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Abstract TheEinstein–Hilbert action for general relativity is notwell posed in terms
of the metric gab as a dynamical variable. There have been many proposals to obtain
an well posed action principle for general relativity, e.g., addition of the Gibbons–
Hawking–York boundary term to the Einstein–Hilbert action. These boundary terms
are dependent on what one fixes on the boundary and in particular on spacetime
dimensions as well. Following recent works of Padmanabhan we will introduce two
new variables to describe general relativity and the action principle with these new
dynamical variables will turn out to be well posed. Then we will connect these
dynamical variables and boundary term obtained thereof to existing literature and
shall comment on a few properties of Einstein–Hilbert action which might have
been unnoticed earlier in the literature. Before concluding with future prospects and
discussions, we will perform a general analysis of the boundary term of Einstein–
Hilbert action for null surfaces as well.

1 Introduction

Action principle is the starting point of any field theory. Along with the action func-
tional one need to fix the spacetime volume, its boundary and what variable should
be fixed on the boundary. When the boundary conditions imposed on an action are
compatible with the derived field equation(s), we refer that action principle as well
posed. It turns out that the widely used action principle for general relativity, the
Einstein–Hilbert action is not well posed. To be more precise, with Ricci scalar
as the gravitational Lagrangian, derivation of Einstein’s equations requires fixing
both metric and its first derivative on the boundary — inconsistent with Einstein’s
equations.
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This feature arises, since the action principle for general relativity is peculiar. It
contains second derivatives of the dynamical variables, the metric gab, unlike any
other existing Lagrangians. At first glance it seemed quite exotic, since the field
equations derived from an action which has second derivatives of the dynamical
variable are supposed to have third order derivatives, leading to existence of ghost
fields. However it is again the structure of the action principle for general relativity
that comes to rescue. The Ricci scalar can be separated into a bulk term and a surface
term. The bulk term has the structure Γ 2, where Γ a

bc are the connection coefficients
and along with being quadratic it contains only first derivatives of the metric. In any
action principle the surface terms do not contribute to the derivation of field equations,
so Einstein’s equations also have second derivatives of the metric. However all the
second derivatives of themetric hides in the surface term and it is the surface term that
leads to boundary contribution. Hence quite naturally, in the case of Einstein–Hilbert
action one ends up fixing both the metric and its derivative on the boundary.

The above arguments pose the problem but also solves it — it suffices to remove
the surface term and consider a new action functional for general relativity, namely,
L = R − Lsur, as proposed by Einstein in 1916 [1]. Then one obtains Einstein’s
equations without worrying about the boundary terms. But the problem with the
above approach is that, the action is not invariant under diffeomorphism, while we
want every action to have the symmetries that the underlying system has. Fortunately,
the boundary term that one need to add to the Einstein–Hilbert action is by no means
unique. Any boundary term that kills all the normal derivatives of the metric on the
boundary surface is good enough for our purpose and there could be infinitely many
of them as demonstrated by Charap and Nelson in [2]. The most popular boundary
term that keeps the action invariant under diffeomorphism and also makes it well
posed is the Gibbons–Hawking–York term [3–5]. The Gibbons–Hawking–York term
depends on the extrinsic curvature K of the boundary surface and is given by 2K

√|h|,
where h stands for the determinant of the induced metric on the boundary surface.
Note that even though the Gibbons–Hawking–York boundary term is invariant under
diffeomorphism, is not covariant in a strict sense, because of its dependence on the
foliation. Further, the Gibbons–Hawking–York term was guessed and then shown to
yield a well posed variational principle without a first principle derivation. This gap
was filled by providing a direct derivation of the Gibbons–Hawking–York boundary
term from the action itself in [6] while another important issue, the boundary term
for null boundaries has been tackled recently in [7]. Even then the structure of the
boundary term can change depending on what one needs to fix on the boundary, the
induced metric or the conjugate momentum and it also changes depending on the
spacetime dimensions. In this work we will try to provide a broad overview on the
possible boundary term structures of the Einstein–Hilbert action along with what one
needs to fix on the boundary surfaces. This will be performed for both null and non-
null cases, besides discussing some other important features of the Einstein–Hilbert
action.

The paper is organized as follows, in Sect. 2 we will present various boundary
terms used in various dimensions for an well-posed action of general relativity and
their possible connections. Then in Sect. 3 we will explicitly demonstrate some
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common notions in the context of general relativity starting from the well known
(1 + 3) decomposition. Finally we comment on the nature of the boundary terms in
the context of null surfaces in Sect. 4 before concluding with a brief discussion.

Notation: We will work in D spacetime dimensions in Sect. 2, while the rest of
the analysis will be performed in four spacetime dimensions following the mostly
positive signature (−,+,+,+, . . .). The fundamental constants c, G and � have
been set to unity.

