points (written q in the definition).
Each such appears in two levels of IR, and they are labelled � at their occurrence in
the higher level. The other labels are assigned as follows:

Any leaf x is coloured by the singleton fF.x/g.
If p is not a leaf, then

if max p and min p both exist, p is labelled _, and pnfmin pg is labelled ^,
if max p exists but not min p, then p is labelled ^, and
if min p exists but not max p, then p is labelled _,
and if x is a parent vertex not of these forms then x is labelled by the (coloured)
order type of its children, where two children have the same ‘colour’ if their sets
of descendants are isomorphic,
if x has descendants but no children then x is labelled lim.
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3.2 Coding Trees

Now that we have shown how labelled trees arise naturally in analyzing the structure
of a branch-coloured chain, we can now start ‘from the other end’, and define
more formally what sort of trees we actually require. We first introduce some more
definitions which are needed.

Definition 3.9 The left forest of a vertex x labelled Z, Q, Qn, !�, PQ, PQn, _ is
the forest (disjoint union of trees) consisting of the descendants of all children of x
except for the rightmost (when it exists). The left forests of vertices labelled ^ or �
are empty.

An ordered forest is a forest together with a linear ordering C of its maximal
elements; two ordered forests are lower isomorphic if for any maximal element z
of one there is a maximal element t of the other such that there is a C-preserving
isomorphism .�1; z� ! .�1; t� induced by an isomorphism of the forests below
these points.

Definition 3.10 The middle forest of a vertex labelled _, ^, � is the forest (tree
actually) consisting of the descendants of its right, left, only child, respectively. The
middle forests of other vertices are empty.

Note that the middle forest is not usually in the ‘middle’. Even though it can
appear on the left it must be distinguished from the left forest. The encodings of
middle forests do often occur between two coloured points in the resulting linear
order.

Definition 3.11 A right descendant y of a vertex x is a descendant of x such that
for any consecutive z; t such that y � z < t � x, z is a right child of t (which in
particular means that t can only be labelled by !�, PQ, PQn, _, or ^).

Definition 3.12 A colour coding tree is a sextuple .T;6;C; &;F;�/ such that:

1. .T;6/ is a nearly levelled tree with a greatest element (its root), C partially
orders the children of each parent, and� linearly orders the levels,

2. T is complete,
3. every vertex is a leaf or is above a leaf, the leaves are labelled by F with

singleton labels, (so this is a ‘colouring’ function), and we extend F to all
vertices x by letting F.x/ D

S

fF.y/ W y a leaf below xg,
4. if x is not a leaf, then Nc 2 F.x/,
5. the non-leaf vertices are labelled by & , taking values in fZ, !�, Q, PQ, Qn,
PQn .2 6 n 6 @0/, _, ^, �, limg,

6. • if &.x/ D Z, Q, or � then x has one cone, having a greatest member (child),
• if &.x/ D !�, PQ,_ or^ then x has two cones, each having greatest elements

(children), linearly ordered by C,
• if &.x/ D Qn then x has n cones, each having greatest elements (children),

indexed by n, which are pairwise C-incomparable,
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• if &.x/ D PQn then x has n C 1 cones, each having greatest elements
(children), one of which is C-greatest, and the others are indexed by n and
pairwise C-incomparable,

• if &.x/ D lim then x has just one cone, no children, and is not a leaf,
7. if non-leaf vertices x and y are in the same level, then &.x/ D &.y/, or one is ^

and the other �, or &.x/, &.y/ are lower isomorphic coloured linear orders such
that for each i, if z and t are the ith left children of x and y, respectively, under
the indexing, then F.z/ D F.t/,

8. the left child of any vertex labelled _ and the right child of any vertex labelled
^ are leaves not coloured Nc, but their other children are not leaves,

9. any two leaves having the same colour are in levels that are at most one apart;
if they are one apart, then the vertex on the lower level is the left child of a
vertex labelled _,

10. at each given level of T the left forests from non-leaf vertices at that level are
isomorphic; in addition if x and y are on the same level and &.x/ D &.y/ D ^
and F.x/ D F.y/, then the middle forests are also isomorphic,

11. the root is not labelled ^, _, or �; the children of a vertex labelled ^ or �
are not labelled ^, _, or �; the children of a vertex labelled _ are not labelled
_; if &.x/ D � then, for some vertex y level with x, &.y/ D ^; in addition if
&.x/ D _ then the parent of x (if it exists) is labelled Q, PQ, Qn, or PQn,

12. if &.x/ D ^ and y is the left child of x, then y has no right descendant which is
a leaf,

13. if &.x/ D !�, PQ or PQn and y0 is the right child of x, then Nc 2 F.y0/, and there
is a left child y of x such that Nc 2 F.y/,

14. there are countably many leaves.

Note that we usually write F.x/ D c rather than F.x/ D fcg in cases where this is
a singleton. As explained earlier, to define what it means for a coding tree to encode
a coloured linear order, we require the intermediate notion of ‘expanded coding
tree’. Five examples of colour coding trees were given in Figs. 2 and 3. Figure 3b
illustrates clause 9 of the definition.

Definition 3.13 An expanded coding tree is a sextuple .E;6;C; &;F;�/
such that:

1. .E;6/ is a nearly levelled tree with a greatest element (the root), C linearly
orders the children of each parent, and� linearly orders the levels,

2. E is complete,
3. every vertex is a leaf or above a leaf, the leaves are labelled by F with singleton

labels, and F is extended to all vertices x by letting F.x/ D
S

fF.y/ W y a leaf
below xg,

4. if x is not a leaf, then Nc 2 F.x/,
5. the non-leaf vertices are labelled by & , where &.x/ lies in fZ, !�, Q, PQ, Qn,
PQn.2 6 n 6 @0/, _, ^, �, limg,

6. for any parent vertex x of the tree, its cones all have greatest elements (children)
which are indexed by the members of &.x/ so that if &.x/ is a coloured linear
ordering, C corresponds to the ordering of &.x/, and one of the following
holds:
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• &.x/ D Z, Q, �, and the trees below x are all isomorphic,
• &.x/ D !�, PQ and the left trees below x are all isomorphic,
• &.x/ D Qn and the trees below any two children of x having the same colour

are isomorphic,
• &.x/ D PQn and the trees below any two left children of x having the same

colour are isomorphic,
• &.x/ D _ or ^ and x has just 2 children,

7. if non-leaf vertices x and y are in the same level, then &.x/ D &.y/, or one is ^
and the other �, or &.x/, &.y/ are lower isomorphic coloured linear orders,

8. the left child of any vertex labelled _ and the right child of any vertex labelled
^ are leaves not coloured Nc, but their other children are not leaves,

9. any two leaves having the same colour are in levels that are at most one apart;
if they are one apart then the vertex on the lower level is the left child of a
vertex labelled _,

10. at each given level of E the ordered left forests from non-leaf vertices at
that level are lower isomorphic; in addition if x and y are on the same level
and &.x/ D &.y/ D ^ and F.x/ D F.y/, then the middle forests are also
isomorphic,

11. the root is not labelled ^, _, or �, the children of a vertex labelled ^ or � are
not labelled _, ^, or �; the children of a vertex labelled _ are not labelled _;
if &.x/ D � then for some vertex y level with x, &.y/ D ^; if &.x/ D _ then
the parent of x (if it exists) is labelled Q, PQ, Qn, or PQn,

12. if &.x/ D ^ and y is the left child of x, then y has no right descendant which is
a leaf,

13. if &.x/ D !�, PQ or PQn and y0 is the right child of x, then Nc 2 F.y0/, and there
is a left child y of x such that Nc 2 F.y/,

14. there are countably many leaves.

Theorem 3.14 The labelled refining invariant tree IR for X is an expanded coding
tree.

Proof It was shown in Theorem 3.8 that IR is a complete nearly levelled tree. We
verify the remaining properties.

3. Every vertex has a leaf below it, as the trivial partition into singletons is clearly
invariant (and restricted). The rest of this clause follows from the definitions.

4. By the density of the points coloured Nc, if x is not a leaf, then Nc 2 F.x/.
5. follows from the way the labels were assigned.

Now we check that the labels have been correctly assigned. First consider parent
vertices p, with child q. If p is labelled _, then min p exists, and clauses 6, 8, and
11 are satisfied (except that we still must verify the last part of 11). If p is labelled
^, then max p exists, and the same argument applies. So now suppose that p is not
labelled _ or ^, in which case for clause 6 we must show that the label is given by
the ‘coloured’ order type of its children, which is one of Z; !�;Q; PQ;Qn; PQn (for
2 6 n 6 @0).
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Then p (or p [ fbg where b > p, if p 62 IRR) lies in a restricted invariant partition
� , whose members are all parent vertices, by Lemma 3.1, and a child q of p lies in
an invariant partition � 0. It follows from lower 1-transitivity that all members of � 0

contained in p are children of p. Let F0 be the colouring of � 0 given by Lemma 3.2.
Let � be defined on � 0 by x � y if x and y are contained in the same member of � ,
and there are just finitely many points between x and y, and the F0 values of any two
points between them have non-empty intersection. As in the proof of Lemma 3.2
this is an equivalence relation, which clearly has convex classes and is invariant. By
Lemma 3.1 the classes are all themselves lower 1-transitive and lower isomorphic,
and if non-trivial can clearly only be isomorphic to Z or !� (the only other option
is that they are distinctly coloured singletons, in which case p is labelled _ or ^,
already covered). In this case we get the corresponding label for p.

In other cases, the parts of � 0 must be dense within p. We shall show that then
p is a Q, PQ, Qn, or PQn combination of its set Z of children. If all the left children
are isomorphic, then Z D Q, or PQ if the right child exists. If not all the left children
are isomorphic then we shall show that Z D Qn (or PQn if p has a right child) where
the set � of (colour, order-)isomorphism types of the left children of p is of size n
(which may be @0). Suppose, for a contradiction, that p is not the Qn mixture of its
children, in which case the members of � occur densely in p but there are two of
them such that not all other members of � occur between them. Let 	 be a member
of � which does not occur between all pairs, and let us define �0 on � 0 by y �0 z
if y D z, or if no point of Œy; z� (or Œz; y� if z < y) has isomorphism type 	 . This
provides a restricted invariant partition of X into convex pieces refining � , and is a
proper refinement not equal to � 0, contrary to � and � 0 being on consecutive levels.

7. Suppose that x and y are non-leaf level vertices. By the definition of IR from
IRR, x is labelled _ if and only if y is, and x is labelled ^ or � if and only
if y is. Otherwise, by Lemma 3.1, and since they are not leaves, x and y
are lower isomorphic linear orders, and it follows from this that &.x/ lies in
fZ; !�;Q; PQ;Qn; PQng if and only if &.y/ does, and then &.x/ and &.y/ are lower
isomorphic. If none of the above apply, then &.x/ and &.y/must both equal lim.

8. follows from the definition at the stage when _ and ^ are assigned as labels.
9. Let x and y be leaves coloured c ¤ Nc, and let �1, �2 be the suprema of the sets of

restricted invariant partitions containing fxg, fyg, respectively. By Lemma 3.5
we may suppose that �2 refines �1. Let p be the member of �1 containing y.
Since x and y have the same colour, there is an isomorphism � W .�1; x� !
.�1; y�, and since �1 is invariant, y is the least member of p. If p D fyg,
then �1 D �2 and x and y are on the same level. Otherwise, by definition, p is
labelled _, and y is the left child of p on the next level down, given by �2.

10. Let x and y be non-leaf level vertices. First suppose that &.x/ and &.y/ are lower
isomorphic linear orders. Then x and y lie in an invariant partition � (the level
in question), so by Lemma 3.1 they are lower isomorphic, and this isomorphism
induces a lower isomorphism between the ordered left forests of x and y. If &.x/
and &.y/ are not coloured linear orders, but are equal, then we may similarly
appeal to Lemma 3.2. Otherwise, one is ^ and the other is � in which case
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the left forests are empty by definition, so are vacuously isomorphic. For the
middle forests the only case requiring verification is this final case, but then by
construction, the children of the ^ and � vertices are lower isomorphic.

11. Most clauses here are immediate from the definition. Note that the fact that
the root is not labelled by ^, _, or � follows since X has no greatest or least
element. We concentrate on the final statement. Consider a vertex x labelled _,
having a parent y. We just have to rule out the possibilities that y is labelled Z

or !�. From the definition, we see that the invariant partition � that x lies in
is restricted, and min x exists. Hence every member of � has a minimum, and
if &.y/ D Z or !�, then members of � (except the greatest, if it exists) are
covered in � by a set having a least member not coloured by Nc, contrary to �
restricted.

12. If y has a right descendant which is a leaf, then X has consecutive elements
corresponding to it, and the right child of x. Since X is a branch-coloured chain,
the right child of x is coloured Nc, contrary to clause 8.

13. Let &.x/ D !�, PQ or PQn and let y; y0 be left and right children of x (so that
y0 is uniquely determined, but not y). We show that Nc 2 F.y0/ and y may be
chosen so that Nc 2 F.y/. The result for F.y/ follows from the density of the
points coloured Nc (allowing suitable choice of y—this is only necessary in the
PQn case, for the others, any y will serve).

Suppose, for a contradiction, that Nc … F.y0/. Then y0 is a leaf not coloured
Nc, in other words, it is a singleton. Let � be the invariant partition containing x.
Since y0 D max x, � is restricted, and by definition of the labelling, x is labelled
_ or ^, contrary to assumption.

14. Since X is countable, IR has countably many leaves.
ut

3.3 Decoding a Coding Tree

The above material leads on naturally to the definition of ‘encodes’.

Definition 3.15 Let .T;6;C; &;F;�/ be a coding tree, and .E;6;C; &;F;�/ be
an expanded coding tree. We say that E is associated with T if there is a function 
from E to T which takes the root r of E to the root of T , each leaf of E to some leaf
of T , and

(i) t1 6 t2 H) .t1/ 6 .t2/,
(ii) T and E have order isomorphic sets of levels and  preserves this correspon-

dence,
(iii) for each vertex t of E,  maps fu 2 E W u 6 tg onto fu 2 T W u 6 .t/g, and for

any leaf l of E,  maps Œl; r� onto Œ.l/; .r/�,
(iv) &..t// D &.t/ for non-leaves, and F..t// D F.t/ for leaves.
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Definition 3.16 The coding tree .T;6;C;F; &;�/ encodes the (coloured) linear
order .X;6/ if there is an expanded coding tree .E;6;C;F; &;�/ associated with
T such that X is (colour and order-) isomorphic to the set of leaves of E under the
(obvious) branch order.

It is clear from Theorem 3.14 that the set of leaves of E D IR is (order- and
colour-)isomorphic to X, so according to this definition, if E is associated with the
coding tree T , then T encodes X. What remains is to show that any coding tree
encodes some (countable, lower 1-transitive) coloured linear order by showing how
to find an associated expanded coding tree; that any two such encoded orders are
isomorphic; and that an expanded coding tree arises from some coding tree with
which it is associated. This is accomplished in what follows.

Given a coding tree, we build an expanded coding tree that it is associated with
by using a rich enough family of functions on branches, where here by branch we
understand a maximal chain containing a leaf (so in fact a branch is just the set of
all points above some given leaf). For each of the labels Z, Q, !�, PQ, Qn, PQn we
suppose that ‘default values’ in it have been chosen. For Z and Q just one default
value is chosen, for !� and PQ two, the greatest element and one other, for Qn there
will be n default values, one of each colour, and for PQn there are nC1 default values,
the greatest element, and one for each colour. The idea is that by insisting that,
except at finitely many places, the default values are taken, the overall cardinality
remains countable. Note that there is exactly one default value for each child of a
vertex with that label in the coding tree.

Definition 3.17 A decoding function is a function, f , defined on a branch B of T ,
which contains a leaf, such that for each x 2 B:

• if &.x/ D Z;Q, or Qn, then f .x/ 2 &.x/,
• if &.x/ D !�; PQ, or PQn, then f .x/ 2 &.x/ and it is the greatest member of &.x/ if

and only if B passes through the right child of x,
• if &.x/ D Qn or PQn and f .x/ is not its greatest member, then its colour equals that

of the child of x in B,
• if &.x/ D _, ^, or �, then f .x/ is the member of &.x/ (viewed as a linear order)

corresponding to which child of x lies in B,
• the set of non-default values taken by f is finite.

We note that if x is a leaf, or is labelled by lim, the value of f is unimportant and
we consider it to be undefined.

Theorem 3.18 Every colour coding tree T encodes a countable (coloured) lin-
ear order.

Proof The linear order encoded by T is taken to be the set˙T of decoding functions
on T ordered by first difference (from top down). Let us spell out precisely what this
means. If f1; f2 are decoding functions with domains B1 and B2 respectively, then we
let f1 < f2 if for some parent vertex x 2 B1 \ B2, f1.y/ D f2.y/ for all y > x, and
f1.x/ < f2.x/. We observe that from this definition it follows that if for decoding
functions f1 and f2, f1.x/ D f2.x/, then the same child of x lies in the domains of
both f1 and f2. If f 2 ˙T , then f is coloured by taking for F.f / the F-colour of the
leaf in its domain. If B D dom f , we note that .8x 2 B/.F.f / 2 F.x//.



246 K.M. Chicot and J.K. Truss

Let us remark that the definition of the ordering makes sense. Suppose that f1 ¤
f2 have domains B1 and B2. By completeness of T , B1 \ B2 has a greatest lower
bound x say in T . In fact x must be the least member of B1 \ B2. For if x 62 B1, and
x0 is the member of B1 on the same level as x, then the least upper bound y of x and
x0 satisfies y > x, so there is z in B1 \ B2 such that y > z > x, contrary to x0; z 2 B1.
Hence x 2 B1 and similarly x 2 B2.

Suppose that f1 and f2 agree on B1 \ B2. Then as f1 ¤ f2, x is not a leaf so there
are incomparable x1 2 B1 and x2 2 B2, whose least upper bound must be x. Hence x
ramifies downwards, so is labelled by !�, PQ;Qn, PQn, _ or ^. Since f1.x/ D f2.x/, it
follows as remarked above that the children of x in B1 and B2 are equal, contrary to
minimality of x in B1 \ B2. We deduce that f1 and f2 do not agree on B1 \ B2. Since
decoding functions differ from the default value only finitely often, there is therefore
a greatest point at which they differ, which must be labelled Z; !�;Q; PQ;Qn, or PQn,
and the definition decides the ordering of f1, f2 (the precise details depending on the
value of &.x/).

In order to satisfy the definition of ‘encodes’ we must produce an expanded
coding tree, which is given by

E D f.t; f � .t; r�/ W f 2 ˙T ; t 2 B;B D domf g

with labelling of vertices given by the label in T of the first component. For leaves
this means that the labelling is as just defined for ˙T , and so provided we can show
that E is an expanded coding tree associated with T , it will follow that ˙T is the
coloured linear order encoded by T . The lth level of E is the set of all .t; f � .t; r�/
such that t lies in the lth level of T .

Clauses 1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14 follow from the definition and the
corresponding clauses for the coding tree, and the verification that E is a complete
tree (clause 2) is as in [5]. Clause 6 is immediate from the definition.

The truth of clause 10 follows from the fact that any isomorphism between the
trees below vertices t1 and t2 of T induces an isomorphism between the trees of E
below .t1; f1 � .t; r�/ and .t2; f2 � .t; r�/ for any decoding functions f1 and f2.

The mapping  is given by ..t; f � .t; r�// D t. This preserves root, leaves, and
labels. Also t1 6 t2 H) .t1/ 6 .t2/ and clearly for each vertex t of E,  maps
fu 2 E W u 6 tg onto fu 2 T W u 6 .t/g and for any leaf l of E,  maps Œl; r� onto
Œ.l/; .r/�. Therefore E is associated with T and ˙T is order isomorphic to the set
of leaves of E. Hence T encodes ˙T . ut

Theorem 3.19 Any two countable coloured linear orderings encoded by the same
colour coding tree T are isomorphic.

Proof Suppose that X1 and X2 are countable coloured orders both encoded by T .
Then they may be viewed as the sets of leaves of expanded coding trees E1 and
E2 where there are association functions 1, 2 from E1, E2, respectively, to T . We
argue by back-and-forth.

Let P be the family of all (level and label-preserving) isomorphisms from a finite
subset of E1 to E2 such that
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(i) the root of E1 lies in the domain of p, and p takes it to the root of E2,
(ii) the domain and range of p contain all their ramification points,

(iii) if t 2 dom p, then 1.t/ D 2.p.t//,
(iv) all points of the domain or range of p are the root, or leaves, or parent vertices,
(v) if t 2 dom p is a ramification point, then there is an isomorphism of the set of

children of t in E1 to the set of children of p.t/ in E2 such that if u < t is in
dom p, then the isomorphism takes the child of t above u to the child of p.t/
above p.u/.

We shall show that if p 2 P and t 2 E1 is not labelled lim, then there is an
extension q of p in P such that t 2 dom q. This is the ‘forth’ step, and the ‘back’
step similarly adds a point to the range. Since the sets of parent vertices and leaves
are countable, it follows by back-and-forth that there is an isomorphism � from the
set of such points in E1 to those in E2. This extends to the desired full isomorphism
by continuity at lim points.

Given our p and t, if t 2 dom p, then we let q D p. Otherwise since the root r lies
in dom p, there is at least one vertex v of dom p above t, so there is a least such.

Case 1: There is also a vertex of dom p below t. Let u be the greatest such. Then,
since p.u/, p.v/ exist, and the association maps are level-preserving, there is a
unique point t0 such that p.u/ < t0 < p.v/ and 1.t/ D 2.t0/. Let q D p[f.t; t0/g.
Case 2: v is minimal in dom p. We know that 1.v/ D 2.p.v// and 1.t/ <
1.v/. Also 2 maps fu 2 E2 W u � p.v/g onto fu 2 T W u � 2.p.v//g. Hence
there is u � p.v/ such that 1.t/ D 2.u/ and we let q D p [ f.t; u/g.
Case 3: There is no vertex of dom p below t, v is not minimal in dom p, u 2
dom p, u < v say, and the least upper bound of u and t is v. We may suppose that
t is a child of v, since we may repeat this argument to obtain an extension to the
descendants of v. Clause (v) tells us which child of p.v/ t should be mapped to
under q.
Case 4: There is no vertex of dom p below t, v is not minimal in dom p, u 2
dom p, u < v, but the least upper bound w of u and t is not equal to v.

We can extend p to p0 in P so that w 2 dom p0 using Case 1, and this now reduces
to Case 3. ut

Theorem 3.20 A coloured ordering .X;6;F/ encoded by the colour coding tree T
is countable and lower 1-transitive.

Proof Countability is immediate. For lower 1-transitivity, let a; b 2 X be such that
F.a/ D F.b/ and consider the initial segments Xa D .�1; a� and Xb D .�1; b�
which we have to show are isomorphic.

By Theorem 3.19, we may suppose that X is the specific coloured chain arising
from the construction using decoding functions, so that it is defined to be the set of
all functions on the branches of T which take a default value at all but finitely many
points, so a and b are now viewed as functions on branches B1, B2 of T , having
leaves xa, xb, respectively, and F.a/ D F.xa/, F.b/ D F.xb/. If xa and xb are in
the same level, then the levels occurring in B1 and B2 are the same. Otherwise, by
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clauses 8 and 9, F.xa/ D F.xb/ ¤ Nc, xa and xb are in levels that are at most one
apart, and the one on the lower level, xb say, is the left child of a vertex labelled _.
So the levels of B2 are the same as for B1 except for the parent of xb.

If x 2 B1, let � a
x D ff 2 .�1; a� W f .x/ < a.x/ ^ .8z > x/f .z/ D a.z/g and

similarly for � b
y , where y 2 B2. If i is a level, and x, y are the elements of B1;B2

respectively in that level, we may also write these as � a
i ; �

b
i . By the definition of

the ordering, it is clear that .�1; a� is the disjoint union of fag and all the � a
i , and

furthermore that i < j ) � a
i > � a

j (where this means that every element of � a
i

is greater than every element of � a
j ). Since the same is true of the � b

i , to show that
.�1; a� Š .�1; b� it therefore suffices to show that � a

i Š � b
i for each i, and the

desired isomorphism from .�1; a� to .�1; b� is obtained by patching together all
the individual isomorphisms. This still works in the exceptional case in which xa

and xb are in levels that are one apart, since the ‘extra’ � b
i s are actually empty since

xb is the left child of its parent.
Let x 2 B1 lie in level i, and let y be the element of B2 in the same level, where

neither of these are leaves. It follows by property 7 that if &.x/ or &.y/ is not a
coloured linear order, then &.x/ D ^ and &.y/ D � (or the other way round), or
&.x/ D &.y/.

Case 1: &.x/ D lim.
As just remarked, &.x/ D &.y/ D lim, which gives � a

i D �
b

i D ¿.

Case 2: &.x/ D _, � or ^. By the above remark again, &.x/ D &.y/, or else
one is ^ and the other �. First consider _. It clearly suffices to observe that B1
and B2 either both contain the left child of x; y, respectively, or both contain the
right child. For if B1 contains the left child z of x, which by property 8 is a leaf,
labelled ‘red’ say, then properties 9 and 11 imply that no descendant of the right
children of x or y is coloured red, so as F.a/ D F.b/, it follows that B2 contains
the left child of y.

If &.x/ D &.y/ D �, then � a
i D �

b
i D ¿.

Next suppose that &.x/ D &.y/ D ^. A similar argument applies as for _, except
that this time in the non-empty case we invoke the existence of an isomorphism
between the middle forests of x and y (see clause 10).

It remains to consider the case where &.x/ D ^ and &.y/ D �. Let u and v be the
left and right children of x, respectively. Then v is a singleton labelled ‘blue’ say.
Properties 9 and 11 ensure that no descendant of y is labelled blue, and it follows
that u lies in B1, and consequently, � a

i D �
b

i D ¿ once more.

Case 3: &.x/ and &.y/ are both coloured linear orders, and hence they are lower-
isomorphic. By examining each of the possible cases, we see that in fact the open
intervals .�1; a.x// and .�1; b.y// are order- and colour-isomorphic (of order-
type !�, Q, or Qn), and we choose an order-isomorphism ' W .�1; a.x// !
.�1; b.y//. We now invoke the existence of an isomorphism between the left
forests at x and y. Since this preserves labels, subtrees at children of x and y which
correspond under ' are isomorphic, so ' may be extended to an isomorphism  
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between these left forests. Writing xa
j , xb

j for the elements of B1, B2 in level j, we
can now define an isomorphism ˚ from � a

i to � b
i by letting

˚.f /. .xj// D

8

<

:

b.xb
j / if j > i

'.f .xj// if j D i
f .xj/ if j < i

where f 2 � a
i .

Finally we apply the methods from [5] to show that � a
i is mapped 1–1 onto � b

i
by ˚ and this gives the result. ut

Theorem 3.21 If X is the linear order encoded by the colour coding tree .T;6/,
then the points coloured Nc are dense in X, and if a < b are consecutive, then
F.b/ D Nc.

Proof As in the previous theorem we may suppose that X D ˙T .
Let a < b with the object of finding a point in between coloured Nc. Let B1 and B2

be the branches on which a and b are defined. As above there is a point x 2 B1 \ B2
such that a � .x; r� D b � .x; r� and a.x/ < b.x/. We deduce that x is labelled by
a non-trivial linear order, which must therefore be Z, !�, Q, PQ, Qn, PQn, _, or ^. It
follows that Nc 2 F.x/. To begin with, suppose that a.x/ and b.x/ are not consecutive
members of &.x/. Then there is a leaf l below x labelled Nc and some f 2 ˙T such
that a � .x; r� D f � .x; r� D b � .x; r� and a.x/ < f .x/ < b.x/. Thus a < f < b
and F.f / D Nc. For since a.x/ and b.x/ are not consecutive, &.x/ D Z, !�, Q,
PQ, Qn, or PQn. If x has just one child y, then F.x/ D F.y/, so Nc 2 F.y/. Choose
a branch B containing y whose leaf is coloured Nc, and let f have domain B, and
a.x/ < f .x/ < b.x/. Thus F.f / D Nc. If &.x/ D Qn, we may choose a child y of x
with Nc in its label, and carry on as before. If &.x/ D !�, PQ, or PQn, we may similarly
use clause 13 of Definition 3.12. So from now on we suppose that a.x/ and b.x/ are
consecutive. This implies that &.x/ D Z, !�, _, or ^.

Next suppose that some y 2 B2 strictly below x is labelled Z, !�, Q, PQ, Qn, or
PQn. Then Nc 2 F.y/ so there is a leaf l below y coloured Nc, and we choose f 2 ˙T

such that f � .y; r� D b � .y; r� and f .y/ < b.y/. Then a < f < b and F.f / D Nc.
Otherwise, all labels of non-leaf vertices in B2 strictly below x lie in f_, ^, �,

limg. It follows from clause 11 that there are only finitely many such points, and
since any vertex labelled lim clearly has infinitely many below it in any branch,
only _, ^, � can arise. By clause 7, the same applies to all vertices strictly below x.

(i) If &.x/ D Z, let y be the child of x in T . If y is a leaf, then it is coloured Nc, so
F.a/ D F.b/ D Nc. Otherwise &.y/ exists and equals _, ^, or �. By clause 11,
&.y/ ¤ _. If &.y/ D ^, then y has two children u; v, which are left and right,
and by clause 11, u and v are both leaves, but this contradicts clause 8.

If &.y/ D �, then y has just one child which is a leaf labelled Nc, so F.a/ D
F.b/ D Nc.

(ii) If &.x/ D !�, let y; y0 be the left and right children of x in T . If y 2 B1, B2
or y0 2 B1, B2, then we argue as in the previous case. Otherwise y 2 B1 and
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y0 2 B2. By clause 13, Nc 2 F.y/;F.y0/, so if y is a leaf, then F.a/ D Nc and if y0

is a leaf, then F.b/ D Nc. By clause 11, &.y/; &.y0/ ¤ _. If &.y/ D � then the
child of y is labelled Nc, so F.a/ D Nc, and similarly, if &.y0/ D � then F.b/ D Nc.
The only remaining case is where &.y/ D &.y0/ D ^. Let u and v be the left
and right children of y0. Then u and v are both leaves, contrary to clause 8.

(iii) If &.x/ D _, let y; y0 be the left and right children of x in T . Then y 2 B1 and
y0 2 B2. By clause 8, y is a leaf, F.y/ ¤ Nc, and y0 is not a leaf, so it is labelled �
and has a unique leaf below it coloured Nc. Thus F.b/ D Nc. If y0 is labelled ^,
then its children u and v are both leaves, contrary to clause 8.

(iv) If &.x/ D ^, let y; y0 be the left and right children of x in T , so y 2 B1 and
y0 2 B2. By clause 11, y and y0 are leaves, contrary to clause 8.

For the final statement, we know that a and b are consecutive. Hence a.x/ and
b.x/ are consecutive and the above argument shows that &.x/ D Z; !�;_, or ^, and
all vertices strictly below x are labelled _, ^, or �. We do not need to consider the
cases where we found a point strictly in between a and b, or where we already know
that F.b/ D Nc, which cuts things down considerably. So, no cases under (i) or (iii)
now arise. For (ii), where &.x/ D !�, and y; y0 are the children, the only case to be
considered has y 2 B1 and y0 2 B2, and &.y0/ D ^ with children u; v. As a and b
are consecutive, u 2 B2, and hence as above, F.b/ D Nc. Finally (iv) cannot arise,
since &.x/ D ^ and y; y0 are the children of x, they must both be leaves, which again
contradicts clause 8. ut

Now that we have shown how any colour coding tree encodes a coloured linear
order of the right kind, we revert to our earlier discussion, where we showed how
to find an expanded coding tree IR corresponding to a given branch-coloured chain.
It remained to show that we could find a coloured coding tree associated with IR.
In the same way that an expanded coding tree is formed by ‘fattening’ the given
coding tree, the reverse process is done by ‘collapsing’ the given expanded coding
tree. The idea is that we identify all the children of vertices labelled Z or Q, all
the left children of vertices labelled !� or PQ, and all the children (left children)
having the same colour in Qn or PQn. For this we begin by choosing for each vertex
with one of these labels one of its left children of each isomorphism type and for
each of its children x a fixed isomorphism of the tree below x to the tree below
the chosen child for that isomorphism type (thus for Z, !�, Q or PQ just one left
child is chosen, and for Qn, PQn there are n). For each level l an equivalence relation
'l is given by identifying two vertices below that level if their images under the
fixed isomorphism are equal, and vertices on higher levels are only equivalent to
themselves. Then x ' y if there is a finite sequence x D x0; x1; : : : ; xn D y such that
for each i < n, xi 'li xiC1 for some level li. Intuitively, the trees below vertices with
these labels are ‘collapsed’, thereby reversing the way in which a coding tree gives
rise to an expanded coding tree.

Theorem 3.22 The set of '-classes on an expanded coding tree whose leaves are
(isomorphic to) .X;6/ is a coloured coding tree for .X;6/.
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Proof The new labels and relations introduced in the colour classification, _;^;�,
do not have more than one left child. The children of vertices with these labels do
not, therefore, need to be ‘collapsed’. In addition we do not need to be concerned
with middle children as each of the labels only has one of these. Hence the proof
that the set of '-classes on an expanded coding tree of .X;6/ is a colour coding
tree for .X;6/ is essentially the same as that in [5]. Most properties of the colour
coding tree follow immediately from the corresponding property of the expanded
coding tree. ut

3.4 Colour Lower Isomorphism Classes

We have shown that every colour coding tree represents a countable lower
1-transitive coloured linear order and that every countable lower 1-transitive branch-
coloured chain can be represented by a colour coding tree. We next see how lower
isomorphic coloured linear orders interact, and how this is exhibited in the coding
tree.

Theorem 3.23 Let T.X/;T.Y/ be two colour coding trees, and L W T.X/ ! �,
L0 W T.Y/ ! �0 be functions from a vertex to its level in T.X/;T.Y/. Suppose that
 W �! �0 is an order isomorphism, such that the following hold:

• if x 2 T.X/, y 2 T.Y/, .L.x// D L0.y/ then &.x/ D &.y/ or one is ^ and the
other is �, or they are lower isomorphic coloured linear orders,

• if x 2 T.X/ and y 2 T.Y/ are leaves having the same colour, L0.y/ D .L.x//
or .L.x// and L.y/ are at most one level apart, and if so, then the vertex on the
lower level is the left child of a vertex labelled _,

• if x 2 T.X/, y 2 T.Y/ and .L.x// D L0.y/ then the left forests of x and y
are isomorphic. In addition if .L.x// D L0.y/ and &.x/ D &.y/ D ^ and
F0.x/ D F0.y/ then the middle forests are also isomorphic.

Then the coloured linear orders .X;6/, .Y;6/ encoded by T.X/;T.Y/, respectively,
are lower isomorphic.

This is verified using arguments from Theorem 3.20.
If a relation, � corresponding to an invariant partition � is defined on one

member, X, of a lower isomorphism class of branch-coloured chains, we can easily
extend it to be defined on any other member, Y , of the class. If v < w 2 Y ,
then there is y 2 X with F.w/ D F.y/. There is therefore an isomorphism
' W .�1;w� ! .�1; y�, and we let v � w if '.v/ � '.w/. This is well defined
since � is preserved under lower isomorphisms.

Hence if � is an invariant partition of a branch of a 1-transitive tree it may be
viewed as an invariant partition of all the branches of the tree. It is therefore defined
on the whole tree and is preserved by automorphisms of the tree.
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Theorem 3.24 Let .X;6/, .Y;6/ be lower isomorphic branch-coloured chains. Let
T.X/;T.Y/ be the labelled refining invariant trees of X and Y, and�,�0 the families
of their levels. Then there is an order isomorphism  W �! �0 such that the three
conditions given in Theorem 3.23 hold.

Proof The isomorphism between the levels is given by means of the correspondence
between their invariant partitions just mentioned. The three conditions are verified
by the same methods used in the proof of Theorem 3.14. ut

Corollary 3.25 Any lower isomorphism class of branch-coloured chains is
countable.

Proof This follows from the correspondence between the branch-coloured chains
and their colour coding trees. By the theorem, in a lower isomorphism class, the
set of levels of their colour coding trees is fixed. We consider the initial segment X
determined by a Nc point, and its colour coding tree T . This has a rightmost branch
B, and any other coding tree T 0 for a member X0 of the class differs from T at some
greatest point x, and here the labels must be !�, Z, or PQ, Q, or PQn, Qn, or ^, �,
respectively. The last case is impossible, because by clause 8, the right child of a
^-labelled vertex is a leaf not coloured Nc. In the first three cases, T 0 is uniquely
determined by T and x, since by the third clause of Theorem 3.23, the left forests
at x in T and T 0 are isomorphic, which implies that any other colour coding tree for
a branch-coloured chain which is lower isomorphic to X and whose colour coding
tree first differs from T at x must be isomorphic to T 0.

Since there are only countably many possibilities for x, it follows that the lower
isomorphism class is countable. ut

4 Cones Types in 1-Transitive Trees

A key ingredient in the study of countable 1-transitive trees .A;6/ is an analysis of
their possible ramification behaviour, and in this section we describe this in terms
of the types of cones there can be at any vertex of AC. We let < be the set of
orbits of points of AC under the action of Aut.A/, view this as a set of colours, and
let F W AC ! < be the ‘colouring’ function which takes each point to the orbit
containing it. Thus F.x/ D F.y/ if and only if x and y are in the same orbit under
Aut.A/.

In Sect. 3 we considered partitions which are invariant under lower isomor-
phisms, and when building coding trees for colour lower 1-transitive linear orders
we chose a rich enough family of such partitions, to fully describe the linear order in
question. Each one of these partitions defines a level in the coding tree of the linear
order, and we write �i for the partition corresponding to level i. We let the set of
levels of the coding tree be .I;6/. As remarked earlier, this linear order need not
be well-founded or conversely well-founded. We showed in Theorem 3.24 that all
the branches of a 1-transitive tree have coding trees with order-isomorphic sets of
levels, which we may therefore identify. Recall that i < j means that �i refines �j.
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In [10] there were two types of cone at points of AC which needed to be
distinguished, corresponding to ‘special ramification points’ (members of AC

having a cone with a least element), and the rest. In the current context however
we need in addition to take account of the possible levels at which these occur,
and it turns out that this is also sufficient to distinguish the two types of cone just
mentioned.

Definition 4.1 If a 2 AC, then we let Ci.a/ be set of all cones C at a such that for
every branch B through C,

(i) fx 2 B W a < xg has a least �i-class but no least �j-class for any j < i, or
(ii) fx 2 B W a < xg has no least �j-class for any j, and i is the least member of I

such that some �i-class of B contains a and also intersects C \ B, or
(iii) fx 2 B W a < xg has no least �j-class for any j, i has no successor in I, C \ B

has no least �j-class for any j � i, but for all j > i, every �j-class containing a
also intersects C \ B.

We remark that by a ‘branch through C’ we mean a branch (maximal chain) of
AC whose intersection with C is a maximal chain of C. It is easy to see that the
conditions about the existence of least �i-classes are independent of which branch
through C we take, since any two of them meet strictly above a (this is the definition
of ‘cone’). The distinction between ‘special’ and ‘normal’ cones which was made
in [9], generalizing the weakly 2-transitive situation, was that C 2 Ci.a/ is special
if (i) applies, and is otherwise normal.

To illustrate further the meaning of the three clauses in the definition, we remark
that the first two apply provided that i has a successor, which has a discrete label
(which can be Z, !�, or _, though not ^) for clause (i), or a dense label (Q, PQ, Qn,
or PQn) for clause (ii), and clause (iii) applies if i has no successor. This is further
explained in Lemma 4.3. If x and y lie in a colour coding tree T , then x <left y means
that x is a descendant of a left child of y.

Lemma 4.2 Any cone C of a 1-transitive tree A at a 2 AC lies in Ci.a/ for some i 2
I. Furthermore, i, and which of the three clauses applies, are uniquely determined
from C.

Proof Let B be a branch of C. If the set P D fj 2 I W B has a least �j-class which is
strictly above ag is non-empty, then by the colour lower 1-transitivity of the branches
and by the density of Nc, P has at most two members. Call the least such i and note
that C 2 Ci.a/ according to clause (i), and in this case, i is clearly unique.

If P D ¿, let P0 D fj 2 I W B has a least �j-class which also intersects C \ Bg.
Then P0 ¤ ¿ as one sees by considering the trivial invariant partition into just one
set (B). By completeness of the coding tree of B, P0 has an infimum, i say. The
�i-class containing a is then equal to the intersection of the family of �j-classes
containing a for j 2 P0. If this set is not equal to fag, then i 2 P0, and C 2 Ci.a/ by
clause (ii).

If this set is equal to fag, then i does not have a successor in I, but still C 2 Ci.a/
by clause (iii). ut
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Lemma 4.3 If .A;6/ is a countable 1-transitive tree and a 2 AC is such that
F.a/ D cj then:

• Ci.a/ ¤ ; fulfils clause (i) in Definition 4.1 if and only if there is a branch B of
AC through a, and there are y � x0 <0 x in T.B/, y a leaf coloured cj, x0 <left x,
L.x0/ D i, :.9z/.y <left z < x/, &.x/ D Z, !� or _, and either y D x0, or x0 is
labelled ^ or �, and y <0 x0,

• Ci.a/ ¤ ; fulfils clause (ii) in Definition 4.1 ” i has a successor in I and
there is a branch B of AC through a, and there are y � x0 <0 x in T.B/, y a leaf
coloured cj, x0 <left x, L.x0/ D i, :.9z/.y <left z < x/, and &.x/ D Q, PQ, Qn,
or PQn,

• Ci.a/ ¤ ; fulfils clause (iii) in Definition 4.1 ” i has no successor in I.

Proof If C 2 Ci.a/ is a cone fulfilling Definition 4.1(i), B a branch through C, then
there is a least �i-class y0 in ft 2 B W a < tg. Let x0 be the representative in T.B/
of the �i-class containing a, y the representative of fag, and x be the least upper
bound in T.B/ of x0 and the representative of y0. Then since there are no points of B
lying between the�i-classes of a and y0, x is labelled by Z; !� or _. The minimality
of i ensures that there is no z satisfying y <left z < x, and from this last property
we deduce that x0 is not labelled Z, !�, Q, PQ, Qn, or PQn. This leaves us with the
remaining options stated.

If C 2 Ci.a/ is a cone fulfilling Definition 4.1(ii), B a branch through C, then
there is a least �i-class containing a and points greater than it, and we let x be the
representative of this in T.B/. By completeness, there is a greatest invariant partition
in which a is not equivalent to points to its right, and so i is a successor level. If its
label was Z, !�, or _, then this would reduce to the previous clause, so we deduce
that it must be Q, PQ, Qn, or PQn. ut

Before giving examples to illustrate the definition in our general setting, let us
see how it works out for weakly 2-transitive trees. In the case where AC has pairs
of consecutive elements, all the branches are (even colour-) isomorphic, of order-
type Qn.2/, meaning that one of the colours consists of pairs coloured (red, Nc) (and
1 � n � @0). The coding tree for this coloured linear order is shown in Fig. 4a.

In this case, all coloured branches are isomorphic, and have the coding tree
shown. There are just three invariant partitions, all restricted, of which the partition
into fred, Ncg-pairs and all other coloured singletons is the only non-trivial one. There
are two types of cone at the red points, those with a least member, and those with
no least member (this latter may or may not actually arise in the tree). The level
for the former corresponds to the partition into singletons, and for the latter to the
partition into just one set, so the distinction between ‘special’ and ‘normal’ is recast

Fig. 4 Colour coding trees
for (a) Qn.2/ and (b)
Z:.red C Z/

��
�� ���

red c

∨
other colours

Qn

(a) ��
(b)

Z

∨

red
Z

c̄
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here via the levels. If the Nc points do not ramify, we can say that they have just one
cone, but that too corresponds to the partition into just one set. There are no cones
corresponding to the non-trivial invariant partition. The full specification of the
weakly 2-transitive tree is then given by the ramification orders at red points for the
two types of cone and at points of all other colours. In our general description, this
will be done by means of a sequence of cardinals indexed by levels, corresponding
to each colour.

Now consider further examples in the more general setting. First suppose that
the branches of A have order-type Z

2. Then in the completion there are (red) points
in between the copies of Z, and we suppose that the tree ramifies at these points,
one of which is a. The coding tree is shown in Fig. 4b. There are three non-trivial
invariant partitions of any branch B. The first is obtained by coalescing all the copies
of Z to single points, and the other two are given by in addition relating each copy
of Z to the red point immediately above it, or to the red point immediately below it,
respectively. The last is however not restricted, so does not count. The finer of the
two that remain is clearly the first. In this case, any 1-transitive tree whose branches
are of this coloured order-type will only have one type of cone at each red vertex,
and one type at each Nc vertex. The cones at the red vertices a will lie in Ck.a/ where
�k is the partition into copies of Z and singleton red points (which is finer than the
partition which adjoins the red points to the Z-block below it), and the cones at the
Nc vertices have least elements also coloured Nc, and correspond to the trivial partition
into singletons. There is an easy generalization of this example to Z

n, where there
are n � 1 options for different orbits of ramification point.

More interesting examples come about if we allow the branches not all to be
isomorphic. For instance, consider a 1-transitive tree having branches in order-types
!�:.!�:.ZCred//CZ:.ZCred/ and Z:.!�:.ZCred//. The initial segments of both
of these are isomorphic to !�:.!�:.ZCred//C!�:.ZCred/C!�, so they are colour
lower isomorphic. The final segment of such a coloured linear order determined by
a red point may be (at least) !:.ZC red/ or Z:.ZC red/, and so there will be cones
given by at least two distinct levels in a 1-transitive tree having branches of these
two coloured order types.

We are now in a position to define the ‘cone type’ of a point a, which we denote
by C:T:.a/. This is the sequence indexed by I, and whose ith entry is jCi.a/j. Recall
that .I;6/, the set of the levels of a coding tree, always has a greatest member, r, its
root, corresponding to the partition into just one piece.

Definition 4.4 If a 2 AC, then the cone type of a is the sequence:

. N̨ / D .˛i/i2I D .˛1; : : : ; ˛i; : : : ; ˛r/

where ˛i D jCi.a/j.

Definition 4.4 is illustrated in Figs. 5 and 6. In Fig. 5 we show a 1-transitive tree
whose branches are Q:.redC Z/. The cone type of the red points is .0; 2; 0; 0/, and
the cone type of the Nc points is .1; 0; 0; 0/. The dots indicate densely many copies of
redC Z, and the coding tree of the branches is given on the right. Note that this has
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Fig. 5 A 1-transitive tree with Q:.red C Z/ branches and their coding tree

height 4 and so the type sequences have length 4. The red points have ramification
order 2, and both cones have a least �2-class. The c points do not ramify, and are
each covered by a point, that is, by a �1-class.

In Fig. 6 we show a 1-transitive tree whose branches are Q2.Q2.Z; red/ C
!�;Q2.Z; red//. The cone type of the red points is .0; 0; 2; 0/. The cone type of the
c points is .1; 0; 0; 1/. There is an interdense mixture of red points and Zs (shown
by �), and also an interdense mixture of Q2.Z; red/ and Q2.Z; red/ C !� (shown
by \). The coding tree of the branches is given on the right. The red points have a
least �3-class above them which they are related to. The Nc points are covered by a
point, that is, by a �1-class and they are also covered by a �4-class which they are
related to.

5 The Characterization

In this section we introduce the notion of a ‘structured tree’, and show that
this precisely characterizes which countable proper trees are 1-transitive. In order
to provide a meaningful ‘classification’ however, more information about the
tree is needed, and the notion of the ‘type’ of a countable 1-transitive tree is
introduced, which is sufficient to describe it uniquely up to isomorphism. In Sect. 5
it is determined precisely which types can arise, which will therefore provide a
classification of all countable 1-transitive trees, our principal goal.
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Fig. 6 A 1-transitive tree with Q2.Q2.Z; red/C !�;Q2.Z; red// branches and their coding tree

Definition 5.1 A countable tree .A;�/ is structured if it is proper, and there is a
colouring function F W AC ! < such that:

(i) the set � of branches of AC (up to isomorphism) is a non-empty subset of
some colour lower isomorphism class of branch-coloured chains,

(ii) .8x 2 AC/.F.x/ D c, x 2 A/,
(iii) .8x; y 2 AC/.F.x/ D F.y/) C:T:.x/ D C:T:.y//,
(iv) if x; y 2 AC and F.x/ D F.y/ and x lies in a branch B of AC, then there is a

branch B0 of AC such that Œx;C1/ \ B Š Œy;C1/ \ B0 (every final segment
of a member of � occurs above every point of A).

Lemma 5.2 All countable 1-transitive trees are structured.

Proof (i) As A is assumed proper, there are incomparable points x; y 2 A. As A is
a tree, there is z 2 A, z < x; y. Thus x is not least, and z is not greatest, so by
1-transitivity, A has no least or greatest, and the same follows for any branch B.

Suppose that x < y in B. By [14] Lemma 2.4.7, and since no point ramifies
downwards, .x; y� \ A ¤ ;, from which it follows that there is a point z of A
with x < z � y. Furthermore, if x and y are consecutive, it follows that y 2 A.

The fact that any two members of � are lower isomorphic follows from
the definition of colours as orbits, and similarly all members of � are lower
1-transitive.
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(ii) This is the definition of the colour Nc, and the set of these points forms an orbit
by 1-transitivity of A.

(iii) Any isomorphism preserves cone types.
(iv) We apply to B any automorphism which takes x to y. ut

If .A;�/ is a countable 1-transitive tree and � is a non-empty family of lower
isomorphic branch-coloured chains, then T.A/ and T.� / stand for the sets of coding
trees of branches of AC and members of � , respectively. By Theorem 3.24, all
members of T.� / have the same sets of levels, so we may talk unambiguously of
the levels of T.� / to mean those of the coding tree of any B 2 � .

Definition 5.3 A type is a triple: t D .�;<; . N̨ cj/j2J/ such that:

• � is a non-empty subset of a colour lower isomorphism class of branch-coloured
chains such that for each parent level of T.� / there are X 2 � and x 2 T.X/ at
that level, such that &.x/ ¤ !�; PQ; PQn;

• < D fcj W j 2 Jg is the colour set of � , indexed by J,
• N̨ cj D .˛

cj

1 ; : : : ; ˛
cj

i ; : : : ; ˛
cj
r / where i 2 I and .I;6/ is the set of levels of T.� /

and .8j 2 J/.8i 2 I/.0 6 ˛
cj

i 6 @0/;
•
P

j2J

P

i2I ˛
cj

i > 1;

Definition 5.4 We associate a type t.A/ with a countable 1-transitive tree .A;6/ as
follows:

• � is the set of isomorphism types of the branches of AC,
• < is the colour set of AC,
• for each cj 2 <, N̨ cj is the cone type of each a 2 AC with colour cj.

Lemma 5.5 For any countable 1-transitive tree .A;�/, t.A/ is a type.

Proof First note that by the definition of the colour of a member of AC as an orbit,
two points in the same orbit evidently give rise to the same sequence N̨ cj . The fact
that

P

j2J

P

i2I ˛
cj

i > 1 follows from the fact that A is a proper tree.
Next we show that for each parent level i C 1 of T.� / there are X 2 � and

x 2 T.X/ such that L.x/ D i C 1 and &.x/ ¤ !�; PQ; PQn. For let B0 be any branch
of A. If B0 has a �iC1-class with no top �i-class within it, then this B0 provides the
desired member of � . Otherwise we build another branch B0 as required. Choose
any �iC1-class .x1/iC1 of B0 so that x1 lies in its top �i-class, and choose x0 2 B
of the same colour as x1 so that x0 �iC1 x1 but x0 6�i x1. As F.x0/ D F.x1/, there
is an automorphism taking x0 to x1, and the image B1 of B0 contains x1, but x1 is
no longer in the top �i-class of its �iC1-class in B1, but its image x2 is. Now repeat
the argument and let xn be the image of x0 under the automorphism applied n times.
Thus x0 < x1 < x2 < : : :. Let B0 be a branch containing all the xns. Then in B0

the �iC1-class of x0 contains all the xn. Furthermore, there is an invariant partition
containing

S

n2!.xn/�i , which is a refinement of �iC1, so as �i is a child of �iC1,
S

n2!.xn/�i D .x0/�iC1
. Hence .x0/�iC1

has no greatest �i-class. ut

The characterization theorem will use back-and-forth, using approximations of
the following kind.
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Definition 5.6 A colour order isomorphism, , between subsets of AC, where A
is a 1-transitive tree, is good if its domain and range are finite unions of branches
of AC.

Lemma 5.7 If a; b 2 AC, where A is a 1-transitive tree, and C 2 Ci.a/, C0 2 Ci.b/
then C Š C0.

Proof The proof is by back-and-forth. In the first case, suppose that a and b do
not lie in the least �i-classes of C, C0, respectively, and choose x 2 C, y 2 C0

which do lie in these classes of C;C0 and such that F.x/ D F.y/. Then .�1; x� Š
.�1; y�. Furthermore .�1; x� \ C Š .�1; y� \ C0 by the invariance of �i. Let
�1 W .�1; x� \ C ! .�1; y� \ C0 be an isomorphism. Put .x/ D y and for all
z 2 .�1; x�\C put .z/ D �1.z/. Then dom./ contains all its ramification points.
Now x lies in a branch B of AC. By Lemma 5.2, there is a branch, B0, of A such
that Œx;C1/ \ B Š Œy;C1/ \ B0. Letting �2 be such an isomorphism we may put
.z/ D �2.z/ for all z 2 Œx;C1/ \ B. Then  is a good isomorphism.

Now suppose that  is a good isomorphism and u 2 Cn dom  and we extend
 to include u in the domain (with a similar argument for the range). Then there
is z 2 dom  such that z < u and for all v 2 dom  with v < u, v 6 z. Since
 is a good isomorphism, F.z/ D F..z// and hence C:T:.z/ D C:T:..z//. If x
lies in a branch B of A then, by Lemma 5.2, there is a branch, B0, of A such that
Œx;C1/\ B Š Œy;C1/\ B0, and we let �3 be such an isomorphism. Let 0 be the
extension of  given by .v/ D �3.v/ for all v 2 Œz;C1/\B. Then 0.u/ D �3.u/
and 0 is the desired good isomorphism extending .

Now we move to the case in which a, b do lie in the least�i-classes of C, C0. We
first deal with the case where i has a successor in I. Let x 2 C, y 2 C0 be such that
x; y are points in the least �i-classes of C;C0, respectively, and F.x/ D F.y/. For
any u; v in the least �i-classes of C, C0, respectively, and any j < i we know that
:.a �j u/ and :.b �j v/. If i has an immediate predecessor k, then the �k-classes
are dense and there is no least �k-class. If i has no immediate predecessor, then
there are certainly no �j-classes, j < i in a discrete relationship to a or b. Hence
.�1; x� \ C Š .�1; y� \ C0 by the invariance of �i. Let �1 W .�1; x� \ C !
.�1; y� \ C0 be an isomorphism. Put .x/ D y and for all z 2 .�1; x� \ C let
.z/ D �1.z/. Now x lies in a branch B of A. By Lemma 5.2 there is a branch, B0, of
A such that Œx;C1/ \ B Š Œy;C1/ \ B0. Letting �2 be such an isomorphism, we
let .z/ D �2.z/ for all z 2 Œx;C1/ \ B, and then  is a good isomorphism.

Suppose now that  is a good isomorphism between finite unions of branches
of C and C0 and u 2 Cn dom . We extend  to include u in the domain. There is
z 2 dom  such that z < u and for all x 2 dom  with x < u, x 6 z. Now, since
 is a good isomorphism, F.z/ D F..z// and hence C:T:.z/ D C:T:..z//. By
Lemma 5.2 there is a branch B0 of A, such that Œx;C1/ \ B Š Œy;C1/ \ B0. Let
�2 be such an isomorphism, and let 0 be the extension of  given by 0.x/ D �2.x/
for all x 2 Œz;C1/ \ B.

We now look at the case where i has no successor level in I. The families of
invariant partitions which exist on branches of C and C0 are equal. For each of these
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partitions, �j, j > i, every final segment of a part of �j that occurs above points
coloured by F.a/ occurs above a and within C, and likewise for b. By assumption,
there is no least �j partition. We may therefore choose j > i and a final segment,
� D Œa;C1/\B, of a �j -class. Hence there is a final segment � 0 D Œb;C1/\B0

in C0 of a �j-class isomorphic to � . We may now continue by back-and-forth, as
before, to obtain C Š C0. ut

Theorem 5.8 1-transitive trees .A1;6/ and .A2;6/ are isomorphic if and only if
they have the same type.

Proof The fact that isomorphic trees have the same type is immediate (since
anything definable, first or second order, is preserved by an isomorphism).

Conversely, suppose they have the same type .�;<; . N̨ cj/j2J/. We show by back-
and-forth using good isomorphisms as approximations that A1 Š A2. To start we
may choose any member B of � . By assumption there are branches B1 of A1 and B2
of A2 isomorphic to B, and hence there is an isomorphism from B1 to B2, which is
necessarily good.

For the ‘forth’ step (and ‘back’ is similar) suppose that  is a good isomorphism
from a finite union of branches of A1 to a finite union of branches of A2, and suppose
that u 2 A1 n dom./. Let z 2 dom./ be the ramification point where .�1; u�
meets dom./; that is, such that z is the greatest member of dom./ less than u.
Now .z/ has the same colour as z and so C:T:..z// D C:T:.z/. Let C be the cone
at z containing u. By Lemma 5.7 there is a colour-preserving order-isomorphism
� W C ! C0 where C0 is a cone at .z/ not containing any point of range./ above
.z/. Let 0 be the extension of  to dom./ [ C given by 0.z/ D �.z/ for z 2 C.
We obtain an extension of  to a good isomorphism having u in its domain by
restricting 0 to dom./ [ B where B is some branch of A1 containing u. ut

We have shown that the type of a countable 1-transitive tree determines it
uniquely. By essentially the same proof, we may derive the following.

Theorem 5.9 All countable structured trees are 1-transitive.

6 The Construction

In this section we determine which types actually arise from countable 1-transitive
trees. We shall see that the definition given so far is insufficient. We recall that in the
case of 2-transitive trees, or even weakly 2-transitive ones, the ‘construction’ of a
tree corresponding to a given type was relatively straightforward. Namely, one starts
with a branch (a copy of Q, or a coloured version); then adds the correct number of
branches above all ramification points, taking care in the weakly 2-transitive case
that the correct cones have least elements; and then one just repeats over countably
many steps. The fact that all the branches are (even colour-)isomorphic makes these
cases relatively unproblematical.



Countable 1-Transitive Trees 261

An initial complication in the 1-transitive case is that � need not necessarily
form the whole of a lower isomorphism class of branch-coloured chains, as we
show by an example below, but whether this necessarily happens or not depends on
the ramification behaviour. The following lemma captures a key point in trying to
pin down the possible values of � .

Lemma 6.1 Suppose that .A;�/ is a countable 1-transitive tree in which, for every
a < b in A there is c > a in A incomparable with b such that Œa; b� and Œa; c�
are isomorphic (as coloured chains). Then the family � of isomorphism types of
branches of A is the whole of some lower isomorphism class of branch-coloured
chains.

Proof Let B be a branch-coloured chain which is lower isomorphic to a branch of
A. Choose a cofinal sequence b0 < b1 < b2 < : : : of points of B coloured Nc. We
shall inductively choose corresponding points x0 < x1 < x2 < : : : in A. The main
point is to ensure that fy 2 A W .9n/xn � yg is a branch, and for that purpose we
shall ensure that it has no upper bound in A. Let A be enumerated as fan W n 2 !g.
Choose x0 6� a0 in A. This exists since A has no maximal point, so we may actually
take x0 > a0. Since A is 1-transitive and B is lower isomorphic to a branch of A,
.�1; x0� Š .�1; b0�.

Now assume inductively that x0 < x1 < x2 < : : : < xn in A have been chosen
in such a way that Œxi; xiC1� Š Œbi; biC1� for each i < n. Since A is 1-transitive and
B is lower isomorphic to a branch of A, .�1; bnC1� Š .�1; x0�. Let x0 be the
image of bn under this isomorphism. By composing with an isomorphism taking x0

to xn, we find x0
nC1 > xn such that Œbn; bnC1� Š Œxn; x0

nC1�. By assumption there is
x00

nC1 > x00 incomparable with x0
nC1 such that Œxn; x0

nC1� Š Œxn; x00
nC1�. Since x0

nC1 and
x00

nC1 are incomparable, they cannot both be below anC1, so we let xnC1 be x0
nC1 if

x0
nC1 6� anC1 and x00

nC1 otherwise. ut

The lemma gives us a hint as to how to find a countable 1-transitive tree in
which � is a proper subset of a colour lower isomorphism class of branch-coloured
chains. We can also do this in the monochromatic case. Consider the lower 1-
transitive chains whose coding trees are shown in Fig. 7 which form a colour lower
isomorphism class of branch-coloured chains (one can see this as in the proof of
Corollary 3.25), having order-type !�.!� � Z C !�/ C Z

2, Z.!� � Z C !�/, and
!�.!� � ZC !�/C !� � Z, respectively. We can build a countable 1-transitive tree
.A;�/, illustrated in Fig. 8, having all branches isomorphic to either B1 or B2, but
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Fig. 7 A colour lower isomorphism class of branch-coloured chains
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Fig. 8 A tree having
branches of type B1 and B2
but not B

not B. In terms of the coding trees present, by the first clause of Definition 5.3, �
must have a member having a label in the second level down with no endpoint, and
likewise for the third level down, so B1 and B2 are unavoidable.

To construct such A, start with a branch of order-type B1, and follow through
in countably many stages. At each stage, vertices which ramify with ramification
order 2 are no longer touched. For those which do not yet ramify we add another
branch through them of one of these types in such a way that one of the two cones
there has a least member and the other doesn’t. We can also ensure while doing this
that there are branches of both types, B1 and B2, passing through each such vertex
(which means that we have to add the correct final segments). This clearly results
in a tree A which ramifies only at points of A, with all ramification orders equal
to 2, and such that there are branches in order-types B1 and B2 passing through all
vertices. Furthermore this suffices to characterize A up to isomorphism by a back-
and-forth argument, and this also establishes 1-transitivity. It remains to show that
A has no branches in type B. We inevitably add branches that were not ‘explicitly’
included during the construction, since we only added countably many and A has
2@0 branches. However the point is that these other ones, which arose ‘by accident’
must actually all be isomorphic either to B1 or B2.

Suppose for a contradiction that B does arise as a branch of A. Now B has a final
segment in type !, x0 < x1 < x2 < : : : say. By construction, there is exactly one
other cone at each xi which does not have a least member. Since !� � Z is a convex
subset of each branch of A, there is a convex subset fyn W n 2 !g [ fzn W n 2 Zg

of A. By 1-transitivity there is an automorphism of A taking y0 to x0, and since xnC1
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Fig. 9 Another example as in Fig. 7, but involving the label

is the unique point of A immediately above xn (as the other cone there has no least
member), we see inductively that yn is taken to xn by this automorphism. But now
the image of z0 is greater than every xn, contrary to fxn W n 2 !g a final segment
of B.

We give a further example involving ^ labels to illustrate a related point.
Consider the three colour coding trees shown in Fig. 9. The branch-coloured chain
encoded by the first coding tree has to occur in any countable 1-transitive proper
tree having a branch colour lower isomorphic to an order encoded by them because
of the first clause of Definition 5.3, but the second and third can be omitted. Also
see further discussion of this example below concerning the ramification of Nc points.

The argument enshrined in the above discussion can now be suitably adapted to
lead to the general characterization of which types are types of 1-transitive trees. We
first make the following remark, which is related to the techniques needed to finish
our characterization.

Lemma 6.2 Suppose that � is the family of branch-coloured chains arising as
branches of a countable 1-transitive proper tree .A;�/, and that B is a branch-
coloured chain lower colour isomorphic to the members of � . Then B is isomorphic
to an initial segment of some member of � .

Proof We adapt the proof of Lemma 6.1. Choose a cofinal sequence b0 < b1 < b2 <
: : : of points of B coloured Nc and choose corresponding points x0 < x1 < x2 < : : :

in A inductively. Choose x0 in A. Since A is 1-transitive and B is lower isomorphic
to a branch of A, .�1; x0� Š .�1; b0�.

Now assume inductively that x0 < x1 < x2 < : : : < xn in A have been chosen
in such a way that Œxi; xiC1� Š Œbi; biC1� for each i < n. Since A is 1-transitive and
B is lower isomorphic to a branch of A, .�1; bnC1� Š .�1; x0�. Let x0 be the
image of bn under this isomorphism. By composing with an isomorphism taking x0

to xn, we find xnC1 > xn such that Œbn; bnC1� Š Œxn; xnC1�. Let X be a branch of A
containing all xi. Then fx 2 A W .9n/.x � xn/g is an initial segment of X (proper or
not) isomorphic to B.

This is the same proof as before, but making no attempt to ensure that the points
of A do not lie above all xn. ut
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To formulate our main theorem, we require the notion of ‘ambiguity’. If t D
.�;<; . N̨ cj/j2J/ is a type, and B is a branch-coloured chain which is colour lower
isomorphic to the members of � , then a point x of B is said to be ambiguous (with
respect to t) if either it is cj-coloured and .x;1/ begins with a �i-class where ˛

cj

i �

2, or there are z > y > x in B, and i ¤ i0 in I, such that Œx; y� and Œx; z� are isomorphic
(as coloured chains), and .z;1/, .y;1/ begin with �i-, �i0 -classes, respectively.

We illustrate the need for consideration of this notion by some examples. If the Nc
points ramify, then the branch-coloured chain encoded by the coding trees B2 and B3
in Fig. 9 both have cofinal sets of ambiguous points in the first sense, so must arise in
any such 1-transitive tree. Thus in the first sense, whether or not a point is ambiguous
depends on the value of the ramification order N̨ cj . Moving on to the second sense,
here this does not depend on the ramification orders. As an easy (monochromatic)
example, we just take Q:!�, x any point, and y < z the top two points in a copy
of !� greater than the copy containing x. Then .x; y/ and .x; z/ are isomorphic (to
k C Q:!� for some finite k), and .y;1/ has a least member but .z;1/ does not,
so that all x are ambiguous. This illustrates what ‘ambiguous’ means; however, it
still does not show how this condition is required in Theorem 6.4 below. For the
lower isomorphism class of branch-coloured chains comprises precisely Q:!� and
Q:!� C Z, and both of these are already required as branches of A by virtue of the
first clause of Definition 5.3 (since one has only an !� label on the middle level,
and other has only a PQ label on the root). So to illustrate the real point, we require a
more complicated example.

The order encoded by the left-hand coding tree shown in Fig. 10 has a cofinal set
of ambiguous points in the second sense, is lower isomorphic to the order encoded
by the right hand coding tree, and is embeddable in it as a proper initial segment [see
Lemmas 6.2 and 6.3(ii)]. To demonstrate the existence of ambiguous points in the
order encoded by the left-hand tree, we take x, y, and z in the final part of the encoded
order. For definiteness, x and z are both in the encoding of the rightmost branch with
x < z (that is, they are top points of distinct copies of !�:Z C !�), and y is taken
to be the predecessor of z, which lies in the encoding of the second branch from the
right. Then .x; y/ and .x; z/ are both isomorphic to Q:.!�:ZC !�/C !�:ZC !�,
and once more, .y;1/ has a least member but .z;1/ does not. There are many
ambiguous points in the earlier part of this ordering, but since we require a cofinal
set of ambiguous points, we have to have some of the sequence in the final part,
so we have concentrated on it straight away. Note that since the right-hand linear
order fulfils all the requirements for the first clause of Definition 5.3, this example
shows why the ambiguity condition really is required to pin down which branch-
coloured chains can or cannot be omitted. Note further that this example is still
monochromatic, but is also easy to find coloured examples.

Two of the key steps in the argument for our main theorem are given in the
following lemma.

Lemma 6.3 Suppose that � is the family of branch-coloured chains arising as
branches of a countable 1-transitive proper tree .A;�/, and that B is a branch-
coloured chain lower colour isomorphic to the members of � . Then if either of the
following conditions holds, B 2 � :
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(i) B has a cofinal set of ambiguous points,
(ii) B is not isomorphic to a proper initial segment of any member of � .

Proof (i) Let A D fan W n 2 !g be an enumeration of A. We use the method
of Lemma 6.1, and see that the hypothesis that ambiguity holds cofinally fulfils
exactly what is required to ensure that B arises as a branch of A. This time we let
b0 < b1 < b2 < : : : be a cofinal sequence of ambiguous points of B. Then for each
n, one of the two clauses in the definition of ‘ambiguous’ applies. If it is the second,
then there are points z > y > bn as in the definition. By passing to a suitable infinite
subsequence of .bn/, we may suppose that if this case holds, then z < bnC1. Now we
choose corresponding points x0 < x1 < x2 < : : : of A so that .�1; b0� Š .�1; x0�
and Œbn; bnC1� Š Œxn; xnC1� for each n. The point x0 is chosen of the same colour as
b0 (rather than lying in A), and x0 6� a0. This is easily arranged using 1-transitivity
of the tree.

