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Preface

Professor T. Padmanabhan (aka Paddy) from the Inter-University Centre for
Astronomy and Astrophysics in Pune, India, is well known as an astronomer and
cosmologist. He has contributed immensely to many areas though the core theme
has been different aspects of gravitation. He has written a number of books on
physics, gravitational theories, and cosmology. He has taught and mentored a large
number of students. In developing the many themes that constitute the body of his
research, he has collaborated with numerous scientists across the planet.

This volume of collected papers from various collaborators, colleagues, and
students across the ages has been compiled to commemorate his contributions to
physics on the day of his sixtieth birthday, March 10, 2017. In many ways, it is an
expression of appreciation of Paddy as a scientist, expositor, teacher, and mentor.
The spectrum of topics that these papers touch upon is quite variegated though
connected via a gravitational core as the title indicates. We are confident that you
will enjoy them.

We thank all the contributors for putting in effort to prepare articles that take a
critical look at fundamental issues. We are greatly appreciative of their contribu-
tions that have made this volume a reality. We also thank our patient editor at
Springer Ms. Angela Lahee, who has borne our delays with fortitude.

Mohali, India Jasjeet Singh Bagla
Pune, India Sunu Engineer
November 2016
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Prof. Padmanabhan: A Personal
and Professional History

Jasjeet Singh Bagla and Sunu Engineer

Prof.T. Padmanabhan (known to friends and students as Paddy)was born on 10March
1957 in a lower middle class family at Trivandrum, Kerala, India. His mother,
Lakshmi, was a home-maker. His father, Thanu Iyer, had a genius for mathemat-
ics but had to abandon his academic pursuits because of family circumstances and
take up a job in the Forest department of the Government of Kerala. However, his
father, as well as several other family members of his father’s generation, had a
great passion for all of mathematics, especially geometry. Two strong inspirations
in Paddy’s early life, which influenced him to take up academic pursuits, were his
father and another senior member of the family, Neelakanta Sarma. Both of them had
a high level of personal integrity and passion for knowledge — two qualities which
Paddy inherited. Paddy recalls that the code of life emphasised in the family circles
in which he grew up was simple: “Excellence is not negotiable!”

Given this background, itwas no surprise that Paddy acquired a high level of exper-
tise in mathematics — well ahead of what was taught in his school, the Government
Karamana High School, Trivandrum, where he did his schooling in the vernacular,
Malayalam medium — and developed a strong interest in geometry. Other than his
mathematical abilities, Paddy was not a child prodigy of any kind; while he was
within the top three students in his class all along, he was not even a consistent class
topper in his school. (His major problemwas the Hindi language, which was compul-
sory; he regrets that he still hasn’t learnt it!) Another passion during his school days
was chess, which also he learnt from Neelakanta Sarma. Unfortunately, even state
level competitive chess needed devoting so many hours which he could ill afford,
and, at some stage, he decided to pursue academics rather than chess — a decision
about which he has occasional regrets even today!

After ten years of schooling (1963–1972), he joined the Government Arts College
in Trivandrum for two years of the Pre-degree (1973–1974) as it was called then.
Three major events occurred during this period, which, sort of, decided his future
lifeline.

J.S. Bagla (B) · S. Engineer
Department of Physical Sciences, IISER, Mohali, Punjab, India
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First, he came across the Feynman Lectures in Physics, and found Physics to
be more fascinating than pure mathematics, which was the original career he was
planning to pursue. “It appeared to me”, says Paddy, “that theoretical physics beauti-
fully combines the best of objective science and the elegance of pure mathematics.”
Though the Feynman lectures did influence his decision to change hismind as regards
his career, Paddy is hardly a fan of Feynman as a person! In fact, other than influenc-
ing his career decision, the Feynman lectures did not figure in his physics education
directly; he learnt the first round of physics from the 5 volumes of the Berkeley
Physics Course, and later on from the 10 volumes of Landau and Lifshitz’s Course
of Theoretical Physics.

Second, he came across a wonderful organization — and later became an active
member of it — called the Trivandrum Science Society. “Thinking back, I find
it hard to believe that such an organization existed and flourished, influencing a
handful of us so strongly. It was a transient phenomenon, which lasted for just
about a decade,” says Paddy. This was an organization entirely run by students in
Trivandrum colleges, financed bymembership fees and donations fromwell-wishers.
Here, the members devoted themselves to the pursuit of science, unshackled by
curricula and examinations. Paddy and a few others had an informal self-study group
which concentrated on theoretical physics, and in a span of about 3years, Paddy
managed to master the volumes of the Course of Theoretical Physics by Landau and
Lifshitz.

Third, Paddy took the National Science Talent Search (NSTS) examination orga-
nized by the NCERT, Government of India, which was probably one of the greatest
stimuli that the government provided to students who wanted to pursue pure science.
Success in this examination guaranteed a handsome scholarship for the rest of one’s
scientific career, as long as one pursued pure science. The money was very impor-
tant to people like Paddy, whose family’s financial position was never too good. In
addition, NSTS scholars could participate in one-month summer camps at leading
institutes in the country, allowing them to interact with researchers even while they
were pursuing their college education. The Trivandrum Science Society also used
to run “classes” to prepare students for the NSTS exam. These classes were run
essentially by senior students and sometimes by one’s own contemporaries, but it
was really a wonderful procedure for entrapment: “Whether one got through the
NSTS exam or not,” says Paddy, “the classes made you realize that the pursuit of
pure science is the best thing one can do. The indoctrination was done rather subtly
but very effectively!”

After his pre-degree, Paddy joined the University College, Trivandrum for his
Bachelor’s Degree (B.Sc, 1974–1977) in Physics. His final year of pre-degree and
the first two years of B.Sc were again noteworthy in two respects. First, this was the
time when he worked through the Landau-Lifshitz volumes and various other books
in theoretical physics, spending sometimes 14 hours a day in this pursuit. He also
acquired a fascination for anything related to gravity and was strongly influenced
by the epic book Gravitation by Misner, Thorne and Wheeler (Freeman and Co.).
“This book was an eye opener for me; I am probably one of the few people who have
worked through every problem in this book. I still have hundreds of pages of hand-
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written notes I took from this book, since I could not afford to buy it — and xeroxing
was unheard of in the seventies in Trivandrum!” says Paddy. The second key event,
which has nothing to do directly with his academic pursuits but shaped his entire
attitude towards life, was his exposure to Upanishads, Zen philosophy, meditation
techniques, etc. (This is not directly relevant here, since this article is mainly about
Paddy’s academics; his homepage contains two articles with a clear description of
these aspects.)

Themastery of theoretical physics, especiallyGeneralRelativity (GR), helpedhim
to publish his first technical paper in GR in 1977 when he was still a B.Sc student. He
started working seriously on several ideas in GR and quantum field theory around
this time. Paddy was a GoldMedalist for topping the B.Sc exam in Kerala University,
and joined for his Master’s in Physics (M.Sc) in the same University college. Given
the fact that he already knew all the standard stuff which was taught in the M.Sc
course in Physics, he had sufficient spare time for his research work. The interaction
with the other members of the Science Society was very helpful in these academic
activities.

Needless to say, Paddy was again a GoldMedalist for topping the M.Sc. in Kerala
university in 1979. By now, he had caught the attention of several leading scientists
both in India and abroad. TheNSTS summer camps (at IIT,Kharagpur and theRaman
Research Institute, Bangalore) as well as an Einstein’s Centenary Symposium (1979)
at PRL, Ahmedabad which he attended, helped significantly in this regard. Pursuing
a Ph.D in the US or the UK (like some of his close friends in the Trivandrum Science
society did) would have been a logical course to follow, but his family circumstances
prevented him from doing so. As a result, he decided to join what was then probably
the best research institute in the country (and an internationally acclaimed one), viz.,
the Tata Institute of Fundamental Research (TIFR) for his Ph.D. He joined TIFR in
August 1979 and became its tenured faculty member (called Research Associate,
which was the entry-level faculty position in those days) in February 1980, while
still working towards his Ph.D. His thesis work was in Quantum Cosmology (done
under the supervision of J.V. Narlikar) and he got his degree in 1983. This work
developed a particular formalism of quantum cosmology which had the potential to
solve the cosmological singularity problem - an idea which echoes in many of the
currently fashionable quantum gravity models. His thesis also contained the notion
of the wave function of the universe, which was being developed independently by
Hartle and Hawking around the same time, from a different perspective.

During his Ph.D years, he met and fell in love with Vasanthi (who was also a
research scholar, one year junior to him, in TIFR). They got married in March, 1983
when he had just completed his Ph.D and Vasanthi was still pursuing hers. Vasanthi’s
entry into his life had a strong influence in - amongst other things - his academic
pursuits. She was working under the supervision of Ramnath Cowsik on the nature
and distribution of dark matter in the universe. Paddy found this area fascinating and
started collaborating with her in this subject. This broadened his interest into several
aspects of astrophysics - an interest which has continued since then - and resulted in
his entering the area of cosmology, in which he later made his mark.

Prompted by this new found passion, Paddy decided to take up a research associate
position at the Institute of Astronomy, Cambridge for one year (1986–1987) rather
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than go for post-doctoral work in his thesis area. He was strongly influenced during
this timebyDonaldLynden-Bell,whose scholarship andbreadthof scientific interests
resonated well with his own way of doing science. He found the subject of the
Statistical Mechanics of Gravitating Systems particularly fascinating, and spent a
fair amount of time working on different aspects of it. His own contributions to this
area are highlighted in the first single-authored review he wrote for Physics Reports
in 1990 and the later lecture notes of the prestigious Les Houches Schools in 2002
and 2008. His authority in this subject is well recognized not only by the astrophysics
community, but also by the condensed matter community interested in the statistical
mechanics of long range systems.

Interestingly enough, he started supervising two students (T.R. Seshadri and T.P.
Singh were the first two) just after finishing his own thesis. The steady flow of
students continued — in spite of him being rather selective — and he has so far
supervised the thesiswork of sixteen students. It is commendable that ten of themhold
faculty positions in different institutes in India and are guiding their own students.
At present his academic family tree has forty grand-students! “I can take no credit
for the achievements of my students, except to say that I did not spoil them”, says
Paddy, “I was fortunate because good students always wanted to work with me. In
the early years, when my age gap with the students was moderate, Vasanthi and I
maintained very close personal contact with them and they were like members of our
family. It was wonderful.” In fact, almost all the young (� 45 years) cosmologists
working in various institutes/universities in India today have been associated with
Paddy and mentored by him in the Ph.D/post-doctoral stage of their career, in one
way or another.

Another facet of Paddy’s career, which also took root during his TIFR days and
flourished in the years to come, is his public outreach involvement. In addition to
the numerous popular lectures he gave, Paddy became a regular contributor to two
science magazines of India (the Science Today and the Science Age) which existed
at that time. He ran several regular columns in these magazines, like Playthemes (on
recreational mathematics), Let us think it over (on everyday physics applications),
andMilestones in Science (on the history of science). His strong interest in the history
of physics prompted him to present the Story of Physics as a comic strip serial in the
Science Age. This was extremely popular, and, later on, was published as a book,
translated into several Indian regional languages and made available to the school
children at an affordable price. This was made possible, in large part, because Paddy
does not take any royalties from this work. More recently, he ran a 24 part serial in
the science journal Resonance, called the Dawn of Science, dealing with the history
of all sciences, from pre-history to the 17th century. A popular science book which
he wrote, After the first three minutes [2000; Cambridge University Press (CUP)] has
also been very well received and was translated into Portuguese, Chinese and Polish.
Paddy remains strongly committed to the responsibilities of scientists towards the
society, and continues to be very active in public outreach programmes.

Around 1990, Paddy started working on his first single-authored book, Structure
Formation in the Universe (CUP 1993). He was persuaded to write this book by
Martin Rees, who introduced him to Rufus Neal, the CUP commissioning editor.
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This book was extremely well received and made Paddy well known among the
astrophysics and cosmology community. Since then, Paddy has taken to writing
books like a duck to water, and has published 9 more — with a few more in the
offing! “Recently,” Paddy recalls, “Martin Rees commented that he had triggered a
run-away process when he persuaded me to write that first book!”

People often ask him how he manages to write so many high-quality books while
keeping up with his research, and maintaining an average of more than 8 research
publications per year. “Well, you need two things”, says Paddy, “first, you need the
discipline to work on it 2 hours each day – in which you can write 6 pages, if you
have everything ready in your head. So, a 600 page book will just take 100days. But,
of course, you won’t have everything in your head, so it will take about 5–10 times
more time; so you can turn out one book every 2–3 years. The second thing you need
is Vasanthi. She worked with me in all the books, taking care of much of the typing,
latexing and back-end processing!” Every one of his books acknowledges Vasanthi’s
contribution.

In 1992 he shifted from TIFR to the Inter-University Centre for Astronomy and
Astrophysics (IUCAA).During the early part of his career at IUCAA, he concentrated
on various aspects of structure formation in the universe.Alongwith his Ph.D student,
Jasjeet Bagla, and later on with Sunu Engineer, he developed a code which describes
the dynamics of a large number of (of the order of a few million) astrophysical
particles, which is known as an N-body simulation code. This code was the first
of its kind in India at that time. “What took nearly 3weeks to compute with the
best computers available to us in those days, is being done in half an hour with a
laptop today; but it was fun developing the code from scratch, bringing in as much
innovation as possible,” says Paddy.

Coming from a theoretical physics background, Padmanabhan’s perspective on
astrophysicswas rather different from that ofmany other peoplewhose initial training
itself was in astrophysics. In particular, he noticed that there was no comprehensive
treatise covering all of astrophysics, like, for example, the Landau–Lifshitz course
for theoretical physics. He was lamenting about this to Jerry Ostriker, during his
visit to Princeton in 1996, when Jerry asked him “Why don’t you write it?” During
the next few weeks, Jerry was very supportive and helpful in making concrete the
structure of a 3-volume Course of Theoretical Astrophysics which Paddy came up
with. These 3 volumes were published by CUP during 2000–2002 and reviewers
have called them magnificent achievements. With these, Paddy became well known
to a very large community of astrophysicists and his breadth of scholarship was
recognized all around. More recently, he wrote two graduate level textbooks, on
Gravitation (CUP 2010) and on Quantum Field Theory (Springer 2016) with which
he has covered almost all the frontiers of theoretical physics and astrophysics.

One reason he could write so many books is his passion for innovative teaching.
Paddy strongly believes that research and teaching should go hand-in-hand. He has
taught virtually every aspect of theoretical physics and astrophysics at the graduate
schools in TIFR and IUCAA, in addition to occasional courses at the PuneUniversity
and IISER, Pune. He is considered a fantastic teacher and his lectures on even routine
topics are punctuated by creative and original approaches—somethingwhich echoes
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in his books, which elaborate on his classroom teaching. At present, he has started on
designing a course for senior undergraduates which will teach them all of theoretical
physics in about 150 lectures. This course will eventually appear as a four-volume
text book.

While completely at home with any aspect of theoretical physics, Paddy’s real
passion is for quantum aspects of gravity. He never let go of this, having tasted blood
in the early years of his career. From the early part of 2000, he decided to spend
more time in this area, with his astrophysical interests taking a back seat. Given the
importance and potential of this work, a detailed description will be appropriate:

The two most important conceptual advances in theoretical physics, made during
the twentieth century, were General Relativity and Quantum Theory. However, all
attempts to put together the principles of these two disciplines have repeatedly failed,
often after a lot of hope and hype which accompanied each attempt. The research
work of Paddy, over the last decade or so, suggests that this is because we have
misunderstood the nature of space-time structure, and are applying the principles of
quantum theory to the wrong physical entity.

An analogy will make this clear. A fluid, or a solid, is described by certain math-
ematical equations in classical physics. Applying the principles of quantum theory
directly to these equations will allow you to discover what are known as ‘phonons’ –
the microscopic quanta of the vibrations of a solid. But this approach will never get
you to the atoms, which are the true basic constituents of the solid. To obtain the
correct description, you first need to recognize that matter is made of atoms, and then
apply the quantum principles to these atoms.

The key new insight provided by Paddy’s research shows that the status of space-
time, in General Relativity, is completely analogous to the status of a fluid in classical
physics. There is a sufficient amount of internal evidence — uncovered by his work
— to indicate that space-time, itself, is made of more fundamental and microscopic
degrees of freedom, which are analogous to the atoms in a solid. This means that
applying the principles of quantum theory directly to Einstein’s field equations —
which is what almost all models of quantum gravity attempt to do — will inevitably
lead to failure. Paddy’s research allows one to identify, and actually count these
degrees of freedom (which is similar to counting the number of molecules in, say,
one litre of a fluid). It is then possible to apply well defined principles of statistical
mechanics to describe the dynamics of these degrees of freedom, and show that
the result, in the appropriate limit, leads precisely to Einstein’s theory. Further, his
research allows one to extend these results towards a broad class of theories far more
general than Einstein’s theory, showing that Einstein’s theory is just one special case
of a much deeper paradigm.

Every good paradigm shift should allow us to recognize the key theoretical
problems from a deeper, more fundamental perspective and thereby solve them.
Paddy’s approach is no exception, and it gives fresh insights into solving the follow-
ing problems:

• Observations tell us that the present-day universe is composed not only of the
normal atoms we see around us, but also an exotic type of matter called dark



Prof. Padmanabhan: A Personal and Professional History 7

matter, and another component termed as dark energy. It is very likely that this
dark energy is equivalent to what is known as the cosmological constant – which
was a term that Einstein introduced into his equations. The numerical value of this
constant was a mystery, and was considered to be the key problem in present-day
theoretical physics. Paddy’s approach shows how the value of the cosmological
constant can be naturally related to the amount of information which an observer
in the universe can access, and predicts a mathematical formula to determine its
value. The numerical value predicted by Paddy’s work is in perfect agreement with
cosmological observations!
This work also makes a falsifiable prediction — which is more than any other
approach to quantum gravity has done — about the very early, inflationary phase
of the universe. This prediction is also borne out by all present-day cosmological
observations and future observations can test this with greater precision.
[Incidentally, part of this work was done in collaboration with his daughter, Hamsa
Padmanabhan. Born in 1989, to two parents with Ph.Ds in astrophysics, she grew
up in the academic atmosphere of the campuses of research institutes. While the
parents encouraged her to pursue whatever she wanted — and she had a taste of
arts and literature— she could not escape the charmingworld of science and ended
up as the third Ph.D in astrophysics in the family!]

• Paddy’s approach allows one to understand several peculiar features of gravity,
including the thermodynamic behaviour of black holes, from a natural and broader
perspective. That is, the microscopic picture based on the atoms of space-time
allows us to understand almost all the features of macroscopic, classical gravity in
a simple and intuitive manner. Again, this has wide-ranging consequences going
well beyond the realm of Einstein’s theory, which no other model has achieved so
far.

• A second key problem in theoretical physics concerns the origin of the universe,
as well as the ultimate fate of the collapsing matter which forms a black hole.
While Paddy’s approach has not yet completely solved these deep issues (together
known as ‘the singularity problem’), it sheds light on the way forward towards the
final resolution of these problems. With the development of a novel mathemati-
cal framework to address the properties of the microscopic nature of space-time,
Paddy’s approach has the potential to address the singularity problem in a direct
and elegant manner. Thus, it has made further advances than any other approach in
the literature, towards the resolution of the deepest problems in theoretical physics.
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It is fair to say that our understanding of gravity underwent a fundamental paradigm
shift in 1915,with the advent of Einstein’sGeneral Theory of Relativity. One hundred
years down the line, we are poised on the brink of another breakthrough, with the
novel paradigm shift led by Paddy’s research.

Another feature of Paddy’s career – which again sets him apart from many other
scientists in his peer group – is his willingness and capability to provide scientific
leadership in various ways. He has served in several key committees and has taken
a leading role in the development of astronomy in India. Here are a few examples
from the recent years: (a) The Department of Science and Technology has appointed
him as the Convener of the Advisory Group (2008–2010) to facilitate India’s entry
into one of the international collaborations building the next generation Giant Seg-
mented Mirror Telescopes. He has played a key role in taking this initiative and
developing a consensus in the Indian astronomy community in this task, which has
now led India into joining the TMT. (b) He served as the Chairman (2006–2009) of
the Time Allocation Committee of the Giant Meterwave Radio Telescope (GMRT),
has introduced many innovative aspects into its working and been instrumental in
streamlining several aspects of the GMRT. (c) He was the Chairman (2008–2011) of
the Indian National Science Academy’s National Committee which interfaces with
the activities of the International Astronomical Union. In addition to advising the
Government on policy issues, this also required him to coordinate the International
Year of Astronomy 2009 activities in the country. In the international arena, he was
the President of the Commission 47 on Cosmology of the International Astronomical
Union (2009 – 2012), and the Chairman of the Commission 19 (Astrophysics) of the
International Union of Pure and Applied Physics (2011 – 2014).

Paddy has received numerous awards and distinctions in India and abroad
for his contributions. He is an elected Fellow of all the three Science Acad-
emies of India as well as of the Third World Academy of Sciences. The national
and international awards received by him include the Padma Shri (2007), the
J.C.BoseFellowship (2008-), the Inaugural InfosysPrize inPhysical Sciences (2009),
the Third World Academy of Sciences Prize in Physics (2011), the Millennium
Medal (2000), the Shanti Swarup Bhatnagar Award (1996), the INSA Vainu-Bappu
Medal (2007), the Al-Khwarizmi International Award (2002), the Sackler Distin-
guished Astronomer of the Institute of Astronomy, Cambridge (2002), the Homi
Bhabha Fellowship (2003), the G.D.Birla Award for Scientific Research (2003),
the Miegunah Award of the Melbourne University (2004), the Goyal Prize in Physi-
cal Sciences (2012–2013), the Birla Science Prize (1991) and the INSA Young Sci-
entist Award (1984). His research work has won prizes from the Gravity Research
Foundation, USA seven times, including the First Prize in the Gravity Essay Contest
in 2008.

Paddy is unique in his breadth of scholarship and his passion for knowledge. Few
scientists in the world – and no one in India – is so competent and knowledgeable
in a wide spectrum of areas ranging from the numerical analysis of astrophysical
data to the realm of quantum gravity! While reviewing his book on Gravitation, one
reviewer actually chose to comment on the author by saying, “.... There is immense
erudition, and mastery of both formal tools and calculational details; it is really
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impressive that one individual can understand so much, so deeply ....”, a feeling
echoed by many who have closely interacted with Paddy.

Personally, Paddy feels that theoretical physicists are a fortunate lot. In a preface to
a recent book, Sleeping Beauties in Theoretical Physics (Springer 2015), he makes
his view quite clear: “Theoretical physics is fun. Most of us indulge in it for the
same reason a painter paints or a dancer dances — the process itself is so enjoyable!
Occasionally, there are additional benefits like fame and glory and even practical
uses; but most good theoretical physicists will agree that these are not the primary
reasons why they are doing it. The fun in figuring out the solutions to Nature’s brain
teasers is a reward in itself.”



Measuring Baryon Acoustic Oscillations
with Angular Two-Point Correlation
Function

Jailson S. Alcaniz, Gabriela C. Carvalho,
Armando Bernui, Joel C. Carvalho and Micol Benetti

Abstract The Baryon Acoustic Oscillations (BAO) imprinted a characteristic
correlation length in the large-scale structure of the universe that can be used as
a standard ruler for mapping out the cosmic expansion history. Here, we discuss
the application of the angular two-point correlation function, w(θ), to a sample of
luminous red galaxies of the Sloan Digital Sky Survey (SDSS) and derive two new
measurements of the BAO angular scale at z = 0.235 and z = 0.365. Since noise
and systematics may hinder the identification of the BAO signature in the w − θ

plane, we also introduce a potential new method to localize the acoustic bump in a
model-independent way. We use these new measurements along with previous data
to constrain cosmological parameters of dark energy models and to derive a new
estimate of the acoustic scale rs .

1 Introduction

Along with measurements of the luminosity of distant type Ia supernovae (SNe Ia)
and the anisotropies of the cosmic microwave background (CMB), data of the large-
scale distribution of galaxies have become one of the most important tools to probe
the late-time evolution of the universe. This kind of measurement encodes not only
information of the cosmic expansion history but also of the growth of structure, a
fundamental aspect to probe different mechanisms of cosmic acceleration as well as
to distinguish between competing gravity theories. In particular, recentmeasurements
of a tiny excess of probability to find pairs of galaxies separated by a characteristic
scale rs – the comoving acoustic radius at the drag epoch – was revealed in the
two-point spatial correlation function (2PCF) of large galaxy catalogs.

This BAO signature arise from competing effects of radiation pressure and gravity
in the primordial plasma which is well described by the Einstein-Boltzmann equa-
tions in the linear regime [1–5]. The first detections of the BAO scale in the galaxy
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distribution were obtained only in the past decade from galaxy clustering analysis
of the Two Degree Field Galaxy Survey (2dFGRS) [6] and from the Luminous Red
Galaxies (LRGs) data of the Sloan Digital Sky Survey (SDSS) [7]. More recently,
higher-z measurements at percent-level precision were also obtained using deeper
and larger galaxy surveys [8–12] (see [13] for a recent review).

The BAO signature defines a statistical standard ruler and provides independent
estimates of the angular diameter distance DA(z) and the Hubble parameter H(z)
through the transversal (dr⊥ = (1 + z)DAθBAO ) and radial (dr‖ = cδz/H(z)) BAO
modes, respectively. However, it is worth mentioning that the detection of the BAO
signal through the 2PCF, i.e., using the 3D positions of galaxies, makes necessary
the assumption of a fiducial cosmology in order to transform the measured angu-
lar positions and redshifts into comoving distances. Such conversion may bias the
parameter constraints, as discussed in Refs. [7, 14] (see also [15]).

On the other hand, the calculation of the angular 2-point correlation function
(2PACF), w(θ), involves only the angular separation θ between pairs, yielding infor-
mation of DA(z) almost model-independently, provided that the comoving acoustic
scale is known. In order to extract information using 2PACF, the galaxy sample is
divided into redshift shells whose width has to be quite narrow (δz ≤ 10−2) to avoid
large projection effects from the radial BAO signal. Another important issue in this
kind of analysis is how to identify the actual BAO bump once the 2PACF is noisy and
usually exhibits more than one single bump due to systematic effects present in the
sample (we refer the reader to [16] for a detailed discussion on this point). In what
follows, we discuss the application of the 2PACF to large galaxy samples and intro-
duce a potential new method to identify the BAO signature in a model-independent
way.We exemplify themethodwith a sample of 105,831 LRGs from the seventh data
release of the Sloan Digital Sky Survey (SDSS) and obtain two new measurements
of θBAO at z = 0.235 and z = 0.365.

2 The Angular Two-Point Correlation Function

2.1 Theory

In the cosmological context, the two-point correlation function, ξ(s), is defined as
the excess probability of finding two pairs of galaxies at a given distance s. This
function is obtained by comparing the real catalog to random catalogs that follow the
geometry of the survey [17, 18]. The most commonly used estimator of the 2PCF is
the one proposed in Ref. [19]:

ξ(s) = DD(s) − 2DR(s) + RR(s)

RR(s)
, (1)

where DD(s) and RR(s) correspond to the number of galaxy pairs with separation
s in real-real and random-random catalogs, respectively, whereas DR(s) stands for
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the number of pairs with comoving separation s calculated between a real-galaxy
and a random-galaxy.

Assuming a flat universe, as indicated by recent CMB data [20, 21], the comoving
distance s between a pair of galaxies at redshifts z1 and z2 is given by

s =
√
r2(z1) + r2(z2) − 2 r(z1) r(z2) cos θ12 , (2)

where θ12 is the angular distance between such pair of galaxies, and the radial distance
between the observer and a galaxy at redshift zi , r(zi ) = c

∫ zi
0 dz/H(z,p), depends

on the parameters p of the cosmological model adopted in the analysis.
Similarly to the 2PCF, the 2PACF is defined as the excess joint probability that

two point sources are found in two solid angle elements dΩ1 and dΩ2 with angular
separation θ compared to a homogeneous Poisson distribution [17]. As mentioned
earlier, this function can be used model-independently, considering only angular
separations in narrow redshift shells of small δz in order to avoid contributions from
the BAO mode along the line of sight. The function w(θ) is calculated analogously
to Eq. (1) with s being replaced by θ . The expected 2PACF, wE , is given by [22]

wE (θ, z̄) =
∫ ∞

0
dz1 φ(z1)

∫ ∞

0
dz2 φ(z2) ξE (s, z̄) , (3)

where z̄ ≡ (z1 + z2)/2, with z2 = z1 + δz, and φ(zi ) is the normalised galaxy selec-
tion function at redshift zi . Note that, for narrow bin shells, δz ≈ 0, then z1 ≈ z2 and
ξE (s, z1) � ξE (s, z2). Therefore, one can safely consider that ξE (s, z̄) depends only
on the constant parameter z̄, instead of on the variable z. The function ξE (s, z) is
given by [23]

ξE (s, z) =
∫ ∞

0

dk

2π2
k2 j0(ks) b

2 Pm(k, z) , (4)

where j0 is the zeroth order Bessel function, Pm(k, z) is the matter power spectrum
and b is the bias factor. For shells of arbitrary δz, we refer the reader to [24].

2.2 Application to the Data

As illustrated in Fig. 1, the 2PACF, derived from Eq. (1), usually exhibits more than
one single bump which, in general, is due to systematic effects present in the galaxy
samples. In order to identify, among all bumps, which one corresponds to the real
BAO scale the usual procedure in the literature (see, e.g., [22]) is to compare the bump
scales observed in the 2PACF with a cosmological model prediction obtained from
Eqs. (3) and (4). Here, since we want to perform an analysis as model-independent
as possible, we adopt the following criterium [16]: if the BAO bump is present
in the sample and is robust, then it will survive to changes in the galaxies angular
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Fig. 1 An example of the
2PACF. As mentioned in the
text, noise and systematics
may give rise to bumps at
different scales which hinder
the identification of the BAO
signature imprinted on the
data. Clearly, two possible
BAO bumps are observed at
θ = 2.5◦ − 3.0◦ and
θ = 4.8◦ − 5.2◦

coordinates by small and random amount whereas the bumps produced by systematic
effects will not.

We apply this procedure to a sample of 105,831 LRGs of the seventh public
data release of the Sloan Digital Sky Survey distributed in the redshift interval z =
[0.16 − 0.47] [25]. The transversal signatures as a function of redshift are obtained
by dividing the data into two shells of redshift: z = [0.20 − 0.27] and z = [0.34 −
0.39], containing 19, 764 and 24, 879 LRGs, whose mean redshifts are z̄ = 0.235
and z̄ = 0.365, respectively. The 2PACF as a function of the angular separation θ

for this distribution of galaxies is shown in Fig. 2a and b, where several bumps at
different angular scales are observed.However, using the criteriummentioned earlier,
we calculate a number of 2PACF performing random displacements in the angular
position of the galaxies, i.e., following Gaussian distributions with σ = 0.25, 0.5,
and 1.0 [16]. Without assuming any fiducial cosmology, we find that only the bumps
localised at θFIT = 7.75◦ and θFIT = 5.73◦ remain.1

Another potential method for identifying the real BAO scale can be achieved by
counting the number of neighbours of the sub-sample of galaxies contained in each
shell. To make this explicit, we first select all the pairs contributing to the BAO
bump at θFIT(z̄ = 0.235) = 7.75◦ in the 2PACF, i.e., pairs of galaxies that have an
angular separation distance in the interval [7.6◦, 7.8◦]. Within this set, we analyse the
repetition rate: given a galaxy, we compute how many galaxies (that is, neighbours)
are apart by an angular distance between 7.6◦ to 7.8◦ from that galaxy. The same
procedure is applied to the galaxies in the interval [5.6◦, 5.8◦], where a bump is
also observed at � 5.7◦ Fig. 2a. The result is shown in Fig. 3, where we find that,
while the mean number of neighbours in the latter interval is Nn = 16 ± 7, the value
of Nn in the former (the BAO bump) is 20 ± 9 Fig. 3a. By similar proceeding, we
also find this same characteristic in the sub-sample of galaxies contained in the shell

1Only for comparison, the predictions of a flat ΛCDM cosmology, assuming Ωm = 0.27 and rs =
100Mpc/h, are θBAO(0.235) = 8.56◦ and θBAO(0.365) = 5.68◦.
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Fig. 2 The 2PACF for two redshift intervals obtained from the LRGs sample of the SDSS-DR7
(red bullets). The continuous line is derived from the 2PACF parameterisation proposed in Ref. [23]
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Fig. 3 Left: Histograms of the number of neighbours for galaxy pairs in the intervals [7.6◦, 7.8◦]
and [5.6◦, 5.8◦] (z̄ = 0.235). The horizontal axis, Nn , represents the number of neighbours of each
galaxy whereas vertical dashed lines indicate the mean value of each distribution. Right: The same
as in the previous panel for galaxy pairs in the intervals [5.6◦, 5.8◦] and [2.9◦, 3.1◦] (z̄ = 0.365)

z = [0.34 − 0.39], as shown in Fig. 3b. It is worth mentioning that similar results
are also found for the samples of LRGs of the tenth and eleventh data release of
the SDSS. In other words, it seems that galaxies around the BAO bumps have a
much larger number of neighbours than those around non-BAO bumps. If confirmed
in other galaxy samples, this property could also be used to identify the real BAO
scales in a model-independent way.

After finding the real BAO signature, we obtain the angular BAO scale using
the method of Ref. [23], which parameterises the 2PACF as a sum of a power law,
describing the continuum, and a Gaussian peak, which describes the BAO bump, i.e.,

wFIT (θ) = A + Bθν + Ce
− (θ−θF I T )2

2σ2F I T , (5)

where A, B,C, ν, and σF I T are free parameters, θF I T defines the position of the
acoustic scale andσF I T gives ameasure of thewidth of the bump.Note that, if δz = 0,
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Fig. 4 Left: Projection effect: Let us consider that the sphere represents the BAO signature. When
the rings at z̄ ± δz/2 are projected into the the shaded region (z̄), the signature appears smaller than
true one. Therefore, this effect produces a shift of the BAO peak to lower values. Right: The angular
BAO scale as a function of redshift. The green data points correspond to the two measurements
obtained in this analysis whereas the red ones are the data points obtained in Ref. [16] using the
LRGs of the SDSS-DR10. The curves stand for the ΛCDM prediction with the acoustic scale fixed
at the WMAP9 and Planck values

the true BAO scale θBAO and θF I T would coincide. However, for δz 
= 0 projection
effects due to the width of the redshift shells must be taken into account (see Fig. 4a).
Therefore, assuming a fiducial cosmology, the function wE (θ, z̄), given by Eqs. (3)
and (4), has to be calculated for both δz = 0 and δz 
= 0 in order to compare the
position of the peak in the two cases. This allows to find a correction factor α that,
given the value of θF I T estimated from Eq. (5), provides the true value for θBAO .
To perform the calculation of α, we assume the standard ΛCDM cosmology2 and
also consider the correction due to the photometric error of the sample by following
Ref. [22]. After all these corrections, the two new measurements of the BAO angular
scales at θBAO = [9.06 ± 0.23]◦ (z̄ = 0.235) and θBAO = [6.33 ± 0.22]◦ (z̄ = 0.365)
are obtained.

3 Cosmological Constraints

We present cosmological parameter fits to the BAO data derived in the previous
section along with the data set obtained in Ref. [16] (see Fig. 4). The angular scale
θBAO is related to the acoustic radius rs and the angular diameter distance DA(z)
through

2For narrow redshift shells, such as the ones considered in this analysis (δz ∼ 10−2), it can be
shown that the correction factor depends weakly on the cosmological model adopted (see Fig. 3 of
[23]).
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θBAO(z) = rs
(1 + z)DA(z)

, (6)

where

DA(z) = c

(1 + z)

∫ z

0

dz′

H(z,p)
. (7)

In what follow, we explore three classes of cosmological models, starting from the
minimal ΛCDM cosmology. We also consider a varying dark energy model whose
equation-of-state parameter evolves as w = w0 + wa[1 − a/(2a2 − 2a + 1)] [26]
and a particular case whenw0 < 0 andwa = 0 (wCDM) (for a discussion on theoreti-
calmodels of dark energy, see [27]). In our analysis,weuse theWMAP9final estimate
of the comoving acoustic radius at the drag epoch, rs = 106.61 ± 3.47h−1 Mpc [20].
Plots of the resulting cosmological constraints are shown in Fig. 5. Although the θBAO
data alone (gray contours) are consistent with a wide interval of w0 and wa values,
their combination with the CMB data limits considerably the range of w, favouring
values close to the cosmological constant limit w = −1.0. This can be seen when
we combine the BAO data points with CMB measurements of the shift parameter
(red contours), defined as R = √

Ωm
∫ zls
0 H0/H(z)dz, where zls is the redshift of

the last scattering surface. In order to avoid double counting of information with the
rs value from WMAP9 used in the BAO analysis, we use R = 1.7407 ± 0.0094,
as given by the latest results from the Planck Collaboration [21]. The joint results
(brown contours) improve significantly the cosmological constraints, providing the
values shown in Table1.

Finally, it is important to observe that, given a cosmological model, estimates
of the acoustic scale rs can be obtained directly from Eq. (6), i.e., independently of
CMB data. Using the data set shown in Fig. 4 and assuming the ΛCDM scenario, we
find rs = 103.6 ± 4.1 h−1Mpc, which is in good agreement with both the WMAP9
and Planck estimates as well as with the value obtained in [28].
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Fig. 5 Left: Confidence regions in the Ωm − w0 plane. The grey contours correspond to the region
allowed by the current θBAO data (SDSS - DR7/DR10) whereas the red contours are obtained from
CMB data. The combination between θBAO and CMB limits considerably the allowed interval of
the cosmological parameters. Right: The same as in the previous panel for the w0 − wa plane
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Table 1 Constraints on model parameters. The error bars correspond to 1σ

Model Ωm w0 wa

ΛCDM 0.27 ± 0.04 −1 −
wCDM 0.30 ± 0.02 −0.94 ± 0.06 −
w(z)CDM 0.29 ± 0.03 −0.87 ± 0.13 −0.16 ± 0.32

4 Conclusions

Sourced by the initial density fluctuations, the primordial photon-baryon plasma
supports the propagation of acoustic waves until the decoupling of photons and
baryons. These oscillations imprinted a preferred clustering scale in the large scale
structure of the universe which have been detected either as a peak in the real space
correlation function or as a series of peaks in the power spectrum. In this paper,
we have discussed the application of the angular two-point correlation function to a
sample of 105,831 LRGs of the seventh public data release of the Sloan Digital Sky
Survey (SDSS) distributed in the redshift interval z = [0.16 − 0.47] [25]. Differently
from analysis that use the spatial correlation function, ξ(s), where the assumption
of a fiducial cosmology is necessary in order to transform the measured angular
positions and redshifts into comoving distances, the calculation of the 2PACF, w(θ),
involves only the angular separation θ between pairs, yielding measurements of the
BAO signal almost model-independently.

After identifying the BAO peaks using the method of Ref. [16] and introducing
a new potential method based on the mean number of neighbours of the galax-
ies contained in the redshift shells, we have derived two new measurements of the
BAO angular scale: θBAO = [9.06 ± 0.23]◦ (z̄ = 0.235) and θBAO = [6.33 ± 0.22]◦
(z̄ = 0.365). As shown in Fig. 4b, these low-z measurements are important to fix
the initial scale in the θBAO − z plane, which improves the constraints on cosmo-
logical parameters. Along with six measurements of θBAO(z) recently obtained in
Ref. [16], we have used the data points derived in this analysis to constrain different
dark energy models. We have found a good agreement of these measurements with
the predictions of the standard ΛCDM model as well as with some of its simplest
extensions. Assuming the standard cosmology, we have also derived a new estimate
of the acoustic scale, rs = 103.6 ± 4.1 h−1Mpc (1σ ). This value is obtained from
the distribution of galaxies only and is in good agreement with recent estimates from
CMB data assuming the ΛCDM cosmology.
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Resonant Disruption of Binary Stars
by a Catalytic Black Hole

C.M. Boily

Abstract The motion of a black hole (BH) about the centre of gravity of its host
galaxy induces a strong response from the surrounding stars. We revisit the case of a
harmonic potential and argue that half of the stars on circular orbits in that potential
shift to an orbit of lower energy, while the other half receives a positive boost. The
black hole itself remains on an orbit of fixed amplitude and merely acts as a catalyst
for the evolution of the stellar energy distribution function f (E). We then consider
the response of binary stars to the motion of a central BH, and find that they are
selectively heated up to disruption according to the binary’s total mass and semi-
major axis a. This enhanced depletion of binaries (compared with the case when the
BH is fixed) might hold an important key to a more complete history of BH dynamics
at the heart of the Milky Way.

1 Introduction

Black hole (≡BH) dynamics in galactic nuclei has attractedmuch attention for many
years (e.g., [1] for a survey of the field). The influence of a BH on its surrounding
stars is felt first through the large velocity dispersion and rapid orbital motion of
the inner-most cluster stars (σ ∼ v1d ∼< 103 km/s). This sets a scale ∼> GMbh/σ

2

(� 0.015 − 0.019 pc for the Milky Way, henceforth MW; see [2]) within which
large-angle scattering and stellar stripping and disruption take place. For the MW,
large-angle scattering star-BH encounters are likely given the high density of ρ ∼
107M�/pc3 within a radius of ≈ 10 pc (see e.g. [3, 4]). Star-BH scattering leads to
the formation of a Bahcall–Wolf stellar cusp of density ρ� ∼ r−γ where γ falls in
the range 3/2 to 7/4 [5–7]. Genzel et al. [8] modeled the kinematics of the inner few
parsecs about Sgr A� with a mass profile ρ� ∼ r−1.4. This was later improved upon
[9] with a double power-law fit to the data, where the power index � 1.2 inside a
break radius rbr � 0.2 pc, and � 7/4 outside it. More recently it was found that the
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central density profile of old type stars is not inconsistent with a flat core, while on
the whole the nuclear cluster would have a cuspy density profile ρ ∝ r−2 [10, 11].
It is puzzling that the mass profile should vary so much depending on the chosen
tracers. Here we will discuss a mechanism which operates selectively on binary stars
according to their mass and separation.

2 Anisotropic Motion

Most, if not all, studies of galactic nuclei dynamics assume a fixed BH (or BH binary)
at the centre of coordinates. It has been argued [12] that the (not so) rapid migration
of the BH to the centre would induce anisotropy in the stellar velocity field, on a
scale ∼ 3× the BH radius of influence (≡ volume enclosing the same mass in stars
as the BH mass, Mbh). The catalytic role of the BH in the process may in fact slow
down its return to the centre of coordinates [13]. Reid and collaborators [14] used
maser emission maps to compute the mean velocity of 15 SiO emitters relatively to
Sgr A�. They compute a mean (three-dimensional) velocity of up to 45km/s, a result
obtained from sampling a volume of� 1 pc about the centre.1 Spectroscopic surveys
found a significant signature for rotation in their f (E,Lz)modelling of spectroscopic
central parsec stars (see [2, 9] for an update). It thus appears that stars within the
central stellar cusp experience significant streaming motion with respect to Sgr A�.

2.1 BH Motion as Catalyst of Anisotropy

A rough calculation helps to get some orientation in the problem: this one follows
closely [12]. Let a point mass fall from rest from a radius Ro in the background
potential of the MW stellar cusp. Then let the radial mass profile of the cusp ρ�(r) ∝
r−3/2, a rough fit to MW data. If we set the BH radius of influence � 1 pc for a
BH mass Mbh � 4.0 ± 0.2 × 106M� [2], then Ro may be expressed in terms of the
maximum BH speed in the MW potential as [max{v}/100 km/s]

4
5 = Ro/1 pc . For a

maximum velocity anisotropy in the range 10 to 40km/s, this yields Ro � 0.3 − 0.5
pc, which is the same fraction of its radius of influence.2 To see what impact the
BH motion will have on the velocity d.f. of the stars, we outline a basic argument
set out in [12]. Let us focus on a circular stellar orbit outside Ro in the combined
potential of the BH and an axisymmetric galaxy. When the BH is at rest at the centre
of coordinates, the star draws a closed circular orbit of radius r and constant velocity

1Statistical root-n noise ∼ 25% remains large owing to the small number of sources but is inconse-
quential to the argument being developed here.
2These figures are robust to details of the stellar cusp mass profile, so for instance a steeper density
profile (3/2 ≥ γ ≤ 7/4 < 2) would yield Ro in the range 0.2 to 0.3 pc; and γ = 0, Ro � 0.6 pc.
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v. We now set the BH on a radial path of amplitude Ro parallel to the horizontal
x-axis. We write the angular frequency of the stellar orbit be ω�, and that of the BH
ω ≥ ω�. The ratio ω/ω� ≥ 1 in general, but is otherwise unbounded. The net force
F acting on the star can always be expressed as the sum of a radial component Fr

and a force parallel to the x-axis which we take to be of the form Fx cos(ωt + ϕ);
clearly the constant Fx = 0 when Ro = 0. The net mechanical work done on the star
by the BH as the star completes one orbit is

δW =
∫

F· vdt =
∫

Fxv sin(ω�t) cos(ωt + ϕ) dt (1)

where ϕ is the relative phase between the stellar and BH orbits. The result of inte-
grating (1) is set in terms of the variable 	 ≡ ω/ω� as

2δW

vFx
ω� = 1

	 + 1
[cos(2π	 + ϕ) − cos(ϕ)]

+ 1

	 − 1
[cos(2π	 − ϕ) − cos(ϕ)] (2)

when 	 > 1, and 2δW/vFx ω� = 2π sin(ϕ) when 	 = 1. Equation (2) encapsu-
lates the essential physics, which is that δW changes sign when the phase ϕ shifts to
ϕ + π . Thus whenever the stellar phase-space density is well sampled and all values
of ϕ : [0, 2π ] are realised with equal probability, half the stars receive mechanical
energy (δW > 0) and half give off energy (δW < 0). By construction, the BH nei-
ther receives nor loses energy but merely acts as a catalyst for the redistribution of
mechanical energy between the stars.

An illustration of how stars may be stirred by increased kinetic energy is shown
on Fig. 1 for the case of a logarithmic potential for the host galaxy (see below) and
for stellar orbits in co-planar motion with the BH. Our approach does not integrate
the full response of the stars to their own density enhancements, when they adjust
their orbit to the BH perturbation. These could become self-bound structures which
would alter the global dynamics of the galaxy. To inspect whether this could have an
influence over the evolution of the velocity field, we compute the Toomre QJ ratio
defined as

QJ ≡ σΩ

G�
= σ 2

G�dl

on a mesh of 30 × 30 points in real space. We computed the dispersion σ by first
subtracting the dispersion that arises from the equilibrium velocity d.f. (with BH at
the centre of coordinates); hence σ = 0when theBH is at rest. Stars are stable against
self-gravitating local modes of fragmentation when QJ ∼> 1. When that condition is
satisfied, the BH contributes through its orbital motion more than 58% of the total
square velocity dispersion required to prevent local fragmentation instability [7].
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Fig. 1 Map of the Toomre number QJ for a calculation with BH parameters m̃bh = Ro/Rc = 0.3
shown at time t = 14 in computational units. A set of 80,000 orbitswere integratedwith anBulirsch–
Stoer integrator with compact kernel [12]; all stars are singles. The dark colours indicate a high
value QJ > 1 which shuts off self-gravitation of density enhancements. The dash circle of radius
0.5 marks the influence radius of the BH, shown as a light red dot. The cross is the origin of the
coordinates. The ring-like feature of radius� 1.1 indicates large velocity dispersion at the	 = 5 : 2
resonance

Given this background, we are now in a position to ask what / how would a
population of binary stars responds to the motion of a BH. The combined galactic-
and BH tidal field will tend to disrupt any binary, well before they reach the (stellar)
disruption radius rd � 0.015 pc. To setup the calculation, we first recall the properties
of the host galaxy’s potential in the next subsection before turning to binary stars in
Sect. 3.

2.2 Galaxy Logartihmic Potential

We cast our problem in the framework of the logarithmic potential, which we write
as

Φg(r) = −1

2
v2o ln

∣
∣
∣
∣
R2

R2
c

+ 1

∣
∣
∣
∣ (3)

with vo the constant circular velocity at large distances, and the radius Rc defines
a core length inside of which the density is nearly constant. Thus when r 
 Rc

all bodies follow harmonic motion of angular frequency ω = vo/Rc. If we define
u ≡ r/Rc, the integrated massMg(u) reads

Mg(< u) = v2oRc

G

u3

u2 + 1
. (4)
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The mass Mg(u � 1) ∝ u diverges at large distances, however this is not a serious
flaw sincewe consider only the regionwhereu ∼ 1. ThemassMg(u = 1) = v2oRc/2G
fixes a scale against which to compare the BH massMbh. For the case when the BH
orbits inside the harmonic core, we set

Mbh ≡ m̃bh
v2oRc

2G
= m̃bh

Mc

2
(5)

with 0 < m̃bh ≤ 1, and the definition Mc = v2oRc/G allows for simplifications (the
‘core mass’ Mc = Mg(1)/2 from [4]). For computational purposes one sets G = 1
and uses Rc as unit of length. The physical dimensions of the system are set in Sect. 3.

3 Binary Stars

Wemay now look into the stability of a binary star, and focus on the tidal heating by
the combined galaxy potential Φg(r) of Eq. (3) and BH potential −GMbh/||R − r||,
whereR denotes the position of the BH, and r the barycenter of the binary. LetR = 0
for the moment. We first write out the condition for the binary to sit well inside its
Roche radius as (cf. [7])

ρ̄bin ∼>
1

3
(ρΦ + ρ̄bh) (6)

where ρ̄bh = Mbh/(4πr3/3) is the contribution of the BH to the tidal field at r; in
the same way we compute ρ̄bin = Mbin/(4πa3/3) with a the semi-major axis of the
binary. The use of Poisson’s equation with (3) and the definitions (5) allows to write
(with u = r/Rc)

ρ̄bin ∼>
1

3

(
5

4π

[
u2 + 3

(u2 + 1)2

]
+ 3

8π
u−3

)
m̃bh McR

−3
c (7)

which we can rearrange once we fix m̃bh = 0.2 to replace the core mass Mc by the
BH mass. To be more specific we fix the scales of the binary- and BH masses and
lengths. The distribution of binary separations in the field is well adjusted with a
Gaussian profile which peaks at a � 50AU [15]. To simplify the calculations, we
will express the binary separation in units of 100AU, the BHmass in units of 106M�,
and the core length Rc of the logarithmic potential in units of 1 pc � 2 × 105 AU.
With the notation Rc = Rc × 1 pc,Mbh = Mbh6 × 106M�, and a = a100 × 100AU,
the condition for stability becomes

8 × 104
Mb10/Mbh6

(a100/Rc)3
∼>

1

3

(
5

4π

[
u2 + 3

(u2 + 1)2

]
+ 3

8π
u−3

)
. (8)
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In this last relation, we have expressed the binary mass Mbin = Mb10 × 10M�
because most binary stars of interest will be more massive than Solar (bright com-
ponents, high binding energy).

For numerical examples of Eq. (8), we chose reference values such that the BH’s
radius of influence is= 1 pc, with a core length Rc = 2 pc. (In that way the amplitude
of BH motion Ro = 0.2 < 1 pc is expressed as a fraction of the BH’s influence
radius.) Clearly for a binary on an orbit such that u = 1 with a total mass ofMb10 =
0.1(Mbin = 1M�, two half-Suns, say) then (8) is satisfied for all separations a up to
30,000AU. If, on the other hand, the binary orbits at a radius such that u = 10−2,
then only robust binaries with a < 100AU may survive.

The situation remains (basically) the same when the BH is set in motion, but with
the important difference that noworbital energymay be transferred to / taken from the
BH. The situation when the BH motion is commensurate with the binary’s internal
period will then be more effective in heating up the binary (or cooling it down). If
a significant fraction of all the stars are binaries, then presumably the binaries with
low-mass companions will be destroyedmore efficiently by thewandering BH,while
at the same time little or no net orbital energy will be transferred to the BH (same
argument as in Sect. 2).

The internal period of a binary star of total mass Mbin and semi-major axis a is
Pbin = 2π

√
a3/GMbin; the characteristic orbital period of a BH orbiting in the core

of the galaxy is PBH � 1/
√
GρΦ . The dimensionless ratio of these two quantities

reads

Pbin

PBH
=

√
2π

40

(
a100
Rc

)3/2 (
Mbh6

Mb10

)1/2 [
u2 + 3

(u2 + 1)2

]1/2

. (9)

This ratio → 0 when u � 1 and reaches a constant to second order in u near u = 0.
It is clear from (9) that many high m : n,m < n commensurate period ratios will be
achieved if the binary components have low total mass, or, if the semi-major axis a
is large. Thus clearly tight and massive binary stars stand a much better chance of
survival under those conditions.

4 Numerical Examples

We can explore the difference brought by BH motion if we pick a relatively stable
binary star in the background potential of the BH + galaxy with R = 0. To make
things more concrete, we have integrated a number of binary stars in the BH +
logarithmic potential for the same galactic circular orbit at a radius r = 0.5 pc, or
half the BH radius of influence RBH � 1 pc.We reduce the problem to an exploration
of the effect of changing the period ratio of the binary / BH orbit, by fixing the initial
semi-major axis a = 400AU and varying only the total mass of the binary: we chose
M = 4M�, 2M� and

√
2M�. The period ratio derived from (9) is then close to

4 : 3, 9 : 5 and 2 : 1, respectively, in each case. The integrations were performed
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Fig. 2 The semi-major axis a (in AU) of binary stars as function of time. Relative variations of a
and binding energy correspond one-to-one. All binaries were set on the same galactic orbit with
r/Rc = 1/4 which is half the BH influence radius. The left-hand side columns are the solutions for
a fixed BH at the origin; the right-hand side are for a radial BH orbit of amplitude RBH/Rc = 1/10
(or, 0.2× its influence radius). From top to bottom, each row is for an equal-component binary
respectively of total mass = 4, 2 and

√
2; this leads to the period ratios derived from (9) indicated

on the left-hand panels. Note that a = 400AU initially in each case

with a fixed galactic potential but self-consistent BH - binary interactions. Since
the mass ratio star / BH ∼ 10−6 is small, we made used of a code with regularised
equations of motion kindly provided by S. Mikkola. Details of the regularisation
method are in [16, 17]; see [18] for a review. The orbits were started aligned with the
x-axis with velocity vetor parallel to the y-axis (planar motion with orthogonal initial
conditions). All orbits maintained a relative energy precision of 1 × 10−8; checks
with a higher accuracy criterion did not affect the outcome significantly.

Figure2 graphs the semi-major axis a as function of time given in units of the
binary period. Clearly when the BH is fixed, all orbits displayed give relatively mild
evolution - the secular nature of which is clear from the rapid fluctuations on the scale
of the binary period (= unity on the horizontal [time] axis). That is due to the fact that
the orthogonal initial conditions did not factor in the external tidal field of the BH +
galactic potential, which leads to periodic oscillations of low-amplitude. Not much
difference takes place evenwhen theBH is set inmotion, except for the case of the 2:1
resonance, or when to total binary mass= √

2. That case is displayed on the bottom-
right panel on the figure. The beating-mode of period ∼ 20 binary periods leads to
a rapid increase of a after some 80 binary revolution; integration beyond t = 100
periods shows that the binary splits shortly thereafter, as the separation quickly
reaches the size of the galactic orbit (and becomes even larger). That situation just
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does not arise in the fixed BH problem, even if one boosts the integration time by
a large factor. The beat-frequency identified with (9) leads to rapid energy transfer
and the selective slicing of binaries through enhanced tidal heating.

5 Outlook

It has not been possible to explore the response of a wide range of binary parameters
and give more details of the mathematics. Still, it was very much possible to find
other unstable orbits with ever higher ratios than the unstable 2:1 case shown here.
Thus at constant amplitude RBH/Rc = 0.2, all binaries with the right combination of
separation and total mass will be sliced up more efficiently than expected from the
standard static tidal field (arising from a fixed BH). It would be very interesting to
try an apply this problem to the full case of the MWwith a cuspy nuclear star cluster.
The strong radial dependance of the tidal field would lead to a modification of the
period ratio criterion (9), and a clearer picture of when and to what extent the MW’s
BH wandered off its current position in the past. What the simple model developed
here shows is that we can expect the binary stellar population to bear witness to the
past dynamics of the BH.

As a final example, let us mention that the stable 9:5 case displayed on Fig. 2
in fact becomes rapidly unstable once the initial amplitude of the BH’s orbit shifts
from RBH/Rc = 1/10 to 3/20. When that is the case, the 9:5 resonance (or, a binary
with 2 × 1M� stars) is split in the same way as the 2:1 case displayed (2 × 1/

√
2M�

binary). A displacement of the BH will take place in any significant merger event
(e.g., the accretion of a giant molecular cloud). Hence the demographics of binary
stars, and their dependence on radius, may shed light on the recent history of BH
dynamics in the MW.
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Mechanics of Apparent Horizon
in Two Dimensional Dilaton Gravity

Rong-Gen Cai and Li-Ming Cao

Abstract In this article, we give a definition of apparent horizon in a two
dimensional general dilaton gravity theory. With this definition, we construct the
mechanics of the apparent horizon by introducing a quasi-local energy of the theory.
Our discussion generalizes the apparent horizons mechanics in general spherically
symmetric spacetimes in four or higher dimensions to the two dimensional dilaton
gravity case.

1 Introduction

Quantum theory together with general relativity predicts that black hole behaves
like a black body, emitting thermal radiation, with a temperature proportional to the
surface gravity of the black hole and with an entropy proportional to the area of the
cross section of the event horizon [1, 2]. The Hawking temperature and Bekenstein-
Hawking entropy together with the black hole mass obey the first law of thermo-
dynamics [3]. The first law of thermodynamics of black hole has two different
versions—phase space version or passive version and physical process or active
version [4]. In these two versions of discussion, the stationary of the black hole is
essential, and the discussion is focused on the event horizon of these stationary space-
times. However, this kind of horizon strongly depends on the global structure of the
spacetime and there exist some practical issues which can not be easily solved [5]. It
is very interesting to note that gravitational field equation on the black hole horizon
can be expressed into a first law form of thermodynamics [6–8]. The usual approach
to black hole thermodynamics is to start with the dynamics of gravity and ends with
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the thermodynamic of black hole spacetimes. Can we turn the logic around and get
the dynamics of gravity from some thermodynamic considerations? This can not be
fulfilled in this traditional approach because of the dependence of the global space-
time information of the event horizon. Apparent horizon defined by Hawking does
not rely on the causal structure of the spacetime. However, it still depend on some
global information of the spacetime—one has to select a slicing of the spacetime
in advance. Furthermore, it is not clear how to establish thermodynamics on gen-
eral apparent horizons. To reveal the relation between the spacetime dynamics and
thermodynamics, probably local or quasilocal defined horizons are necessary.

A local or quasi-local definition of horizon is based on the local geometry of the
spacetime. So it has a potential possibility to provide us more hints to study the rela-
tion between some fundamental thermodynamics and the gravitational equations.
Along this way, fruitful results have been obtained. In fact, based on local Rindler
horizon, Jacobson et al. [9, 10] was able to derive gravity field equation from the
fundamental Clausius relation.With the assumption of FRW spacetime, Cai and Kim
have obtained the Friedmann equations from the fundamental thermodynamical rela-
tion dE = T dS on the apparent horizon of the spacetimes [11]. A simple summary
on the relation between the spacetime dynamics and thermodynamical first law can
be found in Ref. [12, 13], while the further understandings of gravitational dynamics
from thermodynamical aspects can be seen in Ref. [14].

On the other hand, for general dynamical black holes, Hayward has proposed a
new horizon, trapping horizon, to study associated thermodynamics in 4-dimensional
Einstein theory without the stationary assumption [15]. In this theory, for general
spherically symmetric spacetimes, Einstein equations can be rewritten in a form
called “unified first law”. Projecting this unified first law along trapping horizon, one
gets the first law of thermodynamics for dynamical black holes. This trapping horizon
can be null, spacelike, and timelike, and has no direct relation to the causal structure
of the spacetime. Inspired by this quasilocal definition of horizon,Ashtekar et al. have
proposed two types of horizons, i.e., isolated horizon and dynamical horizon. The
former is null, while the later is spacelike [5]. The mechanics of these horizons also
has been constructed. In some sense, the trapping horizon is a generalization of the
Hawking’s apparent horizon. However, the slicing of the spacetimes is not necessary
to define this horizon. Nevertheless, in this paper, we still use the terminology of
apparent horizon. Of course, it has the same meanings as the trapping horizon, and
can be understood as a generalized apparent horizon.

Two dimensional dilation gravity theory has been widely studied over the past
twenty years. One can get this kind of gravity from the spherically symmetric reduc-
tion of Einstein gravity theory in higher dimensions. To eliminate Weyl anomaly on
stringworld sheet, one also has such a kind of gravity theory, for example, the famous
CGHS model and others, for a nice review see [16]. In these theories, a lot of black
hole solutions and cosmological solutions have been found.When somematter fields
are included, in general the situations become complicated, and usually we have to
study general dynamical solutions. In these two dimensional dilaton gravity theories,
the apparent horizon has been used for a long time. However, what is the meaning of
the apparent horizon in a two dimensional theory? Obviously, apparent horizon can
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not be defined in the usual way because we can not define any expansion scalar of a
null congruence in two dimensional spacetimes. In other words, the codimension-2
surface shrinks to a point in a two dimensional spacetime, and intuitively, the size
of the point does not change along a light-like geodesic, so the expansion does not
make any sense. In this paper, we will propose a definition of apparent horizon in
these two dimensional general dilaton gravity theories. With this definition in hand,
we can construct the mechanics of the apparent horizon by introducing a quasilocal
energy. This energy is similar to the Misner-Sharp energy in four or higher dimen-
sional Einstein gravity theory. Actually, it can be found that this energy reduces to
the usual Misner-Sharp energy for a special kind of dilaton gravity theory coming
from the spherical reduction of higher dimensional Einstein gravity theory.

2 General Dilaton Gravity Theory in Two Dimensions

For a general two dimensional dilaton gravity theory, its action can be written into a
following form [16]

I =
∫

d2x
√−h

[
ΦR +U (Φ)DaΦDaΦ + V (Φ) + Lm

]
, (1)

whereΦ is the so-called dilaton field, and R is the two dimensional Ricci scalar. The
matter Lagrangian is represented by Lm which may contain tachyon (and others).
The matter is denoted by ψ for simplicity. So, in general, the matter Lagrangian can
be expressed as

Lm = Lm(ψ, Daψ , . . . , Φ , DaΦ , . . .) .

The equation of motion for the dilaton field Φ can be written as

R −U ′(Φ)DaΦDaΦ + V ′(Φ) − 2U (Φ)DaDaΦ + Tm = 0 , (2)

where the prime stands for the derivative with respect to Φ: d/dΦ, while the scalar
Tm is defined as

Tm = ∂Lm

∂Φ
− Da

∂Lm

∂DaΦ
+ · · · .

Of course, if the dilation field does not couple to the matter field, this term vanishes.
The Euler–Lagrangian equation for the matter field ψ can be obtained in a similar
way. The equations of motion for the metric hab can be put into a form

U (Φ)DaΦDbΦ − 1

2
U (Φ)DcΦDcΦhab − DaDbΦ

+DcDcΦhab − 1

2
V (Φ)hab = Tab , (3)
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where Tab is the energy-momentum tensor of the matter field. Straightforward cal-
culation shows the covariant divergence of this energy-momentum tensor is given
by

DaTab = −1

2

[
R −U ′(Φ)DcΦDcΦ + V ′(Φ) − 2U (Φ)DcDcΦ

]
DbΦ , (4)

and this suggests that

DaTab = 1

2
TmDbΦ . (5)

Thus we see that the dilation provides an external force to the matter field when the
coupling between the matter field and dilaton is present.

3 Some Solutions of the Theory

When the matter field is absent, we have Tab = 0 and Tm = 0. In Eddington–
Finkelstein gauge, the general solution of Eq. (3) has a simple form [16]

h = eQ
[
2dvdΦ − (w − 2m)dv2

]
. (6)

Here, two functions Q(Φ) and w(Φ) have been introduced, and they are defined by

U = −Q′ , V = e−Qw′ (7)

up to some constants. Note that eQdΦ is a closed form, from Poincare lemma, there
exists a function r satisfying dr = eQdΦ. This means the general solution of the
metric can be transformed into a familar form

h = [
2dvdr − eQ(w − 2m)dv2

]
. (8)

One can replace the constant m by a function of v, i.e., m(v), and then construct a
typical dynamical spacetime, i.e., Vaidya-like spacetime. In that case, the energy-
momentum tensor of matter field will no longer vanish, and has a nontrivial compo-
nent Tvv satisfying

dm(v)

dv
= Tvv . (9)

Naively one can read off the apparent horizon of this spacetime in this Eddington–
Finkelstein gauge—it is given by equation

w − 2m(v) = 0 = eQDaΦDaΦ . (10)
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However, we may ask a question here — What is the apparent horizon in this two
dimensional spacetime? In the above discussion,we have read off naively the location
of apparent horizon from the metric in Eddington–Finkelstein gauge. But in what
sense it is an apparent horizon?Usually, the definition of apparent horizon depends on
the extrinsic geometry of codimenstion-2 spacelike surface, i.e., the expansion scalars
of the surface. Nowwe are considering two dimensional spacetime, the codimension-
2 surface shrinks to a point, and the expansion scalars can not be defined. In the next
section,wewill focus on this question, and explainwhy the locationof DaΦDaΦ = 0
can be viewed as the apparent horizon in the two dimensional case.

4 Apparent Horizon

In this section, we define the apparent horizons in the two dimensional spacetime of
the dilaton gravity theory. Assume {�a, na} is a null frame in the spacetime, and the
metric can be expressed as

hab = −�anb − na�b , (11)

where �a and na are two null vector fields which are globally defined on the space-
time and satisfy �ana = −1. We assume �a and na are both future pointing, and
furthermore, �a and na are outer pointing and inner pointing respectively. On the
spacetime, there is a natural vector field φa = DaΦ. Obviously, the causality of the
vector field is determined by the signature of φaφ

a . According to the causality of this
vector, the spacetime can be divided into several parts, and in each part the vector
field φa either spacelike or timelike. φa is null on the boundary of any part, and this
boundary can be defined as a kind of horizon. It is easy to find that on this horizon
we have

φaφ
a = DaΦDaΦ = −2L�ΦLnΦ = 0 .

So on these horizons we have L�Φ = 0 or LnΦ = 0. We can further classify the
horizons as follows. The horizon is called future ifL�Φ = 0 and LnΦ < 0. In this
case, ifLnL�Φ < 0, we call the horizon is outer. The future horizonwithLnL�Φ >

0 is called inner. The past horizon is defined byLnΦ = 0, andL�Φ > 0. Similarly,
the past horizon withL�LnΦ > 0 is called outer, and the case withL�LnΦ < 0 is
called inner. Mimicking the cases in higher dimensions, the region with L�Φ < 0
and LnΦ < 0 (or φaφ

a < 0) can be called trapped region of the spacetime [15].
At the first sight, these definitions have nothing to do with the geometry of the

spacetime. How do these definitions realize the description of the spacetime region
where light can not escape? To answer this question, we have to investigate the
detailed structure of the definition and the equations of motion of the dilaton theory.
Some calculation shows
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LnL�Φ = −κ(n)(L�Φ) − (1/2)�Φ ,

L�LnΦ = −κ(�)(LnΦ) − (1/2)�Φ ,

L�L�Φ = κ(�)(L�Φ) +U (Φ)(L�Φ)2 − Tab�
a�b ,

LnLnΦ = κ(n)(LnΦ) +U (Φ)(LnΦ)2 − Tabn
anb , (12)

where we have used the Eq. (3) and introduced two scalars κ(�) = −na�bDb�
a , κ(n) =

−�anbDbna . From these equations, it is easy to find that on the future outer horizon,
we have

�Φ > 0 . (13)

Similarly, on the past outer horizon, we have �Φ < 0. In the following discussion,
we will focus on the future outer horizon.

Here, we give some explanation why we can define the horizon in this way. From
Eq. (12), we have

Lk(φaφ
a) = α

[
�Φ(L�Φ) + 2(Tab�

a�b)(LnΦ) − 2U (Φ)(LnΦ)(L�Φ)2
]
, (14)

where ka = α�a is some null vector field and α is a positive function such that the
parameter of ka is affine. We consider the region very near the future outer horizon
where L�Φ = 0 and LnΦ < 0. In this small neighbourhood, from continuity, �Φ

should be positive and L�Φ is very small. Now let us consider the part of the
neighbourhood inside the trapped region of the spacetime (where L�Φ is a small
negative quantity and LnΦ is a finite negative quantity). In this case, we have

Lk‖φ‖ < 0 , ‖φ‖ = √|φaφa| , (15)

unless the null energy condition is broken, i.e., Tab�a�b < 0. This mathematical
relation suggests the light with wave vector ka can approach the line with ‖φ‖ =
0 (inside the trapped region) only when the null energy condition of the matter
field is broken. This can not happen for usual classical matter field. So the outward
propagating light do not exist near the future outer horizon. Similarly, we have

Lk(φaφ
a) = α

[
�Φ(LnΦ) + 2(Tabn

anb)(L�Φ) − 2U (Φ)(LnΦ)2(L�Φ)
]
, (16)

where α is still a positive function. Obviously, inside the trapped region and near the
future outer horizon, we haveLk‖φ‖ > 0. This means that inward propagating light
is always allowed whatever the energy condition is satisfied or not.

Now, let us consider the neighborhood of the horizon inside the region where
φaφ

a > 0. In the region, L�Φ is a small positive quantity. From Eq. (14), it is easy
to find that it is possible to get Lk‖φ‖ > 0 in this case especially when matter field
is absent. This means the light has possibility to escape from this region to the region
with large value of ‖φ‖. For the inner pointing light, Eq. (16) suggests it can cross
the horizon and can reach the trapped region.
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In a word, light cannot escape from the trapped region we have defined. So the
horizon we have defined has the same properties as the apparent horizon in higher
dimensions which, roughly speaking, can be viewed as the boundary of trapped
region. So in this paper we still use the terminology of apparent horizon to describe
this kind of horizon. In the next section, by introducing a quasilocal energy in this
dilaton gravity theory, the mechanics of the apparent horizon will be established.

5 The Mechanics of the Apparent Horizon

To study the mechanics of the apparent horizon, we have to define the quasilocal
energy inside the horizon. Generally, this is not an easy task. However, in the dilaton
gravity we are considering, there is a well defined quasilocal energy. This can be
found as follows. From the energy-mometum tensor of the matter field, we can
define two useful quantities, i.e., a scalar called generalized pressure

P = −1

2
T a

a , (17)

and a vector called energy-supply,

Ψa = Ta
beQDbΦ + PeQDaΦ . (18)

It is easy to find

Ψa = eQ
[
1

2
U (Φ)DcΦDcΦDaΦ − DaD

bΦDbΦ + 1

2
DcDcΦDaΦ

]
. (19)

Thus we have

Ψa + PeQDaΦ = 1

2
eQ

[
U (Φ)(DcΦDcΦ)DaΦ

−Da(D
cΦDcΦ) + V (Φ)DaΦ

]
. (20)

It is not hard to find that the right hand side of the Eq. (20) can be written as

1

2
Da

[
w

(
1 − eQ

w
DcΦDcΦ

)]
. (21)

In the above equation, Q and w are the same as those given in Eq. (7). Comparing
with the unified first law in higher dimensional spherical symmetric spacetime [15],
we can define a similar quasi-local energy
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E = 1

2

[
w

(
1 − eQ

w
DcΦDcΦ

)]
. (22)

Then the equations of motion for the metric, i.e., Eq. (3) can be put into the form

DaE = Ψa + PeQDaΦ . (23)

Since eQDaΦ is a closedone form in the spacetime, at least locally, it can be expressed
as eQDaΦ = DaV for some function V . This suggests the above relation can be
transformed into a simple form, i.e.,

dE = Ψ + PdV . (24)

This energy E generalizes the Misner-Sharp energy in higher dimensional theory to
the two dimensional dilaton gravity theory, and at the same time, the above equation
establishes the unified first law in this two dimensional gravity theory.

Now let us consider the special case where the matter field is absent, i.e., Tab is
vanishing, so do P and Ψ . From the above unified first law (24), we have dE = 0.
This means that E is a constant which can be denoted by m. By this consideration,
from the energy form (22), we have Eq. (10) withm(v). When the energy-momentum
tensor is given by some radiation matter, the general solution is just the Vaidya-like
spacetime mentioned in the previous section. In this case, it is easy to find that E is
nothing butm(v) and the first law (24) reduces to the Bondi’s energy balance Eq. (9).

Assume on the apparent horizon, i.e., on the spacetime points which satisfy
DcΦDcΦ = 0, that the dilaton fieldΦ takes valueΦA, then, on the apparent horizon,
the quasi-local energy becomes

E = 1

2
w(ΦA) . (25)

In general, this energy is not constant because ΦA may depend on the coordinates.
For example, for the Vaidya-like spacetime, the total energy inside the apparent
horizon is 1

2w(ΦA) = m(v). For the static case without matter, the apparent horizon
coincideswith the event horizon (if it can be defined), this energy becomes 1

2w(ΦA) =
1
2w(Φ+) = m, where Φ+ is the value of dilation on the event horizon.

On the apparent horizon, the energy-supply becomes

Ψa = 1

2
eQ

[−Da(D
cΦDcΦ) + �ΦDaΦ

]
. (26)

Let ξ be the vector tangent to the apparent horizon. Since DcΦDcΦ is a constant on
the apparent horizon, ξ aDa(DcΦDcΦ) = 0, then we find

ξ aΨa = 1

2
eQ(�Φ)LξΦ , (27)
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where Lξ is Lie derivative along the vector ξ . In higher dimensions, the surface
gravity of an apparent horizon is defined by the Kodama vector field KbD[bKa] =
κKa [17]. Here we can also introduce a Kodama-like vector field as Ka = −eQεab

DbΦ. Some calculation shows

KbD[bKa] = 1

2

[
eQ�ΦKa −U (eQDbΦDbΦ)Ka

]
. (28)

From the definition of the surface gravity, it is easy to find the surface gravity of the
apparent horizon can be expressed as

κ = 1

2
eQ(�Φ) .

On the future outer apparent horizon, from Eq. (13), we see this surface gravity
is always positive. Therefore, we find that the energy-supply projecting onto the
apparent horizon gives

ξ aΨa = κ LξΦ . (29)

As a result, on the apparent horizon, we have a relation

Lξ E = κ

2π
Lξ S + PLξV , (30)

where S = 2πΦ. This relation is the same as the first law of thermodynamics if we
identify T = κ/2π and regard S as entropy. Actually, the “entropy” of the future
outer apparent horizon can also be written as

S = 2πΦA . (31)

In general, this entropy is not a constant, and it might change with some coordinate.
In the static case, the future outer apparent horizon coincides with the event horizon,
this entropy becomes S = 2πΦ+, this result has been found in many static black
holes in the two dimensional dilaton gravity theories [16].

The function V can be viewed as a kind of “volume” of the system. It comes from
the divergence free of the Kodama vector Ka , i.e., DaKa = 0, and can be viewed as
a conserved quantity of the theory. Besides the function V , the energy E can also be
viewed as a conserved quantity. Actually, from Eqs. (3) and (5), one can prove that
Ja = T a

bK b is conserved, i.e., we have Da Ja = 0. This suggests that the Hodge
dual of Ja is a closed one form, and locally it is the exterior derivative of a function.
This function is nothing but the energy E . Such kind of discussion can also be found
in [18] where some special matter Lagrangian has been considered.

For the case of the energy-momentum tensor given by conformal matter, for
example, tachyon, the trace of the energy-momentum tensor vanishes. In this case,
from the trace part of Eq. (3), the surface gravity becomes κ = − 1

2w
′(ΦA) . This is

very similar to the static case where the surface gravity is just given by − 1
2w

′(Φ+).
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The work term vanishes due to the traceless of the energy-momentum tensor, so the
first law on the apparent horizon becomes

Lξ E = κ

2π
Lξ S . (32)

This means for the systemwith conformal matter, there is no external work term. The
above result shows that, in the case with conformal matter, all the thermodynamic
quantities of the apparent horizon can be obtained from the static case through the
replacement of Φ+ by ΦA.

For the two dimensional dilation gravity coming from the spherically symmet-
ric reduction of n-dimensional Einstein gravity, the potential U and V are given
respectively by

U (Φ) = n − 3

n − 2
Φ−1 , V (Φ) = (n − 2)(n − 3)λ2Φ

n−4
n−2 , (33)

whereλ is a constantwith dimension ofmass square, andΦ = (λr)n−2. If the function
U and V have the forms (33), the quasi-local energy (22) is just the n-dimensional
Misner-Sharp energy

EMS = 1

2
(n − 2)rn−3

(
1 − DarDar

)
. (34)

It is straightforward to see that the entropy of apparent horizon in the two dimensional
dilaton gravity is given by the area of the horizon sphere in n-dimensions. This can
be obtained by replacing ΦA in Eq. (31) by (λrA)n−2. It should be noted here that our
discussion is not restricted to the future outer apparent horizon. Actually, the same
discussions can be applied to other types of apparent horizons. For example, in an
FRW universe, the entropy of the apparent horizon is given by the one quarter of the
area of the apparent horizon, and the radius of the apparent horizon can be expressed
by Hubble parameter as

1

r̃2A
= H 2 + k

a2
,

where r̃A = arA, and a is the scale factor in the FRW universe, see for example [19].
Thus the apparent horizon associated with the FRW universe also applies here.
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Boundary Terms of the Einstein–Hilbert
Action

Sumanta Chakraborty

Abstract TheEinstein–Hilbert action for general relativity is notwell posed in terms
of the metric gab as a dynamical variable. There have been many proposals to obtain
an well posed action principle for general relativity, e.g., addition of the Gibbons–
Hawking–York boundary term to the Einstein–Hilbert action. These boundary terms
are dependent on what one fixes on the boundary and in particular on spacetime
dimensions as well. Following recent works of Padmanabhan we will introduce two
new variables to describe general relativity and the action principle with these new
dynamical variables will turn out to be well posed. Then we will connect these
dynamical variables and boundary term obtained thereof to existing literature and
shall comment on a few properties of Einstein–Hilbert action which might have
been unnoticed earlier in the literature. Before concluding with future prospects and
discussions, we will perform a general analysis of the boundary term of Einstein–
Hilbert action for null surfaces as well.

1 Introduction

Action principle is the starting point of any field theory. Along with the action func-
tional one need to fix the spacetime volume, its boundary and what variable should
be fixed on the boundary. When the boundary conditions imposed on an action are
compatible with the derived field equation(s), we refer that action principle as well
posed. It turns out that the widely used action principle for general relativity, the
Einstein–Hilbert action is not well posed. To be more precise, with Ricci scalar
as the gravitational Lagrangian, derivation of Einstein’s equations requires fixing
both metric and its first derivative on the boundary — inconsistent with Einstein’s
equations.
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This feature arises, since the action principle for general relativity is peculiar. It
contains second derivatives of the dynamical variables, the metric gab, unlike any
other existing Lagrangians. At first glance it seemed quite exotic, since the field
equations derived from an action which has second derivatives of the dynamical
variable are supposed to have third order derivatives, leading to existence of ghost
fields. However it is again the structure of the action principle for general relativity
that comes to rescue. The Ricci scalar can be separated into a bulk term and a surface
term. The bulk term has the structure Γ 2, where Γ a

bc are the connection coefficients
and along with being quadratic it contains only first derivatives of the metric. In any
action principle the surface terms do not contribute to the derivation of field equations,
so Einstein’s equations also have second derivatives of the metric. However all the
second derivatives of themetric hides in the surface term and it is the surface term that
leads to boundary contribution. Hence quite naturally, in the case of Einstein–Hilbert
action one ends up fixing both the metric and its derivative on the boundary.

The above arguments pose the problem but also solves it — it suffices to remove
the surface term and consider a new action functional for general relativity, namely,
L = R − Lsur, as proposed by Einstein in 1916 [1]. Then one obtains Einstein’s
equations without worrying about the boundary terms. But the problem with the
above approach is that, the action is not invariant under diffeomorphism, while we
want every action to have the symmetries that the underlying system has. Fortunately,
the boundary term that one need to add to the Einstein–Hilbert action is by no means
unique. Any boundary term that kills all the normal derivatives of the metric on the
boundary surface is good enough for our purpose and there could be infinitely many
of them as demonstrated by Charap and Nelson in [2]. The most popular boundary
term that keeps the action invariant under diffeomorphism and also makes it well
posed is the Gibbons–Hawking–York term [3–5]. The Gibbons–Hawking–York term
depends on the extrinsic curvature K of the boundary surface and is given by 2K

√|h|,
where h stands for the determinant of the induced metric on the boundary surface.
Note that even though the Gibbons–Hawking–York boundary term is invariant under
diffeomorphism, is not covariant in a strict sense, because of its dependence on the
foliation. Further, the Gibbons–Hawking–York term was guessed and then shown to
yield a well posed variational principle without a first principle derivation. This gap
was filled by providing a direct derivation of the Gibbons–Hawking–York boundary
term from the action itself in [6] while another important issue, the boundary term
for null boundaries has been tackled recently in [7]. Even then the structure of the
boundary term can change depending on what one needs to fix on the boundary, the
induced metric or the conjugate momentum and it also changes depending on the
spacetime dimensions. In this work we will try to provide a broad overview on the
possible boundary term structures of the Einstein–Hilbert action along with what one
needs to fix on the boundary surfaces. This will be performed for both null and non-
null cases, besides discussing some other important features of the Einstein–Hilbert
action.

The paper is organized as follows, in Sect. 2 we will present various boundary
terms used in various dimensions for an well-posed action of general relativity and
their possible connections. Then in Sect. 3 we will explicitly demonstrate some
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common notions in the context of general relativity starting from the well known
(1 + 3) decomposition. Finally we comment on the nature of the boundary terms in
the context of null surfaces in Sect. 4 before concluding with a brief discussion.

Notation: We will work in D spacetime dimensions in Sect. 2, while the rest of
the analysis will be performed in four spacetime dimensions following the mostly
positive signature (−,+,+,+, . . .). The fundamental constants c, G and � have
been set to unity.

2 Reconciling Boundary Terms for the Einstein–Hilbert
Action

The origin of boundary value problem for general relativity is due to the fact that
Einstein–Hilbert action contains second derivatives of themetric—as a consequence
one needs to fix both the metric and its derivatives on the boundary rendering the
action ill posed. The above problem arises for using the metric as a fundamental vari-
able and hence to obtain a well posed variational principle we have to add boundary
terms to the Einstein–Hilbert action. However, it is possible to rewrite the Einstein–
Hilbert action in themomentum space and the resulting variational principle becomes
well posed. The momentum space representation of the Einstein–Hilbert action can
be obtained by introducing two new variables [8] (see [9] for a generalization to
Lanczos–Lovelock gravity),

f ab = √−ggab; Na
bc = Qad

beΓ
e
cd + Qad

ce Γ e
bd = −Γ a

bc + 1

2

(
Γ d
bdδ

a
c + Γ d

cdδ
a
b

)
,

(1)

where f ab is a tensor density and Na
bc stands for a linear combination of the connec-

tions. Note that the above relation holds for any number of spacetime dimensions
as Qab

cd = (1/2)(δac δ
b
d − δadδ

b
c ) is independent of spacetime dimensions. However the

inverse relation connecting Γ a
bc in terms of Na

bc depends on the spacetime dimensions
and reads in general,

Γ c
ab = −Nc

ab + 1

D − 1

(
Nd
adδ

c
b + Nd

bdδ
c
a

)
, (2)

which reduces to the expression in [8] for D = 4. Then the expressions for vari-
ous curvature components are also modified. For example, the Ricci tensor can be
expressed in terms of Nc

ab such that,

Rab = −
(

∂cN
c
ab + Nc

ad N
d
bc − 1

D − 1
Nc
acN

d
bd

)
, (3)
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reducing to the one given in [8] for four spacetime dimensions. These variables
can be used in the action principle as well, in which case the Einstein–Hilbert La-
grangian density becomes

√−gR = f ab Rab, where Rab can be written in terms of
Nc
ab following Eq. (3). This leads to momentum space representation of the Einstein–

Hilbert action, which follows from the result that Nc
ab = ∂(

√−gR)/∂(∂c f ab) and
hence the set ( f ab, Nc

ab) acts as a set of canonically conjugate variables. Further
Einstein–Hilbert action when varied reads in terms of variations of these canonically
conjugate variables as,

δ

(∫

V
dDx

√−gR

)
=

∫

V
dDx Rabδ f

ab −
∫

V
dDx f ab∇cδN

c
ab (4)

=
∫

V
dDx Rabδ f

ab −
∫

∂V
dD−1xn̄c f

abδNc
ab , (5)

whereV stands for the spacetime volume under interest with boundary being denoted
by ∂V . The last term has been obtained through the use of the following relation
f ab∇cδNc

ab = ∂c
(√−ggabδNc

ab

)
. Also n̄c in the final expression is the unnormalized

normal. If the surface ∂V is some φ = constant surface, then n̄c = δ
φ
c . With suitable

normalization one obtains, n̄c = ε(1/N )nc, where nc is the normalized normal, ε =
±1 depending on the normal being spacelike or timelike and N is

√|gφφ|. Thus note
that one can obtain the Einstein’s equations provided Nc

ab is fixed at the boundary,
leading to an well posed action principle for general relativity, since Nc

ab and f ab are
treated as independent variables.

On the other hand, it is also well known that the variation of the Einstein–Hilbert
action leads to δ(2K

√
h), where K is the extrinsic curvature of the boundary surface

and h is the determinant of the induced metric on that surface, along with variations
of the induced metric with proper coefficients as the boundary term [6]. Thus for
being consistent one must have the f abδNc

ab to yield δ(2K
√
h) along with variations

of the induced metric. It is not at all clear a priori, how this can be achieved. In order
to fill this gap we would like to connect the boundary term obtained above in Eq. (5)
with the standard literature. As a first step towards the connection, we will present a
simplified analysis and shall subsequently provide a general derivation.

2.1 A Warm-Up Example: Analysis in Synchronous Frame

Before jumping into the formal derivation let us consider an explicit example as
a warm-up. Let us use all the gauge degrees of freedom due to diffeomorphism to
eliminate four degrees of freedom from themetric and reduce it to synchronous form,
in which the line element reads,

ds2 = −dτ 2 + hαβ(τ, xμ)dxαdxβ . (6)
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As explicitly demonstrated in [10], any metric can be written in the synchronous
coordinate system. The boundary ∂V of the full spacetime volume can be taken to
be τ = constant hypersurface in this coordinate system, such that the unnormalized
normal becomes n̄c = δτ

c and hence the surface term reads,

n̄c f
abδNc

ab = f abδN 0
ab = −√

hδN 0
00 + √

hhαβδN 0
αβ , (7)

where in obtaining the last line we have used the synchronous frame metric as in
Eq. (6). From the definition of Na

bc in terms of connections as in Eq. (1) and themetric
in Eq. (6) it follows that,

N 0
00 = Γ α

0α = −K ; N 0
αβ = −Γ 0

αβ = Kαβ . (8)

Thus one can substitute both N 0
00 and N 0

αβ in the boundary term which finally leads
to,

n̄c f
abδNc

ab = √
hδK + √

hhαβδKαβ

= δ
(
2K

√
h
)

+ √
h

(
K αβ − Khαβ

)
δhαβ . (9)

This shows the equivalence of the boundary term with ( f ab, Nc
ab) as the dynamical

variables with the standard boundary term. The above expression explicitly shows
that one needs to add 2K

√
h as the boundary term to the Einstein–Hilbert action

and as a consequence one needs to fix only the spatial part of the metric hαβ on the
boundary ∂V , i.e., on τ = constant surfaces.

However the above derivation is a special case andmore importantly the boundary
term even though is independent of coordinate choices depends heavily on foliation,
thus it is not clear from the above result whether the same conclusion should hold
for arbitrary foliation as well. This is precisely what we will prove next.

2.2 Boundary Terms: A General Analysis

As explained above the demonstration in synchronous frame is a specific one among
many possible foliations and one needs to provide a general analysis for an arbitrary
foliation to grasp the complete structure. To proceed with the general analysis, we
will start with the boundary term and shall write Nc

ab in terms of the connections.
Using the fact that variations of the connections are tensors one can ultimately write
down the boundary term in terms of the normal and variations in the metric tensor,

∫

∂V
dD−1xn̄c f

abδNc
ab = −

∫

∂V
dD−1xn̄c∇d

(−δgcd + gcdgikδg
ik
)

, (10)
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where the following algebraic identity, −gabδNc
ab = ∇d

(−δgcd + gcdgikδgik
)
have

been used in order to arrive at the final result. Given the above Eq. (10) we can
immediately incorporate the normal inside the covariant derivative and the above
expression reads,

−
∫

∂V
dD−1xn̄c f

abδNc
ab =

∫

∂V
dD−1xε

√
h

{
∇d

(−ncδg
cd + ndgikδg

ik
)

− ∇dnc
(−δgcd + gcdgikδg

ik
)
}

, (11)

where ε = −1 for spacelike hypersurfaces and is +1 for timelike hypersurfaces
respectively. The variations of the metric can be divided into two pieces, variations in
the inducedmetric hi j and variations in the normal ni . Using the contractions properly
and the fact that δ(nini ) = 0, we immediately obtain the following expression for
the boundary term of the Einstein–Hilbert action,

−
∫

∂V
dD−1xn̄c f

abδNc
ab =

∫

∂V
dD−1xεδ

(
2K

√
h
)

−
∫

∂V
dD−1xε

√
h (Kab − Khab) δhab

+
∫

dD−1xε
√
hDi

(−nch
i
bδg

bc + 2nkh
i
lδg

kl
)

. (12)

The last term is again a surface term and would contribute only on the two surface
and hence is neglected. It is useful and instructive to define the momentum conjugate
to the induced metric hab on the hypersurface ∂V as,

Πab = √
h (Kab − Khab) . (13)

Note that naΠab = 0. Thus finally using the expression for Πab and neglecting the
surface term, we obtain the simplified version of the boundary term from Eq. (12) in
the most general case as,

−
∫

∂V
dD−1xn̄c f

abδNc
ab =

∫

∂V
d3xεδ

(
2K

√
h
)

−
∫

∂V
dD−1xεΠabδh

ab . (14)

The result in the synchronous frame can be derived immediately from the above
relation by substituting ε = −1, since τ = constant surfaces are spacelike. However
note that the two-dimensional surface terms identically vanishes in the synchronous
frame. The above result suggests that if we add the boundary term −2εK

√
h to the

Einstein–Hilbert action the normal derivatives of themetric will be removed from the
boundary and one needs to fix only the inducedmetric hab. It is important to emphasis
at this stage that fixing hab is different from fixing hab. Since by construction we have
na ∝ ∇aφ, and nahab = 0, this suggests hab = hαβ , where α, β are spacetime indices
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excluding φ, while hab has all the metric components. Due to the momentum and
Hamiltonian constraints of general relativity one cannot fix all themetric components
on the hypersurfaces and hence the correct variational principle would be the one
which fixes only hab, i.e., hαβ on the boundary ∂V .

Let us now illustrate the fact that 2εK
√
h is not the only boundary term that can

lead to a well-posed action principle for general relativity, there are infinitely many.
However for our illustration we will pick two of them. Since we are working in a D
dimensional spacetime we have the following identity, Πabhab = −(D − 2)K

√
h.

We can use the above identity to convert the original result in Eq. (14) to two different
results,

−
∫

∂V
dD−1xn̄c f

abδNc
ab =

∫

∂V
dD−1xεδ

(
2K

√
h
)

−
∫

∂V
dD−1xεδ

(
Πabh

ab
)

+
∫

∂V
dD−1xεhabδΠab

=
∫

∂V
dD−1xεδ

(
DK

√
h
)

+
∫

∂V
dD−1xεhabδΠab . (15)

The above result depicts that one can also add −DεK
√
h as the boundary term to

the Einstein–Hilbert action and hence obtain an well-posed variational principle if
Πab is fixed at the boundary. Note that as we have argued earlier, the only non-zero
components of hab are hαβ and hence one need to fix only Παβ at the boundary ∂V .
This result can also be casted in a different form, for that we need to use the identity,
Πabδhab = −Πabδhab. Use of which enables one to write Eq. (14) in the following
form

−
∫

∂V
dD−1xn̄c f

abδNc
ab =

∫

∂V
dD−1xεδ

(
2K

√
h
)

+
∫

∂V
dD−1xεδ

(
Πabhab

)

−
∫

∂V
dD−1xεhabδΠ

ab

=
∫

∂V
dD−1xεδ

[
(4 − D) K

√
h
]

−
∫

∂V
dD−1xεhabδΠ

ab . (16)

This is another form of the boundary contribution recently discussed in [11] which
essentially follows from the original boundary term in terms of the canonically con-
jugate variables ( f ab, Nc

ab). In this case the boundary term one has to add to the
Einstein–Hilbert action corresponds to, (4 − D)εK

√
h, with the peculiarity that at

D = 4 this term identically vanishes. While in this case one need to fix Πab at the
boundary ∂V . Hence the original boundary term from whichall possible versions of
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the boundary terms including the well-known 2εK
√
h can be derived is the f abδNc

ab
combination. Further we have shown two explicit examples in which one can add
different boundary term at the expense of fixing either Πab or Πab at the boundary
(Table1). Even though it is tempting to assume habδΠab = −habδΠab, this relation
is actually not correct. This can be seen from the following algebraic manipulation
straightforwardly,

habδΠab = habδ
(
hachbdΠ

cd
) = hcdδΠ

cd + 2Πacδhac

= hcdδΠ
cd − 2Πacδh

ac = −hcdδΠ
cd + δ

[
(4 − 2D) K

√
h
]

, (17)

reconciling the two results presented in Eqs. (15) and (16) respectively. Through this
exercise we have achieved two important goals, which are,

• By introducing the canonically conjugate variables ( f ab, Nc
ab), one obtains

the Einstein’s equations from variations of f ab, while variations of Nc
ab leads

to the boundary term. Hence the Einstein–Hilbert action becomes action in
the momentum space such that one need to fix the momentum Nc

ab at the
boundary. However there were no clear consensus how this boundary term
is related to the existing ones, e.g., the Gibbons–Hawking–York boundary
term. In this section we have explicitly demonstrated the connection, by de-
riving the Gibbons–Hawking–York counter term starting from the boundary
term consisting of f abδNc

ab.• Secondly, in most of the literatures people always take the Gibbons–
Hawking–York boundary term to be the only boundary term possible. In the
last part of this section we have explicitly demonstrated two more boundary
terms. Our result clearly shows that the structure of the boundary term de-
pends crucially on what one fixes at the boundary. If one fixes the induced
metric hab, then Gibbons–Hawking–York term is the only option. But if one
fixes the conjugate momentum, then depending on whether one fixes Πab

or Πab, one arrives to different boundary terms. In particular when Πab is
fixed one need not add any boundary term in four dimensions, which is a
peculiar feature of general relativity.

Thus we have reconciled the possible boundary terms that one can add to the
Einstein–Hilbert action. Their non-uniqueness and derivation from a first principle
starting from Einstein–Hilbert action in momentum space has also been presented.
We will now turn to the (1 + 3) decomposition of the Einstein–Hilbert action and
related comments.
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Table 1 A comparison of various boundary terms of Einstein–Hilbert action

Bulk term Surface term Boundary terma What to fix on
boundary

Well-posed action

Rabδ f ab −n̄c f abδNc
ab None Nc

ab
√−gR

Gabδgab εδ(2K
√
h)

−εΠabδhab
εδ(2K

√
h) hab

√−gR −
εδ(2K

√
h)

Gabδgab εδ(DK
√
h)

εhabδΠab

εδ(DK
√
h) Πab

√−gR −
εδ(DK

√
h)

Gabδgab εδ[(4 − D)K
√
h]

−εhabδΠab
εδ[(4 − D)K

√
h] Πab √−gR

−εδ[(4 −
D)K

√
h]

aNote that in the last case for D = 4 no boundary term is needed and Einstein–Hilbert action is
well posed, with Πab fixed on the boundary (see also [9])

3 (1+3) Decomposition, Time Derivatives and Canonical
Momenta

In general relativity space and time are treated on an equal footing. However for
many application, e.g., canonical quantization schemes, one need the notion of time
and hence the splitting of four dimensional spacetime into one time and three spatial
coordinates becomes immediate. This has been performed successfully by Arnowitt,
Deser and Misner (henceforth referred to as ADM) in a seminal work [12], in which
the ten independent metric components are split into three pieces — hαβ , Nα and N ,
such that, the line element becomes

ds2 = −N 2dt2 + hαβ (dxα + Nαdt)
(
dxβ + Nβdt

)
. (18)

Thus note that the spatial metric gαβ is just hαβ , the off-diagonal entries are
Nα ≡ hαβNβ , while the temporal component of the metric becomes, g00 = −N 2 +
hαβNαNβ . For the inversemetric the temporal component is simple but not the spatial
components such that,

gtt = − 1

N 2
, gtα = Nα

N 2
, gαβ =

(
hαβ − NαNβ

N 2

)
. (19)

The next point one can address from the ADM splitting corresponds to the (1 + 3)
decomposition of the Einstein–Hilbert action. This would require projection of the
Riemann tensor components on the spacelike hypersurface, leading to (3)R, the Ricci
scalar of the spacelike hypersurface and invariants like KabK ab, K 2 constructed out
of the extrinsic curvature components [12, 13]

√−gR = √−g
[
(3)R + KabK

ab − K 2 − 2∇i
(
Kni + ai

)]

= √−gLADM − 2
√−g∇i

(
Kni + ai

)
, (20)
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where ni is the normal to the spacelike hypersurface andai is the corresponding accel-
eration. Thus the Einstein–Hilbert Lagrangian can be written in terms of the ADM
Lagrangian and an additional boundary term which coincides with the Gibbons–
Hawking–York counter term since niai = 0. It is well known that the ADM La-
grangian does not contain time derivatives of N and Nα and hence their conjugate
momentums vanish. Thus these variables are non-dynamical. However we have just
witnessed that boundary terms are not unique, one can in principle add any boundary
term that cancels the normal derivative. Then a natural question arises— are the time
derivatives of N and Nα zero for for any possible boundary term? If not can they be
dynamical? These questions get firm ground as the following example is considered.

Dynamical or Non-dynamical?

Let us consider a cosmological spacetime. Being homogeneous and isotropic
it is described by a single function, the scale factor a(t). The line element for
cosmological spacetime by imposition of these symmetry conditions become,

ds2 = −dt2 + a2(t)
[
dr2 + r2dΩ2] , (21)

where the spatial section has been assumed to be flat for simplicity. The above
metric is manifestly in ADM form, with N = 1, Nα = 0 and hαβ = a2(t)δαβ

respectively. Thus it is evident that N and Nα are not dynamical, all the dy-
namics comes from the scale factor a(t) as expected. One can now introduce a
new coordinate r , such that R = a(t)r and write the metric in the (t, R, θ, φ)

coordinate system such that,

ds2 = − (
1 − H 2R2

)
dt2 − 2HRdtdR + dR2 + R2dΩ2 . (22)

Surprisingly, now the metric is again in ADM form but with a completely
different structure. This time the spatial metric is flat, i.e., hαβ = δαβ and hence
cannot have any dynamics. On the other hand, one obtains N = 1 and Nα =
HRδα

R and would conclude that cosmological spacetime is non-dynamical!
This explicitly shows that the standard argument for ADM variables N and
Nα to be non-dynamical based on their time derivatives is misleading.

To resolve the dilemma we will explicitly illustrate, depending on the boundary
term, Einstein–Hilbert action do contains time derivatives of N and Nα but they are
not dynamical. For this purpose we make use of the following decomposition of the
Einstein–Hilbert action,

√−gR = √−ggab
(
Γ i

jaΓ
j
ib − Γ i

abΓ
j
i j

)
+ ∂c

{√−g
(
gikΓ c

ik − gckΓ m
km

)}
. (23)
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Here the first term is quadratic in the connection and is known as the Γ 2 Lagrangian,
while the second term is the boundary term and contains normal derivatives of the
metric as elaborated in [13]. Thus an alternative to Gibbons–Hawking–York bound-
ary term is the total divergence term introduced above andhence apossiblewell-posed
Lagrangian corresponds to the Γ 2 Lagrangian. We will show that this Lagrangian
depends on time derivatives of N and Nα . To achieve this we shall expand out the
Γ 2 Lagrangian in terms of the ADM variables and separate out the time derivatives
of N and Nα . Any term X which contains time derivatives of N and Nα will be
denoted by [X ]t.d . By Expressing all the connections in terms of the ADM variables
we find that only Γ t

t t and Γ α
t t depends on time derivatives of N and Nα . Hence the

time derivative part for the full Γ 2 Lagrangian reads,

[√−gLquad
]
t.d =

√
h

N 2
∂t N∂αN

α − √
h

∂t Nα∂αN

N 2
+ ∂t Nα

N
∂α

√
h . (24)

Hence we have explicitly demonstrated, that the Γ 2 Lagrangian contains time deriv-
atives of N and Nα . Then one question naturally arises, how is that the ADM La-
grangian does not contain these time derivative terms, as evident from the expression
for LADM? The answer to this question is hiding in the boundary terms, since they
are not identical. Thus in order to understand this, we will have to compare the two
boundary terms, the surface term in Eq. (23) and theGibbons–Hawking–York bound-
ary term, that separate Γ 2 Lagrangian and ADM Lagrangian, respectively, from the
Einstein–Hilbert Lagrangian

√−gR.
Let us now evaluate the Einstein and the Gibbons–Hawking–York boundary terms

using the ADM variables. We shall not evaluate the integrands of the surface inte-
grals, but the corresponding divergence terms present in the bulk Lagrangians given
by Eqs. (20) and (23) respectively. One can again use the Christoffel symbols to
calculate Kni + ai required for evaluating the Gibbons–Hawking–York term in di-
vergence form. Performing the same, terms in theGibbons–Hawking–York boundary
contribution containing time derivatives of N and Nα has the expression

[
− 2∂i

{√−g
(
Kni + ai

)}
]

t.d

= √
h

∂t N∂αNα

N 2
− 2

√
h

∂t∂αNα

N
− 2

∂t
√
h∂t N

N 2

+ 2
∂t N

N 2
Nα∂α

√
h − 2

∂t Nα∂α

√
h

N
. (25)

Having derived the relevant expressions related to Gibbons–Hawking–York bound-
ary term, let us next concentrate on the boundary term in the Einstein–Hilbert ac-
tion given in Eq. (23), which has the expression ∂i (

√−gV i ), where V i = gabΓ i
ab −

gimΓ k
mk . Computation of each individual components of the boundary term which

contains time derivatives of N and Nα are thus given by
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[
∂i

(√−gV i
)]

t.d
= − 2

N2 ∂t N∂t
√
h +

√
h

N2 ∂t N∂αN
α −

√
h

N
∂t∂αN

α + 2

N2 ∂t N Nα∂α

√
h

− 2

N
∂t N

α∂α

√
h +

√
h

N2 ∂αN∂t N
α −

√
h

N
∂α∂t N

α − ∂t Nα∂α

√
h

N
.

(26)

Hence, from Eqs. (25) and (26), we finally arrive at the total contribution from the
boundary terms

[
∂c

(√−gV c
) + 2∂i

{√−g
(
Kni + ai

)}
]

t.d

= −
√
h

N 2
∂t N∂αN

α + √
h

∂t Nα∂αN

N 2
− ∂t Nα∂α

√
h

N
. (27)

Thus, we observe that the surface terms in Einstein–Hilbert action in Einstein’s orig-
inal decomposition and ADM decomposition are different. The difference contains
time derivatives of Nα and N . These time derivatives should exactly match the time
derivatives in Γ 2 Lagrangian as we know that the ADM Lagrangian does not have
time derivatives of N and Nα . Evaluating time derivatives in ADMLagrangian using
Eqs. (24) and (27), we obtain

[√−gLADM
]
t.d = [√−gR + 2∂i

{√−g
(
Kni + ai

)}]
t.d

= [√−gLquad + ∂c
(√−gV c

) + 2∂i
{√−g

(
Kni + ai

)}]
t.d

= 0 , (28)

which confirms the ADMLagrangian does not contain any time derivatives of N and
Nα and demonstrates that the time derivatives of N and Nα in the Γ 2 action arise
because of the difference in surface terms.

Since the Γ 2 Lagrangian contains time derivatives of N and Nα , it is pertinent to
ask what are the conjugate momenta corresponding to N and Nα . From Eq. (24), the
conjugate momenta for N and Nα turn out to be

p(N ) = ∂
(√−gΓ 2

)

∂ (∂t N )
=

√
h

N 2
∂αN

α (29)

pα (Nα) = ∂
(√−gΓ 2

)

∂ (∂t Nα)
= −√

h
∂αN

N 2
+ 1

N
∂α

√
h . (30)

Note that the conjugate momenta to N and Nα do not depend on time derivatives of
N and Nα respectively. Hence, these relations cannot be inverted to obtain ∂t N and
∂t Nα in terms of p(N ) and pα (Nα). Returning back to our example of cosmological
spacetime, this means that H is indeed non-dynamical and that is clear since in terms
of Hubble parameter, the Einstein’s equations contain only single time derivative of
H . Thus we conclude:
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Even though the ADM Lagrangian does not contain time derivatives of N
and Nα , the quadratic Lagrangian Lquad differing from the ADM Lagrangian
by total derivative do contains time derivatives of N and Nα . However, the
corresponding canonicalmomentums are non-invertible, i.e., one cannot obtain
time derivatives of N and Nα in terms of their canonical momentum. Hence
follows their non-dynamical nature.

This explicitly demonstrates standard statements, showing truth in non-dynamical
behavior of N and Nα but also demonstrating existence of time derivatives of non-
dynamical variables.

4 Null Surfaces: Completing the Circle

The boundary terms and ADM decomposition discussed earlier depends crucially
on the timelike (or spacelike) nature of the boundary surface. However, the most
ubiquitous surfaces in general relativity are the null surfaces, e.g., in a black hole
spacetime the standard boundary would consist of the surface at infinity and the event
horizon,which is a null surface. The limit of non-null surfaces to null surfaces is not at
all straightforward, since many quantities including the extrinsic curvature, induced
metric can either blow up or vanish on the null surface if proper care is not taken. Thus
it is important to consider the boundary term fromafirst principle in connection to null
hypersurfaces. The first step towards this direction was taken in [6] by constructing
a general formalism and its explicit implementation was carried out in [7]. There it
was argued that for a null vector a (i.e., aa = 0) the boundary term one should
add corresponds to 2

√
q(Θ + κ), where q stands for the determinant of the induced

metric on the null surface, Θ stands for the expansion of the null geodesics and κ is
the non-affinity parameter. Since null surfaces are intrinsically two-dimensional, use
of a single vector field a is not sufficient. One need to introduce another auxiliary
vector field ka , satisfying kaka = 0 and aka = −1. In the above derivations it has
been assumed that the null surface is preserved under variations, i.e., the following
three conditions hold: δ(aa) = 0, δ(aka) = 0 andfinally δ(kaka) = 0. In thiswork
wewill relax all these assumptions and shall investigate the effect of these constraints
on the boundary term and degrees of freedom on the boundary. We will start with
the general expression for boundary term of Einstein–Hilbert action having the form
[14]

√−gQ[c] = √−g∇c
(
δuc

) − 2δ
(√−g∇a

a
) + √−g

[∇ab − gab
(∇c

c
)]

δgab

= Q1 + Q2 + Q3 , (31)
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where, δua = δa + gabδb. We have separated the boundary term in three natural
combinations, one is a divergence term, Q1, second one corresponds to total variation
Q2 and finally the degrees of freedom term Q3 respectively. We will explore each
of these terms and subsequently shall evaluate the boundary term on the null surface
following the convention, if some relation holds only on the null surface it will be
denoted by A := 0. As explained above we will assume the following conditions
on the null surface only, a

a := 0, aka := 0 and kaka := 0 respectively, but we
would not assume anything about off the null surface relations, i.e., variations can
be arbitrary. Then one can introduce the partial projector Pa

b through the vectors a

and ka as, Pa
b = δab + kab and can write the first divergence term Q1 in Eq. (31) as:

Q1 : = ∂α

(√−gPα
dδu

d
) − δ

(√−gkc∂c
2
) + (

kc∂c
2
)
δ
√−g

+ √−gδkc∂c
2 − ∂c

(√−gkc
)
δ2 , (32)

while the second term can also be expressed using the partial projector Pa
b and then

the complete boundary term on using the variation of
√−g, takes the following form

√−gQ [c] := ∂α

(√−gPα
dδu

d
) − 2δ

(√−gPa
b∇a

b
) + √−gδkc∂c

2

− ∂c
(√−gkc

)
δ2 + √−g

(∇ab − gab
{
Pc

d∇c
d
})

δgab . (33)

Note that the first term is a pure surface term — it has no component along the
normal a . Then we can decompose the metric in terms of the induced metric qab
and the null vectors a and ka as: gab = qab − akb − bka . Thus variations of the
metric now gets transformed to variations of the induced metric and the null vectors.
One important point to keep in mind is the fact that δa = gabδb + bδgab but not
gabδb. Using the properties of the null vectors outside variation and decomposition
of ∇ab in terms of the extrinsic curvature ultimately lands us into the following
expression for the boundary term

√−gQ := ∂α

(√−gPα
aδu

a
) − 2δ

(√−gPa
b∇a

b
)

+ √−g
[
Θab − (

Pc
d∇c

d
)
qab

]
δqab

− √−g
{
km∇ma + kn∇an + (

kmkn∇mn
)
a − 2

(
Pc

d∇c
d
)
ka

}
δa

+ √−g
{
km∇ma + kn∇an + (

kmkn∇mn
)
a − 2

(
Pm

n∇mn
)
ka

}
δa

+ √−g
{
∂c

2} δkc − ∂c
(√−gkc

)
δ2 . (34)

Before commenting on the structure of the boundary term let us quickly check one
possible limit we have derived in our earlier works [7]. This corresponds to the
situation in which a = ∇aφ, implying δa = 0 and also δ2 = 0 = δ (aka), such
that we have Pa

b∇a
b = Θ + κ . Under imposition of these conditions, the boundary

term reduces to:
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√−gQ [∇cφ] := ∂α

(√−gPα
aδu

a
) − 2δ

[√−g (Θ + κ)
]

+ √−g [Θab − (Θ + κ) qab] δq
ab

− 2
√−g

{
km∇ma − (Θ + κ) ka

}
δa . (35)

This is exactly what we had derived by various other routes in [7]. Having checked
the consistency with earlier derived results we now concentrate on the physical
implications of Eq. (34). The first term as emphasized earlier corresponds to another
boundary term1 and contributes only on the two surface without much significance.
The second term is the boundary term that one should add (negative of that term, to
be precise) to the Einstein–Hilbert action as evaluated with volume encompassing
null boundaries. The rest of the terms are related to degrees of freedom and what one
should fix on the null surface. Among them fixing induced metric is expected, with
its conjugate momentum being πab = √−g

[
Θab − (

Pm
n∇mn

)
qab

]
. In this case as

well one can write the last term as a total divergence leading to a different boundary
term and conjugate momentum to fix on the boundary. Unlike the cases of timelike
or spacelike surfaces the situation is not so simple for null surfaces, since even after
fixing the induced metric one needs to fix the components of the null vectors as well.
But one can improve on that. Since the normalization of the null vector is arbitrary
one can always choose a to be a pure gradient such that δa = 0. Further since
the choice of ka is arbitrary one might chose it such that its expansion vanishes and
further with δ(kaa) = 0. As these seemingly natural conditions are being satisfied
the boundary term simplifies a lot, ultimately leading to,

√−gQ := ∂α

(√−gPα
aδu

a) − 2δ
(√−gPa

b∇a
b
)

+ √−g
[
Θab −

(
Pc

d∇c
d
)
qab

]
δqab

− √−g
{
km∇ma + kn∇an + (

kmkn∇mn
)
a − 2

(
Pc

d∇c
d
)
ka

}
δa . (36)

Hence along with qab one need to fix the components of the null vector a . One
more point should be noted, since δa = 0, one obtains δ(a

a) = aδ
a and hence

any contribution from δ2 can be dumped into the contribution from δa . Hence this
suggests that on the null surface one need to fix the induced metric qab as well as a .
This has interesting consequences for degrees of freedom on the null surfaces à la
degrees of freedom on spacelike or timelike surfaces. One interesting consequence
could be, as the diffeomorphisms are gauged away one can eliminate the four degrees
of freedom in δc, keeping the true (physical) degrees of freedom in the two metric

1This kind of terms are also present in the the calculation for spacelike (or timelike) surfaces, see
for example the last term of Eq. (12).
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qab of the null surface. This can have interesting implications for black hole entropy,
which we will pursue elsewhere.

5 Concluding Remarks

The peculiarity of the Einstein–Hilbert action can be traced back to its boundary
terms. In the standard treatments it is often overlooked that Einstein–Hilbert action
is not well posed, one has to add boundary terms to get an well posed action for grav-
ity. There have been parallel results on this issue, one is the well-known Gibbons–
Hawking–York boundary term, while the other is recent and more promising from a
thermodynamic hindsight which invokes two new variables f ab and Nc

ab to describe
gravity, with f abδNc

ab as the boundary term. In this work we have explicitly derived
the equivalence between these two formalisms in any spacetime dimensions. Further
we have also demonstrated the argument that “boundary terms are not unique” by
constructing two more boundary terms starting from the Gibbons–Hawking–York
term. To our surprise these boundary terms depends strongly on the spacetime di-
mensions and even can vanish in D = 4. Then we have elaborated the meaning of
another statement made often in the literature, “the ADM variables N and Nα are
not dynamical”. The standard argument goes by saying that the ADM Lagrangian
does not depend on time derivatives of N and Nα . We have shown that one can add
boundary terms to the ADM Lagrangian leading to a new Lagrangian which contain
time derivatives of N and Nα , (so it might appear they can be made dynamical by
adding boundary terms) but still they are non-dynamical as conjugate momentums
cannot be inverted. This finishes our discussion on spacelike or timelike surfaces and
we turn to the case of null surfaces. In earlier works regarding boundary term on
null surfaces, various assumption about variations of the null vectors were imposed,
here we have derived the structure of the boundary term for most general variation.
Imposing some minimal restrictions we could show that besides the induced metric,
the null vector a contains additional degrees of freedom. If they can be removed by
diffeomorphism (as [7] suggests) then the induced metric might contain all the phys-
ical degrees of freedom associated with null surfaces, having greater implications
for emergent paradigms of gravity [15–18].
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Decay of the Cosmic Vacuum Energy

Timothy Clifton and John D. Barrow

Abstract In his 2005 review, Gravity and the Thermodynamics of Horizons, Paddy
suggested that a vacuum in thermal equilibrium with a bath of radiation should have
a gradually diminishing energy. We work through the consequences of this scenario,
and find that a coupling between the vacuum and a bath of black-body radiation at
the temperature of the horizon requires the Hubble rate, H , to approach the same
type of evolution as in the “intermediate inflation” scenario, with H ∝ t−1/3, rather
than as a constant. We show that such behaviour does not conflict with observations
when the vacuum energy is described by a slowly-rolling scalar field, and when the
fluctuations in the scalar field are treated as in the “warm inflation” scenario. It does,
however, change the asymptotic states of the universe. We find that the existence
of the radiation introduces a curvature singularity at early times, where the energy
densities in both the radiation and the vacuum diverge. Furthermore, we show that the
introduction of an additional non-interacting perfect fluid into the space-time reveals
that radiation can dominate over dust at late times, in contrast to what occurs in the
standard cosmological model. Such a coupling can also lead to a negative vacuum
energy becoming positive.

1 Introduction

Inflationary cosmology is based on the hypothesis of a period of accelerated expan-
sion in the very early history of the universe. This surge in the expansion solves
the horizon problem, and is generically expected to drive the observable curvature
of space, and any expansion or curvature anisotropies, to unobservably small values
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today. In addition, inflationary cosmology provides a natural mechanism for creating
the seeds of structure formation, from tiny quantum mechanical fluctuations. Such
fluctuations are a manifestation of the thermal nature of quantum fields in curved
spaces. But the existence of a thermal space also implies the existence of a bath of
radiation [1–3]. In this paper we will consider the gravitational consequences of this
radiation on the large-scale expansion of the universe, as well as on the observables
that emerge from a period of inflation, as suggested by Paddy in his review [4]. We
will work in Planck units throughout, such that G = c = � = kB = 1.