2 Reconciling Boundary Terms for the Einstein–Hilbert
Action

The origin of boundary value problem for general relativity is due to the fact that
Einstein–Hilbert action contains second derivatives of themetric—as a consequence
one needs to fix both the metric and its derivatives on the boundary rendering the
action ill posed. The above problem arises for using the metric as a fundamental vari-
able and hence to obtain a well posed variational principle we have to add boundary
terms to the Einstein–Hilbert action. However, it is possible to rewrite the Einstein–
Hilbert action in themomentum space and the resulting variational principle becomes
well posed. The momentum space representation of the Einstein–Hilbert action can
be obtained by introducing two new variables [8] (see [9] for a generalization to
Lanczos–Lovelock gravity),

f ab = √−ggab; Na
bc = Qad

beΓ
e
cd + Qad

ce Γ e
bd = −Γ a

bc + 1

2

(
Γ d
bdδ

a
c + Γ d

cdδ
a
b

)
,

(1)

where f ab is a tensor density and Na
bc stands for a linear combination of the connec-

tions. Note that the above relation holds for any number of spacetime dimensions
as Qab

cd = (1/2)(δac δ
b
d − δadδ

b
c ) is independent of spacetime dimensions. However the

inverse relation connecting Γ a
bc in terms of Na

bc depends on the spacetime dimensions
and reads in general,

Γ c
ab = −Nc

ab + 1

D − 1

(
Nd
adδ

c
b + Nd

bdδ
c
a

)
, (2)

which reduces to the expression in [8] for D = 4. Then the expressions for vari-
ous curvature components are also modified. For example, the Ricci tensor can be
expressed in terms of Nc

ab such that,

Rab = −
(

∂cN
c
ab + Nc

ad N
d
bc − 1

D − 1
Nc
acN

d
bd

)
, (3)
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reducing to the one given in [8] for four spacetime dimensions. These variables
can be used in the action principle as well, in which case the Einstein–Hilbert La-
grangian density becomes

√−gR = f ab Rab, where Rab can be written in terms of
Nc
ab following Eq. (3). This leads to momentum space representation of the Einstein–

Hilbert action, which follows from the result that Nc
ab = ∂(

√−gR)/∂(∂c f ab) and
hence the set ( f ab, Nc

ab) acts as a set of canonically conjugate variables. Further
Einstein–Hilbert action when varied reads in terms of variations of these canonically
conjugate variables as,

δ

(∫

V
dDx

√−gR

)
=

∫

V
dDx Rabδ f

ab −
∫

V
dDx f ab∇cδN

c
ab (4)

=
∫

V
dDx Rabδ f

ab −
∫

∂V
dD−1xn̄c f

abδNc
ab , (5)

whereV stands for the spacetime volume under interest with boundary being denoted
by ∂V . The last term has been obtained through the use of the following relation
f ab∇cδNc

ab = ∂c
(√−ggabδNc

ab

)
. Also n̄c in the final expression is the unnormalized

normal. If the surface ∂V is some φ = constant surface, then n̄c = δ
φ
c . With suitable

normalization one obtains, n̄c = ε(1/N )nc, where nc is the normalized normal, ε =
±1 depending on the normal being spacelike or timelike and N is

√|gφφ|. Thus note
that one can obtain the Einstein’s equations provided Nc

ab is fixed at the boundary,
leading to an well posed action principle for general relativity, since Nc

ab and f ab are
treated as independent variables.

On the other hand, it is also well known that the variation of the Einstein–Hilbert
action leads to δ(2K

√
h), where K is the extrinsic curvature of the boundary surface

and h is the determinant of the induced metric on that surface, along with variations
of the induced metric with proper coefficients as the boundary term [6]. Thus for
being consistent one must have the f abδNc

ab to yield δ(2K
√
h) along with variations

of the induced metric. It is not at all clear a priori, how this can be achieved. In order
to fill this gap we would like to connect the boundary term obtained above in Eq. (5)
with the standard literature. As a first step towards the connection, we will present a
simplified analysis and shall subsequently provide a general derivation.

2.1 A Warm-Up Example: Analysis in Synchronous Frame

Before jumping into the formal derivation let us consider an explicit example as
a warm-up. Let us use all the gauge degrees of freedom due to diffeomorphism to
eliminate four degrees of freedom from themetric and reduce it to synchronous form,
in which the line element reads,

ds2 = −dτ 2 + hαβ(τ, xμ)dxαdxβ . (6)
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As explicitly demonstrated in [10], any metric can be written in the synchronous
coordinate system. The boundary ∂V of the full spacetime volume can be taken to
be τ = constant hypersurface in this coordinate system, such that the unnormalized
normal becomes n̄c = δτ

c and hence the surface term reads,

n̄c f
abδNc

ab = f abδN 0
ab = −√

hδN 0
00 + √

hhαβδN 0
αβ , (7)

where in obtaining the last line we have used the synchronous frame metric as in
Eq. (6). From the definition of Na

bc in terms of connections as in Eq. (1) and themetric
in Eq. (6) it follows that,