Now suppose that xn has been chosen, and we show how to find xnC1. First let
x0 � x0 have the same colour as bnC1, so that .�1; bnC1� Š .�1; x0�, and let x00

be the image of bn under this isomorphism. Since bn, x00, and xn all have the same
colour, there is an automorphism of A taking x00 to xn, and if we let x0

nC1 be the image
of x0 under this map, Œbn; bnC1� and Œxn; x0

nC1� are colour isomorphic.
Knowing that bn is ambiguous allows us to choose xnC1 in place of x0

nC1 so that it
does not lie below anC1. The key point is that we can find incomparable extensions
x0

nC1; x
00
nC1 of xn so that Œbn; bnC1� Š Œxn; x0

nC1� Š Œxn; x00
nC1�. In the first case, bn

is cj-coloured and .bn;1/ begins with a �i-class where ˛
cj

i � 2. So there are
(at least) 2 cones at xn beginning with a �i-class, one of them containing x0

nC1,
and we let x00

nC1 be the corresponding point in another such cone. In the second
case, there are z > y > bn in B, and i ¤ i0 in I, such that Œbn; y� and Œbn; z� are
isomorphic (as coloured chains), and .z;1/, .y;1/ begin with �i-, �i0 -classes,
respectively. By the assumption made above, we may take z < bnC1. Taking the
images under the isomorphism, there are z0 > y0 > xn such that z0 < x0

nC1 fulfilling
the same conditions. Now y0 and z0 have the same colour (since Œbn; y0� and Œbn; z0� are
colour isomorphic), and .z0;1/ begins with a �i-class. Hence there is a cone at y0

beginning with a �i-class, and this cone is disjoint from .y0; x0
nC1/ since i ¤ i0 (and

.y0;1/ begins with a �i0 -class). Since this cone at y0 and the cone at z0 containing
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Fig. 10 Illustration of the notion of ambiguity
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x0
nC1 correspond to the same i, by Lemma 5.7 they are isomorphic, and we can find a

point x00
nC1 above y0 corresponding to x0

nC1. Since Œbn; y0� and Œbn; z0� are isomorphic,
Œbn; bnC1� Š Œxn; x0

nC1� Š Œxn; x00
nC1�.

In each case we let xnC1 be one of x0
nC1, x00

nC1 which is not below anC1.
Then X D fy 2 A W .9n/xn � yg is a branch of A isomorphic to B, as required.

(ii) This follows at once from Lemma 6.2.
ut

Theorem 6.4 Let t D .�;<; . N̨ cj/j2J/ be a type. Then there is a countable, proper
1-transitive tree having type t if and only if any branch-coloured chain B lower
isomorphic to the members of � and having a cofinal set of ambiguous points lies
in � .

Proof The truth of the given condition for the type of any countable 1-transitive
proper tree was proved in the previous lemma.

Conversely, suppose that t D .�;<; . N̨ cj/j2J/ is a type fulfilling the two stated
properties, and we construct the desired tree .A;�/ as the union of a countable
sequence of trees. Start with a single branch, taken to be any member A0 of � . At a
general step, we shall have a tree An, and all points of earlier Ams, coloured or not,
will ramify correctly. In passing from An to AnC1 we ensure that all the newly added
points also ramify correctly. Let x be a j-coloured point of An which does not yet
have the correct ramification. For each i we add branches at x so that there are ˛

cj

i in
all (the branch that is already above it may already be of the desired kind, in which
case the number we add is actually one less than ˛

cj

i ). The section that we add has
to be so that the total branch (including .�1; x�) is of the correct order-type. For
this we add a final segment taken at a cj-coloured point of the branch to be added.

To conclude the construction we have to ensure that all members of � occur
above all points, and also that members of the colour lower isomorphism class
containing � which do not lie in � do not occur.

The first is achieved by enumerating the requirements dynamically. That is, at
each point, we list all the members of � (which is possible by Corollary 3.25), and
we ‘promise’ to include them all at some stage above the current one. The choice of
which branches to extend is now made based on the promises made at the current
point and earlier ones; this is a standard technique, which is formally carried out
using a ‘book-keeping function’ to keep track of the dove-tailing.

To achieve the second, we argue as in the discussion preceding the statement of
the theorem. The idea is that we only explicitly added branches in � , and we have to
see that we didn’t add any others by accident. Consider a branch-coloured chain B in
the same isomorphism class as the members of � , but which does not lie in � . Then
by assumption, the set of ambiguous points of B is bounded, and by Lemma 6.2, B
is isomorphic to an initial segment of some member of � . We have to show that B is
not isomorphic to any branch of A. Suppose otherwise, and let B0 be such a branch.
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Then B0 is isomorphic to a proper initial segment of some branch X0 2 � of A by an
isomorphism f say. Choose a cofinal sequence xn of points of B0, such that all points
� x0 are unambiguous, and by 1-transitivity of A, let g be an automorphism of A
which takes x0 to f .x0/. Since B0 is a branch and g is an automorphism, gB0 is also a
branch. Since B0 62 � , there is a greatest point x 2 NA lying in gB0 \ X0.

Since x is not ambiguous (as a member of gB0, and using the first clause in the
definition of what this means) there are distinct i; i0 2 I such that the cones at x
containing gB0 and X0 lie in Ci.x/ and Ci0.x/, respectively. It follows that f �1x ¤
g�1x, for as f and g are both isomorphisms, if f �1x D g�1x D y then f .y;1/
and g.y;1/ would have to lie in the same cone at x. We deduce that gf �1x ¤ x.
Since x; gf �1x 2 gB0, they are comparable. Assume that gf �1x < x. (If gf �1x > x,
then fg�1x < x, and we use a similar argument with f and g interchanged.) Since
x > gf �1x � fx0 in gB0, and fx0 is unambiguous, .gf �1x;1/ must begin with a
�i class. However, also x > gf �1x � fx0 in fB0, so the same argument shows that
.gf �1x;1/ must begin with a �i0 class. Since i ¤ i0, this gives a contradiction. ut

In conclusion we remark that we can now deduce that the definition of ‘branch-
coloured chain’ precisely captured what was intended, that is, arising as a branch of
some countable proper 1-transitive tree.

Corollary 6.5 A countable coloured chain .X;�;F/ is isomorphic to a branch of a
countable 1-transitive tree if and only if it is a branch-coloured chain.
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On Ore’s Theorem and Universal Words
for Permutations and Injections of Infinite Sets

Manfred Droste

Dedicated to the memory of Rüdiger Göbel

Abstract We give a simple proof that any injective self-mapping of an infinite set
M can be written as a product of an injection and a permutation of M both having
infinitely many infinite orbits (and no others). This implies Ore’s influential theorem
that each permutation of M is a commutator, a similar result due to Mesyan for the
injections of M, and a result on which injections f of M can be written in the form
f D xm � yn.

Keywords Commutators • Infinite symmetric group • Ore’s theorem • Permuta-
tions • Monoid of injections • Universal words

1 Introduction

For words w D w.x1; � � � ; xn/ in free variables x1; � � � ; xn, it often leads to difficult
problems to describe groups G for which each element g 2 G is expressible in
the form g D w.g1; � � � ; gn/ for some g1; � � � ; gn 2 G. In the case of commutators
w D x�1

1 � x
�1
2 � x1 � x2, this is known to be true for all finite and infinite alternating

groups [12], all semi-simple complex Lie groups [13], all semi-simple connected
algebraic groups [14], and many others; recently, it was established for all finite
non-abelian simple groups [6], thereby confirming Ore’s conjecture.

Ore [12] showed that, in contrast to the finite symmetric groups Sn somewhat
surprisingly, each element of the infinite symmetric groups S.M/ of all permutations
of an infinite set M is a commutator. His proof involved a non-trivial case analysis
of cycle types. Here, we wish to provide a simple geometric proof of an extension of
this result. We will consider the monoids Inj.M/ of all injections of an infinite set M.
An Ore-type result for these monoids Inj.M/was recently established in Mesyan [8];
see [3, 9] for consequences and descriptions of the normal subsemigroups of Inj.M/.
Our main result will be a simple proof showing that each injection f 2 Inj.M/ can
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be written as a product f D g � h with an injection g 2 Inj.M/ and a permutation
h 2 S.M/ each having infinitely many infinite orbits (and no others). This result
itself also follows from a general result given in [8] which, however, involves a more
complicated case analysis of possible orbits and previous results for S.M/. Our idea
is to take as underlying set M D Z
Z (for the crucial case that M is countable) and
to represent f in a suitable form. This idea was also used for the symmetric group
S.M/ in [2] and in [4; Sects. 3, 4 and 5] with applications for extension results on
coverings of surfaces. As an immediate consequence of the above result we obtain
an Ore-type result for Inj.M/, Ore’s result for S.M/, and a description of all elements
f of Inj.M/ which can be written in the form f D xm � yn with x; y 2 Inj.M/.

2 Background

Here we summarize the notation and background results, as needed subsequently.
Let M be an infinite set, Inj.M/ the monoid of all injective maps of M, and S.M/

the symmetric group of all permutations of M. Let f 2 Inj.M/. If x 2 M, the set
fy 2 M j xf i D y or yf i D x for some i � 0g is called the f -orbit of x, or an orbit
of f . We call an orbit a forward orbit, if it is the f -orbit of some x such that x 62 Mf .
Note that then this orbit equals fxf i j i � 0g and is infinite. This gives a bijection
between MnMf and the set of forward orbits of f . We have the following important
observation.

Proposition 2.1 Let f ; g 2 Inj.M/. Then

jMnMfgj D jMnMf j C jMnMgj:

Proof We have

MnMfg D .MnMf /g P[ .MnMg/:
ut

As usual, for g 2 Inj.M/ and h 2 S.M/, we let gh D h�1gh. We say that two
injections f ; g 2 Inj.M/ are conjugate if f D gh for some h 2 S.M/. We let gS.M/ D

fgh j h 2 S.M/g, the set of conjugates of f . Next we wish to describe when two
elements of Inj.M/ are conjugate.

We let N denote the set of positive integers, and N1 D N [ f1g. Given f 2
Inj.M/, we call any orbit U of f with U � Mf , i.e., which is not a forward orbit,
a closed orbit; then clearly f �U 2 S.U/. We define Nf to be the map from N1 to
the cardinals by letting Nf .n/ be the number of closed orbits of size n of f , for each
n 2 N1. Recall that jMnMf j is the number of forward orbits of f .

The following result, which is well known for permutations, describes that two
elements of S.M/, resp., Inj.M/ are conjugate if and only if they have the same
“orbit structure”.
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Proposition 2.2 (a) Let f ; g 2 S.M/. Then f and g are conjugate if and only if
Nf D Ng.

(b) (Mesyan [8]) Let f ; g 2 Inj.M/. Then f and g are conjugate if and only if Nf D Ng
and jMnMf j D jMnMgj.

Proof Note that .a/ is a special case of .b/. We indicate the proof of .b/ for the
convenience of the reader. If f D gh for some h 2 S.M/, then h maps the orbits of
g onto the orbits (of the same length) of f . Hence Nf D Ng and jMnMf j D jMnMgj.
Conversely, given a length-preserving and forwardness-preserving bijection � from
the orbits of g onto the orbits of f , for each orbit U of g, choose elements xU 2 U,
yU 2 U� (and such that xU 62 Mg, yU 62 Mf in case U is a forward orbit), put
xUh D yU and extend h uniquely to a permutation of M satisfying hf D gh. ut

3 The Main Result

In this section we will provide a simple proof for the following result.

Theorem 3.1 Let M be an infinite set. Then every injection f 2 Inj.M/ is a product
f D g � h of an injection g 2 Inj.M/ and a permutation h 2 S.M/ both having
infinitely many infinite orbits (and no others). We also have f D h�g with g 2 Inj.M/,
h 2 S.M/ as described before.

We note that Theorem 3.1 is a special case of the main result of Mesyan [8]
whose proof, however, involves a detailed analysis of the orbit structure of elements
of Inj.M/ and uses previous results on S.M/.

For our proof of Theorem 3.1, if M is countable, we take M D Z
Z, the integer
plane. We will show that for any f 2 Inj.M/ there is a conjugate f 0 of f which moves
each element of M at most one unit up or down. For this, we construct f 0 with the
same “orbit structure” as f by employing a Cantor-like enumeration of Z 
 Z or of
suitable subsets (like half planes). For the case that f 2 S.M/, this is also described
in [2] and in [4; Sects. 3, 4, and 5].

Lemma 3.2 Let M D Z 
 Z. Then for each f 2 Inj.M/ there is f 0 2 Inj.M/ such
that Nf D Nf 0, jMnMf j D jMnMf 0j and .i; j/f 0 2 Z
fj�1; j; jC1g for each .i; j/ 2 M.

Proof If f has infinitely many orbits, it is easy to construct such an injection f 0

satisfying even .i; j/f 0 2 Z 
 fjg for each .i; j/ 2 M, i.e., the orbits of f 0 are all
contained in the horizontal lines of M D Z 
 Z. Therefore now let f have only
finitely many orbits. Consequently, f has at least one infinite orbit.

First, let f have only one forward orbit (and no others). Then consider the “infinite
spiral”

.0; 0/! .1; 0/! .1; 1/! .0; 1/! .�1; 1/! .�1; 0/! .�1;�1/!

.0;�1/! .1;�1/! .2;�1/! .2; 0/! � � �

which gives f 0.
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This construction leaves a lot of freedom for changes enabling us to deal with
the other cases. For instance, assume that f 2 S.M/ has precisely one infinite closed
orbit (and no others). Then let f 0 2 S.M/ act on the upper half plane Z 
 N0, where
N0 D N [ f0g, similarly as above, like

.0; 0/! .1; 0/! .1; 1/! .0; 1/! .�1; 1/! .�1; 0/! .�2; 0/!

.�2; 1/! .�2; 2/! .�1; 2/! .0; 2/! � � � :

By a similar enumeration of the lower half plane Z 
 f�n j n > 0g, we define the
pre-images of .0; 0/ under f 0.

Now if f has k C 1 infinite orbits .k > 0/, we can define f 0 such that it has each
half-line N 
 fig (i D 1; � � � ; k) as an infinite orbit and has the set Mn

Sk
iD1 N 
 fig

as the remaining infinite orbit, in each case realizing forwardness or closedness as
necessary.

Finally, for the finite orbits of f (note that by our assumption, f has only
finitely many orbits), we can take a suitably large interval in N 
 f0g to realize the
corresponding orbits of f 0, and use the complement of this interval for the infinite
orbits of f 0. ut

Now we can show Theorem 3.1.

Proof of Theorem 3.1 It suffices to consider the case that M is countable. Indeed,
if M is uncountable and f 2 Inj.M/, by a standard argument we can split P

S

i2IMi

into pairwise disjoint f -invariant countable sets Mi, so f �Mi 2 Inj.Mi/. Then by the
result of the countable case, for each i 2 I write f �Mi D gi � hi with an injection
gi 2 Inj.Mi/ and a permutation hi 2 S.Mi/ both having infinitely many infinite
orbits (and no others). Then g D

S

i2I gi 2 Inj.M/ and h D
S

i2I hi 2 S.M/ satisfy
f D g � h as claimed.

So, let M be countable. We may assume that M D Z 
 Z. Let f 2 Inj.M/.
By Lemma 3.2, there is f 0 2 Inj M moving each point x 2 M at most one unit up or
down such that Nf D Nf 0 and jMnMf j D jMnMf 0j. Then, f 2 f 0S.M/ by Proposition 2.2.

Now define h W M ! M by letting .i; j/h D .i; j C 2/ for each .i; j/ 2 M.
So h 2 S.M/ has infinitely many infinite orbits (and no others). Now consider
g D f 0 � h 2 Inj.M/. Since f 0 moves each point x D .i; j/ 2 M at most one unit up or
down and h moves each point two units up, we obtain xg 2 Z
 fjC 1; jC 2; jC 3g,
so g moves each point at least one unit up. Hence g has only infinite orbits, and all
elements .i; 0/; i 2 Z, lie in different orbits of g, thus g has infinitely many infinite
orbits. So f 0 D g � h�1 as claimed, and the first statement of the result follows.

For the second statement, write f D g � h D h � .h�1gh/; then gh 2 Inj.M/ as
claimed. ut

Let C1 be the conjugacy class in S.M/ comprising all permutations of M with
infinitely many infinite orbits (and no others). Note that if in Theorem 3.1 f 2 S.M/
is a permutation, by the proof of Theorem 3.1 (or by Proposition 2.1) we obtain
f D g � h with permutations g; h 2 S.M/. Hence, as an immediate consequence of
Theorem 3.1 we have:
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Corollary 3.3 (Gray [5]). Let M be an infinite set. Then S.M/ D C2
1.

By subsequent work of Bertram, Göbel and the author, the author, and Moran,
culminating in Moran [10], all conjugacy classes C in S.M/ were described
satisfying S.M/ D C2.

4 Ore’s Theorem and Universal Words

Here we will derive Ore’s theorem and results on universal words for S.M/ and
Inj.M/ as immediate consequences of Theorem 3.1. First we have:

Corollary 4.1 (Ore [12]) Let M be an infinite set. Then each element f 2 S.M/ is
a commutator f D Œg; h�.

Proof By Theorem 3.1 (or Corollary 3.3), write f D g�1 � k with g; k 2 C1. Then
k D h�1gh for some h 2 S.M/ and f D Œg; h�. ut

Mesyan [8] gave a general result describing when an arbitrary injection f 2
Inj.M/ can be written as a product of two injections g; h 2 Inj.M/ both having at
least one infinite orbit. As an immediate consequence, he obtained the subsequent
Ore-type result for Inj.M/ which we wish here to deduce from Theorem 3.1.

Corollary 4.2 (Mesyan [8]) Let M be an infinite set and f 2 Inj.M/. Then f can
be written in the form f D ga � gb for some g 2 Inj.M/ and a; b 2 S.M/ if and only
if jMnMf j is either an even integer or infinite.

Proof Clearly, if f D ga � gb is of the form described, by Proposition 2.1 we have
jMnMf j D 2 � jMnMgj as claimed.

Now let jMnMf j be even or infinite. If f 2 S.M/, the result is immediate by
Corollary 3.3. Hence assume f 2 Inj.M/nS.M/, so f has at least two infinite forward
orbits. Split M D M1 P[M2 in such a way that jM1j D jM2j, both M1 and M2 are f -
invariant, and M1 and M2 contain the same number of infinite forward orbits of f . By
Theorem 3.1, write f �M1 D g1 �h1 and f �M2 D h2 �g2 with injections gi 2 Inj.Mi/ and
permutations hi 2 S.Mi/ such that jMinMif j D jMinMigij, and gi; hi have infinitely
many infinite orbits (and no others), for i D 1; 2. Let g D g1 [ h2 and g0 D h1 [ g2.
Then g; g0 2 Inj.M/ satisfy

jMnMgj D jM1nM1g1j D jM1nM1f j D jM2nM2f j D jM2nM2g2j D jMnMg0j

and g; g0 each has infinitely many infinite closed orbits (and no other closed orbits).
Hence f D g � g0 D g � gb for some b 2 S.M/ as claimed. ut

Let G be a group and w D w.x1; � � � ; xn/ a word in the free group over x1; � � � ; xn.
Then w is said to be G-universal, if for each g 2 G there are g1; � � � ; gn 2 G such
that g D w.g1; � � � ; gn/. By Corollary 4.1, the commutator word w D Œx; y� is
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S.M/-universal for infinite sets M. Clearly, no power w D xn (n � 2) is S.M/-
universal. As a further immediate consequence of Corollary 3.3, we have:

Corollary 4.3 (Silberger [15]) Let M be an infinite set and w D xm � yn with
m; n ¤ 0. Then w is S.M/-universal.

Proof Let f 2 S.M/. Write f D g � h with g; h 2 C1. Since gm; hn 2 C1, they are
conjugate to g and h and the result follows. ut

We note that we could also obtain Corollary 4.3 as follows. First, write f 2 S.M/
as a product f D g � h of two involutions g; h 2 S.M/ each having infinitely many
2-orbits. Note that the m-th power of a cycle of length 2m consists of m disjoint
2-cycles. Hence we can write g D am with a 2 S.M/ having only orbits of length
2m and, possibly, fixed points. Similarly, h D bn with b 2 S.M/ having only orbits
of length 2n, and, possibly, fixed points. In the above proof of Corollary 4.3, we
have obtained that f D am � bn with a; b 2 C1. Extensions of this result are
contained in [2]. Mycielski [11] and Lyndon [7], cf. [1], showed that each word
w D w.x1; � � � ; xn/ which does not reduce to a power is S.M/-universal.

Now consider a semigroup S and a word w D w.x1; � � � ; xn/ in the free semigroup
over x1; � � � ; xn. We say that g 2 S is a w-element, if there are g1; � � � ; gn 2 S such
that g D w.g1; � � � ; gn/. Given a free semigroup word w.x1; � � � ; xn/, let e.xi/ be the
sum of the exponents of xi in w, for i D 1; � � � ; n. Clearly, by Proposition 2.1, if f 2
Inj.M/ is a w-element, then either MnMf is infinite or jMnMf j 2 he.x1/; � � � ; e.xn/i,
the subsemigroup of .N;C/ generated by e.x1/; � � � ; e.xn/. Now we show that for
products of powers, we also have the converse.

Corollary 4.4 Let M be an infinite set, m; n � 1, and f 2 Inj.M/. Then f is a
xm � yn-element if and only if MnMf is infinite or jMnMf j 2 hm; ni.

Proof As noted before, if f D gm � hn with g; h 2 Inj.M/, by Proposition 2.1 we
have

jMnMf j D m � jMnMgj C n � jMnMhj

which is infinite or in hm; ni. Conversely, assume that jMnMf j D k � m C ` � n for
some k; ` � 0. First assume that k; ` > 0. We include the case that MnMf is infinite
here by letting k D ` D 1. We split M D M1 P[M2 into two disjoint f -invariant
subsets M1 and M2 such that M1 (resp. M2) contains k �m (resp. ` �n) infinite forward
orbits of f . By Theorem 3.1, we can write f �M1 D g0

1 � h
0
1 and f �M2 D h0

2 � g
0
2 with

injections g0
i 2 Inj.Mi/ and permutations h0

i 2 S.Mi/ each having infinitely many
infinite orbits (and no others), for i D 1; 2. In particular,

jM1nM1g
0
1j D jM1nM1f j D k � m

and

jM2nM2g
0
2j D jM2nM2f j D ` � n:
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Consequently, g0
1 [ h0

2 2 Inj.M/ has k � m forward orbits, infinitely many infinite
closed orbits and no others. Choose any g0 2 Inj.M/ which has k forward orbits if
MnMf is finite, infinitely many forward orbits if MnMf is infinite, and in any case
infinitely many infinite closed orbits and no others. Then g0

1[h0
2 is conjugate to g0m.

Therefore, g0
1 [ h0

2 D gm for some g 2 Inj.M/. Similarly, we have h0
1 [ g0

2 D hn for
some h 2 Inj.M/. Hence f D gm � hn.

If k D 0 or ` D 0 (but not both), we can apply a similar (but simpler) argument,
using Theorem 3.1 directly for M. Finally, if k D ` D 0, i.e., f 2 S.M/, the result is
immediate by Corollary 4.3. ut

In view of Corollary 4.4 and the results of Mycielski and Lyndon for S.M/ the
following question arises.

Let w D w.x1; � � � ; xn/ be a free semigroup word, n � 2, and let f 2 Inj.M/
satisfy jMnMf j 2 he.x1/; � � � ; e.xn//i. Does it follow that f is a w-element?
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An Extension of M. C. R. Butler’s Theorem
on Endomorphism Rings

Manfred Dugas, Daniel Herden, and Saharon Shelah

Abstract We will prove the following theorem: Let D be the ring of algebraic
integers of a finite Galois field extension F of Q and E a D-algebra such that E
is a locally free D-module of countable rank and all elements of E are algebraic
over F. Then there exists a left D-submodule M � E of FE D E˝D F such that the
left multiplications by elements of E are the only D-linear endomorphisms of M.
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1 Introduction

The main purpose of this paper is to honor the memory of Rüdiger Göbel, a
dear friend and colleague, who passed away much too early. He made significant
contributions on realizing rings as endomorphism rings of abelian groups and
modules in many different settings. Most of this work can be found in the excellent
monographs [4] and [5]. When Rüdiger came to Essen University, he started a
successful research seminar. Among the first batch of papers studied was A. L.
S. Corner’s celebrated paper [2], where he proved that each countable torsion-free
reduced ring R is the endomorphism ring of a countable torsion-free reduced abelian
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group G. If the additive group of such a ring R has finite rank n, then the group G can
be constructed such that G has rank � 2n. Corner also provided examples of rings
R such that the corresponding group G must have rank equal to 2n. On the other
hand, Zassenhaus [9] proved that for every ring R with identity and free additive
group of finite rank, there is some abelian group M such that R � M � R˝Z Q and
R D EndZ.M/, i.e., R and M have the same rank.

Soon after [9] was written, Butler [1] generalized Zassenhaus’s result replacing
“free abelian of finite rank” by “locally free abelian of finite rank”. Reid and
Vinsonhaler [7] extended this result by replacing the ring of integers by certain
Dedekind domains. More recently, Zassenhaus’s result was generalized in [3] to
rings with free additive groups of countable rank, whose elements are all algebraic
over Q. We will combine the results in [3] and [7] to obtain:

Theorem 1.1 Let D be the ring of algebraic integers of a finite Galois field
extension F of Q and E a D-algebra such that E is a locally free D-module of
countable rank and all elements of E are algebraic over F. Then there exists a left
D-submodule M � E of FE D E˝D F such that the left multiplications by elements
of E are the only D-linear endomorphisms of M.

After reading Corner’s paper [2], it became a goal of Rüdiger’s to remove the
cardinality barrier in this result. Eventually, this was accomplished by utilizing
powerful combinatorial tools such as the diamond principle and Shelah’s Black Box.

2 The Results

Notation 2.1 Let D denote a countable Dedekind domain of characteristic zero and
with infinitely many prime ideals. Let F be its field of fractions. It follows that for
any prime ideal P of D, the localization DP of D at P is a PID with unique maximal
ideal pDP for some p 2 P. Let bDP denote the P-adic closure of DP. Let f .x/ 2 FŒx�.
Then f .x/ 2 DPŒx� with the leading coefficient a unit in DP for all but finitely many
prime ideals P of D. Define NP.f / to be the number of roots of f .x/ in bDP. We call
D an admissible domain if for all f .x/ 2 FŒx� the set of prime ideals P of D with
NP.f / � 1 is infinite. If E is some D-module, then we call E torsion-free if se D 0

for s 2 D and e 2 E implies s D 0 or e D 0. Moreover, E is called locally free, if
the localization EP D E˝D DP is a free DP-module for all prime ideals P of D. If R
is some ring and a 2 R, we define the map a� from R to R to be the left multiplication
by the element a, i.e., .a�/.x/ D ax for all x 2 R.

Our main result will be the following:

Theorem 2.1 Let D be an admissible domain and E a countable, torsion-free and
locally free D-algebra such that each a 2 E is algebraic over F. Then there
exists a locally free left E-submodule M of FE D E ˝D F such that E � M and
EndD.M/ D E�, the ring of left multiplications by elements of E.
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2.1 The Proof of Theorem 1.1

Before we turn to the proof of Theorem 2.1, note that Theorem 1.1 will be an
immediate consequence provided:

Proposition 2.2 Let D be the ring of algebraic integers of some finite Galois field
extension of Q. Then D is an admissible Dedekind domain.

We need to show for all f .x/ 2 FŒx� the existence of infinitely many prime ideals
P of D with NP.f / � 1. We will line up some results from algebraic number theory
to obtain this proposition. Note that for any f .x/ 2 FŒx� there exists some d 2 D
with df .x/ 2 FŒx�. Thus, we may restrict to polynomials f .x/ 2 DŒx�. Furthermore,
any polynomial is a product of irreducible ones and we may restrict to irreducible
f .x/ 2 DŒx�.

We recall the following, well-known version of Hensel’s Lemma [6, Proposi-
tion 2, p. 43]:

Lemma 2.3 Let 1 2 S be a commutative ring and m an ideal of S such that S is
complete in the m-adic topology. Let f .x/ 2 SŒx� and a 2 S be such that f .a/ 2
f 0.a/2m. Then there exists some b 2 S such that f .b/ D 0 and b � a 2 f 0.a/2m.

Applying this to our situation:

Remark 2.4 Let P be a prime ideal of D and let f .x/ 2 DŒx� be irreducible of degree
n over F. Then f .x/ has only simple roots and thus has non-zero discriminant �.f /.
Let P be a prime ideal of D such that �.f / … P. Then f .x/mod P has no multiple
roots. Assume that a 2 bDP is such that f .a/ 2 pbDP. Then f 0.a/ … pbDP and we may
apply Lemma 2.3 to obtain b 2 bDP with f .b/ D 0 and b � a 2 pbDP. Thus, for
irreducible f .x/ 2 DŒx�, f .a/ 2 pbDP implies NP.f / � 1.

By the above it is sufficient to show that for any irreducible f .x/ 2 DŒx�, there are
infinitely many prime ideals P of D such that f .x/mod P has a root in D=P. Hensel’s
Lemma will then provide a root of f .x/ in bDP.

First we recall some well-known definitions that are in [6] and many other
sources.

Let k be an algebraic number field and K a Galois extension of k with Galois
group G. Let Ok (OK) denote the ring of algebraic integers in k (K). Let p be a prime
(ideal) of Ok and P a prime of OK lying over p. Then OK /P is a finite extension
of the finite field Ok=p and thus a finite field of order nP with cyclic Galois group
G D h�i over Ok=p where �.x/ D xnP modP. Let GP D fg 2 G W gP D Pg

denote the decomposition group of P and TP D fg 2 G W g D idOK=Pg the
inertia group of P. Then there exists some coset �TP 2 GP=TP which induces � .
Any element of that coset is called a Frobenius automorphism which we denote by
�.P;K=k/. Now we need a celebrated theorem due to Chebotarev [6, Theorem 10,
page 169]:
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Theorem 2.5 (Chebotarev) Let K be a Galois extension of k with Galois group
G. Let ; ¤ C � G be some set invariant under conjugations with jCj D c and
ŒK W k� D n. Let

M D fprimes p of k j p is unramified in K and there is some

prime P of K lying over p such that �.P;K=k/ 2 Cg:

Then the set M has a density and this density is c
n . Moreover, 0 < c

n < 1 for all
C   G.

The definition of density in this context can be found in [6, page 167]. All we
need to know is that only infinite sets have a positive density.

Now we need a result from [8]. We maintain our current notations.

Theorem 2.6 ([8, Theorem 1]) Let f .x/ 2 OkŒx� have degree n � 2 and be
irreducible over k. Let Np.f / be the number of roots of f .x/.mod Ok=p/ in Ok=p.
Let

P0.f / D fp prime in Ok j Np.f / D 0g:

Then P0.f / has density c
n . Moreover, 0 < c

n < 1.

This shows that the set of all primes p not in P0.f / has positive density and thus
is infinite, completing the proof of Proposition 2.2.

Here is an outline of Serre’s argument [8, page 432]: First, disregard all (finitely
many) primes p of Ok that are ramified or contain non-zero coefficients of f .x/. Let
K be the splitting field of f .x/ over k with Galois group G and � D �.P;K=k/.
Moreover, let X be the set of the n distinct roots of f .x/ in K. It turns out that Np.f /
is the number of fixed points of � � X. Now put

G0 D fg 2 G j g � X has no fixed pointg

and note that G0 is invariant under conjugation, with G0   G since idK … G0. Now
apply Theorem 2.5 with C D G0.

2.2 The Proof of Theorem 2.1

We start with an easy observation.

Proposition 2.7 Let 1 2 S be a commutative ring, A some S-algebra, and � 2 A.
Let f .x/ D

Pm
iD0 fixi 2 SŒx�, the polynomial ring over S. Then

f .x/ D f .�/C .x � �/.fm�
m�1 C g.�; x//

where g.�; x/ 2 span
ZŒx;f0;:::;fm�f�

j W 0 � j � m � 2g.
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Proof We evaluate

f .x/ D f ..x � �/C �/ D
m
X

iD0

fiŒ.x � �/C ��
i D

m
X

iD0

fi

2

4

i
X

jD0

 

i

j

!

.x � �/j� i�j

3

5

D

m
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iD0

fi
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4� i C
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Pi
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�i
j
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Thus �m�1 only occurs for k D 0 and with coefficient
Pm

jD1

�m
j

	

.�1/j�1. Recall that
Pm

jD0

�m
j

	

.�1/j D 0 and thus 1 D
�m
0

	

D �
Pm

jD1

�m
j

	

.�1/j D
Pm

jD1

�m
j

	

.�1/j�1.

This shows that f .x/ D f .�/ C .x � �/
�

fm�m�1 C g.�; x/
�

where g.�; x/ 2
span

ZŒx;f0;:::;fm�f�
j W 0 � j � m � 2g. ut

Corollary 2.8 Same notation as in the proposition. Let S be an integral domain
with Q its field of fractions and c 2 S such that f .c/ ¤ 0 D f .�/. Then

.c � �/�1 D
1

f .c/
.fm�

m�1 C g.�; x// 2 QA:

We also want to list:

Proposition 2.9 Let F be a field and V some vector space over F. If � 2 EndF.V/
is algebraic over F, then � has only finitely many eigenvalues.

Proof There exists some monic polynomial f .x/ 2 FŒx� such that f .�/ D 0. Let
0 ¤ v 2 V be an eigenvector of � with eigenvalue �. Then I D fg.x/ 2 FŒx� W
g.� �vF/ D 0g D .x� �/FŒx� is an ideal of FŒx� and f .x/ 2 I. This shows that � is a
root of f .x/, of which there are only finitely many. ut
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Lemma 2.10 Let � 2 EndD.EC/ such that � is algebraic over F. Let 0 ¤ e 2 E
and ˘ a finite number of prime ideals of D. Then there exists a prime ideal P … ˘
of D and c 2 D such that c � � is an automorphism of FEC and e … EP.c � �/.
Moreover, EP.c � �/�1 � p�kEP for some natural number k where PDP D pDP.

Proof Let g.x/ D
Pn

iD0 gixi 2 FŒx� be the minimal polynomial of � over F with
gn D 1. Let V D eFŒ� �, a finite dimensional � -invariant F-subspace of FE. Put
� D � �V , the restriction of � to V , and f .x/ D

Pm
iD0 fixi 2 FŒx� the monic minimal

polynomial of � . Then f .x/ is a divisor of g.x/ and the set of all prime ideals Q
of D for which h.x/ … DQŒx� for any monic divisor h.x/ of g.x/ is finite. We may
enlarge ˘ to contain the finitely many exceptions. By Proposition 2.7, we have, for
any s 2 D, that g.s/ D .s� �/.�n�1C

Pn�2
iD0 si�

i/ where si 2 DQ for all prime ideals
Q … ˘ . We infer that s � � is an automorphism of FEC whenever g.s/ ¤ 0. In this
case, we have that EQ.s � �/�1 �

1
g.s/EQ. A similar statement holds for s � � .

Since D is admissible, there is an infinite set of prime ideals Q of D such that
f .x/ has a root 	 in the Q-adic completion of the discrete valuation domain DQ. We
choose such a prime ideal P … ˘ . Let P D D \ pDP for some p 2 P.

Let V D eFŒ� � D e � spanFf1; �; �
2; : : : ; �m�1g be the � -invariant subspace of FE

generated by e. Note that fe; e�; e�2; : : : ; e�m�1g is a basis of V over F.
Let VP D V \ EP, which is a free DP-module of rank m. Let WP D

e � spanDP
f1; �; �2; : : : ; �m�1g, a free DP-module of rank m. Since DP is a PID,

the Stacked Basis Theorem for finite rank free modules holds and we infer that
phVP � WP for some natural number h.

Let 	0 2 D be such that 	 � 	0 mod phC1DP. Then f .	0CphCj/ � 0mod phC1DP

for all natural numbers j � 1. We infer the existence of some c 2 D such that

(1) g.c/ ¤ 0
(2) f .c/ � 0mod phC1DP.

Note that this implies f .c/ ¤ 0 and g.c/ � 0mod phC1DP as well.
It follows from the above that c�� 2 EndF.FEC/ is bijective with EP.c � �/�1 �

1
g.c/EP. Moreover, c � � 2 EndF.V/ is bijective as well.

Assume that e.c � �/�1 2 EP.
Since e.c � �/�1 2 eFŒ� � D V as well, we infer that e.c � �/�1 2 VP and thus

phe.c� �/�1 D ph

f .c/

�

e�m�1 C e 
�

2 WP for some  2 spanDP
f1; �; �2; : : : ; �m�2g.

This is a contradiction since 1
p e�m�1 … WP. ut

Corollary 2.11 Let˘ be a finite set of prime ideals of D and 0 ¤  2 EndF.FEC/

such that 1 D 0. Let t 2 E be such that 0 ¤ t . Then there is a prime ideal P … ˘
of D and a free DP-submodule MP of FEC such that

(1) EP � MP,
(2) MP ¢ MP and
(3) For each x 2 FE we have xMP � MP if and only if x 2 EP.

Note that (2) holds for any ' 2 EndF.FEC/ in place of  such that 1' D 0 and
t D t'.
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Proof Let 0 ¤ e D t . We may assume that e 2 E. Define � 2 EndF.FEC/ by
�.x/ D xt for all x 2 FE. Then �E � E since E is a ring. Since t is algebraic over
F, so is � and we can apply Lemma 2.10 and find a prime ideal P … ˘ and c 2 D
such that � D c � � 2 EndF.FEC/ is bijective, e … EP� and EP� � EP. Moreover,
EP�

�1 � p�kEP for some natural number k. We infer pkEP � EP� � EP.
Let MP D p�kEP� . Since � is injective, MP is a free DP-module.
Then E � EP � p�kEP� D MP and (1) holds. Moreover, EP � MP � MP since

the multiplication in FE is associative.
Since 1 D 0, we have �1� D �.c1 � �/ D t D e and p�ke 2 MP but

p�ke … p�kEP� D MP. This shows that MP ¢ MP and we have (2).
Let x 2 FE. Then x.p�kEP�/ D p�k.xEP/� is contained in p�kEP� if and only if

xEP � EP by the injectivity of � . Since 1 2 EP, this holds if and only if x 2 EP, and
(3) follows. ut

Let End0.FEC/ D f' 2 EndF.FEC/ W 1' D 0g be the set of all lin-
ear transformations of FEC that map the identity element of E to zero. Then
EndF.FEC/ D End0.FEC/ ˚ ..FEC/�/. There exists a countable subset 1 … B
of E such that FE D spanF.B [ f1g/. Note that if 0 ¤ ' 2 End0.FEC/, then there
exists some b 2 B such that b' ¤ 0. Moreover, b' is an element of the countable
(E is countable, cf. Notation 2.1 and Theorem 2.1) set FE. This shows that there
exists a countable list f'n W n 2 Ng of elements of End0.FEC/ such that for all
� 2 End0.FEC/ there exists some n 2 N and b 2 B such that �.b/ D 'n.b/ ¤ 0.
We apply Corollary 2.11 repeatedly to find a sequence of distinct prime ideals Pn of
D and free DPn -modules MPn with properties

(1n) EPn � MPn

(2n) MPn'n ¢ MPn and
(3n) If x 2 FE, then xMPn � MPn if and only if x 2 EPn .

If Q is a prime ideal not in the list fPn W n 2 Ng, we put MQ D EQ. Then we
have

(1) EP � MP for all prime ideals P of D and also
(3) For each x 2 FE, we have xMP � MP if and only if x 2 EP.

Now let M D
T

P MP, where the intersection runs over all prime ideals P of D.
Then E � M by (1), and M is locally free since all MP are free DP-modules. Recall
that EndD.M/ D

T

P EndDP.MP/. By (3) we get that

..FE/�/ \ EndD.M/ D .E�/:

Let 0 ¤  2 End0.FEC/. Then there exists some n 2 N such that, for some
b 2 B, we have b D b'n ¤ 0. By (2n), we have that MPn ª MPn which
shows that End0.FEC/ \ EndD.M/ D f0g. Let ' 2 EndD.M/. Then ' D  C .x�/
for some x 2 FE and  2 End0.FEC/. Pick 0 ¤ s 2 D with sx 2 E. Then
s' D s C s.x�/ D s C .sx�/, where sx 2 E, and we infer
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s' � .sx�/ D s 2 End0.FEC/ \ EndD.M/ D f0g:

Thus  D 0 and ' D x� for some x 2 E by condition (3). We conclude that
EndD.M/ D E�, as promised. ut
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The Jacobson Radical’s Role in Isomorphism
Theorems for p-Adic Modules Extends
to Topological Isomorphism

Mary Flagg

Abstract For a complete discrete valuation domain R, a class of R-modules is said
to satisfy an isomorphism theorem if an isomorphism between the endomorphism
algebras of two modules in that class implies that the modules are isomorphic.
A class satisfies a Jacobson radical isomorphism theorem if an isomorphism
between only the Jacobson radicals of the endomorphism rings of two modules in
that class implies that the modules are isomorphic. Jacobson radical isomorphism
theorems exist for subclasses of the classes of torsion, torsion-free and mixed
modules which satisfy an isomorphism theorem. Warren May investigated the use
of the finite topology in isomorphism theorems, and showed that the topological
setting allows an isomorphism theorem for a broader class of reduced mixed
modules than the algebraic isomorphism alone. The purpose of this paper is to
prove that the parallels that exist between isomorphism theorems and Jacobson
radical isomorphism theorems extend to the topological setting. The main result is
that the class of reduced modules over a complete discrete valuation domain which
contain an unbounded torsion submodule and are divisible modulo torsion satisfy a
topological Jacobson radical isomorphism theorem.

Keywords Mixed modules • Endomorphism rings • Isomorphism theorem •
Jacobson radical • Finite topology

1 Introduction

The celebrated Baer-Kaplansky Theorem [1, 9] states that any isomorphism between
the endomorphism rings of two torsion modules over a discrete valuation domain is
induced by an isomorphism between the modules. Generalizing Baer-Kaplansky,
a class of groups or modules is said to satisfy an isomorphism theorem if an
isomorphism between the endomorphism rings of two objects in that class implies
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that the groups or modules are isomorphic. An isomorphism theorem is said to be
strong if every isomorphism between the endomorphism rings is induced by an
isomorphism between the groups or modules. Wolfson [17] showed that the class
of torsion-free modules over a complete discrete valuation domain satisfies a strong
isomorphism theorem. Files [2], May and Toubassi [15] and May [12, 13] defined
special classes of mixed modules over a discrete valuation domain which satisfy
isomorphism theorems.

In a different direction, Hausen et al. [8] asked whether the whole endomorphism
ring was required for an isomorphism of the ring to imply the underlying modules
were isomorphic. They showed that given a torsion group G with an unbounded
basic subgroup and a second torsion group H, if there exists an isomorphism
between only the Jacobson radicals of the endomorphism ring of G and H, ˚ W
J.End.G// ! J.End.H//, then ˚ is induced by an isomorphism  W G ! H.
Information from only the Jacobson radical is significant for two reasons. First, the
primitive idempotents that are central to the proof of the Baer-Kaplansky Theorem
are not in the Jacobson radical. Second, a complete characterization of the Jacobson
radical of an endomorphism ring is only known in special cases.

Let R be a complete discrete valuation domain. A class of R-modules will be said
to satisfy a Jacobson radical isomorphism theorem if an isomorphism between the
Jacobson radicals of the endomorphism rings of two modules in the class implies
the modules are isomorphic. Hausen et al. [8] translate directly to imply a strong
Jacobson radical isomorphism theorem for torsion R-modules with an unbounded
basic submodule. In [3], Flagg proved that the class of torsion-free modules which
are not divisible satisfies a strong Jacobson radical isomorphism theorem. Flagg
[5] shows that there are two classes of mixed R-modules which satisfy a Jacobson
radical isomorphism theorem.

In Section 108 of [6] on isomorphism theorems for torsion groups, Fuchs
comments that “some generalization is expected to hold if the endomorphism rings
are furnished with the finite topology.” In [14], W. May investigates the role of
the finite topology in isomorphism theorems for reduced modules over a discrete
valuation domain. The purpose of this paper is to investigate the Jacobson radical’s
role in this topological isomorphism theorem.

To help the reader appreciate the role of the Jacobson radical in isomorphism the-
orems, this paper begins by summarizing the main parallels between isomorphism
theorems using the whole endomorphism ring and Jacobson radical isomorphism
theorems. Section 2 gives the reader a sample of the classes of modules which
satisfy an isomorphism theorem and a list of classes which satisfy a Jacobson
radical isomorphism theorem. Section 3 explains the basic ideas and results of May’s
topological isomorphism theorem in [14]. Section 4 defines the needed terminology
and fundamental results needed to investigate Jacobson radical isomorphism the-
orems for reduced mixed modules. Finally, Sect. 5 proves a topological Jacobson
radical isomorphism theorem for reduced mixed modules over a complete discrete
valuation domain which have unbounded torsion submodules and are divisible
modulo torsion.
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2 Parallels Between Isomorphism Theorems and Jacobson
Radical Isomorphism Theorems

Let R be a discrete valuation domain with unique prime p and quotient field Q. All
modules will be left R-modules and endomorphisms will be written as acting from
the right. The ring R is viewed as a topological ring in the p-adic topology, and R is
said to be complete if it is a complete topological ring, which will be denoted OR in
this section.

Modules over discrete valuation domains are studied as generalized abelian
groups (Z-modules). Their structure is simpler due to the presence of a single prime
in R contrasted with infinity many primes in Z. Terminology standard for abelian
groups is used, however it is defined with respect to the ring R instead of with respect
to Z. Properly, one should use terms like R-torsion or R-divisible, yet this paper
will follow the standard conventions in the literature. Since an R-module is also an
abelian group, and its properties as a group may be different from its properties as
an R-module, a few definitions are in order for clarity. An element x of the R-module
M is said to be torsion if there exists a nonzero r 2 R such that rx D 0. The set of
all torsion elements of M is a submodule of M called the torsion submodule. The
module M is said to be divisible if M D rM for all r 2 R. A module is said to be
reduced if it has no divisible submodules. A submodule A of M is said to be pure
(analogous to p-purity in abelian groups) if rx D a with r 2 R and a 2 A is solvable
in A whenever it is solvable in M. A basic submodule of M is defined as a natural
analog of p-basic subgroup of an abelian group using these definitions of torsion,
divisibility and purity.

Given a module M, its endomorphism ring EndR.M/ will be considered an
R-algebra in the natural way. Isomorphisms are assumed to be R-algebra isomor-
phisms, which require maps corresponding to multiplication by elements in the ring
R to be invariant under isomorphism. The Jacobson radical of the endomorphism
ring of M, denoted J.EndR.M// is a two-sided ideal of EndR.M/, and hence a
ring without identity. The Jacobson radical also has an R-algebra structure inherited
from the whole endomorphism ring. Isomorphisms between the Jacobson radicals
of the endomorphism rings of two modules will also be considered R-algebra
isomorphisms.

When defining classes of R-modules which satisfy an isomorphism theorem, it
is necessary to separate the torsion and torsion-free cases since the endomorphism
ring of the divisible torsion module Q=R is isomorphic to the endomorphism ring
of the torsion-free module OR. Separate, but similar, techniques are used to prove
the isomorphism theorems for torsion or torsion-free modules. However, these
techniques rely on the particular properties of endomorphism rings of torsion or
torsion-free modules, and neither translates directly to the mixed module case.
Theorems for mixed modules must be considered separately since they require a
third, completely different proof technique.
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2.1 Torsion or Torsion-Free Modules

Kaplansky begun the subject of isomorphism theorems for modules over a discrete
valuation ring with the following theorem.

Theorem 2.1 (Kaplansky [9])
Let R be a complete discrete valuation ring, M and N faithful primary R-modules.

Then any R-isomorphism between E.M/ and E.N/ is induced by an isomorphism of
M and N.

The proof of Theorem 2.1 relies on recognizing certain maps in the endomor-
phism ring of the module. In the case that the torsion module M has an unbounded
basic submodule, there exists a decomposition

M D hb1i ˚ hb2i ˚ hb3i ˚ � � � ˚ hbji ˚Mj

with Mj D hbjC1i˚MjC1 and such that o.bi/ D pmi with 1 � m1 < m2 < m3 < : : : .
Then there exists idempotents �i that project onto the summand hbii and diagonal
maps �ij which map bi onto bj or pmj�mi bj depending on whether j < i or j > i.
Recognizing the primitive idempotents and the diagonal maps from their ring
theoretic properties is the key to Kaplansky’s theorem.

Hausen et al. [8] were able to recognize the diagonal maps in the Jacobson
radical of the endomorphism ring of a p-group which contains an unbounded
basic subgroup. This is the foundation of their proof of their Jacobson radical
isomorphism theorem.

Theorem 2.2 (Hausen et al. [8])
Given a p-group G with an unbounded basic subgroup and a second p-group H.

If there exists an isomorphism ˚ W J.End.G// ! J.End.H//, then there exists an
isomorphism  W G! H which induces ˚ .

Theorem 2.2 translates directly to imply that a Jacobson radical isomorphism
theorem exists for the class of torsion R-modules which contain an unbounded basic
submodule. If the torsion module M is the direct sum of a bounded plus a divisible
module, the Jacobson radical J.End.M// is not as strongly tied to the structure of M.
Schultz [16] showed that in many cases the Jacobson radical determines the structure
of the module. However, his proof involves identifying a torsion module by its Ulm
invariants, the isomorphism is not constructive. Furthermore, Hausen and Johnson
[7] showed that isomorphisms between the Jacobson radicals of the endomorphism
rings of two bounded modules are not usually induced by an isomorphism between
the modules.

In the case of torsion-free R-modules, the pathologies present in torsion-free
finite rank groups carry over to modules over a discrete valuation ring if the ring is
not complete. If the ring is complete, indecomposable OR-modules are isomorphic to
the ring OR. Wolfson used this fact and Kaplansky’s method to prove his isomorphism
theorem for torsion-free modules.
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Theorem 2.3 (Wolfson [17])
Let R be a complete discrete valuation domain and let M and N be torsion-free

R-modules. If there exists an isomorphism ˚ W End.M/! End.N/, then there exists
an isomorphism  W M ! N which induces ˚ .

The primitive idempotents in the endomorphism ring of a torsion-free R-module
are not in the Jacobson radical of its endomorphism ring. However, if � 2 End.M/
is a primitive idempotent, then p� 2 J.End.M//, and may be identified by its ring
theoretic properties when the endomorphism ring is torsion-free as an R-module.
The author used these maps to prove a Jacobson radical isomorphism theorem for
torsion-free modules which are not divisible.

Theorem 2.4 (Flagg [3])
Let R be a complete discrete valuation domain and let M be a torsion-free R-

module which is not divisible. If N is a torsion-free module such that there exists
an isomorphism ˚ W J.End.M// ! J.End.N//, then there exists an isomorphism
 W M ! N which induces ˚ .

Theorem 2.4 is the strongest theorem possible for torsion-free R-modules since
the Jacobson radical of the endomorphism ring of a divisible torsion-free R-module
is 0.

2.2 Isomorphism Theorems for Mixed Modules

Isomorphism theorems for classes of mixed modules are truly the exceptions rather
than the norm. Yet, there are classes of mixed modules over a discrete valuation
domain for which an isomorphism theorem exists. For an isomorphism theorem
to exist, some extra assumptions are required on the structure of the module.
In particular, isomorphism theorems exist for classes of modules which contain
a finitely generated nice submodule with quotient totally projective and torsion.
In this case, a homomorphism on the nice submodule which does not decrease
heights may be extended to a homomorphism of the module. The ample supply
of homomorphisms with specific properties gives the connections needed to show
the isomorphic endomorphism rings imply the underlying modules are isomorphic.

The first step to proving an isomorphism theorem for mixed modules, assuming
the torsion submodule is nontrivial, is to use the Baer-Kaplansky theorem to
show that if the endomorphism rings of two mixed modules are isomorphic, then
there exists an isomorphism between the torsion submodules of the two modules.
The Jacobson radical also contains enough information to determine the torsion
submodule of a module. Note that this theorem does not require the ring R to be
complete.
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Theorem 2.5 (Flagg [5])
Let R be a discrete valuation domain. Let M and N be R-modules with torsion

submodules TM and TN, respectively. If TM has an unbounded basic submodule and
there exists an R-algebra isomorphism ˚ W J.E.M// ! J.E.N//, then there exists
an isomorphism  W TM ! TN which induces ˚ on the torsion.

The reader is referred to May [11, 13] for a more thorough discussion of
categories of mixed modules over a discrete valuation domain which satisfy an
isomorphism theorem. Only a portion of this discussion is needed to explain the
parallels between theorems using the whole endomorphism ring and those using
only the Jacobson radical.

In [15], May and Toubassi showed that there exists a class of mixed modules of
torsion-free rank one with an isomorphism theorem.

Theorem 2.6 (May and Toubassi [15])
Let R be a discrete valuation ring and let M be an R-module of torsion-free rank

one with simply presented torsion submodule. If N is an R-module of torsion-free
rank one, then every algebra isomorphism ˚ W E.M/ ! E.N/ is induced by an
isomorphism � W M ! N such that ˚.˛/ D �˛��1 for every ˛ 2 E.M/.

The isomorphism constructed by Theorem 2.6 is constructive. If the R-module
is allowed to be of larger torsion-free rank, the techniques of [15] do not translate.
Especially in the case of a nonsplit mixed module, new tools were needed. The tool
that has proved to be the most useful is the technique of embedding reduced mixed
modules in their cotorsion hulls, which will be described in the next section. This
technique allowed May to prove that there are more classes of mixed modules which
satisfy an isomorphism theorem, the following being one example.

Theorem 2.7 (May [12] Corollary B Part (3))
Let R be a complete discrete valuation domain and let M be a reduced Warfield

module which is neither torsion nor torsion-free. Then every isomorphism of E.M/
with E.N/ is induced by an isomorphism of M with N.

The technique of embedding the modules into their cotorsion hulls is also
available using only the Jacobson radicals of the endomorphism rings, see [5]
for details. Since the Jacobson radical contains no more information than the
whole endomorphism ring, classes of modules with a Jacobson radical isomorphism
theorem are subclasses of those which satisfy an isomorphism theorem using the
endomorphism ring. Jacobson radical isomorphism theorems have been proved
for two classes of mixed modules which are subclasses of those in Theorems 2.6
and 2.7.

Theorem 2.8 (Flagg [5])
Let R be a complete discrete valuation domain and let M and N be mixed modules

of torsion-free rank one. Assume M has a totally projective torsion submodule
which is unbounded. Let JM and JN be the Jacobson radicals of their respective
endomorphism rings. If there exists an R-algebra isomorphism ˚ W JM ! JN, then
there exists an isomorphism  W M ! N which induces ˚ .
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Theorem 2.9 (Flagg [5])
Let R be a complete discrete valuation domain. Let M and N be reduced Warfield

modules of finite torsion-free rank. Assume that M has an unbounded torsion
submodule. If there exists an R-algebra isomorphism ˚ W JM ! JN, then M Š N.

2.3 Setting Isomorphism Theorems for Mixed Modules
in the Cotorsion Hull of the Torsion Submodule

The technique of embedding the reduced modules in the cotorsion hull of their
common torsion submodule and studying the modules as submodules of the same
cotorsion module is the proper setting for isomorphism theorems for reduced
mixed modules. This section reviews the key features of this embedding in the
full endomorphism ring case, since it is the setting for the topological isomorphism
theorem. Let M be a reduced R-module with nontrivial torsion submodule T . The
cotorsion hull of M is the module M� D Ext1R.Q=R;M/. Recall that there exists an
embedding of M into M� such that M�=M is torsion-free and divisible. If M=T is
divisible, then M� Š Ext1.Q=R;T/ D T�. The image under the embedding has the
following properties.

Lemma 2.10 Let M be a reduced R-module with torsion submodule T such that
M=T is divisible. Let � W M ! T� be the embedding of M into T�. For notational
simplicity, identify M with its image M� . Then M is a pure submodule of T�

containing T and T�=M is torsion-free and divisible.

The embedding of M into T� induces an embedding of endomorphism rings
E.M/ ! E.T�/. Every endomorphism ˛ 2 E.M/ extends uniquely to an
endomorphism ˛� 2 E.T�/. Thus, as a subring of E.T�/, the endomorphism ring
of M has the following form.

Lemma 2.11 Let M be a reduced mixed R-module with torsion submodule T such
that M=T is divisible. Then, as a submodule of T�, EM D f˛

� 2 E� W M˛� � Mg.

An isomorphism theorem starts with a reduced mixed module M and another
module N with the property that E.M/ Š E.N/. The module M is assumed to
have some special structure in order to make an isomorphism theorem possible.
The module N may be arbitrary, but may also need to be of the same general type
as M. For example, in [15] M is a module of torsion-free rank one with a simply
presented torsion submodule, but N is only required to be of torsion-free rank one.
For the following discussion, M will be a reduced mixed module which is divisible
modulo torsion, and N will be arbitrary. These are the minimum properties needed
to embed both modules into the cotorsion hull of their common torsion submodule.
Furthermore, this is the form that will be needed for the topological isomorphism
theorem in Sect. 3. May [12] shows that the embedding has the following form.
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Lemma 2.12 Let M be a reduced R-module with torsion submodule TM such that
M=TM is divisible. Let N be an R-module with torsion submodule TN. If there exists
an isomorphism ˚ W E.M/! E.N/, then N has the following properties.

1. N is reduced, N=TN is divisible.
2. There exists an isomorphism � W TM ! TN such that tn.˛˚/ D tn��1� for all
˛ 2 E.M/ and for all tn 2 TN.

3. Let T be the common torsion submodule of M and N. Then, M and N may be
embedded into T� as pure submodules containing T.

4. The embedding into T� induces an embedding of the endomorphism rings E.M/
and E.N/ such that E.M/ D E.N/ D f˛� 2 E.T�/ W M˛� � Mg D f˛� 2

E.T�/ W N˛� � Ng

From the embedding in Lemma 2.12, one way to show an isomorphism theorem
exists is to show that if M and N are not the same submodule of T�, then there is an
endomorphism in E.M/ that is not in E.N/, creating a contradiction.

3 Topological Isomorphism Using the Finite Topology

Given a module M, the finite topology on EM is a linear topology with the collection
of sets Ux D f˛ 2 EM W x˛ D 0g for all x 2 M as the subbase at 0. The topology
on the Jacobson radical and other ideals will be the subspace topology inherited
from the finite topology on the endomorphism ring. Topological isomorphisms are
assumed to be R-algebra isomorphisms which are continuous in the finite topology.

To investigate Fuchs’ question about isomorphism theorems in the topological
setting, May [14] first notes that the Baer-Kaplansky Theorem and Wolfson’s
Theorem may be combined. This is possible since the endomorphism algebras of
the modules Q=R and OR are isomorphic as R-algebras, but not homeomorphic in the
finite topology.

Theorem 3.1 (May [14]) Assume that R is complete. If M is either a torsion
module or a torsion-free module, then every topological isomorphism of EndR.M/
with EndR.N/ is induced by an isomorphism of M with N.

The interesting question then becomes whether an isomorphism theorem exists
for a class of mixed modules in the topological setting which does not exist without
the topology. The focus of May’s investigation was on reduced mixed modules,
without necessarily assuming any extra restrictions on their structure. Let M be a
reduced R-module with a nonzero torsion submodule T . If R is not complete and
M=T is not divisible, then the pathologies of torsion-free modules still carry over
in the topological setting. If R is complete and M=T is not divisible, then M=T , and
hence M has a summand isomorphic to R, and the primitive idempotent in E.M/
that projects onto that direct summand may be used to construct an isomorphism
between two modules with isomorphic endomorphism rings (topology not required
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as long as the module is assumed to be properly mixed- neither torsion nor torsion-
free). Therefore, the real question of how the topological setting extends the scope
of isomorphism theorems is when M=T is divisible. In that case, the machinery of
the embedding into the cotorsion hull is available.

Assume that our reduced module M is divisible modulo torsion. If there exists
a topological isomorphism ˚ W E.M/ ! E.N/ for some R-module N, then
Lemma 2.12 shows that M and N may be regarded as submodules of T� with equal
endomorphism rings. The question is whether the finite topology helps identify
submodules of T� by their endomorphism rings. The ideal Hom.M;T/ is the key to
the topological isomorphism theorem. Although this ideal is not easy to characterize
ring theoretically in the algebraic setting, it has a particularly nice characterization
in the topological setting.

Lemma 3.2 Let M be a reduced R-module with torsion submodule T such that M=T
is divisible. Then Hom.M;T/ is the ideal of E.M/ consisting of all ˛ 2 E.M/ such
that pn˛ ! 0 as n ! 1. The ideal Hom.M;T/ is invariant under topological
isomorphism.

Thus, if ˚ W E.M/ ! E.N/ is a topological isomorphism in the finite topology,
then the restriction map ˚ W Hom.M;T/ ! Hom.N;T/ is also a topological
isomorphism. The problem is that this isomorphism is still not necessarily enough
to show that M and N are isomorphic. May [14] addresses this issue by defining
a natural “hull” for a reduced module M that is a unique submodule of T�

containing M.

Lemma 3.3 (May [14] Section 2)
Let M be a reduced mixed module with nontrivial torsion submodule T.

1. There exists a maximum reduced module bM containing M with torsion submodule
T such that the induced map Hom.bM;T/ ! Hom.M;T/ is a topological
isomorphism. Any two such maximum modules are isomorphic by a unique
isomorphism which is the identity on M.

2. bM is an OR-module, bM=M is torsion-free divisible and we may regard bM as a
unique submodule of M�.

3. Every ˛ 2 E.M/ extends uniquely to Ǫ 2 E.bM/, in fact Ǫ is the restriction to bM
of the unique extension of ˛ to ˛� 2 E.M�/.

May then proves that bM Š bN under topological isomorphism.

Theorem 3.4 (May [14] Theorem 1)
Let M be a reduced module over a discrete valuation domain R with nonzero

torsion submodule. Assume that M is divisible modulo torsion. Then every topolog-
ical isomorphism of EndR.M/ with EndR.N/ is induced by an isomorphism of bM
with bN. If R is complete, then the assumption that M is divisible modulo torsion is
unnecessary.

If R is complete, then a suitable hypothesis on M allows the hulls to be replaced
by the modules.
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Theorem 3.5 (May [14] Theorem 2)
Assume that R is complete and that M is a reduced module. Let ˚ W EndR.M/!

EndR.N/ be a topological isomorphism.

1. If the first Ulm submodule M1 is a cotorsion module, then ˚ is induced by an
injection of N into M.

2. If M1 is a cotorsion module, then every topological isomorphism of EndR.M/ is
inner.

3. If M1 has bounded torsion and finite torsion-free rank, then ˚ is induced by an
isomorphism of N with M. In particular, this is true if M1 D 0.

4 The Background for a Topological Jacobson Radical
Isomorphism Theorem for Mixed Modules

In order to examine the Jacobson radical’s role in Theorems 3.4 and 3.5, it is
necessary to give the background on how an isomorphism between the Jacobson
radicals of two reduced mixed modules enables the use of the embedding of the
modules into the cotorsion hull of their common torsion submodule. From this point
forward, assume that R is a complete discrete valuation domain. For an R-module
M, let TM be its torsion submodule, EM be its endomorphism ring and JM be the
Jacobson radical of EM .

The Jacobson radical version of the topological isomorphism theorem is for the
following class of R-modules.

Definition 4.1 Let R be a complete discrete valuation domain. Let D.R/ be the
class of all reduced R-modules M such that TM is unbounded and M=TM is divisible.

Note that the class D.R/ includes unbounded, reduced torsion modules.

4.1 Ideals of the Endomorphism Ring

In this section the ideals of the endomorphism ring and the ideals of the Jacobson
radical that play a key role in the isomorphism theorem will be defined. Note that
proper ideals of the endomorphism ring are rings without identity, and also have an
R-algebra structure inherited from the whole endomorphism algebra. For a module
M, the Jacobson radical JM is a two-sided ideal of the endomorphism ring EM .
Therefore, any ideal of the endomorphism ring which is contained in JM is also
an ideal of the ring JM .

Let I be an ideal of EM , and let tI be the set of all maps ˛ 2 I with the
property that there exists a positive integer n such that pn˛ D 0. Considering I
as an R-module, tI is simply the torsion submodule of I. More importantly, it is
straightforward to check that tI is also an ideal of EM . In particular tJM is an ideal
of the ring EM and hence an ideal of JM .



The Jacobson Radical’s Role in Isomorphism Theorems 295

The first ideal is the nilradical NM , which is the sum of all nilpotent ideals. It is
well known that NM � JM . In the topological setting, there is an ideal of EM that lies
between NM and JM that is invariant under topological isomorphism. In Section 22
of [10], the authors define this weaker version of nilpotence as follows:

Definition 4.2 Given a module M, a map ˛ 2 EM is called locally nilpotent if for
every x 2 M there exists a positive integer k depending on x such that x˛k D 0.
An ideal I is locally nilpotent if all elements of I are locally nilpotent. Let the local
nilradical LM be the sum of all locally nilpotent ideals.

Lemma 4.3 For a module M, NM � LM � JM and tNM D tLM D tJM.

Proof Nilpotence implies local nilpotence, so NM � LM . The containment LM � JM

is proved in [10]. The relationship between the torsion ideals follows directly from
the fact that tNM D tJM , proved in [4]. ut

The next ideal is the key to recognizing whether the quotient module M=TM is
divisible. Recall that if the torsion free R-module M=TM is divisible, then it is a
vector space over Q, the quotient field of R.

HM D f˛ 2 tJM W MtJ˛ D 0g

HM is a two-sided ideal of JM . The following result is proved in [4]. The “divisible
as an R-module” phrase is included here to remind the reader of our definition of
divisibility with respect to the ring R, not as an abelian group.

Proposition 4.4 Let M be a module over a discrete valuation domain with torsion
submodule T which contains an unbounded basic submodule. Then HM D 0 if and
only if M=T is divisible as an R-module.

The ideal of the endomorphism ring central to May’s argument in [14] is the set of
all maps from M to its torsion submodule TM , Hom.M;TM/. The ideal Hom.M;TM/

is not contained in the Jacobson radical. However, the next ideal is defined to capture
the important maps into the torsion which are in the Jacobson radical. Define

�M D LM \ Hom.M;TM/

which is an ideal of JM . The ideal �M is central to the Jacobson radical version of
the topological isomorphism theorem.

Lemma 4.5 Given a module M with torsion submodule T and endomorphism
ring EM. Let ˛ 2 EM and let n be a positive integer.

1. The map ˛ 2 Hom.M;T/ if and only if pn˛ ! 0 as n!1.
2. The map ˛ 2 LM if and only if ˛n ! 0 as n!1.
3. The map ˛ 2 �M if and only if pn˛ ! 0 and ˛n ! 0 as n!1

The relationships between the other ideals and � will be important, so they are
listed here.
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Lemma 4.6 For a reduced module M with an unbounded torsion submodule, the
following relationships exist between the ideals of the Jacobson radical of the
endomorphism ring of M:

• pHom.M;TM/ � �M.
• HM � tJM � �M

4.2 Embedding into the Cotorsion Hull using
the Jacobson Radical

Let M 2 D.R/ and let N be a reduced module. If EM Š EN , then N is also in
D.R/ and the standard procedure is to use the Baer-Kaplansky theorem to construct
an isomorphism  W TM ! TN and use  to embed N into T� as detailed
in Lemma 2.12. An isomorphism between the Jacobson radicals of two modules
affords the same technique. The following results are from Flagg [5]

Proposition 4.7 Let M 2 D.R/ and let N be a module such that there exists
an R-algebra isomorphism ˚ W JM ! JN. Then N 2 D.R/ and there exists an
isomorphism  W TM ! TN which induces ˚ on the torsion.

Corollary 4.8 Given modules M and N in D.R/ with an R-algebra isomorphism
˚ W JM ! JN. Then the isomorphism  given by Proposition 4.7 implies there is an
embedding of N into T� such that

• N is a pure submodule of T� containing T and N=T is torsion-free and divisible.
• Under the embedding JM D JN as subrings of E�.

Note that the image of JM in E.T�/ is not assumed to be the Jacobson radical of
E.T�/, simply a subring.