The energy density of radiation with a black-body spectrum, at temperature T , is
given in Planck units as

ρr = 4σT 4 , (1)

where σ = g∗π2/120 is the Stefan–Boltzmann constant, and g∗ is the effective num-
ber of relativistic degrees of freedom. In a Friedmann–Lemaître–Robertson–Walker
(FLRW) geometry, the energy-conservation equation for this radiation fluid is given
by

ρ̇r + 4Hρr = Q , (2)

where Q = Q(t) is an energy exchange term that is required in order for Eq. (1) to
be satisfied at all times, and overdots denote derivatives with respect to the comoving
proper time, t . The Q term parameterizes the energy flow into the radiation field,
and thermalization is assumed to be instantaneous.

Energy-momentum conservation now requires that T μν

;ν = 0, where Tμν is the
total energy-momentum tensor of all matter fields in the space-time. If we are consid-
ering a space-time that contains effectively just radiation (r ) and vacuum (v) energy,
with Tμν = T r

μν + T v
μν , then we must therefore also have

ρ̇v = −Q , (3)

where ρv = −pv is the energy density of the vacuum, and pv is its pressure. This
equation shows that the vacuum energy density must be decaying, and is the cos-
mological counterpart of the requirement that radiating black holes must reduce in
mass, in order for the total energy-momentum in the space-time to be conserved [5].

The equations above, together with the Friedmann equation, H 2 = 8π
3 (ρr + ρv) ,

can be used to write
Ḣ + g∗

90π
(2πT )4 = 0 . (4)

If we can find an expression for T as a function of H , then we have a differential
equation that can be solved to find the rate of expansion.

In this study we will assume that the radiation is in thermal equilibrium with the
vacuum, so that T in Eq. (4) is given by the usual semi-classical expression for the
temperature of space:

T = |κ|
2π

=
∣
∣
∣
∣
H

2π

(
1 + Ḣ

2H 2

)∣
∣
∣
∣ , (5)
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where κ is the surface gravity of the apparent horizon. The expression after the second
equality is found by evaluating the surface gravity of the horizon in a spatially flat
FLRW geometry [6].

2 Background Evolution

It can immediately be seen from Eqs. (4) and (5) that Ḣ ≤ 0, and that Ḣ = 0 if and
only if H = 0. This shows that H is always decreasing, and that (in an initially
expanding universe) it is bounded from below by zero. We can therefore use H as
a proxy for time. Figure1 shows the evolution of the energy density in both the
radiation and vacuum fields as a function of H , as the Universe expands. We have
chosen to display this information in terms of the density parameters, defined as
�i ≡ 8πρi/3H 2.

At early times, when H → ∞, it can be seen that Ḣ → −2H 2. Using H = ȧ/a
this can be shown to correspond to a scale factor of the form

a(t) ∝ t
1
2 . (6)

This is the same as that which occurs in a standard radiation-dominated FLRW
cosmology. It can be seen from Eq. (4) that in this limit T ∝ H

1
2 ∝ 1/a, and from

Eq. (1) that ρr ∝ H 2 ∝ 1/a4. These are again exactly the forms of these expressions
that one would expect from a radiation filled universe without energy exchange.
However, while �v → 0 at early times, it can be seen that ρv → ∞. That is, we find
that a coupling to radiation can reduce the magnitude of the vacuum energy, even if
it is initially very large.

At late-times, on the other hand, we have H → 0, and hence Ḣ/H 2 → 0. In
this limit the leading-order contribution to the temperature takes the form of the
Gibbons–Hawking value, T = H/2π [7], andEq. (4) becomes Ḣ + g∗H 4/90π = 0.
This leads to a scale factor that evolves as

Fig. 1 The evolution of the
density parameters,
�i = 8πρi/3H2, for the
radiation field (red solid line)
and the vacuum field (blue
dotted line). We have chosen
g∗ = 2 in order to produce
this plot
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a(t) ∝ exp

{
3

2

(
30π

g∗

) 1
3

(t − t0)
2
3

}

, (7)

where t0 = constant. This type of expansion is of a type known as “intermediate
inflation” [8], which generally has a(t) ∝ exp{Atn}, where A > 0 and 0 < n < 1
are constants. Intermediate inflation has been studied by several authors [9–11], and
is known to arise in rainbow gravity theories [12].

The particular form of intermediate inflation with a(t) ∝ exp{λt2/3} is special.
When generated from aminimally coupled scalar field in a suitably chosen potential,
it is the only form of intermediate inflation (other than perfect de Sitter) that gives
an exact Harrison–Zeldovich spectrum of first-order density perturbations. Unlike
standard slow-roll scenarios, however, it is also known that this type of intermediate
inflation can produce large amounts of gravitational radiation [8, 9, 13, 14].

Equation (7) is a significant departure from the usual exponential expansion, and
occurs even though the energy density of radiation may be small. This can be
attributed to the dual requirements of an almost constant density of radiation, as
well as the exponential dilution of that radiation with inflationary expansion. There-
fore, the vacuum energy must constantly replace the quickly dissipating radiation,
and even though the amount of radiation required at any given time may be small, it
must effectively be replenished at every moment of time.

3 Energy Exchange in the Presence of a Non-interacting
Fluid

If we also include in the universe a non-interacting perfect fluid, with equation of
state

p = (γ − 1)ρ,

then the Friedmann equation becomes

H 2 = 8π

3
(ρr + ρv + ρ) , (8)

while the energy conservation equations for ρr and ρv can again be written as in
Eqs. (2) and (3). The energy density in the non-interacting field, which we take to be
separately conserved, is given by

ρ̇ + 3γ Hρ = 0 . (9)

At this point it is convenient to use the number of e-foldings, N ≡ ln a, as a replace-
ment for the time variable. We can then integrate Eq. (9) to find

ρ = ρ0e
−3γ N , (10)
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where ρ0 is a constant. The corresponding energy densities in the radiation and the
vacuum can be found from Eqs. (1), (5) and (8) to be

ρr = g∗H 4

480π2

(
1 + H ′

2H

)4

(11)

and

ρv = 3H 2

8π
− g∗H 4

480π2

(
1 + H ′

2H

)4

− ρ0e
−3γ N , (12)

where we have used a prime to denote a derivative with respect to N . Finally, differ-
entiating Eq. (8), and using the conservation equations for ρr , ρv and ρ we obtain

HH ′ = −4π

3

[
g∗H 4

120π2

(
1 + H ′

2H

)4

+ 3γρ0e
−3γ N

]

. (13)

This is a first-order ODE for H , as a function of N . Once we have H = H(N ), then
the equations above give us ρr , ρv and ρ as functions of N , too.

An example evolution of the density parameters of the radiation field, the vacuum
field, and non-interacting fluid are shown in Fig. 2. To produce this plot we have taken
the non-interacting fluid to be dust, so that γ = 1. We have also chosen to consider
the case g∗ = 2, and have set initial conditions so that H = 0.1 and ρ = 10−4 at
ln a = 0. For a finite period of time the energy density in the non-interacting dust
dominates over the radiation and vacuum energies, and we have a(t) ∼ t2/3. After
this we have a period of intermediate inflation occurring, of the type given in Eq. (7).
Before it we have radiation domination, as described in Eq. (6). During this early
period of radiation domination, the vacuum energy in fact becomes negative, and
starts to diverge. This change of sign does not appear in the absence of the non-
interacting dust.

Fig. 2 The evolution of the
density parameters for the
radiation field (red solid
line), the vacuum energy
(blue dotted line) and the
non-interacting fluid (black
dashed line). To produce this
plot we have taken the
non-interacting fluid to be a
pressure-less fluid of dust,
such that γ = 1. We have
also taken g∗ = 2, and set
H = 0.1 and ρ = 10−4 at
ln a = 0
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At late times the energy density in radiation generically dominates over matter, in
contrast to the usual case in cosmological models with non-interacting radiation and
dust [15]. In Fig. 3we plot the energy density in dust as a fraction of the energy density
in radiation, again for g∗ = 2 and with H = 0.1 and ρ = 10−4 at ln a = 0. It can be
seen that there is a transient periodwhen the dust dominates over the radiation, but that
the radiation dominates over the dust both before and after this. The opposite result
is true for γ � 0, in which case the non-interacting fluid dominates over radiation at
late times, while being sub-dominant beforehand. If we had introduced an effective
perfect ‘fluid’ with γ = 2/3, to mimic the presence of negative spatial curvature in
the Friedmann equation, then the same general evolution occurs and the curvature
‘fluid’ does not dominate at late times. This shows that flatness is approached at late
times, just as in standard inflation.

We should point out at this stage that the black-body radiation that is created
by the assumed thermal equilibrium with the vacuum is not the only radiation that
one should expect in a realistic cosmology. For example, there is also a bath of
radiation in the late Universe, which is very close to being a black-body, and that
is at a much higher temperature than that of the apparent horizon. The synthesis of
the light elements occurs during the epoch in which this fluid dominates over all
other matter, and the energy that creates this additional radiation comes (originally)
from the reheating process that occurs after inflation. A first approximation to the
cosmological consequences of including an additional radiation field of this type, at
a different temperature to the vacuum, could be studied by adding a non-interacting
fluid, as described above. In this case the primordial synthesis of light elements should
be expected to occur in exactly the sameway that it usually does, as the energy density
of the vacuum is tiny compared to that of radiation during nucleosynthesis.

In reality, of course, one would expect any additional fluid to also interact with the
vacuum in some way, and perhaps stimulate an increase or decrease in the vacuum
energy density by some small amount. A calculation to determine how this proceeds
would require a knowledge of the non-equilibrium thermodynamics of the interac-
tion. If this were known, and all of the carriers of entropy could be identified, then it
would also be possible to investigate the stability of the assumed thermal equilibrium.
We will leave a detailed study of these points for future work.

4 Perturbations Generated During Inflation

It is natural to consider the effects of the interaction introduced in Sect. 1 on the
observables that result from thermal fluctuations during inflation. To do this, we
model the vacuum energy as a scalar field with a self-interaction potential, V (φ),
such that

ρv = 1

2
φ̇2 + V (φ) and pv = 1

2
φ̇2 − V (φ) . (14)
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Fig. 3 The logarithm of the
ratio in energy densities of
dust and radiation, when
g∗ = 2, and when H = 0.1
and ρ = 10−4 at ln a = 0.
The radiation field dominates
over the dust at both late and
early times

The evolution we get in this case will be different to that obtained in the previous
section, where we considered a fluidwith equation of state pv = −ρv , but will reduce
to it in the appropriate limits.

In terms of these new variables, the Friedmann and conservation equations can
be manipulated into the form

Ḣ − 4g∗π3

45
T 4 + 3H 2 − 8πV = 0 (15)

φ̇2 + 2V − 3H 2

4π
+ g∗π2

15
T 4 = 0 , (16)

with T = T (H, φ) given by the solution of HT − g∗π2T 4/45 = 2V − H 2/4π ,

and where we have taken H > 0 and Ḣ + 2H 2 > 0. This simple system of equa-
tions represents a 2-dimensional dynamical system, the solutions of which can be
found only after the form of the potential V (φ) is specified. In the absence of the
terms involving g∗, these equations reduce to the usual ones for a scalar field-filled
Friedmann model.

Unlike in normal inflation, the existence of radiation should be expected to have
an effect on the power spectrum of comoving curvature perturbations. This is because
the thermal radiation should drive the evolution of the perturbations in φ through the
existence of both noise and dissipation terms. Such scenarios have been considered in
the literature under the title “warm inflation”. In this case the origin of the fluctuations
in the CMB are not only from a quantum origin, but also from the thermal nature of
the radiation.

If we differentiate Eq. (16), andmake use of Eq. (15), then we can write the Klein–
Gordon equation for φ as

φ̈ + 3H (1 + Γ ) φ̇ + dV

dφ
= 0 , (17)
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where we have included a dissipation term, with coefficient

Γ = −8g∗π3T 4

45H

(
H + Ṫ

T

)

(
Ḣ + 8g∗π3

45 T 4
) , (18)

andwhere T can be given in terms of H using Eq. (5). The effect ofΓ on the spectrum
of comoving curvature perturbations,PR, has been studied in a series of papers by
Berera and collaborators [16–22].

If the noise source that the radiation creates is taken to be Markovian, then the
spectrum of perturbations is found to be [20–22]

PR = H 4

(2π)2φ̇2

⎡

⎣1 +
(
2πT

H

)
Γ

√
1 + 4π

3 Γ

⎤

⎦ . (19)

This expression reduces to the usual one when Γ → 0. Generalised to include non-
trivial distributions of inflaton particles [20], and noise sources for the radiation [21],
have also recently been derived in the literature.

The spectral index of the primordial curvature perturbations, ns , is given in this
case by the usual expression:

ns − 1 ≡ d lnPR

d ln k
, (20)

where the right-hand side is to be evaluated at horizon crossing, when k 
 aH . This
spectral index can be calculated explicitly, to find a lengthy expression, using the
equations above. Below we will calculate the leading-order contributions that occur
during slow-roll inflation.

Likewise, the spectrum of tensor perturbations is found to be given by [19]

Pgrav = 4H 2

π
, (21)

which can be used to write the spectral index of tensor perturbations as

nT − 1 ≡ d lnPgrav

d ln k
= 2Ḣ

(Ḣ + H 2)
, (22)

where the derivative of lnPgrav has been evaluated at horizon crossing, to get the
simple expression after the last equality. The spectral index of tensor perturbations
can be seen to be unchanged by the presence of radiation.
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Lastly, Eqs. (19) and (21) can also be used to define the tensor-to-scalar ratio:

r ≡ AT

AS
= 4

Pgrav

PR
= −

16
(

Ḣ
H 2 + g∗H 2

90π

)

[
1 + (

2πT
H

)
Γ√

1+ 4π
3 Γ

] , (23)

where all roots are taken to be positive, and where we have used Eqs. (15) and (16) to
write this expression in terms of H and its derivatives only. Here we have taken the
amplitude of tensor perturbations to be AT = 4Pgrav, and the amplitude of scalar
perturbations to be AS = PR. Once more, this expression reduces to the usual one
when g∗ → 0.

Recent observations imply that the scalar spectral index generated during inflation
is given by [23]

nS − 1 = −0.0365 ± 0.0094, (24)

while the amplitude of curvature perturbations is inferred to be

AS = 2.19+0.12
−0.14 × 10−9 , (25)

and the tensor-to-scalar ratio is constrained by [24]

r � 0.2 . (26)

If we apply the latter two of these together, then Eq. (21) can be seen to imply

|H | � 10−5 . (27)

This severely limits any effect that the radiation can have on the scalar spectral index,
and the amplitude of scalar fluctuations.

In fact, if we define slow-roll parameters by

εH ≡ 3φ̇2

2V + φ̇2
= − (Ḣ + 8g∗π3

45 T 4)

(H 2 − 4g∗π3

45 T 4)
(28)

ηH ≡ − φ̈

H φ̇
= − (Ḧ + 32g∗π3

45 T 3Ṫ )

2H(Ḣ + 8g∗π3

45 T 4)
, (29)

then we can write our expressions for AS and nS as functions of εH , ηH and H only.
If we expand these first in H (this quantity having been found to be small already),
and then in εH and ηH , we find that the leading-order parts AS and nS are given by

nS − 1 
 −4εH + 2ηH − g∗H 2

45π

(4εH − ηH )

εH
(30)
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and

AS 
 − H 2

πεH

(
1 + g∗H 2

90πεH

)
. (31)

The observational constraints from Eqs. (24) and (25) then imply

εH � 0.1 and ηH � 0.1 , (32)

as long as g∗ � 107. The observational constraints on εH and ηH are therefore
unchanged from their usual values. The expressions for the spectral indices of scalar
and tensor fluctuations, as well as their amplitudes, are effectively given by the usual
expressions in terms of the slow-roll parameters, with leading-order corrections as
given in Eqs. (30) and (31).

Given these constraints, onemight naively expect that the level of non-gaussianity
should be the same as that in standard slow-roll inflationary models, where fN L ∼
O(εH and ηH ) ∼ 10−2, [25]. Detailed calculations, however, show that the amplitude
of non-gaussianity are strongly dependant on the parameters involved in the inter-
actions of the warm inflationary model, and hence on the microscopic physics and
dynamics [26]. For models with weak interactions, as suggested by the observational
constraints above, the shape of the bispectrum is found to be close to equilateral.

5 Discussion

In this paper, we have studied the cosmological consequences of the vacuum being
in thermal equilibrium with a bath of black-body radiation, as suggested by Paddy
in [4]. In this situation, energy is exchanged between the vacuum and the radiation.
In the absence of other matter fields, the assumption of a vacuum equation of state
pv = −ρv , and a temperature corresponding to the surface gravity of the cosmolog-
ical horizon, results at late times in intermediate inflation with H ∝ t−1/3, and the
introduction of an initial curvature singularity.

We also calculated the evolution of such a universe when it contains a non-
interacting barotropic perfect fluid, in additional to the interacting radiation and
vacuum energy. We found that, as long as the non-interacting fluid has an equation
of state p > −ρ, it is dominated at both late and early times by the radiation. We
also find that it is possible for the non-interacting fluid to dominate for a finite period
at intermediate times, and that during this time the energy density in the vacuum can
change sign from negative to positive.

We then proceeded to study the observational consequences of this energy
exchange when the vacuum is treated as a slowly-rolling minimally-coupled scalar
field with a self-interaction potential. We find that observational constraints on the
amplitude of scalar and tensor perturbations, and the spectral index of primordial
curvature perturbations, result in expressions that are very close to the usual ones,
written in terms of the slow-roll parameters. There are therefore no strong observa-
tional constraints to distinguish this scenario from a standard slow-roll inflation.
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While the generic end-state of these models is intermediate inflation driven by
the vacuum energy, we find that the generic initial state is a radiation dominated
universe in which all energy densities diverges. The occurrence of an early universe
with a large negative vacuum energy, that can evolve into one a late universe with
positive vacuum energy, is an intriguing consequence of this scenario, and would
appear to be consistent with the picture of the negative Planck-sized vacuum energy
that is generically expected to result from the lowest-order super-gravity terms in
string and M-theories [27]. We leave further study of this feature for future work.
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Understanding General Relativity After 100
Years: A Matter of Perspective

Naresh Dadhich

Abstract This is the centenary year of general relativity, it is therefore natural to
reflect on what perspective we have evolved in 100 years. I wish to share here a novel
perspective, and the insights and directions that ensue from it.

1 Prologue

It is the contradiction between observed phenomena and the prevalent theory that
drives search for a new theory. Then it takes few to several years of intense activity of
tentative guesses, effective and workable proposals, and slowly a new understanding
evolves inch by inch that finally leads to new theory. This is indeed the case for all
physical theories. Take the case of special relativity (SR). Electromagnetic theory
when it was ultimately completed by Maxwell by synthesizing Coulomb, Ampere
and Faraday, and introducing the ingenious displacement current in 1875, it predicted
an invariant velocity of light. The famous Michelson–Morley experiment verified
the prediction with great accuracy leaving no room for any suspicion or doubt. The
universally constant velocity obviously conflicted with the Newtonian mechanics.
Then the search beganwhich culminated in 1905 after 30 years inEinstein’s discovery
of special relativity (SR).

In the journey to special relativity there were contributions from severe people,
most notably of Poincare and Lorentz who had it all but for one bold statement
that velocity of light is universally constant. Then came a young man of 26, and
simply did what Poincare and Lorentz hesitated to do, and walked away with the
credit of discovering one of the fundamental theories of physics. He said that the
velocity of light was constant and its incorporation in mechanics naturally led to
special relativity. After 30 years of probing, the atmosphere was sufficiently charged
for someone to take the crucial bold step to pick up lowly hanging SR. It was strange
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that Poincare and Lorentz, who had explored various properties of SR, failed to take
the critical step. It was perhaps their great scientific reputation that came in the way.
If it did not turn out right, their hard earned reputation over a life time would go
down the drain and the whole world would laugh at them. It was this hesitation that
costed them dearly in losing their rightful claim on discovery of SR. On the other
hand Einstein had neither much reputation nor even an academic job to worry about.
He had nothing at stake as he was a clerk in a patent office. If it did not come out
right, nothing much would have been lost.

Like all other discoveries it was a situational discovery. If it were not him, someone
else would have done it in a year or two. Had he discovered only SR, he would have
been one among many great scientists, but not in a different league altogether. For
that he had to do something very special which none else could have done. By that
I mean that when atmosphere is sufficiently charged and ripe for a new theory to
sprout, it is a matter of chance, who happened to take the critical last step. So far as
SR was concerned, Einstein was really lucky.

Following SR, the real action at that time was in understanding atomic structure
by building a new theory of quantum mechanics. He did make a pretty interesting
little contribution in that which was good enough to win him the Nobel prize. But
then he totally withdrew from the action and devoted 10 long years for completion of
the principle of relativity, from special to general. In the process, he arrived at a new
relativistic theory of gravity – general relativity (GR). True, there was no observation
or experiment that asked for anything beyond the Newtonian theory at that time. He
was therefore not driven by contradiction with experiment but was entirely propelled
by the principle. That is why GR was born as a whole and also much ahead of its
time. This is something none else could have discovered.

To put it all in perspective, had it not been for him, nobody would have asked for a
new theory of gravity until quasars were discovered in mid 1960s. This is what puts
him in a class of his own. And so is GR as well because it was born out of a principle
without any bearing on observation and experiment, whatsoever. More importantly
it makes demand on spacetime, which no other force makes, that it has to curve to
describe its dynamics. Above all, not only it still stand tall and firm after 100 years,
but its centenary is in fact being celebrated with the detection of gravitational waves
which were also predicted by Einstein 100 years back! This is indeed a discovery of
the same proportion as that of the electromagnetic waves, and hence it is one of the
greatest of all times. It is time to salute with utmost reverence and admiration both
the theory as well as its creator.

2 Introduction

General relativity is in many ways unique and different from all other physical the-
ories. The first and foremost among them is the fact that, unlike all other forces,
relativistic gravitational law is not prescribed but instead it is dictated by spacetime
geometry itself. It naturally arises from inhomogeneity of spacetime and that is why
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it is universal – links to everything that physically exists. Presence of any forcemakes
spacetime inhomogeneous for particles towhich the force links but not for others. For
instance, presence of electric field makes spacetime inhomogeneous for electrically
charged particles while for neutral particles it remains homogeneous. By universal
force we mean a force that links to everything that physically exists irrespective of
particle parameters like mass, charge and spin. Since relativistic gravity is universal
and hence it can only be described by spacetime geometry. Thus unlike Newton, Ein-
stein had no freedom to prescribe a relativistic gravitational law because it is entirely
governed by spacetime itself which does not obey anyone’s dictate or prescription.
Since relativistic gravity encompasses Newtonian gravity, it is remarkable that now
Newton’s inverse square law simply follows from spacetime geometry without any
external prescription.

Note that spacetime is a universal entity as it is the same for all and equally shared
by all and so is the universal force. Hence the two respond to each-other leaving
no room for any external intervention. By simply appealing to inhomogeneity of
spacetime curvature, we will derive an equation of motion for universal force which
would be nothing other than Einsteinian gravity. It is remarkable that we make no
reference to gravity at all yet spacetime curvature yields gravitational equation. This
happens because both spacetime and Einstein gravity are universal [1]. A general
principle that emerges is that all universal things respond to each other and they
must therefore be related.

The equation ofmotion that emerges fromRiemann curvature is non-linear involv-
ing square of first derivative of metric. It indicates that gravity is self interactive. As
a matter of fact it is the universal character that demands energy in any form must
gravitate. Since gravitational field like any other field has energy, it must hence
also gravitate – self interact. Isn’t it wonderful that spacetime curvature automati-
cally incorporates this feature through nonlinearity inherent in Riemann tensor? The
important aspect of self interaction is that it gravitates without changing the New-
tonian inverse square law. This is rather strange because self interaction would, in the
classical framework, have asked for∇2Φ = 1/2Φ ′2 which would have disturbed the
inverse square law. The situation is exactly as it is for photon (light) to feel gravity
without having to change its velocity. Within classical framework it is impossible to
accommodate these contradictory demands.

The answer could however be in the enlargement of framework in which gravity
curves space and photon freely floats on it without having to change its velocity.
What should curve space and the obvious answer is gravitational field energy which
is not supposed to contribute to acceleration, ∇Φ. Thus gravity self interacts via
space curvature and that also facilitates photon’s interaction with gravity [2]. These
are the two new aspects of Einstein gravity whichwonderfully take care of each-other
leaving Newtonian inverse square law intact. Einstein is therefore Newtonwith space
curved [2]. Since space and time are bound together in spacetime through universal
light velocity, and hence spacetime must be curved. This is how spacetime curvature
enters in description of the universal force – Einstein gravity. In this way the self
interaction gets automatically incorporated in Riemann curvature and is reflected
through occurrence of square of first derivative of metric.
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General relativity (GR) is undoubtedly the most elegant and beautiful theory and
it is for nothing that Paul Dirac termed it as the greatest feat of human thought!

In what follows we would further explore its elegance and richness of structure
and form in relation to what new insights and understanding we have gained in past
100 years, and marvel on new questions and directions that ensue.

3 At the Very Beginning

Let us begin by characterizing free state of space and time in absence of all forces.
Space is homogeneous and isotropic and time is homogeneous. As space is homo-
geneous, one can freely interchange x and y. Since time is also homogeneous which
means both space and time are homogeneous, and hence x and t should also be sim-
ilarly interchangeable. But they are not of the same dimension. Never mind, homo-
geneity of space and time is a general property whichmust always be respected and it
demands their interchange. One has therefore to bring x and t to the same dimension
by demanding existence of a universal invariant velocity c so that x and ct could be
interchanged [1]. Thus it is homogeneity of space and time that demands existence
of a universally constant velocity without reference to anything else. It is identified
through Maxwell’s electrodynamics with velocity of light. Thus space and time get
bound together into spacetime through the universal velocity of light. It thus arises
in a natural way as a constant of spacetime structure independent of anything else.

Spacetime free of all dynamics and forces is therefore homogeneous (space and
time being homogeneous and space being isotropic). The next question that arises
is, what is its geometry? As spacetime is homogeneous so should be its geometry.
Geometry is defined by Riemann curvature and so it should be homogeneous which
means it should be covariantly constant; i.e. Rabcd;e = 0. The Riemann curvature
should therefore be written in terms of something which is constant for covariant
derivative. That is the metric tensor and hence we write

Rabcd = Λ(gacgbd − gadgbc). (1)

A homogeneous spacetime free of all forces is thus a spacetime of constant curvature,
Λ and not necessarily Minkowskian of zero curvature. It is a maximally symmetric
spacetime and that is what is required for absence of all dynamics. The important
point to note is that Minkowski is not dictated by homogeneity of spacetime but it
is rather an external imposition by setting Λ = 0. Of course one is free to choose Λ

zero but then it has to be justified on physical grounds. In classical physics, force
free state is characterized by constant potential or constant velocity while for the
Einstein gravity it is done by constant curvature. The important point to realize is
that constant curvature means no dynamics – it is on the same footing as constant
potential in classical physics. This is because it is Riemann curvature which is the
basic element for description of the Einstein gravity and hence it is this, like potential
for classical physics, that should have freedom of addition of a constant. Force free
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homogeneous spacetime is in general described by maximally symmetric dS/AdS
and not necessarily by flat Minkowski.

The point we wish to emphasize is that Λ arises naturally as a constant of space-
time structure on the same footing as c without reference to any physical force or
phenomenon. These two are pure constants of spacetime structure itself and arise
as the characteristics of force free state. They are therefore the most fundamental
constants of Nature. No other constant can claim this degree of fundamentalness
simply because none else arises directly from spacetime structure itself.

The next question that arises is, what happens when spacetime is not
homogeneous? Obviously it should indicate presence of force which makes space-
time inhomogeneous for all particles irrespective of their mass, charge or any other
attributes. This force should therefore be universal meaning it links to everything that
physically exists. Everything that physically exists must have energy-momentum –
a universal attribute/charge, and hence this force must link to the universal charge
– energy-momentum. How do we then determine its dynamics? Since presence of
this universal force makes spacetime curvature inhomogeneous, hence its dynamics
cannot be prescribed but has to follow from the curvature itself. What is it that we
can do to Riemann curvature to get to an equation of motion for the universal force?
The Riemann curvature satisfies the Bianchi differential identity, vanishing of the
Bianchi derivative, Rab[cd;e] = 0. Let’s take its trace which leads to

Gab;b = 0 (2)

where

Gab = Rab − 1

2
Rgab, (3)

is the second rank symmetric tensor with vanishing divergence. Then we can write

Gab = −κTab − Λgab (4)

with T ab;b = 0 and the second term on the right is constant relative to covariant
derivative. Could this be an equation of motion for the universal force responsible
for inhomogeneity of spacetime curvature? On the left is a second rank symmetric
tensor derived from Riemann tensor involving second order derivative of the metric
and hence it is a second order differential operator like ∇2 operating on the metric
potential gab. If we identify the new tensor Tab with energy-momentum distribution,
which is universal, as source, then the above equation becomes equation of motion
for the Einstein gravity. Thus emerges GR from spacetime curvature all by itself.

The principle of Equivalence had played very important role in discovery of
GR but we made no reference to it in our derivation of the Einstein equation. This
is simply because gravitational law being described by curved spacetime which
admits a tangent plane at every point. This property of curved space automatically
incorporates the Principle of equivalence. Since Einsteinian gravity is universal, this
is why its equation ofmotion is geometric and so is motion under gravity – a geodesic
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with no reference to any particle parameter. It is purely a geometric statement. The
point to be noted is that Newton’s second law does not apply to relativistic gravity
because it is universal. For a geodesic motion there is no inertial and gravitational
mass, what we need to experimentally verify is that how accurately particles follow
the geodesic. Thus the question why should inertial and gravitational mass be equal
becomes impertinent.

Note that we began by characterizing force or dynamics free state of spacetime
and it is defined by (homogeneous) constant curvature. What happens when cur-
vature is inhomogeneous, the Einstein gravity naturally arises even though we had
not asked for it. Like c and Λ characterize homogeneous spacetime, similarly the
Einstein gravity characterizes inhomogeneous spacetime. In other words, gravity
is inherent in inhomogeneity of spacetime curvature. This is different from rest of
physics where a force law like Newton’s gravity is always prescribed from outside.
Thus the Einstein gravitational law cannot be prescribed instead it is dictated by
inhomogeneity of spacetime. This is so simply because it is universal – links to
everything that physically exists, the unique distinguishing feature of the Einstein
gravity.

Further note that Λ enters into the equation on the same footing as
energy-momentum tensor Tab. It is therefore as solid a piece in the equation as
energy-momentum, and hence it should not be subjected to one’s whims and fancy
without due physical justification. When Tab = 0, we are back to homogeneous
spacetime of constant curvature.

Had Einstein followed this line of reasoning to get to his equation, he would
have certainly not treated Λ as a blunder instead would have respectfully
recognized it as a true constant of spacetime structure alongside the velocity
of light. This would have saved us all from this monumental confusion that
has gone over a century and yet no sign of diminishing. Further, perhaps he
would have made the greatest prediction of all times that the Universe would
experience accelerated expansion some time in the future. Had that been the
case it would have been the most remarkable and truly Einstein like. Alas that
didn’t happen.

The picture thus emerges is that homogeneity, characterizing force-free state, of
spacetime requires two invariants, a velocity that binds space and time into spacetime
and a length that gives a constant curvature to it. Introduction of matter/forces makes
spacetime inhomogeneous and so emerges the Einsteinian gravitational dynamics. In
the conventional picture, for absence of matter spacetime is taken to be flat and then
matter makes zero curvature to non-zero. There is a discontinuity and break from flat
to non-flat while in our picture there is continuous transition from homogeneity to
inhomogeneity. There is therefore a paradigm shift, all dynamics free spacetime is
thus not flat but is (homogeneous) of constant curvature and introduction of matter
makes it inhomogeneous. As invariant velocity is needed to bind space and time into
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spacetime so as to provide a relativistic platform for physical phenomena, exactly
with the same force of argument and spirit, Λ is needed to provide an appropri-
ate curved spacetime platform for the relativistic gravitational phenomenon – the
Einstein gravity to unfold [1].

What it tells is that like constant potential is irrelevant for classical physics, sim-
ilarly constant curvature is irrelevant for gravitational dynamics. It is because the
constant curvature spacetime is maximally symmetric characterizing the ‘force free’
state of spacetime. On the other hand, it turns out that constant potential for radially
symmetric field in the usual Schwarzschild coordinates is indeed, unlike the New-
tonian gravity, non-trivial for theEinstein gravity because it produces inhomogeneous
spacetime of non-zero curvature [2, 3].

4 Self Interaction and Vacuum Energy

The driving force for GR is to universalize gravity which meant all forms of energy
distribution including its own self energy as well as zero mass particles must par-
ticipate in gravitational interaction [4]. The only way zero mass particle can, since
its velocity cannot change, be brought in the fold is that gravity must curve space
and zero mass particle simply floats freely on it. Since space is already bound with
time by the invariant velocity, gravity thus curves spacetime. We have seen above
how Einstein gravity naturally follows purely from differential geometric property
of Riemann curvature of spacetime. This is all very fine, but how is self interaction
taken care of; i.e. how does gravitational field energy gravitate? Does it do through
a stress tensor like any other matter field? No, we write no stress tensor on the right
of the Einstein equation given above. As a matter of fact gravitational potential in
the Schwarzschild solution describing field of a mass point is the same Newtonian
going as 1/r indicating that it is solution of the good old Laplace equation. There is
no self interaction contribution in it, and that is why the inverse square law remains
intact.

If the self interaction were to be incorporated in the equation, then it should have
been modified to ∇2Φ = 1/2Φ ′2. This would have of course been relative to flat
spacetime, and it would have modified the inverse square law. The latter is, as we
all know, the cornerstone of classical physics as it ensures conservation of flux and
thereby of charge. Hence that should not be tampered. The self interaction should
therefore have to be accommodated without modifying the gravitational law.

Also note that the only way photon can respond to gravity is that gravity curves
space. Could it be that the self interaction is responsible for curving space while
the matter/energy distribution produces the inverse square law? This is exactly what
happens in GR, and so we can say Einstein is Newton with space curved [2]. It is
most remarkable that the two new aspects of GR, self interaction and photon feeling
gravity, take care of each other so beautifully that the former curves space and that
is precisely what is required for the latter. This is indeed the mark of sheer elegance
and profoundity.
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Why the self interaction is not visible in the Schwarzshild solution because it has
been automatically absorbed in the space curvaturewhenwewrite grr = (1 + 2Φ)−1

while the Newtonian acceleration is accounted for by gtt = 1 + 2Φ. For solving the
Einstein vacuum equation, when we write Rt

t = Rr
r which demands gtt grr = −1

and then Rt
t = ∇2Φ = 0 leading to the inverse square law. This is how the equation

requires space to be curved and the self interaction gets absorbed in that. If spacewere
flat, grr = −1, then Rt

t = 0 implies ∇2Φ Φ ′2, clearly showing the self interaction.
When gtt = −g−1

rr = 1 + 2Φ, it gets beautifully absorbed in the space curvature
leaving the Newtonian law intact [2].

There is yet another subtlety that the Einstein potential can be zero only at infinity
and nowhere else – it is determined absolutely. This follows from Rθ

θ = 0 which
determines Φ = −M/r exactly without a possibility of addition of a constant. This
happens because gravitational field energy can vanish only at infinity, and hence so
should the space curvature. That means potential can only vanish at infinity.

The important lesson that follows is that gravitational field energy gravitates not
through a stress tensor as a source on the right hand side of the equation but instead
by enlarging the framework from flat to curved space. Why does this happen, what is
it that is different for gravitational field energy? The answer is, that it is a secondary
source which is produced by the primary source, matter-energy. It has no indepen-
dent existence of its own – it is matter fields that produce gravitational field. It is
therefore natural that a secondary source produced by the primary source should not
sit alongside in the equation. It can therefore only be incorporated by enlarging the
framework [1, 6].

This suggests a general principle that anything that doesn’t have independent
existence of its own is a secondary source and hence must not gravitate via a stress
tensor but instead by enlarging the framework. The point in question is that of vacuum
energy produced by quantum fluctuations of vacuum by thematter fields. It is exactly
on the same footing as gravitational field energy. Never mind one is able to compute
its stress tensor relative to flat spacetime, which has exactly the same form as Λgab,
it must not sit alongside the matter fields, Tab. This is precisely the reason for its
association with Λ and then its incredible mismatch, 10120 with the Planck length.
This is the root cause of the confusion which arises from making vacuum energy
gravitate through a stress tensor. This defies and violates the above general principle
just enunciated.

If we adhere to the principle, there is no relation between Λ and vacuum energy.
It is then free to have any value that observations determine. Recall that both c and
Λ arose purely from the symmetries of (homogeneous) spacetime as constants of
its structure. Then c got identified with velocity of light and Λ remained dangling
until the 1997 supernova observations of accelerating Universe [5]. Thus Λ simply
represents acceleration of the Universe as all observations are wonderfully consistent
with it. There is no need for any kind of dark energy involving exotic matter or
outlandish modifications of gravitation theory.

Of course the moot question remains, how to enlarge the framework to make
vacuum energy gravitate? Vacuum energy is a quantum creature and hence it would
be difficult to guess the enlargement of framework until there emerges a quantum
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theory of gravity. If we had asked the same question for gravitational field energy in
1912, say, before the advent of GR, it would have been hard to guess that enlargement
is in curving space. This means wewon’t know exactly without quantum gravity how
to enlarge framework for making vacuum energy gravitate [1, 6].

There could however be some informed guesses based on the lessons learnt from
gravitational field energy. In GR, the real question was how to make light feel grav-
ity which required space to be curved. Since space and time were already bound
into spacetime by the velocity of light, it meant curving of spacetime. That is how
gravity can only be described by spacetime curvature which automatically incorpo-
rated gravitational self interaction. Since the Newtonian inverse square law remains
intact, self interaction can only curve space. This suggests that framework should
be so enlarged that keeps GR intact. The real question therefore is to identify some
phenomenon which has so far remained aloof, like light in the case of GR, and that
has to be brought into the gravitational fold. Answering this question would require
framework enlargement which would automatically incorporate gravitational inter-
action of vacuum energy. This is what will perhaps show the road to quantum gravity.
Unfortunately we have not yet been able to clearly identify this critical question. That
is the problem.

Spacetime curves or bends like a material object, it should therefore have physical
structure – a micro-structure as is the case for any material object. That means space
should have some micro building blocks – “atoms of space”. Such a micro structure
is also required for vacuum to quantum fluctuate giving rise to vacuum energy.
Thus micro structure of space is intimately related to vacuum energy and hence
incorporation of the former would perhaps automatically, as anticipated, take care of
gravitational interaction of the latter. The key question is then how to bring in atoms
of space into the fray. Loop quantum gravity seems to follow this route but has not
been able go far enough.

Another possible avenue could be that vacuum energy may gravitate via higher
dimension [7–9] leaving GR intact in the four dimensional spacetime. It is con-
ceivable that at very high energy gravity may not entirely remain confined to four
dimension, it may leak into higher dimension [10]. The basic variable for gravity
is the Riemann curvature tensor, for high energy exploration, we should include its
higher powers in the action. Yet we want the equation of motion to retain its second
order character, then this requirement uniquely identifies Lovelock Lagrangian. Even
though Lovelock action is a homogeneous polynomial of degree N in the Riemann
curvature, it has remarkable unique property that the resulting equation is always
second order. Note that Lovelock gravity includes GR for N = 1, and N = 2 is the
quadratic Gauss-Bonnet (GB) gravity, and then cubic and so on. But the higher order
terms make non-zero contribution in the equation only in dimensions higher than
four. If we want to explore high energy sector of gravity, which should indeed be the
case for quantum gravity, we have to go to higher dimensions [11]. This is purely
a classical motivation for higher dimensions. What it suggests is that the road to
quantum gravity may go via higher dimensions notwithstanding the fact that higher
dimensions are natural playground for string theory. Though string theory is a very
popular approach to quantum gravity, yet it has also not gone far enough.
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What it all suggests is that like quantum gravity, gravitational interaction of vac-
uum energy is an open question, and the solution of the latter is perhaps inseparable
from the former. In the absence this, incorporation of it through a stress tensor is
simply a tentative attempt similar to inclusion of gravitational self interaction by
writing ∇2Φ = 1/2Φ ′2. This was not borne out by the correct theory of gravity –
GR. So would be the case for vacuum energy when quantum gravity emerges.

5 In Higher Dimension

In the previous section, we have hinted that consideration of gravity in higher dimen-
sions may not be entirely outrageous. Then the question arises, what should be the
equation in there? Could it very well be the Einstein equation which is valid in all
dimensions larger than two? Yes, that could be the case. However how did we land
in four rather than three dimension? This is because in three dimension, gravity is
kinematic which means Riemann is entirely determined by Ricci tensor and hence
there exists no non-trivial vacuum solution. This translates into the fact that there are
no free degrees of freedom for free propagation of gravitational field. This is how
we come to four dimension where Riemann has 20 while Ricci has 10 components
allowing for non-trivial vacuum black hole solutions. Could this feature be univer-
salized for all odd dimensions in a new theory which reduces to Einstein gravity for
dimension, d ≤ 4? It would be nice to incorporate this feature in higher dimension.

Another desirable feature that one can ask for is existence of bound orbit around a
static object like a black hole. It is easy to see that inGR, bound orbits can exist only in
d = 4 and in none else. This is because gravitational potential goes as 1/rd−3 which
becomes sharper and sharper with dimension while centrifugal potential always falls
off as 1/r2 and hence the two can balance only in four dimension to give bound
orbits.

If we take these two as the guiding features for gravitational equation in higher
dimension, then pure Lovelock gravity is uniquely singled out [12–15]. In Lovelock
gravity, Lagrangian is

∑
αNL N where each αi is a dimensionful coupling constant.

Note that α0 = Λ is the cosmological constant and α1 = G,L = R are respectively
the Newtonian gravitational constant and the Einstein–Hilbert Lagrangian. By pure
Lovelock we mean that Lagrangian has the only one N th order term without sum
over lower orders, and consequently the equation also has only one term. For pure
Lovelock, gravitational potential goes as 1/r (d−2N−1)/N for d ≥ 2N + 1 [16]. For
existence of bound orbits, what is required is (d − 2N − 1)/N < 2 which is always
true for N ≥ 1, and it means d < 4N + 1. Further d > 2N + 1 else gravitational
potential becomes constant, and hence we have the dimensional range, 2N + 1 <

d < 4N + 1 for existence of bound orbits. For the linear N = 1 Einstein, it is 3 <

d < 5 (and hence only d = 4) while for the quadratic N = 2 GB, 5 < d < 9.
In pure Lovelock gravity, potential becomes constant in all critical odd d = 2N +

1 dimensions and hence gravity must be kinematic. For N = 1 Einstein gravity,
potential is constant in d = 3, and gravity is kinematic in the sense that Riemann is
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given in terms of Ricci tensor. This means that it should be possible to define an N th
order Lovelock Riemann tensor which is then given in terms of the corresponding
Ricci in all d = 2N + 1 dimensions. This is indeed the case [17–19]. The Lovelock
Riemann,which is a homogeneous polynomial inRiemann, is defined by the property
that vanishing of trace of its Bianchi derivative gives a divergence free second rank
symmetric tensor – Lovelock analogue of Einstein tensor, and it is exactly the same as
what one obtains by varying N th order Lovelock action [17]. Then the pure Lovelock
gravitational equation reads as follows:

(N )Ea
b ≡ − 1

2N+1
δ
ac1d1...cN dN
ba1b1...aN bN

Ra1b1
c1d1

. . . RaNbN
cN dN

= −8πT a
b . (5)

It is then shown that N th order Lovelock Riemann can be entirely written in terms
of N th order Einstein tensor, (N )Ea

b [19]. The pure Lovelock gravity is kinematic in
all critical odd d = 2N + 1 dimensions.

We have identified the two critical properties of Einstein gravity, kinematicity in
odd three dimension and existence of bound orbits around a static source, which
we would like to carry over to higher dimensions. It is the universalization of these
properties that leads to pure Lovelock equation uniquely. This is the right equation
in higher dimensions [13, 15]. For a given N , existence of bound orbits prescribes
the dimensional range, 2N + 1 < d < 4N + 1. On the other hand stability of static
black hole requires d ≥ 3N + 1 [20] and hence the range gets further refined to
3N + 1 ≤ d < 4N + 1. For N = 1, it admits only one d = 4 while for N = 2, there
are two d = 6, 7, and in general number of allowed dimensions are equal to Lovelock
order N . It is interesting that stability threshold is though included but not the entire
range d ≥ 3N + 1. That is, bound orbits exist for unstable black hole for 2N + 1 <

d < 3N + 1 while for d ≥ 4N + 1, black hole is stable without bound orbits around
it.

Further pure Lovelock gravity gives rise to an interesting situation that 1/r poten-
tial on which whole of astrophysics and cosmology rest could occur not only in four
but higher dimensions as well [20]. This is because potential goes as 1/r (d−2N−1)/N

which will be 1/r in all dimensions, d = 3N + 1. Static black holes are thus indis-
tinguishable in this entire dimensional spectrum. In particular four dimensional
Schwarzschild black hole is indistinguishable from its pure GB seven dimensional
counterpart. Not only that cosmology is also the same as FRW expanding Universe
evolves with the same scale factor [20].

So far as gravity is concerned, the situation is indistinguishable in dimensional
spectrum d = 3N + 1 for all astrophysical and cosmological observations, except for
gravitational degrees of freedomdeterminingnumber of polarizations of gravitational
wave. Number of degrees of freedom are given by d(d − 3)/2 [21] which is two in
four and 14 in seven dimension. The Hulse–Taylor pulsar observations do verify two
polarizations for emitted gravitational wave. But for that it would not be possible to
decide whether it is Einstein gravity in four or N th order pure Lovelock in (3N + 1)
dimension. It is an interesting feature of pure Lovelock gravity.
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6 Outlook and Perspective

GR is purely a principle and concept driven theory and it is therefore born as a whole
complete theory. There was no observation or phenomenon driving it. That is why
it was not developed as step by step but it emerged as a complete full theory. One
can envisage the driving principle as inclusion of zero mass particle in mechanics
and gravitational interaction. This meant universalization of mechanics and gravity
for all particles including zero mass particles – photons/light [4]. The former leads
to relativistic mechanics known as special relativity while the latter to relativistic
theory of gravitation – general relativity. Of course in the former case there was the
compelling phenomenological demand – velocity of lightwas observed to be constant
for all observers while for the latter there was no such phenomena asking for it. As a
matter of fact, the first serious challenge to the Newtonian gravity only came as late
as in mid 1960s in the form of observation of highly energetic quasi-stellar objects
– quasars.

It was a theory at least 50 years ahead of its times. This was because it was
principle rather than experiment or observation driven. The same situation still holds
as there is no strong observational challenge to it as yet. The accelerating Universe
observation did pose some concern, and it did generate enormous amount of activity
in building models of dark energy which were rather too many for comfort, and
involved exotic matter fields and outlandish modifications of the theory. However
it has all settled down to Λ successfully accounting for the observations. It is the
symmetry of homogeneous spacetime that gives rise to Λ as a true constant of
spacetime structure on the same footing as velocity of light, and the accelerating
Universe determines its value [5].

Had Einstein followed the natural and straightforward geometric path to arrive at
GR, he could have in fact realized the true significance ofΛ andwould have predicted
that the Universe would experience accelerated expansion some time in the future.
That would have been the greatest prediction of all times. Then there won’t have
been any reason for questioning Λ but instead one would have questioned how does
vacuum energy stress tensor has the same form as Λ? Neither there would have been
that much thrust for dark energy models nor would there have been acrobatics for
getting Λ as a constant of integration via trace-free or unimodular gravity [22, 23].
Though not much material difference but it would have been a different and perhaps
the right perception.

With this backdrop, the viewpoint, that vacuum energy cannot gravitate via a
stress tensor but instead it would require an enlargement of framework, would have
perhaps been appreciatedwith a positive disposition. It is then a principle that dictates
that secondary gravitational sources like self interaction and vacuum energy caused
by primary matter source do not gravitate via a stress tensor but instead they do by
enlargement of the framework as is the case for the former – by curving space [1, 6].
For inclusion of vacuum energy in gravitational interaction, it is the principle that
directs us to go beyond GR. It is therefore not only GR was principle driven but a
journey beyond it is aswell. Since vacuumenergy is a quantumeffect, for its inclusion



Understanding General Relativity After 100 Years … 85

we need a quantum theory of gravity. As and when it comes about, what is expected
is that vacuum energy would be automatically included. The gravitational interaction
of vacuum energy cannot be accommodated in GR itself and would remain an open
question until quantum gravity is discovered.

Another point to note is that the vacuum energy has equation of state, ρ + p = 0,
which defines inertial density for fluid equation of motion. What happens when iner-
tial mass of a particle is zero, it cannot be accommodated in the existing framework.
It asks for a new framework of relativistic mechanics – SR. Thus vanishing of iner-
tial quantity is a serious matter, it indicates that it cannot be accommodated in the
existing theory, and a new theory would be required for its incorporation.

Once Λ is liberated from vacuum energy, it can hence have any value that the
observations determine. Then there is no embarrassing discrepancy of 10120 orders
with the Planck length. What this number then indicates is simply the fact that the
Universe measures this much in units of the Planck area [6]!

The important point to benoted is that universal velocity anduniversal force cannot
be described by Newton’s second law [24] instead they could only be described by
spacetime geometry. Motion under gravity is free of particle mass, it simply follows
geometry of spacetime – geodesic. The response to gravity is therefore not through
gravitational mass and hence passive gravitational mass is not defined. The question
of equality of inertial and passive gravitational mass is therefore not admitted for
the relativistic gravitational force. Hence there is no need to pose the question of
its equality with inertial mass, and so the formidable question of explaining their
equality doesn’t arise. It is simply the reflection of the fact that gravity is no longer
an external force, it is synthesized in spacetime geometry and henceNewton’s second
law is inapplicable.

Let me point out that light cannot bend, what bends is space. Wemeasure bending
of space by light because it freely floats on space [25]. The question is how does
space bend like a wire? Wire bends because it is made of small discrete units like
atoms and molecules. This means discrete micro structure is necessary for anything
to bend [1]. At deep down Space should therefore also have discrete micro structure
– some fundamental entities as its building blocks. Given that, the question arises
what is the natural geometric structure of such a system? Should it be flat with zero
curvature or be of constant curvature. There are efforts afoot on building spacetime
from an evolving system of causal sets. It turns out that constant curvature is more
probable than zero curvature though the latter cannot be ruled out [26].

For a classical force which is produced by a charge, when all charges in the
Universe are summed over, the total charge must vanish. This is quite clear for
electric charge because positive and negative charges are created by pulling out
a positive or negative charge from a neutral entity, then what remains behind has
opposite polarity. This must also be true for gravity. Energy-momentum is charge for
gravity which is unipolar. How could it be balanced to yield total charge zero. The
only possible way is that gravitational field must have charge of opposite polarity [4].
This implies three things: gravity is self-interactive, negative gravitational charge is
non-localizable and spread over whole space and gravity is always attractive.
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There is yet another general principle we would like to invoke is that all universal
concepts must be related [4] and that relation must also be universal – the same for
all. By universality we mean a concept or phenomenon which is the same for all and
equally shared by all. Space and time are universal entities and they must be related
by a universal relation – universal velocity. It binds space and time into spacetime.
This then leads to the special relativity. Next gravity is a universal force, and hence
its dynamics should be described by spacetime curvature – general relativity [27]. Is
there anything else which is universal that could be bound to spacetime structure?
Like gravity, the primary quantum uncertainty principle is also universal and hence
it must also be related to spacetime. This is what has not been achieved and until that
happens quantum theory remains incomplete. As and when that happens, it would
give rise to a quantum theory of spacetime as well as of gravity. This is perhaps the
deepest question of all times, probing the building blocks of spacetime itself. It is
therefore the most formidable problem and it is not for nothing that it has so far
defied all attempts by the best of the minds for over half a century.

Of late there has been lot of work on gravity as an emergent force. It began with
the seminal work of Ted Jacobson who could deduce the first law of thermodynamics
from the Einstein vacuum equation [28]. The activity picked up considerably in past
decade or say, and among others, Paddy along with his coworkers is one of the
leading players [29]. It raises the question, if it is emergent like thermodynamical
laws, it is not a fundamental force. It is a bulk property of some underlying kinetic
structure of “atoms of space”. It is indeed a very deep question, is gravity fundamental
or emergent? I believe that the question is similar to asking, is photon a wave or
particle? Both gravity and photon are self-dual, meaning their dual is contained in
themselves. Gravity is different from all other forces in several ways, and perhaps the
most remarkable of them all is that it is both fundamental and emergent or neither.

Notwithstanding all this, probing andunderstanding of quantumstructure of build-
ing blocks of spacetime is very pertinent and is the most challenging question of the
day.

Finally I conclude it with cheering Paddy warmly and affectionately on turning
60, which is simply a number like any other, and it doesn’t matter at all if one doesn’t
mind it. It is all anyway a matter of mind.
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Piecewise Conserved Quantities

Tevian Dray

Abstract We review the treatment of conservation laws in spacetimes that are glued
together in various ways, thus adding a boundary term to the usual conservation laws.
Several examples of such spacetimes will be described, including the joining of
Schwarzschild spacetimes of different masses, and the possibility of joining regions
of different signatures. The opportunity will also be taken to explore some of the less
obvious properties of Lorentzian vector calculus.

1 Introduction

In 1987, my wife (Corinne Manogue) and I found ourselves in India for 6 months,
where we were both Indo-American Fellows. The highlight of our visit was the 3
months we spent at TIFR, working with Paddy and others in the Theoretical Astro-
physics Group. During this visit, Paddy and I wrote a paper on piecewise Killing
vectors [1], bringing additional mathematical clarity to the intriguing results I had
previously obtained with ’t Hooft [2] on shells of matter in Schwarzschild space-
times. Little did I know at the time that this theme would recur in my research in a
variety of contexts (and more than a dozen papers) over the next 20 years.

As I congratulate Paddy on the occasion of this Festschrift, it is with great pleasure
that I look back on this period near the beginning of our careers. It seems only
fitting that I use this opportunity to summarize my own journey through several quite
different applications of piecewise conserved quantities.

In Sects. 2 and3, I lay out the framework for analyzing piecewise structures, then in
Sect. 4 provide the main mathematical result, the Patchwork Divergence Theorem,
generalizing my work with Paddy [1]. The two basic applications are considered
next, namely shells of matter in Sect. 5, and signature change in Sect. 6. In Sect. 7, I
point out how the underlying framework of the Patchwork Divergence Theorem also
provides insight into vector calculus in Lorentzian geometry, providing access to
these ideas for non-experts, including undergraduates. Finally, a very brief summary
is given in Sect. 8.
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2 Piecewise Smooth Tensors

The long history of the distributional curvature due to piecewise smooth metric
tensors is summarized in [3]. As discussed there, the basic setup is two smooth
manifolds M± joined along a (possibly null) hypersurface Σ , with smooth metric
tensors g±

ab on either side. Introducing a step function Θ which is 0 on M− and 1 on
M+, the metric on M = M− ∪ M+ is given by

gab = (1 − Θ) g−
ab + Θ g+

ab. (1)

One traditionally assumes that the metric is continuous at Σ ,

[gab] := g+
ab

∣
∣
Σ

− g−
ab

∣
∣
Σ

= 0, (2)

in which case the connection Γ c
ab is at worst discontinuous and, as discussed briefly

in [2], it is straightforward to compute distributional curvature tensors. For example,
the distributional Ricci tensor is given by

Rab = (1 − Θ) R−
ab + Θ R+

ab + δc[Γ c
ab] − δb[Γ c

ac]
= (1 − Θ) R−

ab + Θ R+
ab + δρab, (3)

where
δc = δnc = ∇cΘ, (4)

so that nc is normal to Σ , and the distribution δ can be thought of as a Dirac delta
function. However, as shown in [3], it is enough for the pullbacks of g±

ab to agree on
Σ in order to have a well-defined tangent space on all of M , which we will exploit
in Sect. 6.

More generally, we can consider other piecewise smooth tensors on M , such as a
vector field of the form

ξ a = (1 − Θ) ξ a
− + Θ ξ a

+ (5)

and its discontinuity [ξ a], defined in analogy with (2).

3 Piecewise Conserved Quantities

As is well-known, aKilling vector ξ a can be contracted with the stress-energy tensor
Tab to yield a conserved quantity

Xa = T abξb (6)

satisfying
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∮
XaNadS = 0 (7)

where S is any closed, piecewise smooth hypersurface (assumed for the moment
to be nowhere null) with unit normal vector Na . The vanishing of this integral is a
consequence of the Divergence Theorem, since

∇a X
a = ∇a(T

abξb) = (∇aT
ab)ξb + T ab∇aξb = 0; (8)

the first term vanishes by energy conservation, and the second by Killing’s equation.
As defined in [1], a piecewise Killing vector is a piecewise smooth vector field ξ a

on M of the form (5), such that ξ a± are Killing vectors on M±. However, piecewise
Killing vectors are not in general Killing vectors on M , since

∇(aξb) = [
ξ(a

]
δb) (9)

which is nonzero if ξ a is discontinuous. Referring to (8), we see that

∇a(T
abξb) = [

T abξa
]
δb. (10)

If Σ is a spacelike hypersurface, and if the Darmois junction conditions (continuity
of both the intrinsic metric and the extrinsic curvature) are satisfied there, then the
stress-energy tensor is continuous at Σ ([T ab] = 0), and (10) reduces to

∇a(T
abξb) = T ab [ξa] δb. (11)

A natural condition on ξ a is for its tangential components to agree on Σ , in which
case

[ξa] = Ξna (12)

for some function Ξ defined on Σ . Given (12), and using (4), we will obtain a
conserved quantity so long as

T abnanb = 0 (13)

on Σ . If Σ is spacelike, (13) asserts that the energy density at Σ seen by an observer
orthogonal to Σ must vanish.

4 The Patchwork Divergence Theorem

In the language of differential forms, the divergence of a vector field X is defined in
terms of the volume element ω as

div(X) ω := £Xω (14)
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where £ denotes the Lie derivative. Using Stokes’ Theorem in the form

∮

∂W
α =

∫

W
dα (15)

and the identity
£Xα = d(iXα) + iX (dα), (16)

where i denotes the interior product, one obtains the Divergence Theorem in the
form

∫

W
div(X) ω =

∮

S
iXω, (17)

where S = ∂W . Any 1-formm orthogonal to S determines a unique volume element
σ on S through the requirement that

m ∧ σ = ω; (18)

σ is compatiblewith the induced orientation onW preciselywhenm is outward point-
ing. Using the properties of the interior product, the Divergence Theorem becomes

∫

W
div(X) ω =

∮

S
m(X) σ. (19)

So long as S is not null, the right-hand side of (19) is the same as the integral in (7)
after obvious identifications.

For piecewise smooth tensors, we can apply (19) separately on M± and then
add the results. Given a region W = W+ ∪ W− overlapping Σ , we let S = ∂W and
S0 = W ∩ Σ . We can extendm to outward-pointing 1-formsm± orthogonal to S± =
∂W±; on Σ we have m− = −m+ =: m0. The Patchwork Divergence Theorem [4]
then takes the form

∫

W
div(X) ω =

∮

S
m(X) σ −

∫

S0
m0([X ]) σ 0. (20)

Our convention is that m0 is the 1-form pointing from M− to M+; which way the
physically equivalent vector field points depends onwhetherΣ is spacelike, timelike,
or null.

5 Shells of Matter

A simple model for matter falling into a black hole consists of spherical shells of
massless matter. Remarkably, as shown originally by ’t Hooft [2], this situation can
be described by an exact solution of the Einstein field equation, at least in the context
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of piecewise smooth tensors. The special case of a single massless particle sitting
at the horizon of a Schwarzschild black hole [5] remains the only explicitly known
exact solution in general relativity that describes a test particle moving in the field
of another object, and is in this sense the only known solution to the relativistic
two-body problem. These models have been generalized to charged black holes [6],
to colliding shells [2, 7, 8], and, more recently, to shells of negative energy [9].

In [1], we considered two Schwarzschild spacetimes with different masses joined
along a null cylinder Σ = {u = α} representing a spherical shell of massless dust.
The corresponding metric is

ds2 =
{

− 32m3

r e−r/2mdu dv + r2 dΩ2 (u ≤ α)

− 32m3

r e−r/2MdU dV + r2 dΩ2 (u ≥ α)
(21)

where U and V are functions (only) of u and v, respectively, and

uv = − (
r
2m − 1

)
er/2m (u ≤ α), (22)

UV = − (
r
2M − 1

)
er/2M (u ≥ α). (23)

Continuity of the metric requires that on Σ we have

α

m
= U (α)

MU ′(α)
=: γ, (24)

which implies that
u∂u

m
= U∂U

M
(25)

on Σ . The only nonzero component of the stress-energy tensor is

Tuu = δ

γ πr2
(M − m), (26)

and we have the piecewise Killing vector

ξ = (1 − Θ)
v∂v − u∂u

4m
+ Θ

V ∂V −U∂U

4M
. (27)

Thus, [ξ ] is proportional to ∂V , satisfying condition (12), while (13) is satisfied by
virtue of the double-null form of the stress-energy tensor.

We therefore obtain an integral conservation law of the form (7). Since the support
of Tab is on Σ , we obtain a conserved quantity Q by evaluating this integral over
any hypersurface S intersecting Σ only once. We choose

S =
{ {t = const} (u ≤ α)

{T = const} (u ≥ α)
(28)
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where t and T denote Schwarzschild time in the regions u ≤ α and u ≥ α, respec-
tively, and where the constants are chosen so that Σ is continuous. Putting this all
together, we have

− Q =
∫

S

(
(1 − Θ) T t

t + Θ T T
T
)
dS (29)

which appears to involve the distributional product δΘ . However, since

∂u

∂r
= u

4m

1

1 − r/2m
, (30)

it turns out that

T t
t = T T

T = −δ(r − r0)

4πr2
(M − m) (31)

where r0 is the radius of the shell where S intersects Σ . Thus, there is no actual step
function present in the integrand in (29). Finally, evaluating the integral leads to

Q = M − m (32)

which shows that the energyof the shell is precisely the difference of the twoSchwarz-
schild masses, as expected.

Thus, the results of [1] can be regarded as an application of the Patchwork Diver-
gence Theorem in this setting.

6 Signature Change

“Spacetimes” combining bothLorentzian andEuclidean regionswere proposed inde-
pendently by George Ellis’s group in the context of early universe cosmology [10,
11] and by our group in the context of quantum field theory in curved space [12–14].
Subsequent work by both groups addressed tensor distributions [15, 16] and the dis-
tributional field equations [17, 18], in the process realizing that conservation laws
would take a different form at a change of signature [19], ultimately leading to the
Patchwork Divergence Theorem [4].

The key point is that, even though the metric is clearly discontinuous at a change
of signature,1 the same need not be true for the volume element. The easiest way to
see this surprising fact is to construct orthonormal frames on both M±, and compare
them along Σ . We assume that Σ is spacelike as seen from both sides, in which
case an orthonormal frame onΣ can be (separately) extended to orthonormal frames
on M± by adding the appropriate normal vector, which is spacelike in one case but
timelike in the other. However, this discontinuity lies in the metric; the resulting
normal vectors, taken together, form a continuous vector field. Since the volume

1We assume the metrics g±
ab are non-degenerate on Σ , the only other possibility.
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element is just the (wedge) product of the (dual) frame elements, it, too, must be
continuous. As mentioned above (and discussed in more detail in [3]), it is enough
for the pullbacks of the metric from M± to Σ to agree in order for there to be a
well-defined tangent space on M , a condition which is satisfied by this construction.

As discussed in [19], Israel’s results [20] relating the stress-energy tensor to the
intrinsic and extrinsic curvature of the boundary layer Σ must be modified in the
presence of signature change. For example, the “energy” density onΣ ⊂ M± is now
given by

ρ := Gabn
anb = 1

2

(
(Kc

c)
2 − KabK

ab − εR
)

(33)

where Kab is the extrinsic curvature of Σ , R is the scalar curvature of Σ , and
ε = nana = ±1. Imposing Darmois boundary conditions, the curvatures themselves
are continuous—but ε is not. Thus, rather than the Israel condition [ρ] = 0, we obtain

[ρ] = [
Gabn

anb
] = −R. (34)

Furthermore, we can independently recover the extrinsic curvature term from

[
Ga

bn
bla

] = (Kc
c)

2 − KabK
ab (35)

where la is the dual vector satisfying lana = 1 (on both sides), as using la instead of
na is equivalent to adding a factor of ε inside the square brackets. How to interpret
“energy” inside a spacelike region is, of course, an open question.

7 Lorentzian Vector Calculus

A differential geometer regards vector calculus as “really” being about differential
forms. For the last 20 years, in addition to my traditional research in relativity, I
have had the pleasure of attempting to implement an approach to the teaching of
vector calculus which can be described as “differential forms without differential
forms” [21, 22]. Key to this description is the use of the infinitesimal displacement
vector d
r , which is really a vector-valued differential form.2

When moving from Euclidean geometry to Riemannian geometry to Lorentzian
geometry, vector calculus as expressed in terms of differential forms is virtually
unchanged. However, the conversion to traditional vector language does depend on
the signature. It’s easy to rewrite the dot product in Lorentzian signature; relativists
do this routinely when working with Lorentzian metrics. However, it’s less obvious
whether there is a cross product, or what it looks like. But nowhere is this dependence
on signature more apparent than in the statement of the Divergence Theorem. What
is an “outward-pointing” vector field, anyway?

2My recent textbook on general relativity [23] also uses this language.
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In order tomake the analogy to vector calculus more apparent, let’s work in 2 + 1-
dimensional Minkowski space, with orthonormal basis vectors x̂ , ŷ, and t̂ . This basis
satisfies

x̂ · x̂ = 1 = ŷ · ŷ, t̂ · t̂ = −1, (36)

with all cross terms vanishing. So consider a vector field


F = Fx x̂ + Fy ŷ + Ft t̂ . (37)

In Minkowski space, the divergence of 
F is


∇ · 
F = ∂Fx

∂x
+ ∂Fy

∂y
+ ∂Ft

∂t
; (38)

there are no minus signs. As in the component-based proof of the (ordinary) Diver-
gence Theorem, we can integrate the divergence over a rectangular box W . The first
term yields

∫ ∫ ∫

W

∂Fx

∂x
dx dy dt =

∫ ∫
ΔFx dy dt =

∫

Sx


F · n̂ d A (39)

where Sx consists of the two faces of the box with outward-pointing normal vectors
n̂ = ±x̂ . A similar expression holds for the y-component, but the last equality fails
for the t component, since the dot product has the wrong sign. To fix this problem,
we must instead choose n̂ to be the inward-pointing normal vector on St .

Why this asymmetry? Stokes’ Theorem (15) is really about differential forms,
and the 1-form physically equivalent to n̂ (with components na) is outward-pointing
on all of S. The “asymmetry” arises due to the metric when converting from 1-forms
to vectors.

Why haven’t we noticed this asymmetry in relativity? In practice, the Divergence
Theorem is not applied to closed regions W , but rather to infinite “sandwiches”, the
region between two spacelike hypersurfaces. The integrals over the timelike sides
of the box are replaced by falloff conditions at spatial infinity, leaving only the “St”
contribution in the above argument. The relative sign difference on spacelike and
timelike boundaries becomes an overall sign, which can be—and is—safely ignored.

The computations in this section are straightforward, but at first sight the conclu-
sion may be uncomfortable to some readers. The Lorentzian Divergence Theorem
does not, in general, involve the outward-pointing normal vector (but rather the
outward-pointing 1-form). It is precisely this sort of confrontation between expecta-
tion and reality that leads students to an enhanced understanding of the underlying
mathematics even in the traditional setting.

The investigation of the Divergence Theorem for regions in Minkowski space
whose boundaries contain null pieces is left as an exercise for the reader.
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8 Summary

We have briefly summarized two quite different bodies of work, the analysis of
shells of matter in black-hole spacetimes, and of signature-changing spacetimes,
emphasizing the common thread provided by the Patchwork Divergence Theorem,
which also sheds new insight on topics in vector calculus. One never knows where
the journey will lead.

Thank you, Paddy, for your contributions to my journey.
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Units of the Nonlinear Universe

Sunu Engineer

Abstract The late time evolution of the gravitational clustering in an expanding
universe is described based on the nonlinear scaling relations (NSR) which connect
the nonlinear and linear two point correlation functions at different length scales.
The existence of critical indices for the NSR suggests that the evolution may pro-
ceed towards a universal profile which does not change its shape at late times. If
the evolution should lead to a halo profile which preserves the shape at late times,
then the correlation function should grow as a2 (in a Ω = 1 universe) even at non-
linear scales. We prove that such exact solutions do not exist; however, there exists
a class of solutions (“psuedo-linear profiles”, PLPs for short) which evolve as a2 to
a good approximation related to halo profiles of isothermal spheres. They are also
configurations of mass in which the nonlinear effects of gravitational clustering is a
minimum and hence can act as building blocks of the nonlinear universe.

1 Introduction

The evolution of large number of particles under their mutual gravitational influence
is a well-definedmathematical problem. In the presence of an expanding background
universe characterised by an expansion factor a(t), expansion tends to keep particles
apart thereby exerting a civilising influence against newtonian attraction. The average
density of particles contribute to the expansion of the background universe and the
deviations from uniformity lead to clustering. Particles evaporating from a local
overdense cluster cannot escape to “large distances” but necessarily will encounter
other deep potential wells. Naively, one would expect the local overdense regions to
eventually form gravitationally bound objects, with a hotter distribution of particles
hovering uniformly all over. As the background expands, the velocity dispersion of
the second component will keep decreasing and they will be captured by the deeper
potential wells. Meanwhile, the clustered component will also evolve dynamically
and participate in, e.g.mergers. If the background expansion and the initial conditions
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have no length scale, then the clustering will continue in a hierarchical manner ad
infinitum.

Can one make any general statements about the very late stage evolution of the
clustering? For example, does the power spectrum at late times ‘remember’ the
initial power spectrum or does it possess some universal characteristics which are
reasonably independent of initial conditions? (This question is closely related to the
issue of whether gravitational clustering leads to density profiles which are universal.
[1–5]).

This work provides partial answers to these questions based on a simple paradigm.
The key assumption is this: Let ratio between mean relative pair velocity v(a, x) and
the negative Hubble velocity (−ȧx) be denoted by h(a, x) and let ξ̄ (a, x) be the mean
correlation function averaged over a sphere of radius x.We shall assume that h(a, x)
depends on a and x only through ξ̄ (a, x); that is, h(a, x) = h[ξ̄ (a, x)]. This minimal
assumption leads to some deep insights into the nature of late time clustering. Such
an assumption was originally introduced — in a different form — by Hamilton [6].
The present form, as well as its theoretical implications were discussed in [7], and
a theoretical model for the scaling was attempted by Padmanabhan [8]. It must be
noted that simulations indicate a dependence of the relation h(a, x) = h[ξ̄ (a, x)] on
the initial spectrum and also on cosmological parameters [9–12].

2 General Features of Nonlinear Evolution

Consider the evolution of the system starting from a gaussian initial fluctuations
with an initial power spectrum, Pin(k). The fourier transform of the power spectrum
defines the correlation function ξ(a, x) where a ∝ t2/3 is the expansion factor in a
universe with Ω = 1. It is more convenient to work with the average correlation
function inside a sphere of radius x, defined by

ξ̄ (a, x) ≡ 3

x3

∫ x

0
ξ(a, y) y2dy (1)

This quantity is related to the power spectrum P(a, k) by

ξ̄ (x, a) = 3

2π2x3

∫ ∞

0

dk

k
P(a, k) [sin(k x) − k x cos(k x)] (2)

with the inverse relation

P(a, k) = 4π

3k

∫ ∞

0
dx x ξ̄ (a, x) [sin(k x) − k x cos(k x)] (3)

In the linear regime we have ξ̄L(a, x) ∝ a2ξ̄in(ai, x).
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The conservation of pairs of particles gives an exact equation satisfied by the
correlation function [13]:

∂ξ

∂t
+ 1

ax2
∂

∂x
[x2(1 + ξ)v] = 0 (4)

where v(a, x) denotes the mean relative velocity of pairs at separation x and epoch a.
Using the mean correlation function ξ̄ and a dimensionless pair velocity h(a, x) ≡
−(v/ȧx), Eq. (4) can be written as

(
∂

∂ ln a
− h

∂

∂ ln x

)
(1 + ξ̄ ) = 3h(1 + ξ̄ ) (5)

Given the key assumption, viz. that h depends on (a, x) only through ξ̄ , several
results follow.

2.1 Formal Solution

Given that h = h[ξ̄ (a, x)], one can easily integrate the Eq. (5) to find the general
solution (see [7]). The characteristics of this Eq. (5) satisfy the condition

x3(1 + ξ̄ ) = l3 (6)

where l is another length scale. When the evolution is linear at all the relevant scales,
ξ̄ � 1 and l ≈ x. As clustering develops, ξ̄ increases and x becomes considerably
smaller than l. The behaviour of clustering at some scale x is then determined by the
original linear power spectrum at the scale l through the “flow of information” along
the characteristics. This suggests that the true correlation function ξ̄ (a, x) can be
expressed in terms of the linear correlation function ξ̄L(a, l) evaluated at a different
point. This is indeed true and the general solution can be expressed as a nonlinear
scaling relation (NSR, for short) between ξ̄L(a, l) and ξ̄ (a, x) with l and x related
by Eq. (6). This solution can be expressed in terms of two functions V (z) and U (z)
where V (z) is related to the function h(z) by

V (z) = exp

(
2

3

∫ z dz

h(z) (1 + z)

)
(7)

and U (z) is the inverse function of V (z). Then the solution to the Eq. (5) can be
written in either of two equivalent forms as:

ξ̄ (a, x) = U
[
ξ̄L(a, l)

] ; ξ̄L(a, l) = V
[
ξ̄ (a, x)

]
(8)
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where l3 = x3(1 + ξ̄ ) [7]. Given the form of h(ξ̄ ) this allows one to relate the non-
linear correlation function to the linear one.

From general theoretical considerations (see [8]) it can be shown that V (z) has
the form:

V (z) =
⎧
⎨

⎩

1 (z � 1)
z1/3 (1 <∼ z <∼ 200)
z2/3 (200 � z)

(9)

In these three regions h(z) ≈ [(2z/3), 2, 1] respectively. We shall call these regimes,
linear, intermediate and nonlinear respectively. More exact fitting functions to V (z)
andU (z) have been suggested in literature. (see [6, 9, 11]). This paper uses the one
given in [6]:

V (z) = z

(
1 + 0.0158 z2 + 0.000115 z3

1 + 0.926 z2 − 0.0743 z3 + 0.0156 z4

)1/3

(10)

U (z) = z + 0.358 z3 + 0.0236 z6

1 + 0.0134 z3 + 0.0020 z9/2
(11)

Equations (8) and (10), (11) implicitly determine ξ̄ (a, x) in terms of ξ̄L(a, x).

2.2 Critical Indices

These NSRs already allow one to obtain some general conclusions regarding the
evolution. A local index for rate of clustering is defined by

na(a, x) ≡ ∂ ln ξ̄ (a, x)

∂ ln a
(12)

which measures how fast ξ̄ (a, x) is growing. When ξ̄ (a, x) � 1, then na = 2 irre-
spective of the spatial variation of ξ̄ (a, x) and the evolution preserves the shape of
ξ̄ (a, x). However, as clustering develops, the growth rate will depend on the spatial
variation of ξ̄ (a, x). Defining the effective spatial slope by

−[neff (a, x) + 3] ≡ ∂ ln ξ̄ (a, x)

∂ ln x
(13)

one can rewrite the Eq. (5) as

na = h

(
3

ξ̄ (a, x)
− neff

)
(14)
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At any given scale of nonlinearity, decided by ξ̄ (a, x), there exists a critical spatial
slopenc such that na > 2 for neff < nc (implying rate of growth is faster than predicted
by linear theory) and na < 2 for neff > nc (with the rate of growth being slower than
predicted by linear theory). The critical index is fixed by setting na = 2 in Eq. (14) at
any instant. This feature will tend to “straighten out” correlation functions towards
the critical slope. (It is assumed that ξ̄ (a, x) has a slope that is decreasing with scale,
which is true for any physically interesting case). From the fitting function it is easy to
see that in the range 1 <∼ ξ̄ <∼ 200, the critical index is nc ≈ −1 and for 200 <∼ ξ̄ , the
critical index is nc ≈ −2 [14]. This clearly suggests that the local effect of evolution
is to drive the correlation function to have a shape with (1/x) behaviour at nonlinear
regime and (1/x2) in the intermediate regime. Such a correlation function will have
na ≈ 2 and hence will grow at a rate close to a2.

3 Correlation Functions, Density Profiles
and Stable Clustering

A nonlinear scaling relation giving ξ̄ (a, x) in terms of ξ̄L(a, l) leads to the question:
How does ξ̄ (a, x) behave at highly nonlinear scales or, equivalently, at any given
scale at large a?

To begin with, it is easy to see that v = −ȧx or h = 1 for sufficiently large
ξ̄ (a, x), that the evolution gets frozen in proper coordinates at highly nonlinear scales
(assumed). Integrating Eq. (5) with h = 1, leads to ξ̄ (a, x) = a3F(ax); This is “sta-
ble clustering”. There are two points which need to be emphasised about stable
clustering:

(1) At present, there exists some evidence from simulations [10] that stable clus-
tering does not occur in a Ω = 1 model. In a formal sense, numerical simulations
cannot disprove (or even prove, strictly speaking) the occurrence of stable clustering,
because of the finite dynamic range of any simulation.

(2) Theoretically speaking, the “naturalness” of stable clustering is often over-
stated. The usual argument is based on the assumption that at very small scales —
corresponding to high nonlinearities — the structures are “expected to be” frozen at
the proper coordinates. However, this argument does not take into account the fact
that mergers are not negligible at any scale in an Ω = 1 universe. In fact, stable
clustering is more likely to be valid in models with Ω < 1 — a claim which seems
to be again supported by simulations [10].

If stable clustering is valid, then the late time behaviour of ξ̄ (a, x) cannot be
independent of initial conditions. In other words the two requirements: (i) validity
of stable clustering at highly nonlinear scales and (ii) the independence of late time
behaviour from initial conditions, are mutually exclusive. This is most easily seen for
initial power spectra which are scale-free. IfPin(k) ∝ kn so that ξ̄L(a, x) ∝ a2x−(n+3),
then it is easy to show that ξ̄ (a, x) at small scales will vary as
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ξ̄ (a, x) ∝ a
6

n+5 x− 3(n+3)
n+5 ; (ξ̄ � 200) (15)

if stable clustering is true. Clearly, the power law index in the nonlinear regime
“remembers” the initial index. The same result holds for more general initial condi-
tions.

What does this result imply for the profiles of individual halos? To answer this
question, start with the simple assumption that the density field ρ(a, x) at late stages
can be expressed as a superposition of several halos, each with some density profile;
that is

ρ(a, x) =
∑

i

f (x − xi, a) (16)

where the i-th halo is centered at xi and contributes an amount f (x − xi, a) at the
location xi (This equation is easily generalised to the situation inwhich there are halos
with different properties, like core radius, mass etc. by summing over the number
density of objects with particular properties). The power spectrum for the density
contrast, δ(a, x) = (ρ/ρb − 1), corresponding to the ρ(a, x) in (16) can be expressed
as

P(k, a) ∝ (
a3 |f (k, a)|)2

∣
∣
∣
∣
∣

∑

i

exp−ik · xi(a)
∣
∣
∣
∣
∣

2

(17)

∝ (
a3 |f (k, a)|)2 Pcent(k, a) (18)

where Pcent(k, a) denotes the power spectrum of the distribution of centers of the
halos.

If stable clustering is valid, then the density profiles of halos are frozen in proper
coordinates giving f (x − xi, a) = f (a (x − xi)); hence the fourier transform will
have the form f (k, a) = f (k/a). On the other hand, the power spectrum at scales
which participate in stable clustering must satisfy P(k, a) = P(k/a) (This is merely
the requirement ξ̄ (a, x) = a3F(ax) re-expressed in fourier space). From Eq. (18) it
follows that Pcent(k, a) = constant independent of k and a at small length scales.
This can arise in the special case of random distribution of centers or—more impor-
tantly — because the equation is essentially describing the interior of a single halo
at sufficiently small scales. The halo profile can be related to the correlation function
using (18). In particular, if the halo profile is a power law with f ∝ r−ε, it follows
that the ξ̄ (a, x) scales as x−γ (see also [15, 16]) where

γ = 2ε − 3 (19)

Now if the correlation function scales as [−3(n + 3)/(n + 5)], then the halo
density profiles should be related to the initial power law index through the relation

ε = 3(n + 4)

n + 5
(20)
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So clearly, the halos of highly virialised systems still “remember” the initial power
spectrum.

Alternatively, one can try to “reason out” the profiles of the individual halos and
use it to obtain the scaling relation for correlation functions. One of the favourite
arguments used by cosmologists to obtain such a “reasonable” halo profile is based
on spherical, scale invariant, collapse. It turns out that one can provide a series of
arguments, based on spherical collapse, to show that — under certain circumstances
— thedensity profiles at the nonlinear end scale as [−3(n + 3)/(n + 5)]. The simplest
variant of this argument runs as follows: If an initial density profile is r−α , then
scale invariant spherical collapse will lead to a profile which goes as r−β with β =
3α/(1 + α) (see eg., [8, 17] and references cited therein) [18].

Taking the initial slope as α = (n + 3)/2 will immediately give β = 3(n +
3)/(n + 5). (Our definition of the stable clustering in the last section is based on
the scaling of the correlation function and gave the slope of [−3(n + 3)/(n + 5)]
for the correlation function. The spherical collapse gives the same slope for halo
profiles.) In this case, when the halos have the slope of ε = 3(n + 3)/(n + 5), then
the correlation function should have slope

γ = 3(n + 1)

n + 5
(21)

Once again, the final state “remembers” the initial index n.
The argument for correlation function to scale as [−3(n + 3)/(n + 5)] is based

on the assumption of h = 1 asymptotically, which may not be true. The argument,
leading to density profiles scaling as [−3(n + 3)/(n + 5)], is based on scale invariant
spherical collapse which does not do justice to nonradial motions.

There are two possibilities where independence from initial conditions can be
achieved.

(i) A first example is when the slope of the correlation function is universal and
obtain the slope of halos in the nonlinear limit using relation (19). Such an interesting
situation can develop if is assumed that h reaches a constant value asymptotically
which is not necessarily unity. In that case, the Eq. (5) can be integrated to get
ξ̄ (a, x) = a3hF[ahx] where h now denotes the constant asymptotic value of of the
function. For an initial spectrum which is scale-free power law with index n, this
result translates to

ξ̄ (a, x) ∝ a
2γ
n+3 x−γ (22)

where γ is given by

γ = 3h(n + 3)

2 + h(n + 3)
(23)

This obtains a γ which is independent of initial power law index provided h satisfies
the condition h(n + 3) = c, a constant. In this case, the nonlinear correlation function
will be given by

ξ̄ (a, x) ∝ a
6c

(2+c)(n+3) x− 3c
2+c (24)
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The halo index will be independent of n and will be given by

ε = 3

(
c + 1

c + 2

)
(25)

This requires that the asymptotic value of h to explicitly depend on the initial condi-
tions though the spatial dependence of ξ̄ (a, x) does not. In other words, the velocity
distribution — which is related to h — still “remembers” the initial conditions.
This is indirectly reflected in the fact that the growth of ξ̄ (a, x) — represented by
a6c/((2+c)(n+3)) — does depend on the index n.

As an example of the power of such a — seemingly simple — analysis note the
following: Since c ≥ 0, it follows that ε > (3/2); invariant profiles with shallower
indices (for e.g. with ε = 1) are not consistent with the evolution described above.

(ii) Second example:Make an ansatz for the halo profile and use it to determine the
correlation function. It is assumed, based on small scale dynamics, that the density
profiles of individual halos should resemble that of isothermal spheres, with ε = 2,
irrespective of initial conditions. Converting this halo profile to correlation function
in the nonlinear regime is straightforward and is based on Eq. (19): If ε = 2, then
γ = 2ε − 3 = 1 at small scales; that is ξ̄ (a, x) ∝ x−1 at the nonlinear regime. Note
that this corresponds to the critical index at the nonlinear end, neff = nc = −2 for
which the growth rate is a2 — same as in linear theory. (This is, however, possible for
initial power law spectra, only if ε = 1, i.e. h(n + 3) = 1 at very nonlinear scales.
Testing the conjecture that h(n + 3) is a constant is probably a little easier than
looking for invariant profiles in the simulations but the results are still uncertain).

The corresponding analysis for the intermediate regime,with 1 <∼ ξ̄ (a, x) <∼ 200,
ismore involved. This is clearly seen in Eq. (18)which shows that the power spectrum
(and hence the correlation function) depends both on the fourier transform of the
halo profiles as well as the power spectrum of the distribution of halo centres. In
general, both quantities will evolve with time and we cannot ignore the effect of
Pcent(k, a) and relate P(k, a) to f (k, a). The density profile around a local maxima
will scale approximately asρ ∝ ξ while the density profile around a randomly chosen
point will scale as ρ ∝ ξ 1/2. (The relation γ = 2ε − 3 expresses the latter scaling
of ξ ∝ ρ2). There is, however, reason to believe that the intermediate regime (with
1 <∼ ξ̄ <∼ 200) is dominated by the collapse of high peaks [8]. If so the correlation
function and the density profile will have the same slope in the intermediate regime
with ξ̄ (a, x) ∝ (1/x2). Remarkably enough, this corresponds to the critical index
neff = nc = −1 for the intermediate regime for which the growth is proportional to
a2 Thus if: (i) the individual halos are isothermal spheres with (1/x2) profile and
(ii) if ξ ∝ ρ in the intermediate regime and ξ ∝ ρ2 in the nonlinear regime, it will
result in a correlation function which grows as a2 at all scales. Such an evolution,
of course, preserves the shape and is a good candidate for the late stage evolution of
the clustering.

While the above arguments are suggestive, they are far from conclusive. It is,
however, clear from the above analysis and it is not easy to provide unique theoretical
reasoning regarding the shapes of the halos. The situation gets more complicated if
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the fact that all halos will not all have the same mass, core radius etc. and we have to
modify our equations by integrating over the abundance of halos with a given value
of mass, core radius etc. is included. This brings in more ambiguities and depending
on the assumptions for each of these components (e.g, abundance for halos of a
particular mass could be based on Press-Schecter or Peaks formalism), and the final
results have no real significance. It is, therefore easier to address the question based
on the evolution equation for the correlation function rather than from “physical”
arguments for density profiles.

4 Self-similar Evolution

The above discussion motivates a search for correlation functions of the form
ξ̄ (a, x) = a2L(x), starting with a more general question: Does Eq. (5) possess self-
similar solutions of the form

ξ̄ (a, x) = aβ F
( x

aα

)
= aβF(q) (26)

where q ≡ xa−α?. Defining Q = ln q = X − αA (Defn: A = ln a and X = ln x)and
changing independent variables to from (A,X) to (A,Q)we can transform our Eq. (5)
to the form: (

∂ξ̄

∂A

)

Q

− (h + α)

(
∂ξ̄

∂Q

)

A

= 3(1 + ξ̄ ) h(ξ̄ ) (27)

Using the relations (∂ξ̄/∂A)Q = βξ̄ , (∂ξ̄/∂Q)A = (ξ̄/F)(dF/dQ)we can rewrite this
equation as

βξ̄ − 3(1 + ξ̄ )h(ξ̄ )
[
α + h(ξ̄ )

]
ξ̄

= 1

F

dF

dQ
≡ K(Q) (28)

The right hand side of this equation depends only on Q and hence will vanish if
differentiated with respect to A at constant Q. Imposing this condition on the left
hand side and noticing that it is a function of ξ̄ (a, x) leads to

(
∂ξ̄

∂A

)

Q

d

dξ̄
(Left Hand Side) = 0 (29)

To satisfy this condition either (i) (∂ξ̄/∂A)Q = βξ̄ = 0 implying β = 0 or (ii) the
left hand side must be a constant.

Considering the two cases separately.
(i) The simpler case corresponds to β = 0 which implies that ξ̄ (a, x) = F(Q).

Setting β = 0 in Eq. (28) gives
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(
dξ̄

dQ

)
= −3(1 + ξ̄ )h(ξ̄ )

[
α + h(ξ̄ )

] (30)

which can be integrated in a straightforward manner to give a relation between
q = expQ and ξ̄ :

q = q0(1 + ξ̄ )−1/3 exp

(
−α

3

∫
dξ̄

(1 + ξ̄ )h(ξ̄ )

)

= q0(1 + ξ̄ )−1/3V (ξ̄ )−α/2

Given the form of h[ξ̄ (a, x)], this equation can be in principle inverted to determine
ξ̄ as a function of q = xa−α .

To understand when such a solution will exist, the limit of ξ̄ � 1 is to be looked
at. In this limit, when linear theory is valid, h ≈ (2/3)ξ̄ (see [13]). Using this in
Eq. (31) the solution becomes ln ξ̄ = −(2/α) ln q or

ξ̄ ∝ q− 2
α ∝ x− 2

α a2 ∝ a2x−(n+3) (31)

with the definition α ≡ 2/(n + 3). This clearly shows that the solution is valid, if and
only if the linear correlation function is a scale-free power law. In this case, of course,
it is well known that solutions of the type ξ̄ (a, x) = F(q) with q = xa− 2

(n+3) exists.
(Equation (31) gives the explicit form of the function F(q).) This result shows that
this is the only possibility. It should be noted that, even though there is no explicit
length scale in the problem, the function ξ̄ (q)—determined by the above equation—
does exhibit different behaviour at different scales of nonlinearity. Roughly speaking,
the three regimes in Eq. (9) translates into nonlinear density contrasts in the ranges
δ < 1, 1 < δ < 200 and δ > 200 and the function ξ̄ (q) has different characteristics
in these three regimes. This shows that gravity can intrinsically select out a density
contrast of δ ≈ 200 which, of course, is well-known from the study of spherical
tophat collapse.

(ii) Considering the second possibility, viz. that the left hand side of Eq. (28) is a
constant. If the constant is denoted by μ, then F = F0 qμ and

β ξ̄ − 3 (1 + ξ̄ ) h(ξ̄ ) = μ α ξ̄ + μ h ξ̄ (32)

which can be rearranged to give

h = (β − αμ)ξ̄

3 + (μ + 3)ξ̄
(33)

This relation shows that solutions of the form ξ̄ (a, x) = aβ F(x/aα) with β 
= 0 is
possible only if h[ξ̄ (a, x)] has a very specific form given by (33). In this form, h is
a monotonically increasing function of ξ̄ (a, x). There is, however, firm theoretical
and numerical evidence [6, 8] to suggest that h increases with ξ̄ (a, x) first, reaches a
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maximum and then decreases. In other words, the h for actual gravitational clustering
is not in the form suggested by Eq. (33). Leading to the conclusion that solutions of
the form in Eq. (26) with β 
= 0 cannot exist in gravitational clustering.

By a similar analysis, a stronger result can be proved: There are no solutions of
the form ξ̄ (a, x) = ξ̄ (x/F(a)) except when F(a) ∝ aα . So self-similar evolution in
clustering is a very special situation.

This result, incidentally, has an important implication. It shows that power-law
initial conditions are very special in gravitational clustering and may not represent
generic behaviour. This is because, for power laws, there is a strong constraint that
the correlations etc. can only depend on q = xa−2/(n+3). For more realistic — non-
power law — initial conditions the shape can be distorted in a generic way during
evolution.

All the discussion so farwas related to finding exact scaling solutions. It is however
possible to find approximate scaling solutions which are of practical interest. Note
that normally constants like α, β, μ etc. are expected to be of order unity while
ξ̄ (a, x) can take arbitrarily large values. If ξ̄ (a, x) � 1 then Eq. (33) shows that h is
approximately a constant with h = (β − αμ)/(μ + 3). In this case

ξ̄ (a, x) = aβF(q) ∝ aβqμ ∝ a(β−αμ)xμ ∝ ah(μ+3)xμ (34)

which has the form ξ̄ (a, x) = a3hF(ahx) which was obtained earlier by directly inte-
grating Eq. (5) with constant h.

5 Units of the Nonlinear Universe

Having reached the conclusion that exact solutions of the form ξ̄ (a, x) = a2G(x) are
not possible, the logical question is: Are there such approximate solutions? And if
so, how do they look like? Such profiles — called “pseudo-linear profiles”— that
evolve very close to the the above form can indeed be shown to exist. In order to
obtain such a solution and check its validity, it is better to use the results of Sect. 2.1
and proceed as follows:

An approximate solution of the form ξ̄ (a, x) = a2G(x) to Eq. (5) is what is sought.
Since the linear correlation function ξ̄L(a, x) does grow as a2 at fixed x, continuity
demands that ξ̄ (a, x) = ξ̄L(a, x) for all a and x. (This can be proved more formally as
follows: Let ξ̄ = a2G(x) and ξ̄L = a2G1(x) for some range x1 < x < x2. Consider
a sufficiently early epoch a = ai at which all the scales in the range (x1, x2) are
described by linear theory so that ξ̄ (ai, x) = ξ̄L(ai, x). It follows that G1(x) = G(x)
for all x1 < x < x2. Hence ξ̄ (a, x) = ξ̄L(a, x) for all a in x1 < x < x2. By choosing
ai sufficiently small, any range (x1, x2) can be covered. So ξ̄ = ξ̄L for any arbitrary
range. QED). Since there exists a formal relation (8) between nonlinear and linear
correlation functions, the form of G(x) can be determined.

To do this the form of the linear correlation function is inverted ξ̄L(a, l) = a2G(l)
and write l = G−1(a−2ξ̄L) ≡ F(a−2ξ̄L) where F is the inverse function of G. The
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linear correlation function ξ̄L(a, l) at scale l can be expressed as V [ξ̄ (a, x)] in terms
of the true correlation function ξ̄ (a, x) at scale x where

l = x(1 + ξ̄ (a, x))1/3 (35)

Therefore

l = F

[
ξ̄L(a, l)

a2

]
= F

[
V [ξ̄ (x, a)]

a2

]
(36)

But x can be expressed as x = F[ξ̄L(a, x)/a2]; Substituting this in (35) leads to

l = F

[
ξ̄L(a, x)

a2

]
[
1 + ξ̄

]1/3
(37)

From our assumption ξ̄L(a, x) = ξ̄ (a, x); therefore this relation can also be written
as

l = F

[
ξ̄ (a, x)

a2

]
(
1 + ξ̄

)1/3
(38)

Equating the expressions for l in (36) and (38) we get an implicit functional equation
for F:

F

[
V [ξ̄ ]
a2

]
= F

[
ξ̄

a2

]
(
1 + ξ̄

)1/3
(39)

which can be rewritten as

F
[
V (ξ̄ )/a2

]

F
[
ξ̄ /a2

] = (1 + ξ̄ )1/3 (40)

This equation should be satisfied by the function F if the relation ξ̄ (a, x) = ξ̄L(a, x)
is to be maintained.

To see what this implies, note that the left hand side should not vary with a at
fixed ξ̄ . This is possible only if F is a power law:

F(ξ̄ ) = Aξ̄m (41)

which in turn constrains the form of V (ξ̄ ) to be

V (ξ̄ ) = ξ̄ (1 + ξ̄ )1/3m (42)

Knowing the particular form for V the corresponding h(ξ̄ ) can be computed from
the relation

d lnV

dξ̄
= 2

3

1

(1 + ξ̄ ) h(ξ̄ )
(43)
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The V (ξ̄ ) considered in Eq. (42) gives

h = 2ξ̄

3 + (3 + 1/m)ξ̄
(44)

which is the same result obtainedbyputtingβ = 2 , α = 0 inEq. (26).This vindicates
the earlier result that exact solutions of the form ξ̄ (a, x) = ξ̄L(a, x) = a2 G(x) are
not possible because the correct V (ξ̄ ) and h(ξ̄ ) do not have the forms in Eqs. (42)
and (44) respectively. But, as in the last section, there are approximate solutions.

From Eq. (42) for ξ̄ � 1, we have

V (ξ̄ ) = ξ̄ (1+1/3m); F(ξ̄ ) ∝ ξ̄m; G(ξ̄ ) ∝ ξ̄ 1/m (45)

This can be rewritten as

V (ξ̄ ) = ξ̄ ν; F(ξ̄ ) ∝ ξ̄ 1/3(ν−1); G(ξ̄ ) ∝ ξ̄ 3/(ν−1) (46)

In other words if V (ξ̄ ) can be approximated as ξ̄ ν , we have an approximate solution
of the form

ξ̄ (a, x) = a2 G(x) = a2 x3(ν−1) (47)

Since the V in Eq. (10) is well approximated by the power laws in (9) so that

V (ξ̄ ) ∝ ξ̄ 1/3 (1 <∼ ξ̄ <∼ 200) (48)

∝ ξ̄ 2/3 (200 <∼ ξ̄ ) (49)

giving ν = 1/3 in the intermediate regime and ν = 2/3 in the nonlinear regime. It
follows from (46) that the approximate solution should have the form

F(ξ̄ ) ∝ 1
√

ξ̄
(1 <∼ ξ̄ <∼ 200) (50)

∝ 1

ξ̄
(200 <∼ ξ̄ ) (51)

This gives the approximate form of a pseudo-linear profile which will grow as a2 at
all scales.

There is another way of looking at this solution which is probably more phys-
ical and throws light on the scalings of pseudo-linear profiles. Recalling that, in
the study of finite gravitating systems made of point particles and interacting via
newtonian gravity, isothermal spheres play an important role. They can be shown
to be the local maxima of entropy (see [19]) and hence dynamical evolution drives
the system towards an (1/x2) profile. Since one expects similar considerations to
hold at small scales, during the late stages of evolution of the universe, it may be
that isothermal spheres with (1/x2) profile may still play a role in the late stages of
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evolution of clustering in an expanding background. However, while converting the
profile to correlation, all the issues noted in Sect. 2 is to be taken into account. In
the intermediate regime, dominated by scale invariant radial collapse [8], the den-
sity will scale as the correlation function and ξ̄ ∝ (1/x2). On the other hand, in the
nonlinear end, γ = 2ε − 3 (see Eq. (19)) which gives ξ̄ ∝ (1/x) for ε = 2. Thus, if
isothermal spheres are the generic contributors, then the correlation functionwill vary
as (1/x) and nonlinear scales, steepening to (1/x2) at intermediate scales. Further,
since isothermal spheres are local maxima of entropy, a configuration like this should
remain undistorted for a long duration. This argument suggests that a ξ̄ which goes
as (1/x) at small scales and (1/x2) at intermediate scales is likely to be a candidate
for pseudo-linear profile. This is indeed the case.

To go from the scalings in two limits given by Eq. (50) to an actual profile, an
interpolating fitting function can be computed. By making the fitting function suf-
ficiently complicated, the pseudo-linear profile can be made more exact. Choosing
the simplest interpolation between the two limits as the ansatz:

F(z) = A√
z (

√
z + B)

(52)

where A and B are constants. Using the original definition l = F[ξ̄L/a2] and the
condition that ξ̄ = ξ̄L, we get

A
√

ξ̄ /a2 (
√

ξ̄ /a2 + B)
= l (53)

This relation implicitly fixes our pseudo-linear profile. Solving for ξ̄ , we get

ξ̄ (a, x) =
(
Ba

2

(√

1 + L

x
− 1

))2

(54)

with L = 4A/B2. Since this profile is not a pure power law, this will satisfy the
Eq. (40) only approximately. Choose B such that the relation

F

(
V (ξ̄ )

a2

)
= F

(
ξ̄

a2

)
(
1 + ξ̄

)1/3
(55)

is satisfied to greatest accuracy at a = 1.
This approximate profile works reasonably well. Figures1 and 2 show this result.

In Fig. 1 is plotted the ratio F(V (ξ̄ )/a2)/F(ξ̄/a2) on the x-axis and the function
(1 + ξ̄ )1/3 on the y-axis. If the function in (54) satisfies Eq. (40) exactly, a 45-degree
line in the figure should be obtained shown by a dashed line. The fact that the curve
is pretty close to this line shows that the ansatz in (54) satisfies Eq. (40) fairly well.
The optimum value of B chosen for this figure is B = 38.6. When a is varied from 1
to 103, the percentage of error between the 45-degree line and the curve is less than



Units of the Nonlinear Universe 113

Fig. 1 The approximate
solution to the functional
equation determining the
pseudo-linear profile is
plotted. See text for
discussion

about 20 percent in the worst case. It is clear that the profile in (54) satisfies Eq. (55)
quite well for a dynamic range of 106 in a2.

Figure2 shows this result more directly. The pseudo linear profile is evolved from
a2 = 1 to a2 ≈ 1000 using the NSR, and plot [ξ̄ (a, x)/a2] against x. The dot-dashed,
dashed and two solid curves (upper one for a2 = 100 and lower one for a2 = 900)
are for a2 = 1, 9, 100 and 900 respectively. The overlap of the curves show that the
profile does grow approximately as a2. Also shown are lines of slope −1 (dotted)
and −2 (solid); clearly ξ̄ ∝ x−1 for small x and ξ̄ ∝ x−2 in the intermediate regime.

In Eq. (54) the simplest kind of ansatz combining the two regimes is chosen
and only two parameters A and B are used. It is quite possible to come up with
more elaborate fitting functions which will solve the functional equation far more
accurately but it has not been done for two reasons: (i) Firstly, the fitting functions in
Eq. (9) for V (z) itself is approximate and is probably accurate only at 10–20 percent
level. There has also been repeated claims in literature that these functions have
weaker dependence on n which have been ignored for simplicity in this paper. (ii)
Secondly, one must remember that only those ξ̄ which correspond to positive definite
P(k) are physically meaningful. This happens to be the case for this choice (which
can be verified by explicit numerical integration with a cutoff at large x) but this may
not be true for arbitrarily complicated fitting functions. Incidentally, another simple
fitting function for the pseudo-linear profile is

ξ̄ (a, x) = a2
A′

(x/L′)[(x/L′) + 1] (56)

with A′ = B2 and L′ = L/4.
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Fig. 2 The dot-dashed,
dashed and two solid curves
(upper one for a2 = 100 and
lower one for a2 = 900) are
for a2 = 1, 9, 100 and 900.
The dotted straight line is of
slope-1 and the solid one is
of slope-2 showing both the
1/x and 1/x2 regions of the
profile

If a more accurate fitting is required, one can obtain it more directly from Eq. (14).
Setting na = 2 in that equation predicts the instantaneous spatial slope of ξ̄ (a, x) to
be

∂ ln ξ̄ (a, x)

∂ ln x
= 2

h[ξ̄ (a, x)] − 3(1 + 1

ξ̄ (a, x)
) (57)

which can be integrated to give

ln
x

L
=

∫ ξ̄ [x]

ξ̄ [L]
hdξ̄

ξ̄ (2 − 3h) − 3h
(58)

at a = 1 with L being an arbitrary integration constant. Numerical integration of this
equation will give a profile which is varies as (1/x) at small scales and goes over to
(1/x2) and then to (1/x3), (1/x4) . . . etc. with an asymptotic logarithmic dependence.
In the regime ξ̄ (a, x) > 1, this will give results reasonably close to the earlier fitting
function.

It should be noted that Eq. (40) reduces to an identity for any F, in the limit ξ̄ → 0
since, in this limitV (z) ≈ z. This shows that the pseudo-linear profiles at large scales
can bemodified into any other form (essentially determined by the input linear power
spectrum) without affecting any of the conclusions.
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A different way of thinking about pseudolinear profiles which may be useful is
as follows:

In studying the evolution of the density contrast δ(a, x), it is conventional to
expand in in term of the plane wave modes as

δ(a, x) =
∑

k

δ(a,k) exp(ik · x) (59)

In that case, the exact equation governing the evolution of δ(a,k) is given by [13]

d2δk
da2

+ 3

2a

dδk

da
− 3

2a2
δk = A (60)

whereA denotes the terms responsible for the nonlinear coupling between different
modes. The expansion in Eq. (59) is, of course, motivated by the fact that in the linear
regimeA can be ignored and each of the modes evolve independently. For the same
reason, this expansion is not of much value in the highly nonlinear regime.

This prompts one to ask the question: Is it possible to choose some other set of
basis functions Q(α, x), instead of exp ik · x, and expand δ(a, x) in the form

δ(a, x) =
∑

α

δα(a) Q(α, x) (61)

so that the nonlinear effects are minimised? Here α stands for a set of parameters
describing the basis functions. This question is extremely difficult to answer, partly
because it is ill-posed. To make any progress, we have to first give meaning to the
concept of “minimising the effects of nonlinearity”. One possible approachwewould
like to suggest is the following: It is known that when δ(a, x) � 1,then δ(a, x) ∝
a F(x) for any arbitrary F(x); that is all power spectra grow as a2 in the linear
regime. In the intermediate and nonlinear regimes, no such general statement can
be made. But it is conceivable that there exists certain special power spectra for
which P(k, a) grows (at least approximately) as a2 even in the nonlinear regime.
For such a spectrum, the left hand side of (60) vanishes (approximately); hence
the right hand side should also vanish. Clearly, such power spectra are affected
least by nonlinear effects. Instead of looking for such a special P(k, a) equivalently
look for a particular form of ξ̄ (a, x) which evolves as closely to the linear theory
as possible. Such correlation functions and corresponding power spectra (which
are the pseudo-linear profiles) must be capable of capturing most of the essence
of nonlinear dynamics. In this sense, the pseudo-linear profiles can be thought of
as the basic building blocks of the nonlinear universe. The fact that the correlation
function is closely related to isothermal spheres, indicates a connection between local
gravitational dynamics and large scale gravitational clustering.

Acknowledgements This article in its more detailed form was published in Astrophysical Journal
(493) 1998.
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Self-similarity and Criticality
in Gravitational Collapse

Pankaj S. Joshi

Abstract We examine here the question whether self-similarity always implies
criticality in gravitational collapse. To this end, we consider one-parameter fami-
lies of self-similar collapse models, namely the collapse of radiation shells as given
by the Vaidya metric and inhomogeneous dust collapse. The regions of parameter
space which give rise to the collapse final states as black holes or naked singularity
are evaluated to conclude that a non-zero measure set of values give rise to each of
these final states. This scenario suggests the possibility that while a zero measure of
solutions may admit a visible singularity in collapse calculations such as the numeri-
cal simulation of one-parameter family of massless scalar fields, some other collapse
models need not behave in the same manner even when the collapse is self-similar.
In other words, self-similarity does not imply a zero measure of naked singularity
solutions necessarily for all collapse models in general. We also make some remarks
here on perfect fluid collapse, and implications on the genericity and stability aspects
of collapse outcomes are discussed.

One of the most important issues in black hole physics, at the foundation of the basic
theory as well as astrophysical applications, is that of genericity of gravitational
collapse final states in terms of black holes and naked singularities. The only way to
obtain a proper idea and perception on this issue is to examine gravitational collapse
models in general relativity in detail, and examine the genericity of collapse outcomes
with or without an event horizon. The point here is, general relativity implies that the
space-time singularities must form as collapse final states, however, we have no idea
as of today whether event horizons of gravity also must form so as to cover these
singularities.

In this connection and to examine this question, a wide variety of gravitational
collapse of various matter fields has been investigated in recent years, such as dust,
perfect fluids, massless scalar fields and others, within the framework of Einstein
gravity (see e.g. Joshi and Malafarina [13] for a review and references therein).
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The general conclusion arrived at from these studies is, depending on the initial
conditions for collapse in terms of the density and pressure profiles from which the
collapse initiates, and in terms of the allowed evolutions of the Einstein equations,
both black holes as well as naked singularities develop as collapse final states. From
such a perspective, one of the main questions asked for gravitational collapse final
states in terms of black holes and naked singularities has been, even if a naked
singularity formed in collapse, if the ‘measure’ (to be suitably defined) of such
solutions is vanishing within the space of all solutions, then effectively such naked
singularities can be ignored.

Within such a context of genericity and stability of naked singularities, consid-
erable discussion has taken place in recent years on the self-similar gravitational
collapse of massless scalar fields. In particular, Christodoulou [6, 7] worked out
collapse of self-similar massless scalar fields to show examples of naked singularity
formation.Also, in a numerical simulation of the samemattermodel that assumeddis-
crete self-similarity, Choptuik [5] examined gravitational collapse of a one-parameter
family of massless scalar fields. It turned out in the numerical study of such a family
that the naked singularity solution was a critical point, rest of these being either black
holes or a dispersing away scalar field where no space-time singularity formed. Thus
it was suggested that the naked singularity forming in these models is only a critical
solution at the boundary of the black holes and dispersal, and is therefore a ‘zero
measure’ set which is not generic or stable.

An important question then is: Does self-similarity imply criticality always in
gravitational collapse, implying that the naked singularity solutions are only point-
like, forming always a zero-measure set? while this is conjectured to be so, based on
the example of massless scalar field collapse, we need to investigate if this is true in
general, implying that the naked singularity whenever it formed will be non-generic
in this sense.

Our purpose here is to show, by means of explicit examples of self-similar col-
lapse models, namely the Vaidya radiation shells collapse and inhomogeneous dust
collapse, that this is not the case in these one-parameter collapse models. We point
out that the black hole and naked singularity regions in the corresponding initial data
space have non-zero measures and each occur generically. Few remarks are made on
the extension of these results to perfect fluid case.

As stated above, the collapse of a massless scalar field has been examined both
analytically and numerically, within the context of self-similarity. This is a model
problem of a single massless scalar field, minimally coupled to gravitational field,
providing a useful scenario to investigate the nonlinearity effects of general relativity.
On the analytic side, the results ofChristodoulou show thatwhen the scalar field is suf-
ficiently weak, there is a regular solution or a global evolution for arbitrary long time,
of the coupled Einstein and scalar field equations. There is a convergence towards
the origin, and after a bounce the field would disperse to infinity. For strong enough
field, the collapse would result in a space-time singularity, which for self-similar
collapse could also be a naked singularity. The claim as discussed above, however,
is that the initial conditions resulting into a naked singularity would be always a set
of measure zero in the given parameter space. In that case, the naked singularity
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formation could be an unstable phenomenon. We can say that this is an approach
that helps study the cosmic censorship problem [17] as an evolution problem in the
sense of examining the global Cauchy development of a self-gravitating system out-
side an event horizon. As for numerical studies, Choptuik and others considered a
family of scalar field solutions where a parameter p characterized the strength of
the scalar field. The numerical calculations showed that for black hole formation,
there is a critical limit p → p∗ and the mass of the resulting black holes satisfy a
power law Mbh = (p − p∗)γ , where the critical exponent γ has value of about 0.37.
It was then conjectured that such a critical behavior may be a general property of
gravitational collapse, because similar behavior was found by Abrahams and Evans
[1] for imploding axisymmetric gravitational waves, and also by Evans and Coleman
[3] who considered collapse of radiation with an equation of state p = /3, assum-
ing self-similarity for solutions. It is not clear if the critical parameter γ will have
the same value for all forms of matter chosen and further investigation is needed to
determine this. As the parameter p moves between the weak and strong range, very
small mass black holes can form, in which case one can probe and receive messages
from arbitrarily near to singularity which is a naked singularity like behavior.

In order to examine the self-similar collapse in some more detail, we note that
a self-similar space-time is characterized by the existence of a homothetic Killing
vector field in the space-time [4]. For example, a spherically symmetric space-time is
self-similar if it admits a radial area coordinate r and an orthogonal time coordinate
t such that for the metric components gtt and grr we have

gtt(ct, cr) = gtt(t; r) ; grr (ct, cr) = grr (t, r) (1)

for all c > 0. In such a case, along the integral curves of the Killing vector field all
points are similar. A matching of a self-similar interior to a Schwarzschild exterior
space-time can be done as smoothly as desired [16]. If the matching is sufficiently
far from the center, the central region evolves in a self-similar manner without being
affected by the matching.

We now consider first the collapse of inflowing radiation. In this case, a thick
shell of radiation collapses at the center of symmetry in an otherwise empty universe
asymptotically flat far away. This can be a relevant or interesting collapse model
because a massive star, in the very final stages of collapse, would be largely radiation
dominated. When one may regard a naked singularity forming in a gravitational
collapse as an interesting situationwhichmay have physical implications? Firstly, the
singularity should be visible at least for a finite period of time to far away observers.
If only a single null geodesic escaped the singularity, it would be only instantaneous
exposure bymeans of a singlewave front. To yield observable consequences, a family
of future directed non-spacelike geodesics should terminate at the naked singularity
in past. Also the singularity must be gravitationally strong so the space-time does not
admit any continuous extension through the same,making it unavoidable. Finally, the
form of matter should be reasonable in that it must satisfy a suitable energy condition
ensuring the positivity of energy, collapsing from an initial spacelike hypersurface
with a well-defined non-singular initial data.
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Such an imploding radiation shell is described by the Vaidya space-time, given
in (v, r, θ, φ) coordinates as,

ds2 = −
(
1 − 2m(v)

r

)
dv2 + 2dvdr + r2dΩ2, (2)

where dΩ2 = dθ2 + sin2 θ dφ2. The radiation collapses at the origin v = 0, r = 0.
Thenull coordinate v denotes the advanced time andm(v) is an arbitrary, non-negative
increasing function. The stress-energy tensor for the radial radiation flux is,

Ti j = ρki k j = 1

4πr2
dm

dv
ki k j , (3)

with
ki = −δvi , ki k

i = 0, (4)

which is radially inflowing radiation along the world lines v = const.. Here dm
dv ≥ 0

implies the weak energy condition is satisfied. Thus, a radially injected radiation by
a distant source flows into an initially flat and empty region, focused into a central
singularity of growing mass.

The source then turns off at a finite time T and the field then settles to the Schwarz-
schild space-time. In this case, the Minkowski space-time for v < 0,m(v) = 0 is
joined to a Schwarzschild space-time for v > T with mass m0 = m(T ) through the
Vaidya metric as given above.

Now assuming the mass function m(v) to be a linear function results into the
space-time being self-similar,

2m(v) = λv, (5)

withλ > 0 (see e.g. Joshi [11] and references therein). This is theVaidya−Papapetrou
space-time describing radiation collapse. Specifically we have,

m(v) = 0 for v < 0, 2m(v) = λv for 0 < v < T, m(v) = m0 for v > T .

(6)
Then the mass for the final Schwarzschild black hole is M and the causal structure
of the space-time would be determined by the values of the constants M, T , and λ.
In this case, the Vaidya space-time region admits a homothetic Killing vector

ξ = v

(
∂

∂v

)
+ r

(
∂

∂r

)
,

which is given by the Lie derivative,

Lξgi j = ξi; j + ξ j;i = 2gi j . (7)
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Fig. 1 The structure of escaping non-spacelike geodesics from the naked singularity in different
regions in the Vaidya space-time. The event horizon and apparent horizon forming in the space-time
are shown, which fail to cover the singularity unlike the black hole case when the mass parameter
λ satisfies λ < 1/8. While some of the trajectories escape from the singularity, they fall back again
into the horizon, however, other families escape to infinity, making the singularity visible to faraway
observers (from Dwivedi and Joshi [9])

The central singularity v = 0, r = 0 can then be studied in detail and all families
of future directed non-spacelike geodesics which terminate at the singularity v =
0, r = 0 in the past can be determined, thus producing a naked singularity of the
space-time (see Fig. 1). Working out these families gives a good idea of the nature
and structure of the naked singularity, and this also allows us to explicitly evaluate
the curvature growth along these families in the limit of approach to the singularity.
It turns out that this is a powerfully strong curvature naked singularity which is
non-removable in that the space-time admits no extension through the same.

In summary, what we find is a naked singularity results when the collapse is
sufficiently slow, and the radial as well as non-radial non-spacelike geodesics that
emerge from the singularity can be studied in detail. Specifically, when λ < 1/8
then a naked singularity forms, and for the values of the mass function λ ≥ 1/8 a
black hole forms where the event horizon covers the singularity. It follows that, for
a non-zero measure set of the parameter space values, the space-time singularity is
naked in this self-similar collapse space-time.

We now consider another class of collapse models, namely the inhomogeneous
dust collapse. Gravitational collapse of a sufficiently massive homogeneous dust ball
leads to the formation of a black hole, as was indicated by the work of Oppenheimer
and Snyder [15] and Datt [8]. The event horizon here covers the infinite density
singularity forming at the center of the cloud. But realistic stars have inhomogeneous
distribution of matter, with density somewhat peaked at the center. Thus it is useful
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to examine the spherically symmetric but inhomogeneous distribution of dust which
collapses under its own gravity. The general solutions to Einstein equations for this
case are given by the Lemaitre-Tolman-Bondi (LTB) spacetimes, [2, 14, 18] It is
known that naked singularities do occur as the end state of such a collapse, and that
the collapse ends in a black hole or naked singularity depending on the parameter
values chosen in the initial data space.