N 0
00 = Γ α

0α = −K ; N 0
αβ = −Γ 0

αβ = Kαβ . (8)

Thus one can substitute both N 0
00 and N 0

αβ in the boundary term which finally leads
to,

n̄c f
abδNc

ab = √
hδK + √

hhαβδKαβ

= δ
(
2K

√
h
)

+ √
h

(
K αβ − Khαβ

)
δhαβ . (9)

This shows the equivalence of the boundary term with ( f ab, Nc
ab) as the dynamical

variables with the standard boundary term. The above expression explicitly shows
that one needs to add 2K

√
h as the boundary term to the Einstein–Hilbert action

and as a consequence one needs to fix only the spatial part of the metric hαβ on the
boundary ∂V , i.e., on τ = constant surfaces.

However the above derivation is a special case andmore importantly the boundary
term even though is independent of coordinate choices depends heavily on foliation,
thus it is not clear from the above result whether the same conclusion should hold
for arbitrary foliation as well. This is precisely what we will prove next.

2.2 Boundary Terms: A General Analysis

As explained above the demonstration in synchronous frame is a specific one among
many possible foliations and one needs to provide a general analysis for an arbitrary
foliation to grasp the complete structure. To proceed with the general analysis, we
will start with the boundary term and shall write Nc

ab in terms of the connections.
Using the fact that variations of the connections are tensors one can ultimately write
down the boundary term in terms of the normal and variations in the metric tensor,

∫

∂V
dD−1xn̄c f

abδNc
ab = −

∫

∂V
dD−1xn̄c∇d

(−δgcd + gcdgikδg
ik
)

, (10)
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where the following algebraic identity, −gabδNc
ab = ∇d

(−δgcd + gcdgikδgik
)
have

been used in order to arrive at the final result. Given the above Eq. (10) we can
immediately incorporate the normal inside the covariant derivative and the above
expression reads,

−
∫

∂V
dD−1xn̄c f

abδNc
ab =

∫

∂V
dD−1xε

√
h

{
∇d

(−ncδg
cd + ndgikδg

ik
)

− ∇dnc
(−δgcd + gcdgikδg

ik
) }

, (11)

where ε = −1 for spacelike hypersurfaces and is +1 for timelike hypersurfaces
respectively. The variations of the metric can be divided into two pieces, variations in
the inducedmetric hi j and variations in the normal ni . Using the contractions properly
and the fact that δ(nini ) = 0, we immediately obtain the following expression for
the boundary term of the Einstein–Hilbert action,

−
∫

∂V
dD−1xn̄c f

abδNc
ab =

∫

∂V
dD−1xεδ

(
2K

√
h
)

−
∫

∂V
dD−1xε

√
h (Kab − Khab) δhab

+
∫

dD−1xε
√
hDi

(−nch
i
bδg

bc + 2nkh
i
lδg

kl
)

. (12)

The last term is again a surface term and would contribute only on the two surface
and hence is neglected. It is useful and instructive to define the momentum conjugate
to the induced metric hab on the hypersurface ∂V as,

Πab = √
h (Kab − Khab) . (13)

Note that naΠab = 0. Thus finally using the expression for Πab and neglecting the
surface term, we obtain the simplified version of the boundary term from Eq. (12) in
the most general case as,

−
∫

∂V
dD−1xn̄c f

abδNc
ab =

∫

∂V
d3xεδ

(
2K

√
h
)

−
∫

∂V
dD−1xεΠabδh

ab . (14)

The result in the synchronous frame can be derived immediately from the above
relation by substituting ε = −1, since τ = constant surfaces are spacelike. However
note that the two-dimensional surface terms identically vanishes in the synchronous
frame. The above result suggests that if we add the boundary term −2εK

√
h to the

Einstein–Hilbert action the normal derivatives of themetric will be removed from the
boundary and one needs to fix only the inducedmetric hab. It is important to emphasis
at this stage that fixing hab is different from fixing hab. Since by construction we have
na ∝ ∇aφ, and nahab = 0, this suggests hab = hαβ , where α, β are spacetime indices
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excluding φ, while hab has all the metric components. Due to the momentum and
Hamiltonian constraints of general relativity one cannot fix all themetric components
on the hypersurfaces and hence the correct variational principle would be the one
which fixes only hab, i.e., hαβ on the boundary ∂V .

Let us now illustrate the fact that 2εK
√
h is not the only boundary term that can

lead to a well-posed action principle for general relativity, there are infinitely many.
However for our illustration we will pick two of them. Since we are working in a D
dimensional spacetime we have the following identity, Πabhab = −(D − 2)K

√
h.