5 The Topological Jacobson Radical Isomorphism Theorem

Given modules M and N in the class D.R/, an algebraic isomorphism between
the Jacobson radicals of their endomorphism rings implies T D TM Š TN by
Proposition 4.7 and that M and N are pure submodules of T� containing T with M=T
and N=T torsion-free divisible and JM D JN by Theorem 4.8. The similarity of this
situation with the setting of the full endomorphism ring topological isomorphism
theorem in the cotorsion hull leads one to question if the equality of only the
Jacobson radicals is sufficient to show that the modules are isomorphic.
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5.1 The Hull cM from a Jacobson Radical Perspective

Let M be a module in the class D.R/. This section shows that the same associated
module bM defined in Lemma 3.3 may also be defined from the result in Lemma 4.5
that the ideal �M is invariant under topological isomorphism.

Lemma 5.1 Let M be a module in the class D.R/ with torsion submodule T, and let
M0 be a reduced module such that M � M0 and tM0 D T. The following properties
for the module M0 are equivalent.

1. The induced map �M0 ! �M is a topological isomorphism.
2. M0 has the TF Divisible and Open Sets Properties listed below:

TF Divisible Property: M0=M is torsion-free and divisible.
Open Sets Property: For every x 2 M0 there exists finitely many elements
y1; : : : ; yn 2 M such that xˇ0 D 0 for every ˇ0 2 Hom.M0;T�/ such that
Mˇ0 � T and yiˇ

0 D 0 for 1 � i � n.

3. The induced map Hom.M0;T/! Hom.M;T/ is a topological isomorphism.

Proof The equivalence of Properties 2 and 3 is Lemma 1 of [14]. To show
that Property 1 is equivalent to the others is where the justification is needed.
First, assume that the induced map Hom.M0;T/ ! Hom.M;T/ is a topological
isomorphism. Then the restricted map �M0 ! �M is a topological isomorphism by
Lemma 4.5.

To complete the proof, assume � W �M0 ! �M given by ˇ0� D ˇ0jM for all
ˇ0 2 �M0 is a topological isomorphism. The proof will be complete if we show that
the TF Divisible and Open Sets Properties hold for M0. By Lemma 4.6, tJM0 is in �M0

and is mapped onto tJM under isomorphism. By Proposition 4.4, M 2 D.R/ implies
HM D 0. By isomorphism, HM0 D 0 and another application of Proposition 4.4
shows M0=T is torsion-free and divisible. Since M0 is reduced and the torsion of M0

is unbounded, M0 2 D.R/. The fact that M0=M Š .M0=T/=.M=T/ implies M0=M is
also torsion-free and divisible.

To show that the Open Sets Property holds, first note that since M0 is reduced
and M0=M is torsion-free and divisible, M0 may be embedded into M� as a
pure submodule containing M. Then, since M=T is divisible, M� Š T�, so
both M and M0 may be identified as submodules of T� with M � M0. The
set of maps ˇ0 2 Hom.M0;T�/ such that M0ˇ0 2 T is simply Hom.M0;T/
identified as a subring of End.T�/. The Open Sets Property would follow directly
from a topological isomorphism between Hom.M0;T/ and Hom.M;T/, but only a
topological isomorphism between �M0 and �M is assumed. Therefore, extra steps
are needed. Let x 2 M0. Since M0=T is divisible, there exists a c 2 M0 such that
xC T D pcC T and thus x D pcC t for some t 2 T . Let Uc D f˛ 2 �M0 W c˛ D 0g.
As an open set in �M0 , its image under the isomorphism � is open in �M . There exists
a set UY D f 2 �M W y D 0;8y 2 Yg for a finite set Y D fy1; y2; : : : yn 2 Mg
which is contained in Uc�. By the topological isomorphism and for all  2 �M0 , if
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jM D � 2 UY , then  2 Uc. In other words, if yi D 0 for all yi 2 Y , then c D 0.
For the given x D pc C t 2 M0, let Z D Y [ ftg. Then, for any ˇ0 2 Hom.M0;T/,
pˇ0 2 �M0 by Lemma 4.6. The fact that xˇ0 D c.pˇ0/C tˇ0 means that if Zˇ0 D 0,
then tˇ0 D 0. By the topological isomorphism, UY D 0 implies c D c.pˇ0/ D 0.
Hence, xˇ0 D 0 as desired. ut

Lemma 5.2 Let M be a module in the class D.R/.

1. There exists a maximal module bM with M � bM and tbM D T such that the
equivalent properties of Lemma 5.1 hold. Any two such modules are isomorphic
by a unique isomorphism which is the identity on M.

2. bM=M is torsion-free and divisible and bM may be regarded as a unique submodule
of T�.

3. Every ˛ 2 EM extends uniquely to an ˛ 2 End.bM/ and it is the restriction of the
unique extension ˛� 2 E� to the submodule bM.

Proof The module bM is defined to be the sum of all submodules of M0 � T� which
satisfy the properties of Lemma 5.1 and the proof is the same as that in [14]. ut

5.2 The Proof of the Theorem

The machinery is now in place to prove a Jacobson radical version of the topological
isomorphism theorem.

Theorem 5.3 Let M be a module in the class D.R/ and let N be a reduced
R-module. For a module A 2 D.R/, let the module bA corresponding to A be the
hull defined in Lemma 5.2. If there exists a topological isomorphism ˚ W JM ! JN,
then ˚ is induced by an isomorphism  W bM ! bN.

Proof Let M and N be R-modules with M 2 D.R/ and let ˚ W JM ! JN

be a topological isomorphism. By Proposition 4.7, N 2 D.R/ and there exists
an isomorphism  W TM ! TN that induces ˚ on the torsion. Let T D TM

be identified as the common torsion submodule of M and N. Then, embed M in
T� Š M� and embed N into T� using the isomorphism  and Corollary 4.8. Under
this embedding, JM D JN as subrings of End.T�/. Since the isomorphism ˚ is
topological, Lemma 4.5 implies �M˚ D �N and thus �M D �N as subrings of
End.T�/.

Define bM as the maximal submodule of T� with the property that M � bM, tbM D
TM D T , bM=M is torsion-free and divisible and the induced map �M W �

bM
! �M is

a topological isomorphism using Lemma 5.2. Since N 2 D.R/, also define bN with
the corresponding properties. As submodules of T� under the embedding, M � bM
and N � bN. Embed �

bM
and �

bN
into End.T�/ D E� using the isomorphisms �M and

�N , which implies �
bM
D �M D �N D �

bN
as subrings of E�. The theorem will be

proved if bM D bN as submodules of T�.
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To show bM D bN, the symmetry of the argument shows that is sufficient to prove
bM � bN. Let N0 D bM C N. If we can show N0 has the TF Divisible and Open Sets
Properties of Lemma 5.1, then by definition of bN, N0 � bN and thus bM � bN.

First, by definition of N0, N0=T is torsion-free and divisible. Then N0=N Š
.N0=T/=.N=T/ is torsion-free and divisible. Second, it is necessary to show that N0

has the Open Sets Property of Lemma 5.1. Note that x 2 N0 if and only if x D aC n
for some a 2 bM and some n 2 N. Elements of N satisfy the Open Sets Property
trivially, so without loss of generality, assume x 2 bM. Let �0 2 Hom.N0;T/ and
recall that N0 is viewed as a submodule of T� which means that Hom.N0;T/ is equal
to the set of all maps in Hom.N0;T�/ which map into the torsion. To show that N0

has the Open Sets Property, it is necessary to show that for the given x and any map
�0 2 Hom.N0;T/ there exists a finite set of elements Y D fy1; y2; : : : ; ykg � N such
that x�0 D 0 whenever yi�

0 D 0 for 1 � i � k. The complication is that x 2 bM
and the isomorphism �M does not directly connect open sets in N with open sets
in bM. Also, the map �0 2 Hom.N0;T/ not necessarily in �N0 , which also must be
addressed in the following argument.

The module bM is divisible modulo T , thus we may choose elements c 2 bM and
t 2 T such that x D pc C t. Then, x�0 D c.p�0/ C t�0. The map �0 2 Hom.N0;T/
has a unique extension to �� 2 E�. The restriction of p�0 to N is an element of �N ,
and p�0jN D p��jN . The equality of the ideals �

bM
D �M D �N D �

bN
shows that

p�� 2 �
bM

and p�� 2 �M . The module bM satisfies Lemma 5.2 so for the element

c 2 bM and the map p�� 2 �
bM

, there exists a finite set Z of elements of M such that
if zip�� D 0 for all zi 2 Z, then cp�� D 0. The isomorphism ˚ W �M ! �N is
topological, so since UZ D f˛ 2 �M W Z˛ D 0g is open in �M in the finite topology,
then there exists an open set UY 2 �N for a finite set of elements y1; y2; : : : ; yn, with
yi 2 N for all 1; 2; : : : ; n, such that UY.˚

�1/ � UZ . In other words, if yi.p��/ D 0

for all yi 2 Y , then zp�� D 0 for all z 2 Z, which means cp�� D 0. Let Y D Y [ftg.
Then, if a�� D 0 for all a 2 Y , then x�0 D x�� D c.p��/C t�� D 0. This shows
N0 has the Open Sets Property, proving the theorem. ut

The hulls bM and bN are the same submodules of T� as given in May [14]. The
following is May’s Lemma 2.12.

Lemma 5.4 Assume that R is complete and let M be a reduced module with
unbounded torsion. If M1 is a cotorsion module, then bM D M.

Note that Lemma 5.4 is valid for modules in the class D.R/. Thus the proof is
unchanged. A direct consequence of Lemma 5.4 and Theorem 5.3 is the following
theorem.

Theorem 5.5 Assume that R is complete and M 2 D.R/. Let ˚ W JM ! JN be a
topological isomorphism.

1. If the first Ulm submodule M1 is a cotorsion module, then ˚ is induced by an
injection of N into M.

2. If M1 is a cotorsion module, then every topological isomorphism of EM is inner.
3. If M1 has bounded torsion and finite torsion-free rank, then ˚ is induced by an

isomorphism of N with M. In particular, this is true if M1 D 0.
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Proof Given M 2 D.R/ with a topological isomorphism ˚ W JM ! JN ,
Theorem 5.3 shows that ˚ is induced by an isomorphism  W bM ! bN. By
Lemma 5.4, bM D M. Thus �1 W bN ! M is an isomorphism and since N � bN,
�1 W N ! M induces ˚ . The fact that bM D M in the case of M1 cotorsion proves
(2). To prove (3), note that if M1 has bounded torsion and finite torsion-free rank, it
is cotorsion. Since there exists an injection N ! M, N1 � M1, so it is of the same
form and cotorsion. Hence, Lemma 5.4 shows bN D N. Then  W M ! N is an
isomorphism inducing ˚ . ut
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A Note on Hieronymi’s Theorem: Every
Definably Complete Structure Is Definably Baire

Antongiulio Fornasiero

Abstract We give an exposition and strengthening of P. Hieronymi’s Theorem: if C
is a nonempty closed set definable in a definably complete expansion of an ordered
field, then C satisfies an analogue of Baire’s Category Theorem.
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1 Introduction

The real line is Dedekind Complete: every subset of R has a least upper bound
in R [ f˙1g. The notion of being Dedekind Complete is clearly not first-
order. People have been studying a weaker, but first-order, version of Dedekind
Completeness: a structure K expanding an ordered field is Definably Complete
(DC) if every definable subset of K has a least upper bound in K [ f˙1g.

Examples of DC structures are: all expansions of the real field, o-minimal
structures, and ultra-products of DC structures.

DC structure were introduced in [14], where it was further observed that
definable completeness is equivalent to the intermediate value property for definable
functions; it is also shown in [2, 3, 8, 11, 14, 17] that most results of elementary
real analysis can be generalized to DC structures (see Sect. 2 for some examples).
Several people have also proved definable versions of more difficult results: for
instance, in [1] they transferred a theorem on Lipschitz functions by Kirszbraun and
Helly, in [8, 9] we considered Wilkie’s and Speissegger’s theorems on o-minimality
of Pfaffian functions (see also [10] for a more expository version), while in [7] we
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considered Hieronymi’s dichotomy theorem and Lebesgue’s differentiation theorem
for monotone functions (and some other results from measure theory).

On the other hand, not every first-order property of structures expanding the real
field can be generalized to DC structures: for instance, [13] shows that there exists
a first-order sentence which true in any expansion of the real field but false in some
o-minimal structures (see also [16] for a related result).

In this note we will focus on a first-order version of Baire Category Theorem.
Tamara Servi and I conjectured in [8] that every DC structure is definably Baire
(see Definition 1.1). In [12], Philipp Hieronymi proved our conjecture. The aim
of this note is to give an alternative proof of Hieronymi’s Theorem, together with a
generalization of Hieronymi’s and Kuratowski–Ulam’s theorems to definable closed
subsets of Kn.

We recall the relevant definitions.

Definition 1.1 ([8]) Let A � B � K
n be definable sets.

A is nowhere dense in B if the closure of A has interior (inside B); otherwise, A
is somewhere dense in B.

A is definably meager in B if there exists a definable increasing family
�

Yt W t 2 K
	

of nowhere dense subsets of B, such that A �
S

t Yt).

A is definably residual in B if B n A is definably meager in B.
B is definably Baire if every nonempty open definable subset of B is not definably

meager in B (or, equivalently, in itself).

A is an F� subset of B if there exists a definable increasing family
�

Yt W t 2 K
	

of
closed subsets of B, such that A D

S

t Yt; A � B is a Gı subset of B if B n A is an
F� subset of B; if we don’t specify the ambient space B, we mean that B D K

n.

Fact 1.1 ([8] §3) A finite Boolean combination of closed definable subsets of Kn

is F� in K
n. Moreover, for every n 2 N, the family of F� subsets of Kn is closed

under finite union and intersections. Besides, if X � K
n is F� and g W Kn ! K

m is
a definable continuous function, then g.X/ is also F� .

The main result of this note is the following.

Theorem 1.2 (Baire Category) Let C � K
n be a nonempty Gı subset of Kn. Then,

C is definably Baire.

Notice that the case when C D K
n in Theorem 1.2 is exactly Hieronymi’s Theorem

(see [12]). We will prove Theorem 1.2 in Sect. 5.
We denote by ˘mCn

m W KnCm ! K
m the projection onto the first m coordinates

and, given C � K
nCm and Nx 2 K

m, by CNx WD f Ny 2 K
n W hNx; yi 2 C g the fiber of C

at Nx.

Theorem 1.3 (Kuratowski–Ulam) Let C � K
mCn be definable and E :D

˘ nCm
m .C/. Let F � C be a definable set. Let

T :D Tm
C .F/ :D f Nx 2 E W FNx is definably meager in CNx g:
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Assume that F is definable meager in C. If either F or C is F� in K
mCn, then T

contains some T 0 � C such that T 0 is definable and definably residual in E.

Notice that the case when C D K
mCn in Theorem 1.3 is [8, Theorem 4.1]. We

will prove Theorem 1.3 in Sect. 4.
As an application, we prove the following results.

Corollary 1.4 Let C be a nonempty, closed, bounded, and definable subset of
K

mCn, and A :D ˘ nCm
m .C/. Define f W A ! K

n, f .Nx/ :D lex min.CNx/. Let E be
the set of Nx 2 A such that either Nx is an isolated point of A, or f is continuous at Nx.
Then, E is definably residual in A, and therefore it is dense in A.

Proof By [2, 1.9] (see Fact 2.3), E is definably residual in A. By Theorem 1.2, A is
definably Baire, and every definably residual subset E of a definably Baire set A is
dense in A. ut

Corollary 1.5 Let F � C � K
mCn be nonempty definable, closed subsets of KmCn.

Let E :D ˘ nCm
m .C/. Assume that E is closed inside K

m, and that the set

T 0 :D T 0m
C.F/ :D f Nx 2 E W FNx has no interior inside CNx g

is not dense in E. Then, F has interior inside C.

Proof By Theorem 1.2 (applied to each fiber CNx), T 0 D Tm
C .F/. By Theorem 1.2

again (applied to the set E), T 0 is not definably residual inside E. Thus, by
Theorem 1.3, F is not meager inside C; therefore, F is somewhere dense inside C,
and thus it has interior inside C. ut

Question 1.6 What is the most general form of Theorem 1.3? For instance, can we
drop the assumption that either F or C are F� subsets of KmCn? Can we prove that
the set Tm

C .F/ is definable?

Definition 1.7 ([3] §4) A pseudo-N set is a set N � K
0, such that N is
definable, closed, discrete, and unbounded.

A quasi-order hD;Ei is a forest if, for every a 2 D, the set f c 2 D W c E a g is
totally ordered by G.

The following lemma is at the core of the proof: we hope it may be of independent
interest.

Lemma 1.8 (Leftmost Branch) Let N be a pseudo-N set. Let E be a definable
quasi-order of N (i.e., E is a reflexive and transitive binary relation on N , whose
graph is definable). Assume that E is a forest. Then, there exists a definable set
E0 � N , such that:

1. the minimum of N is in E0;
2. for every d 2 E0, the successor of d in E0 (if it exists) is

n.d/ :D minf e 2 N W d < e & d G e gI

conversely, if n.d/ exists, then it is the successor of d in E0.
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Furthermore, E0 is unique, satisfying the above conditions. Besides, � and E
coincide on E0 (and, in particular, E0 is linearly ordered by E).

If moreover we have

.	/ For every d 2 N there exists e 2 N such that d G e;

then E0 is unbounded (and hence cofinal in N ).

We call the set E0 defined in the above lemma the leftmost branch of E (inside N );
notice N has a minimum, and every element of N has a successor in N
(see [3, §4]).

The proof of a particular case of the above lemma is given in [12, Definition 12,
Lemma 14, Definition 15, Lemma 16, Lemma 17], where dGe if “f .e/ extends f .d/”
(in [12] terminology). We will give a sketch of the proof in Sect. 3. P. Hieronymi
pointed out a mistake in a previous version of these notes, when we did not require
the condition that E is a forest in Lemma 1.8 (see Sect. 3.1).

Let N be a pseudo-N set. While it is quite clear how to prove statements about
elements of N by (a kind of) induction (see [3, Remark 4.15]), a priori it is not clear
how to construct (definable) sets by recursion: Lemma 1.8 gives a way to produce a
definable set E0 whose definition is recursive; this will allow us to prove that K is
definably Baire (see Sect. 5.1). However, to prove that a Gı set C � K

n is definably
Baire we need to use a different method (since, for technical reason, the proof in
Sect. 5.1 requires the assumption that C contains a dense pseudo-enumerable set,
and we do not know if the assumption holds for C), that relies on Theorem 1.3, used
inductively (see Sect. 5.2).

In [7] we gave a completely different proof of Hieronymi’s Theorem, based on
our Dichotomy Theorem: either K is “unrestrained” (i.e., K is, in a canonical way,
a model of the first-order formulation of second-order arithmetic, and therefore
any of the classical proofs of Baire’s Category Theorem generalize to K), or K is
“restrained” (and many “tameness” results from o-minimality hold in K, allowing
a relatively straightforward proof of Hieronymi’s Theorem). When we are in the
unrestrained situation, the same reasoning gives a proof of Theorem 1.2. However,
when K is restrained, it was not clear how to prove Theorem 1.2 for C ¤ K

n.

2 Preliminaries

Fact 2.1 ([8] Proposition 2.11) Let U � K
n be open and definable. U is definably

meager in K
n iff U is definably meager in itself.

Definition 2.1 A d-compact set is a definable, closed, and bounded subset of Kn

(for some n).

The following fact will be used many times without mentioning it explicitly.
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Fact 2.2 ([14])

1. Let X � K
n be a d-compact set, and f W X ! K

m be a definable and continuous
function. Then, f .X/ is d-compact.

2. Let
�

X.t/ W t 2 K
	

be a definable decreasing family of nonempty d-compact
subsets of Kn. Then,

T

t X.t/ is nonempty.

Definition 2.2 Let a 2 K
n, X � K

n, and r > 0. Define

B.aI r/ :D f x 2 K
n W jx � aj < r gI

B.aI r/ :D f x 2 K
n W jx � aj � r gI

BX.aI r/ :D X \ B.aI r/I

BX.aI r/ :D X \ B.aI r/:

Given Y � X, denote by clX.Y/ (resp., intX.Y/) the topological closure (resp., the
interior) of Y inside X, and denote cl.Y/ :D clKn.Y/.

Remark 2.3 Let X be a topological space and A � X. A is somewhere dense in X
iff there exists V ¤ ; an open subset of X, such that, for every W ¤ ; open subset
of W, W \ A ¤ ;.

Lemma 2.4 1. Let X be a topological space, U be a dense subset of X, and A � X
be any subset. T.f.a.e.:

a. A is nowhere dense in X;
b. A \ U is nowhere dense in X;
c. A \ U is nowhere dense in U.

2. Let X � K
n be a definable, U be a dense open definable subset of X, and A � X

be any definable subset. T.f.a.e.:

a. A is definably meager in X;
b. A \ U is definably meager in X;
c. A \ U is definably meager in U.

3. Let X � K
n be a definable set and U � X be a definable dense open subset of X.

Then, X is definably Baire iff U is definably Baire.

Proof (1) follows from Remark 2.3.
(2) follows from (1).
(3) follows from (2). ut

Corollary 2.5 Let A � X � K
n be definable nonempty sets. Assume that A is a

dense subset of X.

1. If A is definably Baire, then X is also definably Baire.
2. If X is definably Baire and A is a Gı subset of X, then A is also definably Baire.
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Proof

(1) is clear from Lemma 2.4(1).
(2) Assume, for a contradiction, that A is not definably Baire. We can easily reduce

to the case when A is definably meager in itself. Let F :D X n A. By our
assumption on A, F is an F� subset of X with empty interior; thus, F is
definably meager in X. Since X is definably Baire and X D A [ F, A is not
definably meager in X. Since A is definably meager in itself, A D

S

t Ct, for
some definable increasing family

�

Ct W t 2 K
	

of nowhere dense subsets of A.
By Lemma 2.4(1), each Ct is also nowhere dense in X, contradicting the fact
that A is not definably meager in X. ut

Definition 2.6 Let E � K
m and f W E! K

n be definable. Given " > 0, define

D.f I "/ :D f Na 2 E W 8ı > 0 f .BE.NaI ı// ª B.f .Na/I "/ g:

Fact 2.3 ([2] 1.9) Let C � K
mCn be a nonempty d-compact set and E :D

˘mCn
m .C/ � K

m. Define f W E ! K, f .x/ :D lex min.CNx/. Then, for every " > 0,
D.f I "/ is nowhere dense in E.

Conjecture 2.7 Let X1, X2 be definable subsets of Kn, and X :D X1 [ X2. If both X1
and X2 are definably Baire, then X is also definably Baire.

3 Proof of Lemma 1.8

We will proceed by various reductions. Define

E :D f d 2 N W .8e 2 N / e < d! d 6E e g:

Let e0 :D min.N /. Define

E1 :D f d 2 E W e0 E d g:

Define E2 as the set of elements d 2 E1, such that d is the minimum of the set
f d0 2 E2 W d0 E d & d E d0 g. Notice that E2 satisfies the following conditions, for
all d; d0 2 E2:

1. e0 2 E2;
2. e0 � d;
3. n.d/ 2 E2;
4. d E d0 ! d � d0;
5. E is a partial order on E2;
6. hE2;Ei is a forest.
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For every a; b 2 E2, define a ? b if a 6E b and b 6E a. Given a; b 2 E2 such that
a ? b, define c.a; b/ :D minf a0 2 E2 W a0 E a & a0 ? b g (where the minimum
is taken w.r.t. �). Notice that if a ? b, a0 E a, and a0 ? b, then c.a; b/ � a0 and,
by (iv), either c.a; b/ E a0, or c.a; b/ ? a0; moreover, c.a; b/ � a, c.a; b/ E a, and
c.a; b/ ? b.

Finally, define E0 as the set of a 2 E2, such that, for every b 2 E2, if b ? a, then
c.a; b/ < b.

We have to show that E2 is the leftmost branch of E inside N . W.l.o.g., we can
assume that N D E2.

Claim 3.1 For every a 2 E0, n.a/ 2 E0.

Assume not. Let a 2 E0 be such that b :D n.a/ … E0. Thus, by definition, there
exists d 2 N such that c :D c.b; d/ � d. If d E a, then d E b, absurd. If a E d,
then d � b because b D n.a/, also absurd. If d ? a, then, since a 2 N , we have
that c0 :D c.a; d/ < d. Moreover, c0 E a G b and c0 ? d; thus, by definition, c � c0,
and therefore c0 > d, absurd.

The next claim is the only place where we use the fact that N is a forest.

Claim 3.2 Let b 2 E0 and a 2 N with a E b. Then, a 2 E0.

Assume not. Let d 2 N such that d ? a and c :D c.a; d/ � d. Since c � a
and a ¤ d, we have d < a, and therefore d < b. If d E b, then, since hN ;Ei
is a forest, we have d E a, absurd. Thus, we have d ? b. Since b 2 E0, we have
c0 :D c.b; d/ < d. Moreover, since c ? d and c E b, the definition of c0 implies
c0 � c, and therefore, since hN ;Ei is a forest, c0 E c. Conversely, since c0 E a
and c0 ? d, the definition of c implies c � c0, and therefore c D c0 < d, absurd.

Claim 3.3 � and E coincide on E0.

Assume not. By (iv), there exist a; b 2 E0, such that a ? b; let a 2 E0 be minimal
such there exists b 2 E0 with a ? b. Let c :D c.b; a/. By Claim 3.2, since c E b, we
have c 2 E0. Since b 2 E0, we have c < a, contradicting the minimality of a. ut

3.1 A Counterexample: The Forest Hypothesis is Necessary

The following counterexample is due to P. Hieronymi.1 We show that the conclusion
of Lemma 1.8 may fail if we remove the assumption that hN ;Ei is a forest,
even under the assumption that K expands the reals and satisfies strong “tameness”
condition (i.e., d-minimality).

Let P :D f 22
n
W n 2 N g and let K :D hR;Pi be the expansion of the real field by

a predicate for P; by [15], K is d-minimal. It is quite clear that P is a pseudo-N set.
We now define a partial ordering on P. For every a 2 P, denote by s.a/ the successor

1Private communication.
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of a in P, i.e. s.a/ D a2. Let a; b 2 P; define a E b iff either a D b or b > s.a/
(that is, if b � a4). It is clear that hP;Ei is a partially ordered set, satisfying (*),
and that the leftmost branch Q of hP;Ei is the set of elements with even index, i.e.
Q :D f 24

n
W n 2 N g. However, the set Q is not definable in K: see [4, Lemma 2.2]

and [15] for the details.

4 Proof of Theorem 1.3

Lemma 4.1 Let m; n 2 N
1. Let � :D ˘mCn
m . Let C � K

mCn be definable and
E :D �.C/. Let F � C be a d-compact definable set. Define

T 0 :D T 0m
C.F/ :D f Nx 2 E W intCNx.FNx/ D ;g:

If intC.F/ D ;, then T 0 is definably residual in E.

Proof The proof of the Lemma is similar to [8, §4, Case 1]. Fix " > 0; define

F."/ :D f hNx; Nyi 2 F W BC.NyI "/ � FNx gI

X."/ :D clC.F."// D clF.F."//I

Y."/ :D �.X."// � E:

Since E n T 0 �
S

">0 Y."/, we only have to prove the following:

Claim 4.2 Y."/ is nowhere dense in E.

Since F is d-compact and X."/ is closed in F, X."/ is d-compact. Since Y."/ D
�.X."//, Y."/ is also d-compact, and therefore it is closed in E. Assume, for a
contradiction, that Y."/ is somewhere dense in A: thus, U :D intE.Y."// ¤ ;.
Define f W U ! K

n, Nx 7! lex min.X."/Nx/; notice that � .f / � X."/. By Fact 2.3,
D.f I "=4/ is nowhere dense in U. Thus, there exist Na 2 U and ı > 0 such that
BE.Na; ı/ � U n clE.D.f I "=4//, and ı < "=4. Let Nb :D f .Na/; thus, hNa; Nbi 2 � .f / �
X."/ � F. The following Claim 4.3 contradicts the fact that F is nowhere dense
in C, and therefore Claim 4.2 will follow.

Claim 4.3 BC.hNa; NbiI ı1/ � F, for some ı1 > 0.

Choose ı1 > 0 such that ı1 < ı and f .BE.NaI ı1// � B.NbI ı/ (ı1 exists because
Na … D.f I "=4/). Let hNx; Nyi 2 BC.hNa; NbiI ı1/. Thus, Nx 2 E, jNx � Naj < ı1, y 2 CNx, and
jNy � Nbj < ı1. Therefore, Nx 2 BE.NaI ı/ � U n clA.D.f I "=4//. Thus,

jNy � f .Nx/j � jNy � Nbj C jNb � f .Nx/j � ı1 C ı < 2ı < ";

and therefore Ny 2 BCNx.f .Nx/I "/. Since hNx; f .Nx/i 2 X."/, we have BCNx.f .Nx/I "/ � FNx;
thus, Claim 4.3 is proven.
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Claim 4.4 E n T 0 �
S

"0 Y."/.

Let Nx 2 E n T 0. Since FNx is d-compact, we have, intCNx.FNx/ ¤ ;. Let Ny 2 intCNx.FNx/

and " > 0 such that BCNx.NyI "/ � FNx. Thus, hNx; Nyi 2 F."/ � X."/, and Nx 2 Y."/.
Thus, by Claims 4.2 and 4.4, T 0 is definably residual in E. ut

Proof (Proof of Theorem 1.3) The proof of the Lemma is as in [8, §4, Case 2].

Case 1: F is F� in K
mCn. Then, F D

S

s>0 F.s/, for some definable increasing
family

�

F.s/ W s 2 K
	

of d-compact sets. By the proof of Lemma 4.1, for each
s 2 K, E n Tm.F.s// �

S

">0 Y.s; "/, where Y.s; "/ is a definable family of
nowhere dense subsets of E, which is increasing in t and decreasing in ". Thus,
Tm.F/ is definably residual in E.

Case 2: C is F� in K
mCn. By definition, there exists F0 � C, such that F0 is a

definably meager F� subset of C, and F � F0; thus, by replacing F with F0,
w.l.o.g. we can assume that F is F� in C. Then, since C is an F� set, F is F�

also in K
mCn, and we can apply Case 1.

ut

5 Proof of Theorem 1.2

Lemma 5.1 Let m 2 N and C � K
n be a definable nonempty set. Assume that, for

every a 2 C, there exists U � C, such that U is a definable neighborhood (in C) of
a which is definably Baire. Then, C is definably Baire.

Proof Let V � C be a definable open nonempty subset of C. Assume, for a
contradiction, that V is definably meager in itself. Let a 2 V and let U be a definable
neighborhood (in C) of a which is definably Baire. Let W :D intC.U \ V/. Notice
that W is a nonempty open subset of C. Since V is definably meager in itself and W
is an open subset of V , W is also definably meager in itself. Since W is open in U, W
is meager in U. Since W is a nonempty open subset of U and U is definably Baire,
W is not definably meager in U, absurd. ut

Lemma 5.2 Let C � K
n be definable, closed (in K

n), and nonempty. If C is
not definably Baire, then there exists E � C, such that E is definable, nonempty,
d-compact, and definably meager in itself.

Proof By Lemma 5.1, there exists a d-compact B such that C0 :D B \ C is not
definably Baire; thus, by replacing C with C0, w.l.o.g. we can assume that C is
d-compact. Let U � C be definable, nonempty, and open in C, such that U is
definably meager in itself. Let E :D cl.U/ D clC.U/. By assumption, U is an
open and dense subset of E; thus, by Lemma 2.4(2) (applied to A D X D E), E is
definably meager in itself. ut
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5.1 The Case n D 1

The first step in the proof of Theorem 1.2 is the case when m D 1 and C is closed.
Thus, we have to prove the following lemma.

Lemma 5.3 Let C � K be definable, nonempty, and closed. Then, C is definably
Baire.

The remainder of this subsection is the proof of the above lemma.

Definition 5.4 ([3] §4) Let C � K
n be a definable set. C is at most pseudo-

enumerable if there exists a pseudo-N set N and a definable surjective function
f W N ! C. C is pseudo-finite if it is closed, discrete, and bounded. C is pseudo-
enumerable if it is at most pseudo-enumerable but not pseudo-finite. A family of
sets

�

C.t/ W t 2 T
	

is pseudo-enumerable (resp. pseudo-finite, resp. at most pseudo-
enumerable) if it is a definable family and its index set T is pseudo-enumerable
(resp. pseudo-finite, resp. at most pseudo-enumerable).

We need a few results on pseudo-enumerable sets and families.

Fact 5.1 ([3, 5])

1. The union of two pseudo-enumerable (resp. pseudo-finite, resp. at most pseudo-
enumerable) sets is pseudo-enumerable (resp. pseudo-finite, resp. at most
pseudo-enumerable).

2. Every definable discrete subset of Kn is at most pseudo-enumerable.
3. The image of a pseudo-finite set under a definable function is also pseudo-finite.
4. If

�

C.t/ W t 2 T
	

is an pseudo-finite family of nowhere dense sets, then
S

t2T C.t/
is also nowhere dense.

Lemma 5.5 Let C � K be definable, nonempty, and closed. If C is definably
meager in itself, then there exists a pseudo-enumerable set P � C, such that P
is dense in C.

Proof Assume that C is definably meager in itself. Let U :D intK.C/ and E :D CnU.
Notice that E is definable, closed, and nowhere dense in K. If U is nonempty, then,
since U is open in C and definably meager in itself, then, by [3, Proposition 6.4],
there is a pseudo-enumerable set P0 � U, such that P0 is dense in U. Let P1 be the
set of endpoints of K n E; notice that P1 is at most pseudo-enumerable. Since E
is nowhere dense in K, P1 is dense in E. Define P :D P0 [ P1. Since P is the
union of two at most pseudo-enumerable sets, P is also pseudo-enumerable pseudo-
enumerable, and it is dense in C. ut

Lemma 5.6 Let C � K
n be definable, nonempty, and definably meager in itself.

Then, C has no isolated points.
Let U � C be a nonempty definable open subset of C. Then, U is not pseudo-

finite: that is, there is no discrete and d-compact subset D of K, such that there is a
definable surjective function f W D! U.
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Proof Clear. ut

Definition 5.7 Let C � K
n be a nonempty definable set. Let A :D

�

Ai W i 2 I
	

be
a definable family of subsets of C. We say that A is a weak basis for C if:

1. for every i 2 I, intC.Ai/ ¤ ;;
2. if U � C is a nonempty open subset of C, then there exists i 2 I such that Ai � U.

Lemma 5.8 Let C � K be definable, nonempty, and closed. Assume that C
is definably meager in itself. Then, C has a pseudo-enumerable weak basis of
d-compact sets.

Proof By Lemma 5.5, there exists P � C which is pseudo-enumerable and dense
in C; thus, we can write P :D f pi W i 2 N g, for some pseudo-N set N � K
1

and some definable function i 7! pi. For every i 2 N , define Ai :D BC.piI 1=i/. Let
A :D

�

Ai W i 2 N
	

. The lemma follows from the following claim.

Claim 5.9 Let U � C be a definable open nonempty subset of C. Then, there exists
i 2 N such that Ci � U.

Choose i0 2 N such that q :D pi0 2 U. Choose r > 0 such that BC.qI 3r/ � U.

Claim 5.10 There exists i 2 N such that pi 2 BC.qI r/ and i > 1=r

We know that C has no isolated points. Let F :D fqg [ f j 2 N W j � r g; notice
that F is d-compact and discrete; thus, V :D BC.qI r/ n F is open in C, and, since C
is not pseudo-finite, V is nonempty. Thus, by density, there exists i 2 N such that
pi 2 V , proving the claim.

Then,

BC.piI 1=i/ � BC.piI 2r/ � BC.qI 3r/ � U:

ut

We also need a choice function for open sets.

Lemma 5.11

1. Let Nb be a set of parameters and let X � K
n be a Nb-definable set. Assume that X

is nonempty and open. Then, there exists a 2 X which is Nb-definable.
2. Let

�

X.t/ W t 2 T
	

be a definable family of subsets of Kn. Assume that each X.t/
is nonempty and open. Then, there is a definable function f W T ! K such that,
for every t 2 T, f .t/ 2 C.t/.

The above lemma remains true if we weaken the hypothesis from “X open” (or each
X.t/ open) to “X constructible” (or each X.t/ constructible, i.e., a finite Boolean
combination of open sets), see [6]; however, the proof is more involved and we
won’t use the more general version.
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Proof (2) follows from (1) and standard compactness arguments. Thus, we only
have to show (1). It is trivial to see that it suffices to do the case when n D 1, and
therefore we will assume that n D 1.

W.l.o.g., we may assume that X is bounded. For every r > 0, let U.r/ WD f x 2
X W B.xI r/ � X g; since X is open, X D

S

r>0 U.r/. Define r0 WD inff r > 0 W

U.r/ ¤ ;g. Notice that U. 1
2
r0/ is Nb-definable, d-compact, nonempty, and contained

in X; thus, it has a minimum element a, which is therefore Nb-definable and in X. ut

We now turn to the proof of Lemma 5.3 proper. Assume, for a contradiction, that
C � K is nonempty, definable, closed, but it is not definably Baire. Let E � C be
as in Lemma 5.2. By replacing C with E, w.l.o.g. we can also assume that C is also
d-compact and definably meager in itself.

By Lemma 5.8, there exists a pseudo-N set N � K
1 and a definable family
A :D

�

Ai W i 2 N
	

, such that A is a weak basis for C of d-compact sets. Moreover,
since C is definably meager in itself, there exists a definable decreasing family

�

Uj W

j 2 N
	

, such that each Uj is a dense open subset of C, and
T

j Uj D ;.
Since each Ud is open and dense, and Ad has nonempty interiors, Ad \ Ud has

nonempty interior. Since A is a weak basis, there exists e 2 N such that Ae �

Ud \ Ad; since moreover C has no isolated points, we can find e as above such
that e � d. For every d 2 N , let g.d/ be the minimum element of N , such that
g.d/ � d and Ag.d/ � Ud \ Ad. Notice that A 0 :D

�

Ag.d/ W d 2 N
	

is also a weak
basis; thus, by replacing A with A 0 (and each Ad with Ag.d/), we can assume that
Ad � Ud for every d 2 N .

For every d 2 N , notice that Ed :D
S

e�d;e2N bd.Ad/ is a pseudo-finite union
of closed nowhere dense subsets of C; thus, Ad n Ed is non-empty and open, and
therefore, by Lemma 5.11, there is a definable function f W N ! K such that
f .d/ 2 Ad n Ed for every d 2 N .

For every a 2 N , define

T.a/ :D f d 2 N W d � a & f .a/ 2 Ad g:

Notice that each T.a/ is a pseudo-finite set, and that a D max.T.a//.
We now define the following partial order on N : a E b if T.a/ is an initial

segment of T.b/, that is:

8c � a c 2 T.a/$ c 2 T.b/:

Lemma 5.12
�

N ;E
	

is a partially ordered set, which is a forest and satisfies
condition (*) in Lemma 1.8.

Proof a E a by definition.
Notice that a E b implies a � b, by definition. Moreover, if a E b, then a 2

T.b/, since a 2 T.a/.

Claim 5.13 If a E b and b E c, then a E c.

In fact, let d � a. Then, d 2 T.a/ iff d 2 T.b/ iff d 2 T.c/.
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Thus, E is a partial order.
The fact that hN ;Ei is a forest is clear.
We now prove that E satisfies (*). Let a 2 N and b � a. For every a 2 N , let

J.a/ :D
\

b2T.a/

int Ab n
[

b�a & b…T.a/

Ab:

Since each Ab is closed, and the set f b 2 N W b � a & b … T.a/ g is pseudo-finite,
we have that J.a/ is an open set. We claim that J.a/ is nonempty. It suffices to prove
the following claim.

Claim 5.14 f .a/ 2 J.a/.

In fact, by our choice of f , we have that, for every b � a, b 2 T.a/ iff f .a/ 2 Ab iff
f .a/ 2 int Ab; the claim is then obvious from the definition of J.a/.

Since C has no isolated points, the set f f .b/ W b � a g is pseudo-finite, and J.a/
is open and nonempty, the set J0.a/ :D J.a/ n f f .b/ W b � a g is also open and
nonempty; thus, there exists b 2 N such that Ab � J0.a/. The lemma then follows
from the following claim.

Claim 5.15 a G b.

The fact that b > a is clear from the fact that f .c/ … Ab for every c � a.
Let c � a. We have to show that c 2 T.b/ iff c 2 T.a/. If c 2 T.a/, then

J.a/ � int Ac, therefore f .b/ 2 int.Ac/, and thus c 2 T.b/. Conversely, if c 2 T.b/,
then f .b/ 2 int Ac \ J.a/; thus, J.a/ \ int Ac ¤ ;, and therefore, by definition of
J.a/, we have c 2 T.a/. ut

We now continue the proof of Lemma 5.3. By Lemma 5.12, we can apply
Lemma 1.8 to the partial order E: denote by E0 the leftmost branch of E inside N .

For every a 2 E0, let Fa WD
T

d2E0 & d�a Ad. Then, f .a/ 2 Fs, the family
�

Fa W

a 2 E0
	

is a definable decreasing family of d-compact nonempty sets. Therefore, by
Fact 2.2

; ¤
\

a2E0

Fa D
\

d2E0

Ad �
\

d2E0

Ud D
\

d2N

Ud D ;;

absurd. ut

5.2 The Inductive Step

Lemma 5.16 Let m 2 N. Let C � K
m be nonempty and d-compact. Then, C is

definably Baire.

Proof We will prove the lemma by induction on m.
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Let 1 � m 2 N. We denote by (5.16)m the instantiation of Lemma 5.16 at m.
Notice that (5.16)1 follows from Lemma 5.3. Thus, we assume that we have already
proven (5.16)m and (5.16)1; we need to prove (5.16)mC1.

Let C � K
mC1 be d-compact and nonempty. We have to show that C is definably

Baire. Assume not. Let F be a definable nonempty open subset of C, such that F
is definably meager in C. Define � :D ˘mC1

m , and E :D �.C/. By Theorem 1.3,
the set S :D f Nx 2 E W FNx is not definably meager in CNx g is definably meager in E.
Since F is open in C, FNx is open in CNx for every Nx 2 E; thus, by (5.16)1, S D �.F/.
Notice that E is also d-compact and nonempty; thus, by (5.17)m, E is definably Baire.
Since moreover S is open in E, the fact that S is definably meager in E implies that
S is empty, contradicting the fact that F is nonempty. ut

Lemma 5.17 Let m 2 N. Let C � K
m be closed, nonempty, and definable. Then,

C is definably Baire.

Proof We want to apply Lemma 5.1; thus, given a 2 C; it suffices to find A � C,
such that A is a definable neighborhood of a inside C, and A is definably Baire. Fix
r > 0 (e.g., r D 1); Let A :D BC.aI r/. It is clear that A is a definable neighborhood
of a inside C. Moreover, A is d-compact; thus, by Lemma 5.16, A is definably Baire.

ut

Proof (Proof of Theorem 1.2) Let Y :D cl.C/. By Lemma 5.17, Y is definably Baire.
Since C is dense in Y , the conclusion follows from Corollary 2.5. ut
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Cotorsion and Tor Pairs and Finitistic
Dimensions over Commutative Rings

László Fuchs

In memoriam Rüdiger Göbel

Abstract Some of the most familiar cotorsion and Tor pairs on integral domains
do not extend to rings R with divisors of zero. A closer look shows that for some
of them the validity hinges on the strength of torsion-freeness in R which in turn is
closely related to one of the finitistic projective and weak dimensions of the classical
ring Q of quotients of R. This interesting fact was observed by Bazzoni–Herbera;
in their paper (Bazzoni and Herbera, Isr J Math 174:119–160, 2009) a number of
important results of this kind can be found, explicitly or implicitly. We not only
complement some of them with new results, but we also give different proofs for
most of them, restricted to commutative rings. We consider three distinct versions
of torsion-freeness, three finitistic dimensions of Q, and investigate their influence
on some cotorsion and Tor pairs of major interest.

Keywords Cotorsion and Tor pairs • Flat, torsion-free, torsion, and divisible
modules • Projective and weak dimension, Finitistic dimension • Injective, pure-
injective and weak-injective modules • Matlis-, Enochs- and Warfield-cotorsion
modules
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1 Introduction

Since the groundbreaking paper [13] by Luigi Salce, the theory of cotorsion and
Tor pairs has grown into a fast developing and challenging area of mathematics.
It started with abelian groups and modules over integral domains, but soon it
was recognized that a number of results retain their validity if zero-divisors are
admitted, or even if commutativity is abandoned—as witnessed by the monograph
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Göbel–Trlifaj [9]. However, additional conditions seem to be required for some
more sophisticated theorems to carry over to non-domain cases, as is demonstrated
by several sections in [9] where the statements and the proofs are restricted to
integral domains. Bazzoni–Herbera [1] deserve the credit for pointing out that the
problem of extending numerous theorems to rings R with zero-divisors is intimately
related to the category of modules over the classical ring Q of fractions of R,
in particular, to the vanishing of its finitistic dimensions (in the domain case, Q-
modules are vector spaces, so all these dimensions are 0). A number of most
relevant results related to this question are contained, explicitly or implicitly, in
their paper [1].

We wish to take a more systematic approach to the problem as to what extent
results on familiar cotorsion and Tor pairs over integral domains retain their validity
and main properties if we move to arbitrary commutative rings R with zero-divisors.
In particular, what extra conditions on R needed for a particular result to reach the
same conclusions as for domains. Some of the required conditions turn out to be
closely connected to the way torsion-freeness is treated in R. Therefore, the point
of view of torsion-freeness seems to be a natural approach to the problem. As it
is clear from [1], torsion-freeness is intimately related to the finitistic dimensions
of Q-modules. Perhaps we get a clearer picture on how certain cotorsion and Tor
pairs on integral domains depend on the category of Q-modules if we organize
the results according to the finitistic dimensions. We do exactly this in our main
Theorems 4.1, 5.2, and 6.4 that include most relevant results by Bazzoni–Herbera
[1] on the dependence on the finitistic dimensions. Several results in this paper cover
the first time a non-domain case, and a number of proofs are new.

When dealing with modules over integral domains, one of the most pleasant
properties is undoubtedly the injectivity of Q-modules that is very frequently used in
the arguments. However, the results in [1] and in this note are convincing evidence
that not this injectivity, but the finitistic dimensions of Q are the crucial key to carry
over important features from integral domains to rings with zero-divisors.

We consider the three most frequently used versions of torsion-freeness (that are
also the relevant ones): M is torsion-free if

version 1: TorR
1 .R=Rr;M/ D 0 for all non-zero-divisors r 2 R;

version 2: TorR
1 .P;M/ D 0 for all modules P of projective dimension � 1;

version 3: TorR
1 .F;M/ D 0 for all modules F of weak dimension � 1.

Note that flat modules are torsion-free in either version, and so are the Q-modules.
Also, all three torsion-free classes are closed under submodules, extensions, and
direct limits.

We provide new proofs for most results we need from Bazzoni–Herbera [1]—this
paper is our main source of ideas. In the proofs, we shall use a natural isomorphism
from Fuchs–Lee [6] that seems to fit to our topic perfectly: it is our main tool of
handling Q-modules when treated both as R- and Q-modules. The other natural
isomorphism playing substantial role in our arguments is well known by Cartan–
Eilenberg, see (1). Both can be derived from the same long exact sequence (*).
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Let R; S be any (associative) rings with identity, and RAS;BS;CR modules as
indicated by the subscripts. In Fuchs–Lee [6, Lemma 2.1] it was shown that if
Ext1S.A;B/ D 0, then the sequence

0! Ext1S.C˝R A;B/! Ext1R.C;HomS.A;B//! (�)

! HomS.TorR
1 .C;A/;B/! Ext1S.HA;B/! : : :

of abelian groups is exact (the meaning of H is now irrelevant). In the case of
injective BS, the hypothesis on Ext is trivially satisfied, while the first and the last
Ext vanish. This leads to the familiar natural isomorphism

Ext1R.C;HomS.A;B// Š HomS.TorR
1 .C;A/;B/ (1)

valid for all modules RAS;CR and injective BS (Cartan–Eilenberg [4, p. 120]). In the
special case when S D Z and B D Q=Z, we have

Ext1R.C;A
[/ Š .TorR

1 .C;A//
[ (10)

where M[ D HomZ.M;Q=Z/ denotes the character module of M.
On the other hand, if the Tor in .�/ vanishes, then we obtain the isomorphism

Ext1S.C˝R A;B/ Š Ext1R.C;HomS.A;B//I (2)

thus (2) holds for the modules RAS;BS;CR provided that

Ext1S.A;B/ D 0 and TorR
1 .C;A/ D 0: (20)

(By the way, the left Ext in (2) is 0 if the right one is 0, even if the condition on Tor
is not satisfied.) (2) will be used for commutative rings R D S, in which case all the
occurring groups are R-modules.

In order to keep this paper reasonable in size, we have not explored relations of
our topic to other relevant questions, like being of finite type, tilting modules, etc.
Several results can be extended straightforwardly to non-commutative rings that
admit (left or right) Ore-rings of quotients.

For unexplained terminology and results we refer to Enochs–Jenda [5], and
primarily to Göbel–Trlifaj [9].

2 Definitions and Notations

Throughout, R will denote an arbitrary commutative ring with identity; if we wish
to exclude divisors of zero, then we say R is a domain. The notation R� is used for
the set of non-zero-divisors of R. R-Mod stands for the category of R-modules. Q
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will denote the classical ring of quotients of R, and K D Q=R. Evidently, Q is a flat
R-module and w.d.K D 1. We will use the notations p.d. (projective dimension), i.d.
(injective dimension), w.d. (weak dimension); gl. will indicate ‘global’ dimension.

For a non-negative integer n, Pn.R/ (or briefly Pn) denotes the class of R-
modules of p.d.� n, and Fn the class of modules of w.d.� n. In particular, P0

denotes the class of projective R-modules. F D F0 is the notation for the flat, and
T Fi .i D 1; 2; 3/ for the various torsion-free classes listed in the introduction. We
say M is torsion-free if M 2 T F1 and strongly torsion-free if M 2 T F3. Every
M 2 T Fi for either i satisfies TorR

1 .K;M/ D 0. D is the class of divisible, H D
the class of h-divisible, and W I the class of weak-injective modules (definitions
below).

A module T is said to be torsion if for every x 2 T there is an r 2 R� such that
rx D 0. In any module M, the set of elements annihilated by some r 2 R� form a
submodule (called the torsion submodule t.M/ of M), and there is an exact sequence
0 ! t.M/ ! M ! M=t.M/ ! 0 where M=t.M/ has no torsion. Clearly, M is a
torsion module exactly if t.M/ D M.

An R-module D is called divisible if rD D D for each r 2 R�. It is h-divisible if
every homomorphism R! D extends to a homomorphism Q! D; or, equivalently,
D is an epimorphic image of a direct sum of copies of Q. Thus Q is a generator of
the category H D of h-divisible R-modules. It also follows that D 2 D if and only
if Ext1R.R=Rr;D/ D 0 for all r 2 R�, and D 2 H D whenever Ext1R.K;D/ D 0.
We call M strongly divisible if Ext1R.P;M/ D 0 for all P 2 P1, and h-reduced if it
contains no h-divisible submodule ¤ 0.

Observe that the h-divisible torsion-free R-modules M are exactly the Q-modules,
thus they satisfy both HomR.Q;M/ Š M and Q˝R M Š M. For Q-modules, flatness
over R and over Q are equivalent.

An R-module M is said to be weak-injective if Ext1R.A;M/ D 0 for all A 2 R-Mod
with w.d.A � 1 (Lee [11]). Weak-injective modules are h-divisible: W I �H D .

F.dim.Q/ (resp. f.dim.Q/) will denote the big (resp. little) finitistic dimension
of Q, i.e. the supremum of the projective dimensions of the Q-modules of finite
projective dimensions (resp. those having projective resolutions with finitely gener-
ated modules). We will use the notation Fw.dim.Q/ for the supremum of the weak
dimensions in Q-Mod of finite weak dimensions. Observe that both Fw:dim.Q/ D 0
and F:dim.Q/ D 0 imply f:dim.Q/ D 0: (Cf. Proposition 5.3 and Corollary 6.6.)

For a class C of R-modules, define

C ? D fM 2 R�Mod j Ext1R.C;M/ D 0 8C 2 C g;

?C D fM 2 R�Mod j Ext1R.M;C/ D 0 8C 2 C g;

and

C T D fM 2 R�Mod j TorR
1 .C;M/ D TorR

1 .M;C/ D 0 8C 2 C g:

A pair .A ;B/ is said to be a cotorsion pair if both A D? B and B D A ? hold,
and a Tor pair if both A DT B and B D A T. To simplify notation, we will write,
e.g. Ext1R.A ;B/ D 0 meaning that Ext1R.A;B/ D 0 for all A 2 A ;B 2 B.
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When we deal with character modules, it will be convenient to have the following
list available (keep in mind that character modules are always pure-injective).

Lemma 2.1 (i) M is a torsion module if and only if M[ is h-reduced.
(ii) M is torsion-free if and only if M[ is h-divisible.

(iii) M is strongly torsion-free if and only if M[ is weak-injective.
(iv) M is flat if and only if M[ is injective.
(v) M 2PT

1 if and only if M[ is strongly divisible.
(vi) M is divisible exactly if M[ is torsion-free.

Proof Everything follows from the isomorphisms HomR.A;M[/ Š .A˝R M/[ and
Ext1R.A;M

[/ Š .TorR
1 .A;M//

[. See [7] for details. ut

As far as weak-injectivity is concerned, one would like to know when it is
equivalent to injectivity. If R is a domain, then each of (a)–(c) in the next lemma
characterizes Prüfer domains.

Lemma 2.2 For a commutative ring R, these conditions are equivalent:

(a) weak-injective R-modules are injective;
(b) strongly torsion-free R-modules are flat;
(c) gl.w.d.R � 1.

Proof (a)) (b) Let F be strongly torsion-free, and A 2 F1. Then TorR
1 .A;F/ D 0,

thus Ext1R.A;F
[/ D 0 for such an A (see (10)). This means that F[ is weak-injective,

so injective by (a). This is equivalent to the flatness of F.
(b) ) (c) Let 0 ! H ! F ! M ! 0 be a free presentation of an arbitrary

R-module M. Here H is strongly torsion-free (as submodule of a free module), so
flat by (b). But then M 2 F1.

(c)) (a) This is clear in view of the definition of weak-injectivity. ut

3 Cotorsion Modules

An R-module M is called Matlis-cotorsion if it satisfies Ext1R.Q;M/ D 0: It
is Enochs-cotorsion if Ext1R.F;M/ D 0 for all flat R-modules F, and Warfield-
cotorsion if Ext1R.A;M/ D 0 for all A 2 T F1. The respective classes are denoted
as MC ;E C , and W C ; they are all different, in general, even for domains. The
inclusions W C � E C �MC are obvious.

The cotorsion pairs .F0;E C /; .F1;W I /; .T F1;W C / are perfect, thus the
modules over any commutative ring admit both covers and envelopes for these pairs
(cf. [9, Chaps. 3–4]).

Warfield [14] characterized the Warfield-cotorsion modules over integral
domains as Matlis-cotorsion of i.d.� 1. This is no longer true for arbitrary
commutative rings under a generalized torsion-freeness. The precise result is
Theorem 3.2.
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Lemma 3.1 A torsion-free divisible R-module is Warfield-cotorsion if and only if it
is injective.

Proof To prove necessity, let M be any torsion-free divisible R-module (i.e. a Q-
module). With an arbitrary module C, we use (2) to argue that

Ext1R.C˝R Q;M/ Š Ext1R.C;HomR.Q;M// (3)

which holds as TorR
1 .Q;C/ D 0 and Ext1R.Q;M/ D 0, the latter because Q is

Q-projective. If M is also Warfield-cotorsion, then the first Ext is 0 for every C
(C˝R Q is always torsion-free), and since M is torsion-free divisible, the right-hand
Ext is simply Š Ext1R.C;M/: Thus Ext1R.C;M/ D 0 for all modules C, i.e. M is
injective if it is as stated. ut

The Warfield-cotorsion modules can now be characterized in the following way.

Theorem 3.2 Over a commutative ring R, a module M is Warfield-cotorsion if and
only if

(a) M is Matlis-cotorsion, i.e. Ext1R.Q;M/ D 0;
(b) i.d.M � 1I and
(c) HomR.Q;M/ is injective.

If M is h-reduced, then (c) is automatically satisfied.

Proof If M is Warfield-cotorsion, then (a) is obvious as Q is flat. For (b), consider
an exact sequence 0 ! H ! F ! N ! 0, where N is arbitrary and F is free. We
derive the exact sequence

0 D Ext1R.H;M/! Ext2R.N;M/! Ext2R.F;M/ D 0;

where the first Ext vanishes because H is torsion-free. Hence (b) follows. If we
apply (3) with a torsion-free C, then we can conclude that HomR.Q;M/ is Warfield-
cotorsion if so is M (even if M is not torsion-free). As HomR.Q;HomR.Q;M// Š
HomR.Q;M/, (c) follows from the preceding lemma.

Conversely, suppose M satisfies (a)–(c). For every torsion-free R-module A, the
standard exact sequence 0 ! R ! Q ! K ! 0 induces the exact sequence
0! A! Q˝R A! K ˝R A! 0. Hence

Ext1R.Q˝R A;M/! Ext1R.A;M/! Ext2R.K ˝R A;M/ D 0;

where (b) implies that the last Ext is 0. The first Ext is likewise 0, because Q is flat
and so (a) implies the isomorphism

Ext1R.Q˝R A;M/ Š Ext1R.A;HomR.Q;M// (4)

(see (2)). By virtue of (c), the right-hand side Ext vanishes. Consequently, so does
the left-hand side, and thus Ext1R.A;M/ D 0, completing the proof of the first claim.
The second claim is an obvious corollary. ut
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The next lemma shows that the three mentioned definitions of torsion-freeness
would coincide if in their definitions via Tor only torsion modules were used.

Lemma 3.3 For an R-module M, the following are equivalent:

(a) M is torsion-free;
(b) TorR

1 .A;M/ D 0 for all torsion R-modules A 2 F1I

(c) TorR
1 .A;M/ D 0 for all torsion R-modules A 2P1.

Proof .a/ ) .b/ Let A 2 F1 be an R-module. As is well known, then i.d.A[ � 1,
and in addition, A[ is Matlis-cotorsion as a character module. If A is also torsion,
then by Lemma 2.1, A[ is h-reduced, so Warfield-cotorsion (Theorem 3.2). Thus,
for every torsion-free M, 0 D Ext1R.M;A

[/ Š .TorR
1 .M;A//

[: Hence we derive the
desired TorR

1 .A;M/ D 0.
The implications .b/) .c/) .a/ are trivial. ut

Corollary 3.4 If A[ is Warfield-cotorsion whenever A 2 F1, then in the preceding
lemma the hypothesis that A is torsion can be dropped.

Proof This is pretty obvious from the preceding proof. ut

We will need the following less known fact whose proof relies on Warfield-
cotorsion modules. It makes it possible to descend from h-divisible modules to all
divisible modules. (It is perhaps worth while emphasizing that we do not claim that
a divisible submodule of an h-divisible module is pure.)

Lemma 3.5 A module is divisible if and only if it can be embedded in an h-divisible
module as a pure submodule.

Proof One way the claim is obvious. For the converse, we first show that any
module M can be embedded as a submodule in an h-divisible D such that D=M
is a direct sum of copies of K. In fact, if M Š F=H for a free module F and its
submodule H, then D Š .F ˝R Q/=.H ˝R R/ is a good choice.

Now let M be divisible in the exact sequence 0 ! M ! D ! ˚�K ! 0 with
an h-divisible D and some cardinal �. In the induced exact sequence

0! .˚�K/[ ! D[ ! M[ ! 0

of character modules, M[ is torsion-free (as M is divisible). If C is any torsion-free
module, then in the isomorphism Ext1R.C; .˚�K/[/ Š .TorR

1 .C;˚�K//[ the right-
hand side is 0. Consequently, the Ext vanishes, so that .˚�K/[ is Warfield-cotorsion.
Hence the displayed sequence splits; this fact is well known to be equivalent to the
pure-exactness of the original sequence. ut
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4 The Case Fw.dim.Q/ D 0

We first discuss the strongest version of torsion-freeness that we are going to
consider: the case when T F1 D T F3. This turns out to be equivalent to
Fw.dim.Q/ D 0, i.e. the finitistic weak dimension of Q is 0 (every Q-module of
finite weak dimension is flat). Here is the main theorem:

Theorem 4.1 For any commutative ring R, the following conditions are equiva-
lent:

(i) .F1;T F1/ is a Tor pair; i.e. T F1 D T F3 W torsion-free modules are
strongly torsion-free;

(ii) M 2 F1 implies M[ is Warfield-cotorsion;
(iii) M 2 F1 implies HomR.Q;M[/ is injective;
(iv) M 2 F1 implies Q˝R M is flat as an R- and as a Q-module;
(v) an exact sequence 0 ! D ! M ! N ! 0 is pure-exact whenever D 2 D

and N 2 F1I

(vi) divisible .h-divisible/ pure-injective modules are weak-injective;
(vii) M[ is weak-injective .if and/ only if M is torsion-free;

(viii) Fw.dim.Q/ D 0.

Proof (i), (ii) If M 2 F1, then (i) implies TorR
1 .C;M/ D 0 for all torsion-free

C. Hence from Ext1R.C;M
[/ Š .TorR

1 .C;M//
[ we conclude that M[ is Warfield-

cotorsion. The converse follows from the last isomorphism.
(ii) , (iii) M[ is always Matlis-cotorsion, and satisfies i.d.M � 1 whenever

M 2 F1. Therefore, by Theorem 3.2, M[ is Warfield-cotorsion if and only if
HomR.Q;M[/ is injective.

(iii), (iv) Clearly,

HomR.Q;M
[/ D HomR.Q;HomZ.M;Q=Z// Š HomZ.Q˝RM;Q=Z/ D .Q˝RM/[

is injective if and only if Q˝R M is R-flat. It is then also Q-flat.
(ii)) (v) The second part of the proof of Lemma 3.5 works with N replacing˚K

provided we make sure that N[ is Warfield-cotorsion. Clearly, N[ is Matlis-cotorsion
of i.d.� 1 (as N 2 F1), and the rest follows from (ii).

(v)) (vi) If M is divisible, then by (v) it is pure in its weak-injective envelope
W (since W=M 2 F1). If it is also pure-injective, then it is a summand of W, so
necessarily M D W.

(i), (vi) and (i), (vii) follow at once from (ii) and (iii) in Lemma 2.1.
(iv), (viii) First suppose the Q-module N has w.d. 1 as a Q-, and hence also as

an R-module. Then (iv) implies N D Q˝R N is flat. Next suppose w.d.QN D n > 1;
then in the exact sequence 0 ! H ! F ! N ! 0 of Q-modules with free
Q-module F, we have w.d.QH D n � 1, so w.d.QH D 0 by induction hypothesis.
Hence also w.d.RN � 1, so from (iv) we infer that N is flat as a Q-module.
Conversely, for an R-module M 2 F1, (viii) implies Q˝R M is a flat Q-module, and
hence it is also flat as an R-module. ut
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The ring of quotients of semiprime Goldie rings (see [10]) is semisimple artinian,
so these Goldie rings are easy examples of rings satisfying the conditions in
Theorem 4.1. In this case Q is moreover injective (which need not be true for rings
covered by Theorem 4.1).

Lee [12, Theorem 3.4] proved that over a domain, a module is weak-injective if
and only if its flat cover is injective (for flat cover, see [3]). The corresponding result
here is as follows.

Proposition 4.2 Assume R is a commutative ring for which Fw.dim.Q/ D 0.
An R-module is weak-injective if and only if its flat cover is weak-injective as a
Q-module.

Proof Let 0 ! H ! F
˛
�!M ! 0 be a flat cover sequence of the R-module M;

thus F is flat and H is Enochs-cotorsion. If M is weak-injective, then it is Enochs-
cotorsion as well, and so is F as an extension of an Enochs-cotorsion R-module
by another one. Since M is h-divisible, it follows that the cover F must also be
h-divisible, since every map Q! M factors through ˛. Thus F is a Q-module, and
evidently also Enochs-cotorsion as a Q-module. We argue with (4), after choosing an
R-module A 2 F1. By Theorem 4.1, Q˝R A is a flat Q-, and hence a flat R-module,
so the left-hand side of (4) vanishes. The claim follows at once.

Conversely, if F is a weak-injective Q-module, then consider Ext1R.A;F/ Š
Ext1R.A ˝ Q;F/ for any R-module A 2 F1 (isomorphism by (2)). By hypothesis,
A˝Q is a flat Q-module, so the second Ext vanishes, and it follows that F is weak-
injective as an R-module. From the induced exact sequence 0 D Ext1R.A;F/ !
Ext1R.A;M/! Ext2R.A;H/ D 0 we obtain that M is likewise weak-injective. ut

Over a domain, torsion-free weak-injective modules are injective, so Lee’s
mentioned theorem is a simple corollary to Proposition 4.2.

5 The Case f.dim.Q/ D 0

In this section we consider the case when f.dim.Q/ D 0 which turns out to be
equivalent to T F1 D T F2. We start with the following lemma.

Lemma 5.1 If f.dim.Q/ D 0, then Ext1R.P;D/ D 0 for all P 2 P1 with finitely
generated projective resolutions and for all D 2H D .

Proof Let P 2P1 and D torsion-free divisible. By (2), we have

Ext1R.P˝R Q;D/ Š Ext1R.P;HomR.Q;D// Š Ext1R.P;D/; (5)

since the conditions Ext1R.Q;D/ D 0 and TorR
1 .P;Q/ D 0 are satisfied, and in our

case, HomR.Q;D/ Š D. In view of the hypothesis, P˝R Q is Q-projective whenever
P has projective resolution with finitely generated modules, so the first Ext vanishes,
and therefore so does the last Ext.
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Finally, as P 2 P1, Ext1R.P;D/ vanishes also for epic images of torsion-free
divisible D, thus for all modules in H D . ut

Let us point out that .P1;T F2/ is usually not a Tor pair, but .lim
�!

P1;T F2/ is
always such a pair where lim

�!
P1 denotes the collection of direct limits of modules

in P1. In fact, by the definition of T F2, we have T F2 DPT
1 D .lim�!

P1/
T, and

by Göbel and Trlifaj [9, Theorem 4.5.6], lim
�!

P1 D
T ..lim
�!

P1/
T/; hence the claim

follows. Here we have made use of the familiar fact that Tor commutes with direct
limits.

Most parts of the following theorem were proved by Bazzoni–Herbera, see
[1, Theorem 6.7]. Our proof (with the exception of (ii)) (v)) is different.

Theorem 5.2 The following conditions are equivalent:

(i) .lim
�!

P1;T F1/ is a Tor pair, i.e. T F1 D T F2;
(ii) P 2P1 implies that Q˝R P is Q-flat;

(iii) for a P having a projective resolution with finitely generated modules, P 2P1

implies Q˝R P is Q-projective;
(iv) P 2P1 implies Ext1R.P;D/ D 0 for torsion-free divisible pure-injective D;
(v) f.dim.Q/ D 0.

Proof (i) ) (ii) By hypothesis, TorR
1 .P;D/ D 0 for all P 2 P1 and torsion-free

D 2 D . In view of the flatness of Q over R, TorR
1 .P;D/ D 0 implies that also

TorQ
1 .Q ˝R P;D/ D 0 for all Q-modules D; this is equivalent to the flatness of

Q˝R P as a Q-module.
(ii) , (iii) One way, the claim follows from the well-known fact that finitely

presented flat modules are projective. Conversely, (iii) implies (ii) for those P 2P1

that have finitely generated projective resolutions. Since tensor product commutes
with direct limits, (ii) holds as well for the direct limits of such P’s. It is well known
that every P 2 P1 can be obtained as a direct limit of this kind. Noting that direct
limits of flat modules are flat, (ii) is immediate.

(ii), (iv) For P 2 P1, (ii) implies that Ext1R.Q ˝R P;D/ D 0 for torsion-free
divisible pure-injective D, as Q˝R P is also R-flat. From (5) we conclude that (iv)
holds. Conversely, assume (iv). D in (iv) is a summand of E[ for some torsion-free
divisible E, i.e. for some Q-module E. Therefore, (iv) implies TorR

1 .P;E/ D 0 for all
P 2P1 and all E 2 Q-Mod. Since Q is R-flat, we also have TorR

1 .Q˝R P;E/ D 0,
whence (ii) is obvious.