We refer to Fig. 2, for a typical depiction of a black hole or a naked singularity as
collapse final state, as resulting from the gravitational collapse of amatter cloud, such
as a massive star. As such one would like to hope that the space-time singularity is
resolved by some future theory of quantumgravity. Even in such a case, the difference
between the black hole and the naked singularity case would be that, while the fuzzy
resolved singularity region will be fully contained within a black hole, in the naked
singularity case such ultra-strong quantum gravity regions will be visible to faraway
observers in the space-time.

We now consider here self-similar dust collapse models, where the final collapse
state is a naked singularity, again for a finite and non-zero measure set of values
in the one-parameter family of initial data that determines the collapse endstates in
terms of black hole or a naked singularity.

In comoving coordinates (t, r, θ, φ) the LTB metric for a spherically symmetric
collapse of an inhomogeneous dust cloud is given as,

ds2 = −dt2 + R′2

1 + f
dr2 + R2(t, r)(dθ2 + sin2 θdφ2) (8)

The energy momentum tensor is T i j = εδit δ
j
t , where ε is the energy density. Then

the Einstein equations imply that

collapsing
matter

Naked Singularity Black Hole

Quantum Gravity
fuzzy region

event
horizon

event
horizon

Fig. 2 The outcomes from gravitational collapse of a massive matter cloud. The space-time sin-
gularity is shown to be resolved by possible quantum gravity effects. While such a strong gravity
region is fully contained within the horizon when a black hole forms, in the naked singularity case
this could be visible to faraway observers in the space-time
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ε = ε(r, t) = F ′

R2R′ , Ṙ2 = F

R
+ f (9)

Here 8πG/c4 = 1, and the dot and prime denote partial derivatives with respect to
t and r respectively. The function F(r) is a free function from the integration of the
Einstein equations and is interpreted physically as the total mass of the collapsing
cloud within a comoving radius r . We take F(r) ≥ 0. Here R(t1, r1) denotes the
physical radius of a shell of collapsing matter at a coordinate radius r1 and on time
slice t = t1, and F and f are arbitrary functions of r . We consider here the class
of solutions f (r) ≡ 0, which are called marginally bound LTB models. Here R = 0
denotes a physical singularity with the spherical shells of matter collapsing to zero
radius and density blowing to infinity. The time t = t0(r) corresponds to R = 0,
where the area of a shell of matter at a constant value of comoving coordinate r
vanishes. This singularity curve t = t0(r) is the time when the matter shells meet the
physical singularity. For a finite cloud of dust, there is a cut off at r = rb, where the
metric is matched smoothly with a Schwarzschild exterior.

Using the freedom of scaling to relabel the dust shells given by r = const. on
a given t = const. epoch, we choose the scaling at t = 0 as given by R(r, 0) = r .
Then the Ṙ equation (with f = 0) can be integrated to get,

R3/2(r, t) = r3/2 − 3

2

√
F(r)t, (10)

and the energy equation becomes

ε(r, t) = 4/3
(
t − 2

3
G(r)
H(r)

) (
t − 2

3
G ′(r)
H ′(r)

) (11)

where G(r) = r3/2, G ′(r) = (3/2)r1/2, and H(r) = √
F(r).

We now write F(r) ≡ rλ(r)with λ(r) being a finite positive function [10]. When
λ = const., then this gives us the class of all self-similar dust collapse models.
The density at the center behaves with time as ε(0, t) = 4/3t2. The central density
becomes singular at t = 0, and the singularity is seen to arise from the evolution
of dust collapse which had a finite density distribution in the past on an earlier
non-singular initial epoch.

To check if the singularity is naked or within a black hole, we need to examine if
future directed null geodesics could come out of the singularity at t = 0, r = 0. The
equations of outgoing radial null geodesics, with k as affine parameter, are written as,

dK t

dk
+ Ṙ′Kr K t = 0,

dt

dr
= K t

Kr
= R′, (12)

where K t = dt/dk and Kr = dr/dk are tangents to the outgoing radial null geodes-
ics. The partial derivatives R′ and Ṙ′ which occur here can be worked out and are
suitably written as,
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R′ = ηP −
[
1 − η√

λ
+ η

t

r

]
Ṙ (13)

Ṙ′ = λ

2r P2

[
1 − η√

λ
+ η

t

r

]
(14)

where we introduce

R(r, t) = r P(r, t), η = η(r) = r F ′

F
(15)

The functions η(r) and P(r) are introduced because they have a well-defined limit
in the approach to the singularity.

If the outgoing null geodesics terminate in the past with a definite tangent at the
singularity, which is the case of a naked singularity, then using above equations and
l′ Hospital rule we get

X0 = lim
t→0,r→0

t

r
= lim

t→0,r→0

dt

dr
= lim

t=0,r=0
R′ (16)

where X = t/r is a new variable. The positive function P(r, t) = P(X, r) is then
given by

X − 2

3
√

λ
= −2P3/2

3
√

λ
(17)

where we define Q = Q(X) = P(X, 0). If the future directed null geodesics come
out of the singularity at t = 0, r = 0, which meet the singularity in the past with a
definite tangent X = X0 which is given above, then it follows from above that X0

satisfies X0 < 2/3
√

λ0 We note that as r → 0, η → 1, and so lim Ṙ = −√
λ0/Q.

Using these results in the expression for R′ the condition above for outgoing null
geodesics simplified to,

V (X0) = 0; V (X) ≡ Q + X

√
λ0

Q
− X (18)

To be the past end-point of outgoing null geodesics, at least one real positive value of
X0 must satisfy the above equation. In general, if the equation V (X0) = 0 has a real
positive root, the singularity would be naked, and in the case otherwise the collapse
evolution leads to a black hole. For the self-similar collapse, typically the singularity
when visible turns out to be globally naked.

Using the above equations, the condition V (X0) = 0 can then be written as,

Y 3

(
Y − 2

3

)
− α(Y − 2)3 = 0 (19)
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where we put Y = √
λ0X0 and α = λ

3/2
0 /12, with F(r) and hence λ0 being positive.

Using standard results then it can be shown that this quartic equation has real positive
roots if and only if α > α1 or α < α2, where

α1 = 26

3
+ 5

√
3 ≈ 17.3269 (20)

and,

α2 = 26

3
− 5

√
3 ≈ 6.4126 × 10−3 (21)

Here the larger range of α values are ruled out, because in that case the trajectories are
no longer in the space-time (see e.g. Joshi and Singh [12]). It thus follows that a naked
singularity arises if and only if α < α1, or equivalently λ0 < 0.1809. Whenever the
limiting value λ0 does not satisfy this constraint then the gravitational collapse must
end in a black hole.

The physical interpretation for the quantity λ0 can be easily seen by noting that
it is in fact a combination of the central density ρ0 and its derivative, at an initial
epoch from where the collapse starts. Thus the interesting result that we have is, the
occurrence of either a black hole or naked singularity is governed by the conditions
on the initial central density and the initial density gradient at the center. Basically we
have the situation that while homogeneous collapse leads to a black hole, a suitable
amount of inhomogeneity, as represented by a non-zero density gradient, leads to a
naked singularity.

What we have shown is, for the self-similar dust collapse again, the naked singu-
larity occurs for a non-zero measure values of initial data in the given one-parameter
space. In this sense, the self-similarity does not imply criticality or a single point
naked singularity solution for this class of collapse models.

Finally, we note that similar results are expected to hold for a self-similar collapse
of perfect fluids. The perfect fluid collapse with the barotropic equation of state
p = kρ, where k is a constant in the range 0 to 1 was analyzed in detail analytically
[10], and the occurrence of a naked singularity was again reduced to the existence
of real positive roots of a quartic equation, similar to what we discussed in the above
case of dust collapse. To conclude, we may state that while self-similarity may imply
criticality in some classes of collapse models such as the massless scalar fields,
this need not be necessarily so for all physically reasonable classes of gravitational
collapses.
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Notes on Semiclassical Weyl Gravity

Claus Kiefer and Branislav Nikolić

Abstract In any quantum theory of gravity, it is of the utmost importance to recover
the limit of quantum theory in an external spacetime. In quantum geometrodynamics
(quantization of general relativity in the Schrödinger picture), this leads in partic-
ular to the recovery of a semiclassical (WKB) time which governs the dynamics
of non-gravitational fields in spacetime. Here, we first review this procedure with
special emphasis on conceptual issues. We then turn to an alternative theory - Weyl
(conformal) gravity, which is defined by a Lagrangian that is proportional to the
square of the Weyl tensor. We present the canonical quantization of this theory and
develop its semiclassical approximation. We discuss in particular the extent to which
a semiclassical time can be recovered and contrast it with the situation in quantum
geometrodynamics.

1 Notes on Semiclassical Einstein Gravity

Among Paddy’s many interests in physics was always the deep desire to understand
the relationship between classical and quantum gravity. In his paper “Notes on semi-
classical gravity”, written together with T.P. Singh in 1989, they write [29]:

In the course of our investigation we came across a variety of methods for defining classical
and semiclassical limits, apparently different, and all of which were possibly applicable to
a quantum gravity. It then became necessary to compare these methods and to settle, once
and for all, the relation of semiclassical gravity to quantum gravity.

The understanding of semiclassical gravity was also a long-term project by one of
us, and we thus devote our festschrift contribution to this topic. More precisely,
the topic is the recovery of quantum (field) theory in an external spacetime from
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canonical quantum gravity. We briefly review the standard procedure of obtaining
this limit from theWheeler–DeWitt equation of quantum general relativity (quantum
geometrodynamics). In the next two sections, we then apply these methods to a
different theory called Weyl gravity or conformal gravity. This is the main concern
of our paper.

What is our motivation for doing so? Weyl gravity is a theory without intrinsic
scale. It seems therefore not appropriate, by itself, to replace general relativity (GR) in
the empirically testedmacroscopic limit. It may, however, be appropriate to serve as a
model for a fundamental conformally invariant theory, being of relevance in quantum
gravity and its application to the very early universe. Many researchers entertain, in
fact, the idea that Nature does not contain any scale at the most fundamental level;
see, for example, [2, 31]. In these following sections, we shall outline the procedure
for classical and quantum canonicalWeyl gravity and perform the semiclassical limit.
We shall point out in detail the similarities to and the differences from quantum GR.
We shall see, in particular, that while a semiclassical time can be recovered, this time
is of a different nature than the one recovered from quantum GR.

In canonical GR, the configuration variable is the three-metric hab(x), while the
canonical momentum pcd(x) is a linear function of the extrinsic curvature (second
fundamental form) Kcd(x). In the Dirac way of quantization, these variables are
heuristically transformed into operators acting on wave functionals,

ĥab(x)Ψ [hab(x)] = hab(x) · Ψ [hab(x)] , (1)

p̂cd(x)Ψ [hab(x)] = �

i

δ

δhcd(x)
Ψ [hab(x)] . (2)

The wave functionals are defined on the configuration space of all three-metrics (plus
non-gravitational fields, which are not indicated here). In GR, one has four local
constraints, the Hamiltonian constraint and the three diffeomorphism (momentum)
constraints. They are implemented in the quantum theory as restrictions on physically
allowed wave functionals [15],

Ĥ
g

⊥ Ψ :=
(

−16πG�
2Gabcd

δ2

δhabδhcd
−

√
h

16πG
( (3)R − 2Λ)

)

Ψ = 0 , (3)

Ĥ g
a Ψ := −2Dbhac

�

i

δΨ

δhbc
= 0 . (4)

The quantumHamiltonian constraint (3) is called theWheeler–DeWitt equation. The
momentum constraints (4) guarantee that the wave functional remains unchanged
(apart possibly from a phase) under a three-dimensional coordinate transformation.
In the presence of non-gravitational fields, we need the corresponding contributions
Ĥ m

⊥ for (3) and Ĥ m
a for (4), see below.

The coefficients Gabcd in front of the kinetic term in (3) are the components of
the DeWitt metric, which is the metric on configuration space. One of its important
properties is its indefinite nature. Using instead of hab its scale part

√
h (where h
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denotes its determinant) and the conformal part h̄ab = h−1/3hab, theWheeler–DeWitt
equation reads

(
6πG�

2
√
h

δ2

δ(
√
h)2

− 16πG�
2

√
h

h̄ach̄bd
δ2

δh̄abδh̄cd

−
√
h

16πG
( (3)R − 2Λ)

)

Ψ [√h, h̄ab] = 0 . (5)

One recognizes that the kinetic term connected with the local scale has a different
sign. For this reason, the Wheeler–DeWitt equation is of a (local) hyperbolic nature
and

√
h can be interpreted as a local measure of intrinsic time. We shall introduce

the scale and conformal parts of the metric also for the Weyl theory below, but as we
shall see, the scale part (and thus the intrinsic time part) will be absent in the Weyl
version of the Wheeler–DeWitt equation.

An important step in understanding the semiclassical limit for the above quantum
equations is the WKB approximation [29]. One starts with the ansatz

Ψ [hab] = C[hab] exp
(
i

�
S[hab]

)
(6)

and assumes that C[hab] is a ‘slowly varying amplitude’ and S[hab] is a ‘rapidly
varying phase’. This corresponds to the substitution

pab −→ δS

δhab
,

which is the classical relation for the canonical momentum. From (3) and (4) one
finds then for S[hab] the equations

16πG Gabcd
δS

δhab

δS

δhcd
−

√
h

16πG
( (3)R − 2Λ) = 0 , (7)

Da
δS

δhab
= 0 . (8)

In the presence of matter one has additional terms. The first Eq. (7) is the Hamilton–
Jacobi equation for the gravitational field. One can prove that the four local Eqs. (7)
and (8) are equivalent to all ten Einstein equations.

If non-gravitational fields are present, as we will now assume, a mixture of this
WKB ansatz with the Born–Oppenheimer ansatz from molecular physics is appro-
priate [14, 15, 29]. One writes instead of (6) now

Ψ [hab, φ] ≡ exp

(
i

�
S[hab, φ]

)
, (9)
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where S[hab, φ] here denotes a complex function that depends on both the three-
metric hab and the non-gravitational fields denoted by φ (usually taken to be a scalar
field). Plugging this ansatz into the quantum constraints (3) and (4) and performing
an expansion scheme with respect to the square of the Planck mass mP = √

�/G,

S[hab, φ] = m2
PS0 + S1 + m−2

P S2 + . . . , (10)

one finds at highest order (m2
P) that S0 depends only on the three-metric hab and that

it obeys the Hamilton–Jacobi equations (7) and (8) for the pure gravitational field.
The next order (m0

P) gives a functional Schrödinger equation for a wave functional
ψ[hab, φ] in the background spacetime defined from a solution S0 to (7) and (8),
where

ψ[hab, φ] := D[hab] exp
(
i

�
S1[hab, φ]

)
, (11)

and D obeys the standard WKB prefactor equation (see e.g. Eq. (2.36) in [14]). This
step yields a Tomonaga–Schwinger equation for ψ[hab, φ] with respect to a local
time functional τ(x) that is defined from the solution S0 by

δ

δτ(x)
:= Gabcd

δS0
δhab

δ

δhcd
. (12)

In spite of its appearance, τ is not a scalar function [9]. The functional Schrödinger
equation is obtained by evaluatingψ[hab, φ] along a solution of the classical Einstein
equations, hab(x, t), that corresponds to a solution, S0[hab], of the Hamilton–Jacobi
equation, ψ[hab(x, t), φ]. After a certain choice of lapse and shift functions, N and
Na , has been made, this solution is obtained from

ḣab = NGabcd
δS0
δhcd

+ 2D(aNb) . (13)

Instead of ψ[hab, φ], we can write |ψ[hab]〉 to indicate (by the bra-ket notation)
that one has a well-defined (standard) Hilbert space for the non-gravitational field φ.
Defining

∂

∂t
|ψ(t)〉 :=

∫
d3x ḣab(x, t)

δ

δhab(x)
|ψ[hab]〉 , (14)

one finds the functional Schrödinger equation for quantized non-gravitational fields
in the chosen external classical gravitational field,

i�
∂

∂t
|ψ(t)〉 = Ĥm|ψ(t)〉 ,

Ĥm :=
∫

d3x
{
N (x)Ĥ m

⊥ (x) + Na(x)Ĥ m
a (x)

}
. (15)
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Here, Ĥm is the non-gravitational Hamiltonian in the Schrödinger picture, parametri-
cally depending on the metric coefficients of the curved spacetime background. This
is the standard approach for obtaining the limit of quantum field theory in curved
spacetime from canonical quantum gravity. Extending this scheme to higher orders in
m2

P, one arrives at quantum gravitational correction terms to this equation [18]. These
terms can be used to calculate potentially observable effects such as corrections to
the CMB anisotropy spectrum [4].

The Born–Oppenheimer approximation starting from (9) provides only part of the
understanding why we observe a classical spacetime. The remaining part is provided
by the process of decoherence. It was suggested in [32] and elaborated in [13] to
using small inhomogeneities such as density perturbations or tiny gravitational waves
as a “quantum environment” in configuration space, whose interaction with relevant
degrees of freedom such as the global size of the universe gives rise to their classical
appearance. Technically, this comes from tracing out these inhomogeneities in the
globally entangled quantum states. In [24], Paddy has extended these investigations
to more general situations and found that three-geometries with the same intrinsic
metric but different size contribute decoherently to the reduced density matrix for
the relevant degrees of freedom. He concludes his paper with the words

…the classical nature of the space-time will tend to disappear as we observe more and more
matter modes. Probably, ignorance is bliss.

The recovery of time in semiclassical gravity raises the question whether time in
quantum gravity can be recovered from a general solution of the Wheeler–DeWitt
solution. The idea was followed independently by Paddy [25] and Greensite [10].
This generalized time is recovered from the phase of the wave function and used to
define a Schrödinger-type inner product where all variables are integrated over except
for this time. A necessary prerequisite for this to work is that the wave function is
complex and that its phase is not a constant. One can then prove that the first Ehrenfest
theorem is valid if this time variable and the corresponding inner product is used.
Unfortunately, only a restricted class of solutions fulfills all consistency conditions
(including the validity of the second Ehrenfest theorem), so one either has to abandon
this proposal as a solution to the time problem or to use it as a new type of boundary
condition to select physically allowed solutions [5].

2 Quantization of Conformal (Weyl) Gravity

The role of conformal transformations and of conformal symmetry is of central
interest for gravitational systems at least since Hermann Weyl’s pioneering work
from 1918. Weyl suggested a theory in which not only the direction of a vector
depends on the path along which the vector is transported through spacetime, but
also its length. This means that space distances and time intervals depend on the
path of rods and clocks through spacetime. In Weyl’s theory there exists the freedom
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to re-scale (“gauge”) rods and clocks; the metric can be multiplied by an arbitrary
positive spacetime-dependent function,

gμν(x) → g̃μν(x) = Ω2(x)gμν(x) . (16)

This transformation is called conformal transformation (later alsoWeyl transforma-
tion) and is an invariance in Weyl’s theory. Connected with this freedom is a new
quantity that Weyl identified with the electromagnetic four-potential, suggesting the
idea of a unification between gravity and electromagnetism.1

Weyl’s theory is impressive, but empirically wrong, as soon noticed by others, in
particular Einstein. If it were true, spectral lines, for example, would depend on the
history of the atomic worldlines, because an atom can be understood as constituting
a clock.2 Quite generally, a particle with rest mass m can be taken as a clock with
frequency

ν = m
c2

h
,

so a path-dependent frequency would correspond to a path-dependent rest mass,
since c and h are universal units. This is definitely empirically wrong.

Weyl thus had to give up his theory, but later used essential elements of his idea
to provide the foundation of modern gauge theory. Einstein, however, was speculat-
ing about the existence of a theory that, while preserving the conformal invariance
of Weyl’s theory, does not include a hypothesis about the transport of rods and
clocks, thus avoiding the problems of Weyl’s theory. In a paper entitled “Über eine
naheliegende Ergänzung des Fundamentes der allgemeinen Relativitätstheorie” [7],3

Einstein suggested to use the scalar

CμνλρC
μνλρ (17)

formed from theWeyl tensorCμνλρ as the basis of this theory.4 TheWeyl tensorCμ
νλρ

(with one upper component) is invariant under the conformal transformations (16).
At the end of his article, Einstein intended to add the following short summary,

which can be found in his hand-written manuscript, but which he deleted before
submission. It reads (our translation from the German)5

Short summary: it is shown that one can, following Weyl’s basic ideas, develop a theory of
invariants on the objective existence of lightcones (invariance of the equation ds2 = 0) alone,
which does not, in contrast toWeyl’s theory, contain a hypothesis about transport of distances

1For a review and reference to original articles, see [11].
2Recall that the modern time standard is based on the hyperfine transitions in caesium-133.
3English translation: “On aNatural Addition to the Foundation of theGeneral Theory of Relativity”.
4In his paper, Einstein acknowledges the help of the Austrian mathematician Wilhelm Wirtinger in
his attempt. In a letter to Einstein sent one day after Einstein’s academy talk on which [7] is based,
Wirtinger suggested as one possibility to use an action principle based on (17), see [8], p. 117.
5The ϕν denote the components of the electromagnetic four-potential.
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and in which the potentials ϕν do not enter explicitly the equations. Later investigations must
show whether the theory will be physically valid.6

In fact, even before Einstein, Rudolf Bach had considered an action based on
(17) and derived and discussed the ensuing field equations [1]. When we talk here
of conformal gravity or Weyl gravity, we do not mean Weyl’s original gravitational
gauge theory from 1918, but a theory that is based on the action suggested by Bach,
Einstein, and Wirtinger. We write the action in the following form:

SW := −αW�

4

∫
d4x

√−g CμνλρC
μνλρ , (18)

whereαW is a dimensionless coupling constant.We have introduced Planck’s constant
� (which, of course, is irrelevant for the classical theory) for two reasons: first, it
gives the correct dimensions for the action and renders the constant αW dimensionless
and, second, SW/� is the relevant quantity in the quantum theory on which we will
focus in our paper; in fact, this will suggest the semiclassical expansion scheme with
respect to αW presented below.

The theory based on (18) was discussed at both the classical and quantum level
[22]. At the classical level, it was used, for example, to explain galactic rotation
curves without the need for dark matter, although this explanation has met severe
criticism [26]. At the quantum level, it is a candidate for a renormalizable theory of
quantum gravity, although it seems to violate unitarity.7 We adopt here the point of
view to take (18) as the starting point for a conformally invariant gravity theory, for
which a semiclassical expansion scheme can be applied to its canonically quantized
version and compared with the scheme for quantized GR.We do not assume that (18)
is a candidate for an alternative to GR. In the following, we shall study the canon-
ical structure of this theory. Our treatment is based on the more general treatment
presented in [16].

In order to deal with higher-derivative theories such as (18),8 it is convenient
to reduce the order by introducing new independent variables. In our case, this is
achieved by introducing the extrinsic curvature Ki j , which in general relativity is a
function of the time derivative of the three-metric hi j . This can be implemented in
the canonical formalism by adding a constraint λi j

(
2Ki j − Lnhi j

)
, where λi j is a

Lagrange multiplier. There are also other methods to “hide” the second derivative of
the three-metric [3, 6].

6The original German reads ([8], p. 416): “Kurze Zusammenfassung: Es wird gezeigt, dass man
entsprechend demWeyl’schen Grundgedanken auf die objektive Existenz der Lichtkegel (Invarianz
der Gleichung ds2 = 0) alleine eine Invarianten-theorie gründen kann, die jedoch im Gegensatz zu
Weyl’s Theorie keine Hypothese über Streckenübertragung enthält und in welcher die Potentiale ϕν

nicht explizite in die Gleichungen eingehen. Ob die Theorie auf physikalische Gültigkeit Anspruch
erheben kann, müssen spätere Untersuchungen ergeben.”.
7We write “seems”, because the ghosts connected with non-unitarity may be removable [21].
8For the history of such theories, see for example [28].
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In order to manifestly reveal conformal invariance of theWeyl action, we will use
here an irreducible decomposition of the 3-metric into its scale part9

a = (
√
h)

1/3

(19)

and its conformally invariant (unimodular) part

h̄i j = a−2hi j . (20)

In addition, we define the following variables [16]

N̄ i = Ni , N̄i = a−2Ni , N̄ = a−1N , (21)

K̄ T
i j = a−1K T

i j , K̄ = aK
3 , (22)

where K̄ T
i j and K̄ are the rescaled traceless and trace parts of the extrinsic curvature,

respectively; as a consequence of the decomposition of the three-metric (19) and
(20) they are given by

K̄ T
i j = 1

N̄

( ˙̄hi j − 2
[
D(i N̄ j)

]T)
, K̄ = 1

N̄

(
ȧ

a
− 1

3
Di N

i

)
. (23)

It can be shown by direct calculation that
[
D(i N̄ j)

]T
is independent of a and that

K̄ T
i j is the conformally invariant part of the extrinsic curvature. We refer to the vari-

ables in (21) and (22) as unimodular-conformal variables, and we will formulate
the canonical theory in terms of them. The advantage of using these variables is that
only the scale a and the trace K̄ transform under conformal transformation,

K̄ → K̄ + n̄μ∂μ logΩ , a → Ωa , (24)

where n̄μ = anμ and n̄μ = a−1nμ. This significantly simplifies the canonical for-
mulation and makes conformal invariance of the theory manifest, since the only
two variables affected by conformal transformation completely vanish from the con-
straints, as will be shown below.

The canonical approach employs a 3 + 1 decomposition of spacetime quantities.
For GR, this is the standard ADM approach [15]. In the present case, one has to per-
form a 3 + 1 decomposition of the Weyl tensor, which can be found, for example, in
[12, 20]. The constrained 3 + 1-decomposed Lagrangian density of the Weyl action
in terms of the unimodular-conformal variables introduced above then becomes

9In quantumGR, there exist attempts to quantize solely the conformal factor [23]. Paddy has derived
from this the interesting conclusion, that the Planck length provides a lower bound to measurable
physical lengths. The situation will be different here, because Weyl gravity does not contain an
intrinsic length scale.
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L W
c = N̄

{
−αW�

2
h̄ia h̄ jbC̄T

i j C̄
T
ab + αW�C̄2

i jk − a5λi jT
[
2K̄ T

i j − 1

N̄

( ˙̄hi j − 2
[
D(i N̄ j)

]T)
]

−2a3λ

[
K̄ − 1

N̄

(
ȧ

a
− 1

3
DaN

a
)]}

, (25)

where λi jT and λ are traceless and trace parts of the Lagrange multiplier λi j , and

C̄T
i j = Ln̄ K̄

T
i j − 2

3
h̄i j K̄

T
abh̄

anh̄bm K̄ T
nm − (3)RT

i j − 1

N̄

[
Di Dj

]T
N̄ (26)

is the “electric part” of the Weyl tensor, containing only velocities of the traceless
part of the extrinsic curvature, and

C̄i jk = 2δ[d
i

(
δ
e]
j δ

f
k − h̄ jk h̄

e] f
)
Dd K̄ef , C̄2

i jk ≡ C̄i jk h̄
ia h̄ jbh̄kcC̄abc (27)

is related to the “magnetic part” of the Weyl tensor, as explained in [12]. The second
expression in (27) should not contain any traces K̄ and therefore be conformally
invariant, but we assume this without proof. Each object with superscript “T” is
traceless. It can be shown easily that the trace of the sum of the first two terms in
(26) vanishes, that is, that hi jLn K̄ T

i j = 2a−2 K̄ T
abh̄

anh̄bm K̄ T
nm .

We now take unimodular-conformal variables (19), (20), (21), and (22) and derive
their conjugate momenta in the standard way,

pN̄ = ∂LW
c

∂ ˙̄N ≈ 0 , pi = ∂LW
c

∂ Ṅ i ≈ 0 , P̄ = ∂LW
c

∂ ˙̄K ≈ 0 , (28)

p̄i j = ∂LW
c

∂ ˙̄hi j
= a5λi jT , pa = ∂LW

c
∂ ȧ = 2a2λ , (29)

P̄ i j = ∂LW
c

∂ ˙̄K T

i j

= −αW� h̄ia h̄ jbC̄T
ab . (30)

Note that the momenta p̄i j and P̄ i j are traceless. The novelty with respect to GR is
the emergence of another primary constraint, P̄ ≈ 0; this suggests that K̄ is arbitrary,
in the same manner as pN̄ ≈ 0 and pi ≈ 0 suggest that N̄ and Ni are arbitrary.

It can easily be checked that the transformation from the original variables to the
unimodular-conformal variables is a canonical one. The Poisson brackets (PBs) of
the variables are

{
q A
i j (x),Π

ab
B (y)

}
=

(
δa(iδ

b
j) − 1

3
hi j h

ab
)

δABδ(x, y) ,
{
q A(x),ΠB(y)

}
= δABδ(x, y) ,

(31)

whereq A
i j = (h̄i j , K̄ T

i j ), Πab
B = ( p̄ab, P̄ab) are thevariables in the conformally invari-

ant subspace of phase space, and q A = (a, K̄ ) ,ΠB = (pa, P̄) is the scale-trace sub-
space of phase space (and similar for the lapse-shift sector). All other PBs vanish.
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After performing the Legendre transformation (from which ˙̄K P̄ is absent, since
˙̄K does not appear in the Lagrangian) and investigating the emerging constraints, we
can write the total Hamiltonian as

HW =
∫
d3x

{
N̄H W⊥ + NiH W

i +
(
N̄ K̄ − 1

3
Di N

i
)
QW + λN̄ pN̄ + λi p

i + λP̄ P̄

}
+ Hsurf ,

(32)
from which one finds the secondary constraints

H W
⊥ = − h̄ik h̄ jl P̄ i j P̄kl

2αW�
+

(
(3)RT

i j + Di Dj

)
P̄ i j + 2K̄ T

i j p̄
i j − αW�C̄2

i jk ≈ 0 , (33)

H W
i = −2∂k

(
h̄i j p̄ jk

) + ∂i h̄ jk p̄ jk − 2∂k
(
K̄ T

i j P̄
jk

)
+ ∂i K̄ T

jk P̄
jk ≈ 0 , (34)

QW = apa ≈ 0 . (35)

The first two are the Hamiltonian andmomentum constraints, and they are analogous
to (3) and (4), although the structure of the Hamiltonian constraint is significantly
different. The new constraint (35) comes from the consistency condition for the
primary constraint P̄ ≈ 0,

˙̄P = {
P̄, HW

} = −∂HW

∂ K̄
= −N̄a pa

!≈ 0 . (36)

A brief inspection of constraints reveals that the Hamiltonian and momentum
constraints are manifestly conformally invariant, due to the use of the unimodular-
conformal variables10 — the Hamiltonian and momentum constraints are indepen-
dent of the scale a and trace K̄ . The constraints P̄ and QW commute, and they
also commute with the rest of the constraints. The Hamiltonian and the momentum
constraints close the same hypersurface foliation algebra as in GR, see [6]. This is
expected for any reparametrization invariant metric theory, see [30], p. 57. Hence,
all constraints are first class.

Therefore, the Hamiltonian and momentum constraints have the same meaning
as in GR. The momentum constraint is extended to include the extrinsic curva-
ture sector, since the components of Ki j are treated as independent variables in this
higher-derivative theory. Thus the three-dimensional diffeomorphism invariance now
includes changes of K̄ T

i j . But what is the meaning of the P̄ andQW constraints? It can
be shown that these constraints comprise a generator of conformal gauge transforma-
tion, as shown in [12] in terms of the original variables (which also include the lapse,
prone to conformal transformation). In unimodular-conformal variables, a procedure
similar to [12] leads to the following generator of conformal transformation [16]:

GW
ω[ω, ω̇] =

∫
d3x

(
QWω + P̄Ln̄ω

) =
∫
d3x

(
apaω + P̄Ln̄ω

)
, (37)

10It can be shown that terms in
(

(3)RT
i j + Di D j

)
P̄i j which depend on a cancel, making this

expression conformally invariant.
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which generates here a transformation only for the scale a and the trace K̄ . We
emphasize that primary and secondary constraints have to appear together to ensure
a correct transformation, as emphasized in particular by Pitts [27].

A closer look at the Hamiltonian constraint (33) reveals that the “intrinsic time”
of GR contained in the scale part a is absent. This is not surprising, because we
are dealing here with a conformally invariant theory. The “problem of time” in
quantum gravity [15] is for the Weyl theory thus of a different nature than for GR.
This difference will also be relevant for the recovery of semiclassical time discussed
below.

Let us now turn to configuration space. In analogy to theHamilton–Jacobi function
of GR, Eq. (7), one can define a Hamilton–Jacobi functional in Weyl gravity as well,
which is defined on full configuration space,

SW = SW[h̄i j , a, K̄ T
i j , K̄ ].

The conjugate momenta p̄i j and P̄ i j follow form this functional in the usual way,

p̄i j = δSW

δh̄i j
, P̄ i j = δSW

δ K̄ T
i j

, pa = δSW

δa
, P̄ = δSW

δ K̄
. (38)

Due to the primary-secondary pair of constraints P̄ ≈ 0 and QW ≈ 0, we can con-
clude, however, that the functional SW does not depend on a and K̄ , since its infini-
tesimal conformal variations vanish,

δSW

δa
= 0 ,

δSW

δ K̄
= 0 ⇒ δωS

W =
∫
d3x

(
δSW

δa
δa + δSW

δ K̄
δ K̄

)
= 0 . (39)

One can then interpret SW as a conformally invariant functional solving the con-
formally invariant Weyl–Hamilton–Jacobi equation (WHJ equation) obtained from
(33),

− 1

2αW�
h̄ik h̄ jl

δSW

δ K̄ T
i j

δSW

δ K̄ T
kl

+ (
(3)RT

i j + Di Dj
) δSW

δ K̄ T
i j

+ 2K̄ T
i j

δSW

δh̄i j
− αW�C̄2

i jk = 0 .

(40)

We expect that SW, as a solution to the above equation, gives a “classical trajectory”

in the configuration subspace spanned by
{
h̄i j , K̄ T

i j

}
. Due to (39), a tangent to this

trajectory does not have components in the a and K̄ directions of the configuration
space. In other words, the classical state of this theory does not follow directions
along changes of a and K̄ in configuration space.

Quantization is now performed in the sense of Dirac by implementing the clas-
sical constraints as restrictions on physically allowed wave functionals on the full
configuration space [15],
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Ψ ≡ Ψ [h̄i j , a, K̄ T
i j , K̄ ].

The canonical variables are promoted into operators in the standard way,

ˆ̄hi j (x)Ψ = h̄i j (x)Ψ , ˆ̄pi j (x)Ψ = −i� δ

δh̄i j (x)
Ψ , (41)

ˆ̄K T

i j (x)Ψ = K̄ T
i j (x)Ψ , ˆ̄Pi j

(x)Ψ = −i� δ

δ K̄ T
i j (x)

Ψ , (42)

â(x)Ψ = a(x)Ψ , ˆ̄pa(x)Ψ = −i� δ
δa(x)Ψ , (43)

ˆ̄K (x)Ψ = K̄ (x)Ψ , ˆ̄P(x)Ψ = −i� δ

δ K̄ (x)
Ψ. (44)

The quantization of the constraints yields [17]

Ĥ W
⊥ Ψ = 0 , Ĥ W

i Ψ = 0 , ˆ̄PΨ = 0 , Q̂WΨ = 0. (45)

Thefirst of these equations is the quantizedHamiltonian constraint,which replaces
the WDW equation of quantum GR and which we will therefore call the “Weyl–
Wheeler–DeWitt” (WWDW) equation. Neglecting here the ubiquitous factor order-
ing problem, it assumes the explicit form

[
�

2αW

h̄ik h̄ jl
δ2

δ K̄ T
i jδ K̄

T
kl

− i�
(

(3)RT
i j + DT

i j

) δ

δ K̄ T
i j

− 2i�K̄ T
i j

δ

δh̄i j

−αW�C̄2
i jk⊥ + Ĥ m

⊥

]
Ψ = 0 . (46)

One recognizes that the WWDW equation is structurally different from the WDW
equation, since thewave functional does not depend only on the three-metric, but also
on its evolution (the second fundamental form). There is also no scale a present and
therefore no intrinsic time in the sense of the WDW equation; there is no indefinite
“DeWitt metric”. It is also interesting to see that � drops out after dividing the whole
equation by �. Formally this is due to our use of αW� in the action instead of just αW;
re-scaling αW → αW/� would bring back � at the places similar to the Wheeler–
DeWitt equation (3), but the important point is that � can be made to disappear by
a simple re-scaling. This is, of course, a property of the vacuum theory. If we add
a matter Hamiltonian density to the WWDW equation, as we shall do below, � will
not disappear when dividing the whole equation by �.
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The quantum momentum constraints read

Ĥ W
i Ψ = i�

[
2∂k

(
h̄i j

δΨ

δh̄ jk

)
− ∂i h̄ jk

δ

δΨ h̄ jk
+ 2∂k

(

K̄ T
i j

δΨ

δ K̄ T
jk(x)

)

−∂i K̄
T
jk + δΨ

δ K̄ T
jk

+ Ĥ m
i Ψ

]
= 0, (47)

or alternatively, in a manifestly covariant version,

Ĥ W
i Ψ = i�

[
2Dk

(
h̄i j

δΨ

δh̄ jk

)
+ 2Dk

(

K̄ T
i j

δΨ

δ K̄ T
jk

)

− Di K̄
T
jk

δΨ

δ K̄ T
jk

+ Ĥ m
i Ψ

]
= 0 .

(48)
Finally, the new quantum constraints read

δΨ

δ K̄
= 0 , a

δΨ

δa
= 0 . (49)

The meaning of (49) is obvious: the wave functional does not depend on a and K̄ ;
hence, it is conformally invariant (apart from a possible phase factor). This is a direct
consequence of the first class nature of the constraints P̄ = 0 and QW = apa = 0.
Thus, we have a conformally invariant canonical quantum gravity theory derived
from the Weyl action. Equivalently, one could have started from a reduced phase
space without a and K and ended up with (46) and (47) only, with Ψ depending on
10 (instead of 12) configuration variables from the start.

Looking at the whole picture, we conclude that solutions to theWWDW equation
are conformally invariant (scale and trace independent), and are indistinguishable
for two three-metrics that are conformal to each other.

3 Semiclassical Weyl Gravity and the Recovery of Time

We consider quantum Weyl gravity with a conformally coupled matter field φ, for
conformal matter does not spoil the first-class nature of constraints; it only modifies
their explicit form. We can then quantize the theory while preserving its conformal
invariance.

In the spirit of the semiclassical (Born–Oppenheimer type) expansion for the
WDW equation, we make an ansatz for the wave functional in which the “heavy”
part, being the pure gravitational part, is separated from the matter part [17]. We
write for the full quantum state in analogy to (9)

Ψ
[
h̄i j , K̄

T
i j , φ

] ≡ exp

(
i

�
S

[
h̄i j , K̄

T
i j , φ

]
)

. (50)
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Plugging (50) into the WWDW equation (46) gives

i

2αW

h̄ik h̄ jl
δ2S

δ K̄ T
i jδ K̄

T
kl

− 1

2αW�
h̄ik h̄ jl

δS

δ K̄ T
i j

δS

δ K̄ T
kl

+ (
(3)RT

i j + DT
i j

) δS

δ K̄ T
i j

+2K̄ T
i j

δS

δh̄i j
− αW�C̄2

i jk +
(
Ĥ m

⊥ Ψ
)

Ψ
= 0. (51)

The expansion can be performed with respect to α−1
W , for this coupling constant

appears at the sameplace (in the kinetic termand in part of the potential) asm2
P appears

in theWDWequation. The functional S can then be expanded in powers of α−1
W 	 1,

assuming αW to be large; this is similar to the Planck-mass expansion for quantum
GR, see (10) above. Note that αW is a dimensionless quantity, unlike the Planck mass
in the case of the WDW equation. This is similar to the semiclassical expansion
of quantum electrodynamics, with the (dimensionless) fine structure constant as the
appropriate expansion parameter [19]. We thus write

S = αW

∞∑

n=0

(
1

αW

)n

SW
n . (52)

Note that
(
Ĥ m

⊥ Ψ
)

/Ψ , when expanded in powers of αW, is at most of the order α2
W,

since the highest derivative with respect to the matter field φ in H̄ m
⊥ is the second

order, which is the kinetic term (we assume it is the only one of that kind). We shall

then denote with
((

Ĥ m
⊥ Ψ

)
/Ψ

)(n)

, n ≤ 2, terms proportional to αn
W.

Inserting the ansatz (52) into the WWDW equation and collecting the powers of
α2

W, we find

α2
W :

((
Ĥ m

⊥ Ψ
)

/Ψ
)(2) = 0 ⇒ δSW

0

δφ
= 0. (53)

This is analogous to the situation in GR [18]. At the next order, αW, we have

α1
W : − 1

2�
h̄ik h̄ jl

δSW
0

δ K̄ T
i j

δSW
0

δ K̄ T
kl

+ (
(3)RT

i j + DT
i j

) δSW
0

δ K̄ T
i j

+ 2K̄ T
i j

δSW
0

δh̄i j
− �C̄2

i jk = 0 , (54)

which is nothing else than the Weyl-HJ equation (40), with SW ≡ αWSW
0 .

At the next order, (α0
W), we obtain

α0
W : i

2
h̄ik h̄ jl

δ2SW
0

δ K̄i jδ K̄kl
− 1

2�
h̄ik h̄ jl

δSW
0

δ K̄ T
i j

δSW
1

δ K̄ T
kl

+ (
(3)RT

i j + DT
i j

) δSW
1

δ K̄ T
i j

+2K̄i j
δSW

1

δh̄i j
+

((
Ĥ m

⊥ Ψ
)

/Ψ
)(0) = 0 . (55)
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Aprocedure analogous to the oneused to arrive at the functional Schrödinger equation
in quantum GR motivates us to propose the following functional:

f ≡ D[h̄i j , K̄ T
i j ] exp

(
i

�
SW
1

)
, (56)

with a condition on the “WKB prefactor” D that will be derived below. We first
calculate the following functional derivatives:

ih̄ik h̄ jl
δSW

0

δ K̄ T
i j

δ f

δ K̄kl
= ih̄ik h̄ jl

δSW
0

δ K̄ T
i j

δD

δ K̄ T
kl

1

D
f − 1

�
h̄ik h̄ jl

δSW
0

δ K̄ T
i j

δSW
1

δ K̄ T
kl

f,

−2i�K̄ T
i j

δ f

δh̄i j
= −2i�K̄ T

i j

δD

δh̄i j

1

D
f + 2K̄ T

i j

δSW
1

δh̄i j
f,

−i�
(

(3)RT
i j + DT

i j

) δ f

δ K̄ T
i j

= −i�
(

(3)RT
i j + DT

i j

) δD

δ K̄ T
i j

1

D
f + (

(3)RT
i j + DT

i j

) δSW
1

δ K̄ T
i j

f.

These expressions are used in (55) to eliminate the second, third and fourth terms,
after multiplying with f . As a result, one obtains

i

2
h̄ik h̄ jl

δSW
0

δ K̄i j

δ f

δ K̄ T
kl

− i�
(

(3)RT
i j + DT

i j

) δ f

δ K̄ T
i j

− 2i�K̄ T
i j

δ f

δh̄i j
+ Ĥ m

⊥ f

+
(
i

2
h̄ik h̄ jl

δ2SW
0

δ K̄i jδ K̄kl
− i

2
h̄ik h̄ jl

δSW
0

δ K̄ T
i j

δD

δ K̄ T
kl

1

D

+i�
(

(3)RT
i j + DT

i j

) δD

δ K̄ T
kl

1

D
+ 2iK̄ T

i j

δD

δh̄kl

1

D

)

f = 0 , (57)

where Ĥ m
⊥ f comes from

((
Ĥ m

⊥ Ψ
)

/Ψ
)(0)

f . We now choose D such that the term

in the parenthesis vanishes. This gives us the equation that defines D, in analogy to
the situation in quantum GR [14]:

i

2
h̄ik h̄ jl

δ2SW
0

δ K̄i j δ K̄kl
− i

2
h̄ik h̄ jl

δSW
0

δ K̄ T
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δD

δ K̄ T
kl

1

D
+ i�

(
(3)RT

i j + DT
i j

) δD

δ K̄ T
kl

1

D
+ 2iK̄ T

i j
δD

δh̄kl

1

D
= 0.

With this condition, (57) reduces to

i�

[

− 1

2�
h̄ik h̄ jl

δSW
0

δ K̄ T
i j

δ

δ K̄ T
kl

+ (
(3)RT

i j + DT
i j

) δ

δ K̄ T
i j

+ 2K̄ T
i j

δ

δh̄i j

]

f = Ĥ m
⊥ f.

(58)
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Introducing a local “bubble” (Tomonaga–Schwinger) time functional by

δ

δτW(x)
:= − 1

2�
h̄ik h̄ jl

δSW
0

δ K̄ T
kl

δ

δ K̄ T
i j

+ (
(3)RT

i j + Di Dj
) δ

δ K̄ T
i j

+ 2K̄ T
i j

δ

δh̄i j
, (59)

we arrive at the Tomonaga–Schwinger equation

i�
δ f

δτW

= Ĥ m
⊥ f . (60)

Note that τW is, like its GR-counterpart (12), not a scalar function [9]. We emphasize
that the wave function f is conformally invariant.

At a formal level, the Tomonaga–Schwinger equation (60) resembles the corre-
sponding equation in quantum GR. We see, however, from the explicit expression
for the WKB time (59) that it is defined only from the semiclassical shape degrees of
freedom, since the traces (especially a) are absent. A functional Schrödinger equa-
tion of the form (15) can be derived from the Tomonaga–Schwinger equation by a
procedure similar to the one in GR. This will involve a time parameter that should
be identical with the time parameter of the classical solutions of Weyl gravity.

Proceedingwith theBorn–Oppenheimer scheme tohigher orders inαW, one arrives
at quantum gravitational corrections terms proportional to α−1

W , in analogy to the
higher orders proportional to m−2

P in quantum GR [18]. These may serve to study
correction terms to the limit of quantum field theory in curved (Weyl) spacetime, but
we will not discuss them here.

4 Outlook

Although there is not yet a consensus about the correct quantum theory of gravity,
and about the need to quantize gravity, there exist several approaches within which
concrete questionswith potential observational relevance can be posed and answered.
Among them is canonical quantum gravity in the metric formulation. If general
relativity is quantized in this way, one arrives at theWheeler–DeWitt equation and the
momentum constraints. A semiclassical expansion leads to the recovery of quantum
field theory in curved spacetime plus quantum gravitational corrections. The latter
may be observationally tested, for example, in the CMB anisotropy spectrum.

Our concern here was to discuss canonical quantization and the semiclassical
limit for an alternative theory based on the Weyl tensor. This “Weyl gravity” does
not contain any scale, so it may be of empirical relevance only in the early Universe,
where scales may be unimportant. Independent of this possibility, it is of structural
interest to compare this theory in its quantum version with quantum general relativ-
ity. We have seen here that a semiclassical limit can be performed by a well defined
approximation scheme, although the emerging semiclassical time has properties dif-
ferent from standard semiclassical time. In future investigations, we plan to apply a
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theory based on the sum of Weyl and Einstein-Hilbert action to the early Universe
and to the understanding of spacetime structure at a fundamental level, topics that
are also at the centre of Paddy’s interest.
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Accelerated Observers, Thermal Entropy,
and Spacetime Curvature

Dawood Kothawala

Abstract Assuming that an accelerated observer with four-velocity uR in a curved
spacetime attributes the standard Bekenstein–Hawking entropy and Unruh temper-
ature to his “local Rindler horizon”, I show that the change in horizon area under
parametric displacements of the horizon has a very specific thermodynamic structure.
Specifically, it entails information about the time–time component of the Einstein
tensor: G(uR, uR). Demanding that the result holds for all accelerated observers, this
actually becomes a statement about the full Einstein tensor, G. I also present some
perspectives on the free fall with four-velocity uff across the horizon that leads to such
a loss of entropy for an accelerated observer. Motivated by results for some simple
quantum systems at finite temperature T , we conjecture that at high temperatures,
there exists a universal, system-independent curvature correction to partition function
and thermal entropy of any freely falling system, characterised by the dimensionless
quantity Δ = R(uff , uff) (�c/kT )2.

1 Gravity and Thermodynamics

It has been well known for a long time that statistical mechanics in presence of
gravitational interactions exhibits several peculiar features [1], deriving mostly from
the fact that gravity couples to everything, and operates unshielded with an infinite
range. Many of these peculiarities, such as negative specific heat, however, attracted
attention only after they were encountered in the context of black holes. Indeed,
existence of a horizon magnifies quantum effects in presence of a black hole, reveal-
ing a gamut of exotic features, the most famous being its thermal attributes [2].
This gravity ↔ quantum ↔ thermodynamics connection has been gaining increas-
ing attention in recent years due to it’s potential relevance for our understanding of
gravity, and perhaps spacetime itself, at a fundamental level. In particular, the fact
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that black holes have thermodynamic properties has time and again motivated the
intriguing question: is there a deeper clue hidden in the connection between grav-
itational dynamics and thermodynamics? One is naturally lead to suspect whether
the dynamics of gravity itself has a built in thermodynamic structure. Moreover,
since these thermal attributes are essentially quantum mechanical in origin, they are
particularly relevant in the context of quantum gravity.

This article zooms into two very specific questions in this context:

• What information about spacetime curvature can be obtained from thermal
properties of local acceleration horizons?

The first part of this article largely focuses on exploring the spacetime geometry in
the vicinity of an accelerated observer in the hope that it will clarify the connection
between gravity and thermodynamics. Specifically, I will try to clarify the relation
between area variation and Einstein tensor

T δ
?
A ←→

?
G(uR, uR)

by trying to answer each of the “?”s in the above expression. Such a relation has
been known and discussed in various forms in several works; I hope the analysis
given here would help clarify it’s mathematical origin.

• What are the effects of spacetime curvature on thermal properties of a freely
falling quantum system?

I then present some speculations on geodesic free fall of a thermal systemacross the
local horizon of such an observer. Motivated by results from a couple of examples,
I conjecture that the partition function and thermal entropy of any quantum system
at high temperatures acquire a system independent correction term characterised
by the dimensional quantity

Δ = R(uff , uff) (�c/kT )2

which contributes an (entropy)/(degree of freedom) of

sΔ = (const.) R(uff , uff) (�c/kT )2 (1)

Each of the highlightedwords in the above two questions carries physical significance
of it’s own; note that the only difference between the two is that of accelerated versus
inertial motions.

I feel a deeper analysis of these questions is important for any research that uses
the connection between gravity and thermodynamics as a starting point. One example
would be the assertion that there is more to gravitational dynamics than the Einstein–
Hilbert action – something that has been the focus of Paddy’s research over the past
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decade. This article presents some of the lesser known results, both mathematical
and physical, that could be important in a better understanding of such an assertion.1

2 Gravity ⇐⇒ Accelerated Frames ⇐⇒ Thermodynamics

Once we realise that certain surfaces - horizons - must be attributed entropy by
certain class of observers, there is a tantalizing possibility of imposing the first law
of thermodynamics and then see how it constrains the curvature of background
spacetime. It is possible that such a study can also yield information about Einstein
field equations themselves.

One physically relevant set-up for addressing this issue was given by Jacobson,
based on usage of local acceleration (Rindler) horizons and the Raychaudhuri equa-
tion [3]. Subsequently, several generalisations as well as variations of this work have
appeared in the literature. However, not all of them share the same physical and/or
technical assumptions. Several such issues have been discussed in [4, 5]. At some
level, some of these issues do become important when one actually probes the struc-
ture of gravitational field equations and look for some connection with some ther-
modynamic law, a route that was first taken by Padmanabhan and has subsequently
been studied in much more generality [6]. The relevant structure of field equations
(or technically, the Einstein tensor) is of obvious relevance to any argument(s) which
attempt to reverse the logic and derive field equations from thermodynamic consid-
erations. A clarification of some of the subtle mathematical issues involved in this
program was presented in [4, 5].

In this note, we present a calculation directly in the local frame of the acceler-
ated observer, described by Fermi coordinates, that illuminates several of the points
concerning the structure of Einstein tensor and it’s role in interpreting the field equa-
tions in thermodynamic terms. That is, we investigate the local spacetime structure by
employing, as probes, accelerated trajectories and using the fact that such trajectories
will have a local horizon attributed with the standard Unruh temperature [7].

This analysis is therefore complimentary, though not completely identical, to the
one presented in [4]. It has the advantage that it very clearly demonstrates how
various curvature components combine, in a rather specific manner, through the
transverse horizon area, to reproduce the relevant (time–time) component of the
Einstein tensor. This mathematical fact lies at the heart of any attempt to relate
gravitational dynamics with horizon thermodynamics. From a broader perspective,
the calculations presented here also re-emphasize the points made earlier in [4]
concerning the difference(s), both technical and conceptual, between results arising
from exploring thermodynamic structure of field equations and attempts to derive the
field equations from a specific thermodynamic statement (see [5] for a more recent

1Notation: The metric signature is (−,+,+,+); latin indices go from 0 to 3, greek indices from 1
to 3.
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comprehensive discussion of these issues); in particular, the former is not implied
by the latter

The key point clarified and highlighted by the analysis presented here is how and
why the “time–time” component of the field equations (equivalently, of the Einstein
tensor) acquires a direct thermodynamic relevance.2 This forms the main focus of
this paper. Appendix “A Simple Toy Model for a Point Mass Disappearing Across
the Horizon” gives a simple toy model for quantifying the shift in location of
the horizon as some form of energy crosses it. Appendix “Surface Term in Fermi
Coordinates” presents the (leading order) form of the surface term in the Einstein–
Hilbert action in the local coordinates of the accelerated observer in curved space-
time. This term is known to yield horizon entropy in flat spacetime, and hence one
expects the curvature corrections to the same as also having direct thermodynamic
significance.

2.1 Virtual Displacements of Local “Rindler” Horizons
and Einstein Tensor

It is well known that accelerated observers in flat spacetime perceive the vacuumas
a thermal bath; therefore, it is natural to start looking for the connection between
gravity and thermodynamics by considering accelerated observers in curved space-
time. Consider, then, such an observer (or, more precisely, an accelerated timelike
trajectory), and construct a locally inertial system of coordinates based on his/her
trajectory. Such a coordinate system can be obtained by Fermi-Walker transport-
ing the observer’s orthonormal tetrad along the trajectory; the coordinate system so
obtained is called the Fermi coordinate (FNC) system [9]. In FNC’s (τ, xμ), the
metric acquires the following form:

g00 = −
[(
1 + aμx

μ
)2 + R0μ0νx

μxν
]

+ O(x3)

g0μ = −2

3
R0ρμσ x

ρxσ + O(x3)

gμν = δμν − 1

3
Rμρνσ x

ρxσ + O(x3) (2)

where aμ and Rabcd are all functions of τ . We shall assume that we are working
in a sufficiently small region of space, and focussing on sufficiently small time
scales, so as to ignore the time dependence of metric components. Technically, this
is equivalent to assuming the existence of a static timelike Killing vector in the region
of interest. For definiteness, we will take our observer to be moving along the x3

direction; i.e., aμ = aδ
μ
3 , where a is the norm of the acceleration. This can be always

2It is always this component that has appeared in works based on [6]; it’s significance in related
contexts is also becoming evident in some recent works (compare, for example, [3, 8]).
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be done by an appropriate choice of the basis vectors: Given the four velocity u
of the observer, one chooses the basis vectors such that, e0 = u and e3 = (1/a) a,
so that e0 · e3 = 0. These basis vectors are then Fermi-Walker transported along
the trajectory, ∇uek = (u ⊗ a − a ⊗ u) · ek for k = 0 .. 3. The remaining two basis
vectors can be suitably chosen to be orthogonal to e0 and e3. In such a coordinate
system, the only non-zero component of the acceleration 4-vector is a3 = a · e3 = a.

The FNC system (to quadratic order) describes the geometry in the neigh-
bourhood of an accelerated observer to a very good accuracy for length scales
x � min { |a|−1, R−1/2, |R/∂R| }. We must now choose the acceleration such that
the length scale |a|−1 associated with it is much smaller than the curvature depen-
dent terms above; then the presence of the horizon along with it’s thermodynamic
attributes will not be affected by curvature. Specifically, the horizon for such an
observer is then located at x3 = −a−1 = z0, say.

The transverse area of the horizon 2-surface, x3 = z0, is given by

σAB = δAB − 1

3
RAμBνx

μxν (3)

so that

√
σ = 1 − 1

6
RAμAνx

μxν (4)

= 1 − 1

6

[
RA3
A3z

2
0 + 2RA3

AB z0 y
B + RAC

BDx
CxD

]
(5)

where we have used the Euclidean metric to raise the spatial indices on the curvature
tensor, since the curvature tensor is evaluated on the observers’ worldline.

Wenowwish to consider some physical processwhich produces a virtual displace-
ment of the horizon normal to itself (that is, along the x3 direction), and see how the
horizon area changes in such a process (see Appendix “A Simple Toy Model for a
Point Mass Disappearing Across the Horizon” for a toy model of such a process).
The displacement is to be considered as a virtual displacement; we do not have in
mind an observer with a different acceleration, which would require us to construct a
different coordinate system based on the newworldline. Rather, the idea here is to see
whether the differential equation governing the virtual displacement of the horizon
has any physical meaning. We shall therefore consider the parametric dependence
of the transverse area on z0 = −a−1, A (x, y; z0), and then consider the variation,

z0 → z0 + ε

ε = Δz0 (6)

Since we generally associate an entropy S ∝ A with a horizon surface, and a local
Unruh temperature TU = a/(2π) with an accelerated observer, we expect the resul-
tant equation for involving δA to have a thermodynamic interpretation.
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We have,

δz0
√

σ = √
σ |z0+ε − √

σ |z0
= −1

3

[
RA3
A3z0 + RA3

AB xB
]
ε + O(ε2) (7)

where the subscript ε reminds us that we are dealing with a very specific variation.
Now concentrate on a small patch of the horizon surface. It is then not unreasonable
to assume that, upon integration over the transverse coordinates, the second term in
the square brackets averages out to zero. (If it doesn’t, we would have a preferred
direction in the transverse horizon surface.) We shall nevertheless come back to this
point later.

The change in area of this surface under the virtual displacement of the horizon
is therefore given by

δz0A =
∫

H

(
δz0

√
σ

)
d2x⊥ (8)

where d2x⊥ = dx1dx2, and H represents integration over the horizon surface τ =
constant, x3 = z0. With TU = −1/(2π z0) for a > 0, we have

TU δz0

(
1

4
A

)
= η

8π

∫

x3=z0

R3A
3A ε d2x⊥ (9)

where η = 1/3. If one assumes the standard Bekenstein–Hawking expression for
entropy of a horizon, S = A /4, then the left hand side above is just TU δS. To
simplify the right hand side, we use the general decomposition of the Einstein tensor
in terms of components of the curvature tensor. This is given by

G0
0 = − (

R12
12 + R13

13 + R23
23

)
(10)

which implies

R3A
3A = −G0

0 − R12
12 (11)

Then, we obtain

TU δz0 S = −η

⎡

⎣
∫

H

1

8π
G0

0 ε d2x⊥ +
∫

H

1

16π
R‖ ε d2x⊥

⎤

⎦ (12)

where R‖ = RAB
AB is the Ricci scalar of the in-horizon 2-surface. This is essentially

the relation we wanted to establish. Note that, to the relevant order, one can consider
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d2x⊥ on the RHS of Eq. (12) as the covariant measure of horizon area; since it is
already multiplied by curvature components, any curvature corrections to volume
would be higher order. The appearance of G0

0 is already quite suggestive, and, in
what follows, we argue that the second term also has a nice interpretation which
qualifies it as a suitable thermodynamic variable.

2.1.1 Horizon Energy

We now provide a suitable interpretation for the second integral in Eq. (12).We begin
by noting that the Euler character χ of a two dimensional manifoldM2, in this case
the horizon 2-surface, is given by

χ (M2) = 1

4π

∫

M2

R d[vol] + boundary terms (13)

The second term in the square brackets in Eq. (12) therefore just (χ/4)ε plus the
boundary term, which involves the integral of extrinsic curvature over the boundary
of the region of integration. Keeping all these points in mind, we will simply call the
second integral in Eq. (12) as χ̂ . We want to interpret this term as change in “energy”
associated with the horizon, say Eg . This expression is already well known in the
context of quasilocal energy in spherically symmetric spacetimes. Let us consider
the case of a general, spherically symmetric black hole. This term then essentially
involves the curvature component, Rθφ

θφ = (1/r2) (1 − grr ) in standard coordinates.
On the horizon r = a, grr vanishes and we obtain, after multiplying with the appro-
priate transverse area element, Eg = a/2, which is a very common expression for
energy (called as the Misner–Sharp energy). In Appendix “A Simple Toy Model for
a Point Mass Disappearing Across the Horizon”, we give a toy model which further
analyses this expression for (change in) energy in terms of horizon shift.

2.2 Final Result and Discussion

If one employs the Einstein field equations G0
0 = 8πT 0

0 at this stage (where T 0
0 =

−ρm is the local energy density of matter in the instantaneous rest frame of the
observer), Eq. (12) becomes

TU δεS = −η

⎡

⎣

⎛

⎝
∫

H

T 0
0d

2x⊥

⎞

⎠ Δz0 + χ̂

2

(
Δz0
2

)
⎤

⎦ (14)
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where the second equality is based on discussion of the previous section. This is
our main result, which forms the basis for thermodynamic interpretation of field
equations. For example, for static spacetimes, the above relation (apart from the
factor (−η)), can be shown to have the form [10]

T δS = F̄Δz0 + dEg (15)

where F̄ is the average normal force on the horizon surface (see Eq. (21) of [10]).
It is gratifying to see that the final expression is in a form which can be readily

expressed in any arbitrary coordinate system; it only depends upon the foliation
provided by the accelerated observer. Given u and a, one can identify the spacelike
two-surface acting as local horizon, and the corresponding “heat” flow then depends
only on R‖ – the curvature scalar of the two surface, and G0

0 = −G(u, u) – which is
the projection of Einstein tensor along the observer’s time axis. This is as far as one
can get trying to explore the connection between intrinsic properties of local Rindler
horizons and gravitational dynamics.

To evaluate how rigorous the analysis is, let us take stock of the assumptions that
have gone into the derivation:

(i) The acceleration length scale be small compared to any of the curvature length
scales: This assumption is natural, given that the whole idea is to use solely the
acceleration of probe observes and find constraints on background geometry - a
natural physical setup to formulate the problem, sanctioned by the equivalence
principle.

(ii) The assumptionmentioned just below Eq. (7): This requires some consideration,
since it is possible that the term contributes in a sensible manner to some form
of energy associated with some geometric characteristic of the horizon. It might
introduce additional stresses in the first law (similar to those resulting from, say,
angular momentum of the horizon patch).

The only technical issue is that, this derivation, while as general as it can be, yields
an extra factor of −η = −1/3 whose interpretation is unclear. Otherwise, the analy-
sis very clearly indicates how the gravitational dynamics of a curved spacetime is
intimately related to the property of spacelike two surfaces which can act as horizons
for certain observers. In fact, as we have shown above, the gravitational dynamics
(or more specifically, the Einstein tensor) is completely encoded in the transverse
geometry of the spacelike two surface and it’s normal variation, to which a physical
interpretation can be attached via thermodynamic quantities such as entropy and
temperature associated with the horizon [11].

It is indeed curious that we canmake any statement at all concerning the dynamics
of gravity by (i) assuming a curved Lorentzian spacetime with it’s associated light-
cones, and (ii) a temperature associated with local Rindler horizons. Curiously, the
curvature tensor makes it’s appearance through the thermodynamic variables TU
and δS, rather than the conventional tidal terms. The reason is that, apart from the
laboratory length scale, we now also have the length scale c2/a associated with
acceleration. The presence of a causal horizon at z0 = −1/a and it’s associated
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thermodynamics iswhat brings in the curvature information through quantum effects.
The non-trivial part being that it brings in just the right combination of curvature
components to facilitate making a general statement about the dynamics of gravity.

More succinctly, just as accelerated frames played a key role in arriving at
a kinematic description of gravity in terms of spacetime geometry, virtual
displacements of acceleration horizons, through associated quantum effects,
might play a key role in understanding better the dynamics of gravity.

We hope we have provided one of the most straightforward demonstrations of the
above ideas. In the next section, we focus attention to the fate of actual thermal sys-
tems in free fall in a curved spacetime, and conjecture on a universal tiny contribution
to thermal entropy of any system at sufficiently high temperatures.

3 Thermal Entropy and Spacetime Curvature

Most of the work investigating the connection between gravity and thermodynamics
so far has focussed on accelerated observers and the thermal effects associated with
their horizons. However, all such analyses invariably are based on a scenario in which
a system disappears across the acceleration horizon, carrying entropy with it that is
lost to the accelerated observer. Indeed, it is this question (posed in the context of
black holes) of Wheeler’s that had prompted Bekenstein to investigate the physical
basis behind the laws of black hole mechanics [12]. Unfortunately, however, not
much attention has been given to the statistical mechanics of quantum systems that
are (in some suitably defined sense) in a free fall in a curved spacetime.

It is precisely this problem that motivated the analysis in [13], two of the key
points of interest being: (i) to study the interplay between quantum and thermal
fluctuations in presence of spacetime curvature, (ii) to analyse whether this can have
any implications for understanding the physical nature of black hole entropy. Here,
I will focus only on point (i). Since a general analysis of statistical mechanics of
a quantum system at finite temperature, in a curved spacetime, is understandably
difficult, the above questions were addressed in [13] in the context of a very simple
system: non-relativistic ideal gas enclosed in a box whose (geometric center) follows
a geodesic uff . The choice of central geodesic only serves to define the reference
measure for energy of the system; in particular, the Hamiltonian of the particles is
defined as

H = −c p̂0 (16)

where 0̂ is the time coordinate defined by uff . More discussion on the physical
significance of this Hamiltonian, as well as it’s detailed form, can be found in [13].
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In the non-relativistic limit, one obtains

H − mc2 ≈ p2

2m
+ 1

2
mc2R0̂μ̂0ν y

μyν (17)

I will also ignore the time dependence carried by curvature components, a reasonable
assumption if the time scale R/Ṙ is much larger compared to typical time scale
associated with the system; one expects this to be the case at high temperature (see
below).

One can nowuse the aboveHamiltonian to evaluate the energy eigenvalues E [{n}]
of constituent particles of a system (where {n} represents the set of all relevant
quantum numbers) at temperature kT = 1/β, and therefore the partition function

Z(β) =
∑

{ni }
e−βE[{ni }] (18)

The one-particle energy eigenvalues have the form

E1 [{ni }] = E1,0 [{ni }] + ΔE1 [{ni }] (19)

where the first term on RHS represents unperturbed energy eigenvalues, while the
second term is the perturbation cause by spacetime curvature. The corresponding
partition has the form The one-particle energy eigenvalues have the form

Z(β) = Z0(β) + ΔZ (β, Rabcd , {κ}) (20)

where again, the first term on RHS is the flat spacetime expression and the second
term thefirst ordermodification due to spacetime curvature; {κ} symbolically denotes
all the system specific parameters, such as mass, physical dimensions etc.

Our key conjecture would be that:

lim
large T

ΔZ (β, Rabcd , {κ}) (21)

generically contains a term independent of {κ}, and has the form

lim
large T

ΔZ (β, Rabcd , {κ}) = (const.)R00Λ
2 + {κ} dependent terms (22)

Once again, such a result would imply that there is a universal, inherent, Ricci
contribution to thermodynamic quantities of a system in curved spacetime, which,
for obvious reasons, can have great implications when a system at finite temperature
disappears across a causal horizon of some observer.

Box of Ideal Gas

The calculation mentioned above was carried out in [13] for a box of ideal gas freely
falling in a curved spacetime, and it was shown that, in the regime where the analysis
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was valid (λ3/V � 1where λ = h/
√
2πmkT is the thermal deBrogliewavelength),

the partition function has the form:

ln

(
Z

ZF

)
= −1

4
N R0̂̂0Λ

2 + terms depending on curvature and box details (23)

where ln ZF = ln(V Nλ−3N/N !) is the flat space expression, andΛ = β�c – a length
scale independent of box dimensions Li and mass m.

We can now obtain corrections to various thermodynamic quantities: Ucorr =
U −UF and Scorr = S − SF, whereUF = 3N/2β and SF = 3N/2 + N ln

(
eV/Nλ3

)

are standard flat space expressions. Using standard definitions U = −∂β ln Z and
S = ln Z + βU to evaluate Ucorr, Scorr and heat capacity at constant volume, CV =
−β2∂βU = 3N/2 + CV corr, we obtain

2Scorr/N = +(1/2)R0̂̂0Λ
2

︸ ︷︷ ︸
2sΔ/N

βUcorr/N = +(1/2)R0̂̂0Λ
2

︸ ︷︷ ︸
βuΔ/N

CV corr/N = −(1/2)R0̂̂0Λ
2

︸ ︷︷ ︸
cΔ/N

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ system dependent terms

Before proceeding, it is worth pausing to check whether the approximations made to
arrive at the above result(s) are not mutually inconsistent. This is an important issue,
and is discussed at length in Appendix “Validity of the Approximations for the Ideal
Gas Calculation”.

Simple Harmonic Oscillator

One can also do the above analysis for a bunch of simple harmonic oscillators with
frequency ω [14] (which might be physically more relevant system for obvious
reasons); in this case, one obtains, in the high temperature limit β�ω � 1

2Scorr/N = +(1/12)R0̂̂0Λ
2

︸ ︷︷ ︸
2sΔ/N

βUcorr/N = +(1/12)R0̂̂0Λ
2

︸ ︷︷ ︸
βuΔ/N

CV corr/N = −(1/12)R0̂̂0Λ
2

︸ ︷︷ ︸
cΔ/N

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ system dependent terms

The system dependent terms not indicated above can be found in [13, 14], and they
essentially involve terms that depend on m, Li in the case of ideal gas, and the
frequency ω in the case of harmonic oscillator.

I now wish to highlight some of the key features of this result:
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• Perhaps the most important point to be noted is the following: For the example of
ideal gas, the curvature dependent correction termΔE1 [{ni }] in Eq. (19) turns out
to be independent of �! (The full expression is given in [13].) The quantumness
of this term is solely due to the {ni } dependence of ΔE1 [{ni }], and manifests
itself in the final expressions since Λ ∝ �. This is a nice demonstration of how
the interplay between quantum and thermal fluctuations induced by a background
spacetime curvature can be non-trivial.

• Further, sΔ and uΔ satisfy the relation: sΔ = (1/2)βuΔ with sΔ as mentioned
in the Introduction (Eq. (1)). This is a Euler relation of homogeneity two, well
known from black hole thermodynamics; in particular, black hole horizons have
temperature β−1

H , entropy Sbh and (Komar) energy Ubh which also satisfy Sbh =
(1/2)βHUbh. Relevance of such Euler relation and area scaling of entropy for self-
gravitating systems has already been emphasized in [15]. This relation also plays
an important role in the emergent gravity paradigm, leading to an equipartition
law for microscopic degrees of freedom associated with spacetime horizons [16].

• The Δ contribution to specific heat is negative if the condition (R0̂̂0 ≥ 0) holds.
(This condition is, of course, tied to the strong-energy condition if Einstein equa-
tions are assumed.) Also, cΔ = −βuΔ = −2sΔ, which are again the same as the
relations satisfied by a Schwarzschild black hole.

• The appearance of the length scale Λ = �c/kT in the non-relativistic limit is
curious, and it would be interesting to understand the physical meaning of this
length scale at the basic level [17].

3.1 Speculation

All the above points are extremely suggestive as far as the role of Ricci correction
to thermodynamic properties of arbitrary systems is concerned. In fact, a similar
analysis can be done for a harmonic oscillator, and it can again be shown that at
sufficiently high temperatures, thermodynamic quantities acquire specific correction
terms which are independent of the frequency ω of the oscillator [14].

In particular, based on these, one can speculate the following:

Entropy of a system at temperature T generically acquires a system indepen-
dent contribution in a curved spacetime characterized by the dimensionless
quantity

Δ = R(uff , uff) (�c/kT )2 (24)

at sufficiently large temperatures T .
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This should motivate further study of thermal systems in curved spacetime along the
suggested route.Note that the important features associatedwith theRicci corrections
would not appear if: (i) one studies the problemusing classical statisticalmechanics –
since then themodification of energy eigenvalues, 1/n2 in present case, is missed), or
(ii) assume a priori that finite size correctionswould necessarily depend only on area,
perimeter etc. – the Ricci term here in fact does not involve dimensions of the box at
all! For the result to have any deeper significance, it’s main qualitative aspects (in the
high temperature limit) must, of course, survive further generalizations (relativistic
gas, different statistics etc.), insofar as the form of the Ricci term is concerned. Some
preliminary calculations do seem to point to this [18].

3.2 Possible Implications

So, what could be possible implications of this?
Well, for one, if there does exist a universal term in entropy of systems at high

temperature that depends on the Ricci tensor, it might lead to some insight into
understanding the interplay between thermal and quantum fluctuations in a curved
spacetime.

Second, such analyses can add interesting (and non-trivial) physics to arguments
given by Bekenstein in his original paper [12] in support of the so called generalised
second law (GSL). Most of Bekenstein’s supporting analysis used expressions for
thermal energy and entropy of various systems in flat spacetime, added to the (min-
imum) change in black hole entropy when such a system falls across the black hole
horizon. It is, of course, important and interesting to know how curvature corrections
to thermodynamic attributes of a system affect this analysis.

More specifically, one would like to know quantitatively how and where the Δ

term appears in the proposed GSL:

ΔSBH + ΔSext > 0

where ΔSBH represents the change in entropy of the black hole, and ΔSext =
ΔSext (β, Rabcd , {κ}) is the change in common entropy in the region exterior to
the black hole. This is work under progress.

And lastly, appearance of such a term can be of direct relevance for understanding
of thermodynamical aspects of gravitational dynamics.

4 Concluding Remarks

Now, here, you see, it takes all the running you can do, to keep in the same place. If you
want to get somewhere else, you must run at least twice as fast as that!

— Lewis Carroll, Through the Looking Glass
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Fig. 1 A combined description of a freely falling thermal system and the thermodynamics asso-
ciated with an accelerated observer can yield physically useful insights into interplay between
quantum mechanics, thermodynamics, and spacetime curvature

Since all the relevant comments and remarks have been given in the respective sec-
tions, I conclude with a pictorial summary of the theme of this article, depicted in
Fig. 1.

Study of thermodynamic aspects of gravity, which derives it’s motivation from
semi-classical results such as theHawking andUnruh effects, does provide an elegant
route to make some deep observations concerning the nature of gravity. However,
such considerations, by themselves, might turn out to be too elegant to be of any
use, unless coupled with a deeper study of the structure of statistical mechanics in a
curved spacetime.
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India, through it’s INSPIRE Faculty Award, is gratefully acknowledged.
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Appendix

A Simple Toy Model for a Point Mass Disappearing Across
the Horizon

In this section, let us try to model the loss of energy across a local Rindler horizon via
a particle of mass m that disappears across the horizon. We will present the analysis
for the case when the background spacetime is flat in the limit m → 0; that is, m is
the only source of curvature. As we shall comment in the end, this suffices as long
as one is working to first order in background curvature.

A complete dynamical description of this process is expected to be complicated,
but since we are only interested in shift of the horizon as the particle disappears
across it, we propose the following simplified scenario: we consider the particle
when it is on the verge of crossing the horizon, that is, at xμ ≈ −(1/a)δ

μ
3 − 0, t = t0,

and compare this with a situation when it is no longer in the causal domain of the
accelerated observer. The shift in horizon position can then be evaluated by using
an orthonormal tetrad for this particle that maps smoothly to that of the accelerated
observer (in an asymptotic sense, see below). This is most easily done by using the
Schwarzschild metric in isotropic coordinates yμ for the particle; the metric near m
in these coordinates is given by

ds2 = −
(
1 − m

2r

1 + m
2r

)2

dt2 +
(
1 + m

2r

)4
dl2flat (25)

where

dl2flat = δμνdy
μdyν (26)

r = √
δμν yμyν (27)

and we shall be interested in r  m. In the limit r → ∞, the curvature components
in these coordinates are given by (with r0 = 2m, and no summation over repeated
indices)

R0μ0μ → − r0
r3

+ O

(
1

r4

)
(no summation)

R0μ0ν → −3

2

( r0
r5

)
yμyν + O

(
1

r6

)
(μ �= ν)

Rμνμν → − r0
2r3

+ O

(
1

r4

)
(μ �= ν)

Rμνμλ → −3

2

( r0
r5

)
yν yλ + O

(
1

r6

)
(μ �= ν �= λ) (28)
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(a) Inertial coordinates (b) Rindler coordinates

Fig. 2 A particle of massm crossing a local Rindler horizon ofO; Inertial and Rindler perspectives

We now wish to compare two situations: an accelerated observer in flat spacetime,
and an accelerated observer with this same acceleration but in presence of the mass
m. We expect that such a comparison would provide a natural setting to study what
happens when m disappears from the causal domain of the accelerated observer,
when it crosses the horizon; in effect, we are accounting for the effect of the particle
by considering how the curvature produced by it changes the horizon location (see
Fig. 2). With this in mind, we can go ahead with the calculation. We are mainly
interested in knowing how the horizon location changes when the perturbing massm
moves “across” the horizon (see Fig. 3). To lowest order, this can be done by setting
g00 = 0, and it is easy to see that one obtains,

z0± = −1

a

(
P ∓

√
P2 − Q

)
(29)

where

P = 1 + a−1R030Ay
A − a−2R0303 (30)

Q = 1 + R0A0By
AyB − a−2R0303 (31)

From Eqs. (28), we see that in the limit r → ∞, it is only the R0303 term that
matters. Also, we make a further assumption of using the average of the two roots
above, z0 avg = −P/a, to quantify horizon displacement (without this assumption, it
is unclear which root to pick, and further, it is not clear what terms containing square
root of curvature tensor would mean). We then obtain (see Fig. 3)
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Fig. 3 The shift of horizon
due to “loss” of mass m (see
text for details)

Δz0 = zf − zi
= −1/a − z0 avg

= r0
(ra)3

∣
∣
∣
∣
r=1/a

= r0 (32)

Since r0 = 2m, we therefore get

m = Δz0
2

(33)

The above result is in exactly similar to the case of particle capture by a Schwarz-
schild black hole. In fact, for spherically symmetric black holes, the above result
is equivalent to attributing an energy E = rh/2 to the horizon (with radius rh), so
that ΔE = Δrh/2 is the change in energy when a particle falls into the black hole.
Indeed, this is the energy that appears in [6]. (In General Relativity, this definition of
energy is equivalent to the so called Misner–Sharp energy associated with the black
hole.)
Aside: Note that one can not argue for the above result on dimensional grounds
alone, since more than one length scales are involved. In fact, the scaling of Δz0 is
an outcome of our (admittedly adhoc) choice of z0 avg. What is remarkable is that,
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given all the approximations made, we do get the appropriate numerical factor that
has been known in the context of black holes in this very simple model.

Surface Term in Fermi Coordinates

From the point of view of thermodynamics, it is of interest to evaluate the surface
term Pc in the Einstein–Hilbert action

R
√−g = (bulk part) − ∂c P

c (34)

given by

Pc = 1√−g
∂b

[
(−g)gbc

]

= √−g
[
gck�m

km − gik�c
ik

]
(35)

Although coordinate dependent, this term can be written in a covariant but observer
dependent form, which is the reason why it acquires relevance in the context of
the relationship between gravity and thermodynamics. We will calculate this term
in the local coordinates based on the worldline of our accelerated observer; such a
coordinate system is unique upto general Lorentz transformations on the observer
worldline. Since the surface term, to relevant order (which we shall make precise
soon) is Lorentz invariant, we are effectively probing the space time with the world-
lines of such observers. Any local information about the space time geometry should
be then encoded in the surface term of the action (in fact, being made up of second
derivatives of the metric, it is only this term that is expected to be relevant in locally
inertial coordinates) [7].

For convenience, we first define three spatial tensors formed from the curvature
tensor

Sαβ = R0α0β = Sβα (36)

Eαβ = (1/4)εαγσ εβλμRγ σλμ = Eβα (37)

Bαβ = (1/2)εαγσ R0βγ σ (38)

in terms of which the FNC metric becomes

ds2 = −
[(

1 + aμy
μ

)2 + Sμν y
μyν

]
dτ 2 + 2

[
−2

3
ερανBρμy

μyν

]
dτdyα

+
[
δαβ − 1

3
εραμεσβνEρσ y

μyν

]
dyαdyβ (39)

Note that,
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S α
α = −R0

0 , E α
α = −G0

0 (40)

The coordinate system itself is good for length scales

y � min{a−1,R−1/2,R/∂R, 1/(aR)1/3}

(symbolically). One can always choose observers for whom the length scale set by
acceleration, a−1 is much smaller than the curvature dependent terms above.We then
effectively have a local Rindler observer, with time dependent acceleration, and a
horizon determined by aα(y0).

The expression for Pμ in terms of above tensors can be shown to be

P0 = (2/3) N−1R0μνμy
ν + O1

Pμ = 2aμ + 2N−1Sμν y
ν + N

(
Eμν − Eααδμν

)
yν + O2 (41)

where N = 1 + aμyμ, and O1, O2 represent terms which are higher order in curva-
ture, and/or involve time derivatives of metric components, and/or quadratic in yμ

[19]. Note that the terms given above are not necessarily linear in yμ (due to the pres-
ence of N ); rather, these are the only terms which can lead to terms linear in yμ, and
hence we have stated them as it is. Using identities given above, it is straightforward
to see that

∂μP
μ

∣
∣
∣
∣
yμ=0

= −R (42)

In flat spacetime, Rabcd = 0, and the contribution on any τ = constant surface
becomes

∫
dτ

∫
d2y⊥ (2 nσa

σ ) (43)

in obvious notation. For the well known case of a Rindler observer in flat spacetime,
this gives the standard contribution of one-quarter of transverse area, when evaluated
on the horizon.

As an example, let us consider a closed tubular neighbourhood of the trajectory
in curved spacetime (Fig. 4). That is, at each τ , one sends out geodesics of constant
length, say s0, to form a tube, and close this surface at the τ = τ0 and τ = τ0 + Δτ

to obtain a closed surface. The contribution of Pμ on the curved timelike surface C ,
which has normal nμ = yμ/s0, is given (to relevant order) by

Pμn
μ

∣
∣
∣
∣
C

= 2aμn
μ + 2N−1s0Sμνn

μnν

+ Ns0
(
Eμν − Eααδμν

)
nμnν (44)
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Fig. 4 A tubular
neighborhood of the
trajectory, with boundary
C ∪ Ctop ∪ Cbottom (see text)

It would be very interesting to explore the detailed mathematical structure of the
above expression(s), since it might yield insights into the horizon entropy in curved
spacetime.

Validity of the Approximations for the Ideal Gas Calculation

In this appendix, I give some numerical estimates to illustrate how well the various
approximations made in the manuscript hold.

I consider a box of Nitrogen gas, with m = 4.6 × 10−26 kg, with approximately
N = 6.022 × 1023 molecules, at room temperature kT = 4.11 × 10−21 J. I will also
take, for the background curvature, the typical magnitude of curvature, say R, pro-
duced by the Sun at the location of Earth’s orbit [20]. Since the Sun-Earth distance
is 1.496 × 1011 m and Sun’s Schwarzschild radius is 3km, this gives the curvature
length scale as

LR ≈
√

(1.496 × 1011)3/3000m. (45)

= 1.056 × 1015 m.

For definiteness, we consider a box of size L = 100m. In this case, we get the
following hierarchy of energy scales

E1 = (mc2) × Rλ2c︸ ︷︷ ︸
2.17×10−73 J

� E2 = �
2

mL2︸ ︷︷ ︸
2.42×10−47 J

� E3 = 1

β
= kT

︸ ︷︷ ︸
4.11×10−21 J

� E4 = mc2
︸ ︷︷ ︸
4.14×10−9 J

(46)
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where λc = �/mc = 7.64 × 10−18 m is the Compton wavelength. Just a glimpse at
these numbers illustrate quite clearly how excellently do the various approximations
made in the analysis hold. In fact, one gets a more intuitive understanding of the
various numbers and their inter-relationships above by forming their dimensionless
ratios.

E1/E2 = RL2 (47)

E2/E3 = (λ/L)2

E3/E4 = (
βmc2

)−1

E1/E3 = Rλ2

E2/E4 = (λc/L)2

which, along with the fact that (λc/λ)2 = (βmc2)−1, nicely illustrates the self-
consistency of the approximations used, viz:

1. non-relativistic: βmc2  1
2. validity of Fermi coordinates: RL2 � 1
3. use of Boltzmann distribution: λ � L

which imply that the first three of the energy ratios (47) above are small compared to
unity, and the smallness of the last two follow from them. We have therefore shown
that our 3 approximations are sufficient to ensure the above mentioned hierarchy of
energy scales, which, as illustrated, holds very well for the typical case of N2 gas in
a box of size L = 100m under the assumption that the background curvature is that
produced by Sun at location of Earth’s orbit. In fact, for our example

1. βmc2 = 1.01 × 1012

2. RL2 = 8.96 × 10−27

3. λ/L = 1.92 × 10−13

Backreaction Due to Box Contents:
However, we need to take into account some additional constraints, which turn out to
be conceptually trickier and more restrictive. If the box size L is reduced too much,
the density of gas inside the box increases, which has following implications:

1. The gas can no longer be treated as Maxwell–Boltzmann (as was done in [13]).
2. The curvature produced by the box contents itself might become stronger than

the background curvature, in which case the Fermi metric based on background
curvature can not be used. And finally, a related fact that,

3. The energy content of the box might result in a black hole and engulf the box if
the Schwarzschild radius Lschw corresponding to box’s energy content exceeds L .

I discuss the constraints corresponding to (2) and (3) above, and leave (1) for future
work since treatment of Bose-Einstein or Fermi-Dirac statistics for this problem
requires much further work. Since mc2 is the largest of all energies (per particle),
one can use it to make the required estimates. Taking
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Lschw ≈ 2G(Nm)

c2

condition (3) above requires Lschw < L . On the other hand, Einstein equations imply,
for the curvature produced by the box contents, an estimate Rbox ≈ Lschw/L3. To
satisfy condition (2), we needRbox � R, which becomes equivalent to Lschw/L �
RL2. Since we requireRL2 � 1 for Fermi coordinates based on background curva-
ture to be applicable, the above condition therefore provides a quite stringent upper
bound on precisely how small must Lschw/L . The physics is quite clear: the smaller
the box dimensions, the better the quadratic expansion in Fermi coordinates becomes,
but this also increases the density of gas in the box, which might no longer allow the
box to be treated as a perturbation over a given, fixed background spacetime.

However, the above conditions are possible to satisfy, and indeed are satisfied
excellently in our example. Following is the hierarchy of length scaleswhich illustrate
the numbers involved (all lengths are in meters):

L = 10, 100, 1000

LRbox = 6.98 × 1015, 2.21 × 1017, 6.98 × 1018

LR = 1.06 × 1015

Λ = 7.70 × 10−6

λ = 1.92 × 10−11

λc = 7.64 × 10−18

Lschw = 4.11 × 10−29

The magnitudes of LRbox and LR indicate the sensitivity of the issue of backreaction,
discussed above, to the size L of the box. For L = 10m, the curvature length scales
of the background and the box are of the same order (LRbox ∼ LR), hence a larger
box is essential for self-consistency of the approximations used. For L > 100m,
LRbox  LR, and hence one can safely use the Fermi coordinate expansion based
on background curvature.
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100 Years of the Cosmological Constant:
Past, Present and Future

Ofer Lahav

Abstract The Cosmological ConstantΛ, in different incarnations, has been with us
for 100 years. Many surveys of dark energy are underway, indicating so far that the
data are consistent with a dark energy equation of state of w = −1, i.e. a Λ term in
Einstein’s equation, although time variation of w is not yet ruled out. The ball is now
back in the theoreticians’ court, to explain the physical meaning of Λ. We discuss
sociological aspects of this field, in particular to what extent the agreement on the
cold dark matter + Λ concordance model is a result of the globalization of research
over-communication.

1 Introduction

The year 2017 marks not only that Paddy is 60 years old, but also 100 years of the
Cosmological ConstantΛ. One of the greatest mysteries in thewhole of science is the
prospect that 70%of the universe ismade fromamysterious substance knownas ‘dark
energy’, which causes an acceleration of the cosmic expansion. A further 25% of the
universe is made from invisible ‘cold dark matter’ that can only be detected through
its gravitational effects, with the ordinary atomic matter making up the remaining
5% (see the Planck Collaboration [13] study and references therein). This “Λ +
cold dark matter” (ΛCDM) paradigm and its extensions pose fundamental questions
about the origins of the universe. If dark matter and dark energy truly exist, we must
understand their nature. Alternatively, General Relativity and related assumptions
may need radical modifications. These topics have been flagged as key problems
by researchers and by advisory panels around the world, and significant funding
has been allocated towards large surveys of dark energy. Commonly, dark energy
is quantified by an equation of state parameter, w, which is the ratio of pressure
to density. The case w = −1 corresponds to Einstein’s Cosmological Constant in
General Relativity, but in principle wmay vary with cosmic epoch, e.g. in the case of
scalar fields. Essentially, w affects both the geometry of the universe and the growth
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rate of structures. These effects can be observed via a range of cosmological probes,
including the Cosmic Microwave Background (CMB), galaxy clustering, clusters of
galaxies, and weak gravitational lensing, in addition to Supernovae Ia. The Hubble
diagram of Type Ia Supernova [12, 14], for which the 2011 Nobel Prize in Physics
was awarded, revealed that our universe is not only expanding but is also accelerating
in its expansion. The main problem is that we still have no clue as to what is causing
the acceleration, and what dark matter and dark energy are. Many cosmologists have
puzzled over the meaning of Λ during the past 100 years, and it is not surprising
that Paddy, with his deep insight into the foundations of physics, has written many
inspiring books and papers on this and related topics (e.g. Padmanabhan [10]).

2 Background

It is well known that Einstein added in 1917 the Cosmological Constant Λ to his
equations in order to have a static universe. His full equation is then:

Rμν − 1

2
Rgμν + Λgμν = 8πG

c4
Tμν . (1)

The big question is ifΛ should be on the left hand side, as part of the curvature, or
on the right hand side, as part of the stress-energy tensor Tμν , for example associated
with the vacuum energy Λ = 8πGρvac/c2. In fact a prediction for the amount of
vacuum energy is expected to be 10120 times the observed value; that is a challenging
problem by itself (e.g. Weinberg [15]).

In the weak-field limit the equation of motion is:

d2r

dt2
= −GM

r2
+ c2

3
Λr . (2)

A linear force was actually already discussed by Newton in Principia in addition to
the more famous inverse square law.1 A somewhat intuitive way to think about dark
energy is as a repulsive linear force, opposing the inverse squared gravitational force.
It is interesting that such a force can be noticeable on the Mpc scale. For example
the mass of the Local Group would be estimated to be 13% higher in the presence
of a Cosmological Constant.2

Should a discrepancy between data and the existing cosmological theory be
resolved by adding new entities such as darkmatter and dark energy, or bymodifying
the underlying theory? This reminds us of two cases in our own Solar System: the

1See e.g. Calder and Lahav [2, 3] for review.
2See e.g. Binney and Tremaine [1], Partridge, Lahav and Hoffman [11], McLeod et al. [9].
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perturbed orbit of Uranus was explained by adding a new planet, Neptune, within
the existing Newtonian model. On the other hand, understanding the perihelion of
Mercury required an entirely new theory, General Relativity.3

There is still the possibility of another paradigm shift in our understanding of the
cosmos, including the following options:

• Violation of the Copernican Principle: for example, if we happen to be living in
the middle of a large void;

• DarkEnergybeing somethingdifferent to vacuumenergy: althoughvacuumenergy
is mathematically equivalent to Λ, the value predicted by fundamental theory is
as much as 10120 times larger than observations permit;

• Modifications to gravity: it may be that General Relativity requires revision to a
more complete theory of gravity;

• Multiverse: ifΛ is large and positive, it would have prevented gravity from forming
large galaxies, and life would never have emerged. Using this anthropic reason-
ing to explain the Cosmological Constant problems suggests a large number of
universes (‘multiverse’) in which Λ and other cosmological parameters take on
all possible values. We happen to live in one of the universes, that is fortunately
‘habitable’.

3 The Dark Energy Survey

Many ongoing and planned imaging and spectroscopic surveys aim at measuring
dark energy and other cosmological parameters. As an example we focus here on the
Dark Energy Survey (DES).4 I have chosen DES as it has already accumulated data,
and I happen to have been involved in the project since its early days back in 2004,
in particular as co-chair of its Science Committee (until 2016).

DES is an imaging survey of 5000 square degrees of the Southern sky, utilising a
570 mega-pixel camera on the 4m Blanco telescope in Chile. Photometric redshifts
are obtained from the multi-band photometry to produce a three dimensional map of
300 million galaxies. The main goal of DES is to determine the dark energy equation
of statew and other key cosmological parameters to high precision.DESwillmeasure
w using four complementary techniques in a single survey: counts of galaxy clusters,
weak gravitational lensing, galaxy distributions and thousands of type Ia supernovae
in a ‘time domain’ survey over 27 sq. deg. DES is an international collaboration, with
more than 500 scientists from the US, the UK, Spain, Brazil, Germany, Switzerland
and Australia involved. The DES science is coordinated by a Science Committee
composed of eleven Science Working Groups (SWGs). Core dark energy SWGs
include large scale structure, clusters, weak lensing and supernovae Ia. Additional
SWGs focusing on the primary science are photometric and spectroscopic redshifts,

3See e.g. a discussion in Lahav and Massimi [7] and references therein.
4http://www.darkenergysurvey.org/.

http://www.darkenergysurvey.org/
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simulations, and theory and combined probes. The Non-cosmology SWGs focus on
Milky Way science, galaxy evolution and quasars, strong lensing, and transients and
moving objects.

The survey had its first light in September 2012 and started observations in
September 2013. Observations are running for 525 nights spread over five years.
The performances of several photo-z methods applied to Science Verification data
were evaluated and the best methods yielded scatter σ68 = 0.08 (defined as the 68%
width about the median of �z = zspec − zphot). Regarding the image quality, the
achieved median seeing FWHM is about 0.9” in filters riz, as expected when design-
ing the survey for weak lensing analyses. DES has already ‘seen’ dark matter via
weak gravitational lensing [4], and the analysis towards measuring and character-
ising dark energy is underway. The camera (DECam) can also capture many other
celestial objects. This has resulted in both expected and unexpected discoveries [5]
including solar system objects, 17 new Milky Way companions, galaxy evolution,
galaxy clusters, high-redshift objects and gravitational wave follow ups.

We highlight here two contributions of DES to new research frontiers. Firstly, it
has recently been suggested that there might be a ninth planet in the solar system.
One of the six minor planets to predict ‘Planet 9’ was discovered by DES. The
DECam camera is well placed to monitor other minor planets that would help in
constraining Planet 9, and of course to search for Planet 9 itself. Secondly, the LIGO
collaboration [8] reported the first detection of gravitational waves, resulting from
the merger of two black holes. This remarkable measurement confirms another of
Einstein’s prediction of 100 years ago. DES provided optical follow up to this event.
There were no optical detections, which is not surprising, as in the conventional
model a binary black hole merger is not expected to have any optical counterparts,
and the DES observations covered only part of the sky where the event was likely to
happen. However, DES will be vital for future LIGO follow ups.

DES is also providing valuable experience and training of early career scientists
for on-going and future large surveys, including the Hyper Suprime Cam (HSC),5

the Kilo-Degree Survey (KiDS),6 the Large Synoptic Survey Telescope (LSST),7

Euclid,8 the Wide-Field Infrared Survey Telescope (WFIRST), the Subaru Prime
Focus Spectrograph (PFS),9 the Dark Energy Spectroscopic Instrument (DESI)10

and 4MOST.11

5http://www.naoj.org/Projects/HSC/.
6http://kids.strw.leidenuniv.nl/.
7http://www.lsst.org/.
8http://www.euclid-ec.org/.
9http://pfs.ipmu.jp/factsheet/.
10http://desi.lbl.gov/.
11http://www.4most.eu/.
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4 The Globalization of Research: Pros and Cons

It may well be that the ΛCDM model is indeed the best description of our uni-
verse, with dark matter and dark energy ingredients that eventually will be detected
independently. But there is also a chance that this is the ‘modern Ether’ and future
generations will adopt an entirely different description of the universe. It is also
possible that the community has converged on a single preferred model due to ‘over
communication’.12 The society at large is going through a globalization process.
There is a diversity of definitions for globalization, some in positive context, others
with negative connotations. The sociologist Anthony Giddens defines globalization
as “decoupling of space and time - emphasizing that with instantaneous commu-
nications, knowledge and culture can be shared around the world simultaneously.”
Another definition given in the same website sees globalization as being “an unde-
niably capitalist process. It has taken off as a concept in the wake of the collapse
of the Soviet Union and of socialism as a viable alternate form of economic organi-
zation.” A further discussion on globalization can be found in Thomas Friedman’s
book (2005) The World is Flat (an interesting title in the context of cosmology!). He
questions whether “the world has got too small and too flat for us to adjust”.

Research in academia is of course a human activity that is affected, like any other
sector, by social and technological changes and trends. The advantages of global-
ization to academic research are numerous: open access to data sources for all (e.g.
via the World WideWeb), rapid exchange of ideas, and international research teams.
These aspects make science more democratic and they enable faster achievements.
The numerous conferences, electronic archives and teleconferences generate a global
village of thinkers. While this could lead to a faster convergence in answering funda-
mental questions, there is also the risk of preventing independent and original ideas
from developing, as most researchers might be too influenced by the consensus view.

Let us consider the abovementioned ‘concordance’ model of cosmology. The two
main ingredients, dark matter and dark energy, are still poorly understood. We do not
know if they are ‘real’ or they are themodern ‘epicycles’ which just help to fit the data
better, until a new theory greatly simplifies our understanding of the observations.
A disturbing question is whether the popular cosmological ‘concordance model’ is
a result of globalization? It is interesting to contrast the present day research in cos-
mology with the research in the 1970s and 1980s. This was the period of the ‘cold
war’ between the former Soviet Union and the West. During the 1970s the Russian
school of cosmology, led by Yakov Zeldovich, advocated massive neutrinos, ‘hot
dark matter’, as the prime candidate for dark matter. As neutrinos were relativistic
when they decoupled, they moved very fast and wiped out structure on small scales.
This led to the ‘top–down’ scenario of structure formation. In this picture ‘Zeldovich
pancakes’ of the size of superclusters formed first, and then they fragmented into
clusters and galaxies. This was in conflict with observations, and cosmologists con-
cluded that neutrinos are not massive enough to make up all of the dark matter. The
downfall of the top-down ‘hot dark matter’ scenario of structure formation, and the

12The discussion below is based on Lahav [6].
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lack of evidence for neutrino masses from terrestrial experiments made this model
unpopular. The Western school of cosmology, led by Jim Peebles and others, advo-
cated a ‘bottom up’ scenario, a framework that later became known as the popular
‘cold dark matter’. However the detection of neutrino oscillations showed that neu-
trinos indeed have a mass, i.e. hot dark matter does exist, even if in small quantities.
Current upper limits from a combination of cosmic probes are about 0.2eV, while
the lower limit from neutrino oscillations is 0.06eV. Therefore both forms, cold dark
matter and hot dark matter, probably exist in nature. This example illustrates that
having two independent schools of thoughts was actually beneficial for progress in
cosmology. Paddy has taught us numerous times how to think ‘outside the box’. We
wish him many more years of original research in cosmology.

Acknowledgements I thank my DES and UCL collaborators for many inspiring discussions on
this topic over the years, and for support from a European Research Council Advanced Grant
FP7/291329.
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Pedagogical and Real Physics

Malcolm S. Longair

Abstract Paddy is a brilliant scientist, as well as being a wonderful teacher and
expositor of physics and theoretical physics. Over the years, we have regularly dis-
cussed the problems of relating how we teach physics and theoretical physics to how
we actually carry out physics in a research context. In my experience, these are rather
different activities. To celebrate Paddy’s 60th birthday, I expand upon this theme, giv-
ing some examples to illustrate the dichotomy between pedagogical and real physics.
We need to ensure that the message is communicated to all the wonderful students
we are privileged to teach.

1 Introduction

Every time I meet Paddy, our conversation quickly converges on the problems of
teaching and understanding physics. Paddy’s deep understandings of physics and
theoretical physics are a joy and stimulus to probing deeper and deeper into the
essence of these disciplines. One of our favourite topics is the issue of ‘pedagogical’
as opposed to ‘real’ physics and this is the theme I explore in this essay. Physics
students want to understand the profound depths of the discipline and, as we all
know, this is a highly non-trivial business. There is just so much technical material
which has to be assimilated and mastered that the technical issues can overwhelm
the physics concepts and the imaginative use of the tools which are at the core of the
discipline.

2 A Personal Prelude

Let me recount my own experience. As an undergraduate, I took a combined Electri-
cal Engineering and Physics course, called Electronic Physics, at Queen’s College,
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Dundee, which was then part of the University of St. Andrews. I already knew I
wanted to study physics, but the teaching was variable and so this combined course,
which was based in the rather good Electrical Engineering Department, was a good
solution – I could read both courses simultaneously. But when I arrived in Cambridge
to begin a PhD in the Cavendish Laboratory in 1963, my physics preparation was
weak and way behind my fellow graduate students, many of whom had been through
the rigours of the Cambridge Physics Tripos.

In due course, I was appointed a demonstrator, as assistant lecturers were known
in Cambridge in those days, and it quickly sank in just how little I really understood.
I had no alternative but to go back to the beginning and relearn my physics from
scratch. In many ways, this was the best thing that could have happened. I had to
go back to the beginning and ask much deeper questions about what I was teaching
and what it was really all about. The result was that my lectures had a somewhat
different flavour from the received Cambridge tradition in which the lecture notes
and problem sheets tended to be handed down from one generation of lecturers to
the next.

In 1975, I gave for the first time a non-examinable new course entitled Theoreti-
cal Concepts in Physics which was designed to give final-year undergraduates some
appreciation of how the physics came about and the relation between the discoveries
in physics and the mathematical tools needed to describe them. This later became
my book of the same name [16]. In due course, I followed this up with books which
elaborated the same themes – The Cosmic Century [17] on the development of astro-
physical and cosmological understanding and the sequel to the Theoretical Concepts
book onQuantumConcepts in Physics [19]. All these books involved rereadingmany
of the original papers and working out how the great experimental and theoretical
physicists achieved what they did. The one thing which was immediately obvious
was that this was not pedagogical physics. The real thing is much more complex,
tentative, subjective, intuitive and exciting. This is the challenge Paddy and I have
discussed over the years.

I am under no illusion about the difficulty of getting the right balance between
the pedagogical and the inspirational. The problem is that there is just so much hard
work involved in getting on top of the technical aspects of the discipline that the
leaps of imagination needed to make it come about can be squeezed out. In the last
course I gave before my retirement, I was asked to deliver an introductory 22-lecture
course on Astrophysics and Cosmology to third-year physics students. I aimed to
make it the most exciting and inspirational course I could. I enjoyed preparing the
lectures based upon 45 years of working at the frontiers of these disciplines. The
course received the worst ratings I had ever had. The complaints were familiar ‘Too
much material’, ‘What do we need to know?’, ‘Was that examinable?’ These were
uniformly fabulous students, but even after three years of really demanding physics
instruction, they had not grasped the essential message of what physics was about. I
am unrepentant - it was a great course!

And, of course, the students had a point - you cannot teach experience. Every
serious physicist has to go through the same process of re-assimilation which I was
forced to go through – and it keeps recurring throughout a lifetime. We need to instil
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the messages that there are no shortcuts, the subject is really quite hard and you just
have to find your own way of understanding the material in your own terms. But I
also feel strongly that some appreciation of how the great discoveries came about in
a non-trivial way, rather than the sanitised, regurgitated material of so many modern
books, provide glorious examples of the creativity and beauty of physics.

In what follows, I discuss a few examples of the types of material which tends to
get squeezed out of our teaching, but which illustrate how physics actually works.
It would be wonderful to expose our students to this slightly different approach to
physical thinking.

3 Galileo and the Nature of the Physical Sciences

In 1595, Galileo began to take the Copernican model of the Solar System seriously in
order to explain the origin of tides in the Adriatic. To quantify the problem, he needed
to develop a better quantitative understanding of the nature of velocity, acceleration
and inertia. In the early 1600s, he began a magnificent set of experiments to elucidate
the nature of motion [3]. The three great achievements were:

• The law of acceleration, x = 1
2at

2, where a is the constant acceleration of the
body,

• Galileo’s law - the time for free fall down the diameter of a circle equals the time
to roll down a chord,

• The period of the swing of a long pendulum is independent of its amplitude.

In 1608, the invention of the telescope was announced byHans Lipperhey. Galileo
heard about this invention in July 1609 and began constructing a series of telescopes
of increasing magnifying power. By August he had achieved 9 times magnification,
already three times better thanLipperhay and by the end of the year amagnification of
30 times was attained. In late August 1609 he presented his telescope to Doge Doná
and the Venetian Senate who recognised its military importance. The observations of
distant ships weremade from the top of the Campanile in Venice. Note the immediate
practical application of a major technical discovery.

Galileo’s brilliant astronomical observations only occupied a relatively short
period of his scientific career, roughly 1609 to 1612, but they were to resonate down
the centuries. Among these, the twomost important for physicswere the phases of the
planet Venus which were consistent with the Copernican rather than the Ptolemaic
picture of the Universe and that Jupiter has four satellites orbiting the planet, exactly
like a miniature Copernican Solar System. Galileo’s remarkable skills in experiment
as well as in theory should be emphasised. As a result of these observations, he was
a strong proponent of the Copernican model of the Solar System.

Following an exchange of letterswith theGrandDuchessChristina about reconcil-
ing his astronomical findings and the tenets of the Catholic faith, Galileo came under
suspicion of propagating heretical dogma, resulting in his trial for heresy. Physicists
remember the ruling of the Congregation of the Index of 1616 that Copernicanism
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was philosophically and scientifically untenable and theologically heretical. Galileo
was exonerated but it was in effect a defeat for Copernicanism. In 1632, he was tried
for a second time, resulting in his condemnation and house arrest for violating the
instruction that he should not advocate the Copernican picture.

What is less well publicised was that there were serious physical deficiencies with
the Copernican Theory on the basis of received understanding of natural philosophy
at that time. In Finocchiero’s summary [12],

1. If the Earth moves, falling bodies should not fall vertically.
2. The speed of projectiles fired in the direction of motion of the Earth and in the

opposite direction should be different if the Earth were rotating.
3. Objects placed on a rotating potter’s wheel are flung off if they are not held down.

Why are we not flung off the Earth if it is rotating?
4. The Copernican picture was inconsistent with Aristotelian physics.
5. If Aristotelian physics was to be rejected, what was going to replace it?

Recall that the laws of motion were not yet formulated and there was no under-
standing of the dependence of the gravitation force upon distance. But what was
more serious from our perspective is that, by asserting that Copernicus was right and
Ptolomy wrong, Galileo had made a basic logical error. This was gently pointed out
to him by Cardinal Roberto Bellarmine in 1616 who wrote:

…it appears to me that Your Reverence (Foscarini) and Signor Galileo did prudently to
content yourself with speaking hypothetically and not positively, as I have always believed
Copernicus did. For to say that, assuming the Earth moves and the Sun stands still serves all
appearances better than eccentrics and epicycles, is to speak well. This has no danger in it,
and it suffices for mathematicians.

But to wish to affirm that the Sun is really fixed in the centre of the heavens…is a dangerous
thing, not only by irritating all the theologians and scholastic philosophers, but also by
injuring our holy faith …

What Bellarmine was pointing out was the hypothetical nature of Galileo’s argu-
ment. At the heart of it is the difference between deductive and inductive reasoning.
Here is an example:

Deduction Induction
If it is raining, the streets are wet If it is raining, the streets are wet

It is raining The streets are wet
Therefore, the streets are wet Therefore, it is raining

The inductive argument does not prove that it is raining – the streets could have
just been washed! In the same way, Galileo could not prove that the Copernican
model was correct on the basis of his observations. For example, his observations
of Venus would have been consistent with Tycho’s synthesis of the Ptolemaic and
Copernican pictures of the world. Even a sufficiently complicated Ptolemaic model
could have been devised to explain the observations.
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Thekeypoint is that physics is ahypothetico-deductive process.Wemakehypothe-
ses and see how economically we can explain observed physical phenomena. The
best theories are those which can explain large amounts of independent data quanti-
tatively and make predictions to new circumstances. Intriguingly, in Newton’s great
Principia Mathematica, on pages 12 and 13, the title of the chapter is ‘Axioms or
the Laws of Motion’ – to my way of thinking, ‘Axioms’ is a better description of the
underlying assumptions than ‘Laws of Motion’ – the former designation recognises
the hypothetical nature of the assumptions, whereas the term ‘Laws of Motion’ lend
the axioms a much greater authoritative status.

I prefer to use the word model to describe this process rather than asserting that
it is in some sense the truth. Galileo’s enormous achievement was to realise that the
models to describe nature could be put on a rigorous mathematical basis. In perhaps
his most famous remark, he stated in his treatise Il Saggiatore (The Assayer) of 1624:

Book of Nature …is written in mathematical characters.

This was the great achievement of the Galilean revolution. Notice that even the
apparently elementary facts established by Galileo required an extraordinary degree
of imaginative abstraction.

My reason for relating this story is that it encapsulates the process of establishing
the laws of physics. Many of the great advances in physics come from changing the
axioms which underlie our description of the physical world - Newtonian space and
time to Einsteinian space-time, Newtonian gravity to General Relativity, classical to
quantum physics, and so on. But, do the students appreciate these profound lessons?
There is no greater change of perspective than the discovery of fields to replace the
mechanistic Newtonian world picture.

4 Maxwell, Reduced Momenta, Differential Gears
and Electromagnetism

The great revolution in physics of the late 19th Century was the shift in perspective
from the Newtonian mechanistic world view to a one in which fields became the fun-
damental entities for the description of nature. James Clerk Maxwell was at the heart
of this revolution through his discovery of the field equations of electromagnetism.
This great transition was to culminate in the work of Einstein and all succeeding
generations of theorists. As Freeman Dyson has written:

Maxwell’s theory had to wait for the next generation of physicists, Hertz and Lorentz and
Einstein, to reveal its power and clarify its concepts. The next generation grew up with
Maxwell’s equations and was at home with a Universe built out of fields. The primacy
of fields was as natural to Einstein as the primacy of mechanical structures had been for
Maxwell.

I recently reviewed the route Maxwell took to the discovery of his equations
in a paper celebrating the 350th Anniversary of the founding of the Philosophical



180 M.S. Longair

Transactions of the Royal Society [20]. Maxwell’s paper of 1865 is a wonderful
exposition of the theory and is not so hard to follow once the notation is translated into
modern usage [23]. His reliance upon mechanical analogues was only too apparent
in his earlier papers of 1856 [21] and 1861–1862 [22]. In his assessment of the
significance of Maxwell’s 1865 paper, Whittaker famously remarked that

In this, the architecture of his system was displayed, stripped of the scaffolding by aid of
which it had been first erected.

and this is the general position adopted by subsequent commentators [37]. And yet,
however well disguised, the mechanical roots are present, particularly in the slightly
opaque Sect. 2 of the paper, which is generally passed over. In fact, this section
illuminates Maxwell’s deep understanding of mechanics and electromagnetism and
his remarkable use of analogy in formulating his equations [14, 36].

Here is the entire section (24) in Sect. 2 of the 1865 paper. It is entitledDynamical
Illustration of Reduced Momentum.1

(24) As a dynamical illustration, let us suppose a body C [of mass MC] so connected with
two independent driving-points A and B that its velocity is p times that of A together with
q times that of B. Let vA be the velocity of A, vB that of B, and vC that of C, and let δx , δy,
δz be their simultaneous displacements, then by the general equation of dynamics,2

MC
dvC
dt

δz = FA δx + FB δy,

where FA and FB are the forces acting at A and B.

But
dvC
dt

= p
dvA
dt

+ q
dvB
dt

,

and
δz = p δx + q δy . (1)

Substituting, and remembering that δx and δy are independent,

FA = d

dt
(MC p

2vA + MC pqvB) ,

FB = d

dt
(MC pqvA + MCq

2vB).

⎫
⎪⎬

⎪⎭
(2)

We may call MC p2vA + MC pqvB the momentum of C referred to A, and MC pqvA +
MCq2vB its momentum referred to B ; then we may say that the effect of the force FA
is to increase the momentum of C referred to A, and that of FB to increase its momentum
referred to B.

If there are many bodies connected with A and B in a similar way but with different values
of p and q, we may treat the question in the same way by assuming

LA =
∑

(MC p
2), MAB =

∑
(MC pq), and LB =

∑
(MCq

2) ,

where the summation is extended to all the bodies with their proper values of [MC], p, and
q. Then the momentum of the system referred to A is

1I have slightly altered the notation to make the argument more transparent.
2LAGRANGE, Méc. Anal. ii. 2. Sect. 5.
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LAvA + MABvB ,

and referred to B,
MABvA + LBvB ,

and we shall have

FA = d

dt
(LAvA + MABvB) ,

FB = d

dt
(MABvA + LBvB) ,

⎫
⎪⎬

⎪⎭
(3)

where FA and FB are the external forces acting on A and B.

There are many remarkable features of this argument. The first is Maxwell’s
explicit use of Lagrangian techniques, with which he had been familiar since his
days as an undergraduate at Edinburgh University and then reinforced by his studies
at Cambridge. His starting point is the application of two forces to an extended rigid
body at two separate ‘driving points’. In accordance with the Lagrangian approach,
the action of the forces is described in generalised coordinates. The key point is that
these equations describe the generalised work done on the rigid body and hence the
increase in its total kinetic energy. By working in terms of energy and changes in
velocity, Maxwell arrives by straightforward algebra at the key result (2) and then,
by extension to many forces acting on the body, to (3).

It is only at this point that Maxwell introduces Newton’s second law F = dp/dt ,
where p is the momentum. The quantities (LAvA + MABvB) and (MABvA + LBvB)

are then defined as the reducedmomentawhichwill accurately describe the combined
action of the two forces applied at different points A and B to the extended rigid body.
It is important to appreciate that these momenta are not ‘real momenta’, any more
than a ‘reduced mass’ is a real mass in the description of two-body systems. The
reduced mass μ = m1m2/(m1 + m2) converts a two-body problem into a one-body
problem. For example, in the orbital motion of an electron about at atomic nucleus,
the motion about the common centre of momentum of the two bodies is replaced by
the circular motion of a single body with reduced massμ. This then gives the correct
frequency of orbital motion of the combined system.

The key point aboutMaxwell’s analysis is that the two forces are acting on a single
extended rigid body and so, although the forces are independent, they are coupled
and the reduced momentum at A effects that at B and vice versa. If there were only
a single force acting on the body, MAB = 0, we would recover Newton’s law with
the usual meaning of momentum. But the forces are coupled because they are acting
simultaneously on a single rigid body.

To complete the analogy, in Section (25), Maxwell next includes a frictional force
acting on the motion of the body. Here is that section in full.

(25) To make the illustration more complete we have only to suppose that the motion of A
is resisted by a force proportional to its velocity, which we may call RAvA, and that of B by
a similar force, which we may call RBvB, RA and RB being coefficients of resistance. Then
if F ′

A and F ′
B are the forces on A and B
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F ′
A = FA + RAvA = RAvA + d

dt
(LAvA + MABvB) ,

F ′
B = FB + RBvB = RBvB + d

dt
(MABvA + LBvB) .

⎫
⎪⎬

⎪⎭
(4)

If the velocity of A be increased at the rate dvA/dt , then in order to prevent B from moving
a force, F ′

B = d/dt(MABvA) must be applied to it.

This effect on B, due to an increase of the velocity of A, corresponds to the electromotive
force on one circuit arising from an increase in the strength of a neighbouring circuit.

This dynamical illustration is to be considered merely as assisting the reader to understand
what is meant in mechanics by Reduced Momentum. The facts of the induction of cur-
rents as depending on the variations of the quantity called Electromagnetic Momentum, or
Electrotonic State, rest on the experiments of FARADAY,3 FELICI,4 etc.

Maxwell now makes the following identifications: the force F becomes the elec-
tromotive force E , the velocities v become the currents I , the Ls and M become the
self and mutual inductances respectively and R becomes the resistance. Then, the
equations of electromagnetic induction between two current-carrying conductors are

EA = RA IA + d

dt
(LA IA + MAB IB) , (5)

and

EB = RB IB + d

dt
(MAB IA + LB IB) . (6)

From these, he goes on to derive the expressions for work and energy, the heat
produced by the currents, the intrinsic energy of the currents and the mechanical
action between conductors, and much more.