We can use the above identity to convert the original result in Eq. (14) to two different
results,

−
∫

∂V
dD−1xn̄c f

abδNc
ab =

∫

∂V
dD−1xεδ

(
2K

√
h
)

−
∫

∂V
dD−1xεδ

(
Πabh

ab
)

+
∫

∂V
dD−1xεhabδΠab

=
∫

∂V
dD−1xεδ

(
DK

√
h
)

+
∫

∂V
dD−1xεhabδΠab . (15)

The above result depicts that one can also add −DεK
√
h as the boundary term to

the Einstein–Hilbert action and hence obtain an well-posed variational principle if
Πab is fixed at the boundary. Note that as we have argued earlier, the only non-zero
components of hab are hαβ and hence one need to fix only Παβ at the boundary ∂V .
This result can also be casted in a different form, for that we need to use the identity,
Πabδhab = −Πabδhab. Use of which enables one to write Eq. (14) in the following
form

−
∫

∂V
dD−1xn̄c f

abδNc
ab =

∫

∂V
dD−1xεδ

(
2K

√
h
)

+
∫

∂V
dD−1xεδ

(
Πabhab

)

−
∫

∂V
dD−1xεhabδΠ

ab

=
∫

∂V
dD−1xεδ

[
(4 − D) K

√
h
]

−
∫

∂V
dD−1xεhabδΠ

ab . (16)

This is another form of the boundary contribution recently discussed in [11] which
essentially follows from the original boundary term in terms of the canonically con-
jugate variables ( f ab, Nc

ab). In this case the boundary term one has to add to the
Einstein–Hilbert action corresponds to, (4 − D)εK

√
h, with the peculiarity that at

D = 4 this term identically vanishes. While in this case one need to fix Πab at the
boundary ∂V . Hence the original boundary term from whichall possible versions of
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the boundary terms including the well-known 2εK
√
h can be derived is the f abδNc

ab
combination. Further we have shown two explicit examples in which one can add
different boundary term at the expense of fixing either Πab or Πab at the boundary
(Table1). Even though it is tempting to assume habδΠab = −habδΠab, this relation
is actually not correct. This can be seen from the following algebraic manipulation
straightforwardly,

habδΠab = habδ
(
hachbdΠ

cd
) = hcdδΠ

cd + 2Πacδhac

= hcdδΠ
cd − 2Πacδh

ac = −hcdδΠ
cd + δ

[
(4 − 2D) K

√
h
]

, (17)

reconciling the two results presented in Eqs. (15) and (16) respectively. Through this
exercise we have achieved two important goals, which are,

• By introducing the canonically conjugate variables ( f ab, Nc
ab), one obtains

the Einstein’s equations from variations of f ab, while variations of Nc
ab leads

to the boundary term. Hence the Einstein–Hilbert action becomes action in
the momentum space such that one need to fix the momentum Nc

ab at the
boundary. However there were no clear consensus how this boundary term
is related to the existing ones, e.g., the Gibbons–Hawking–York boundary
term. In this section we have explicitly demonstrated the connection, by de-
riving the Gibbons–Hawking–York counter term starting from the boundary
term consisting of f abδNc

ab.• Secondly, in most of the literatures people always take the Gibbons–
Hawking–York boundary term to be the only boundary term possible. In the
last part of this section we have explicitly demonstrated two more boundary
terms. Our result clearly shows that the structure of the boundary term de-
pends crucially on what one fixes at the boundary. If one fixes the induced
metric hab, then Gibbons–Hawking–York term is the only option. But if one
fixes the conjugate momentum, then depending on whether one fixes Πab

or Πab, one arrives to different boundary terms. In particular when Πab is
fixed one need not add any boundary term in four dimensions, which is a
peculiar feature of general relativity.

Thus we have reconciled the possible boundary terms that one can add to the
Einstein–Hilbert action. Their non-uniqueness and derivation from a first principle
starting from Einstein–Hilbert action in momentum space has also been presented.
We will now turn to the (1 + 3) decomposition of the Einstein–Hilbert action and
related comments.
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Table 1 A comparison of various boundary terms of Einstein–Hilbert action

Bulk term Surface term Boundary terma What to fix on
boundary

Well-posed action

Rabδ f ab −n̄c f abδNc
ab None Nc

ab
√−gR

Gabδgab εδ(2K
√
h)

−εΠabδhab
εδ(2K

√
h) hab

√−gR −
εδ(2K

√
h)

Gabδgab εδ(DK
√
h)

εhabδΠab

εδ(DK
√
h) Πab

√−gR −
εδ(DK

√
h)

Gabδgab εδ[(4 − D)K
√
h]

−εhabδΠab
εδ[(4 − D)K

√
h] Πab √−gR

−εδ[(4 −
D)K

√
h]

aNote that in the last case for D = 4 no boundary term is needed and Einstein–Hilbert action is
well posed, with Πab fixed on the boundary (see also [9])