(ii)) (v) Assume that there is a Q-module D of Q-projective dimension n � 1
with finitely generated projective resolution, and n is the minimal such number.
Select an exact sequence 0 ! H ! F ! D ! 0 with free Q-module F; then
the Q-module H has p.d. � n � 1. Thus by the choice of n, H is Q-projective, and
therefore p.d.QD D 1. From [1, Lemma 6.2] we can conclude that there exists an R-
module P 2P1 such that D Š Q˝R P. By (ii), D is Q-flat, moreover Q-projective
(as finitely presented), a contradiction.

(v)) (i) If (v) holds, then from Lemma 5.1 we obtain Ext1R.P;D/ D 0 for all
P 2P1 with finitely generated projective resolutions and for all torsion-free D 2 D .
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In particular, this holds if D D E[ for any torsion-free divisible E (cf. Lemma 2.1).
Hence isomorphism (1) assures that TorR

1 .P;E/ D 0 for all such P and all torsion-
free divisible E. If M is an arbitrary torsion-free R-module, then from the injection
M ! Q˝R M we derive that TorR

1 .P;M/! TorR
1 .P;Q˝R M/ is also an injection.

Hence TorR
1 .P;M/ D 0 for all P 2P1 with finitely generated projective resolutions

as well as for the direct limits of such P’s. Consequently, TorR
1 .P;M/ D 0 for all

P 2 lim
�!

P1 and for all torsion-free M. ut

A comparison of two finitistic dimensions leads to

Proposition 5.3 (Bazzoni-Herbera [1, Theorems 6.7–6.8]) The conditions in
Theorem 4.1 are equivalent to:

(ix) f.dim.Q/ D 0 and lim
�!

P1 D F1.

Proof f.dim.Q/ D 0 is equivalent to TorR
1 .lim�!

P1;T F1/ D 0 (Theorem 5.2),

which is the same as TorR
1 .F1;T F1/ D 0 provided (ix) holds. This is equivalent to

(i) in Theorem 4.1.
Conversely, if conditions (i)–(viii) of Theorem 4.1 hold, then (i) being stronger

than condition (i) of Theorem 5.2, f.dim.Q/ D 0 is obvious. In view of Theorem 5.2,
.lim
�!

P1;T F / is a Tor pair, whence lim
�!

P1 D F1 follows from Theorem 4.1. ut

Bazzoni–Herbera [1, Lemma 8.3] prove that f.dim.Q/ D 0 whenever R is
noetherian. They also point out that orders in von Neumann regular rings are
examples of rings for which lim

�!
P1 D F1.

6 The Case F.dim.Q/ D 0

The remaining case in our project is when F.dim.Q/ D 0. This seems to be related
to the cotorsion pair .P1;D/ rather than to the torsion-free questions. The equality
T F2 D T F3 is equivalent to the coincidence of the classes lim

�!
P1 and F1, and it

is a well-known open problem to characterize rings for which these classes coincide.
To explore consequences of the condition F.dim.Q/ D 0, we start with two

preliminary lemmas. The first lemma is well known.

Lemma 6.1 If an R-module P satisfies Ext1R.P;D/ D 0 for all D 2 H D , then
P 2P1.

Proof For an arbitrary N, let 0 ! N ! E ! D ! 0 be an injective resolution.
In the induced exact sequence Ext1R.P;D/ ! Ext2R.P;N/ ! Ext2R.P;E/ D 0, Ext1

vanishes by hypothesis, hence Ext2R.P;N/ D 0 for all N, i.e. P 2P1. ut

The next lemma deals with h-divisible modules.

Lemma 6.2 If F.dim.Q/ D 0, then Ext1R.P;D/ D 0 holds for all P 2 P1 and
D 2H D .
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Proof See the proof of Lemma 5.1. ut

By a filtration of a module M is meant a well-ordered ascending chain
fM˛ j ˛ < �g of submodules (for some ordinal � ) with M0 D 0;[˛<�M˛ D M
such that the chain is continuous in the sense that M˛ D [ˇ<˛Mˇ whenever ˛ < �

is a limit ordinal. From [2, Proposition 3.3] we derive the following lemma:

Lemma 6.3 If .P1;D/ is a cotorsion pair, then every P 2 P1 has a filtration
fP˛ j ˛ < �g for some ordinal � such that P˛C1=P˛ 2 P1 is countably presented
for each ˛ C 1 < � . ut

We do not need the fact (but we may point out) that under the hypothesis of the
preceding lemma, it also follows that every P 2 P1 admits a tight system in the
sense [8, Chap. VI.5]. This is a consequence of Hill’s lemma [9, Theorem 4.2.6] if
combined with the preceding lemma.

We can now extend a main result by Bazzoni–Herbera [1, Proposition 6.3] where
the equivalence of conditions (ii) and (iii) in the next theorem was established.

Theorem 6.4 For a commutative ring R, the following are equivalent:

(i) Ext1R.P1;D/ D 0 for all torsion-free divisible R-modules DI
(ii) if P 2P1, then Q˝R P is Q-projective;

(iii) F.dim.Q/ D 0.

Proof (i)) (ii) Suppose P 2 P1 and D is torsion-free divisible. By hypothesis,
the last Ext in (5) vanishes for all P 2P1, and hence the first Ext is also 0. As both
P˝R Q and D are Q-modules, we may view the first Ext in Q-Mod. If we do this,
then we can conclude that P˝R Q must be Q-projective (as D can be any Q-module).

(ii)) (iii) Imitate the proof of (ii)) (v) in Theorem 5.2 above.
(iii)) (i) As P˝RQ is torsion-free divisible for every P 2 R-Mod, by hypothesis

it is a projective Q-module whenever P 2P1. Therefore, the first Ext in (5) is 0 for
all P 2 P1. Consequently, Ext1R.P;D/ D 0 holds for every torsion-free divisible D
and for every P 2P1. ut

The next result characterizes the rings for which .P1;D/ is a cotorsion pair.

Theorem 6.5 The following are equivalent for every ring R:

(a) .P1;D/ is a cotorsion pair;
(b) F.dim.Q/ D 0, and every P 2 P1 has a filtration fP˛ j ˛ < �g with countably

presented factors in P1.

Proof That (a) implies (b) is evident in view of Theorem 6.4 and Lemma 6.3.
Assume (b). By Theorem 6.4, we have Ext1R.P1;D/ D 0 for all torsion-free

h-divisible R-modules D: We continue by recalling the following powerful result
(see Göbel–Trlifaj [9, Theorem 5.2.16]). Assume P is countably presented, and C
is a class of R-modules closed under countable direct sums. If

Ext1R.P;C/ D 0 for all C 2 C ;

then Ext1R.P;D/ D 0 holds also for every pure submodule D of any C 2 C .
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In view of Lemma 6.2, this result can be applied to the case where P 2 P1 is
countably presented, and C D H D . With the aid of Lemma 3.5, we argue that
then Ext1R.P;D/ D 0 holds for all countably presented P 2 P1 and for all D 2 D .
As by (b) every P 2 P1 has a filtration with countably presented factors in P1, it
remains to invoke a well-known lemma by Eklof on the vanishing of Ext when the
first argument is the union of a chain (see, e.g., [9, Lemma 3.1.2]) to conclude that
then every P 2P1 satisfies Ext1R.P;D/ D 0, i.e. .P1;D/ is a cotorsion pair. ut

By virtue of the remark following Lemma 6.3, (b) in Theorem 6.5 can be replaced
by the following condition:

(b0) F.dim.Q/ D 0 and every P 2P1 admits a tight system.

Bazzoni–Herbera [1, Theorem 8.6] point out that in case the ring R is noetherian,
F.dim.Q/ D 0 holds exactly if Q is artinian.

The comparison of Theorems 5.2 and 6.4 leads to necessary and sufficient criteria
for the simultaneous vanishing of two finitistic dimensions of Q:

Corollary 6.6 For a commutative ring R, the following are equivalent:

.˛/ F.dim.Q/ D 0;

.ˇ/ f.dim.Q/ D 0 and Q-modules are R-pure-injective;

.	/ f.dim.Q/ D 0 and flat Q-modules of the form Q ˝R P .P 2 P1/ are
Q-projective.

ut
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Permutation Groups Without Irreducible
Elements

A.M.W. Glass and H. Dugald Macpherson

Abstract We call a non-identity element of a permutation group irreducible if it
cannot be written as a product of non-identity elements of disjoint support. We
show that it is indeed possible for a sublattice subgroup of Aut.R;�/ to have no
irreducible elements and still be transitive on the set of pairs ˛ < ˇ in R. This
answers a question raised in “The first-order theory of `-permutation groups”, a
Conference talk by the first author.

Keywords Order-preserving permutation • `-permutation group

Mathematical Subject Classification (2010): 20B22, 06F15

1 Permutation Groups Without Irreducible Elements

Let .˝;6/ be a totally ordered set and G be a subgroup of Aut.˝;6/. Let 1 be the
identity element of Aut.˝;�/ and g 2 G n f1g. Then g is said to be irreducible if
g D g1g2 with g1; g2 2 G and supp.g1/ \ supp.g2/ D ; implies g1 D 1 or g2 D 1.
Note that if G D Aut.˝;�/, then g 2 G is irreducible if and only if g has a single
supporting interval; i.e., there is � 2 supp.g/ such that the convexification in ˝ of
f�gn j n 2 Zg is supp.g/. We prove:

Theorem 1.1 There is an `-subgroup of Aut.R;�/ that is transitive on ordered
pairs ˛ < ˇ and has no irreducible elements.
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Here, an `-subgroup of Aut.R;�/ is a subgroup G of Aut.R;�/ such that
gC 2 G whenever g 2 G, where ˛gC WD ˛g if ˛g � ˛ and ˛gC D ˛ if ˛g � ˛
(˛ 2 R). In particular, G is a lattice-ordered group where f _ g D .fg�1 _ 1/g and
f ^g D .f �1_g�1/�1. For background on ordered permutation groups and `-groups
see [1].

Proof Let g 2 Aut.R;�/. We say that g has period n 2 ZC if .˛ C n/g D ˛gC n
for all ˛ 2 R. Let

G WD fg 2 Aut.R;�/ j .9m 2 ZC/.g has period m/g:

Then G is transitive on ordered pairs ˛ < ˇ in R and it is easily checked that .G;R/
is an `-permutation group. Obviously, if f 2 G fixes no point in R, then it must be
irreducible. So G has irreducible elements. On the other hand, if g 2 G has period
m and is not the identity but fixes ˛0 2 R (and so fixes ˛0Ckm for all k 2 Z), define
g1; g2 2 G, each with periods 2m, as follows:

g1.x/ D




g.x/ if x 2 Œ˛0 C 2km; ˛0 C .2kC 1/m/; k 2 Z

x if x 2 Œ˛0 C .2kC 1/m; ˛0 C .2kC 2/m/; k 2 Z

g2.x/ D




g.x/ if x 2 Œ˛0 C .2kC 1/m; ˛0 C .2kC 2/m/; k 2 Z

x if x 2 Œ˛0 C 2km; ˛0 C .2kC 1/m/; k 2 Z
:

Then g1 and g2 have disjoint supports and g D g1g2, so g is reducible. Thus if
H WD fg 2 G j 0g D 0g, then H has no irreducible elements. Now H acts faithfully
on RC and .H � RC;RC/ (the permutation group induced by H on RC) is an
`-permutation group that is transitive on ordered pairs ˛ < ˇ in RC. Consequently
we obtain an `-permutation group .H�;R/ that is transitive on pairs ˛ < ˇ in R

and has no irreducible elements. For let ' W R �! RC be an order-preserving
bijection between R and RC and h� 2 Aut.R;�/ be given by ˛h� D .˛'/h'�1

(˛ 2 R; h 2 H). Then the desired properties transfer from H (acting on RC) to
H� D fh� W h 2 Hg (acting on R).

The above proof can similarly be adapted to `-permutation groups .L;Q/ that are
transitive on pairs ˛ < ˇ in Q and have no irreducible elements.
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R-Hopfian and L-co-Hopfian Abelian Groups
(with an Appendix by A.L.S. Corner on Near
Automorphisms of an Abelian Group)

Brendan Goldsmith and Ketao Gong

In memoriam Rüdiger Göbel

Abstract The notions of Hopfian and co-Hopfian groups are well known in both
non-commutative and Abelian group theory. In this work we begin a systematic
investigation of natural generalizations of these concepts and, in the case of Abelian
p-groups, give a complete characterization of the generalizations in terms of the
original concepts. The final section of the paper contains an unpublished result
of A.L.S. Corner on near automorphisms which has been useful in a number of
contexts.

Keywords Hopfian and co-Hopfian groups • Ker-Direct and Im-Direct groups •
Rickart and Dual Rickart modules

Mathematical Subject Classification (2010): Primary 20K30; Secondary 20K10

1 Introduction

A standard, and often useful, strategy in mathematics is to seek to investigate notions
that are in some sense a generalization of finiteness. Thus, in topology one looks at
compactness, in group theory local finiteness is investigated and similarly in many
other areas. The starting point is usually to seek some relevant property that finite
objects possess and then to look to see if there are non-finite objects possessing the
same property. In this paper we seek to employ the same strategy; here our setting is
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the category of all groups G , although we shall focus primarily on the subcategory
of Abelian groups A b. Indeed all our comments relating to A b can be interpreted
in the category of modules over a fixed ring R but we shall not carry this out in
detail. The property that we wish to explore is the familiar one in the category of
sets S : a set S is finite if, and only if, every one-one function S ! S is invertible,
if, and only if, every onto function S ! S is invertible. The comparable statements
in the category G would be that G being finite is equivalent to:

(i) every monic endomorphism of a group G is an automorphism;
(ii) every epic endomorphism of a group G is an automorphism.

These equivalences are, of course, not true: multiplication by the prime p in the
additive group of integers is a monomorphism which is not an automorphism and
the same multiplication in the quasi-cyclic group Z.p1/ is an epimorphism which
is not monic. Nevertheless, these conditions can be used to ‘select’ certain classes
of groups which are not necessarily finite. Groups satisfying (i) are usually now
referred to as co-Hopfian groups and those satisfying (ii) are called Hopfian groups.
It is well known and easy to establish that the properties (i) and (ii) can be translated
into the following equivalent conditions:

(i)’ G cannot have a proper isomorphic subgroup and (ii)’ G cannot have a proper
isomorphic factor group.

There is, of course, a third condition which subsumes both of (i)’ and (ii)’: (iii)’ G
cannot have a proper isomorphic subdirect factor (or summand as is the more usual
terminology in the Abelian situation). It is straightforward to show that this latter
condition is equivalent to

(iii) if  and  are endomorphisms of G and  D 1G, the identity endomorphism
of G, then   D 1G.

Groups satisfying condition (iii) are usually referred to as directly finite groups.
Hopfian, co-Hopfian and directly finite groups have been the subject of

intensive investigation for many years—see, for example, the discussions in
[1–3, 7–10, 13, 14]. The reader should note that the complements of these notions
have also been studied under various names: Abelian groups which are not
directly finite have been studied previously by Beaumont and Pierce [2] under the
terminology ID-group—the context suggests this was intended to mean ‘isomorphic
direct summand’, while in the context of non-Abelian group theory an alternative
terminology, due to Peter Neumann [13], is badly non-Hopfian.

The conditions (i) and (ii) can be re-formulated to say that a group G is
co-Hopfian [Hopfian] if every monomorphism [epimorphism]  of G has a two
sided inverse and this leads naturally to the following definition, where in an obvious
notation the letters “R, L” stand for “right” and “left”, respectively. Note that in this
paper, maps are always written on the left.
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Definition 1.1 A group G is said to be R-Hopfian [L-Hopfian] if for every
surjection  2 End.G/, there is an endomorphism  of G such that  D 1G

[  D 1G].

Observe firstly that if G is Hopfian, then certainly G is both R-Hopfian and
L-Hopfian. Moreover, if G is L-Hopfian and  is a surjection, then the equation
  D 1G implies that  is also an injection, so that  is an automorphism of G.
Consequently the class of L-Hopfian groups coincides with the class of Hopfian
groups.

We have a dual situation here where Hopficity is replaced by co-Hopficity:

Definition 1.2 A group G is said to be R-co-Hopfian [L-co-Hopfian] if for every
injection  2 End.G/, there is an endomorphism  of G such that  D 1G

[  D 1G].

Again it is easy to see that a group G is R-co-Hopfian if, and only if, it is co-
Hopfian. Thus we concentrate on the concepts of R-Hopficity and L-co-Hopficity. In
particular, we look closely at the situation when the groups being considered are also
Abelian p-groups for an arbitrary prime p. Our principal result, Theorem 3.11, shall
be a classification of R-Hopfian and L-co-Hopfian p-groups in terms of Hopfian and
co-Hopfian p-groups.

An important tool in our investigation will be a weakening of the classical notions
of (Ker)-direct and (Im)-direct Abelian groups. Recall that an Abelian group G is
said to be (Ker)-direct [(Im)-direct] if the kernel [image] of each endomorphism of G
is a direct summand of G. Rangaswamy observed in [15], or see [6, Lemma 112.1],
a connection between these notions and the (von Neumann) regularity of the
endomorphism ring of G: The endomorphism ring of a group G is regular if, and
only if, G is both (Ker)-direct and (Im)-direct. In fact, the same observation had
been made in the context of module theory by Azumaya in the late 1940s. Recently,
in that same context, the notions of (Ker)-direct and (Im)-direct modules have been
called Rickart modules and dual Rickart modules, respectively—see [11, 12]. We
shall come back to this in Sect. 2.

We finish off this introduction by noting that notation in the paper is standard
as in the two volumes of Fuchs [5, 6]; in particular mapping is consistently written
on the left and for an Abelian group G, the ring of endomorphisms of G shall be
denoted by End.G/. With the exception of the first two results in Sect. 2 below, all
groups will be additively written Abelian groups.

Acknowledgment: the authors would like to thank Peter V. Danchev who
suggested that a concept similar to what is now called R-Hopficity might be of
interest. They also would like to thank Peter Vámos for drawing their attention to
references [11, 12].
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2 Elementary Results

The notion of direct finiteness provides the connection between Hopficity and
R-Hopficity (and dually between co-Hopficity and L-co-Hopficity).

Proposition 2.1 (i) An arbitrary group G is Hopfian if, and only if, it is R-Hopfian
and directly finite;

(ii) An arbitrary group G is co-Hopfian if, and only if, it is L-co-Hopfian and
directly finite.

In particular, if the endomorphism monoid of G is commutative, then G is
R-Hopfian [L-co-Hopfian] if, and only if, it is Hopfian [co-Hopfian].

Proof (i) If G is Hopfian, then every surjection has an inverse, so G is certainly
R-Hopfian. However, if ˛ˇ D 1G for some endomorphisms ˛; ˇ, then ˛ is surjective
and so, by the Hopficity of G, it has an inverse ˛�1. It follows immediately that
ˇ D ˛�1 and so ˇ˛ D 1G, whence G is directly finite.

Conversely, given any surjection  of G, R-Hopficity ensures the existence of an
endomorphism  such that  D 1G. By direct finiteness, we have that   is also
equal to 1G and so  is invertible with inverse  . Since  was arbitrary, we have
that G is Hopfian.

The proof of (ii) runs dually and is left to the reader, while the particular case
when the endomorphism monoid of G is commutative is then immediate. ut

Corollary 2.2 A group which is not a non-trivial semidirect product is Hopfian
[co-Hopfian] if, and only if, it is R-Hopfian [L-co-Hopfian]. In particular, the group
Z.p1/ is not R-Hopfian for any prime p and Z is not L-co-Hopfian.

Proof The necessity is immediate in both cases and doesn’t require the semidirect
product condition. Conversely suppose that G is R-Hopfian [L-co-Hopfian]. It
suffices by Proposition 2.1 to show that G is directly finite. Suppose then that
 D 1G for endomorphisms ; of G. Then   is an idempotent endomorphism
which cannot be the trivial map and so the fact that G is not a non-trivial semidirect
product, forces   D 1G, as required. ut

From now on all groups will be additively written Abelian groups.

Corollary 2.3 A reduced group G such that G=pG is finite for all primes p is
Hopfian [co-Hopfian] if, and only if, it is R-Hopfian [L-co-Hopfian].

Proof We show that the hypotheses on G ensure that G cannot have a proper
isomorphic direct summand and so G is directly finite and then the result follows
from Proposition 2.1. Suppose then that G Š H ˚ G for some H � G. Then
G=pG Š H=pH ˚ G=pG and so by the finiteness of the latter term, we conclude
that H=pH D f0g for all primes p. Thus H is divisible and hence, as G is reduced,
H D f0g. Thus G is directly finite, as required. ut



R-Hopfian and L-co-Hopfian Groups 337

In response to a question of Baumslag [1, Problem 3], Corner [3, Example 1]
exhibited a non-Hopfian torsion-free group having automorphism group of order 2.
Using Corner’s example and Proposition 2.1 we can establish:

Example 2.4 There is a torsion-free group G with automorphism group of order 2,
but G is not R-Hopfian.

Proof Corner’s example of a non-Hopfian torsion-free group with automorphism
group of order 2 has the property that its full endomorphism ring is isomorphic to
the polynomial ring ZŒX�; in particular the endomorphism ring is commutative and
so the group is directly finite. Since it is non-Hopfian, it cannot be R-Hopfian by
Proposition 2.1. ut

As noted in [9], the endomorphism ring of a group does not determine its
Hopficity since there are also Hopfian groups, hence R-Hopfian groups, with
endomorphism ring ZŒX� which can be obtained using Corner’s realization theorem.
This also applies to R-Hopficity: the group in Example 2.4 is not R-Hopfian but has
endomorphism ring ZŒX�.

In light of Proposition 2.1 we would expect R-Hopfian and L-co-Hopfian groups
to share some properties known for Hopfian and co-Hopfian groups. Our first result
is an analogue of such a property of Hopfian groups.

Proposition 2.5 A direct summand of an R-Hopfian [L-co-Hopfian] group G is
again R-Hopfian [L-co-Hopfian].

Proof We handle the L-co-Hopfian case leaving the analogous proof for R-Hopfian
groups to the reader. Suppose then that G D H˚S and let ˛ be an arbitrary injection
in End.H/. Then  D ˛˚1S is an injection in End.G/ and so there is a  2 End.G/
such that  D 1G. Using the standard matrix representation of endomorphisms of
a direct sum, this means that



� �


 �

�

:



˛ 0

0 1S

�

D



1H 0

0 1S

�

; where  D



� �


 �

�

:

Thus �˛ D 1H , and so, since ˛ was an arbitrary injection in End.H/, H is L-co-
Hopfian. ut

Corollary 2.6 A torsion R-Hopfian group is reduced and an L-co-Hopfian group
has trivial dual.

Proof The results are immediate from the fact that no quasi-cyclic group Z.p1/ is
R-Hopfian while Z is not L-co-Hopfian. ut

It is also possible to relate R-Hopficity [L-co-Hopficity] of a group G to the
corresponding properties of subgroups of the form nG:

Proposition 2.7 If G is R-Hopfian [L-co-Hopfian], then, for each natural number
n, the subgroup nG is R-Hopfian [L-co-Hopfian].
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Proof We only handle with R-Hopfian case, the L-co-Hopfian case is analogous. If
 W nG! nG is epic, then it follows from the proof of Proposition 113.3 in [6], that
there exists an epic  W G ! G such that  � nG D . Since G is R-Hopfian,  
must have a right inverse, � say. But then the restriction � � nG is the required right
inverse of . ut

Theorem 2.8 If G is a group which has no n-bounded pure subgroups for a given
integer n and nG is R-Hopfian [L-co-Hopfian], then G is R-Hopfian [L-co-Hopfian].
The requirement of no n-bounded pure subgroups cannot be omitted.

Proof We only prove the R-Hopfian case, the L-co-Hopfian case is analogous.
Suppose that nG is R-Hopfian and  W G ! G is a surjection. Then ˛ D  � nG W
nG ! nG is a surjection and since nG is R-Hopfian , there is an endomorphism of
nG, ˇ say, with ˛ˇ D 1nG. Now it follows from the proof of [6, Proposition 113.3]
(or see [4, Lemma 2.11]) that there is an endomorphism  of G with  � nG D ˇ.
Now for all x 2 G,  .nx/ D ˇ.nx/ D ˛ˇ.nx/ D nx and so n. � 1G/ D 0 .
Thus  is an n-map in the sense of Corner—see the Appendix to this paper—and
it follows from Theorem A15 of that appendix that if G has no nonzero n-bounded
pure subgroups, then  is an automorphism, � say, and so  ��1 D 1G. Hence 
has a right inverse  ��1 and so G is R-Hopfian.

For the second part of the result take n D p, a prime and set G D Z.p/ ˚
Z.p2/.@0/. It follows from the discussions in Sect. 3 below that pG Š Z.p/.@0/ is both
R-Hopfian and L-co-Hopfian but G itself is neither R-Hopfian nor L-co-Hopfian.

ut

We also have the easy but useful:

Proposition 2.9 If G D
L

i2I Hi and each Hi is fully invariant in G, then G is
R-Hopfian [L-co-Hopfian] if, and only if, each Hi is R-Hopfian [L-co-Hopfian].

Proof The necessity is immediate from Proposition 2.5 while the sufficiency
follows from the fact that every endomorphism of G can be expressed in the form
L

i2I i, where i is an endomorphism of Hi. ut

The following notions, which are weaker than the corresponding notions men-
tioned in the introduction, will play a key role in our investigations.

Definition 2.10 A group G is said to be (sKer)-direct if the kernel of each surjective
endomorphism of G is a direct summand of G; it is said to be (mIm)-direct if the
image of each monic endomorphism of G is a direct summand of G.

The following theorem gives a complete characterization of R-Hopficity
[L-co-Hopficity] in terms of these groups, the proof is well known and hence
omitted.

Theorem 2.11 A group G is R-Hopfian [L-co-Hopfian] if, and only if, it is (sKer)-
direct [(mIm)-direct].
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It follows from the characterization in Theorem 2.11 that the classes of
R-Hopfian [L-co-Hopfian] groups are large since they necessarily contain the
classes of (Ker)-direct [(Im)-direct] groups. Groups which are (Im)-direct have been
classified by Rangaswamy [15] and include groups G where the torsion subgroup
t.G/ is a direct sum of elementary p-groups for various primes p, G=t.G/ is divisible
and every endomorphic image of G is maximally disjoint from a pure subgroup of
G; the class of (Ker)-direct groups does not seem to have been classified but it is
easy to see that in addition to the torsion-free divisible groups and the elementary
groups, groups which are free (of arbitrary rank) and torsion-free algebraic compact
groups are (Ker)-direct and hence R-Hopfian.

Note that the class of (Im)-direct [(Ker)-direct] groups is strictly contained in the
class of L-co-Hopfian [R-Hopfian] groups, indeed containment within the class of
co-Hopfian [Hopfian] groups is strict. There are even finite examples: if G is a cyclic
group of order p2, then multiplication by p has both an image and a kernel which
are not summands but the group G is both co-Hopfian and Hopfian.

The classification of torsion-free co-Hopfian groups is an easy exercise: they
are precisely the class of finite-dimensional Q-vector spaces. Similarly it is easy to
classify the torsion-free L-co-Hopfian groups:

Theorem 2.12 A torsion-free group is L-co-Hopfian if, and only if, it is divisible.

Proof The sufficiency is straightforward since all divisible groups are (Im)-direct
and hence L-co-Hopfian.

Conversely suppose that G is a torsion-free L-co-Hopfian group. For each natural
number n, let n denote the endomorphism of G corresponding to multiplication by
n. Then n is monic and hence there is an endomorphism  of G with  n D 1G.
However, n is central in End.G/ and so n D 1G. Hence n is a unit in End.G/
and so G is n-divisible. Since n was arbitrary, G is then divisible. ut

Corollary 2.13 A torsion-free group is both R-Hopfian and L-co-Hopfian if, and
only if, it is divisible.

Proof This follows immediately from Theorem 2.12 and the fact that torsion-free
divisible groups are R-Hopfian since, as observed above, they are (Ker)-direct. ut

Our next example shows us that no simple characterization of groups which are
both R-Hopfian and L-co-Hopfian is likely to be achieved. We refer to [6, §112] for
the notion of �-regularity.

Example 2.14 A group having a left �-regular endomorphism ring is both
R-Hopfian and L-co-Hopfian; in fact it is both Hopfian and co-Hopfian.

Proof If End.G/ is �-regular, then it follows from Proposition 112.9 [6], that for
any endomorphism  of G, we have a positive integer m and a decomposition G D
Kerm˚ Imm. If  is onto this forces Kerm D 0, whence Ker D 0 and  is an
automorphism. A similar argument using  monic establishes the result. ut
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3 Torsion Groups

We begin with an example that shows that arbitrary direct sums of R-Hopfian
[L-co-Hopfian] groups need not be R-Hopfian [L-co-Hopfian].

Example 3.1 The group B D
L1

nD1 Z.p
in/, with i1 < i2 < � � � < it < : : : , is neither

R-Hopfian nor L-co-Hopfian.

Proof Let en denote a generator of the group Z.pin/ and consider the endomorphism
 of B which acts as the left Bernoulli shift: e1 7! 0; e2 7! e1; : : : ; enC1 7! en : : : ;
then  is surjective but, as the kernel is not a summand of B, by Theorem 2.11, B is
not R-Hopfian.

The proof that B is not L-co-Hopfian is similar using the right algebraic Bernoulli
shift: en 7! p.inC1�in/enC1, and the fact that its image is not a summand. ut

Note that it follows immediately from Example 3.1 that an unbounded direct sum
of cyclic p-groups can never be R-Hopfian nor L-co-Hopfian: any such group must
contain a summand of the form of B above and summands inherit R-Hopficity and
L-co-Hopficity by Proposition 2.5.

Our first result establishes the unsurprising fact that homocyclic p-groups are
both R-Hopfian and L-co-Hopfian. There are two possible different approaches
to proving this: a direct, and possibly more insightful, approach and an approach
utilizing Theorem 2.8. Considering the merits of both approaches we use the direct
proof for establishing L-co-Hopficity and use Theorem 2.8 for showing R-Hopficity.

Proposition 3.2 A homocyclic p-group A is both R-Hopfian and L-co-Hopfian.

Proof First note that in a homocyclic p-group A of exponent n, an element a 2 A
is divisible by pk if and only if pn�ka D 0 (for 0 � k � n). We deal with the
L-co-Hopfian case first. It follows from Theorem 2.11 that it will suffice to show
that A is (mIm)-direct. Let A D

L

i2Iheii, where the order of each ei is pn. Let  be
an injective endomorphism of A; since A is bounded it will suffice to show that the
image .A/ is pure in A.

Pick an element a 2 .A/\pkA, then a D .x/ for some x 2 A, and a D pka0 for
some a0 2 A. Multiplying by pn�k, we have pn�ka D pn�k.x/ D pna0 D 0. Hence,
.pn�kx/ D 0 and since  is injective, we have pn�kx D 0, and thus x is divisible
by pk. Therefore, a D .x/ D .pky/ D pk.y/ 2 pk.A/ and .A/ is pure in A, as
required.

For R-Hopficity observe that if the exponent of A equals 1, then A is elementary
and thus is certainly R-Hopfian. If the exponent of A is n > 1, then pn�1A is
R-Hopfian and, as A clearly has no pn�1-bounded pure subgroups, it follows from
Theorem 2.8 that A is R-Hopfian. ut

Our next result shows that there are considerable restrictions on the p-groups
which can be R-Hopfian or L-co-Hopfian.



R-Hopfian and L-co-Hopfian Groups 341

Proposition 3.3 A direct sum of an infinite rank homocyclic p-group and a cyclic
p-group of smaller exponent is neither R-Hopfian nor L-co-Hopfian. Consequently
a direct sum of two homocyclic p-groups of infinite rank and of different exponents
is neither R-Hopfian nor L-co-Hopfian.

Proof The arguments for R-Hopficity and L-co-Hopficity are broadly similar so we
give details of just the L-co-Hopficity case.

Since a direct summand of an L-co-Hopfian group is again L-co-Hopfian, it
suffices to show that a direct sum of a countable rank homocyclic p-group and a
cyclic p-group of smaller exponent is not L-co-Hopfian. Suppose then that G D
hei ˚

L1
iD1hfii, where o.e/ D pn; o.fi/ D pnCk for each i and k > 0. Consider the

map  W G! G as follows (similar to the forward shift):

e 7! pkf1; fi 7! fiC1.i � 1/:

It is easy to see that  is a monomorphism. Now suppose on the contrary that there
is an endomorphism  with   D 1G. So on the one hand,  .e/ D e, on the other
hand, .e/ D  .pkf1/ D pk.f1/, hence e D pk.f1/, this is not possible since the
height of e in G is 0, but the height of pk.f1/ in G is � k > 0.

The final statement follows immediately from the fact that a direct sum of two
homocyclic p-groups of infinite rank and of different exponents has a summand
which is a direct sum of an infinite rank homocyclic p-group and a cyclic p-group
of smaller exponent. ut

The following technical lemma will simplify arguments we require later.

Lemma 3.4 Let A be an R-Hopfian [L-co-Hopfian group] and B an arbitrary
group. If a surjective endomorphism [monic endomorphism] ˚ of A ˚ B has a
matrix representation of the form ˚ D .

˛ 	
ı ˇ /, where ˇ is an automorphism of B,

then ˚ has a right [left] inverse � , i.e., ˚� D 1 [�˚ D 1].

Proof We give only the argument for L-co-Hopficity, the argument for R-Hopficity
is dual. So assume that ˚ represents a monic endomorphism of A˚ B.

Pre-multiplying ˚ by the invertible matrix � D . 1 �	ˇ�1

0 ˇ�1 / and post-multiplying

it by the invertible matrix ˙ D .
1 0

�ˇ�1ı 1 / reduce ˚ to a diagonal matrix �˚˙ D

. ˛�	ˇ�1ı 0
0 1

/ which is again injective.
Claim that ˛�	ˇ�1ı is injective. Suppose, on the contrary, that there is a nonzero

element a 2 A with .˛�	ˇ�1ı/.a/ D 0, then the injection�˚˙ maps the nonzero
element .a; 0/ to .0; 0/—contradiction.

Now since A is L-co-Hopfian, there is an endomorphism � of A such that �.˛ �
	ˇ�1ı/ D 1. If � D . � 0

0 1
/, then ��˚˙ D 1. Hence ˙�� is the required left

inverse of ˚ . ut

Proposition 3.5 (i) If A is an R-Hopfian [L-co-Hopfian] group, B a Hopfian
[co-Hopfian] group and Hom.A;B/ D 0 [Hom.B;A/ D 0], then A ˚ B is
R-Hopfian [L-co-Hopfian];
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(ii) If A is an R-Hopfian [L-co-Hopfian] p-group of exponent n and B is a Hopfian
[co-Hopfian] p-group that has no pn-bounded pure subgroups, then A ˚ B is
R-Hopfian [L-co-Hopfian].

Proof We deal first with the R-Hopficity.

(i) An arbitrary surjection of A˚ B has the form � D .
� �
0 � / and this forces � to

be a surjection of B. Since B is Hopfian this implies that � is an automorphism
of B. It follows from Lemma 3.4 that � has a right inverse and so A ˚ B is
R-Hopfian, as required.

(ii) Let � D .
� �

 � / be an arbitrary surjective endomorphism of A ˚ B. Then


.A/ C �.B/ D B, and so pn
.A/ C pn�.B/ D pnB, implying that �.pnB/ D
pnB ¤ 0. Thus � � pnB is a surjection of the non-trivial Hopfian group pnB and
so � � pnB is an automorphism of pnB. By Fuchs [6, Proposition 113.3], there
is an automorphism  of B with  � pnB D � � pnB. Hence pn.� � / D 0,
and as  is an automorphism of B, � is a pn-map of B in the sense of Corner—
see the Appendix. Since B has no pn-bounded pure subgroups, it follows from
Theorem A.14 of the Appendix that � is an automorphism of B. It follows
immediately from Lemma 3.4 that � has a right inverse and so A ˚ B is
R-Hopfian.

The argument for L-co-Hopficity in part (i) follows a similar argument to that
used for R-Hopficity noting that in this case endomorphisms of A˚ B have matrix
representations of the form � D .

� �

 � / with � D 0.

For part (ii) the argument is entirely dual to that used for R-Hopficity. ut

We can now classify those direct sums of cyclic p-groups which are R-Hopfian
[L-co-Hopfian]; the situation parallels that in Hopfian [co-Hopfian] groups where
the only direct sums of cyclic groups which are Hopfian [co-Hopfian] are the finite
groups and so Hopficity and co-Hopficity coincide for such groups.

Theorem 3.6 A direct sum of cyclic p-groups G is R-Hopfian [L-co-Hopfian] if,
and only if, it has the form G D B1 ˚ B2 ˚ � � � ˚ Bk, where B1 D

L

�1
Z.pn1 /

for some cardinal �1 which may be infinite and each Bi .2 � i � k/ is of the form
Bi D

L

�i
Z.pni/ with �i finite and n1 < n2 < � � � < nk. In particular, a direct sum of

cyclic groups is R-Hopfian if, and only if, it is L-co-Hopfian.

Proof For the sufficiency note that B1 is R-Hopfian [L-co-Hopfian] and B2˚� � �˚Bk

is a Hopfian [co-Hopfian] p-group which has no pn1 -bounded pure subgroups and
thus the result follows from Proposition 3.5(ii) above.

Conversely, suppose that G D
L1

iD1 Bi is R-Hopfian [L-co-Hopfian] and each
Bn is homocyclic of exponent n. It follows, as noted after Example 3.1, that almost
all the Bn are zero. Let Br be the first homocyclic component of infinite rank; if no
such exists, then G is a finite group and clearly has the desired form. It follows from
Proposition 3.3 that each Bi .1 � i < r/must be zero since summands of R-Hopfian
[L-co-Hopfian] groups are again R-Hopfian [L-co-Hopfian]. Furthermore, it follows
from the same proposition that no Bj with j > r can be of infinite rank. Thus G is of
the claimed form.
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The final statement follows from the fact that the classifications of R-Hopficity
and L-co-Hopficity coincide for the class of direct sums of cyclic groups. ut

Recall that a reduced p-group G is said to be semi-standard if for each n < !,
the Ulm invariant fn.G/ is finite; it is well known that both Hopfian and co-Hopfian
p-groups are necessarily semi-standard.

Our next result shows that Hopficity and R-Hopficity [co-Hopficity and L-co-
Hopficity] coincide for semi-standard p-groups.

Proposition 3.7 A semi-standard p-group is Hopfian [co-Hopfian] if, and only if, it
is R-Hopfian [L-co-Hopfian].

Proof The necessity is clear in both cases. For the sufficiency, by Proposition 2.1,
it is enough to prove that every semi-standard p-group G is directly finite. Suppose
G Š G ˚ K. Then f� .G/ D f� .G/ C f� .H/ for all ordinals � . If � < !, we must
have f� .K/ D 0 as the cardinals in question are finite. Hence a basic subgroup of K
is the zero subgroup; since K is reduced, we are forced to have K D 0. ut

We can now classify R-Hopficity [L-co-Hopficity] for reduced p-groups in terms
of Hopficity [co-Hopficity].

Proposition 3.8 A reduced p-group G is R-Hopfian [L-co-Hopfian] if, and only if,
it is of the form G D

L

� Z.p
m/ ˚ H, where � is a cardinal which may be infinite

and H is Hopfian [co-Hopfian] and all Ulm invariants fi.H/.i < m/ are zero.

Proof The condition on the Ulm invariants of H ensure that H has no pm-bounded
pure subgroups and so the sufficiency follows from Proposition 3.5(ii).

Conversely suppose that G is a reduced R-Hopfian [L-co-Hopfian] p-group.
Let Bik be the first nonzero infinite homogeneous component of a basic subgroup
of G; if no such component exists, then G is semi-standard and hence Hopfian
[co-Hopfian] by Proposition 3.7 above, so we are finished in that case. It follows
from Proposition 3.3 that Bin .n > k/ cannot be infinite since Bik ˚ Bin is a
summand of G. Furthermore, Bij .j < k/ cannot be nonzero by the same proposition.
Simplifying notation by writing in D m, we conclude that G D

L

� Z.p
m/˚ H and

that H is semi-standard and all Ulm invariants fi.G/ .i < m/ are zero. ut

Proposition 3.8 can be re-phrased to say that a reduced R-Hopfian [L-co-Hopfian]
p-group G differs from a reduced Hopfian [co-Hopfian] p-group in that it may
have at most one infinite homogeneous component and this corresponds to the
summand of G of least exponent. Notice also that although a reduced R-Hopfian
[L-co-Hopfian] p-group G can be of arbitrarily large cardinality, there is an integer
n such that the cardinality of pnG is at most 2@0 , the cardinality of the continuum.

Note that it is not necessary to specify that the group be reduced in the case of
R-Hopficity: the group Z.p1/ is not R-Hopfian for any prime p. For L-co-Hopfian
groups we need some further work to handle the situation where the group may have
a divisible summand.

Lemma 3.9 The group G D Z.pn/˚
L

@0
Z.p1/ is not L-co-Hopfian.
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Proof Write G as G D hei˚Z.p1/f1˚Z.p1/f2˚Z.p1/f3˚� � � , where the order of
e is pn. Consider the forward shift mapping  W G! G, e 7! 1=pnf1; f1 7! f2; f2 7!
f3; � � � . Then  is an injective endomorphism of G. Suppose on the contrary that there
is an endomorphism  with   D 1G. Then  .e/ D e, that is,  .1=pnf1/ D e,
but 1=pnf1 D p.1=pnC1f1/, so  .1=pnf1/ D p .1=pnC1f1/ D px for some x 2 G,
this is impossible since e is not divisible by p. ut

Theorem 3.10 If A is a non-trivial, reduced L-co-Hopfian p-group and D is a
divisible p-group, then the direct sum A ˚ D is L-co-Hopfian if, and only if, D is
of finite rank, D Š

L

n Z.p
1/, for some finite n.

Proof The sufficiency follows from the fact that a finite rank divisible p-group D
is actually co-Hopfian: any injective endomorphism of D has image whose rank is
equal to that of D and, since the image is a summand, it must be the whole of D, so
that the injection is an automorphism. Now apply Proposition 3.5(i) and it follows
immediately that A˚ D is L-co-Hopfian.

Conversely, suppose for a contradiction, that A˚D is L-co-Hopfian but that D has
infinite rank. Then there is a summand of A˚D of the form Z.pn/˚

L

@0
Z.p1/ and

this summand is also L-co-Hopfian. This, however, contradicts Lemma 3.9. Thus D
has finite rank, as required. ut

We summarize the preceding results as:

Theorem 3.11 A p-group G is R-Hopfian if, and only if, it is of the form G D
L

� Z.p
m/ ˚ H, where � is a cardinal which may be infinite, H is Hopfian and all

Ulm invariants fi.H/.i < m/ are zero and D is a finite direct sum of copies of Z.p1/.
A p-group G is L-co-Hopfian if, and only if, it is of the form (i) G D

L

� Z.p
m/˚

H ˚ D,
L

� Z.p
m/˚ H non-trivial, where � is a cardinal which may be infinite, H

is reduced co-Hopfian and all Ulm invariants fi.H/.i < m/ are zero and D is a finite
direct sum of copies of Z.p1/; or of the form (ii) G D

L

� Z.p
1/, where � is an

arbitrary cardinal.
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Appendix: Near Automorphisms of an Abelian Group

A.L.S. Corner, Late of Worcester College, Oxford

Introductory Remarks

The notion of a near automorphism was discussed by Corner in this paper dating
from sometime around the early 1960s. It should be noted that it is a different
concept from that used nowadays in the theory of torsion-free Abelian groups
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of finite rank. The note was discovered among Corner’s papers after his death.
The hand-written material has been transcribed by Brendan Goldsmith and some
comments (in italics) have been added. Please note that in this Appendix, mappings
are always written on the right.

The Main Result

Let G be an Abelian group and � the identity map on G.

Definition An endomorphism " of G is called a near automorphism if q."�ı/ D 0
for some integer q � 1.

We characterize those groups whose near automorphisms are all automorphisms
and those whose monomorphic or epimorphic near automorphisms are all automor-
phisms.

Theorem A.12 Every near automorphism of G is an automorphism if, and only if,
G has no nonzero bounded pure subgroups.

Theorem A.13 The following are equivalent:

(M) Every monic near automorphism of G is an automorphism
(E) Every epic near automorphism of G is an automorphism
(B) G has no bounded pure subgroup of infinite rank.

If q is a positive integer, we call an endomorphism " of G a q-map if q."�˛/ D 0
for some automorphism ˛ of G. We say that a group G is q-bounded if qG D 0. It
is clear that Theorems A.12 and A.13 are contained in the more precise:

Theorem A.14 Every q-map of G is an automorphism if, and only if, G has no
nonzero q-bounded pure subgroup.

Theorem A.15 The following are equivalent:

.Mq/ Every monic q-map of G is an automorphism
.Eq/ Every epic q-map of G is an automorphism
.Bq/ G has no q-bounded pure subgroup of infinite rank.

The proofs of Theorems A.14, A.15 are based on two lemmas which are largely
computational in nature. In the proof of Lemma A.16 below, Corner used the
unexplained term E.x/ in relation to the element x of a p-group G; clearly this was
intended to mean the exponent, i.e., the least integer n such that pnx D 0. In modern
notation this is often denoted by either e.x/ or O.x/.

Lemma A.16 If G has no nonzero q-bounded pure subgroup and if  is an
endomorphism of G such that q D 0, then n D 0 for some integer n � 1.
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Proof (i) If G is torsion-free, then q D 0 implies that  D 0; so we may take
n D 1.

(ii) Suppose that G is a p-group and let pk be the highest power of p dividing q.
Since multiplication by qp�k affects an automorphism of G, therefore pk D 0;
and it is clear that G has no pk-bounded pure subgroup. We prove that kC1 D 0.
If k D 0 there is nothing to prove; so we suppose that k � 1.

Note first that if x 2 G and E.x/ D 1, then hG.x/ � k. For if hG.x/ D l < k, then
x D ply for some y 2 G, and it is clear that hyi is a pure subgroup of order plC1, a
factor of pk, contrary to our hypothesis.

Let P.n/ denote the proposition: x 2 G;E.x/ D n � k) xn D 0. We prove
P.n/ by induction on n. Since P.0/ is trivial, we may suppose that 1 �
n � k and that P.r/ is true for r < n. If x 2 G and E.x/ D n, then
E.pn�1x/ D 1, so hG.pn�1x/ � k and therefore pn�1x D pkz for some z 2 G.
So pn�1.x/ D z.pk/ D 0, whence E.x/ � n � 1 and so .x/n�1 D 0, i.e.,
xn D 0.

Since for each x 2 G we have pk.x/ D 0, so that E.x/ � k, therefore it follows
that xkC1 D .x/k D 0. Thus kC1 D 0.

(iii) If G is mixed, write q D
Q

p pk.p/ and set n D 1C maxp k.p/. For each prime
p, the p-component Tp of the torsion subgroup T of G is mapped into itself
by , so that  induces an endomorphism of Tp. Since this endomorphism of
Tp is annihilated by pk.p/, n vanishes on Tp by (ii). Consequently n vanishes
on T . But the endomorphism of the torsion-free group G=T induced by  is
annihilated by q and so vanishes by (i). Thus n vanishes on T and induces the
zero endomorphism of G=T; so n D 0 by the Five Lemma.1

ut

Lemma A.17 Let " be an endomorphism of G with q."� ı/ D 0, let A be a maximal
q-bounded pure subgroup of G, and B a direct complement of the direct summand
A: G D A˚ B. Then

G D AC Im" and B \ Ker " D 0:

Moreover, there exist endomorphisms �;�; �0; �0 of G such that

� D ıA�ıA D .ıA C �ıB/";

�0 D ıA�
0ıA D ".ıA C ıB�

0/;

where ıA; ıB are the projections of G onto A;B corresponding to the direct decompo-
sition G D A˚ B.

1In the original hand-written note there was a section giving the standard Five Lemma with the
additional claim that mappings which are zero on a subgroup and its factor group must be zero on
the whole group. This (erroneous) claim had been crossed out. However, it is trivial to show that if
the map  is zero on a subgroup H of G and induces the zero map on G=H, then 2 D 0 and this
clearly suffices here. BG.
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Proof Write " D ı C  so that q D 0. Then ıBıB may be regarded as an
endomorphism of B. Since q.ıBıB/ D 0 and B has no nonzero q-bounded pure
subgroup, it follows from Lemma A.16 that

.ıBıB/
n�1 D 0 for some integer n � 2: (1)

Write � D ıB � .ıBıB/C .ıBıB/2 � � � � C .�ıBıB/n�2; since ıB"ıB D ıB C ıBıB,
we have, in view of (1)

� ıB"ıB D ıB"ıB� D ıB: (2)

The first claims now follow easily: since ıB D ı � ıA, for any x 2 G we have
x D xıA C xıB D .x � x� ıB"/ıA C .x� ıB/" 2 A C G". And if y 2 B \ Ker ", then
y D yıB D yıB"ıB� D y"ıB� D 0.

Since ıBıB D ıB, we may write (1) in either of the forms ıB.ıB/n�1 D 0 or
.ıB/n�1ıB D 0. Pre- and post-multiplying by , these become

.ıB/
n D 0 and .ıB/

n D 0: (3)

Substituting ıB D "ıB C ıA � ı in the first of these, we find that

0 D .�ıB/
nıA D Œı � ."ıB C ıA/�

nıA D .
n
X

rD0

.�/r

 

n

r

!

."ıB C ıA/
r/ıA

D ." � ı/ıA C ."ıB C ıA/.
n
X

rD1

.�/r

 

n

r

!

."ıB C ıA/
r�1/ıA;

whence

ŒıA � ıA
n
P

rD1
.�/r

�n
r

	

."ıb C ıA/r�1ıA� D "Œıa C ıB
n
P

rD1
.�/r

�n
r

	

."ıb C ıA/r�1ıA�.

Taking �0 to be the left-hand side, and �0 to be the summation on the right,
we see that �0 D ".ıA C ıB�0/; and it is clear that �0 D ıA�0ıA. The proof of the
corresponding statement for .ıA C ıB�/" is similar. ut

With Lemmas A.16, A.17 established, it is now easy to give the desired proof of
Theorem A.14.

Proof of Theorem A.14 .(/ Let G be a group with no nonzero q-bounded pure
subgroup, and let " be a q-map of G, so that q."�˛/ D 0 for some automorphism ˛.
Since q."˛�1 � ı/ D 0, and " is an automorphism, monomorphism or epimorphism
if, and only if, "˛�1 is one, it is enough to consider the case ˛ D ı. Then q."�ı/ D 0.
In Lemma A.17 we may take A D 0;B D G. Then we have G D Im"; Ker " D 0;
which proves that " is an automorphism of G.
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.)/ Let G be a group with a q-bounded pure subgroup A > 0. Then A is a direct
summand of G, so it has a direct complement B (say). If ıB is the corresponding
projection of G onto B, then ıB is not an automorphism of G; but it is a q-map
because q.ıB � ı/ D qıA D 0. ut

The proof of Theorem A.15 proceeds by showing firstly that .Bq/ implies both
.Mq/ and .Eq/; the reverse implications are established using a counter-positive
argument.

Proof of Theorem A.15 .1/ Suppose first that G satisfies .Bq/, i.e., that G has no
q-bounded pure subgroup of infinite rank, and let " be a q-map of G which
is either (i) a monomorphism or (ii) an epimorphism. We prove that in either
case " is an automorphism of G. As in the case of Theorem A.14 we may
suppose that q." � ı/ D 0. Take A;B as in Lemma A.17, and let �; �0; �; �0

be endomorphisms as given in that lemma. Note that A being a q-bounded pure
subgroup of G is of finite rank, and so is in fact a finite group.

(i) If x 2 A \ Ker�, then 0 D x� D .x C x�ıB/", whence x C x�ıB D 0

because " is a monomorphism, so x D �x�ıB 2 A \ B, i.e., x D 0. Now
it follows from the properties of � given in Lemma A.17 that � may be
regarded as an endomorphism of A; what we have just proved shows that,
so regarded, � is a monomorphism. Since A is finite, it follows that � maps
A onto itself. Consequently, given any x 2 A, there exists y 2 A such that
x D y�, i.e., x D y.ıA C �ıB/" 2 G". So A � G"; whence G D G". Thus
the monomorphism " is also an epimorphism; so it is an automorphism, as
required.

(ii) If x 2 A, then, because " is given to be an epimorphism, there exists y 2 G
such that x D y"; but x D xıA, so from the properties of �0 we find that
x D y"ıA D y�0 � y"ıB�0 D y�0 � xıB�0; and since x 2 A D Ker ıB, it
follows that x D y�0. Thus �0, regarded as an endomorphism of the finite
group A, is epic, and therefore monic; so A\Ker�0 D 0. Now, if x 2 Ker ",
we have from the properties of �0 that xıA�0 D x".ıA C ıB�0/ D 0, so
xıA D 0 and therefore x D xıB 2 B \ Ker "; whence x D 0. We conclude
that the epimorphism " is also a monomorphism, and so an automorphism.

(2) Suppose that G does not satisfy .Bq/, so that G admits a q-bounded pure
subgroup A (say) of infinite rank. Now A is a direct sum of cyclic groups
of orders dividing q; passing to a direct summand of A, if necessary, we
may suppose that A is a direct sum of countably many isomorphic cyclic

subgroups, say A D
1
L

iD1
heii. Let B be a direct complement of A in G.

Now it is clear that A admits monomorphic q-maps which are not epic, and
epimorphic q-maps which are not monic; e.g., the endomorphisms defined
by ei 7! eiC1 .i � 1/ and by e1 7! 0; ei 7! ei�1 .i � 2/. If we extend
such an endomorphism of A to the whole of G by requiring it to coincide
with the identity on B, then the resulting endomorphism of G is clearly a
monomorphic or epimorphic q-map, but not an automorphism. ut
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On the Abelianization of Certain Topologist’s
Products

Wolfgang Herfort and Wolfram Hojka

Abstract For the topologist’s product ~i Gi where each Gi is the group of p
elements, a description of its abelianization is provided. It turns out that the latter
is isomorphic to

�L

i Z.p/
	

˚ P=S, where P D
Q

i Z is the Specker group and
S D

L

i Z.

Keywords Wild homology • Shrinking wedge • Topologist’s product • Higman
completeness • Cotorsion • Algebraically compact • Specker group

Mathematical Subject Classification (2010): 20K25, 20E06, 20F10, 57M30,
08A45

1 Introduction

The topologist’s product G D ~i
1 Gi, for a given sequence of groups Gi, has its
origin in work of Griffiths and Higman from the 1950s, see [17, 19]. Given spaces
Xi, good at their base point, with fundamental groups Gi, the topologist’s product
describes the fundamental group of their shrinking wedge. For a detailed explanation
see [17, Sect. 6] and [5, Sect. 2].

To algebraically define ~i
1 Gi, one first considers the canonical inverse system
.�n; pn/ of free products �n WD 	

n
iD1Gi and bonding maps pn W �n ! �n�1 with

kernel the normal closure of Gn in �n. In the inverse limit lim
 �n �n the topologist’s

product consists exactly of those coherent sequences, for which the number of
factors from any one group Gi is bounded (see [22, p. 532]).

There has been interest in computing the structure of the abelianization Ab.G/
particularly when all Gi are isomorphic to Z (thus computing the singular homology
of the Hawaiian earring) and Eda and Kawamura in [14] describe it in the form
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Ab.G/ Š P˚ P=S. Let us recall that P stands for the Specker group, the cartesian
product ZN D

Q

i
1 Z, while S is the direct sum Z
.N/ D

L

i
1 Z. S, in a canonical
fashion, appears as a subgroup of P.

The main objective of the present article is to derive a description of the
abelianization of G D ~i
1 Gi when every Gi, instead of being cyclic of infinite
order, is a copy of the cyclic group Z.p/ of order p, where p is a fixed prime. When
e.g. p D 2, one would thus consider the singular homology of a shrinking wedge of
projective planes. Here is what we want to prove:

Theorem 1.1 Let G D ~i
1 Z.p/ where p is a fixed prime. Then

Ab.G/ Š
�
M

i
1
Z.p/

�

˚ P=S:

Notice the striking difference to [14]: when the Gi were all Z, the first summand
of the formula was a product of the factors, here, however, it is a sum!

2 Historical Perspective

The topologist’s product made its first implicit appearance in the literature in an
article [19] by Higman. There the case where all factor groups are the integers
is used as a counterexample to a question on freely irreducible groups. A few
years later, Griffiths in [17] established the mentioned link to topology and thus
the name of these products: he showed them to be the fundamental groups of
shrinking wedges of spaces each required to be good at the base point. The
“shrinking” property is usually thought of in metric terms, namely that the diameters
of the wedged spaces converge to 0; but it is also topologically induced by the
Tychonoff-product of spaces, as opposed to using the weaker box topology for
regular weak wedges (see [5, Sect. 2]). Griffiths’ argument contained a gap that was
closed by Morgan and Morrison in [22]. In [9] and a series of subsequent papers,
Eda introduced and developed an infinite word calculus that allowed many novel
arguments. For example, he used it to prove a non-commutative version of Chase’s
lemma in [10] and to define a non-commutative analogue to slender or cotorsion-
free groups in [13]. It further led to more information about maps to free products
in [11].

Independently, Cannon and Conner in [2–4] devised a more topologically moti-
vated approach to these infinite word groups and their properties, also considering
generalizations to order types of a larger cardinality.

The inverse limit of free products used in the definition of the topologist’s product
~i
1 Z has also appeared in the description of arbitrary one-dimensional spaces
given by Curtis and Fort in [6], who proved that their fundamental groups are locally
free. Infinite words have also been useful for further studies of these fundamental
groups as well as of those of planar spaces [15, 24].
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The special case ~i
1 Z corresponds to the fundamental group of the Hawaiian
earring and has received the greatest attention. A complete description of its
homology group H1 as the abelianization of ~i
1 Z has been accomplished in [14].
More recently, research has been extended to higher-dimensional variations and
there are some results on problems related to their homology groups in [1, 18, 21].

The present article avoids making use of infinite words, instead relying on a
technique already developed by Higman and adapted in our Lemma 3.5. Another
difference to the approach outlined in [8, 9, 14] is in how algebraic compactness
is confirmed. Instead of going through the more cumbersome calculation that the
group is OZ-adically complete modulo its Ulm subgroup, Theorem 3.3 directly
connects the solvability of infinite systems of equations to cotorsion. Then, as is
known, torsion-freeness implies the algebraic compactness.

We have restricted our attention to the case of a countable index set, topologically
corresponding to the first countable setting. Going beyond that presents multiple
obstacles. First, competing definitions can claim naturality, either the free complete
product

i2I Gi defined in [9] or the topologically defined alternative “~i2I Gi”
(in Eda’s notation:

�i2I Gi). Secondly, certain properties are not necessarily
preserved: Shelah and Strüngmann in [23] proved that for an uncountable index set
I and nontrivial groups Gi the group G WD

i2I Gi always admits an epimorphism
onto Z. In particular, if all Gi are torsion groups, then the normal closure N of the
subgroup generated by their union must be contained in the kernel. This means
that G=N also maps onto Z. Then the abelianization of G=N cannot be cotorsion,
for no cotorsion group admits an epimorphism to Z. On the other hand, when I is
countable, this abelianization is cotorsion—a crucial fact to be used during the proof
of Lemma 4.1(d) below.

3 Preliminaries

Before giving a proof let us recall a few facts from the very recent article [18].

Definition 3.1 Let us call a group G Higman-complete if for any sequence
f1; f2; : : : 2 G, and for a given sequence of words w1;w2; : : :, there exists a sequence
h1; h2; : : : 2 G such that all equations

hi D wi.fi; hiC1/

hold simultaneously.

Lemma 3.2 If G is Higman-complete, then so is every epimorphic image. In
particular, its abelianization Ab.G/ is Higman-complete.

Proof Let N be a normal subgroup of G and hi D wi.fi; hiC1/ be a system of
equations for elements in G=N as in the definition. Every constant fi 2 G=N can
be lifted to a Qfi 2 G, and by assumption the system Qhi D wi.Qfi; QhiC1/ admits a
sequence of Qhi as a solution, whose images hi WD QhiN=N form a solution sequence
of our given system of equations in G=N. Hence G=N is Higman-complete.
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The second statement follows by letting N be the commutator subgroup G0 of G.
ut

The next result, Theorem 3 in [18], is somewhat surprising as it exposes an
unexpected link between classical abelian group theory and wild topology. We allow
ourselves to reproduce the algebraic part of the argument from that article.

Theorem 3.3 An abelian group A is Higman-complete if and only if it is cotorsion.

Proof Suppose first that A is Higman-complete. It suffices to show that any exact
sequence 0 ! A ! G ! Q ! 0 of abelian groups splits. Consider A embedded
as a subgroup of G. Q possesses a presentation generated by the countably many
xi WD

1
iŠ and with the relations xi � .iC 1/xiC1, for i � 1. Lift the xi to elements �i in

G. The relations in Q translate into

�i D .iC 1/�iC1 C ai

for suitable elements ai in A. Since A is by assumption Higman-complete the infinite
system of equations

hi D .iC 1/hiC1 C ai

admits a solution sequence hi in A. The elements zi WD �i � hi 2 G satisfy the
relations

zi D .iC 1/ziC1:

The Z-module, say Q0, generated by Z WD fz1; z2; : : :g projects modulo A onto Q.
We still need to show that A \ Q0 D 0. Any q0 2 A \ Q0 can be presented in the
form q0 D �zj for some � 2 Z and j 2 N, due to the relations among the elements
in Z. Modulo A this tells us that �xj D 0 and, since Q is torsion-free, we must have
that � D 0, i.e., q0 D 0. Hence Q0 ' Q and thus the extension splits, as claimed.

Conversely, assume now that A is cotorsion. In the abelian group A, any system of
equations as in Definition 3.1 is of the type of a system of equations hi D dihiC1C fi
with di 2 Z and fi 2 A.

There is an algebraically compact group G such that A ' G=N for a suitable sub-
group N of G. Lift the elements fi to elements Qfi 2 G. Since every finite subsystem of
the system of equations Qhi D di QhiC1CQfi admits a solution, the algebraic compactness
of G implies the existence of a sequence of Qhi in G solving all equations; the
sequence of their images hi 2 A constitutes a solution sequence of the system
hi D dihiC1 C fi in A. Hence A is Higman-complete. ut

One of the two indispensable tools for the proof of Theorem 1.1 will be
Theorem 8 in [18]:

Theorem 3.4 Let G D ~i
1 Gi be the topologist’s product of groups Gi of
nontrivial groups of cardinality at most the continuum. Then the abelianization of
the quotient group G=N where N is generated as a normal subgroup of G by the
subgroups Gi is isomorphic to P=S.
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Our last preparation consists of a purely algebraic proof that G=N is Higman-
complete. The latter fact also follows from Theorem 4 in [18] – but one would have
to first represent G=N as the fundamental group of a certain topological space. Here
we avoid such a detour. The following lemma is essentially Lemma 1 in [19], a
variation for more general equations is used in [20, Lemma 6].

Lemma 3.5 Given a Higman system hi D wi.fi; hiC1/ in the topologist’s product
G WD ~i
1 Gi the following statements hold:

(a) If, for each i 2 N, the element fi belongs to ~j
i Gj, then the system has a unique
solution sequence in G such that also hi is contained in ~j
i Gj.

(b) Projecting G onto G=N, the equation system has a solution sequence in G=N,
in other words, G=N is Higman-complete.

Proof (a) Put Xn WD 	
n
jD1Gj, let n W Xn ! Xn�1 be the canonical projection

when factoring the normal closure of Gn in Xn. Recall that G is a subgroup of
OG WD lim

 �n Xn. For given n, a solution sequence .h.n/i /i can be defined in Xn

setting h.n/j D 1 for j � nC 1 and computing h.n/j for j � n from the equations.

One observes h.n�1/
j D n.h

.n/
j / for j and n arbitrary. Thus the compatibility

relations of the inverse system are fulfilled giving rise to a solution sequence
.hj/ in OG. Since the number of elements from Gj appearing in Xn is bounded,
when n runs through N, the members hj all belong to G. Uniqueness follows
by projecting a given solution sequence .hj/ to Xn. It then turns out that such a

projection must agree with the solution .h.n/j /.
(b) As G=N results from factoring the normal subgroup of G generated by

S

j Gj,
one can represent every element in G=N by elements in the subgroup ~j
i Gj

of G. Now the result follows from part (a). ut

4 Proof of Theorem 1.1

When G D ~i
1 Gi, then the kernel of the canonical epimorphism from G onto
Q

i
1 Gi will be denoted by K in the sequel.

Lemma 4.1 Let G D ~i
1 Gi be the topologist’s product of groups Gi Š Z.p/ for
p a fixed prime. The following statements hold true:

(a) tor.G=G0/ D tor.G/G0=G0.
(b) tor.G=G0/ D

L

i
1haiG0=G0i where ai is a generator of Gi.
(c) The factor group K=G0 is torsion-free.
(d) There is a torsion-free algebraically compact subgroup T of G=G0 such that

G=G0 Š tor.G=G0/˚ T:
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Proof (a) Consider first tor.G/, the subgroup generated by the elements of finite
order. By Conner et al. [5, Lemma 22] such elements are conjugate into
a factor Gi and thus the kernel N as used in Theorem 3.4 coincides with
tor.G/. Then certainly tor.G/G0=G0 is included in tor.G=G0/. Suppose next
that y 2 tor.G=G0/. Then there are m 2 N and x 2 G such that xm 2 G0

and xG0 D y. Since xm 2 G0 it also belongs to G0N. As a consequence of
Theorem 3.4, Ab.G=N/ Š G=G0N is torsion-free. Therefore x itself belongs to
G0N, as needed.

(b) is implied from (a) by observing that N D tor.G/ is generated by the
elements ai.

(c) Pick any y 2 tor.K=G0/. Then, by what we have just proven, there is x 2 G
with y D xG0 and x D g0ai1 : : : aik for pairwise different generators aij of Gij
and some g0 in G0. Since x 2 K and g0 belongs to K it turns out that no aij may
appear and hence x D g0, i.e., x 2 G0 showing that K=G0 is indeed torsion-free.

(d) Observe first that G=K D
Q

i
1 Gi is a vector space over the field with p ele-
ments. Therefore, as tor.G=G0/ maps injectively into G=K under the canonical
epimorphism from G=G0 onto G=K, there is vector space complement, say
U, for tor.G=G0/=.K=G0/ in G=K. Let T be the preimage of U in G=G0. By
construction T \ tor.G=G0/ � K=G0, and, as K=G0 is torsion-free by what we
have shown earlier, the desired decomposition of G=G0 is established.

Finally, for proving that T is algebraically compact, one observes from the just
established decomposition and from item (a) the isomorphisms

T Š .G=G0/=.tor.G/G0=G0/ Š G=tor.G/G0:

Since, by part (b) of Lemma 3.5, G=N D G=tor.G/ is Higman-complete, Lemma 3.2
in conjunction with Theorem 3.3, implies that G=tor.G/G0, and hence T , are both
cotorsion. Therefore, as T is torsion-free, it is algebraically compact, by Fuchs
[16, 54.5]. ut

Since the factors Gi Š Z.p/ are all abelian and the index set is countable, our
subgroup K of G agrees with G� 0 in [9]. Lemma 4.7 ibidem shows that if the
factors are, in contrast to here, n-slender, the quotient K=G0 is complete modulo
its first Ulm subgroup. Now it is known that a group is algebraically compact if
and only if, modulo its maximal divisible subgroup D, it is complete and Hausdorff,
and in that case, this subgroup D also coincides with the first Ulm subgroup, see
[7, Theorem 2.2]. Thus, the following statement can be seen as a parallel to
[9, Lemma 4.7].

Corollary 4.2 The factor group K=G0 is algebraically compact.

Proof Since G=K is abelian of exponent p, by the very definition of K, so is the sub-
quotient T=.K=G0/. Hence T=.K=G0/ is algebraically compact and reduced. Next
observe that the maximal divisible subgroup D of G=G0 is a subgroup of K=G0.
Since T is cotorsion by Lemma 4.1(d), so is the quotient T=D, and as .K=G0/=D
is a subgroup of the reduced group T=D with quotient isomorphic to the reduced



On the Abelianization of Certain Topologist’s Products 357

group T=.K=G0/, we infer from [16, 54.(B)] that .K=G0/=D is cotorsion. Therefore,
by Fuchs [16, 21.2], K=G0 D L ˚ D, with both, L Š .K=G0/=D and the divisible
D cotorsion, so K=G0 is cotorsion. Recall from Lemma 4.1(c) that K=G0 is also
torsion-free and hence it is algebraically compact. ut

Turning to the proof of the main result.