In typical Maxwellian fashion, he designed a mechanical model which precisely
illustrates the rules of induction in mechanical terms (Fig. 1) [25]. Figure1a shows
the illustration which appears on p. 228, Volume 2 of the third (1891) edition of
Maxwell’s Treatise, edited by J.J.Thomson. Themodel, built byMessrs Elliot Broth-
ers of London in 1876, is shown in Fig. 1b. The extended rigid body C is a flywheel
which consists of two long steel rods at right angles to each other to which heavy
weights are attached towards the four ends of the rods, giving the flywheel a large
moment of inertia. Forces are applied to the flywheel to cause it to rotate through the
differential gear arrangement shown in Fig. 1a. To make the arrangement clearer, I
have redrawn the differential gearing schematically in Fig. 2a, b.

A and B are attached to separate axles which have bevel gears at their ends. They
mesh with the horizontal bevel gear X, as shown in Fig. 2a, which is attached to
the flywheel but which is free to rotate about its own axis. The discs A and B are
the origins of the forces FA and FB and their ‘independent driving points’ are the
opposite sides of the bevel gear X.

3Experimental Researches, Series I., IX.
4Annales de Chimie, sor. 3. xxxiv. (1852) p. 64.
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Fig. 1 a The diagram fromMaxwell’s Treatise on Electricity and Magnetism, 3rd edition showing
the mechanical model he had built to illustrate the principles of electromagnetic induction. b The
original model belonging to the Cavendish Laboratory and now on loan to the Whipple Museum,
Cambridge University

Fig. 2 a A schematic diagram showing more clearly than Fig. 1 the arrangement of the bevel gear
which transmits the forces to the flywheel. b Illustrating the origin of the couple acting on the system
when the disc A is accelerated
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Suppose both A and B are rotated at the same speed in the same direction. Then,
the flywheel and the bevel gear X rotate at the same speed about the horizontal axis
and the bevel gear X does not rotate about its own axis. Using Maxwell’s equation
(1) with p = q = 1, δz = δx + δy and the impressed displacements contributed at
the two driving points are additive. Suppose now B is stationary while A is rotated at
the constant speed vA. Then, the flywheel only rotates at half the speed of A. In fact,
by geometry, the flywheel always rotates at the average speed of rotation of the discs
A and B. If the rotations of A and B are in opposite senses, the flywheel is stationary.
I can confirm that this is indeed what happens when I carried out these experiments
with Maxwell’s original apparatus, which the Whipple museum kindly allowed me
to operate.

But now suppose we accelerate the rotation of A. Since F = mA(ΔvA/Δt), there
is a force acting on the bevel gear X. But the gear is attached to the flywheel and so
there is a reaction force in the opposite sense acting on B. In other words, when the
disc A is accelerated, the result is a couple acting on the bevel gear X which causes
the disc B to rotate in the opposite direction. But, notice, this reaction force at B can
only takes place during the period when the disc A is accelerated. It is the perfect
mechanical analogue for electromagnetic induction.

We can appreciate this behaviour from the pair of Eq. (3). In this case ofMaxwell’s
model, themotion is rotational, but themathematics would be the same. In the simple
case in which vA is a constant and vB is zero, there are no forces acting on the system.
But, if we now accelerate the rotation of the disc A, there is a force at A of LA Δv/Δt
and a force d/dt(MABvA) acting at B in the opposite sense, as illustrated in Fig. 2b.
This is the origin of Maxwell’s remark in (24)

in order to prevent B from moving a force, F ′
B = d/dt(MABvA) must be applied to it.

What is so remarkable about this analysis is that Maxwell’s electromagnetic
momentum is precisely what we would now call the vector potential, A ≡ [Ax ,

Ay, Az]. The origin of this identification is apparent from above Eqs. (5) and (6)
which is no more than

E = ∂A
∂t

, (7)

in one dimension. In his great paper, Maxwell works entirely in terms of A rather
than the magnetic flux density B which is found from the relation B = curlA. Thus,
retaining only the four equations which reduce to his equations in modern form,
Maxwell writes:

E = μ(v × H) − dA
dt

− ∇φ , (D)

curlH = 4π

(
J + dD

dt

)
, (C)

ρe + ∇ · D = 0 , (G)

μH = curlA. (B)
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To obtain precisely the modern version we need only take the curl of (D) and the
divergence of (B). Note that I have retained Maxwell’s alphabetical numbering of
the equations and that the MKS units are unrationalised.

I find this all very thought-provoking.

• First of all, what is behind the identification of the mechanical analogue of the
flywheel and the process of electromagnetic induction? The key is that the flywheel
is a rigid body. The forces acting at the different ‘independent driving points’ are
not unconstrained since they are coupled by the rigid body itself. Thus, the forces,
although independent, are coupled and there is a reaction to the application of
driving forces at A on B and vice versa. This is where the cross term comes
from mechanically. In the electromagnetic case, the coupling is through the fields
themselves which Maxwell assumed were embedded in the aether.

• Notice that using A rather than B, we are dealing with vectors rather than tensors
in the description of the electromagnetic field.

• Maxwell’s development presages the four–vector notation of special relativity in
which the four–vector for the electromagnetic four potential is [φ/c, Ax , Ay, Az],
with the dimensions of momentum divided by the electric charge. Notice also
the appearance of the same four-vector in the four-dimensional derivative in (D),
which is no more than the derivative of the four-vector potential with respect to
four-vector displacement cdt, dx, dy, dz.

• Maxwell makes liberal use of the vector potential in his development of the equa-
tions, in contrast to contemporary practice of working with the fields E,D,B,H
and J.

For me, this analysis deepens the understanding of the role of vector potential in
classical physics. The general pedagogical opinion is that A has no real significance
in classical physics beyond the fact that, when curled, it gives B. And yet, as soon
as you tackle serious problems in electromagnetism, it is always best to start with
A, find the distribution of A and in the end curl it. And, of course, in quantum
mechanics, it is A which has to be quantised from the very beginning and which
has real physical significance in phenomena such as the Aharonov–Bohm effect.
Maxwell, as usual, was far ahead of his time in understanding these remarkable
relations between electromagnetic phenomena at a very deep level.

An important footnote to this story is that the Eq. (4) reappear inMaxwell’s impor-
tant, pioneering paper On Governors of 1868 [24]. This paper on the conditions for
the stability of control systems in regarded by engineers as the origin of the science
of cybernetics.

Should students know about this? Most text books would regard this as ‘antiquar-
ian’ physics and yet what magic Maxwell distills from his technique of working and
thinking by analogy. And note how naturally he uses Lagrangian methods. But most
of all, the origin of the concept of fields was based upon his Newtonian mechanical
model for the key process of electromagnetic induction. If nothing else, students
should know that this is how the mind of a genius works.
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5 Einstein and Statistics

I remember vividly an occasion in Edinburgh when Wilson Poon and I were talking
about Einstein’s achievements and he made the perceptive remark, ‘the two things
which Einstein really understood were invariance and statistics’. The role of invari-
ance in Einstein’s thinking needs little elaboration, but statistical arguments played
a key role in his thinking throughout his career and perhaps receives less attention.
Yet this statistical approach led to some of his most spectacular insights.5

5.1 Planck and Quantisation

In the first of Planck’s two key papers of 1900, he established the form of the spec-
trum of black body radiation by empirical arguments. His arguments had a strong
thermodynamic flavour and, by requiring the formula for the entropy of an oscillator
to have the correct temperature dependence in the high and low frequency limit,
derived the correct form for what we now refer to as the Planck spectrum [33]. In
his scientific biography, Planck wrote:

On the very day when I formulated this law, I began to devote myself to the task of investing
[the Planck spectrum] with a true physical meaning. This quest automatically ledme to study
the interrelation of entropy and probability – in other words, to pursue the line of thought
inaugurated by Boltzmann. [35]

In his second paper, Planck’s analysis began by following Boltzmann’s procedure
[34]. There is a fixed total energy E to be divided among the N oscillators and
energy elements ε are introduced. Therefore, there are r = E/ε energy elements to
be shared among the oscillators. Rather than following Boltzmann’s procedure in
statistical physics, however, Planck simply worked out the total number of ways in
which r energy elements can be distributed over the N oscillators. The answer is

(N + r − 1)!
r !(r − 1)! . (8)

Now Planck defined (8) to be the probability p to be used in Boltzmann’s expression
for the entropy S = C ln p. This led to the expression for the entropy of an oscillator
which was identical to that he had derived in his earlier paper.

S = a

[(

1 + E

b

)

ln

(

1 + E

b

)

− E

b
ln

E

b

]

, (9)

5In this section, I have used material which is discussed in much more detail in my book Quantum
Concepts in Physics [19].
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with the requirement b ∝ ν where E is the average energy of the oscillator. Thus,
the energy elements ε must be proportional to frequency and Planck wrote this
requirement in the familiar form ε = hν, the first appearance of Planck’s constant h
in the history of physics. This is the origin of the concept of quantisation. According
to the procedures of classical statistical mechanics, we ought now to allow ε → 0,
but evidently we cannot obtain the expression for the entropy of an oscillator unless
the energy elements do not disappear, but have finite magnitude ε = hν. Therefore,
the expression for the energy density of black-body radiation is

u(ν) = 8πhν3

c3
1

ehν/kT − 1
. (10)

What is one to make of Planck’s argument? He certainly had not followed Boltz-
mann’s procedure for finding the equilibrium energy distribution of the oscillators.
What he defines as a probability is not really a probability of anything drawn from
any parent population. Planck had no illusions about this. In his own words:

In my opinion, this stipulation basically amounts to a definition of the probabilityW ; for we
have absolutely no point of departure, in the assumptions which underlie the electromagnetic
theory of radiation, for talking about such a probability with a definite meaning.

Einstein repeatedly pointed out this weak point in Planck’s argument

The manner in which Mr Planck uses Boltzmann’s equation is rather strange to me in that
a probability of a state W is introduced without a physical definition of this quantity. If one
accepts this, then Boltzmann’s equation simply has no physical meaning. [4]

Why did Planck find the correct expression for the radiation spectrum, despite
the fact that the statistical procedures he used were more than a little suspect? It
seems quite likely that Planck worked backwards. It was suggested by Rosenfeld,
and endorsed by Klein on the basis of an article by Planck of 1943, that he started
with the expression for the entropy of an oscillator and worked backwards to find
W from exp(S/k). This results in the permutation formula (8) for large values of
N and r . The expression (8) was a well-known formula in permutation theory and
appears early in Boltzmann’s exposition of the fundamentals of statistical physics.
Planck then regarded (9) as the definition of entropy according to statistical physics.
If this is indeed what happened, it in no sense diminishes Planck’s achievement in
establishing the necessity of quantisation through the finite value of hν.

5.2 Einstein on Brownian Motion

Einstein’s virtuosity in statistical physics is splendidly illustrated by his paper of
1905, more familiarly known by the title of a subsequent paper published in 1906
entitled On the theory of Brownian motion [6]. Brownian motion is the irregular
motion of microscopic particles in fluids and had been studied in detail in 1828 by
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the botanist Robert Brown. The motion results from the statistical effect of very large
numbers of collisions between molecules of the fluid and the microscopic particles.
Although each impact is very small, the net result of a very large number of them
randomly colliding with the particle is a ‘drunken man’s walk’. Einstein was not
certain about the applicability of his analysis to Brownian motion, writing in the
introduction to his paper:

It is possible that themovements to be discussed here are identical with the so-called ‘Brown-
ian molecular motion’; however, the information available to me regarding the latter is so
lacking in precision that I can form no judgment in the matter.

Einstein begins with Stokes’ formula for the force acting on a sphere of radius a
moving at speed V through a medium of kinematic viscosity ν, F = 6πνaV , where
a is the radius of the sphere and ν the coefficient of kinematic viscosity of the fluid.
Considering the one-dimensional diffusion of the particles in the steady state, he
found the diffusion coefficient for the particles in the medium, D = kT/6πνa and
from this the one-dimensional distance the particle diffuses < λ2

x >= 2Dt in time
t . The result is his famous formula for the mean squared distance travelled by the
particle in time t in one dimension,

〈λ2
x 〉 = kT t

3πνa
, (11)

where T is the temperature and k Boltzmann’s constant. Crucially, Einstein had
discovered the relation between the molecular properties of fluids and the observed
diffusion of macroscopic particles.

In 1908, Jean Perrin [31] carried out a meticulous series of brilliant experiments
which confirmed in detail all Einstein’s predictions. This work convinced everyone,
even the sceptics, of the reality of molecules. In Perrin’s delightful words,

I think it is impossible that a mind free from all preconception can reflect upon the extreme
diversity of the phenomena which thus converge to the same result without experiencing a
strong impression, and I think it will henceforth be difficult to defend by rational arguments
a hostile attitude to molecular hypotheses. [32]

Einstein was well aware of the importance of this calculation for the theory of
heat – the agitational motion of the particles observed in Brownian motion is heat,
the macroscopic particles reflecting the motion of the molecules on the microscopic
scale.

5.3 The Statistical Origin of Einstein’s Discovery of Light
Quanta

Einstein’s great paper of 1905 is commonly referred to as his paper on the photoelec-
tric effect but that scarcely does justice to its profundity – his argument is based upon
the thermodynamics of radiation and the statistics of particles and waves in a box
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with perfectly reflecting walls. Einstein’s approach differed radically from Planck’s
discovery of quantisation in which the ‘energy elements’ ε = hν are associated with
oscillators in thermal equilibrium at temperature T . These same oscillators are the
source of the electromagnetic radiation in the black-body spectrum, but Planck had
absolutely nothing to say about the radiation emitted by them. In contrast, Einstein
proposed that the radiation field itself should be quantised [5].

Einstein derived a suitable form for the entropy of black-body radiation using only
thermodynamics and the observed form of the radiation spectrum with the result

S = Vφ Δν = − ε

βν

(
ln

εc3

8παν3V Δν
− 1

)
. (12)

Suppose the volume changes from V0 to V , while the total energy remains constant.
Then, the entropy change is

S − S0 = ε

βν
ln(V/V0) . (13)

But this entropy change is exactly the same as that found in the Joule expansion of a
perfect gas according to elementary statistical mechanics, S − S0 = kN ln(V/V0),
which is simply derived from the statistics of particles in a box. Einstein immediately
concluded that the radiation behaves thermodynamically as if it consisted of discrete
particles, their number N being equal to ε/kβν. In Einstein’s own words,

Monochromatic radiation of low density (within the limits of validity of Wien’s radiation
formula) behaves thermodynamically as though it consisted of a number of independent
energy quanta of magnitude kβν.

Rewriting this result in Planck’s notation, sinceβ = h/k, the energy of each quantum
is hν.

Einstein finally considers three phenomenawhich cannot be explained by classical
electromagnetic theory.

1. Stokes’ rule is the observation that the frequency of photoluminescent emission
is less than the frequency of the incident light. If the incoming quanta each have
energy hν, the re-emitted quanta can at most have this energy.

2. The photoelectric effect. One of the remarkable features of the effect was Lenard’s
discovery that the energies of the electrons emitted from the metal surface are
independent of the intensity of the incident radiation. Einstein’s proposal provided
an immediate solution to this problem. Radiation of a given frequency consists
of quanta of the same energy hν. If one of these is absorbed by the material, the
electron may receive sufficient energy to remove it from the surface against the
forces which bind it to the material. If the intensity of the light is increased, more
electrons are ejected, but their energies remain unchanged. The maximum kinetic
energy which the ejected electron can have, Ek, is

Ek = hν − W, (14)
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whereW is the amount of work necessary to remove the electron from the surface
of the material, its work function. Nothing was known about the dependence of
the photoelectric effect upon the frequency of the incident radiation at that time.
It was only in 1916 that Millikan’s meticulous experiments confirmed precisely
Einstein’s prediction [26].

3. Photoionisation of gases. The third piece of experimental evidence was the fact
that the energy of each photon has to be greater than the ionisation potential of
the gas if photoionisation is to take place. He showed that the smallest energy
quanta for the ionisation of airwere approximately equal to the ionisation potential
determined independently by Stark.

This is the work described in Einstein’s Nobel Prize citation of 1921.

5.4 Fluctuations of Particles and Waves - Einstein (1909)

Most of themajor figures in physics rejected the idea that light could be considered to
be made up of discrete quanta. Einstein, however, never deviated from his conviction
about the reality of quanta and continued to find otherways inwhich the experimental
features of black body radiation lead inevitably to the conclusion that light consists
of quanta. In one of his most impressive papers written in 1909, he showed how
fluctuations in the intensity of the black-body radiation spectrum provide further
evidence on the quantum nature of light [7].6

In the case of particles in a box, we first divide it into N equal cells and a large
number of particles n is distributed randomly among them. If n is very large, the
mean number of particles in each cell is roughly the same, but there is a real scatter
about the mean value because of statistical fluctuations. If N large, the variance of
the fluctuations is σ 2 = n/N which is also the average number of particles in each
cell. This is the well-known result that, for large values of n and N , the mean is equal
to the variance.

In the case of fluctuations of randomly superposed waves, the result is different.
Since the phases of the waves are random, 〈E∗

x Ex 〉 = Nξ 2 ∝ ux , where ξ is the
amplitude of the waves. For incoherent radiation, the waves have random phases and
the total energy density is the sum of the energies in all the waves.

To find the fluctuations in the average energy density of the waves, we work out
the quantity 〈(E∗

x Ex )
2〉 with respect to the mean energy. The answer is Δu2x = u2x ,

that is, the fluctuations in the energy density are of the same magnitude as the energy
density of the radiation field itself. The physical meaning of this calculation is clear.
Every pair ofwaves of frequency ν interferes to producefluctuations in intensity of the
radiationΔu ≈ u. This analysis refers to waves of random phaseφ and of a particular
angular frequency ω = 2πν, what we would refer to as waves corresponding to a
single mode.

6I have given a detailed treatment of the theory of fluctuations in the number densities of particles
and waves in my book Theoretical Concepts in Physics.
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Einstein begins by reversing Boltzmann’s relation between entropy and probabil-
ity, W = exp(S/k). In terms of fractional fluctuations, Einstein finds the result

σ 2

ε2
=

(
hν

ε
+ c3

8πν2V dν

)
. (15)

The first term on the right-hand side originates from theWien part of the spectrum
and, if we suppose the radiation consists of photons, each of energy hν, it corresponds
to the statement that the fractional fluctuation in the intensity is just 1/N 1/2 where
N is the number of photons, that is, ΔN/N = 1/N 1/2. This is exactly the result
expected if light consists of discrete particles.

The second termoriginates from theRayleigh–Jeans part of the spectrum.Accord-
ing to an entirely classical calculation, notably used by Rayleigh in his derivation
of the black body spectrum, there are 8πν2V dν/c3 modes in the frequency interval
ν to ν + dν and the fluctuations associated with each wave mode have magnitude
Δε2 = ε2. When we add together randomly all the independent modes in the fre-
quency interval ν to ν + dν, we add their variances and hence

〈δE2〉
E2

= 1

Nmode
= c3

8πν2V dν
,

which is exactly the second term on the right-hand side of (15).
Thus, the two parts of the fluctuation spectrum in (15) correspond to particle and

wave statistics, the former to the Wien region of the spectrum and the latter to the
Rayleigh–Jeans part.We recall that we add together the variances due to independent
causes and so Eq. (15) states that we should add independently the variances of the
‘wave’ and ‘particle’ fluctuations of the radiation field to find the total magnitude of
the fluctuations. This is insight of the very highest order.

5.5 Einstein on Stimulated Emission

The paper of 1916 was a further contribution to Einstein’s crusade to convince his
colleagues of the reality of light quanta [8]. The paper is best remembered today
for its introduction of what are now known as Einstein’s A and B coefficients, but
the bulk of the paper is about the statistical nature of momentum transfer between
photons and electrons.

He begins by noting the formal similarity between theMaxwell–Boltzmann distri-
bution for the velocity distribution of the molecules in a gas and Planck’s formula for
the black-body spectrum. Einstein shows how these distributions can be reconciled
through his new derivation of the Planck spectrum, which gives insight into what he
refers to as the ‘still unclear processes of emission and absorption of radiation by
matter.’
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There is no need to go through the standard derivation. Einstein finds that the
equilibrium radiation spectrum u can be written

u = An
m/Bn

m

exp

(
εm − εn

kT

)
− 1

. (16)

This is Planck’s radiation law. He then finds the relations between the As and Bs,

An
m

Bn
m

∝ ν3, εm − εn = hν . (17)

The value of the constants in (16) can be found from the Rayleigh–Jeans limit of the
black-body spectrum, εm − εn/kT � 1. It follows that

u(ν) = 8πν2

c3
kT = An

m

Bn
m

kT

hν
and so

An
m

Bn
m

= 8πhν3

c3
. (18)

The An
m and Bn

m coefficients are associated with atomic processes at the microscopic
level. Einstein wrote exuberantly to his friend Michele Besso on 11 August 1916,

A splendid flash came to me concerning the absorption and emission of radiation …A
surprisingly simple derivation of Planck’s formula, I would say the derivation. Everything
completely quantum.

This analysis occupies only the first three sections of Einstein’s paper. The remain-
der concerns the transfer of momentum as well as energy between matter and radia-
tion. According to standard kinetic theory, when molecules collide in a gas in ther-
mal equilibrium, there are fluctuations in the momentum transfer between molecules
which amounts to

Δ2

τ
= 2RkT , (19)

whereΔ is the momentum transfer to a molecule during a short time interval τ and R
is a constant related to the ‘frictional’ force acting upon the moving molecules. Note
the striking similarity with Einstein’s formula (11) for the diffusion of microscopic
particles undergoing Brownian motion.

Now suppose the density of atoms is reduced to an extremely low value so that the
momentum transfer is dominated by collisions between photons and the few remain-
ing atoms, which can be considered collisionless. According to Einstein’s quantum
hypothesis, the photons have energy hν and momentum hν/c. Therefore, the parti-
cles should be brought into thermal equilibrium at temperature T entirely through
collisions between photons and particles. This was the reason that Einstein needed
his equations for spontaneous emission and induced absorption and emission of radi-
ation since these determine the rate of transfer of energy and momentum between the
particles and the radiation. Einstein showed that, assuming the momentum transfers
occur randomly in directional collisions between photons and electrons, the variance
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of the fluctuations in the momentum transfer is exactly the same expression as (19).
This could not happen if the energy re-radiated by the particles was isotropic because
then there would be no random component in the momentum transfer process. The
key result was that, when a molecule emits or absorbs a quantum hν, there must be a
positive or negative change in the momentum of the molecule of magnitude |hν/c|,
even in the case of spontaneous emission. In Einstein’s words,

Outgoing radiation in the form of spherical waves does not exist. During the elementary
process of radiative loss, the molecule suffers a recoil of magnitude hν/c in a direction
which is determined only by ‘chance’, according to the present state of the theory.

His view of the importance of the calculation is summarised in the version of the
paper published in 1917.

The most important thing seems to me to be the momenta transferred to the molecule [atom]
in the processes of absorption and emission. If any of our assumptions concerning the
transferred momenta were changed (19) would be violated. It hardly seems possible to
reach agreement with this relation, which is demanded by the [kinetic] theory of heat, in any
other way than on the basis of our assumption. [9]

5.6 Bose–Einstein Statistics

One of the intriguing questions about Planck’s derivation of the black-body energy
distribution is why he obtained the correct answer using ‘wrong’ statistical proce-
dures. In fact, Planck had stumbled by accident upon the correctmethod of evaluating
the statistics for indistinguishable particles. These procedures were first demon-
strated by the Indian mathematical physicist Satyendra Nath Bose in a manuscript
entitled Planck’s Law and the Hypothesis of Light Quanta, which he sent to Einstein
in 1924. Einstein immediately appreciated its deep significance, translated it into
German himself and arranged for it to be published in the Zeitschrift für Physik [1].

To paraphrase Pais’s account of the paper [30], Bose introduced three new features
into statistical physics:

(i) Photon number is not conserved.
(ii) Bose divides phase space into coarse-grained cells. The counting of the numbers

of particles per cell explicitly requires that, because the photons are taken to
be identical, each possible distribution of states should be counted only once.
Thus, Boltzmann’s axiom of the distinguishability of particles is gone.

(iii) Because of this method of counting, the statistical independence of particles
has also gone.

These are profound differences as compared with classical Boltzmann statistics. The
differences were to find an explanation in quantum mechanics and are associated
with the symmetries of the wavefunctions for particles of different spins. As Pais
remarks,
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The astonishing fact is that Bose was correct on all three counts. (In his paper, he commented
on none of them.) I believe there had been no such successful shot in the dark since Planck
introduced the quantum in 1900 [30].

Consider one of the cells, which we label k and which has energy εk and degen-
eracy gk , meaning the number of available states with the same energy εk within that
cell. Now suppose there are nk particles to be distributed over these gk states and that
the particles are identical. Then, the number of different ways the nk particles can be
distributed over these states is

(nk + gk − 1)!
nk !(gk − 1)! . (20)

using standard procedures in statistical physics. This is the key step in the argument
and differs markedly from the corresponding Boltzmann result. In (20) duplications
of the same distribution are eliminated because of the factorials in the denominator. In
quantum mechanical terms, the explanation for this distinction is neatly summarised
by Huang who remarks:

The classical way of counting in effect accepts all wave functions regardless of their sym-
metry properties under the interchange of coordinates. The set of acceptable wave functions
is far greater than the union of the two quantum cases [the Fermi-Dirac and Bose-Einstein
cases]. [13]

Notice that this is the point at which the statistical independence of the particles is
abandonned. The particles cannot be placed randomly in all the cells since duplication
of configurations are not allowed.

The result (20) refers only to a single cell in phase space and we need to extend it
to all the cells whichmake up the phase space. Carrying out that standard calculation,
we find the result

nk = gk
eα+βεk − 1

. (21)

This is the Bose–Einstein distribution and is the correct statistics for counting indis-
tinguishable particles.

In the case of black-body radiation, we do not need to specify the number of
photons present. The distribution is determined solely by one parameter – the total
energy, or the temperature of the system. Therefore, in the method of undetermined
multipliers, we can drop the restriction on the total number of particles. The distri-
bution automatically readjusts to the total amount of energy present, and so α = 0.
Therefore,

nk = gk
eβεk − 1

. (22)

By inspecting the low-frequency behaviour of the Planck spectrum, we find that
β = 1/kT , as in the classical case.
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Finally, the degeneracy of the cells in phase space gk for radiation in the fre-
quency interval ν to ν + dν is needed. One of the reasons for Einstein’s enthusi-
asm for Bose’s paper was that Bose derived this factor entirely by considering the
phase-space available to the photons, rather than appealing to Planck’s or Rayleigh’s
approaches, which relied upon results from classical electromagnetism. Bose con-
sidered the photons to have momenta p = hν/c and so the volume of momentum, or
phase, space for photons in the energy range hν to h(ν + dν) is, using the standard
procedure,

dVp = V dpx dpy dpz = V 4πp2 dp = 4πh3ν2 dν

c3
V , (23)

where V is the volume of real space. Recalling that there are two polarisation states
of the photon, Rayleigh’s result was recovered,

dN = 8πν2

c3
dν with εk = hν , (24)

and the spectral energy density of the radiation is

u(ν) dν = 8πhν3

c3
1

ehν/kT − 1
dν . (25)

Planck’s expression for the black-body radiation spectrum has been derived using
Bose–Einstein statistics for indistinguishable particles.

Einstein went on to apply these new procedures to the statistical mechanics of an
ideal gas [10, 11]. As he stated, the application of these statistics to a monatomic gas
leads to a ‘far-reaching formal relationship between radiation and gas’. In particular,
he realised that the expression he had derived for the fluctuations in black-body
radiation in his paper of 1909 must apply equally for the statistics of monatomic
gases as well:

σ 2

ε2
=

(
hν

ε
+ c3

8πν2V dν

)
. (26)

This is a dramatic result. Simply from the statistics of indistinguishable particles,
the expression for the fluctuations consists of one term associated with the statistics
of non-interacting particles according to the Maxwell–Boltzmann prescription and
a second term associated with interference phenomena due to the wave properties of
the particles. For these reasons, Einstein was particularly intrigued by the work of
Louis de Broglie, which was reported by Langevin at the fourth Solvay conference
in April 1924. De Broglie had made another ‘shot in the dark’, by ascribing wave
properties to the electron. This conjecture was to have profound implications for the
development of quantum mechanics in the hands of Schrödinger.
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5.7 Reflections

My reason for telling this story in some detail is that these examples represent statis-
tics at the very heart of fundamental physics. Statistics is normally introduced in the
context of the analysis of experimental data, which is of course essential. But look
how rich statistical ideas were in the hands of a genius like Einstein. In my view, we
could introduce students to many of these statistical concepts through their role in
basic physics rather than as drill exercises in ‘errors’.

6 Cosmological Conundrums—Space–time Diagrams
for the Standard World Models

The application of the established laws of physics to the Universe as a whole has been
extraordinarily successful. Not only have the laws resulted in deep understandings
of how our Universe has evolved, but also new physics has been discovered. For
example, limits to the number of neutrino species were derived from studies of the
primordial synthesis of the light elements and then these limits were confirmed by
the LEP experiments at CERN.

Weare able to pursue these endeavours because of the extraordinary isotropy of the
Universe on the large scale. Measurements of the isotropy of the cosmic background
radiation over the sky as observed by the WMAP and Planck space missions show
that the Universe looks the same in all directions on the large scale to better than
one part in a hundred thousand. This results in an tremendous simplification in the
construction of cosmologicalmodels.As a result, one bit ofUniverse is just as good as
any other for the construction of cosmological models. The galaxies are also moving
apart according to Hubble’s Law, the observation that the velocities of recessions of
galaxies are proportional to their distances. Together, these observations mean that
the Universe as a whole is expanding uniformly. At a particular cosmic epoch, every
observer in the Universe can move in such a way that they observe an isotropic,
expanding Universe with the same Hubble’s law - such observers are known as
fundamental observers. This is why the simple Newtonian construction by Milne
and McCrea [27, 28] for the large scale dynamics of the Universe works so well.

But we have to be careful about the meanings of the coordinates we use.7 The
significance of the various ways of characterising time and space in these models
is quite subtle and pedagogically often not as clearly enunciated as I believe they
should be. It is helpful to represent the various scales on space-time diagrams for the
standard world models and to discuss some of their somewhat surprising features.8

7I have dealt with many of the issues in this Section in my book Galaxy Formation [18].
8This section was inspired by the illuminating papers by Davis and Lineweaver [2, 15].
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First, let us summarise the various times and distances introduced in the construc-
tion of cosmological models.

Cosmic timeCosmic time t is defined to be timemeasured by a fundamental observer
who reads time on a standard clock.

t =
∫ t

0
dt =

∫ a

0

da

ȧ
, (27)

where the scale factor a describes how the distance between fundamental observers
changes with cosmic time, normalised to unity at the present cosmic time t0. Notice
that a(t) describes the kinematics of the expanding universe.

Comoving radial distance coordinateWhenwemake observations of theUniverse,
we look into the past along our past light cone (Fig. 3). The conditions of isotropy
and homogeneity can only be applied at a particular cosmic epoch and so, to define
a self-consistent distance measure at cosmic time t , we project the proper distances
along our past light cone to a reference epoch which can be taken to be the present
epoch t0. Then, the comoving radial distance coordinate r is defined as

Fig. 3 A simple space-time diagram illustrating the definition of comoving radial distance coordi-
nate
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r =
∫ t0

t

c dt

a
=

∫ 1

a

c da

aȧ
. (28)

Note that this is a fictitious distance and depends upon the choice of cosmological
model through the scale factor a(t).

Conformal time The conformal time τ has similarities to the definition of comoving
radial distance coordinate in that time intervals are projected forward to present epoch
using the definition

dtconf = dτ = dt

a
. (29)

According the cosmological time dilation formula dt0 = dt/a and so the interval of
conformal time dτ is the time measured by a fundamental observer at the present
epoch t0. At any epoch, the conformal time has value

τ =
∫ t

0

dt

a
=

∫ a

0

da

aȧ
. (30)

Proper radial distance coordinate To define a proper distance at some earlier
epoch, we define the proper radial distance rprop to be the comoving radial distance
coordinate projected back to the epoch t . Then,

rprop = a
∫ t0

t

c dt

a
= a

∫ 1

a

c da

aȧ
. (31)

Particle horizon The particle horizon rH is defined as the maximum proper distance
over which there can be causal communication at the epoch t

rH = a
∫ t

0

c dt

a
= a

∫ a

0

c da

aȧ
. (32)

It immediately follows that, in a space-time diagram in which comoving radial dis-
tance coordinate is plotted against conformal time, the particle horizon is a straight
line with slope equal to the speed of light.

Event horizon The event horizon rE is the greatest proper radial distance an object
can have if it is ever to be observable by an observer at cosmic time t1,

rE = a
∫ tmax

t1

c dt

a(t)
= a

∫ amax

a1

c da

aȧ
. (33)
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6.1 The Past Light Cone

Because of the assumptions of isotropy and homogeneity, Hubble’s linear relation
v = H0r applies at the present epoch to recessions speeds which exceed the speed of
light where r is the ‘artificial’ comoving radial distance coordinate. We can imagine
measuring this distance by lining up a very large number of fundamental observers
who measure increments of distance Δr at the present epoch t0 and who are mov-
ing apart at speed H0 Δr . Thus, if the fundamental observers are far enough apart,
this speed can exceed the speed of light. There is nothing in this argument which
contradicts the special theory of relativity – it is simply a geometric result of the
requirements of isotropy and homogeneity.

Consider the familiar analogy of the surface of an expanding spherical balloon.
As the balloon inflates, a linear velocity-distance relation is found on the surface
of the sphere, not only about any point on the sphere, but also at arbitrarily large
distances on its surface. Hence at very large distances, the speed of separation can
be greater than the speed of light, but there is no causal connection between these
points – they are simply partaking in the uniform expansion of what Bondi calls the
substratum, the underlying space-time geometry of the Universe.

The proper distance between two fundamental observers at cosmic time t is

rprop = a(t)r , (34)

where r is comoving radial distance. Differentiating with respect to cosmic time,

drprop
dt

= ȧr + a
dr

dt
. (35)

The first term on the right-hand side represents the motion of the substratum and, at
the present epoch, becomes H0r . Consider, for example, the case of a very distant
object in the critical worldmodel,Ω0 = 1,ΩΛ = 0. As a tends to zero, the comoving
radial distance coordinates tends to r = 2c/H0. Therefore, the local rest frame of
objects at these large distances moves at three the speed of light relative to our local
frame of reference at the present epoch, since the age of the model is (2/3)/H0.
At the epoch at which the light signal was emitted along our past light cone, the
recessional velocity of the local rest frame vrec = ȧr was greater than this value,
because ȧ ∝ a−1/2.

The second term on the right-hand side of (35) corresponds to the velocity of
peculiar motions in the local rest frame at r , since it corresponds to changes of the
comoving radial distance coordinate. The element of proper radial distance is adr
and so, if we consider a light wave travelling along our past light cone towards the
observer at the origin, we find from (35)

vtot = ȧr − c . (36)
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This result defines the propagation of light from the source to the observer on space-
time diagrams for the expanding Universe.

We can now plot the trajectories of light rays from their source to the observer at
t0. The proper distance from the observer at r = 0 along the past light cone rPLC is

rPLC =
∫ t

0
vtot dt =

∫ a

0

vtot da

ȧ
. (37)

Initially the light rays from distant objects are propagating away from the observer –
this is because the local isotropic cosmological rest frame is moving away from the
observer at r = 0 at a speed greater than that of light. The light waves are propagated
to the observer at the present epoch through local inertial frames which expand
with progressively smaller velocities until they cross the Hubble sphere at which the
recession velocity of the local frame of reference is the speed of light. The definition
of the radius of the Hubble sphere rHS at epoch t is

c = H(t) rHS = ȧ

a
rHS or rHS = ac

ȧ
. (38)

rHS is a proper radial distance. From this epoch onwards, propagation is towards the
observer until, as t → t0, the speed of propagation towards the observer is the speed
of light.

6.2 Application to Cosmological Models

We consider first the critical world model and then a reference Λ model.

The Critical World Model Ω0 = 1,ΩΛ = 0

The space-time diagrams shown below are presented with time measured in units of
H−1

0 and distance in units of c/H0. The advantage of studying this simple case first
is that there are simple analytic relations for the various quantities which appear in
Fig. 4. These are listed in Table1.

Different versions of the space-time diagrams for the critical world model are
shown in Fig. 4a–c. In all three presentations, the world lines of galaxies having
redshifts 0.5, 1, 2 and 3 are shown. When plotted against comoving radial distance
coordinate in Fig. 4b, c, these are vertical lines. The Hubble sphere and particle
horizon, as well as the past light cone, are shown in all three diagrams. There is no
event horizon in this model.

These diagrams illustrate a number of interesting features.

• Figure4a is the most intuitive diagram. It illustrates clearly many of the points
discussed above. For example, the Hubble sphere intersects the past light cone at
the point where the vtot = 0 and the tangent to the past light cone at that point is
vertical.
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Fig. 4 Space-time diagrams for the critical cosmological model, Ω0 = 1,ΩΛ = 0. The times and
distances are measured in units of H−1

0 and c/H0 respectively
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Table 1 The dependence of various times and distances upon the scale factor a and cosmic time
t for the critical world model Ω0 = 1,ΩΛ = 0. The times and distances are measured in units of
H−1
0 and c/H0 respectively

Age of Universe at present epoch t0 = 2/3

Conformal time τ = 2(t/t0)1/3

Dynamics of world model a = (t/t0)2/3

World lines of galaxies rprop = r(t/t0)2/3

Hubble sphere rHS = (t/t0)

Past light cone rPLC = 2(t/t0)2/3 − 2(t/t0)

Particle horizon rH = 3t

Event horizon There is no event horizon in this model

• In Fig. 4b, c, the initial singularity at t = 0 has been stretched out to become a
singular line.

• Figure4c is the simplest diagram in which cosmic time has been replaced by
conformal time. In the critical model, the relations are particularly simple, the
particle horizon, the past light cone and the Hubble sphere being given by
rH(comoving) = τ, rPLC(comoving) = 2 − τ and rHS(comoving) = τ/2 respec-
tively.

The Reference World Model Ω0 = 0.3,ΩΛ = 0.7

For a reference model with a finite cosmological constant, we adopt Ω0 = 0.3 and
ΩΛ = 0.7. The rate of change of the scale factor with cosmic time in units in which
c = 1 and H0 = 1 is

ȧ =
[
0.3

a
+ 0.7(a2 − 1)

]1/2

. (39)

The diagrams shown in Fig. 5a–c have many of the same general features as
Fig. 4a–c, but there are significant differences, the most important of these being
associated with the dominance of the dark energy term ΩΛ at late epochs.

• First, the cosmic time-scale is stretched out relative to the critical model.
• The world lines of galaxies begin to diverge at the present epoch as the repulsive
effect of the dark energy dominates over the attractive force of gravity.

• The Hubble sphere converges to a proper distance of 1.12 in units of c/H0. The
reason for this is that the expansion becomes exponential in the future andHubble’s
constant tends to a constant value of Ω

1/2
Λ .

• Unlike the critical model, there is an event horizon in the reference model. The
reason is that, although the geometry is flat, the exponential expansion drives
galaxies beyond distances at which there could be causal communication with an
observer at epoch t . It can be seen from Fig. 5a that the event horizon tends towards
the same asymptotic value of 1.12 in proper distance units as the Hubble sphere. In
Fig. 5b, c, the comoving distance coordinates for the Hubble sphere and the event
horizon tend to zero as t → ∞.
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Fig. 5 Space-time diagrams for the reference cosmologicalmodel,Ω0 = 0.3,ΩΛ = 0.7. The times
and distances are measured in units of H−1

0 and c/H0 respectively [2]
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• Just as in the case of the critical model, the simplest diagram is that in which con-
formal time is plotted against comoving radial distance coordinate. The relations
for the particle horizon, the past light cone and the event horizon were all given
in proper coordinates and so they have to be divided by a to convert to comoving
coordinates. Using these definitions, it is a simple exercise to show that the various
lines are rH(comoving) = τ, rPLC(comoving) = τ0 − τ, rE(comoving) = r0 − τ ,
where τ0 = 3.305 and r0 = 4.446 for our reference cosmological model. These
forms of the relations in terms of comoving distance coordinate and conformal
time are true for all models.

There are two extensions of Fig. 5c which help elucidate some of the features of
the standard world models. In Fig. 6a, the redshift of 1000 is shown corresponding to
the last scattering surface fromwhich the CosmicMicrowave Background Radiation
originates. The intersection with our past light cone is shown and then a past light
cone from the last scattering surface to the singularity at conformal time τ = 0 is
shown as a shaded triangle. This demonstrates the horizon problem – the region of
causal contact is very small compared with moving an angle of 180◦ over the sky
which would correspond to twice the distance between the origin and the comoving
radial distance coordinate at 3.09.

In Fig. 6b, the end of the inflation era is taken as the zero of time for the standard
Big Bang and the diagram has been extended back to negative conformal times.
Thus, we shift the zero of conformal time very slightly to, say, 10−32 s and then we
can extend the light cones to incorporate the inflationary expansion of the very early
universe.

This construction provides a way of understanding how the inflationary picture
resolves the causality problem. Light cones have unit slope in the conformal diagram
and so we draw them from the ends of the element of comoving radial distance at
τ = 0 from the last scattering surface. These are shown in the diagram and it can be
seen that projecting far enough back in time, the light cones from opposite directions
on the sky overlap, meaning causal contact in the early Universe.

We have to distinguish between the Hubble sphere and the particle horizon. The
latter is defined as the maximum distance over which causal contact could have been
made from the time of the singularity to a given epoch. In other words, it is not just
what happened at a particular epoch which is important, but the history along the
past light cone. In contrast, the Hubble radius is the distance of causal contact at
a particular epoch. It is the distance at which the velocity in the velocity-distance
relation at that epoch is equal to the speedof light.Writing the exponential inflationary
expansion of the scale factor as a = a0 exp[H(t − ti)], where a0 is the scale factor
when the inflationary expansion began at τi, rHS = c/H and the comoving Hubble
sphere has radius rHS(com) = c/(Ha). Since H is a constant throughout most of
the inflationary era, it follows that the comoving Hubble sphere decreases as the
inflationary expansion proceeds.

We now join this evolution of the comoving Hubble sphere onto its behaviour
after the end of inflation. The expression for conformal time during the inflationary
era is
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Fig. 6 aA repeat of conformal diagramFig. 5c inwhich conformal time is plotted against comoving
radial distance coordinate. Now, the last scattering surface at the epoch of recombination is shown
as well as the past light cone from the point at which our past light cone reaches the last scattering
layer. b An extended conformal diagram now showing the inflationary era. The time coordinate is
set to zero at the end of the inflationary era and evolution of the Hubble sphere and the past light
cone at recombination extrapolated back to the inflationary era
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τ = constant − rHS(com)

c
. (40)

This solution for rHS(com) is joined on to the standard result at the end of the
inflationary epoch, as illustrated in Fig. 6b. The complete evolution of the Hubble
sphere is indicated by the heavy line labelled ‘Hubble sphere’ in that diagram.

Because any object preserves its comoving radial distance coordinate for all time,
as represented by the vertical lines in Fig. 6b, it can be seen that, in the early Universe,
objects lie within the Hubble sphere, but during the inflationary expansion, they pass
through it and remain outside it for the rest of the inflationary expansion. Only when
the Universe transforms back into the standard Friedman model does the Hubble
sphere begin to expand again and objects can then ‘re-enter the horizon’. Consider,
for example, the region of the Universe out to redshift z = 0.5 which corresponds
to one of the comoving coordinate lines in Fig. 6b. It remained within the Hubble
sphere during the inflationary era until conformal time τ = −0.4 after which it was
outside the horizon. It then re-entered the Hubble sphere at conformal time τ = 0.8.
This type of behaviour occurs for all scales and masses of interest in understanding
the origin of structure in the present Universe.

Since causal connection is no longer possible on scales greater than the Hubble
sphere, it follows that objects ‘freeze out’ when they pass through the Hubble sphere
during the inflationary era, but they come back in again and regain causal contact
when they recross the Hubble sphere. This is one of the key ideas behind the idea that
the perturbations from which galaxies formed were created in the early Universe,
froze out on crossing the Hubble sphere and then grew again on re-entering it at
conformal times τ > 0.

Notice that, at the present epoch, we are entering a phase of evolution of the
Universe when the comoving Hubble sphere about us has begun to shrink again.
This is entirely due to the fact that the dark energy is now dominating the expansion
and its dynamics are precisely another exponential expansion. In fact, the Hubble
sphere tends asymptotically to the line labelled ‘event horizon’ in Fig. 5a.

The papers by Davis and Lineweaver repay close study [2, 15]. Their remarkable
Appendix B indicates how even some of the most distinguished cosmologists and
astrophysicists can lead the newcomer to the subject astray.

7 Epilogue

I have selected only a few of the many topics which Paddy and I love to explore and
which are rich in physical content, illustrating how real physics can be understood.
The intention and spirit are similar to Paddy’s delightful Sleeping Beauties in Theo-
retical Physics [29]. Long may Paddy continue to inspire us with these remarkable
insights into how physics really works.
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A Local Stress Tensor for Gravity Fields

D. Lynden-Bell

Abstract After a discussion of what ought to be meant by a local conservation law
in General Relativity, we show physically that the energy density of the gravity field
of static spherical systems can be deduced from natural axioms that we state. The
result demonstrates that in these cases the energy density in both field and matter
can be deduced from the spatial metric but not from the gravitational potential. We
demonstrate that although the total energy can be determined from the gravitational
potential at large r , nevertheless the distribution of that energy is not contained in the
potential. We then derive all components of the stress-energy tensor of the gravity
field of spherical systems. Finally we find a three dimensional flat space associated
with all asymptotically flat static spaces.

1 Introduction

In physics global conservation laws follow from local conservation laws. The density
of the conserved quantity integrated over all space is the same for all time because
the decrease in density in each small volume is compensated by the outflow of the
corresponding flux through the surface of that volume. When the strict requirements
of causality are considered it is hard to imagine that anything could be conserved
globally without there being an underlying local conservation law. However in Gen-
eral Relativity we meet global conservation laws of energy momentum and angular
momentumwithout the existenceof any “local” conservation law.Thepseudo-tensors
are sometimes invoked to fill this gap but they are made from unphysical quantities
which change when we consider different coordinates. When I say there are no cor-
responding “local” conservation laws I am using the standard idea that by “local”
we mean a quantity that can be constructed from the metric and its derivatives at
any chosen point. It could be that it is this definition of what is to be called local,
that is the seat of the problem. Consider an asymptotically flat space-time. Before
we can decide what is to be called the total energy or the total momentum we must
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specify the Lorentz frame at infinity. Even when this can be done consistently we
shall face a much more challenging problem in deciding how such a frame should
be constructed within the changing curved space. If we fail to specify which parts
of even the stress-energy tensor are contributors to the energy and which parts are
contributors to momentum then it is perhaps no real surprise that the mathematics
is unable to produce a local density for either. We can specify the Lorentz frame
at infinity via four orthogonal unit displacement vectors w

μ
a . Here μ is the vector

index while a is a Lorentz index that tells us which of the vectors we consider.
Changes in the Lorentz frame at infinity can be made without changing the (possi-
bly curvilinear) coordinates there. Under such a Lorentz transformation the w

μ
a will

transform linearly not merely at infinity but everywhere. Thus w̃
μ
b = La

bw
μ
a . Where

the La
b define the Lorentz transformation and are independent of position. Implicit in

using this transformation even in the curved regions of space is the idea that the w
μ
a

must obey a linear equation. These vectors should be asymptotic Killing vectors of
the Minkowski space at spatial infinity. That fact might suggest that to extend these
vectors into the curved part of space-time, we need the w

μ
a to be ‘Willing’ vectors

defined to obey some softened but linear form of Killing’s equation, which allows
solutions in spaces without any symmetry. While the late Joseph Katz and I spent
some effort exploring the willing vector concept, we did not find success in that
direction. In those very special cases where there is a global time-like Killing vector
the gravitational part of the energy will be conserved separately from the material
energy, but we do not want that. We merely want conservation of the sum. While I
still believe there is a future in discovering a way to bring the Lorentz frame at infin-
ity into the curved part of space, our efforts in this direction have not yet led to the
exact tensorial local conservation laws we seek. Here I use local in the generalised
sense that involves the w

μ
a at the point considered as well as the metric there. There

is a real challenge here. What linear equation should the willing vectors w
μ
a obey in

order that there be energy and momentum conservation laws Dμ(Θ
μ
ν wν

a ) = 0? Here
Θμ

ν is a stress tensor that describes both the material and the gravitational stress. The
latter may possibly depend on the willing vectors.

When there is no current success in solving a great problem one may look for
crumbs of comfort in special cases. Consider the simplest case, static spaces. Here
there is general agreement that the local time-like Killing vector ξμ should be nor-
malised to unity at infinity. This is actually a non-local operation, but few object
to expressions for energy density that may involve ξμ and its existence everywhere
gives the static Lorentz frame. We shall hereafter concentrate on defining the grav-
itational field’s energy density for this very special situation. There are some who
deny the existence of an energy density for gravitational fields and others who give
formulae for it, which are not generally in agreement with one another. We therefore
consider the special case of static spherical symmetry, and state axioms from which
we derive the energy density of the gravity field. This answer is negative definite
and is contained in the spatial part of the metric. We then tabulate some books and
papers that agree and others that disagree with our result in this special case and
show which axioms are denied by those who disagree. In Sect. 4 we consider two
spherical distributions with the same density everywhere one of which has no radial
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component to its pressure tensor (so it is held up by its tangential pressures) and the
other has the usual isotropic pressure at each point. Both have the same spatial metric
but they have different potentials although those agree outside the matter. We deduce
that a knowledge of the gravitational potential is insufficient for a determination of
the gravitational field’s energy density. We then show that our axioms also give the
gravitational field’s energy between any two equipotentials for any static space, even
one with no spatial symmetry.

In electrodynamics the energydensity of thefields is (E2 + B2)/(8π).Any surface
distribution of charge or current has no electrical energy stored in the surface itself
since it has no volume. A shell of surface charge density, σ with no field incident
from below has an external normal component of field En = 4πσ.

Gravitational waves carry energy, momentum and angular momentum so there is
certainly energy in gravitational fields. We shall assume that no gravitational field
energy resides in surface densities of matter since, as in the electrical case, they
have no volume. A static particle has rest energy mc2 and a moving particle has
energymc2(1 − v2/c2)−1/2. Many such particles may contribute to the stress energy
tensor Tμν . This describes the matter whose gravity field we are about to study.
It is not itself a part of that gravity. To a static observer in a static space-time it
contributes a material energy density ρc2 = T 0

0 = wμT μνwν where wμ is the static
observer’s 4-velocity, ξμ/ξ and ξμ is the Killing vector of length ξ = √

ξμξμ. The
matter-energy density in an elementary 3-volume dV is also the material energy flux
through the corresponding element of space-time surface d�ν which has magnitude
wμT μν√−gd�ν . Summing such contributions and taking no account of gravitation
we find a material energy within some boundary S of Em = ∫

ρc2dV where the
integration is over the volume within S. Notice that this definition of the material
energy allows us to split the total energy into the material energy which includes any
electrodynamic energy, and the rest which we attribute to gravitation. We shall also
assume that a static flat region of space-time has no energy and that the total energy
of an asymptotically flat space-time can be determined from the asymptotic form of
the metric. We summarise the discussion above in the following four axioms:

AXIOMS

1/There is no gravitational field energy in a surface itself, not even in a surface
distribution of matter, because such surfaces have no 3-volume.
2/The material energy in a static matter distribution is

∫
ρc2dV or for a surface

distribution
∫

σc2dS.
3/There is no energy in a static flat region of space-time.
4/The total energy of stationary asymptotically flat space-times can be determined
externally.
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2 Gravity Field’s Energy Density for Spheres

We now show that these axioms are sufficient to determine uniquely the gravita-
tional field’s energy density in static spherical space-times and furthermore the total
field energy between any two equipotentials in any static space-time. The method
was invented by Lynden-Bell and Katz [10] [see also Grøn [4] and Katz et al. [6]]
but unfortunately we used an incorrect formula for the material energy which dis-
obeys axiom 2, so those results are WRONG. Indeed the referee of our 1985 paper
Dr. Schutz questioned us on precisely this point and he was very right to do so! We
start with the spherical case with some matter density ρ(r) = T 0

0 , c = 1 in the
spherical metric

ds2 = e−2ψdt2 − (e2λdr2 + r2d r̂2), (1)

where r̂ is the unit Cartesian radial vector. Once some pole is chosen we may intro-
duce spherical polar coordinates and then d r̂2 = dθ2 + sin2 θdφ2. Both ψ and λ are
functions of r .We now compare thismetricwith onewhich is truncated beneath some
equipotential ψ = Ψ which corresponds to some sphere r = a, thus Ψ = ψ(a). See
Fig. 1. In r < a we have flat space. In r > a we leave the space unchanged. From the
gradient discontinuities at r = a, we can discover what surface distribution of matter
and stress are needed on the shell that now replaces whatever was formerly within
its radius. Since everything outside r = a has been left unchanged and there is now

Fig. 1 Any static
gravitational potential ψ is
truncated at some
equipotential leaving a flat
3-space inside. The shell
created at the truncation has
a material energy equal to
the total material and field
energy inside that
equipotential in the original
space. The flat 3-space of
Sect. 6 is obtained by
superposing the internal flat
spaces for all equipotential
truncations
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flat space in r < a the energy in the spherical shell itself which is all material energy
by axiom 1 must equal the energy that was formerly in r ≤ a which will be partly
material and partly gravitational field energy. However we already have formulae for
the material energy so we can find the gravitational field energy that is in r < a in
the original metric. By differentiating that expression with respect to a and dividing
by the volume 4πa2eλ(a)da we can find the gravitational field’s energy density at
r = a. As the value of a can be chosen at will this gives us this field energy den-
sity everywhere. From the metric (1) we calculate the non-zero Christoffel symbols,
Γ α

βγ = Γ α
γβ

Γ 0
01 = −ψ′, Γ 1

00 = −ψ′e−2(ψ+λ), Γ 1
11 = λ′, Γ 1

22 = −re−2λ,

Γ 1
33 = −r sin2 θe−2λ, Γ 2

33 = − sin θ cos θ, Γ 2
12 = Γ 3

13 = 1/r, Γ 3
23 = cot θ. (2)

The flat spacemetric inside the shell hasψ = ψ(a),λ = 0 sowith those substitutions
we get the Christoffels inside. To calculate the stress tensor of the shell by Israel’s
method we follow Goldwirth and Katz [3] in using normals that point into the spaces
in which the external curvatures are calculated. The unit normal outside the shell is
nμ = (0,−eλ, 0, 0). On the sphere we use coordinates θ0 = t, θ2 = θ, θ3 = φ, that
is θb with b = 0, 2, 3. The external curvature is given by Ka,b = − ∂xμ∂xν

∂θa∂θb
Dνnμ =

Γ 1
a,bn1, where Dν denotes the covariant derivative. Thus

K 0
0 = ψ′ e−λ, K 2

2 = K 3
3 = −e−λ/a, K = Kb

b = (aψ′ − 2)e−λ/a. (3)

From these we construct the Lancos tensor Lb
a = K δba − Kb

a .

L0
0 = −2e−λ/a, L2

2 = L3
3 = (aψ′ − 1)e−λ/a. (4)

Similarly for the flat space inside the spherical shell with unit inward normal nμ =
(0, 1, 0, 0)

L0
0 = 2/a, L2

2 = L3
3 = 1/a. (5)

The surface energy tensor of the shell is given by κτ b
a = Lb

a + Lb
a so,

κτ 0
0 = (2/a)(1 − e−λ), κτ 2

2 = κτ 3
3 = (1/a)(1 − e−λ) + ψ′ e−λ. (6)

The total energy that is in r ≤ a in the original space is the same as the matter energy
in the shell so, calling the gravitational field’s energy density Π0

0
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4πa2τ00 =
∫ a

0
4πr2(T 0

0 + Π0
0 )eλdr.

κΠ0
0 = −κT 0

0 + a−2e−λ d

da
(a2κτ00 ) = −κT 0

0 + 2a−2e−λ[(1 − e−λ) + aλ′e−λ]. (7)

But from Einstein’s equations in spherical symmetry

κT 0
0 = [e−2λ(2aλ′ − 1) + 1]/a2; (8)

Hence
κΠ0

0 = − (1 − e−λ)2/a2. (9)

It is nice that the terms in λ′ cancel and it is interesting that it is the spatial metric
not the potential that determines the field energy. It is also minus a perfect square
and thus negative definite as befits the binding energy of the matter. However it is
not a sum of squares of the gravomagnetic fields E,B that we introduced elsewhere.
We pointed out in LKB [11] that it is closely related to the 3-conformal factor that
transforms the spherical 3-space to a flat 3-space. Integrating this expression over
the volume outside the matter we find

EG(a) = κ−1
∫ ∞

a
Π0

0 4πr
2eλdr = − 2m2

Ga(1 + √
1 − 2m/a)2

. (10)

We remark that a dust shell with rest mass M and radius a(τ ) falling under its own
gravity obeys the energy equation

M
√
1 + ȧ2 − 1

2 GM2/a = m/G, (11)

where m is the gravitational mass seen at infinity. The first term is the rest mass
plus kinetic energy, so it is natural to regard the second term as the gravitational
potential energy for the motion of the shell. However − 1

2GM2/a is not the same
as the expression for the total gravitational field energy derived in Eq. (10) unless
ȧ = 0. This may be considered a PARADOX worthy of further elucidation. See the
discussion of energy in Wald’s book [16].

The basic argument is not limited to spherical symmetry but can be applied to
any static space. We create the cut on any equipotential and replace the interior by
flat space. Thus we can determine the field energy between any two equipotentials
however, except for the symmetrical spherical case, we do not get the distribution
of field energy over an equipotential from these physical arguments. We discuss this
generalisation in Sect. 6.
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3 Gravity’s Energy Density Discussed

Date Authors Agrees Axiom Ref
1916 Einstein pseudo-tensor in isotropic coords Yes [2]
1959 Landau and Lifshitz pseudo-t. ditto Yes [9]
1959 Komar No 1 [8]
1964 Misner, Sharpe No 1 [12]
1973 Misner Thorne, Wheeler No 1 [13]
1972 Møller [14]
1990 Brown and York Yes [1]
1985–87 L*K*; Grøn; K*L*Israel No 2 [4, 6, 10]
2005 Katz Yes [5]
2006–7 K*L*B*,L*K*B* Yes [7, 11]

L* = Lynden-Bell, K* = Katz, B* = Bicak

4 Potentials Do Not Yield Energy Densities

Consider two static spherical systems with the same density distribution ρ(r). The
first is held static by an isotropic pressure p(r), but the second has no radial compo-
nent to its stress tensor, each sphere being self-supported by its tangential stresses.
Their metrics will be of the form

ds21 = e−2ψ1(r)dt2 − (1 − 2m(r)/r)−1dr2 − r2d r̂2,

ds22 = e−2ψ2(r)dt2 − (1 − 2m(r)/r)−1dr2 − r2d r̂2, (12)

2m(r) =
∫ r

0
r2κρ(r)dr.

The spatial metrics are the same by Einstein’s equations but the potentialsψ(r) differ
to take into account the different stresses. Nevertheless outside the matter each will
give the same form ψ = − 1

2 ln(1 − 2GM/r). Thus although the total mass-energy
can be deduced from the potential the detailed distribution ofmass is not so contained
and it is this distribution that gives the energy density of the gravity field.

5 Gravitational Field Stresses

The stress tensor Tμν describes the stresses in the material and its energy density.
For static systems the three dimensional divergence of the material stress gives the
non-material i.e. gravitational force needed to maintain the equilibrium. Instead of
thinking of this force as like the classical ρ∇ψ, we would like to follow Maxwell’s
electrostatics and rewrite the gravitational force as the three dimensional divergence
of a gravitational stress tensor Πμ

ν . While it is always possible to express the vector
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force-density as the divergence of a tensor that tensor may not always be expressible
in terms of the field as it is in the both electrostatics and Newtonian gravity. In the
static case the contracted Bianchi identity DμT μ

ν = 0 yields

(ξ
√

γ)−1∂μ(ξ
√

γT μ
ν ) − Γ σ

μνT
μ
σ = 0; ξ = e−ψ. (13)

This equation can be rewritten in terms of the three dimensional divergence DmTm
n

which gives the gravitational force density

DmT
m
n = ∂mψ(Tm

n − δmn T
0
0 ). (14)

We notice that the first term on the right arrises from the bending of the 3-space
in the 4-space. If we try to follow Maxwell’s use of Poisson’s equation to rewrite
the sources (T μ

ν ) on the right in terms of field gradients, we fail. While we can use
Einstein’s equations to re-express the Tm

n in terms of second derivatives of themetric,
they are not normally expressible in terms of derivatives of ∂mψ or its square. For
statics the relativistic equivalent of Poisson’s equation is

(−g)−1/2∂μ((−g)1/2gμν∂νψ) = ∇2ψ − ∇ψ.∇ψ = −κ(T 0
0 − 1

2 T ). (15)

where ∇2 is the operator in the three dimensional gamma space. Even were the
relevant component of Tm

n − δmn T
0
0 a multiple of T 0

0 − 1
2T the second term in the

relativistic Poisson equation would stop us converting the right hand side of (15) into
the 3-divergence of a stress tensor made from Ek = ∂kψ. The fact that the energy
density was unrelated to E should have warned us of this difficulty. For the spherical
casewe can still find expressions for the radial and tangential field stresses. Replacing
the gravitational forces, those on the right hand side of (15), by the divergence
−DmΠm

n and considering the stresses on the shell introduced in Sect. 2 the two
external forces are the radial material stress T 1

1 and the radial gravitational stress
Π1

1 . These are balanced by the effect of the tangential stresses in the shell so

T 1
1 + Π1

1 = (2/a)τ 2
2 , (16)

but we already found the latter in Eq. (6) and Einstein’s equations give

κT 1
1 = [1 − e−2λ(1 − 2aψ′)]/a2, (17)

so writing r for a we deduce

κΠ1
1 = (1 − e−λ)2/r2 + 2ψ′ e−λ(1 − e−λ)/r. (18)

Whereas the first term of this expression might be expected from our expression for
Π0

0 the second is linear in the field E = ∇ψ = dψ/dr and is not of a form familiar
from the electrostatic analogy. This last term may be written (ψ′/λ′)r−1∂r [(1 −
e−λ)2], and outside matter just r−1∂r [(1 − e−λ)2]. Re-writing (14) with gravitational
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forces −DmΠm
n

Dm(Tm
n + Πm

n ) = 0 = r−2 d

dr
[r2(T 1

1 + Π1
1 )] − (2/r)(T 2

2 + Π2
2 ). (19)

The other components are automatically satisfied due to the symmetry. Einstein’s
equations give us

κT 2
2 = e−2λ(ψ′′ − ψ′ 2 − ψ′λ′ + ψ′/r + λ′/r). (20)

We already know Π1
1 + T 1

1 from (16) so we solve Eq. (19) for Π2
2 obtaining

κΠ2
2 = e−λ(1 − e−λ)(ψ′′ − ψ′ 2 − ψ′λ′ + ψ′/a + λ′/a) + e−λψ′ 2 (21)

= (eλ − 1)κT 2
2 + e−λψ′2.

Equation (21) contains second derivatives unlike the stress tensors of electromag-
netismwhich contain only squares of first derivatives of the potentials. This completes
our derivation of the stress tensor which is purely diagonal in spherical coordinates
with Π0

0 given by (9), Π1
1 by (18), Π2

2 = Π3
3 by (21).

6 A Flat 3-Space for Every Static Space

One seldom encounters a flat space intimately associatedwith the spaces under study.
In the belief that such a rarity will prove useful possibly as a map of the true space
into which tensors and even Einstein’s equations themselves may be translated I
here give the construction of such a space. It follows naturally from our method of
determining the energy between any two equipotentials and no doubt holds the clue
as to how the energy density is distributed. As pointed out in Sect. 2 the energy within
any equipotential Ψ can be determined by cutting the metric on that equipotential
and replacing the space inside with a flat space. From the gradient discontinuity so
generatedwe read out the surface density and surface stresses that result. Thematerial
energy in this surface distribution will equal the sum of the material energy and the
gravitational field’s energy that was within this equipotential in the original space. By
doing this for each equipotential we generate a function E(ψ). By adding together
the material energy-densities within each equipotential we can also calculate Em(ψ)

and by subtraction we find the gravitational field’s energy EG(ψ) = E − Em within
each equipotential. At each step we generate a flat internal 3-space that exists only
out to the equipotential concerned, see Fig. 1. In some sense each of these internal
flat spaces fits inside the next one. Up to now we have pictured them as being at
different heights along an axis that measures gravitational potential but this height
displacement is merely a useful thought picture. We shall now think of them as
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different parts of a single three-dimensional flat space in which three functions are
defined ψ, E(ψ), EG(ψ). To each point of this flat space there corresponds a point in
the original curved space and vice-versa so the metric functions of the original space
can also be evaluated at each point in the flat space. It is my hope that the distribution
of gravitational energy over each equipotential can be defined using the properties
of this flat space. If the metric of the curved space is written using ψ as a coordinate

ds2 = e−2ψdt2 − [γ11dψ2 + 2γ1,adψdxa + γabdx
adxb], a, b = 2, 3, (22)

then on the equipotentials the spatial metric reduces to γabdxadxb. By construction
this will be the metric on each equipotential in the flat space. While its metric and
internal curvature is the same as that of the equipotential of the curved space, its
external curvatures will be different. The spatial metric in the flat space will be of
the form

[γ11dψ2 + 2γ1,adψdxa + γabdx
adxb], (23)

and the map of the points of the flat space to those of the curved space and vice versa
is given by taking equal values of these coordinates (ψ, x2, x3). This sketch of an
argument is incomplete; the exact way in which the different flat space pieces are
to be superposed into one space is left unanswered but if there is axial symmetry
then the axis must be made to coincide and if there is also a symmetry about an
equatorial plane then its intersection with the axis gives a centre which is seen in
each space and when both axis and centre are made to coincide the map is fixed up to
a trivial symmetry group. While I expect the map of less symmetrical spaces can be
determined I leave this to be decided by those who like Paddy see things clearly and
can explain them concisely.

7 Thanks Paddy

I have much enjoyed, almost yearly, deep discussions of many subtle issues in both
Astronomy and relativity physics with Paddy. As compared to my muddled gropings
for insight he has an eye that sees the issues with remarkable clarity and a mind that
can explain them to the fascination of both us and his students (see for example his
fine book on relativity [15]). He is also a master of the mathematical formalisms
of many subjects. His books on the subjects that I know, are authoritative, accurate
and insightful. His inspiration is Landau and I believe that like Landau his greatest
legacy to Science will lie therein. As we now know there are many productive years
past the age of sixty and I encourage Paddy to enjoy using them to the full. There is
still much to be discovered and elucidated, even the simple paradox given here!
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Nonlocal Infrared Modifications of Gravity.
A Review

Michele Maggiore

Abstract We review an approach developed in the last few years by our group
in which GR is modified in the infrared, at an effective level, by nonlocal terms
associated to a mass scale. We begin by recalling the notion of quantum effective
action and its associated nonlocalities, illustrating some of their features with the
anomaly-induced effective actions in D = 2 and D = 4. We examine conceptual
issues of nonlocal theories such as causality, degrees of freedoms andghosts, stressing
the importance of the fact that these nonlocalities only emerge at the effective level.
We discuss a particular class of nonlocal theories where the nonlocal operator is
associated to amass scale, andwe show that they perform verywell in the comparison
with cosmological observations, to the extent that they fit CMB, supernovae, BAO
and structure formation data at a level fully competitive with ΛCDM, with the same
number of free parameters. We explore some extensions of these ‘minimal’ models,
and we finally discuss some directions of investigation for deriving the required
effective nonlocality from a fundamental local QFT.

1 Introduction

I am very glad to contribute to this Volume in honor of prof. Padmanabhan (Paddy,
to his friends), on the occasion of his 60th birthday. I will take this opportunity to
give a self-contained account of the work done in the last few years by our group in
Geneva, on nonlocal modifications of gravity.

Our motivation comes from cosmology. In particular, the observation of the accel-
erated expansion of the Universe [75, 80] has revealed the existence of dark energy
(DE). The simplest explanation for dark energy is provided by a cosmological con-
stant. Indeed, ΛCDM has gradually established itself as the cosmological paradigm,
since it accurately fits all cosmological data, with a limited set of parameters. From
a theoretical point of view, however, the model is not fully satisfying, because a cos-
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mological constant is not technically natural from the point of view of the stability
under radiative corrections. Independently of such theoretical ‘prejudices’, the really
crucial fact is that, with the present and forthcoming cosmological data, alternatives
to ΛCDM are testable, and it is therefore worthwhile to explore them.

At the fundamental level QFT is local, and in our approach we will not depart
from this basic principle. However, both in classical and in quantum field theory, at
an effective level nonlocal terms are unavoidably generated. Classically, this happens
when one integrates out some degree of freedom to obtain an effective dynamics for
the remaining degrees of freedom.Consider for instance a systemwith two degrees of
freedom φ andψ , described classically by two coupled equations of the generic form
�φ = j (ψ) and �ψ = f (φ). The first equation is solved by φ = �−1 j (ψ). This
solutions can then be re-injected in the equation for the remaining degree of freedom
ψ , leading to a nonlocal equations involving only ψ . In QFT, nonlocalities appear in
the quantum effective action, as we will review below. The appearance of nonlocal
terms involving inverse powers of the d’Alembertian is potentially interesting from a
cosmological point of view, since we expect that the �−1 operator becomes relevant
in the infrared (IR).

This review is organized as follows. In Sect. 2 we recall the notion of quantum
effective action, in particular in gravity, and we discuss the associated nonlocalities.
In Sect. 3 we examine two particularly important nonlocal quantum effective actions,
the anomaly-induced effective actions in D = 2 (i.e. the Polyakov quantum effective
action) and in D = 4. In Sect. 4 we introduce a class of nonlocal theories in which the
nonlocality is associated to a mass scale. In Sect. 5, building also on the experience
gained in Sect. 3 with the anomaly-induced effective actions, we discuss conceptual
issues of nonlocal theories, such as causality and degrees of freedom, emphasizing
the importance of dealing with them as quantum effective actions derived from a
fundamental local QFT. In Sect. 6 we discuss how nonlocal theories can be formally
put in a local form, and we examine the conceptual subtleties associated to the
localization procedure concerning the actual propagating degrees of freedom of the
theory.

The cosmological consequences of these nonlocal models are studied in Sect. 7.1
at the level of background evolution, while in Sect. 7.2 we study the cosmological
perturbations and in Sect. 7.3 we present the results of a full Bayesian parameter
estimation and the comparison with observational data and withΛCDM. In Sect. 7.4
we discuss further possible extensions of the ‘minimal models’, and their phenom-
enology.

As we will see, these nonlocal models turn out to be phenomenologically very
successful. The next step will then be understanding how these nonlocalities emerge.
Possible directions of investigations for deriving the required nonlocality from a
fundamental theory are briefly explored in Sect. 8, although this part is still largely
work in progress.

We use units � = c = 1, and MTW conventions [69] for the curvature and signa-
ture, so in particular ημν = (−,+,+,+).
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2 Nonlocality and Quantum Effective Actions

At the quantum level nonlocalities are generated when massless or light particles
run into quantum loops. The effect of loop corrections can be summarized into a
quantum effective action which, used at tree level, takes into account the effect of
quantum loops. The quantum effective action is a nonlocal object. For instance in
QED, if we are interested in amplitudes where only photons appear in the external
legs, we can integrate out the electron. The corresponding quantum effective action
ΓQED is given by

eiΓQED[Aμ] =
∫

DψDψ exp

{
i
∫

d4x

[
− 1

4e2
FμνF

μν + ψ(i �D − me + iε)ψ

]}

= e− i
4e2

∫
d4x FμνFμν

det(i �D − me + iε) . (1)

To quadratic order in the electromagnetic field this gives

ΓQED[Aμ] = −1

4

∫
d4x

[
Fμν

1

e2(�)
Fμν + O(F4)

]
, (2)

where, to one-loop order and in the MS scheme [28],

1

e2(�)
= 1

e2(μ)
− 1

8π2

∫ 1

0
dt (1 − t2) log

[
m2

e − 1
4 (1 − t2)�
μ2

]

. (3)

Here μ is the renormalization scale and e(μ) is the renormalized charge at the scale
μ. In the limit |�/m2

e | � 1, i.e. when the electron is light with respect to the relevant
energy scale, the form factor 1/e2(�) becomes

1

e2(�)
� 1

e2(μ)
− β0 log

(−�
μ2

)
, (4)

where β0 = 1/(12π2). The logarithm of the d’Alembertian is a nonlocal operator
defined by

log

(−�
μ2

)
=

∫ ∞

0
dm2

[
1

m2 + μ2
− 1

m2 − �

]
. (5)

Thus, in this case the nonlocality of the effective action is just the running of the
coupling constant, expressed in coordinate space. In the opposite limit |�/m2

e | � 1
the form factor (3) becomes local,

1

e2(�)
� 1

e2(μ)
− β0 log

(
m2

e

μ2

)
. (6)
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Observe that the corresponding beta function, which is obtained by taking the deriv-
ative with respect to logμ, is independent of the fermion mass, so in particular in a
theory with several fermions even the heavy fermions would contributes to the beta
function, and would not decouple. Actually, this is a pathology of theMS subtraction
scheme, and is related to the fact that, when m2

e is large, Eq. (6) develops large log-
arithms logm2

e/μ
2, so in this scheme perturbation theory breaks down for particles

heavywith respect to the relevant energy scales. To study the limit |�/m2
e | � 1 it can

be more convenient to use a mass-dependent subtraction scheme, such as subtracting
from a divergent graph its value at an Euclidean momentum p2 = −μ2. Then, in the
limit |�/m2

e | � 1,
1

e2(�)
� 1

e2(μ)
+ 4

15 (4π)2

�
m2

e

, (7)

so the contribution of a fermion with mass me to the beta function is suppressed by
a factor |�/m2

e |, so the decoupling of heavy particles is explicit [68].1 Thus, using
a mass-dependent subtraction scheme, the effect of a heavy fermion with mass me,
at quadratic order in the fields, is to produce the local higher-derivative operator
Fμν�Fμν , suppressed by a factor 1/m2

e . Adding to this also the terms of order F4
μν

gives the well-known local Euler-Heisenberg effective action (see e.g. [41] for the
explicit computation), valid in the limit |�/m2

e | � 1,

ΓQED[Aμ] �
∫

d4x

[
− 1

4e2(μ)
FμνF

μν − 1

15 (4π)2

1

m2
e

Fμν�Fμν

+ e2(μ)

90(4π)2

1

m4
e

(
(FμνFμν)

2 + 7

4
(Fμν F̃μν)

2

) ]
. (8)

To sum up, nonlocalities emerge in the quantum effective action when we integrate
out a particle which is light compared to the relevant energy scale. In contrast,
heavy particles give local contributions which, if computed in a mass-dependent
subtraction scheme, are encoded in higher-dimension local operators suppressed by
inverse powers of the particle mass.

The quantum effective action is a particularly useful tool in gravity, where the
integration over matter fields gives the quantum effective action for the metric (see
e.g. [15, 19, 71, 82] for pedagogical introductions). Let us denote collectively all
matter fields asφ, and the fundamentalmatter actionby Sm[gμν, φ]. Then thequantum
effective action Γ is given by

1Alternatively, in a theory with N fermion fields, one can still use the MS scheme. However, if m f
is the mass of the heaviest among the N fermions, at energies E < m f , one must use the theory
without the heavy fermion of mass m f , and impose appropriate matching conditions at E = m f
between the theory with N fermions at E > m f and the theory with N − 1 fermions at E < m f .
One proceeds similarly whenever, lowering the energy, we reach the mass of any of the other
fermions. This is the standard way of treating weak interactions at low energies, ‘integrating out’
the heavy quarks, see Sects. 6 and 7 of [68].
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eiΓ [gμν ] = ei SEH[gμν ]
∫

Dφ ei Sm [gμν ,φ] , (9)

where SEH is theEinstein–Hilbert action.2 The effective quantumactionΓ determines
the dynamics of the metric, including the backreaction from quantum loops of matter
fields. Even if the fundamental action Sm[gμν, φ] is local, again the quantum effective
action for gravity is unavoidably nonlocal. Its nonlocal part describes the running of
coupling constants, as in Eq. (2), and other effects such as particle production in the
external gravitational field.

The matter energy-momentum tensor T μν is given by the variation of the funda-
mental action, according to the standard GR expression T μν = (2/

√−g)δSm/δgμν .
In contrast, the variation of the effective quantumaction gives the vacuumexpectation
value of the energy-momentum tensor,

〈0|T μν |0〉 = 2√−g

δΓ

δgμν

. (10)

More precisely, the in-out expectation value 〈0out|T μν |0in〉 is obtainedwhen the path-
integral in Eq. (9) is the standard Feynman path-integral, while using the Schwinger-
Keldish path integral gives the in-in expectation value 〈0in|T μν |0in〉. This point will
be important for the discussion of the causality of the effective nonlocal theory, and
we will get back to it in Sect. 5.1.

In principle, in Eq. (9) one could expand gμν = ημν + hμν and compute perturba-
tively in hμν . A much more powerful and explicitly covariant computational method
is based on the heat-kernel technique (see e.g. [71] for review), combined with an
expansion in powers of the curvature. In this way Barvinsky and Vilkovisky [12, 13]
have developed a formalisms that allows one to compute, in a covariant manner, the
gravitational effective action as an expansion in powers of the curvature, including
the nonlocal terms. The resulting quantum effective action, up to terms quadratic in
the curvature, has the form

Γ = m2
Pl
2

∫
d4x

√−g R + 1

2(4π)2

∫
d4x

√−g

[
R kR(�)R + 1

2
Cμνρσ kW (�)Cμνρσ

]
,

(11)

where mPl is the reduced Planck mass, mPl
2 = 1/(8πG), Cμνρσ is the Weyl tensor,

and we used as a basis for the quadratic term R2, CμνρσCμνρσ and the Gauss-Bonnet
term, thatwe have notwritten explicitly. Just as in Eq. (4), in the case of loops ofmass-
less particles the form factors kR(�) and kW (�) only contain logarithmic terms plus
finite parts, i.e. kR,W (�) = cR,W log(�/μ2), where now� is the generally-covariant
d’Alembertian,μ is the renormalization point, and cR, cW are known coefficients that
depend on the number of matter species and on their spin. The form factors generated

2Depending on the conventions, Γ can be defined so that it includes SEH, or just as the term to be
added to SEH.
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by loops of a massive particles are more complicated. For instance, for a massive
scalar field with mass ms and action

Ss = −1

2

∫
d4x

√−g
(
gμν∂μφ∂νφ + m2

sφ
2 + ξ Rφ2

)
, (12)

the form factors kR(−�/m2
s ) and kW (−�/m2

s ) in Eq. (11) were computed in
[50, 51] in closed form, for (�/m2

s ) generic, in amass-dependent subtraction scheme
where the decoupling of heavy particles is explicit. After subtracting the divergent
part, the result is

kW (−�/m2
s ) = 8A

15 a4
+ 2

45 a2
+ 1

150
+ 1

60
log

μ2

m2
s

, (13)

kR(−�/m2
s ) = ξ̄ 2A +

(
2A

3a2
− A

6
+ 1

18

)
ξ̄ + A

(
1

9a4
− 1

18a2
+ 1

144

)

+ 1

108 a2
− 7

2160
+ 1

2
ξ̄ 2 log

μ2

m2
s

, (14)

where ξ̄ = ξ − (1/6), and

A = 1 − 1

a
log

(
2 + a

2 − a

)
, a2 = 4�

� − 4m2
s

. (15)

In the limit |�/m2
s | � 1 (i.e. in the limit in which the particle is very light compared

to the typical energy or curvature scales), Eq. (14) has the expansion

kR

(−�
m2

s

)
= α log

(−�
m2

s

)
+ β

m2
s

� + γ
m2

s

� log

(−�
m2

s

)
+ δ

m4
s

�2
+ . . . , (16)

and similarly for kW . This result has also been re-obtained with effective field theory
techniques [23, 42, 43]. Similar results can also be obtained for different spins, so
in the end the coefficients α, β, γ, δ depend on the number and type of massive
particles.

The result further simplifies for a massless conformally-invariant scalar field.
Taking the limit ms → 0, ξ → 1/6 in Eq. (11) one finds that the terms involv-
ing logm2

s cancel and the form factor kR(�) becomes local, kR = −1/1080, while
kW (�) → −(1/60) log(−�/μ2). Similar results, with different coefficients, are
obtained from massless vectors and spinor fields. So, for conformal matter, the one-
loop effective action has the form

Γconf.matter =
∫

d4x
√−g

[
m2
Pl
2

R + c1R
2 + c2Cμνρσ log(−�/μ2)Cμνρσ + O(R3

μνρσ )

]
, (17)
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where c1, c2 are known coefficients that depends on the number and type of conformal
matter fields, and we have stressed that the computation leading to Eq. (17) has been
performed only up to terms quadratic in the curvature.

In contrast, when the particle is heavy compared to the relevant energy or curvature
scales, i.e. in the limit −�/m2

s � 1, the form factors in Eqs. (13) and (14) become
local,

kW (−�/m2
s ), kR(−�/m2

s ) = O(�/m2
s ) . (18)

Again, this expresses the fact that particles which are massive compared to the
relevant energy scale decouple, leaving a local contribution to the effective action
proportional to higher derivatives, and suppressed by inverse powers of the mass.
This decoupling is explicit in the mass-dependent subtraction scheme used in
Refs. [50, 51].

3 The Anomaly-Induced Effective Action

In a theory with massless, conformally-coupled matter fields, in D = 2 space-time
dimensions, the quantum effective action can be computed exactly, at all perturbative
orders, by integrating the conformal anomaly. In D = 4 one can obtain in this way,
again exactly, the part of the quantum effective action that depends on the conformal
mode of the metric.

These examples of quantum effective actions for the gravitational field will be
relevant for us when we discuss how the nonlocal models that we will propose can
emerge from a fundamental local theory. They also provide an explicit example of
the fact that effective quantum actions must be treated differently from fundamental
QFT, otherwise one might be fooled into believing that they contain, e.g., ghost-
like degrees of freedom, when in fact the fundamental theories from which they are
derived are perfectly healthy. We will then devote this section to recalling basic facts
on the anomaly-induced effective action, both in D = 2 and in D = 4 (see e.g. [6,
8, 15, 19, 71, 82] for reviews).

3.1 The Anomaly-Induced Effective Action in D = 2

Consider 2Dgravity coupled to Ns conformally-coupledmassless scalars [i.e.ms = 0
and ξ = 1/6 in Eq. (12)] and N f massless Dirac fermions. We take these fields to be
free, apart from their interaction with gravity. For conformal matter fields, classically
the trace T a

a of the energy-momentum tensor vanishes [in D = 2 we use a = 0, 1
as Lorentz indices, and signature ηab = (−,+)]. However, at the quantum level the
vacuum expectation value of T a

a is non-zero, and is given by

〈0|T a
a |0〉 = N

24π
R , (19)
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where N = Ns + N f . Equation (19) is the trace anomaly. The crucial point about
this result is that, even if it can be obtained with a one-loop computation, it is actually
exact.3 No contribution to the trace anomaly comes from higher loops. We can now
find the effective action that reproduces the trace anomaly, by integrating Eq. (10).
We write

gab = e2σ ḡab , (20)

where ḡab is a fixed reference metric. The corresponding Ricci scalar is

R = e−2σ (R − 2�σ) , (21)

where the overbars denotes the quantities computed with the metric ḡab. In D = 2,
Eq. (10) gives

δΓ = 1

2

∫
d2x

√−g 〈0|T ab|0〉δgab =
∫

d2x
√−g 〈0|T ab|0〉gabδσ . (22)

Therefore
δΓ

δσ
= 2gab

δΓ

δgab
= √−g 〈0|T a

a |0〉 , (23)

where T a
a = gabT ab. In D = 2, without loss of generality, locally we can always

write the metric as gab = e2σ ηab, i.e. we can chose ḡab = ηab. In this case, from
Eq. (21),

R = −2e−2σ �ησ , (24)

where �η is the flat-space d’Alembertian, �η = ηab∂a∂b. Then, inserting Eq. (19)
into Eq. (23) and using

√−g = e2σ , we get

δΓ

δσ
= − N

12π
�σ . (25)

This can be integrated to obtain

Γ [σ ] − Γ [0] = − N

24π

∫
d2x σ�ησ . (26)

We see that, in general, the trace anomaly determines the effective action only mod-
ulo a term Γ [0] independent of the conformal mode. However, in the special case
D = 2, when σ = 0 we can choose the coordinates so that, locally, gab = ηab. Thus,
all curvature invariants vanish when σ = 0, and therefore Γ [0] = 0. Therefore, in
D = 2 the trace anomaly determines exactly the quantum effective action, at all per-
turbative orders! Finally, we can rewrite this effective action in a generally-covariant

3For the trace anomaly (19), this can be shown using the Seeley-DeWitt expansion of the heat
kernel, see Sect. 14.3 of [71].
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but non-local form observing that �g = e−2σ �η, where �g is the d’Alembertian
computed with the full metric gab = e2σ ηab. Then, from Eq. (24), R = −2�gσ ,
which can be inverted to give σ = −(1/2)�−1

g R, so that

Γ [gμν] = − N

24π

∫
d2x e2σ σ�gσ

= − N

96π

∫
d2x

√−g R�−1
g R . (27)

This is the Polyakov quantum effective action. The remarkable fact about this effec-
tive quantum action is that, even if it has been obtained from the one-loop computa-
tion of the trace anomaly, it is the exact quantum effective action, to all perturbative
orders.

In the above derivation we have studied matter fields in a fixed gravitational
background. We now add the dynamics for the metric itself, i.e. we consider 2D
gravity, including also a cosmological constant λ, coupled to N massless matter
fields,

S =
∫

d2x
√−g(κR − λ) + Sm , (28)

where Sm is the the action describing N = NS + NF conformally-coupled mass-
less scalar and massless Dirac fermion fields. In 2D the Einstein–Hilbert term is a
topological invariant and, once we integrate out the massless matter field, all the
gravitational dynamics comes from the anomaly-induced effective action. The con-
tribution of the N matter fields is given by the Polyakov effective action (27). Diff
invariance fixes locally gab = e2σ ḡab, where ḡab is a reference metric. In a theory
with dynamical gravity, where in the path integral we also integrate over gab, this is
now a gauge fixing condition, and the corresponding reparametrization ghosts give a
contribution−26 to be added to N , while the conformal factor σ gives a contribution
+1 [29, 40, 59]. Then, after dropping the topologically-invariant Einstein–Hilbert
term, the exact quantum effective action of 2D gravity reads

Γ = −N − 25

96π

∫
d2x

√−g R
1

� R − λ

∫
d2x

√−g , (29)

with an overall factor in the nonlocal term proportional to (N − 25).4 Using Eq. (21)
and dropping a σ -independent term

√−ḡ R�−1R we see that, in terms of the con-
formal mode, Eq. (29) becomes local,

4In bosonic string theory λ = 0 and, beside diff invariance, one also has Weyl invariance on the
world-sheet. This allows one to eliminate also σ , so one only has the contribution −26 from the
reparametrization ghosts, together with the contribution from the N = D matter fields Xμ(σ1, σ2)

living in the world-sheet, where μ = 0, . . . , D − 1 and D is the number of spacetime dimensions
of the target space. Then the coefficient in the anomaly-induced effective action is proportional to
D − 26, leading to the condition D = 26 for the anomaly cancellation, necessary for the elimination
of the ghost-like X0 field.
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Γ =
∫

d2x
√−ḡ

[
N − 25

24π
ḡab∂aσ∂bσ + N − 25

24π
Rσ − λe2σ

]
, (30)

which is the action of Liouville field theory.
Equation (30) also allows us to illustrate an issue that will emerge later, in the

context of the nonlocal model that we will propose. If we try to read the spectrum
of the quantum theory from Eq. (30), treating it as if it were the fundamental action
of a QFT, we would conclude that, for N �= 25, there is one dynamical degree of
freedom, σ . Recalling that our signature is ηab = (−,+), we would also conclude
that for N > 25 this degree of freedom is a ghost and for N < 25 it has a normal
kinetic term.

However, this conclusion is wrong. Equation (30) is the quantum effective action
of a fundamental theory which is just 2D gravity coupled to N healthy fields, in
which there is no ghost in the spectrum of the fundamental theory. If we perform
the quantization of the fundamental theory in the conformal gauge (20), the fields
involved are the matter fields, the reparametrization ghosts, and the only surviving
component of the metric once we have fixed the conformal gauge, i.e. the conformal
factorσ . Each of themhas its own creation and annihilation operators,which generate
the full Hilbert space of the theory. However, as always in theories with a local
invariance (in this case diff invariance) the physical Hilbert space is a subset of the
full Hilbert space. The condition on physical states can be obtained requiring that
the amplitude 〈 f |i〉 between an initial state |i〉 and a final state | f 〉 is invariant under
a change of gauge fixing (see e.g. Chap. 4 of [77] for a discussion in the context of
bosonic string theory). From this it follows that two states |s〉 and |s ′〉 are physical if
and only if

〈s ′|T ab
tot |s〉 = 0 , (31)

where T ab
tot is the sum of the energy-momentum tensors of matter, ghosts and σ .

This condition (or, more, precisely, the condition that physical states must by BRST
invariant) eliminates from the physical spectrum both the states associated with the
reparametrization ghosts, and the states generated by the creation operators of the
conformal mode, as explicitly proven in [76]. Of course, the physical-state condition
(31) is the analogous of the physical-state condition

〈s ′|∂μA
μ|s〉 = 0 (32)

in the Gupta–Bleuler quantization of electrodynamics, which again eliminates from
the physical spectrum the would-be ghost states associated to A0.

What we learn from this example is that, if we start from a theory such as (30),
e.g. to explore its cosmological consequences, there is a huge difference between the
situation in which we take it to be a fundamental QFT, and the situation in which we
consider it as the quantum effective action of some underlying fundamental theory.
In the former case, in the theory (30) we would treat σ as a scalar field living in
2D, and the theory would have one degree of freedom, which is a ghost for N > 25
and a healthy scalar for N < 25, while for N = 25 there would be no dynamics
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at all. In contrast, when Eq. (30) is treated as the effective quantum action derived
from the fundamental QFT theory (28), the interpretation is completely different.
The field σ is not just a scalar field living in 2D, but the component of the 2D metric
that remains after gauge fixing. The physical spectrum of the fundamental theory is
given by the quanta of the N healthy matter fields, which are no longer visible in (30)
because they have been integrated out. There is no ghost, independently of the value
of N , and there are no physical quanta associated to σ , because they are removed
by the physical-state condition associated to the diff invariance of the underlying
fundamental theory.

As a final remark, observe that the fact that no physical quanta are associated to
σ does not mean that the field σ itself has no physical effects. The situation is again
the same as in electrodynamics, where there are no physical quanta associated to A0,
but still the interaction mediated by A0 generates the Coulomb potential between
static charges. In other words, the quanta associated to σ (or to A0 in QED) cannot
appear in the external lines of Feynman diagram, since there are no physical states
associated to them, but do appear in the internal lines.

3.2 The Anomaly-Induced Effective Action in D = 4

Let us now follow the same strategy in D = 4 space-time dimensions, again for
massless conformally-coupled matter fields. As we will see, in this case we will not
be able to compute the quantum effective action exactly, but still we will be able to
obtain valuable non-perturbative information from the trace anomaly. In D = 4 the
trace anomaly is

〈0|T μ
μ |0〉 = b1C

2 + b2

(
E − 2

3
�R

)
+ b3�R , (33)

where C2 is the square of the Weyl tensor, E the Gauss-Bonnet term, and it is
convenient to use as independent combinations [E − (2/3)�R] and�R, rather than
E and�R. The coefficients b1, b2, b3 are known constants that depend on the number
of massless conformally-coupled scalars, massless fermions and massless vector
fields. Once again, the anomaly receives contribution only at one loop order, so
Eq. (33) is exact. Let us now write again

gμν = e2σ ḡμν . (34)

A crucial difference compared to the 2D case is that in D = 4 diff invariance no
longer allows us to set ḡμν = ημν . Equation (23) still holds, so the anomaly-induced
effective action satisfies

δΓanom

δσ
= √−g

[
b1C

2 + b2

(
E − 2

3
�R

)
+ b3�R

]
. (35)
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We have added the subscript ‘anom’ to stress that this is the part of the effective
action which is obtained from the anomaly. The total quantum effective action is
obtained adding Γanom to the classical Einstein–Hilbert term.

To integrate Eq. (35) we first of all observe that the�R term can be obtained from
the variation of a local R2 term,

gμν

δ

δgμν

∫
d4x

√−g R2 = −6
√−g �R . (36)

To integrate the other terms we observe that

√−g C2 = √−ḡ C̄2 , (37)
√−g

(
E − 2

3
�R

)
= √−ḡ

(
Ē − 2

3
� R̄ + 4Δ̄4σ

)
, (38)

where the overbars denotes the quantities computed with the metric ḡμν , and Δ4 is
the Paneitz operator

Δ4 ≡ �2 + 2Rμν∇μ∇ν − 2

3
R� + 1

3
gμν∇μR∇ν . (39)

Thus, we get

Γanom[gμν] = Γanom[ḡμν] − b3
12

∫
d4x

√−g R2

+
∫

d4x
√−ḡ

[
b1σ C̄

2 + b2σ

(
Ē − 2

3
� R̄

)
+ 2b2σΔ̄4σ

]
, (40)

where Γanom[ḡμν] is an undetermined integration ‘constant’, i.e. a term independent
of σ , equal to Γanom[gμν] evaluated at σ = 0. We will discuss below the possible
covariantizations of the term in the second line. First, we can rewrite everything in
terms of σ and ḡμν using

R = e−2σ
[
R̄ − 6�σ − 6∇μσ∇μ

σ
]

. (41)

Then

Γanom[gμν] = Γanom[ḡμν] − b3
12

∫
d4x

√−ḡ
[
R̄ − 6�σ − 6∇μσ∇μ

σ
]2

+
∫

d4x
√−ḡ

[
b1σ C̄

2 + b2σ

(
Ē − 2

3
� R̄

)
+ 2b2σΔ̄4σ

]
. (42)

Once again, the trace anomaly allowed us to determine exactly the dependence of
the action on the conformal mode σ . However, we cannot determine in this way the
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σ -independent part of the effective action,Γanom[ḡμν]. This is an important difference
compared to the D = 2 case, where we could show thatΓanom[ḡab] = 0 using the fact
that locally we can always choose gab = ηab. In the end, the effective action must be
a function of ḡμν and σ only in the combination gμν = e2σ ḡμν , so the σ -independent
termΓanom[ḡμν] is just the conformally-invariant part of the effective action,Γc[gμν],
which by definition satisfies

Γc[e2σ ḡμν] = Γc[ḡμν] . (43)

It is interesting to compare the anomaly-induced effective action (42) with the con-
formal limit of the explicit one-loop computation given in Eq. (17). First of all, the
anomaly-induced effective action has a local R2 term, coming both from the explicit
b3R2 term and from the term (−2/3)b2σ�R̄, corresponding to the two terms pro-
portional to�R in Eq. (35). The value of its overall coefficient −[b3 − (2/3)b2]/12,
obtained from the trace anomaly as a function of the number of conformal mass-
less scalar, massless spinor and massless vector fields, agrees with the coefficient c1
obtained from the one-loop computation, as it should. Consider now theWeyl-square
term in Eq. (17). Recall that Eq. (17) is valid only up to second order in the curvature.
Thus, strictly speaking, in the term Cμνρσ log(−�/μ2)Cμνρσ , the � operator is the
flat-space d’Alembertian. If one would compute to higher orders in the curvature,
this term should naturally become a covariant d’Alembertian acting on a tensor such
as Cμνρσ . The covariantization of the log(�) operator acting on such a tensor is a
non-trivial problem, see the discussion in [33, 44]. In any case we expect that, at least
in the simple case of gμν = e2σ ḡμν with σ constant, we will have�g = e−2σ �ḡ , just
as for the scalar d’Alembertian. Then,

Cμνρσ log(−�/μ2)Cμνρσ = −2σC2 + Cμνρσ log(−�/μ2)Cμνρσ . (44)

The second term on the right-hand side, once multiplied by
√−g, is independent

of σ and therefore belongs to Γc[ḡμν]. On the other hand, the term proportional
to

√−g σC2 = √−ḡ σ C̄2 is just the term proportional to b1 in Eq. (42). Once
again, one can check that the numerical value of the coefficient from the explicit
one-loop computation and from the trace anomaly agree. We see that the anomaly-
induced effective action and the explicit one-loop computation give complementary
information.The anomaly-induced effective actionmisses all terms independent ofσ ,
such as the term proportional to Cμνρσ log(−�/μ2)Cμνρσ that gives the logarithmic
running of the coupling constant associated toC2. However, the terms that depend on
the conformal mode are obtained exactly, without any restriction to quadratic order
in the curvature.

One can now look for a covariantization of Eq. (40), in which everything is
written in terms of gμν = e2σ ḡμν . In general, the covariantization of an expression
is not unique. A possible covariantization is given by the Riegert action [79]
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Γanom[gμν] = Γc[gμν] − b3
12

∫
d4x

√−g R2 (45)

+1

8

∫
d4x

√−g

(
E − 2

3
�R

)
Δ−1

4

[
b2

(
E − 2

3
�R

)
+ 2b1C

2

]
.

Just as for the Polyakov action, even if the anomaly-induced action is local when
written in terms of the conformal factor, it becomes nonlocal when written in terms
of curvature tensors. In this covariantization, as we have seen, the log� form factor
in Eq. (17) is not really visible since the term Cμνρσ log(−�/μ2)Cμνρσ is hidden
in Γconf [gμν]. Alternative ways of covariantizing the log� operator are discussed
in [33, 44]. In any case, in the approximation in which one is interested only in the
dynamics of the conformal mode one can use the effective action in the form (42),
simply dropping the σ -independent term Γ [ḡμν], independently of the covariantiza-
tion chosen.

Once again, if one uses Eq. (42) as if it were a fundamental QFT, one would
reach the conclusion that this theory contains a ghost. This would be an unavoidable
consequence of the presence of the four-derivative term σΔ̄4σ in Eq. (42) which,
expanding over flat space and after integrations by parts, is simply (�σ)2. As a
fundamental QFT, the theory defined by Eq. (42) would then be hopelessly sick. In
contrast, we have seen that Eq. (42) is the quantum effective action derived from
a fundamental and healthy quantum theory, with no ghost. One could still wander
whether the appearance a four-derivative term σΔ̄4σ signals the fact that a new
ghost-like state emerges in the theory because of quantum fluctuations. To answer
this question one can quantize the theory (42), and see which states survive the
physical-state condition, analogous to Eq. (31) in D = 2, which reflects the diff-
invariance of the underlying fundamental theory. This analysis has been carried out
in [5] and it was found that, once one imposes the physical state condition, there is
no local propagating degree of freedom associated to σ . Rather, we remain with an
infinite tower of discrete states, one for each level, all with positive norm. In the limit
Q2/(4π)2 ≡ −2b2 → ∞, these states have the form

∫
d4x

√−g Rn|0〉.

4 Nonlocality and Mass Terms

In this section we introduce a class of nonlocal theories where the nonlocality is
associated to a mass term. In Sect. 5, using also the experience gained with the study
of the anomaly-induced effective action, we will discuss some conceptual issues
(such as causality and ghosts) in these theories. A different class of nonlocal models,
which do not feature an explicit mass scale, has been introduced in [35, 36], and
reviewed in [85]. In this review we will rather focus on the nonlocal models where
the nonlocal terms are associated to a mass scale.
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4.1 Nonlocal Terms and Massive Gauge Theories

Asimple and instructive example of howanonlocal term can appear in the description
of a massive gauge theory is given by massive electrodynamics. Consider the the
Proca action with an external conserved current jμ

S =
∫

d4x

[
−1

4
FμνF

μν − 1

2
m2

γ AμA
μ − jμA

μ

]
. (46)

The equations of motion obtained from (46) are

∂μF
μν − m2

γ A
ν = jν . (47)

Acting with ∂ν on both sides and using ∂ν jν = 0, Eq. (47) gives

m2
γ ∂ν A

ν = 0 . (48)

Thus, if mγ �= 0, we get the condition ∂ν Aν = 0 dynamically, as a consequence of
the equation of motion, and we have eliminated one degree of freedom. Making use
of Eq. (48), Eq. (47) becomes

(� − m2
γ )Aμ = jμ . (49)

Equations (48) and (49) together describe the three degrees of freedom of a massive
photon. In this formulation locality is manifest, while the U (1) gauge invariance
of the massless theory is lost, because of the non gauge-invariant term m2

γ AμAμ

in the Lagrangian. However, as shown in [46], this theory can be rewritten in a
gauge-invariant but nonlocal form. Consider in fact the equation of motion

(

1 − m2
γ

�

)

∂μF
μν = jν , (50)

or, rewriting it in terms of Aμ,

(� − m2
γ )Aν =

(

1 − m2
γ

�

)

∂ν∂μA
μ + jν . (51)

Equation (50) is clearly gauge invariant.We can therefore chose the gauge ∂μAμ = 0.
As we see more easily from Eq. (51), in this gauge the nonlocal term vanishes, and
Eq. (51) reduces to the local equation (� − m2

γ )Aν = jν . Thus, we end up with the
same equations as in Proca theory, (� − m2

γ )Aμ = jμ and ∂μAμ = 0. Note however
that they were obtained in a different way: in the Proca theory there is no gauge
invariance to be fixed, but Eq. (48) comes out dynamically, as a consequence of the
equations ofmotion,while in the theory (50) there is a gauge invariance and ∂μAμ = 0
can be imposed as a gauge condition. In any case, since the equations of motions are
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finally the same, we see that the theory defined by (50) is classical equivalent to the
theory defined by Eq. (46). Observe also that Eq. (50) can be formally obtained by
taking the variation of the nonlocal action

S = −1

4

∫
d4x

[

Fμν

(

1 − m2
γ

�

)

Fμν − jμA
μ

]

, (52)

(apart from a subtlety in the variation of�−1, that wewill discuss in Sect. 5.1).5 Thus,
Eq. (52) provides an alternative description of a massive photon which is explicitly
gauge invariant, at the price of nonlocality. In this case, however, the nonlocality is
only apparent, since we see from Eq. (51) that the nonlocal term can be removed with
a suitable gauge choice. In the following we will study similar theories, in which
however the nonlocality cannot be simply gauged away.

An interesting aspect of the nonlocal reformulation of massive electrodynamics
is that it also allows us to generate the mass term dynamically, through a non-
vanishing gauge-invariant condensate 〈Fμν�−1Fμν〉 �= 0. In the U (1) theory we
do not expect non-perturbative effects described by vacuum condensates. However,
these considerations can be generalized to non-abelian gauge theories. Indeed, in
pure Yang-Mills theory the introduction in the action of a nonlocal term

m2

2
Tr

∫
d4x Fμν

1

D2
Fμν , (53)

(where Dab
μ = δab∂μ − g f abc Ac

μ is the covariant derivative and m is a mass scale)
correctly reproduces the results on the non-perturbative gluon propagator in the IR,
obtained from operator product expansions and lattice QCD [17, 21, 45]. In this
case this term is generated in the IR dynamically by the strong interactions. In other
words, because of non-perturbative effects in the IR, at large distances we have

〈Tr [FμνD
−2Fμν]〉 �= 0 , (54)

which amounts to dynamically generating a mass term for the gluons.

4.2 Effective Nonlocal Modifications of GR

We next apply a similar strategy to GR. We will begin with a purely phenomenolog-
ical approach, trying to construct potentially interesting IR modifications of GR by
playing with nonlocal operators such as m2/�, and exploring different possibilities.

5The equivalence of the two theories can also be directly proved using the “Stückelberg trick”:
one introduces a scalar field ϕ and replaces Aμ → Aμ + (1/mγ )∂μϕ in the action. The equation
of motion of this new action S[Aμ, ϕ], obtained performing the variation with respect to ϕ, is
�ϕ + mγ ∂μAμ = 0, which can be formally solved by ϕ(x) = −mγ �−1(∂μAμ). Inserting this
expression for ϕ into S[Aμ, ϕ] one gets Eq. (52), see [46].
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When one tries to construct an infrared modification of GR, usually the aims that
one has in mind is the construction of a fundamental QFT (possibly valid up to a
UV cutoff, beyond which it needs a suitable UV completion). In that case a crucial
requirement is the absence of ghosts, at least up to the cutoff of the UV completion, as
in the dRGT theory of massive gravity [30, 31, 53], or in ghost-free bigravity [52].
In the following we will instead take a different path, and present these models
as effective nonlocal modification of GR, such as a quantum effective action. This
change of perspective, from a fundamental action to an effective quantum action, is
important since (as we already saw for the anomaly-induced effective action, and as
we will see in Sect. 6 for the nonlocal theories that we will propose) the presence of
an apparent ghost in the effective quantum action does not imply that a ghost is truly
present in the physical spectrum of the theory. Similarly, we will see in Sect. 5.1 that
the issue of causality is different for a nonlocal fundamental QFT and a nonlocal
quantum effective action.

A nonlinear completion of the degravitation model. As a first example we consider
the theory defined by the effective nonlocal equation of motion

(
1 − m2

�

)
Gμν = 8πG Tμν , (55)

where � is the fully covariant d’Alembertian. Equation (55) is the most straightfor-
ward generalization of Eq. (50) to GR. This model was proposed in [9] to introduce
the degravitation idea. Indeed, at least performing naively the inversion of the nonlo-
cal operator, Eq. (55) can be rewritten as Gμν = 8πG [�/(� − m2)]Tμν . Therefore
the low-momentum modes of Tμν , with |k2| � m2, are filtered out and in partic-
ular a constant term in Tμν , such as that due to a cosmological constant, does not
contribute.6

The degravitation idea is very interesting, but Eq. (55) has the problem that the
energy-momentum tensor is no longer automatically conserved, since in curved
space the covariant derivatives ∇μ do not commute, so [∇μ,�] �= 0 and therefore
also [∇μ,�−1] �= 0. Therefore the Bianchi identity ∇μGμν = 0 no longer ensures
∇μTμν = 0. In [54] it was however observed that it is possible to cure this problem,
by making use of the fact that any symmetric tensor Sμν can be decomposed as

Sμν = STμν + 1

2
(∇μSν + ∇νSμ) , (56)

6Observe however that the inversion of the nonlocal operator is more subtle. Indeed, by definition,
�−1 is such that, on any differentiable function f (x), ��−1 f = f , i.e. ��−1 = 1. In contrast,
from�−1� f = g it does not follows f = g. Rather, applying� to both sides and using��−1 = 1

we get�( f − g) = 0, so f = g + h where h is any function such that�h = 0. Therefore,�−1� �=
1. The same holds for the inversion of (�− m2). Thus, more precisely, the inversion of Eq. (55)
is Gμν = 8πG (�− m2)−1�Tμν + Sμν , where Sμν is any tensor that satisfies (�− m2)Sμν = 0.
In any case, a constant vacuum energy term Tμν = −ρvacημν does not contribute, because of the
� operator acting on Tμν , while Sμν only has modes with k2 = −m2, so it cannot contribute to a
constant vacuum energy.
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where STμν is the transverse part of Sμν , i.e. it satisfies ∇μSTμν = 0. Such a decompo-
sition can be performed in a generic curved space-time [32, 87]. The extraction of
the transverse part of a tensor is itself a nonlocal operation, which is the reason why
it never appears in the equations of motions of a local field theory.7 Here however we
are already admitting nonlocalities, so we can make use of this operation. Then, in
[54] (following a similar treatment in the context of nonlocal massive gravity in [78])
it was proposed to modify Eq. (55) into

Gμν − m2 (
�−1Gμν

)T = 8πG Tμν , (58)

so that energy-momentum conservation ∇μTμν = 0 is automatically ensured. This
model can be considered as a nonlinear completion of the original degravitation idea.
Furthermore, Eq. (58) still admits a degravitating solution [54]. Indeed, consider a
modification of Eq. (58) of the form

Gμν − m2 [
(� − μ2)−1 Gμν

]T = 8πG Tμν , (59)

with μ is a regularization parameter to be eventually sent to zero. If we set
Tμν = −ρvacgμν , Eq. (59) admits a de Sitter solution Gμν = −Λgμν with Λ =
8πG [μ2/(m2 + μ2)] ρvac. In the limit μ → 0 we get Λ → 0, so the vacuum energy
has been completely degravitated.However, the cosmological evolution of thismodel
induced by the remaining cosmological fluid, such as radiation or non-relativistic
matter, turns out to be unstable, already at the background level [49, 64]. We will
see in Sect. 7 how such an instability emerges. In any case, this means that the model
(58) is not phenomenologically viable.

The RT and RR models. The first phenomenologically successful nonlocal model
of this type was then proposed in [64], where it was noticed that the instability is
specific to the form of the �−1 operator on a tensor such as Rμν or Gμν , and does
not appear when �−1 is applied to a scalar, such as the Ricci scalar R. Thus, in [64]
it was proposed a model based on the nonlocal equation

Gμν − m2

3

(
gμν�−1R

)T = 8πG Tμν , (60)

where the factor 1/3 is a useful normalization for the mass parameter m. We will
discuss its phenomenological consequences in Sect. 7. We will denote it as the “RT”
model, where R stands for the Ricci scalar and T for the extraction of the transverse
part. A closed form for the action corresponding to Eq. (60) is currently not known.

7In flat space ∇μ → ∂μ and, applying to both sides of Eq. (56) ∂μ and ∂μ∂ν we find that

STμν = Sμν − �−1(∂μ∂ρ Sρν + ∂ν∂
ρ Sρμ) + �−2∂μ∂ν∂

ρ∂σ Sρσ . (57)

In a generic curved spacetime there is no such a simple formula, because [∇μ,∇ν ] �= 0, but we
will see in Sect. 6 how to deal, in practice, with the extraction of the transverse part.
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This model is however closely related to another nonlocal model, proposed in [67],
and defined by the effective action

ΓRR = m2
Pl

2

∫
d4x

√−g

[
R − m2

6
R

1

�2
R

]
. (61)

Again, we will see that this model is phenomenologically viable, and we will refer to
it as the RRmodel. The RT and RRmodels are related by the fact that, if we compute
the equations of motion from Eq. (61) and we linearize them over Minkowski space,
we find the same equations of motion obtained by linearizing Eq. (60). However, at
the full nonlinear level, or linearizing over a background different from Minkowski,
the two models are different.

We have seen above that nonlocal terms of this sort may be related to a mass for
some degree of freedom. One might then ask whether this is the case also for the RR
and RTmodels. In fact, the answer is quite interesting: the nonlocal terms in Eq. (60)
or (61) correspond to a mass term for the conformal mode of the metric [65, 66].
Indeed, consider the conformal mode σ(x), defined choosing a fixed fiducial metric
ḡμν and writing gμν(x) = e2σ(x)ḡμν(x). Let us restrict the dynamics to the conformal
mode, and choose for simplicity a flat fiducial metric ḡμν = ημν . The Ricci scalar
computed from the metric gμν = e2σ(x)ημν is then

R = −6e−2σ
(
�σ + ∂μσ∂μσ

)
. (62)

Therefore, to linear order in σ , R = −6�σ + O(σ 2) and (upon integration by parts)

R
1

�2
R = 36σ 2 + O(σ 3) . (63)

Thus, the R�−2R terms gives a nonlocal but diff-invariant mass term for the confor-
mal mode, plus higher-order interaction terms (which are nonlocal even in σ ) which
are required to reconstruct a diff-invariant quantity. The same is true for the nonlocal
term in the RT model, since the RR and RT models coincide when linearized over
Minkowski space.

5 How Not to Deal with Effective Nonlocal Theories

In this section we discuss some conceptual aspects of general nonlocal theories, that
involve some subtleties. The bottomline is that quantum field theory must be played
according to its rules and, as we have already seen in Sect. 3 with the explicit example
of the anomaly-induced effective action, the rules for quantum effective actions are
different from the rules for the fundamental action of a QFT.
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5.1 Causality

We begin by examining causality in nonlocal theories (we follow the discussion in
Appendix A of [26]; see also [14, 35, 36, 47, 48, 84, 85] for related discussions). In a
fundamental QFT with a nonlocal action, the standard variational principle produces
acausal equations of motion. Consider for instance a nonlocal term

∫
dx φ�−1φ in

the action of a scalar field φ, where �−1 is defined with respect to some Green’s
function G(x; x ′). Then

δ

δφ(x)

∫
dx ′φ(x ′)(�−1φ)(x ′) = δ

δφ(x)

∫
dx ′dx ′′φ(x ′)G(x ′; x ′′)φ(x ′′)

=
∫

dx ′[G(x; x ′) + G(x ′; x)]φ(x ′) . (64)

Thus, the variation symmetrizes the Green’s function. However, the retarded Green’s
function is not symmetric; rather, Gret(x ′; x) = Gadv(x; x ′), and therefore it cannot
be obtained from such a variation. In a fundamental action, nonlocality implies the
loss of causality, already at the classical level (unless, as in Eq. (51), we have a gauge
symmetry that allows us to gauge away the nonlocal term in the equations of motion).

However, quantum effective actions are in general nonlocal, as in Eq. (2), (27) or
(45). Of course, this does notmean that they describe acausal physics. These nonlocal
effective actions are just a way to express, with an action that can be used at tree
level, the result of a quantumcomputation in fundamental theorieswhich are local and
causal. Therefore, it is clear that their nonlocality has nothing to do with acausality.
Simply, to reach the correct conclusions one must play QFT according to its rules.
The variation of the quantum effective action does not give the classical equations
of motion of the field. Rather, it provides the time evolution, or equivalently the
equations of motion, obeyed by the vacuum expectation values of the corresponding
operators, as in Eq. (10). These equations of motion are obtained in a different way
depending on whether we consider the in-in or the in-out matrix elements. The in-out
expectation values are obtained using the Feynman path integral in Eq. (9), and are
indeed acausal. Of course, there is nothing wrong with it. The in-out matrix element
are not observable quantities, but just auxiliary objects which enter in intermediate
steps in the computation of scattering amplitudes, and the Feynman propagator,
which is acausal, enters everywhere in QFT computations.

The physical quantities, which can be interpreted as physical observables, are
instead the in-in expectation values. For instance, 〈0in|ĝμν |0in〉 can be interpreted as
a semiclassical metric, while 〈0out|ĝμν |0in〉 is not even a real quantity. The equations
of motion of the in-in expectation values are obtained from the Schwinger–Keldysh
path integral, which automatically provides nonlocal but causal equations [20, 57].
In practice, the equations of motion obtained from the Schwinger–Keldysh path
integral turn out to be the same that one would obtain by treating formally the �−1
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operator in the variation, without specifying the Green’s function, and replacing in
the end �−1 → �−1

ret in the equations of motion (see e.g. [71]).8

Thus nonlocal actions, interpreted as quantum effective actions, provide causal
evolution equations for the in-in matrix elements.

5.2 Degrees of Freedom and Ghosts

Another subtle issue concerns the number of degrees of freedom described by a
nonlocal theory such as (61). Let us at first treat it as we would do for a fundamen-
tal action. We write gμν = ημν + hμν and expand the quantum effective action to
quadratic order over flat space.9 The corresponding flat-space action is [67]

Γ
(2)
RR =

∫
d4x

[
1

2
hμνE

μν,ρσhρσ − 1

3
m2hμνP

μνPρσhρσ

]
, (65)

where

Pμν = ημν − ∂μ∂ν

� , (66)

where now � is the flat-space d’Alembertian. We then add the usual gauge fix-
ing term of linearized massless gravity, Lgf = −(∂ν h̄μν)(∂ρ h̄ρμ), where h̄μν =
hμν − (1/2)hημν . Inverting the quadratic form we get the propagator D̃μνρσ (k) =
−iΔμνρσ (k), where

Δμνρσ (k) = 1

2k2
(ημρηνσ + ημσηνρ − ημνηρσ )

+1

6

(
1

k2
− 1

k2 − m2

)
ημνηρσ , (67)

plus terms proportional to kμkν , kρkσ and kμkνkρkσ , that give zero when contracted
with a conserved energy-momentum tensor. The term in the second line in Eq. (67)
gives an extra contribution to T̃μν(−k)D̃μνρσ (k)T̃ρσ (k), equal to

1

6
T̃ (−k)

[
− i

k2
+ i

k2 − m2

]
T̃ (k) . (68)

8In the in-in formalism the equations of motions are more easily obtained using the tadpole method,
i.e. writing a generic field φ as φ = φcl + ϕ, where ϕ are the quantum fluctuations over a classical
configuration φcl, and requiring that 〈0in|ϕ|0in〉 = 0. See [18, 25] for an instructive computation,
showing explicit how nonlocal but causal terms emerge in the in-in equations of motion.
9The same treatment holds for the RTmodel, since at the level of the equations of motion linearized
over flat space the RR and RT model are identical.
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This term apparently describes the exchange of a healthy massless scalar plus a
ghostlike massive scalar. The presence of a ghost in the spectrum of the quantum
theory would be fatal to the consistency of the model. However, once again, this
conclusion comes from a confusion between the concepts of fundamental action and
quantum effective action.