3 (1+3) Decomposition, Time Derivatives and Canonical
Momenta

In general relativity space and time are treated on an equal footing. However for
many application, e.g., canonical quantization schemes, one need the notion of time
and hence the splitting of four dimensional spacetime into one time and three spatial
coordinates becomes immediate. This has been performed successfully by Arnowitt,
Deser and Misner (henceforth referred to as ADM) in a seminal work [12], in which
the ten independent metric components are split into three pieces — hαβ , Nα and N ,
such that, the line element becomes

ds2 = −N 2dt2 + hαβ (dxα + Nαdt)
(
dxβ + Nβdt

)
. (18)

Thus note that the spatial metric gαβ is just hαβ , the off-diagonal entries are
Nα ≡ hαβNβ , while the temporal component of the metric becomes, g00 = −N 2 +
hαβNαNβ . For the inversemetric the temporal component is simple but not the spatial
components such that,

gtt = − 1

N 2
, gtα = Nα

N 2
, gαβ =

(
hαβ − NαNβ

N 2

)
. (19)

The next point one can address from the ADM splitting corresponds to the (1 + 3)
decomposition of the Einstein–Hilbert action. This would require projection of the
Riemann tensor components on the spacelike hypersurface, leading to (3)R, the Ricci
scalar of the spacelike hypersurface and invariants like KabK ab, K 2 constructed out
of the extrinsic curvature components [12, 13]

√−gR = √−g
[
(3)R + KabK

ab − K 2 − 2∇i
(
Kni + ai

)]

= √−gLADM − 2
√−g∇i

(
Kni + ai

)
, (20)
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where ni is the normal to the spacelike hypersurface andai is the corresponding accel-
eration. Thus the Einstein–Hilbert Lagrangian can be written in terms of the ADM
Lagrangian and an additional boundary term which coincides with the Gibbons–
Hawking–York counter term since niai = 0. It is well known that the ADM La-
grangian does not contain time derivatives of N and Nα and hence their conjugate
momentums vanish. Thus these variables are non-dynamical. However we have just
witnessed that boundary terms are not unique, one can in principle add any boundary
term that cancels the normal derivative. Then a natural question arises— are the time
derivatives of N and Nα zero for for any possible boundary term? If not can they be
dynamical? These questions get firm ground as the following example is considered.

Dynamical or Non-dynamical?

Let us consider a cosmological spacetime. Being homogeneous and isotropic
it is described by a single function, the scale factor a(t). The line element for
cosmological spacetime by imposition of these symmetry conditions become,

ds2 = −dt2 + a2(t)
[
dr2 + r2dΩ2] , (21)

where the spatial section has been assumed to be flat for simplicity. The above
metric is manifestly in ADM form, with N = 1, Nα = 0 and hαβ = a2(t)δαβ

respectively. Thus it is evident that N and Nα are not dynamical, all the dy-
namics comes from the scale factor a(t) as expected. One can now introduce a
new coordinate r , such that R = a(t)r and write the metric in the (t, R, θ, φ)

coordinate system such that,

ds2 = − (
1 − H 2R2

)
dt2 − 2HRdtdR + dR2 + R2dΩ2 . (22)

Surprisingly, now the metric is again in ADM form but with a completely
different structure. This time the spatial metric is flat, i.e., hαβ = δαβ and hence
cannot have any dynamics. On the other hand, one obtains N = 1 and Nα =
HRδα

R and would conclude that cosmological spacetime is non-dynamical!
This explicitly shows that the standard argument for ADM variables N and
Nα to be non-dynamical based on their time derivatives is misleading.

To resolve the dilemma we will explicitly illustrate, depending on the boundary
term, Einstein–Hilbert action do contains time derivatives of N and Nα but they are
not dynamical. For this purpose we make use of the following decomposition of the
Einstein–Hilbert action,

√−gR = √−ggab
(
Γ i

jaΓ
j
ib − Γ i

abΓ
j
i j

)
+ ∂c

{√−g
(
gikΓ c

ik − gckΓ m
km

)}
. (23)
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Here the first term is quadratic in the connection and is known as the Γ 2 Lagrangian,
while the second term is the boundary term and contains normal derivatives of the
metric as elaborated in [13]. Thus an alternative to Gibbons–Hawking–York bound-
ary term is the total divergence term introduced above andhence apossiblewell-posed
Lagrangian corresponds to the Γ 2 Lagrangian. We will show that this Lagrangian
depends on time derivatives of N and Nα . To achieve this we shall expand out the
Γ 2 Lagrangian in terms of the ADM variables and separate out the time derivatives
of N and Nα . Any term X which contains time derivatives of N and Nα will be
denoted by [X ]t.d . By Expressing all the connections in terms of the ADM variables
we find that only Γ t

t t and Γ α
t t depends on time derivatives of N and Nα . Hence the

time derivative part for the full Γ 2 Lagrangian reads,

[√−gLquad
]
t.d =

√
h

N 2
∂t N∂αN

α − √
h

∂t Nα∂αN

N 2
+ ∂t Nα

N
∂α

√
h . (24)