Proof (of Theorem 1.1) Recall that, in the case of all Gi cyclic of finite order, the
normal subgroup N of G generated by the union

S

i Gi coincides with tor.G/. As
noted in Lemma 4.1(d) and (a), one has G=G0 Š tor.G/G0=G0 ˚ T D NG0=G0

˚ T . Therefore G=NG0 Š T . On the other hand, as a consequence of Theorem 3.4,
G=NG0 Š P=S. Hence

G=G0 Š
�
M

i
1
Z.p/

�

˚ P=S;

as has been claimed. ut

Let us mention that for Gi Š Z the proof in [14] depends on Lemma 4.11 in [9].
There has been discussion about its correctness in [13] and [12]. The results in the
present paper and their derivation do not depend upon that lemma.
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Abstract We prove that !-categorical dp-minimal groups are nilpotent-by-finite, a
small step in the general direction of proving this for NIP !-categorical groups. We
also show that in dp-minimal definably amenable groups, f -generic global types are
strongly f -generic.
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amenable groups
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1 Introduction

Many results in the model theory of algebraic structures have the form: if A is an
algebraic structure with some model theoretic property, then A satisfies some nice
algebraic properties. There are many examples of such results, e.g., every !-stable
infinite field is algebraically closed [18]. Here our algebraic structure is a group G
and the model theoretic property is dp-minimality, which we define now.

A (complete, first order) theory T is dp-minimal if the following cannot happen.
There are two formulas ' .x; y/,  .x; z/with x a singleton (y and z perhaps not), and
sequences hai j i < !i and

˝

bj

ˇ

ˇ j < !
˛

such that jaij D jyj,
ˇ

ˇbj

ˇ

ˇ D jzj for all i; j < !
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and for every i; j < ! there is some element ci;j (all in the monster model C ˆ T)
such that for all i0; j0; i; j < !, '

�

ci;j; ai0
	

holds iff i D i0 and  
�

ci;j; bj0
	

holds iff
j D j0.

At first this definition might seem arbitrary, so we will give some motivation.
Recall that T is NIP (without the independence property) or dependent, if the
following cannot happen. There is a formula ' .x; y/ and sequences hai j i < !i,
hbs j s � !i (all in the monster model C of T) such that ' .ai; bs/ holds iff i 2 s.

NIP plays an important role in current research in model theory. For more on
general NIP, see [27].

Strong dependence is a strengthening of NIP, where one assumes not only that
there is no formula ' .x; y/ as in the definition, but moreover, that there are no
h'i .x; yi/ j i < !i and

˝

ai;j

ˇ

ˇ i; j < !
˛

in C (where
ˇ

ˇai;j

ˇ

ˇ D jyij) such that for every
$ W ! ! !, there is some b$ 2 Cjxj such that 'i

�

b$; ai;j
	

holds iff $ .i/ D j.
(Checking that if T is strongly dependent then it is dependent is a nice exercise in
the definitions.)

Dp-minimality is then a natural subclass of strong dependence, which was first
properly defined and studied in [20].

Dp-minimal theories are in some sense the simplest case of NIP theories, but
still they include all o-minimal and c-minimal theories and the theory of the p-
adics (see [27, Example 4.28]). This restrictive yet still interesting assumption about
T yields many conclusions, evident by the amount of research done in the area,
sometimes with the additional assumption of a group or field structure. See, e.g.,
[9, 12–15, 25, 26] to name a few examples.

This note contains some results (mostly) on dp-minimal groups, contributing to
the general research in the area.

In Sect. 2 we prove that all dp-minimal !-categorical groups are nilpotent-by-
finite. In Sect. 2.7 we prove a general result on NIP groups: there is a finite A with
C .A/ abelian.

In Sect. 3 we prove that in definably amenable dp-minimal groups, being f -
generic is the same as being strongly f -generic.

All definitions are given in the appropriate sections.

2 !-Categorical dp-Minimal Groups

2.1 Introduction

It is well known that stable !-categorical groups are nilpotent-by-finite by Baur et
al. [4], Felgner [10] where in [4] it is proved that !-categorical !-stable groups
are abelian-by-finite (and it is conjectured that this is true for stable !-categorical
groups as well). In [19] Macpherson proves that !-categorical NSOP groups (and
in particular simple in the model theoretic sense) are also nilpotent-by-finite.
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Krupinski generalized the stable case in [17, Theorem 3.4] by proving that every
!-categorical NIP group that has fsg (finitely satisfiable generics) is nilpotent-by-
finite. In [8] Krupinski and Dobrowolski extended this result and removed the NIP
hypothesis.1

In this section we will go in the other direction and remove the assumption of
fsg. However, our proof requires the stronger assumption of dp-minimality and not
just NIP.

2.2 What we Get From !-Categoricity

We will need the following facts about !-categorical theories.
Suppose that T is !-categorical.

1. (Ryll–Nardzewski, see, e.g., [28, Theorem 4.3.1]) For all n < !, there are at
most finitely many ;-definable sets in n variables.

2. If M ˆ T is saturated (in particular, countable) and X � Mn is invariant under
Aut .M/, then X is ;-definable.

3. By (2), an !-categorical theory T eliminates 91, which means that for all ' .x; y/
there is some n < ! such that for all a 2 M ˆ T , ' .M; a/ is infinite iff
j' .M; a/j � n.

A structure M is !-categorical if its theory is.
Suppose that .G; �/ is an !-categorical group. Then, it follows easily from (1)

that .G; �/ is locally finite (every finitely generated subgroup is finite).
We will use the following fact about locally finite groups.

Fact 2.1 [16, Corollary 2.5] If G is an infinite locally finite group (every finitely
generated subgroup is finite), then G contains an infinite abelian subgroup.

2.3 Equivalent Conditions for Being Nilpotent-by-Finite

Remark 2.1 If G is nilpotent-by-finite, and H � G then H is nilpotent-by-finite.
Why? Suppose that �C D 2� > jGj ; jHj and let G� be a saturated extension of G of
size �C, which, we may assume, also contains H. Then it is enough to show that G�

is nilpotent-by-finite (being nilpotent-by-finite transfers to subgroups). Suppose that
G0 � G is nilpotent of finite index. Let

�

S�; S�
0

	

be a saturated extension of .G;G0/

of size �. Then S�
0 � S� is nilpotent of finite index in S� and G� Š S�.

If there is no such �, we can either force its existence or use special models
instead (see [11, Theorems 10.4.4, 10.4.2]).

1On the face of it, they asked that the group is generically stable. However, by Krupiński [17,
Remark 1.8], under NIP and !-categoricity, a definable group has fsg iff it is generically stable.
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Suppose that G is any group. Let G00
; be the intersection of all ;-type-definable

subgroups of G (in C). When G is !-categorical, it must be ;-definable of finite
index (so we can talk about it in G without going to a saturated extension). However,
if G is NIP then, by Shelah [23], G00

; D G00
A for any small set A.

Fact 2.2 [21, Theorem 5.2.8] Let M and N be normal nilpotent subgroups of a
group G, then L = MN is a nilpotent group.

Corollary 2.2 Assume G is a nilpotent-by-finite !-categorical group with G D
G00

; , then G is a nilpotent group.

Proof By Fact 2.2 the product of all normal nilpotent subgroups of finite index of G
is itself a nilpotent group which is also ;-definable (by !-categoricity) and of finite
index, thus G is nilpotent. ut

Proposition 2.3 Suppose that C is a class of countable !-categorical NIP groups
(in the pure group language) satisfying: if G 2 C , H E G definable (over ;), then
G=H 2 C and H 2 C . Then the following statements are equivalent:

1. Every G 2 C is nilpotent-by-finite.
2. Every infinite characteristically simple G 2 C is abelian.
3. Every infinite G 2 C contains an infinite ;-definable abelian subgroup.

Proof (2) implies (1) is essentially Krupinski’s argument from [17]. Suppose that
G 2 C and we wish to show that it is nilpotent-by-finite. We may of course assume
that G is infinite. We may assume that G00 D G so that G has no definable subgroups
of finite index.

By !-categoricity, we can write feg D G0 Œ G1 Œ � � � Œ Gn D G where
the groups Gi are 0-definable, and this is a maximal (length-wise) such chain.
The groups Gi are invariant under Aut .G/ so normal, and by assumption Gi 2 C .
The proof is now by induction on n � 1. For n D 1, this follows immediately from
(2) (i.e., G1 will be abelian).

Now note that by the induction hypothesis if H E G is ;-definable and non-
trivial then G=H is nilpotent: G=H is in C (as G D G00, G=H is infinite). Also
.G=H/00 D .G=H/. But the maximal length of a chain as above which suits G=H
must be shorter than n. Hence G=H is nilpotent-by-finite and by Corollary 2.2 G=H
is itself nilpotent.

Hence we may assume that Z .G/ is trivial (otherwise G=Z .G/ is nilpotent and so
G is too). This in turn implies that G1 is infinite (if not, then CG .G1/ is of finite index
in G, and hence equals G, but then G1 � Z .G/). Now we use (2) on G1 to finish:
G1 is abelian and G=G1 is nilpotent, so both are solvable, and hence G is solvable.
However, by Archer and Macpherson [2, Theorem 1.2], if G is not nilpotent-by-
finite (equivalently, nilpotent, since we already assumed G D G00), it interprets the
infinite atomless boolean algebra, and has IP.

(3) implies (2) is obvious.
(1) implies (3). Without loss of generality, G D G00.
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Claim Either Z .G/ is infinite or G=Z .G/ is centerless.

Proof If x 2 G with y�1xy 2 xZ .G/ for all y 2 G, then C .x/ has a finite index in G.
Hence C .x/ D G so x 2 Z .G/. ut

If Z .G/ is infinite, we are done. Otherwise, by the claim G=Z.G/ is centerless, but
by (1) and Corollary 2.2 , G is nilpotent so we have a contradiction. ut

Remark 2.4 Note that the class of all (countable) NIP !-categorical groups satisfy
the conditions in Proposition 2.3. So does the class of !-categorical dp-minimal
groups (taking quotients of the universe M, as opposed to e.g., M2, preserves dp-
minimality).

Remark 2.5 In [17], Krupinski proved that (2) in Proposition 2.3 holds for the class
of NIP !-categorical groups with fsg. His proof uses a classification theorem on !-
stable characteristically simple groups due to Wilson and Apps [1, 29] (see remarks
after Problem 2.16). By that theorem and [17, Proposition 3.2], it follows that !-
categorical characteristically simple groups with NIP are p-groups for some p. By
the argument in the proof of [17, Proposition 3.1], it follows that for such groups G,
if a1; : : : ; an 2 G then C .a1/ \ � � � \ C .an/ is infinite.

However, we will avoid using the classification theorem, and prove (3) directly
for dp-minimal !-categorical groups.

Remark 2.6 Note also that Fact 2.1 alone is not enough, even though it may seem
so in light of the fact that if G is both NIP and contains an infinite abelian subgroup,
then G contains an infinite definable abelian subgroup by Shelah [24, Claim 4.3].
However this subgroup is not necessarily ;-definable.

2.4 What we Get From dp-Minimality and NIP

The only use of dp-minimality in the proof is the following basic observation.

Fact 2.3 ([27, Claim in proof of Proposition 4.31]) If .G; �/ is a dp-minimal
group, then for every definable subgroups H1;H2 � G either ŒH1 W H1 \ H2� < 1

or ŒH2 W H1 \ H2� <1.

We will also use the Baldwin-Saxl lemma, which is true for all NIP groups.

Fact 2.4 ([3]) Let .G; �/ be NIP. Suppose that ' .x; y/ is a formula and that
f' .x; c/ j c 2 C g defines a family of subgroups of G. Then there is a number n < !
(depending only on ') such that any finite intersection of groups from this family is
already an intersection of n of them.
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2.5 Proof of the Main Result

Theorem 2.7 If .G; �/ is an infinite dp-minimal !-categorical group, then G
contains an infinite ;-definable abelian subgroup.

By Proposition 2.3 we get the following.

Corollary 2.8 If .G; �/ is a dp-minimal !-categorical group, then G is nilpotent-
by-finite.

For the proof we work in a countable (so !-saturated) model. So fix such a group G.
By !-categoricity, there is a minimal infinite ;-definable subgroup G0 � G (i.e., G0

contains no ;-definable infinite subgroups), so we may assume that G D G0.

Lemma 2.9 For every a; b 2 G either ŒC .a/ W C .b/ \ C .a/� < 1 or
ŒC .b/ W C .b/ \ C .a/� <1.

Proof This follows directly from Fact 2.3. ut

Let X D fa 2 G j jC .a/j D 1g. By elimination of 91, X is definable. By Fact 2.1,
X is infinite. For a; b 2 X, by Lemma 2.9, it follows that either C .a/ \ C .b/ has
finite index in C .a/ or in C .b/. In either case, C .a/\C .b/ is infinite. Since C .a/\
C .b/ � C .ab/, it follows that X is a group. By our assumption on G (it contains no
infinite ;-definable subgroups), G D X.

Compare the following corollary with Remark 2.5.

Corollary 2.10 For every a0; : : : ; an�1 2 G,
T

fC .ai/ j i < ng is infinite.

Proof By induction on n. For n D 1 and n D 2 we just gave the argument.
For larger n it is exactly the same:

T

fC .ai/ j i < ng has infinite index in one of
T

fC .ai/ j i < n � 1g or
T

fC .ai/ j 1 � i < ng, both infinite. ut

For every a 2 G let Ha D fb 2 G j ŒC .a/ W C .b/ \ C .a/� <1g, and define

C0 .a/ D
\

fC .b/ j b 2 Hag :

Observe that C0.a/ is definable over a since Ha is definable.
By !-categoricity there exists some n� such that for all a; b 2 G,

ŒC .a/ W C .b/ \ C .a/� < n� iff ŒC .a/ W C .b/ \ C .a/� <1.

Main Lemma 2.1 For every a; b 2 G either C0 .a/ � C0 .b/ or C0 .b/ � C0 .a/.

Proof By Fact 2.3 either ŒC .a/ W C .b/ \ C .a/� < n� or ŒC .b/ W C .b/ \ C .a/� <
n�. Suppose that the former happens. Then C0 .a/ � C0 .b/: if d 2 Hb ,
ŒC .b/ W C .b/ \ C .d/� < n�, so

ŒC .a/ W C .a/ \ C .d/� � ŒC .a/ W C .a/ \ C .d/ \ C .b/�

� ŒC .a/ W C .a/ \ C .b/� � ŒC .b/ W C .b/ \ C .d/� < n2�:

Hence d 2 Ha. ut
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Lemma 2.11 For every a 2 G the group C0 .a/ is infinite. Moreover,
�

C .a/ W C0 .a/
�

<1.

Proof By Fact 2.4, there is some N such that for every k < ! and every ai 2 G
for i < k,

T

fC .ai/ j i < kg D
T

fC .ai/ j i 2 I0g where I0 � k is of size � N. Find
a1; : : : ; aN 2 Ha with

T

fC .ai/ j i < Ng \ C .a/ of maximal index in C .a/ (this
index is bounded by nN

� ). Let D D
T

fC .ai/ j i < Ng\C .a/. Then, for every b 2 Ha,
C .b/ \ D equals to some sub-intersection D0 of size N, but then ŒC .a/ W D0� D

ŒC .a/ W D� so D0 D D and hence
T

fC .b/ j b 2 Hag D D and in particular it is
infinite and of finite index in C .a/. ut

Proof (Proof of Theorem 2.7.) Split into two cases.

Case 1: The set Y D
˚

a 2 G
ˇ

ˇ a 2 C0 .a/
�

is infinite.
In this case, note that if a; b 2 Y then by Main Lemma 2.1, we may
assume that C0 .a/ � C0 .b/ � C .b/ (because b 2 Hb). But then a 2
C .b/, so Y is an infinite commutative ;-definable set. Hence the group
generated by Y must be abelian, and it must be G by our choice of G, so
we are done.

Case 2: The set Y is finite.
Pick some a0 … Y . By induction on n < !, choose an 2 C0 .an�1/ nY .
We can find such elements by Lemma 2.11. For n < !, if C0 .an/ �

C0 .anC1/ then anC1 2 C0 .anC1/ which cannot be, so by Main
Lemma 2.1, C0 .anC1/ � C0 .an/.
Let K >

�

C .an/ W C0 .an/
�

for all n < !. As aK 2 C0 .ai/ for all i < K,
ai 2 C .aK/. Hence for some i < j < K, a�1

i aj 2 C0 .aK/ � C0 .ai/. But
aj 2 C0 .ai/ as well, so ai 2 C0 .ai/—contradiction.

ut

2.6 Concluding Remarks

Problem 2.12 Can we generalize this result to work under weaker assumptions
than !-categoricity, such as elimination of 91? (i.e., assume that G is a dp-minimal
group eliminating 91, also for imaginaries, with an infinite abelian subgroup, then
does it contain an infinite ;-definable subgroup?)

Problem 2.13 Can one improve this to showing that every dp-minimal
!-categorical group is abelian-by-finite?

Remark 2.14 Any abelian-by-finite group is stable, so if we can solve Problem 2.13
positively, then it would mean that any dp-minimal omega-categorical group is
stable. Why? suppose that .G; �/ is a group with H � G abelian of finite index.
Then there is a normal subgroup of H with finite index in G (this is a standard
exercise in group theory), and so we may assume that H is normal. Let R D Z ŒG�,
the group ring of G over Z, whose elements we write as sums

P

i<n aigi where
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ai 2 Z and gi 2 G. Put a structure of a Z ŒG�-module on H by letting
�P

i<n aigi
	

�

h D
P

i<n ai � hgi (where hg D g�1hg). As a module, H is stable (see [28,
Example 8.6.6]). Now, G can be interpreted in this structure (with parameters).
How? Suppose ŒG W H� D n. Then G is the union of giH where fgi j i < ng are
representatives for the different cosets of H in G. For each i; j < n there is a unique
k .i; j/ < n and h .i; j/ 2 H such that gi � gj D gk.i;j/h .i; j/. So now interpret G as
fci j i < ng
H, where the ci’s are distinct elements from H and the product is given
by .ci; h/ �

�

cj; h0
	

D
�

ck.i;j/; h .i; j/ hgj h0
	

. Since hgj is just gj � h in the module, this
group is definable in H. The map .ci; h/ 7! gih is then an isomorphism from this
group to G.

Problem 2.15 Is there a (pure) group .G; �/ which is !-categorical NIP and
unstable?

Problem 2.16 What about inp-minimal groups? Inp-minimality is the analogous
notion to dp-minimality for NTP2 [5], so it makes sense that this result still holds
there, as it does in both the simple (by Macpherson [19]) and NIP case.

Remark 2.17 Problem 2.16 was solved by Frank Wagner, who shared his proof with
us in a private communication. We decided to still include the following discussion,
as it might be useful for any future generalizations to NTP2.

Using the same notation as in [17], we let B .F/ be the group of all continuous
functions from the cantor space 2! into a finite simple non-abelian group F. We
also let B� .F/ be the group of all such functions sending a fixed point x0 2 2! to
e 2 F. By Wilson [29] and Apps [1, Theorem 2.3] they are characteristically simple
and !-categorical, and in fact by a theorem of Wilson [29], a countably infinite !-
categorical characteristically simple group is either isomorphic to one of them, is an
abelian p-group or is a perfect p-group. Neither groups is nilpotent-by-finite. If they
were nilpotent-by-finite, then there would be a normal nilpotent subgroup of finite
index, so they would be nilpotent (by Corollary 2.2). But then they must be abelian,
which they are not.

It is worthwhile to note the following.

Proposition 2.18 For a finite simple non-abelian group F, both B .F/ and B� .F/
have TP2 and in particular are not inp-minimal.

For the proof we will need the following simple criterion for having TP2.

Lemma 2.19 Suppose that A is some infinite set in C and ' .x; y/ is a formula
such that for some k < ! , for every sequence hAi j i < !i of pairwise disjoint
subsets of A, there are hbi j i < !i such that Ai � ' .C; bi/ and f' .x; bi/ j i < !g is
k-inconsistent. Then T has TP2.

Proof We may enumerate A as has j s 2 !! ^ jsupp .s/j < !i, where supp .s/ D
fi 2 ! j s .i/ ¤ 0g. Let Ai;j D fas j s .i/ D jg. Then for each i < !,

˚

Ai;j

ˇ

ˇ j < !
�

are mutually disjoint. By assumption we can find bi;j for i; j < ! such
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that
˚

'
�

x; bi;j
	 ˇ

ˇ j < !
�

are k-inconsistent and Ai;j � 'i;j
�

C; bi;j
	

. Then
˝

'
�

x; bi;j
	 ˇ

ˇ i; j < !
˛

witness the tree property of the second kind. ut

Proof We do the proof for B .F/. The proof for B� .F/ is similar.
Let ' .x; y/ be the formula x ¤ e and x 2 C .C .y//.
Fix some g 2 F, g ¤ eF. Suppose that s � 2! is a clopen subset, and let

fs 2 B .F/ be such that fs � s is constantly g and f � 2!ns is constantly eF. Then
C .fs/ contains (in fact equals) all functions f 0 such that f 0 .s/ � CF .g/ (so outside
of s there are no restrictions on f 0). Hence if f 0 2 C .C .fs// then f 0 � 2!ns is
constantly eF.

It follows that if s1 \ s2 D ; are two clopen subsets, then C .C .fs1 // \
C .C .fs2 // D feg.

On the other hand, if s1 � s2, then fs1 2 C .C .fs2 //.
Fix a sequence of pairwise disjoint clopen sets hsi j i < !i. Then we see that for

any choice of finite pairwise disjoint subsets An, n < ! such that An are finite,
fn D fSfsi j i2Ang satisfies f' .x; fn/ j n < !g is 2-inconsistent but fsi ˆ ' .x; fn/ if
i 2 An. By compactness, we get such fn’s for every choice of pairwise disjoint
subsets An for n < ! (not necessarily finite). By Lemma 2.19 we are done. ut

2.7 A Theorem on NIP Groups

We end this section with a general remark on NIP groups (without any other
assumptions).

Theorem 2.20 Suppose that .G; �/ is an NIP group (or more generally, a type-
definable group in an NIP theory). Then there is some finite set A such that C .A/ is
abelian.

Proof Assume that G is a type-definable group, defined by the type � .x/ (the
multiplication �G and the unit eG are definable).

Let M be any j�jC-saturated model, so that G .M/ � G .C/ by the Tarski-Vaught
test.

Let p0 be a partial type containing the formulas x 2 C .A/ for all finite sets A of
G .M/. The partial type p0 is finitely satisfiable in G .M/ (witnessed by eG). Let S
be the set of all global types in SG .C/ containing p0 and f.s. in G .M/. All of these
types are in particular invariant over M, so their product is well defined. (For the
precise definition of a product of global invariant types, see [27, 2.2.1], but one can
understand it from the proof.)

Claim For p; q 2 S, p .x/˝ q .y/ ˆ x � y D y � x.

Proof We need to show that if N � M, a ˆ qjN , b ˆ pjNa then a � b D b � a. If not,
then b … C .a/, so for some b0 2 G .M/, b0 … C .a/, so a … C .b0/—contradiction.

ut
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By Simon [27, Lemma 2.26], it follows that for any a ˆ p; b ˆ q, a � b D b � a (the
proof there works just fine for type-definable groups, because it only uses that the
formula for multiplication is NIP, but multiplication is definable).

By compactness for every p .x/ ; q .y/ 2 S there are formulas  p;q .x/ 2
p; 'p;q .y/ 2 q such that for every a ˆ  p;q, b ˆ 'p;q in G, a � b D b � a. Fix p.
By compactness (as S is closed), there is a finite set of types qi 2 S for i < n such
that 'p D

W

i<n 'p;qi contains S. Let  p D
V

i<n  p;qi . Again by compactness there
are pi for i < m such that

W

i<m  pi contains S. Let � D
�V

i<m 'pi

	

^
�W

i<m  pi

	

,
then � contains S and for every a; b ˆ � in G .C/, a � b D b � a. (This is the same as
in the proof of [27, Proposition 2.27].)

It cannot be that for all finite A � G .M/, :� .M/ \ C .A/ ¤ ; (otherwise we
can define a type, f.s. in M, containing p0, so in S, but not satisfying �). Hence there
is some finite A � G .M/ such that C .A/ .M/ ˆ �. Hence C .A/ .M/ is abelian, but
as G .M/ � G .C/, so is C .A/. ut

Remark 2.21 When the group G is an !-categorical characteristically simple NIP
group, then by Proposition 2.18, and the remark before it (or just [17, Fact 0.1 and
Proposition 3.2]), Krupinski’s proof of [17, Proposition 3.1] gives us that for any
finite set A, C .A/ is infinite. Together with Theorem 2.20, we know that we can find
some A such that C .A/ is abelian and infinite.

3 f -Generic is the Same as Strongly f -Generic

Assume that G is definably amenable and dp-minimal. The main theorem here
says that any definable X � G which divides over a small model also G-divides.
This means that are at most boundedly many global f -generic types and a global
type is f -generic iff it is strongly f -generic (see Corollaries 3.6 and 3.8).

Let us first recall the definitions. Throughout we assume T is NIP, and we work
in a monster model C.

Definition 3.1 A definable group G is definably amenable if it admits a G-invariant
Keisler measure on its definable subsets.

A Keisler measure is a finitely additive probability measure on definable subsets of
G. We will not use this definition, so there is no need for us to get too deeply into
Keisler measures. Instead we will use the following characterization from [7] given
in terms of G-dividing.

Definition 3.2 For X � G definable, we say that it G-divides if there is an
indiscernible sequence hgi j i < !i of elements from G over the parameters defining
X such that fgiX j i < !g is inconsistent (equivalently, remove the indiscernibility
assumption and replace it with k-inconsistency). Similarly, we say that X right-G-
divides if there is a sequence as above such that hXgi j i < !i is inconsistent.
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Fact 3.1 [7, Corollary 3.5]Let G be a group definable in an NIP theory. Then if
G is definably amenable then the family of G-dividing subsets of G forms an ideal.
Hence in this case any non-G-dividing partial type can be extended to a global one.

As an example which relates to the previous section, we note that any countable
!-categorical group is locally finite and hence it is amenable by Runde [22,
Example 1.2.13] and so any group elementarily equivalent to it is definably
amenable [27, Example 8.13].

Definition 3.3 A global type is called f -generic if it contains no G-dividing
formula.

Remark 3.4 ([7, Proposition 3.4]) If G is definably amenable, then p is f -generic
iff all its formula are f -generic, which means that for every ' 2 p, no translate of
' forks over M where M is some small model containing the parameters of '. It is
also proved there that a formula is f -generic iff it does not G-divide, so we will use
these terms interchangeably. Similarly, we will write right-f -generic for non-right-
G-dividing.

Fact 3.2 ([7, Proposition 3.9]) When G is definably amenable then a global type
is f -generic type iff it is G00-invariant.

Theorem 3.5 Suppose that G is dp-minimal and definably amenable. Then if
' .x; c/ forks over a small model M, then it G-divides.

Proof Suppose not.
By assumption (and as forking equals dividing over models, see [6]), there is an

M-indiscernible sequence
˝

cj

ˇ

ˇ j < !
˛

such that
˝

'
�

x; cj
	 ˇ

ˇ j < !
˛

is inconsistent.
However, '

�

x; cj
	

is still f -generic.
We now divide into two cases: either there is a formula  0 .x; b/ which is right-f -

generic but not f -generic (call this case 0), or not (case 1). In case 0, let �0 .x; y; b/ D
 0
�

y�1x; b
	

.
Note that if case 0 does not occur, then every G-dividing formula also right-G-

divides. As X is f -generic iff X�1 is right-f -generic, this means that every right-G-
dividing formula also G-divides.

In case 1, choose a formula  1 .x; b/ for which, for every formula � .x/ � G00

(with no parameters) both  1 .x; b/^� .x/ and: 1 .x; b/^� .x/ are f -generic (such
a formula exists, as otherwise there is a unique non-G-dividing type concentrating
on G00, so the number of f -generic types is bounded, but by assumption there are
unboundedly many). Let �1 .x; y; z; b/ D  1

�

y�1x; b
	

^ : 1
�

z�1x; b
	

: We may
assume that

˝

cj

ˇ

ˇ i < !
˛

is indiscernible over Mb.
Depending on the case, let � .x; y; z; b/ be either �0 or �1 (so z might be

redundant). Construct a sequence hIi; gi; hi j i < !i such that:

• In case 0, gi 2 G. In case 1, gi; hi 2 G00.
• Ii is indiscernible, Ii D

˝

ei;j

ˇ

ˇ j < !
˛

, ei;j ˆ '
�

x; cj
	

for all i; j < !.
• ei;j ˆ � .x; gi; hi; b/ for all i; j < !.
• ei0;j 6ˆ � .x; gi; hi; b/ for all i0; i; j < ! whenever i0 > i.

(In case 0, we only need gi.) How?
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Note that for any g; h 2 G00, � .x; g; h; b/ does G-divide by Fact 3.2 (this is
trivially true in case 0).

By compactness it is enough to construct such a sequence for i < n. Suppose
we have hIi; gi; hi j i < ni. Let � .x/ D

W

i<n � .x; gi; hi; b/. Then � .x/ does G-
divide by Fact 3.1. Hence '

�

x; cj
	

n� .x/ is not empty for all j, and hence
we may find a sequence en;j ˆ '

�

x; cj
	

n� .x/. Consider the sequence I D
˝�

e0;j; : : : ; en;j; cj
	 ˇ

ˇ j < !
˛

. By Ramsey and compactness there is an Mh<ng<nb-
indiscernible sequence I0 with the same EM-type as I over Mh<ng<nb. There is an

automorphism taking
D

c0
j

ˇ

ˇ

ˇ j < !
E

to
˝

cj

ˇ

ˇ j < !
˛

over Mb, and applying it we are in

the same situation as before (changing h<ng<n and ei;j) but now In D
˝

en;j

ˇ

ˇ j < !
˛

is indiscernible. This takes cares of all the bullets except the third one, for which
needs to find gn; hn.

In case 0, the set
n

 0 .x; b/ � e�1
n;j

ˇ

ˇ

ˇ j < !
o

is consistent (as  0 .x; b/ does not

right-G-divide), so contains some g 2 G, hence gen;j ˆ  0 .x; b/, i.e., en;j ˆ

g�1 �  0 .x; b/ D �0
�

x; g�1; b
	

so let gn D g�1.

In case 1, the set
n

.� .x/ ^  1 .x; b// � e�1
n;j

ˇ

ˇ

ˇG00 � � .x/ ; j < !
o

is consistent (as

G-dividing = right-G-dividing in this case) so again we can find g 2 G00 realizing
it, so in particular en;j ˆ g�1 �  1 .x; b/. Similarly, there is some h 2 G00 such that
en;j ˆ h�1 � .: 1 .x; b//. Finally, choose gn D g�1 and hn D h�1.

This finishes the construction.
Now by Ramsey and compactness we may assume that hIigihi j i < !i is

indiscernible over Mb
˝

cj

ˇ

ˇ j < !
˛

and that
˝˝

ei;j

ˇ

ˇ i < !
˛

cj

ˇ

ˇ j < !
˛

is indiscernible
over Mb hgihi j i < !i.

Let � .x; y; y0; z; z0; b/ D � .x; y; z; b/ n� .x; y0; z0; b/. Then for every i > 0 and
j < !, ei0;j0 ˆ � .x; gi; hi; gi�1; hi�1/ iff i0 D i and ei0;j0 ˆ '

�

x; cj
	

iff j D j0
contradicting dp-minimality. ut

For the next corollary, we recall that in the context of NIP, definably amenable
groups, a global type is called strongly f -generic if it is f -generic and does
not fork over some small model (this is not the original definition, but see [7,
Proposition 3.10].

Corollary 3.6 If G is a dp-minimal definably amenable group, then any global f -
generic 1-type p is strongly f -generic.

Proof Take any small model M. Then p cannot divide over M. ut

Remark 3.7 Theorem 3.5 does not hold for a group definable in a dp-minimal
theory. Consider T D RCF, and let G D R2 where R is a saturated model of T .
Example 3.11 in [7] gives a G-invariant type r .x; y/ (so does not G-divide) which is
not invariant over any small model M.

Corollary 3.8 Suppose that G is a dp-minimal definably amenable group. Then
there are boundedly many global f -generic types.
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Proof Fix some small model M. This follows by NIP and (the proof of) Corol-
lary 3.6, as there are boundedly many global types non-forking over M (by NIP they
must be invariant over M). ut

Corollary 3.9 Suppose G is a dp-minimal definably amenable group. Then there
are boundedly many G-invariant Keisler measures.

Proof Suppose that there are unboundedly many such measures �i. Fix some small
model M. By Erdös-Rado, we may find a formula ' .x; y/, a type p 2 Sy .M/ some
numbers ˛ ¤ ˇ 2 Œ0; 1� and a sequence of G-invariant Keisler measures h�i j i < !i
such that for all i < j < !, �i

�

'
�

x; ai;j
		

D ˛ and �j
�

'
�

x; ai;j
		

D ˇ for some
ai;j ˆ p in C.

Then there are a; b ˆ p such that ˛ D �0 .' .x; a// ¤ �1 .' .x; a// D ˇ and
˛ D �1 .' .x; b// ¤ �2 .' .x; b// D ˇ. In particular �1 .' .x; a/ 4 ' .x; b// ¤ 0.
As �1 is G-invariant, ' .x; a/ 4 ' .x; b/ does not G-divide (see [7, Theorem 3.38],
but this follows easily from the definitions), but it forks by NIP. ut

Corollary 3.10 Suppose that .F;C; �/ is a dp-minimal field. Then every additive
f -generic set (i.e., with respect to .F;C; 0/) is also multiplicatively f -generic.

Proof Note that any abelian group is definably amenable (see [27, Example 8.13]).
Suppose that X is additively f -generic. For any a 2 F�, a � X is also additively

f -generic. Hence, if X is not multiplicatively f -generic, then there is an indiscernible
sequence hai j i < !i over the parameters defining X such that faiX j i < !g is
inconsistent (so k-inconsistent for some k < !). Increasing the sequence to any
length, by Fact 3.1, we get unboundedly many additively f -generic global types.
Contradicting Corollary 3.8. ut

Problem 3.11 Is there a dp-minimal group which is not definably amenable?
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Square Subgroups of Decomposable Rank
Three Groups

Fatemeh Karimi

Abstract Let A D A1 ˚ A2 be a torsion-free abelian group of rank three, where
r.A2/ D 2 and let �A be its square subgroup as defined in the introduction below.
The main objective of this paper is to calculate the square subgroup of A and show
that for a fixed rank two group A2; this subgroup can vary when t.A1/ changes.
Moreover, we generalize these results to some decomposable torsion-free groups of
arbitrary rank and use the rank one groups belonging to a maximal independent set
to determine all multiplications on a group.

Keywords Square subgroup • Nil modulo a subgroup • Rank

Mathematical Subject Classification (2010): 20K15

1 Introduction

For the purposes of this paper all groups are abelian and written additively. A ring
R is said to be a ring on A if the group A is isomorphic to the additive group of R.
In this situation we write R D .A;	/ where 	 denotes the ring multiplication. This
multiplication is not assumed to be associative. In general, we call a group A a nil
group if there is no ring on A other than the zero ring. A generalization of the notion
of nil group was considered by Feigelstock [4]. In fact, let B be a subgroup of A,
then A is nil modulo B if A 	 A � B for every ring .A;	/ on A. Clearly A is a nil
group if and only if A is nil modulo f0g. Feigelstock [4] shows that if B is a divisible
subgroup of A and A is nil modulo B, then A=B is a nil group. Also he goes on to
ask if this is true in general. In other words, does A nil modulo B imply that A=B
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is a nil group? Stratton and Webb [7] showed that the answer to this question is no.
However, the question has a positive answer if either A is a torsion group or B a
direct summand of A.

It is clear that if A is nil modulo B1 and B2, then A is nil modulo B1 \ B2. This
suggests the following definition of the square subgroup �A, as

�A D \fB � A j A is nil modulo Bg:

Clearly �A is the smallest subgroup with the property that A is nil modulo �A
and A	A � �A; for any ring .A;	/ on A. The square subgroup was initially studied
by Stratton and Webb [7] and subsequently Aghdam and Najafizadeh [1] showed
that the square subgroup of any non-homogenous and indecomposable torsion-free
group A of rank two is a pure subgroup of A and that A=�A is a nil group. They
studied �A by classifying A according to the cardinality of the typeset.

In this paper we investigate the square subgroup of a decomposable rank three
torsion-free group A D A1 ˚ A2 and show that for a fixed rank two group A2; the
square subgroup can be different when the type, t.A1/, of A1 changes. Moreover, we
find cases in which �A is a pure subgroup of A and observe that A=�A is not a nil
group in most of these cases.

2 Notation and Preliminaries

Let A be a torsion-free abelian group, then the typeset of A is the partially ordered
set of types, i.e.,

T.A/ D ft.a/ j 0 ¤ a 2 Ag;

where t.a/ denotes the type of any non-zero element a in A. We also write hA
p .a/ for

the p-height of the element a in A and hai� for the pure subgroup of A generated by
a. A type t 2 T.A/ is said to be maximal if for all � 2 T.A/, � � t implies that
� D t: A good reference for basic facts about type and other undefined concepts is
[5, pp. 109].

Proposition 2.1 Let A be a torsion-free group of finite rank. Then the length of
every chain in T.A/ is at most equal to the rank of A.

Proof See [3, Proposition 1]. ut

Theorem 2.2 A torsion-free ring of rank one is either a zero ring or isomorphic to
a subring of the rational number field. A torsion-free group of rank one is not a nil
group if and only if its type is idempotent.

Proof See [5, Theorem 121.1]. ut
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Lemma 2.3 Let G be a subgroup of Q. If 1=b; 1=d 2 G and .b; d/ D 1; then
1=bd 2 G.

Proof Obvious. ut

We recall some definitions and results previously used in [2]. Let A D A1˚A2 be
a rank three torsion-free group and fx; y; zg be independent elements, where x 2 A1
and y; z 2 A2: Each element g of A has the unique representation g D uxC vyCwz,
where u; v;w are rational numbers. Let,

U0 D fu0 2 Q W u0x 2 Ag; U D fu 2 Q W uxC vyC wz 2 A for some v;w 2 Qg;

V0 D fv0 2 Q W v0y 2 Ag; V D fv 2 Q W uxC vyC wz 2 A for some u;w 2 Qg:

W0 D fw0 2 Q W w0z 2 Ag; W D fw 2 Q W uxC vyC wz 2 A for some u; v 2 Qg:

Then U0;V0 and W0 are subgroups of U;V and W, respectively, and
U;U0;V;V0;W;W0 are called the groups of rank one belonging to the independent
set fx; y; zg.

Observe that in general U0 � UI i.e., U0 is a subgroup of U: But in our case
since A D A1 ˚ A2; A1 is of rank one, x 2 A1 and U;U0 are rank one subgroups
belonging to it, we have A1 D hxi� which implies U D U0:

Proposition 2.4 Let A;B be subgroups of Q such that 1 2 A \ B. Suppose there
exists a non-zero integer n such that nA � B. If m is the least positive integer such
that mA � B, then the following statements hold:

(a) Let p be a prime number such that ˛ D hA
p .1/ < ˇ D hB

p .1/, then for all k � ˇ,
.1=pk�˛/.mA/ � B. Furthermore, p does not divide m.

(b) If B � A, then mA D B and 1=m 2 A.
(c) Let d be a positive integer such that d divides m and 1=d 2 B. If B2 D B then

d D 1.

Proof See [1, Proposition 2.6]. ut

Theorem 2.5 Let A be a torsion-free group of rank two. If A is non-nil, then
T.A/ contains a unique minimal member and at most three elements. If the typeset
consists of:

(a) one type, then the type must be idempotent.
(b) two types, then one is minimal and the other is maximal.
(c) three types, then one of the types is minimal and the other two types are

maximal. In this case at least one of the maximal types is idempotent.

Proof See [6, Theorem 3.3]. ut

Lemma 2.6 Let A be a torsion-free group, 0 ¤ x 2 A and U;U0 be rank one groups
belonging to x: Then t.x/ D t.U0/:
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Proof Let t.x/ D .k1; k2; k3; � � � /: Then for any i D 1; 2; � � � ; there exist some yi 2 A
such that x D .pi/

ki yi: This yields 1=.pi/
ki 2 U0 and hence t.U0/ � t.x/: Similarly it

is easy to see that t.U0/ � t.x/; because if 1=.pi/
li 2 U0, then .1=.pi/

li/x 2 A which
means that li � ki: ut

3 Main Results

Lemma 3.1 Let A be a torsion-free group of rank three and fx; y; zg a maximal
independent set of A with rank one groups U;U0;V;V0;W;W0 belonging to it. If
U2
0 D U0 and there exists an integer m such that mU D U0; then the multiplication:

x2 D m2x; xy D yx D y2 D xz D zx D z2 D zy D yz D 0;

yields a ring on A such that A2 D U0x:

Proof Let a1 D u1xCv1yCw1z and a2 D u2xCv2yCw2z be two non-zero elements
of A. Now a1a2 D u1u2m2x and by u1; u2 2 U we obtain m2u1u2 D .mu1/.mu2/ 2
.mU/2 D U2

0 D U0 which yields m2u1u2x 2 U0x � A: Thus the product gives a ring
on A such that A2 � U0x:

Now by U2
0 D U0 and mU D U0 we obtain .mU/2 D U2

0 D U0 and therefore
any u0 2 U0 can be written in the form u0 D .mu1/.mu2/ for some u1; u2 2 U: By
the definition of U, there exist elements u1x C v1y C w1z and u2x C v2y C w2z in
A such that .u1x C v1y C w1z/.u2x C v2y C w2z/ 2 U0x which yields U0x � A2:
Consequently, A2 D U0x as required. ut

Remark 3.2 Note that in Lemma 3.1 the condition U2
0 D U0 can be replaced by

t2.x/ D t.x/:

From Theorem 2.5, we know that if A2 is a non-nil rank two group, then its
typeset contains at most three elements. In the succeeding we will consider the cases
where T.A2/ contains either two or three elements and we will obtain the square
subgroup of the group A D A1 ˚ A2; when the type of the rank one group A1
changes.

Theorem 3.3 Let A D A1 ˚ A2 be a rank three group such that

T.A2/ D ft0; t1; t2 j t
2
1 D t1; t

2
2 ¤ t2g;

t0 < ti for i D 1; 2; and t1 and t2 are maximal in T.A2/: If t.A1/ is non-idempotent
and incomparable with t0; t1; t2; then �A D hyi�; where 0 ¤ y 2 A2 with t.y/ D t1:

Proof Let t.A1/ D t; x 2 A1; y; z 2 A2 with t.y/ D t1; t.z/ D t2 and let U.D
U0/;V; V0;W;W0 be the rank one groups belonging to fx; y; zg: Then for any ring
R D .A; :/ we will have:



The Square Subgroups of a Decomposable Rank Three Group 377

xy D yx D xz D zx D yz D zy D z2 D x2 D 0; y2 D ry;

for some r 2 Q; because in this case

T.A/ D ft0; t1; t2; t; t \ t1; t \ t2; t \ t0 j t
2
1 D t1; t

2
2 ¤ t2; t

2 ¤ tg;

where t0 < ti for i D 1; 2; and t1; t2 and t are maximal in T.A/. But t.x2/ �
t.x/:t.x/ D t2 � t and t2 ¤ t: So if x2 ¤ 0; then

t.x2/ � t2 � t; t2 ¤ t:

Thus t.x2/ would be a maximal element of T.A/ which it is not equal to t: (Because
if t D t.x2/ � t2; then using the fact t2 � t; we obtain t2 D t; a contradiction.) Now
if t.x2/ D t1 or t2; then either t1 or t2 D t.x2/ � t; which is impossible since t is
incomparable to both t1 and t2. This means x2 D 0; similarly z2 D 0. Moreover, if
xz ¤ 0, then a similar argument would give t.xz/ � t2 to be a maximal element of
T.A/ which is not equal to t2: (Because if t.xz/ D t2; then t2 D t.xz/ � t; which
is impossible, as t and t2 are incomparable.) So t.xz/ D t or t1. But in this case we
obtain t or t1 D t.xz/ � t2; which is impossible, because t and t2 or t1 and t2 are
incomparable. Therefore xz D 0: In the same way zx; yz; zy; xy and yx are all zero.

Furthermore, t.y2/ � t1:t1 D t21 D t1 and the maximality of t1 in T.A/ yields if
y2 ¤ 0, then t.y2/ D t.y/: Thus y2 and y are dependent and so y2 D ry; for some
r 2 Q:

Now if a1 D u1xC v1yC w1z; a2 D u2xC v2yC w2z are two arbitrary elements
of A; then a1a2 D rv1v2y; which implies A2 � hyi�: From the definition of �A, this
yields �A � hyi�:

Now suppose that v 2 V: Then there exists u;w 2 Q such that uxCvyCwz 2 A.
So .uxCvyCwz/y D rvy; hence rv 2 V0 for all v 2 V0; which gives rV � V0 � V
and therefore there exists a positive integer k such that kV � V0: If m is the least such
integer, Proposition 2.4(b) yields mV D V0 and so by Lemma 3.1 we can construct
a ring multiplication � on A satisfying A � A D V0y D hyi�. Since the subgroup �A
contains the product A�A for any multiplication � on A, it follows immediately that
for this particular product �, hyi� D A � A � �A. Thus we have established that �A
is equal to hyi�, as required. ut

Remark 3.4 Note that for the group A D A1 ˚ A2 in Theorem 3.3, any ring on A is
a ring on A2 and any ring on A2 is a ring on A; because xy D yx D xz D zx D yz D
zy D z2 D x2 D 0:

Remark 3.5 A generalization of the above theorem is:
Let A D A1 ˚ .˚i2IAi/ such that r.A1/ D 2 and Ais are rank one nil groups with

incomparable non-idempotent types and t.Ai/s are incomparable with the members
of T.A1/ D ft0; t1; t2 j t21 D t1; t22 ¤ t2g; t0 < ti for i D 1; 2 and t1 and t2 are maximal
in T.A1/: If 0 ¤ y 2 A1 with t.y/ D t1; then �A D hyi�:
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Theorem 3.6 Let A D A1 ˚ A2 be a rank three torsion-free group such that

T.A2/ D ft0; t1; t2 j t
2
1 D t1; t

2
2 ¤ t2g;

t0 < ti for i D 1; 2; and t1 and t2 are maximal in T.A2/: If t.A1/ is idempotent
and incomparable with t0; t1; t2; then �A D A1 ˚ hyi�; in which 0 ¤ y 2 A2 with
t.y/ D t1:

Proof Let t.A1/ D t and let x 2 A1; y; z 2 A2 be elements as in the previous
theorem. Now by standard type-based arguments similar to those used in the proof
of Theorem 3.3, we can show that for any ring R D .A; :/:

xy D yx D xz D zx D yz D zy D z2 D 0; x2 D sx; y2 D ry;

for some r; s 2 Q: By considering the multiplication of two arbitrary non-zero
elements of A;we will obtain A2 � A1˚hyi�;which means A is nil modulo A1˚hyi�

and so �A � A1 ˚ hyi�: Now from U D U0, taking m D 1 in Lemma 3.1, we get a
ring on A with A2 D A1: So, as observed in the proof of Theorem 3.3, A1 � �A.

Moreover, if v 2 V; then there exist u;w 2 Q such that uxC vyC wz 2 A: But
.uxC vyC wz/y D rvy; and so rv 2 V0 for all v 2 V . Hence rV � V0 � V: Then
there exists a positive integer k such that kV � V0 and if m is the least such integer,
Proposition 2.4(b) yields mV D V0 . Therefore by Lemma 3.1 we can construct a
ring on A satisfying A2 D V0y D hyi�. As noted in the proof of Theorem 3.3, this
yields hyi� � �A; and so A1 ˚ hyi� D �A, as claimed. ut

Theorem 3.7 If A D A1 ˚ .˚i2IAi/; where r.A1/ D 2; and the Ais are rank one
groups such that the types t.Ai/ are incomparable with each other and with the
members of T.A1/ D ft0; t1; t2 j t21 D t1; t22 ¤ t2gI t0 < ti for i D 1; 2 and t1 and
t2 are maximal in T.A1/, then �A D hyi� ˚ .˚j2J	IAj/; where the types t.Aj/ are
idempotent and 0 ¤ y 2 A1 with t.y/ D t1:

Proof Let xi 2 Ai; t.Ai/ D ti and t2j D tj for any j 2 J � I. Then as t2.xj/ D t.xj/;

we can define a ring .A; :/ such that A:A D hxji
� D Aj � �A: Moreover, since

t2.y/ D t.y/; we have hyi� � �A: This means hyi� ˚ .˚j2J	IAj/ � �A:
We establish the reverse inclusion. For two indices l ¤ k, we have t.xlxk/ �

tltk � tl; tk and tltk ¤ tl; tk; the inequality holds because tl and tk are incomparable.
But the types ti and the members of T.A1/ are incomparable which gives that the
maximal elements of T.A/ are just t1; t2 and ti; for all i 2 I: So if xlxk ¤ 0, then
t.xlxk/ should be a maximal element of T.A/ which is not equal to tl and tk: So if
xlxk ¤ 0, then t.xlxk/ D t1 or t2 or tm for some .l; k ¤/m 2 I: This means one of
t1; t2; tm D t.xlxk/ � tl; tk; which yields a contradiction because of incomparability
of the maximal elements of T.A/. Therefore for any ring on A we would have
xlxk D 0:

Moreover, arguing in a similar way, we cannot have 0 ¤ x2i 2 ˚.i¤/k2KAk ˚ A1;
for some finite K � I: Because in this case we could write x2i D

P

k2K rkxk C a for
some rk 2 Q, a 2 A1. So

T

k2K tk
T

t.a/ D t.x2i / � t2i � ti and therefore ti � tk; for
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all k 2 k and ti � t.a/; which is impossible since t.a/ D t0 or t1 or t2. This means
that if x2i ¤ 0; then it must be in Ai and this could only happen when i 2 J.

Also if we choose y; z 2 A1 such that t.y/ D t1 and t.z/ D t2 then, similar
to the proof of the previous theorem, we can see that for all rings on A; xiz D
zxi D xiy D yxi D z2 D 0; which means that if fy; z; xi jy; z 2 A1; i 2 Ig is
a maximal independent set of A and a1 D ˛1y C ˇ1z C

P

i2K 	ixi, a2 D ˛2y C
ˇ2z C

P

l2K0 	lxl; (K;K0 finite subset of I), are two arbitrary elements of A, with
˛1; ˛2; ˇ1; ˇ2; 	i; 	l 2 Q; for all i 2 K; l 2 K0; then for any ring .A; :/ we will have
a1:a2 2 hyi� ˚ .˚j2J	IAj/ and so �A � hyi� ˚ .˚j2J	IAj/: ut

Theorem 3.8 Let A D A1˚A2 be a rank three torsion-free group such that T.A2/ D
ft0; t1; t2 j t21 D t1; t22 ¤ t2g; t0 < ti for i D 1; 2 and t1 and t2 are maximal in T.A2/:
If t.A1/ D t1 then �A D A1 ˚ hyi�; where 0 ¤ y 2 A2 and t.y/ D t1:

Proof In this case by t.xy/ � t.x/t.y/ D t21 D t1, if xy is non-zero, then t.xy/ D t1
and xy 2 A1 ˚ hyi�: This yields xy D l0x C ly; for some l0; l 2 Q: Similarly,
y2 D l01xC l1y; x2 D l02xC l2y; yx D l03xC l3y; for some l1; l2; l3; l01; l

0
2; l

0
3 2 Q; and

by the proof of Theorem 3.3, zx D xz D zy D yz D z2 D 0: Therefore for any ring
R D .A; :/ the usual type-based calculations show that:

xy D l0xC ly; y2 D l01xC l1y; x
2 D l02xC l2y; yx D l03xC l3y; zx D xz D zy D yz D z2 D 0;

for some l; l1; l2; l3; l0; l01; l
0
2; l

0
3 2 Q: Thus A is nil modulo A1 ˚ hyi�, and so �A �

A1 ˚ hyi�.
Moreover, A1 is a rank one group with idempotent type, so by Theorem 2.2, there

is a ring S D .A1;	/ such that 0 ¤ x 	 x D rx 2 A1; for some r 2 Q: Therefore the
multiplication

x2 D rx; y2 D z2 D yz D zy D xy D yx D xz D zx D 0;

gives a ring structure .A; :/ on A such that by Lemma 3.1, A2 D U0x D hxi� D A1:
Similarly, the multiplication

y2 D l1y; z
2 D x2 D yz D zy D xy D yx D zx D xz D 0

yields a ring on A such that A2 D hyi�: Hence hyi�;A1 � �A and this completes
the proof. ut

Theorem 3.9 Let A D A1˚A2 be a rank three torsion-free group such that T.A2/ D
ft0; t1; t2 j t21 D t1; t22 ¤ t2g; t0 < ti for i D 1; 2 and t1 and t2 are maximal in T.A2/:
If t.A1/ D t2, then �A D hyi�; where 0 ¤ y 2 A2 and t.y/ D t1:

Proof The proof is essentially identical to that of Theorem 3.3. In fact, using the
types, for any ring R D .A; :/ we again have y2 D ry; x2 D z2 D yz D zy D xy D
yx D xz D zx D 0; for some r 2 Q: ut
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Our next result shows, inter alia, that the square subgroup is not completely
determined by abstract properties of types. The outcome may depend on arithmetical
properties of the individual types but we have avoided this kind of calculation by
referring to ring structures which may arise from such properties.

Theorem 3.10 Let A D A1 ˚ A2 be a rank three torsion-free group such that
T.A2/ D ft0; t1; t2 j t21 D t1; t22 ¤ t2g; t0 < ti for i D 1; 2; and t1 and t2 are maximal
in T.A2/: If t.A1/ D t0; non-idempotent, then �A D hyi� or �A D hyi� ˚ hzi�

where 0 ¤ y; z 2 A2 with t.y/ D t1 and t.z/ D t2:

Proof In this case because of t.A1/ D t0, we have T.A/ D ft0; t1; t2g D T.A2/ and
for any ring R D .A; :/ we must have yz D zy D z2 D 0; y2 D ry; for some r 2 Q:

Moreover, since t.x2/ � t2.x/ D t20 � t0 and t20 ¤ t0, we have that if x2 ¤ 0; then
t.x2/ D t1 or t2 which means x2 D ly or x2 D l1z; for some l; l1 2 Q: Similarly,
t.xy/ � t.x/t.y/ D t0t1 � t1 and t.xz/ � t2I so that xy D sy and xz D s1z for some
s; s1 2 Q: Therefore, �A � hyi� ˚ hzi�:

On the other hand as t2.y/ D t.y/, one can define a ring on A by setting the other
products to zero. Hence we have hyi� � �A:Now if xz D s1z ¤ 0; then considering
the ring R on A which is obtained from the multiplications

yz D zy D z2 D y2 D xy D yx D zx D 0; xz D s1zI

for any two non-zero elements a D u1x C v1y C w1z; a0 D u2x C v2y C w2z of
A; aa0 D s1u1w2z 2 A: So s1UW � W0 and s1W � W0 � W: Therefore, there exists
a ring on A with A2 D W0z and hence hzi� � �A: Consequently, hyi�˚hzi� � �A
and in this case we get the equality, completing a part of the proof.

But if for any ring on A; xz D zx D 0 and x2 D l1z ¤ 0; for some l1 2 Q; then
considering the ring which is obtained from the multiplications

xy D yx D xz D zx D y2 D z2 D yz D zy D 0; x2 D l1z;

we see that for any two non-zero elements a D u1xCv1yCw1z; a0 D u2xCv2yCw2z
of A; aa0 D l1u1u2z 2 A: This implies l1U2 � W0; t.U2/ � t.W0/ and so there exists
a least positive integer m such that

mU2 � W0; mU2 � U2 \W0 � U2: (1)

Now Proposition 2.4(b) implies that

mU2 D U2 \W0;
1

m
2 U2: (2)

Let �W0 .1/ D .k1; k2; � � � ; ki; � � � / and �U.1/ D .m1;m2; � � � ;mi; � � � / be the height
sequences of 1 in W0 and U, respectively, then

�U2 .1/ D .2m1; 2m2; � � � ; 2mi; � � � /:
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We prove 1=.pi/
	i z 2 �A for all 	i such that, 0 � 	i � ki .i D 1; 2; 3; � � � /:

To do this, we consider two cases for each fixed i; ki � 2mi or 2mi < ki: Firstly
suppose that ki � 2mi; then we define a multiplication over A as follows:

x2 D mz; y2 D yz D zy D z2 D xz D zx D xy D yx D 0:

Let g D ux C vy C wz and g0 D u0x C v0y C w0z be arbitrary elements of A, so
gg0 D muu0z. By (1) muu0 2 W0, so the product actually lies in A, which yields
a ring structure on A. Since ki � 2mi; so 1=.pi/

	i 2 U2 \ W0 and in view of (2),
1=.pi/

	i 2 mU2. Consequently 1=.pi/
	i D mu1u2 for some u1; u2 2 U. On the other

hand, there exist w1;w2 2 W such that a D u1xCv1yCw1z and a0 D u2xCv2yCw2z
belong to A, so aa0 D u1u2x2 D mu1u2z D .1=.pi/

	i/z.
This means that in this case we obtained a ring on A such that for any 	i �

ki; .1=.pi/
	i/z D aa0; for some a; a0 2 A: But by �W0 .1/ D .k1; k2; � � � ; ki; � � � /, we

have 1=.pi/
	i 2 W0; for every 	i � ki: Therefore from

h
1

p	i
i

z j 0 � 	i � kii D W0z D hzi
�;

we deduce that hzi� � A2: But every element of A2 belongs to �A; and so hzi� �
�A: Since we have already established that < y >�� �A, we again get that

�A D< y >� ˚ < z >� :

In the other case, i.e., 2mi < ki, by (a) in Proposition 2.4, pi does not divide m.
By (2), 1=m 2 U2 so that 1

m D
1

m0m00
where 1=m0; 1=m00 2 U. If mi D 1, then

ki D 1 and so 2mi D ki, which is in contradiction with 2mi < ki, thus mi < 1.
Now since 1=.pi/

mi 2 U and pi does not divide m, so .pi;m0/ D .pi;m00/ D 1, hence
by Lemma 2.3

1=.pmi
i m0/; 1=.pmi

i m00/ 2 U: (3)

Define another multiplication over A by:

x2 D m=.pi/
	i�2mi z; yx D xy D xz D zx D y2 D z2 D yz D zy D 0:

Since 2mi < ki, it follows from (1) that mU2 � W0 and thus we deduce from
Proposition 2.4.a/ that .mU2/.1=.pi/

	i�2mi/ � W0. Hence the product x2 lies in A
and the multiplication above yields a ring structure on A. By (3), there exist w1;w2 2
W such that

a1 D
1

.pi/mi m0
xC v1yC w1z 2 A; a2 D

1

.pi/mi m00
xC v2yC w2z 2 A
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and since m0m00 D m; so a1a2 D m=.p	i
i m0m00/z D .1=p	i

i /z. Consequently in
this case, similar to the previous case, hzi� � �A and again we have the equality
�A D< y >� ˚ < z >�.

But if x2 D ly and xz D zx D 0; then for any ring on A; we have

x2 D ly; xz D zx D zy D yz D z2 D 0; xy D sy; yx D s1y; y
2 D ry;

for some non-zero l; s; s1; r 2 Q: Now if a1 D u1x C v1y C w1z and a2 D u2x C
v2yC w2z are two arbitrary elements of A;

a1a2 D u1u2x
2C u1v2xyC v1u2yxC v1v2y

2 D u1u2lyC u1v2syC v1u2s1yC v1v2ry;

which is an element of hyi�: This means A2 � hyi� and so �A � hyi� in this case.
As already observed the reverse inequality holds, so in this situation we get

hyi� D �A which completes the proof. ut

Remark 3.11 From the proof of Theorem 3.10 we see that if there are two elements
of our group A such that their product is equal to a rational multiple of g (one or
both of these two elements could be g itself), then hgi� � �A. This is an important
point for proving the next theorem.

Using some arguments similar to those used in the proofs of the previous
theorems and noting Remark 3.11, we have the following result:

Theorem 3.12 Let A D A1 ˚ A2 be a rank three torsion-free group with A2
indecomposable of rank two, T.A2/ D ft1; t2 j t21 ¤ t1; t22 ¤ t2g and t1 < t2.
If t.A1/ is either incomparable to the elements of T.A2/; or t.A1/ 2 T.A2/, then
�A D A1 ˚ hzi� or �A D hzi�; where 0 ¤ z 2 A2 and t.z/ D t2:

Proof We consider following cases for t.A1/ D t:

(I) The type t is non-idempotent and incomparable with t1; t2
In this case using an argument similar to that used in the proof of Theorem 3.3,
for any ring R D .A; :/ we have:

y2 D sz; x2 D z2 D yz D zy D xz D zx D yx D xy D 0; .s 2 Q/

which yields �A � hzi�: Moreover, as in the proof of Theorem 3.10, from
y2 D sz; for some non-zero s 2 Q; we can show that hzi� � �A. Thus we
have �A D hzi�.

(II) The type t is idempotent and incomparable with t1 and t2:
In this case T.A/ D ft1; t2; t; t1 \ t; t2 \ tg which means that the only maximal
elements of T.A/ are t2 and t:

Now, for example, t.xy/ � t.x/t.y/ D tt1 � t; t1; and tt1 ¤ t; t1; the last
inequality holding because t and t1 are incomparable. So if xy ¤ 0; then t.xy/ is
a maximal element of T.A/ which is not equal to t: This means t.xy/ would be
equal to t2; but this is impossible by the incomparability. Therefore for any ring
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on A; xy D 0: Similarly zy D yz D 0 since, for example, t.yz/ � t1t2 � t1; t2;
and t1t2 ¤ t1; t2 as t1 and t2 are both non-idempotent, infinitely many of their
components are finite.

But t.y2/ � t21 � t1 and t21 ¤ t1: So if y2 ¤ 0; then we would have
t.y2/ D t2: Hence y2 D sz; for some non-zero s 2 Q: Note that if y2 ¤ 0; then
t.y2/ ¤ t; because t and t1 are incomparable.

In the same way, t.x2/ � t2 D t and if x2 ¤ 0; then t.x2/ D t: This gives
x2 2 hxi� and hence x2 D rx; for some non-zero r 2 Q: This means that:

x2 D rx; y2 D sz; yz D zy D z2 D yx D xy D xz D zx D 0; .r; s 2 Q/

for any ring on A: Therefore A2 � A1 ˚ hzi�; i.e., �A � A1 ˚ hzi�:
Now as mentioned in Remark 3.11, from y2 D sz; for some non-zero s 2 Q;

we can show that hzi� � �A: Moreover, from t2 D t; we can find a ring .A; :/
such that A:A D hxi� D A1 and so A1 � �A: Gathering all this together we
obtain �A D A1 ˚ hzi�:

(III) The type t D t1:
Then for any ring R D .A; :/:

y2 D s1z; x
2 D s2z; xy D s3z; yx D s4z; yz D zy D z2 D xz D zx D 0;

where .s1; s2; s3; s4 2 Q/ and, exactly as before, this implies �A D hzi�:
(IV) The type t D t2:

In this case T.A/ D ft1; t2g D T.A2/ and for any ring on A; t.y2/ � t1:t1 D
t21 � t1 and t21 ¤ t1; which means that if y2 ¤ 0; then t.y2/ D t2 and so
y2 2 hx; zi�: Hence y2 D rxC sz; for some r; s 2 Q:

But t.xy/ � t2t1 � t1; t2 and t1t2 ¤ t1; t2; because t2 and t1 are non-
idempotent and infinitely many of their components are finite numbers. This
yields xy D 0; because otherwise t.xy/ would then be a maximal element of
T.A/ which is not equal to t2: In the same way yx D xz D zx D yz D zy D
z2 D 0; for any ring on A: So, as we have observed previously, if R is a ring on
A; then

y2 D rxC sz; x2 D xy D yx D xz D zx D yz D zy D z2 D 0;

where .r; s 2 Q/. As before we deduce that �A � A1 ˚ hzi�.
Now note that since rx 2 A1; sz 2 hzi� we could define two rings R1 D

.A;	1/ and R2 D .A;	2/ via the relations

y	1y D rx; x	1x D x	1y D y	1x D x	1z D z	1x D y	1z D z	1y D z	1z D 0;

and

y	2y D sz; x	2x D x	2y D y	2x D x	2z D z	2x D y	2z D z	2y D z	2z D 0;
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in which A 	1 A D hxi� and A 	2 A D hzi�; so that A1 � �A and hzi� � �A:
This finally proves �A D A1 ˚ hzi�:

ut
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An Invariant on Primary Abelian Groups with
Applications to Their Projective Dimensions

Patrick W. Keef

Abstract Nunke’s Problem asks when the torsion product of two abelian p-groups
is a dsc group of length � � !1. For countable values of � this was completely
solved by the author in previous work, where a new invariant was defined using
transfinite induction on filtrations of subgroups. Though the natural extension of
these ideas to the case of groups of length !1 does not tell us when the torsion
product is a dsc group, it is shown to be sufficient to describe when the product is a
C!1-group of p!1-projective dimension at most one.

Keywords Abelian p-group • Projective dimension • Torsion product • Invari-
ants • Filtrations • Nunke’s problem • dsc-group • C!1-group

1 Introduction

In this work all group considered will be abelian p-groups for some fixed prime p.
The terminology and notation will generally follow [3], and when ˛ is an ordinal
we will assume some familiarity with the theory of p˛-purity which can be found,
for example, in [5]. Finally, we will be using a modicum of pretty basic set-theoretic
techniques which can be found, for example, in [2].

The group G is a dsc if it is a direct sum of countable groups. If � � !1, then a
group G is a C�-group iff for every ˛ < �, any p˛-high subgroup H of G (that is,
one maximal with respect to H \ p˛G D 0) is a dsc group. If � is a limit ordinal,
this is equivalent to requiring that G=p˛G is p˛-projective for all ˛ < �.

We will denote the torsion product of the groups A and B by the convenient,
albeit non-standard, notation A 5 B. A classical problem of Nunke asks when the
torsion product A5 B is a direct sum of cyclics, or more generally, a dsc group of
length � � !1. In particular, it was shown that for this to occur, A and B must be
C�-groups. For countable values of �, the problem was, in a sense, solved in [10].
There an invariant was defined for every group G, written L�G, consisting of a class of
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finite subsets of the regular cardinals. This reduced the question from one regarding
the torsion product to one about computing the values of this invariant (see [10],
Theorem 3.10). Unfortunately, even for some very familiar groups, computing this
invariant almost immediately leads to undecidable statements from set theory.

Even earlier, in [8] it was shown that the case � D !1 is intimately connected
to a set-theoretic statement known as Kurepa’s Hypothesis (KH). There are several
equivalent ways to express this statement. For example, it asserts that there is a
tree of height !1 having at least !2 branches, but whose levels are all countable.
Equivalently, KH asserts the existence of a family F of subsets of !1 such that
jF j � !2, but for every countable � < !1, fX \ � W X 2 F g is countable. KH
is known to be true in the constructible universe, but to be undecidable over ZFC
(in fact, KH is a consequence of }C, which is true in V=L). In ([8], Theorem 13) it
was established that the denial of KH is equivalent to the statement that A5 B is a
dsc group for all p!1-bounded C!1-groups A and B. This is only one of a longer list
of algebraic statements that were shown to be equivalent to :KH.

The purpose of this note is to extend the methods of[10], which depended strongly
upon the countability of the lengths of the groups in question, to the case of C!1-
groups, and to use this extension to add to the list of algebraic statements that are
equivalent to :KH.

We begin by reviewing some well-known properties of p�-purity. In the next two
results E W 0! A! B! G! 0 will denote a short exact sequence.

Lemma 1.1 ([9], Lemma 1) If � is an ordinal and H is a totally projective group of
length �, then the short exact sequence E is p�-pure iff the corresponding sequence
E5 H W 0! A5 H ! B5 H ! G5 H ! 0 is splitting exact.

The proof of this in [9] assumed that the sequence E is pure-exact. However, this
assumption is unnecessary. Essentially, this is due to the fact that for n < !, E is
pn-pure iff EŒpn� W 0! AŒpn�! BŒpn�! GŒpn�! 0 is splitting exact. (In fact, the
finite case will not be needed in this work).

Lemma 1.2 ([5], Theorem 93) If � � !1 is a limit ordinal and G is a C�-group,
then E is p�-pure iff it is �-balanced (that is, for all ˛ < �, p˛E W 0 ! p˛A !
p˛B! p˛G! 0 is exact).

In several other papers we have used the language of balanced-projective
dimension (or b.p.d. for short; see, for example, [8]), but here we will use the
language of p�-projective dimension (or p�-p.d. for short). By Lemma 1.2, however,
these ideas are equivalent in the context of C!1-groups, which is the focus of this
work.