To begin, let us observe that it is important to distinguish between the effect of a
ghost in the classical theory and its effect in the quantum theory. Let us consider first
the classical theory. At linear order, the interaction between the metric perturbation
and an external conserved energy-momentum tensor Tμν is given by

Sint =
∫

d4x hμνT
μν , (69)

where hμν is the solution of the equations of motion derived from Eq. (65). Solving
them explicitly and inserting the solution for hμν in Eq. (69) one finds [64]

Sint = 16πG
∫

d4k

(2π)4
T̃μν(−k)Δμνρσ (k)T̃ρσ (k) , (70)

with Δμνρσ (k) given by Eq. (67). The quantity Δμνρσ (k) therefore plays the role of
the propagator in the classical theory [and differs by a factor of −i from the quantity
usually called the propagator in the quantum theory, D̃μνρσ (k) = −iΔμνρσ (k)]. A
‘wrong’ sign in the term proportional to 1/(k2 − m2) in Eq. (67) might then result
in a classical instability. Whether this is acceptable or not must be studied on a case-
by-case basis. For instance, taking m = O(H0), as we will do below, the instability
will only develop on cosmological timescales. Therefore, it must be studied in the
context of a FRW cosmology, where it will also compete with damping due to the
Hubble friction. Whether this will result or not in a viable cosmological evolution,
both at the level of background evolution and of cosmological perturbations, can
only be deduced an explicit quantitative study of the solutions of these cosmological
equations. We will indeed see in Sect. 7 that the cosmological evolution obtained
from this model is perfectly satisfying.

A different issues is the presence of a ghost in the spectrum of the quantum theory.
After quantization a ghost carries negative energy, and induces vacuumdecay through
the associated production of ghosts and normal particles, which would be fatal to
the consistency of the theory. However, here we must be aware of the fact that the
spectrum of the quantum theory can be read from the free part of the fundamental
action of the quantum theory. To apply blindly the same procedure to the quantum
effective action is simplywrong.We have already seen this in Sect. 3 for the anomaly-
induced effective action, where the action (30) with N > 25, or the action (42),
naively seem to have a ghost, but in fact are perfectly healthy effective quantum
actions, derived from fundamental QFTs that have no ghost. Another example that
illustrates the sort of nonsense that one obtains if one tries to read the spectrum of
the quantum theory from the quantum effective action Γ , consider for instance the
one-loop effective action of QED, Eq. (2). If we proceed blindly and quantize it as
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if it were a fundamental action, we would add to Eq. (2) a gauge fixing term Lgf =
−(1/2)(∂μAμ)2 and invert the resulting quadratic form. We would then obtain, for
the propagator in the me → 0 limit,

D̃μν(k) = −i
ημν

k2

[
1 − e2(μ)β0 log

k2

μ2

]
, (71)

plus terms proportional to kμkν that cancel when contracted with a conserved current
jμ.10 Using the identities

log
k2

μ2
=

∫ ∞

0
dm2

(
1

m2 − μ2
− 1

k2 + m2

)
(72)

and
m2

k2(k2 + m2)
= 1

k2
− 1

k2 + m2
(73)

we see that the “propagator” (71) has the standard pole of the electromagnetic field,
proportional to −iημν/k2 with a positive coefficient, plus a continuous set of ghost-
like poles proportional to +iημν/(k2 + m2), with m an integration variable. We
would then conclude that QED as a continuous spectrum of ghosts! Of course this
is nonsense, and it is just an artifact of having applied to the quantum effective
action a procedure that only makes sense for the fundamental action of a QFT. In
fact, the proper interpretation of Eq. (71) is that log(k2/μ2) develops an imaginary
part for k2 < 0 (e.g. for k0 �= 0,k = 0, i.e. for a spatially uniform but time-varying
electromagnetic field). This is due to the fact that, in the limit me → 0 in which we
areworking (or,more generally, for−k2 > 4m2

e), in such an external electromagnetic
field there is a rate of creation of electron-positron pairs, and the imaginary part of
the effective action describes the rate of pair creation [41].

These general considerations show that the spectrum of the theory cannot be read
naively from the quantum effective action. Thus, in particular, from the presence of a
‘ghost-like’ pole obtained from the effective quantum action (65), one cannot jump to
the conclusion that the underlying fundamental theory has a ghost. In the next section
we will be more specific, and try to understand the origin of this ‘wrong-sign’ pole
in the RR and RT theories.

6 Localization of Nonlocal Theories

Nonlocal models can be formally written in a local form introducing auxiliary fields,
as discussed in similar contexts in [14, 36, 56, 60–62, 74]. This reformulation is quite
useful both for the numerical study of the equations of motion, and for understanding

10Actually, the terms kμkν can be made to vanish if we take also the gauge fixing as nonlocal, and
given by (−1/2)(∂μAμ)[1/e2(�)](∂ν Aν). The same could be done for the propagator in Eq. (67).
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exactly why the ghosts-like poles in Eq. (67) do not correspond to states in the
spectrum of the quantum theory. It is useful to first illustrate the argument for the
Polyakov effective action, for which we know that it is the effective quantum action
of a perfectly healthy fundamental theory.

Localization of the Polyakov action. In D = 2 the Polyakov action becomes local
when written in terms of the conformal factor. Let us however introduce a different
localization procedure, that can be generalized to 4D. We start from Eq. (27),

Γ = c
∫

d2x
√−g R�−1R , (74)

where we used the notation c = −N/(96π). We now introduce an auxiliary field
U defined by U = −�−1R. At the level of the action, this can be implemented by
introducing a Lagrange multiplier ξ , and writing

Γ =
∫

d2x
√−g [−cRU + ξ(�U + R)] . (75)

The variation with respect to ξ gives

�U = −R , (76)

so it enforces U = −�−1R, while the variation with respect to U gives �ξ = cR
and therefore ξ = c�−1R = −cU . This is an algebraic equation that can be put back
in the action so that, after an integration by parts, Γ can be rewritten as [6]

Γ = c
∫

d2x
√−g

[
∂aU∂aU − 2UR

]
. (77)

The theories defined by Eqs. (74) and (77) are classically equivalent. As a check,
one can compute the energy-momentum tensor from Eq. (77), and verify that its
classical trace is given by T = 4c�U = −4cR. So Eq. (77), used as a classical
action, correctly reproduces the quantum trace anomaly (19) [6]. We can further
manipulate the action (77) writing gab = e2σ ηab. Using Eq. (24) and introducing a
new field ϕ from U = 2(ϕ + σ) to diagonalize the action, we get

Γ = 4c
∫

d2x
(
ηab∂aϕ∂bϕ − ηab∂aσ∂bσ

)
. (78)

Taken literally, this action seems to suggest that in the theory there are two dynamical
fields, ϕ and σ . For c > 0, ϕ would be a ghost and σ a healthy field, and viceversa
if c < 0 (in the Polyakov action (74) c = −N/(96π) < 0, but exactly the same
computation could be performed with the action (29), where c = −(N − 25)/(96π)

can take both signs). Of course, we know that this conclusion is wrong, since we
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know exactly the spectrum of the quantum theory at the fundamental level, which
is made uniquely by the quanta of the conformal matter fields. As we mentioned,
even taking into account the anomaly-induced effective action, still σ has no quanta
in the physical spectrum, since they are eliminated by the physical-state condition
[76]. As for the auxiliary field ϕ, or equivalently U , there is no trace of its quanta
in the physical spectrum. U is an artificial field which has been introduced by the
localization procedure, and there are no quanta associated with it.

This can also be understood purely classically, using the fact that, in D = 2,
the Polyakov action becomes local when written in terms of the conformal factor.
Therefore, the classical evolution of the model is fully determined once we give
the initial conditions on σ , i.e. σ(ti , x) and σ̇ (ti , x) at an initial time. Thus, once we
localize the theory introducingU , the initial conditions onU are not arbitrary. Rather,
they are uniquely fixed by the condition that the classical evolution, in the formulation
obtained from Eq. (77), must be equivalent to that in the original theory (27). In other
words, U is not the most general solution of Eq. (76), which would be given by a
particular solution of the inhomogeneous equation plus the most general solution of
the associated homogeneous equation�U = 0. Rather, it is just one specific solution,
with given boundary conditions, such as U = 0 when R = 0 in Eq. (76). Thus, if
we are for instance in flat space, there are no arbitrary plane waves associated to
U , whose coefficients ak and a∗

k would be promoted to creation and annihilation
operators in the quantum theory. In this sense, the situation is different with respect
to the conformal mode σ : the conformal mode, at the quantum level, is a quantum
field with its own creation and annihilation operators, but the corresponding quantum
states do no survive the imposition of the physical-state condition, and therefore do
not belong to the physical Hilbert space. TheU field, instead, is a classical auxiliary
field and has not even creation and annihilation operators associated to it.

Localization of the RR theory. We next consider the RR model. To put the theory in
a local form we introducing two auxiliary fields U and S, defined by

U = −�−1R , S = −�−1U . (79)

This can be implemented at the Lagrangian level by introducing two Lagrange mul-
tipliers ξ1, ξ2, and rewriting Eq. (61) as

ΓRR = m2
Pl

2

∫
d4x

√−g

[
R

(
1 − m2

6
S

)
− ξ1(�U + R) − ξ2(�S +U )

]
.

The equations of motion derived performing the variation of this action with respect
to hμν is

Gμν = m2

6
Kμν + 8πGTμν , (80)
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where

Kμν = 2SGμν − 2∇μ∂ν S + gμν [−2U + ∂ρ S∂ρU − (1/2)U2] − (∂μS∂νU + ∂ν S∂μU ) .

(81)

At the same time, the definitions (79) imply that U and S satisfy

�U = −R , (82)

�S = −U . (83)

Using the equations of motion we can check explicitly that∇μKμν = 0, as it should,
since the equations of motion has been derived from a diff-invariant action. Lineariz-
ing Eq. (81) over flat space we get

E μν,ρσhρσ − 2

3
m2PμνPρσhρσ = −16πGT μν , (84)

Let us we restrict to the scalar sector, which is the most interesting for our purposes.
We proceed as in GR, and use the diff-invariance of the nonlocal theory to fix the
Newtonian gauge

h00 = −2Ψ , h0i = 0 , hi j = 2Φδi j . (85)

We also write the energy-momentum tensor in the scalar sector as

T00 = ρ , T0i = ∂iΣ , (86)

Ti j = Pδi j + [∂i∂ j − (1/3)δi j∇2]Π . (87)

A straightforward generalization of the standard computation performed in GR (see
e.g. [55]) gives four independent equations for the four scalar variables Φ,Ψ ,U and
S. For the Bardeen variables Φ and Ψ we get [67]11

∇2
[
Φ − (m2/6)S

] = −4πGρ , (88)

Φ + Ψ − (m2/3)S = −8πGΠ . (89)

Thus, just as in GR, Φ and Ψ remain non-radiative degrees of freedom, with a
dynamics governed by a Poisson equation rather than by a Klein–Gordon equation.
This should be contrasted with what happens when one linearizes massive gravity
with a Fierz–Pauli mass term. In that case Φ becomes a radiative field that satisfies
(� − m2)Φ = 0 [3, 34, 55], and the corresponding jump in the number of radiative
degrees of freedom of the linearized theory is just the vDVZ discontinuity. Further-

11Compared to [67], in Eq. (85) we have changed the sign in the definition of Ψ , in order to be
consistent with the convention that we used in [37] when studying the cosmological perturbations
of this model, compare with Eq. (134) below.
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more, in local massive gravity with a mass term that does not satisfies the Fierz–Pauli
tuning, in the Lagrangian also appears a term (�Φ)2 [55], signaling the presence of
a dynamical ghost.

To linearize Eq. (82) we first observe that, taking the trace of Eq. (84), we get

R(1) − m2Pμνhμν = 8πG(ρ − 3P) , (90)

where
R(1) = ∂μ∂ν(h

μν − ημνh) (91)

is the linearized Ricci scalar. From Eq. (66),

Pμνhμν = 1

� (�h − ∂μ∂νhμν) = − 1

� R(1) . (92)

Therefore, Eq. (90) can also be rewritten in the suggestive form

(
1 + m2

�

)
R(1) = 8πG(ρ − 3P) . (93)

Equation (92) also implies that, to linear order,

Pμνhμν = U , (94)

and therefore Eq. (90) can be rewritten as

R(1) = 8πG(ρ − 3P) + m2U . (95)

Inserting this into Eq. (82) we finally get

(� + m2)U = −8πG(ρ − 3P) , (96)

where, in all the linearized equations,� = −∂2
0 + ∇2 is the flat-space d’Alembertian.

Similarly the linearized equation for S is just given by Eq. (83), again with the flat-
space d’Alembertian.

Thus, in the end, in the scalar sector we have two fields Φ and Ψ which obey
Eqs. (88) and (89) and are therefore non-radiative, just as, in GR. Furthermore,
we have two fields U and S that satisfy Klein–Gordon equations with sources. In
particularU satisfies the massive KG equation (96), so is clearly the field responsible
for the ghost-like 1/(k2 − m2) pole in Eq. (68), while S satisfies a massless KG with
source, and is the field responsible for the healthy 1/k2 pole in Eq. (68). This analysis
shows that the potential source of problems is not one of the physical fields Φ and
Ψ , but rather the auxiliary fieldU . However, at this point the solution of the potential
problem becomes clear (see in particular the discussions in [14, 36, 61, 62] in
different nonlocalmodels, and in [48, 64, 67] for theRRandRTmodels), and is in fact
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completely analogous to the situation that we have found for the Polyakov effective
action. In general, an equation such as �U = −R is solved byU = −�−1R, where

�−1R = Uhom(x) −
∫

d4x ′ √−g(x ′)G(x; x ′)R(x ′) , (97)

with Uhom(x) any solution of �Uhom = 0, and G(x; x ′) a Green’s function of the
� operator. The choice of the homogeneous solution is part of the definition of the
�−1 operator and therefore of the original nonlocal effective theory. In principle,
the appropriate prescription would emerge once one knows the fundamental theory
behind. In any case, there will be one prescription for what �−1 means in the effec-
tive theory. This means that the auxiliary field U is not the most general solution of
�U = −R, which is given by a solution of the inhomogeneous equation plus the
most general solution of the associated homogeneous equation �U = 0. Rather, it
is just a single, specific, solution. In other words, the boundary conditions of the
equation �U = −R are fixed. Whatever the choice made in the definition of �−1,
the corresponding homogeneous solution is fixed. For instance, in flat space this
homogeneous solution is a superposition of plane waves, and the coefficients ak, a∗

k
are fixed by the definition of �−1 (e.g. at the value ak = a∗

k = 0 if the definition
of �−1 is such that Uhom = 0). They are not free parameters of the theory, and at
the quantum level it makes no sense to promote them to annihilation and creation
operators. There is no quantum degree of freedom associated to them.

To conclude this section, it is interesting to observe that the need of imposing
boundary conditions on some classical fields, in order to recover the correct Hilbert
state at the quantum level, is not specific to nonlocal effective actions. Indeed, GR
itself can be formulated in such a way that requires the imposition of similar con-
ditions [48, 55]. Indeed, let us consider GR linearized over flat space. To quadratic
order, adding to the Einstein–Hilbert action the interaction term with a conserved
energy-momentum tensor, we have

S(2)
EH + Sint =

∫
d4x

[
1

2
hμνE

μν,ρσhρσ + κ

2
hμνT

μν

]
. (98)

We decompose the metric as

hμν = hTTμν + (∂μεν + ∂νεμ) + 1

3
ημνs , (99)

where hTTμν is transverse and traceless,

∂μhTTμν = 0 , ημνhTTμν = 0 . (100)

Thus, the 10 components of hμν are split into the 5 components of the TT tensor
hTTμν , the four components of εμ, and the scalar s. Under a linearized diffeomorphism
hμν → hμν − (∂μξν + ∂νξμ), the four-vector εμ transforms as εμ → εμ − ξμ, while
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hTTμν and s are gauge invariant. We similarly decompose Tμν . Plugging Eq. (99) into
Eq. (98) εμ cancels (as it is obvious from the fact that Eq. (98) is invariant under
linearized diffeomorphisms and εμ is a pure gauge mode), and we get

S(2)
EH + Sint =

∫
d4x

1

2

[
hTTμν�(hμν)TT − 2

3
s�s

]
+ κ

2

[
hTTμν(T

μν)TT + 1

3
sT

]
.

(101)
The equations of motion derived from S(2)

EH + Sint are

�hTTμν = −κ

2
T TT

μν , �s = +κ

4
T . (102)

This result seems to suggest that in ordinary massless GR we have six propagating
degrees of freedom: the five components of the transverse-traceless tensor hTTμν , plus
the scalar s. Note that hTTμν and s are gauge invariant, so they cannot be gauged away.
Furthermore, from Eq. (101) the scalar s seems a ghost!

Of course, we know that in GR only the two components with helicities ±2 are
true propagating degrees of freedom. In fact, the resolution of this apparent puzzle
is that the variables hTTμν and s are nonlocal functions of the original metric. Indeed,
inverting Eq. (99), one finds

s = Pμνhμν , (103)

hTTμν = hμν − 1

3
Pμνh − 1

� (∂μ∂ρhνρ + ∂ν∂
ρhμρ) + 1

3
ημν

1

�∂ρ∂σhρσ

+2

3

1

�2
∂μ∂ν∂

ρ∂σhρσ , (104)

where Pμν is the nonlocal operator (66). Observe that the nonlocality is not just
in space but also in time. Therefore, giving initial conditions on a given time slice
for the metric is not the same as providing the initial conditions on hTTμν and s, and
the proper counting of dynamical degrees of freedom gets mixed up. If we want to
study GR in terms of the variables hTTμν and s, which are nonlocal functions of the
original variables hμν , we can do it, but we have to be careful that the number of
independent initial conditions that we impose to evolve the system must remains the
same as in the standard Hamiltonian formulation of GR. This means in particular
that the initial conditions on s and on the components of hTTμν with helicities 0,±1
cannot be freely chosen, and in particular the solution of the homogeneous equations
�s = 0 associated to the equation�s = (κ/4)T is not arbitrary. It is fixed, e.g. by the
condition that s = 0 when T = 0. Just as for the auxiliary field U discussed above,
there are no quanta associated to s (nor to the components of hTTμν with helicities
0,±1), just as in the standard 3 + 1 decomposition of the metric there are no quanta
associated to the Bardeen potentials Φ and Ψ .

The similarity between the absence of quanta for the field U in the localization
procedure of the RRmodel, and the absence of quanta for s in GR, is in fact more than
an analogy. Comparing Eqs. (94) and (103) we see that, at the level of the linearized
theory,U reduces just to s in them = 0 limit. The boundary condition that eliminates
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the quanta of U in the RR theory therefore just reduces to the boundary condition
that eliminates the quanta of s in GR.

The bottomline of this discussion is that the ‘wrong-sign’ pole in Eq. (68) is not
due to a ghost in the quantum spectrum of the underlying fundamental theory. It is
simply due to an auxiliary field that enters the dynamics at the classical level, but has
no associated quanta in the physical spectrum of the theory. A different question is
whether this auxiliary field might induce instabilities in the classical evolution. Since
wewill takem of order of the Hubble parameter today, H0, any such instability would
only develop on cosmological timescale, so it must be studied on a FRWbackground,
which we will do in the next section.

The above analysis was performed for the RRmodel. For the RTmodel the details
of the localization procedure are technically different [58, 64]. In that case we define
again U = −�−1R, and we also introduce Sμν = −Ugμν = gμν�−1R. We then
compute STμν using Eq. (56). Thus, Eq. (60) is localized in terms of an auxiliary
scalar field U and the auxiliary four-vector field Sμ that enters through Eq. (56),
obeying the coupled system

Gμν + m2

6

(
2Ugμν + ∇μSν + ∇νSμ

) = 8πG Tμν , (105)

�U = −R , (106)

(δμ
ν � + ∇μ∇ν)Sμ = −2∂νU , (107)

where the latter equation is obtained by taking the divergence of Eq. (56).We see that,
at the full nonlinear level, the RT model is different from the RR model. However,
linearizing over flat space they become the same. In fact in this case, using Eq. (92),
to linear order we have

Sμν ≡ gμν�−1R � −ημνP
ρσhρσ . (108)

In flat space the extraction of the transverse part can be easily performed using
Eq. (57), without the need of introducing auxiliary fields. This gives, again to
linear order, STμν = −PμνPρσhρσ . Using the fact that, to linear order, G(1)

μν =
−(1/2)Eμν,ρσhρσ , we see that the linearization of Eq. (60) over flat space gives
the same equation as Eq. (84). Thus, the RR and RT model coincide at linear order
over flat space, but not on a general background (nor at linear order over a non-trivial
background, such as FRW).

It should also be stressed that the RR and RT models are not theories of massive
gravity. The graviton remainsmassless in these theories. Observe also, fromEq. (67),
that when we linearize over flat space the limit m → 0 of the propagator is smooth,
and there is no vDVZ discontinuity, contrary to what happens in massive gravity.
The continuity with GR has also been explicitly verified for the Schwarzschild solu-
tion [58].12

12See app. B of [39] for the discussion of a related issue on the comparison with Lunar Laser
Ranging, raised in [11].
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7 Cosmological Consequences

We can now explore the cosmological consequences of the RT and RR models, as
well as of some of their extensions that we will present below, beginning with the
background evolution, and then moving to cosmological perturbation theory and to
the comparison with cosmological data.

7.1 Background Evolution and Self-Acceleration

We begin with the background evolution (we closely follow the original discussions
in [49, 64] for the RT model and [67] for the RR model). It is convenient to use
the localization procedure discussed in Sect. 6, so we deal with a set of coupled
differential equations, rather than with the original integro-differential equations.

7.1.1 The RT Model

Let us begin with the RT model. In FRW, at the level of background evolution, for
symmetry reasons the spatial component Si of the auxiliary field Sμ vanish, and the
only variables areU (t) and S0(t), togetherwith the scale factora(t). Equations (105)–
(107) then become

H 2 − m2

9
(U − Ṡ0) = 8πG

3
ρ (109)

Ü + 3HU̇ = 6Ḣ + 12H 2 , (110)

S̈0 + 3H Ṡ0 − 3H 2S0 = U̇ . (111)

We supplement these equations with the initial conditions

U (t∗) = U̇ (t∗) = S0(t∗) = Ṡ0(t∗) = 0 , (112)

at some time t∗ deep in the radiation dominated (RD) phase. We will come back
below to how the results depend on this choice. Observe that we do not include a
cosmological constant term. Indeed, our aim is first of all to see if the nonlocal term
produces a self-accelerated solution, without the need of a cosmological constant.

It is convenient to pass to dimensionless variables, using x ≡ ln a(t) instead of
t to parametrize the temporal evolution. We denote d f/dx = f ′, and we define
Y = U − Ṡ0, h = H/H0, Ωi (t) = ρi (t)/ρc(t) (where i labels radiation, matter and
dark energy), and Ωi ≡ Ωi (t0), where t0 is the present value of cosmic time. Then
the Friedmann equation reads

h2(x) = ΩMe
−3x + ΩRe

−4x + γY (x) , (113)
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where γ ≡ m2/(9H 2
0 ). This shows that there is an effective DE density

ρDE(t) = ρ0γY (x) , (114)

where ρ0 = 3H 2
0 /(8πG). We can trade S0 for Y , and rearrange the equations so that

U and Y satisfy the coupled system of equations

Y ′′ + (3 − ζ )Y ′ − 3(1 + ζ )Y = 3U ′ − 3(1 + ζ )U , (115)

U ′′ + (3 + ζ )U ′ = 6(2 + ζ ) , (116)

ζ(x) ≡ h′

h
= − 3ΩMe−3x + 4ΩRe−4x − γY ′

2(ΩMe−3x + ΩRe−4x + γY )
. (117)

The result of the numerical integration is shown in Fig. 1. In terms of the variable
x = ln a, radiation-matter equilibrium is at x = xeq � −8.1, while the present epoch
corresponds to x = 0. From the left panel of Fig. 1 we see that the effective DE
vanishes in RD. This is a consequence of the fact that, in RD, R = 0, together with
our choice of boundary conditions U (t∗) = U̇ (t∗) = 0 at some initial value t∗ deep
in RD. As a consequence, �−1R remains zero in an exact RD phase, and only begins
to grow when it starts to feel the effect of non-relativistic matter. The evolution of
the auxiliary field U = −�−1R is shown in the left panel of Fig. 2. We see however
that, as we enter in the matter-dominated (MD) phase, the effective DE density
start to grow, until it eventually dominates, as we see from the right panel of Fig. 1.
The numerical value of ΩDE today can be fixed at any desired value, by choosing
the parameter m of the nonlocal model (just as in ΛCDM one can chose ΩΛ by
fixing the value of the cosmological constant). In Fig. 1 m has been chosen so that,
today, ΩDE � 0.68, i.e. ΩM � 0.32. This is obtained by setting γ � 0.050, which
corresponds to m � 0.67H0. Of course, the exact value of ΩM , and therefore of m,
will eventually be fixed by Bayesian parameter estimation within the model itself,
as we will discuss below.

Fig. 1 Left panel the function ρDE(x)/ρ0, against x = ln a, for the RT model (from [64]). Right
panel the energy fractions Ωi = ρi (x)/ρc(x) for i = radiation (green, dot-dashed) matter (red,
dashed) and dark energy (blue solid line) (from [49])
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Fig. 2 Left the background evolution of the auxiliary field U , for the RT model. Right wDE as a
function of the redshift z, for the RT model (from [49])

We also define, as usual, the effective equation-of-state parameter of dark energy,
wDE, from13

ρ̇DE + 3(1 + wDE)HρDE = 0 . (118)

Once fixed m so to obtain the required value of ΩM , ρDE(x) is fixed, and therefore
we get a pure prediction for the evolution of wDE with time. The right panel of Fig. 2
shows the result, plotted as a function of redshift z. We observe that wDE(z) is on the
phantom side, i.e.wDE(z) < −1. This is a general consequence of Eq. (118), together
with the fact that, in the RTmodel, ρDE > 0, ρ̇DE > 0, and H > 0, so (1 + wDE)must
be negative. Near the present epoch we can compare the numerical evolution with
the widely used fitting function [22, 63]

wDE(a) = w0 + (1 − a)wa , (119)

(where a = ex ), and we get w0 � −1.04, wa � −0.02. These results are quite inter-
esting, because they show that, at the level of background evolution, the nonlocal
term generates an effective DE, which produces a self-accelerating solution withwDE

close to −1.
It is interesting to observe that, in terms of the field U = −�−1R, Eq. (60) can

be replaced by the system of equations

Gμν + m2

3

(
Ugμν

)T = 8πG Tμν , (120)

�U = −R . (121)

13The same expression for wDE(x) can be obtained defining an effective DE pressure pDE from the
trace of the (i, j) component of the modified Einstein equation (105), and defining wDE(x) from
pDE = wDEρDE. The equivalence of the two definitions is a consequence of the fact that, because
of the extraction of the transverse part in the RT model (and because of the general covariance of
the action for the RR model), energy-momentum conservation is automatically ensured.
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We now observe that, under a shift U (x) → U (x) + u0, where u0 is a constant,
Eq. (121) is unchanged, while (u0gμν)

T = u0gμν , since ∇μgμν = 0. Then Eq. (120)
becomes

Gμν + m2

3

(
Ugμν

)T = 8πG

[
Tμν − m2u0

24πG
gμν

]
. (122)

We see that in principle one could chose u0 so to cancel any vacuum energy term
in Tμν . In particular, given that m � H0, one can cancel a constant positive vac-
uum energy T00 = ρvac = O(m4

Pl) by choosing a negative value of u0 such that
−u0 = O(m2

Pl/H
2
0 ) ∼ 10120 (viceversa, choosing a positive value of u0 amounts

to introducing a positive cosmological constant). This observation is interesting, but
unfortunately by itself is not a solution of the cosmological constant problem. We
are simply trading the large value of the vacuum energy into a large value of the shift
parameter in the transformation U (x) → U (x) + u0, and the question is now why
the shifted field should have an initial conditionU (t∗) = 0, or anyhowU (t∗) = O(1),
rather than an astronomically large initial value.

The next point to be discussed is how the cosmological background evolution
depends on the choice of initial conditions (112). To this purpose, let us consider
first Eq. (116). In any given epoch, such as RD, MD, or e.g. an earlier inflationary
de Sitter (dS) phase, the parameter ζ has an approximately constant value ζ0, with
ζ0 = 0 in dS, ζ0 = −2 in RD and ζ0 = −3/2 inMD. In the approximation of constant
ζ Eq. (116) can be integrated analytically, and has the solution [64]

U (x) = 6(2 + ζ0)

3 + ζ0
x + u0 + u1e

−(3+ζ0)x , (123)

where the coefficients u0, u1 parametrize the general solution of the homogeneous
equationU ′′ + (3 + ζ0)U = 0. The constant u0 corresponds to the reintroduction of
a cosmological constant, as we have seen above. We will come back to its effect in
Sect. 7.4. The other solution of the homogeneous equation, proportional to e−(3+ζ0)x ,
is instead a decaying mode, in all cosmological phases. Thus, the solution with initial
conditions U (t∗) = U̇ (t∗) = 0 has a marginally stable direction, corresponding to
the possibility of reintroducing a cosmological constant, and a stable direction, i.e.
is an attractor in the u1 direction. Perturbing the initial conditions is equivalent to
introducing a non-vanishing value of u0 and u1.We see that the introduction of u0 will
in general lead to differences in the cosmological evolution, which we will explore
below, while u1 corresponds to an irrelevant direction. In any case, it is reassuring
that there is no growing mode in the solution of the homogeneous equation. Consider
now Eq. (115). Plugging Eq. (123) into Eq. (115) and solving for Y (x) we get [64]

Y (x) = − 2(2 + ζ0)ζ0

(3 + ζ0)(1 + ζ0)
+ 6(2 + ζ0)

3 + ζ0
x + u0 − 6(2 + ζ0)u1

2ζ 2
0 + 3ζ0 − 3

e−(3+ζ0)x

+a1e
α+x + a2e

α−x , (124)
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where

α± = 1

2

[
−3 + ζ0 ±

√
21 + 6ζ0 + ζ 2

0

]
. (125)

In particular, in dS there is a growing mode with α+ = (−3 + √
21)/2 � 0.79. In

RD both modes are decaying, and the mode that decays more slowly is the one
with α+ = (−5 + √

13)/2 � −0.70 while in MD again both modes are decaying,
and α+ = (−9 + √

57)/4 � −0.36. Thus, if we start the evolution in RD, in the
space {u0, u1, a1, a2} that parametrizes the initial conditions of the auxiliary fields,
there is one marginally stable direction and three stable directions. However, if we
start from an early inflationary era, there is a growing mode corresponding to the a1
direction. Then Y will grow during dS (exponentially in x , so as a power of the scale
factor), but will then decrease again during RD and MD. We will study the resulting
evolution in Sect. 7.4, where we will see that even in this case a potentially viable
background evolution emerges. In any case, it is important that in RD and MD there
is no growing mode, otherwise the evolution would necessarily eventually lead us
far from an acceptable FRW solution. This is indeed what happens in the model (58),
where the homogeneous solutions associated to an auxiliary field are unstable both
in RD and inMD (see Appendix. A of [49]), and is the reason why we have discarded
that model.

7.1.2 The RR Model

Similar results are obtained for the RR model. Specializing to a FRW background,
and using the dimensionless fieldW (t) = H 2(t)S(t) instead of S(t), Eqs. (80)–(83)
become

h2(x) = ΩMe
−3x + ΩRe

−4x + γY (126)

U ′′ + (3 + ζ )U ′ = 6(2 + ζ ) , (127)

W ′′ + 3(1 − ζ )W ′ − 2(ζ ′ + 3ζ − ζ 2)W = U , (128)

where again γ = m2/(9H 2
0 ), ζ = h′/h and

Y ≡ 1

2
W ′(6 −U ′) + W (3 − 6ζ + ζU ′) + 1

4
U 2 . (129)

From this form of the equations we see that there is again an effective dark energy
density, given by ρDE = ρ0γY .

To actually perform the numerical integration of these equations, and also to study
the perturbations, it can be more convenient to use a variable V (t) = H 2

0 S(t) instead
of W (t) = H 2(t)S(t). Then Eqs. (126)–(128) are replaced by

h2(x) = ΩMe−3x + ΩRe−4x + (γ /4)U 2

1 + γ [−3V ′ − 3V + (1/2)V ′U ′] , (130)
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Fig. 3 Upper left panel the function ρDE(x)/ρ0 against x = ln a, for the RR model. Upper right
panel the function wDE(z). Lower panel the background evolution of the auxiliary fields U (blue
solid line) and V (red dashed line). From [37]

U ′′ + (3 + ζ )U ′ = 6(2 + ζ ) , (131)

V ′′ + (3 + ζ )V ′ = h−2U . (132)

InEqs. (131) and (132) appears ζ = h′/h. In turn, h′ can be computed explicitly from
Eq. (130). The resulting expression contains V ′′ and U ′′, which can be eliminated
using again Eqs. (131) and (132). This gives

ζ = 1

2(1 − 3γ V )

[
h−2Ω ′ + 3γ

(
h−2U +U ′V ′ − 4V ′)] , (133)

where Ω(x) = ΩMe−3x + ΩRe−4x . Then Eqs. (131) and (132), with h2 given by
Eq. (130) and ζ given by Eq. (133), provide a closed set of second order equations
for V and U , whose numerical integration is straightforward.

The result of the numerical integration is shown in Fig. 3. Similarly to Eq. (112)
for the RT model, we set initial conditions U = U ′ = V = V ′ = 0 at some initial
time xin deep in RD (we will see in Sect. 7.4.1 how the results depend on this choice).
In this case we get w0 � −1.14, wa � 0.08 [67], so the RR model differs more from
ΛCDM, compared to the RT model, at the level of background evolution. In the
RR model, to obtain for instance a value ΩM = 0.32, i.e. ΩDE = 0.68, we must fix
m � 0.28H0.
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The dependence on the initial conditions can be studied as before. The equation
forU is the same as in theRTmodel, so the homogeneous solution forU is again u0 +
u1e−(3+ζ0)x . The homogeneous equation for V is the same as that forU , so similarly
the homogeneous solution for V is v0 + v1e−(3+ζ0)x . In the early Universe we have
−2 ≤ ζ0 ≤ 0 and all these terms are either constant or exponentially decreasing,
which means that the solutions for bothU and V are stable in MD, RD, as well as in
a previous inflationary stage. From this point of view the RR model differs from the
RT model which, as we have seen, has a growing mode during a dS phase. Note also
the the constant u0 now no longer has the simple interpretation of a cosmological
constant term since, contrary to Eqs. (107), (83) is not invariant underU → U + u0.

7.2 Cosmological Perturbations

In order to asses the viability of these models, the next step is the study of their
cosmological perturbations. This has been done in [37]. Let us considering first
the scalar perturbations. We work in the Newtonian gauge, and write the metric
perturbations as

ds2 = −(1 + 2Ψ )dt2 + a2(t)(1 + 2Φ)δi j dx
idx j . (134)

We then add the perturbations of the auxiliary fields, see below, we linearize the
equations of motion and go in momentum space. We denote by k the comoving
momenta, and define

κ ≡ k/keq , (135)

where keq = aeqHeq is the wavenumber of the mode that enters the horizon at matter-
radiation equilibrium. To illustrate our numerical results, we use as reference values
κ = 0.1, 1, 5. The mode with κ = 5 entered inside the horizon already during RD,
while the mode κ = 1 reentered at matter-radiation equality. In contrast, the mode
with κ = 0.1 was outside the horizon during RD and most of MD, and re-entered
at z � 1.5. Overall, these three values of k illustrate well the k dependence of the
results, covering the range of k relevant to the regime of linear structure formation.

We summarize here the results for the RT and RR models, referring the reader
to [37] for details and for the (rather long) explicit expression of the perturbation
equations.

7.2.1 RT Model

In the RT model we expand the auxiliary fields as

U (t, x) = Ū (t) + δU (t, x) , Sμ(t, x) = S̄μ(t) + δSμ(t, x) . (136)
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Fig. 4 k3/2Ψ (a; k) in the RT model (blue solid line) and in ΛCDM (purple dashed line), as a
function of x = ln a(t), for κ = 0.1 (left upper panel), κ = 1 (right upper panel), κ = 5 (lower left
panel). Observe that the quantity that we plot is k3/2Ψ (a; k)multiplied by a factor 105. Lower right
panel the evolution of the perturbations δU for κ = 0.1 (blue solid line), κ = 1 (purple, dashed)
and κ = 5 (green, dot-dashed)

In FRW, the background value S̄i vanishes because there is no preferred spatial
direction, but of course its perturbation δSi is a dynamical variable. As with any
vector, we can decompose it into a transverse and longitudinal part, δSi = δSTi +
∂i (δS) where ∂i (δSTi ) = 0. Since we restrict here to scalar perturbations, we only
retain δS, and write δSi = ∂i (δS). Thus in this model the scalar perturbations are
given by Ψ,Φ, δU, δS0 and δS, see also [58, 73].

Figure4 shows the time evolution of the Fourier modes of the Bardeen variable
Ψk for our three reference values of κ (blue solid line) and compare with the cor-
responding result in ΛCDM (purple dashed line).14 As customary, we actually plot
k3/2Ψk , whose square gives the variance of the field per unit logarithmic interval of
momentum, according to

〈Ψ 2(x)〉 =
∫

d3k

(2π)3
〈|Ψk|2〉 = 1

2π2

∫ ∞

0

dk

k
〈|k3/2Ψk |2〉 , (137)

14Figs. 4 and 5 have been obtained by Dirian et al. in the work leading to [37] although there, for
reasons of space, we only published the corresponding figures relative to the RR model. Note also
that the quantity plotted as Ψ in Fig. 6 of [37] was actually −Ψ .
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where the bracket is the ensemble average over the initial conditions, that we take
to be the standard adiabatic initial conditions. Note also that, if start the evolution
choosing real initial conditions on Ψk , it remains real along the evolution.

We see from Fig. 4 that, up to the present time x = 0, the evolution of the pertur-
bations is well-behaved, and very close to that ofΛCDM, even if in the cosmological
future the perturbations will enter the nonlinear regimemuch earlier than forΛCDM.
In particular, the perturbation of the ‘would-be’ ghost fieldU , up to the present time,
are small, with k3/2Uk ∼ 10−4. Observe that in the cosmological future the pertur-
bation becomes non-linear, both for Ψk and for δUk , with the nonlinearity kicking in
earlier for the lower-momentum modes.15 This can be understood as follows. Any
classical instability possibly induced by the nonlocal term will only develop on a
timescale t such that mt is (much) larger than one. However, we have seen that, to
reproduce the typical observed value of ΩM , m is of order H0, and in fact numeri-
cally smaller, withm � 0.28H0 for the RTmodel (see Sect. 7.3 for accurate Bayesian
parameter estimation). Thus, instabilities induced by the nonlocal term, if present,
only develop on a timescale larger or equal than to a few times H0, and therefore in
the cosmological future.

Beside following the cosmological evolution for the fundamental perturbation
variables, such as Ψk(x) (recall that x ≡ ln a(t) is our time-evolution variable, not
to be confused with a spatial variable!), the behavior of the perturbations can also be
conveniently described by some indicators of deviations from ΛCDM. Two useful
quantities are the functions μ(x; k) and Σ(x; k), defined by

Ψ = [1 + μ(x; k)]ΨGR , (138)

Ψ − Φ = [1 + Σ(x; k)](Ψ − Φ)GR , (139)

where the subscript ‘GR’ denotes the same quantities computed in GR, assuming
a ΛCDM model with the same value of ΩM as the modified gravity model. The
advantage of using Ψ and Φ − Ψ as independent combinations is that the former
enters in motion of non-relativistic particles, while the latter determines the light
propagation. The numerical results for the RT model are shown in upper panels
of Fig. 5. We see that, in this model, the deviations from ΛCDM are very tiny, of
order of 1% at most, over the relevant wavenumbers and redshifts. In the forecast
for experiments, μ(x; k) is often approximated as a function independent of k, with
a power-like dependence on the scale factor,

μ(a) = μsa
s . (140)

For the RT model we find that the scale-independent approximation is good, in the
range ofmomenta relevant for structure formation, but the functional form (140) only

15Nevertheless, even the longest observable wavelength, which can be observed through their effect
on the CMB, remain well linear up to the present epoch. We will see indeed from a full Boltzmann
code analysis in Sect. 7.3 that the nonlocal models fit very well the CMB data.
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Fig. 5 Upper left panel μ(z; k), as a function of the redshift z, for κ = 0.1 (red dashed) κ = 1
(brown dot-dashed) and κ = 5 (blue solid line), for the RT model. The curves for κ = 1 and κ = 5
are almost indistinguishable on this scale. Upper right panel the same for Σ(z; k). Lower panel
μ(a; k), as a function of the scale factor a, for κ = 5 (blue solid line), for the RT model, compared
to the function μ(a) = μsas with μs = 0.012 and s = 0.8 (red dashed)

catches the gross features of the a-dependence. The lower panel of Fig. 5 compares
the functionμ(a, k) computed numerically for κ = 5,with the function (140), setting
μs = 0.012 and s = 0.8.

Another useful indicator of deviations fromGR is the effectiveNewton’s constant,
which is defined so that the Poisson equation for the Bardeen variable Φ takes the
same for as in GR, with Newton’s constant G replaced by a function Geff(x; k). In
the RT model, for modes inside the horizon, [37, 73],

Geff

G
= 1 + O

(
1

k̂2

)
, (141)

where k̂ = k/(aH). This gives again the information that, for the RT model, devi-
ations from ΛCDM in structure formations are quite tiny. We will see in more
detail in Sect. 7.3 how the predictions of the model compare with that of ΛCDM
for CMB,SNae, BAO and structure formation data.
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Fig. 6 k3/2Ψ (a; k) from the RRmodel (blue solid line) and fromΛCDM (purple dashed line), as a
function of x = ln a(t), for κ = 0.1 (left upper panel), κ = 1 (right upper panel), κ = 5 (left lower
panel). Observe that, on the vertical axis, we plot 105k3/2Ψ (a; k). Adapted from [37]. Lower right
panel the evolution of the perturbations δU for κ = 0.1 (blue solid line), κ = 1 (purple, dashed)
and κ = 5 (green, dot-dashed)

7.2.2 RR Model

In the RR model, in the study of perturbations we find convenient to use U and
V = H 2

0 S (rather than W = H 2(t)S). In the scalar sector we expand the met-
ric as in Eq. (134) and the auxiliary fields as U (t, x) = Ū (t) + δU (t, x), V =
V̄ (t) + δV (t, x). Thus, in this model the scalar perturbations are described by
Ψ,Φ, δU and δV .

The results for the evolution of Ψ are shown in Fig. 6. We see that again the
perturbations are well-behaved, and very close to ΛCDM. Compared to the RT
model, the deviations from ΛCDM are somewhat larger, up to the present epoch.
However, contrary to the RT model, they also stay relatively close to ΛCDM even
in the cosmological future.

The functions μ and Σ are shown as functions of the redshift in the upper panels
of Fig. 7, for our three reference value of the wavenumber. At a redshift such as
z = 0.5, typical for the comparison with structure formation data, they are of order
5%, so again larger than in the RT model. For the RR model μ, as a function of the
scale factor, is well reproduced by Eq. (140), with

μs = 0.094 , s = 2 , (142)
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Fig. 7 Upper left panel μ(z; k), as a function of the redshift z for the RR model, for κ = 0.1 (red
dashed) κ = 1 (brown dot-dashed) and κ = 5 (blue solid line). The curves for κ = 1 and κ = 5 are
almost indistinguishable on this scale. Upper right panel the same for Σ(z; k). Lower left panel
μ(a; k), as a function of the scale factor a, for κ = 5 (blue solid line), for the RT model, compared
to the function μ(a) = μsas with μs = 0.094 and s = 2 (red dashed). Lower right panel Geff/G
as a function of the redshift z, for sub-horizon modes, for the RR model. From [37]

see the lower panel of Fig. 7. By comparison, the forecast for Euclid on the error
σ(μs) over the parameter μs , for fixed cosmological parameters, is σ(μs) = 0.0046
for s = 1 and σ(μs) = 0.014 for s = 3 [83]. Thus (barring the effect of degeneracies
with other cosmological parameters), we expect that the accuracy of Euclid should
be sufficient to test the prediction for μs from the RR model, and possibly also for
the RT model.

Finally, the effective Newton’s constant in the RR model, for sub-horizon scales,
is given by

Geff(x; k)
G

= 1

1 − 3γ V̄ (x)

[
1 + O

(
1

k̂2

)]
. (143)

Thus in the sub-horizon limit, Geff(x; k) becomes independent of k. However, con-
trary to the RTmodel, it retains a time dependence. The behavior ofGeff as a function
of the redshift is shown in the lower right panel of Fig. 7.

Nonlinear structure formation has also been studied, for the RR model, using
N -body simulations [11]. The result is that, in the high-mass tail of the distri-
bution, massive dark matter haloes are slightly more abundant, by about 10% at
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M ∼ 1014M�/h0. The halo density profile is also spatially more concentrated, by
about 8% over a range of masses.16

Tensor perturbations have also been studied in [27, 39], for both the RR and RT
models, and again their evolution is well behaved, and very close to that in ΛCDM.

7.3 Bayesian Parameter Estimation and Comparison
with ΛCDM

The results of the previous sections show that the RR and RT nonlocal models give
a viable cosmology at the background level, with an accelerated expansion obtained
without the need of a cosmological constant. Furthermore, their cosmological per-
turbations are well-behaved and in the right ballpark for being consistent with the
data, while still sufficiently different from ΛCDM to raise the hope that the models
might be distinguishable with present or near-future observations. We can therefore
go one step forward, and implement the cosmological perturbations in a Boltzmann
code, and perform Bayesian parameter estimation. We can then compute the relevant
chi-squares or Bayes factor, to see if these models can ‘defy’ ΛCDM, from the point
of view of fitting the data. We should stress that this is a level of comparison with the
data, and with ΛCDM, that none of the other infrared modifications of GR widely
studied in the last few years has ever reached. The relevant analysis has been per-
formed in [38], using the Planck 2013 data then available, together with supernovae
and BAO data, and updated and extended in [39], using the Planck 2015 data.

In particular, in [39] we tested the nonlocal models against the Planck 2015 TT,
TE, EE and lensing data from Cosmic Microwave Background (CMB), isotropic
and anisotropic Baryonic Acoustic Oscillations (BAO) data, JLA supernovae, H0

measurements and growth rate data, implementing the perturbation equations in
a modified CLASS [16] code. As independent cosmological parameters we take
the Hubble parameter today H0 = 100 h km s−1Mpc−1, the physical baryon and
cold dark matter density fractions today ωb = Ωbh2 and ωc = Ωch2, respectively,
the amplitude As and the spectral tilt ns of primordial scalar perturbations and the
reionization optical depth τre, so we have a 6-dimensional parameter space. For the
neutrino masses we use the same values as in the Planck 2015 baseline analysis [1],
i.e. two massless and a massive neutrinos, with

∑
ν mν = 0.06 eV, and we fix the

effective number of neutrino species to Neff = 3.046.
Observe that, in the spatially flat case that we consider, inΛCDM the dark energy

density fraction ΩΛ can be taken as a derived parameter, fixed in terms of the other
parameters by the flatness condition. Similarly, in the nonlocal models m2 can be
taken as a derived parameter, fixed again by the flatness condition. Thus, not only

16The result of [11]were obtained using, for the RRmodel, the value of the cosmological parameters
obtained in ΛCDM, before parameter estimation for the RR models was performed in [38, 39], see
below. It would be interesting to repeat the analysis using the best-fit parameters of the RR model,
and to extend it also to the RT model.
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the nonlocal models have the same number of parameters as ΛCDM, but in fact the
independent parameters can be chosen so that are exactly the same in the nonlocal
models and in ΛCDM.

The results are shown in Table1. On the left table we combine the Planck CMB
data with JLA supernovae and with a rather complete set of BAO data, described
in [39]. On the right table we also add a relatively large value of H0, of the type
suggested by local measurement. The most recent analysis of local measurements,
which appeared after [39] was finished, gives H0 = 73.02 ± 1.79 [81]. In the last row
we give the difference of χ2, with respect to the model that has the lowest χ2. Let us
recall that, according to the standard Akaike or Bayesian information criteria, in the
comparison between two models with the same number of parameters, a difference
|Δχ2| ≤ 2 implies statistically equivalence between the twomodels compared,while
|Δχ2| � 2 suggests “weak evidence”, and |Δχ2| � 6 indicates “strong evidence”.17

Thus, for the case BAO+Planck+JLA, ΛCDM and the RT model are statistically
equivalent, while the RRmodel is on the border of being strongly disfavored. Among
the various parameter, a particularly interesting result concerns H0, which in the
nonlocal models is predicted to be higher than in ΛCDM. Thus, adding a high prior
on H0, of the type suggested by local measurements, goes in the direction of favoring
the nonlocal models, as we see from the right table. In this case ΛCDM and the RT
model are still statistically equivalent, although now with a slight preference for
the RT model, while the RR model becomes only slightly disfavored with respect
to the RR model, χ2

RR − χ2
RT � 2.8, and statistically equivalent to ΛCDM, χ2

RR −
χ2

ΛCDM � 1.4.
In Table1 we also give the derived values of γ = m2/(9H 2

0 ) for the nonlocal
models. These central values for γ correspond to

m/H0 � 0.288 (RR model) , (144)

m/H0 � 0.680 (RT model) . (145)

From the values in the Table, in the caseBAO+Planck+JLA,wefind, for the totalmat-
ter fraction ΩM = (ωc + ωb)/h20, the mean values ΩM = {0.308, 0.300, 0.288} for
ΛCDM, the RT and RR models, respectively, and h20ΩM = {0.141, 0.142, 0.143},
which is practically constant over the threemodels. UsingBAO+Planck+JLA+(H0 =
73.8) these numbers change little, and become ΩM = {0.305, 0.298, 0.286} for
ΛCDM, the RT and the RR model, see [39] for full details, and plots of one and
two-dimensional likelihoods. In particular, the left panel of Fig. 8 shows the two-
dimensional likelihood in the plane (ΩM , σ8). We see that the nonlocal models

17The comparison of the χ2 is not genuinely Bayesian. A more accurate method for comparing
models, which is fully Bayesian, is based on Bayes factors. We checked in [39] that the results
obtained from the computation of the Bayes factor are in full agreement with that obtained from
the comparison of the χ2.
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Fig. 8 Left panel σ8 − Ωm contour plot for Planck+BAO+JLA+(H0 = 70.6). Right panel Upper
plot temperature power spectrum (thick), and the separate contribution from the late ISW con-
tributions (dashed), for ΛCDM (black), RT (red) and RR (blue), using the best fit values of the
parameters determined from BAO+JLA+Planck. The black and red lines are indistinguishable on
this scale. The lower plot shows the residuals for ΛCDM and difference of RT (red) and RR (blue)
with respect to ΛCDM. Data points are from Planck 2015 [1] (green bars). Error bars correspond
to ±1σ uncertainty. From [39]

predict slightly higher values of σ8 and slightly lower values of ΩM . The fit to
the CMB temperature power spectrum, obtained with the data in Table1, is shown
in the right panel of Fig. 8.18

7.4 Extensions of the Minimal Models

The RR and RT models, as discussed above, are a sort of ‘minimal models’, that
allow us to begin to explore, in a simple and predictive setting, the effect of nonlocal
terms. However, even if the general philosophy of the approach should turn out
to be correct, it is quite possible that the actual model that describes Nature will
be more complicated. A richer phenomenology can indeed be obtained with some
well-motivated extensions of these models, as we discuss in this section.

18We should also stress that the analysis in [38, 39] has been performed using, for the sum of
the neutrino masses, the value of the Planck baseline analysis [1],

∑
ν mν = 0.06 eV, which is

the smallest value consistent with neutrino oscillations. Increasing the neutrino masses lowers H0.
In ΛCDM this would increase the tension with local measurements, which is the main reason for
choosing them in this way in the Planck baseline analysis. However, we have seen that the non-local
models, and particularly the RRmodel, predict higher values of H0, so they can accommodate larger
neutrino masses without entering in tension with local measurements. A larger prior on neutrino
masses would therefore favor the nonlocal models over ΛCDM. This possibility is currently being
investigated [10].
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7.4.1 Effect of a Previous Inflationary Era

The minimal models studied above are characterized by the fact that the initial con-
ditions for the auxiliary fields and their derivatives are set to zero during RD. As we
have discussed in Sect. 6, the choice of initial conditions on the auxiliary fields is part
of the definition of the model, and different initial conditions define different nonlo-
cal models. In principle, the correct prescription should come from the fundamental
theory. We now consider the effect of more general initial conditions, in particular
of the type that could be naturally generated by a previous phase of inflation.19

RT model. We consider first the effect of u0 in the RT model [49]. From Eq. (123)
we see that the most general initial condition of U amounts to a generic choice of
the parameters u0 and u1, at some given initial time. The parameter u1 is associated
to a decaying mode, so the solution obtained with a nonzero value of u1 is quickly
attracted toward that with u1 = 0. However, u0 is a constant mode. We have seen in
Eq. (122) that, in the RT model, the introduction of u0 corresponds to adding back a
cosmological constant term. From Eq. (122) we find that the corresponding value of
the energy fraction associated to a cosmological constant,ΩΛ, is given byΩΛ = γ u0.
In the case u0 = 0, for the RTmodel, γ � 5 × 10−2, see Table1. Then the effect of a
non-vanishing u0 will be small as long as |u0| � 20. However larger values of u0 can
be naturally generated by a previous inflationary era. Indeed, we see from Eq. (123)
that in a deSitter-like inflationary phase, where ζ0 � 0, if we start the evolution at
an initial time ti at beginning an inflationary era and set U (ti ) = U̇ (ti ) = 0, we get,
during inflation

U (x) = 4(x − xi ) + 4

3

(
e−3(x−xi ) − 1

)
, (146)

where xi = x(ti ). At the end of inflation, x = x f , we therefore have

U (x f ) � 4ΔN , (147)

where ΔN = x f − xi � 1. Consider next the auxiliary field Y (x). If we choose the
initial conditions at the beginning of inflation so that the growingmode is not excited,
i.e. a1 = 0 in Eq. (124), at the end of inflation we also have Y (x f ) � 4ΔN . These
values for U (x f ) and Y (x f ) can be taken as initial conditions for the subsequent
evolution during RD. The corresponding results where shown in [49]. This choice of
a1 is however a form of tuning of the initial conditions on Y . Here we consider the
most generic situation in which a1 �= 0. In this case during inflation Y will grow to a
value of order exp{0.79ΔN}, where ΔN is the number of efolds and α+ � 0.79 in
a deSitter-like inflation. It will then decrease as exp{−0.70x} during the subsequent
RD phase, see Eq. (125).

19We are assuming here that the effective nonlocal theory given by the RR or RT model is still valid
at the large energy scales corresponding to primordial inflation. Whether this is the case can only
be ascertained once one has a understood the mechanism that generates these nonlocal effective
theories from a fundamental theory.
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Despite the growth during inflation (exponential in x , so power-like in the scale
factor a), the DE density associated to Y , ρDE = γYρ0, is still totally negligible in
the inflationary phase, because ρ0 = O(meV4) is utterly negligible compared to the
energy density during inflation. Thus, this growth of Y does not affect the dynamics
at the inflationary epoch, nor in the subsequent RD era. Nevertheless, this large initial
value at the end of inflation can produce a different behavior of Y near the present
epoch, when the effective DE term γY (x) becomes important.20

To be more quantitative let us recall that, if inflation takes place at a scale M ≡
(ρinfl)

1/4, the minimum number of efolds required to solve the flatness and horizon
problems is given by

ΔN � 64 − log
1016 GeV

M
. (148)

The inflationary scale M can range from a maximum value of order O(1016) GeV
(otherwise, for larger values the effect of GWs produced during inflation would have
already been detected in the CMB temperature anisotropies) to a minimum value
around 1 TeV, in order not to spoil the predictions of the standard big-bang scenario.
Assuming instantaneous reheating, the value of the scale factor a∗ at which inflation
ends and RD begins is given by ρinfl = ρR,0/a4∗ , where ρR,0 is the present value of the
radiation energy density, and as usual we have set the present value a0 = 1. Plugging
in the numerical values, for x∗ = log a∗ we find

x∗ � −65.9 + log
1016 GeV

M
. (149)

Recall also that RD ends and MD starts at x = xeq � −8.1. Thus, assuming that the
number of efolds ΔN is the minimum necessary to solve the horizon and flatness
problems, during RD (i.e. for x∗ < x < xeq) we have

log[Y (x)] � 0.79ΔN − 0.70(x − x∗) , (150)

where we used the fact that, during RD, Y (x) ∝ e−0.70x , see Eq. (125). In Fig. 9
we show the result for ρDE and wDE obtained starting the evolution from a value
xin = −15 deep in RD, setting as initial conditions U (xin) = 4ΔN , U ′(xin) = 0,
and with Y (xin) = exp{0.79ΔN − 0.70(xin − x∗)} and Y ′(xin) = −0.70Y (xin), as
determined by Eq. (150). We show the result for three different values of the infla-
tionary scale M , and also show again, as a reference curve, the result for the minimal

20Two caveats are however necessary here. First, as already mentioned, we are assuming that the
nonlocal models are valid in the early inflationary phase. Second, we are assuming that the large
value of Y generated during inflation is still preserved by reheating. During reheating the energy
density of the inflaton field is transferred to the radiation field. Since γY is just the DE energy
density, it is in principle possible that even the energy density associated to Y is transferred to the
radiation field, just as the inflaton energy density. In this case the evolution could resume at the
beginning of RD with a small initial value of Y . Since, during RD, Y only has decaying modes, the
solution would then be quickly attracted back to that obtained setting Y (x∗) = 0 at some x∗ in RD.
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Fig. 9 Left panel ρDE/ρ0 for the RT model, shown against the redshift z, for the initial condi-
tions on U and Y corresponding to the minimal model (i.e. U = U ′ = Y = Y ′ = 0 at an initial
value xin = −15 in RD, blue solid line), and for the initial values of U,U ′, Y, Y ′ given by an
inflationary phase with M = 103 GeV (red dashed), M = 1010 GeV (brown, dot-dashed) and
M = 1016 GeV (green, dotted). In each case we adjust γ so to maintain fixed ΩM = 0.30, which
gives γ = 5.16 × 10−2 for theminimal model, and γ � {2.72 × 10−3, 1.04 × 10−3, 3.76 × 10−4}
for M = {103, 1010, 1016} GeV, respectively. Right panel the corresponding results for wDE

RT model. We see that the results, already for the background evolution, are quan-
titatively different from the minimal case. Comparing with the observational limits
of wDE(z) from Fig. 5 of the Planck DE paper [2] we see that the predictions of
these non-minimal nonlocal models for wDE(z) are still consistent with the observa-
tional bounds, so even these models are observationally viable, at least at the level of
background evolution. Observe that now, in the past, wDE(z) is no longer phantom,
since ρDE(x) = γY (x) now starts from a large initial value and, at the beginning, it
decreases. Then,wDE(z) crosses the phantom divide at z � 0.35 (forM = 103 GeV),
and z � 0.32 (for M = 1010 and M = 1016 GeV). It is quite interesting to observe
that, in the RTmodel, an early inflationary phase leaves an imprint on the equation of
state of dark energy today, so that one could in principle infer the inflationary scale
from a measurement of the function wDE(z).

RRmodel. The situation in the RRmodel is different, because now the homogeneous
solutions associated to the auxiliary fields U and V in Eqs. (131) and (132) only
have constant or decreasing modes, in all cosmological epochs. In a deSitter epoch,
setting ζ(x) = ζ0 = 0, the solution of Eq. (131) is still given by Eq. (146), so again
at the end of inflation U (x f ) � 4ΔN . Neglecting the second term in Eq. (146), we
can set U (x) � 4(x − xi ) on the right-hand side of Eq. (132). Taking into account
that during a deSitter inflationary phase h(x) is constant, at a value hdS = HdS/H0,
the equation for V (x) becomes

V ′′ + 3V ′ = 4(x − xi )

h2dS
. (151)

If we start the evolution at an initial time xi at beginning an inflationary era with
initial conditions V (xi ) = V ′(xi ) = 0 we get, during inflation,
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Fig. 10 Upper left panel ρDE(z)/ρ0 for the RR model, for the initial conditions on U and Y
corresponding to the minimal model (i.e. U = U ′ = V = V ′ = 0 at an initial value xin = −15 in
RD, blue solid line), and for the initial values ofU given by an inflationary phasewithM = 103 GeV
(red dashed),M = 1010 GeV (brown, dot-dashed) andM = 1016 GeV (green, dotted). In each case
we adjust γ so to maintain fixedΩM = 0.30, which gives γ = 9.12 × 10−3 for the minimal model,
and γ � {1.18 × 10−4, 5.87 × 10−5, 3.73 × 10−5} for M = {103, 1010, 1016} GeV, respectively.
Upper right panel the corresponding results for wDE. Lower panel the function ρDE(x)/ρ0 against
x = ln a

V (x) = 2

27h2dS

[
9(x − xi )

2 − 6(x − xi ) + 2
(
1 − e−3(x−xi )

)]
. (152)

Then, at the end of inflation, V (x f ) � 2(ΔN )2/(3h2dS). This value is totally negli-
gible, since even for an inflationary scale as small as M = 1 TeV, h2dS ∼ 1015. Thus,
as initial conditions for the subsequent evolution in RD, we can takeU (xin) = 4ΔN
and V (xin) = 0, at a value xin deep in RD. Of course, one could take an initial value
V (xin) = O(1), but this would not really affect the result. The point is that, for V ,
inflation does not generate a very large value at the beginning of RD.

The result is shown in Fig. 10 where, again, we express ΔN in terms of the
inflationary scale using Eq. (148). We see that the RR model with a large initial
value of u0 gets closer and closer to ΛCDM. We find that wDE(z = 0) ranges from
the value −1.017 for M = 103 GeV to the value −1.009 for M = 1016 GeV, so the
deviation with respect to ΛCDM are of order (1 − 2)%. Observe also that in the
cosmological future ρDE(x) continues to grow, although slowly, see the lower panel
in Fig. 10.

From the point of view of the comparison with observations, a sensible strategy is
therefore to start from the minimal RR model, since it predicts the largest deviations
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Fig. 11 Left panel ρDE(z)/ρ0 for the RR model, for the initial conditions U = u0, U ′ = V =
V ′ = 0 at an initial value xin = −15 in RD, with u0 = −30 (blue solid line), −60 (red dashed)
and −100 (brown, dot-dashed). The corresponding values of m/H0 are {0.42, 0.12, 0.06}. These
values corresponds to regime of the ‘path B’ solutions of [72]. Right panel the corresponding
function wDE(z)

from ΛCDM and therefore can be more easily falsified (or verified). Indeed, already
the next generation of experiments such as Euclid should be able to discriminate
clearly the minimal RR model from ΛCDM. However, one must keep in mind that
the non-minimalmodelwith a large value of u0 is at least aswellmotivated physically
as the ‘minimal’ model, but more difficult to distinguish from ΛCDM.

The RR model with a large value of u0 is also conceptually interesting because it
gives an example of a dynamical DE model that effectively generates a dark energy
that, at least up to the present epoch, behaves almost like a cosmological constant,
without however relying on a vacuum energy term, and therefore without suffering
from the lack of technical naturalness associated to vacuum energy. Observe that
these nonlocal models do not solve the coincidence problem, since in any case we
must choose m of order H0, just as in ΛCDM we must choose the cosmological
constant Λ of order H 2

0 . However, depending on the physical origin of the nonlocal
term, the mass parameter m might not suffer from the problem of large radiative
corrections that renders the cosmological constant technically unnatural.

Observe also that, just as inΛCDM, the inflationary sector is a priori distinct from
the sector that provides acceleration at the present epoch. Thus, one can in principle
supplement the nonlocal models with any inflationary sector at high energy, adding
an inflaton field with the desired inflaton potential, just as one does for ΛCDM.
However in these nonlocal models, and particularly in the RR model, there is a very
natural choice, which is to connect them to Starobinski inflation, since in a model
where is already present a nonlocal term proportional to R�−2R is quite natural to
also admit a local R2 term. As first suggest in [26, 65], one can then consider a model
of the form

S = m2
Pl

2

∫
d4x

√−g

[
R + 1

6M2
S

R

(
1 − Λ4

S

�2

)
R

]
, (153)
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where MS � 1013 GeV is the mass scale of the Starobinski model and Λ4
S = M2

Sm
2.

As discussed in [26], at early times the non-local term is irrelevant and we recover
the standard inflationary evolution, while at late times the local R2 term becomes
irrelevant and we recover the evolution of the non-local models, although with initial
conditions on the auxiliary fields determined by the inflationary evolution.

A general study of the effect of the initial conditions on the auxiliary fields in the
RR model has been recently performed in [72]. In particular, it has been observed
that there is a critical value ū0 � −14.82 + 0.67 log γ . For initial conditions u0 >

ū0 the evolution is of the type that we have discussed above (denoted as ‘path A’
in [72]). For u < ū0 a qualitatively different solution (‘path B’) appears. On this
second branch, after the RD and MD epoch, there is again a DE dominated era,
where however wDE gets close to −1 but still remaining in the non-phantom region
wDE > −1 (and, in the cosmological future, approaches asymptotically an unusual
phase with wDE = 1/3, ΩDE → −∞ and ΩM → +∞, see Fig. 4 of [72]). In Fig. 11
we show the evolution in the recent epoch for such a solution, for three different
values of u0 = −30,−60,−100. As we see from Eq. (129), the DE density in this
case starts in RD from a non-vanishing value ρDE(xin)/ρ0 = (γ /4)u20. For instance,
for u0 = −60, requiringΩM = 0.3 fixes γ � 0.00157, so ρDE(xin)/ρ0 � 1.4. It then
decreases smoothly up to the present epoch, where ρDE(x = 0)/ρ0 � 0.7, resulting
in a non-phantom behavior for wDE(z).21

For sufficiently large values values of −u0, this second branch is still cosmo-
logically viable (while we see from the figure that, e.g., u0 = −30 gives a value of
wDE(0) too far from−1 to be observationally viable), and has been compared to JLA
supernovae in [72]. Observe however that a previous inflationary phase would rather
generate the initial conditions corresponding to ‘path A’ solutions.

7.5 Exploring the Landscape of Nonlocal Models

The study of nonlocal infrared modifications of GR is a relatively recent research
direction, and one needs some orientation as to which nonlocal models might be
viable and which are not. At the present stage, the main reason for exploring variants
of the models presented is not just to come out with one more nonlocal model that
fits the data. Indeed, with the RT and RR models, both in their minimal and non-
minimal forms discussed above, we already have a fair number of models to test

21In the RT model the situation is different. Indeed, in [49] it was found that cosmological solutions
such that, today, ρDE(x = 0)/ρ0 is positive and equal to, say, 0.7, only exist for u0 larger than a
critical value ū0 � −12. Thus, again ‘path A’ solutions only exists only for u0 larger than a critical
value, but below this critical value there are no viable ‘path B’ solutions. The reason can be traced to
the fact that in the RTmodel a non-vanishing initial value of u0 corresponds to ρDE(xin)/ρ0 = γ u0,
linear in u0, while in the RR model corresponds to ρDE(xin)/ρ0 = (γ /4)u20. Thus, a negative value
of u0 in the RT model implies a negative initial value of ρDE(xin)/ρ0, resulting in a qualitatively
different evolution. In particular, for u0 negative and sufficiently large, it becomes impossible to
obtain ρDE(x = 0)/ρ0 positive and equal to 0.7 by the present epoch.
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against the data. Rather, our main motivation at present is that identifying features of
the nonlocal models that are viable might shed light on the underlying mechanism
that generates their specific form of nonlocality from a fundamental local theory.

A first useful hint comes from the fact, remarked in Sect. 4.2, that at the level of
models defined by equations of motions such as Eq. (58) or (60), models where �−1

acts on a tensor such as Gμν or Rμν are not cosmologically viable, while models
involving �−1R, such as the RT model, are viable. A similar analysis can be per-
formed for models defined directly at the level of the action. At quadratic order in
the curvature, a basis for the curvature-square terms is given by R2

μνρσ , R
2
μν and R2.

Actually, for cosmological application it is convenient to trade the Riemann tensor
Rμνρσ for theWeyl tensorCρσμν . A natural generalization of the nonlocal action (61)
is then given by

SNL = m2
Pl

2

∫
d4x

√−g

[
R − μ1R

1

�2
R − μ2C

μνρσ 1

�2
Cμνρσ − μ3R

μν 1

�2
Rμν

]
,

(154)

where μ1, μ2 and μ3 are parameters with dimension of squared mass. This extended
model has been studied in [27], where it has been found that the term Rμν�−2Rμν is
ruled out since it gives instabilities in the cosmological evolution at the background
level. TheWeyl-square term instead does not contribute to the background evolution,
since the Weyl tensor vanishes in FRW, and it also has well-behaved scalar pertur-
bations. However, its tensor perturbations are unstable [27], which again rules out
this term.

These results indicate that models in which the nonlocality involves �−1 applied
on the Ricci scalar, such as the RR and RT model, play a special role. This is partic-
ularly interesting since, as we saw in Eq. (63), a term R�−2R has a specific physical
meaning, i.e. it corresponds to a diff-invariant mass term for the conformal mode.
The same holds for the RT model, since at linearized order over Minkowski it is
the same as the RR model. This provides an interesting direction of investigation
for understanding the physical origin of these nonlocal models, that we will pursue
further in Sect. 8.

One can then further explore the landscape of nonlocal models, focusing on exten-
sions of the RRmodel. Indeed, already the RTmodel can be considered as a nonlinear
extension of the RR model, since the two models become the same when linearized
over Minkowski. An action for the RTmodel would probably include further nonlin-
ear terms beside R�−2R, such as higher powers of the curvature associated to higher
powers of �−1. We have seen in Sect. 7.3 that the RT model appears to be the one
that fits best the data, so it might be interesting to explore other physically-motivated
nonlinear extensions of the RR model. In particular, in [26] we have explored two
possibilities, that could be a sign of an underlying conformal symmetry, and that we
briefly discuss next.

The Δ4 model. A first option is to consider the model whose effective quan-
tum action is
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ΓΔ4 = m2
Pl

2

∫
d4x

√−g

[
R − m2

6
R

1

Δ4
R

]
. (155)

where Δ4 is the Paneitz operator (39). This operator depends only on the conformal
structure of the metric, and we have seen that it appears in the nonlocal anomaly-
induced effective action in four dimensions. In FRW themodel can again be localized
using two auxiliary fields U and V , so that the full system of equations reads [26]

h2(x) = Ω(x) + (γ /4)U 2

1 + γ [−3V ′ − 3V + (1/2)V ′(U ′ + 2U )] , (156)

U ′′ + (5 + ζ )U ′ + (6 + 2ζ )U = 6(2 + ζ ) , (157)

V ′′ + (1 + ζ )V ′ = h−2U , (158)

where as usual Ω(x) = ΩMe−3x + ΩRe−4x . The effective DE density can then be
read from ρDE(x)/ρ0 = h2(x) − Ω(x). In the ‘minimal’ model with initial condi-
tions U (xin) = U ′(xin) = V (xin) = V ′(xin) = 0 at some value xin deep in RD, we
find that the evolution leads to wDE(z = 0) � −1.36, too far away from −1 to be
consistent with the observations. Also, contrary to the RR model, there is no con-
stant homogeneous solution for U in RD and MD, because of a presence of a term
proportional to U in Eq. (157). Rather, the homogeneous solutions are U = eα±x

with α+ = −2 and α− = −(3 + ζ0), which are both negative in all three eras, and
indeed whenever ζ0 > −3, which is always the case in the early Universe. There-
fore, there is no ‘non-minimal’ model in this case. No large value for U or V is
generated during inflation, and in any case even a large initial value at the end of
inflation would decrease exponentially in RD, quickly approaching the solution of
the minimal model. Therefore, this model is not cosmologically viable.

The conformal RR model. Another natural modification related to conformal sym-
metry would be to replace the � operator in the RR model (or in the RT model) by
the ‘conformal d’Alembertian’ [−� + (1/6)R] [26], which again only depends on
the conformal structure of space-time. We will call it the ‘conformal RR model’.
More generally, one can also study the model [70]

ΓξRR = m2
Pl

2

∫
d4x

√−g

[
R − m2

6
R

1

(−� + ξ R)2
R

]
, (159)

with ξ generic, although only ξ = 1/6 is related to conformal invariance. Its study
is a straightforward repetition of the analysis for the RR model. We can localize it
by introducing two fields U = (−� + ξ R)−1R and S = (−� + ξ R)−1U , and then
Eqs. (130)–(132) become

h2(x) = Ω(x) + (γ /4)U 2

1 + γ [−3(V − ξUV )′ − 3(V − ξUV ) + (1/2)V ′U ′] , (160)

U ′′ + (3 + ζ )U ′ + 6ξ(2 + ζ )U = 6(2 + ζ ) , (161)
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Fig. 12 Upper left panel the dark energy density ρDE(x)/ρ0 for the conformal RR model. Upper
right panel the Hubble parameter h(x). Bottom panel wDE(z). From [26]

V ′′ + (3 + ζ )V ′ + 6ξ(2 + ζ )V = h−2U , (162)

where again ζ ≡ h′/h. This models has some novel features compared to the ξ = 0
case [70]. Indeed, as we see from Fig. 12, the DE density goes asymptotically to a
constant, and correspondingly also the Hubble parameter becomes constant, so the
evolution approaches that ofΛCDM. This can also be easily understood analytically,
observing that in a regime of constant (and non-vanishing) R, the operator (−� +
ξ R)−1 acting on R reduces to (ξ R)−1. Then the nonlocal term in the action (159)
reduces to a cosmological constant Λ = m2/(12ξ 2), leading to a de Sitter era with
H 2 = Λ/3 = m2/(6ξ)2, i.e. H = m/(6ξ). Similarly, from Eq. (161) we see that,
asymptotically,U → 1/ξ . Note that this solution only exists for ξ �= 0. In particular,
for the conformal RR model we have ξ = 1/6, so asymptotically H → m and h →
3γ 1/2, in full agreement with the numerical result in Fig. 12.

As we see from the bottom panel in Fig. 12, for the physically more relevant case
ξ = 1/6, wDE(z) is very close to−1, for all redshifts of interest. Therefore, similarly
to the non-minimal RR model discussed in Sect. 7.4.1, the conformal RR model is
phenomenologically viable but more difficult to distinguish fromΛCDM, compared
to the minimal RR model with ξ = 0.
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8 Toward a Fundamental Understanding

The next question is how one could hope to derive the required form of the nonlo-
calities, from a fundamental local QFT. This is still largely work in progress, and we
just mention here some relevant considerations, following Refs. [65, 66].

8.1 Perturbative Quantum Loops

The first idea that might come to mind is whether perturbative loop corrections can
generate the required nonlocality. We have indeed seen that, among several other
terms, the expansion in Eq. (16) also produces a term of the form μ4R�−2R, where
μ is the mass of the relevant matter field (scalar, fermion or vector) running in the
loops. One could then try to argue [24] that the previous terms in the expansion, such
as R log(−�/μ2)R or μ2R�−1R, do not produce self-acceleration in the present
cosmological epoch, and just retain theμ4R�−2R in the hope to effectively reproduce
the RR model. Unfortunately, it is easy to see that this idea does not work. Indeed,
as we have seen in detail in Sect. 2, to obtain a nonlocal contribution we must be in
the regime in which the particle is light with respect to the relevant scale, |�/μ2| �
1. In the cosmological context the typical curvature scale is given by the Hubble
parameter, so at a given time t a particle of massμ gives a nonlocal contribution only
if μ2<∼H 2(t). In the opposite limit μ2 � H 2(t) it rather gives the local contribution
(18). Thus, to produce a nonlocal contribution at the present cosmological epoch,
we need μ2<∼H 2

0 . Then, retaining only the Einstein–Hilbert term and the μ4R�−2R
term, we get an effective action of the form

Γ =
∫

d4x
√−g

[
m2

Pl

2
R − R

μ4

�2
R

]
, (163)

apart from a coefficient δ = O(1) that we have reabsorbed in μ4. Comparing with
Eq. (61) we see that we indeed get the RR model, but with a value of the mass scale
m given by

m ∼ μ2

mPl
. (164)

Since μ<∼ H0, for m we get the ridiculously small value m <∼ H0(H0/mPl) ∼
10−60H0. To obtain a value of m of order H0 we should rather use in Eq. (164)
a value μ ∼ (H0mPl)

1/2, which is of the order of the meV (such as a neutrino!).
However, in this case μ � H0, and for such a particle at the present epoch we are
in the regime (18) where the form factors are local. Therefore we cannot obtain the
RR model with a value m ∼ H0, as would be required for obtaining an interesting
cosmological model. The essence of the problem is that, with perturbative loop cor-
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rections, the term R�−2R in Eq. (163) is unavoidably suppressed, with respect to
the Einstein–Hilbert term, by a factor proportional 1/m2

Pl.
22

8.2 Dynamical Mass Generation for the Conformal Mode

The above considerations suggest to look for some non-perturbative mechanism that
might generate dynamically the mass scale m [65]. An interesting hint, that follows
from the exploration of the landscape of nonlocal models presented above, is that
the models that are phenomenologically viable are only those, such as the RR and
RT model, that have an interpretation in terms of a mass term for the conformal
mode, as we saw in Eq. (63). Thus, a mechanism that would generate dynamically a
mass for the conformal mode would automatically give the RR model, or one of its
nonlinear extensions such as the RT model or the conformal RR model. Dynamical
mass generation requires non-perturbative physics, in which case it emerges as a
very natural consequence, aswe know from experiencewith several two-dimensional
models, as well as fromQCD. As we discussed, an effective mass term for the gluon,
given by the gauge-invariant but nonlocal expression (53), is naturally generated in
QCD. The question is therefore whether some sector of gravity can become non-
perturbative in the IR, in particular in spacetimes of cosmological relevance such
as deSitter. Indeed, it is well know that in deSitter space large IR fluctuations can
develop. This is true already in the purely gravitational sector, since the graviton
propagator grows without bound at large distances, and in fact the fastest growing
term comes from the conformal mode [7], although the whole subject of IR effects in
deSitter is quite controversial (see e.g. [86] for a recent discussion and references).

Another promising direction for obtaining strong IR effects is given by the quan-
tum dynamics of the conformal factor, which includes the effect of the anomaly-
induced effective action. Indeed, the term σΔ̄4σ in Eq. (42) can induce long-range
correlations, and possibly a phase transition reminiscent of the BKT phase transition
in two dimensions [4]. Further work is needed to put this picture on firmer ground.
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22It has been pointed out in [72] that such a small value of m2 could be compensated using a
nonminimal model with a large value of |u0|. This would however lead to a model indistinguishable
from ΛCDM. Furthermore, with m/H0 ∼ 10−60, the required value of u0 would be huge. For
instance, in the RT model ΩΛ = γ u0. Since γ ∼ (m/H0)

2, this would require u0 ∼ 10120. In the
RR model, where the effective DE is quadratic in u0, this would still require u0 ∼ 1060. Observe
that one should also tune the matter content so that the term μ4/�2 in kW (−�/μ2) vanishes, since
we have seen that this term induces unacceptable instabilities in the tensor sector.
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Emergence of Gravity and RG Flow

Ayan Mukhopadhyay

Abstract This is a tribute to Padmanabhan’s works on the holographic principle
which have consistently enunciated the profound philosophy that the classical equa-
tions of gravity themselves hold the key to understanding their holographic origin. I
discuss how this can be realised by reformulating Einstein’s equations in AdS as a
non-perturbative RG flow that further leads to a new approach towards constructing
strongly interacting QFTs. For a concrete demonstration, I focus on the hydrody-
namic limit in which case this RG flow connects the AdS/CFT correspondence with
the membrane paradigm.

1 A Route to Explore the Holographic Origin of Gravity

It is widely believed that the holographic principle holds the key tomerging quantum
and gravity together into a consistent framework. This principle broadly postulates
that the gravitational dynamics in a given volume of spacetime can be described
using degrees of freedom living at the boundary [1–4]. Thus gravity and at least one
dimension of spacetime should be both emergent together from familiar quantum
dynamics ofmany-body systems living on a holographic screen, whose embedding in
the emergent spacetime should depend on the observer and themeasurement process.
A precise general statement of the holographic principle is still elusive although we
do have a very concrete realisation in the form of AdS/CFT correspondence of string
theory in which certain supergravity theories with stringy corrections in anti-de Sitter
(AdS) space have been shown to have dual descriptions given by specific types of
conformal Yang–Mills theories without gravity living at the boundary [5–7].

Thanu Padmanabhan (affectionately called Paddy by his collaborators and col-
leagues) has been one of the pioneers to first realise and emphasise that a general
understanding of the holographic principle should start from a reformulation and
reinterpretation of the classical gravity equations themselves. An enormously influ-
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ential volume of his publications has demonstrated that the classical equations of
motion of gravity can be encoded via surface terms from which information about
the bulk gravitational dynamics can be extracted [8–10]. Furthermore, the variation
of these surface terms have been reinterpreted as differential thermodynamic iden-
tities in static spacetimes giving new insights into the general holographic origin of
thermodynamic behaviour of classical black holes. My first research publication was
in collaboration with him and it led to a general principle of construction of holo-
graphic surface terms for classical gravity which can encode classical bulk equations
and reproduce the entropy of black holes when evaluated on-shell [11]. Generalising
earlier work done by Paddy himself in the case of Einstein’s gravity [8–10], together
we were able to establish the existence of such surface-terms for Lanczos–Lovelock
gravity in arbitrary dimensions. Looking back, it gives me a lot of pleasure that our
work has continued to play a major role in subsequent works done by Paddy and his
other collaborators in elucidating the holographic principle [12–14] (for a review see
[15]), and even in taking steps towards understanding the holographic origin of dark
energy [16].

My subsequent research (specially [17–20]) has also been directly influenced by
the broad philosophy enunciated through Paddy’s work that the classical gravity
equations themselves hold the key to unravelling gravity’s holographic origin. In
the context of AdS/CFT correspondence, which is the most concrete example of
holography, this question can be formulated in a precise way. Let us however state
this question from a broader point of view by considering a class of gravitational
spacetimes where one can naturally define a spatial holographic direction related
with a decreasing energy scale. Such spacetimes include asymptotically anti-de Sitter
(aAdS) spaces and those with horizons (such as black holes) where this holographic
direction is the radial direction associatedwith awrap factor or a blackening function.
If gravity is holographic, then the holographic radial direction should be related to
a scale of precise kind of renormalisation group flow of the dual quantum system
implying that holographic screens at constant values of this radial coordinate should
contain complete information about a specific kind of coarse-grained description of
the dual quantum system.Thebroad question partly is, howdowemake this statement
precise and also how do we relate the freedom of choice of local coarse-graining for
doingmeasurements in the dual quantum system to the emergence of diffeomorphism
symmetry in the gravitational theory.

In the case of AdS/CFT correspondence, the precise microscopic QFT described
by the data on the holographic screen at infinity (the boundary of the aAdS spacetime)
is precisely known. Nevertheless, the precise general relation between the scale of the
QFTand the emergent radial coordinate,meaning a correspondence betweenRGflow
in the QFT and the radial evolution of data on holographic screens via gravitational
dynamics is still unknown. As I will show below, an amazing lot can be known
about this mysterious map between RG flow and radial evolution by appropriate
reformulation of classical gravity equations themselves.

There is another aspect of the holographic origin of gravitywhich is also very enig-
matic. Typically the map between classical gravity with a few fields and a dual QFT
works only when the latter is strongly coupled [5–7]. This feature has revolutionised
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our understanding of strong coupling dynamics in quantum many-body systems. At
strong coupling, the perturbative machinery of calculations with Feynman diagrams
does not work and so far there is no better alternative to the holographic duality
(whenever it is applicable) for calculating real-time quantum dynamics in presence
of strong interactions. In order to calculate physical quantities via holography, one
simply solves for the asymptotic data that lead to solutions in the dual gravity theory
which are free of naked singularities. These lead to relations between the apriori
independent leading (non-normalisable) and subleading (normalisable) modes of
the gravitational fields near the boundary of AdS which satisfy two-derivative equa-
tions (such as Einstein’s equations and the covariant Klein–Gordon equation). Each
such field corresponds to an operator of the quantum theory. The non-normalisable
modes correspond to the sources for local operators, and the normalisable modes
correspond to the expectation values of the corresponding operators. Solving for the
relations between these two that lead to dual geometries without naked singularities,
we can obtain correlation functions, transport coefficients, etc. of the dual QFT. In
fact, even if the Lagrangian description of the dual QFT is unknown, the dual gravity
description gives us a concrete machinery to calculate all physical observables.

The enigmatic aspect is as follows. If the classical gravity equations can be refor-
mulated as a RG flow, then this RG flow itself should know which microscopic UV
data should lead to dual spacetimes in the theory of gravity without naked singulari-
ties. TheRGflow is a first order evolutionwith the holographic radial directionmoves
towards the infrared of the dual QFT. The criterion for absence of naked singularities
should be better obtained from the infrared behaviour of the RG flow as often in the
ultraviolet the dual field theory can become weakly coupled so that the holographic
classical gravitational descriptionmay no longer be valid [21]. Therefore, demanding
appropriate requirements on the infrared holographic screen where the RG flow ends
should ensure absence of naked singularities in dual gravity. Typically, this infrared
holographic screen is the horizon. However, this infrared horizon screen should not
be a fixed point of the RG flow so that the microscopic UV data can be recovered
from the endpoint data by following back the first order scale evolution. The ques-
tion then is what is this infrared behaviour of RG flow that should be specified at the
endpoint (the holographic screen coinciding with the horizon) which should lead us
to the same UV data that is usually specified at the AdS boundary to ensure that the
dual spacetimes do not have naked singularities.

The data at the holographic horizon screen is expected to be very universal and
characterised by a few parameters. As for example, although the microscopic UV
data in the hydrodynamic limit consists of infinite number of transport coefficients
which should be specified at the AdS boundary to obtain regular future horizons
[22–24], the dynamics of the horizon is known to be characterised universally by
a non-relativistic incompressible Navier–Stokes fluid with the shear viscosity being
the only parameter as demonstrated via the membrane paradigm [25, 26]. Therefore,
somehow the endpoint of RG flow that reformulates classical gravitational dynamics
should be specified only by a few parameters which should determine the infinite
number of physical observables of the dual QFT. A natural implication then is that
in any fixed number of dimensions only a class of gravitational theories (which
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may be constituted by finite or infinite number of higher derivative corrections to
Einstein’s equations) can be holographic. Furthermore, this can possibly be revealed
by reformulating the classical equations of gravity in the form of RG flows, and then
finding out when the absence of naked singularities in solutions of the gravitational
theory can be translated into an appropriate criterion for the endpoint of the RG
flow involving only a few infrared parameters.

In the following section, I will describe how such a reformulation of classical
gravity equations in AdS in the form of RG flows work and also how the infrared
criterion for the RG flow can determine the microscopic UV data of the dual field
theories. In Sect. 3, I will describe the construction of the RG flow in the field theory
which will also define the latter in a constructive way in special limits. Special
emphasis will be given on the hydrodynamic sector. I will conclude with an outlook.

2 Reformulating Gravity as a Highly Efficient RG Flow

The map between gravity in AdS and RG flow can be readily understood in the
Fefferman–Graham coordinates which is well adapted for the description of the
asymptotic behaviour of the spacetime metric and other gravitational fields from
which the microscopic UV data of the dual field theory can be readily extracted.
Therefore, we first describe how the map works in the Fefferman–Graham coordi-
nates. The map can of course be expressed in any coordinate system and this will be
related to the freedom of choosing the scale of observation in the dual field theory
locally as we will show later. We will also consider pure Einstein’s gravity for most
of our discussion.

Any aAdS spacetime metric can be expressed in the Fefferman–Graham coordi-
nates in the form:

ds2 = l2

r2
(
dr2 + gμν(r, x)dx

μdxν
)
. (1)

This coordinate system should be valid in a finite patch ending at the boundary which
is at r = 0. Also l is called the AdS radius and in the holographic correspondence
it provides units of measurement of bulk gravitational quantities which then corre-
sponds to parameters and couplings of the dual field theory. The boundary metric
g(b)

μν defined as:

g(b)
μν (x) ≡ gμν(r = 0, x) (2)

is identified with the metric on which the dual field theory lives. For the sake of
simplicity, unless stated otherwise we will assume that g(b)

μν = ημν so that the dual
field theory lives in flat Minkowski space. Our results of course can be generalised
readily to any arbitrary curved boundary metric.

For later purposes, it is useful to define:
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zμ
ν ≡ gμρ ∂

∂r
gρν. (3)

Einstein’s equations with a negative cosmological constant Λ = −d(d − 1)/(2l2)
in (d + 1)− dimensions in Fefferman–Graham coordinates can be written in the
following form [18]:

∂

∂r
zμ

ν − d − 1

r
zμ

ν + Tr z

(
1

2
zμ

ν − 1

r
δμ

ν

)
=2 Rμ

ν,

∇μ

(
zμ

ν − Tr zδμ
ν

) =0,

∂

∂r
Tr z − 1

r
Tr z + 1

2
Tr z2 =0. (4)

Above, all indices have been lowered or raised with gμν or its inverse respectively.
The first equation is the real dynamical equation and the latter ones are constraints
that the data at that boundary r = 0 should satisfy. The radial dynamical evolution
preserves the constraints, and therefore if they are satisfied at r = 0, they should be
satisfied everywhere (for further details see [27]). It is to be noticed that in the above
form the AdS radius l does not appear in the equations of motion.

Let us proceed nowwithout assuming the traditional rules of AdS/CFT correspon-
dence. We only assume that corresponding to any solution of (d + 1)− dimensional
Einstein’s equations with a negative cosmological constant that is free of naked sin-
gularities, there should exist a state in the dual d−dimensional field theory. The
(d + 1) metric then should contain information about 〈tμν

∞〉, the expectation value
of the microscopic energy-momentum tensor operator in the dual quantum state.
For later convenience of analysing the hydrodynamic limit, we will consider 〈tμν

∞〉
instead of 〈tμν

∞〉. When the boundary metric is ημν , 〈tμν
∞〉 should satisfy the Ward

identities:
∂μ〈tμν

∞〉 = 0, Tr 〈t∞〉 = 0 (5)

The first one is the local conservation of the energy-momentum tensor and the latter
comes from conformal invariance (we will later see why the dual quantum theory
should have conformal invariance). The question is of course how to extract 〈tμν

∞〉
from the dual spacetime metric. At this stage, it should be intuitively obvious that
the microscopic Ward identities (5) should be related to the constraints of Einstein’s
equations (4).

We should now see the problem of identification of 〈tμν
∞〉 from a broader perspec-

tive of connecting data on holographic screens at r = constant with an appropriate
RG flow in the dual QFT. Firstly, we identify the radial coordinate r with the inverse
of the scale Λ of the dual quantum theory, i.e. we impose the relation

r = Λ−1. (6)
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If the relation between r and Λ should be such that (i) it is state (i.e. solution)
independent, and (ii) that the AdS radius l which has no direct interpretation in the
dual QFT should not play a role in the mutual identifications, then the above is the
only possibility given that r = 0 corresponds to the UV. Now on holographic screens
at r = constant we must identify the following pair of data gμν(Λ) and 〈tμν(Λ)〉.
The effective metric gμν(Λ) can be seen as a generalised effective scale-dependent
coupling or rather the source for the effective operator 〈tμν(Λ)〉. We should identify
gμν(Λ) with gμν(r) that appears in the Fefferman–Graham metric (1) at r = Λ−1

for reasons similar to those mentioned above. Firstly, as evident from (4), as a result
of this identification the evolution equations for gμν(Λ) does not involve l which
has no direct meaning in the dual QFT, and secondly the identification is also state
(solution) independent. Furthermore, gμν(Λ) coincides then with the metric ημν on
which the dual QFT lives at Λ = ∞. In usual perturbative RG flows, we do not talk
about a background metric gμν(Λ) that evolves with the scale, however it makes
perfect sense to do so in a special limit as explained below.

At this stage, we can introduce the notion of highly efficient RG flow [19, 20]. To
understand this notion, it is first useful to classify operators in a QFT as single-trace
andmulti-trace operators. Single-trace operators are those which are gauge-invariant
and which form the minimal set of generators of the algebra of all local gauge-
invariant operators. All other gauge-invariant operators, which are multi-trace, are
formed out of products and spacetime derivatives of the single-trace operators. It is
these single-trace operators which are dual to gravitational fields in the holographic
correspondence. The large N limit (where N is usually the rank of the gauge group
in the QFT) is that in which the expectation values of the multi-trace operators
factorise into those of the constituent single-trace operators. It is only in this limit
that a QFT can have a holographic dual in the form of a classical gravity theory.
Furthermore, when the QFT is strongly interacting, we expect there to be only few
single-trace operatorswhich have small scaling dimensions, because unless protected
by symmetries there will be large quantum corrections to the anomalous dimensions
at strong coupling. The remaining single-trace operators will decouple from the RG
flow. The holographically dual classical gravity should then have only a few fields
which are dual to the single-trace operators with small scaling dimensions.

Even in the large N and strong coupling limit, the single-trace operators can mix
with multi-trace operators along the RG flow [28]. However, the RG flow can be
thought of as a classical equations for scale evolution of single-trace operators in
the sense that due to large N factorisation, the multi-trace operators can be readily
replaced by the products of the constituents single-trace operators when their expec-
tation values are evaluated in any state. It is expected that the gravitational theory
can be truncated to pure gravity with a (negative) cosmological constant implying
that there should be a consistent truncation of the dual RG flow equations to

∂

∂Λ
tμν(Λ) = Fμ

ν[tμν(Λ),Λ], (7)

with Fμ
ν being non-linear in t

μ
ν(Λ) so that it mixes with multi-trace operators built

out of its products and derivatives along the RG flow.
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In the strong interaction and large N limits, it is then useful to conceive a RG
flow such that (despite tμν(Λ)mixing with multi-trace operators constructed from its
products and derivatives) at each scale there should exist an effective metric gμν(Λ)

which is a non-linear functional of tμν(Λ) and Λ, i.e. of the form

gμν(Λ) = Gμν[tμν(Λ),Λ], (8)

which is constructed in the fixed background metric ημν such that tμν(Λ) preserves
the form of the Ward identity

∇(Λ)μt
μ
ν(Λ) = 0, (9)

with ∇(Λ) being the covariant derivative constructed from gμν(Λ). Therefore, an
evolving metric gμν(Λ) which is a classical functional of tμν(Λ) (in the sense men-
tioned before) emerges as a tool for defining an efficient RG flow which invokes
an efficient mixing of single-trace operators with multi-trace operators such that the
Ward identity for local energy and momentum conservation takes the same form at
each scale. This property of preservation of form of Ward identity for local conser-
vation of energy-momentum constitutes the major ingredient for defining an highly
efficient RG flow. This definition is not complete as it does not tell us how such a
RG flow can be constructed in the field theory – this will be described in the fol-
lowing section. Furthermore, we will also discuss the utility of such a RG flow in
constructing strongly interacting large N field theories.

The major motivation of constructing a highly efficient RG flow is that it readily
gives rise to a holographically dual classical gravity theory with full diffeomorphism
invariance in one higher dimension due to the following theorem [19].

Theorem 1: Let us consider the d−dimensional scale evolution of tμν(Λ) tak-
ing the schematic form (7) in a fixed background metric g(b)

μν such that there
exists a backgroundmetric gμν(Λ)which is a functional of tμν(Λ) andΛ in the
same fixed background metric g(b)

μν as schematically represented by (8), and in
which tμν(Λ) satisfies the local conservation equation (9) at each Λ. Also let
gμν(Λ) coincide with the fixed background metric g(b)

μν at Λ = ∞ so that tμν
∞

satisfies ∇(b)μtμν
∞ = 0 with ∇(b) being the covariant derivative constructed

from g(b)
μν .

We claim that as a consequence of the above assumptions, gμν(Λ) gives a
(d + 1)−dimensional bulk metric (1) in the Fefferman-Graham gauge with
r = Λ−1 such that it solves the equations of a pure (d + 1)−classical gravity
theory with full (d + 1)−diffeomorphism invariance and a negative cosmo-
logical constant determined by the asymptotic curvature radius l. Also g(b)

μν is
the boundary metric of this emergent asymptotically AdS spacetime.
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This theorem ensures that a (d + 1)−dimensional classical gravity with full dif-
feomorphism invariance can be rewritten as a first order scale evolution (7) of an
effective energy-momentum tensor operator.

Let us now go back and see how Einstein’s equation (4) can be reformulated into
such a form as (7). Let us consider the background metric of the dual 4 dimensional
field theory to be ημν where the following RG flow equation [19]

∂tμν(Λ)

∂Λ
= 1

Λ3
· 1
2
�tμν(Λ) − 1

Λ5
·
(
1

4
δμ

ν t
α
β(Λ)tβα(Λ) − 7

128
�2tμν(Λ)

)
−

+ 1

Λ5
log Λ · 1

32
· �2tμν(Λ) + O

(
1

Λ7
log Λ

)
(10)

can be constructed. For the above RG flow, we can indeed construct the following
unique gμν(Λ) as given by

gμν(Λ) = ημν + 1

Λ4
· 1
4
ημαt

α
ν(Λ) + 1

Λ6
· 1

24
ημα�tαν(Λ) +

+ 1

Λ8
·
(

1

32
ημαt

α
ρ(Λ)tρν(Λ) − 7

384
ημν t

α
β(Λ)tβα(Λ)

+ 11

1536
ημα�2tαν(Λ)

)
+

+ 1

Λ8
log Λ · 1

516
· ημα�2tαν(Λ) + O

(
1

Λ10
log Λ

)
(11)

as a functional of tμν(Λ) and Λ in the flat Minkowski space background such that
when it is considered as an effective background metric, the scale-dependent Ward
identity (9) is satisfied at each Λ (given that at Λ = ∞, the usual Ward identities
(5) hold). Furthermore, the 5−dimensional bulk metric (1) then satisfies Einstein’s
equations (4) with r = Λ−1 and the cosmological constant set to −6/ l2. The log
term in (10) is related to the conformal anomaly.

It is to be noted that theWard identity (9) can also be recast as an effective operator
equation, i.e. can be rewritten in a state-independent manner as an identity in flat
Minkowski space ημν . In the above example, (9) can be readily unpacked into

∂μt
μ
ν(Λ) = 1

Λ4
·
(

1

16
∂ν

(
tαβ(Λ)tβα(Λ)

)
− 1

8
tμν(Λ)∂μ Tr t (Λ)

)
+

+ 1

Λ6
·
(

1

48
tαβ(Λ)∂ν�tβα(Λ) − 1

48
tμν(Λ)∂μ�Tr t (Λ)

)
+

+O

(
1

Λ8

)
. (12)

We then explicitly see that the scale-dependent effective background gμν(Λ) as given
by (11) serves to absorb themulti-trace contributions that spoil the usualWard identity
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for local energy-momentum conservation. As a result, the Ward identity preserves
its form (9) at each scale in the new scale-dependent background.

It should be immediately noted that although the RG flow (10) leads to the bulk
metric in the Fefferman–Graham gauge, the underlying equations determining the
latter should have underlying full diffeomorphism invariance. It can be readily argued
that otherwise it is impossible that the RG flow (10) will be able to preserve a Ward
identity of the form (9). In particular, absence of diffeomorphism invariance in the
dual bulk theory that gives the evolution of gμν(Λ) will imply that there will be
other propagating degrees of freedom in addition to gμν(Λ) in which case the Ward
identity (9) should be modified.

The RG flow reformulation (10) of Einstein’s equations has been demonstrated so
far only in the asymptotic (i.e. UV) expansion. This series (10) has a finite radius of
convergence related to the scale (radius) where the Fefferman–Graham coordinates
has a coordinate singularity in the dual spacetime. In order to sum (10) to all orders
in Λ−1, we need to assume a specific form of the energy-momentum tensor such as
the hydrodynamic form to be considered later. In the latter case, all orders inΛ−1 can
be summed at any given order in derivative expansion. The radius of convergence is
the scale corresponding to the location of the horizon at late time and is related to
the final temperature.

The immediate question is how do we derive the RG flow reformulation of the
classical gravity equations such as (10) corresponding to Einstein’s equations. In
order to answer this, it is sufficient to understand what does tμν(Λ) correspond
to in the dual gravitational theory. To do this a gauge-independent formulation of
the map between RG flow and gravitational equations is helpful. We express the
(d + 1)−dimensional spacetime metric via ADM-like variables [29]:

ds2 = α(r, x)dr2 + γμν(r, x) (dxμ + βμ(r, x)dr) (dxν + βν(r, x)dr) . (13)

in which α is the analogue of the lapse function and βμ is the analogue of the
shift vector. Specifying conditions determining these amounts to gauge-fixing the
diffeomorphism symmetry. For reasons (state independence and absence of explicit
presence of l in the evolution equations) mentioned before, assuming that r = 0 is
the boundary the identification of Λ and gμν(Λ) should take the form [19]

r = Λ−1, gμν(Λ = r−1) = r2

l2
γμν(r, x). (14)

Note the above is not only true forEinstein’s gravity but also for a general gravitational
theory. In this case the formof tμν(Λ) can also befixed to a large extent by (i) requiring
it to be state (solution) independent, (ii) demanding absence of explicit presence of
l in its scale evolution, and (iii) requiring that it satisfies the Ward identity (9). In a
general gravitational theory, these imply that tμν(Λ) should take the form up to an
overall multiplicative constant [19]:



292 A. Mukhopadhyay

tμν(Λ = r−1) =
(
l

r

)d

· (
T μ

ν
ql + T μ

ν
ct)

, (15)

where T μ
ν
ql is the quasi-local stress tensor that is conserved via equations of motion

[30] and T μ
ν
ct is a sum of gravitational counterterms built out of the Riemann cur-

vature of γμν and its covariant derivatives such that they satisfy (9) via Bianchi-type
identities. Up to second order in derivatives, T μ

ν
ct can be parametrised as:

T μ
ν
ct = − 1

8πGN

[
C(0) · 1

l
· δμ

ν + C(2) · l ·
(
Rμ

ν[γ ] − 1

2
R[γ ]δμ

ν

)
+ · · ·

]
, (16)

withC(n)s being dimensionless constants that depend on the gravitational theory and
GN being the (d + 1)−dimensional gravitational constant. Above, the indices have
been lowered/raised by the induced metric γμν /its inverse. In the case of Einstein’s
gravity, T μ

ν
ql is the Brown–York tensor:

T μ
ν
ql = − 1

8πGN
γ μρ

(
Kρν − Kγρν

)
. (17)

Here Kμν is the extrinsic curvature of the hypersurface r = constant given by

Kμν = − 1

2α

(
∂γμν

∂r
− ∇(γ )μβν − ∇(γ )νβμ

)
, (18)

with βρ = γρμβμ, and K = Kμνγ
μν . Therefore, in the Fefferman–Graham gauge,

tμν(Λ) should take the following form for Einstein’s gravity:

tμν(Λ = r−1) = ld−1

16πGN

[
1

rd−1
· (
zμν − (Tr z) δ

μ
ν

) + 2 · 1

rd
· (
d − 1 − C(0)

) · δ
μ
ν −

−2 · 1

rd−2
· C(2) ·

(
Rμ

ν [g] − 1

2
R[g]δμ

ν

)
+ · · ·

]
. (19)

The overall multiplicative constant ld−1/(16πGN ) has been chosen by us above
and cannot be fixed by the arguments presented before. This overall factor is actually
proportional to N 2 of the dual field theory (asmentionedbefore l itself has nomeaning
in the dual QFT but the gravitational constant measured in units where l = 1 does
have one). This overall factor can be fixed by identifying the temperature in the field
theory in a thermal state to that of the Hawking temperature of the dual black hole.
This however requires taking into account quantum effects. For later convenience,
we rescale tμν(Λ) by this overall factor (16πGN )/ ld−1 so that N 2 is now absorbed
in the definition of tμν(Λ). There is still a genuine ambiguity in the definition of
tμν(Λ) which arises from the choice of the gravitational counterterm coefficients
C(n)s. Fixing this ambiguity leads us to a profound and surprising understanding of
gravity itself as described below.
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We first observe that the above ambiguity of choosing coefficients of gravitational
counterterms has an immediate consequence for the map between gravity and RG
flow. It implies that the equations of gravity can be reformulated into infinitely many
RG flow equations of the form (7) for any choice of gauge fixing of bulk diffeomor-
phisms. Each of these formulations corresponds to a specific choice of gravitational
counterterms C(n)s. Furthermore, each such RG flow will require the existence of
the same (unique) gμν(Λ) taking the schematic form (8) in which the effective Ward
identity (9) will be satisfied, and which will lead to the same bulk metric that satis-
fies the dual diffeomorphism invariant gravitational equations with a specific gauge
fixing.

It is of course desirable that at the UV fixed point, i.e. at Λ = ∞, tμν
∞ is finite.

This leads to fixing a finite number of leading counterterms, particularly [31–33]

C(0) = d − 1, C(2) = − 1

d − 2
, etc. (20)

It is interesting to note that tμν
∞ is completely free of ambiguities when the boundary

metric isημν , because all other counterterms, except a few leading terms, vanish in any
asymptoticallyAdS space because of the enhancement of symmetries in the geometry
in the asymptotic limit. We thus recover the result for tμν

∞ as in the traditional
AdS/CFT correspondence. This procedure is however unsatisfactory for two reasons.
Firstly, we still have infinite ambiguities in the form of unfixed coefficients of the
infinite number of gravitational countertermswhich vanish asymptotically. Secondly,
if we can genuinely rewrite gravity as RG flow, in the latter form it should be first
order evolution so that we can either specify conditions at the UV or at the IR, but
not at both places. It is more desirable that we restrict the IR as we need a sensible
IR behaviour of the RG flow even in cases where the UV completion is unknown.
This is specially relevant for finding holographic duals of theories like QCD where
only the IR can be expected to be captured by a holographically dual classical gravity
description at large N [21] – in the UV the emergent geometry can have a singularity
implying the necessity of new degrees of freedom.

This ambiguity is fixed by the following theorem stated below [18–20].

Theorem 2: Up to an overall multiplicative constant for tμν(Λ), there is a
unique choice of the functional Fμ

ν in (7) that reformulates a pure holographic
classical gravity theory as RG flow such that the endpoint of the RG flow at
Λ = ΛIR can be converted to a fixed point in the hydrodynamic limit cor-
responding to non-relativistic incompressible Navier-Stokes fluid under the
universal rescaling:

Λ−1
IR − Λ−1 = ξ · λ−1 t = τ

ξ
, (21)
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(corresponding to near horizon and long time behaviour of the dual gravi-
tational dynamics) where ξ is taken to zero with λ and τ kept finite. This
also corresponds to fixing the gravitational counterterms in (16) uniquely so
that tμν(Λ) is uniquely identified as a functional of the ADM variables in the
dual pure gravitational theory. Even those counterterms which are necessary
to cancel UV divergences are also determined by the prescribed IR behaviour.

Remarkably, the hydrodynamic limit can fix all the ambiguities of the RG flow
which however has a state-independent formulation in terms of evolution of the
operator tμν(Λ) with the scale and which is valid even beyond this limit. Thus long
wavelength perturbations of black holes unsurprisingly play a very fundamental role
in understanding holographic correspondence as RGflow.We do not have a complete
proof of this theorem, so actually it is still a conjecture. However very non-trivial
calculations which will be sketched in the next section provide solid supporting
verifications.

It is also important that the end point of the RG flow is not really fixed point
although it becomes so after the rescaling (21) which has been first introduced in
the context of gravitational dynamics in the hydrodynamic limit in the dual theory
in [34]. As we will see in the next section, it implies that all physical parameters in
tμν(Λ) should satisfy appropriate bounds regrading how they behave at the endpoint.
These bounds determine all integration constants of the first order RG flow and thus
determine the UV values of physical observables. Remarkably, these UV values are
exactly the same as those for which dual gravitational geometries are free of naked
singularities. Since the hydrodynamic limit determines the RG flow uniquely, all
physical observables beyond the hydrodynamic limit can also be obtained from the
RG flow. Therefore, not only that a holographic gravitational theory can be refor-
mulated as a unique RG flow for every choice of gauge-fixing of diffeomorphism
symmetry (up to an overall constant numerical factor for tμν(Λ)), the data which
leads to regular horizons are also determined by this RG flow. This IR criterion con-
stitutes another crucial defining feature of a highly efficient RG flow as exemplified
by (10) for Einstein’s gravity.

Finally, we note that the choice of gauge fixing of the diffeomorphism symmetry is
also encoded in the RGflow (which in cases other than the Fefferman–Graham gauge
may contain auxiliary non-dynamical variables corresponding to the lapse function
and the shift vector). This is due to the feature that any asymptotically AdS metric
has a residual gauge symmetry which corresponds to conformal transformations for
the dual theory at the boundary under which the dual theory must be invariant (up to
quantum anomalies that are related to logarithmic terms necessary for regulating
divergences of the on-shell gravitational action [31, 32]). Such diffeomorphisms
which preserve the Fefferman–Graham gauge are called Penrose–Brown–Henneaux
(PBH) transformations in the literature [35–37], and these can be readily generalised
to other choices of gauge fixing [19]. These turn out to lead to automorphism sym-
metry of the dual RG flow equations (7) when they are formulated in a general fixed
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conformally flat background metric [19]. We have called this lifted Weyl symmetry.
Deciphering this symmetry for a given highly efficient RG flow readily leads us to
determine the corresponding gauge fixing in the dual gravity theory and thus also the
choice of hypersurface foliation in the dual geometries used as holographic screens
at various scales.

3 The Field Theory Perspective and the Hydrodynamic
Limit

In the previous section,wehavediscussed reformulation of a holographic pure gravity
theory as a highly efficient RG flow which can self-determine microscopic UV data
by an appropriate IR criterion, and reproduce results of traditional holographic cor-
respondence where these data are determined by explicitly solving the gravitational
equations and demanding absence of naked singularities. In this section, following
[20] we will show how such a RG flow can be constructed in the field theory and
even define it constructively in the strong interaction and large N limits. We will
illustrate the construction briefly in the hydrodynamic limit.

In the strong interaction and large N limits, a handful of single-trace operators
(dual to the fields in the gravitational theory) can define at least some sectors of
the full theory in the sense mentioned in the previous section. Instead of using the
elementary fields to define the QFT, it then makes sense to use collective variables
which are directly measurable and which parametrise the expectation values of these
single-trace operators in all states. Such collective variables include the hydrody-
namic variables and can be extended to include the shear-stress tensor and other
non-hydrodynamic parameters also (see for instance [38–40]). At the very outset, it
is clear that such an exercise of defining quantum operators via collective variables
which parametrise their expectation values is futile except in the strong interaction
and large N limits. Unless we are in the large N limit, the expectation values of the
multi-trace operators do not factorise, therefore we need new collective variables for
defining multi-trace operators. Also if we are not in the strong interaction limit, we
will need to consider infinitely many single-trace operators. These will imply pro-
liferation of the number of collective variables required to describe exact quantum
dynamics.

The physical picture is as follows. Consider a set of microscopic single-trace
operators O∞

I such as the energy-momentum tensor which can be parametrised by a
set of collective variables X∞

A such as the hydrodynamic variables. Furthermore, the
spacetime evolution of the expectation values 〈O∞

I 〉 can be captured by equations
of motions for the collective variables X∞

A such as the hydrodynamic equations
with parameters η∞

M such as the transport coefficients. It is to be noted here that
the hydrodynamics being mentioned here is not referring to any kind of coarse-
graining, rather an asymptotic series involving perturbative derivative expansion
(with infinite number of transport coefficients) which captures the dynamics near
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thermal equilibrium [41, 42]. Generally speaking, we can succinctly represent the
quantum operators O∞

I through their expectation values 〈O∞
I 〉[X∞

A , η∞
M ].

We can readily do an appropriate coarse-graining of our measurements of 〈O∞
I 〉

and proceed to define 〈OI (Λ)〉. The latter definition can be achieved via appropri-
ate coarse-grained collective variables XA(Λ) which by construction follow similar
equations as XA(∞) but with new parameters ηM(Λ). As in any RG flow, we expect
that we need fewer parameters ηM(Λ) to describe the spacetime evolution of XA(Λ)

than the number of η∞
M we need to describe that of X∞

A to the same degree of approxi-
mation. In a highly efficient RGflow,we define the coarse-grained quantumoperators
OI (Λ) through their expectation values 〈OI (Λ)〉[XA(Λ), ηM(Λ)] assuming that the
coarse-grained operators are the same functionals of the coarse-grained collective
variables at each scale (as in the UV) but with new scale-dependent parameters. Note
that there is no explicit dependence onΛ in the functionals 〈OI (Λ)〉[XA(Λ), ηM(Λ)].

In order to complete the construction we will need to define the constructive prin-
ciples for coarse-graining that defines XA(Λ)which should follow similar equations
at each scale but with new scale-dependent parameters ηM(Λ). These three principles
are listed below.

1. High efficiency: There should exist an appropriate background metric:
gμν(Λ)[XA(Λ), ηM(Λ),Λ]
and appropriate background sources:
J (Λ)[XA(Λ), ηM(Λ),Λ]
at each Λ such that the Ward identity

∇(Λ)μt
μ
ν(Λ) =

∑′
OI (Λ)∇(Λ)ν JI (Λ) (22)

is satisfied with ∇(Λ) being the covariant derivative constructed from gμν(Λ) and∑′ denoting summation over all effective single-trace operators except tμν(Λ).
2. Upliftability tooperatordynamics: The functionals gμν(Λ)[XA(Λ), ηM(Λ),Λ]

and J (Λ)[XA(Λ), ηM(Λ),Λ] can be uplifted to functionals of the single-trace
operators. Therefore, they should assume the forms
gμν(Λ)[OI (Λ),Λ] and J (Λ)[OI (Λ),Λ]
so that the effective Ward identities (22) can be promoted to operator equations
such as (12). As a consequence, it follows that the scale evolution equations for
OI (Λ) such as (10) become state-independent equations involving single and
multi-trace operators and Λ only, and thus without involving the collective vari-
ables explicitly.

3. Good endpoint behaviour: The IR end point of the RG flow where most of the
parameters ηM(Λ) blow up and some collective variables XA(Λ) become singular
can bemade regular under the universal rescaling (21). In the hydrodynamic limit,
the endpoint should be converted to a fixed point corresponding to non-relativistic
incompressible Navier–Stokes equations under the stated rescaling.

Our claim is that for every realisation of a highly efficient RG flowwhich satisfies
the above three principles:



Emergence of Gravity and RG Flow 297

1. there corresponds a unique dual gravitational theory up to a choice of gauge-
fixing of the bulk diffeomorphism symmetry that can have a dual holographic
description as a strongly interacting large N QFT, and

2. there is unique set of UV data for (infinitely many) ηM(Λ) which however can be
resummed in the IR to a finite number of parameters characterising the dynamics
at the endpoint (such as the shear viscosity of the infrared non-relativistic incom-
pressible Navier–Stokes fluid), and also these UV data (such as the UV values of
the infinitely many transport coefficients) are the same as those which determine
the regularity of the future horizons in the dual gravitational theory corresponding
to the RG flow.