Hence we have explicitly demonstrated, that the Γ 2 Lagrangian contains time deriv-
atives of N and Nα . Then one question naturally arises, how is that the ADM La-
grangian does not contain these time derivative terms, as evident from the expression
for LADM? The answer to this question is hiding in the boundary terms, since they
are not identical. Thus in order to understand this, we will have to compare the two
boundary terms, the surface term in Eq. (23) and theGibbons–Hawking–York bound-
ary term, that separate Γ 2 Lagrangian and ADM Lagrangian, respectively, from the
Einstein–Hilbert Lagrangian

√−gR.
Let us now evaluate the Einstein and the Gibbons–Hawking–York boundary terms

using the ADM variables. We shall not evaluate the integrands of the surface inte-
grals, but the corresponding divergence terms present in the bulk Lagrangians given
by Eqs. (20) and (23) respectively. One can again use the Christoffel symbols to
calculate Kni + ai required for evaluating the Gibbons–Hawking–York term in di-
vergence form. Performing the same, terms in theGibbons–Hawking–York boundary
contribution containing time derivatives of N and Nα has the expression

[
− 2∂i

{√−g
(
Kni + ai

)} ]

t.d

= √
h

∂t N∂αNα

N 2
− 2

√
h

∂t∂αNα

N
− 2

∂t
√
h∂t N

N 2

+ 2
∂t N

N 2
Nα∂α

√
h − 2

∂t Nα∂α

√
h

N
. (25)

Having derived the relevant expressions related to Gibbons–Hawking–York bound-
ary term, let us next concentrate on the boundary term in the Einstein–Hilbert ac-
tion given in Eq. (23), which has the expression ∂i (

√−gV i ), where V i = gabΓ i
ab −

gimΓ k
mk . Computation of each individual components of the boundary term which

contains time derivatives of N and Nα are thus given by
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[
∂i

(√−gV i
)]

t.d
= − 2

N2 ∂t N∂t
√
h +

√
h

N2 ∂t N∂αN
α −

√
h

N
∂t∂αN

α + 2

N2 ∂t N Nα∂α

√
h

− 2

N
∂t N

α∂α

√
h +

√
h

N2 ∂αN∂t N
α −

√
h

N
∂α∂t N

α − ∂t Nα∂α

√
h

N
.

(26)

Hence, from Eqs. (25) and (26), we finally arrive at the total contribution from the
boundary terms

[
∂c

(√−gV c
) + 2∂i

{√−g
(
Kni + ai

)} ]

t.d

= −
√
h

N 2
∂t N∂αN

α + √
h

∂t Nα∂αN

N 2
− ∂t Nα∂α

√
h

N
. (27)

Thus, we observe that the surface terms in Einstein–Hilbert action in Einstein’s orig-
inal decomposition and ADM decomposition are different. The difference contains
time derivatives of Nα and N . These time derivatives should exactly match the time
derivatives in Γ 2 Lagrangian as we know that the ADM Lagrangian does not have
time derivatives of N and Nα . Evaluating time derivatives in ADMLagrangian using
Eqs. (24) and (27), we obtain

[√−gLADM
]
t.d = [√−gR + 2∂i

{√−g
(
Kni + ai

)}]
t.d

= [√−gLquad + ∂c
(√−gV c

) + 2∂i
{√−g

(
Kni + ai

)}]
t.d

= 0 , (28)

which confirms the ADMLagrangian does not contain any time derivatives of N and
Nα and demonstrates that the time derivatives of N and Nα in the Γ 2 action arise
because of the difference in surface terms.

Since the Γ 2 Lagrangian contains time derivatives of N and Nα , it is pertinent to
ask what are the conjugate momenta corresponding to N and Nα . From Eq. (24), the
conjugate momenta for N and Nα turn out to be

p(N ) = ∂
(√−gΓ 2

)

∂ (∂t N )
=

√
h

N 2
∂αN

α (29)

pα (Nα) = ∂
(√−gΓ 2

)

∂ (∂t Nα)
= −√

h
∂αN

N 2
+ 1

N
∂α

√
h . (30)

Note that the conjugate momenta to N and Nα do not depend on time derivatives of
N and Nα respectively. Hence, these relations cannot be inverted to obtain ∂t N and
∂t Nα in terms of p(N ) and pα (Nα). Returning back to our example of cosmological
spacetime, this means that H is indeed non-dynamical and that is clear since in terms
of Hubble parameter, the Einstein’s equations contain only single time derivative of
H . Thus we conclude:
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Even though the ADM Lagrangian does not contain time derivatives of N
and Nα , the quadratic Lagrangian Lquad differing from the ADM Lagrangian
by total derivative do contains time derivatives of N and Nα . However, the
corresponding canonicalmomentums are non-invertible, i.e., one cannot obtain
time derivatives of N and Nα in terms of their canonical momentum. Hence
follows their non-dynamical nature.