The following was the first important result on Nunke’s Problem, which has been
rephrased using our terminology:

Lemma 1.3 ([12], Theorem 6) Suppose A and B are reduced groups, B has length
� � !1 and p�A ¤ 0. Then A5 B is a dsc group iff A is a C�-group and B is a dsc
group.

We quote another simple result that is pertinent to our discussions.
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Lemma 1.4 ([6], Corollary 9) Suppose A and B are C!1-groups of cardinality at
most !1. If p!1A D p!1B D 0, then A5 B is a dsc group.

Whenever � is an infinite ordinal there is a p�-pure short exact sequence 0 !
M� ! H� ! Zp1 ! 0, where H� is the “generalized Prüfer group” of length �.
The group M� is called a �-elementary S-group. It is well known that M� is totally
projective exactly when � D ˛Cn, where ˛ is a limit ordinal of countable cofinality
and n < !.

Lemma 1.5 Suppose G is a group and H is a dsc group of length � � !1.

(a) ([9], Theorem 2) G5 H is a dsc group iff G is a C�-group.
(b) ([6], Theorem 19) G5M!1 is a dsc group iff G is a C!1-group with p!1-p.d. at

most one.

In [6] the class of C!1-groups with p!1 -p.d. at most one was denoted by C1 and
in [9] it was denoted by F ; we will use the latter notation. This class will be central
in our application of the invariant L�G to the case where � D !1 is uncountable.

Observe that if G is a C!1-group with p!1G ¤ 0, then since M!1 is not a dsc
group, it follows from Lemma 1.3 that G5M!1 fails to be a dsc group. Therefore,
by Lemma 1.5(b), any group in F must be p!1-bounded.

We mention a few additional well-known properties of this class. Recall that a
cardinal � is regular if cf.�/ D �; otherwise, it is singular.

Lemma 1.6 Suppose A, B, and G are C!1-groups.

(a) If jGj � !1 and p!1G D 0, then G 2 F .
(b) ([6], Theorem 21) If G 2 F and A is an isotype subgroup of G, then A 2 F .
(c) ([6], Theorem 23) If A;B 2 F , then A5 B is a dsc group.
(d) If jGj D � is regular and G 2 F , then G has a filtration fAigi�� consisting of

p!1-pure subgroups such that for all i < �, G=Ai 2 F .
(e) ([9], Theorem 15) If jGj is singular and A 2 F for every isotype subgroup A of

G such that jAj < jGj, then G 2 F .

First, (a) follows immediately from Lemmas 1.4 and 1.5(b). Next, in (d),
use Lemma 1.5 and fix decompositions of G 5 M!1 and G 5 H!1 into countable
summands, and then choose the filtration so that for each i, Ai5M!1 and Ai5H!1 are
direct sums of subcollections of the terms in these decompositions. The result then
follows from Lemmas 1.1 and 1.5. Finally, (d) is a variation on Shelah’s Singular
Compactness Theorem.

We now provide some additional motivation for our interest in the class F . If G
is a group, then a subgroup B � G will be said to be !1-basic if

(a) B 2 F ;
(b) B is p!1-pure in G; and
(c) G=B is divisible.

By way of comparison, if � < !1 is a countably infinite ordinal, then any C�-
group G has a �-basic subgroup B; that is, B is a p�-bounded dsc group that is
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p�-pure in G and G=B is divisible (see, for example, [13]). Comparing this with the
above, it might be supposed that condition (a) should require that B actually be a dsc
group. However, it is well known that a dsc group is complete in the !1-topology
(which uses fp˛Gg˛<!1 as a neighborhood base of 0 2 G); so if G is a reduced C!1-
group that has an !1-basic subgroup B that is actually a dsc, then G D B will be a
dsc group. In other words, only dsc groups would have !1-basic subgroups.

The reason for our interest in this terminology is the following observation.

Proposition 1.7 A group is a C!1-group iff it has an !1-basic subgroup.

Proof Suppose G is a C!1-group. By an obvious induction on ˛ < !1 we can
construct a smoothly ascending chain of subgroups fH˛g˛<!1 of G such that for all
˛, H˛C1 is p˛-high in G. In particular, each H˛C1 is a dsc group; and since H˛ is
isotype in H˛C1 and of countable length, it is also a dsc group. If B D [˛<!1H˛ ,
then B is isotype in G, so it is a C!1-group, as well. Clearly, each H˛ has b.p.d. equal
to 0. So by ([4], Theorem 5.2), B has b.p.d. at most 1; that is, B 2 F .

Whenever ˛ < !1 is infinite, G=H˛ will be divisible; so .G=H˛/=.B=H˛/ Š G=B
will also be divisible. In addition, for all ˛ < !1, GŒp� D .p˛G/Œp� C H˛C1Œp� �
.p˛G/Œp�C BŒp�, so by ([5], Theorem 91), B is p!1-pure in G.

The converse is even easier and is left to the reader. ut

For countably infinite values of �, a �-basic subgroup of a C�-group G can
be constructed precisely as in Proposition 1.7 as the union of a chain of p˛-high
subgroups for all ˛ < �. Since � is countable, the p�-p.d. of G will be at most 1
(this follows since M� will be a dsc group). And since B will be a dsc group, its
p�-p.d. will be 0, that is, one less than the p�-p.d. of G. In a parallel fashion, if G
is a C!1-group and B is !1-basic in G, then the p!1 -p.d.of G will be at most 2 (this
follows since M!1 5M!1 will be a dsc group by Lemma 1.4). And the p!1-p.d. of B
will be at most 1, that is, one less than the p!1-p.d.of G.

Clearly, there are many ways in which !1-basic subgroups are much less well-
behaved than �-basic subgroups when � is countable. For example, since a �-basic
subgroup is a dsc group, it can be fully described by cardinal invariants. On the
other hand, it follows from Lemma 1.6(b) that every isotype subgroup of a reduced
dsc group is in F . And unfortunately, this class of isotype subgroups is known to
be fully as complicated as the entire class of all abelian p-groups.

So for the ordinal !1, in some respects F is the appropriate analogue of the class
of p�-bounded dsc groups for countable ordinals � < !1. And again, if � < !1 and
G is a C�-group, then L�G can be used to decide if G is a dsc. It is therefore logical
to consider the following question, which is the main purpose of this paper:

If G is a C!1-group, can we use the techniques of [10] to determine when
G 2 F ?

To this end, we will define a slightly amended version of the invariant L!1G , which
we call JG. Let Q be the class of all regular cardinals � > @1 (the definition of L�G
in [10] used R D Q [ f@1g). Any successor cardinal � > @1 is in Q, and it is
actually consistent with ZFC that all elements of Q are successor cardinals (that is,
there are no regular limit cardinals). If � 2 Q, then C � � is a CUB if it is closed
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and unbounded in the order topology; and S � � is stationary if S \ C ¤ ; for all
CUB subsets C � �. A regular cardinal � 2 Q is said to be weakly Mahlo if � \Q
is stationary in �; such cardinals played a very significant role in the definition of
the invariant L�G in [10].

Let Qf be the class of finite subsets of Q. Suppose T 2 Qf ; if T D ;, let
�.T/ D @1, and if T ¤ ;, let�.T/ be its greatest element. Let T 0 D T�f�.T/g, and
if i < �.T/, let Ti D .T 0[fig/\Q (that is, Ti D T 0 if i 62 Q and Ti D T 0[fig when
i 2 Q). In particular, if T 2 Qf is non-empty and i < �.T/, then �.Ti/ < �.T/.
These are almost exactly the same definitions as in [10], the main difference being
that in that earlier work, �.;/ was defined to be @0 instead of @1.

There are two particularly important (and extreme) classes contained in Qf ;
0Q D ; and 1Q D Qf . For a group G, we continue the parallel with the definition
of L!1G from [10], by defining a subclass JG � Qf by transfinite induction on
� WD �.T/. To begin with the base case:

(J-0) If � D @1 (that is, T D ;), then T 2 JG iff p!1G ¤ 0.

Next, suppose T ¤ ; and for all groups H we have defined all the elements
S 2 JH such that �.S/ < �; in particular, when i < � this holds for S D Ti. We then
define T to be in JG iff one of two things occurs:

(J-1) � !1
T .G/ WD fi < � W Ti 2 JGg is stationary in �; or

(J-2) G has a subgroup A of cardinality �, with a filtration fAigi<� such that

�
!1
T .A/ WD f i < � W Ti 2 JA=Ai g

is stationary in �.

These conditions are nearly identical to the conditions which define L!1G ; the
primary difference is that we start applying (J-1) and (J-2) at � D @2 instead of
� D @1. We are only concerned with whether � !1

T .G/ and �!1
T .A/ are or are not

stationary. Since any two filtrations agree on a CUB subset C � �, if this is true
for one filtration, then it is true for them all. As a consequence, if � is not weakly
Mahlo, then (J-1) holds exactly when T 0 2 JG, and (J-2) is equivalent to requiring
that f i < � W T 0 2 JA=Ai g be stationary in �.

The following makes clear the relation between these two ways of defining our
invariants.

Proposition 1.8 If G is a group, then

JG D L!1G \Qf D fT 2 L!1G W @1 62 Tg:

Proof Let T be in Qf . We prove via induction on � WD �.T/ that T 2 JG iff T 2 L!1G .
First, if � D @1, then T D ;, and either condition is equivalent to p!1G ¤ 0.
Next, if � > @1, then T is in either collection iff one of our other two conditions

is satisfied. Observe that �� WD .@1; �/ is a CUB in �. In addition, if i 2 ��, then
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Ti D .T
0 [ fig/ \R D .T 0 [ fig/ \Q:

So by induction, T satisfies one of the last two defining conditions for L!1G iff it
satisfies the corresponding condition for JG. This completes the induction. ut

In fact, an alternate approach to our discussions would be to simply define JG D

L!1G \Q.
We are aiming to generalize the following result:

Theorem 1.9 ([10], Theorem 1.6) If � < !1 is a countable ordinal, then a
C�-group G is a dsc group iff L�G D 0R.

The original statement of this result assumed � D !0, but as was noted at the
end of the paper, the result and its proof immediately generalize to any countable
ordinal. In order to translate that argument to our current framework, we begin
with a summary of some properties of JG that parallel properties for L�G when �
is countable:

Lemma 1.10 (cf. [11], Lemma 2.1) Suppose G and H are groups.

(a) If T 2 JG, S 2 Qf and T � S, then S 2 JG.
(b) JG D 1Q precisely when p!1G ¤ 0.
(c) If G is a subgroup of H, then JG � JH.
(d) JG˚H D JG [ JH.
(e) If T 2 JG iff there is a subgroup A � G such that jAj � �.T/ and T 2 JA.
(f) If G is reduced and T is an element of JG that is minimal under inclusion, then

there is a subgroup A � G such that jAj D �.T/ and T 2 JA.

To justify these statements, note that (a)–(d) follow from Proposition 1.8 and
([11], Lemma 2.1(a,b,c,e)) since they all hold for L!1G .

For (e) and (f), suppose first that p!1G ¤ 0; then there is a subgroup A � G of
cardinality at most @1 such that p!1A ¤ 0. So JA D 1Q and (e) follows immediately.
Turning to (f), p!1G ¤ 0, together with the minimality of T , implies that T D ;.
And since G is reduced, jAj D @1 D �.T/ and (f) follows.

Finally, if G is p!1-bounded, then (e) and (f) follow from Proposition 1.8 and
([11], Lemma 2.1(f,g)) since they both hold for L!1G .

It should be emphasized that the obvious generalization of Theorem 1.9 to
� D !1 does not hold; in other words, it is not true that a C!1-group G is a dsc
group iff L!1G D 0R. For example, if X is a reduced countable group of length
� < !1, then ([11], Proposition 2.2) implies that L!1X � L�X D 0R, so that L!1X D 0R.
So if H D

L

i2I Xi is any reduced dsc group, then by ([11], Lemma 2.6), we will
again have L!1H D 0R—so one of these implications does, in fact, hold. On the other
hand, if G is any subgroup of such a reduced dsc group H, then ([11], Lemma 2.1(c))
together with the above implies that L!1G D 0R. However there are many such
subgroups which are C!1-groups but not dsc groups (for example, the elementary
S-group M!1). On the other hand, as we will see, if we replace the condition of
being a dsc group by the condition of being in F , we do obtain a valid statement.
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Before we state and prove this result we mention a key step in the argument,
which is a variation on Fodor’s Lemma. Suppose � 2 Q and W � � is a stationary
subset. A function f W W ! Qf such that f .i/ � i for all i 2 W will be called
regressive.

Lemma 1.11 ([10], Lemma 1.5) Suppose � 2 Q and W � � is a stationary
subset. If f W W ! Qf is a regressive function, then there is a stationary subset
W 0 � W such that f .i/ D f .j/ for all i; j 2 W 0.

Theorem 1.12 If G is a C!1-group, then the following are equivalent:

(a) G 2 F ;
(b) JG D 0Q;
(c) @1 2 T for all T 2 L!1G .

Proof The equivalence of (b) and (c) follows immediately from Proposition 1.8.

We now verify (a) implies (b). For T 2 Qf , we show T 62 JG for all G 2 F by
induction on � WD �.T/.

Suppose first that � D @1; that is, T D ;. If G 2 F , then we know that p!1G D 0,
and this immediately implies that ; 62 JG. So we may assume � > @1.

If G 2 F , then for all i < �, �.Ti/ < � D �.T/, so by induction, Ti will not be
in JG. Therefore, � !1

T .G/ will be empty, so that (J-1) does not hold. Next, consider
a subgroup A � G of cardinality �, as in (J-2). Expanding A a bit (without changing
its cardinality), we may assume that A is isotype in G. By Lemma 1.6(b), A 2 F .
By Lemma 1.6(d), we can construct a p!1 -pure filtration fAigi<� of A such that each
A=Ai 2 F . So again by induction, for all i < �, Ti 62 JA=Ai , that is, �!1

T .A/ will be
empty. Hence (J-2) also fails, and T 62 JG, as required.

Conversely, we show that if G is a C!1-group with JG D 0R, then G 2 F by
induction on 	 D jGj. Note that since ; 62 JG, G will be p!1-bounded.

First, if 	 D @1, then G 2 F follows directly from Lemma 1.6(a).
Suppose, then, that 	 > @1. If A is any isotype subgroup of G with jAj < 	 , then

by Lemma 1.10(c), JA � JG D 0Q; so by induction, A 2 F . And if 	 is singular,
then G 2 F follows from Lemma 1.6(e).

Assume, then, that 	 is regular. Since G is a C!1-group, we can conclude that
G5H!1 is a dsc group. It follows that we can find a filtration of G, fAigi<	 , with the
property that for each i < 	 , Ai5H!1 is a summand of G5H!1 . In other words, by
Lemma 1.1 this is a filtration of G consisting of p!1-pure subgroups. By adding 0
terms at the beginning and repeating terms as necessary, we may assume that jAij �

jij for all i < 	 ; in particular, A0 D 0. Again, by induction and Lemma 1.10(c), each
Ai 2 F .

We claim that

fi < 	 W 8.i < j < 	/ Aj=Ai 2 F g

contains a CUB. If we have verified this, then after possibly relabeling, we may
assume this set is all of 	 . By Lemma 1.5(b), we can conclude that for all i,



392 P.W. Keef

.AiC1=Ai/5M!1 will be a dsc group. Therefore, each p!1-pure sequence

0! Ai 5M!1 ! AiC1 5M!1 ! .AiC1=Ai/5M!1 ! 0

must necessarily split. This implies that

G5M!1 Š
M

i<	

�

.AiC1=Ai/5M!1

	

will also be a dsc group, so that G 2 F by Lemma 1.5(b).
We now show that the denial of this claim leads to a contradiction. So assume

S WD fi < 	 W 9.i < j < 	/ Aj=Ai 62 F g

is stationary in 	 .
If i 2 S , then it determines an i < j < 	 . Since Aj 2 F , Aj 5 M!1 will be

a dsc group. This implies that there is a p!1-pure subgroup X � Aj containing Ai

such that jXj D jAij � jij and X 5 M!1 is a summand of Aj 5 M!1 . Therefore,
.Aj=X/5M!1 Š .Aj 5M!1/=.X 5M!1/ is also a dsc group. Since Aj=Ai is not in
F , .Aj=Ai/5M!1 will not be a dsc group. And since

.Aj=Ai/5M!1 Š ..X=Ai/5M!1/˚ ..Aj=X/5M!1/;

we can conclude that .X=Ai/5M!1 also fails to be a dsc group.
By induction JX=Ai ¤ 0R, so let Si 2 JX=Ai ; and since jX=Aij � jij, by

Lemma 1.10(f) we may assume that �.Si/ � jij, as well. Therefore, the function
i 7! Si � fig will be regressive, so by Lemma 1.11, there is a stationary subset
OS � S such that Si � fig is constant for all i 2 OS ; call this common value OS.

Let T D OS [ f	g. So if i 2 OS , then Si � .OS [ fig/ \ Q D Ti, which implies
that Ti 2 JX=Ai � JG=Ai . Therefore, OS will be contained in �!1

T .G/. Since OS is
stationary, we can conclude that T 2 JG, so that JG ¤ 0R. This contradicts our
hypotheses, completing the argument. ut

In the following, Theorem 1.12 asserts the equivalence of (d) with (b), and hence
with the other conditions from ([8], Theorem 13).

Corollary 1.13 The following are equivalent:

(a) Kurepa’s Hypothesis fails;
(b) Every p!1-bounded C!1-group has p!1-p.d. at most 1;
(c) For all p!1 -bounded C!1-groups G and H, G5 H is a dsc group;
(d) For any C!1-group G, JG is either 1Q or 0Q.

Theorem 1.12 and its proof clearly parallel the proof of ([10], Theorem 1.9). In
that earlier paper, (p!-)pure filtrations are used to describe when G is ˙ -cyclic, and
in this case, p!1-pure filtrations are used to describe when G5M!1 is a dsc group.
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Again, the length � version of Nunke’s Problem asks when G5H is a dsc group
of length �. As mentioned above, this has been completely solved when � < !1 is
countable; so only the case of � D !1 remains unresolved. As in [10] (and other
places), if C and D are classes contained in Qf or Rf , we let

C �D D fX [ Y W X 2 C ;Y 2 D ;X \ Y D ;g:

We want to generalize the following:

Theorem 1.14 ([10], Theorem 3.10) If G and H are groups and � < !1 is a
countable ordinal, then G5H is a dsc group of length � iff G and H are C�-groups
of length at least � and L�G � L

�
H D 0R.

However, as we have seen, in some respects the proper analogue of the statement
“X is a dsc group of countable length �” is actually “X is in F ” (that is, X is a
C!1-group of p!1-p.d. at most 1). So, we ask:

For C!1-groups G and H, can we describe when G5 H is in F?
We answer this affirmatively in the next result.

Theorem 1.15 If G and H are C!1-groups, then the following are equivalent:

(a) G5 H 2 F ;
(b) JG5H D 0Q;
(c) JG � JH D 0QI

(d) @1 2 T for all T 2 L!1G � L
!1
H .

Proof The equivalence of (a) and (b) is Theorem 1.12. The equivalence of (c) and
(d) is Proposition 1.8. Finally, the equivalence of (b) and (c) is established by
observing that the same translation of the proof of the above Theorem 1.9 found in
[10] which gave our proof of Theorem 1.12 can be applied to the proof of the above
Theorem 1.14 found in [10] to establish this equivalence—for example, replacing
pure filtrations of the group G when � D !0 with p!1 -pure filtrations of the C!1-
group G when � D !1 constructed using subgroups A � G such that A5 H!1 is a
direct sum of a subcollection of the terms in a fixed decomposition of G5H!1 into
countable groups. ut

As was the case for the case where � < !1 is countable, the above result can be
extended to the case of several groups.

Corollary 1.16 If G1, . . . , Gn are C!1-groups, then G1 5 � � � 5 Gn is in F iff
JG1 � � � JGn D 0Q.

Again, as in ([10], Corollary 3.7), this follows from observing that the arguments
used there to establish Theorem 1.15 can actually be applied with any given number
of terms.

It is worth emphasizing that given C!1-groups G and H, L!1G and L!1H do not
determine when their torsion product is a dsc group, except in the trivial case when
this always happens. To see this, note that if KH fails, then by Corollary 1.13, G5H
will always be a dsc group whenever G and H are p!1-bounded C!1-groups. On the
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other hand, if KH holds, then let G be some p!1-bounded C!1-group of p!1-p.d. 2
(that is, G 62 F ). Note that L!1H!1

D L!1M!1
D 0R. However by Lemma 1.5, G5 H!1

is a dsc group, but G5M!1 is not.
We now discuss some properties of the elements of JG for a group G. We will see

that there are very real restrictions on what sets can appear in these classes. This is
in marked contract to the situation when � < !1 is countable. For example, in the
constructible universe we have the following result, which was stated for � D !,
but in fact holds for any countable �:

Theorem 1.17 ([1], Theorem 10) Assuming the axiom of constructability (V=L),
suppose M � Rf is an antichain (i.e., no two elements of M are comparable under
inclusion). If [M does not contain any weakly Mahlo cardinals, then there is a
group G such that M is precisely the collection of elements of L!G that are minimal
under inclusion.

What the last result says is that if we are in the constructible universe and we
stay away from weakly Mahlo cardinals, then any conceivable such invariant can be
realized for some group G.

To see how different the situation is for groups of length � D !1, we begin by
reviewing some terminology from [8]. If B is a subgroup of the C!1-group G, � is a
cardinal and @1 D jBj � � � jBj (where the closure is taken in the !1-topology),
then we say B is a �-Kurepa subgroup of G. Let �G > @1 be the smallest cardinal
such that G does not have a �G-Kurepa subgroup. In other words, �G D supfjBjC W
B is a subgroup of G of cardinality @1g; where jBjC is the successor cardinal to jBj.

Our discussion is based on the next result, which has been recast in our current
terminology.

Theorem 1.18 ([7], Theorem 8) If G is a p!1-bounded C!1-group of cardinality
� 2 Q with �G � jGj, then G has a filtration consisting of closed subgroups.

We use this to put some serious constraints on the possible elements of JG. We
begin by looking at the singletons. Let 
G � �G be the smallest non-weakly Mahlo
cardinal such that G does not have a 
G-Kurepa subgroup. So, if �G is not weakly
Mahlo, then 
G D �G; and if it is weakly Mahlo, then 
G D �C

G . Clearly, �G; 
G �

.2@1 /C. Let �, 
 � .2@1 /C be the supremum of the values of �G, 
G, respectively,
over all p!1-bounded C!1-groups G. It is easy to check that by taking direct sums
there is, in fact, a single such group G for which � D �G and 
 D 
G.

Lemma 1.19 Suppose G is a p!1-bounded C!1-group and � 2 Q.

(a) If � < 
G, then f�g 2 JG.
(b) If � � �G and f�g 2 JG, then � is weakly Mahlo.

Proof Considering (a), suppose � < 
G. First, if � < �G, then there is a �-Kurepa
subgroup B of G. There is clearly a subgroup A0 of B containing B of cardinality �.
If we let A be any isotype subgroup of G containing A0, also of cardinality �, then it
easily follows that �!1

f�g
.A/ contains all but an initial segment of �. So by (J-2), we

have f�g 2 JG.
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Next, suppose � D �G is weakly Mahlo; so S D � \ Q is stationary in �. It
follows from the last paragraph that if i 2 S , then f�gi D fig 2 JG. In other words,
S � � !1

f�g
.G/; so that by (J-1), we have f�g 2 JG. This completes the proof of (a).

Now, suppose � � �G is not weakly Mahlo; this means that there is a CUB subset
C � � such that C \Q D ;. To verify (b) we need to show that f�g is not in JG.

Observe that if i 2 C, then since i 62 Q, we have f�gi D ;. Since G is p!1-
bounded, it follows that f�gi D ; 62 JG. Therefore, � !1

f�g
.G/ is not stationary,

showing that f�g does not satisfy (J-1).
Suppose now that (J-2) holds for some isotype subgroup A � G of cardinality �.

By Theorem 1.18, A has a closed p!1-pure filtration fAigi<� ; so A=Ai is a p!1-
bounded C!1-group for all i < �. Now if i 2 C, then f�gi D ; will not be a
member of JA=Ai . This implies that �!1

f�g
.A/ will not be stationary in �, showing that

f�g does not satisfy (J-2), either. ut

Corollary 1.20 Suppose G is a p!1-bounded C!1-group and � 2 Q is not weakly
Mahlo. Then f�g 2 JG iff � < 
G.

We now characterize completely the singletons that can appear in one of these
invariants.

Theorem 1.21 If � 2 Q, then f�g 2 JG for some p!1-bounded C!1-group G iff
� < 
.

Proof First, assume � < 
. It was observed above that there is a p!1-bounded C!1-
group G such that 
 D 
G. So this half follows immediately from Lemma 1.19(a).

We actually prove the contrapositive of the converse by induction on �; in other
words: if � � 
, then f�g 62 JG for any p!1-bounded C!1-group G.

First, if � is not weakly Mahlo, then since � � 
 � 
G, the result follows from
Corollary 1.20. So we may assume that � is weakly Mahlo. And since 
 is not
weakly Mahlo, we can actually conclude that � > 
.

If 
 � i < �, then f�gi will be either ; or fig. But since G is p!1-bounded, ; 62 JG;
and by our induction hypothesis, fig 62 JG when i 2 Q. Therefore, � !1

f�g
.G/ is not

stationary, showing that f�g does not satisfy (J-1).
Suppose now that (J-2) holds for some isotype subgroup A � G of cardinality �.

By Theorem 1.18, A has a closed p!1-pure filtration fAigi<� ; so A=Ai is a p!1-
bounded C!1-group for all i < �. Again, if 
 � i < �, then f�gi will be either
; or fig. But since A=Ai is p!1-bounded, ; 62 JA=Ai ; and again by our induction
hypothesis, fig 62 JA=Ai when i 2 Q. This implies that �!1

f�g
.A/ will not be stationary

in �, showing that f�g does not satisfy (J-2), either. ut

We next extend the above discussion to arbitrary elements of JG.

Theorem 1.22 Suppose G is a p!1-bounded C!1-group, T 2 JG and � is the least
element of T. Then we have,

(a) � < 
.
(b) If � is not weakly Mahlo, � 2 Q, � < � and S D .T � f�g/[ f�g, then S 2 JG.
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Proof Note that since G is p!1-bounded, ; 62 JG, that is T ¤ ;. As usual, we induct
on � WD �.T/. If T D f�g, then (a) follows immediately from Theorem 1.21. Next,
in (b), by Corollary 1.20 we have � < 
G. Therefore, if � < � , then � < 
G, so that
f�g D S 2 JG holds by Lemma 1.19(a).

So suppose � > � , and the result holds for all OT 2 JG with �. OT/ < �.
As usual, we now examine the two possible reasons that T might be in JG.

Suppose first that (J-1) holds. If i is any element of � !1
T .G/ with � < i < �,

then Ti 2 JG. Note that � will also be the smallest element of Ti and �.Ti/ < �.
So, by induction on �, (a) holds as desired. As to (b), note that for all i 2 � !1

T .G/
with i > � , the same substitution that converts T to S also converts Ti to Si. So by
induction, � !1

T .G/ � � !1
S .G/. So � !1

S .G/ is a stationary subset of �, and S 2 JG, as
stated.

Suppose now that (J-2) holds. Let A be an isotype subgroup of G of cardinality �
as in that statement. Let fAigi<� be a filtration of A consisting of p!1-pure subgroups.
Observe that if p!1.A=Ai/ ¤ 0 for all the is in some stationary subset of �, then we
could conclude that f�g 2 JG. And since f�g � S, by Lemma 1.10(a), this would
imply that S 2 JG, as desired. Therefore, by restricting to some CUB subset of �,
we may assume that A=Ai is a p!1 -bounded C!1-group for all i < �. Now choose
i 2 �!1

T .A/ with i > � . Therefore, Ti 2 JA=Ai , � is the smallest element of Ti and
�.Ti/ < �. So again, since the substitution that takes T to S also takes Ti to Si,
induction implies that �!1

T .A/ � �
!1
S .A/. Therefore, the latter is a stationary subset

of �, so that S 2 JG, completing the proof. ut

This means that the least element of any set in JG must be less than 
. In
particular, we have the following immediate consequence:

Corollary 1.23 Suppose 2!1 D !2 and G is p!1-bounded C!1-group that is not in
F (i.e., JG ¤ 0Q; 1Q). If T 2 JG, then !2 2 T.

We can use Theorem 1.22 to clarify and simplify some of the ideas found in
previous papers. The following, for example, appeared as part of ([7],Theorem 19).

Corollary 1.24 We have � � @nC1 iff G1 5 � � � 5 Gn 2 F whenever G1, . . . , Gn

are p!1-bounded C!1-groups.

Proof Suppose first that � � @nC1; in particular, 
 D �. If Tj 2 JGj for j D
1; 2; : : : ; n, then by Theorem 1.22(a), the smallest element of Tj will be an element
of Z D f@2;@3; : : : ;@ng. However, since Z only has n � 1 elements, T1, . . . , Tn

cannot be pairwise disjoint. Therefore, JG1 � � � JGn D 0Q, which by Corollary 1.16
implies that G1 5 � � � 5 Gn is in F .

Conversely, if � > @nC1, then by Theorem 1.21, for j D 1; : : : ; n, we
can find a p!1-bounded C!1-group Gj such that f@jC1g 2 JGj . It follows that
f@2;@3; : : : ;@nC1g 2 JG1 � � � JGn , which again by Corollary 1.16 implies G15 � � � 5

Gn is not in F . ut

Observe that the n D 1 case of Corollary 1.24 is just the equivalence of
conditions (a) and (b) in Corollary 1.13; i.e., the statement that :KH iff every p!1-
bounded C!1-group is in F .
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Abstract There are several equivalent characterizations of the valuation rank of
an ordered or valued field. In this paper, we extend the theory to the case of an
ordered or valued difference field (that is, ordered or valued field endowed with a
compatible field automorphism). We introduce the notion of difference rank. To treat
simultaneously the cases of ordered and valued fields, we consider quasi-ordered
fields. We characterize the difference rank as the quotient modulo the equivalence
relation naturally induced by the automorphism (which encodes its growth rate).
In analogy to the theory of convex valuations, we prove that any linearly ordered
set can be realized as the difference rank of a maximally valued quasi-ordered
difference field. As an application, we show that for every regular uncountable
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1 Introduction

The theory of convex valuations and coarsenings of valuations is a special chapter in
classical valuation theory. It is a basic tool in algebraic and real algebraic geometry.
Surveys can be found in [20, 21, 23]. This special chapter is in turn closely related
to ordered algebraic structures, see [8]. In particular, an important isomorphism
invariant of an ordered or valued field is its rank as a valued field, which has several
equivalent characterizations: via the ideals of the valuation ring, the value group, or
the residue field, see [27].

This can be extended to ordered and valued fields with extra structure, giving
a characterization completely analogous to the above, but taking into account the
corresponding induced structure on the ideals, value group, or residue field. For
example, in [14, Chapter 3] the notion of the exponential rank of an ordered
exponential field is introduced and analysed in light of the above classical tools.
The exponential rank measures the growth rate of the given exponential function,
and is thus closely related to asymptotic analysis in the sense of Hardy [10].

In this paper, we push this analogy to the case of an ordered or valued difference
field. We work with quasi-ordered fields, see [7]. In Sect. 2 we review classical
notions and results on ordered or valued fields. We thereby present a uniform
approach via quasi-orders, treating simultaneously the cases of ordered and valued
fields. Theorem 2.2 gives a characterization of the rank of a quasi-ordered field in
terms of coarsenings of its natural valuation. Descending down to the value group
of the quasi-ordered field, and yet further down to the value set � of the value
group, the rank and principal rank are finally characterized by the chain � , see
Theorems 2.7 and 2.12. In Sect. 3 we start by a key remark regarding equivalence
relations defined by monotone maps on chains. We describe in Theorem 3.4 the
rank of a quasi-ordered field via the equivalence relations induced by addition
and multiplication on the field. This approach allows us to develop in Sect. 4 the
notion of difference compatible valuations and introduce the difference rank. We
characterize in Theorem 4.2 the difference rank, in analogy to Theorem 2.2. [26,
Lemma 1] is a special case of our Corollary 4.8 on weak isometries. Corollary 4.9
describes the set of fixed points of an automorphism � in terms of its difference rank,
whereas Corollary 4.11 examines the special case of !-increasing or !-contracting
automorphisms. In the last Sect. 5 we describe the principal difference rank, see
Theorem 5.3 and its Corollaries 5.5, 5.4 and 5.6. In Theorem 5.8 we construct large
families of quasi-ordered difference fields with distinct difference ranks.

Some closing comments are in place. The theory of well-quasi orders [16] is
currently a highly developed part of combinatorics with surprising applications in
logic, mathematics and computer science. Quasi-ordered algebraic structures are
interesting in their own right, and we will continue our investigations of these
fascinating objects. Quasi-orders [2] appear in the literature also as preorders,
see, e.g., [8, p.1]. However, we will not use this terminology, in order to avoid
confusion with the notion of preorders appearing in real algebraic geometry (e.g.
in [15]). The theory of quasi-ordered abelian groups is closely related to that of
C-groups [11] and has already found interesting applications in [22] to the study
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of the asymptotic couple associated with a valued differential field. Throughout
the paper, Hahn groups and Hahn fields play a fundamental role. The group of
automorphisms of Hahn structures have been extensively studied, see [3, 5, 12, 26].
In future work, we will analyse the behaviour of the difference rank as function
defined on these automorphism groups.

2 The Rank of a Quasi-Ordered Field

A quasi-order (q.o.) on a set S is a binary relation  which is reflexive and
transitive. Throughout this paper, we will deal only with total quasi-order, i.e.
either a  b or b  a, for any a; b 2 S. We will omit henceforth ‘total’. Note that
an order is a q.o which is in addition anti-symmetric. In the latter case, we say that S
is an ordered set or a chain. The induced equivalence relation is defined by a � b
if and only if (a  b and b  a). We shall write a � b if a  b but b � a fails. Note
that  induces canonically a total order on S= �. Conversely if� is an equivalence
relation on a set S such that S= � is a total order, then � induces canonically a q.o.
on S. A subset E of S is -convex if for all a; b; c in S, if a  c  b and a; b 2 E,
then c 2 E. We shall write convex instead of -convex if the context is clear.

A quasi-ordered field .K;/ is a field K endowed with a quasi-order  which
satisfies the following compatibility conditions, for any a; b; c 2 K.

qo1 If a � 0, then a D 0.
qo2 If 0  c and a  b, then ac  bc.
qo3 If a  b and b 6� c , then aC c  bC c.

From qo2 one deduces that if a  b and 0  c  d, then ac  bc  bd, so ac  bd.
Given a valuation w on K we denote the valuation ring by Kw , its group of units

K�
w by Uw, its valuation ideal (i.e. its unique maximal ideal) by Iw , its value group

by w.K�/ and residue field Kw=Iw by Kw .
An ordered field .K;�/ is a q.o. field. The valuation on a valued field .K;w/

induces a quasi-order: a w b if and only if w.b/ � w.a/, i.e. if and only if ab�1 2

Kw. Fakhruddin [7] showed that if  is a q.o. on a field K, then  is either an order
or there is a (unique up to equivalence of valuations) valuation v on K such that
 Dv . The dichotomy is achieved by considering the equivalence class E1 of 1
with respect to � . In the order case, E1 D f1g and � is just equality. The quasi-
order is said to be a proper quasi-order (p.q.o.) if E1 6D f1g. In this case, E1 6D f1g
is a non-trivial subgroup of K� and K�=E1 is an ordered abelian group. Then Uv is
just E1 and v.K�/ is K�=E1. In the p.q.o case a � 0 for all a 2 K.

Given two valuations v and w on K, recall that w is said to be a coarsening of v
(w is coarser than v) or that v a refinement of w (v is finer than w) if Kv � Kw. In
case the inclusion of the valuation rings is strict, we add the predicate strict in the
terminology coarser and finer. Note that w is coarser than v if and only if a v b
implies a w b . If �1 and �2 are two equivalence relations defined on the same
set, then �1 is said to be coarser than �2 (or �2 finer than �1) if �2-equivalence
implies �1-equivalence.
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Let us now fix a q.o.  on K . A valuation w on K is called convex with respect
to  if its valuation ring Kw is convex. It is called compatible with  (or  is
compatible with w or w and  are compatible) if for all a; b 2 K :

0  b  a H) w.a/ � w.b/ :

Equivalently, w is compatible with  if and only if for all a; b 2 K :

0  b  a H) b w a :

Remark 2.1

(i) If  is an order, then this is the usual notion of compatibility for orders and
valuations, see, e.g., [19, 20, 23], or [24].

(ii) If Dv is a p.q.o., then w compatible with v just means that for all a; b 2
K ; v.a/ � v.b/ H) w.a/ � w.b/. This in turn just means that Kv � Kw

or w is a coarsening of v, equivalently �w is coarser than�v .

The following gives the characterization of valuations compatible with a quasi-
order. Theorem 2.2 is in complete analogy to the characterization of valuations
compatible with an order. So for  an order, we omit the proof and refer the
reader to [19, Proposition 5.1], or [20, Theorem 2.3 and Proposition 2.9], or [23,
Lemma 3.2.1], or [24, Lemma 7.2] or [6, Proposition 2.2.4].

Theorem 2.2 Let .K;/ be a q.o. field and w a valuation on K. The following
assertions are equivalent:

(1) w is compatible with ,
(2) w is convex,
(3) Iw is convex,
(4) Iw � 1 ,
(5) the quasi-order  induces canonically via the residue map a 7! aw a quasi-

order on the residue field Kw.

Proof Assume Dv is a p.q.o. Compatible valuations are clearly convex, this
follows from the definitions. Conversely if w is convex and 0 D v.1/ � v.a/ ; i.e.
a  1 ; then a 2 Kw by convexity. So w is a coarsening of v. This establishes the
equivalence of (1) and (2).

If w is convex, a  b with b 2 Iw ; then 0 < w.b/ � w.a/ by compatibility, so
a 2 Iw. Conversely assume Iw convex, and let a  b with b 2 Kw n Iw. If a … Kw

then a�1 2 Iw. Now b�1  a�1, so b�1 2 Iw ; a contradiction. This establishes the
equivalence of (2) and (3).

If Iw is convex, then w is a coarsening of v, so Iw � Iv � 1. Conversely, assume
Iw � 1 and let a  b with b 2 Kw . If a … Kw ; then a�1 2 Iw. So a�1b 2 Iw

whence a�1b � 1. Multiplying by a gives b � a, a contradiction. This establishes
the equivalence of (3) and (4).

Now let w be a coarsening of v . Then v induces canonically a valuation v=w on
the residue field Kw, defined by v=w.aw/ WD 1 if aw D 0 and v=w.aw/ WD v.a/
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otherwise ([6] p. 44) . The p.q.o. v=w is precisely the induced well-defined quasi-
order in (5), i.e. aw v=w bw if and only if a v b holds. Conversely, let v=w be a
p.q.o. on Kw induced by the residue map. This means that aw v=w bw if and only
if a v b holds. Then w is a coarsening of v (see [6, p. 45]). This establishes the
equivalence of (1) and (5). ut

Remark 2.3 If  is an order, then the induced quasi-order in (5) is also an order, if
 is a p.q.o., then the induced quasi-order in (5) is also a p.q.o.

Let .K;/ be a q.o. field. We define its natural valuation, denoted by v, to be the
finest -convex valuation of K. If .K;�/ is ordered, then the natural valuation is
the valuation v whose valuation ring Kv is the convex hull of Q in K. In this case,
the natural valuation on K satisfies v.xC y/ D minfv.x/; v.y/g if sign(x) = sign(y)
and for all a; b 2 K W a � b > 0 H) v.a/ � v.b/. It is characterized
by the fact that the induced order on its residue field Kv is archimedean, i.e. the
only equivalence classes for the archimedean equivalence relation (see definition
below following Lemma 2.5) are those of 0 and 1. If w is a coarsening of a convex
valuation, then w also is convex. Conversely, a convex subring containing 1 is a
valuation ring, see [6, Section 2.2.2]. The set R of all valuation rings Kw of convex
valuations w ¤ v (i.e. all strict coarsenings of v) is totally ordered by inclusion.
Its order type is called the rank of the ordered field K. For convenience, we will
identify it with R. For example, the rank of an archimedean ordered field is empty
since its natural valuation is trivial (i.e. its valuation ring is the field itself). The rank
of the rational function field K D R.t/ with any order is a singleton: R D fKg.
Theorem 2.2 is a characterization of the elements of the rank of the ordered field
.K;�/. Note that the rank of .K;�/ is invariant under isomorphisms of ordered
fields.

If .K;/ is p.q.o., then the unique valuation v such that Dv is the natural
valuation. A compatible valuation w is a coarsening of v. We define the rank of
the valued field .K; v/ to be the (order type of the) totally ordered set R of all strict
coarsenings of v. Thus, Theorem 2.2 is a characterization of the elements of the rank
of .K; v/. Note that the rank of .K; v/ is invariant under isomorphisms of valued
fields. As we recalled in the proof of Theorem 2.2, the natural valuation v induces
canonically a valuation v=w on the residue field Kw and v is the compositum of w
and v=w (see [6, pp. 44–45]) . The p.q.o. v=w is precisely the induced quasi-order
in Theorem 2.2(5). If w D v ; then v=w is trivial. Thus v is characterized by the fact
that the induced p.q.o on its residue field Kv is trivial, i.e. the only equivalence
classes of� are those of 0 and 1.

Remark 2.4 The maximal ideals Iw appearing in Theorem 2.2(4) are prime ideals
of the valuation ring Kv . The strict coarsenings Kw of Kv are the localizations of Kv
at the prime ideals f0g � I � Iv , [6, Lemma 2.3.1 p. 43], [27, Theorem 15, p. 40].
Thus the rank is also isomorphic to the totally ordered (by reverse inclusion) set of
prime ideals of Kv which are strictly contained in the maximal ideal Iv .

We now want to characterize the rank by going down to the value group. Let v be
the natural valuation on the q.o. field .K;/. We set G D v.K�/. Recall that the



404 S. Kuhlmann et al.

set of all convex subgroups Gw ¤ f0g of the value group G is totally ordered by
inclusion. Its order type is called the rank of G, it is an isomorphism invariant, see
[8] or [23]. To every convex valuation ring Kw, we associate a convex subgroup
Gw WD fv.a/ j a 2 K ^ w.a/ D 0g D v.Uw/. We call Gw the convex subgroup
associated with w. Note that Gv D f0g. Conversely, given a convex subgroup Gw

of v.K�/, we define w W K ! v.K�/=Gw by w.a/ D v.a/ C Gw. Then w is a
convex valuation with v.Uw/ D Gw (and v is strictly finer than w if and only if
Gw 6D f0g). We call w the convex valuation associated with Gw. We summarize
the above discussion in the following lemma, for more details, see [6], or [8] or [23].

Lemma 2.5 The correspondence Kw 7! Gw is an order preserving bijection, thus
R is (isomorphic to) the rank of G.

We now want to characterize the rank by going further down to the value set of the
value group. Recall that on the negative cone G<0 of an ordered abelian group G,
the archimedean equivalence relation � is defined by: a � b if and only if there
is n 2 N such that a � nb and b � na. Let vG be the map a 7! Œa�� , where Œa��
denotes the equivalence class of a. The order on � WD G<0= � is the one induced
by the order of G<0. We call vG.G<0/ WD � the value set of G. By convention
we also write vG.G/ WD � [ f1g extending the archimedean equivalence relation
to the positive cone of G by setting vG.g/ WD vG.�g/ and vG.0/ D 1 > � .
The map vG on G satisfies the ultrametric triangle inequality, and in particular we
have: vG.x C y/ D minfvG.x/; vG.y/g if sign(x) = sign(y). We call vG the natural
valuation on G.

We now recall the relation between the rank of G and the value set � of G.
To Gw ¤ f0g a convex subgroup, we associate �w WD vG.G<0

w / a non-empty final
segment of � . Conversely, if �w is a non-empty final segment of � , then Gw D fg j
g 2 G; vG.g/ 2 �wg [ f0g is a convex subgroup, with �w D vG.Gw/. Let us denote
by � fs the set of non-empty final segments of � , totally ordered by inclusion. We
summarize the above discussion in the following lemma, for more details, see [6],
or [8] or [23].

Lemma 2.6 The correspondence Gw 7! �w is an order preserving bijection, thus
the rank of G is (isomorphic to) � fs.

Combining Lemmas 2.5 and 2.6 we obtain the following result. Note that Theo-
rem 2.7 will also follow, by a different argument, from Theorem 3.4 in the next
section.

Theorem 2.7 The correspondence Kw 7! �w is an order preserving bijection, thus
R is (isomorphic to) � fs.

A final segment which has a least element is a principal final segment. It is of the
form f	 0 j 	 0 2 �; 	 0 � 	g, for some 	 2 � . Let � � denote the set � with its
reversed ordering. The proof of the following Lemma is now routine.

Lemma 2.8 The map from � to � fs defined by 	 7! f	 0 j 	 0 2 �; 	 0 � 	g is an
order reversing embedding. Its image is the set of principal final segments. Thus � �

is (isomorphic to) the totally ordered set of principal final segments.
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For the notions and results in this last paragraph of the section, we refer the
reader to [8] or [23] for more details. Recall that a convex subgroup Gw of G is
called principal generated by g, g 2 G, if Gw is the minimal convex subgroup
containing g. The principal rank of G is the subset of the rank of G consisting of
all principal Gw ¤ f0g.

Lemma 2.9 Let Gw ¤ f0g be a convex subgroup. Then Gw is principal if and only
if vG.Gw/ D �w is a principal final segment.

Lemma 2.10 The map Gw 7! min�w is an order reversing bijection from the
principal rank of G onto � . Thus the principal rank of G is (isomorphic to) � �.

We set: PK WD K�0 n Kv , where K�0 WD fa 2 K I a � 0g. A Kw 2 R is principal
generated by a for a 2 PK if Kw is the smallest (convex) subring containing a. We
observe:

Lemma 2.11 Let Kw 2 R. Then, Kw is principal generated by a if and only if
Kw D fb 2 K W 9n 2 N0 s:t: b v ang.

Proof It is enough to verify that fb 2 K W 9n 2 N0 b v ang is a subring of K. Let
b1 v an1 and b2 v an2 . Then b1b2 v an1Cn2 and b1 C b2 v amaxfn1;n2g. Clearly,
this ring contains Kv and a. ut

The principal rank of K is the subset Rpr of R consisting of all principal Kw 2 R.
Combining the last three lemmas we obtain:

Theorem 2.12 The correspondence Kw 7! �w is an order preserving bijection
between Rpr and the principal rank of G, thus Rpr is (isomorphic to) � �.

Note that Theorem 2.12 will also follow, by a different argument, from Theorem 3.4
in the next section.

Remark 2.13 It is straightforward to verify that an order preserving isomorphism
 W �1 ! �2 induces an order preserving isomorphism  fs W � fs

1 ! � fs
2 [25, p.19].

Thus � determines � fs up to isomorphism. It follows from Theorems 2.7 and 2.12
that if two q.o. fields have isomorphic principal ranks, then they have isomorphic
ranks. In the next section we shall hence focus our attention on the principal rank.

3 The Principal Rank via Equivalence Relations

We begin by the following key observation:

Remark 3.1 Let ' be a map from a q.o. ordered set .S;/ into itself, and assume
that ' is q.o. preserving, i.e. a  a0 implies '.a/  '.a0/, for all a; a0 2 S.
Assume that ' has an orientation or is oriented, i.e. '.a/ � a for all a 2 S ('
is a right shift) or '.a/  a for all a 2 S (' is a left shift). We set '0.a/ WD a
and 'nC1.a/ WD '.'n.a// for n 2 N0 WD N [ f0g. It is then straightforward that the
following defines an equivalence relation on S:
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(i) If ' is a right shift, set a �' a0 if and only if there is some n 2 N0 such
that 'n.a/ � a0 and 'n.a0/ � a (equivalently for some n; m 2 N0, 'n.a/ �
a0 and 'm.a0/ � a ),

(ii) If ' is a left shift, set a �' a0 if and only if there is some n 2 N0 such that
'n.a/  a0 and 'n.a0/  a (equivalently for some n; m 2 N0, 'n.a/ 
a0 and 'm.a0/  a ).

(iii) The equivalence classes Œa�' of �' are -convex and closed under application
of '. By the -convexity, the quasi-order of S induces an order on S=�' such
that Œa�' � Œb�' if and only if a0 � b0 for all a0 2 Œa�' and b0 2 Œb�' .

Note that if ' is the identity map I, then the equivalence relation �I is just �
associated with the q.o., and is the finest one such that S= �I is an ordered set.

We exploit Remark 3.1 to give an interpretation of the rank and principal rank as
quotients via an appropriate equivalence relation, thereby providing—as promised
in the previous section—alternative proofs for Theorems 2.7 and 2.12. It is precisely
this approach that we will generalize to the difference rank in Sect. 5. Let v be the
natural valuation on the q.o. field .K;/. Recall that PK denotes K�0 nKv . Consider
the following commutative diagram:

PK

G<0

vG(G)

PK

G<0

vG(G)

v v

vG vG

j

jG

jG

///

///

with j (a) := a2 for all a∈ PK , j is a right shift,

jG(v(a)) := v(j (a)) for all a ∈ PK ,

that is jG(g) = 2g for all g ∈ G<0 , jG is a left
shift and

jG (vG(g)) := vG(jG(g)) for all g ∈ G<0 ,

that is jG (g) = g for all g ∈ G , so that jG is just
the identity map.

By Remark 3.1, we can work with the equivalence relations associated with the
following oriented maps: the q.o. preserving map ' and the order preserving maps
'G and '� (as defined on the right-hand side of the above diagram). Note that �'G

is just archimedean equivalence on G and �'� is just equality on � . The following
straightforward observation will be useful for the proof of Theorem 3.4 below:

Lemma 3.2 The equivalence classes of �' are closed under multiplication.

Proof The proof is similar to that of Lemma 2.11. Let a; b 2 PK , and without loss
of generality assume that a  b and a �' b. We show that ab �' a. Let n 2 N0,
such that b  a2

n
. By axiom qo2, ab  b2. Thus b2  a2

n
b and ab  a2

n
b. So,

ab  a2
nC1

. Since 1  b, by axiom qo2, we get that a  ab. Therefore, ab �' a.
ut
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Remark 3.3 We note that

'n
G.v.a// D v.'n.a// and 'n

� .vG.g// D vG.'
n
G.g// (1)

thus

a �' a0 if and only if v.a/ �'G v.a
0/ if and only if vG.v.a// �'� vG.v.a

0//

(2)
Thus we have an order reversing bijection from PK= �' onto �= �'�D � . Thus
the chain ŒPK= �'�

is of non-empty initial segments of PK= �' ordered by inclusion
is isomorphic to � fs. In particular, initial segments which have a last element are in
bijective correspondence to principal final segments. Thus the subchain of ŒPK= �'
�is of initial segments which have a last element is isomorphic to � �.1. Therefore,
as promised in the previous section, Theorems 2.7 and 2.12 will now follow from
the following result:

Theorem 3.4 The rank R is isomorphic to the chain ŒPK= �'�
is and the principal

rank Rpr is isomorphic to the subchain of ŒPK= �'�
is of initial segments which have

a last element.

Proof First we note that if Kw is a convex valuation ring, then clearly K�0
w n K�0

v is
an initial segment of PK . Moreover by Lemma 2.11 if Kw is principal generated by a,
then Œa��' is the last class. Furthermore, if Kw intersects an equivalence class Œa��'

then it must contain it, since the sequence anI n 2 N0 is cofinal in Œa��' and Kw is a
convex subring. We conclude that .K�0

w n K�0
v /=�' is an initial segment of PK=�' .

Conversely set Iw D fŒa�' j a 2 K�0
w n K�0

v g. Given I 2 ŒPK=�'�
is, we show

that there is a convex valuation ring Kw such that Iw D I . Given I , let .
S

I /

denote the set theoretic union of the elements of I and �.
S

I / the set of additive
inverses. Set Kw D � .

S

I /[ Kv [ .
S

I /. We claim that Kw is the required ring.
Clearly, Iw D I . Further Kw is convex (by its construction), and strictly contains
Kv . We leave it to the reader, using Lemmas 3.2 and 2.11, to verify that Kw is a ring,
and that Kw is principal generated by a if Œa��' is the last element of I . ut

4 The Difference Analogue of the Rank

In this section, we develop a difference analogue of what has been reviewed above.
That is, we develop a theory of difference compatible valuations, in analogy to the
theory of convex valuations. The automorphism will play the role that multiplication
plays in the previous case.

1Note that the subchain of ŒPK= �'�
is of initial segments which have a last element is isomorphic

to ŒPK= �'� itself.



408 S. Kuhlmann et al.

Let .K;/ be a q.o. field and � be a q.o. preserving field automorphism of K,
that is, a  a0 if and only if �.a/  �.a0/, for all a; a0 2 K. We say that .K;; �/
is a q.o. difference field.

Remark 4.1 Let .K;�; �/ be an ordered difference field. Recall that the natural
valuation v on K is defined by archimedean equivalence. Since archimedean
equivalence is preserved under order preserving automorphisms, we see that � is
also v preserving (so that .K;v; �/ is a q.o. difference field). The converse
fails: Consider the field of real Laurent series K WD R..t// endowed with the
lexicographic order and the corresponding natural valuation vmin (see definitions
following Corollary 4.11 below). The map t 7! .�t/ defines a field automorphism
� on K which clearly preserves vmin but not the lexicographic order on K.

Now let .K;; �/ be a non-trivial (i.e. � 6D identity) q.o. difference field and v its
natural valuation. By definition, � satisfies for all a; b 2 K W v.a/ � v.b/ if and
only if v.�.a// � v.�.b// and thus induces an order preserving automorphism �G

and �� such that the following diagram commutes:

PK

G<0

vG(G)

PK

G<0

vG(G)

v v

vG vG

s

sG

sG

///

///

with sG(v(a)) := v(s (a)) for all a ∈ PK ,

and

sG (vG(g)) := vG(sG(g)) for all g ∈ G<0 .

Now let w be a convex valuation on K. Say w is � -compatible if for all a; b 2
K W w.a/ � w.b/ if and only if w.�.a// � w.�.b//. Thus w is � -compatible if and
only if � preserves the q.o. w.

The subset R� WD f Kw 2 R I w is � - compatible } is the � -rank of .K;; �/.
Similarly, the subset of all convex subgroups Gw ¤ f0g such that �G.Gw/ D Gw, i.e.
Gw is �G-invariant, is the � -rank of G. Finally, we denote by �� -� fs the subset of
non-empty final segments �w such that �� .�w/ D �w, i.e. �w is �� -invariant.

The following Theorem 4.2, Lemmas 4.5 and 4.6 are analogues of Theo-
rem 2.2, Lemmas 2.5 and 2.6, respectively. They are verified by straightforward
computations, using basic properties of valuations rings on the one hand and of
automorphisms on the other (e.g. �.A n B/ D �.A/ n �.B/, �.A/ � B if and only if
A � ��1.B/ and �.A/ � B if and only if �.�A/ � �B). The equivalence of (1) and
(7) in Theorem 4.2 follows from the compatibility of � with w on the one hand, and
from the definition of the induced q.o. on Kw on the other. We call Kw � -compatible
if any of the equivalent conditions below holds.
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Theorem 4.2 The following assertions are equivalent for a convex valuation w :

(1) w is �–compatible
(2) w is ��1–compatible
(3) �.Kw/ D Kw

(4) �.Iw/ D Iw

(5) �.Uw/ D Uw

(6) �.K�0
w n K�0

v / D K�0
w n K�0

v

(7) the map �w W Kw ! Kw defined by aw 7! �.a/w is well-defined and is a q.o.
(with respect to the induced q.o. on Kw ) preserving field automorphism of Kw .

Remark 4.3 Let .K;�; �/ be an ordered field with natural valuation v. In this case,
condition (7) on �w in Theorem 4.2 is referring to the induced order on the residue
field Kw. Consider instead the following condition:

(8) the map �w W Kw ! Kw defined by aw 7! �.a/w is well-defined and is a q.o.
(with respect to the q.o. v=w on Kw ) preserving field automorphism of Kw .

We observe that (7) implies (8). Indeed, �w is assumed to be order preserving
on Kw by (7). Now .Kw/.v=w/ D Kv (see [17, Lemma 2.1]). Therefore v=w has
archimedean residue field and is thus the natural valuation on the ordered field Kw.
By Remark 4.1 we obtain the assertion.

Remark 4.4 The maximal ideals Iw appearing in Theorem 4.2(4) are � -invariant
prime ideals (also called transformally prime ideals in [4]) of the valuation ring Kv
and the coarsenings Kw are just the localizations of Kv at those � -invariant prime
ideals, see [6, Lemma 2.3.1 p. 43]. Thus the � - rank is also characterized by the
chain of � -invariant prime ideals of Kv .

Lemma 4.5 The correspondence Kw 7! Gw is an order preserving bijection from
R� onto the �G-rank of G.

Lemma 4.6 The correspondence Gw 7! �w is an order preserving bijection from
the �G-rank of G onto �� -� fs.

We deduce from Lemmas 4.5 and 4.6 that the � -rank is the order type of �� -� fs:

Theorem 4.7 The correspondence Kw 7! �w is an order preserving bijection from
R� onto �� -� fs.

We now exploit this observation. An automorphism � is an isometry if v.�.a// D
v.a/ for all a 2 K, equivalently �G is the identity automorphism, and a weak
isometry if �� is the identity automorphism. Every isometry is a weak isometry.
Note that if � is a rigid chain (i.e. the only order preserving automorphism is the
identity map), then � is necessarily a weak isometry. If � is a weak isometry, then
�� .vG.g// D vG.�G.g// D vG.g/, thus g is archimedean equivalent to �G.g/ for
all g, and so every convex subgroup is �G-invariant.

Corollary 4.8 If � is a weak isometry, then R� D R.
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Corollary 4.9 The correspondence Kw 7! min�w is an order (reversing) isomor-
phism from R� \Rpr onto the chain f	 I �� .	/ D 	g of fixed points of �� .

Proof By Lemma 2.9, set min �w WD 	0. By Lemmas 4.5 and 4.6, �w in invariant
under �� . Since �� is order preserving, we must have �� .	0/ D 	0 ut

At the other extreme � is said to be !-increasing if an � �.a/ for all n 2 N0 and
all a 2 PK , and !-contracting if ��1 is !-increasing.

Remark 4.10 Note that � is !-increasing (respectively, !-contracting) if and only
if �� is a strict left shift, that is, �� .	/ < 	 for all 	 2 � (respectively, a strict
right shift, i.e. �� .	/ > 	 for all 	 2 � ). Thus if � !-increasing or !-contracting,
then �� has no fixed points.

Corollary 4.11 If � is !-increasing or !-contracting, then R� \Rpr is empty.

Recall that the Hahn group [9] over the chain � and components R, denoted H�R,
is the totally ordered abelian group whose elements are formal sums g WD

P

g	1	 ,
with well-ordered support g WD f	 I g	 6D 0g. Here g	 2 R and 1	 denotes the
characteristic function on the singleton f	g. Addition is pointwise and the order
lexicographic. Similarly, given a field F, the field of generalized power series over
the ordered abelian group G (or Hahn field over G) with coefficients in F, denoted
F WD F..G// , is the field whose elements are formal series s WD

P

sgtg , with
well-ordered support s WD fg I sg 6D 0g. Addition is pointwise, multiplication is
given by the usual convolution formula. The field F has the same characteristic as
that of F. The canonical valuation vmin on F is defined by vmin.s/ WD min support s
for s 6D 0. Its value group is G and its residue field is F. Thus (F;vmin ) is a q.o.
field. If F is an ordered field, its order extends to the lexicographic order on F: a
series s is positive if and only if the coefficient of tvmin.s/ is positive in F. Thus, in
that case .F;�/ is an ordered field. Hahn fields are maximally valued: they admit
no proper immediate extension, that is, no proper valued field extension preserving
the value group and the residue field. They were extensively studied, e.g. by Hahn
[9] and in the seminal paper of Kaplansky [13].

Lemma 4.12 Any order preserving automorphism �� of the chain � lifts to an
order preserving automorphism �G of the Hahn group G over � , and �G lifts in turn
to a q.o. preserving automorphism � of the Hahn field over G.

Proof Set �G.
P

g	1	 / WD
P

g	1�� .	/ . It is straightforward to verify that the thus
defined �G induces the given automorphism �� on � . Thus �G is a lifting of �� .
Now set �.

P

sgtg/ WD
P

sgt�G.g/. Again, it is clear that � induces �G on G. Thus
� is a lifting of �G as asserted. ut

Corollary 4.13 Given any order type � there exists an ordered difference field
.K;�; �/, and also a p.q.o. difference field .K;; �/ such that the order type of
R� \Rpr is � .
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Proof Set � WD ��, and consider, e.g. the linear ordering � WD
P

�Q

0, that is,

the concatenation of � copies of the non-negative rationals. Fix a non-trivial order
automorphism $ of Q>0. Define �� to be the uniquely defined order automorphism
of � fixing every 0 2 Q


0 in every copy and extending $ on every copy. It is clear
that the order type of the chain of fixed points (the zeros in every copy) of �� is �.
Set e.g. G WD H�R. By Lemma 4.12, �� lifts canonically to �G on G. Now consider,
e.g. the ordered field F WD R..G//. Again by Lemma 4.12, �G lifts canonically to
an order automorphism � of F. This is our required � , by Corollary 4.9. To obtain a
p.q.o difference field, take F any field and the corresponding .F;vmin ; �/. ut

In the next section, we will exploit appropriate equivalence relations to define
the principal difference rank and construct difference fields of arbitrary principal
difference rank.

5 The � -Rank and Principal � -Rank via Equivalence
Relations

Let .K;; �/ be a q.o. difference field. As promised in Sect. 3, we now exploit
Remark 3.1 to give an interpretation of the � - rank and define the principal � -rank
as quotients via appropriate equivalence relations. Our aim is to state and prove
the analogues to Theorems 3.4, 2.7 and 2.12. We recall that the q.o. preserving
maps considered in Remark 3.1 are assumed to be oriented. Moreover, scrutinizing
the proof of Theorem 3.4 we quickly realize that we need Lemma 5.2 below, an
analogue of Lemma 3.2. Thus we need further assumptions on � , to ensure that
� satisfies Lemma 5.2. For simplicity from now on we will assume that � or ��1

satisfy �.a/ � a2 for all a 2 PK . Note that this implies that �.a/ � a, so � is an
oriented strict right-shift. Note that our condition on � is fulfilled for !-increasing
or !-contracting automorphisms.

A convex subring Kw ¤ Kv is � -principal generated by a for a 2 PK if Kw is
the smallest convex � -compatible subring containing a. The � -principal rank of
K is the subset R

pr
� of R� consisting of all � -principal Kw 2 R. We will use the

analogue of Remark 3.3:

Remark 5.1 The maps � , �G and �� are q.o. preserving and we can define the
corresponding equivalence relations �� , ��G and ��� . As before we have

a �� a0 if and only if v.a/ ��G v.a
0/ if and only if vG.v.a// ��� vG.v.a

0//

(3)
Thus we have an order reversing bijection from PK= �� onto �= ��� . Thus the
chain ŒPK= �� �

is of initial segments of PK= �� ordered by inclusion is isomorphic
to .� = ��� /

fs. As before, the subchain of initial segments which have a last element
is isomorphic to .� = ��� /

�.
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Lemma 5.2 The equivalence classes of �� are closed under � and under multipli-
cation.

Proof The condition on � implies by induction that �n.a/ � a2
n
. Thus given n 2

N0 ; there exists l 2 N0 such that � l.a/ � an. Thus a �� �.a/. So the equivalence
classes of � are closed under � . Recall that the natural valuation vG on G satisfies
vG.xC y/ D minfvG.x/; vG.y/g if sign(x) = sign(y). Again one easily deduces from
this fact and the equivalences (3) above that the equivalence classes of � are closed
under multiplication. Indeed assume that a �� b and a �� c. We want to show that
a �� bc. Set x WD v.b/, y WD v.c/ and z WD v.a/ 2 G<0 . By the first equivalence
in (3), it is enough to show that v.a/ ��G v.bc/, i.e. that x C y ��G z. By the
second equivalence in (3), it is enough to show that vG.xC y/ ��� vG.z/ . Without
loss of generality vG.x C y/ D vG.x/. But since a �� b it follows by (3) that
vG.x/ ��� vG.z/ as required. ut

We can now prove the analogue of Theorem 3.4:

Theorem 5.3 The � -rank R� is isomorphic to ŒPK= �� �
is and the principal � -rank

R
pr
� is isomorphic to the subset of ŒPK= �� �

is of initial segments which have a last
element.2

Proof First we note that if Kw is a convex � -compatible valuation ring, then clearly
K�0

w nK�0
v is an initial segment of PK . Furthermore, if Kw intersects a � -equivalence

class Œa��� then it must contain it, since the sequence �.a/nI n 2 N0 is cofinal in
Œa��� and Kw is a convex subring. We conclude that .K�0

w n K�0
v /=�� is an initial

segment of PK=�� and moreover Œa��� is the last class in case Kw is � - principal
generated by a. Conversely set Iw D fŒa�� j a 2 K�0

w n K�0
v g. Given I 2

ŒPK=�� �
is, we show that there is a � -compatible convex valuation ring Kw such that

Iw D I . Given I , let .
S

I / denote the set theoretic union of the elements of I
and �.

S

I / the set of additive inverses. Set Kw D � .
S

I / [ Kv [ .
S

I /. We
claim that Kw is the required ring. Clearly, Iw D I . Further Kw is convex (by its
construction), and strictly contains Kv . We leave it to the reader, using Lemma 5.2,
to verify that Kw is a � -compatible subring, and that Kw is � -principal generated by
a if Œa��� is the last element of I . ut

We now deduce from this theorem combined with Remark 5.1 the promised
analogues of Theorems 2.7 and 2.12 respectively:

Corollary 5.4 R� is (isomorphic to) .� = ��� /
fs.

Corollary 5.5 R
pr
� is (isomorphic to) .� = ��� /

�.

We call the order type of .� = ��� / the rank of the automorphism �� . We now
can construct !-increasing automorphisms of arbitrary principal difference rank.
Corollary 5.6 below, compared to Corollary 4.11 demonstrates the discrepancy
between the chains R

pr
� and R� \Rpr.

2Note that the subchain of ŒPK= �� �
is of initial segments which have a last element is isomorphic

to ŒPK= �� � itself.
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Corollary 5.6 Given any order type � there exists a maximally valued ordered field
endowed with an !-increasing automorphism of principal difference rank � .

Proof Set � WD ��, and consider, e.g. the linear ordering � WD
P

�Q, that is, the
concatenation of � copies of the non-negative rationals. Let ` be, e.g., translation by
�1 on Q. Define �� to be the uniquely defined order automorphism of � extending
` on every copy. It is clearly a strict left shift of rank �. Set, e.g. G WD H�R. Then
by Lemma 4.12 �� lifts canonically to �G on G. Now set, e.g. K WD R..G//. By
Lemma 4.12, Remark 4.10 and Corollary 5.5, �G lifts canonically to an !-increasing
automorphism of K of principal difference rank �� D � . ut

Example 5.7 Consider the chain � D Z 
 Z (the lexicographic product of two
copies of Z ). We endow � with the automorphisms �..x; y// WD .x � 1; y/ and
�..x; y// WD .x; y � 1/. The rank of � is one and that of � is Z. Both are strict left
shifts. Lifting those automorphisms to G WD H�R and then to K WD R..G// as in
the proof of Corollary 5.6, we obtain !-increasing automorphisms of K of distinct
principal difference ranks.

For a regular uncountable cardinal �, let us denote by G� the �-bounded Hahn
group, that is, the subgroup of G D H�R consisting of elements with support of
cardinality < �. Similarly, we denote by R..G//� the �-bounded Hahn field, i.e.
the subfield of K D R..G// consisting of series with support of cardinality < �. If
� D �<� then R..G�//� has cardinality �, see [1].