The infrared end point typically corresponds to the location of the horizon at late
time, and thus the highly efficient RG flow connects the AdS/CFT correspondence
with the membrane paradigm. The highly efficient RG flow gives a constructive
way to define strongly interacting large N QFTs by reformulating the holographic
correspondence. The first two principles in our list defining highly efficient RG flows
utilise the first theorem of reformulation of diffeomorphism invariant gravity and the
third principle in our list utilises the second theoremdiscussed in the previous section.
However, here our list of principles also presents a generalisation which is valid not
only for the reconstruction of holographic pure gravity but also when the latter is
coupled to a finite number of matter fields. The utility of highly efficient RG flow is
actually deeper. It shows that all such QFTs and hence all holographic gravitational
theories are determined by finite amount of data that governs the dynamics at the
end point. Therefore, all holographic gravitational theories can be parametrised by a
finite number of free parameters in any given dimension. How this parametrisation
works has not been completely understood yet.

As an illustration, let us see how we construct highly efficient RG flows in the
hydrodynamic limit [20]. Once again, let us revert back to the sector of states where
tμν(Λ) is the only single-trace operatorwith a non-vanishing expectation value for the
sake of simplicity. The expectation value of tμν(Λ) is parametrised by the (collective)
hydrodynamic variables uμ(Λ) and T (Λ) which thus define the quantum operator.
Furthermore, uμ(Λ) can be assumed to satisfy Landau–Lifshitz definition in which
case uμ(Λ) is a timelike eigenvector of tμν(Λ) with unit norm with respect to the
background metric gμν(Λ) so that uμ(Λ)gμν(Λ)uν(Λ) = −1. The hydrodynamic
variables uμ(Λ) and T (Λ) should satisfy hydrodynamic equations in the effective
background gμν(Λ) with scale-dependent energy density ε(Λ), pressure P(Λ) and
transport coefficientsγ (n,m)(Λ), wheren denotes the order in the derivative expansion
(running fromzero to infinity) andm lists thefinite number of independent parameters
at each order in the derivative expansion. At the first order in the derivative expansion,
there are only two independent transport coefficients, namely the shear and the bulk
viscosities.

The coarse-graining of uμ(Λ) and T (Λ) can be expressed both in integral or
differential form. The latter form is more useful and is as shown below:
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: ∂uμ(Λ)

∂Λ
: = a(0)(Λ)uμ(Λ) +

∞∑

n=1

ns∑

m=1

a(n,m)
s (Λ)S (n,m)(Λ) uμ(Λ) +

+
∞∑

n=1

nv∑

m=1

a(n,m)
v (Λ)V μ(n,m)

(Λ) ,

: ∂T (Λ)

∂Λ
: = b(0)(Λ) +

∞∑

n=1

ns∑

m=1

b(n,m)
s (Λ)S (n,m)(Λ). (23)

AboveS (n,m) denotes the independent hydrodynamic scalars that can be constructed
from derivatives of uμ(Λ) and T (Λ) at the n − th order in derivatives (with inde-
pendent meaning that a linear sum of these scalars do not vanish using lower order
equations ofmotion).When n = 1, there is only one such scalar, namely (∂ · u). Sim-
ilarly, V μ(n,m)(Λ) denotes hydrodynamic vectors which are not parallel to uμ(Λ)

(as otherwise it can be expressed via a scalar multiplying uμ(Λ)). When n = 1, there
is only one such vector, namely (u(Λ) · ∂)uμ(Λ). The symbols : · · · : stand for sub-
tracting away non-hydrodynamic contributions. The coarse-graining actually arises
from a truncation of the series (23) at a given order in the derivative expansion. So
far this is the most general way to coarse-grain hydrodynamic variables which is
consistent with the hydrodynamic limit.

Furthermore, we assume that the flow of the energy density, pressure and the
transport coefficients take the form of ordinary differential equations:

dε(Λ)

dΛ
= K [ε(Λ), P(Λ),Λ],

dP(Λ)

dΛ
= L[ε(Λ), P(Λ),Λ],

dγ (n,m)(Λ)

dΛ
= M (n,m)[ε(Λ), P(Λ), γ (k≤n,p)(Λ),Λ], (24)

in which the scale evolution of transport coefficients at n−th order in derivative
expansion involves only those at the same or lower orders.

Themathematical problem of constructing highly efficient RG flows in the hydro-
dynamic limit nowbecomeswell-defined.We simply need to solve for the parameters
a(0), b(0), a(n,m)

s , a(n,m)
v , b(n,m)

s in (23) and the functionals K , L and M (n,m) appearing
in (24) such that the three principles listed before are satisfied. Unfortunately, we
do not yet know how this mathematical problem can be solved directly. Fortunately,
there is a concrete algorithmic method [18] (developed using some results of [17,
27]) to reformulate the classical gravitational equations in the forms (23) and (24)
which can be used to solve for these parameters indirectly so that we can satisfy the
three principles and obtain all highly efficient RG flows.

The most subtle aspect of this procedure is in how we satisfy the third principle of
good infrared behaviour. As discussed in the previous section, the reformulation of
gravity as RG flow is subject to the ambiguities of undetermined counterterm coeffi-
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cients. However there are a finite number of such terms at each order in the derivative
expansion. The recipe is to proceed with these ambiguities which lead to unknown
numerical constants in (23) and (24). In order for the endpoint to be governed by
non-relativistic incompressible Navier–Stokes equations, ε(Λ) must be finite at the
endpoint ΛIR where γ (n,m)(Λ) should satisfy bounds γ (n,m)(Λ) ≤ (Λ − ΛIR)−k(n,m)

with k(n,m) being appropriate numerical constants which are independent of the
RG flow or the dual gravitational theory [18]. It turns out that when we actually
solve for γ (n,m)(Λ) the number of terms which diverge worse than the prescribed
bounds are typically more than the number of integration constants available unless
the counterterm coefficients which have been left undetermined so far are precisely
chosen at each order in the derivative expansion. Setting these counterterm coeffi-
cients to such values, we can fix all integration constants of the RG flow and thus we
can determine the UV values of all transport coefficients uniquely.

This procedure has been explicitly implemented for Einstein’s gravity at zeroth,
first and second orders in the derivative expansion. Remarkably, the UV values of
the equations of state and the first and second order transport coefficients determined
via this method matches exactly with the known values [22–24] which are required
for the regularity of the future horizon.

We should understand how to solve for highly efficient RG flows independently
without using the theorems for reformulation of dual gravitational theories so that
we can classify all gravitational theories that are holographic and also where a finite
number of IR parameters can determine all microscopic UV data in the dual theories.

4 Outlook

We have demonstrated that the reformulation of classical gravity as RG flow not only
reveals how the holographic dualityworks but also gives us a deeper understanding of
gravitational dynamics itself, in particular relating towhat kind of data that determine
the spacetime metric lead to absence of naked singularities.

An outstanding issue is to take another step to understand how to include quan-
tum corrections in gravity while mapping it to a highly efficient RG flow whose
notion also needs to be further generalised. In order to proceed, it should be useful
to understand better how the three principles which define highly efficient RG flows
themselves originate from a simpler and more holistic principle. Such a direction
seems possible as there is evidence that classical gravity emerges from features of
quantum entanglement in dual quantum systems [43]. In particular, it is known that
classical minimal surfaces in dual geometries encode entanglement entropies in dual
field theories [44]. It has also been argued elsewhere that efficient nonperturbative
RG flows that coarse-grain quantum information efficiently such that they remove
short range entanglement but preserve long range entanglement give rise to the holo-
graphic correspondence [45]. It is natural to speculate that when quantum gravity
corrections are included the infrared end point for the dual RG flow is not charac-
terised necessarily by local order parameters, but rather by non-local quantum order



300 A. Mukhopadhyay

parameters related to patterns of global long range entanglement. This point of view
also has a potential for defining quantum geometry in the emergent gravity theory.

I hold the point of view that a breakthrough in this direction is likely to come
from a reformulation of classical gravity equations themselves which uses non-local
geometric objects such as geodesics andminimal surfaces as the dynamical variables,
and also which makes a tangible connection with the local RG flow perspective
described in the present article. At present, how this can be realised seems a bit
mysterious, however it is very likely that there are hidden treasures in classical gravity
which are yet to discovered. It will not be surprising if the surface terms introduced
by Paddy, and his novel variational principle (see [14] for instance) involving these
surface terms which give classical gravitational equations in the bulk without using
the metric as a dynamical variable, can shed some light in this direction.

Finally, I would like to mention that the reformulation of classical gravity equa-
tions asRGflowshas also informed the development of a newapproach for combining
weak and strong coupling degrees of freedom of the quark-gluon plasma produced
by heavy ion collisions self-consistently into a novel nonperturbative framework
[46, 47]. Unravelling the holographic origin of gravity will surely revolutionise our
understanding of nonperturbative aspects of quantum dynamics in the future.
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Austrian Science Fund (FWF), project no. M 1893-N27.

References

1. G. ’t Hooft, The Holographic principle: opening lecture. Subnucl. Ser. 37, 72–100 (2001).
arXiv:hep-th/0003004

2. L. Susskind, The World as a hologram. J. Math. Phys. 36, 6377–6396 (1995).
arXiv:hep-th/9409089

3. R. Bousso, The Holographic principle. Rev. Mod. Phys. 74, 825–874 (2002).
arXiv:hep-th/0203101

4. J.M. Maldacena, TASI 2003 lectures on AdS/CFT, in Progress in String Theory. Proceed-
ings, Summer School, TASI 2003, Boulder, USA, 2–27 June 2003 (2003), pp. 155–203.
arxiv:hep-th/0309246

5. J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Int. J.
Theor. Phys. 38, 1133 (1999). arXiv:hep-th/9711200

6. E. Witten, Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998).
arXiv:hep-th/9802150

7. S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from noncritical string
theory. Phys. Lett. B 428, 105–114 (1998). arXiv:hep-th/9802109

8. T. Padmanabhan, The Holography of gravity encoded in a relation between entropy, horizon
area and action for gravity. Gen. Rel. Grav. 34, 2029–2035 (2002). arXiv:gr-qc/0205090

9. T. Padmanabhan, Gravitational entropy of static space-times and microscopic density of states.
Class. Quant. Grav. 21, 4485–4494 (2004). arXiv:gr-qc/0308070

10. T. Padmanabhan, Holographic gravity and the surface term in the Einstein–Hilbert action. Braz.
J. Phys. 35, 362–372 (2005). arXiv:gr-qc/0412068

11. A. Mukhopadhyay, T. Padmanabhan, Holography of gravitational action functionals. Phys.
Rev. D 74, 124023 (2006). arXiv:hep-th/0608120

http://arxiv.org/abs/hep-th/0003004
http://arxiv.org/abs/hep-th/9409089
http://arxiv.org/abs/hep-th/0203101
http://arxiv.org/abs/hep-th/0309246
http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/abs/hep-th/9802150
http://arxiv.org/abs/hep-th/9802109
http://arxiv.org/abs/gr-qc/0205090
http://arxiv.org/abs/gr-qc/0308070
http://arxiv.org/abs/gr-qc/0412068
http://arxiv.org/abs/hep-th/0608120


Emergence of Gravity and RG Flow 301

12. M. Akbar, R.-G. Cai, Thermodynamic behavior of field equations for f(R) gravity. Phys. Lett.
B 648, 243–248 (2007). arXiv:gr-qc/0612089

13. D. Kothawala, S. Sarkar, T. Padmanabhan, Einstein’s equations as a thermodynamic identity:
the cases of stationary axisymmetric horizons and evolving spherically symmetric horizons.
Phys. Lett. B 652, 338–342 (2007). arXiv:gr-qc/0701002

14. T. Padmanabhan, A. Paranjape, Entropy of null surfaces and dynamics of spacetime. Phys.
Rev. D 75, 064004 (2007). arXiv:gr-qc/0701003

15. T. Padmanabhan, Thermodynamical aspects of gravity: new insights. Reports Prog. Phys. 73,
046901 (2010). arXiv:0911.5004

16. T. Padmanabhan, Dark energy and gravity. General Relativ. Gravit. 40, 529–564 (2008).
arXiv:0705.2533

17. S. Kuperstein, A. Mukhopadhyay, The unconditional RG flow of the relativistic holographic
fluid. JHEP 11, 130 (2011). arXiv:1105.4530

18. S. Kuperstein, A.Mukhopadhyay, Spacetime emergence via holographic RG flow from incom-
pressible Navier–Stokes at the horizon. JHEP 11, 086 (2013). arXiv:1307.1367

19. N. Behr, S. Kuperstein, A. Mukhopadhyay, Holography as a highly efficient renormalization
group flow. I. Rephrasing gravity. Phys. Rev. D 94(2), 026001 (2016). arXiv:1502.06619

20. N. Behr, A. Mukhopadhyay, Holography as a highly efficient renormalization group flow. II.
An explicit construction. Phys. Rev. D 94(2), 026002 (2016). arXiv:1512.09055

21. I.R. Klebanov, M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and
chi SB resolution of naked singularities. JHEP 08, 052 (2000). arXiv:hep-th/0007191

22. G. Policastro, D.T. Son, A.O. Starinets, The shear viscosity of strongly coupled N=4 super-
symmetric Yang–Mills plasma. Phys. Rev. Lett. 87, 081601 (2001). arXiv:hep-th/0104066

23. R. Baier, P. Romatschke, D.T. Son, A.O. Starinets, M.A. Stephanov, Relativistic viscous hydro-
dynamics, conformal invariance, and holography. JHEP 04, 100 (2008). arXiv:0712.2451

24. S. Bhattacharyya, V.E. Hubeny, S. Minwalla, M. Rangamani, Nonlinear fluid dynamics from
gravity. JHEP 02, 045 (2008). arXiv:0712.2456

25. T. Damour, Black hole eddy currents. Phys. Rev. D 18, 3598–3604 (1978)
26. K.S. Thorne, R.H. Price, D.A. MacDonald, Black Holes: The Membrane Paradigm (Yale Uni-

versity Press, New Haven, 1986)
27. R.K. Gupta, A. Mukhopadhyay, On the universal hydrodynamics of strongly coupled CFTs

with gravity duals. JHEP 03, 067 (2009). arXiv:0810.4851
28. I. Heemskerk, J. Polchinski, Holographic and Wilsonian renormalization groups. JHEP 06,

031 (2011). arXiv:1010.1264
29. R.L. Arnowitt, S. Deser, C.W. Misner, The dynamics of general relativity. General Rel. Grav.

40, 1997–2027 (2008). arXiv:gr-qc/0405109
30. A. Balcerzak, M.P. Dabrowski, Generalized Israel junction conditions for a fourth-order brane

world. Phys. Rev. D 77, 023524 (2008). arXiv:0710.3670
31. M. Henningson, K. Skenderis, Holography and the Weyl anomaly. Fortsch. Phys. 48, 125–128

(2000). arXiv:hep-th/9812032
32. V. Balasubramanian, P. Kraus, A stress tensor for anti-de sitter gravity. Commun. Math. Phys.

208, 413–428 (1999). arXiv:hep-th/9902121
33. J. de Boer, E.P. Verlinde, H.L. Verlinde, On the holographic renormalization group. JHEP 08,

003 (2000). arXiv:hep-th/9912012
34. I. Bredberg, C. Keeler, V. Lysov, A. Strominger, Wilsonian approach to fluid/gravity duality.

JHEP 03, 141 (2011). arXiv:1006.1902
35. R. Penrose, W. Rindler, Spinors and Spacetime, Chap. 9, vol. 2, Spinor and Twistor Methods

in Space-Time Geometry (Cambridge University Press, Cambridge, 1986)
36. J.D. Brown, M. Henneaux, Central charges in the canonical realization of asymptotic symme-

tries: an example from three-dimensional gravity. Commun. Math. Phys. 104, 207–226 (1986)
37. A. Schwimmer, S. Theisen, Diffeomorphisms, anomalies and the Fefferman–Graham ambigu-

ity. JHEP 0008, 032 (2000). arXiv:hep-th/0008082
38. R. Iyer and A. Mukhopadhyay, An AdS/CFT connection between Boltzmann and Einstein.

Phys. Rev. D 81, 086005 (2010). arXiv:0907.1156

http://arxiv.org/abs/gr-qc/0612089
http://arxiv.org/abs/gr-qc/0701002
http://arxiv.org/abs/gr-qc/0701003
http://arxiv.org/abs/0911.5004
http://arxiv.org/abs/0705.2533
http://arxiv.org/abs/1105.4530
http://arxiv.org/abs/1307.1367
http://arxiv.org/abs/1502.06619
http://arxiv.org/abs/1512.09055
http://arxiv.org/abs/hep-th/0007191
http://arxiv.org/abs/hep-th/0104066
http://arxiv.org/abs/0712.2451
http://arxiv.org/abs/0712.2456
http://arxiv.org/abs/0810.4851
http://arxiv.org/abs/1010.1264
http://arxiv.org/abs/gr-qc/0405109
http://arxiv.org/abs/0710.3670
http://arxiv.org/abs/hep-th/9812032
http://arxiv.org/abs/hep-th/9902121
http://arxiv.org/abs/hep-th/9912012
http://arxiv.org/abs/1006.1902
http://arxiv.org/abs/hep-th/0008082
http://arxiv.org/abs/0907.1156


302 A. Mukhopadhyay

39. R. Iyer, A. Mukhopadhyay, Homogeneous relaxation at strong coupling from gravity. Phys.
Rev. D 84, 126013 (2011). arXiv:1103.1814
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Modelling Non-paradoxical Loss
of Information in Black Hole Evaporation

Sujoy K. Modak and Daniel Sudarsky

Abstract We give general overview of a novel approach, recently developed by
us, to address the issue black hole information paradox. This alternative viewpoint
is based on theories involving modifications of standard quantum theory, known
as “spontaneous dynamical state reduction” or “wave-function collapse models”
which were historically developed to overcome the notorious foundational problems
of quantum mechanics known as the “measurement problem”. We show that these
proposals, when appropriately adapted and refined for this context, provide a self-
consistent picture where loss of information in the evaporation of black holes is no
longer paradoxical.

1 Introduction

The black hole information problem [15] is one of themost debated and controversial
problems of theoretical physics, and has been the focus of considerable attention from
various theoretical viewpoints during the last four decades (see [18] for a pedagogic
introduction).We in fact note Paddy’s recent proposal [16, 17] connected to this issue.
The main reason behind this activity is the fact that while according to the unitary
evolution law of Quantum Mechanics (QM), all information about a quantum state
at any time is encoded in the state at any other time, the process of thermal black hole
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Fig. 1 Penrose diagram
showing black hole
formation and evaporation.
The initial spacetime is
Minkowskian at I − and at
the end of Hawking
evaporation Quantum
Gravity (QG) resolves the
would be classical
singularity making the final
spacetime asymptotically flat
at I +

evaporation via Hawing radiation poses a “threat” to such an expectation, leading to
the so called “paradox”.

More specifically, let us consider the formation (by gravitational collapse) of a
black hole and its subsequent evaporation (byHawking effect) as shown in Fig. 1. Let
the initial state of the matter, defined on an initial Cauchy slice Σ0, be characterized
at the quantum level, by some pure, perhaps a coherent state. Under appropriate
circumstances this matter collapses forming the black hole, and any quantum field,
in this space-timewill contribute to theHawking radiation at late times. The radiation
is characterized, in full, simply by the temperature and in particular it will be the
same for any initial mass regardless the details of the initial quantum state. Thus
unless some dramatic departure from the above picture takes place there would be
no way to retro-dict the initial state from the former. The mapping from initial to
final states would not be invertible and in particular it would fail to be represented
in terms of a unitary operator.

The point is that, attempts to explain how the full state of the quantum fields
unitarily related to the initial state would be encoded on late time hypersurfaces such
as Σ2 ∪ (J−(q) ∩ I +), have been unsuccessful until this date.

This, in turn, leads the majority of the physicists to believe that the fate of infor-
mation and problem of unitarity in black hole evaporation is a unique situationwhere
the unitarity of quantum evolution is in question. The recent finding of “firewall prob-
lem” [1] when considering a solution to the problem based on an approach known
as based on “black hole complementarity” [32] is often presented as reflecting the
tension between the unitarity of QM and equivalence principle of general relativity
(GR).
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We, however, need to be a bit more careful because the mapping implied by
quantum theory is expected to be unitary only if it refers to states defined on complete
Cauchy hypersurfaces. The point is that, while the initial state was characterized on
Σ0, which is a true Cauchy hypersurface, the late time hypersurfaces would fail to
be Cauchy hypersurfaces due to the presence of a space-time singularity deep within
the black hole. This singularity (or more precisely a surface arbitrarily close to it)
can in fact be considered as a boundary of the space-time and thus as a necessary
component of any true late time Cauchy hypersurface. However the singularity is
generally expected to be a feature of the fact that we have not incorporated the aspects
of quantum gravity which should cure this singularity removing the need to include
the extra space-time boundary. It is then and only then thatwe face a truly problematic
situation [22].

Therefore the real tension between quantum theory and general relativity in the
context of black hole formation and evaporation arises only when we view that
quantum gravity will remove the singularity and thus the need to include a spacetime
boundary. It is then and only then that we face something that could be considered
truly paradoxical. We could now ask ourselves, what would be the problem of adopt-
ing the position that, all processes involving black hole evaporation do in fact break
the unitarity of quantum evolution? As we see it, the problem with that position
would be that, as we just saw, we would be working in a context where we imagine
having incorporated aspects of quantum gravity in the discussion. Having done that,
it seems inevitable to view processes such as black hole formation and evaporation
as part of a larger class of processes, after all, the black hole concept is essentially
a global one. That is the notion of Black Hole is not one that could be considered
as lying at the basic formulation of the theory, which is expected to be described in
terms of some fundamentally local degrees of freedom, rather that the global notions
such as event horizons, or trapped surfaces that should appear only as secondary
and emerging entities. In fact we should expect that black hole creation and evapo-
ration should appear in the theory occurring also as virtual process contributing to
essentially all physical processes, thus raising the question of when precisely can
we expect to have an exact unitary evolution law as dictated by standard quantum
theory.

In fact the black hole information issue, motivated the analysis in [2] where it
was argued that loss of unitary would be need to accompanied by unacceptably large
violations of energy conservation or of causality. A subsequent study of the issue
reveled however that those argumentswere not very robust, and that such expectations
could be radically modified [35].

These considerations open the door to considering the question of information
loss in the context of possible of modified versions of quantum theory involving
departure from unitary evolution at the fundamental level.

In fact it is fair to say that all the approaches that have been proposed so far for
the recovery of information (and the full quantum state that is unitarily related to
the initial one) have not been successful as they end up adding to more problematic
aspects to the picture. A big motivation of this rather “one way traffic” is the adher-
ence to the notion that failure of unitarity in black hole evaporation would completely
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invalidate QM. However, as we advocate here, the situation is not as simple, because
the violation of unitarity is not only not unexpected in quantum context but rather
a common occurrence in any situation, normally thought as involving the collapse
of wave-function due to whatever reason (natural interaction or laboratory measure-
ment). That is, we have further motivation to consider the issue at hand, in connection
with the so called general measurement problem in quantum theory.

Therefore, in contrast with the established tradition we will discuss here an
approach based on the exact opposite possibility, i.e. the necessity of loss of infor-
mation during black hole evaporation just as in most ordinary situations involving
the quantum regime, thus “dissolving” the paradox.

This “dissolution” comes of course at the cost of losing quantum mechanical
unitarity and one might worry whether we would lose with it all the successes of
standardQM.We furthermore note that from the foundational point of view regarding
quantum theory, there have been various proposal of a modified version of quantum
dynamics incorporating a spontaneous collapse of the wave-function to elevate QM
from a theory of measurement to the theory of reality (see [27] for the terminology)
in a manner that the subjective role of an observer becomes removed and one can
treat QM objectively without introducing any extraneous notion of observer as an
essential entity shaping reality. This collapse process is spontaneous and stochastic,
and it is implemented in such a manner that the well established and experimentally
successful predictions of quantum mechanics remain unaffected, while a gradual
difference in the predictions appears as the quantum system’s size approaches that of
macroscopic object (for an account of ongoing experimental endeavor, see [4]). Thus,
in building such type of theories, the aim is to resolve the measurement problem and
eliminate various in-built two level descriptions of reality in Copenhagen interpre-
tation; such as, micro/macro, classical/quantum, system/apparatus, system/observer,
system/environment etc.

In this article, we will not discuss in detail any of these proposals (for that we
refer the reader to the papers [5, 10–13, 23–29, 33, 34] as well as review articles [3,
4]), but we shall use some specific models and provide a concrete example offering a
overview of the manner in which such models can deal with the information problem
in black holes leading to a picture where the associated breakdown of unitarity is a
part and parcel of the (modified) general quantum mechanical evolution.

2 Measurement Problem and Models
of Wave-Function Collapse

According to the Copenhagen interpretation of quantum mechanics there are two
distinct evolution rules for the quantum state/wave-function of a system. First, a
continuous evolution as dictated by the Schrödinger equation and valid while the
system is left alone and free from observations, and the second, a discontinuous and
stochastic jump to one of the eigenstates (dictated by Born probability rule) of some
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self-adjoint operator in the Hilbert space once measurement by an external observer
takes place. As characterized by R. Penrose, the first case is a unitary evolution or the
U -process, while the second case is a reduction or the R-process, and measurement
is a notion that separates these two processes. The problem is that within the standard
view of QM, measurement does not have any kind of rigorous definition, nor is it
clear when exactly it is performed during a evolution. In fact such vague and artificial
division has been sharply criticized by Bell [7]

...If the theory is to apply to anything but highly idealized laboratory operations, are we not
obliged to admit that more or less ‘measurement-like’ processes are going on more or less
all the time, more or less everywhere? Do we not have jumping then all the time?

Also, it is an in-built aspect of the standard presentations, that without observer or
some entity which is “measuring” the system, no specific outcome is presupposed
in QM.

Within the community, working on the foundation of quantum mechanics, there
are of course diverse viewpoints regarding the measurement problem. These include
the Many World Interpretations, in its various forms, the Bohmian Mechanics pro-
gram representing a reliance on nonlocal hidden variables, and the proposals for
unifying the U and R processes, referred as the Dynamical Reduction Program
(DRP), pioneered by Pearle, Ghirardi, Rimini and Weber.

TheDRPfirst included adiscrete process of collapse in thewave-function/quantum
state, driven by an additional non-unitary and stochastic term modifying the
Schrödinger evolution.

The basic idea in those proposals is that the evolution of systems with very small
number of degrees of freedom is dominated by the standard part of the dynamics
resulting in very small deviations from that predicted by standard theory, ensuring
the reproduction of the stupendous success of quantum theory in high precision
laboratory experiments whereas, the non-standard terms becomes dominant when
a rather large number of degrees of freedom appear in a state representing a rather
delocalized quantum superposition, thus ensuring the rapid collapse to one or the
other of the classical looking components of Schrödinger cat states.

This feature ensures that when, what is normally called a measurement is per-
formed, the system is driven to one or the other eigenstates of the apparatus’ pointer’s
position simply because such pointer consists of a macroscopically large number of
degrees of freedom. That is, as a result of the new general dynamical law the theory
reproduces the standard predictions of quantum theory regarding the measurement
of the appropriate self-adjoint operator. The first and is simplest successful model
of this kind known as Ghirardi-Rimini-Weber (GRW) theory [11], which was later
improved to deal with identical particles in a scheme that makes wave-function col-
lapse a continuous process and known as the CSL theory [12, 26, 27]. Their recent
advances in this direction have resulted in proposals for relativistic version of both
type of theories [5, 28, 29, 33]. In this article we restrict ourselves to the non-
relativistic framework of CSL theory to address the issue of black hole information
and for the relativistic frameworkwe refer the interested reader to our recentwork [6].
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2.1 CSL Theory: Non-relativistic Setting

The non-relativistic version of the CSL theory [12, 26, 27] is, at this point, much
better explored than the relativistic counterpart and it is defined by following two
equations: (i) A stochastically modified Schrödinger equation, whose solution is:

|ψ, t〉w = T̂ e− ∫ t
0 dt

′
[
i Ĥ+ 1

4λ0
[w(t ′)−2λ0 Â]2

]
|ψ, 0〉, (1)

where T̂ is the time-ordering operator, w(t) is a random, white noise type classical
function of time and its probability distribution is given by the second equation, (ii)
the Probability Distribution (PD) rule:

PDw(t) ≡ w〈ψ, t |ψ, t〉w
t∏

ti=0

dw(ti )√
2πλ0/dt

. (2)

Thus the standard Schrödinger evolution and corresponding changes in the state
corresponding to a “measurement” of the operator Â are unified and the dynamics
does not allow any superluminal signaling. In the non-relativistic limit, for a single
particle, the proposal assumes that there is a spontaneous and continuous reduction
characterized by Â = X̂δ , where X̂δ is a suitably smeared position operator (with
the smearing characterized by the scale δ). This smearing of the position operator
is required to avoid an uncontrolled increase in energy associated with a point-like
collapse event. The resultant theory can be applied to all situations without invoking
any measurement device or observer. This framework can be easily extended to
multiparticle system by choosing a set of operators representing each particle so that
everything, including, the apparatuses are treated quantum mechanically. The final
theory, thus seems to successfully address the measurement problem and completely
overlook various two level descriptions in Copenhagen interpretation.

Since the final outcome of the collapse of an individual state vector is uncertain,
it is useful to consider a collection of identical initial state and describe the evolution
of an ensemble in the language of a density matrix. The CSL evolution of density
matrix can be derived from a Lindblad type equation with a solution [12, 26, 27]

ρ(t) = T̂ e− ∫ t
0 dt

′
[
i( Ĥ−→− Ĥ←−]+ λ

2 [ Â−→− Â←−]2
]
ρ(0) (3)

where the arrows mean the operators act on the left or right of ρ(0).

3 Callan–Giddings–Harvey–Strominger (CGHS) Model

We choose the 2 dimensional version of black hole formation and evaporation, pro-
vided by the CGHS model [8], to exhibit an explicit realization of our proposal. The
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Fig. 2 Penrose diagram for
CGHS spacetime.
Minkowskian and black hole
regions are separated by a
sharp gravitational collapse
of null matter like photon

CGHS action is given by

S = 1

2π

∫
d2x

√−g

[
e−2φ

[
R + 4(∇φ)2 + 4Λ2

] − 1

2
(∇ f )2

]

where φ is the dilaton field, Λ2 is a constant, and f is a real scalar field, repre-
senting matter. The Penrose diagram of CGHS model is shown in Fig. 2. Before the
gravitational collapse (x+ < x+

0 ), the metric is Minkowskian, usually known as the
dilaton vacuum (region I and I’), given by ds2 = − dx+dx−

−Λ2x+x− , whereas, at x+ > x+
0

it is represented by the black hole metric (region II, III)1 ds2 = − dx+dx−
M
Λ

−Λ2x+(x−+Δ)
.

In regions I and I’, natural Minkowskian coordinates are y+ = 1
Λ
ln(Λx+), y− =

1
Λ
ln(− x−

Δ
), with −∞ < y− < ∞; − ∞ < y+ < 1

Λ
ln(Λx+

0 ). On the other hand,
on the BH exterior (region II), where physical observers might exist, one has the
coordinates σ+ = 1

Λ
ln(Λx+) = y+, σ− = − 1

Λ
ln(−Λ(x− + Δ)) and the metric is

ds2 = − dσ+dσ−

1+(M/Λ)eΛ(σ−−σ+) with −∞ < σ− < ∞ and σ+ > σ+
0 = 1

Λ
ln(Λx+

0 ). It is

easy to check the asymptotic flatness of the black holemetric by introducingSchwarz-
schild like time t and space r coordinates [19, 20] using tanh(Λt) = T/X and
− 1

Λ2 (e2Λr − M/Λ) = T 2 − X2.
The quantum description of the field f can be made using two different natural

bases. In the asymptotic past (I −
L ∪ I −

R or in) region, the basis mode functions are
chosen to be: uR

ω = 1√
2ω
e−iωy−

and uL
ω = 1√

2ω
e−iωy+

, with ω > 0 (R and L indicate
right and left moving modes respectively). The tensor product of respective vacuum

1More precisely, region I’, although flat, is also part of the interior of the event horizon as nothing
in that region can ever reach I +

R .
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state defines the in vacuum (|0in〉R ⊗ |0in〉L ). In the asymptotic future (out region)
we use a basis of modes that have support in the outside (exterior) and inside (inte-
rior) to the event horizon. The mode functions in the exterior to the horizon are:
vR

ω = 1√
2ω
e−iωσ−

Θ(−(x− + Δ)) and vL
ω = 1√

2ω
e−iωσ+

Θ(x+ − x+
0 ). Similarly, and

in order to have a complete out basis, one chooses a set of modes for the black hole
interior. Usually for the left moving modes, one maintains the same functional form
as before, and for the right moving modes one takes: v̂R

ω̃
= 1√

2ω̃
eiω̃σ−

in Θ(x− + Δ).
It is convenient to replace the above delocalized plane wave modes by a complete

orthonormal set of discrete and sharply localized wave packets modes [9, 14],

v
L/R
nj = 1√

ε

∫ ( j+1)ε

jε
dωe2π iωn/εvL/R

ω , (4)

where the integers j ≥ 0 and −∞ < n < ∞. These wave packets are peaked about
σ+/− = 2πn/ε with width 2π/ε respectively.

The non-trivial Bogolyubov transformations are only relevant in the right moving
sector, and are the ones that in fact account for the Hawking radiation. The initial
state, corresponding to the vacuum for the right moving modes, and the left moving
pulse (which leads to the formation of the black hole) |Ψin〉 = |0in〉R ⊗ |Pulse〉L
can be expanded in the out basis:

N
∑

Fnj

CFnj

∣
∣Fnj

〉ext ⊗ ∣
∣Fnj

〉int ⊗ |Pulse〉L , (5)

where the states
∣
∣Fnj

〉
are characterized by the finite occupation numbers {Fnj } for

each corresponding mode n, j ; N is a normalization constant, and the coefficients
CFnj ’s are determined by the Bogolyubov transformations.

4 Gravitational Induced Collapse of Wave-Function
and Loss of Information

As we have mentioned in the very beginning, the wave-function collapse model,
as given by the CSL theory, needs to be adapted in order to be applicable to the
problem at hand. One novel addition to the already developed CSL theory, is our
hypothesis that gravitational field enhances the rate of wave-function collapse. This
can be achieved by making the collapse rate as a function of the Weyl curvature
scalarWabcdWabcd as first suggested by Okon and Sudarsky [21]. That is, even in the
absence of any measuring device/observer, in a spacetime region with enormously
large curvature (such as inside the horizon and towards the center of a black hole),
quantum superpositions are increasingly broken in a stochasticmanner (provided by
the CSL stochasticity) and produces similar effects as those caused by an external
measurement usually considered in a laboratory context. It should be mentioned that
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such an effect of gravitation on quantum mechanics was strongly advocated by R.
Penrose in several of his works (see, for instance, [30, 31]) and we consider those as
a guiding path leading to our explicit demonstration.

We first note that in the multi-particle system, the CSL evolution (1) is general-
ized to

|ψ, t〉wα
= T̂ e− ∫ t

0 dt
′
[
i Ĥ+ 1

4λ0

∑
α [wα(t ′)−2λ0 Âα]2

]
|ψ, 0〉, (6)

whereα is an index labeling the set of particles.Our aim is to consider aCSLevolution
(analogous to (6) applied to a field theorywith the indexα having a differentmeaning)
of the initial state (5). Moreover we will treat CSL as an interaction term, so that the
free Hamiltonian will be set to zero, i.e. H = 0 in (6). As we are using this equation
in the context of QFT in curved spacetime, we need to choose a new operator, that
must be constructed using the field operator and its derivatives. One such operator
is the number operator (for right moving modes) defined in the interior Fock basis
times the identity for the exterior Fock basis:

Âα = N̂ int
n j ⊗ I

ext (7)

for all n, j , where N̂ int
n j = N̂ int (R)

nj ⊗ I
int (L) and Iext = I

ext (L) ⊗ I
ext (R). This ensures

that the collapse will make the wave-packet to peak about particular values of n and
j (which will be picked randomly depending on the specific realization of the noise
wnj (t)). In the standard CSL type evolution (6) it takes, strictly speaking, an infinite
amount of time to fully collapse the wave-function to an eigenstate of the collapse
operator due to the finite value of the collapse parameter λ0. It is to be noted that
the experimental bounds on λ0 come from laboratory based experiments that are,
of course, performed in a spacetime regions where curvature is negligible. Here we
make a hypothesis that the collapse rate is in fact sensitive to the local curvature, so
that a more general expression must have the following form

λ(W 2) = λ0
(
1 + (W 2/μ2)γ

)
(8)

where μ is an appropriate scale and γ ≥ 1. One anticipated effect of this, is to
generate an complete effective collapse of the quantum state, taking place in a finite
time interval.

In the particular case of 2Dmodels theWeyl scalar vanishes identically so instead,
for this special case, we assume that λ is determined by the Ricci scalar. Thus, for
this specific case (8) is replaced by,

λ(R) = λ0 (1 + (R/μ)γ ) (9)

where, for the CGHS black hole R = 4MΛ
M/Λ−Λ2(T 2−X2)

. The Kruskal time and space

coordinates are respectively T = x++x−+Δ
2 and X = x+−x−−Δ

2 . Next we provide a
brief account of calculation, further details can be found in [19, 20].
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Fig. 3 Foliation of the
CGHS spacetime by Cauchy
slices. All the plots have
fixed M/Λ3 = 4.42, while
T = 0.1, 0.5, 1, 3 (in
magenta, blue, orange and
green) as the joining
T = const. curves

Foliation of the spacetime: To implement CSL in the black hole model we need
to foliate the spacetime with an appropriately defined spacelike/Cauchy slices, as
plotted in Fig. 3, and use the time evolution from one slide to the other. As there is
no natural notion of “time” in the relevant regions of these spacetimes, we take a
convenient time parameter (τ ) that will be used to characterize the quantum state
evolution, according to the CSL dynamics.

We define the Cauchy slices to be Schwarzschild r = const. inside the horizon
and Schwarzschild t = const. outside the horizon, and join them by surfaces with
Kruskal T = const.. The intersection curves joining the family of Cauchy slices
r = const. and T = const. at one end (inside horizon) is chosen to be T1(X) =(
X2 + M

Λ3 e−2Λ/
√
X
)1/2

, whereas, at the other end (outside horizon) the intersection

curve T2(X) can be found just by using a reflection about the event horizon T = X .
We fix the value of the “time” parameter τ as the value of the coordinate T on
the intersection of r = const. with X = 0 (or T axis), so that the Ricci scalar is
expressed as R = 4MΛ

M/Λ−Λ2τ 2 . It is now clear that R diverges for some finite value of

τ = τs = M1/2

Λ3/2 corresponding to the divergence of R that characterizes the singularity.
Evolution of the quantum state: In standard CSL theory state is evolved according

to the Eq. (6), which, in the present situation is subjected to the changing collapse
parameter (9), that become a function of time parameter τ and, the collapse operators
(7). The initial state for the right movingmodes, traveling fromI −

R toI +
R is denoted

by the “in” vacuum for right moving modes, which can be expressed in the “out”
basis according to (5) (we leave for the moment the “pulse” which is left moving and
forms the black hole). The evolution equation of the state vector for right moving
modes become
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|Ψ, τ 〉R = N
∑

F

CFnj e
− ∫ τ

o dτ ′[ 1
4λ

∑
n, j (wnj−2λFnj )2]|Fnj 〉intR ⊗ |Fnj 〉extR (10)

where Fnj is the eigenvalue of the operator N̂ int
n j while acting on the state |F〉int .

As τ approaches τs the Cauchy slices tend to reach the spacetime singularity, and
R diverges. This divergence in R makes the integral in (10) divergent, and thus the
initial state collapses to a state with definite quantum numbers n, j , giving

lim
τ→τs

|Ψ, τ 〉R = NCFn0 j0
|Fn0 j0〉intR ⊗ |Fn0 j0〉extR , (11)

on the hypersurface Σ1 (Fig. 4) as it approaches the singularity. As the level of each
mode’s excitation depends on the realization of the stochastic valuewnj (τs), the final
state after collapse, although remains pure, it is undetermined.

Evolution at the ensemble level as given by the density matrix: To account for
the lack of predictability of the final state we consider a large collection of systems
all prepared in the same initial state and use an ensemble description in terms of a
density matrix. The evolution equation becomes

ρR(τ )=N 2
∑

F,G

e− π
Λ

(EF+EG )e− ∑
nj (Fnj−Gnj )

2
∫ τ

τ0
dτ ′ λ(τ ′)

2 |F〉intR ⊗ |F〉extR 〈G|intR ⊗ 〈G|extR .

(12)
Therefore, near the singularity (on Σ1 in Fig. 4), as λ diverges in the exponential
factor, the result is a diagonal densitymatrix of the form (omitting n, j from subscript
for simplified notation and putting explicit expression for CF ):

lim
τ→τs

ρR(τ ) = N 2
∑

F

e− 2π
Λ
EF |F〉intR ⊗ |F〉extR 〈F |intR ⊗ 〈F |extR , (13)

where EF = ∑
nj ωnj Fnj is the total energy of the final excited state.

The description of the state vector and density matrix is complete once we include
the left moving matter pulse, so that

lim
τ→τs

|Ψ, τ 〉R = Ne−
π
Λ
EF0 |F0〉intR ⊗ |F0〉extR ⊗ |Pulse〉L (14)

lim
τ→τs

ρ(τ) = N2
∑

F

e−
2π
Λ

EF |F〉intR ⊗ |F〉extR 〈F |intR ⊗ 〈F |extR ⊗ |Pulse〉L 〈Pulse|L . (15)

where F0 is understood as a specific particle excited state Fn0 j0 and EF0 is the energy
of this state.

Quantum gravity (QG) and resolution of singularity: To pass from the hypersur-
face Σ1 to Σ f , in Fig. 4, one has to rely on a theory of QG which is likely to involve
giving up the classical notion of “spacetime”. In the absence of any fully workable
theory of that kind, we make a few natural assumptions about QG theory, namely
that – (i) it resolves the singularity and leads on the other side, to a regime describable
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Fig. 4 Penrose diagram of
CGHS spacetime with
Quantum Gravity (QG)
region

with standard classical notions of space-time, (ii) it does not lead to arbitrarily large
violations of standard conservation laws such a energy conservation. If so, then QG
makes following operation after combining the negative energy state |F0〉intR (which
is complementary to Hawking radiation) with the positive matter |Pulse〉

|F0〉intR ⊗ |Pulse〉L → |p.s〉, (16)

where |p.s〉 is a post-singularity quantum state with almost vanishing energy and
residing as the complement of Hawking radiation nearI +

R on Σ f . Then on the final
hyper-surface Σ f , the quantum state and the density matrix becomes

|Ψ 〉R = Ne− π
Λ
EF0 ⊗ |F0〉extR ⊗ |p.s〉 (17)

ρ = N 2
∑

F

e− 2π
μ
EF |F〉extR 〈F |extR ⊗ |p.s〉 〈p.s| . (18)

= ρext
thermal ⊗ I

ext
p.s. (19)

The resulting picture, therefore, indicates that the final state on the Cauchy slice Σ f ,
for an individual system is pure, yet undetermined while at the ensemble level it is
proper mixed state as the density matrix is clearly thermal on the asymptotic regime
times a state with a very low energy (and idealized to be vacuum) characterizing the
remaining portion ofΣ f , (which is then taken to be a portion of flat spacetime). Thus
the complete evolution is non-unitary and information is lost, mainly in the interior
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of the black hole, as a consequence of wave-function collapse. There is of course
nothing paradoxical in this picture.

5 Discussions

We have put forward a novel proposal involving gravitational influenced wave-
function collapse whichwe showed can account for the enormous loss of information
in black hole evaporation which thus leads to a dissolution of the so called “paradox”.
On a broader perspective, this opens up a rather interesting possibility: that in the
energy scale interpolating between, say, the current LHC (or the Standard Model)
energy scale (about 10TeV) and somewhere below the QG scale2 (1016 TeV), there
could be important effects describable in the context of the standardmodel of particle
physics adapted to the modified quantum field theory constructed on curved space-
times with the additional feature of gravitational induced quantum state reduction,
as provided, say, by one of the relativistic collapse proposals [5, 28, 29, 33, 34].
Could it be, for instance, that the issue of the radiative corrections induced quantum
instability of the Higgs potential are modified by the introduction of such modifica-
tions? Could we do with a scheme where supper-symmetry is not needed and have
similar benefits arising, instead, from the effects of quantum collapse? We believe
this line of inquire might offer interesting insights and modify the perspectives for
physics beyond standard model, and perhaps the expectations for phenomenology
of quantum gravity.
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Relativistic Paths: A Feynman Problem

Jayant V. Narlikar

Abstract This paper describes the solution of a problem posed by R.P. Feynman
in his lectures on path integrals in quantum mechanics. The problem discusses the
motion of a relativistic electron. It is shown how the various familiar features of such
an electron are captured by the path integrals of relativistic spinning particles.

1 Preamble

It is a pleasure to contribute this article to the proposed Paddy-60 volume. I had
the privilege of being Padmanabhan’s research guide as he embarked on his Ph.D.,
programme at the Tata Institute of Fundamental Research. At that stage I experienced
how a teacher can learn from his student. In Paddy’s case his strong points are an
excellent understanding of the subject and ability to explain it to others. The present
article arose out of an idea described in the book Quantum Mechanics and Path
IntegralsbyR.P. Feynman andA.Hibbs. I trust that Paddywill appreciate the problem
posed and the solution offered; more so since he used to play with path integrals in
his early days of research.

2 Introduction

The path integral approach of Feynman [1] provides an elegant link between the
classical and the quantum physics. This approach takes as its starting point, the
classical action S describing the physical system. In general the state of the system
can be described by a point in a suitably defined phase space. As the state changes,
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the point moves along some path Γ . Although geometrically, any number of paths
may be possible, classical physics requires the system to follow a unique path Γc,
which satisfies the principle of stationary action:

δS = 0. (1)

Here δS represents the change in S in going from Γc to another path in its neigh-
bourhood. The uniqueness of Γc is responsible for the determinacy associated with
classical physics.

In quantum physics (1) is replaced by a less definitive statement. Suppose the
system is initially in a state described by point 1 and finally in state described by
point 2. Consider all the geometrically possible paths from 1 to 2. Not all paths are
equally important, however. For each path Γ we can compute the action functional
S(Γ ). Now a quantum system is permitted to follow the pathΓ , even thoughΓ �= Γc.
There is a well-defined probability amplitude that the system will follow the path Γ .
Feynman gives a simple rule for computing the amplitude:

P(Γ ) = (Constant) exp{iS(Γ )/�}, (2)

where � is Planck’s constant divided by 2π . The constant in (2) can be determined
by normalizing probabilities. If we are only interested in the total amplitude that the
system starts at 1 and end at 2, this is given by summing (2) over all permissible paths
Γ . The final answer will depend on points 1 and 2 and may be written as K(2, 1).
Thus

K(2, 1) =
∑

Γ

(constant) exp(iS/�) =
∫

exp{iS(Γ )/�}DΓ, (3)

where the summation over Γ is replaced by an integral since usually we are deal-
ing with a continuum of uncountably many paths Γ . The constant factor has been
absorbed in the measure of the path integral.1

The connection between the quantum and classical theories is now easy to estab-
lish. The latter follows from the former in the limit � → 0. When � → 0, then ratio
S/� → ∞ in general, and the phase of the exponential exp (iS/�) changes rapidly
even if S changes slowly from path to path. The path integral (3) may be approx-
imated by the method of stationary phase, the significant contributions to K(2, 1)
coming from those paths for which δS ≈ 0. In the limit � → 0 we finally arrive at a
unique path Γc which satisfies (1).

This approach not only brings out the connection between the classical and the
quantum physics, but it also throws light on why the principle of stationary action
plays such an important part in the various branches of classical physics. The basic

1The definition of measure remains one of the difficult problems of path integral theory. Feynman
was, however, able to arrive at important results without giving a precise general definition of
measure.
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idea described above had been qualitatively stated first by Dirac [2]. By giving it
a quantitative form as in (3), Feynman was able to connect it up with the more
conventional Schrödinger approach to quantum mechanics.

In spite of its advantages, and the many applications [cf. [3] for details], the path
integral picture is not widely used in quantum theory. One reason is, that while it
clarifies many of the conceptual difficulties of the non-relativistic theory, it is not so
successful in describing the relativistic spin half particles. Since the concept of spin
is lacking in the classical theory, and hence in the classical action, it is not obvious,
how to define path amplitudes for spin half particles which satisfy the Dirac equation.
In the present paper we shall discuss ideas which may lead to the solution of this
formidable problem. To begin with, we shall consider a simplified problem, that of
a free particle moving in one space + one time dimensions. In the rest of the paper
we shall take � = 1, and the velocity of light c = 1.

3 Motion in One Space + One-Time Dimensions

In their bookQuantumMechanics andPath Integrals, Feynman andHibbs [3] discuss
the motion of a Dirac particle in one space-like and one time-like dimension. Instead
of giving a rule like (2) they give another which involves only those paths which are
made of null segments. Briefly the rule may be described as follows.

Suppose the particle of mass m moves backward and forward in x-direction,
starting at x = 0 at t = 0, and ending at x = X at t = T , where | X |≤ T . Divide the
interval [0,T ] into a large number n of small intervals of ε-duration, so that

nε = T . (4)

The particle is allowed to move only with the speed of light, so that if at the end of rth
interval it is at X, then | Xr+1 − Xr |= ε, for 1 ≤ r < n. Suppose in the entire interval
[0, T ], the particle goes forward on n1 occasions and backwards on n2 occasions.
Then

n1 + n2 = n = T

ε
, n1 − n2 = X

ε
. (5)

A typical path, shown in Fig. 1, will therefore have null segments meeting in sharp
corners. The amplitude for a path with R corners is given to be

(imε)R. (6)

The propagator from [0, 0] to [X, T] is then obtained by summing over all paths an
expression like (6). To avoid confusion we will use P̃(Γ ) for the 1 + 1 dimensional
problem.
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As mentioned above this rule appears to differ from that given in (2) in a radical
way and seems to have an ad-hoc character about it. We shall, however, show how
the connection between the two rules may be established, and how we can arrive at
the Dirac propagator from this picture.

First, we note that just as K(2, 1) in (3) is obtained from P(Γ ), we can relate
P̃(Γ ) to K̃(2, 1). This is done as follows. Divide the path Γ into a large number
of small segments, denoting the intermediate points of division by X1,X2, ...,Xn−1,
with X0, Xn standing for the end points 1, 2. Consider the product

n∏

r=1

1

Ar
K(Xr,Xr−1), (7)

where Ar represents some measure factor.2 For suitably chosen Ar , the product (7)
tends to P(Γ ) as n → ∞, i.e. as the division becomes finer and finer. Thus we can
build up P(Γ ) from a chain of K’s. We can get back to K(2, 1) by summing (7) over
all paths, and using the property

K(Xr+1,Xr1) =
∫

K(Xr+1,Xr)K(Xr,Xr−1)d
3Xr, (8)

where the integration is over the space coordinates xr of Xr .
This method can be easily extended to the problem in question. We need

K̃(Xr,Xr−1) for the case where Xr , Xr−1 are close to each other. The K̃(2, 1) in
1 + 1 dimensions satisfies the inhomogeneous Dirac equation

[
γ4

∂

∂t
− γa

∂

∂x
+ im

]
K̃ = δ2(x, t), (9)

where, for convenience we have taken the coordinates of 1 at [0, 0] and of 2 at [x, t].
To solve (9) write

K̃ =
(

γ4
∂

∂t
− γ1

∂

∂x
− im

)
Ĩ(x, t), (10)

where

∂2 Ĩ

∂t2
− ∂2 Ĩ

∂x2
+ m2 Ĩ = δ(x)δ(t). (11)

In analogy with the non-relativistic case, we want a solution that vanishes for
t < 0. This has been worked out in Appendix A. The result is

Ĩ(x, t) = 1

2
θ(t)θ(s2)J0(ms), s2 = t2 − x2, (12)

2This factor must have the dimensions (length)−3 to make (7) dimensionless.
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where θ is the Heaviside function and J0 the Bessel function of order zero.
The K̃(2, 1) obtained in this way satisfies a relation similar to (8):

K̃(Xr+1,Xr−1) =
∫

K̃(Xr+1,Xr)γ4K̃(Xr,Xr−1)d
3Xr (13)

where the factor γ4 is necessary to preserve spinor-covariance. For any path Γ , we
can therefore form a product similar to that in (7), but with γ4 appearing between
successive factors.

In forming this product we need K̃(Xr,Xr−1) when the points are close together.
Since the only length scale appearing in this problem ism−1, we need the approximate
form of K̃ for | Xr − Xr−1 |� m−1. We therefore look at K̃ given by (10) and (12) in
the casewhere 0 < t = ε andmε � 1. Since s < ε, we havems � 1 and J0(ms) ≈ 1.

K̃ ≈
(

γ4
∂

∂t
− γ1

∂

∂x
− im

)[
1

2
θ(t + x) − 1

2
θ(x − t)

]

= 1

2
(γ4 − γ1)δ(t + x) + 1

2
(γ4 + γ1)δ(t − x) − im

2
[θ(t + x) − θ(x − t)]

(14)

The two delta functions in (14) indicate that most of the amplitude is concentrated
in the two directions x = t = ε, x = −t = −ε. To obtain the magnitude of this con-
centration we integrate K over 0 ≤ x < ∞ and over −∞ < x ≤ 0 at t = ε. We get
respectively

P̃+ = 1

2
(γ4 + γ1) − imε

2
, P̃− = 1

2
(γ4 − γ1) − imε

2
. (15)

Although the −imε/2 term really represents amplitude over 0 ≤ x ≤ ε, we may
lump it all at the end x = ε and call P̃+ as the amplitude along x = +ε. P̃− similarly
represents amplitude along x = −ε. Since mε � 1, the error involved is slight.

We now have passed from a continuous set of paths to a discrete set, as visualized
in the beginning of this section. A typical path is made up of null segments like
x = ±t, and the amplitude along such a path is given by a series of factors P̃+, P̃−
with γ4 in between. The following types of combinations would appear in a typical
product:

P̃+γ4P̃+, P̃−γ4P̃−, P̃+γ4P̃−, P̃−γ4P̃+. (16)

From (15) we get to order (mε),

P̃+γ4P̃+ = P̃+, P̃−γ4P̃ = P̃−,

P̃+γ4P̃− = (−imε)γ4P−, P̃−γ4P̃+ = (−imε)γ4P̃+.
(17)
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Fig. 1 Typical path of a particle moving backward and forward with the velocity of light.

Thus whenever two consecutive segments are in the same direction the amplitude
is unaffected. When they are in opposite direction, we get a product (−imε)γ4). This
explains why the rule given earlier in this section made use of paths with corners.
The path described in Fig. 1 has the amplitude

P̃+γ4P̃−γ4P̃+γ4P̃−γ4P̃+ = (−imε)γ4P̃−γ4P̃+γ4P̃−γ4P̃+
= (−imε)2γ4 · γ4P̃+γ4P̃−γ4P̃+
= (−imε)3γ4P̃−γ4P̃+
= (−imε)4P̃+. (18)

Using the product rules (17) it is easy to see that the paths can be divided into four
classes {Γ++}, {Γ−−}, {Γ+−}, {Γ−+}. The amplitude for a Γ++ path begins with P+
and ends with P+. The others are similarly defined. The Γ++ and Γ−− paths have
even number of corners whereas Γ+−, Γ−+ paths have odd number of corners. To
compute the total amplitude we need the total number of paths with a given number
of corners.
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Let N++(2R), N−−(2R) respectively denote the number of Γ++ and Γ−− paths
with 2R corners. Similarly let N+−(2R + 1) and N−+(2R + 1) denote the number of
Γ+− and Γ−+ paths with 2R + 1 corners. Then the total amplitude along paths with
R � 1 corners is given by

Q̃ =
∑

R≥1

{N++(2R)P̃+ + N−−(2R)P̃−}(−imε)2R

+
∑

R≥0

{N+−(2R + 1)γ4P̃− + N−+(2R + 1)γ4P̃+}(−imε)2R+1. (19)

We are interested in Q̃ as n → ∞, ε → 0. However, to obtain the propagator from
[0, 0] to [X,T ]wemust divideQ by 2ε, since the above amplitude is distributed over
an interval ±ε about [X,T ]. Also, we must add the contribution from paths with no
corners. We shall perform this calculation now. In the limit n → ∞ we have

N++(2R) = (n1 − 1)!(n2 − 1)!
(n1 − R)!(n2 − R + 1)!R!(R − 1)

∼ nR1n
R−1
2

R!(R − 1)! = (T 2 − X2)R−1(T + X)

(2ε)2R−1
· 1

R!(R − 1)! ,

N−−(2R) ∼ (T 2 − X2)R−1(T − X)

(2ε)2R−1
· 1

R!(R − 1)! ,

N+−(2R + 1) = n1!n2!
(n1 − R)!(n2 − R)!R!R!

∼ nR1n
R
2

R!R! ∼ (T 2 − X2)R

(2ε)2R
· 1

R!R! ,

N−+(2R + 1) ∼ (T 2 − X2)R

(2ε)2R
· 1

R!R! . (20)

Using these approximations, and the following power series expansions for Bessel
functions

J0(ξ) =
∑

R≥0

(−1)R(ξ/2)2R

R!R! , J ′
0(ξ) =

∑

R≥1

ξ

2
· (−1)R(ξ/2)2R−2

R!(R − 1)! , (21)

we get

Q̃ = ε

[
mJ ′

0(mS) · γ4T + γ1X

S
− im{J0(mS) − 1}

]
, (22)

where
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S2 = T 2 − X2. (23)

Equation (22) may be rewritten in the form

Q̃ = 2ε

(
γ4

δ

δT
− γ1

δ

δX
− im

)[
1

2
{J0(mS) − 1}

]
. (24)

Dividing by 2ε and adding (14) for x = X, t = T as the contribution for paths with
no corners, we get for T > 0

K̃[X,T; 0, 0] =
(

γ4
δ

δT
− γ1

δ

δX
− im

){
1

2
j0(mS)θ(S2)

}
. (25)

Thus we have a self-consistent picture in which the finite amplitude along a path
can be built out of a series of infinitesimal propagators and the finite propagator is
then obtained by summing the amplitude over all paths. Themain difference between
the relativistic and the non-relativistic case is that in the former case paths making a
significant contribution to the amplitude are built out of null segments. In the latter
case this is not so.The relativistic picture is consistent with the fact that the eigenvalue
of velocity of a Dirac particle is always ±1.

4 Motion in 3 + 1 Dimensions

The above picture can be generalized to 3+1 dimensions. Given a path Γ we define
amplitude along it in terms of a chain of infinitesimal propagators. The propagator
is given by the retarded solution of the inhomogeneous Dirac equation3

(∇̄2 + im)K(2, 1) = δ4(2, 1) (26)

where ∇̄2 is with respect to the coordinates of point 2. As in the 1+1 dimensional
case we can write

K(2, 1) = (∇̄2 − im)I(2, 1) (27)

where

(�2 + m2)I(2, 1) = δ4(2, 1). (28)

The retarded solution for I(2, 1) is

I(2, 1) = θ(t2 − t1)

2π

[
δ(S221) − m

2S21
J1(mS21)θ(S221)

]
, (29)

3For a vector Ai define Ā as γ iAi.
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where S221 is the square of the invariant distance between the coordinates (x1, t1),
(x2, t2) of points 1 and 2. J1 is the Bessel function of order 1.

The delta-function in (29) again emphasizes the importance of null directions.
As in the 1+1 dimensional case we expect the ‘important’ paths to be made up of
null segments. However, the null directions from a given point are not just two, but
uncountably infinite. Hence it is not possible to look at the 3+1 case in terms of
counting paths with corners. The main feature of the problems can, however, be
described in terms of a perturbation expansion (cf. [4] for details). We write

K(2, 1) =
∑

n≥0

K (n)(2, 1), (30)

where

∇̄K (0)(2, 1) = δ4(2, 1), (31)

and for n ≥ 1

∇̄K (n)(2, 1) = −imK (n−1)(2, 1). (32)

(31) can be solved in terms of the leading term of (29):

K (0)(2, 1) = ∇̄I (0)(2, 1), I (0)(2, 1) = θ(t2 − t1)
δ(S221)

2π
. (33)

A general K (n)(2, 1), n ≥ 1 is given by

n = 2r : K (2r) = (−im)2r∇̄2

∫
. . .

∫
I (0)(2,Pr)I

(0)(Pr,Pr−1) . . .

. . . I (0)(P1, 1)dτ1 . . . dτr, (34)

n = 2r + 1 : K (2r+1) = (−im)2r+1
∫

. . .

∫
I (0)(2,Pr)I

(0)(Pr,P
r−1) . . .

. . . I (0)(P1, 1)dτ1 . . . dτr, (35)

where r is an integer. A typical I (0) describes propagation along a null segment, and
(34), (35) represent summations over paths made up of null segments. An amplitude
(−im)n is associated with the summation for K (n). This is the analogue of the 1 + 1
dimensional case.

The propagator obtained so far is useful only when considered along with the hole
theory. This is because it describes only forward propagation of particles of positive
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and negative energies. To describe electrons and positrons we need the Feynman
propagator

K(2, 1) = (∇̄ − im)I+(2, 1) = (∇̄ − im) ×
×

[
δ(S221)

4π
− m

8πS21
H(2)

1 (mS21)

]
, (36)

where H(2)
1 is the Hankel function of the second kind. It was shown in an earlier

paper [5] howK+ arises fromK(2, 1)when we take into account the electromagnetic
interaction of electrons and positrons.Wewill therefore not go into those details here.

5 The Non-relativistic Approximation

The relativistic propagator described above has been obtained by summing amplitude
over piecewise continuous paths made up of null segments. The non-relativistic
propagator, on the other hand, is obtained by summing over all paths from 1 to 2
which always go forward in time. Also, the amplitude in the latter case is given by
(2), i.e. by

P(Γ ) = (constant) exp

[
+ i

∫

Γ

1

2
mẋ2dt

]
(37)

for a free particle. It is therefore not clear how the non-relativistic case can be obtained
from the relativistic one by a suitable approximation. In this section we show how
this transition may be made.

Firstwe obtain the non-relativistic forms for the propagatorsK(2, 1) andK+(2, 1).
For convenience we write

T = t2 − t1, X = x2 − x1, X =| X | . (38)

The non-relativistic approximation is given by

T � X,mS21 � 1. (39)

We therefore use the asymptotic formulae for J1 and H(2)
1 :

J1(mS21) ∼
(

πmS21
2

)−1/2

cos

(
mS21 − 3π

4

)
, (40)

H(2)
1 (mS21) ∼

(
πmS21

2

)−1/2

exp

{
− i

(
mS21 − 3π

4

)}
, (41)
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and also use the approximations for S21:

S21 ≈ T , S21 ≈ T − X2

2T
(42)

respectively in the first and second factors of (40) and (41).
It is convenient to use the Dirac representation

γr =
(
1 0
0 −1

)
, γ =

(
0 σ

−σ 0

)
(43)

and write K(2, 1), K+(2, 1) explicitly in matrix form. [The σ = {σ1, σ2, σ3} is the
set of Pauli matrices.] We then have

K(2, 1) ∼
(

m

2π iT

)3/2

×

⎡

⎢
⎢
⎣

i−3/2exp

(
− mT + mX2

2T

)
i − σ ·x

T sin

(
mT − mX2

2T − 3π
4

)

σ ·x
T sin

(
mT − mX2

2T − 3π
4

)
−(−i)−3/2exp

(
mT − mX2

2T

)
i

⎤

⎥
⎥
⎦ (44)

and

K+(2, 1) ∼
[
1 − σ ·x

2T
σ ·x
2T 0

]
·
(

m

2π iT

)3/2

exp − i

(
mT − mX2

2T

)
, (45)

for T > 0.K+(2, 1) for T < 0 can bewritten down similarly, whileK(2, 1) for T < 0
is zero.

The non-relativistic form of the Dirac equation separates the wave-function into
a large part and a small part. The large part is propagated essentially by the top
left-hand element of the propagator. This, we see, is

(
m

2π iT

)3/2

exp − i

(
mT − mX2

2T

)
. (46)

Equation (46) is just the non-relativistic propagator for Schroödinger equation.
We now give a rule for computing path amplitudes which leads to K(2, 1) or

K+(2, 1). The rule is obtained in the following way. The action for a relativistic
particle is given by

S = −
∫

Γ

mds, (47)

where

ds2 = dt2 − dx2. (48)
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If we use (47) in (2), we will not arrive at a description of the Dirac particle -
because (47) does not contain spin. To include spin we have to take the square root
of (48) in the space of 4 × 4 matrices:

dt2 − dx2 = (γ4dt − γ · dx)2. (49)

This is analogous to

� ≡ ∇̄2 (50)

which led to the Dirac equation. Thus (47) is replaced by

S = −
∫

Γ

m(γ4 − γ · x)dt. (51)

In the non-relativistic approximation Γ will be an arbitrary path going forward in
time.

However, the amplitude along Γ is not given by

P(Γ ) = (constant) · exp{−i
∫

m(γ4 − γ · x)dt}. (52)

The reason is that the right-hand side of (52) is independent of the path and depends
only on end points. Such a prescription will not lead to a satisfactory quantum theory.
Instead, we need a path-dependent amplitude. To achieve this we divide the path Γ

into a large number of small segments and use (52) for each small segment. The
P(Γ ) is then obtained by the ordered product of the amplitudes along the segments.
If we write Γ = Γ1 + Γ2 + . . . + Γn, and Γr , is a typical segment, then

P(Γ ) =
∏

r

P(Γr) =
∏

(constant) · exp · {−i
∫

Γ r
m(γ4 − γ · x)dt}. (53)

Since for matrices A, B, the law

exp (A + B) = (exp A) · (exp B) (54)

does not hold, the expression (53) as n → ∞ is dependent on the particular path Γ .
It should be emphasized that the structure associated with this law is cruder than

that discussed in the earlier section. The path Γ here can be approximated by another
made up of null segments on a much finer scale. The amplitude along Γ is thus the
sum of all such finer scale paths computed according to the last section. The above
rule is at best an approximation that will be shown to work well.

We shall take Γ to be between 0 ≤ t ≤ T and let P(t) denote the amplitude along
the section of the path from 0 to t. Then it is easy to see that (53) corresponds to
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dP

dt
= −im(γ4 − γ · ẋ)P (55)

where x(t) is the position of a typical point on Γ . The constant in (53) is taken to be
unity.

It is easy to verify that (52) is not an integral of (55) unless x is constant. In that
case the law (54) holds. We shall return to this special case later. We write P as a
4 × 4 matrix:

P =
[
P11 P12

P21 P22

]
(56)

where Pij(i, j = 1, 2) are 2 × 2 matrices. Using the representation (43) and writing
v = ẋ, (55) takes the form

Ṗ11 = −im(P11 − σ · vP21), Ṗ21 = im(P21 − σ · vP11), (57)

Ṗ12 = −im(P12 − σ · vP22), Ṗ22 = im(P22 − σ · vP12). (58)

Initially we take P11 = 1. The initial values of P12, P21, P22 also need to be specified
in order to complete the problem. It turns out that these are crucial in determining
whether we finally arrive at (44) or (45). We shall settle this question at a later stage.
To solve (57), put

ξ = P11e
imt, η = P21e

−imt . (59)

Then we get

ξ̇ = ime2imt(σ · v)η̇,= −ime2imt(σ · v)ξ. (60)

Equation (60) can be solved in terms of the expansions

ξ =
∞∑

n=0

ξ2n,η =
∞∑

n=0

η2n+1, (61)

where ξ0 = 1 and for n ≥ 1,

ξ̇2n = ime2imt(σ · v)η2n−1, (62)

η̇2n+1 = −ime−2imt(σ · v)ξ2n−2. (63)

Given the initial conditions, and the function v(t), we can solve (62), (63) by iteration.
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In the non-relativistic approximation we have

| v |� 1, | v̇ |� m | v | . (64)

The first inequality implies that motion is slow compared with the speed of light.
The second inequality means that the time scale over which velocity changes sig-
nificantly is large compared to m−1. The latter inequality suggests that the solution
of (57) and (58) will be somewhat similar to that for v = constant. In this case the
general solution of (55) is given by

P(t) = exp {−im(γ4t − γ · x)}.P0 (65)

where P0 is an arbitrary matrix. Taking P0 = 1 gives

P =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cos mt
√

(1 − v2) − i sin mt
√

(1−v2)√
(1−v2)

iσ ·v√
(1−v2) sin mt

√
(1 − v2)

− iσ ·v√
(1−v2) sin mt

√
(1 − v2)

cos mt
√

(1 − v2) + i sin mt
√

(1−v2)√
(1−v2)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(66)
However, this choice of initial conditions does not give either of K or K+. As will
be seen shortly, to obtain K we need

P0 = γ4 − γ · v√
(1 − v2)

, (67)

whereas to obtain K+, P0 is given by

P0 = 1

2

{
1 + γ4 − γ · v√

(1 − v2)

}
. (68)

We shall consider these two cases in detail.
In the first case (65) and (67) give, when |v| � 1,

P11 = cos mt
√

(1 − v2)√
(1 − v2)

− i sin mt
√

(1 − v2) ∼ exp [−imt
√

(1 − v2)] (69)

P21 = σ · v√
(1 − v2)

cos mt
√

(1 − v2) ∼ σ · v cos mt
√

(1 − v2). (70)

We now turn to the solution of (57) in the non-relativistic case. Guided by (69)
and (70), but remembering that v now varies with t, we try
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P11 ∼ exp − im
∫ t

0

{
1 − v2(t1)

2

}
dt1,

P21 ∼ σ · v(t) cos m
∫ t

0

[
1 − v2(t1)

2

]
dt1. (71)

It is easy to verify that (57) is satisfied towithin the non-relativistic approximation.
P22, P12 can be similarly obtained and we get

P(t) =

⎧
⎪⎪⎨

⎪⎪⎩

exp − im
∫

0

{
1 − v2(t1)

2

}
dt1 σ · v(t) cos m

∫ 1

0

{
1 − v2(t1)

2

}
dt1

σ · v(t) cos m
∫ t

0

{
1 − v2(t1)

2

}
dt1 − exp im

∫ t

0

{
1 − v2(t1)

2

}
dt1

⎫
⎪⎪⎬

⎪⎪⎭
. (72)

In the same way we can deal with the second case, and get

P+(t) =
{
1 − 1

2σ · v(t)
1
2σ · v(t) 0

}
· exp − im

∫ t

0

{
1 − v2(t1)

2

}
dt1, t > 0. (73)

Here we have written P+ instead of P to distinguish between the two cases.
The propagator K or K+ would now come out of summation of P(T), P+(T) over

all paths from (0, 0) to (X,T). We already know (cf. [3] for details) that the path
integral

∫
exp − im

∫ T

0

{
1 − v2(t1)

2

}
dtD3x(t) =

(
m

2π iT

)3/2
exp

{
imX2

2T
− imT

}
. (74)

The following results have been derived in Appendix B:

∫
v(T) exp −im

∫ T

0
{1 − v2(t1)

2

}
dtD3x(t)

= X
T

(
m

2π iT

)3/2

exp

{
imX2

2T
− im T

}
, (75)

and
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∫
v(T) cos m

∫ T

0
{1 − v2(t1)

2

}
dtD3X(t)

=
(

m

2πT

)3/2X
T

sin

(
mT − mX2

2T
− 3π

4

)
. (76)

Using these results it is easy to see that

K(2, 1) =
∫

P · D3X(t), (77)

K+(2, 1) =
∫

P+D3X(t). (78)

We therefore see that the rule for path amplitude given in (53) leads to the correct
propagator. To obtain K(2, 1) we use (53) only for forward going paths, with P0, the
initial value given by (67). ForK+(2, 1)wemust use (53) for forward as well as back-
ward going paths but with initial condition given by (68). In the non-relativistic case
all paths are time like and no problems such as given by pair creation or annihilation
are present. To deal with such problems, which arise frequently in electrodynamics,
we must use the methods of [5].

6 Conclusion

To summarize, the motion of a Dirac particle may be looked at from two different
ends. In the extreme relativistic limit, the velocities are comparable to the velocity of
light c, and time scales short compared tom−1. Here the motion is described by paths
made of null segments, with many changes of direction occurring in time m−1. The
mass of the particle is responsible for changing the direction from one null segment
to another. Because of any such changes, the motion of a forward going particle is
time like over times large compared to m−1.

In the non-relativistic limit we are concerned with this type of motion. Here paths
are time like and do not change directions significantly over times of order m−1. The
amplitude in this case can be described by a relatively simple expression of the form
exp(−imq̄) where qi denotes a small section of the path (compared to m−1). The
amplitude along a finite section of the path is given by a product of such factors in
the correct order. The sum of amplitudes over all paths leads to the non-relativistic
limit of the Dirac or Feynman propagator, including spin.

It is instructive to show explicitly the part played by the second inequality of (64),
in the non-relativistic limit. This is seen from the iterative solution described in the
last section. To fix ideas we will take the initial condition given by P0 = 1. This
corresponds to η1 = 0 at t = 0. Hence for n ≥ 1
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ξ2n(t) = m2n
∫ t

0
e2imt1σ · v(t1)dt1

∫ t

0
e−2imt2σ · v(t2)dt2 . . .

. . .

∫ t2n−2

0
e2imt2n−1σ · v(t2n−1)dt2n−1

∫ t2n−1

0
e−2imt2nσ · v(t2n)dt2n, (79)

η2n(t) = −im2n−1
∫

0
e−2imt1σ · v(t1)dt1 . . .

∫ t2n−2

0
σ · v(t2n−1)e

−2imt2n−1dt2n−1. (80)

Consider the last two integrals of (79) taken together. If we integrate by parts,

∫ t2n−1

0
e−2imt2nσ · v(t2n)dt2n = i

2m

{
e−2imt2n−1σ · v(t2n−1) − σ · v(0)

}

− i

2m

∫ t2n−1

0
e−2imt2nσ ·v̇(t2n)dt2n. (81)

In this the integral on the right-hand side is less important than the first term because
of the second inequality of (64). Further, when we take the first erm of the right-hand
side along with the integrand of the t2n−1 integral we get

∫ t2n−2

0

i

2m
,

{
v2(t2n−1) − e2imt2n−1

[
σ · v(t2n−1)

][
σ ·(0)

]}
dt2n−1. (82)

Again, because of the rapid oscillations of e2imt2n−1 the second term of the integrand
makes very little contribution and we can approximate (82) by

i

2m

∫ t2n−2

0
v2(t2n−1)dt2n−1. (83)

Clearly, we can repeat this procedure for the subsequent integrals in ξ2n(t) and get,
with redefinition of dummy variables,

ξ2n(t) ∼ m2n ·
(

i

2m

)n ∫ t

0
v2(t1)dt1

∫ t1

0
v2(t2)dt2 . . .

∫ tn−1

0
v(tn)dtn

=
(
im

2

)n

· 1

n!
{ ∫ t

0
v2(t)dt

}n

(84)

so that
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P11 = e−imt
∞∑

0

ξ2n(t)

∼ exp

[
− im

∫ t

0

{
1 − v2(t1)

2

}
dt1

]
. (85)

We can evaluate P12 similarly. With suitable account of initial conditions (72) and
(73) can be obtained in this way.

The example of the relativistic spin-half particle discussed here illustrates the
way Feynman’s path integral technique can be applied to relativistic particles. The
eigenvalue of velocity of a relativistic Dirac particle has the magnitude c. This result
forms the basis of the path integral approach to describe such a particle. The reader
familiar with the path integral approach to quantum mechanics will appreciate the
problem solved here as another example of how the path integral technique is easy
to visualise but difficult to implement.

Appendix A

To obtain the solution of (11) that vanishes for t < 0, put

I(x, t) =
∫ ∫

f (ω, k)eikx−iwt · dω

2π
· dk

2π
, (A.1)

where −∞ < ω < ∞,−∞ < k < ∞.
Since

δ(x)δ(t) =
∫ ∞

−∞

∫ ∞

−∞
eikx−iωt dω

2π

dk

2π
, (A.2)

we get from (11),

f (ω, k) = 1

m2 + k2 − ω2
. (A.3)

Hence

I(x, t) =
∫ ∫

eikx−iωt

m2 + k2 − ω2

dω

2π

dk

2π
. (A.4)

To perform the ω integral we use contour integration in the complex x-plane. The
poles are at ω = ±√

(m2 + k2). To arrive at a solution which vanishes for t < 0, we
integrate parallel to real axis with ω = ωR + iε, where ωR is the real part of ω, and
−∞ < ωR < ∞. For t < 0 we can complete the contour by a semicircle at infinity
in the upper half of the ω-plane. This contour has no poles and the integral along the
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semicircle vanishes. For t > 0 the contour is completed by a semicircle at infinity in
the lower half of the ω-plane. This contour has poles with the residue

eikx+i
√

(m2+k2)t

2
√

(m2 + k2)
− eikx−i

√
(m2+k2)t

2
√

(m2 + k2)
. (A.5)

The integral along the semicircle vanishes. Hence we get

I(x, t) = −i

4π

∫ ∞

−∞
eikx

√
(m2 + k2)

{
ei
√

(m2+k2)t − e−i
√

(m2+k2)t

}
dk

= 1

π

∫ ∞

0

cos kx sin
√

(m2 + k2)t√
(m2 + k2)

dk. (A.6)

We now consider two cases separately: (i) t2 > x2 and (ii) t2 < x2. In the first case
put

t = s cosh θ, x = s sinh θ, k = m sinh α. (A.7)

Then

I(x, t) = 1

π

∫ ∞
0

cos {ms sinh θ sinh α} sin {ms cosh θ cosh α}dα

= 1

2π

∫ ∞
0

[sin {ms cosh (θ + α)} + sin {ms cosh (θ − α)}]dα. (A.8)

In the two terms of the integrand, put θ + α = u, θ − α = u respectively to get

I(x, t) = 1

2π

∫ ∞

θ

sin (ms cosh u)du + 1

2π

∫ +θ

−∞
sin (ms cosh u)du

= 1

2π

∫ ∞

−∞
sin (ms cosh u)du

= 1

2
J0(ms). (A.9)

In the second case put

t = s sinh θ, x = s cosh θ, k = m sinh α. (A.10)

Then we get, by proceeding as above
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I(x, t) = 1

π

∫ ∞

0
cos {ms sinh α cosh θ)} sin {ms cosh α sinh θ}dα

= 1

2π

∫ ∞

0
[sin{ms sinh (θ + α)} + sin ms{sinh (θ − α)}]dα

= 1

2π

∫ ∞

θ

sin (ms sinh u)du + 1

2π

∫ 0

−∞
sin(ms sinh u)du

= 1

2π

∫ ∞

−∞
sin (ms sinh u)du

= 0.

Hence the result follows:

I(x, t) = 1

2
J0(ms)θ(s2).θ(t). (A.11)

Appendix B

Here we derive the results quoted in Eqs. (75) and (76) of the main text. Consider
a typical path X(t) from (0, 0) to (x,T). For small ε, suppose x(t) intersects the
hyperplane t = T − ε at y in

y = x(T − ε). (B.1)

We can approximate v(T) by

v(T) ≈ x − y
ε

(B.2)

Since

exp im
∫ T

0

v2(t)
2

dt =
{
exp im

∫ T−ε

0

v2(t)
2

dt

}
·
{
exp im

∫ T

T−ε

v2(t)
2

dt

}
, (B.3)

we have

∫
x(T) exp

{
− im

∫ T

0

[
1 − v2(t)

2

]
dt

}
D3x(t)

= e−imT
∫ (

x − y
ε

)
1

A
· exp

[
im(x − y)2

2ε

]
d3y

× exp
∫ {

+ im
∫ T−ε

0

v2(t)
2

dt

}
D3x(t). (B.4)
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The path integral from 0 to T − ε gives the nonrelativistic free particle propagator,
and (B.4) becomes

eimT
∫

x − y
ε

· 1
A

· exp

[
im(x − y)2

2ε

]
.

(
m

2π i(T − ε)

)3

/2

× exp

[
imy2

2(T − ε)

]
d3y. (B.5)

In (B.4) and (B.5) A is the measure constant, and is given by (cf . Feynman and Hibbs
[3])

A =
(
2π iε

m

)3/2

. (B.6)

Substituting for A, we can evaluate (B.5) to get

(
m

2π iT

)3/2

· x
T

· d−imT+imx2/(2T) (B.7)

This is the same as the right-hand side of (75).
Equation (76) is the real part of (75) and hence we need the real part of (B.7).

Writing i = exp

(
iπ
2

)
, we get the real part of (B.7) as

Re

[(
m

2π iT

)3/2

· x
T
e−imT+imx2/(2T)

]

=
(

m

2πT

)3/2

· x
T
cos

(
mT − mx2

2T
+ 3π

4

)

=
(

m

2πT

)3/2

· x
T
sin

(
mT − mx2

2T
− 3π

4

)
(B.8)

This is the required result.
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Einstein Equations from/as Thermodynamics
of Spacetime

Krishnamohan Parattu

Abstract There are two results in the literature that seem closely related: Padman-
abhan’s interpretation of field equations near a null surface as a thermodynamic
identity and Jacobson’s derivation of Einstein equations from the Clausius relation
of thermodynamics. I compare and contrast these two results in the framework of
Gaussian null coordinates near a null surface.

Prologue

A STORY .....

In the court of Akbar Badshah (‘Badshah’, loosely translated, means ‘emperor’), there was
a musician called Tansen. He used to enthrall everyone in Akbar’s Court with his superb
performances. Once, after such a rendition, Akbar started praising him sky-high and said,
“There can be no-one else in this world who can sing so well”. Tansen disagreed, saying he
knows of a hermit who lives in the jungle on the banks of Yamuna river who is far superior
and that Tansen himself has learnt music from him for sometime. Akbar, who could not
believe this, wanted to listen to this hermit in order to judge for himself. Since the hermit
did not want any publicity, it was decided that Tansen will take Akbar near the place where
the hermit lived and they should listen to his music without creating any disturbance.

They set out one day and reached the jungle near the river Yamuna, where, at a distance, they
saw the hermit’s hut. As the sun was setting on Yamuna, with all Nature at peace, the hermit
came out his hut, sat on a rock facing the river and started singing. Akbar could immediately
see that this was music of a completely different class which Tansen could never produce.

On their way back, Akbar queried, “Tansen, you say he taught you music; clearly, he has
held back some techniques from you”.

“No”, said Tansen. “I know all the technical aspects of music he does.”

“But, Tansen, then how do you account for such difference in quality?”

“It is simple. He sings for Yamuna while I sing for Badshah”.
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1 Introduction

I shall refer to Prof. Padmanabhan as Paddy, as he is popularly known, in this article.1

Emergent gravity paradigm has been Paddy’s main research interest for the past
decade [19, 21, 23]. The main motivation for this program is the observation that
quantities that look and feel very much like thermodynamic quantities keep popping
up in gravity all the time. Hence, it natural to ask “if gravity is the thermodynamic
limit of the statistical mechanics of certain microscopic degrees of freedom (‘atoms
of space’) [21]”. One of the main results of this research program is the demonstra-
tion that Einstein’s equations when projected on a null surface can be interpreted
as a thermodynamic identity [1, 2, 10–12, 18]. As Paddy states, “If gravity is ther-
modynamic in nature, then the gravitational field equations must be expressible in
a thermodynamic language [21].” The above results are the concrete realizations
of this expectation. There is another result in the literature that smells very similar.
Twenty years back, Jacobson showed that enforcing a thermodynamic identity on a
local causal horizon is equivalent to enforcing Einstein’s equations [8]. This work has
also been followed up [3–5, 7, 15]. The question is often asked: What is the relation
between these two approaches? In fact, this question was posed to me during my
PhD defence! It is the purpose of this article to answer this question by comparing
and contrasting the two results. Let me state at the outset that the two results are
not the same result interpreted in two different ways, but arise from two different
components of the Einstein equations at the null surface [1, 2]. In particular, the T δS
terms that appear in the two results are not the same. In Jacobson’s case, the change
in entropy is as you move along the null geodesics on the null surface. In Paddy’s
case, the change is as you move along the null geodesics off the null surface (along
the auxiliary null vector).

I shall confine myself to Einstein’s theory, and to four dimensions, in this article.
For the comparison of the two approaches, I shall use Gaussian null coordinates
(GNC) near a null surface [16, 17, 24].

The conventions used in this article are as follows: We use the metric signature
(−,+,+,+). The fundamental constantsG, � and c have been set to unity. The Latin
indices, a, b, . . ., run over all space-time indices, and are hence summed over four
values. Greek indices,α, β, . . ., are usedwhenwe specialize to indices corresponding
to a codimension-1 surface, i.e. a 3-surface, and are summed over three values. Upper
case Latin symbols, A, B, . . ., are used for indices corresponding to two-dimensional
hypersurfaces, leading to sums going over two values.

1This nickname ensured that PhD work was never far from my mind even while enjoying holidays
in my home-state of Kerala, because of all the paddy fields around.



Einstein Equations from/as Thermodynamics of Spacetime 341

2 Comparing the Two Results in GNC

In order to compare Jacobson’s and Paddy’s approaches, we introduce a coordinate
system adapted to a null surface. This coordinate system, named the Gaussian null
coordinates (GNC), is quite general like the Gaussian normal coordinates [28] near a
non-null surface. Hence, as far as we know, we are not imposing any restrictions on
the null surfaces or the spacetimes by restricting to GNC. Further, the quantities that
we will be referring to will be physical quantities that do not depend on the choice of
coordinates. So, our results derived in the framework ofGNC are general results valid
around any null surface. The discussion of both Paddy’s thermodynamic identity and
the Raychaudhuri equation on the null surface which was used by Jacobson has been
provided for the GNC metric in [1, 2]. For the Raychaudhuri equation, we shall take
a slightly different route which makes it easier to compare with Jacobson’s results
while the results for Paddy’s thermodynamic identity will be borrowed from the
above two papers.

2.1 Gaussian Null Coordinates (GNC)

This coordinate system was introduced, as far as I know, by Moncrief and Isenberg
[16]. The construction of these coordinates are also discussed in [6, 17, 24, 26]. We
shall briefly detail the construction and note the essential properties of this coordinate
system below.

In the case of Gaussian normal coordinates near a non-null surface, the construc-
tion proceeds by using geodesics normal to the surface. This won’t work for the
null case, since geodesics with tangent vectors along the surface normal, say �a ,
actually lie on the null surface. But this offers a unique direction on the null surface
and the coordinate system on the surface can be set up adapted to this direction. To
do this, choose any spacelike 2-surface on the null surface and assign coordinates
(x1, x2) on that surface. Then, carry these coordinates along the null generators of
the surface with some parameter u, not necessarily affine (see Appendix“Gaussian
Null Coordinates with Affine Parametrization” for the case of affine parametriza-
tion), forming the third coordinate on the surface. To construct the coordinates in
the region near the null surface, we introduce an auxiliary null vector ka , satisfying
�aka = −1. Then, we carry the coordinates on the null surface along the null geo-
desics in the direction of ka and take the fourth coordinate as an affine parameter −r
along these null geodesics, with r = 0 on the null surface. (Here, −r has been used
instead of r just to match with conventions we have been following.)

Then, the line element in GNC coordinates takes the following form:

ds2 = −2rαdu2 + 2dudr − 2rβAdudx
A + qABdx

Adx B (1)
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This line element contains six independent functions α, βA and qAB , all dependent on
all the coordinates

(
u, r, x A

)
. The metric on the two-surface (i.e. u = constant and

r = constant) is represented by qAB . The surface r = 0 is the fiducial null surface
while other r = constant surfaces are not null in general. There are only 6 free
functions in the metric, as can be expected when we use the 4 coordinate choices to
restrict 10 components of the metric for a general spacetime.

We use the symbol sa for the normal ∂ar to the r = constant surfaces. This will
be a null vector on the r = 0 null surface. In fact, sa will go to the null vector �a ,
defined earlier, on the null surface. We introduce an auxiliary null vector ka such that
kasa = −1 everywhere. The components of these quantities in (u, r, x A) coordinates
are as follows:

sa = (0, 1, 0, 0) , sa = (
1, 2rα + r2β2, rβ A

)
(2a)

ka = (−1, 0, 0, 0) , ka = (0,−1, 0, 0) (2b)

On the null surface, we introduce two spacelike vectors eA = (e1, e2) which satisfy
�aeaA = kaeaA = 0. The four vectors

(
�a, ka, ea1 , , e

a
2

)
(3)

form a basis near the null surface. Next we introduce the vector ξ a:

ξ = ∂

∂u
= (1, 0, 0, 0) . (4)

which goes to �a on the null surface. This vector will be called the time development
vector since it corresponds to the standard time direction (which is also a Killing
direction) when Schwarzschild and Rindler metrics are written in GNC form (see
Appendix B in [2]). Thus, we may take it as the time direction corresponding to the
local Rindler observers in the local Rindler frame near the null surface. We have
ξ 2 = −2rα. This is zero on the null surface, as expected since ξ a goes to �a .

The vector ka = −∂/∂r is tangent to the ingoing null geodesic (ingoing since it
points in the direction of decreasing r ), which is affinely parametrized with affine
parameter r . We denote λH to be the value of the affine parameter on the null surface.
In the remaining discussions, we will work with λ defined through the following
relation: r = λ − λH .

2.2 The Components of Fa = Ga
bξ

b

In order to derive the thermodynamic identity, we focus on the vector Fa = Ga
bξ

b.
One way of seeing where this component comes from is to think in terms of the
Noether current for gravity [1, 2] or in terms of the recently introduced gravitational
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momentum [1, 22]. Another way of thinking about this is to note that ξ a goes to the
null normal �a on the null surface and hence the various components of matter fluxes
associated with the null surface are given by the various components of Ga

bξ
b. We

shall take projections ofGa
bξ

b along �a and ka and show that these are the components
used by Jacobson and Paddy respectively. The projection to the space spanned by
eaA (see Eq. (3)) is obtained using the projector qa

b . This gives rise to an equation of
the form of the Navier–Stokes equation [1], but we shall not be discussing that result
here.

2.2.1 Jacobson’s Result from Ga
bξ

b�a on the Null Surface

Jacobson’s derivation of the Einstein equation proceeds by assuming the Clausius
relation δQ = T δS, where the heat change δQ is taken as thematter flux across a null
surface near a local equilibrium, T is the acceleration of an observer who perceives
the local patch of the null surface as a local Rindler horizon and δS is the change in
entropy which is proportional to the area change.

Consider the component

Fa�a = Ga
bξ

b�a = Gab�a�b = Rab�a�b = 8πT ab�a�b . (5)

This projection actually picks up the component of Fa along ka if you expand
Fa = A�a + Bka + CAeaA in the basis in Eq. (3). In GNC coordinates,

Fa�a = Rab�a�b = Rrr . (6)

Evaluating this component of the Ricci tensor at the null surface r = 0, we obtain

Rrr = α√
q

∂u
√
q − ∂2

u ln
√
q + 1

4
∂uqAB∂uq

AB

= α∂u ln
√
q − ∂2

u ln
√
q − 1

4
q ACqBD∂uqAB∂uqCD, (7)

where ∂u denotes the operator ∂/∂u. The induced metric on the null surface is given
by qab = gab + �akb + ka�b. Using qab, we can construct the second fundamental
form on the null surface:

Θab = qm
a q

n
b∇m�n . (8)

Taking the trace of the second fundamental form, we get the expansion:

Θ = gabΘab = qabΘab = qab∇a�b . (9)

The second fundamental form and the expansion for the null surface at r = 0 in GNC
are respectively
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Θab = ∂uqAB

2
; Θ = q AB∂uqAB

2
= ∂u ln

√
q (10)

Thus, we can write

Fa�a = Rrr = αΘ − ∂uΘ − ΘABΘ AB (11)

= αΘ − 1√
q

∂u
(√

qΘ
) + Θ2 − ΘABΘ AB (12)

= αΘ − 1√
q

∂u
(√

qΘ
) − D, (13)

where D = ΘABΘ AB − Θ2 is identified as the dissipation corresponding to the null
surface. This identification comes from the component qa

b F
b of Fa which can be

written in a form similar to Navier–Stokes equations of fluid dynamics [1].
In order to compare with Jacobson’s result, consider Eq. (11). We can write it in

the form
∂uΘ = αΘ − ΘABΘ AB − Rab�

a�b (14)

Once we decompose Θab into its trace (expansion Θ), traceless symmetric part
(shear σab) and antisymmetric part (rotation ωab), this reduces to the form of the null
Raychaudhuri equation [25] but with the first term being extra. This term appears
because the null Raychaudhuri equation is usually defined with an affinely parame-
trized geodesic while the parameter u is not an affine parameter. If we derive the null
Raychaudhuri equation without assuming affine parametrization, we can see that it
is consistent with Eq. (14) [1].

But we shall follow the other route by keeping affine parametrization. Then, u
has to be taken as an affine parameter in the construction of GNC. This would
lead to the constraint that α = 0 on the null surface r = 0 (see Appendix“Gaussian
Null Coordinates with Affine Parametrization”). Enforcing this, Eq. (14) becomes

∂uΘ = −ΘABΘ AB − Rab�
a�b (15)

This is the usual affinely parametrized null Raychaudhuri equation. In Jacobson’s
case, the ΘABΘ AB term is put to zero as a condition for local equilibrium. More
explicitly, the rotation is zero since the null geodesics are taken to form the local
horizon, while the expansion and shear are set to zero as a condition for equilibrium.
If there is a given null surface with non-zero shear or expansion at a point, then these
cannot be set to zero by choice of coordinates as they are geometrical quantities.
But what is true is that given any point in spacetime and any null direction through
that point, there is always a null surface through that point tangential to the null
direction such that the expansion and shear are zero. To see this in GNC coordinates,
first note that Θab = ∂uqab. At the point P at which we want to construct the GNC
coordinates on a null surface at local equilibrium, we first erect a local inertial frame
(t, x, y, z). The x-axis is aligned so that the chosen null direction lies in the x − t
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plane. If we now do a Rindler transformation, the metric can be put in the GNC form
with the null surface coinciding with the local Rindler horizon with the chosen null
direction along one of its generators. Since the transverse 2-metric is not touched in
these transformations, they remain flat and we shall have ∂uqAB = 0 valid in the local
inertial frame. Thus, given any point in spacetime and a null direction through it, one
can always choose a null surface through the point tangential to the null direction
such that Θ AB = 0; in other words, such that the shear, expansion and rotation are
zero.

With such a choice of a null surface, Eq. (15) becomes

∂uΘ = −Rab�
a�b , (16)

which is precisely the form of the Raychaudhuri equation Jacobson integrated to get
the geometric part needed to obtain the Einstein equation. Following Jacobson, we
first integrate the above equation with the initial condition that Θ = 0 at the point P
at u = 0 to obtain

Θ = −Rab�
a�bu . (17)

Our convention is that u is increasing to the future. Jacobson’s set-up involves imag-
ining that the congruence was expanding a little to the past of P and then there was
a matter flux through the congruence that provided just enough gravitational lens-
ing to bring the expansion to zero at P . We shall integrate from the point P0 with
affine parameter value −ui to the past of P . The change in area of an infinitesimal
cross-section around the chosen null generator is then given by

δA =
∫ 0

−ui

Θ
√
qdud2x = −

∫ 0

−ui

Rab�
a�bu

√
qdud2x =

∫ ui

0
Rab�

a�bλ
√
qdλd2x .

(18)
In the last step, we have changed the integration variable from u to λ = −u. Note that
the change in area is positive if Rab�

a�b > 0, which is the condition that you obtain
from the Einstein equations if the matter part satisfies the null energy condition.
Finally, we assume that the entropy change that is to be associated with the null
surface is proportional to its area change with some proportionality constant η:

δS = ηδA = η

∫ ui

0
Rab�

a�bλ
√
qdλd2x . (19)

Next, we need an accelerating observer for whom the patch of null surface acts as
a local Rindler horizon. Since the proper distance of an accelerated observer from
the Rindler horizon is inversely proportional to the acceleration, we shall consider
a highly accelerated observer so that the observer is very close to the horizon and
we can be sure that our construction of the local inertial frame and local Rindler
frame are valid. In fact, we may go to the light-like limit of the infinitely accelerated
observer.
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In order to find the suitable observer, we shall write the GNC form with affine
parametrization for the Rindler metric. In flat Milnkowski space with coordinates
(t, x, y, z), the observers moving along the integral curves of the generators of boosts
along the x-direction are the ones who will observe the future part of the x = t null
plane as a Rindler horizon. These are observers moving along the integral curves of
the vector (x, t, 0, 0). We shall try to figure out which observers in our picture can
be taken to correspond to these observers. First, we shall write down the metric in
the following Rindler form [27]:

ds2 = −2κldT 2 + dl2

2κl
+ dy2 + dz2 . (20)

This form is obtained from the Minkowski metric by the coordinate transformation
x = √

2l/κ cosh κt and t = √
2l/κ sinh κt . Defining a new coordinate U by

U = T +
∫

dl

2κl
; dT = dU − dl

2κl
, (21)

we transform to
ds2 = −2κldU 2 + 2dUdl + dy2 + dz2 . (22)

We have got the metric in GNC form, but U is not an affine parameter. Looking at
how the vector ∂/∂U should be scaled to make it affine, we can figure out that the
transformation to coordinates

λ = eκU

κ
; s = l

κλ
(23)

will do. This brings the metric in the form

ds2 = 2dλds + dy2 + dz2 . (24)

I am happy to say that we have rediscovered the flat metric in the double null form in
a pleasantly roundabout way. This is now of the form of affinely parametrized GNC
in Eq. (39). The observer can be then found to be the one moving along the integral
curves of the vector (λ,−s, 0).

Taking a cue from this, we shall look at the observers moving along the integral
curves of (u,−r, 0, 0) in the affine GNC metric of Eq. (39). So we anoint

χa = (u,−r, 0, 0), (25)

as the vector representing our observers. The normalized vector χ̄a will represent
the four-velocity. Note that, on the null surface r = 0, we have

χa = u
∂

∂u
= u�a . (26)
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Writing χ̄a = Nχa , the acceleration of the trajectories will be given by N and the
corresponding acceleration temperature will be

T = N

2π
(27)

near the null surface.
The momentum four-vector associated to the matter flux by one such observer

will be NT abχb. The energy of the matter flux across the null surface as observed
by this observer is the heat change

δQ =
∫ 0

−ui

NT abχb�a
√
qdud2x = N

∫ 0

−ui

uT ab�b�a
√
qdud2x, (28)

where we have used Eq. (26). Changing variables to λ = −u as in Eq. (19), we obtain

δQ = −N
∫ ui

0
λT ab�b�a

√
qdλd2x . (29)

Nowwe have all the ingredients in place. Demanding δQ = T δS and using Eqs. (19),
(27) and (29), we obtain the condition

Rab�
a�b = −2π

η
Tab�

a�b . (30)

This is almost right, except for a pesky minus sign. If we obtain Einstein equation
from the above relation, η will be set as negative and this would mean that area
increase is entropy decrease from Eq. (19). We have been careful with signs around
Eq. (19), so let us look back at Eq. (29). If we enforce the null energy condition
T ab�a�b > 0, the heat turns out to be negative. Since we require a positive heat
change to correspond to the positive change in entropy, we redefine

δQ = N
∫ ui

0
λT ab�b�a

√
qdλd2x . (31)

This is in fact the correct definition. The original source of the extra minus sign
was the fact that χa = u∂/∂u is past-directed in our region of integration since u is
negative, and hence −χa should have been used.

Thus, we obtain the equation

Rab�
a�b = 2π

η
Tab�

a�b . (32)

From here, we can follow Jacobson [8] to obtain the full Einstein equations.
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2.2.2 Paddy’s Result from Ga
bξ

bka on the Null Surface

Next, we shall discuss Paddy’s approach where a certain component of the Einstein
equations near a horizon takes a form similar to the first law of thermodynamics [1,
2, 10–12, 18]. In Paddy’s approach the Einstein equations are not derived, but it is
shown that a certain component of Einstein equations projected on a null surface
has a thermodynamic interpretation. Note that this difference is superficial since
even in Paddy’s case one can derive the Einstein equations by starting from the
thermodynamic identity backward and demanding that it holds for all null surfaces
and even in Jacobson’s case one can prove the Clausius relation starting from the
Einstein equations.

To obtain Paddy’s result, we look at another component of Fa . We shall take its
projection along the auxiliary null vector ka . Then, we obtain

Faka = Ga
bξ

bka = 8πT a
b ξ bka . (33)

In this case, the work has already been done in [1, 2] and hence we just borrow the
results. Working in GNC, the component Ga

bξ
bka = 8πT a

b ξ bka is interpreted and
written in the form

F̄δλ̄ = T δλ̄S − δλ̄E . (34)

Here, F is the integral of T a
b ξ bka over the null surface, interpreted as the force acting

on the patch of the null surface and δλ = δr is a small shift of the horizon in the
direction of ka . This is a small shift in the r -direction in GNC coordinates. Note that
r is also an affine parameter.

On the RHS, T = α/2π is the acceleration temperature corresponding to the
observers moving along the integral curves of ξ a near r = 0 with the assumption
that α is slowly varying in time. More precisely, we assume ∂uα � α2. The change
in entropy δS is just the change in the 2-surface area, with appropriate factors, when
the surface is shifted outward. The change in area is the integral of ∂r

√
qδr integrated

over the patch of the null surface.
Finally, we have the change in energy. The quantity E here is given by the expres-

sion

E= 1

16π

∫
dr

∫
d2x

√
qR(2) − 1

8π

∫
d2x∂u

√
q

− 1

16π

∫
dr

∫
d2x

√
q

{
1

2
βAβ

A

}
. (35)

Here, one term has been put to zero under the assumption that the u-constant, r -
constant 2-surface on the null surface is closed. The identification of this quantity
as the energy is due to the fact that it is able to reproduce the known expressions
of energy in several known cases. For example, this reduces to the mass for the
Schwarzschild metric.
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With these identifications, Eq. (34) is of the form of the first law of
thermodynamics.

3 Discussion

At first sight, Paddy’s result and Jacobson’s result look very similar. Jacobson’s
result says that one can derive Einstein equations from δQ = T δS imposed on local
Rindler horizons, which can be constructed along any null direction around any point
in spacetime. Paddy’s result is that a certain projection of the Einstein equations on
a null surface can be interpreted to be of the form δE = T δS − Fδλ. In thermo-
dynamics, these relations will be called the Clausius relation and the first law of
thermodynamics. In fact, one may be tempted to put both together and obtain the
equation δE = δQ − Fδλ. But closer scrutiny reveals that things are not that simple.

The apparent point of conflict is that both δQ in Jacobson’s case and δE in
Paddy’s case are components of matter energy-momentum flux across the horizon.
Since identification of which component is which physically is a little complicated
near the null surface, I am sure many people must have thought that these are the
same components. Once this is assumed, there appears to be a discrepancy with
Paddy having an extra term compared to Jacobson’s starting point, since the T δS
terms seem unambiguous.

I hope I have shed some light on this issue in this article, building up on work
previously done in [1, 2]. Working in the framework of Gaussian null coordinates,
one can see that

1. Paddy’s result and Jacobson’s result come from two different components of the
Einstein tensor, and equivalently of the matter energy-momentum tensor, near
the null surface.

2. The entropy change in the T δS term is not the same in the two cases. In Paddy’s
case, the change is from the change in area along the null geodesics off the null
surface, while the change in Jacobson’s case is along the null geodesics on the
null surface.

Another paper which compared the two approaches is [9]. It is not clear how the
results there compare to the results stated here. The discussion in [9] had the general
static metric introduced in [13, 14] as the reference metric although the final results
are stated in tensorial form. It will be interesting to see how these results look when
translated to Gaussian null coordinates.

Epilogue

Theoretical physics is fun. Most of us indulge in it for the same reason a painter paints or
a dancer dances...Occasionally, there are additional benefits like fame and glory and even
practical uses; but most good theoretical physicists will agree that these are not the primary
reasons why they are doing it. The fun in figuring out the solutions to Nature’s brain teasers
is a reward in itself.

Source- Paddy’s book [20]

My first encounter- After PhD
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Appendix

Gaussian Null Coordinates with Affine Parametrization

The line element in GNC coordinates was given in Eq. (1) as

ds2 = −2rαdu2 + 2dudr − 2rβAdudx
A + qABdx

Adx B , (36)

Here, α, βA and qAB are arbitrary functions. This was derived by taking u to be
an arbitrary parameter along the null geodesics on the null surface r = 0 [24]. But
supposewe now impose the condition that u is an affine parameter on the null surface.
This is equivalent to the condition that ξ a∇aξ

b = 0 at r = 0 for ξ a = ∂/∂u. For the
above line element, we have

ξ a∇aξ
b = �b

acξ
aξ c = �b

uu . (37)

Equating this to zero, we get the following conditions at r = 0:

∂uguu = 0; ∂r guu = 0; ∂Aguu = 0 . (38)

Since guu = −2rα, the first and third conditions are automatically satisfied, while
the second condition implies α = 0 at r = 0. This can be enforced by putting α = rγ
where γ is an arbitrary function. Thus, the form of the GNC line element with affine
parametrization is

ds2 = −2r2γ du2 + 2dudr − 2rβAdudx
A + qABdx

Adx B . (39)

Note that this form was indicated in [17] where the Ruu component was compared to
the Raychaudhuri equation to claim that α has to be proportional to r . It is not clear
from the text whether the author realized that this is necessary only if u is taken to be
affine. But since affine parametrization can always be taken, it is true that the GNC
metric can always be written in the above form.
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Thoughts on 50 Years in Astrophysics
and Cosmology and on What
Comes Next

Martin J. Rees

Abstract This paper presents a brief review of how some key developments in
relativistic astrophysics and cosmology emerged over the last few decades - and
offers some speculations on what issues will challenge the next generation.

1 Introduction

Anyone who reaches the age of 60 is likely to become interested in what happens
to scientists as they grow older. There seem to be three destinies. First, and most
common, is a diminishing focus on research - sometimes compensated by energetic
efforts in other directions, sometimes just by a decline into torpor. A second pathway,
followed by some of the greatest scientists, is an unwise and over-confident diversi-
fication into other fields. Those who follow this route are still ‘doing science’ - they
want to understand the world and the cosmos but they no longer get satisfaction from
researching in the traditional piecemeal way: they over-reach themselves, sometimes
to the embarrassment of their admirers. (We can all think of some in this category).
This trend is aggravated by the tendency for the eminent and elderly to be shielded
from frank criticism. But there is a third way - the most admirable. This is to continue
to do what one’s competent at, accepting that there may be some new techniques that
the young can assimilate more easily that the old, and that one can probably at best
aspire to be on a plateau rather than scaling new heights. (There are of course some
‘late flowering’ exceptions. But whereas there are many composers whose last works
are their greatest, there are few scientists for whom this is so.) The reason, I think
is that composers can improve and deepen solely through ‘internal development’;
scientists, in contrast, need to absorb new concepts and new techniques if they want
to stay at the frontier - and that’s what gets harder as we get old.

The great physicist LordRayleighwas once asked, in his later years: ‘Do scientists
over 60 domore harm than good?’He responded ‘No, provided that they stick towhat
they’re good at, and don’t criticize the work of younger scientists’. This precept was
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quoted by S Chandrasekhar - an eminent scientist whose sustained career certainly
exemplified it to a high degree.

I’mconfident that this third trajectorywill bePaddy’s too: thatwe can look forward
to more original ideas, that his amazing intellectual energy will be undimmed, and
there will be an continuing flow of books and general articles.

Many sciences - astronomy and cosmology certainly among them - advance
decade by decade so that any practitioner can observe an ‘arc of progress’ dur-
ing his or her career. So I’d like to offer some thoughts on what has happened in
high energy astrophysics and cosmology during my own career, which started in the
1960s.

2 The Resurgence of Relativity: Some History

At that time, general relativity was already 50 years old. By then, relativists had
developed beautiful mathematics and great insights but the topic was somewhat
isolated from the mainstream of physics and astronomy. The gravitational effects
governing ordinary stars and galaxies were weak enough to be adequately described
by Newtonian theory - general relativity was no more than a tiny correction. And
it wasn’t well confirmed. The classic solar system tests confirmed Einstein with no
better than 10% precision - and only in the post-Newtonian weak field limit.

The 1960s were transformational. On the theoretical side we had the Kerr Solu-
tion, the singularity theorems, the ‘no hair’ theorems, etc. But in parallel there were
observational breakthroughs.

The first such breakthrough came in 1963with the discovery of quasars – hyperlu-
minous beacons in the centres of some galaxies, compact enough to varywithin hours
or days, but which vastly outshine their host galaxy. Quasars revealed that galaxies
contained something more than stars and gas. That ‘something’ is a huge black hole
lurking in their centres, though it took a further decade before that was properly
appreciated (except by a few pioneers like Donald Lynden-Bell). I think a consensus
would have developed faster if other lower-level forms of activity in galactic nuclei
(e.g. in Seyfert Galaxies and radio galaxies) had already been more fully studied.
Quasars, initially regarded as sui generis (whose redshifts, some thought, might have
involved new physics) would then have been quickly recognized as extreme versions
of a known phenomenon. Quasars are specially bright because, as we now recog-
nize, they’re energised by emission frommagnetized gas swirling into a central black
hole. These processes can generate the jets that inflate giant radio-emitting lobes that
surround some galaxies.

Quasars were a key stimulus to the emergence of ‘relativistic astrophysics’. But
there were others. In particular, another surprise was the detection of neutron stars.
One of the best-known objects in the sky is the Crab Nebula: the expanding debris
from a supernova witnessed by Chinese astronomers in 1054 AD. It was a longtime
puzzle what kept it shining, so blue and bright. The answer came when it was dis-
covered that the innocuous seeming star in its centre was anything but normal. It
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was actually a neutron star spinning at 30 revs per second and emitting a wind of
fast electrons that generated the blue light. In neutron stars relativistic effects are
10–20%. Not merely a tiny correction to Newton.

Some massive stars end their lives not as neutron stars but as black holes. But
these holes are only detectable if they happen to be in interacting binaries, where
they’re lit up by accretion energy and emit strongly in the X-ray band. The fact that
these X-ray sources are in binary systemsmeans that their masses can be determined.
Those that are more than 2 solar masses display irregular flickering. They’re black
holes. But those of lower mass vary periodically. They’re spinning neutron stars -
but energized by accretion, not by spindown as in pulsars.

The Italian/American space scientist Riccardo Giacconi has had a lifetime of
achievement, including the discovery of stellar-mass black holes. But if history had
been slightly different, he could have discovered neutron stars as well - finding them
in binaries before radio astronomers found pulsars.

A sociological digression: In the West (and we are thinking back to an era when
the Iron Curtain was almost impermeable) the inspirational gurus for relativistic
astrophysics were John Wheeler in the US; and Roger Penrose and Dennis Sciama
in England. In the Soviet Union, Yakov Zeldovich led a powerful group of theorists
who progressed in parallel with those in the West. And there were distinguished
individuals in Japan, India and elsewhere. Despite the impediments to travel, there
were cordial and cooperative contacts among relativists - many of which I was able
to observe close-up (though I was never a serious contributor to this subject).

The 1960s saw the first real advance in understanding black holes since the work
of J Robert Oppenheimer and his co-workers in the late 1930s. They clarified what
happens at r = 2M in the Schwarzschild metric. (And its interesting to conjecture
how much of the 1960s work Oppenheimer might have pre-empted if World War II
hadn’t broken out the very day his key paper with Snyder [1] appeared in Phys Rev).

A dead quasar – a quiescent massive black hole - lurks at the centre of most
galaxies. Moreover there’s a correlation between the mass of the hole and that of its
host galaxy. The actual correlation is with the bulge (non-disc) component not the
whole galaxy. Our own Galaxy harbours a modest-mass hole of around 4 million
solar masses.

The holes grow by accretion of gas – a process that’s surprisingly complicated.
They also tidally disrupt and swallow entire stars. And as Blandford and Znajek [2]
pointed out, energy can be electromagnetically extracted from a spinning hole and
this is a specially effective way to produce the ubiquitous ultrarelativistic outflowing
jets.

Are the holes spinning? We have some evidence. The swirling gas spiraling into
them emits spectral lines in the x-ray band - smeared by Doppler and gravitational
shifts in a fashion that depends on the metric. (The stable orbits extend closer to the
hole, with higher binding energy, and larger red and blue shifts from Doppler and
gravitational effects, when the hole is spinning in the same direction as the disc).
There are some cases when the X-ray lines are so greatly broadened that the hole
can’t have a Schwarzschild metric and must have some spin. (See Reynolds [3] for a
recent review). We don’t yet know the distribution of spins. But the realization that
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all these objects are described by the Kerr metric - mass and spin, no other parameters
– was something that hugely impressed Chandrasekhar, who wrote that “in my entire
scientific life, the most shattering experience has been the realization that an exact
solution of Einsteins equations provides the absolutely exact representation of untold
numbers of massive black holes that populate the universe”.

Any residual skepticism about the validity of Einstein’s equations and the Kerr
Metric was surely allayed in earlier 2016 when the LIGO detectors (with what was
real ‘beginner’s luck’) detected an event attributable to a merger of two holes, where
the template of the event was excellently fit by computational models.

When two galaxies merge (as Andromeda and the Milky Way will in about 4
billion years) the black holes in the centre of each will spiral together forming a
binary, which will shrink by emitting gravitational radiation and create a strong
chirp when the two holes coalesce. Most galaxies have grown via a succession of
past mergers. The consequent coalescences of these supermassive black holes would
yield gravitational waves of much lower frequencies than LIGO can detect. These
are the prime events to which LISA-type instruments in space would be sensitive.

3-D hydrodynamics incorporating MHD has allowed modelling of accretion
flows, gamma ray bursts, and active galaxies. And breakthroughs in computing
time-dependent space-times in general relativity have allowed calculations of the
wave-form of gravitational radiation released by the collapse and merging of com-
pact objects. The feedback on protogalaxies from stars and AGNs is still, however,
modelled rather crudely. There has however been huge progress in simulating the
emergence of cosmic structure, and setting galaxies in a cosmological context.

3 Probing the Early Universe

The standard Friedmann and Lemaitre models were known since the 1920s, but until
the 60s astronomers had no instruments powerful enough to discriminate among
them. Indeed the steady state model (where there was an infinite past) was still being
debated. Quasars (especially those that were radio emitters too) transformed this.
Because they’re so luminous they allowed astronomers to probe back far enough
along our past light cone to see how the universe was changing as it aged - and to
infer that it was not in a steady state.

In the most distant reliably-known quasar [4], Lyman alpha is shifted from the
UV almost into the infrared - wavelengths are stretched by 8.1. So we can infer that
some galaxies had already assembled when the Universe was only about a tenth of
its present age, and black holes, some of several billion solar masses had formed at
their centres. But how much further back did the action actually start? When did the
dark age end? To answer this, astronomers are looking for even more distant galaxies
(they use lensing by clusters as nature’s telescope). And they seek objects that may
be exceptionally bright. For instance, gamma ray bursts outshine an entire galaxy by
a factor of a million. Finding even one at say, a redshift of 15 would be a valuable
clue.
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But of course it’s the cosmic microwave background – another great discovery of
the 1960s – that’s the crucial fossil of the earliest eras. Its thermal spectrum is the
most compelling evidence for a big bang. Even by 1970 we had precise calculations
of nucleosynthesis during the first 3min. And now we famously have the angular
fluctuations - most recently and precisely from the Planck spacecraft data. The slight
ripples that induce these temperature fluctuations - detected via photons that have
travelled freely since the Universe was 300,000 years old – subsequently enhanced
their density contrast and condensed out into the first stars and galaxies.

Taking the CMB fluctuations as inputs, and including gravity and gas dynamics,
computer simulations end up, after the 1000-fold expansion since the photons were
last scattered, with properties that yield a good statistical fit to present structures
and allow the cosmological parameters to be pinned down with a precision of a few
percent.

We’re definitely vindicated in extrapolating back to 1 s, because the calculated
proportions of helium and deuterium produced (for a baryon density fitting other
data) match beautifully with what’s observed. Indeed we can probably be confident
in extrapolation back to a nanosecond: that’s when each particle had about 50 Gev of
energy – an energy that can be achieved in the LHC - and the entire visible universe
was squeezed to the size of our solar system.

But questions like“where did the fluctuations come from” and“why did the early
universe contain the actualmixwe observe of protons, photons and darkmatter?” take
us back to the even briefer instants when our universe was hugely more compressed
still - into an ultra-high-energy domain where experiments offer no direct guide to
the relevant physics.

For more than 30 years we’ve had the inflationary paradigm - seriously invoking
an era when the Hubble radius was a billion times smaller than an atomic nucleus.
It’s argued that ‘inflation’ gives the best explanation of the flatness. The gaussianity
of the fluctuation spectrum and the tilt in the amplitude are consistent with some
inflationary models - and firming up the theory is a challenge for the future.