This explicitly demonstrates standard statements, showing truth in non-dynamical
behavior of N and Nα but also demonstrating existence of time derivatives of non-
dynamical variables.

4 Null Surfaces: Completing the Circle

The boundary terms and ADM decomposition discussed earlier depends crucially
on the timelike (or spacelike) nature of the boundary surface. However, the most
ubiquitous surfaces in general relativity are the null surfaces, e.g., in a black hole
spacetime the standard boundary would consist of the surface at infinity and the event
horizon,which is a null surface. The limit of non-null surfaces to null surfaces is not at
all straightforward, since many quantities including the extrinsic curvature, induced
metric can either blow up or vanish on the null surface if proper care is not taken. Thus
it is important to consider the boundary term fromafirst principle in connection to null
hypersurfaces. The first step towards this direction was taken in [6] by constructing
a general formalism and its explicit implementation was carried out in [7]. There it
was argued that for a null vector a (i.e., aa = 0) the boundary term one should
add corresponds to 2

√
q(Θ + κ), where q stands for the determinant of the induced

metric on the null surface, Θ stands for the expansion of the null geodesics and κ is
the non-affinity parameter. Since null surfaces are intrinsically two-dimensional, use
of a single vector field a is not sufficient. One need to introduce another auxiliary
vector field ka , satisfying kaka = 0 and aka = −1. In the above derivations it has
been assumed that the null surface is preserved under variations, i.e., the following
three conditions hold: δ(aa) = 0, δ(aka) = 0 andfinally δ(kaka) = 0. In thiswork
wewill relax all these assumptions and shall investigate the effect of these constraints
on the boundary term and degrees of freedom on the boundary. We will start with
the general expression for boundary term of Einstein–Hilbert action having the form
[14]

√−gQ[c] = √−g∇c
(
δuc

) − 2δ
(√−g∇a

a
) + √−g

[∇ab − gab
(∇c

c
)]

δgab

= Q1 + Q2 + Q3 , (31)
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where, δua = δa + gabδb. We have separated the boundary term in three natural
combinations, one is a divergence term, Q1, second one corresponds to total variation
Q2 and finally the degrees of freedom term Q3 respectively. We will explore each
of these terms and subsequently shall evaluate the boundary term on the null surface
following the convention, if some relation holds only on the null surface it will be
denoted by A := 0. As explained above we will assume the following conditions
on the null surface only, a

a := 0, aka := 0 and kaka := 0 respectively, but we
would not assume anything about off the null surface relations, i.e., variations can
be arbitrary. Then one can introduce the partial projector Pa

b through the vectors a

and ka as, Pa
b = δab + kab and can write the first divergence term Q1 in Eq. (31) as:

Q1 : = ∂α

(√−gPα
dδu

d
) − δ

(√−gkc∂c
2
) + (

kc∂c
2
)
δ
√−g

+ √−gδkc∂c
2 − ∂c

(√−gkc
)
δ2 , (32)

while the second term can also be expressed using the partial projector Pa
b and then

the complete boundary term on using the variation of
√−g, takes the following form

√−gQ [c] := ∂α

(√−gPα
dδu

d
) − 2δ

(√−gPa
b∇a

b
) + √−gδkc∂c

2

− ∂c
(√−gkc

)
δ2 + √−g

(∇ab − gab
{
Pc

d∇c
d
})

δgab . (33)

Note that the first term is a pure surface term — it has no component along the
normal a . Then we can decompose the metric in terms of the induced metric qab
and the null vectors a and ka as: gab = qab − akb − bka . Thus variations of the
metric now gets transformed to variations of the induced metric and the null vectors.
One important point to keep in mind is the fact that δa = gabδb + bδgab but not
gabδb. Using the properties of the null vectors outside variation and decomposition
of ∇ab in terms of the extrinsic curvature ultimately lands us into the following
expression for the boundary term

√−gQ := ∂α

(√−gPα
aδu

a
) − 2δ

(√−gPa
b∇a

b
)

+ √−g
[
Θab − (

Pc
d∇c

d
)
qab

]
δqab

− √−g
{
km∇ma + kn∇an + (

kmkn∇mn
)
a − 2

(
Pc

d∇c
d
)
ka

}
δa

+ √−g
{
km∇ma + kn∇an + (

kmkn∇mn
)
a − 2

(
Pm

n∇mn
)
ka

}
δa

+ √−g
{
∂c

2} δkc − ∂c
(√−gkc

)
δ2 . (34)