We now generalize Example 5.7. In [18, Corollary 14], we construct for every
infinite cardinal � a chain � of cardinality � which admits of family of 2� strict
left shift automorphisms, of pairwise distinct ranks. Lifting those automorphisms to
R..G�//� , we conclude as in [18, Theorem 9]:

Theorem 5.8 Let � D �<� be a regular uncountable cardinal and � be any
chain of cardinality � which admits a family of 2� strict left shift automorphisms of
pairwise distinct ranks. Then the corresponding �-bounded Hahn field R..G�//� of
cardinality � admits a family of 2� !-increasing automorphisms of distinct principal
difference ranks.
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The Lattice of U-Sequences of an Abelian
p-Group

K. Robin McLean

Abstract Let G be a reduced abelian p-group. In a rare blemish in Kaplansky’s
monograph Infinite abelian groups it is stated that the supremum of a finite number
of U-sequences of G is taken pointwise. We provide an algorithm to show how the
supremum of an arbitrary set of U-sequences should be calculated and use it to show
that the lattice of U-sequences is distributive. This enables us to correct the proof
of Kaplansky’s result that, when G is fully transitive, its lattice of fully invariant
subgroups is distributive. We also prove, even when G is not fully transitive, that
its lattice of large subgroups is distributive and we extend many of these results to
non-reduced groups.

Keywords Abelian p-group • U-sequence • Lattice of U-sequences • Lattice of
fully invariant subgroups

1 Introduction

The U-sequences of an abelian p-group, G, were introduced by Kaplansky in [4].
When G is reduced, the case that will mostly concern us here, a strictly increasing
sequence of ordinals (each less than the length of G) possibly followed by 1
symbols is called a U-sequence of G if it satisfies the gap condition that

whenever ˛i C 1 < ˛iC1;we have fG.˛i/ ¤ 0: (1)

Here, for each ordinal ˛,

fG.˛/ D dimFpf.p
˛G/Œp�=.p˛C1G/Œp�g

is the classical Ulm invariant of G at ˛, with Fp being the field of p elements.
Kaplansky showed that, under the natural pointwise ordering, the U-sequences of
G form a complete lattice in which the infimum of any number of U-sequences
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is taken pointwise [4, Lemma 26]. Finding their supremum is trickier, however,
and Kaplansky gave an example [4, Exercise 74, p. 65] of an infinite set of
U-sequences whose supremum is not taken pointwise. In a most unusual mistake
in this beautiful monograph it is stated at the foot of p.60 that finite suprema are
taken pointwise. (The mistake also invades Exercise 76 of [4]. A counterexample
was given in Remark 17.18, p. 2979 of [3] and others are given below.) Remarkably,
there seems to be no clear published algorithm for calculating the supremum,

W

ui,
of an arbitrary set of U-sequences, ui, and one of the aims of this paper is to provide
such an algorithm. We examine the special case of finding the supremum of a pair
of U-sequences u1 and u2 and use this to prove that the lattice of U-sequences of an
abelian p-group is distributive. One corollary establishes the truth of Kaplansky’s
result in Theorem 25 of [4] that the lattice of fully invariant subgroups of a fully
transitive group is indeed distributive. (His own proof relied on suprema being
taken pointwise.) A second corollary is that the lattice of large subgroups of an
arbitrary abelian p-group is distributive. Most of the present paper is concerned with
reduced groups, but a final section extends many results to non-reduced groups.
A subsequent paper will show how a method of finding u1 _ u2 can be modified
to construct covers of elements in the U-sequence lattice and to describe all the
characteristic subgroups of a transitive abelian 2-group.

Our terminology and notation is consistent with that of [2] and [4]. Recall that
the length of an abelian p-group, G, is the least ordinal � such that p�G D p�C1G.
Here p�G is the maximal divisible subgroup of G and when this subgroup is zero, G
is said to be reduced. It is useful to have a name for sequences that are akin to
U-sequences but do not necessarily satisfy the gap condition (1). Here such
sequences are referred to as V-sequences. Thus, when G is reduced, a V-sequence
is any strictly increasing sequence of ordinals, each less than �, possibly followed
by 1 symbols. An ordinal, ˛, will be called a jump number of G whenever the
Ulm invariant fG.˛/ ¤ 0. Let v be any sequence. Unless otherwise stated, we shall
always denote its terms by v0; v1; v2; : : :. If viC 1 < viC1, we say that v jumps from
vi to viC1 and that vi is a jump number of v. Thus a V-sequence, v, is a U-sequence
if and only if each jump number of v is a jump number of G. The non-negative
integers will be denoted by N.

2 Constructing Suprema of U-Sequences

Given a U-sequence, u, of an abelian p-group G we can construct the set G.u/ �
fx 2 G W U.x/ � u}. It is easy to verify that G.u/ is a fully invariant subgroup of G.
Kaplansky’s famous Theorem 25 of [4] shows that, when G is fully transitive, each
of its fully invariant subgroups has the form G.u/, so that the lattice of fully invariant
subgroups is anti-isomorphic to the lattice of U-sequences. The following simple
example illustrates this anti-isomorphism and also provides a counterexample to
Kaplansky’s claim that the supremum of a finite number of U-sequences is taken
pointwise.



The Lattice of U-Sequences of an Abelian p-Group 417

Let G D Z.p/ ˚ Z.p3/ be the direct sum of cyclic groups of orders p and p3.
Then G is fully transitive with length 3 and jump numbers 0 and 2. The lattice of
U-sequences and the inverted lattice of fully invariant subgroups of G are as shown:

U-sequences Fully invariant subgroups
f1;1; : : :g {0}
f2;1;1g p2G

f0;1; : : :g f1; 2;1; : : :g GŒp� pG
f0; 2;1; : : :g GŒp2�
f0; 1; 2;1; : : :g G

Note that if u D f0;1; : : :g and v D f1; 2;1; : : :g, then u ^ v D f0; 2;1; : : :g

is taken pointwise, but the supremum of u and v is u _ v D f2;1; : : :g, not the
pointwise maximum f1;1; : : :g, which is not a U-sequence as 1 is not a jump
number of G.

To state our algorithm for calculating suprema, we need the following lemma and
its important corollary. Both are true for reduced and non-reduced groups.

Lemma 2.1 Let G be an abelian p-group of length � and let � be an ordinal such
that �Cn < � for all positive integers n. Then infinitely many of the Ulm invariants

fG.�/; fG.� C 1/; : : : ; fG.� C n/; : : : (2)

are non-zero.

Proof As p�CnG ¤ 0 for all integers n, p�G is unbounded. Let B be a basic
subgroup of p�G. Then B contains cyclic summands of arbitrarily large orders. Each
of these summands is bounded and pure in B, so is pure in p�G. Hence each is a
summand of p�G, so infinitely many of the invariants

fp�G.0/; fp�G.1/; fp�G.2/; : : : ; fp�G.n/; : : :

are non-zero. But these latter invariants are precisely those in (2) above. ut

Corollary 2.2 Let G be an abelian p-group and let � be any ordinal less than the
length of G. Then G has a jump number that is no less than � . Moreover, if ˛ is the
least such jump number, then there is an integer n � 0 such that ˛ D � C n.

Proof If p�G is unbounded, the result follows from the proof of Lemma 2.1. If p�G
is bounded, then there is an integer m � 0 such that p�CmG ¤ 0 and p�CmC1G D 0,
so � C m is a jump number of G, giving the result. ut

For the remainder of this section G will always be a reduced p-group.
There are several different algorithms for calculating the supremum,

W

ui, of an
arbitrary set of U-sequences, ui. They all begin with the same first three simple steps.
Their fourth steps differ, with more efficient algorithms being more complicated to
describe. Here we choose simplicity and state a procedure, Algorithm A, that makes
least demands on the reader.
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Step 1: Form the pointwise supremum, m D max ui.
Step 2: Construct the least strictly increasing sequence of ordinals and 1
symbols that is pointwise no less than m.
Step 3: Replace any ordinals greater than or equal to the length, � , of G by1
symbols. Call the resulting sequence v.

For example, let G D H!C1 ˚ H!C2, where H� is the generalized Prüfer group
of length � . Then G has length ! C 2 and its jump numbers consist of all the non-
negative integers together with ! and ! C 1. For each i 2 N, let ui D fi; iC 3; iC
7;1;1; : : :g.
Step 1 gives m D f!;!; !;1;1; : : :g. Step 2 yields the sequence f!;! C 1; ! C
2;1;1; : : :g.
Step 3 gives the sequence v D f!;! C 1;1; : : :g. In this particular example, v D
W

ui, but usually a fourth step is needed.
We pause here to observe that in all cases v is a V-sequence as defined near the

end of the introduction. It is easy to see that
W

ui is the least U-sequence that is
(pointwise) no less than v. Thus the problem of calculating suprema reduces to that
of finding the least U-sequence u that is no less than a given V-sequence v of G.
Note too that if G.v/ D fx 2 G W U.x/ � vg, then G.v/ is the fully invariant
subgroup G.u/. See also Exercise 5, p. 13 of [2] Volume II, where the printed
inequality should read u � v.

We are now ready to carry out the fourth step of Algorithm A.

Step 4: Let v D f˛0; ˛1; ˛2; : : :g be a V-sequence of G. We wish to construct
the least U-sequence u D fu0; u1; u2; : : :g such that v � u. To avoid triviality we
may suppose that ˛0 is an ordinal less than the length, �, of G. (Otherwise v is
already the U-sequence of 1 symbols.) Let 	1 be the least jump number of G
such that ˛0 � 	1. Corollary 2.2 ensures that 	1 exists and that there is an integer
k1 � 0 such that 	1 D ˛0 C k1. Hence there is a unique integer n.1/ � 0 such
that ˛n.1/ � 	1 < ˛n.1/C1. Now ˛0 C n.1/ � ˛n.1/ � ˛0 C k1, so n.1/ � k1.
Take ˛0 C fk1 � n.1/g; ˛0 C fk1 � n.1/g C 1; : : : ; 	1 to be the leading terms
u0; u1; : : : ; un.1/ of u and define

v1 D f˛0 C fk1 � n.1/g; ˛0 C fk1 � n.1/g C 1; : : : ; 	1; ˛n.1/C1; ˛n.1/C2; : : :g

D fu0; u1; : : : ; un.1/; ˛n.1/C1; ˛n.1/C2; : : :g:

We can think of this process as placing 	1 in position n.1/ and backtracking by
subtracting 1 at a time until we reach position zero at the start of the V-sequence v1.

We now treat ˛n.1/C1 in the same way as ˛0 above to produce the next run
of consecutive ordinals of u. Continuing in this way, we produce the terms of u
inductively. At the ith stage we let 	i be the least jump number of G such that
˛n.i�1/C1 � 	i. Corollary 2.2 shows that 	i D ˛n.i�1/C1 C ki for some ki 2 N, so
there is a unique integer n.i/ such that n.i � 1/C 1 � n.i/ and ˛n.i/ � 	i < ˛n.i/C1.
Arguing as above, we get n.i/ � n.i � 1/ � 1 � ki, so we may take the consecutive
ordinals ˛n.i�1/C1Cfki�n.i/Cn.i�1/C1g; : : : ; 	i as un.i�1/C1; : : : ; un.i/. This can be
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thought of as placing 	i in position n.i/ and backtracking by subtracting 1 at a time
until we come to the place we had reached in the previous iteration. An example
below illustrates how the desired U-sequence u D

W

ui is built up. Meanwhile we
define vi to be

vi D f˛0 C fk1 � n.1/g; : : : ; 	1I˛n.1/C1 C fk2 � n.2/C n.1/C 1g; : : : ; 	2I : : :

: : : I˛n.i�1/C1 C fki � n.i/C n.i � 1/C 1g; : : : ; 	iI˛n.i/C1; ˛n.i/C2; : : :g

D fu0; : : : ; un.1/I un.1/C1; : : : ; un.2/I : : :

: : : I un.i�1/C1; : : : ; un.i/I˛n.i/C1; ˛n.i/C2; : : :g

where the ellipses immediately preceding the terms 	1; 	2; : : : ; 	i denote runs of
consecutive ordinals.

For example, let G D Z.p2/˚Z.p3/˚Z.p5/˚Z.p9/˚Z.p17/˚Z.p33/˚ : : :˚
Z.p2

kC1/˚ : : : The jump numbers of G are 1; 2; 4; 8; 16; 32; : : : ; 2k; : : :

Define U-sequences un for n 2 N as follows. Let u0 D f1; 2; 3; 4; : : :g.

If n D 2i for some i 2 N, let un D f1; 2; : : : ; n; 2nC 1; 2nC 2; 2nC 3; : : :g.
If n D 2i C j for some i; j 2 N such that 1 � j < 2i, then let

un D f1; 2; 3; : : : ; 2
i; 2iC1�jC1; 2iC1�jC2; : : : ; 2iC1; 2nC1; 2nC2; 2nC3; : : :g:

Thus

u0 D f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; : : :g

u1 D f1; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; : : :g

u2 D f1; 2; 5; 6; 7; 8; 9; 10; 11; 12; 13; : : :g

u3 D f1; 2; 4; 7; 8; 9; 10; 11; 12; 13; 14; : : :g

u4 D f1; 2; 3; 4; 9; 10; 11; 12; 13; 14; 15; : : :g

u5 D f1; 2; 3; 4; 8; 11; 12; 13; 14; 15; 16; : : :g

u6 D f1; 2; 3; 4; 7; 8; 13; 14; 15; 16; 17; : : :g

u7 D f1; 2; 3; 4; 6; 7; 8; 15; 16; 17; 18; : : :g

u8 D f1; 2; 3; 4; 5; 6; 7; 8; 17; 18; 19; : : :g

u9 D f1; 2; 3; 4; 5; 6; 7; 8; 16; 19; 20; : : :g

: : : : : : : : : : : : : : : : : :

It is easy to check that Step 1 gives m D max un D f1; 3; 5; 7; 9; 11; 13; 15; 17; 19;

21; : : :g. This pointwise maximum jumps after each odd integer, so is far from being
a U-sequence, as the jump numbers of G are powers of 2. Steps 2 and 3 leave m
unchanged, so

v D m D f1; 3; 5; 7; 9; 11; 13; 15; 17; 19; 21; 23; 25; 27; 29; 31; 33; : : :g:
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Applying Step 4, we have
˛0 D 1. As 	1 D 1 is in position n.1/ D 0 of m, put it in position 0 of _un.

_un starts f1I
˛1 D 3. As 	2 D 4 lies between positions n.2/ D 1 and n.2/ C 1 D 2, put it in
position 1.

_un starts f1I 4I
˛2 D 5. As 	3 D 8 lies between positions n.3/ D 3 and n.3/ C 1 D 4, put it in
position 3 and work back through consecutive ordinals.

_un starts f1I 4I 7; 8I
˛4 D 9. As 	4 D 16 lies between positions n.4/ D 7 and n.4/ C 1 D 8, put it in
position 7 and work back through consecutive ordinals.

_un starts f1I 4I 7; 8I 13; 14; 15; 16I
˛8 D 17. As 	5 D 32 lies between positions n.5/ D 15 and n.5/C 1 D 16, put it in
position 15 and work back through consecutive ordinals.

_un starts f1I 4I 7; 8I 13; 14; 15; 16I 25; 26; 27; 28; 29; 30; 31; 32I
Continuing in this way, we get more and more terms of the supremum u D _un.

Theorem 2.3 With the notation of Step 4 above, u is the least U-sequence of G such
that v � u.

Proof The construction of u ensures that its only jump numbers are jump numbers
of G, so u is a U-sequence. Suppose that there is a U-sequence w of G such that
v � w � u. It is sufficient to prove that vi � w for all i, for this would imply that
u � w, so that w D u.

We begin by showing that v1 � w. If 	1 D ˛n.1/ and ˛0 is a jump number of G,
then n.1/ D 0 and u0 D 	1 D ˛0 � w0, so v1 � w.

If 	1 D ˛n.1/ and ˛0 is not a jump number of G, then no ordinal, ı, in the range
˛0 � ı < 	1 is a jump number of G. As ˛0 � w0 and

˛0 � ˛n.1/�1 � wn.1/�1 � un.1/�1 < un.1/ D 	1;

none of the ordinals w0; : : : ;wn.1/�1 is a jump number of G. This and the fact that
w is a U-sequence shows that wn.1/ D wj C fn.1/ � jg for all integers j in the
range 0 � j � n.1/. But 	1 D ˛n.1/ � wn.1/ � un.1/ D 	1, so wn.1/ D 	1 and
wj D ˛0 C fk1 � n.1/g C j D uj, which gives v1 � w.

If ˛n.1/ < 	1, then no ordinal, ı, in the range ˛0 � ı < 	1 is a jump number of
G and, as above, wn.1/ D wj C fn.1/ � jg for all j such that 0 � j � n.1/. Since
	1 < ˛n.1/C1, we have

˛0 � w0 � wn.1/ � un.1/ D 	1 < ˛n.1/C1 � wn.1/C1:

If wn.1/ < 	1, then wn.1/ would not be a jump number of G, yet w would jump from
wn.1/ to wn.1/C1, contradicting the fact that w is a U-sequence. Hence wn.1/ D 	1, so

wj C fn.1/ � jg D wn.1/ D 	1 D un.1/ D uj C fn.1/ � jg

for 0 � j � n.1/, whence wj D uj and v1 � w as desired.
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Similar arguments show in succession that v2 � w, . . . , vi � w for all i. This
gives u � w, so w D u and the proof is complete. ut

Whilst Algorithm A described in Steps 1–4 above enables us to find the
supremum of an arbitrarily large family of U-sequences, a different procedure,
Algorithm B, is often useful for finding the supremum, a _ b, of a pair of U-
sequences a and b. In this situation, m D max.a; b/ is necessarily a V-sequence,
for it is strictly increasing and each of its ordinals is less than the length of G.
Suppose that m � fm0;m1;m2; : : :g is not already a U-sequence and that its gaps
occur immediately after the terms mn.1/;mn.2/; : : :. Defining n.0/ D �1 so that
mn.0/C1 D m0, we see that, apart from perhaps ending in 1 symbols, the terms
of m fall into blocks of consecutive ordinals, with a typical block running from
mn.i�1/C1 to mn.i/. If possible,

let ˇi be the greatest jump number of G such that mn.i�1/C1 � ˇi < mn.i/

and 	i be the least jump number of G such that mn.i/ < 	i < mn.i/C1.
If ˇi exists, then there is an integer s such that ˇi D ms.
To construct a _ b from m, we leave unchanged each block of terms

mn.i�1/C1; : : : ;mn.i/ that ends in a jump number of G and replace each block
for which mn.i/ is not a jump number of G by

8

ˆ

ˆ

<

ˆ

ˆ

:

mn.i�1/C1; : : : ; ˇi; 	i � n.i/C sC 1; : : : ; 	i if 9ˇi and 9	i

mn.i�1/C1; : : : ; ˇi;mn.i/C1 � n.i/C s; : : : ;mn.i/C1 � 1 if 9ˇi and 6 9	i

	i � n.i/C n.i � 1/C 1; : : : : : : : : : : : : ; 	i; if 6 9ˇi and 9	i

mn.i/C1 � n.i/C n.i � 1/; : : : : : : : : : : : : ;mn.i/C1 � 1 if 6 9ˇi and 6 9	i

In the special case when the block consists of the single term mn.i/, we replace it by
	i if this exists and by mn.i/C1 � 1 otherwise. Lemma 2.1 and Corollary 2.2 imply
that when mn.i/ is not a jump number of G, either 	i exists together with all lower
ordinals down to 	i � n.i/ C n.i � 1/ C 1, or mn.i/C1 is an ordinal and each of the
ordinals mn.i/C1 � n.i/C n.i � 1/; : : : ;mn.i/C1 � 1 exists.

Before proving that Algorithm B gives a _ b as desired, we give an example of
its use, showing that each of the four possibilities for the existence or non-existence
of ˇi and 	i can actually arise.

Let G D Z.p3/˚Z.p4/˚Z.p8/˚Z.p10/˚.Z.p13/˚Z.p14/˚Z.p21/˚Z.p28/˚
Z.p29/˚ Z.p34/, which has length 34 and jump numbers 2, 3, 7, 9, 12, 13, 20, 27,
28 and 33. Let a, b be the U-sequences

a D f0; 1; 2; 3; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 29; 30; 31; 32; 33;1; : : :g

b D f1; 2; 3; 4; 5; 6; 7; 8; 9; 19; 20; 23; 24; 25; 26; 27; 33;1; : : :g

Their pointwise maximum, m, is given by

m D f1; 2; 3; 4I 11; 12; 13; 14; 15I 19; 20I 23; 24; 25I 29; 30I 33I1; : : :g
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Here we have six blocks of consecutive ordinals (marked by semicolons in the
display). The jump numbers of m are mn.1/ D 4;mn.2/ D 15;mn.3/ D 20;mn.4/ D

25;mn.5/ D 30 and mn.6/ D 33. Of these six values of mn.i/, only those given
by i D 3 and i D 6 are jump numbers of G. Hence the blocks corresponding to
i D 1; 2; 4 and 5 need to be replaced.

When i D 1, we have ˇi D 3, since 3 is the greatest jump number of G amongst
the terms 1, 2, 3. Also 	1 D 7, as this is the least jump number of G between 4 and
11. Thus we replace the block of terms 1, 2, 3, 4 by 1, 2, 3, 7.

When i D 2, we examine the block of terms 11, 12, 13, 14, 15. As 13 is the
greatest jump number of G amongst the terms 11, 12, 13, 14, we have ˇ2 D 13.
There is no jump number of G between 15 and 19, so 	2 does not exist. Hence we
replace the block 11, 12, 13, 14, 15 by 11, 12, 13, 17, 18.

When i D 4, ˇi does not exist, since neither 23 nor 24 is a jump number of G,
but 	4 D 27 , for this is the least jump number of G between 25 and 29. Hence we
replace the block 23, 24, 25 by 25, 26, 27.

When i D 5; ˇi does not exist, since 29 is not a jump number of G, and 	5 does
not exist, as there is no jump number of G between 30 and 33. Thus we replace the
block 29, 30 by 31, 32.

Leaving unchanged the two blocks 19, 20 and 33 that end in jump numbers of G,
we get

a _ b D f1; 2; 3; 7; 11; 12; 13; 17; 18; 19; 20; 25; 26; 27; 31; 32; 33;1; : : :g:

If u is the result of applying Algorithm B above to m, it is not immediately clear
that u is a U-sequence, let alone that it is equal to a _ b. Certainly u will be a
U-sequence unless all three of the following conditions are satisfied.

(a) m has successive jump numbers mn.i/ and mn.iC1/, neither of which is a jump
number of G,

(b) neither 	i nor ˇiC1 exists, and
(c) mn.i/C1 � 1 is not a jump number of G.

In these circumstances (a) shows that each block of terms ending in mn.i/ and in
mn.i/C1 must be replaced. The non-existence of 	i shows that the last term in the
first block’s replacement is mn.i/C1 � 1, whilst the non-existence of ˇiC1 shows that
the first term in the next block’s replacement exceeds mn.i/C1. These facts coupled
with (c) would prevent u from being a U-sequence. But our next result shows that
(a), (b) and (c) cannot all be satisfied when m is the pointwise maximum of just two
U-sequences.

Lemma 2.4 Let a and b be U-sequences of an abelian p-group G. Suppose that
m D max.a; b/ has successive jumps immediately after the ordinals mn.i/ and
mn.iC1/ and that neither of these ordinals is a jump number of G. Then 	i exists
or ˇiC1 exists.
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Proof Suppose (as we may) that an.i/ � bn.i/, so that mn.i/ D bn.i/. As m jumps
immediately after this term without mn.i/ being a jump number of G, a overtakes b
at this point. so an.i/ < bn.i/ and bn.i/C1 D bn.i/ C 1, whilst

bn.i/C1 < an.i/C1 D mn.i/C1:

At m’s next jump, b overtakes a. We have bn.iC1/ < an.iC1/ D mn.iC1/ and
an.iC1/C1 D an.iC1/ C 1 whilst

an.iC1/C1 < bn.iC1/C1 D mn.iC1/C1:

Now bn.iC1/ is a jump number of the U-sequence b, so must be a jump number
of G. It lies in the range mn.i/ D bn.i/ < bn.iC1/ < an.iC1/ D mn.iC1/.
Also mn.i/ < mn.i/C1 � mn.iC1/. So either our jump number bn.iC1/ lies in the range
mn.i/ < bn.iC1/ < mn.i/C1, in which case 	i exists, or else it lies in the range
mn.i/C1 � bn.iC1/ < mn.iC1/, in which case ˇiC1 exists. ut

Theorem 2.5 Let a and b be U-sequences of an abelian p-group G. Let
m D max.a; b/ be their pointwise maximum and u be the result of applying
Algorithm B to m. Then u D a _ b.

Proof Lemma 2.4 and the immediately preceding remarks show that u is a
U-sequence. It is sufficient to prove that u is the least U-sequence that is no less
than max.a; b/.

With the notation of Algorithm B, suppose that the jump number mn.i/ of m
is not a jump number of G. Let ui be the result of replacing the single block of
terms mn.i�1/C1; : : : ;mn.i/ as described in Algorithm B and leaving all other blocks
unchanged. Clearly u D max ui where this pointwise maximum is taken over all i
for which mn.i/ is not a jump number of G. Let w be a U-sequence such that m � w.
It is sufficient to prove that ui � w, for this would yield u � w as desired.

Suppose first that ˇi.D ms/ exists. Then .ui/j D mj � wj for all j such that
n.i� 1/C 1 � j � s. If, in addition, 	i exists, then, as mn.i/ is not a jump number of
G, there is no such jump number between ˇi and 	i. If the set of terms

wsC1; : : : ;wn.i/ (3)

contains a least one, say wt, that is a jump number of G, then

ˇi D ms < msC1 � wsC1 � wt;

so 	i � wt. Thus, when sC 1 � j � t, we have 	i � wt D wj C t � j, so

.ui/j D 	i � n.i/C j � wj � n.i/C t � wj;
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whilst when t � j � n.i/ we have .ui/j � .ui/ni D 	i � wt � wj as desired. On the
other hand, , if none of the terms (3) is a jump number of G, then for sC1 � j � n.i/
we have 	i < mn.i/C1 � wn.i/C1 D wj C n.i/ � jC 1, so .ui/j D 	i � n.i/C j � wj:

Slightly modified arguments show that ui � w when at least one of the ordinals
ˇi; 	i does not exist. ut

3 Distributivity

Kaplansky’s Theorem 25 in [4] showed that when a reduced abelian p-group, G, is
fully transitive, there is an anti-isomorphism between the lattice of its fully invariant
subgroups and the lattice of its U-sequences. His proof that each lattice satisfies an
appropriate infinite distributive law relied on the supremum of a finite number of
U-sequences being taken pointwise. Even the supremum of two U-sequences is not
taken in this way, so questions of distributivity are reopened. In Theorem 17.17 of
[3], Grinshpon and Krylov established distributivity in the case when G is separable.
Effectively, their neat proof uses a lattice (where both suprema and infima are taken
pointwise) of certain maps from the jump numbers of a separable p-group, G, into
N. A modified version of their proof could be used to show that the lattice of large
subgroups of an arbitrary p-group is distributive, a result proved in Corollary 4.4
below. We begin with the following general theorem that appears to be new.

Theorem 3.1 Let G be a reduced abelian p-group, a be a U-sequence of G and
let br.r 2 I/ be any collection of U-sequences where I is an indexing set. Then
a _ .

V

br/ D
V

.a _ br/.

Proof Let G have length � . Denote by H˛ the generalized Prüfer group of length ˛,
let L D

L

˛�� H˛ and H D G ˚ L. Then L and H have length � and ˛ is a jump
number of both L and H for all ordinals ˛ less than � . Now suppose that u and v

are U-sequences of G. They are necessarily U-sequences of H, so we can talk about
u _G v and u _H v. Theorem 2.5 shows how to compute the first one, whilst the
second is simply the pointwise maximum of u and v.

If fuigi2I is any collection of U-sequences of G, then we can talk about
V

G ui

and
V

H ui. Each is equal to the pointwise minimum of the ui, so we do not have to
specify the group using a subscript.

With a and br.r 2 I/ as in the statement of the theorem,

a _H .
^

br/ D
^

.a _H br/;

since each is computed using pointwise maxima and minima. Thus

H.a _H .
^

br// D H.
^

.a _H br//;
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whence

H.a/ \ .
X

H.br// D
X

.H.a/ \ H.br//:

So

G.a/\ .
X

G.br// � G\H.a/\ .
X

H.br// D G\ .
X

.H.a/\H.br///: (4)

As H.a/ \ H.br/ is a fully invariant subgroup of G˚ L, we have

H.a/ \ H.br/ D fG \ H.a/ \ H.br/g ˚ fL \ H.a/ \ H.br/g:

But G \ H.u/ D G.u/ for all U-sequences u of G, so

H.a/ \ H.br/ D fG.a/ \ G.br/g ˚ fL \ H.a/ \ H.br/g:

Hence G \
X

.H.a/ \ H.br// D
X

.G.a/ \ G.br//:

From .4/; G.a/ \ .
X

G.br// �
X

.G.a/ \ G.br//:

The reverse inclusion is trivial, so

G.a _G .
^

br// D G.a/ \ .
X

G.br// D
X

.G.a/ \ G.br// D G.
^

.a _G br//;

which gives the desired result. ut

Corollary 3.2 Let G be a reduced fully transitive abelian p-group. Then the lattice
of fully invariant subgroups of G is distributive and satisfies the infinite distributive
law A \ .

P

Br/ D
P

.A \ Br/.

4 Non-reduced Groups

To deal with a non-reduced p-group G of length �, we follow Kaplansky [4, p. 57]
and assign all non-zero elements in the maximal divisible subgroup p�G the height
�. We also define the Ulm invariant fG.�/ to be dimFp.p

�G/Œp� and modify our
original definition of a U-sequence of G by allowing � itself to be one of the terms
and also letting the sequence level off at this height before possibly ending in a
strings of 1s. With these conventions we can now extend some earlier results to
non-reduced groups.

It is useful to have information about the fully invariant subgroups of G.

Lemma 4.1 Let G D D˚ R, where D D p�G ¤ 0 is divisible and R is reduced. If
F is a fully invariant subgroup of G, then F is of the form (i) F D D˚ K, where K
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is fully invariant in R or (ii) F D DŒpr�˚M where r is some natural number and M
is some pr-bounded fully invariant subgroup of R. Moreover, every such subgroup F
of the form (i) or (ii) is fully invariant in G.

Proof The only aspect of the proof that is not straightforward is to show that if
F \ D D DŒpr�, then prM D pr.F \ R/ D 0. If this were not so, the reduced group
F\R would have a cyclic summand hxi of order pn for some integer n > r. Choose
a quasicyclic summand D1 of D and define a map  W .F \ R/ ! D1 by mapping
x 7! y, where y generates D1Œpn�, and  annihilates the complement of hxi. By the
injectivity of D1,  extends to a map (which we continue to call ) from R into
D1 � D. As n > r, we have y … DŒpr�. But this is impossible since y 2 .F \ R/
but y … F. ut

Let D and R be as in Lemma 4.1. Corresponding to each U-sequence u of G there
is a fully invariant subgroup F of G given by

F D G.u/ D fx 2 G W U.x/ � ug:

A key observation is that, provided we include certain special cases stated below,
any U-sequence of G has the form

u D f˛0; ˛1; : : : ; ˛m�1; �; �; : : : ; �
„ ƒ‚ …

n

;1;1; : : :g

Here there are m ordinals ˛i less than � and n copies of �. As special cases we allow
m D 0, n D 0, m D 1 (in which case n D 0) and n D 1. Note that the jump
numbers of G are precisely those of R augmented by the ordinal �. Note too that
˛m�1 is necessarily a jump number of G, for either ˛m�1 C 1 D �, in which case
˛m�1 is the greatest jump number of R or ˛m�1C 1 < � and the result follows from
the gap condition for u. This implies that

v D f˛0; ˛1; : : : ; ˛m�1;1;1; : : :g

is a U-sequence of R,

w D f�; �; : : : ; �
„ ƒ‚ …

mCn

;1;1; : : :g

is a U-sequence of D, G.u/\R D R.v/ and G.u/\D D D.w/. Hence the lattice of
all subgroups of the form G.u/ embeds in the product of the lattice of subgroups of
R of the form R.v/ with that of subgroups of D of the form D.w/. Now the lattice of
R.v/’s is anti-isomorphic to the lattice of U-sequences of R, so by Theorem 3.1, it
satisfies the appropriate infinite distributive law. The lattice of D.w/’s is a chain, so
it and the lattice of subgroups G.u/ also satisfy this law. This enables us to extend
Theorem 3.1 as follows.
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Theorem 4.2 Let G be an arbitrary abelian p-group, a be a U-sequence of G and
let br.r 2 I/ be any collection of U-sequences where I is an indexing set. Then
a _ .

V

br/ D
V

.a _ br/.

Recall Kaplansky’s example (Exercise 74, p. 65 of [4]) that the dual infinite
distributive law is false. Let G D H!C1 ˚ H!C2, where H� is the generalized
Prüfer group of length � . The jump numbers of G consist of all ordinals ˛ such
that ˛ � !C 1. Now take U-sequences a D f1; !C 1;1;1; : : :g and br D fr; rC
1;1;1; : : :g for each positive integer r. We have

W

br D f!;! C 1;1;1; : : :g,
so a ^ .

W

br/ D f1; ! C 1;1;1; : : :g. But a ^ br D f1; r C 1;1;1; : : :g, so
W

.a ^ br/ D f1; !;1;1; : : :g.
The following corollary shows that both finite distributive laws hold.

Corollary 4.3 Let a, b and c be U-sequences of an abelian p-group G. Then

(i) a _ .b ^ c/ D .a _ b/ ^ .a _ c/ and
(ii) a ^ .b _ c/ D .a ^ b/ _ .a ^ c/.

Proof (i) is a special case of Theorem 4.2. (ii) follows from (i) by duality. (See
Lemma 4.3 of [1]). ut

Corollary 4.4 Let G be an arbitrary abelian p-group. Then the lattice of large
subgroups of G is distributive and satisfies the infinite distributive law

A \ .
X

Br/ D
X

.A \ Br/:

Proof If the length of G is finite, then G D B ˚ D where B is bounded and D
is divisible. Theorem 1.9 of [5] shows that the lattice of large subgroups of G is
isomorphic to the lattice of fully invariant subgroups of B. Since B is fully transitive,
Corollary 3.2 gives the result.

If G has infinite length, Lemma 2.5 of [5] shows that the lattice of large subgroups
of G is anti-isomorphic to the lattice of U-sequences of G that consist entirely of
non-negative integers. Theorem 4.2 completes the proof. ut
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Strongly Non-Singular Rings and Morita
Equivalence

Bradley McQuaig

Abstract The focus of this paper is to characterize the rings R such that, for every
ring S Morita-equivalent to R, the classes of torsion-free and non-singular right
S-modules coincide.

Keywords Torsion-free • Non-singular • Morita-equivalent • Baer-ring

1 Torsion-Freeness and Non-Singularity Under Morita
Equivalence

There are various ways to extend the notion of torsion-freeness from integral
domains to non-commutative rings. Following Hattori [7], we will say that a right
R-module M over a ring R is torsion-free if TorR

1 .M;R=Rr/ D 0 for every r 2 R.
Goodearl takes a different approach in [6] by considering the singular submodule

Z.M/ D fx 2 M j xI D 0 for some essential right ideal I of Rg

of M. The module M is singular if Z.M/ D M and non-singular if Z.M/ D 0.
Finally, the right singular ideal of R is Zr.R/ D Z.RR/, and R is right non-singular
if it is non-singular as a right R-module. Every right non-singular ring has a maximal
right ring of quotients Qr. Furthermore, a right non-singular ring R is a right Utumi-
ring if every S -closed right ideal of R is a right annihilator where a submodule U
of M is S -closed if M=U is non-singular. If R is a right and left non-singular ring,
then Qr D Ql if and only if R is a right and left Utumi-ring [6, Theorem 2.38].

Albrecht, Dauns, and Fuchs investigated in [1] the rings for which the classes of
torsion-free and non-singular right S-modules coincide. However, torsion-freeness
is not preserved under a Morita-equivalence, whereas non-singularity is a Morita-
invariant property [5, Example 5.4]. Here, two rings are Morita-equivalent if their
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module categories are equivalent. It is the goal of this paper to characterize the rings
R for which the classes of torsion-free and non-singular right S-modules coincide
for every ring S Morita-equivalent to R.

By Albrecht et al. [1, Theorem 3.7], the classes of torsion-free and non-singular
right R-modules coincide if and only if R is a right Utumi right p.p.-ring without an
infinite set of orthogonal idempotents. A ring R is a right p.p.-ring if every principal
right ideal is projective as a right R-module, while it is a Baer-ring if every right
(or left) annihilator ideal is generated by an idempotent. In the classification of the
rings R for which this property holds for every Morita-equivalent ring S, strongly
non-singular and semi-hereditary rings will play an important role. A right non-
singular ring R is right strongly non-singular if its maximal right ring of quotients
is a perfect left localization, where Qr is a perfect left localization of R if it is flat
as a right R-module and the multiplication map Qr˝R Qr ! Qr is an isomorphism.
A ring R is right semi-hereditary if every finitely generated right ideal is projective
as a right R-module.

Theorem 1.1 The following are equivalent for a ring R:

a) R is a right strongly non-singular, right semi-hereditary, right Utumi-ring not
containing an infinite set of orthogonal idempotents.

b) The classes of torsion-free right S-modules and non-singular right S-modules
coincide for every ring S Morita-equivalent to R.

c) For every 0 < n < !, Matn.R/ is a right and left Utumi Baer-ring not containing
an infinite set of orthogonal idempotents.

Moreover, if R is such a ring, then the corresponding left conditions are also
satisfied.

Proof a)) b) and c/: We first show that every ring S Morita-equivalent to R also is
a right strongly non-singular, right semi-hereditary, right Utumi ring not containing
an infinite set of orthogonal idempotents. Since R has finite right Goldie-dimension
by Albrecht et al. [1, Theorem 3.7], its maximal right ring of quotients Qr.R/ is
semi-simple Artinian [10]. Because Qr.R/ and Qr.S/ are Morita-equivalent, Qr.S/
is semi-simple Artinian as well since these properties are Morita-invariant [2]. Thus,
Qr.S/ is regular, and S is right non-singular [10].

Let F W ModR ! ModS and G W ModS ! ModR be an equivalence. If
M is a finitely generated non-singular right S-module, then G .M/ is a finitely
generated non-singular right R-module [2]. Since R is right strongly non-singular,
G .M/ is isomorphic to a finitely generated submodule of a free right R-module [6,
Theorem 5.17]. Thus, G .M/ is a projective right R-module since R is right semi-
hereditary [8]. Hence, M Š FG .M/ is projective. Therefore, S is a right strongly
non-singular right semi-hereditary ring [6].

Since S is a right non-singular ring with a semi-simple Artinian maximal right
ring of quotients, S has finite right Goldie dimension [10], and thus cannot contain an
infinite set of orthogonal idempotents. Therefore, S is a right strongly non-singular
right p.p.-ring not containing an infinite set of orthogonal idempotents. As shown in
[1], this yields that a right S-module is torsion-free if and only if it is non-singular,
and b) holds by Albrecht et al. [1, Theorem 5.2].
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In particular, Matn.R/ is a right strongly non-singular right p.p.-ring without
an infinite set of orthogonal idempotents by Albrecht et al. [1, Theorem 4.2].
Consequently, Matn.R/ is a Baer-ring by Albrecht et al. [1, Theorem 3.7]. Moreover,
[1, Theorem 4.2] shows that every S -closed one-sided ideal of Matn.R/ is generated
by an idempotent. Hence, every right ideal of Matn.R/ is a right annihilator and
every left ideal of Matn.R/ is a left annihilator. Therefore, Matn.R/ is a right and left
Utumi-ring.

b)) a): Assume the classes of torsion-free right S-modules and non-singular
right S-modules coincide for every ring S Morita-equivalent to R. Since Matn.R/ is
Morita-equivalent to R for 0 < n < !, the classes of torsion-free right Matn.R/-
modules and non-singular right Matn.R/-modules coincide for 0 < n < !. Hence,
Matn.R/ is a right Utumi p.p.-ring not containing an infinite set of orthogonal
idempotents [1]. In particular, R is a right Utumi-ring without an infinite set of
orthogonal idempotents. Furthermore, we know R is right semi-hereditary since
Matn.R/ is a right p.p.-ring for every 0 < n < ! [4].

It remains to be seen that R is right strongly non-singular. For this, consider a
finitely generated non-singular right R-module M. In view of [6, Theorem 5.18], it
suffices to show that M is projective. Let 0 ! U ! F ! M ! 0 with F D Rn be
an exact sequence of right R-modules. It induces the exact sequence

0! HomR.F;U/! HomR.F;F/! HomR.F;M/! 0:

Observe that F is a progenerator of ModR. Therefore, if S D EndR.F/ Š Matn.R/,
then F W ModR ! ModS defined by F .M/ D HomR.F;M/ with inverse
equivalence G W ModS ! ModR given by G .N/ D N ˝S F is a Morita-equivalence
between R and S [2]. Thus, HomR.F;M/ is a non-singular right S-module, and hence
torsion-free by assumption. Observe that HomR.F;M/ Š S=HomR.F;U/ is cyclic
as an S-module since HomR.F;U/ is a right ideal of the right S-module S. Now, as a
right p.p.-ring not containing an infinite set of orthogonal idempotents, S is also a left
p.p.-ring [4]. Thus, the cyclic torsion-free right S-module HomR.F;M/ is projective
by Albrecht et al. [1, Corollary 3.4]. Therefore, M Š G F .M/ D G .HomR.F;M//
is a projective right R-module and we conclude that R is right strongly non-singular.

c)) a): Suppose Matn.R/ is a right and left Utumi Baer-ring for 0 < n < !

and does not contain an infinite set of orthogonal idempotents. Clearly, Matn.R/ is a
right p.p.-ring, and thus R is right semi-hereditary [4]. Furthermore, since Matn.R/
satisfies these conditions for every 0 < n < !, R Š Mat1.R/ is a right and left
Utumi Baer-ring not containing an infinite set of orthogonal idempotents. Thus,
every S -closed one-sided ideal of R is an annihilator and hence generated by an
idempotent. Therefore, since R is a right and left p.p.-ring, R is right strongly non-
singular [1]. ut

Corollary 1.2 The following are equivalent for a ring R which does not contain an
infinite set of orthogonal idempotents:

a) R is a right and left Utumi, right semi-hereditary ring.
b) For every 0 < n < !, Matn.R/ is a Baer-ring, and Qr.R/ is torsion-free as a

right R-module.
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Proof a) ) b): Suppose R is right and left Utumi and right semi-hereditary.
Then, R is a right p.p.-ring and hence right non-singular. Moreover, since R
satisfies the idempotent condition, it is also a left p.p.-ring and hence left non-
singular. Therefore, Qr.R/ D Ql.R/ since R is both right and left Utumi [6],
and Qr.R/ D Ql.R/ is semi-simple Artinian and torsion-free since R is a right
Utumi right p.p.-ring satisfying the idempotent condition [1]. Consequently, R is
right strongly non-singular by Albrecht et al. [1, Theorem 4.2]. Now, R is a right
strongly non-singular, right semi-hereditary, right Utumi ring not containing an
infinite set of orthogonal idempotents. By Theorem 1.1, Matn.R/ is a Baer-ring for
every 0 < n < !.

b) ) a): Assume Matn.R/ is a Baer-ring for every 0 < n < !, and Qr.R/
is torsion-free as a right R-module. Since Matn.R/ is a Baer-ring, it is both a right
and left p.p.-ring. Hence, R is both right and left semi-hereditary [4]. It then readily
follows that R is right and left non-singular, and by assumption we have that R Š
Mat1.R/ is a Baer-ring. To see that R is right Utumi, let I be a proper S -closed
right ideal of R. Then, R=I is non-singular as a right R-module. Furthermore, R=I
is cyclic and thus finitely generated. Hence, R=I is isomorphic to a submodule of a
free Qr-module by Stenström [10, Chap. XII, Proposition 7.2]. Since Qr is assumed
to be torsion-free as a right R-module, it follows from [1, Proposition 3.3] that I is
generated by an idempotent e 2 R. Hence, I D annr.1 � e/ since R is a right p.p.-
ring. Therefore, R is right Utumi. Observe that the argument works for S -closed
left ideals as well, and so R is also left Utumi. ut

The next example illustrates why it is necessary to consider right semi-hereditary
rings in Theorem 1.1.

Example 1.3 Let R D ZŒx�. As an integral domain, R is a strongly non-singular p.p.-
ring not containing an infinite set of orthogonal idempotents [1, Corollary 3.10].
By Albrecht et al. [1, Theorem 4.2], the classes of torsion-free and non-singular
right R-modules coincide, and by Albrecht et al. [1, Theorem 3.7] R is right Utumi.
However, R is not semi-hereditary since the ideal xZŒx� C 2ZŒx� of ZŒx� is not
projective. This implies that S D Mat2.R/ is not a right or left p.p.-ring [4], and
hence not a Baer ring. Therefore, Theorem 1.1 does not hold if R is not assumed to
be right semi-hereditary.

Moreover, this example shows that the classes of torsion-free and non-singular
S-modules do not necessarily coincide, even if R has this property and S is Morita-
equivalent to R.

In [3, Theorem 4.3.5], Birkenmeier, Park, and Rizvi show that Matn.R/ is a Baer-
ring precisely when every finitely generated torsionless right R-module is projective.
A right R-module is torsionless if it is isomorphic to a submodule of RI for some set
I. In case that R has finite right Goldie-dimension, this condition is equivalent to R
being right semi-hereditary:
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Corollary 1.4 The following are equivalent for a ring R with finite right Goldie
dimension:

a) R is right semi-hereditary.
b) Every finitely generated torsionless right R-module is projective.

Proof In view of [3, Theorem 4.3.5], it needs to be shown that a ring R with finite
right Goldie dimension is right semi-hereditary if and only if Matn.R/ is a Baer-ring
for every 0 < n < !. Now, R is right semi-hereditary if and only if Matn.R/ is a
right p.p.-ring for every 0 < n < ! [9]. Hence, R is right semi-hereditary whenever
Matn.R/ is a Baer-ring. On the other hand, note that Matn.R/ has finite right Goldie
dimension since every ring Morita-equivalent to R also has finite dimension. Thus,
Matn.R/ does not contain an infinite set of orthogonal idempotents. Therefore, if R
is right semi-hereditary, Matn.R/ is a right p.p-ring not containing an infinite set of
orthogonal idempotents, and it follows from [9, Theorem 1] that Matn.R/ is a Baer-
ring. ut

Clearly, the conditions in part a/ of Theorem 1.1 imply that every finitely
generated torsionless module is projective since these conditions imply that Matn.R/
is a Baer-ring. However, the condition on the torsionless modules in [3] is not
enough to ensure that the coincidence of torsion-freeness and non-singularity is
preserved by Morita-equivalence. The following examples provide rings for which
the conditions of Theorem 1.1 fail, even though every finitely generated torsionless
module is projective.

Example 1.5 Let R D FI for some field F and an infinite index-set I. Then R is
a commutative semi-hereditary ring which is its own maximal ring of quotients.
Thus, R is strongly non-singular, and all finitely generated torsionless R-modules
are projective. Therefore, Matn.R/ is a Baer-ring for all n < !, but R does not
satisfy Theorem 1.1 since it has infinite Goldie dimension.

Example 1.6 [4] Let K D F.y/ for some field F and consider the endomorphism
f of K determined by y 7! y2. The ring we consider is R D KŒx� with coefficients
written on the right and multiplication defined according to kx D xf .k/ for any
k 2 K. Observe that yx D xy2. It can be shown that Rx \ Rxy D 0, and hence
Rxy˚ Rxyx˚ Rxyx2 ˚ : : :˚ Rxyxk ˚ : : : is an infinite direct sum of left ideals of
R. Thus, R has infinite left Goldie-dimension. On the other hand, every right ideal
of R is a principal ideal [4], and thus R is right Noetherian. It then follows from
[1, Theorem 3.7] that R is a right Utumi Baer ring and Qr is semi-simple Artinian.
However, R having infinite left Goldie-dimension but finite right Goldie-dimension
implies that Qr ¤ Ql [1, Proposition 4.1]. Therefore, R cannot be left Utumi [6,
Theorem 2.38].

Thus, we have a right Utumi Baer-ring which is not left Utumi, and so this
ring fails to satisfy the conditions of Theorem 1.1. However, since R is a Baer-
ring and every right ideal is principal, R is right semi-hereditary. Therefore, every
finitely generated torsionless right R-module is projective by Corollary 1.4. Observe
that Example 1.6 also illustrates why it is necessary in Theorem 1.1 to include the
requirement Matn.R/ is both right and left Utumi.
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The Class of .2 ; 3/-Groups with Homocyclic
Regulator Quotient of Exponent p2
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Abstract The class of almost completely decomposable groups with a critical
typeset of type .2; 3/ and a homocyclic regulator quotient of exponent p2 is shown
to be of bounded representation type. There are only 5 near-isomorphism classes of
indecomposables and they are of rank 5 or 6.
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1 Introduction

A torsion-free abelian group G is an additive subgroup of a rational vector space.
The dimension of the spanned subspace is called rank [7].

Completely decomposable groups are direct sums of groups of rank 1 and almost
completely decomposable groups are torsion- free abelian groups that contain
a finite rank completely decomposable subgroup of finite index. Every almost
completely decomposable group G contains a canonical completely decomposable
fully invariant subgroup R.G/, the regulator of G. In this paper we deal exclusively
with almost completely decomposable groups with p-primary regulator quotient
G=R.G/, the so-called p-local case.
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The set of all types of elements of a torsion-free abelian group G is called typeset
of G. For almost completely decomposable groups the finite set of types of the direct
summands of rank 1 of the regulator is called critical typeset. The typeset of an
almost completely decomposable group is the closure of the critical typeset relative
to intersection of types. A type � is p-locally free if pG ¤ G for any group G of
rank 1 and type � .

Two p-local almost completely decomposable groups G and H are nearly
isomorphic if there is an integer n relatively prime to p and homomorphisms
f W G! H and g W H ! G with fg D n and gf D n. The group G is indecomposable
if and only if G is nearly isomorphic to an indecomposable group [1, 12.9].

By well-known theorems of Arnold, [1, 12.9], [8, 10.2.5] and Faticoni-Schultz
[6] if G is a p-local almost completely decomposable group, then the direct decom-
positions of G with indecomposable summands are unique up to near isomorphism
and two groups that are nearly isomorphic have identical decompositions up to near
isomorphism of summands.

As was shown in [2] most of these classes contain indecomposable groups
of arbitrarily large rank, the unbounded case in which it is hopeless to try to
describe all near-isomorphism classes of indecomposable groups. This leaves some
special subclasses that may have a finite number of near-isomorphism classes of
indecomposable groups. Bounded classes are those that contain only finitely many
near-isomorphism types of indecomposables.

Almost completely decomposable groups with an inverted forest as critical
typeset are investigated in [5] to be bounded or unbounded. There are some few
classes that are not known to be unbounded or not.

Let p be a prime, .2; 3/ D .�1 < �2; �3 < �4 < �5/ a set of p-locally free
types, partially ordered as indicated. Let R D R1 ˚ R2 ˚ R3 ˚ R4 ˚ R5 where Ri

is homogeneous completely decomposable of finite rank � 1 and type �i. A p-local
almost completely decomposable group G is called a .2; 3/-group if R.G/ Š R.
Such a group has a regulating regulator cf., [9] and, up to near isomorphism, unique
indecomposable decompositions.

A .2; 3/-group with a homocyclic regulator quotient of exponent p2 is called
a .2; 3/-p2-hc-group. Homocyclic means that the regulator quotient is the direct
sum of cyclic groups all of the same order. This paper is devoted to a classification
of indecomposable .2; 3/-p2-hc-groups, thereby confirming bounded representation
type in this case. More precisely, we present a complete collection of near-
isomorphism types of indecomposable homocyclic .2; 3/-p2-groups. There are
precisely five near-isomorphism classes of indecomposables and they are of rank
5 and 6.

Our method consists in turning the decomposition question into an equivalence
problem for matrices.
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2 Coordinate Matrices

We describe .2; 3/-groups by a so-called coordinate matrix. This is done by a
relation matrix connecting a p-basis of the regulator with a basis of the regulator
quotient, cf. [3] for details. Each column of this coordinate matrix belongs to a basis
element of the regulator, so it corresponds to a type.

The critical typeset is .�1 < �2; �3 < �4 < �5/. We obtain the coordinate
matrix written as columns in the form Œ˛1j˛2jjˇ1jˇ2jˇ3� where the columns of ˛1
and ˛2 correspond to �i for i D 1; 2, respectively and the columns of ˇ1, ˇ2 and ˇ3
correspond to �i for i D 3; 4; 5.

Two .2; 3/-p2-hc groups are nearly isomorphic if and only if their coordinate
matrices are equivalent via an equivalence relation defined by certain row and
column operations listed below, see [3, Theorem 12].

Moreover, any entry aij in the coordinate matrix ı may be replaced by an integer
congruent to aij modulo p2, in particular p2 D 0.

Remark 2.1 We call transformations of rows and of columns of a coordinate matrix
of a .2; 3/-hc-group G allowed if the transformed coordinate matrix is the coordinate
matrix of a group H where G and H are nearly isomorphic. Then the following row
and column operations on the coordinate matrix of a homocyclic .2; 3/-group are
allowed:

1. Any multiple of a row may be added to any other row.
2. Any row or column may be multiplied by an integer relatively prime to p.
3. Any multiple of a column of ˛1 may be added to another column of ˛ D Œ˛1j ˛2�

and any multiple of a column of ˛2 may be added to another column of ˛2.
4. Any multiple of a column of ˇ1 may be added to another column of
ˇ D Œˇ1jˇ2jˇ3�, any multiple of a column of ˇ2 may be added to another
column of Œˇ2jˇ3� and any multiple of a column of ˇ3 may be added to another
column of ˇ3.

Now we state the Regulator Criterion in [3, Lemma 13], in the special case of
.2; 3/-groups.

Lemma 2.2 Let G be a .2; 3/-group. Then G has a regulating regulator. Let r D
rank.G=R/. The completely decomposable subgroup R D R�1˚R�2˚R�3˚R�4˚R�5
of finite index in G is the regulator of G if and only if R�1 ˚ R�2 and R�3 ˚ R�4 ˚ R�5
are pure in G, and this holds if and only if ˛ and ˇ of a coordinate matrix Œ˛jjˇ�,
relative to any p-basis of R both have p-rank r.

An integral matrix A D Œai;j� is called p-reduced if

1. there is at most one 1 in a row and column and all other entries are in pZ,
2. if an entry 1 of A is at the position .is; js/, then ais;j D 0 for all j > js and ai;js D 0

for all i < is, and ais;j; ai;js 2 pZ for all j < js and all i > is.
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Thus in a p-reduced matrix, the entries to the left and below of a 1 are in pZ. By
elementary row transformations upward and elementary column transformations to
the right A can be transformed into a p-reduced matrix, cf. [3, Lemma 14].

3 Standard Coordinate Matrices

Line means a row or a column. The matrix A D Œai;j� has a cross at .i0; j0/ if ai0;j0 ¤ 0

and ai0;j D 0, ai;j0 D 0 for all i ¤ i0 and j ¤ j0. The entry ai0;j0 is called cross entry.
By “x 2 A leads to a cross” we mean that this entry x can be used to produce a
cross by allowed line transformations, i.e., x is afterward the cross entry.

We apply transformations to annihilate entries. While doing this, some other
entries that were originally zero may become non-zero; those entries are called
fill-ins.

A matrix is decomposed if it is of the form
"

A 0

0 B

#

. Here either one of the matrices
A;B is allowed to have no rows or no columns, i.e., the decomposed matrices include
the special cases Œ0 B�;

"

0

B

#

; ŒA 0�;

"

A

0

#

. A matrix A is called decomposable if there are row
and column permutations that transform it to a decomposed form, i.e., there are
permutation matrices P;Q such that PAQ is decomposed.

Lemma 3.1 [4, Lemma 3.1] A p-local almost completely decomposable group with
an inverted forest as critical typeset is decomposable if and only if there exists a
decomposable coordinate matrix.

A torsion-free abelian group is called clipped if it has no summand of rank 1.

Proposition 3.2 A .2; 3/-p2-hc-group G without summands of rank � 4 has a
coordinate matrix

h

˛1
ˇ

ˇ˛2
ˇ

ˇ

ˇ

ˇˇ1
ˇ

ˇˇ2
ˇ

ˇˇ3

i

D

2

4

IA 0
ˇ

ˇ 0 0
ˇ

ˇ

ˇ

ˇ A1
ˇ

ˇ A2
ˇ

ˇ A3
0 pI

ˇ

ˇ IB 0
ˇ

ˇ

ˇ

ˇ pB1
ˇ

ˇ B2
ˇ

ˇ B3
0 0

ˇ

ˇ 0 IC

ˇ

ˇ

ˇ

ˇ pC1
ˇ

ˇ C2
ˇ

ˇ C3

3

5 (1)

such that

1. the sizes of the identity matrices IA; IB; IC all are near isomorphism invariants
of G and the sum of the sizes of IA; IB; IC is the rank of the regulator quotient;

2. the submatrix Œˇ1 j ˇ2� is p-reduced and the submatrix of ˇ3, obtained by
omitting the 0-rows is the identity matrix, in particular, the blocks A3;B3;C3
are completely determined by Œˇ1 j ˇ2�;

3. Œˇ1 j ˇ2� has no 0-line and there is no cross in Œˇ1 j ˇ2�.

Proof As G is clipped neither ˛ nor ˇ can contain a 0-column. All elementary row
and column transformations are allowed in ˛1, hence ˛1 may be assumed to be in
Smith Normal Form. Moreover, we may assume ˛ to be p-reduced, hence there are
0-rows in ˛2 to the right of IA. The Regulator Criterion requires that the submatrix
of ˛2, obtained by omitting its 0-rows, can be transformed to the identity matrix by
column transformations in ˛2, hence without changing ˛1. The claimed form of ˛
is now established.
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(1) It can be shown that the sizes of the identity matrices IA; IB; IC all are near-
isomorphism invariants of G, cf. [10, Proposition 4.3].

(2) Row transformations upward in ˛ create fill-ins in ˛ that can be removed by
suitable allowed column transformations in ˛. Hence ˇ may be transformed
by row transformations upward and the usual allowed column transformations.
So we may assume that ˇ is in p-reduced form. Using allowed column
transformations, we produce zeros to the right of any 1 in Œˇ1 j ˇ2� and the
submatrix remaining after omitting all zero rows from ˇ3 may be changed to
the identity matrix. This can be done without changing Œˇ1 j ˇ2� or ˛, cf. [3,
Lemma 25].

(3) Clearly, Œˇ1 j ˇ2� has no 0-line, because there are no summands of rank � 4.
A cross in Œˇ1 j ˇ2� displays summands of rank � 3 if the cross entry is 1, and
summands of rank 4 if the cross entry is not a unit modulo p. Hence Œˇ1 j ˇ2�
has no 0-line.

It remains to show that the entries of ˇ1 in B1 and C1 all are in pZ. A 1 2 C leads
to a cross in ˇ. Hence the entries of C all are in pZ. In turn, a 1 2 B leads to a cross
in ˇ1. In both cases there are summands of rank � 3.

A coordinate matrix of a .2; 3/-p2-hc-group as in Proposition 3.2 is called
standard. Note that in a standard coordinate matrix the form of ˛2; ˇ3 is completely
determined by ˛1; Œˇ1 j ˇ2�, respectively.

Line transformations of Œˇ1 j ˇ2� are called ˛-allowed if after executing such,
˛ can be returned to its previous form by column transformations of ˛. All column
transformations of ˇ1 and all column transformations of ˇ2 are automatically ˛-
allowed.

The following row transformations are ˛-allowed.

1. Any line may be multiplied by a unit.
2. Any row transformation may be applied to A;B;C, respectively.
3. Any multiple of a row in C may be added to any other row.
4. Any multiple of a row in B may be added to any row in B [ A.
5. Any p-multiple of a row in A may be added to a row in B.
6. Any p-multiple of a row in B may be added to a row in C.

We may state [3, Proposition 27] for .2; 3/-groups as follows:

Proposition 3.3 A .2; 3/-group is decomposable if and only if there exists a
standard coordinate matrix Œ˛1

ˇ

ˇ˛2
ˇ

ˇ

ˇ

ˇˇ1
ˇ

ˇˇ2
ˇ

ˇˇ3� with decomposable Œˇ1 j ˇ2�.

We next list the near-isomorphism classes of indecomposable .2; 3/-p2-hc-
groups. We define the type of a group G using the invariants of their standard
coordinate matrix and Œˇ1 j ˇ2�. G is of type

�

rk G=R; rk G;
�

X
�

; Œˇ1; ˇ2�
	

, where

�

X
�

is a part of

2

4

A
B
C

3

5 indicating which block rows are present:
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1.

�

1
ˇ

ˇ 0
ˇ

ˇ

ˇ

ˇ

0
ˇ

ˇ 1
ˇ

ˇ

ˇ

ˇ

1
ˇ

ˇ 0
ˇ

ˇ 0

p
ˇ

ˇ p
ˇ

ˇ 1

�

of type



2; 5;

�

A
C

�

;

�

1 0

p p

��

2.

�

1 0
ˇ

ˇ 0
ˇ

ˇ

ˇ

ˇ

0 p
ˇ

ˇ 1
ˇ

ˇ

ˇ

ˇ

p
ˇ

ˇ 0
ˇ

ˇ 1

p
ˇ

ˇ 1
ˇ

ˇ 0

�

of type



2; 6;

�

A
B

�

;

�

p 0
p 1

��

3.

�

1
ˇ

ˇ 0
ˇ

ˇ

ˇ

ˇ

0
ˇ

ˇ 1
ˇ

ˇ

ˇ

ˇ

p
ˇ

ˇ 1
ˇ

ˇ 0

0
ˇ

ˇ p
ˇ

ˇ 1

�

of type



2; 5;

�

A
C

�

;

�

p 1
0 p

��

4.

�

1
ˇ

ˇ 0
ˇ

ˇ

ˇ

ˇ

0
ˇ

ˇ 1
ˇ

ˇ

ˇ

ˇ

p
ˇ

ˇ 0
ˇ

ˇ 1

p
ˇ

ˇ 1
ˇ

ˇ 0

�

of type



2; 5;

�

A
C

�

;

�

p 0
p 1

��

5.

�

p
ˇ

ˇ 1 0
ˇ

ˇ

ˇ

ˇ

0
ˇ

ˇ 0 1
ˇ

ˇ

ˇ

ˇ

p
ˇ

ˇ 0
ˇ

ˇ 1

p
ˇ

ˇ 1
ˇ

ˇ 0

�

of type



2; 6;

�

B
C

�

;

�

p 0
p 1

��

Theorem 3.4 There are precisely the 5 near-isomorphism types in the list above of
indecomposable .2; 3/-groups with homocyclic regulator quotient of exponent p2.

Proof Let G be an indecomposable .2; 3/-group with homocyclic regulator quotient
of exponent p2. The group G cannot have summands of rank� 4 because the critical
typeset has cardinality 5. By Proposition 3.2 we assume a standard coordinate matrix
for G is Œ˛1j˛2jjˇ1jˇ2jˇ3�. There is no cross in Œˇ1jˇ2�. At least two of the blocks
A;B;C are present because the presence of just one block allows the transformation
of Œˇ1jˇ2� to Smith Normal Form , i.e., a cross or a 0-line.

Note that mostly we want to change certain submatrices either to a 0-matrix or
to a matrix of the form pI. The phrase “we form the Smith Normal Form of A”
means that by a sequence of allowed elementary row and column transformations
we obtain a diagonal matrix with diagonal entries 0 or p. It is tacitly included that
all the line transformations are allowed and that originally “normed” blocks can
be reestablished. If blocks split into subblocks, then if possible we keep the original
name to avoid overwhelming indexing. Forming the Smith Normal Form, in general,
splits blocks. Block names, like pC, are place holders only and are re-used again and
again with changing values. By Proposition 3.3 we only have to consider Œˇ1jˇ2�
and hence we apply ˛-allowed line transformations to Œˇ1jˇ2�. Our technique is
to form successively Smith Normal Forms of subblocks and this is done by ˛-
allowed transformations only. While forming successively Smith Normal Forms
we get fill-ins in the blocks that are already obtained in Smith Normal Form and
we always proceed in such a way that those fill-ins can be removed by successive
transformations. The phrase “we can annihilate” or “it allows to annihilate” tacitly
includes that the occurring fill-ins can be removed by subsequent transformations
and the previously “normed” blocks are reestablished. Note that sometimes fill-ins
occur that have a prefactor p2, hence can be and are replaced by 0, because we deal
with groups with regulator quotient of exponent p2.

Starting with Equation (1) we first form the Smith Normal Form for C1. The

Smith Normal Form of C1 is
h

pI 0

0 0

i

. We use the pI in the Smith Normal Form of C1
to annihilate in pB1 and then we form the Smith Normal Form of the rest of pB1 to

get
h

pI 0

0 0

i

. Thus we obtain
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h

ˇ1
ˇ

ˇˇ2

i

D

2

6

6

6

6

6

4

A11 A12 A13
ˇ

ˇ A2
0 pI 0

ˇ

ˇ B2
0 0 0

ˇ

ˇ B3
pI 0 0

ˇ

ˇ C2
0 0 0

ˇ

ˇ C3

3

7

7

7

7

7

5

A
B1

B2

C1

C2

There is no 0-column in A13. A unit in A13 leads to a cross in Œˇ1jˇ2�. Hence the

entries of A13 are in pZ and we write pA13. The Smith Normal Form of pA13 is
h

pI

0

i

.