4 The Geometry and the Expansion

Let us now turn from the remote past to the long-range future forecast. In 1998
cosmologists had a big surprise. It was by then well known that the gravity of dark
matter dominated that of ordinary stuff - but that together they contributed only about
30% of the critical density. This was thought to imply that we were in a universe
whose expansion was slowing down, but not enough to eventually be halted. But,
rather than slowly decelerating, the Hubble diagram of Type 1a supernovae famously
revealed that the expansion was speeding up. Gravitational attraction was seem-
ingly overwhelmed by a mysterious repulsive force latent in empty space resembling
Einstein’s lambda [5, 6].

And there was independent evidence supporting this. A straightforward
low-density universe would have negative curvature. This can be tested because
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straightforward effects in the pre-recombination era lead to a peak in the
fluctuation amplitude at a particular wavelength. The wavelength of this ‘Doppler
Peak’ serves as a ‘rigid rod’ of known length. The angular scale of this feature in the
CMB fluctuations depends on the curvature.

This peak was first detected by a balloon-borne experiment called Boomerang [7].
It is revealed with huge precision in data from the Planck spacecraft, on an angular
scale that implies flatness.

For the universe to be ‘flat’, themissing 70%would need to be in some unclustered
form.Moreover, this component, though dominant today, cannot have been dominant
in the past, because itwould have inhibited the growth of cosmic structure. It therefore
has negative pressure (the ‘PdV work’ done during the expansion is negative.). And
in the Friedman equations that implies acceleration. So even in the absence of the
optical data on supernovae, the microwave background evidence for the ‘Doppler
Peak’ would have allowed us to predicted cosmic acceleration.

Indeed if we’d just had the supernova Hubble diagram, some of us still wouldn’t
be convinced that a low-density universe with small deceleration could be ruled out.
But the almost simultaneous CMB evidence for a ‘flat’ universe rules out this option.
So together these very different measurements clinch the case. The fit between the
fluctuation spectrum measured by the Planck spacecraft (in all spherical harmonics)
and a 6-parameter model - and the realization that these fluctuations develop, under
the action of gravity and gas dynamics, into galaxies and clusters with properties
matching our actual cosmos – is an immense triumph. When the history of science
in these decades is written, this will be one of the highlights - and I mean one of the
highlights of all of science: up there with plate tectonics, the genome and only very
few others.

An issue for physicists is the nature of the dark energy - is it time-independent,
like Einstein’s lambda, or was it different in the past? The data are consistent with
constancy, but attempts to pin down the dependence are an important motive for
surveys of high-redshift galaxies). Whereas the nature of dark matter may well be
pinned down in a decade, dark energy won’t be understood until we have a model
for the graininess of space on the Planck scale - I’m not holding my breath for this -
or some novel perspective of the kind that Paddy has pioneered.

I’d venture a gripe about the misuse of the famous ‘pie diagram’ that shows the
constituents of space as roughly 70% dark energy, 25% dark matter, and 5% baryons
(numbers that are pinned down more precisely by Planck data). This presentation
gives a misleading perception of scientific priorities by making it seems that dark
energy is overwhelmingly important - more so than dark matter. But from an astro-
physical perspective the opposite is true. Dark matter is crucial: without taking it into
account we can’t understand the formation of structure, nor the present morphology
of galaxies and clusters. In contrast, dark energy isn’t crucial for any phenomena
that interest astrophysicists. It has no significant role within galaxies and clusters.
Moreover, since it depends less steeply on z than ordinary matter, its share of the
‘pie’ is very small beyond z= 1, so it played a minimal role in how cosmic structures
emerged.
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But despite its irrelevance for astronomy, dark energy may be the biggest
fundamental challenge presented by the present day universe. That’s why measuring
its actual dependence on z is important (to test whether it really is independent of
time, like Einstein’s cosmological constant, or whether it is more complicated).

5 Beyond the Horizon

Another fundamental question is this: How large is physical reality? We can only
observe a finite volume. The domain in causal contact with us is bounded by a
horizon – a shell around us, delineating the distance light (if never scattered) could
have travelled since the big bang. But that shell has no more physical significance
than the circle that delineates your horizon if you’re in the middle of the ocean. We’d
expect far more galaxies beyond the horizon. There’s no perceptible gradient across
the visible universe - suggesting that similar conditions prevail over a domain that
stretches thousands of times further. But that’s just a minimum. If space stretched
far enough, then all combinatorial possibilities would be repeated. Far beyond the
horizon, we could all have avatars - and perhaps it would be some comfort that some
of them might have made the right decision when we make a wrong one!

But even that immense volume may not be all that exists. ‘Our’ big bang may not
be the only one. The physics of the inflation era is still isn’t firm. But some of the
options would lead to so-called ‘eternal inflation’ scenario, in which the aftermath
of ‘our’ big bang could be just one island of space-time in an unbounded cosmic
archipelago.

In scenarios like this, a challenge for 21st century physics is to answer two ques-
tions. First, are there many ‘big bangs’ rather than just one? Second - and this is even
more interesting – if there aremany, are they all governed by the same physics or not?
Or is there a huge number of different vacuum states with different microphysics?

If the answer to this latter question is ‘yes’, there will still be underlying laws
governing the multiverse - maybe a version of string theory. But what we’ve tra-
ditionally called the laws of nature will be just local bylaws in our cosmic patch.
Even though it makes some physicists foam at the mouth, we then can’t avoid the
A-word - anthropics. Many domains could be still-born or sterile: the laws prevailing
in them might not allow any kind of complexity. We therefore wouldn’t expect to
find ourselves in a typical universe - rather, we’d be in a typical member of the subset
where an observer could evolve. It would then be important to explore the parameter-
space for all universes (which requires having a believable and ‘battle-tested’ theory
such as string theory) and also a way of putting a probability measure on each part
of parameter space (which requires a firmly established model developed from, for
instance, the ‘eternal inflation’ scenario).

I find that even those who are allergic to anthropic reasoning can be interested in
exploring the consequences of changes in the laws and constants - different lambda,
different G, different fluctuation amplitudes, etc. – if this is just presented as ‘coun-
terfactual physics’ which helps to develop our intuition. This is analogous to the
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way some historians speculate on ‘counterfactuals’ such as what India might be like
today if the Brits had never set foot there; and some biologists speculate on how our
biosphere might have evolved if the dinosaurs hadn’t been wiped out.

Some claim that unobservable entities aren’t part of science. But few really think
that. For instance, we know that galaxies disappear over the horizon as they accelerate
away. But (unless we are in some special central position and the Universe has an
‘edge’ just beyond the present horizon) there will be some galaxies lying beyond our
horizon - and if the cosmic acceleration continues they will remain beyond for ever.
Not even the most conservative astronomer would deny that these never-observable
galaxies are part of physical reality. These galaxies are part of the aftermath of
our big bang. But why should they be accorded higher epistemological status than
unobservable objects that are the aftermath of other big bangs?

[To offer an analogy: we can’t observe the interior of black holes, but we believe
what Einstein says aboutwhat happens there because his theory has gained credibility
by agreeing with date in many contexts that we can observe. Likewise, if we had
a model that described physics at the energies where inflation is postulated to have
occurred, and if that model had been corroborated in other ways, then if it predicts
multiple big bangs we should take that prediction seriously.]

If there’s just one big bang, then we’d aspire to pin down why the numbers
describing our Universe have the values we measure (the numbers in the ‘standard
model’ of particle physics, plus those characterizing the geometry of the universe).
But if there are many big bangs - eternal inflation, the landscape, and so forth – then
physical reality is hugely grander than we’d have traditionally envisioned.

It could be that in 50 years we’ll still be as flummoxed as we are today about the
ultra-early universe. But maybe a theory of physics near the ‘Planck energy’ will
by then have gained credibility. Maybe it will ‘predict’ a multiverse and in principle
determines some of its properties – the probability measures of key parameters, the
correlations between them etc.

Some don’t like the multiverse; it means that we’ll never have neat explanations
for the fundamental numbers, which may in this grander perspective be just environ-
mental accidents. This naturally disappoints ambitious theorists. But our preferences
are irrelevant to the way physical reality actually is - so we should surely be open-
minded.

Indeed there’s an intellectual and aesthetic upside. If we’re in a multiverse, it
would imply a fourth and grandest Copernican revolution; we’ve had the Copernican
revolution itself, then the realization that there are billions of planetary systems in
our galaxy; then that there are billions of galaxies in our observable universe.

But we’d then realize that not merely is our observable domain a tiny fraction of
the aftermath of our big bang, but our big bang is part of an infinite and unimaginably
diverse ensemble.

About ten years ago I was on a panel at Stanford University where we were asked
by someone in the audience howmuch we’d bet on the multiverse concept. I said that
on the scale ‘would you bet your goldfish, your dog, or your life?’ I was nearly at the
dog level. Andrei Linde, who had spent 25 years promoting ‘eternal inflation’, said
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he’d almost bet his life. Later, on being told this, Steven Weinberg said he’d happily
bet Martin Rees’ dog and Andrei Linde’s life.

Andrei Linde, my dog, and I will all be dead before this is settled. But none of
this should be dismissed as metaphysics. It’s speculative science - exciting science.
And it may be true.

6 Concluding Comments

Up till now progress in cosmology and high energy astrophysics has been owed 95%
to advancing instruments and technology - less than 5% to armchair theory. I’d expect
that balance to continue. But there is one big change, brought about by the fact that
computer simulations have hugely advanced in power and expanded in range.

The 1960s were exhilarating for young astrophysicists. So much was new that the
old guys didn’t have a big head-start over the youngsters. But this is not an occasion
for nostalgia. Indeed, I’m surePaddywouldwant to emphasise that today is an equally
good time for young researchers. The pace of advance has crescendoed rather than
slackened; instrumentation and computer power have improved hugely; the frontiers
are far more extensive. But in choosing a topic, those entering the subject shouldn’t
shoot for the most fundamental problem: they should multiply the importance of the
problem by their perceived chances of making progress with it, and chose the one
that maximizes that product.

Relativistic astrophysics is now ‘mature’, but other fields have opened up. Exo-
planet research is only 20 years old, and serious work in astrobiology is really only
starting. Some exo-planets may have biosphere – maybe some will harbour aliens
who know all the answers already. And on that encouraging note I’ll conclude by
thanking Paddy for his friendship and stimulus over three decades, and expressing
the hope that his amazing intellectual energy will be sustained for many more years.
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Area Theorem: General Relativity
and Beyond

Sudipta Sarkar

Abstract Gravity being the manifestation of the curvature of spacetime can create
regions which are inaccessible to a class of observers. An example of such a region
is the event horizon of black objects which acts as a one way causal boundary. The
thermodynamics of space time horizons is believed to be a crucial input to understand
the quantum dynamics of gravity. The basis of this thermodynamic analogy is the
area theorem by Hawking which asserts that the area of the event horizon can not
decrease in any classical process. The proof of the area theorem depends on both
the validity of Einstein’s equation as well as on the cosmic censorship hypothesis. A
natural question in this regard could be to ask whether the thermodynamic properties
of space time horizons can be generalized beyond general relativity? In this article,
we will focus on the “area theorem” of black hole thermodynamics and discuss
various possible generalization to higher curvature gravity. We will also discuss how
the generalization of the area theorem beyond general relativity leads to various
constraints in the couplings of higher curvature terms.

Over the last century, Einstein’s ideas have taught us how the gravitational interaction
affects the structure of spacetime. This dynamical fabric is the stage inwhich all other
physical objects evolve and influence the way they propagate, sometimes in a very
dramatic way, leading to regions that are causally inaccessible to any observer. The
prototypical example of this is the event horizon of a black hole, the surface of no
return for any infalling object. The event horizon is the absolute causal boundary in
the space time and it is formally defined as the boundary of the closure of the causal
past of future null infinity. Since the event horizon refers to the asymptotic structure
of the space time, it is teleological by definition and therefore the construction of the
event horizon requires future boundary conditions.

The event horizon of a black hole separates the space time into two causally
disconnected regions. An outside observer has no access of the degrees of freedom
inside the horizon and therefore she should be able to formulate the laws of (classical)
physics, e.g. thermodynamics without probing the region inside the horizon. But, as
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noticed by Bekenstein during the 70’s, it is possible to lower the entropy of the
outside universe by simply throwing an entropic object, say a coffee cup into the
black hole. Such a process decreases the entropy of the outside world and leads to
an apparent violation of the second law of thermodynamics. Bekenstein proposed a
radical solution [1] of this problem by ascribing an entropy to the black hole itself
proportional to the area of the event horizon. The main rationale for this idea was
a fundamental result of black hole mechanics, namely the Hawking’s area theorem
[2].

The area theorem asserts that the area of the event horizon can not decrease when
matter obeying null energy condition is thrown into the black hole. The area theorem
is a direct consequence of the null Raychaudhuri equation for horizon generators (in
an affine parametrization t) given by [3] ,

dθ

dt
= − θ2

D − 2
− σabσ

ab − Rabk
akb. (1)

The Raychaudhuri equation controls the change of the expansion θ of the null gen-
erators ka and if Einstein’s equation along with null energy condition Tabkakb > 0
hold, then,

dθ

dt
< 0 (2)

Note that this statement is true for all null surfaces in a spacetime which is a solution
of Einstein’s equation. Also, this is a statement on the second derivative of the area
and what we now need is a boundary condition to constrain the change of the area.
This is done by either appealing to Penrose’s null completeness condition or by
invoking cosmic censorship hypothesis [3, 4]. Such a condition can not be imposed
on a generic null surface and therefore this singles out the preferred role of the event
horizon. The conditions ensure that there is no caustic (i.e. θ → −∞) in the future of
the event horizon which implies that the expansion θ must be positive at every cross
section of the event horizon and this leads to the area theorem. There are several
possible extensions of area theorem to general causal horizons, for details of such
generalizations, refer to [5] and references therein.

The Hawking area increase theorem ensures that the change of black hole entropy
compensates the entropy of the object thrown into the horizon and saves the day for
the second law. Later it was also found that all the four laws of black hole mechanics
are, in fact, simply the ordinary laws of thermodynamics applied to a system with a
black hole [6]. The fact that quantum effects make the black holes to radiate exactly
with a thermal spectrum [7] eventually established that thermodynamic property of
black holes is not mere an analogy but a deep indication of a fundamental feature
of quantum gravity. The area theorem is then extended to semi classical gravity as
the generalized second law (GSL) [8, 9] which says that the sum of horizon entropy
and the entropy of matter fields outside can not decrease. It is the generalized second
law which is the full statement of the second law of thermodynamics for a system
containing a black hole.
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As it is evident, the interpretation of the area of the event horizon as the entropy
is crucially dependent on the validity of the Hawking’s area theorem which in turn
depends on the validity of the Einstein’s field equations relating the focusing of null
generators ka of the horizon to the matter content via Raychaudhuri equation. But, it
is quite natural to consider modified gravity theories which contains higher curvature
terms in the action. As a typical example, consider the perturbative quantization of
gravity which leads to a non renormalizable quantum theory and is confronted by
uncontrollable infinities. If we treat such a non renormalizable theory as a low-energy
effective field theory, adding newcounter-terms and couplings at each new loop order,
then the effective Lagrangian of gravity can be expressed as,

L = 1

16πG

(
R + αO(R2) + β O(R3) + · · · ) , (3)

where α, β, . . . are the new parameters in the theory with appropriate dimensions of
length. At the level of the effective theory, all terms consistent with diffeomorphism
invariance may appear, but from a phenomenological point of view, only a subset of
terms which leads to a well behaved classical theory are obviously more desirable.
The detailed structure of these terms will depend on the specifics of the underlying
quantum gravity theory, nevertheless, one could adopt a bottom up approach and
attempt to find a sub class of terms which retains the essential “good” features
of general relativity (GR). In fact, such an approach could also be important to
understand the dynamics of quantum gravity itself. So, if we turn on these higher
curvature corrections, the field equation will get modified and the area theorem will
not hold anymore. But, for specific higher curvature terms, we can still obtain exact
black hole solutions as in case of GR [10, 11]. As a result, one could formulate the
same problem with the second law for the outside universe and associate an entropy
with the black hole horizon. Obviously such an entropy may not be proportional
to the area of the horizon as the Hawking area theorem is no longer valid. In fact,
following Bekenstein [1], it is possible to understand very easily why the black hole
entropy in such a modified theory should not be proportional to the area. To see this,
consider the simple case of spherical symmetry and assume that a set of identical
particles with same mass m are collapsing in D dimensions to form a black hole of
mass M . If each of these particles contains one bit of information (in whatever form,
may be information about their internal states etc.), then the total loss of information
due to the formation of the black hole will be M/m. Classically, this can be as
low as possible, but quantum mechanically there is a bound on the mass of each
constituent particle because we want the Compton wavelength of these particles to
be less than the radius of the hole rh . Then, the maximum loss of information will be
Mrh and this is a measure of the entropy of the hole. Note that, we have not used any
information about the field equation yet. So, this is completely an off shell result.
The field equation will provide a relationship between the mass M and the horizon
radius.

Let us now consider the specific case of general relativity. If we solve the vac-
uum Einstein’s equations for spherical symmetry, we obtain the usual Schwarzschild
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solution with M ∼ r D−3
h , and this lead to to black hole entropy being proportional

to r D−2
h , the area of the horizon.
Next comes the modified gravity, note that in GR, we could have guessed the

relationship M ∼ r D−3
h simply from dimensional ground. But, with higher curva-

ture terms, we will have new dimensionful constants in our disposal and therefore
there could be more complicated relationship between mass and horizon radius. For
example, if we restrict ourselves up to only curvature square correction terms with
a coupling constant α, we could have a relationship like M ∼ r D−3

h + α r D−5
h , and

the second term can be regarded as the sub-leading correction to black hole entropy.
So, this simple illustration shows how the presence of new dimensionful constants
in modified gravity theories leads to the modification of the black hole entropy.

One could do much better than the above over-simplistic arguments and derive
the first law of black hole thermodynamics for any diffeomorphism invariant theory
of gravity provided the theory admits stationary black hole solutions with regular
bifurcation surface [12, 13]. The entropy can be expressed as an integral of a local
geometric quantity on the cross section of the event horizon and is identified with the
Noether charge of the Killing isometry which generates the horizon. Although the
derivation looks sufficiently general, there are several assumptions. The existence of
a regular bifurcation surface is an important requirement. Also, we need to assume
that the stationary event horizon is a Killing horizon of a Killing field. This is not
automatically guaranteed beyond GR.

Even with these assumptions, there is one important limitation of the Noether
charge algorithm. It does not uniquely fix the entropy expression beyond stationarity.
One can always add ambiguity terms such that they vanish in the stationary case and
hence can not be determined by the Wald’s formalism [14, 15]. To be more precise,
let us consider a stationary event horizonwith null generators ka in a spacetimewhich
is a solution of a gravity theory with Lagrangian L . We consider another null normal
to the horizon la which is normalized as kala = −1. Let θk and θl are the expansions
associated with ka and la and σ

(i)
ab are the corresponding shears with i = k, l. Then,

we define the Wald entropy as,

SW = −2π
∫

C

∂L

∂Rabcd
εabεcd

√
h d A. (4)

where εab = kalb − kbla is the binomal on the cross section of the horizon. This
Wald entropy obeys the first law of horizon thermodynamics and coincides with
the Noether charge of the Killing vector generating the horizon. But, due to the
ambiguities in the Noether charge construction, the black hole entropy can always
be expressed as,

S = −2π
∫

C
d A

[
∂L

∂Rabcd
εabεcd − p θkθl − q σkσl

]
. (5)

Here we have used the notation σ
(k)
ab σ (l)ab = σkσl . As can be seen from (5) that the

ambiguous terms in the entropy formula involve equal number of k and l subscripts
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which follows from the fact that these are the only boost invariant combinations that
can appear in the entropy functional. Also on a stationary slice the ambiguity terms
vanish and then the expression coincides with the Wald formula (4). As a result, the
First Law of black hole mechanics [13–15] doesn’t fix the coefficients p and q.

It is expected that the features of GR will remain valid provided the contribution
of these higher curvature terms are “small”. As a result, if we demand the theory to
be as consistence as GR, there has to be some constraints on these higher curvature
coefficients. Such a constraint indeed may be obtained using the results of black
hole thermodynamics by demanding that the intriguing relationship between black
holes and thermodynamics survives with higher curvature corrections and the sec-
ond law of black hole thermodynamics continues to hold. This may impose severe
constraints on range of the higher curvature couplings α, β, . . .. In the absence of any
experimental/observational test, it will be remarkable if only theoretical consistency
requirements are enough to find such constraints. In fact, such bounds are so far only
obtained in the context of AdS/CFT, from the consistency of the boundary gauge
theory. But, any constraint from black hole thermodynamics will be far more general
in nature and will be independent on any particular model of quantum gravity. If we
want that any theory of quantum gravity in the low energy limit produces consistent
corrections to GR in terms of higher curvature terms, the theorymust reproduce these
constraints.

But, if we hope to obtain any constraint on the higher curvature coupling from
black hole thermodynamics using the second law, we first need to fix coefficients
p and q etc. uniquely. To achieve this, we use the validity of the second law for
linearized perturbations to the black hole.

Let us start with the equation of motion for a generic higher curvature metric
theory of gravity which is of the form,

Gab + Hab = 8πTab , (6)

where Gab is the Einstein tensor coming from the Einstein-Hilbert part of the action
and Hab is the part coming from higher curvature terms–in theories with a cosmolog-
ical constant there will also be an additional term proportional to the metric which
we can absorb into Gab. Tab is the energy momentum tensor which we will assume
to obey the Null Energy condition (NEC): Tabkakb > 0 for some null vector ka . We
will use the Raychaudhuri equation for null geodesic congruence which describes
the evolution of the expansion along the horizon generating affine parameter t and
the null generator of the horizon is ka = (∂t )

a .
We write the entropy associated with the horizon as,

S = 1

4

∫

C
(1 + ρ) d A, (7)

where ρ(t) contains contribution from the higher curvature terms including ambi-
guities. In the stationary limit ρ will coincide with the Wald expression (4). Next
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we define the generalized expansion Θ as the rate of change of the entropy per unit
area. The generalized expansion is related with the expansion of null generators
as Θ = θk + ka∇aρ. The evolution of Θ is can be written in a convenient form,
dΘ/dt = −8πTkk + Ekk where

Ekk = Hkk + θk
dρ

dt
− ρRkk (8)

+ kakb∇a∇bρ −
(

θ2
k

D − 2
+ σ 2

k

)
(1 + ρ) .

Consider a situation when a stationary black hole is perturbed by some matter flux
obeying NEC. The perturbation can be parametrized by some dimensionless para-
meter ε. Note that Tkk is linear (O(ε)) in perturbation and so as θk , σk and dρ/dt .
We want to establish that the generalized expansion Θ is positive at every slice of
the horizon provided the horizon reaches equilibrium in the future. We have already
mentioned that Tkk is of order ε, so if Ekk is of higher order, i.e. Ekk ∼ O(ε2), then
we obtain up to linear order dΘ/dt = −8π Tkk + O(ε2)which implies dΘ/dt < 0,
on every slice of the horizon. Since, we have already assumed that in the asymptotic
future, the horizon again settles down to a stationary state, we must have Θ → 0 in
the future. This will imply that Θ must be positive on every slice prior to the future
and as a result the entropy given by (7) obeys a local increase law. Therefore, to
establish the linearized second law, we only need to show that the linear order terms
in Ekk exactly cancel each other. Interestingly, this alone will be enough to obtain
the values of both the coefficients p and q introduced in the entropy functional.

Consider a particular example and start with the most general second order higher
curvature theory of gravity in D dimensions. The action of such a theory can be
expressed as,

S = 1

16π

∫
dDx

√−g
(
R + α R2 + β RabR

ab + γ Rabcd R
abcd

)
(9)

It is reasonable to assume that such a theory admits a stationary black hole solution
as in the case of GR.We also expect to have a non stationary black hole solution with
in-falling matter by perturbing this solution. Such a spacetime will be the counterpart
of the Vaidya solution in general relativity for spherically symmetric case and can
be expressed as,

ds2 = − f (r, v)dv2 + 2dvdr + r2dΣ2
3 (10)

Σ3 can be any three dimensional space with positive, negative or zero curvature. We
want to use this solution to investigate the issue of second law of black hole mechan-
ics. Note that, the location of the event horizon r = r(v) for this solution can be
obtained by solving the equation ṙ = dr(v)/dv = f (r, v)/2 with appropriate bound-
ary condition. Here, (˙) and ( ′ ) denote respectively derivative with respect to v and
r . The null generator of the event horizon is given by ka = {1, f (r, v)/2, 0, · · · , 0}
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and the corresponding auxiliary null vector la = {−1, 0, 0, · · · , 0}. The event hori-
zon has nonzero expansion due to the perturbation caused by in falling matter. We
will write the entropy associated with the horizon as in Eq. (5) with the ambiguity
terms.

Note that, if we use the metric (10) with the choice of dΣ2
3 to be a flat metric

then all the shear term will vanish identically and q will remain undetermined. This
happens because isometries of the metric on a horizon slice essentially coincides
with that of a sphere. So we will break the symmetry by adding a cross term and the
metric on the horizon slice takes the form,

ds2 = − f (r, v)dv2 + 2dvdr + r2(dx2 + dy2 (11)

+dz2 + ε1h(r, v)dxdy)

We will assume that this shear mode h(r, v) will be balanced by some matter stress
tensor still obeying the NEC. Also we do not require to find the explicit form of
h(r, v) for our analysis. We will calculate Ekk order by order in ε1 and extract the
coefficients of the linear order terms in ε from the evolution equation. Setting those
terms to zero will satisfy the linearized second law and in the process p and q will
be determined. Such a procedure immediately gives,

p = β + 2γ

D − 2
and q = 2γ

D − 2
(12)

This fixes all quadratic ambiguity terms in the horizon entropy. Note that there could
be even higher order ambiguities but they do not contribute to the linearized second
law. Using these values of coefficients, the entropy density for a general curvature
square theory becomes [16],

ρ = 1

4
+ 1

2

[
αR − β

(
Rabk

alb − 1

2
θkθl

)
+ γ R

]
, (13)

where R = Rabcdγ
acγ bd − Kab(i)Kab(i) + K(i)K (i) is the intrinsic Riemann scalar

on the horizon slice. On a non-equilibrium slice of the horizon this entropy expression
differs from the result obtained from the Wald’s formula in Eq. (4), but agrees with
the holographic result for curvature square theories in [17–20] when the black hole
is in an AdS space time. For the case general higher curvature theories, refer to [21].

It is indeed remarkable that the entropy for black holes in AdS space time which
obeys linearized second law turns out to be relatedwith the holographic entanglement
entropy. It seems that somehow the validity of black hole thermodynamics is already
encoded in the holographic principle; the holographic entanglement entropy satisfies
the linearized second law while the Wald entropy does not.

Once we fix the linear ambiguity terms, the next obvious thing will be to go to the
next order in perturbation and study the quantity Ekk . To simplify the calculation,
we will discuss the case for spherically symmetric perturbations only and therefore
shear is identically zero. Then, the evolution equation will be of the form,
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dΘ

dt
= −8πTkk − ζθ2

k , (14)

Note that we must have dΘ/dt < 0 to have a local entropy increase law. Also, we
have Tkk > 0 by NEC. Now consider a situation where the stationary black hole is
perturbed by some matter flux and we are examining the second law when the matter
has already entered into the black hole. In that case, the above evolution equation
does not have any contribution from matter stress energy tensor and the evolution
will be driven solely by the θ2

k term. In such a situation, if we demand the entropy
is increasing, we have to fix the sign of the coefficient of θ2

k term. We evaluate the
coefficient in the stationary background and impose the condition that overall sign
in front of θ2

k is negative. This will give us a bound on the parameters of the theory
under consideration.

To compare with some related results, we now consider specific cases. First con-
sider the case for Einstein Gauss-Bonnet (EGB) gravity for which β = −4α and
γ = α, with these values, the horizon entropy becomes,

S = 1

4

∫

C
d A (1 + 2 γ R) , (15)

whereR is the Ricci scalar intrinsic to the horizon. This is the well known expression
for Jacobson-Myers entropy which satisfies the linearized second law [15, 22–24].

The expression of ζ is now given by,

ζ = 1

D − 2
+ (D − 4)γ

(D − 2)2

[
6R − 2 (D − 3)(D − 2) f ′(r, v)

r(v)

]
.

(16)

As discussed earlier, we will evaluate ζ for different stationary backgrounds and
determine bounds on the coefficient γ from the constraint ζ > 0. For the EGB grav-
ity, we first consider the 5-dimensional spherically symmetric, asymptotically flat
Boulware-Deser (BD) [10] black hole as the background, for which the horizon
radius is related to the mass M as, r2h + 2γ = M and the existence of an event hori-
zon demands r2h > 0. Now, evaluating ζ for the above background at the horizon
r = rh , and imposing that ζ > 0, we obtain the condition, M > 2|γ | if M > 0. To
understand this better, note that we require M > 2γ to avoid the naked singularity
of the black hole solution for γ > 0. Thus in this case for a spherically symmetric
black hole, ζ will be positive and hence second law will be automatically satisfied.
The condition of the validity of the second law is same as that for having a regular
event horizon.

Also, for γ > 0, it is possible to make rh as small as possible by tuning the mass
M . But when γ is negative (a situation that appears to be disfavoured by string
theory, see [10, 25] and references therein), rh cannot be made arbitrarily small and
it would suggest that these black holes cannot be formed continuously from a zero
temperature set up. Notice that we could have reached the conclusion without the
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second law if M is considered to be positive–however, our current argument does not
need tomake this assumption. Due to this pathology, it would appear that the negative
Gauss Bonnet coupling case would be ruled out in a theory with no cosmological
constant.

The case for the 5-dimensional AdS black hole solution for EGB gravity with
cosmological constant Λ = −(D − 1)(D − 2)/2l2 as the background is more inter-
esting. Now the horizon could be of planar, spherical or hyperbolic cross sections.
We will first consider black brane solution with planar horizon. Then we obtain
ζ = 1/(D − 2) (1 − 2(D − 1)λGB) where we have introduced a rescaled coupling
in D dimensions as λGBl2 = (D − 3)(D − 4)γ . Again demanding positivity of ζ

we get,

λGB <
1

2(D − 1)
. (17)

Remarkably, in D = 5 this coincideswith the boundwhich has to be imposed to avoid
instability in the sound channel analysis of quasi-normal modes of a black hole in
EGB theory which is taken to be holographic dual of a conformal gauge theory. It
was shown in [26] that when λGB > 1/8 the Schroedinger potential develops a well
which can support unstable quasi normal modes in the sound channel. It is quite
interesting to see that the second law knows about this instability. This bound on
λGB produces a bound on η/s ratio and quite curiously that bound on η/s ratio in
large D limit [27] tends to the Einstein value 1

4π .

Another interesting case corresponds to the hyperbolic horizon. In this case, the
intrinsic scalar is negative and if we also assume that γ > 0, then there is an obvious
bound on the higher curvature coupling beyond which the entropy itself becomes
negative and thereby looses any thermodynamic interpretation. Using the entropy
expression in Eq. (15), this bound in general D dimension is found as λGB < D(D −
4)/4(D − 2)2. If the analysis of the second law has any usefulness, it must provide
a more stringent bound for the coupling γ and we will show that is indeed the
case. Also, to analyze the case for hyperbolic horizons, we will only consider the
so called zero mass limit. In the context of holographic entanglement entropy these
topological black holes play an important role as shown in [28–30]. One can relate the
entanglement entropy across a sphere to the thermal entropy in R × HD−2 geometry
by a conformal transformation.

Now for holographic CFTs one has to evaluate the Wald entropy for these topo-
logical black holes as they are dual to the field theory placed on R × HD−2 to obtain
the entanglement entropy across a spherical region at the boundary. In our context,
imposing ζ > 0, it turns out that the zero mass limit gives the most stringent bound
on the coupling λGB given by,

λGB <
9

100
. (18)
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First note that this bound on λGB is independent of the dimensions. Also, comparing
with the bound in Eq. (17) we can easily see that up to D = 6, the bound in Eq. (18)
is strongest but from D = 7 onwards Eq. (17) is the strongest one. Next, in the five
dimension, the bound in Eq. (18) quite curiously coincide with the tensor channel
causality constraint [31–33]. For D > 5, this bound (18) from the second law will
be stronger than the causality constraints.

In principle, it is possible to repeat these analysis for any higher curvature gravity
theory to obtain similar bounds on the higher curvature couplings provided we have
an exact stationary black hole solution as the background [34]. These bounds will
be necessary if we demand that the second law of thermodynamics holds true for an
observer outside the horizon. Any quantum theory of gravity which reproduces such
higher curvature corrections and also aims to explain the microscopic origin of black
hole entropy must satisfy these bounds. In fact, we can constrain various interesting
gravity theories in 4 dimensions by our method. In 4 dimensions, our method is
the only one to constrain these theories where the causality based analysis [35] is
insufficient. For example, for critical gravity theories in D = 4 [36] analyzing black
holes in AdS background we obtain the bound on the coupling (αc), − 1

2 ≤ αc ≤ 1
12 .

Also, for New Massive gravity in D = 3 [37, 38] we obtain the bound on couplings
(σ ) as, −3 ≤ σ ≤ 9

25 .
1

Before discussing more conceptual issues, let us first summarize the main results:
To obtain a generalization of the area theorem beyond general relativity, we need to
fix the ambiguities in the definition of the Wald entropy for higher curvature gravity.
We studied the linearized second law and fix such ambiguities uniquely. Next, we
turned on the perturbation of higher order and obtained the evolution equation for
the entropy. Using a spherically symmetric Vaidya type solution, we found that the
requirement of entropy increase is that the quantity ζ in Eq. (16) must be positive. To
obtain the bound on higher curvature coupling, we evaluate this ζ for various known
static black hole solutions of the theory. For Einstein-Gauss Bonnet gravity, we get
stringent bounds on the Gauss Bonnet couplings. Remarkably, some of these bounds
coincide with the constraints on the coupling obtained by using the consistency of the
boundary gauge theory. But, these bounds are independent of any quantum gravity
model and should be a generic feature of the microscopic description of black holes.

Now, the important question which still left unanswered is the possible interpre-
tation of these bounds from quantum gravity. In the context of fluid gravity duality,
the area theorem of the black holes is related to the positivity of the divergence of
the entropy current of the boundary theory [39]. It is reasonable that if these bounds
are satisfied, a similar relationship also holds beyond GR and for the black holes in
higher curvature theories. Then these bounds can be understood as the consistency
condition for the applicability of the fluid gravity duality paradigm. Also, similar
bounds are obtained from the causality and unitarity constraints of the boundary the-
ory. It seems that the validity of the black hole thermodynamics in the bulk is indeed
related with such conditions. In fact, if the black hole in a higher curvature gravity in
the bulk does represent a thermal state in the boundary theory, it is possible that such

1The lower bound for both these two cases are coming from demanding the positivity of the entropy.
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a connection is valid only for a finite range of higher curvature couplings. After all,
the generic higher curvature terms introduce problematic features like perturbative
ghosts etc. What is interesting is that even a well-formulated, ghost free higher cur-
vature theory like Einstein Gauss Bonnet gravity also has these bounds. This may be
directly related to some recent results on the causality constraints in these theories
[35].

At the least, the existence of these bounds shows that a bottom up approach
based on the study of theoretical consistency could also provide important clues
about the necessary features expected from the quantum theory of gravity. The low
energy approximation of any sensible quantum gravity theory should produce these
higher curvature terms as the correction to GR. In the absence of any experimental
or observational constraints, such bounds on the higher curvature couplings could be
crucial to identify the correct approach of quantum gravity. The fact that AdS/CFT
already reproduces some of these bounds is quite encouraging and can be considered
as a strong support in favour of the importance of holographic principle in quantum
gravity coming from the generalization of the Area theorem.
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What Are the Atoms of the Space Time?

S. Shankaranarayanan

Abstract Equations of gravity when projected on space time horizons resemble
Navier–Stokes equation of a fluid with a specific equation of state. Taking the view
that the horizon fluid possesses some kind of physical reality beyond the formal
mathematical similarity, we provide a statistical mechanical description for such
fluids. We show that the model passes two crucial tests — obtaining the correct
black hole entropy and negative bulk viscosity. We also show that the horizon fluid
predicts the occurrence of mass gap thereby implying horizon-area quantization. We
then give a brief sketch of how to go about identifying the atoms of space time.

Paddy

As I come to know Paddy more and more, I get reminded of the famous quote by
Mr. Aldous Huxley: The secret of genius is to carry the spirit of the child into old
age, which means never losing your enthusiasm. I must say that Paddy’s enthusiasm
for Physics has increased over the years, and his mind is young and creative. His
enthusiasm has enabled to unearth new physics, and make original and fundamental
contributions in Quantum Cosmology [1], Statistical mechanics of gravitating sys-
tems [2], Structure formation [3, 4], Dark energy [5–7] and emergent gravity [8–11].
His enthusiasm is quintessential for his prolific book writing. He now says that he is
planning a bigger volume set spanning the whole of Physics. I wish him all the best
and look forward to see more creative ideas from him in the future!

1 Introduction

In the modern viewpoint, general relativity (GR) and the standard model of particle
physics (which is based on quantum field theory) are effective descriptions valid
below a certain cutoff momentum scale. This implicitly assumes that the high-energy
modes decouple from low-energy phenomena and that the low-energy influence of
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the high-energy modes is through the determination of coupling constants and mass
of particles.

There are, however, two familiar settings where this separation breaks down and
high-energy effects are, potentially, unmasked. These are the inflationary expansion
of the universe and the black hole horizon. In the case of inflation, the exponen-
tial expansion causes a redshift from above to below the effective field theory cut-
off. Hence, inflation provides us with the window of opportunity to observe high-
energy — which may be inaccessible to terrestrial experiments — in the Cosmic
Microwave Background. In the case of black holes, the low-energy outgoing modes
evolve from modes with energies above the cut-off due to the redshift near the hori-
zon [12–18]. This enables us to use black holes as theoretical laboratories to test
models of quantum gravity.

At the heart of the difficulty of quantum gravity lies the different tenets quantum
theory and general theory of relativity derive from. Whereas gravity is diffeomor-
phism invariant and has no preferred coordinate system for a space time, quantum
theory requires the notion of a time-like Killing vector field to define particles; this
implies that different observers have different particle interpretation. While gen-
eral relativity describes dynamics of classical space time that has a causal structure,
quantum theory deals with unitarily evolving states in a Hilbert space. Thus, the pres-
ence of gravity raises two fundamental questions: first, whether unitary evolution is
preserved in curved space time; second, what is the right set of observables that are
observer independent. The quantum nature of black hole evaporation, and in general,
black hole thermodynamics may offer the key to answer these questions.

Many interesting features of gravity have arisen since the formal relation between
the laws of thermodynamics and laws of black hole dynamics were found [10, 11,
14, 19]. Recent interest in the fluid-gravity correspondence can be considered as
an extension of black hole thermodynamics, where charges are upgraded into local
currents, andblackhole entropy into a local entropy current [20–27].While blackhole
mechanics highlights a disparity in the form of the black hole information problem,
the fluid-gravity correspondence allows the possibility to connect macroscopic and
microscopic physics through the study of the statistical properties of the fluid on the
horizon of the black hole.

It’s Deja Vu all over again! In late 1960s and early 1970s, the analogy between
black holes and ordinary thermodynamicswas treated amathematical curiosity.How-
ever, only after Hawking’s famous discovery of the evaporation of black holes, it
was realized that the pairs of analogues between black holes and thermodynamics
are indeed physically similar. Likewise, mathematical similarity between equations
of General relativity near the black hole horizon and fluids is known for a long
time [20–22]. In a series of papers, our group has shown that the horizon fluid is
itself of physical interest, and that at least an effective theory describing this fluid
as a condensate can be formulated [28–33]. In this review, we will discuss this pro-
gramme in detail.

The rest of this review is organized as follows: The next section gives a brief
review of black hole thermodynamics and the problems associated with that. Based
on Ref. [33], in Sect. 3, we derive Damour–Navier Stokes equation for a generic D−
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dimensional space time and obtain the first constraint equation for the horizon fluid.
Based on Refs. [30, 33], in Sect. 4, we calculate the energy corresponding to the
horizon fluid of a stationary, asymptotically flat space times. In Sect. 5, we describe
the statistical description of the horizon fluid and using mean field theory, we obtain
entropy of the horizon fluid [28, 29]. In Sect. 6, we develop the statistical mechanical
description of the fluctuations of the horizon fluid, and using fluctuation-dissipation
theory, we obtain the bulk viscosity of the horizon fluid. We also show how the
matching of bulk viscosity with Damour’s leads to quantization of horizon area.
Finally, in Sect. 7, we discuss the implications of the results and attempt to answer
the title of this article.

2 Black Hole Thermodynamics

One of themost remarkable features of black hole physics is the realization that black
holes behave as thermodynamic systems and possess entropy and temperature. The
pioneering works in the field of black hole thermodynamics started with Bekenstein
[12, 13, 15, 17], who argued that the universal applicability of the second law of
thermodynamics rests on the fact that a black hole must possess an entropy (SBH )
proportional to the area (A) of its horizon. The macroscopic properties of black
holes were subsequently formalized by Bardeen, Carter and Hawking [14] as the
four laws of black hole mechanics, in analogy with ordinary thermodynamics.

Hawking’s demonstration of black hole thermal radiation [16, 18] paved the way
to understand the physical significance of the temperature TH (and hence the entropy-
area proportionality). Hawking showed that quantum effects in the background of
a body collapsing to a Schwarzschild black hole leads to the emission of a thermal
radiation at a characteristic temperature:

TH =
(

�c

kB

)
κ

2π
=

(
�c3

GkB

)
1

8πM
, (1)

whereκ is the surface gravity,G is theNewton’s constant in four dimensions, kB is the
Boltzmann constant, andM is themass of the black hole. The factor of proportionality
between temperature and surface gravity (and as such between entropy and area) gets
fixed inHawking’s derivation [18], thus leading to theBekenstein–Hawking area law:

SBH =
(
kB

4

)
A

�2
Pl

, (2)

where �Pl = √
G�/c3 is the four dimensional Planck length.

Black-hole thermodynamics raises several important questions:

1. Unlike other thermodynamical systems, why is black hole entropy non-extensive?
i.e. why SBH is proportional to area and not volume?
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2. Why is the black hole entropy large?
3. How SBH concords with the standard view of the statistical origin? What are the

black hole micro-states?

S
?= kB ln (# of micro-states) (3)

These questions often seem related, which a correct theory of quantum gravity is
expected to address. In the absence of a workable theory of quantum gravity, there
have been several approaches which address one or several of the above questions.
Most of the effort in the literature has been to understand the microscopic statistical
mechanical origin of SBH assuming that the black hole is in a (near) thermal equilib-
rium or not interactingwith surroundings. However, black hole thermodynamics now
has the problem of Universality [34]; at the leading order, several approaches using
completely different microscopic degrees of freedom lead to Bekenstein–Hawking
entropy [35]. Currently, it is not possible to identify which are the true degrees of
freedom that are responsible for the black hole entropy [36]. Therefore other tests of
reproducing black hole physics are key in distinguishing such models.

As we will show in the rest of this review, Fluid/gravity correspondence —
projecting the Einstein equations onto the black hole horizon lead to Navier–Stokes
style equation [20–27] — can provide a way to understand these black hole micro-
states from the microscopic degrees of freedom of the horizon fluid. This is more
interesting as we have a better understanding about the microscopic degrees of free-
dom of most fluid systems than gravity. More specifically, given a horizon fluid
equation of state, it is possible to constrain the microscopic degrees of freedom and,
hence, the problem of Universality encountered in black hole thermodynamics can
be curtailed [28, 30, 37–39].

3 Fluid Gravity Correspondence in Arbitrary Dimensions

Historically, the Fluid-Gravity correspondence first received support from two
closely related threads of work. Damour [20] and Thorne et al. [21, 22] showed
that the black hole horizon can be described as a fluid. However, there exists a tech-
nical difference in theway the fluid gravity correspondencewas deduced by these two
groups, respectively. While, Damour [20] directly projected the Einstein’s equations
on a black hole horizon and showed that it gives rise to the Navier–Stokes equation
of a 2 dimensional relativistic fluid that lives on the black hole horizon, Thorne et al.
[21, 22] projected the equations of General Relativity on to a time-like hyper-surface
close to the black hole horizon and obtained non-relativistic Navier–Stokes equation.
In this review, the correspondence with the relativistic fluid would be more fruitful.

Padmanabhan obtained an entropy extremization principle to derive the Damour
Navier Stokes (DNS) equation directly, that makes the hydrodynamical analogy with
gravity self-contained [25]. In this section, we extend the analysis to D-dimensional
space time [33]. As in Ref. [25], we will use small Latin letters for indices running
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over all D dimensions, Greek letters for (D − 1)−dimensional null surface, and
capital Latin for (D − 2) space-like dimensions.

Starting with the Einstein equations,

Rab − 1

2
gab + Λgab = 8πTab, (4)

consider a null surface, which is therefore traced out by null geodesics. These are
described by the geodesic equation (in this case with a non-affine parameterization),

la∇alb = κlb. (5)

We can choose coordinates such that

l = ∂t + vA∂A; la = (1, vA, 0). (6)

We can also, for convenience, construct another null vector, such that k · l = −1.
The metric on the (D − 2)−dimensional surface, denoted by qAB , for which

ds2 = qAB(dx A − vAdt)(dx B − vBdt), (7)

qab = gab + laka + lbka . (8)

It can explicitly be seen that
qabl

b = qabk
b = 0. (9)

The Damour–Navier–Stokes equation is a consequence of the contracted Codazzi
equation formed with l and qAB ,

Rmnl
mqn

a =
(
1

2
gab − Λgab + 8πTab

)
lmqn

a

= 8πTabl
mqn

a . (10)

Here the last equality is through the relation of (9). Note that the cosmological terms
drops out as

Λgabl
mqn

a = Λ(qmn − lmkn − lnkm)lmqn
a = 0. (11)

Re-write the LHS as

RmAl
m = RμA = ∇μ(∇Al

μ) − ∂A(∇μl
μ). (12)

We expand both terms of the RHS in terms of expansion, shear and the velocity vA.
Define

χβ
α = ∇αl

β (13)
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and
ωα = χ0

α, (14)

which is the energy-momentum vector of the horizon fluid
As in Eq. (21) of [25] we expand out the second term of the RHS,

∂A(∇μl
μ) = ∇Al

A + ∇0l
0 = θ + ωAv

A + ω0 = θ + κ, (15)

and is independent of D. The other term of Eq. (12),

∇μ(∇Al
μ) = ∇μχ

μ
A, (16)

can be evaluated by taking a frame where we neglect Christoffel symbols, so that

∇μχ
μ
A = ∂μχ

μ
A = ∂0ωA + ∂BχB

A. (17)

Now use the fact that
χAB = ΘAB + ωAvB, (18)

where we can split ΘAB into trace and traceless parts

ΘAB = σAB +
(

1

D − 2

)
θδA

B . (19)

Note the dimensional dependent prefactor, ensuring tr(Θ) = θ.
Putting all this together into Eq. (12), we have,

RmAl
m = (∂0 + vB∂B)ωA − ∂A(κ + θ) + ∂B

(
σB
A + 1

D − 2
θδB

A

)
, (20)

so that

8πTmAl
m = (∂0 + vB∂B)ωA + ∂BσB

A − ∂Aκ − D − 3

D − 2
∂Aθ (21)

or equivalently

DΠA

dt
= − ∂

∂x A
(

κ

8π
) + 2

1

16π
σB
A|B −

(
D − 3

D − 2

)
1

8π

∂θ

∂x A
− laTaA. (22)

We thus arrive at Navier–Stokes equation with pressure:

P = κ

8π
= kB

T

4
, (23)

shear viscosity
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η = 1

16π
, (24)

and bulk viscosity

ξ = −
(
D − 3

D − 2

)
1

8π
. (25)

We would like to stress the following points regarding this result:

1. The above result relating fluid’s pressure and horizon’s surface gravity holds
true for a general null surface. In the case of Schwarzschild black hole and in
Schwarzschild radial coordinates, Damour–Navier–Stokes equation leads to the
following simple equation p,i = 0. Where i labels the angular coordinates. This
is a trivial way to express the zero-th law of black hole thermodynamics, which
says that the black hole temperature (or equivalently the horizon surface gravity)
is constant across the horizon. For fluid, this means that the pressure is constant
across the fluid.

2. Damour–Navier–Stokes equation in D−dimensional space time leads to the first
constraint Eq. (23) relating the Pressure and temperature. As we will see in the
next section, the horizon fluid also satisfies another constraint and this makes the
horizon fluid an unique fluid system.

3. For the 4-dimensional Schwarzschild black hole the constraint (23) can be some-
what naively derived from the definition of pressure using the black hole entropy,

P = ∂SBH

∂A
· TH = TH

4
. (26)

Equation (26) boils down to the fact that for Schwarzschild black hole:

dM = P · d A = P · dV . (27)

4. The horizon fluid also has another peculiar feature, its bulk viscosity is negative.

4 Horizon Fluid Energy

To understand thermodynamic relations for the horizon fluids, we must first define
the appropriate notion of the fluid energy. There are several definitions of energy
in general relativity [40–42]. Here we want a quasi-local notion to associate to the
black hole horizon. Various competing definitions exist, but our task is simplified by
the fact that we have a naturally defined fluid energy density on horizon

ω0 ≡ ∇0l
0 = κ (28)
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where the equality follows from (15), noting that as the vAωB is antisymmetric its
trace is automatically zero.

The total energy of the horizon is now simply

∫
κdA (29)

where both κ and A are functions of all the black hole variables (M, Q, a). One can
quickly see that this gives the expected M in the D−dimensional Schwarzschild.

In fact, from Eqs. (12.5.33)–(12.5.37) in [42], one can see that this is exactly

E =
∫

κdA =
∮

S
dSμν∇μlν; l = ξ + Ωψ (30)

when Ω is the rotational velocity at the horizon, making l the standard combination
considered when evaluating, e.g. the surface gravity of black holes. This corresponds
to a quasi-local mass frequently used in the literature [43, 44], evaluated on the
horizon. This is almost equal to the well-known Komar mass, the difference being
the replacement ξ → l. Physically this corresponds to a quasi-local energy in the
co-rotating frame [45], clearly the appropriate choice for the fluid that co-rotates
with the horizon, as ours does.

The black hole is an odd system in many ways, as P, T, E and A are not inde-
pendent. Instead they obey (23) and an extra constraint equation. The form of this
equation varies depending on the class of black holes. We derive this relation for the
D-dimensional Schwarzschild black hole and the (4D) Kerr-Newman black hole.

4.1 D-Dimensional Schwarzschild

The D-dimensional Schwarzschild, also known as a the Schwarzschild-Tangherlini
black hole [46], has the form

ds2 = −
(
1 −

(rH
r

)D−3
)
dt2 + dr2

1 − ( rH
r

)D−3 + r2dΩ2
D−2, (31)

where

ΩD−2 = 2π
D−1
2

Γ
(
D−1
2

) . (32)

The horizon “area” is now given by

A = ΩD−2r
D−2
H . (33)

and the standard temperature is



What Are the Atoms of the Space Time? 383

T = (D − 3)

4π kB rH
. (34)

Here the horizon radius is related to the Komar (and equivalently the ADM) mass of
the black hole by

rH =
(

16πM

(D − 2)Ω2
D−2

) 1
D−3

. (35)

This M is the energy of the horizon fluid, so (33)–(35) combine to give a constraint
equation

E =
(
D − 2

D − 3

)
A

4
kB T . (36)

4.2 Kerr–Newman

The charged, rotating black hole,

ds2 = −
[
dt − a sin2 θdφ

] Δ

ρ2
+

[
(r2 + a2)dφ − adt

]2 sin2 θ

ρ2
−

[
dr2

Δ
+ dθ2

]
ρ2, (37)

where
ρ2 = r2 + a2 cos2 θ; Δ = r2 − 2Mr + Q2 + a2. (38)

has inner and outer horizons given by

r± = M +
√
M2 − Q2 − a2 (39)

We will only be concerned by the physically relevant outer horizon.
The horizon area and black hole temperature can be easily seen to be

A = 4π(r2+ + a2); T = 1

2πkB

r+ − r−
2(r2+ + a2)

. (40)

And the energy on horizon is [44]

E = r+ − r−
2

. (41)

Combining these results we can see that

E = A

2
kB T . (42)
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Note that this is identical to the expression for the D-dimensional black hole. These
constraint equations play a crucial role in the derivation of the entropy and the
bulk viscosity. These point that the constraint Eqs. (23), (36), (42) imply that the
physical mechanism that drive the horizon fluid from an initial configuration, say,
P1, T1, E1, A1 to final configuration P2, T2, E2, A2 can not be arbitrary and, hence,
the fluctuations of these macroscopic quantities are also constrained.

5 Modeling the Horizon Fluid

As mentioned above, the horizon fluid corresponding to any stationary black hole is
an odd system; the macroscopic parameters P, T, E and A (volume) are not inde-
pendent. Combining Eqs. (23) and (42) one gets

P = kB

T

4
= E

2 A
.

This is an equationof state of a 2-D idealmassless relativistic gas [47].The equationof
state provides a possibility to identify amicroscopicmodel for generic asymptotically
flat 4-dimensional black hole space times using the fluid-gravity correspondence.
For a microscopic theory defined by a Hamiltonian, thermodynamic quantities are
typically a function of three independent parameters (E, N , V ), where E is system’s
energy, N is the number of particles and V is the volume. However, the parameter
space of the fluid corresponding to these black holes is one-dimensional and can be
expressed by a single parameter V = A (or E .) Therefore, if a microscopic model
is supposed to reproduce the properties of the black holes, one needs to constrain
the space of states of the fluid to only one dimension. This means from the point of
view of the relevant states of the system one need not treat the variables E, N , V as
independent, but they must fulfill two constrains: E = E(V ) and N = N (V ).

5.1 Ideal Gas Model of Horizon Fluid

The energy levels of a free non-relativistic particles living on a sphere is [48, 49]:

εnr� = �(� + 1) + α2

2R2
(43)

where R is a radius of the sphere and α2 is some constant. (In a strict sense there
are differences between [48, 49] on whether the constant is allowed to be non-zero.
However any energy quantum spectrum can be always shifted by a constant, which
in best case is fixed by gravity considerations, such as these, so physically we stick
to the spectrum given by Eq. (43) with arbitrary α.) The energy levels correspond
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to the Laplacian on the sphere and therefore have the degeneracy of the spherical
harmonics, given as g� = 2� + 1.

As one can see from the Hamiltonian used in [48], we can obtain spectrum of a
massless relativistic scalar particle by a simple transformation:

εr� = √
2εnr =

√
�(� + 1) + α2

√
2 · R =

√
4π{�(� + 1) + α2}

V
. (44)

This can be (through our constrains) expressed as a simple function of temperature

εr� =
√

{�(� + 1) + α2} · T = ε̃� · T, (45)

with
ε̃� =

√
�(� + 1) + α2.

(ε̃� is independent on the black hole parameters.)
Immediate question is: What does the spectrum (45) physically imply? [28]. For

a simple harmonic oscillator1 the equipartition law ceases to hold for very low tem-
peratures, when the temperature is of a comparable value to the discrete spacing
between the energy levels. Furthermore, for temperatures of a value comparable to
the spacing between the energy levels the average particle’s energy is very close
to the ground state energy. From Eq. (45) one observes that, for the horizon fluid,
the temperature always is of a comparable value to the spacing between the energy
levels, which means the equipartition law is not applicable.

This implies that the free gas is supposed to have mean particle’s energy very
near the ground state. In such case we can use the spectrum (45) to see that the mean
particle’s energy must be:

Ē = γ · kB T,

where γ ≥ |α| and γ being approximately of the same order as |α|. Since

E = N Ē = Nγ · kB T ≡ (8πkB T )−1,

this implies

N = 1

8πγT 2
= A

2γ
.

Therefore
A = 2γ · N . (46)

1The spacing between the energy levels from Eq. (44) approaches for large � harmonic oscillator’s
energy levels, for small energy levels the difference between the levels is larger than in the case of
oscillator.
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Equation (46) is remarkable as it gives Bekenstein’s [13] quantization of the black
hole horizon area (since N is by definition a natural number). It gives a completely
new and independent insight into Bekenstein’s result. Furthermore, the insight does
not rely on the quantum theory, only on the fluid interpretation of gravity. (The
constant γ is here arbitrary, but can be fixed to obtain the most popular form of
Bekenstein type of spectrum as γ = 4π. Since it will be shown that γ = |α|, it can
be demonstrated that this fixing gives wave-length of the particle in the ground state
equal to the circumference of the black hole horizon.) As we will show later, the
same quantization condition will be required to derive transport coefficients from
the fluctuation-dissipation theorem.

5.2 Horizon Fluid as a Bose Einstein Condensate

The interesting feature of the above analysis is that constrains (23), (42) relation
between the Black-Hole area and energy, lead to a ground state populated by the
Bose particles. This strongly suggests the occurrence of a phase transition and Bose
Einstein condensation (BEC).

The other hint comes from the fact that the specific heat for the Schwarzschild
goes as (T − Tc)−1 [50, 51] and diverges as T goes to Tc. This suggests that the
system might be near a critical point. Such a system can be thought of near the
critical point of a second order phase transition and can be described by Mean Field
theory. While the Mean Field Theory cannot give the correct value of the critical
exponent, it can naturally account for the power law divergence of the specific heat
of a black hole horizon fluid [50–52].

With this insight, the following assumptions can be made [29]:

1. There is a temperature Tc (critical temperature), at which, all the N microscopic
DOF on the horizon form a condensate.2

2. The system always remains close to the critical point, where the phase transition
takes place.

The above assumptions immediate leads us to the total energy of the fluid of N
particles [28]

E ∝ Nε ∝ N/rH = NαkBT (47)

where α is constant. The above energy should satisfy the constraint between energy
E , A and T . Following (36) and (42), we have

E = AkBT/γ, (48)

2By microscopic DOF we refer to fluid degrees of freedom. These are effective DOF and not the
fundamental Planck scale DOF of the theory as we consider long wavelength description of the
horizon.
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γ is dimension dependent constant. From (47), we get,

N = E/(αkBT ) = A/(γα). (49)

In the next section we use this as the key ingredient to model the horizon fluid within
the mean field theory [29].

5.3 Mean Field Theory of the Horizon Fluid

The above discussions point to the fact that we can model the horizon fluid system
using mean field theory [53–55]. The order parameter for a collection of particles,
which forms a condensate at a certain transition temperature, is the wave function
for the state (ψ) whose modulus is equal to the number density of particles ρ, i.e.
ψ ∝ √

ρ.
Assuming for simplicity, the black hole horizon fluid system to be homogeneous.

Defining the order parameter (η) of the homogeneous fluid as [29]

η = √
K N K a positive constant, (50)

Of course, now, the physical significance of the order parameter could no longer be
supplied directly from the microscopic model.

Following Landau–Lifshitz [53] (Sect. 143), we can write down the Mean field
theory in terms of the Thermodynamic potential,Φ, where the independent variables
are T and the chemical potential μ, i.e.,Φ = −P A. It is important to note that using
the constraint (23) and take the derivative w. r. t T one may obtain the entropy.
However, as mentioned earlier, horizon fluid is highly constrained; A and T are
related. Themeanfield construction using the order parameterη uses these constraints
to obtain a(P) and B(P). Expanding Φ about Tc, we have,

Φ = Φ0 + a(P)(T − Tc)η
2 + B(P)η4; (51)

where a(P) and B(P) are unknown phenomenological functions. Using (23), (50)
and the constraint (49), we get,

− T A = 4

[
Φ0 + κa(P)(T − Tc)

A

2α
+ κ2B(P)(

A

2α
)2

]
(52)

Matching the coefficients of A on both sides, we have,

a = − α

2κ
, (53)
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which shows that a is a negative number. Using (53), we also get the secondmapping
constraint,

Φ0(P, T ) + 1

4
Tc A + κ2B(P)

(
A

2α

)2

= 0. (54)

It is important to note that η = 0 is the symmetric phase and η �= 0 is the asym-
metric phase [53]. In our case, since a < 0, this implies that the system is in the
symmetric phase for T < Tc and asymmetric phase for T > Tc.

In the asymmetric phase, the order parameter η has the value for which, the
thermodynamic Potential is minimum. The minimization of the Thermodynamic
potential with respect to η gives the condition

η2 = a(Tc − T )

2B
⇒ κN = a(T − Tc)

2B
(55)

Using (49) and (53), this can be expressed as

(T − Tc)

2B
= κ2A

α2
. (56)

Denoting the entropy of the system in the symmetric and asymmetric phase by
S0 and S0 + ΔS, respectively, we have

ΔS = −∂Φ

∂T
= a2

2B
(T − Tc). (57)

From (53) and (57), we get,

ΔS = A

4
. (58)

This is the first test of the horizon fluid picture and validates the modeling of the
horizon fluid as a critical system. This has the following interesting implications:

1. This is a generic result for any D−dimensional stationary (spherical or axi-
symmetric) black hole in General relativity.

2. One of the key results from black hole thermodynamics is that black holes in
General Relativity have an entropy S = kB A/4. This is a key test for modeling
the horizon fluid, which has proven difficult for several prior models [37–39];
the fact that this holds true for a large class of black holes is encouraging for the
success of our model of horizon fluid.

In the next section, we put themodel to test by studying the fluctuations of the number
of the particles in horizon fluid.
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6 Fluctuations of the Horizon Fluid

It is well known that fluids can be described by two sets of parameters, namely
susceptibilities (thermodynamic derivatives) and transport coefficients. While the
first set of parameters correspond to changes in the local variables; the other set
involve fluxes of thermodynamic quantities [56–58]. Obviously, these parameters
can not be determined within fluid mechanics, however, can be derived using the
theory of fluctuations that relate susceptibility/transport coefficient to autocorrelation
function of a dynamical variable [56–59].

Statistical fluctuations of normal fluids is well-understood [60]. Asmentioned ear-
lier, horizon fluid is an unusual fluid. Unlike normal fluids, it is one parameter system,
whose energy, pressure, temperature, volume (area in this case) are not independent
of each other. Recently, we have explicitly show that it is possible to construct a
theory of the Fluctuations in the horizon fluid in analogy with normal fluids [32].
The interesting feature of this approach is that it is general and is independent of the
details of the horizon fluid.

6.1 Theory of Fluctuations for the Horizon Fluid: Broad
Outline

The basic strategy that we adopt for the fluctuations to evaluate the transport coeffi-
cient of the horizon fluid are as follows [32]:

1. The fluctuations about the equilibrium position of the system are about the min-
imum value of the potential Φ (51). This implies that the leading order variation
in the potential would be of second order in that variable.

2. Any dynamical process that the event horizon of a black hole undergoes corre-
sponds to the horizon fluid system moving from an initial non-equilibrium state
towards an equilibrium state. However, so long as the evolution of the event hori-
zon follows from a classical theory of Gravity, which is what we shall look at
here, the system is not far from equilibrium in the corresponding fluid picture.
The above assumption imposes a restriction on the kind of dynamical processes
we consider on the Gravity side. In the fluid side, we are looking at processes
that increase the entropy of the system. However, on the Gravity side, it is the
area of the event horizon that is proportional to the entropy [13, 18, 35] and even
in a classical theory, it does not always increase. In the classical theory, in order
for the area of the event horizon to increase, some additional conditions have to
be imposed [22], like the condition that the black hole is strongly asymptotically
predictable [35, 42].

3. Write down a Langevin equation that governs the transport processes to be con-
sidered [31].

4. Assume that the random fluctuations that the system undergoes are of a much
shorter time-scale than the time period over which the system goes over from
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one state to another due to external influence. These latter processes can also
be viewed as fluctuations that the system undergoes; only they are of a much
longer time-scale. This makes the probability distributions for the random short-
time fluctuations and the long time ones independent of each other. It is possible
to compute the correlation functions that contain all the information about the
system from the assumptions that the random fluctuations obey the principle
of Equipartition and both the probability distributions are given by Maxwell-
Boltzmann. Another necessary input is the black hole constraints, which reflects
the fact that Horizon fluid is actually a one parameter system.

5. The Transport coefficients for the horizon fluid can then be computed using a
method given by Kubo [57] either in real space or in frequency space [32].

6.2 Teleological Condition and Bulk Viscosity

Using the theory of fluctuations [57], transport coefficients can be related to auto-
correlation function of number density fluctuations (δN ). Following Kubo [57], the
coefficient of bulk viscosity is given by:

ζ =
(
1

n

)
1

AkBT

∫ ∞

−∞
dt

∑

a

∑

b

〈Jaa(0)J bb(t)〉, (59)

where, n = Tr(δab), a, b run from 1, . . . (D − 2) and the current is

Jab = δab δ(PV ) = V δP δab. (60)

To calculate the current, we need to know how the horizon fluid responds to the
external influence. Interestingly, for the event horizon, the response to any external
influence is anti-causal. In particular, ifmatter- energy falls through the event horizon,
then the area of the event horizon increases till the matter-energy passes through the
horizon. This is not unphysical as the event horizon of a black hole is defined globally
in the presence of the future light-like infinity [22].

Due to this unusual property of the horizon, the horizon fluid also exhibits anti-
causal response, i.e. the response of the horizon takes place before the external
influence occurs [22]. Since from the fluid point of view, the system is initially out of
equilibrium and slowly moves towards the final state in equilibrium, it follows that
the external influence brings the system to equilibrium, so that there is no further
evolution of the system from the state it is in. This is referred to as the teleological
nature of horizon [22].

For a class of systems, it has been shown in the literature that if the system
exhibits anti-causal transport process, then the anti causal transport coefficients have
an opposite sign to their causal counterparts [61]. For normal fluids, external influence
drives the system out of equilibrium. For the horizon fluid, it is the reverse; the system
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moves towards equilibrium in anticipation of the external influence like infusion of
energy into the fluid. This is the anti-causal response of the horizon fluid.

Rewriting Eq. (60) as an entropic force — moving the system back to
equilibrium — which, for the horizon fluid, takes the form:

FTh = PA δA θ(−t) (61)

where θ(t) is the theta function, and enforces the anti-casual, teleological nature of
the horizon (for a detailed discussion, see [32]). The bulk viscosity can therefore be
rewritten as

ζ = 1

AkBT

∫ ∞

−∞
dt 〈FTh(t)FTh(0)〉

= P2

AkBT

∫ ∞

−∞
dt 〈δA(t)δA(0)〉 θ(−t)

= (αγ)2kBT

16A

∫ ∞

−∞
dt 〈δN (t)δN (0)〉 θ(−t). (62)

where the last equality comes from (23) and (47). Since our interest lies in the long
wavelength (fluid) limit, we may evaluate the viscosity from the linear response of
the horizon fluid [57]:

ζ = lim
ε→0


[

(αγ)2kBT
〈
δN 2(0)

〉

16A

∫ ∞

−∞
dt exp[i(ω − iε)]θ(−t)

]

(63)

leading to

ζ = − (αγ)2kBT

16A

〈
δN 2(0)

〉

ω
. (64)

where ω corresponds to the lowest energy mode of the fluctuations that the horizon
fluid support and sustain. Assuming that the fluctuations satisfyMaxwell-Boltzmann
statistics, we get [33]

〈
δN 2(0)

〉 = 4 A

(γ α)2
, (65)

and the bulk viscosity simplifies to

ζ = −kB T

4ω
. (66)

The above result points to something important regarding which we would like to
stress the following:

1. Bulk viscosity is independent of the constants α, γ; these can only be determined
with the knowledge of the microscopic theory. This is consistent as the fluid
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description does not require complete knowledge of the microscopic degrees of
freedom.

2. Bulk viscosity depends on the horizon fluid temperature and the lowest energy
mode of the fluctuations. To go about determining the lowest energy mode, it
may be important to get a physical insight. Let us consider fluctuations that cause
a change in the horizon fluid area from A to A + d A. For the horizon fluid
corresponding to Schwarzschild black hole, the change in area is only due to the
change in the quasi-local energy. In Ref. [32] this was done by picking the largest
wavelength to be the circumference of the black hole. However, for generic black
holes like Kerr-Neumann, the change in the area can also be due to the change
in the electrostatic energy or quasi-local energy κ × d A [42]. Using the fact that
the lowest energy modes are adiabatic (slowly evolving), and that the energy and
area are strongly constrained, the minimum energy change can be related to a
minimum change in area through (47) and (49):

ΔE = (ΔN )αT ∝ (ΔA)T, (67)

and, thus, the minimum energy mode for any stationary black hole is

ω = ΔE =
(
D − 2

D − 3

)
ΔA

T

4
. (68)

The above result shows the existence of the lowest energy mode of fluctuation (δN )
of the horizon fluid relating to the minimum change or quantization of the horizon
area.

6.3 Implications

It is important to note that starting from a minimal model of the horizon fluid, while
the entropy of the horizon fluid does not put any additional condition, however,
matching the viscosity provides a condition on the area spectrum.

The area quantization has long been a key result of both horizon thermodynamics
and various quantum gravity proposals. The first attempt goes back to Bekenstein
[13], who uses the fact that particles entering the black hole cannot have zero size,
to find the minimum area increase when one is absorbed by a Kerr-Newman black
hole. This result is very general [28], and in D-dimensions leads to

ΔAmin = 8π�D−2
P , (69)

where we have briefly re-instituted an explicit Planck length, �P for clarity. Substi-
tuting Bekenstein’s minimum area in (68), we get,
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ω = 2π

(
D − 2

D − 3

)
kB T . (70)

Substituting the above form of minimum energy mode in (66), we get

ζ = −
(
D − 2

D − 3

)
1

8π
. (71)

It is important to note that this is the expression for bulk viscosity for all asymp-
totically flat space times in all dimensions and matches exactly the expression from
the DNS equation (22). This is a non-trivial result, using fluctuation-dissipation [57]
and the fact that the horizon is anti-causal [32], it is not possible to obtain the result
without invoking area quantization.

So far, it has not been necessary to place a value on α. However, if we take
ΔNmin = 1, from Eq. (69), we have

α = 8π, (72)

corresponding to [13]. Naturally, there have been several alternative proposals from
counting black hole micro-states or Bohr’s principle with quasi-normal modes [62,
63], and arguments from Loop quantum Gravity [64], for various values of α. Note
that all these proposal give answers of the same order of magnitude (see [65]).

7 What Are the Atoms of Space Time?

The flow chart below provides a bird’s-eye view of the fluid-gravity programme [28–
33] that is described in this article.
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The point of view taken by us in this research programme is that the horizon fluid
possesses some kind of physical reality beyond the formal similarity. As the reader
can notice, the key advantage of this strategy is that, for most part, the analysis
is independent of the details of the underlying microscopic theory and hence the
conclusions about the negative specific heat, occurrence of mass gap and hence
horizon-area quantization are independent of the model of quantum gravity. In our
research programme, any horizon fluid satisfying the two constraints (23, 36), leads
to an entropy that is identical to Bekenstein–Hawking entropy and bulk viscosity that
is identical to that of Damour.

Mean Field Theory ignores the fluctuations of the order parameter. Using a
general, yet, simple model, we showed that the Mean field theory could lead to
Bekenstein–Hawking entropy. This strongly suggests that any approach that predicts
Bekenstein–Hawking entropy should be treated at the same level as a Mean Field
model in Condensed matter systems that implicitly ignore fluctuations. Taking the
fluctuations about the mean value to be Gaussian, we have shown that it is possible
to deduce the dynamical first law of thermodynamics for Black holes. It also pos-
sible to interpret Raychaudhury equation for the null geodesic equation for the null
congruences on the black hole horizon as a Transport equation.

The bulk viscosity, found via the fluctuation-dissipation theorem, is matched with
the expected value by the selection of a lowest energy mode. The needed value is
found to correspond exactly to a minimum area change first proposed by Beken-
stein [13]. We see that another macroscopic quantity that requires some microscopic
information to recover.

All these results lead us to the following question: What are the atoms of space
time? The answer to this question lies in mapping cluster expansion technique to the
horizon fluid [47]. If the gas is made up of molecules that interact, however if it is
dilute (number density n � 1) that the rate of occurrence of interactions is rare; it is
then possible to approximate the gas equation of state to be an ideal gas:

P = n kB T n = N

V

As the density increases, the Pressure should deviate from the ideal gas equation of
state and is higher (lower) for repulsive (attractive) potentials. One usually expands,
the equation of state about the low density (n � 1) limit and can be written as

P = n kB T
(
1 + n B(T ) + n2 C(T ) + · · · )

Cluster expansion [47] is a powerful perturbative technique where one starts from
microscopic Hamiltonian and determine the coefficients B(T ),C(T ).

Asmentioned earlier, in our view point, the horizon fluid corresponding to asymp-
totically flat black hole space times in General relativity correspond to an ideal
massless relativistic gas [47]. However, for higher derivative gravity theories like
Gauss-Bonnet, the equation of state of horizon fluid corresponds to non-ideal gas
[30]. One way to go about identify the atoms of space time is to systematically deter-
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mine the coefficients B(T ),C(T ) order by order from an interacting Hamiltonian
corresponding to the horizon fluid. This is currently underway and I hope to say
something more concrete soon.
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From Quantum to Classical in the Sky

Suprit Singh

Abstract Inflation has by-far set itself as one of the prime ideas in the current cos-
mological models that seemingly has an answer for every observed phenomenon in
cosmology.More importantly, it serves as a bridgebetween the early quantumfluctua-
tions and the present-day classical structures. Although the transition from quantum
to classical is still not completely understood till date, there are two assumptions
made in the inflationary paradigm in this regard: (i) the modes (metric perturba-
tions or fluctuations) behave classically once they are well outside the Hubble radius
and, (ii) once they become classical they stay classical and hence can be described
by standard perturbation theory after they re-enter the Hubble radius. We critically
examine these assumptions for the tensor modes of (linear) metric perturbations in a
toy three stage universe with (i) inflation, (ii) radiation-dominated and (iii) late-time
accelerated phases. The quantum-to-classical transition for these modes is evident
from the evolution of Wigner function in phase space and its peaking on the clas-
sical trajectory. However, a better approach to quantify the degree of classicality
and study its evolution was given by Mahajan and Padmanabhan [1] (Mahajan and
Padmanabhan, Gen. Rel. Grav. 40, 661, 2008; Gen. Rel. Grav. 40, 709, 2008) using a
classicality parameter constructed from the parameters of the Wigner function. We
study the evolution of the classicality parameter across the three phases and it turns
out that the first assumption holds true, there is emergence of classicality on Hubble
exit, however the latter assumption of “once classical, always classical” seems to lie
on a shaky ground.

If there has been a paradigm shift in cosmology, we can (with a wide consensus) say
that it was the inclusion of inflation – a period of an exponential growth at the ‘incep-
tion’ of our universe – even though in an ad-hoc manner to do away with the short-
comings of the hot big bang model. These were old time issues such as the flatness
and horizon problems and the choice of initial conditions. However, inflation really
came as deus ex machina to explain many other significant features along with taking
care of the above problems in its assorted bag of tricks. It, specifically, gave a way to
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unite the two scales1 which I will take as the quantum and classical in our universe
for our interests. In inflationary cosmology – the large scale structures, anisotropies
of the cosmic microwave background, primordial magnetic fields and primordial
gravitational waves all have their origins in the quantum fluctuations that reigned
during that epoch [2]. These fluctuations are the metric perturbations on the oth-
erwise smooth, homogenous and isotropic background, sourced by the fluctuations
of an inflaton field in the simplest of models. Inflation, essentially, sets everything
up in a vacuum state defined well back in the past and hence these fluctuations are
quantized and evolve very much like a quantum field on a curved background.2 That
is, an infinite set of harmonic oscillator modes in Fourier space evolving in competi-
tion with the comoving Hubble length scale which decreases during the exponential
expansion. Inflation, then makes the following two assumptions in this regard,

(i) the modes behave classically once they are outside the Hubble radius and,
(ii) once they become classical, they stay classical and hence can be described by

standard perturbation theory after they re-enter the Hubble radius.

That is, after the end of inflation, these fluctuations are taken as classical, gaussian
random fields on re-entry in the radiation-dominated phase which grow due to gravi-
tational instability. Now, the details of how the quantum-to-classical transition occurs
is one of the fundamental questions that stands open in the inflationary paradigm of
cosmology. Various mechanisms such as decoherence etc. are invoked to explain
the transition, but it is still not completely well understood. Also, without any clear
quantitative measure for the classicality of the fluctuations, one has to deal with a
“two-level” description of fluctuations being either fully classical or fully quantum
mechanical while the reality may lie on the middle ground. Finally, it is imperative
to test the very foundations of inflation and the quantum origin of seeds of cosmic
structures. Could it be by designing a cosmological Bell-type experiment [3]? Or,
recovering the quantum information from present-day observations of the sky [4].
Inflation, for all we know, is like modelling a black-box subcircuit using equivalent
model circuits à la Thévenin and Norton, that can give similar observations.3 The
actual reality could be far different from the constructed models. These questions
are essential to be answered if we have to put inflation on fundamenta incocussa.

The first question in the quest is, “How to quantify the degree of classicality?”.
This is usually determined from the peaking of the Wigner function on the classical
trajectory. However, relying on the Wigner function alone can lead to ambiguities.
This is seen, for example, in Schwinger effect where there is pair production under
strong external electric field. The Wigner function in this case is uncorrelated and

1Usually, this means that it bridges the two scales in the high energy physics which are about 0.2
eV and 1012 GeV or more.
2Note that the perturbations do backreact on the geometry and also mix up on non-linear scales
which makes them complicated over test quantum fields.
3Models of inflation have parameters such as the scalar spectral index (ns ), amplitude (As ) of scalar
power spectrum, tensor-to-scalar ratio (r ), non-gaussianity ( fNL) etc. which are tested against
observations.
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concentrated on the classical trajectory both at very early times (when thefield is in the
in vacuum) and at late times (when particle number has reached an asymptotically
constant limit). Thus, the peaking of Wigner function alone cannot be sufficient
criterion for the emergence of classicality. For this, Mahajan and Padmanabhan [1]
proposed using a classicality parameter (a measure of phase space correlations)
which they showed works fairly well and fits the common intuition of classicality
using various examples. We employed the same construction for a test scalar field in
the setting of a three stage universe [5]. The results were a bit surprising regarding the
twoassumptions in inflationwementionedbefore and the subject of the present article
is to emphasize that the surprising results hold even for the primordial gravitational
waves, i.e., the tensor modes of metric perturbations.

The idea is the following: We consider a three stage background universe4 that
comprises of an (i) inflationary de Sitter stage, (ii) radiation-dominated stage and
finally, (iii) Cosmological constant (�) dominated late-time accelerated stage. The
transitions points maintain the continuity of scale factor and its derivative (the hubble
parameter). We shall use the scale factor as the time parameter since it is monotonic.
Hence, the three stages can be expressed in terms of the comoving Hubble radius as,

L(a) =
⎧
⎨

⎩

(Ha)−1 a ≤ e1/2

(a/He) e1/2 ≤ a ≤ (e/ε)1/2

(aεH)−1 a ≥ (e/ε)1/2
(1)

for the inflationary de Sitter (Hinf = H ), radiation-dominated and late-time de Sitter
(H� = εH ) stages respectively. These are just 45◦ lines in the logarithmic plot (see
Fig. 1). The three stages form a rich terrain and a natural sandwich of two character-
istic length scales,5 Lmax = 1/(Hε1/2e1/2) and Lmin = 1/(He1/2). Then, any length
scale within this band has three transition points where it goes super-Hubble, sub-
Hubble and finally super-Hubble again. Themodes characterized by the length scales
larger than Lmax exit the Hubble radius in the first stage and remain super-Hubble
after that while the modes with wavelengths smaller than Lmin remain sub-Hubble
and exit the Hubble radius only in the third stage. This relative behaviour of different
modes with respect to the comoving Hubble radius leads to difference in the evo-
lution of classicality for each of them. We assume simplest model of inflation and
the details are not relevant for the present analysis. But a very brief idea of back-
ground evolution in the simplest single-field, slow-roll inflationary model is given in
a separate digressive box for completeness (see Ref. [6] for the detailed physics of
inflation).

4This is quite close to our real universe since matter domination lasted for a very small duration
compared to the radiation-dominated stage.
5These are actually L(a) evaluated at the transition points, which themselves, are obtained using
the continuity of L(a) across the phases.
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Fig. 1 The Cosmic Sandwich. A (logarithmic) plot of comoving Hubble radius, L = (da/dt)−1

where t is the usual comoving time with the scale factor a for ε = H�/Hinf = 10−4 showing the
inflationary phase (decreasing), radiation-dominated phase (increasing) and in late-time cosmolog-
ical constant dominated (de Sitter) phase (decreasing) where the lines have slopes: ±1. We have a
natural band of two characteristic length scales, Lmax and Lmin such that any length scale within
has three transition points where it goes super-Hubble, sub-Hubble and finally super-Hubble again

Inflation in a Mustard Seed

In the simplest single-field models of inflation, the action is just

S = 1

2

∫
d4x

√−g
[
R − (∇ψ)2 − 2V (ψ)

]
(Box1.1)

where ψ is the scalar inflaton field which is minimally coupled to gravity and
we have set the units in which � = c = 8πGN = 1. The homogenous ansatz
is

ds2 = −dt2 + a2(t)dxidxi ; a(t) = exp

(∫
dt H(t)

)
, (Box1.2)

where we have expressed the scale factor in terms of a quasi-constant Hub-
ble parameter, H(t). The variation leads to the constraint and the dynamical
equations:
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3H 2 = ρψ = 1

2
ψ̇2 + V,

Ḣ = −1

2
ψ̇2,

0 = ψ̈ + 3H ψ̇ + dV/dψ;

(Box1.3)

of which only two are independent. A successful inflation requires the universe
to expand by, at least, around 60 e-foldings for a sufficiently long time and
eventually end into a radiation dominated phase. This implies that inflation is
a quasi-de Sitter stage with parameters

ε = − Ḣ

H 2
= 3ψ̇2

2ρψ

, δ = ε − ε̇

2Hε
= − ψ̈

Hψ
, η = 2ε − δ (Box1.4)

satisfying {ε, |δ|, |η|} � 1 and O(ε2, δ2, εδ) � ε referred to as the slow roll
conditions. The dynamics at the leading order is then dictated by,

3H 2 � V ; 3H ψ̇ � −dV/dψ (Box1.5)

which, given a potential, can be solved for the scale factor and the scalar field
in the slow roll limit.

What we need are the fluctuations around the classical solution. We can decompose
the metric fluctuations or perturbations on the background Friedmann solution into
scalar, vector and tensor modes. These do not mix at the linear level owing to the
symmetries of the background and can be studied independently of each other. We
shall choose to work with the tensor modes alone in this article.6 This is for simplic-
ity, since at linear order, the tensor perturbations are gauge-invariant and cause no
backreaction to the inflationary background. Also, the tensor modes carry on without
much distortion through the reheating phase and leave their imprints on the cosmic
microwave background. Therefore, we begin with the quadratic action,

S2 = 1

8

∫
dx dτ a2

[
(h′

i j )
2 − (∇hi j )

2
]
, (2)

which we get by expanding of the Einsten–Hilbert action (Box 1.1) to second order,
using the equations of motion and restricting only to the tensor perturbations. Note
that we have now shifted to using the conformal time,

6The scalar mode of perturbations in a suitable gauge requires a more careful study by incorporating
backreaction and the effects after re-entry in the Hubble radius [7].
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τ ≡
∫

dt

a(t)
(3)

and prime denotes derivative with respect to this time. The tensor mode action Eq. (2)
is same the action for a massless scalar field up to a normalization factor. Thus, we
can consider the dynamics of a massless scalar field in our three stage background
neglecting the two states of polarizations so that we have,

Sh = 1

2

∫
d4x

√−g ∂ah ∂ah = 1

2

∫
dx dτ a2

[
h′2 − (∇h)2

]
. (4)

Due to the translational invariance of the Friedmann metric, we can decompose the
field into independent Fourier modes and re-express the action as

Sh = 1

2

∫
dk

∫
dτ a2

(
h′2

k − k2 h2k
)

, (5)

where k = |k|.We have, thus, reduced the task to tackling the dynamics of decoupled,
non-relativistic harmonic oscillators with time-dependent mass and frequencies. We
quantize the system in the Schrödinger picture. The (time-dependent) Schrödinger
equation for the system,

i
∂

∂τ
�(hk, τ ) =

(
− 1

2a2(τ )

∂2

∂h2k
+ 1

2
a2(τ ) k2 h2k

)
�(hk, τ ) (6)

admits time-dependent, form-invariant, Gaussian states with vanishing mean given
by:

�(hk, τ ) = N exp
[−αk(τ )h2k

] = N exp

[
−a2(τ )k

2

(
1 − zk
1 + zk

)
h2k

]
. (7)

The time evolution of the wave function is captured in the functions αk(τ ) or zk(τ )

which can be seen to satisfy the equations:

α′
k = 2α2

k

a2
− 1

2
a2k, (8)

z′
k+ 2 i k zk +

(
a′

a

)
(z2k − 1) = 0 (9)

on substitution. These are non-linear first order Riccati-type equations and rather
difficult to handle. But, we can introduce another function μk(τ ), defined through
αk = −(i a2/2)(μ′

k/μk) which gives an equivalent easy-to-solve and familiar7

second-order linear differential equation,

7In a remarkable co-incidence, the equation for μk is exactly the same as the field equation for hk
which we would get by directly varying the action in Eq. (5).
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μ′′
k + 2

(
a′

a

)
μ′
k + k2μk = 0, (10)

The function zk , referred to as the excitation parameter, is a measure of departure
from adiabatic evolution and is related to μk by

zk =
(
k μk + iμ′

k

k μk − iμ′
k

)
. (11)

Thus, it suffices to solve for μk given the boundary conditions to determine the
evolution of the system.Now the question is, how to quantify the degree of classicality
of such a state? We track this using a correlation function which we refer to as the
classicality parameter. It is a measure of the phase space correlations of a system
defined as

C ≡ 〈pq〉
√〈p2〉 〈q2〉 . (12)

We can evaluate this quantity for our system using the Wigner function,

W(φk, πk) = 1

π
exp

[
−φ2

k

σ 2
k

− σ 2
k (πk − Jk φk)

2

]
,

defined in the φk − πk phase space of the oscillator for the state in Eq. (7) to get,

Ck = Jkσ
2
k√

1 + (Jkσ
2
k )2

; Jkσ
2
k = 2 Im(zk)

1 − |zk |2 . (13)

So, when the Wigner distribution is an uncorrelated product of gaussians in φk and
πk, i.e., Jk = 0, which is the case for the ground state, Ck = 0 implying a pure
quantum state. Otherwise, |Ck | ≤ 1 with a correlated Wigner function and hence
implies deviation from the quantum nature towards classical behaviour which is
maximal at the extremities.

All that is required now is to solve Eq. (10) for μk with appropriate initial condi-
tions.We choose the standardBunch-Davies vacuum initial condition during inflation
and the mode functions in the subsequent stages are stitched together by demanding
the continuity of μk and its derivative. All other quantities can be obtained once μk

is known throughout the history of the universe. It is to be noted that, in reality, we
have ε = O (

10−53
)
which is a very, very small number and the only feasible study

is through appropriate approximations in the analytical computation (see Ref. [5] for
details). Here we present only the numerically computed results taking ε = 0.0001
for visual and conceptual clarity. We show the evolution of parameters of theWigner
function in Figs. 2, 3 and 4 and the snapshots depicting the evolution of Wigner
function in phase space in Fig. 5.



404 S. Singh

Fig. 2 Evolution of the parameters σ 2
k and Jk of the Wigner function with the scale factor for

ε = 0.0001 for super- and sub-Hubble modes. The color scheme is as follows: early inflationary
phase (blue), radiation dominated phase (red) and late-time de Sitter phase (green)

It is evident from the plots of the functions σ 2
k and Jk , the Wigner function

starts uncorrelated with σ 2
k → ∞ and Jk → 0 at early times for all the modes when

they are at sub-Hubble scales. The Wigner function is peaked highly on the φk-
axis (the first plot in Fig. 5). Further on σk decreases sharply and Jk increases to
negative values implying increasing anti-correlation. TheWigner function now starts
to spreads out in the direction ofmomentum axis and lessens its spread on the position
axes. The dynamics after this is strictly governed by the competition of the mode
with the Hubble radius. The modes that exit the Hubble radius and go super-Hubble
see a saturation of σ 2

k and a monotonic increase of Jk to negative infinity. The
Wigner function peaks on the momentum axis implying classical behaviour. For
the modes which remain sub-Hubble until the final third stage, the limits σ 2

k → 0
and Jk → −∞ are reached non-trivially with oscillations in between during the
radiation-dominated epoch.
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Fig. 3 Evolution of the parameter Jk of the Wigner function with the scale factor for ε = 0.0001
for the sub-Hubble mode along with zoomed-in plots showing oscillations at different scales

The most interesting to us are the intermediate modes that exit the Hubble radius
during inflation and then re-enter in the radiation-dominated epoch. The plots in
Fig. 4 show a slight saddle of saturation as the mode exits the Hubble radius but
then on re-entry the oscillations set in for both σk and Jk which damp to zero and
increase to negative infinity respectively. The corresponding evolution of Wigner
function in the phase space is also highly non-trivial. On towards Hubble-exit, the
plots for a = 0.05, 0.1, 0.6 and 1 shows the swift peaking of Wigner function on
momentum axes which persists for a = 2 when the mode is super-Hubble even
though the Universe has made a transition to the second stage. However after re-
entry, due to the oscillations, theWigner function even though peaked on momentum
axis, keeps on twisting and turning until the exit in the third stage to finally settle
in the configuration shown for a = 50, 000. But clearly, the notion and quantifying
the degree of classicality is not so easy relying on the Wigner function alone. Its
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Fig. 4 Evolution of the parameters σ 2
k (above) and Jk (below) of the Wigner function with the

scale factor for an intermediate mode and ε = 10−4 along with zoomed-in plots at different times
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Fig. 5 Snapshots depicting the evolution of the Wigner function in the φk − πk phase space for
the intermediate mode (k/H = 1) and ε = 0.0001

parameters lie in large ranges, for example, σ 2
k is very large at early-times and Jk

goes to negative infinity at late-times with oscillatory behaviour in between, leading
to a very complicated evolution of the Wigner function in the phase space. This is
where the classicality parameter helps being restricted to a finite domain [−1, 1] by
construction and as shown in Fig. 6 for different k/H values. We see the following
evident features:

• The classicality parameter Ck starts from zero in the beginning of inflationary phase
(indicating quantum origin) and after the Hubble exit whether it is in the early or
late-time de Sitter stage, Ck → −1 and modes behave classically.

• For any mode with k = kint which lies within the [kmin, kmax ] band, we have
a classical description near the end of the inflationary phase as Ck → −1 but
as the universe makes a transition to radiation phase, it starts oscillating. These
oscillations last all through the radiation phase and the late-time de Sitter phase
till the mode exits the Hubble radius and then one finds Ck saturates at −1. Thus
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Fig. 6 Evolution of the classicality parameter Ck and the zk with the scale factor for ε = 0.0001.
We clearly see that |Ck | → 1 whenever a mode exits the Hubble radius, however on re-entry, there
are significant oscillations which seem to imply the dynamics is away from a completely classical
description. The evolution is clearly non-adiabatic evident from non-zero values of zk

in between, when the mode is sub-Hubble, the oscillations imply that the system
is away from a completely classical description.

• The sub-Hubble mode does not reach −1 in the first two phases but once it exits
the Hubble radius in the late-time de Sitter phase it reaches that value. On the other
hand, the super-Hubble mode, once it exits from the initial de Sitter phase always
remains super-Hubble and saturates with Ck → −1.

• This non-trivial behaviour of classicality parameter has a reason which is evident
from the plot of zk in Fig. 6. The function zk is a complex quantity and its non-zero
value measures departure from the adiabatic evolution of modes with respect to
the background. There is a delay in the change of course of zk and the background
evolution. The system persists in the previous dynamics even though the Universe
has made a transition to the next stage. Further, the rotor-like behaviour of zk is
what causes oscillations in the Classicality parameter. The rotations start in the
radiation-dominated phase and persist in the late-time phase until the mode exits
the Hubble radius.
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Conclusively then, we have, for the two aforementioned assumptions of inflation,

✓ the emergence of classicality on Hubble exit checked,
✗ but “once classical, always classical” does not seem to hold.

What does it mean for the present-day observations that assume a classical-only
description of the modes that re-enter the Hubble radius? Certainly, we require a
re-think and re-check of the standard procedures. Even possible effects on the non-
gaussianity parameter fNL because of the non-classical behavior of perturbations
after re entry. However, it doesn’t stop here and brings more questions to the table
such as:Howwill the above conclusion farewith the back-reaction included in and for
the scalar perturbations? How does it compare with other constructs that describe the
quantum-to-classical transition such as the quantum discord [8]? What does it mean
to have a quantum nature intertwined with the classical and can this quantum nature
have any imprints in the cosmic microwave background which may be extracted [9]?

As much as it is important to test inflation to its roots, it is a poetic quest to truly
understand our quantum origins if it indeed turned from quantum to classical in the
sky!
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Classical and Quantum: A Conflict of Interest

T.P. Singh

Abstract Wehighlight three conflicts between quantum theory and classical general
relativity, which make it implausible that a quantum theory of gravity can be arrived
at by quantising classical gravity. These conflicts are: quantumnonlocality and space-
time structure; the problemof time in quantum theory; and the quantummeasurement
problem. We explain how these three aspects bear on each other, and how they point
towards an underlying noncommutative geometry of space-time.

This article is warmly dedicated to my Ph.D. supervisor Thanu Padmanabhan, on
the happy occasion of his sixtieth birthday. One of the most important things I learnt
from Paddy was to look for one’s own questions and one’s own answers, instead of
necessarily accepting someone else’s line of thought. I hope this lesson is reflected
in the ideas presented in this article. In particular, Paddy himself might not agree
with some or many of these ideas, and in that sense the lesson has probably been
learnt well!

1 Some Limitations of Quantum Theory

Quantum theory is extraordinarily successful, and is not contradicted by any exper-
iment. This is true for its non-relativistic version, as well as for relativistic quantum
mechanics, and for quantum field theory. However, its successes should not blind
us to the limitations of its theoretical structure, as we understand it today. First and
foremost though, it is important to remember, and not often emphasized, that quan-
tum mechanics has not been tested in all parts of the parameter space that are in
principle accessible in table-top laboratory experiments. We have in mind tests of
quantum linear superposition [Schrodinger cat states] for mesoscopic objects. The
largest objects for which the superposition principle has been tested have a mass of
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about 105 a.m.u. and the smallest objects which are known to behave classically have
a mass of about a microgram [i.e. about 1018 a.m.u.]. In between, there is a techno-
logically challenging range of some thirteen orders of magnitude, where there are
no experimental tests of the superposition principle, although significant progress is
now taking place since the last few years. [We note that macroscopic superpositions
of internal states as in superconductors and Bose–Einstein condensates do not negate
the previous statement.More on this later.] In this untested intermediate range,maybe
there is a quantum-to-classical transition which can be explained by environmental
decoherence and the many-worlds interpretation, or maybe by Bohmian mechanics.
Alternatively, it maybe the case that there is a new dynamics such as spontaneous
collapse, to which quantum and classical mechanics are approximations, and whose
effects become significant in this intermediate regime, and which is responsible for
the quantum-to-classical transition.Tobelieve that quantummechanicswill definitely
not be violated in this yet untested regime is akin to believing, if one were in the
nineteenth century, that Newton mechanics will not be violated at high speeds or for
small objects, even though the theory was not then tested at high speeds or for small
objects. Of course with hindsight we know that such faith in Newtonian mechanics
was misplaced, and accordingly we should reserve our judgement about quantum
mechanics as well, until these thirteen orders of magnitude have been covered by
experiments.

Quantum mechanics is generally taught to students as a ‘final’ theory, with rarely
a mention of the unsatisfying aspects of its theoretical construction. Many physicists
painfully ‘unlearn’ the theory in their later years, and realise the extreme peculiarity
of the structure of the theory. The strangest aspect is the extreme dependence of the
theory on its own classical limit, for its very construction and interpretation. One
starts from the classical [Lagrangian or Hamiltonian] dynamics of the theory for the
chosen degrees of freedom, and one must know the classical action and the Poisson
brackets. Then the peculiar procedure ‘quantize’ is invoked: configuration variables
and their canonical momenta are raised to the level of operators, and Poisson brackets
are replaced by ad hoc quantum commutation relations. It works perfectly, but one is
left wondering if the construction is fundamental: one should have been able to write
down the principles of quantum theory ab initio, and derive classical mechanics from
them, rather than the other way round.

The dependence on classical limit continues when one faces the task of inter-
preting the results of experiments on quantum systems, giving rise to the infamous
quantum measurement problem [1]. There is a need for a so-called classical mea-
suring apparatus: an object which is not found in superposition of position states,
so that classical pointer states [which define the outcome of a measurement] can be
defined. But then we are faced with tough questions. How large should an object be
before it can be called classical? Quantum mechanics is silent about this. And the
classical apparatus which quantum mechanics so much depends on for its interpre-
tation, is something whose classical properties [in particular, the absence of position
superposition of pointer states] should have been derived from quantum mechanics,
rather than assuming its existence a priori, as if it had nothing to do with quantum
theory per se.



Classical and Quantum: A Conflict of Interest 413

It is well-known of course that things get more difficult from this point on. The
evolution of the state of the quantum system is described by the Schrödinger equation:
this evolution is deterministic and linear. The process ofmeasurement by the classical
apparatus breaks both linear superposition and determinism. Although there is no
randomness in the initial conditions for the Schrödinger evolution, the outcomes of
the measurement are random and probabilistic. This is an unparalleled situation in
physics: probabilities without random initial conditions. The fact that probabilities
arise duringmeasurement, implies that something has to give. It means that either the
probabilities are not real but only apparent, or that there is an aspect of randomness
in the dynamics, or in the initial conditions, which is not evident in the Schrödinger
equation.

Not only is there a dependence on its own classical limit, but there is also a
dependence of quantum theory on external spacetime structure. We emphasize two
aspects of this: one which suggests a possible conflict with special relativity, and
the other which strongly suggests that the present formulation of the theory should
possess an equivalent, but a more fundamental, formulation. The first of these has
to do with the EPR paradox and non-local quantum correlations, which suggest that
quantum events influence each other outside the light cone. One possible implication
of this is that wave-function collapse in quantum theory is simply not compatible
with the spacetime structure dictated by special relativity, and in order to describe
collapse satisfactorily one perhaps needs to introduce a new ‘quantum’ structure of
spacetime.

The second aspect, rarely emphasized, has to do with the fact that the time that
appears in quantum theory is part of a classical spacetime geometry, which geometry
is produced by classical macroscopic objects. But these classical objects are in turn
a limiting case of quantum theory! Once again, the dependence of the theory on its
own limit is evident. Clearly, there then ought to exist an equivalent reformulation
of quantum theory which does not refer to a classical time.

We thus see that there are at least three differentways inwhich quantummechanics
depends on its own classical limit, or on classical spacetime structure. These give
rise to the quantum measurement problem, the problem of quantum nonlocality, and
the problem of time in quantum theory. In the next three sections we briefly review
some developments which address these problems, and their inter-relationship. In
the last section we discuss what these problems and their possible resolutions imply
for a future quantum theory of gravity.

2 The Quantum Measurement Problem

Modern approaches to addressing the measurement problem broadly fall into three
classes. The first is to say that collapse of the wave function is only an apparent
process, and in reality no collapse ever takes place This is the essence of the many
worlds interpretation. There is no need tomodify or reformulate quantum theory. The
second is to say that there is randomness in the initial conditions, but the evolution
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by itself is deterministic. This is Bohmian mechanics - a mathematical reformulation
of quantum mechanics. The third is to say that there is randomness in the dynamics,
and the deterministic Schrödinger evolution is only an approximation to the random
dynamics. This is the essence of collapse models.

According to the many worlds interpretation, the evolution is deterministic
Schrödinger evolution through and through, and upon a measurement the universe,
including the observer, ‘splits’ into many branches, with a given branch possess-
ing only one out of the various possible outcomes. The other branches contain,
respectively, one or the other outcomes. The different branches do not interfere with
each other, presumably because of decoherence. [There is a vast literature on deco-
herence, including the experiments and models by [2–4], books by [5–7] and the
seminal papers [8–10] and reviews [11–15].] The collapse of the wave function is
only apparent, not real, and there is no need to modify quantummechanics. The hard
part about many worlds is to understand where the probabilities come from? If the
evolution is always deterministic Schrödinger evolution, then why do the outcomes
obey the Born probability rule? Various explanations have been put forward, but they
do not appear convincing enough [16–27].

Bohmian mechanics is a neat and precise reformulation of quantum theory, where
additional equations of motion are introduced for the positions of particles. The
wave function, which satisfies the Schrödinger equation, also enters in the equation
of motion of particles. The theory is a deterministic theory of particles in motion.
Randomness enters in a classical sense, via random initial conditions, chosen such
that the outcomes of experiments obey the Born rule. Bohmian mechanics, as well
as many worlds, make the same predictions as quantum theory, and they would
be falsified if collapse models, which predict departures from quantum theory, are
experimentally verified [28–35].

Collapse models, first developed in the eighties, propose a stochastic, nonlinear
modification of the Schrödinger equation, and introduce the new feature that collapse
of the wave function is a spontaneous process, not having anything to do per se
with the act of measurement [36–40]. There is no longer any need for the vaguely
defined measuring apparatus, nor an artificial divide between a ‘quantum system’
and a ‘classical apparatus’. The nonlinear modification breaks linear superposition,
while its stochastic nature ensures that the outcome of the broken superposition
is random. The structure of the modifying terms is chosen in such a way that the
random outcomes are realised according to the Born probability rule. The theory
introduces two new constants of nature, a rate constant λ which determines the rate
of collapse, and a critical length rc to which the collapsed wave function is confined.
The rate constant has been assigned an ad hoc value of 10−17 s−1 for a nucleon
- this means that the wave function of a nucleon undergoes spontaneous collapse
once every 1017 s. Understandably then, the nonlinear modification is completely
negligible for the nucleon and it behaves perfectly quantum mechanically, obeying
the Schrödinger equation. However, for a particle of mass m, the rate constant is
assumed to be (m/m N )λ, where m N is the nucleon mass, and hence the rate constant
scales with mass. For macroscopic objects, the wave function collapses extremely
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rapidly; this explains the classical nature of macroscopic objects, and in particular it
explains why pointer position states are classical.

Collapse models thus also provide a natural solution to the measurement prob-
lem. Before a quantum system interacts with the measuring apparatus, its micro-
scopic nature ensures that the rate constant is very small, and the superpositions are
long lived. Upon its interaction with the so-called measuring apparatus [which is
macroscopic] their entangled state represents a macroscopic superposition, which
involves the superposition of pointer position states. This state is extremely short
lived, according to the model, and very quickly ‘collapses’ to one of the outcomes,
while obeying the Born rule.

These models propose that there is a new stochastic dynamics, to which quantum
mechanics is the microscopic approximation, and classical mechanics is the macro-
scopic approximation. The stochastic effect is negligible in the microscopic limit. On
the other hand it is extremely prominent in the macro limit, so that quantum evolu-
tion effectively appears like classical evolution on trajectories which obeyNewtonian
dynamics. The quantum to classical transition is naturally explained, and there is no
longer any need for a measuring apparatus, to explain the results of measurements.

The most interesting thing about collapse models is not that they are necessarily
correct, but rather that they are experimentally testable and that in principle they
make predictions which are different from those of quantummechanics. In the micro
regime, the rate constant is so small that the models are indistinguishable from
Schrödinger evolution and hencemake essentially the same experimental predictions
as quantum mechanics. In the macro regime the predictions are the same as that of
classical mechanics. It is in the in-between mesoscopic regime - the thirteen orders
of magnitude alluded to at the beginning of the article - that the model predictions
markedly differ from that of quantum mechanics. The principle effect is that in this
range the lifetime of a quantum superposition is neither too large nor too small,
but in a range suitable for experimental detection. Thus if a mesoscopic object,
having a mass of say a billion a.m.u., is prepared in a superposed state by passing it
through a diffraction grating, then according to collapse models this superposition
will decay before the particle reaches the detecting screen, and hence no interference
pattern will be seen. If this happens, it of course violates quantum mechanics, and is
evidence for collapse models. Experiments of this nature form the subject of matter
wave interferometry, and they have played a very important role in constraining
collapsemodels and putting bounds on the rate constant λ [41]. A great technological
challenge is to eliminate‘impurities’ such as ambient radiation and gas which cause
environmental decoherence, and mask and mimic the loss of superposition caused
by collapse models. The largest objects for which superposition has been verified
through interferometry have a mass of about 105 a.m.u. and this puts an upper bound
on λ of about 10−5 s−1 [42].

A different class of experiments which are becoming important in testing and
constraining collapse models have to do with a side effect of these models. Namely,
the stochastic process which introduces randomness in the dynamics also causes
stochastic heating of the affected quantum particle, and hence a very tiny violation
of energy momentum conservation [43]. The fact that such a violation has not been
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observed in laboratory experiments and in astronomical observations puts powerful
bounds on λ, the strongest current bound being that λ < 10−8 s−1 [44]. Various new
experiments have been proposed to test the effects of stochastic heating [45–48].
Eventually, in order to verify or rule out collapse models, experiments must push
this bound all the way down to 10−17, belowwhich value collapse models may not be
able to solve the measurement problem, and other explanations such as many worlds
and Bohmian mechanics would start to appear more favorable.

Collapse models do indeed have some limitations, which call for their better the-
oretical understanding. The models are purely phenomenological in nature, having
been proposed with the express purpose of solving the quantum measurement prob-
lem. The mathematical structure of the stochastic nonlinearity is designed so as to
give rise to the Born probability rule. In that sense the models do not predict or prove
the Born rule; rather they have the Born rule built into them. Thus the question as
to what is the fundamental origin of the probabilities still remains unanswered. [The
same is true of the many worlds picture, and of Bohmian mechanics as well.] We
really do not know what is the cause of this randomness. Why should there be in
nature this stochastic noise field which these models employ?

Two ideaswhich bear on this question in a seriouswaydeservemention.One is that
this stochasticity has to do with gravity and spacetime structure. Gravitational fields
are produced by macroscopic bodies, and the latter obey the uncertainty principle of
quantummechanics. It seems plausible [though not fool-proof] that this introduces an
uncertainty in the producedgravitational field, andhencefluctuations in the spacetime
geometry. This might be the source of randomness sought for by collapse models.
It is then natural to ask how these fluctuations in the geometry affect the motion of
a quantum particle which obeys Schrödinger evolution? Various model studies have
shown that spacetime fluctuations produce gravitationally induced decoherence of
the wave function, with the effect becoming more prominent as the mass of the
quantum particle is increased [49–81]. While these results are very encouraging,
they do not yet provide a collapse model. Gravity can cause decoherence, but it is
not yet clear how (if at all) it causes collapse of the wave function (selection of one of
the various outcomes) and how it explains the Born probability rule. The conceptual
status of gravity in such models is also not very clear: is gravity classical, quantum,
semiclassical, or something else? Nonetheless, since we know that gravity exists, it
is very promising to investigate if it is the source of the nonlinear stochasticity in
collapse models.

The second idea for a fundamental origin of collapsemodels is to consider if quan-
tum theory is an approximation to a deeper underlying theory, and if the nonlinear
stochastic modification arises as a higher order correction to the leading approxima-
tion. That quantum theory should perhaps be formulated differently, starting from
some fundamental principles, is already indicated by the extreme dependence of the
current formulation of the theory on its own classical limit. This is the essence of
the theory of Trace Dynamics [TD], developed by Adler and collaborators [82–85].
TD is the classical dynamics of matrices qr whose elements can either be odd grade
[fermionic sector F] or even grade [bosonic sector B] elements of Grassmann num-
bers. The Lagrangian in this dynamics is defined as the trace of a polynomial function
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of the matrices and their time derivatives. Lagrangian and Hamiltonian dynamics can
then be developed in the conventional manner. In TD, the matrix-valued configura-
tion variables qr and their conjugate momenta pr all obey arbitrary commutation
relations amongst each other. However, as a consequence of a global unitary invari-
ance of the dynamics there occurs in TD an important conserved charge, known as
the Adler–Millard charge

C̃ =
∑

B

[qr , pr ] −
∑

F

{qr , pr } (1)

whose existence is central to the subsequent development of the theory.
Assuming that one is not examining the dynamics exactly, one develops an equi-

librium statistical thermodynamics for the classical dynamics described by TD. If
one considers a sufficiently large system [of many, many particles, each particle
being a matrix, as if there were a gas of matrices], the ‘system point’ can in the
long run be assumed to scan all of phase space. The phase space probability dis-
tribution achieves equilibrium [i.e. a uniform distribution over phase space]. The
equilibrium distribution can be determined by maximising the entropy, as is done in
statistical mechanics. The equipartition of the Adler–Millard charge leads to certain
Ward identities, which in turn lead to the important result that thermal averages of
canonical variables obey quantum dynamics and quantum commutation relations. In
particular, the emergent q operators commute with each other, and so do the p opera-
tors. This is how quantum theory is seen as an emergent phenomenon. The quantum
state satisfying the Schrödinger picture is recovered as usual, by implementing a
transition from the Heisenberg picture to the Schrödinger picture. TD is a classical
deterministic theory, and time evolution of the matrices is described in the standard
way, with respect to a flat Minkowski spacetime background. However, TD is not
a hidden variable theory, because the matrix variables exist at a distinctly different
underlying level, as compared to the quantum theoretical degrees of freedom, with
the latter arising only upon statistical coarse-graining, in the conventional sense of
statistical mechanics. Hence the arguments of Bell’s theorem against local hidden
variable theories do not apply to TD.

Furthermore, if one considers the inevitable statistical fluctuations of the Adler–
Millard charge about equilibrium, this leads to a collapse model type modification
of the nonrelativistic Schrödinger equation. These fluctuations are the sought for
source of randomness. One does not understand TD well enough to uniquely pre-
dict the modified theory. In particular one still does not have a proof of the origin
of Born probability rule in TD, but TD is perhaps the only theory to date, apart
from gravity, which provides a fundamental explanation for randomness, by way of
the statistical fluctuations. The collapse models, which are highly successful phe-
nomenologically, are one possible modification admitted by TD. The modification,
ignorable for microscopic objects but significant for large objects, solves the quan-
tum measurement problem and leads to emergent classical behavior in macroscopic
systems. The fluctuations of the conserved charge about its equilibrium value carry



418 T.P. Singh

crucial information about the arbitrary commutation relations amongst the configu-
ration variables and their momenta in the underlying TD.

Coming back to collapse models, another of their limitations is that they are non-
relativistic. Various attempts to construct relativistic collapsemodels face difficulties,
a feature shared also byBohmianmechanics. Perhaps this is an indicator that collapse
may not be compatible with special relativity, especially in the light of quantum non-
locality related issues which we discuss in a subsequent section below.

We take this occasion to mention that macroscopic quantum states such as super-
conductors and Bose–Einstein condensates, which are made from superposition of
internal degrees of freedom, do not invalidate collapse models. The constraints on
the rate constant λ from such systems are rather weak.

We conclude this section by noting that important theoretical and experimental
progress is currently being made on the quantum measurement problem, and on
removing this aspect of the dependence of the theory on its classical limit. We can
expect some exciting developments in this problem in the coming decade or so.

3 The Problem of Time in Quantum Theory

The time in quantum theory is part of a classical spacetime geometry,which geometry
is produced by macroscopic bodies, which in turn are a limiting case of quantum
objects, whose evolution is described with respect to this very time! It is evident that
in order to avoid this self-reference there ought to exist an equivalent reformulation
of quantum theory, which does not refer to classical time. This problem is no less
severe than the measurement problem, but somehow it gets far less attention, if any
at all.

In searching for such a reformulation we are guided by the assumption that such a
reformulation should also throw light on the quantum measurement problem. After
all both these problems arise from the dependence of quantum theory on its classical
limit, and a common explanation is not implausible. We are also motivated by the
fact that Trace Dynamics already seeks to obtain quantum theory, and its stochastic
nonlinear modification, from underlying deeper principles, albeit while retaining
the classical structure of spacetime. From our point of view however, as expressed
above, the dependence of quantum theory on classical time seems to be a limitation,
and we have made preliminary attempts to extend TD to remove the dependence on
classical time. This is still work in progress and we summarize below what has been
understood so far [86–88].

To achieve a formulation of quantum theory without classical time, we first gen-
eralized Trace Dynamics so as to make space-time coordinates also into opera-
tors. Associated with every degree of freedom there now are coordinate operators
(t̂, x̂) with arbitrary commutation relations amongst them. From these we construct
a Lorentz invariant line-element dŝ2, and we define the important notion of Trace
time s as follows:
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ds2 = T rdŝ2 ≡ T r [dt̂2 − dx̂2 − d ŷ2 − dẑ2] (2)

A Poincaré invariant dynamics is constructed, in analogy with ordinary special rela-
tivity, and in analogy with TD, but with the difference that evolution is now defined
with respect to trace time s. The theory, as before, admits a conserved Adler–Millard
charge, and the degrees of freedom now involve bosonic and fermionic components
of space-time operators as well. Because the space-time operators have arbitrary
commutation relations, there is now no point structure or light-cone structure, nor a
notion of causality, although the line-element is Lorentz invariant.

From this generalized TD, we constructed its equilibrium statistical thermody-
namics, as before. The equipartition of the Adler–Millard charge results in the emer-
gence of a generalized quantum dynamics [GQD] in which evolution is with respect
to the trace time s, and the thermally averaged space-time operators (t̂, x̂) are now a
subset of the configuration variables of the system. It is significant that these averaged
operators commute with each other. This is the originally sought after reformulation
of quantum theory which does not refer to classical time. In the non-relativistic limit
we recover the generalized Schrödinger equation

i�
dΨ (s)

ds
= HΨ (s) (3)

To go beyond special relativity, one must invoke an operator structure for the
spacetime metric. Here the program runs into difficulties. It has been argued by
Adler that the metric must retain its classical [non-operator] structure in TD. If a
way can be found around this, we expect the development to proceed along the
following lines.

To demonstrate the equivalence of the reformulation [GQD] with standard quan-
tum theory, onemust first explain how the classical Universe, with its classical matter
fields and ordinary space-time, emerges from the GQD in the macroscopic approx-
imation. Like in TD, one would next allow for inclusion of stochastic fluctuations
of the Adler–Millard charge, in the Ward identity. This should result in a non-linear
stochastic Schrödinger equation, but now with important additional consequences.
One considers the situation where matter starts to form macroscopic clumps (as for
example in the very early universe, right after the Big Bang). These stochastic fluc-
tuations become increasingly significant as the number of degrees of freedom in
the clumping system increases. As in collapse models, these fluctuations result in
macroscopic objects being localized, but now not only in space, but in time as well!
This means that the time operator associated with every object becomes classical
(i.e. it takes the form: a c-number times a unit matrix).

The localization of macroscopic objects is thus accompanied by the emergence
of a classical space-time. This is in accordance with the Einstein hole argument:
classical matter fields and the metric they produce are required to give physical
meaning to the point structure of spacetime. If, and only if, the Universe is dominated
by macroscopic objects, as is the case in today’s Universe, can one also talk of the
existence of a classical space-time.When this happens, the trace proper time s can be
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identified with classical proper time. After the Universe reaches this classical state,
it sustains this state, because of the continuous action of stochastic fluctuations on
macroscopic objects, thereby simultaneously achieving the existence of a classical
space-time geometry. Since the underlying generalized TD is Lorentz invariant, the
emergent classical space-time is locally Lorentz invariant too. However there is a
key difference: unlike in the underlying theory, now the light-cone structure, and
causality, are emergent features, because the space-time coordinates have become
c-numbers now.

Irrespective of this pre-existing classical spacetime background, a microscopic
system in the laboratory is described at a fundamental level in terms of its own non-
commutative space-time (2), via the generalized TD associated with it. Subsequent
to coarse-graining, this results in the system’s GQD (3) with its trace time. If we
assume that stochastic fluctuations can be ignored, this GQD has commuting t̂ and
x̂ operators. These, because of their commutativity, can be mapped to the c-number
t and x coordinates of the pre-existing classical universe, and trace time can then
be mapped to ordinary proper time. This is hence a mapping to ordinary special
relativity, and one recovers standard relativistic quantum mechanics in this way, as
well as its non-relativistic limit. If this program can be fully implemented, it will
establish as to how standard quantum theory is recovered from the reformulation
which does not depend on classical time.

Thus in our scenario the problem of time and the problem of measurement are
related to each other. If one starts from a formulation of quantum theory which
does not have classical time, then, in order to recover classical time and spacetime
geometry from it, one must also recover from this formulation the macroscopic limit
ofmatter fields. This is because classical geometry and classical matter fields go hand
in hand. And to recover the classical limit for macroscopic objects is the same thing
as solving the measurement problem. Because the latter problem can be restated
as: why are macroscopic objects not found in superposition of position states? The
measurement problem is a subset of the larger question: how does the classical
structure of spacetime and matter emerge from an underlying quantum theory of
spacetime and matter?