Before commenting on the structure of the boundary term let us quickly check one
possible limit we have derived in our earlier works [7]. This corresponds to the
situation in which a = ∇aφ, implying δa = 0 and also δ2 = 0 = δ (aka), such
that we have Pa

b∇a
b = Θ + κ . Under imposition of these conditions, the boundary

term reduces to:
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√−gQ [∇cφ] := ∂α

(√−gPα
aδu

a
) − 2δ

[√−g (Θ + κ)
]

+ √−g [Θab − (Θ + κ) qab] δq
ab

− 2
√−g

{
km∇ma − (Θ + κ) ka

}
δa . (35)

This is exactly what we had derived by various other routes in [7]. Having checked
the consistency with earlier derived results we now concentrate on the physical
implications of Eq. (34). The first term as emphasized earlier corresponds to another
boundary term1 and contributes only on the two surface without much significance.
The second term is the boundary term that one should add (negative of that term, to
be precise) to the Einstein–Hilbert action as evaluated with volume encompassing
null boundaries. The rest of the terms are related to degrees of freedom and what one
should fix on the null surface. Among them fixing induced metric is expected, with
its conjugate momentum being πab = √−g

[
Θab − (

Pm
n∇mn

)
qab

]
. In this case as

well one can write the last term as a total divergence leading to a different boundary
term and conjugate momentum to fix on the boundary. Unlike the cases of timelike
or spacelike surfaces the situation is not so simple for null surfaces, since even after
fixing the induced metric one needs to fix the components of the null vectors as well.
But one can improve on that. Since the normalization of the null vector is arbitrary
one can always choose a to be a pure gradient such that δa = 0. Further since
the choice of ka is arbitrary one might chose it such that its expansion vanishes and
further with δ(kaa) = 0. As these seemingly natural conditions are being satisfied
the boundary term simplifies a lot, ultimately leading to,

√−gQ := ∂α

(√−gPα
aδu

a) − 2δ
(√−gPa

b∇a
b
)

+ √−g
[
Θab −

(
Pc

d∇c
d
)
qab

]
δqab

− √−g
{
km∇ma + kn∇an + (

kmkn∇mn
)
a − 2

(
Pc

d∇c
d
)
ka

}
δa . (36)

Hence along with qab one need to fix the components of the null vector a . One
more point should be noted, since δa = 0, one obtains δ(a

a) = aδ
a and hence

any contribution from δ2 can be dumped into the contribution from δa . Hence this
suggests that on the null surface one need to fix the induced metric qab as well as a .
This has interesting consequences for degrees of freedom on the null surfaces à la
degrees of freedom on spacelike or timelike surfaces. One interesting consequence
could be, as the diffeomorphisms are gauged away one can eliminate the four degrees
of freedom in δc, keeping the true (physical) degrees of freedom in the two metric

1This kind of terms are also present in the the calculation for spacelike (or timelike) surfaces, see
for example the last term of Eq. (12).
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qab of the null surface. This can have interesting implications for black hole entropy,
which we will pursue elsewhere.

5 Concluding Remarks

The peculiarity of the Einstein–Hilbert action can be traced back to its boundary
terms. In the standard treatments it is often overlooked that Einstein–Hilbert action
is not well posed, one has to add boundary terms to get an well posed action for grav-
ity. There have been parallel results on this issue, one is the well-known Gibbons–
Hawking–York boundary term, while the other is recent and more promising from a
thermodynamic hindsight which invokes two new variables f ab and Nc

ab to describe
gravity, with f abδNc

ab as the boundary term. In this work we have explicitly derived
the equivalence between these two formalisms in any spacetime dimensions. Further
we have also demonstrated the argument that “boundary terms are not unique” by
constructing two more boundary terms starting from the Gibbons–Hawking–York
term. To our surprise these boundary terms depends strongly on the spacetime di-
mensions and even can vanish in D = 4. Then we have elaborated the meaning of
another statement made often in the literature, “the ADM variables N and Nα are
not dynamical”. The standard argument goes by saying that the ADM Lagrangian
does not depend on time derivatives of N and Nα . We have shown that one can add
boundary terms to the ADM Lagrangian leading to a new Lagrangian which contain
time derivatives of N and Nα , (so it might appear they can be made dynamical by
adding boundary terms) but still they are non-dynamical as conjugate momentums
cannot be inverted. This finishes our discussion on spacelike or timelike surfaces and
we turn to the case of null surfaces. In earlier works regarding boundary term on
null surfaces, various assumption about variations of the null vectors were imposed,
here we have derived the structure of the boundary term for most general variation.
Imposing some minimal restrictions we could show that besides the induced metric,
the null vector a contains additional degrees of freedom. If they can be removed by
diffeomorphism (as [7] suggests) then the induced metric might contain all the phys-
ical degrees of freedom associated with null surfaces, having greater implications
for emergent paradigms of gravity [15–18].
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