Thus we get

h

ˇ1
ˇ

ˇˇ2

i

D

2

6

6

6

6

6

6

6

4

A11 A12 pI
ˇ

ˇ A2
A14 A15 0

ˇ

ˇ A3
0 pI 0

ˇ

ˇ B2
0 0 0

ˇ

ˇ B3
pI 0 0

ˇ

ˇ C2
0 0 0

ˇ

ˇ C3

3

7

7

7

7

7

7

7

5

A1

A2

B1

B2

C1

C2

All the non-zero entries of A11, A14, A12 and A15 are units due to the presence of
pI in the B1- and C1-row. A unit in A15 leads to a cross in Œˇ1jˇ2�. Hence A15 D 0.
If there is a unit in A12 we annihilate with this unit in the A1-row and below in the
B1-row and this leads to a cross in Œˇ1jˇ2�. Hence A12 D 0 and we obtain

h

ˇ1
ˇ

ˇˇ2

i

D

2

6

6

6

6

6

6

6

4

A11 0 pI
ˇ

ˇ A2
A14 0 0

ˇ

ˇ A3
0 pI 0

ˇ

ˇ B2
0 0 0

ˇ

ˇ B3
pI 0 0

ˇ

ˇ C2
0 0 0

ˇ

ˇ C3

3

7

7

7

7

7

7

7

5

A1

A2

B1

B2

C1

C2

The Smith Normal Form of A14 is
h

I 0

0 0

i

. We now create zeros in the A1-row above

the I in the Smith Normal Form of A14. Hence we get

h

ˇ1
ˇ

ˇˇ2

i

D

2

6

6

6

6

6

6

6

6

6

6

6

4

0 A11 0 pI
ˇ

ˇ A2
I 0 0 0

ˇ

ˇ A3
0 0 0 0

ˇ

ˇ A4
0 0 pI 0

ˇ

ˇ B2
0 0 0 0

ˇ

ˇ B3
pI 0 0 0

ˇ

ˇ C2
0 pI 0 0

ˇ

ˇ C0
2

0 0 0 0
ˇ

ˇ C3

3

7

7

7

7

7

7

7

7

7

7

7

5

A1

A21

A22

B1

B2

C11

C12

C2
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Due to the presence of pI in the C12-row we may assume that the entries of A11
are either units or zero. Hence the Smith Normal Form of A11 is

h

I 0

0 0

i

and

h

ˇ1
ˇ

ˇˇ2

i

D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 I 0 0 pI 0
ˇ

ˇ A21
0 0 0 0 0 pI

ˇ

ˇ A22
I 0 0 0 0 0

ˇ

ˇ A3
0 0 0 0 0 0

ˇ

ˇ A4
0 0 0 pI 0 0

ˇ

ˇ B2
0 0 0 0 0 0

ˇ

ˇ B3
pI 0 0 0 0 0

ˇ

ˇ C2
0 pI 0 0 0 0

ˇ

ˇ C0
21

0 0 pI 0 0 0
ˇ

ˇ C0
22

0 0 0 0 0 0
ˇ

ˇ C3

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

A11

A12

A21

A22

B1

B2

C11

C12

C12
�

C2

The blocks A21 and A3 can be annihilated by the respective identity matrices in
the A11- and A21-rows. We can annihilate pI in the A11-row by using I in the same
row. Then the fifth column of ˇ1 is zero, hence not present. Note that a unit in C3
leads to a cross in Œˇ1jˇ2�, hence we write pC3. We may combine column 1 and
column 2 of ˇ1 to one column, and we get

h

ˇ1
ˇ

ˇˇ2

i

D

2

6

6

6

6

6

6

6

6

6

6

6

4

I 0 0 0
ˇ

ˇ 0

0 0 0 pI
ˇ

ˇ A22
0 0 0 0

ˇ

ˇ A4
0 0 pI 0

ˇ

ˇ B2
0 0 0 0

ˇ

ˇ B3
pI 0 0 0

ˇ

ˇ C0
21

0 pI 0 0
ˇ

ˇ C0
22

0 0 0 0
ˇ

ˇ pC3

3

7

7

7

7

7

7

7

7

7

7

7

5

A11

A12

A22

B1

B2

C12

C12
�

C2

A unit in C0
21 causes a direct summand of rank � 4. Hence the entries of C0

21 are
in pZ and we write pC0

21. Thus we get

h

ˇ1
ˇ

ˇˇ2

i

D

2

6

6

6

6

6

6

6

6

6

6

6

4

I 0 0 0
ˇ

ˇ 0

0 0 0 pI
ˇ

ˇ A22
0 0 0 0

ˇ

ˇ A4
0 0 pI 0

ˇ

ˇ B2
0 0 0 0

ˇ

ˇ B3
pI 0 0 0

ˇ

ˇ pC0
21

0 pI 0 0
ˇ

ˇ C0
22

0 0 0 0
ˇ

ˇ pC3

3

7

7

7

7

7

7

7

7

7

7

7

5

A11

A12

A22

B1

B2

C12

C12
�

C2
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Due to the presence of pI in the C12
� -row the entries of C0

22 are units or zero.
There is no zero row in C0

22 to avoid a cross. Hence the Smith Normal Form of C0
22

is
�

I 0
�

. We annihilate with I � C0
22 in A22, B2, pC0

21 and pC3. The Smith Normal

Form of the rest of pC3 is
�

pI 0
�

. We annihilate with pI � pC3 in pC0
21. Thus we get

h

ˇ1
ˇ

ˇˇ2

i

D

2

6

6

6

6

6

6

6

6

6

6

6

4

I 0 0 0
ˇ

ˇ 0 0 0

0 0 0 pI
ˇ

ˇ 0 A22 A23
0 0 0 0

ˇ

ˇ A41 A42 A43
0 0 pI 0

ˇ

ˇ 0 B22 B23
0 0 0 0

ˇ

ˇ B31 B32 B33
pI 0 0 0

ˇ

ˇ 0 0 pC0
21

0 pI 0 0
ˇ

ˇ I 0 0

0 0 0 0
ˇ

ˇ 0 pI 0

3

7

7

7

7

7

7

7

7

7

7

7

5

A11

A12

A22

B1

B2

C12

C12
�

C2

A unit in B33 leads to a cross in Œˇ1 j ˇ2�, so we write pB33. The entries of B32
are either units or zero due to the pI in the C2-row. But a unit in B32 leads to a cross
in Œˇ1 j ˇ2�, so we write pB32. Then we annihilate with pI in the C2-row the block
matrix pB32. Hence B32 D 0. Thus

h

ˇ1
ˇ

ˇˇ2

i

D

2

6

6

6

6

6

6

6

6

6

6

6

4

I 0 0 0
ˇ

ˇ 0 0 0

0 0 0 pI
ˇ

ˇ 0 A22 A23
0 0 0 0

ˇ

ˇ A41 A42 A43
0 0 pI 0

ˇ

ˇ 0 B22 B23
0 0 0 0

ˇ

ˇ B31 0 pB33
pI 0 0 0

ˇ

ˇ 0 0 pC0
21

0 pI 0 0
ˇ

ˇ I 0 0

0 0 0 0
ˇ

ˇ 0 pI 0

3

7

7

7

7

7

7

7

7

7

7

7

5

A11

A12

A22

B1

B2

C12

C12
�

C2

A unit in B31 allows to annihilate in pB33 and in A41 and this leads to as summand
Œˇ1 j ˇ2� D

"

0
ˇ

ˇ 1
ˇ

ˇ B

p
ˇ

ˇ 1
ˇ

ˇ C

#

and the p-reduced form might be given as Œˇ1 j ˇ2� D

"

p
ˇ

ˇ 0
ˇ

ˇ B

p
ˇ

ˇ 1
ˇ

ˇ C

#

and a
summand of type cf. (5) in the list. Omitting those summands we obtain B31 D 0.
Thus we get

h

ˇ1
ˇ

ˇˇ2

i

D

2

6

6

6

6

6

6

6

6

6

6

6

4

I 0 0 0
ˇ

ˇ 0 0 0

0 0 0 pI
ˇ

ˇ 0 A22 A23
0 0 0 0

ˇ

ˇ A41 A42 A43
0 0 pI 0

ˇ

ˇ 0 B22 B23
0 0 0 0

ˇ

ˇ 0 0 pB33
pI 0 0 0

ˇ

ˇ 0 0 pC0
21

0 pI 0 0
ˇ

ˇ I 0 0

0 0 0 0
ˇ

ˇ 0 pI 0

3

7

7

7

7

7

7

7

7

7

7

7

5

A11

A12

A22

B1

B2

C12

C12
�

C2
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The Smith Normal Form of B23 is

�

I 0
0 0

�

. We annihilate with I � B23 in B22,

pB33, pC0
21 and in A23 and then we form the Smith Normal Form of the rest of B22

that is
�

I 0
�

. Thus we get

h

ˇ1
ˇ

ˇˇ2

i

D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

I 0 0 0 0
ˇ

ˇ 0 0 0 0 0

0 0 0 0 pI
ˇ

ˇ 0 0 A22 0 A23
0 0 0 0 0

ˇ

ˇ A41 A42 A0
42 A43 A0

43

0 0 pI 0 0
ˇ

ˇ 0 0 0 I 0

0 0 0 pI 0
ˇ

ˇ 0 I 0 0 0

0 0 0 0 0
ˇ

ˇ 0 0 0 0 pB33
pI 0 0 0 0

ˇ

ˇ 0 0 0 0 pC0
21

0 pI 0 0 0
ˇ

ˇ I 0 0 0 0

0 0 0 0 0
ˇ

ˇ 0 pI 0 0 0

0 0 0 0 0
ˇ

ˇ 0 0 pI 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

A11

A12

A22

B11

B12

B2

C12

C12
�

C21

C22

We may annihilate with I in the B12-row the matrix pI below in the C21-row. Then
the C21-row is not present. The columns .3/ and .4/ are combined. Thus we get

h

ˇ1
ˇ

ˇˇ2

i

D

2

6

6

6

6

6

6

6

6

6

6

6

4

I 0 0 0
ˇ

ˇ 0 0 0 0

0 0 0 pI
ˇ

ˇ 0 0 A22 A23
0 0 0 0

ˇ

ˇ A41 A42 A0
42 A0

43

0 0 pI 0
ˇ

ˇ 0 I 0 0

0 0 0 0
ˇ

ˇ 0 0 0 pB33
pI 0 0 0

ˇ

ˇ 0 0 0 pC0
21

0 pI 0 0
ˇ

ˇ I 0 0 0

0 0 0 0
ˇ

ˇ 0 0 pI 0

3

7

7

7

7

7

7

7

7

7

7

7

5

A11

A12

A22

B1

B2

C12

C12
�

C22

There is no 0-row in pB33 and in pC0
21 to avoid a direct summand of rank � 4.

Hence the Smith Normal Form of pC0
21 is

�

pI 0
�

. We annihilate with pI � pC0
21

in pB33 and produce the Smith Normal Form of pB33 that is
�

pI 0
�

. Thus

"

pB33
pC0

21

#

D

"

0 pI 0
pI 0 0

#

and we get
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h

ˇ1
ˇ

ˇˇ2

i

D

2

6

6

6

6

6

6

6

6

6

6

6

4

I 0 0 0
ˇ

ˇ 0 0 0 0 0 0

0 0 0 pI
ˇ

ˇ 0 0 A22 A23 A0
23 A00

23

0 0 0 0
ˇ

ˇ A41 A42 A0
42 A0

43 A00
43 A000

43

0 0 pI 0
ˇ

ˇ 0 I 0 0 0 0

0 0 0 0
ˇ

ˇ 0 0 0 0 pI 0

pI 0 0 0
ˇ

ˇ 0 0 0 pI 0 0

0 pI 0 0
ˇ

ˇ I 0 0 0 0 0

0 0 0 0
ˇ

ˇ 0 0 pI 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

5

A11

A12

A22

B1

B2

C12

C12
�

C22

A unit in A000
43 causes a cross, so we write pA000

43. In turn a unit in A00
43 leads to a

cross, hence A00
43 D 0. Then a unit in A00

23 allows to annihilate first in pA000
43 and then

in its row. This leads to a summand of rank 3, so A00
23 D 0. Thus we get

h

ˇ1
ˇ

ˇˇ2

i

D

2

6

6

6

6

6

6

6

6

6

6

6

4

I 0 0 0
ˇ

ˇ 0 0 0 0 0 0

0 0 0 pI
ˇ

ˇ 0 0 A22 A23 A0
23 0

0 0 0 0
ˇ

ˇ A41 A42 A0
42 A0

43 0 pA000
43

0 0 pI 0
ˇ

ˇ 0 I 0 0 0 0

0 0 0 0
ˇ

ˇ 0 0 0 0 pI 0

pI 0 0 0
ˇ

ˇ 0 0 0 pI 0 0

0 pI 0 0
ˇ

ˇ I 0 0 0 0 0

0 0 0 0
ˇ

ˇ 0 0 pI 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

5

A11

A12

A22

B1

B2

C12

C12
�

C22

A unit in A0
23 leads to a direct summand of rank 3, so A0

23 D 0. But then the B2-
row together with the fifth column of ˇ2 is not present to avoid a cross. The Smith

Normal Form of A0
43 is

h

I 0

0 0

i

. We annihilate with I � A0
43 first in its row and then in

its column except of pI below. Thus we get

h

ˇ1
ˇ

ˇˇ2

i

D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

I 0 0 0 0
ˇ

ˇ 0 0 0 0 0 0

0 I 0 0 0
ˇ

ˇ 0 0 0 0 0 0

0 0 0 0 pI
ˇ

ˇ 0 0 A22 0 A23 0

0 0 0 0 0
ˇ

ˇ 0 0 0 I 0 0

0 0 0 0 0
ˇ

ˇ A41 A42 A0
42 0 0 pA000

43

0 0 0 pI 0
ˇ

ˇ 0 I 0 0 0 0

pI 0 0 0 0
ˇ

ˇ 0 0 0 pI 0 0

0 pI 0 0 0
ˇ

ˇ 0 0 0 0 pI 0

0 0 pI 0 0
ˇ

ˇ I 0 0 0 0 0

0 0 0 0 0
ˇ

ˇ 0 0 pI 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

A11

A11�
A12

A22

A22�
B1

C12

C12
��

C12
�

C22

The submatrix pI in the C12-row can be annihilated by pI on the left. Then the
A22-row together with the fourth column of ˇ2 is not present to avoid a cross. Then
in turn, the A11-row and the C12-row together with the first column of ˇ1 are not
present to avoid a summand of rank � 4.
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A zero column in A23 leads to Œˇ1 j ˇ2� D

"

1
ˇ

ˇ 0
ˇ

ˇ A

p
ˇ

ˇ p
ˇ

ˇ C

#

and a summand of type cf. (1) in
the list. Omitting this summand we may assume that the Smith Normal Form of A23
is
h

I

0

i

. We annihilate with I � A23 in A22. Thus we get

h

ˇ1
ˇ

ˇˇ2

i

D

2

6

6

6

6

6

6

6

6

6

6

6

4

I 0 0 0 0
ˇ

ˇ 0 0 0 0 0

0 0 0 pI 0
ˇ

ˇ 0 0 0 I 0

0 0 0 0 pI
ˇ

ˇ 0 0 A22 0 0

0 0 0 0 0
ˇ

ˇ A41 A42 A0
42 0 pA00

43

0 0 pI 0 0
ˇ

ˇ 0 I 0 0 0

pI 0 0 0 0
ˇ

ˇ 0 0 0 pI 0

0 pI 0 0 0
ˇ

ˇ I 0 0 0 0

0 0 0 0 0
ˇ

ˇ 0 0 pI 0 0

3

7

7

7

7

7

7

7

7

7

7

7

5

A11�
A12

A12�
A22�
B1

C12

C12
�

C22

We annihilate with pI in ˇ1 in the C12-row the pI on the right in the same row.
This leads to a summand of rank � 4. Hence the A12-row together with the fourth
column of ˇ1 and the fourth column of ˇ2 are not present. Moreover, the A11� -row,
the C12-row and the first column of ˇ1 are not present to avoid a direct summand of
rank� 4. A unit in A0

42 leads to a summand of rank� 4. Hence A0
42 D 0. Then a unit

in A22 leads to a summand of type
 

2; 5;

"

A

C

#

;

"

p
ˇ

ˇ 1
ˇ

ˇ A

0
ˇ

ˇ p
ˇ

ˇ C

#!

, cf. (3) in the list. Omitting this

summand we get A22 D 0. Then the A12� -row, the C22-row and the corresponding
columns are not present to avoid a cross. Thus we get

h

ˇ1
ˇ

ˇˇ2

i

D

2

4

0 0
ˇ

ˇ A41 A42 pA00
43

0 pI
ˇ

ˇ 0 I 0

pI 0
ˇ

ˇ I 0 0

3

5

A22�
B1

C12
�

A unit in A42 leads to Œˇ1 j ˇ2� D

"

0
ˇ

ˇ 1
ˇ

ˇ A

p
ˇ

ˇ 1
ˇ

ˇ B

#

and a summand of type cf. (2) in the list.
Omitting this summand we may assume that A42 D 0. Then in turn a unit in A41
leads to Œˇ1 j ˇ2� D

"

0
ˇ

ˇ 1
ˇ

ˇ A

p
ˇ

ˇ 1
ˇ

ˇ C

#

or in p-reduced form Œˇ1 j ˇ2� D

"

p
ˇ

ˇ 0
ˇ

ˇ A

p
ˇ

ˇ 1
ˇ

ˇ C

#

and a summand of type
cf. (4) in the list. Omitting this summand we may assume that A41 D 0. But then a
p 2 pA00

43 leads to a cross in Œˇ1 j ˇ2�. All the other row constellations cause direct
summands of rank � 4. This finishes the proof.
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Unbounded Monotone Subgroups
of the Baer–Specker Group

Burkhard Wald

Abstract We consider special subgroups of the Baer–Specker group Z
! of all

integer valued functions on !, which L. Fuchs called monotone groups (Fuchs,
Infinite abelian groups. Academic, Boston, MA, 1973, Specker, Portugaliae Math
9:131–140, 1950). Together with R. Göbel the author defined an equivalence rela-
tion between monotone groups which corresponds to a behavior of homomorphisms
from a monotone group into an abelian group (Göbel and Wald, Symp Math
23:201–239, 1979). The group Z

! and the subgroup B of all bounded functions
form two equivalence classes with just a single member. A third class is build by
all bounded monotone groups, which are monotone groups where the growth of
all elements is bounded by the growth of some given function b. An unbounded
monotone group different from Z

! can be constructed by an ultrafilter of !. So the
number of equivalence classes of monotone groups is at least 4. In Göbel and Wald
(Math Z 172:107–121, 1980) it is proved that the number is 22

@0 if the Continuum
Hypothesis, CH, or alternatively Martin’s Axiom is assumed. Later A. Blass and
C. Laflamme showed that it is relatively consistent with ZFC, that the number of
equivalence classes is 4. In this case all unbounded monotone groups different from
Z
! are equivalent (Blass and Laflamme, J Symb Log 54:54–56, 1989). Further

investigations on monotone groups by O. Kolman and the author led to a special
technical assumption on monotone groups (Kolman and Wald, Isr J Math 217, to
appear). In the present paper we call these monotone groups comfortable and show
that the existence of a monotone group that is not comfortable, is independent of
ZFC.
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1 Preliminaries

The Baer–Specker group Z
! is the direct product of countably many copies of the

additive group of integers, Z. The elements of Z! can be considered as functions
from ! to Z. We define a relation  as follows: for two function a; b 2 Z

! let
a  b if and only if there is a factor k > 0 such that ja.n/j � kNb.n/ for almost
all n 2 !, where Nb is defined by Nb.n/ D maxf1; jb.0/j; : : : ; jb.n/jg for n 2 !. We
call Nb 2 Z

! the monotonization of b. Here almost all means that the assertion holds
for all but a finite number of exceptions. A subgroup M � Z

! is called monotone
if a  b ^ b 2 M implies a 2 M. Of course Z

! is monotone and so also is B the
subgroup of all bounded elements of Z! . A function a 2 Z

! is bounded if the set of
values a.n/ is finite. Further examples can be defined by Mb D fa 2 Z

! W a  bg
for a given b 2 Z

! n B—see [2, 3, 12]
Specker’s paper [12] gave the inspiration for the definition of slenderness for

abelian groups G or, more generally, for M-slenderness where M is a monotone
group. Recall that an abelian group G is called M-slender if every homomorphism
from M to G maps almost all of the special functions en to 0; the function en 2 Z

!

is defined by en.m/ D 1 if n D m and en.m/ D 0 for m 2 ! n fng. A slender
group is a Z

!-slender group. It is known that M-slender abelian groups cannot
contain a cotorsion group and hence they are torsionfree and reduced. If M ¤ B,
all torsionfree reduced abelian groups with cardinality < 2@0 are M-slender. The
monotone group B is a special case, because B is free and no non-trivial abelian
group is B-slender—see [2, 3, 8, 10, 12].

We say that two monotone groups M and N are equivalent if M-slenderness and
N-slenderness are the same. Another way to define this equivalence relation is to
say that a subgroup of M is isomorphic to N and a subgroup of N is isomorphic
to M. There are two equivalence classes with one element, fBg and fZ!g. The
latter follows from Specker’s result that monotone groups ¤ Z

! are slender but
of course Z

! itself is not. A third equivalence class is given by the set of all
so called bounded monotone groups ¤ B. A monotone group is bounded if it is
contained in some Mb, see [3]. The author gave a construction of an unbounded
monotone group ¤ Z

! under the assumption of the continuum hypothesis CH
in [14]. Later the technique used there was extended to construct 22

@0 examples
which are pairwise not equivalent. In addition the assumption on CH could be
dropped for the construction of a single example [4]. In contrast to the CH-case,
Blass and Laflamme showed that it is consistent with ZFC that all unbounded
monotone groups¤ Z

! are equivalent [1]. Hence the number of equivalence classes
is undecidable in ZFC. This number can be 4 or it can be 22

@0 ; see also History of
the Continuum in the Twentieth Century by J. Steprāns [13].

We finish this section of preliminaries by noting that our terminology and
notation are standard and follow that used by Fuchs in [2]; in particular, all
references to groups are to additively written abelian groups.
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2 The Result

A known characterisation of slender groups is that an abelian group is slender if,
and only if, it is torsionfree and reduced and does not contain a subgroup which
is isomorphic to the group of p-adic integers, Jp, for some prime p or to the Baer–
Specker group Z

!—see [9]. A similar result for M-slenderness (M ¤ Z
!) would be

that an abelian group is M-slender if, and only if, it is torsionfree and reduced and
does not contain a subgroup isomorphic to M. Here the p-adic integers need not be
mentioned because no Jp can be embedded in any M ¤ Z

!—see [14]. Kolman and
the author showed in a recent paper that the suggested statement holds for a bounded
monotone M ¤ B, but also in other cases—see [6]. The technical requirement for
the proof given in [6] about the monotone group leads to the following definition:

Definition 2.1 A monotone subgroup M of Z! is called comfortable, if there is a
monotone injection sW! ! ! and an unbounded monotone function c 2 Z

! such
that ˚ s

c .M/ � M, where the homomorphism ˚ s
c WZ

! ! Z
! is defined by

˚ s
c .x/ D

P

n2! c.n/x.n/es.n/ for x 2 Z
! :

Notice that we can build infinite sums of the functions en quite naturally. For
example the sum

P

n2! x.n/en is just the function x. The result mentioned above is
the following theorem:

Theorem 2.2 Let M ¤ Z
! be a comfortable monotone group. Then an abelian G

is M-slender if and only if G is torsionfree and reduced and G does not contain a
subgroup isomorphic to M.

The aim of this work is to investigate whether there exists a monotone group
which is not comfortable; we prove the following theorem:

Theorem 2.3 The assertion that there is a monotone group ¤ B which is not
comfortable, is not decidable in ZFC.

At first let us state some basic facts.

Proposition 2.4 The following hold

1. to be comfortable is a property of equivalence classes of monotone groups;
2. every bounded monotone group M ¤ B group is comfortable;
3. every monotone group M ¤ Z

! can be enlarged to a comfortable subgroup
N ¤ Z

! .

Proof We start with two equivalent monotone groups M and N and suppose that
M is comfortable. By the equivalence of M and N it follows that we can embed M
into N and N into M. It is known that the embeddings can be chosen such that they
are of a special kind. There are two monotone injections s1; s2W! ! ! such that
P

n2! x.n/es1.n/ 2 N for x 2 M and
P

n2! x.n/es2.n/ 2 M for x 2 N. Because M is
comfortable there is a third monotone injection s and an unbounded monotone c 2
Z
! such that ˚ s

c .M/ � M. Composing these three morphisms, we get ˚ s0

c0 .N/ � N
for s0 D s1 ı s ı s2 and c0 D c ı s2. Hence N is also comfortable.
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Now let M ¤ B be a bounded monotone group. We choose two unbounded
monotone function b; c 2 Z

! such that M � Mb and c2 2 M; here the square c2

is defined pointwise. We can construct a monotone injection s W ! ! ! such that
b.n/ � c.s.n// for all n 2 !. Then ˚ s

c0.b/  c2 if we define c0 D c ı s. It follows
that ˚ s

c0.M/ � M.
To prove the third property we start with a monotone group M ¤ Z

! . We define
c and s by c.n/ D n and s.n/ D n2 for n 2 ! and a further monotone group N by

N D fx 2 Z
! W .9y 2 M/.x  cy/g :

Clearly M � N and N ¤ Z
! .

We show that ˚ s
c .cy/  cy if y 2 M is monotone, which immediately implies

˚ s
c .N/ � N. Consider ˚ s

c.cy/.n/ for n 2 ! and suppose ˚ s
c .cy/.n/ ¤ 0. Then we

must have that n D s.m/ for some m and therefore

˚ s
c .cy/.n/ D c.m/c.m/y.m/ D m2y.m/ � m2y.s.m// D

s.m/y.s.m// D c.s.m//y.s.m// D c.n/y.n/ D .cy/.n/ :

Hence ˚ s
c .cy/.n/ � cy.n/ for all n 2 !. This completes the proof. ut

One conclusion of this is that in the set-theoretical universe used by Blass and
Laflamme in which all unbounded monotone groups ¤ Z

! are equivalent, every
monotone group¤ B is comfortable. Hence this assertion is relative consistent with
ZFC. In the next two paragraphs we show that the opposite is also consistent. We
give a construction of an uncomfortable monotone group ¤ B working under the
assumption of CH. This completes the proof, that the existence of such a group is
independent of ZFC.

3 Technical Preparation

Definition 3.1 A diagonal stepper, or in short a stepper, is an unbounded function
� W ! ! ! with the property that for all n 2 !, either �.n/ D �.n C 1/ or
�.n/ < n < �.nC 1/. We call the numbers n 2 ! with �.n/ < n < �.nC 1/ the
jump points of �.

For a diagonal stepper � the sets ��1.c/ D fn 2 ! W �.n/ D cg are intervals.
Let Œh; g� be such a nontrivial interval, then g is a jump point and has the property
�.g/ < g < �.g C 1/. For h we have h D 0 or h D g0 C 1 where g0 is a further
jump point. In both cases it follows that c D �.h/ D �.g/ lies itself in the interval
Œh; g� and hence c is a fixed point of �. Hence between two jump points there lies a
fixed point and of course between any two fixed points there lies a jump point. Let
jump.�/ denote the set of jump points and fix.�/ the set of fixed points. Now let us
assume that we have two disjoint infinite subsets J and F of ! with the property that
between any two elements of J lies an element of F and between two elements of
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F lies an element of J. Assume, in addition, that F contains the smallest element of
J [ F. Then there is a uniquely defined diagonal stepper � such that jump.�/ D J
and fix.�/ D F.

Definition 3.2 We say that a diagonal stepper �2 follows a diagonal stepper �1, if
the sets jump.�2/n jump.�1/ and fix.�2/nfix.�1/ are finite or in other word, almost
all jump points of �2 are jump points of �1 and almost all fixed points of �2 are
fixed points of �1.

In the case that �2 follows �1 we have the inequality

�2.g/ � �1.g/ < g < �1.gC 1/ � �2.gC 1/ (1)

for almost all jump points g of �2.

Lemma 3.3 Let .�n/n2! be a family of diagonal steppers such that �nC1 follows �n

for all n 2 !. Then a further diagonal stepper � exists which follows all �n.

Proof We construct two sequences .gn/n2! and .rn/n2! with the following
properties:

1. gm < gn and rm < rn if m < n;
2. rn < gn < rnC1 for all n 2 !;
3. rn 2 fix.�m/ for all m � n;
4. gn 2 jump.�m/ for all m � n.

As we mentioned above there is a diagonal stepper � such that fgn W n 2 !g D
jump.�/ and frn W n 2 !g D fix.�/. This diagonal stepper follows all �n as desired.

ut

Next we will consider the role of diagonal steppers within Z
! .

Definition 3.4 We say a diagonal stepper � overcrosses an unbounded monotone
function a 2 Z

! , if for all k > 0 and almost all g 2 jump.�/

k�.g/ � a.g/ (2)

and

ka.gC 1/ � �.gC 1/ : (3)

In particular a 6 � and � 6 a.
We can formulate the following simple proposition.

Proposition 3.5 Let �1 be a diagonal stepper and a 2 Z
! be an unbounded

monotone function.

1. There is a stepper �2 which follows �1 and overcrosses a.
2. If �1 overcrosses a and �2 is a second stepper which follows �1, then �2

overcrosses a, too.
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Proof For the first part we define �2 by selecting suitable r 2 fix.�1/ as the fix
points and g 2 jump.�1/ as the jump points of �2. For a recursive definition we
start with r0 D min.fix.�1// and assume that for some n 2 !, all rm 2 fix.�1/
have already been chosen if m � n and gm 2 jump.�1/ if m < n. Let gn be the
least g 2 jump.�1/ such that g > rn and .n C 1/rn � a.g/, and let rnC1 be the
least r 2 fix.�1/ such that r > gn and .n C 1/a.gn C 1/ � r. Notice that by this
construction �2.gn/ D rn and �2.gn C 1/ D rnC1. It follows that �2 overcrosses a
because, for a given k > 0, equations (ii) and (iii) hold for gn if n � k � 1.

The second part follows from a combination of (i), (ii) and (iii). ut

The conclusion of this section is a further proposition, which will be essential for
the construction in the next section.

Proposition 3.6 Let �1 be a diagonal stepper and A � Z
! be a countable set of

unbounded monotone functions. Then there is a stepper �2 which follows �1 and
overcrosses all a 2 A.

Proof We assume that A D fan W n 2 !g and construct a sequence .�0
n/n2! as in

Lemma 3.3, by applying 3.5 1 such than �0
n overcrosses an. We start this construction

with �0
0 as a follower of �1 and end, utilizing Lemma 3.3, with a stepper �2 which

follows all �0
n. By 3.5 2 �2 overcrosses all an. ut

4 Construction of a Monotone Group Which is Not
Comfortable

For our construction we assume the continuum hypothesis CH. This means that
we have only !1 many of the various types of objects that are the focus of
our investigation. Hence there is an !1-enumeration .˚�/�2!1 of all the possible
homomorphisms ˚ s

c with corresponding c� and s� excluding the case that s is the
identity on !. By transfinite induction we will construct a sequence .��/�2!1 of
diagonal steppers such that

1. �� follows �� if � < �;
2. �� overcrosses �� ı s� if � < �;
3. �� overcrosses the monotonization of ˚�.��/.

Let M be the monotone group which is generated by the �� . We will show that
for all � 2 !1, ˚�.��/ 62 M.

To achieve the first two conditions of the construction, we only have to apply the
last propositions of the previous section, but for the third condition, we need the
following lemma.

Lemma 4.1 Let s be a monotone non-trivial injection of ! into !, c an unbounded
monotone function and �1 a diagonal stepper. Then there is a diagonal stepper �2
which follows �1 and overcrosses the monotonization of ˚ s

c .�2/.

Here non-trivial mean s ¤ id! ; notice that for s D id! the lemma is not true.
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Proof We define �2 by an increasing sequence in ! which alternately gives the
fixed points and the jump points of �2. We choose the first fixed point of �2 as a
fixed point of �1 which is not a fixed point of s. Because s is monotone, injective
and not the identity, s has a nonfixed point and after this, no further fixed point
can occur. Assume all fixed points and jump points of �2 are defined up to a fixed
point r. We choose some jump point g of �1 such that g > s.r/ as the jump point of
�2 which follows the fixed point r. After this we choose the next fixed point of �2
as a fixed point r0 of �1 such that r0 � gc.g/r. Obviously, �2 follows �1.

Now let a be the monotonization of ˚ s
c.�2/. To see that �2 overcrosses a, we

compare the two functions at the positions g and g C 1 if g is a jump point of �2.
Starting with such a g, let r be the last fixed point of �2 before g. By the construction
of g as described above, we have g > s.r/. Thus s.r/ lies in the interval Œr; g�. We
choose the largest n 2 ! such that s.n/ � g. Then r � n � s.n/ � g. Because the
function �2 is constant on this interval Œr; g�, we have �2.n/ D r D �2.g/. Looking
at a we have

a.g/ D a.s.n// D c.n/�2.n/ D c.n/�2.g/:

It follows that for a given k > 0, for almost all g 2 jump.�2/

k�2.g/ � a.g/ :

Now we consider a and �2 at some g C 1. If m 2 ! is the greatest integer for
which s.m/ � g C 1, then a.g C 1/ D c.m/�2.m/. Of course n � m. We have
the cases �2.m/ ¤ r and �2.m/ D r. In the first case it follows that g < m and
hence g � s.g/ < s.m/ � g C 1. Therefore s.g/ D g. This is a contradiction to
this construction, which started beyond the last fixed point of s. So the second case
�2.m/ D r holds and hence m � g. Let r0 be the fixed point of �2 which follows g.
Then gc.g/r � r0 by the special construction of r0. If we put all this together we get

ga.gC 1/ D gc.m/�2.m/ D gc.m/r � gc.g/r � r0 D �2.gC 1/ :

Now for a given k > 0 and almost all g 2 jump.�2/ one gets

ka.gC 1/ � ga.gC 1/ � �2.gC 1/ :

Hence �2 overcrosses a, which completes the proof. ut

To prove that the monotone group M is not comfortable we assume, for a
contradiction, that ˚ s

c .M/ � M. First we consider the case that s ¤ id! . We can
choose � 2 !1 such that˚ s

c D ˚� and get˚�.��/ 2 M. Let a be the monotonisation
of ˚�.��/. Then a 2 M and hence a  maxf�� W � 2 Eg for a finite set E � !1.
We can select some k > 0 and some N 2 ! such that

a.n/ � k maxf��.n/ W � 2 Eg (4)

for all n � N.
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Let � be the maximum of E. Since �� follows all �� for � 2 E, we can select
N large enough such that all jump points g of �� with g � N are also jump points
of the �� for � 2 E and k��.g/ < a.g/. The latter follows from the fact that ��
overcrosses a by applying equation (ii) to kC1 instead of k. Now consider such a g.
As �� follows �� if � � �, we have ��.g/ � ��.g/ for such �. By the definition of
the function a, the first n 2 ! for which a.n/ D a.g/ is of the form s.g0C 1/, where
g0 is a jump point of �� . For this n D s.g0 C 1/, it follows for � � � that

k��.n/ � k��.g/ � k��.g/ < a.g/ D a.n/

Now, we consider the case � < �. Because the stepper �� overcrosses the
composition �� ı s, for almost all relevant g0 we have

k��.s.gC 1// D k.�� ı s/.g0 C 1/ � ��.g
0 C 1/ :

We combine this with the fact, that

a.n/ D a.s.g0 C 1// D c.g0 C 1/��.g
0 C 1/ :

Because c is unbounded, for almost all of the considered n

k��.n/ D k��.s.gC 1// � k��.g
0 C 1/ < c.g0 C 1/��.g

0 C 1/ D a.n/ :

We get a contradiction to (iv) for infinitely many specially selected n 2 ! and see
that the assumption ˚ s

c .M/ � M fails in the case of s ¤ id! .
It remains to prove that ˚ id

c .M/ 6� M for unbounded monotone c 2 Z
! ; we show

that˚ id
c .�0/ 62 M. Otherwise, there is a finite E � !1 such that˚ id

c .�0/  maxf�� W
� 2 Eg. As above, there is some k > 0 such that

c.n/�0.n/ D ˚
id
c .�0/.n/ � k maxf��.n/ W � 2 Eg (5)

for almost all n 2 !. Let � be the maximum of E. We look at this equation in
the cases where n is a jump point g of �� . Since �� follows all the other involved
��, almost all g are jump points of the ��. As all involved �� follow �0, we have
��.g/ � �0.g/ for infinitely many suitable g. For these g, relation .v/ becomes

c.g/�0.g/ � k�0.g/

and we have a contradiction to the assumption that c is unbounded and monotone.
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5 Final Remarks

The first remark is that our construction works also if we assume Martin’s Axiom
(MA) instead of CH. Martin’s Axiom, which was introduced and investigated
by Martin, Solovay and Tennenbaum, is true if CH holds and is consistent with
ZFC+:CH—see [5, 7, 11]. The only thing we need is a generalization of Lemma 3.3
to sequences .��/�2� where � is an ordinal less than 2@0 . We consider the sequences
.fix.��//�2� and .jump.��//�2�. Because �� follows �� , if � < �, these sequences
have the property that fix.��/ n fix.��/ and jump.��/ n jump.��/ are finite, for
� < �. It is a known fact that in MA such sequences of sets have lower bounds, in
the sense that there are infinite sets F and J, such that Fnfix.��/ and Jnjump.��/ are
finite for all � 2 � [5, Exercise 24.17, p. 261]. Now we can define a diagonal stepper
� if we choose fixed points from F and jump points from J alternately. Of course,
� follows �� for all � 2 �. As a consequence of this generalization, Proposition 3.6
holds for a set A if jAj < 2@0 .

A second remark is that it is still an open question whether Theorem 2.2 fails for
uncomfortable monotone groups.
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Clusterization of Correlation Functions

Alexander Zuevsky

Abstract Using the Zhu recursion formulas for correlation functions for vertex
operator algebras, we introduce a cluster algebra structure over a non-commutative
set of variables.

Keywords Vertex algebras • Correlation functions
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1 Introduction

The deep theory of cluster algebras [5] is connected to many different areas of
mathematics. In particular, it has intersections with the theory of Riemann surfaces,
the moduli spaces of local systems, higher Teichmüller theory, stability structures,
Donaldson–Thomas invariants, dilogarithm identities, and many others, [1–4, 7–9].
Several applications of cluster algebras in conformal field theory are known
[3, 9]. Non-trivial but natural definition of seeds and mutations this notion allows to
apply this kind of relations in various algebraic configurations. In some sense cluster
algebras unify alternative ways of description of previously known structures.

The rich theory of vertex operator algebras which constitute an algebraic lan-
guage of the conformal field theory are also known. Being a natural generalization
for Lie algebras, vertex algebras represent a version of Fourier analysis with non-
commutative modes. The expansion of vertex operators in terms of modes allows
us to operate in an algebraic manner with analytic structures associated with powers
of formal parameters attached to modes. This serves as a tool relating complicated
algebraic relations vertex operator algebra modes with descriptions of algebraic-
geometry objects.

Since both cluster algebras and vertex algebras represent two classes of quite
universal algebraic instrumentation, one would be naturally interested in possible
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connections between these two machineries. In this note we would like to sketch a
way to relate cluster algebras [5] with vertex operator algebras [6]. We formulate
definition of a vertex operator cluster algebra which possesses a structure similar to
an ordinary cluster algebra. The seeds are defined over non-commutative variables,
coordinates around marked points, and matrix elements of a number of vertex
operators. In [6] it was proven that one can describe a vertex operator algebra by
the set of all its correlation functions.

1.1 Cluster and Vertex Operator Algebras

Let P be an abelian group with binary operation ˚. Let ZP be the group ring
of P and let QP.x1; : : : ; xn/ be the field of rational functions in n variables with
coefficients in QP. A seed is a triple .x; y;B/, where x D fx1; : : : ; xng is a basis
of QP .x1; : : : ; xn/, y D fy1; : : : ; yng, is an n-tuple of elements yi 2 P, and B
is a skew-symmetrizable matrix. Given a seed .x; y;B/ its mutation �k.x; y;B/ in
direction k is a new seed .x0; y0;B0/ defined as follows. Let Œx�C D max.x; 0/.
Then we have B0 D .b0

ij/ with b0
ij D bij for i D k or j D k, and b0

ij D

bij C Œ�bik�Cbkj C bikŒbkj�C; otherwise. For new coefficients y0 D
�

y0
1; : : : ; y

0
n

	

,

with y0
j D y�1

k if j D k, y0
j D yjy

Œbkj�C
k .yk ˚ 1/

�bkj if j ¤ k, and x D fx1; : : : ; xng,

where x0
k D



yk

n
Q

iD1
x
Œbik �C
i C

n
Q

iD1
x
Œ�bik �C
i

�

..yk ˚ 1/xk/
�1. Mutations are involutions,

i.e., �k�k.x; y;B/ D .x; y;B/.
A vertex operator algebra (VOA) [6] is determined by a quadruple .V;Y; 1; !/,

where is a linear space endowed with a Z-grading with V D
L

r2Z Vr with
dim Vr < Y1. The state 1 2 V0, 1 6D 0, is the vacuum vector and ! 2 V2 is
the conformal vector with properties described below. The vertex operator Y is a
linear map Y W V ! End.V/ŒŒz; z�1�� for formal variable z so that for any vector
u 2 V we have a vertex operator Y.u; z/ D

P

n2Z u.n/z�n�1. The linear operators
(modes) u.n/ W V ! V satisfy creativity Y.u; z/1 D uC O.z/, and lower truncation
u.n/v D 0, conditions for each u, v 2 V and n� 0. For the conformal vector ! one
has Y.!; z/ D

P

n2Z L.n/z�n�2, where L.n/ satisfies the Virasoro algebra for some
central charge C: ŒL.m/;L.n/ � D .m � n/L.mC n/C C

12
.m3 � m/ım;�nIdV , where

IdV is identity operator on V . Each vertex operator satisfies the translation property
Y.L.�1/u; z/ D @zY.u; z/. The Virasoro operator L.0/ provides the Z-grading with
L.0/u D ru for u 2 Vr, r 2 Z. Finally, the vertex operators satisfy the Jacobi identity
which we omit here. These axioms imply locality, .z1�z2/NY.u; z1/Y.v; z2/ D .z1�
z2/NY.v; z2/Y.u; z1/, skew-symmetry, Y.u; z/v D ezL.�1/Y.v;�z/u, associativity
.z0C z2/NY.u; z0C z2/Y.v; z2/w D .z0C z2/NY.Y.u; z0/v; z2/w, and commutativity

u.k/Y.v; z/ � Y.v; z/u.k/ D
P

j
0

�

k
j

�

Y.u.j/v; z/zk�j, conditions for u, v, w 2 V

and integers N � 0. For v D 1 one has Y.1; z/ D IdV . Note also that modes
of homogeneous states are graded operators on V , i.e., for v 2 Vk, v.n/ W Vm !
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VmCk�n�1. In particular, let us define the zero mode o.v/ of a state of weight
wt.v/ D k, i.e., v 2 Vk, as o.v/ D v.wt.v/ � 1/, extending to V additively.

1.2 Correlation Functions of Genus Zero and One Riemann
Surfaces

We define the restricted dual space of V by Frenkel [6]. Let V be a vertex operator
algebra. V 0 D

L

n
0

V�
n , where V�

n is the dual space of linear functionals on the finite

dimensional space Vn. Let h:; :i denote the canonical pairing between V 0 and V .
Define matrix elements for v0 2 V 0, v 2 V and n vertex operators Y.v1; z1/,
: : :, Y.vn; zn/ by hv0;Y.v1; z1/ : : : Y.vn; zn/vi. Choosing v D 1 and v0 D 10 we
obtain the n-point correlation function on the sphere: F.0/V .v1; z1I : : : I vn; zn/ D

h10;Y.v1; z1/ : : : Y.vn; zn/1i. Here the upper index of F.0/ stands for the genus. For
u 2 Vn,

u.k/ W Vm ! VmCn�k�1: (1)

Hence it follows that for v0 2 V 0
m0 , v 2 Vm, and u 2 Vn we obtain a monomial

hv0;Y.u; z/vi D Cu
v0v

zm0�m�n, where Cu
v0v
D hv0; u.m C n � m0 � 1/vi. Recall

now the following formal expansion: for variable x, y we adopt the convention
that .z1 C z2/m D

P

n
0

�m
n

	

zm�n
1 zn

2, i.e., for m < 0 we formally expand in the
second parameter z2. Using the vertex commutator property, i.e., Œu.m/;Y.v; z/� D
P

i
0

�m
i

	

Y .u.i/v; z/ zm�i, one can also derive [10] a recursive relationship. In [10]
we find a recurrent formula expressing an nC 1-point matrix element on the sphere
as a finite sum of n-point matrix elements [10, Lemma 2.2.1]. For v1; : : : ; vn 2 V ,
and a homogeneous v 2 V , we find

hv0;Y.v1; z1/ : : : Y.vn; zn/vi

D

n
X

rD2

X

m
0

fwt.v1/;m.z1; zr/ � hv
0;Y.v2; z2/ : : : Y.v1.m/ vr; zr/ : : : Y.vn; zn/vi

Chv0; o.v1/ Y.v2; z2/ : : : Y.vn; zn/vi; (2)

where fwt.v1/;m.z1; zr/ is a rational function defined by fn;m.z;w/ D
z�n

mŠ

�

d
dw

	m wn

z�w .

�z;wfn;m.z;w/ D
P

j2N

�

nCj
m

�

z�n�j�1wnCj�1. In order to consider modular-invariance of

n-point functions at genus one, Zhu introduced [10] a second “square-bracket” VOA
.V;YŒ; �; 1; Q!/ associated with a given VOA .V;Y.; /; 1; !/. The new square bracket
vertex operators are YŒv; z� D

P

n2Z vŒn�z
�n�1 D Y.qL.0/

z v; qz � 1/, with qz D ez,
while the new conformal vector is Q! D !� c

24
1. For v of L.0/weight wt.v/ 2 R and
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m � 0, vŒm� D mŠ
P

i
m
c.wt.v/; i;m/v.i/, where

i
P

mD0

c.wt.v/; i;m/xm D
�

wt.v/�1Cx
i

�

.

For v1; : : : ; vn 2 V the genus one n-point function [10] has the form

F.1/V .v1; z1I : : : I vn; znI �/ D TrV

�

Y.qL.0/
1 v1; q1/ : : : Y.q

L.0/
n vn; qn/ qL.0/�C=24

�

;

for q D e2� i� and qi D ezi , where � is the torus modular parameter. Then the genus
one Zhu recursion formula is given by the following [10]. For any v, v1; : : : ; vn 2 V
we find for an nC 1-point function

F.1/V .v; zI v1; z1I : : : I vn; znI �/

D

n
X

rD1

X

m
0

PmC1.z � zr; �/ � F
.1/
V .v1; z1I : : : I vŒm�vr; zrI : : : I vn; znI �/

CF.1/V .o.v/I v1; z1I : : : I vn; znI �/ ; (3)

F.1/V .o.v/I v1; z1I : : : I vn; znI �/ D TrV

�

o.v/ Y.qL.0/
1 v1; q1/ : : : Y.q

L.0/
n vn; qn/

qL.0/�C=24
	

. In this theorem Pm.z; �/ denote higher Weierstrass functions defined by

Pm.z; �/ D
.�1/m

.m�1/Š

P

n2Z
¤0

nm�1qn
z

1�qn .

2 Cluster Structure for a Vertex Operator Algebra
Correlation Functions

Fix a vertex operator algebra V . Choose n-marked points pi, i D 1; : : : ; n on a
compact Riemann surface. In the vicinity of each marked point pi define a local coor-
dinate zi with zero at pi. Consider n-tuples v � fv1; : : : ; vng, of arbitrary states vi 2

V , and local corresponding vertex operators Y.v; z/ � fY.v1; z1/; : : : ;Y.vn; zn/g,
with coordinates z � fz1; : : : ; zng around pi, i D 1; : : : ; n. We define a vertex
operator cluster algebra seed

.v;Y.v; z/;Fn.v; z// ; (4)

where Fn.v; z/ � Fn.v1; z1I : : : I vn; zn/ is an n-point correlation function (matrix
element for the sphere case) for n states vi. Now, define the mutation �k.v;m; z/:

�

v0;Y.v0; z/;F0
n.v

0; z/
	

D �k.v;m; z/ .v;Y.v; z/;Fn.v; z// ; (5)

of the seed (4) in direction k 2 1; : : : ; n for v 2 V , according to the Zhu reduction
formula for corresponding Riemann surface genus, e.g., for the sphere as in (2), for
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the torus as in (3), etc. Namely, for v, we define v0 as the mutation of v in direction
k 2 1; : : : ; n as

v0 D �k.v;m; z/v D .v1; : : : ; v.m/vk : : : ; vn/; (6)

for some m � 0. Note that due to the lower truncation property we get a finite
number of terms as a result of the action of v.m/ on vr. For the n-tuple of vertex
operators we define

Y.v0; z/ D �k.v;m; z/Y.v; z/ D .Y.v1; z1/; : : : ;Y.v.m/vk; zk/; : : : ;Y.vn; zn// :

(7)
The mutation

F0
n.v

0; z/ D �k.v;m; z/Fn.v; z/; (8)

is defined by summing over mutations in all possible directions with auxiliary
functions f .wt v;m; k; z/, k 2 1; : : : ; n and all m � 0:

F0
n.v

0; z/ D �k.v;m; z/Fn.v1; z1I : : : I vn; zn/

D

n
X

kD1

X

m
0

f .wt v;m; k; z/Fn.v1; z1I : : : I v.m/vk; zkI : : : I vn; zn/CeFn.v; zI v; z/;

(9)

whereeFn.v; zI v; z/ denote higher terms in the Zhu reduction formula for a specific
genus of a Riemann surfaces used in the consideration. In particular, for the genus
zero case we have f .wt v;m; k; z/ D fv;m.z; zk/ for some m � 0, eFn.v; zI v; z/ D
F.0/n .o.v/I v; z/ D h10; o.v/ Y.v1; z1/ : : : Y.vn; zn/1i, while for the genus one
Riemann surface we take and f .wt v;m; k; z/ D PmC1.z � zkI �/ given by Pm.z; �/,
eFn.v; zI v; z/ D F.1/n .o.v/I v; z/ D TrV .o.v/Y.v1; z1/ : : : Y.vn; zn//. The mutation
�k.v;m; z/ defined by (6)–(9) is an involution, i.e.,

�k.v;m; z/�k.v;m; z/ .v;Y.v; z/;Fn.v; z// D .v;Y.v; z/;Fn.v; z// ;

subject a few conditions. As the first condition, one can take v.m/v.m/vk D vk,
k D 1; : : : ; n for the actions (6)–(7). The simplest case, in particular, for v 2 Vk, for
some specific k D 1; : : : ; n, when k�m� 1 D 0, then v.m/ D o.v/ � v.wt v� 1/.
Then due to the property (1), v.m/v.m/ W Vp �! Vp. Note that when we sum in (9)
over mutations in all possible directions k 2 1; : : : ; n and all m � 0, we obtain a
correlation function (matrix element for the sphere) of rank nC 1 (see (2) and (3))
with extra v 2 V inserted at a point p with corresponding local coordinate z:

F.g/nC1.v; zI v1; z1I : : : I vn; znI �/
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D

n
X

kD1

X

m
0

f .wt v;m; k; z/ � F.g/n .v1; z1I : : : I v.m/vk : : : I vn; znI �/CeF
.g/
n .v; zI v; z/:

When we reduce F.g/n .v1; z1I : : : I v.m/vk : : : I vn; zn/ in (9) to the partition function
F.g/0 (i.e., the zero point function) according to the Zhu reduction formulas ((2)
or (3)), we obtain multiple action of modes

Q

m
0

vr.m/ on various vk as well as

products of f .wt vr;mr; r; zr/ functions as a result of action on zk.
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C
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branch-coloured chain, 233–234,
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invariant partitions, 231, 234–235

refining invariant tree (IR/, 234,
239–240

restricted refining invariant tree (IRR/,
236–238

set of colours, 232
structured tree, 235–236, 256–260

decoding function, 244–251
example, 230–231
expanded coding tree, 232, 241–244
finite coding tree, 230–231
left forests of vertices, 240
lower isomorphic coloured linear orders,

251–252
middle forest, 240
right descendant y, 240

Coloured linear order
branch-coloured chain, 233–234, 260–267
colour- and order-isomorphic, 234
cone type, 235–236, 252–256
invariant partitions, 231, 234–235
refining invariant tree (IR/, 234, 239–240
restricted refining invariant tree (IRR/,

236–238
set of colours, 232
structured tree, 235–236, 256–260

Commutative Noetherian ring, 142
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finite nilpotent group, 181–182
holomorph, 181
infinite Abelian group, 183–185
torsion-free group, 185–187
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finite symmetric groups, 269
infinite symmetric groups, 269–270
monoid of injections, 270
orbit structure, 271–273
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Commutator subgroup, 176–178
Compact graph, 27
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Congruence-based zero-divisor graph, 26
Conjugacy, 113–115
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Coordinate matrices, 437–438

homocyclic ((1, n/, pk/-groups and
almost completely decomposable

group, 45–46
clipped, 46
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Regulator Criterion, 49, 438
row transformations, 439
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Riemann surfaces, 459
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natural isomorphism, 318
Q-modules, 318
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R-module D, 320

R-module M, 320–321, 323
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torsion-freeness, 318
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zero-divisors, 317
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Cyclic modules, 151
Cyclic ZŒX�-modules, 139–140
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Decoding functions, 232, 244–251
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finite Galois extensions, 103
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;-definable, 100–102
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Beth’s Theorem, 94
finite field extension, 93
L -definable, 93
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q-adic valuation, 93

dp-minimal fields, 84
non-triviality, 83, 84

additive subgroup, 91–93
coarsest topology, 90
Möbius transformations, 90
multiplicative subgroup, 91–93
non-trivial weakly compatible
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non-trivial weakly compatible
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V-topology, 92, 93

preliminaries, 84–87
residue homomorphism, 84
valuation ring
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Definably amenable dp-minimal groups, 360,
370

Definably Baire, 302–303
Definably Complete (DC), 301–302
Definably meager, 302–303
Definably residual, 302–303
Diagonal stepper, 452–454
Difference analogue

archimedean equivalence, 408
automorphism, 407
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Hahn field, 410
Hahn group, 410
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q.o. preserving field automorphism, 408
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� -rank, 408
weak isometry, 409

Divisible module, 320
dp-minimal groups

formulas, 359
NIP theories, 360
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abelian-by-finite, 360
Baldwin-Saxl lemma, 363
equivalent conditions, 361–363
f -generic, 368–371
finite pairwise disjoint subsets, 367
inp-minimal groups, 366
nilpotent-by-finite, 360
NIP groups, 367–368
!-saturated model, 364
pairwise disjoint clopen sets, 367

strong dependence, 360
dsc group, 385, 387
Dual Rickart modules, 335
Dubrovin-Puninski ring, 208

E
Endomorphism

for Abelian groups
addition theorem, 147–151
adjoint algebraic entropy, hopficity and

co-hopficity, 154–158
arbitrary entropy, 147
AYF, 152–154
Bernoulli shifts, 145, 146
discrete-time dynamical system, 135
ent, 136–137
ent-singular submodules and

ent-singular modules, 158–162
IAYF, 152–154
�-inert subgroups, 145–146
intrinsic entropy, 144, 145
Lehmer number, 151
Mahler measure, 151–152
partial trajectories, 143
rank-entropy, 144, 145
subadditive sequence, 143
uniqueness theorems, 153

cyclic ZŒX�-modules, 139–140

invariants and length functions, 141–143
rings (see Endomorphism rings)
RŒX�-module, 138–139
trajectories and partial trajectories, 140–141

Endomorphism algebras, 3
Endomorphism rings, 3

admissible domain, 278–279
automorphism, 282
commutative ring, 279–281
discrete in finite topology, 7
flat module, 8
free DP-submodule MP, 282–284
hereditary, 13
homological algebra and ring-theory, 4
isomorphic, 6
Jacobson radical, 294–296
Morita-equivalent, 17
non-singular, 13–14
of p-groups, 137, 164–167
polynomial ring, 280–281
realization theorems, 9–11
Specker groups, 218–222
of torsion-free groups, 137, 167–171

Enochs-cotorsion R-module, 325
Epimorphism, 217–218
Expanded coding tree, 232, 241–244

F
Fekete’s lemma, 143
Finitistic dimension, 318
Flat Mittag-Leffler modules, 197–198
Flat R-module, 320
Fourier analysis, 459
Friendship graph, 33
Frobenius automorphism, 279

G
‘Global’ dimension, 320
Gödel’s constructible universe, 70
Goldie rings, 325

H
Hereditary torsion theory, 143
Hieronymi’s Theorem, 302

definable nonempty set, 309–312
partially ordered set, 312–313
pseudo-enumerable sets, 310–311
pseudo-finite set, 312

Higman-Neumann-Neumann construction, 115
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Higman’s Embedding Theorem, 117–118
Holland’s Theorem, 112
Homocyclic groups, 44

bounded
basic template, 55
blocks, 56–68
completely reduced forms, 55–56
fill-ins, 54
iterated Smith Normal Form, 54
near-isomorphism types, 54

homocyclic ((1, n/, pk/-groups and
coordinate matrices

almost completely decomposable
group, 45–46

clipped, 46
column transformations, 49
isomorphism types of regulator, 45
iterated Smith Normal Form, 48, 50
modified Smith Normal Form, 47
p-basis, 46
placeholders, 48–49
p-reduced, 50
p-reduced matrix, 50
Regulator Criterion, 47, 49
regulator quotient, 45, 47
Smith Normal Forms, 47–48
� -homogeneous rank of G, 46

indecomposable homocyclic ((1, 5),
p3/-groups, 51–53

Hopficity and co-hopficity, 154–158

I
IAYF. See Intrinsic Algebraic Yuzvinski

Formula (IAYF)
Ideal-based zero-divisor graph, 25
(Im)-direct Abelian groups, 335
Inertia group, 279
Injective dimension, 320
Intrinsic Algebraic Yuzvinski Formula (IAYF),

152–154
Intrinsic entropy, 144, 145
Intrinsic Pinsker subgroup, 159
Intrinsic Yuzvinski Formula, 150
Isometry, 409
Isomorphisms, 216–218
Isomorphism theorem. See Jacobson radical

J
Jacobson radical

mixed modules, 289
discrete valuation domain, 290–291
embedding, 296

endomorphism ring, 294–296
topological isomorphism, 296

cotorsion hull, 297–298
finite topology, 292–294
reduced module, 298–300

torsion submodule, 287, 291–292
torsion/torsion-free modules, 288–289

K
Kaplansky’s method, 288–289
Keisler measure, 368
(Ker)-direct Abelian groups, 335
k-transitive, 226
Kurepa’s hypothesis (KH), 386
�-Kurepa subgroup, 394

L
Lattice-ordered group, 109

applications to decision problems
amalgamation property, 115
finite presentation, 116, 117
Higman’s Embedding Theorem,

117–118
infinite set, 116
`-homomorphism, 117
Rabin’s Lemma, 118
recursive real number, 117
triviality problem, abelian problem,

isomorphism problem, 118
undecidable word problem, 115

cyclic subgroup, 114
`-embedded, 112
orderable group, 111
partial ordering, 111
right-ordered group, 111
sublattice subgroup, 111

Left Engel element, 180
Left forest, 240
Left n-Engel element, 179
Lehmer number, 151
Lehmer’s problem, 137, 151
`-embedding, 113
`-group. See Lattice-ordered group
Locally Baer modules, 201
Locally-free, 278
Locally nilpotent, 295
Lower isomorphic, 229, 232
Lower semilinear order, 226
Lower 1-transitive, 229, 232
`-permutation groups, 111, 332

multiple transitivity, 112
structure theory
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convex congruence, 119
`-permutation isomorphism, 120
o-blocks, 119–120
o-primitive, 121
spine, 120
transitive `-permutation group, 119, 121
universal congruence, 119

L-singular submodules, 143
Lukas tilting module, 201

M
Mahler measure, 151–152
Markov property, 129
Martin’s Axiom (MA), 166, 457
Matlis-cotorsion, 324
Measure-theoretic entropy, 135
Middle forest, 240
Mixed modules, 289

discrete valuation domain, 290–291
embedding, 296
endomorphism ring, 294–296

Model theory
bump, 122
coloured chain, 124
consequence, 132
first-order theory, 122
`-group-theoretic sentences, 123
o-primitive `-permutation groups, 124
o-2 transitivity, 121–122
totally ordered spine, 124–125
transitive depressible abundant

`-permutation group, 124
Multiple transitivity, 112–113

N
Near automorphisms, 344–348
Nielsen’s method, 132
Nil modulo, 373–374
Nilpotent commutative semigroup,

25, 32
Nil semigroup, 29
Non-singular rings and Morita equivalence

Baer-ring, 432
finite right Goldie dimension, 433
non-singular right S-modules, 431
right R-modules, 431
ring R, 430
R-module M, 429
semi-hereditary rings, 432
semi-simple Artinian and torsion-free, 432

singular submodule, 429
S ring, 430
torsion-free right S-modules, 431
Utumi Baer-ring, 431, 433
Utumi-ring, 429

Non-trivial definable valuation, 83

O
o-group, 111
!-categorical groups

abelian-by-finite, 360
Baldwin-Saxl lemma, 363
dp-minimal, 365
equivalent conditions, 361–363
f -generic, 368–371
finite pairwise disjoint subsets, 367
inp-minimal groups, 366
nilpotent-by-finite, 360
NIP groups, 367–368
!-saturated model, 364
pairwise disjoint clopen sets, 367

!-saturated model, 364
Orderable group. See o-group
Ordered field, 401, 403
Ordered forest, 240
Ordered permutation groups, 332
Ordering, 111–112
Order-preserving bijection, 113
Ore Conjecture, 176–178
Ore’s theorem

commutators
finite symmetric groups, 269
infinite symmetric groups, 269–270
monoid of injections, 270
orbit structure, 271–273
permutations, 270–271

universal words, 273–275

P
Permutation groups, 331–332
Peters entropy, 137
p�-projective dimension, 386
Pontryagin’s criterion, 15
Primordial groups, 185–186
Principal rank, 405–407
Projective dimension, 320
Proper quasi-order (p.q.o.), 401
Pure-injective modules, 321
p!1-groups, 387
p!1-pure filtrations, 392–393
p!1-pure subgroups, 391–392
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Q
q-Henselian valuation, 104–106
Quasi-coherent representation, 201
Quasi-ordered difference field

algebraic and real algebraic geometry, 400
difference analogue

archimedean equivalence, 408
automorphism, 407
convex valuation w, 409
generalized power series, 410
Hahn field, 410
Hahn group, 410
isometry, 409
q.o. preserving field automorphism, 408
� -compatible, 408
� -rank, 408
weak isometry, 409

equivalence relations, principal rank,
405–407

exponential rank, 400
preorders, 400
rank of

archimedean equivalence, 404
coarsening, 401
compatible, 402
compositum, 403
convex, 402
convex subgroup associated w, 404
convex valuation associated Gw, 404
group of units, 401
induced equivalence relation, 401
natural valuation, 403
natural valuation G, 404
principal final segment, 404
principal rank, 405
proper quasi-order, 401
rank of G, 404
rank of the ordered field, 403
rank of the valued field, 403
refinement, 401
residue field, 401
total quasi-order, 401
trivial, 403
valuation ideal, 401
valuation ring, 401
value set of G, 404

� -rank and principal � -rank, 410–413
well-quasi orders, 400

Quasi-periodic points, 159

R
Rabin’s Lemma, 118
Ramification order, 227

Ramification point, 227
Rank-entropy, 144, 145
Realization theorems, 9–11
Refining invariant tree (IR/, 234, 239–240
Remak-Krull-Schmidt class

almost completely decomposable groups,
42

bounded representation type, 44
completely decomposable groups, 42
coordinate matrices (see Coordinate

matrices)
coordinate matrix, 44
Faticoni-Schultz Theorem, 43
homocyclic groups (see Homocyclic

groups)
indecomposable decompositions, 42, 43
indecomposable finite abelian groups, 42
integer matrices, 45
near-isomorphism classes, 42, 43
open problems, 44–45
Q-vector space, 43
regulating index, 42
regulating subgroup, 42
representing matrix, 44
unbounded representation type, 44

Restricted refining invariant tree (IRR/,
236–238

R-Hopfian and L-co-Hopfian Abelian groups
arbitrary injection, 337
badly non-Hopfian, 334
definition, 334
directly finite groups, 334
epimorphism, 334
finite and non-finite objects possess, 333
group G, 334–335
(mIm)-direct, 338–339
monomorphism, 334
near automorphisms, 344–348
non-Hopfian torsion-free group, 337
non-trivial semidirect, 336
quasi-cyclic group, 337
(sKer)-direct, 338–339
surjection, 336
torsion-free group, 339
torsion-free group G, 337
torsion groups

arbitrary surjective endomorphism, 342
cyclic p-group, 341
homocyclic component, 342
homocyclic p-group A, 340
monic endomorphism, 341
semi-standard, 343–344

Rickart modules, 335
Right Engel element, 180
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Right n-Engel element, 179–180
Rüdiger’s seminal work, 3

S
Shelah’s Black Box principle, 72
Shelah’s singular compactness theorem, 387
Shrinking wedge, 352
Slender/cotorsion-free groups, 352
Slender groups, 216–218
Smith Normal Form, 47–48

A11, 442
A14, 441
A42, 446
A000

43 , 445
B23, 444
blocks A21 and A3, 442
C021, 442–443
non-zero entries, 441
pA13, 441
pB32, 443
pB33, 444–445

Specker groups, 352
admissible resolution, 214–216
inessential homomorphism, 218–220
ring-realization theorem, 221–222
slender groups, 216–218

Square subgroups
arithmetical properties, 380
finite rank, 374–375
indecomposable torsion-free group, 374
multiplication over A, 381
multiplications, 380
nil modulo, 373–374
non-homogenous, 374
non-zero elements, 380
rank three torsion-free group, 376–378,

382–384
rank two group, 375–376
rational multiple of g, 382
reverse inequality, 382
ring multiplication, 373
ring structure yields, 381

Star graph, 24
Strongly f -generic, 370
Structure theory

convex congruence, 119
`-permutation isomorphism, 120
o-blocks, 119–120
o-primitive, 121
spine, 120
transitive `-permutation group, 119, 121
universal congruence, 119

Sublattice subgroup, 111

T
Teichmüller theory, 459
t-Henselian topology, 83, 106–107
Topological entropy, 135, 137
Topological isomorphism, 296

cotorsion hull, 297–298
finite topology, 292–294
reduced module, 298–300

Topological Pinsker factor, 159
Topologist’s products

cyclic group, 352
free products, inverse limit of, 352
G Higman-complete, 353–354
homology groups, 353
infinite word calculus, 352
proof of theorem, 355–357
purely algebraic proof, 355
“shrinking” property, 351
shrinking wedge, 352
Ulm subgroup, 353
wild topology, 354

Torsion-free, 278
Torsion-free Abelian groups, 4, 214, 221, 222

Black Box methods, 15
cellular covers (see Cellular covers)
E-flat, 14
generalized rank 1 groups, 13
homogeneous completely decomposable

group, 12
non-measurable cardinality, 15
non-singular and singular module, 13
Pontryagin’s criterion, 15
quotient groups, 132
Remak-Krull-Schmidt class (see

Remak-Krull-Schmidt class)
strongly right non-singular, 14

Torsion-freeness, 318
Torsion submodule, 320
Totally ordered set

combinatorial group theory, 110
conjugacy, 113–115
examples, 110
infinite set, 110, 111
insoluble word problem, 110
lattice-ordered group (see Lattice-ordered

group)
model theory

bump, 122
coloured chain, 124
consequence, 132
first-order theory, 122
`-group-theoretic sentences, 123
o-primitive `-permutation groups, 124
o-2 transitivity, 121–122
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Totally ordered set (cont.)
totally ordered spine, 124–125
transitive depressible abundant

`-permutation group, 124
multiple transitivity, 112–113
right-orderable groups, 110

amalgamation, 125–126
applications to decision problems,

127–129
structure theory

convex congruence, 119
`-permutation isomorphism, 120
o-blocks, 119–120
o-primitive, 121
spine, 120
transitive `-permutation group, 119, 121
universal congruence, 119

Vasily Bludov’s sketch
automorphisms, 130, 132
Britton’s Lemma, 130–131
endomorphisms, 130, 132
finitely presented right-orderable group

with insoluble word problem, 130
G-invariant o-group, 132
Higman-Neumann-Neumann-

extension, 130, 131
1-Transitive tree

C-coloured version of the rationals, 228
coding tree

branch-coloured chain, 233–234,
260–267

colour- and order-isomorphic, 234
colour coding tree, 240–241
cone type, 235–236, 252–256
decoding function, 244–251
example, 230–231
expanded coding tree, 232, 241–244
finite coding tree, 230–231
invariant partitions, 231, 234–235
left forests of vertices, 240
lower isomorphic coloured linear

orders, 251–252
middle forest, 240
refining invariant tree (IR/, 234,

239–240
restricted refining invariant tree (IRR/,

236–238
right descendant y, 240
set of colours, 232
structured tree, 235–236, 256–260

completion of A, 227
Dedekind–MacNeille completion, 227
ideal, 227
k-transitive, 226

lower isomorphic, 229
lower semilinear order, 226
lower 1-transitive, 229–230
negative type, 227
positive type, 227
ramification order, 227
ramification point, 227
2-transitive tree, 227–228
weakly 2-transitive trees, 226–228

Tree, 226
Tree module, 198–200
Tree on �, 198
(2, 3) groups

completely decomposable groups, 435
coordinate matrix, 437–438
critical typeset, 436
homocyclic, 436
nearly isomorphic, 436
p-primary regulator quotient, 435
standard coordinate matrices

block rows, 439–440
clipped, torsion-free abelian group, 438
column transformations, 438
cross entry, 438
decomposable, 438
fill-ins, 438
line transformations, 439
near-isomorphism classes, 439
“normed” blocks, 440
regulator criterion, 438
row transformations, 439
Smith Normal Form (see Smith Normal

Form)
typeset of G, 436

U
Unique length function, 153
Universal words, 273–275
U-sequences

constructing suprema of
Algorithm A, 417–420
Algorithm B, 421–424
anti-isomorphism, 416
invariant subgroups, 417
reduced and non-reduced groups, 417
Ulm invariants, 417

distributivity, 424-425
gap condition, 415
jump number of G, 416
jump number of v, 416
non-reduced p-group G, 425–427
V-sequence, 416, 418, 421
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Utumi Baer-ring, 431, 433
Utumi-ring, 429

V
Valued field, 403
Vámos’s characterization, 150
Vasily Bludov’s sketch

automorphisms, 130, 132
Britton’s Lemma, 130–131
endomorphisms, 130, 132
finitely presented right-orderable group

with insoluble word problem, 130
G-invariant o-group, 132
Higman-Neumann-Neumann-extension,

130, 131
Vertex operator algebra (VOA), 460, 462–464
Vertex operator cluster algebra seed, 462
V-sequence, 416, 418, 421
V-topology, 86, 92, 93, 106

W
Warfield-cotorsion modules, 321–323
Weak dimension, 320
Weak-injective modules, 320
Weakly 2-transitive trees, 226–228
Wild topology, 354

X
X right-G-divides, 368

Z
Zero-divisor graph

commutative ring
Anderson-Livingston, 24
ring-theoretic and graph theoretic

properties, 23
commutative semigroup

annihilating-ideal graph, 26
complete bipartite graph, 24
compressed zero-divisor graph, 25
congruence-based zero-divisor graph,

26
connected graph, 24
diameter, 24
girth, 24
ideal-based zero-divisor graph, 25
induced subgraph, 24
multiplicative semigroup, 25
nilpotent semigroup, 25
number of, 31–35
properties, 26–31
results, 35–36
star graph, 24

Zero-divisor semigroups, 31–35
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