4 Quantum Non-locality and Space-Time Structure

The essence of the EPR paradox is thatmeasurement on one part of a quantum system
instantaneously influences another part of the same (correlated) quantum system,
even if the two sub-systems are space-like separated. To Einstein, this suggested that
quantum theory is incomplete. However, experimental measurements on entangled
quantum states indeed demonstrate non-local correlations and indeed suggest the
existence of an acausal action at a distance across space-like separated regions. This
has been confirmed by increasingly precise loophole free tests of violation of Bell’s
inequalities by quantum systems. Although such correlations cannot be used for
superluminal signaling, the acausal nature of the influence suggests the possibility
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of a conflict with special relativity and Lorentz covariance. This so-called spooky
action at a distance has been debated extensively, but numerous investigations over
decades have not provided a satisfactory resolution of the issue. On the other hand,
a remarkable experiment shows that even if one assumes that the influence travels
causally in a hypothetical privileged frame of reference, its speed would have be at
least four orders of magnitude greater than the speed of light. That in itself could lead
to problems with special relativity. Furthermore, we have seen above that attempts
to construct relativistic versions of collapse models run into difficulties. To us this
is possibly a signal that wave function collapse is not compatible with classical
spacetime structure [light-cones, and causality].

A possible resolution might come from the underlying noncommutative structure
of spacetime that we have proposed, and which was discussed above, in the context
of the problem of time. It may well be that trying to describe collapse from the
viewpoint of ordinary spacetime is not the right thing to do, when one goes over from
the absolute Newton time of non-relativistic quantummechanics, to the relative time
of special relativity [89]. Collapse is perceived as instantaneous in terms of ordinary
time, but there is nothing to say that this is the correct time to use. We have to pay
heed that this classical time is external to quantum theory.

Let us go back to the Generalized Quantum Dynamics [GQD] where evolution of
the quantum system is describedwith respect to trace time s. Before themeasurement
takes place, the stochastic fluctuations of the Adler–Millard charge can be neglected
for the quantum system [since it is microscopic], and as we observed above, its
GQD can be mapped to standard quantum theory. However, when the measurement
is done, the collapse inducing stochastic fluctuations in the space-time operators t̂, x̂
associated with the quantum system become significant. These operators now carry
information about the arbitrary commutation relations of the underlying generalized
TD and they no longer commute with each other. This implies that they cannot be
mapped to the ordinary space-time coordinates of special relativity. Here, simul-
taneity can only be defined with respect to the trace time s, and there is no special
relativistic theory ofwave function collapse. In this picture, collapse and the so-called
non-local quantum correlation takes place only in the non-commutative space-time
(2), which lacks point structure, lacks light-cone structure, and is also devoid of the
notion of distance. Therefore one can only say that collapse takes place at a particular
trace time, which is Lorentz invariant, and it is not physically meaningful to talk of
an influence that has travelled, nor should one call the correlation non-local. In this
picture the wave function does not know distance - it just is. We once again see that
getting rid of classical spacetime from quantum theory removes another one of its
peculiarity, the so-called spooky action at a distance.

If, as is conventionally done, one tries to view and describe the measurement on
the entangled quantum state from the view-point of the Minkowski space-time of
special relativity, the process inevitably appears acausal and non-local. However,
such a description should not be considered valid, because there is no map from the
fluctuating and noncommuting t̂, x̂ operators to the commuting t and x coordinates
of ordinary special relativity. No such map exists in the non-relativistic case either.
However, in the non-relativistic case, because there is an absolute time, it becomes
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possible to model the fluctuations as a stochastic field on a given space-time back-
ground, as is done in collapse models, and collapse is instantaneous in this absolute
time; however it does not violate causality.

We see thatwhile on the onehand the problemof time is related to themeasurement
problem, on the other hand, the resolution of the time problem can alleviate the
mysterious nature of quantum non-locality. It will be interesting to investigate if one
can make an experimental proposal to verify if noncommutative spacetime is indeed
the way to understand the spooky action at a distance.

Undoubtedly, much more work needs to be done, to put the ideas of the present
and the previous section on a firm footing.

5 Implications for a Quantum Theory of Gravity?

The three problems that we have discussed here could all be called a conflict between
quantum theory and general relativity. The measurement problem has to do with the
classical [as opposed to quantum] nature of macroscopic objects. These objects are
intimately tied up with spacetime geometry through the laws of general relativity.
To the extent that quantum theory does not explain the properties of macroscopic
objects, it maybe said to be in conflict with general relativity. The problem of time
is a direct conflict of course, because quantum objects do not produce a classical
spacetime geometry. And also, quantum non-locality does not seem consistent with
classical spacetime structure.

Given all this, should we aim to construct a quantum theory of gravity by ‘quan-
tizing’ classical general relativity? It seems rather unnatural to do so. It is a fine
thing to quantize other fundamental forces, because they take spacetime structure
as given, and because they do not face the kind of conflict that gravity faces with
quantum theory. By quantizing general relativity, we seem to violate the rules of
the game. There is this classical spacetime structure whose existence is pre-assumed
while writing down the quantum rules: how can these rules then be applied to that
very structure? It does not seem a logical thing to do, and there is no guarantee that
the correct quantum theory of gravity will emerge in this way.

Rather, we see pressing reasons - measurement problem, time problem, non-
locality - which suggest the need to modify both quantum theory and spacetime
structure, when one starts trying to resolve the conflict between classical and quan-
tum. We should not quantize gravity; rather there is an underlying theory - perhaps
a combination of noncommutative geometry and Trace Dynamics as suggested here
- or something else, from which both quantum theory and gravitation are emergent.
Gravitation emerges in the full classical limit, when both matter and gravity are
treated classically. Quantum theory emerges, upon coarse graining the underlying
theory, when only the gravity sector is treated classically. It maybe that this underly-
ing theory is arrived at by demanding that physical laws be covariant under general
coordinate transformations of non-commuting coordinates, thus bringing together
the element of general covariance from relativity, and the element of noncommu-
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tativity from quantum theory. Given the nonlinearity of gravitation, it seems rather
unlikely that the principle of quantum linear superposition can survive such a union!
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Four Principles for Quantum Gravity

Lee Smolin

Abstract Four principles are proposed to underlie the quantum theory of gravity.
We show that these suffice to recover the Einstein equations. We also suggest that
MOND results from a modification of the classical equivalence principle, due to
quantum gravity effects.

1 Introduction

This paper is dedicated to Thanu Padmanabhan on his 60th birthday, as it reflects
longstanding concerns and insights of his [1–5]. With thanks for his vibrant origi-
nality and dedication to the search for the fundamental principles of nature.

Albert Einstein [6] taught us to distinguish between principle theories and con-
structive theories. The latter are descriptions of particular phenomena, fields or par-
ticles that constitute nature. These are specified in terms of dynamical equations of
motion that the constituents obey. Principle theories are different: they give us uni-
versal principles that all physical phenomena must obey, whatever fields or particles
constitute nature. The paradigmatic example Einstein used is the laws of thermo-
dynamics. Einstein used the distinction to argue that special relativity is a principle
theory. He used this to distinguish special relativity from its rivals, principally the
Lorentz theory of the electromagnetic aether, which he argued is a constructive the-
ory. The lesson is that when one can manage to encompass a phenomena in terms of
a principle theory, that that will likely be superior to a constructive theory.

Once we have a principle theory, we can use it to frame and constrain candidate
constructive theories.

In this contribution I proposewe framequantumgravity as a principle theory. Loop
quantum gravity, string theory, causal sets, CDT, etc. can all be seen as constructive
theories that tell us what quantum spacetime might be “made of”. These may contain
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some elements of the truth about what constitutes quantum spacetime. But I would
like to suggest an alternative road in which we first seek principles.

These principles should have some non-trivial consequences. First of all, they
should reproduce what we know already. In particular, the field equations of general
relativity should emerge in a suitably defined classical or coarse grained limit. In
addition, they should entail novel phenomena or provide an unexpected explication
of known phenomena.

In this paper, I propose four principles and show that together they do entail
that general relativity emerges as a coarse grained approximation. We also get new
insights into the physics at small cosmological constant, Λ, both negative and posi-
tive. In the case of Λ < 0 we find evidence that aspects of the AdS/CFT correspon-
dence are related to these principles. This is not new, but involves an interpretation
of some existing results. But in the opposite case of small, positive, cosmological
constant, I find a surprise: a tentative argument that the principle of equivalence, and
hence gravity, is modified at low accelerations, compared to

a∗ = c2
√

Λ

3
. (1)

As I discuss in Sect. 5, this may be related to MOND.
Here are the four principles:

1. The principle of absolute causality and relative locality A quantum spacetime
consists of a set of events whose fundamental properties include causality (i.e.
causal relations), energy and momentum [7–11].1 Classical spacetime is emer-
gent, as is locality. Locality is also relative to the positions of observers and the
energy and other properties of the probes they employ to measure and tracks
distant causal processes [14, 15].

2. Correspondence principle Classical spacetimes emerge in a suitable limit, by
coarse graining the causal structure of sufficiently large quantum spacetimes.

3. The weak holographic principle: The area of a surface, which is defined by
the causal structure as the boundary of a subsystem, is a measure of the channel
capacity of that surface to serve as a channel of information in and out of that
subsystem [16].

4. The quantum equivalence principle: The observers who, in the absence of
curvature and a cosmological constant, see the vacuum to be a maximal entropy
thermal state, are those that in the classical limit are uniformly accelerating.
Hence those observers who see the vacuum to have zero temperature must be
inertial [17].

The first is a strengthing of relative locality as originally proposed in [14, 15].2

We should stress that the correspondence principle guarantees the existence of a

1The notion of causal sets was introduced by [7]. Causal sets built out of intrinsic structures was
developed by [11–13].
2A different proposal for relative locality is in [18].
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classical manifold and metric, gab, but does not require that that metric satisfy the
Einstein equations or any other dynamical law.

The third principle is not new [16, 19, 20], but it will be important to propose
a form of it suitable for a fundamental theory of quantum gravity. The last is a
development of a principle proposed in [17], and will require some explanation.

I should note that it may be attractive to think that the holographic principle is a
consequence of the others, particularly the quantum equivalence principle. But there
is a simple reason to think the holographic hypothesis and the quantum equivalence
principle are independent. This is that they introduce independent constants. The
holographic hypothesis introduces a quantum of area, Ap, to define surface entropy.
The quantum equivalence principle introduces �, in the guise of a boost temperature
(with dimensions of the boost Hamiltonian, which are action.) The ratio gives us
Newton’s constant, G = Ap

�
. We will see below how they work together to give us

Einstein gravity.
The quantum equivalence principle does more than deepen the classical equiv-

alence principle, it puts limits on the older idea. These occur in the presence of a
positive cosmological constant, which arises because there is no observer that sees
the vacuum to have zero temperature. I argue in Sect. 5 that this leads to a viola-
tion of the equality of gravitational and inertial mass. This violation is essentially
a renormalization group effect, hence it depends on temperature. But because of
the quantum equivalence principle, this temperature dependence transmutes into an
acceleration dependence. This, I briefly show in Sect. 5, can explainMOND [21, 22],
and hence obviates the need for dark matter to explain the galaxy rotation curves.3

Once we have a set of principles from which the semiclassical limit follows, we
can seek to show that various constructive theories realize the principles. For exam-
ple, a key problem with background independent approaches to quantum spacetime
histories, such as spin foammodels, causal sets and causal dynamical triangulations,
is showing that they have a good classical limit. This problem has two aspects. First,
we have to show that there is a classical limit described in terms of an emergent
classical spacetime. Then one has to show that the metric of this spacetime satisfies
the Einstein equations. Rather than approach these questions directly, the principles I
propose guarantee these outcomes, the first directly as a result of the correspondence
principle, the second as a consequence of them all.

An objection that might be made of our strategy is that loop quantum gravity (or
string theory, or CDE) is already a principle theory, whose principles aremerely those
of general relativity and quantum field theory. That is partly true, but it is important
to mention that along the way from principles to the physics there are, in each case,
technical choices that need to be made. These choices make the theory at least partly
constructive. We are interested in a different question which is whether there are any
new principles acting in the world which govern quantum gravitational phenomena.

3This does not yet address the need for dark matter on scales of clusters and large scale structure.
It is possible that these are explained by dark matter while MOND explains the galaxy rotation
curves.
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I begin introducing the new principles in Sect. 2, The aim of Sect. 3 is to sketch the
recovery of general relativity in a suitable limit. Section4 contains a short discussion
of how the AdS/CFT correspondence is related to the quantum equivalence principle
proposed here. In Sect. 5, I sketch a route to deriving the phenomenology of MOND
from the quantum equivalence principle, after which we conclude.

2 Four Principles for Quantum Gravity

I now propose four principles for quantum gravity. In each case there is a short
statement of the principle, followed by a more detailed explication.

2.1 The Principle of Absolute Causality and Relative Locality

The principle of absolute causality and relative locality. Causal relations are fun-
damental to nature as are energy and momentum, whose flow follows those relations.
Classical spacetime is emergent, as is locality. Locality is also relative to the posi-
tions of observers and the energy and other properties of the probes they employ to
measure and tracks distant causal processes [14, 15].

Explication: This first principle tells us what the theory is to be about. We want
to specify that, just as in general relativity, a quantum spacetime can be understood
to be about events and their causal relations. The principle also asserts the primacy
of causality and of energy and momentum over spacetime and locality.

A quantum spacetime consists of a set of events whose fundamental properties
include causality (i.e. causal relations), energy and momentum. [7–11].4 Further,
for every causal diamond CD(e, f ) in the quantum spacetime, we posit that there
corresponds aHilbert space,H(e, f )which records quantum informationmeasurable
on the waist, B(e, f ).

There are a variety of structures which exist such as causal pasts, causal futures,
causal diamonds and their boundaries.

We briefly recall their definitions.

• Causal diamonds on causal sets
We are given two distinct events e < f in a causal set. We define immediately the
causal past of f , denoted P(f ), consisting of d such that d < f . The immediate
causal past of f is the subset of P(f ) consisting of those events reached from f
by one causal link into the past, and is denoted, IP(f ). Similarly we define the
causal future, and the immediate causal future, of e, denoted respectively by F(e)
and IF(e). The causal diamond is

4The notion of causal sets was introduced by [7]. Causal sets built out of intrinsic structures was
developed by [11–13].
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CD(e, f ) = F(e) ∩ P(f ) (2)

The boundary of the past of f , denoted ∂P(f ) consists of elements of P(f ) some
of whose immediate futures are not containned in P(f ). Similarly, we define the
boundary of the future of e, denoted ∂F(e). The waist of the causal diamond,
CD(e, f ), is their intersection.

W(e, f ) = ∂F(e) ∩ ∂P(f ) (3)

Quantum mechanics is fundamentally about one subsystem of nature probing the
rest.5 The most elementary act of observation a subsystem of the universe can
make is to send a probe out into the world at one event and receive a response back
at a future event. The act of probing the world is represented by a causal diamond,
making them primary structures. Furthermore, the geometry of momentum space
is more fundamental than the geometry of spacetime.

2.2 The Correspondence Principle

The correspondence principle: Classical spacetimes emerge in a suitable limit, by
coarse graining the causal structure of sufficiently large quantum spacetimes.

Explication: Consider a quantum spacetime, Q, a subset of whose causal dia-
monds have large spacetime volumes (In Planck units.) To it there corresponds a
classical metric spacetime, (M, gab) such that for every causal diamond ofQ whose
spacetime volume V(e, f ) is sufficiently large, there is a corresponding causal dia-
mond, ˜CD(e, f ), in (M, gab), whose spacetime volume and waist area coincide.

Hence, among the observables inH(e, f ) is the area of its waist, Â[B], the space-
time volume, V(e, f ), and the spacetime curvature scalar averaged over the causal
diamond, given by < R >( e, f ). Moreover, we require that there is an action of the
Lorentz group onH(e, f ), denoted L.. The correspondence allows us to pull back L
to the action of SL(2,C) on functions on S2.

The waist of the classical causal diamond is an S2. There is a mapping from
functions, f , on the S2 into states ψ(f ) inH(e, f ).

We call the pair, quantum and classical, a paired causal diamond.
Note that in the context of a constructive approach to quantum gravity, such as

causal sets,CDT or spin foammodels, this is a resultwe seek to demonstrate.Whether
a given constructive quantum gravity theory satisfies the correspondence principle
is then a test for adequacy of a quantum gravity theory. Thus, this correspondence
principle plays the same role as the correspondence principle did in the development
of the quantum theory, it is a criterion for adequacy, which the Schroedinger quantum
mechanics passed by virtue of Ehrenfest’s theorem.

5This idea is developed in relational quantum theory [23–25] and relative locality [14, 15].



432 L. Smolin

We should also expect that there are, as in quantum physics, limits to the cor-
respondence principle that arise from novel phenomena. In the present case these
could arise from relative locality as well as from the ultra-low acceleration MOND
regime. It is interesting that both point to modifications of general relativity at large
distances.

2.3 The Weak Holographic Principle

The weak holographic principle: The area of a surface, which is defined by the
causal structure as the boundary of a subsystem, is a measure of the channel capacity
of that surface, to serve as a channel of information in and out of that subsystem
[16].

Explication: In a quantum causal structure we can define special surfaces as the
intersection of causal past of one event with the causal future of another. The area
of these surfaces are a measure of the channel capacity of these surfaces. In more
detail, let us consider a quantum causal diamond, CD(e, f ), to which there corre-
sponds a classical causal diamond ˜CD(e, f ). A consequence of the metric geometry
is that the waist or corner, B̃ of the classical causal diamond is a space like S2. By
the correspondence to the quantum causal structure, B̃ inherits the Hilbert space,
H(e, f ) and its observables. These include the area Â[B]. The Hilbert spaceH(e, f )
represents the information that the observer represented by a causal diamond may
obtain about the world by means of probes that measure information coming into its
waist.

S[B] = A[B]
Ap

(4)

We will find below that Ap = 4�G, but it is introduced as an independent constant
with units of area.

2.4 The Quantum Equivalence Principle

The quantum equivalence principle: The observers who, in the absence of curva-
ture and a cosmological constant, see the vacuum to be a maximal entropy thermal
state, are those that in the classical limit are uniformly accelerating. Hence those
observers who see the vacuum to have zero temperature must be inertial [17].

Explication: Worked out in detail, the principle has two parts. The first part is
purely quantum, the second develops the correspondence between the quantum and
classical aspects of a paired causal diamond.

The first part specifies the existence of dimensionally reduced thermal states cor-
responding to uniformly accelerated observers, boosted to the infinite momentum
frame.
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Consider an observer in a quantum spacetime who is uniformly accelerated to
an arbitrarily high boost. The observer sees physics to be conformally invariant,
dimensionally reduced by the elimination of the longitudinal direction, and thermal
in the sense that it is described by the maximally entangled state generated by the
boost Hamiltonian.

To every quantum causal diamond, in the quantum causal structure, and every
boost generator, K̂z in L we associate a thermal state, with maximal entanglement
entropy, in a 2 + 1 (generally a (d − 1) + 1) dimensional conformal field theory,
which lives on the waist, This is given by [26]

ρU = e− 2π
�
HBoost (5)

where HBoost is the positive definite boost Hamiltonian, corresponding to K̂z which
acts on degrees of freedom on the waist. Note that the boost Hamiltonian must be
dimensionless. The dimensionless Unruh temperature is [27],

TU = �

2π
(6)

The second part requires that when the classical spacetime emerges, the locally
accelerated trajectories correspond to observers that describe the vacuum as a thermal
state with maximal entanglement entropy, as was posited in [17].

Specifically, it requires that in the cases in which CD(e, f ) is a paired causal
diamond, there corresponds to it a causal diamond in a classical spacetime. The
classical metric gab has a radius of curvature, R [28]. The state (5) corresponds to
what an observer in the dual classical spacetime, uniformly boosted to the infinite
momentum frame, might see. More specifically, in the limit where the spacetime vol-
ume is large in Planck units, but small compared to R4, themetric has an approximate
boost killing field. Then, ρU describes the quantum state of the causal diamond as
seen by an observer moving with respect to an approximate boost killing field of the
metric gab.

2.4.1 Motivation

In the classical equivalence principle we make use of the notion of a freely falling,
or inertial, frame, which the Lorerntzian geometry gives us before hand. We then
define a uniformly accelerated frame as onewhich is accelerated relative to an inertial
frame.

But the notion of an inertial frame does not appear naturally in the fundamentals
of quantum gravity. The reason is that it depends on a limit of weak coupling to
define. An inertial frame is one that “has no forces on it.” Except, of course, that it
must interact with its surroundings if it is to serve as an observer. Such an observer
can only make sense when defined in a weak coupling limit. However, such a limit
is antithetical to being deep in the quantum gravity regime, where all the degrees of
freedom are interacting with each other.



434 L. Smolin

Thus, in the quantum version we start with the accelerated elevator and later take
a weak coupling limit where we transform to the freely falling frames.

What we want, then, is a quantum notion of a uniformly accelerating frame. The
result of Unruh suggests that this should correspond to a thermal state. Notice that
uniform acceleration implies an unlimited boost, corresponding to a uniform accel-
eration carried out for an unlimited time. In this time, an observer is accelerated to a
boost, γ, relative to its initial motion, which is arbitrarily large. Thuswe need a notion
of an observer corresponding to what high energy physicists call the infinite momen-
tum frame [29]. The quantum equivalence principle thus is going to assert that the
limit of a uniformly accelerating observer is related to the infinite momentum frame.

We recall that in the infinite momentum frame the longitudinal coordinate is
length contracted to an arbitrarily small interval, so that spheres are quashed down
into pancakes. Thus a uniformly accelerating observer should see a world reduced
by the elimination of the longitudinal direction.

Note that the limit of infinite boost, when γ → ∞, can be seen as the limit of a
renormalization group transformation. Asking that the quantum physics have a limit
is then the same as asking that there be a fixed point of the renormalization group,
i.e. a scale invariant theory. So the limit theory has to be a conformal field theory.

We can say this a different way. Greenberger [30] explains why, strictly speaking,
the equivalence principle cannot hold for a particle of finite mass. The fact that the
Compton wavelength λC = �

m is finite means that how a massive particle falls in
a gravitational field will depend on its mass. But this does not rule out applying
the equivalence principle to massless particles. If we generalize this to QFT we
would say that any mass scale in a QFT is an impediment to the satisfaction of the
equivalence principle, hence the quantum equivalence principle describes what a
uniformly boosted observer sees in terms of a conformal field theory.

Moreover, the conformal field theoryweneed is onewhose degrees of freedomcan
be attributed to the waist, which is a two dimensional sphere. Hence the longitudinal
direction disappears. This is a well known characteristic of physics in the infinite
momentum frame. If an object of longitudinal size, r is length contracted by a γ so
large that r

γ
< lPl then it no longer is describable in terms of extension in a classical

geometry. Either it disappears because it becomes part of quantum geometry at the
Planck scale (if the lorentz symmetry is unmodified) or it disappears because it gets
squeezed down to lPl as a limit in a deformed version of lorentz symmetry.

We note that this disappearance of a dimension in a short distance of high energy
limit may be connected to the phenomena of dimensional reduction observed in
several approaches to quantum gravity [31, 32].

2.4.2 Comments on the Quantum Equivalence Principle

We can make some simple comments on this new proposal:

• NOTE 0: Equation (6) is where � is introduced.
• NOTE 1: The quantum equivalence principle incorporates the Unruh effect [27].
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• NOTE 2: We can conjecture that the AdS/CFT correspondence is at least partly
a consequence of the quantum equivalence principle, combined with the weak
holographic principle, because as you go to the boundary of AdS the radius of
curvature goes to a large constant. We discuss this below.

• NOTE 3: The quantum equivalence principle incorporates the equivalence of
quantumand thermal fluctuationsposited bymyself [17] anddevelopedbyKolekar
and Padmanabhan [33]. In that paper, [17], I raised the question of why the class
of special observers that see zero temperature in the ground state are the same as
the special class of inertial observers. This is suggested by the observation that
they need not be the same, because the former depend on the choice of vacuum in
the QFT , while the latter does not.
Coming from classical physics we consider the class of inertial observers as prior
to andmore fundamental than, the class of zero temperature observers. In quantum
gravity, we must turn this around. In the deep quantum gravity regime, governed
by the quantum equivalence principle, there are no particle trajectories and no
notion of inertia or acceleration. Moreover, associated to causal diamonds, there is
a dimensionless notion of boost energy and boost temperature. So the fundamental
notion is the dimensionless temperature, TU , from which the dimensional temper-
ature and corresponding acceleration emerge in the appropriate limit following the
breaking of conformal invariance.

• NOTE 4: The quantum equivalence principle (QEP) implies the classical equiv-
alence principle (CEP), in the limit � → 0 and in the absence of a cosmological
constant. The dimensional reduction requires that the acceleration proceed to a
boost that exceeds. for any physical length scale, L,

L′ = L

γ
< lPl (7)

but in the limit � → 0, lPl → 0 so the condition is never met. Furthermore the
Unruh temperature also goes to zero.
In the presence of a positive cosmological constant, the limit to the classical
equivalence principle may be modified for small accelerations, a < a∗, where
a∗ = c2

√
Λ. This is discussed in Sect. 5, below.

• NOTE 5: The requirement that ρU be an equilibrium state implies that it is the
maximal possible entropy. But that is limited by the channel capacity. Hence we
have

SB = −Trρ ln ρ = 1

TU
< HB > (8)

2.4.3 Free Fall

The classical equivalence principle has two parts, related to accelerating elevators
and elevators in free fall. We started with the analogue of accelerating elevators,
can we get back to a statement of a quantum equivalence principle for freely falling
observers?
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The key idea is that ρU is the maximal entropy state. A freely falling reference
frame is one that will observe the minimum entropy state, which is the vacuum. This
means that the notion of inertial motion, i.e. free fall, should be a consequence of the
possibility of reducing entanglement entropy to a minimum by transforming from
a thermal state to the vacuum, below the scale of the radius of curvature. This is
essentially the hypothesis made in [17] which posits that it cannot be contingent or
coincidence that observers who see minimal entanglement entropy move inertially.

To do that we have to break the conformal invariance that got us to the limit
of large boosts, which made it possible to use the boost Hamiltonian and boost
temperature, both of which have units of action rather than energy. The breaking of
conformal invariance gives us a time scale, τ . We can then define the dimensional
boost Hamiltonian and temperature,

H̃B = HBoost

τ
, T̃ = �

2πτ
= �a

2πc
(9)

where the acceleration a = c
τ
. The thermal state is then

ρU = e− 2πc
�a H̃B (10)

In the absence of a positive cosmological constant, we then take the limit of a → 0
to find the minimal entropy, or ground, state,

ρ0 = lim
a→0

e− 2πc
�a H̃B (11)

If this state exists it will have at least approximate symmetries which generate the
symmetries of spacetime, and hence lead to the recovery of the equivalence principle
for freely falling observers.

The fact that the ground state has translation symmetry implies that the specifica-
tion of which motions are inertial does not depend on any property of a freely falling
particle. This implies the equality of gravitational and inertial mass,

mI = mg. (12)

In Sect. 5, we will see how this is modified when the cosmological constant is
positive.

3 Recovery of the Einstein Equations

We show that these principles suffice to recover the Einstein equations. We follow a
strategy pioneered by Jacobson [28, 34] and Padmanabhan [4].
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Suppose that we have a boosted observer inside a paired causal diamond. By the
weak holographic principle, the entropy is

SB = A(B)

Ap
(13)

By the quantum equivalence principle, the entropy is also

SB = −Trρ ln ρ = 1

TU
< HB > (14)

This is of course the first law of thermodynamics, emerging here as a consequence
of the weak holographic principle and the quantum equivalence principle.

It follows that

< HB >= 1

8πG
A[B] (15)

where G = Ap

4�
.

This has been called the first law of classical spacetimes.
Now consider three events, A < B < C which generate two paired causal dia-

monds CD1 = CD[A,B] which is a subset of CD2 = CD[A,C]. Then we can also
show that

< ΔHB >=< HB2 > − < HB1 >= 1

8πG
ΔA[B] = 1

8πG
[A[B2] − A[B1]] (16)

We next use the correspondence principle to describe the boundary of the causal
diamond in terms of a congruence of null geodesics in the emergent spacetime. This
is specified by an affine parameter λ and a null tangent vector ka. We express ΔA[B]
in terms of the expansion θ.

δA =
∫

dAdλθ (17)

To compute this we will use the Raychauduri equation for a congruence of null
geodesics

θ̇ = −1

2
θ2 − 2σ2 + 2ω2 − Rabk

akb (18)

We next note that every event e in a causal spacetime appears in the corners
of many causal diamonds. We fix an arbitrary event and look for suitable causal
diamonds. Suitable means that e is in the corner of the causal diamond and that the
null geodesics that make up the boundary of that causal diamond satisfy that 2σ2 and
ω2 are negligible compared to Rabkakb.

σ2,ω2 << Rabk
akb (19)
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We also assume that an event e in the corner, B1 can be chosen such that there

θ1 << Rabk
akb (20)

If this is not the case, but (19) are satisfied we just wait, and consider an event e′
further along the light cone. This is because under our assumptions.

θ̇ = −1

2
θ2 → θ ≈ 2

t
(21)

so that after some time (20) will be satisfied. When it is we have

δA =
∫

dAdλθ =
∫

dAdλλdotθ = −
∫

dAdλλRabk
akb (22)

Now we work on the other side of (16). The assumption that the shear σ can be
neglected means that there is not a lot of energy in gravitational radiation. Hence this
implies that

ΔHB = ΔQ =
∫

H
Tabξ

adΣb (23)

where xia is an approximate killing field generating the boost near the corner. By the
equivalence principle this must exist. We can follow Jacobson [34] in setting

ξa = −κλka (24)

dΣa = kadλdA (25)

hence we have

ΔHB =
∫

H
Tabk

akbλdλdA (26)

We now use the fact that (16) will be true for a large number of causal diamonds
whose waist includes e. We then have

Rab + gabf = Tab (27)

Making use of the Bianchi identities we have

Rab − 1

2
gabR − gabΛ = 8πGTab (28)

Thus we see that our principles imply that general relativity is satisfied.
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4 AdS/CFT as an Example of the Quantum Equivalence
Principle

The formulation of the quantum equivalence principle is inspired by early ideas of
holography and the infinitemomentum frame, a connection that has been emphasized
by Susskind [20, 35]. However, there are interesting implications of the principle in
the case of negative cosmological constant, which appear to be related to aspects of
the AdS/CFT correspondence.

Notice that, as pointed out by [5, 36–39], an observer at large r >> R of a
Schwarzschild-AdS spacetime is in a situation analogous to a uniformly acceler-
ated observer in flat spacetime, i.e. an observer in Rindler spacetime. The uniformly
accelerated observer in the IMF limit sees all massive particles moving with respect
to it in the negative direction. She sees particles initially ahead of her lose speed and
then fall behind, as she passes them.

Similarly, all outgoingmassive particles in asymptoticallyAdS spacetimes reach a
maximal r and then fall back. The uniformly accelerating observer sees light coming
from behind it to be increasingly redshifted, where that redshift goes to infinity in
the IMF limit.

To see this we work in global coordinates [36].

ds2 = −f (r)dτ 2 + dr2

f (r)
+ r2dΩ2 (29)

where f (r) = (1 − 2GM
r + r2

R2 ), with Λ = − 1
R2 . The redshift for outgoing light is

ω(r2)

ω(r1)
=

√
f (r1)√
f (r2)

=
√√
√
√1 − 2GM

r + r21
R2

1 − 2GM
r + r22

R2

(30)

In the limit r2 > r1 >> R > GM this is

ω(r2)

ω(r1)
= r1

r2
(31)

This is the same as in Rindler spacetime where f (r) = r2

R2 . In the limit that r2 → ∞
the redshift factor goes to zero. This has been seen as a manifestation of an IR/UV
duality in which high frequency excitations in the bulk are redshifted to zero energy
and infinite wavelength by the time they reach infinity.

It has also been found by Deser and Levine [36] that a uniformly accelerating
observer with uniform acceleration a, in anti-deSitter spacetime observes a temper-
ature

T =
√
a2 + Λ

3

2πc
= a5

2πc
=

√
a2 − 1

R2

2πc
(32)
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where a5 is the acceleration of the worldline in a five dimensional Minkowski space-
time in which the AdS spacetime is embedded.

We note that for the temperature to be non-zero, the acceleration must satisfy
a > 1

R . This is required for the accelerated observer’s worldline to have an horizon.
This is not the case for an observer at constant r in the global coordinates (29), instead
one can show that for all such observers a < 1

R .
This requires modifications of the quantum equivalence principle, because there

are observers with non-zero acceleration, but vanishing temperature.
Observers with a > 1

R do exist, some of them can be described as the constant ξ
worldlines, in a coordinate system in which ξ replaces r and in which the AdS metric
is expressed as

ds2 = − ξ2

R2
dt2 + dξ2

1 + ξ2

R2

+
(
1 + ξ2

R2

)[
dχ2 + R2 sinh2

(
ξ

R

)
dΩ2

d−2

]
(33)

Note that ξ = 0 is an horizon for the accelerated observers at constant ξ > 0.
These have accelerations

a2 = 1

R2
+ 1

ξ2
(34)

which are all greater than 1
R2 , hence by (32) they have non-zero temperatures

T = �

2πξ
(35)

Because ξ = 0 is an horizon these coordinates cover only a wedge of AdS space-
time, analogous to the way in which Rindler coordinates cover only a wedge of
Minkowski spacetime. Consequently an observer who can only observe this wedge
sees a thermal state.

We note that in the limit R → ∞ for fixed ξ (or ξ
R → 0), the AdS metric becomes

the pure Rindler metric

ds2 = − ξ2

R2
dt2 + dξ2 + dχ2 + ξ2dΩ2

d−2 (36)

Thus, under these conditions the requirements of the quantum equivalence principle
are satisfied. Hence we predict that for large ξ, in the presence of larger R, the physics
is represented by a hot CFT on flat Minkowski spacetime.

This is indeed the case, as has been described in detail in a number of papers
[5, 36–39].
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5 The Origin of MOND from the Quantum Equivalence
Principle

We next ask how the correspondences we described in Sect. 2.4 are modified by the
presence of a positive cosmological constant, Λ. This bathes the system in a bath of
low temperature horizon radiation. It is natural to hypothesize that this results in a
temperature dependent renormalization of the scale τ .

τ → τ ′ = τG−1

(
T

T∗

)
(37)

where G is an adjustment of the renormalization scale and T∗ is the temperature
associated to the cosmological constant scale.

T∗ = �c

2π

√
Λ

3
(38)

We would like to compute G
(
T
T∗

)
from first principles, but below we will estimate

it empirically.
It follows that the effective Hamiltonian, H̃B defined by (9) is renormalized

H̃B → H̃ ′
B = G

(
T

T∗

)
H̃B (39)

In the non relativistic limit the Hamiltonian relevant for a star in orbit in a galaxy
has the form of a sum of terms

H̃B → HNR = p2

2mi
− mgUNew (40)

where mi and mg are, respectively, the inertial and passive gravitational mass. These
constants can absorb the renormalization factors

mren
i = mi

G
(
T
T∗

) , mren
g = mgG

(
T

T∗

)
. (41)

Hence, the ratio of gravitational and inertialmass then suffer a temperature dependent
renormalization

mren
g

mren
i

= G2

(
T

T∗

)
(42)

This modifies the classical equivalence principle.
But as we argued above and in [17], the quantum equivalence principle requires

that temperature and acceleration be intimately related, by the equivalence of free
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fall observers with observers that see minimal entanglement entropy. So, this turns
into an acceleration dependence

mren
g

mren
i

= G2
(aobs
a∗

)
(43)

where a∗ is the acceleration associated to the cosmological constant

a∗ = c2
√

Λ

3
(44)

and aobs is the observed acceleration of a particle. Hence we conclude there must be
an acceleration dependent modification of the equality of gravitational and inertial
mass. This will be important for extremely small accelerations, given by the scale of
the cosmological constant.

But we also know that
mren

g

mren
i

= aobs
aN

(45)

which is the ratio of the measured radial acceleration

aobs = v2

r
(46)

to the acceleration predicted by Newtonian theory

aN = ∇ iU (47)

Hence we have
aN = aobsG

−2
(aobs
a∗

)
(48)

We can invert this to find a function F2
( aN
a∗

)
such that

aobs
aN

= F2
(aN
a∗

)
(49)

This relation, for some function, F( aNa∗ ), is then a consequence of the quantum equiv-
alence principle.

In a recent paper, McGaugh, Lelli and Schubert (MLS) report [21] strong confir-
mation of an empirical relation of this form, first proposed by Milgrom [22]. They
measure F( aNa∗ ) in a survey of rotation curves of 153 galaxies in the SPARC data base
[40]. They measure aobs, the actual radial acceleration by (46) at 2693 radii on these
rotation curves. At the same radii they estimate the Newtonian gravitational potential
from baryons as observed in gas and dust, and so determine aN . They discover that
the data is well described by a simple empirical relation of the form of (49), as shown
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in Fig. 1. As they note, it is amazing that such a relation exists over a wide range of
galaxy types, sizes and morphologies, as this represents the observed accelerations
only by a function of the Newtonian accelerations due to baryons.

Furthermore MLS are able to fit a simple form for F(a) to the data which is [21,
41, 42]

F2(aN ) = 1

1 − e
−

√
aN
a0

(50)

They fit a0 to the data to be

a0 = 1.2 × 10−10ms−2 (51)

which is not far from a∗ = c2
√

Λ
3 . Indeed we are not yet fully in a deSitter expansion.

We may note that this has the limits postulated by [22], which are clearly exhib-
ited by the data shown in Fig. 1. For large aN

a0
, F → 1, showing that conventional

Newtonian dynamics is restored. This accords with the observation that dark matter

is not needed in the cores of galaxies. For small aN
a0
, F2 →

√
a0
aN
, giving the MOND

formula
aobs = √

aNa0 (52)

This gives immediately the baryonic Tully- Fisher relation for the velocity of the flat
rotation curves in the exterior of a galaxy, in terms of its baryonic total mass,M [43],

v4 = GMa0. (53)

We may note that the baryonic Tully- Fisher relation is well confirmed [22, 44, 45].
Additionally, it must be stressed that Fig. 1 shows that the scale a0 is clearly

present in the data. Indeed, this scale characterizes the phenomenology of galaxies
as it is a typical scale for spiral galaxies.

This explanation for the observed mass-discrepancy-acceleration relation (or
radial acceleration relation), implies several ramifications bymeans of which it might
be tested. One is a redshift dependence of a0, corresponding to changes in the cosmic
horizon distance and temperature. Presently there is no evidence for an evolution of
a0 in the Tully-Fisher relation out to redshift of z = 1 [46] or z = 1.7 [47].

Another is acceleration dependent modifications of the equality of inertial and
passive gravitational masses, present universally in processes at very small accelera-
tions of order a∗. These would have to be tested in space, such as at lagrangian points
where the Earth’s gravitational acceleration is cancelled [48].

It goes almost without saying that if this proposal has anyworth, a goal of research
in quantum gravity must be to predict the form of (50).6 We note that the effect in
question is based on a renormalization of coupling constants in by averaging over
very large scales, and is hence a far infrared effect. Indeed, there are very good

6Related ideas have been suggested previously in [49].
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Fig. 1 The empirical radial acceleration relation, as shown in Fig. 3 of [21]. Data is taken from
the SPARC data base [40]. Used with permission. From the original caption: “The centripetal
acceleration observed in rotation curves, aobs = gobs = v2/R, is plotted against that predicted for
the observed distribution of baryons, aN = gb in the upper panel. Nearly 2700 individual data
points for 153 SPARC galaxies are shown in grayscale. The mean uncertainty on individual points
is illustrated in the lower left corner. Large squares show the mean of binned data. Dashed lines
show the width of the ridge as measured by the rms in each bin. The dotted line is the line of unity.
The solid line is the fit of Eq. (50), to the unbinned data using an orthogonal- distance-regression
algorithm that considers errors on both variables. The caption goes on to say, The inset shows the
histogram of all residuals and a Gaussian of width σ = 0.11dex. The residuals are shown as a
function of gobs in the lower panel. The error bars on the binned data are smaller than the size of
the points. The solid lines show the scatter expected from observational uncertainties and galaxy to
galaxy variation in the stellar mass-to-light ratio. This extrinsic scatter closely follows the observed
rms scatter (dashed lines): the data are consistent with negligible intrinsic scatter. [21]”
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reasons to think that MOND must be due to a new kind of non-locality in physics
[49, 50]. It is intriguing to wonder if this might have something to do with relative
locality [14, 15].7

Of course there remain the challenges to extend MOND to relativistic processes
and to address large scale structure formation, the bullet cluster and others. It is
possible these may be aided by the new point of view proposed here.

5.1 A Second Argument

Here is a second argument for deriving MOND from general relativity, combined
with some input from the quantum equivalence principle.8 We start with the obser-
vation of Narnhofer and Thirring [55] and Deser and Levine [36] that an observer
in deSitter spacetime, with a steady four acceleration a observes a thermal spectrum
with temperature,

T = �a5
2πc

(54)

where a5 is the acceleration of the observer’s worldline, lifted up into a flat five
dimensional embedding of deSitter spacetime. This is given by (32) with positive Λ,

a5 =
√

a2 + c4Λ

3
=

√

a2 + c4

R2
(55)

Thus, this acceleration, a5 is the relevant acceleration when we are taking the limit
of maximally entangled thermal boosted states with decreasing acceleration to reach
the minimally entangled ground state. Note that when the cosmological constant
is non-zero and positive we cannot take this limit all the way, for even observers
with vanishing four acceleration, a, have non-vanishing temperature, T∗. So which
accelerations are relevant for expressing the equivalence principle in the Newtonian
limit?

By construction, the observed kinematical acceleration, ak ≈ v2

r , for r << R, is
the four acceleration, a. But in what frame is the Newtonian acceleration aiN = −∇ iφ
applied, andwhat is its value?For accelerations large compared toa∗, it doesn’tmatter
as all candidates go to a in the limit, as accords the classical equivalence principle.

But what if we take the proposal that acceleration is tied to temperature seriously,
as suggested by [17] and the quantum equivalence principle? We then might want to
use a5 for aN in the non-relativistic limit. But this makes no sense as it has a positive
lower bound, which is a∗. But we must retain that the acceleration vanishes when

7The idea that dark energy might be the result of non-locality in loop quantum gravity, or disordered
locality [51], was suggested in [52]. The extension of this to dark matter and MOND was studied
in an unpublished draft [53].
8A related argument was proposed in [54].
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the force does. Instead we should choose for aN , a function of a5 (and hence of T )
that goes to zero as a → 0. The simplest such function is

ã5 = a5 − a∗ (56)

Suppose we set aN = ã5? It follows right away that

a = √
2a∗aN (57)

which is the MOND relation for small aN << a∗.

6 Conclusions

We have proposed four principles which a quantum theory of gravity should satisfy.
These together imply thefield equations of general relativity, they also express aspects
of the AdS/CFT correspondence. We gave two tentative arguments that suggest that
there are quantum gravity effects at very low acceleration, which reproduce the
phenomenology of MOND.

I would like to close with an observation and a query. The observation is that
all the cases we have studied situations where variances in time can be neglected,
which hence involve static configurations such as uniformly accelerated observers
or circular motion. In these situations there appear applications of equilibrium ther-
modynamics, at the classical and semiclassical level. These applications give rise to
the Einstein equations, as was proposed in [34]. But what if we extend our analysis
to describe strongly time dependent situations? Then we will have to extend our use
of thermodynamics to non-equilibrium thermodynamics.

The query is that, given that we are working in a context in which equilibrium
thermodynamics gives rise to the Einstein equations, which are symmetric under
time reversal, will we now see the emergence of a time asymmetric extension of
general relativity, such as are described in [56, 57]?
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What Do Detectors Detect?

L. Sriramkumar

Abstract By a detector, one has in mind a point particle with internal energy levels,
which when set in motion on a generic trajectory can get excited due to its interac-
tion with a quantum field. Detectors have often been considered as a helpful tool to
understand the concept of a particle in a curved spacetime. Specifically, they have
been used extensively to investigate the thermal effects that arise in the presence of
horizons. In this article, I review the concept of detectors and discuss their response
when they are coupled linearly as well as non-linearly to a quantum scalar field in
different situations. In particular, I discuss as to how the response of detectors does
not necessarily reflect the particle content of the quantum field. I also describe an
interesting ‘inversion of statistics’ that occurs in odd spacetime dimensions for ‘odd
couplings’, i.e. the response of a uniformly accelerating detector is characterized by
a Fermi–Dirac distribution even when it is interacting with a scalar field. Moreover,
by coupling the detector to a quantum field that is governed by a modified dispersion
relation arising supposedly due to quantum gravitational effects, I examine the possi-
ble Planck scale modifications to the response of a rotating detector in flat spacetime.
Lastly, I discuss as to why detectors that are switched on for a finite period of time
need to be turned on smoothly in order to have a meaningful response.

1 Introduction

The vacuum state of a quantumfield develops a non-trivial structure in the presence of
a strong classical electromagnetic or gravitational background. This effect essentially
manifests itself as two types of physical phenomena: polarization of the vacuum and
production of pairs of particles corresponding to the quantum field. Apart from
these two effects, there is another feature that one encounters in a gravitational
background: the definition of the vacuum does not prove to be generally covariant.
In other words, the concept of a particle turns out to be, in general, dependent on the
choice of coordinates. (For a detailed discussion on these different aspects of quantum
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field theory in strong electromagnetic and gravitational fields, see the following
texts [1, 2] and reviews [3].) A classic example of vacuum polarization is the Casimir
effect [4]. The Schwinger effect [5, 6], viz. pair creation by strong electric fields,
and Hawking radiation from collapsing black holes are the most famous examples
of particle production [7]. The coordinate dependence of the particle concept that
arises in a gravitational background is well illustrated by the flat spacetime example
wherein the vacuum defined in the frame of a uniformly accelerating observer (often
referred to as the Rindler vacuum) turns out to be inequivalent to the conventional
Minkowski vacuum[8]. Similar issues are encounteredwhen the behavior of quantum
fields are studied in curved spacetimes. Needless to say, concepts such as vacuum
and particle need to be unambiguously defined in order to determine the extent of
vacuum polarization or particle production occurring in a curved spacetime.

It is in such a situation that the concept of a detector was initially introduced in
the literature [9, 10]. The motivation behind the idea of detectors was to provide
an operational definition for the concept of a particle in a curved spacetime. After
all, ‘particles are what the particle detectors detect’ [11]. With this goal in mind, the
response of different types of detectors have been studied in a variety of situations
over the last three to four decades (in fact, there is an enormous amount of literature
on the topic; for an incomplete list of early efforts in this direction, see Refs. [12–
24] and, for more recent work, see, for example, Refs. [25–28]). But, what do these
detectors actually detect? In particular, do their responses reflect the particle content
of the field as itwas originally desired? In this article, apart fromattempting to address
such questions with the help of a few specific examples, I shall also discuss a couple
of interesting phenomena associated with detectors, including possible Planck scale
effects. I should mention here that this article is essentially a review based on my
earlier efforts in these directions (see Refs. [18, 21–23, 27]).

An outline of the contents of this article is as follows. In the following section,
I shall discuss the response of non-inertial Unruh–DeWitt detectors (which are lin-
early coupled to the quantum field) in flat spacetime. Specifically, I shall focus
on the response of uniformly accelerating and rotating detectors. I shall also com-
pare the response of detectors in different situations with the results from more for-
mal methods—such as the Bogolubov transformations and the effective Lagrangian
approach—that probe the vacuum structure of the quantum field. Such an exercise
helps us understand the conditions under which the detectors respond. In Sect. 3,
I shall consider the response of detectors that are coupled non-linearly to a quan-
tum scalar field. Interestingly, I shall show that, in odd spacetime dimensions, the
response of the detectors exhibit an ‘inversion of statistics’ when they are coupled
to an odd power of the quantum field. In Sect. 4, I shall consider possible Planck
scale effects on the response of a rotating detector in flat spacetime. Assuming that
the Planck scale effects modify the dispersion relation governing a quantum field, I
shall study the response of a rotating Unruh–DeWitt detector that is coupled to such
a quantum scalar field. I shall illustrate that, while super-luminal dispersion relations
hardly affect the response of the detector, sub-luminal dispersion relations alter their
response considerably. In Sect. 5, I shall consider Unruh–DeWitt detectors that are
switched on for a finite period of time and show that divergences can arise in the
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response of the detector if it is turned on abruptly. Lastly, I conclude in Sect. 6 with
a brief summary.

A fewwords onmy conventions and notations are in order before I proceed. I shall
adopt natural units such that � = c = 1 and, for convenience, denote the trajectory
of the detector xμ(τ ) as x̃(τ ), where τ is the proper time in the frame of the detector.
In Sect. 3, I shall consider the response of non-linearly coupled detectors in arbitrary
spacetime dimensions. In all the other sections, I shall restrict myself to working in
(3 + 1)-spacetime dimensions.

2 Response of the Unruh–DeWitt Detector
in Flat Spacetime

A detector is an idealized point like object whose motion is described by a classical
worldline, but which nevertheless possesses internal energy levels. Such detectors
are basically described by the interaction Lagrangian for the coupling between the
degrees of freedomof the detector and the quantumfield. The simplest of the different
possible detectors is the detector due toUnruh andDeWitt [9, 10]. Consider aUnruh–
DeWitt detector that is moving along a trajectory x̃(τ ), where τ is the proper time
in the frame of the detector. The interaction of the Unruh–DeWitt detector with a
canonical, real scalar field φ is described by the interaction Lagrangian

Lint[φ(x̃)] = c̄ m(τ )φ
[
x̃(τ )

]
, (1)

where c̄ is a small coupling constant and m is the detector’s monopole moment. Let
us assume that the quantum field φ̂ is initially in the vacuum state |0〉 and the detector
is in its ground state |E0〉 corresponding to an energy eigen value E0. Then, up to the
first order in perturbation theory, the amplitude of transition of the Unruh–DeWitt
detector to an excited state |E1〉, corresponding to an energy eigen value E1 (> E0),
is described by the integral [2]

A(E) = M

∞∫

−∞
dτ ei E τ 〈ψ|φ̂[x̃(τ )]|0〉, (2)

where M = i c̄ 〈E1|m(0)|E0〉, E = E1 − E0 > 0 and |ψ〉 is the state of the quantum
scalar field after its interaction with the detector. Note that the quantity M depends
only on the internal structure of the detector, and not on its motion. Therefore, as
is often done, I shall drop the quantity hereafter. The transition probability of the
detector to all possible final states |ψ〉 of the quantum field is given by
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P(E) =
∑

|ψ〉
|A(E)|2 =

∞∫

−∞
dτ

∞∫

−∞
dτ ′ e−i E (τ−τ ′) G+ [x̃(τ ), x̃(τ ′)

]
, (3)

where G+ [x̃(τ ), x̃(τ ′)
]
is the Wightman function defined as

G+ [x̃(τ ), x̃(τ ′)
] = 〈0|φ̂ [x̃(τ )

]
φ̂
[
x̃(τ ′)

] |0〉. (4)

When the Wightman function is invariant under time translations in the frame of
the detector—as it can occur, for example, in cases wherein the detector is moving
along the integral curves of time-like Killing vector fields [12, 22]—I have

G+ [x̃(τ ), x̃(τ ′)
] = G+(τ − τ ′). (5)

In such situations, the transition probability of the detector simplifies to

P(E) = lim
T→∞

T∫

−T

dv

2

∞∫

−∞
du e−i E u G+(u), (6)

where
u = τ − τ ′ and v = τ + τ ′. (7)

The above expression then allows one to define the transition probability rate of the
detector to be [2]

R(E) = lim
T→∞

P(E)

T
=

∞∫

−∞
du e−i E u G+(u). (8)

For the case of the canonical, massless scalar field, in (3 + 1)-spacetime dimensions,
the Wightman function G+ (x̃, x̃′) in the Minkowski vacuum is given by [2]

G+ (x̃, x̃′) = − 1

4π2

[
1

(t − t′ − i ε)2 − (x − x′)2

]
, (9)

where ε → 0+ and (t, x) denote theMinkowski coordinates. Given a trajectory x̃(τ ),
the response of the detector is obtained by substituting the trajectory in this Wight-
man function and evaluating the transition probability rate (8). For example, it is
straightforward to show that the response of a detector that is moving on an inertial
trajectory in the Minkowski vacuum vanishes identically. I had mentioned above
that the quantization of a field proves to be inequivalent in the inertial and the uni-
formly accelerating frames in flat spacetime. Due to this reason, it seems worthwhile
to examine the behavior of non-inertial detectors. In the next sub-section, I shall
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consider the response of uniformly accelerating as well as rotating detectors in flat
spacetime.

2.1 Response of Accelerating and Rotating Detectors

As is commonly known, there are ten independent time-like Killing vector fields in
flat spacetime. These Killing vector fields correspond to three types of symmetries,
viz. translations, rotations and boosts. Different types of non-inertial trajectories can
be generated by considering the integral curves of various linear combinations of
these Killing vector fields [12, 22]. Amongst the trajectories that are possible, there
exist two trajectories which have attracted considerable attention in the literature.
They correspond to uniformly accelerating and rotating trajectories. In what follows,
I shall consider the response of the Unruh–DeWitt detector moving along these
trajectories.

2.1.1 Uniformly Accelerated Motion

The trajectory of a uniformly accelerated observermoving along the x-axis is given by

x̃(τ ) = g−1 [sinh (g τ ), cosh (g τ ), 0, 0] , (10)

where g denotes the proper acceleration. The coordinates associatedwith the frame of
such an observer are known as the Rindler coordinates [29]. TheWightman function
in the frame of the uniformly accelerating observer is obtained by substituting the
above trajectory in Eq. (9). It is given by

G+(u) = −1

16π2

g2

sinh2 [(g u/2) − i ε]
= −1

4π2

∞∑

n=−∞

1

(u − i ε + 2 π i n/g)2
, (11)

where, recall that, u = τ − τ ′. The resulting transition probability rate can be easily
evaluated to be [9, 10]

R(E) = 1

2 π

E

e2 π E/g − 1
, (12)

which is a thermal spectrum corresponding to the temperature T = g/(2π). This
thermal response is the famous Unruh effect (for a detailed discussion, see, for
instance, Ref. [30]).
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2.1.2 Rotational Motion

Let us now turn to the case of the rotating detector. The trajectory of the rotating
detector can be expressed in terms of the proper time τ as follows [12, 27]:

x̃(τ ) = [γ τ , σ cos (γ Ω τ ), σ sin (γ Ω τ ), 0] , (13)

where the constants σ and Ω denote the radius of the circular path along which the
detector is moving and the angular velocity of the detector, respectively. The quantity
γ = [

1 − (σ Ω)2
]−1/2

is the Lorentz factor that relates the Minkowski time to the
proper time in the frame of the detector. The Wightman function along the rotating
trajectory can be obtained to be

G+(u) = − 1

4π2

(
1

γ2 (u − i ε)2 − 4σ2 sin2 (γ Ω u/2)

)
. (14)

However, unfortunately, it does not seem to be possible to evaluate the corresponding
transition probability rate R(E) analytically. I have arrived at the response of the
rotating detector by substituting the Wightman function (14) in the expression (8),
and numerically computing the integral involved. If I define the dimensionless energy
to be Ē = E/(γ Ω), I find that the dimensionless transition probability rate R̄(Ē) =
σ R(Ē) of the detector depends only on the dimensionless quantity σ Ω that describes
the linear velocity of the detector. In Fig. 1, I have plotted the transition probability
rate of the detector for three different values of the quantity σ Ω [12]. I should
mention here that, in order to check the accuracy of the numerical procedure that
I have used to evaluate the integral (8) for the rotating trajectory, I have compared
the results from the numerical code with the analytical one [viz. Eq. (12)] that is
available for the case of the uniformly accelerated detector. This comparison clearly
indicates that the numerical procedure I have adopted to evaluate the integral (8) is
quite accurate [27].

In the discussion above, I had arrived at the response of the rotating detector
by evaluating the Fourier transform of the Wightman function with respect to the
differential proper time u in the frame of the detector. In this case, evidently, I had
first summed over the normal modes (to arrive at the Wightman function) before
evaluating the integral over the differential proper time. I shall now rederive the result
by changing the order of these procedures. I shall express the Wightman function
as a sum over the normal modes and first evaluate the integral over the differential
proper time before computing the sum. This method proves to be helpful later when
I shall consider the Planck scale effects on the rotating detector. As I shall illustrate,
the method can be easily extended to cases wherein the scalar field is described by
a modified dispersion relation.

I shall start byworking in the cylindrical polar coordinates, say, (t, ρ, θ, z), instead
of the cartesian coordinates, since they prove to be more convenient. In terms of the
cylindrical coordinates, the trajectory (13) of the rotating detector can be written in
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Fig. 1 The transition probability rate of the rotating Unruh–DeWitt detector that is coupled to
the conventional, massless scalar field. The dots and the curves that simply link them represent
numerical results arrived at from the computation of the integral (8) along the rotating trajectory.
The curves correspond to the following three values of the quantity σ Ω = 0.325 (in blue), 0.350
(in red) and 0.375 (in green). The dots of an alternate color that appear on the curves denote the
numerical results that have been obtained by another method which I shall describe below [they
actually correspond to the sum (24)]. Clearly, the results from the two methods match very well

terms of the proper time τ as follows:

x̃(τ ) = (γ τ , σ, γ Ω τ , 0) . (15)

Usingwell established properties of theBessel functions, it is straightforward to show
that, along the trajectory of the rotating detector, the standard Minkowski Wightman
function (9) can be written as

G+(u) =
∞∑

m=−∞

∞∫

0

dq q

(2 π)2

∞∫

−∞

dkz
(2ω)

J2m(q σ) e−i γ (ω−mΩ) u, (16)

where Jm(q σ) denote the Bessel functions of order m, with ω being given by

ω = (
q2 + k2z

)1/2
. (17)

One can then immediately express the corresponding transition probability rate of
the rotating detector as [cf. Eq. (8)]

R(E) =
∞∑

m=−∞

∞∫

0

dq q

2 π

∞∫

−∞

dkz
2ω

J2m(q σ) δ(1) [E + γ (ω − mΩ)] . (18)
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Recall that,E > 0,ω ≥ 0 (as is appropriate for positive frequencymodes), and I have
assumed that Ω is a positive definite quantity as well. Hence, the delta function in
the above expression will be non-zero only whenm ≥ Ē, where Ē = E/ (γ Ω) is the
dimensionless energy. Due to this reason, the response of the detector simplifies to

R(Ē) =
∞∑

m≥Ē

∞∫

0

dq q

2 π

∞∫

−∞

dkz
2ω

J2m(q σ)

[
δ(1)(kz − κz)

γ |(dω/dkz)|κz

]

, (19)

where κz are the two roots of kz from the following equation:

ω = (
m − Ē

)
Ω. (20)

The roots are given by
κz = ± (λ2 − q2

)1/2
, (21)

where, for convenience, I have set

λ = λ̄ Ω = (
m − Ē

)
Ω. (22)

Since both the positive and negative roots of κz contribute equally, the dimensionless
transition probability rate of the rotating detector can be obtained to be

R̄(Ē) = σ R(Ē) = σ

2 π γ

∞∑

m≥Ē

λ∫

0

dq q

[
J2m(q σ)

(
λ2 − q2

)1/2

]

, (23)

where I have set the upper limit on q to be λ as κz is a real quantity [cf. Eq. (21)]. I find
that the integral over q can be expressed in terms of the hypergeometric functions
(see, for instance, Ref. [31]). Therefore, the transition probability rate of the rotating
detector can be written as

R̄(Ē) = 1

2 π γ

∞∑

m≥Ē

(
σ Ω λ̄

)(2m+1)

Γ (2m + 2)

× 1F2

[
m + (1/2); m + (3/2), 2m + 1; − (σ Ω λ̄

)2]
, (24)

where 1F2 (a; b, c; x) denotes the hypergeometric function, while Γ (x) is the usual
Gamma function. Though it does not seem to be possible to arrive at a closed form
expression for this sum, the sum converges very quickly, and hence proves to be easy
to evaluate numerically. In Fig. 1, I have plotted the numerical results for the above
sum for the same values of the linear velocity σ Ω for which I had plotted the results
obtained from Fourier transforming the Wightman function (14) along the rotating
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trajectory. The figure clearly indicates that the results from the two different methods
match each other rather well.

2.2 Are Detectors Sensitive to the Particle Content
of the Field?

In order to clearly understand as towhat detectors detect, I shall compare the response
of detectorswith the results frommore conventional probes of the vacuumstructure of
the quantum fields, such as the approaches based on the Bogolubov transformations
and the effective Lagrangian [22]. However, before carrying out such a comparison,
let me say a few words briefly explaining these two other approaches.

Consider a quantum field that can be decomposed in terms of two complete sets
of normal modes. These two sets of modes can be related to each other through
the Bogolubov transformations, which are essentially characterized by two coeffi-
cients often referred to as α and β [32]. Moreover, the particle content of the field
is determined by the Bogolubov coefficient β. In a gravitational background, the
Bogolubov transformations can either relate the modes of a quantum field at two dif-
ferent times in the same coordinate system or the modes in two different coordinate
systems covering the same region of spacetime. When the Bogolubov coefficient β
is non-zero, in the latter context, such a result is normally interpreted as implying
that the quantization in the two coordinate systems are inequivalent [8]. Whereas, in
the former context, a non-zero β is attributed to the production of particles by the
background gravitational field [3]. Similarly, in an electromagnetic background, a
non-zero β relating the modes of a quantum field at different times (in a particular
gauge) implies that the background leads to pair creation [1].

In the effective Lagrangian approach, one essentially integrates out the degrees
of freedom associated with the quantum field, thereby arriving at an effective
action describing the classical background [5, 6]. An imaginary part to the effec-
tive Lagrangian unambiguously suggests the decay of the quantum vacuum, i.e. the
production of particles corresponding to the quantum field. The real part of the effec-
tive Lagrangian can be related to the extent of polarization of the vacuum caused
by the classical background. While the effective Lagrangian approach is powerful,
since it involves computing a path integral, it often proves to be technically difficult
to evaluate.

In Table1, to illustrate the conclusions I wish to draw about the response of
detectors, I have tabulated the results one obtains in a handful of different situations.
I have listed whether the Bogolubov coefficient β, the response of the detector [or,
more precisely, the transition probabilityP(E)] and the real and the imaginary parts of
the effective LagrangianLeff are zero or non-vanishing in these contexts. Apart from
the results in the non-inertial frames in flat spacetime, I have compared the results
between the Casimir plates, and different types of electromagnetic backgrounds.
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Table 1 A comparison of the response of a detector with the results from more formal probes of
the vacuum structure of the quantum field—viz. the Bogolubov transformations and the effective
Lagrangian approaches—in a variety of situations. Note that, in the case of the time-independent
electric field background, actually, the Bogolubov coefficient β is trivially zero. I refer here to
particle production that can occur in such a background due to the phenomenon called Klein
paradox [33]. I should also add that, in electromagnetic backgrounds, the coupling of the detector
to the quantumfield (say, a complex scalar field) has to be intrinsically non-linear in order to preserve
gauge-invariance [21]

Detector response
P(E)

Bogolubov
coefficient β

Effective lagrangian

Re. Leff Im. Leff

In inertial
coordinates

0 0 0 0

In Rindler
coordinates

�= 0 �= 0 0 0

In rotating
coordinates

�= 0 0 0 0

Between Casimir
plates

0 0 �= 0 0

In a
time-dependent
electric field

�= 0 �= 0 �= 0 �= 0

In a
time-independent
electric field

�= 0 �= 0 �= 0 �= 0

In a
time-independent
magnetic field

0 0 �= 0 0

Let me first consider the case of the non-inertial coordinates in flat spacetime. The
Bogolubov coefficient β relating the Rindler modes and the Minkowski modes turns
out to be non-zero and, in fact, the expectation value of the Rindler number operator
in the Minkowski vacuum yields a thermal spectrum as well [8]. In contrast, in the
rotating coordinates, while the Bogolubov coefficient β turns out to be zero [12], as
we have seen, the detector responds non-trivially. Also, in both these cases, one can
show that the effective Lagrangian vanishes identically—in fact, this is true even in
the case of the Rindler coordinates, wherein the Bogolubov coefficient β proves to
be non-zero [22]. Evidently, the response of a detector can be non-zero even when
the Bogolubov coefficient β and the effective Lagrangian vanish identically. Clearly,
the response of a detector does not necessarily reflect the particle content of the
quantum field.

Letme now turn to the response of the detector betweenCasimir plates and in elec-
tromagnetic backgrounds. It iswell known thatCasimir plates and a time-independent
magnetic field lead to vacuum polarization, but not to particle production. One finds
that an inertial detector does not respond in these two backgrounds. In contrast, it is
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found that even an inertial detector responds in an electric field background, whether
time-dependent or otherwise. It is easy to argue that, in a time-dependent electric
field, the evolving modes will excite the inertial detector [21, 22]. Whereas, in a
time-independent electric field of sufficient strength, modes of positive norm that
have negative frequencies (which lead to the so-called Klein paradox and associated
pair production [22, 33], as is also reflected by the imaginary part of the effective
Lagrangian [6]) are found to be responsible for a non-vanishing response of an iner-
tial detector.1 These clearly suggest that, irrespective of the nature of its trajectory,
a detector will respond whenever particle production takes place. In that sense a
detector is sensitive to particle production. Further, if one restricts the motion of the
detector to inertial trajectories, then the effects due to non-inertial motion can be
avoided and, in such cases, the detector response will be non-zero onlywhen particle
production takes place.However, unlike in flat spacetime or classical electromagnetic
backgrounds, there exists no special frame of reference in a classical gravitational
background and all coordinate systems have to be treated equivalently. This aspect
of the detector proves to be a major constraint in being able to utilize it to investigate
the phenomenon of particle production in a curved spacetime [11, 35].

3 ‘Inversion of Statistics’ in Odd Dimensions

We had seen that the response of a uniformly accelerating monopole detector that is
coupled to a quantized massless scalar field is characterized by a Planckian distribu-
tionwhen the field is assumed to be in theMinkowski vacuum [cf. Eq. (12)]. However,
it has been noticed that this result is true only in even-dimensional flat spacetimes
and it has been shown that a Fermi–Dirac factor (rather than a Bose–Einstein fac-
tor) appears in the response of the accelerated detector when the dimensionality of
spacetime is odd [14]. Recall that the Unruh–DeWitt detector is coupled linearly to
the quantum scalar field. Over the years, motivated by different reasons, there have
also been efforts in the literature to investigate the response of detectors that are cou-
pled non-linearly to the quantum field [16, 20, 21]. It will be interesting to examine
whether the non-linearity of the coupling affects the result in odd-dimensional flat
spacetimes that I mentioned above.

3.1 Response of Non-linearly Coupled Detectors

Consider a detector that is interacting with a real scalar field φ through the non-linear
interaction Lagrangian [20]

1In fact, it is such modes—viz. those which have a positive norm but negative frequencies—that
excite the rotating detector [22, 34].
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Lint[φ(x̃)] = c̄ m(τ ) φn
[
x̃(τ )

]
, (25)

where c̄, m(τ ) and x̃(τ ) are the same quantities that we had encountered earlier in
the context of the Unruh–DeWitt detector. The quantity n is a positive integer that
denotes the index of non-linearity of the coupling. Let me assume that the quantum
field φ̂ is initially in the vacuum state |0〉. The transition amplitude of the non-linearly
coupled detector from the ground to an excited state can be written as

An(E) = M

∞∫

−∞
dτ ei E τ 〈ψ| φ̂n[x̃(τ )] |0〉 , (26)

where |ψ〉 is the final state of the field, andM and E are defined in the same fashion
as in the case of the Unruh–Dewitt detector.

It is important to notice that the transition amplitude An(E) above involves prod-
ucts of the quantum field φ̂ at the same spacetime point. Because of this reason, one
will encounter divergences when evaluating this transition amplitude. In order to
avoid these divergences, I shall normal order the operators in the matrix element in
the transition amplitude An(E) with respect to the Minkowski vacuum [20]. In other
words, rather than the expression (26), I shall assume that the transition amplitude
is instead given by

Ān(E) =
∞∫

−∞
dτ ei E τ 〈ψ| : φ̂n[x̃(τ )] : |0〉 , (27)

where the colons denote normal ordering with respect to the Minkowski vacuum.
Then, the transition probability of the detector to all possible final states |ψ〉 of the
quantum field can be written as

Pn(E) =
∑

|ψ〉
|Ān(E)|2 =

∞∫

−∞
dτ

∞∫

−∞
dτ ′ e−i E (τ−τ ′) Gn

[
x̃(τ ), x̃(τ ′)

]
, (28)

where Gn
[
x̃(τ ), x̃(τ ′)

]
is the (2 n)-point function defined as

Gn
[
x̃(τ ), x̃(τ ′)

] = 〈0| : φ̂n
[
x̃(τ )

] : : φ̂n
[
x̃(τ ′)

] : |0〉 . (29)

In situations where the (2 n)-point function Gn
[
x̃(τ ), x̃(τ ′)

]
is invariant under time

translations in the frame of the detector, I can define a transition probability rate for
the detector as follows:
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Rn(E) =
∞∫

−∞
du e−i E u Gn(u), (30)

where, as earlier, u = τ − τ ′.

3.2 Odd Statistics in Odd Dimensions for Odd Couplings

Let me now assume that the quantum scalar field φ̂ is in the Minkowski vacuum. In
this case, the (2 n)-point function Gn

(
x̃, x̃′) reduces to

Gn
(
x̃, x̃′) = n! [G+ (x̃, x̃′)]n , (31)

where G+ (x̃, x̃′) denotes the Wightman function in the Minkowski vacuum.2 The
Wightman function (9) that I had quoted earlier had corresponded to the result in
(3 + 1)-spacetime dimensions. In (D + 1) spacetime dimensions [and for (D + 1) ≥
3], the Wightman function for a massless scalar field in the Minkowski vacuum is
given by [14]

G+(x̃, x̃′) = CD
{
(−1)

[
(t − t′ − i ε)2 − |x − x′|2]

}(D−1)/2
, (32)

where it should be evident that x ≡ (
x1, x2, . . . , xD

)
, while the quantity CD is given

by
CD = Γ [(D − 1)/2] /

[
4π(D+1)/2

]
(33)

with Γ [(D − 1)/2] denoting the Gamma function.
Now, the trajectory of a detector accelerating uniformly along the x1 direction

with a proper acceleration g is given by

x̃(τ ) = g−1 [sinh (g τ ), cosh (g τ ), 0, 0, . . . , 0] , (34)

where τ is the proper time in the frame of the detector. On substituting this trajectory
in the Minkowski Wightman function (32), I obtain that [14]

2I should stress here that I would have arrived at the expression (31) for the (2 n)-point function in
theMinkowski vacuum even if I had started with the transition amplitude (26) [instead of the normal
ordered amplitude (27)], expressed the resulting (2 n)-point function in the transition probability
in terms of the two-point functions using Wick’s theorem and then replaced the divergent terms
that arise (i.e. those two-point functions with coincident points) with the corresponding regularized
expressions [20, 23].
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G+(u) = CD (g/2 i)(D−1)

{
sinh [(g u/2) − i ε]

}(D−1)
. (35)

Therefore, along the trajectory of the uniformly accelerating detector, the (2 n)-point
function in the Minkowski vacuum (31) is given by

Gn(u) = n!Cn
D (g/2 i)p

{
sinh [(g u/2) − i ε]

}p , (36)

where p = (D − 1) n.
Upon substituting the (2 n)-point function (36) in the expression (30) and carrying

out the resulting integral [36], I find that the transitionprobability rate of the uniformly
accelerated, non-linearly coupled detector can be written as [23]

Rn(E) = B(n,D)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(gp/E)
1

exp (2 π E/g) − 1
︸ ︷︷ ︸

(p−2)/2∏

l=0

[
l2 + (E/g)2

]

Bose-Einstein factor when p is even,

gp−1 1

exp (2 π E/g) + 1
︸ ︷︷ ︸

(p−3)/2∏

l=0

{
[(2 l + 1)/2]2 + (E/g)2

}

Fermi-Dirac factor when p is odd,
(37)

where the quantity B(n,D) is given by

B(n,D) = 2 π n! Cn
D/Γ (p). (38)

When (D + 1) is even, p is even for all n and, hence, a Bose–Einstein factor will
always arise in the response of the uniformly accelerated detector in an even-
dimensional flat spacetime. Whereas, when (D + 1) is odd, evidently, p will be odd
or even depending on whether n is odd or even. Therefore, in an odd-dimensional
flat spacetime, a Fermi–Dirac factor will arise in the detector response when n is odd
(as in the case of the Unruh–DeWitt detector), but a Bose–Einstein factor will appear
when n is even!

Let me make three clarifying comments regarding the curious result I have
obtained above. Tobeginwith, the temperature associatedwith theBose–Einstein and
the Fermi–Dirac factors that appear in the response of the non-linearly coupled detec-
tor is the standard Unruh temperature, viz. g/(2π). Moreover, the response of the
detector is characterized completely by either a Bose–Einstein or a Fermi–Dirac dis-
tribution only in situations wherein p < 3. When p ≥ 3, apart from a Bose–Einstein
or a Fermi–Dirac factor, the detector response contains a termwhich is polynomial in
E/g. Lastly, plots of the transition probability rate of the detector suggest that, though
the characteristic response of the detector alternates between the Bose–Einstein and
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the Fermi–Dirac factors as we go from one D to another for odd n [or from one n
to another when (D + 1) is odd], the complete spectra themselves exhibit a smooth
dependence on the index of non-linearity of the coupling as well as the dimension
of spacetime (in this context, see the figures in Ref. [23]).

3.3 Nature of the Odd Statistics

Despite its interesting character, the ‘inversion of statistics’ encountered in the
response of the detector in odd dimensions for odd couplings seems to be only
apparent. It is well known that, in the frame of the uniformly accelerating detector,
the Wightman function in the Minkowski vacuum (35) is skew-periodic in imagi-
nary proper time with a period corresponding to the inverse of the Unruh tempera-
ture [37], i.e.

G+(u) = G+ [−u + (2 π i/g)] . (39)

This property is known as the Kubo-Martin-Schwinger (KMS) condition, as is
applicable to scalar fields. Note that the above property is, in fact, satisfied by the
Minkowski Wightman function in all dimensions [14]. Since the (2 n)-point func-
tion in the Minkowski vacuum is proportional to the nth power of the Wightman
function, obviously, in the frame of the accelerated detector, the (2 n)-point function
will also be skew-periodic in imaginary proper time for all n and D [cf. Eq. (36)]. In
other words, the (2 n)-point function satisfies the KMS condition (as is required for
a scalar field) for all D and n. This implies that the appearance of the Fermi–Dirac
factor (instead of the expected Bose–Einstein factor) for odd (D + 1) and n simply
reflects a peculiar aspect of the detector rather than indicate a fundamental shift in
the field theory in such situations [14, 23, 24].

4 Detecting Planck Scale Effects

Consider a typical mode that constitutes Hawking radiation at future null infinity
around a collapsing black hole. As one traces such a mode back to the past null
infinity where the initial conditions are imposed on the quantum field, it is found
that the energy of the mode turns out to be way beyond the Planck scale [38]. (This
feature seems to have been originally noticed in Ref. [39]; in this context, also
see Ref. [40].) In fact, due to the rapid, virtually exponential expansion, a similar
phenomenon is encountered in the context of the inflationary scenario. One finds that
scales of cosmological interest can be comparable to the Planck scale at very early
timeswhen the initial conditions are imposed during inflation [41].While the possible
Planck scale corrections toHawking radiation and the perturbations generated during
inflation have cornered most of the attention [38, 41], the Planck scale effects on a
variety of non-perturbative, quantum field theoretic effects in flat as well as curved
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spacetimes have been investigated as well (see, for example, Refs. [42–44]). In the
absence of a viable quantum theory of gravity, it becomes imperative to extend such
phenomenological analyses to asmany physical situations as possible (in this context,
see Ref. [45], and references therein).

TheUnruh effect has certain similaritieswithHawking radiation fromblack holes.
Due to this reason, the Unruh effect and its variants provide another interesting
domain to study the quantum gravitational effects [28]. But, due to the lack of a
workable quantum theory of gravity, to investigate the Planck scale effects, one
is forced to consider phenomenological models constructed by hand. These mod-
els attempt to capture one or more features expected of the actual effective theory
obtained by integrating out the gravitational degrees of freedom. The approach based
on modified dispersion relations has been extensively considered both in the context
of black holes and inflationary cosmology. In this approach, a fundamental scale is
effectively introduced into the theory by breaking local Lorentz invariance (see, for
instance, Refs. [43, 46]). It should be clarified that there does not exist any experi-
mental or observational reason to believe that Lorentz invariance could be violated at
high energies. Nevertheless, theoretically, thesemodels prove to be attractive because
of the fact that they permit quantum field theories to be constructed and calculations
to be carried out in a consistent fashion.

In this section, I shall adopt the approach due to the modified dispersion relations
to analyze the Planck scale corrections to the response of the rotating Unruh–DeWitt
detector in flat spacetime. As I shall show, the rotating trajectory turns out to be
a special case wherein the transition probability rate of the rotating detector can
be defined in precisely the same fashion as I had done earlier in the case of the
canonical scalar field governed by the linear dispersion relation. I shall illustrate that
the response of the rotating detector can be computed exactly, although, numerically,
even when the field it is coupled to is described by a non-linear dispersion relation.

4.1 Scalar Field Governed by a Modified Dispersion Relation

I shall be interested in calculating the response of the rotating detector when it is
coupled to a massless scalar field that is governed by a modified dispersion relation
of the following form:

ω = k
[
1 + a

(
k/kP

)2]1/2
. (40)

The quantity ω is the frequency corresponding to the mode k, k = |k| and kP denotes
the fundamental scale (that I shall assume to be of the order of the Planck scale)
at which the deviations from the linear dispersion relation become important. Note
that a is a dimensionless constant whose magnitude is of order unity, and the above
dispersion relation is super-luminal or sub-luminal depending upon whether a is
positive or negative. Clearly, if I can evaluate theWightman function associated with
the quantized scalar field described by the non-linear dispersion relation (40), I may
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then be able to evaluate the corresponding transition probability rate of the rotating
detector as I had carried out originally. However, unlike the standard case, it turns out
to be difficult to even arrive at an analytical expression for the Wightman function
of such a scalar field. Therefore, I shall make use of the second method that I had
adopted earlier to evaluate the response of the rotating detector—I shall first integrate
over the differential proper time and then numerically sum over the normal modes
to arrive at the transition probability rate.

The equation of motion of the scalar field φ that is described by the dispersion
relation (40) is given by

�φ + a

k2
P

∇2
(∇2 φ

) = 0, (41)

where � is the d’Alembertian corresponding to the four dimensional Minkowski
spacetime, while ∇2 is the three dimensional, spatial Laplacian. Evidently, the first
term in the above equation is the standard one. The non-linear term in the dispersion
relation is responsible for the second term. Such terms can be generated by adding
suitable terms to the original action describing the scalar field [43, 46]. While these
additional terms preserve rotational invariance, they break Lorentz invariance. In
fact, this property is common to all the theories that are described by a non-linear
dispersion relation. It is obvious that the normal modes of such a scalar field in flat
spacetime remain plane waves as in the standard case, but with the frequency and the
wavenumber related by the modified dispersion relation. Moreover, the quantization
of the scalar field can be carried out in the same fashion. It is straightforward to
show that, in the Minkowski vacuum, the Wightman function for any such field in
(3 + 1)-spacetime dimensions can be expressed as (see, for example, Ref. [43])

G+
M
(x̃, x̃′) =

∫
d3k

(2 π)3 2ω
e−iω (t−t′) ei k· (x−x′) (42)

with ω being related to k = |k| by the given non-linear dispersion relation.

4.2 Response of the Rotating Detector

For a scalar field governed by amodified dispersion relation, using the expression (42)
for the correspondingWightman function, one can immediately show that, along the
rotating trajectory, the function can be expressed exactly as in Eq. (16), with the
frequency ω being related to the wavenumbers q and kz by the non-linear dispersion
relation. Clearly, in such a case, the transition probability rate of the detector will
again be given by Eq. (19) with ω suitably defined. It is important to recognize that
the result is actually applicable for any non-linear dispersion relation [27].

Let me now evaluate the response of the rotating detector for the dispersion rela-
tion (40). In such a case, ω is related to the wavenumbers q and kz as follows:
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ω = (
q2 + k2z

)1/2
[

1 + a

k2
P

(
q2 + k2z

)
]1/2

. (43)

Also, one can show that the roots κz [from Eq. (20)] are given by

κ2
z = ± k2

P

2 a

(

1 + 4 aλ2

k2
P

)1/2

− k2
P

2 a
− q2, (44)

with λ defined as in Eq. (22). It ought to be noted that κ2
z has to be positive definite,

since κz is a real quantity.
Let me first consider the super-luminal case when a is positive. When, say, a = 1,

the two roots that contribute to the delta function in Eq. (19) can be written as

κz = ± (λ2
+ − q2

)1/2
, (45)

where λ2+ is given by the expression

λ2
+ = k2

P

2

⎡

⎣

(

1 + 4λ2

k2
P

)1/2

− 1

⎤

⎦

= λ̄2+
σ2

= k̄2
P

2 σ2

⎡

⎣

(

1 + 4 (σ Ω λ̄)2

k̄2
P

)1/2

− 1

⎤

⎦ . (46)

Note that k̄P = σ kP denotes the dimensionless fundamental scale and the sub-script
in λ+ refers to the fact that I am considering a super-luminal dispersion relation.
Further, as κz is real, I require that q ≤ λ+. As in the standard case, the positive and
negative roots of κz above contribute equally. Therefore, the response of the rotating
detector is given by

R̄(Ē) = σ R(Ē) = σ

2 π γ

∞∑

m≥Ē

(

1 + 2λ2+
k2
P

)−1 λ+∫

0

dq q

[
J2m(q σ)

(
λ2+ − q2

)1/2

]

, (47)

and the integral over q can be carried out as in the standard case to arrive at the result

R̄(Ē) = 1

2 π γ

∞∑

m≥Ē

λ̄(2m+1)
+

Γ (2m + 2)

(

1 + 2 λ̄2+
k̄2
P

)−1

× 1F2
[
m + (1/2); m + (3/2), 2m + 1;−λ̄2

+
]
. (48)
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It should be emphasized here that this result for the transition probability rate is exact
and no approximations have been made in arriving at the expression.

Since the Planck scale is expected to be orders of magnitude beyond the scales
probed by experiments, the quantity k̄P is expected to be large. It is clear that, as
k̄P → ∞, λ̄+ → σ Ω λ̄ and, hence, the transition transition probability rate (48)
reduces to the expression that I had arrived at earlier for the standard dispersion
relation [viz. Eq. (24)], as required. Let me now evaluate the Planck scale corrections
to the standard result by expanding the transition probability rate (48) in terms of
λ/kP and retaining terms upto O[(λ/kP

)2]. Note that, in such a case, λ+ reduces to

λ+ � λ

(

1 − λ2

2 k2
P

)

, (49)

so that I have

λ(2m+1)
+ � λ(2m+1) − (2m + 1)

λ(2m+3)

2 k2
P

(50)

and (

1 + 2λ2+
k2
P

)−1

� 1 − 2λ2

k2
P

. (51)

Moreover, in the limit of our interest, the hypergeometric function in Eq. (48) can be
written as

1F2
[
m + (1/2); m + (3/2), 2m + 1; −λ̄2

+
]

� 1F2

[
m + (1/2); m + (3/2), 2m + 1; − (σ Ω λ̄

)2]

+ (σ Ω λ̄)2

k̄2
P

[m + (1/2)] (σ Ω λ̄)2

[m + (3/2)] (2m + 1)

× 1F2

[
m + (3/2); m + (5/2), 2m + 2; − (σ Ω λ̄

)2]
. (52)

Upon using the above expansions, I obtain the response of the detector atO[(λ/kP

)2]
to be

R̄(Ē) � 1

2 π γ

∞∑

m≥Ē

(
σ Ω λ̄

)(2m+1)

Γ (2m + 2)

× 1F2

[
m + (1/2); m + (3/2), (2m + 1); − (σ Ω λ̄

)2]

− 1

2 π γ

(σ Ω λ̄)2

k̄2
P

∞∑

m≥Ē

[m + (5/2)] (σ Ω λ̄
)(2m+1)

Γ (2m + 2)
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× 1F2

[
m + (1/2); m + (3/2), 2m + 1; − (σ Ω λ̄

)2]

+ 1

2 π γ

(σ Ω λ̄)2

k̄2
P

∞∑

m≥Ē

[m + (1/2)] (σ Ω λ̄
)(2m+3)

[m + (3/2)] (2m + 1) Γ (2m + 2)

× 1F2

[
m + (3/2); m + (5/2), 2m + 2; − (σ Ω λ̄

)2]
. (53)

Evidently, the first term in this expression corresponds to the conventional transi-
tion probability rate [cf. Eq. (24)], while the other two terms represent the leading
corrections to the standard result.

Let me now turn to considering the sub-luminal dispersion relation. When a is
negative, say, a = −1, the roots κz are given by

κz = ± (λ2
− − q2

)1/2
(54)

with λ2− defined as

(λ±
−)2 = k2

P

2

⎡

⎣1 ±
(

1 − 4λ2

k2
P

)1/2
⎤

⎦

= (λ̄±
−)2

σ2
= k̄2

P

2σ2

{
1 ±

[

1 − 4 (σ Ω λ̄)2

k̄2
P

]1/2}
, (55)

where the minus sign in the sub-script represents that it corresponds to the sub-
luminal case (i.e. when a is negative), while the super-scripts denote the two different
possibilities of λ−. Just as in the super-luminal case (i.e. when a = 1), I require
q ≤ λ±

−, if κz is to remain real. Moreover, note that, unlike the super-luminal case,
there also arises an upper limit on the sum over m. I require that λ ≤ kP/2, in order
to ensure that λ±

− is real. This corresponds to m ≤ Ē + k̄P/(2σ Ω). Therefore, for
the sub-luminal dispersion relation, I find that I can write the response of the rotating
detector as follows:

R̄(Ē) = 1

2 π γ

Ē+k̄P /(2 σ Ω)∑

m≥Ē

(
λ̄−

−
)(2m+1)

Γ (2m + 2)

( ∣∣
∣
∣
∣
1 − 2 (λ̄−

−)2

k̄2
P

∣
∣
∣
∣
∣

)−1

× 1F2

[
m + (1/2); m + (3/2), 2m + 1; − (λ̄−

−
)2]

+ 1

2 π γ

Ē+kP /(2 σ Ω)∑

m≥Ē

(
λ̄+

−
)2m+1

Γ (2m + 2)

( ∣∣
∣
∣
∣
1 − 2 (λ̄+

−)2

k̄2
P

∣
∣
∣
∣
∣

)−1

× 1F2

[
m + (1/2); m + (3/2), 2m + 1; − (λ̄+

−
)2]

. (56)
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The reason for the upper limit on m as well as the origin of the second term in the
above expression for the response of the rotating detector can be easily understood.
The quantity ω is a monotonically increasing function of q and kz in the case of the
super-luminal dispersion relation. Because of this reason, there exist only two real
roots of kz corresponding to a given ω. Moreover, ω2 remains positive definite for all
the modes. In contrast, in the sub-luminal case, after a rise, ω begins to decrease for
sufficiently large values of q and kz. Actually, ω2 even turns negative at a suitably
large value [43]. It is this feature of the sub-luminal dispersion relation which leads
to the upper limit on m, and the limit ensures that we avoid complex frequencies.
(Such a cut-off can be achieved if I assume that, say, the detector is not coupled to
modes with m beyond a certain value, when the frequency turns complex.) There
arise two additional two roots of kz which contribute to the detector response in the
sub-luminal case as a result of the decreasing ω at large q and kz. The second term
in the above transition probability rate of the rotating detector corresponds to the
contributions from these two extra roots.

If one plots the result (48) for the response of the rotating detector when it is
coupled to a field that is governed by a super-luminal dispersion relation, one finds

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

Fig. 2 The transition probability rate of the rotating Unruh–DeWitt detector that is coupled to a
massless scalar field governed by the modified dispersion relation (40) with a = −1. The dots and
the curves linking them denote the numerical results for the same set of values for the quantity σ Ω

(and the same choice of colors) that I had plotted in the previous figure. I have set k̄P = 50, which is
an extremely small value for k̄P . Evidently, for such a value, the modifications to the standard result
(cf. Fig. 1) due to the sub-luminal dispersion relation is considerable. In fact, more realistic values of
k̄P would correspond to, say, k̄P/Ē > 1010. However, numerically, it turns out to be difficult to sum
the contributions in the expression (56) up to such large values of k̄P . It seems reasonable to conclude
that themodifications to standard result due to the sub-luminal dispersion relation can be expected to
bemuch smaller if one assumes k̄P to be sufficiently large. Nevertheless,my analysis unambiguously
points to the fact that, as is known to occur in other situations, a sub-luminal dispersion relation
modifies the standard result considerably more than a similar super-luminal dispersion relation
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that it does not differ from the standard result (as plotted in Fig. 1) even for an
unnaturally small value of k̄P such that, say, k̄P/Ē � 10. This implies that super-
luminal dispersion relations do not alter the conventional result to any extent. It
needs to be emphasized here that similar conclusions have been arrived at earlier in
the context of black holes as well as inflationary cosmology. In these contexts, it has
been shown that Hawking radiation and the inflationary perturbation spectra remain
unaffected due to super-luminal modifications to the conventional, linear, dispersion
relation [38, 41]. In Fig. 2, I have plotted the transition probability rate (56) of the
rotatingUnruh–DeWitt detector corresponding to the sub-luminal dispersion relation
that I have considered. I have plotted the result for a rather small value of k̄P = 50. It
is clear from the figure that the sub-luminal dispersion relation can lead to substantial
modifications to the standard result. I believe that themodifications from the standard
result will be considerably smaller (than exhibited in the figure) for much larger and
more realistic values of k̄P such that, say, k̄P/Ē > 1010.

4.3 Rotating Detector in the Presence of a Boundary

I shall now consider an interesting situation wherein I study the response of the
rotating detector in the presence of an additional boundary condition that is imposed
on the scalar field on a cylindrical surface in flat spacetime. Because of the symmetry
of the problem, in this case too, the cylindrical coordinates turn out to be more
convenient to work with.

It iswell known that the time-likeKilling vector associatedwith an observerwho is
rotating at an angular velocityΩ in flat spacetime becomes space-like for radii greater
than ρSL = 1/Ω . Due to this reason, it has been argued that one needs to impose a
boundary condition on the quantum field at a radius ρ < ρSL when evaluating the
response of a rotating detector [19]. Curiously, in the presence of such a boundary,
it was found that a rotating Unruh–DeWitt detector which is coupled to the standard
scalar field ceases to respond. It is then interesting to examine whether this result
holds true even when one assumes that the scalar field is governed by a modified
dispersion relation.

In the cylindrical coordinates, along the rotating trajectory (15), the Wightman
function corresponding to a scalar field that is assumed to vanish at, say, ρ = ρ∗ (<

ρSL), can be expressed as a sum over the normal modes of the field as follows [19]:

G+(u) =
∞∑

m=−∞

∞∑

n=1

∞∫

−∞

dkz
(2 π)2 2ω

[N Jm(ξmn σ/ρ∗)]2 e−i γ (ω−mΩ) u, (57)

where ξmn denotes the nth zero of the Bessel function Jm(ξmn σ/ρ∗), while N is a
normalization constant that is given by
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N =
√
2

ρ∗ |Jm+1(ξmn)| . (58)

As in the situation without a boundary,m is a real integer, whereas kz is a continuous
real number. But, due to the imposition of the boundary condition at ρ = ρ∗, the
spectrumof the radialmodes is nowdiscrete, and is describedby the positive integern.
It should be pointed out that the expression (57) is in fact valid for any dispersion
relation, with ω suitably related to the quantities ξmn and kz. For instance, in the case
of the modified dispersion relation (40), the quantity ω is given by

ω =
(

ξ2mn
ρ2∗

+ k2z

)1/2
[

1 + a

k2
P

(
ξ2mn
ρ2∗

+ k2z

)]1/2

, (59)

where, it is evident that, while the overall factor corresponds to the standard, linear,
dispersion relation, the term involving a within the brackets arises due to the modifi-
cations to it. Since the Wightman function depends only u, the transition probability
rate of the detector simplifies to

R(E) =
∞∑

m=−∞

∞∑

n=1

∞∫

−∞

dkz
2 π 2ω

[N Jm(ξmn σ/ρ∗)]2 δ(1) [E + γ (ω − mΩ)] .

(60)
For exactly the same reasons that I had presented in the last section, the delta function
in this expression can be non-zero onlywhenm > 0. In fact, the detector will respond
only under the condition

mΩ >
ξm1

ρ∗

(

1 + a

k2
P

ξ2m1
ρ2∗

)1/2

, (61)

where the right hand side is the lowest possible value of ω corresponding to n = 1
and kz = 0. However, from the properties of the Bessel function, it is known that
ξmn > m, for all m and n (see, for instance, Ref. [47]). Therefore, when a is positive,
Ω ρ∗ has to be greater than unity, if the rotating detector has to respond. But, this
is not possible since I have assumed that the boundary at ρ∗ is located inside the
static limit ρSL = 1/Ω . This is exactly the same conclusion that one arrives at in the
standard case [19, 30].

Actually, it is easy to argue that the above conclusion would apply for all super-
luminal dispersion relations. But, it seems that, under the same conditions, the rotat-
ing detector would be excited by a certain range of modes if I consider the scalar field
to be described by a sub-luminal (such as, when a < 0) dispersion relation! In fact,
this aspect is rather easy to understand. Consider a frequency, say, ω, associated with
a mode through the linear dispersion relation. Evidently, a super-luminal dispersion
relation raises the energy of all the modes, while the sub-luminal dispersion relation
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lowers it. Therefore, if the interaction of the detector with a standard field does not
excite a particular mode of the quantum field, clearly, the mode is unlikely to be
excited if its energy has been raised further, as in a super-luminal dispersion relation.
However, the motion of the detector mode may be able to excite a mode of the field,
if the energy of certain modes are lowered when compared to the standard case, as
the sub-luminal dispersion relation does.

5 Finite Time Detectors

The response of detectors have always been studied for their entire history, viz.
from the infinite past to the infinite future in the detector’s proper time. But, in any
realistic situation, the detectors can be kept switched on only for a finite period of
time and due to this reason the study of the response of a detector for a finite interval
in proper time becomes important. In this section, I shall illustrate that, unless the
detectors are switched on smoothly, the response of the detector can contain divergent
contributions [17, 18].

Consider a Unruh–DeWitt detector that has been switched on for a finite period
of time with the aid of a window function, say, W (τ ,T), where, as before, τ is the
proper time in the frame of the detector, while T is the effective time for which the
detector is turned on. The window function W (τ ,T) can be expected to have the
following properties:

W (τ ,T) �
{
1 for |τ | � T ,

0 for |τ | � T .
(62)

In such a case, instead of Eq. (6), the transition probability of the detector will be
described by the integral

P(E,T) =
∫ ∞

−∞
dτ
∫ ∞

−∞
dτ ′ e−i E (τ−τ ′) W (τ ,T)W (τ ′,T)G+ [x̃(τ ), x̃(τ ′)

]
. (63)

While abrupt switching corresponds to

W (τ ,T) = Θ(T − τ ) + Θ(T + τ ), (64)

more gradual switching on and off can be achieved, for instance, with the aid of the
window function

W (τ ,T) = exp−
(

τ 2

2 T 2

)
. (65)

Consider a detector that is moving along the integral curve of a time-like Killing
vector field so that G+ [x̃(τ ), x̃(τ ′)

] = G+(τ − τ ′). Let the detector be switched on
and off with the aid of a smooth window function of the form W (τ/T). In such a
situation, I can express the transition probability of the detector as
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P(E,T) =
∫ ∞

−∞
dτ
∫ ∞

−∞
dτ ′ W (τ ,T)W (τ ′,T) e−i E (τ−τ ′) G+(τ − τ ′) (66)

= W

(
i

∂

∂E
,T

)
W

(
−i

∂

∂E
,T

)
P(E), (67)

where P(E) is the original transition probability (6) for the case of the Unruh–
DeWitt detector that has been kept on for its entire history. Let me now expand
W (τ ,T) = W (τ/T) as a Taylor series around τ = 0 and assume that W (0) = 1,
W ′(0) = 0, where the overprime denotes differentiation with respect to the argument
τ/T . I can then write the window function as

W
( τ

T

)
� W (0) + W ′(0)

( τ

T

)
+ 1

2
W ′′(0)

( τ

T

)2

� 1 + 1

2
W ′′(0)

( τ

T

)2
, (68)

so that the transition probability becomes

P(E,T) �
(
1 − W ′′(0)

2 T 2

∂2

∂E2

)2

P(E)

� P(E) − W ′′(0)
T 2

∂2P(E)

∂E2
. (69)

This gives the transition probability rate to be

R(E,T) = R(E) − W ′′(0)
T 2

∂2R(E)

∂E2
+ O

(
1

T 4

)
, (70)

for any window function and trajectory. Note that the response at finite T depends
on the derivatives of the window function, such as, for example, W ′′(0). Hence, if
the detector is switched on abruptly, these derivatives can diverge, thereby leading
to divergent responses [17].

6 Summary

The concept of detectors was originally introduced to provide an operational defini-
tion to the concept of a particle. With this aim, the response of detectors have been
studied in the literature in a wide variety of situations. In this article, I have described
a few different aspects of detectors. I have highlighted the point that, while the detec-
tors are sensitive to the phenomenon of particle production, their response do not, in
general, reflect the particle content of the field. I have shown that, in odd spacetime
dimensions, the response of a detector that is coupled to an odd power of the scalar
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field exhibits a Fermi–Dirac distribution rather than the expected Bose–Einstein dis-
tribution. I have also discussed the response of a rotating detector that is coupled
to a scalar field governed by modified dispersion relations, supposedly arising due
to quantum gravitational effects. I have illustrated that, as it has been encountered
in other similar contexts, while super-luminal dispersion relations hardly affect the
response of the detector, sub-luminal relations substantially modify the response.
Finally, I have argued that detectors which are switched on abruptly can exhibit
responses which contain divergences.
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Stability Longevity and All That: False
Vacua and Topological Defects

Urjit A. Yajnik

1 Cuisine and a Canine

I got to know Paddy during the last year of MSc at IIT Bombay as my senior Kan-
daswamy had joined PhD in Prof. Jayant Narlikar’s group, the same group as Paddy.
Paddy already had a reputation of sorts as a very sharp student and a friendly guy. I
ended up going to Texas Austin for PhD, and as luck would have it, he showed up
there in the last year of my PhD. He had been invited for a visit by my advisor Prof.
E.C. George Sudarshan, who was then busy reinvigorating Institute of Mathematical
Sciences, Chennai known as Matscience in those days, as its new Director.

Paddy took interest in the work I had just then wound up for my thesis. One of the
papers dealt with phase transition induced by cosmic strings [1]. I had identified the
mechanism qualitatively and set up an example to demonstrate it, and was able to
simulate the false vacuum decay. These were very interesting possibilities to explore
as the dynamics of inflationary Universe was then believed to rely on the availability
of a metastable or false vacuum. However there was a need to make the detailed
mechanism explicit. Elegant arguments such as demonstrating the existence of an
instanton were not working, that is, proving too difficult. Paddy who was not himself
working in any of those topics listened carefully and made a pragmatic suggestion
for my open problem. That was to was to analyse the small oscillations and see the
emergence of a zero frequency mode as the temperature was lowered. This worked
out nicely and appeared as Ref. [2].

Out of general friendship, and because he was a visitor to my Centre, and because
hewas also a senior, but perhaps also because hewasmaking such fruitful suggestions
for research, it was only appropriate that I invited him home once in a while. His
apartment was nearby but then some neighbours used to leave their dog free to roam
at night, causing understandable concerns for Paddy especially on a short visit in a
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foreign country. So I also used to drop him off by car. It was during these sessions
that he ended up discovering that I was reasonably good at making pasta sauce and
for that reason, I assume among others, he came to decide that I could be a good
addition as a visiting fellow to his group in TIFR. And so the following January,
1987, I joined Theoretical Astrophysics Group as a Visiting Fellow.

I knew him much better over the next few years in TIFR where he was a patient
and amused listener (he still is I believe) of my daily observations about the way
the world worked and also continued providing useful comments on the work I was
doing. Hewas during that time as prolific as he has ever been. I remember particularly
hearing from him about the Dark Matter problem which had not till then pricked the
conscience of Particle Physicists sufficiently, and a “white paper” on inflationary
density fluctuations, while some ideas that occupied him then included emergence
of a fundamental length scale at the Planck scale. It was a very pleasant and fruitful
time and a time tomake somebold calculations on particle production during inflation
[3]. Subsequently some of the undergraduate students from IIT Bombay went and
worked with him at IUCAA during summers and we were in touch in that way.

Paddy has been a wellspring of innumerable new ideas and insights, has moved
into all the emerging areas of General Relativity and Cosmology that seemed to
bear on the fundamental issues, written many instructional and pedagogical articles
and books, and has marked out a space for India in the world in those topics. Here I
choose to contribute on the problem that was our first and only joint work, presenting
some interesting further evolution of the ideas originated then, with the help of other
colleagues as appears in Refs. [4, 5].

2 Introduction

In this contribution I cover two works, one in which an otherwise unstable topologi-
cal configuration becomes stabilised and the other, in which a topological object can
hasten the decay of a false vacuum. While an infinite cosmic string can be topologi-
cally stable, the same when made into a closed loop becomes unstable to decay by
shrinking. However such strings can bind zero modes of fermions, which in some
cases requires assigning fractional fermion number to the string. Such fermions can
be Dirac or Majorana. Majorana fermions do not have a conserved fermion number.
Yet it is interesting to prove that when a Majorana fermion is bound to a cosmic
string loop, both configurations by themselves unstable, the combination becomes
stable to spontaneous decay. This is due to the unusual assignment of fermion num-
ber of the configuration, whose quantum numbers cannot be matched to those of the
vacuum. This is shown in Sects. 3 and 4. An interesting aspect of this analysis is that
instead of an unfathomable Dirac sea we have a smallMajorana pond at the energy
threshold. The occurrence of a finite number of gapless states degenerate with the
vacuum has been argued in [6] to be a signature of spontaneous symmetry breaking
with a fermionic order parameter.
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In a second study which takes us back to the problem on which I collaborated
with Paddy, cosmic strings can induce the decay of a false vacuum. In our attempts
then we showed that there were reasonable theoretical grounds for the phenomenon
and proved it by numerical simulations. But in more recent work, thanks to the col-
laborators cited, we were able to doctor the model sufficiently that there was more
theoretical control. In this case, it is possible to extend thewell known theoretical tool
of an “instanton bounce” to this case. Unlike in a translation invariant false vacuum,
quite a bit of more ingenuity is required for deducing a bounce in the presence of
a topological object, which breaks the translation invariance. However when every-
thing is put together one gets an explicit dependence of the decay rate of the false
vacuum on the parameters of the model. We can then see the enhancement in the
rate, as also a possible regime of instability implied only due to the presence of the
topological object.While the analytical answer could be obtained in the 2 + 1 dimen-
sional case of a vortex [7], herewe take up the 3 + 1 dimensional cosmic stringwhich
presents interesting theoretical challenges. In this case numerical calculations assist
substantially in visualising and verifying the bounce. This is shown in Sects. 5 and 6.

3 Topological Solutions and Fractionalised
Fermion Number

Cosmic strings and vortices are examples of solitons, extended objects occurring
as stable states [8, 9] within Quantum Field Theory present the curious possibil-
ity of fermionic zero-energy modes trapped on such configurations. Their presence
requires, according to well known arguments [10, 11], an assignment of half-integer
fermion number to the solitonic states. Dynamical stability of such objects was
pointed out in [12], in cosmological context in [13, 14] and later studied also in
[15–17]. Fractional fermion number phenomenon also occurs in condensed matter
systems and its wide ranging implications call for a systematic understanding of the
phenomenon.

The impossibility of connecting half-integer valued states to integer valued states
suggests that a superselection rule [18, 19] is operative. In a theory with a conserved
charge (global or local), a superselection rule operates among sectors of distinct
charge values because the conservation of charge is associated with the inobserv-
ability of rescaling operation Ψ → eiQΨ . In the case at hand, half-integer values
of fermion number occur, preventing such states from decaying in isolation to the
trivial ground state [12, 13].

Here we construct an example in which the topological object of a low energy
theory is metastable due to the embedding of the low energy symmetry group in a
larger symmetry group at higher energy. Examples of this kind were considered in
[20]. Borrowing the strategies for bosonic sector from there, we include appropriate
fermionic content to obtain the required zero-modes. Consider a theory with local
SU (3) symmetry broken toU (1) by two scalars,Φ an octet acquiring aVEV η1λ3 (λ3
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Fig. 1 Schematic
configuration depicting
break of a string into
monopole anti-monopole
pair. The diagram shows
isospin vectors after the
rupture of the string. Internal
orientations are mapped to
external space. They are
shown just outside the core
of the two resulting pieces
and on the mid-plane
symmetrically separating the
two

z

here being the third Gell-Mann matrix) and φ, a 3̄, acquiring the VEV 〈φk〉 = η2δ
k2,

with η2 � η1. Thus

SU (3)
8−→U (1)3 ⊗U (1)8

3−→U (1)+ (1)

HereU (1)3 andU (1)8 are generated by λ3 and λ8 respectively, and U (1)+ is gener-
ated by (

√
3λ8 + λ3)/2 and likewiseU (1)− to be used below. It can be checked that

this pattern of VEVs can be generically obtained from the quartic scalar potential of
the above Higgses. The effective theory at the second breaking U (1)− → Z gives
rise to cosmic strings. However the Z lifts to identity in the SU (3) so that the string
can break with the formation of monopole–antimonopole pair. See Fig. 1.

Now add a multiplet of left-handed fermions belonging to 15. Its mass terms arise
from the following coupling to the 3

LMajorana = hMψC
{i j}
k ψ {lm}

n φr (εilrδ
n
j δ

k
m) (2)

The indices symmetric under exchange have been indicated by curly brackets. No
mass terms result from the 8 because it cannot provide a singlet from tensor product
with 15 ⊗ 15 [21]. On substituting the vacuum expectation value (vev) of φ we get
the mass matrix M of the fermions. A systematic enumeration shows that all but the
two components ψ

{22}
1 and ψ

{22}
3 acquire majorana masses at the second stage of the

breaking. Specifically we find the majorana mass matrix to be indeed rank 13. In the
cosmic string sector, the vev of φ and therefore the mass matrix M becomes space
dependent, einθ , where θ is angle in a plane perpendicular to the string, and n is the
winding number which has to be integer. The lowest energy bound states resulting
from this coupling are characterized by a topological index, [22] I ≡ nL − nR

where nL and nR are the zero modes of the left handed and the right handed fermions
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respectively. This index can be computed using the formula [22, 23]

I = 1

2π i
(ln detM)|2πφ=0 (3)

where M is the position dependent effective mass matrix for the fermions.
Thus, using either of the results [24] or [23] i.e., Eq. (3) we can see that there will

be 13 zero modes present in the lowest winding sector of the cosmic string. Thus the
induced fermion number differs from that of the vacuum by half-integer as required.
According to well known reasoning [10] to be recapitulated below, this requires the
assignment of either of the values ±1/2 to the fermion number of this configuration.

4 Assignment of Fermion Number

We now recapitulate the reasoning behind the assignment of fractional fermion num-
ber. We focus on the Majorana fermion case, which is more nettlesome, while the
treatment of the Dirac case is standard [10, 11]. In the prime example in 3 + 1 dimen-
sions of a single left-handed fermion species ΨL coupled to an abelian Higgs model
according to

Lψ = iΨLγ
μDμΨL − 1

2

(
hφΨ C

L ΨL + h.c.
)

(4)

the following result has been obtained [24]. For a vortex oriented along the z-axis,
and in the winding number sector n, the fermion zero-modes are of the form

ψ0(x) =
(
1
0

)
[
U (r)eilφ + V ∗(r)ei(n−1−l)φ

]
gl(z + t) (5)

In the presence of the vortex, τ 3 (here representing Lorentz transformations on
spinors) acts as thematrixwhich exchanges solutions of positive frequencywith those
of negative frequency. It is therefore identified as the “particle conjugation” operator.
In the above ansatz, the ψ in the zero-frequency sector are charge self-conjugates,
τ 3ψ = ψ , and have an associated left moving zero mode along the vortex. The func-
tions satisfying τ 3ψ = −ψ are not normalizable. The situation is reversed when
the winding sense of the scalar field is reversed, i.e., for σu ∼e−inφ . In the winding
number sector n, regular normalizable solutions [24] exist for for 0 ≤ l ≤ n − 1. The
lowest energy sector of the vortex is now 2n-fold degenerate, and each zero-energy
mode needs to be interpreted as contributing a value ±1/2 to the total fermion num-
ber of the individual states [10]. This conclusion is difficult to circumvent if the
particle spectrum is to reflect the charge conjugation symmetry of the theory [25].
The lowest possible value of the induced number in this sector is −n/2. Any general
state of the system is built from one of these states by additional integer number of
fermions. All the states in the system therefore possess half-integral values for the
fermion number if n is odd.
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One puzzle immediately arises, what is the meaning of negative values for the
fermion number operator for Majorana fermions? In the trivial vacuum, we can
identify the Majorana basis as

ψ = 1

2
(ΨL + Ψ C

L ) (6)

This leads to the Majorana condition which results in identification of particles with
anti-particles according to

CψC † = ψ (7)

making negative values for the numbermeaningless.HereC is the charge conjugation
operator. We shall first verify that in the zero-mode sector we must indeed assign
negative values to the number operator. It is sufficient to treat the case of a single zero-
mode, which generalizes easily to any larger number of zero-modes. The number
operator possesses the properties

[N , ψ] = −ψ and [N , ψ†] = ψ† (8)

C NC † = N (9)

Had it been the Dirac case, there should be a minus sign on the right hand side of
Eq. (9). This is absent due to the Majorana condition. The fermion field operator for
the lowest winding sector is now expanded as

ψ = cψ0 +
{

∑

κ,s

aκ,sχκ,s(x) +
∑

k,s

bk,suk,s(x) + h.c.

}

(10)

where the first summation is over all the possible bound states of non-zero frequency
with real space-dependence of the form ∼e−κ·x⊥ in the transverse space directions
x⊥, and the second summation is over all unbound states, which are asymptotically
planewaves. These summations are suggestive and their exact connection to theWeyl
basis mode functions [26] are not essential for the present purpose. Note however
that no “h.c.” is needed for the zero energy mode which is self-conjugate. Then the
Majorana condition (7) requires that we demand

C c C † = c and C c† C † = c† (11)

Unlike the Dirac case, the c and c† are not exchanged under charge conjugation. The
only non-trivial irreducible realization of this algebra is to require the existence of a
doubly degenerate ground state with states |−〉 and |+〉 satisfying

c|−〉 = |+〉 and c†|+〉 = |−〉 (12)

with the simplest choice of phases. Now we find
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C c C †C |−〉 = C |+〉 (13)

⇒ c(C |−〉) = (C |+〉) (14)

This relation has the simplest non-trivial solution

C |−〉 = η−
C |−〉 and C |+〉 = η+

C |+〉 (15)

where, for the consistency of (12) and (14) η−
C and η+

C must satisfy

(η−
C )−1η+

C = 1 (16)

Finallywe verify thatwe indeed get values±1/2 for N . The standard fermion number
operator which in the Weyl basis is

NF = 1

2
[Ψ †

LΨL − ΨLΨ
†
L ] (17)

acting on these two states gives,

1

2
(c c† − c† c) |±〉 = ±1

2
|±〉 (18)

The number operator indeed lifts the degeneracy of the two states. For s number of
zero modes, the ground state becomes 2s-fold degenerate, and the fermion number
takes values in integer steps ranging from −s/2 to +s/2. For s odd the values
are therefore half-integral. Although uncanny, these conclusions accord with some
known facts. They can be understood as spontaneous symmetry breaking for fermions
[6]. The negative values of the number thus implied occur only in the zero-energy
sector and do not continue indefinitely to −∞. Instead of an unfathomable Dirac
sea we have a small Majorana pond at the threshold.

5 Energetics and Dynamics of the Thin, False String

In the introductory section I mentioned the need for an instanton type description
for tunneling in the string induced decay of the false vacuum. It was only many
years later, in collaboration with Montréal and Seoul colleagues that this goal finally
got taken up. While the insights were certainly new, there was a strong impetus
for completing the argument because of the tremendous growth and ease of use of
computing powers.

The work presented is a continuation of the earlier joint work [7, 27]. Here we
consider the case of cosmic strings in a spontaneously broken U (1) gauge theory,
a generalized Abelian Higgs model. The potential for the complex scalar field has
a local minimum at a nonzero value and the true minimum is at vanishing scalar
field. We assume the energy density splitting between the false vacuum and the true
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vacuum is very small. The spontaneously broken vacuum is the false vacuum. In
the scenario that we have described, the true vacuum lies at the regions of vanishing
scalar field, thus the interior of the cosmic string is in the true vacuum while the
exterior is in the false vacuum.

Related work of similar nature can be found in [28, 29]. More recently this phe-
nomenon has drawn attention in other field theoretic contexts [30, 31], and in super-
string theory, similar results are obtained regarding brane induced vacuum decay.
See for instance [32–39].

5.1 Set-Up

Weconsider the abelianHiggsmodel (spontaneously-broken scalar electrodynamics)
with a modified scalar potential corresponding to our previous work [7] but now
generalized to 3 + 1 dimensions. The Lagrangian density of the model has the form

L = −1

4
FμνF

μν + (Dμφ)∗(Dμφ) − V (φ∗φ), (19)

where Fμν = ∂μAν − ∂ν Aμ and Dμφ = (∂μ − ieAμ)φ. The potential is a sixth-order
polynomial in φ [27, 40], written

V (φ∗φ) = λ(|φ|2 − εv2)(|φ|2 − v2)2. (20)

Note that the Lagrangian is no longer renormalizable in 3 + 1 dimensions, how-
ever the understanding is that it is an effective theory obtained from a well defined
renormalizable fundamental Lagrangian. The fields φ and Aμ, the vacuum expecta-
tion value v have mass dimension 1, the charge e is dimensionless and λ has mass
dimension 2 since it is the coupling constant of the sixth order scalar potential. The
potential energy density of the false vacuum |φ| = v vanishes, while that of the true
vacuum has V (0) = −λv6ε. We rescale analogous to [7]

φ → vφ Aμ → vAμ e → λ1/2ve x → x/(v2λ1/2) (21)

so that all fields, constants and the spacetime coordinates become dimensionless,
then the Lagrangian density is still given by Eq. (19) where now the potential is

V (φ∗φ) = (|φ|2 − ε)(|φ|2 − 1)2. (22)

and there is an overall factor of 1/(λv2) in the action.
Initially, the cosmic string will be independent of z the coordinate along its length

and will correspond to a tube of radius R with a trapped magnetic flux in the true
vacuum inside, separated by a thin wall from the false vacuum outside. R will vary
in Euclidean time τ and in z to yield an instanton solution. Thus we promote R to
a field R → R(z, τ ). Hence we will look for axially-symmetric solutions for φ and
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Aμ in cylindrical coordinates (r , θ , z, τ). We use the following ansatz for a vortex
of winding number n:

φ(r, θ, z, τ ) = f (r, R(z, τ ))einθ , Ai (r, θ, z, τ ) = −n

e

εi j r j
r2

a(r, R(z, τ )),

(23)
where εi j is the two-dimensional Levi-Civita symbol. This ansatz is somewhat sim-
plistic, it is clear that if the radius of the cosmic string swells out at some range of z,
the magnetic flux will dilute and hence through the (Euclidean) Maxwell’s equations
some “electric” fields will be generated. In 3 dimensional, source free, Euclidean
electrodynamics, there is no distinct electric field, the Maxwell equations simply say
that the 3 dimensional magnetic field is divergence free and rotation free vector field
that satisfies superconductor boundary conditions at the location of the wall. It is
clear that the correct form of the electromagnetic fields will not simply be a diluted
magnetic field that always points along the length of the cosmic string as with our
ansatz, however the correction will not give a major contribution, and we will neglect
it. Indeed, the induced fields will always be smaller by a power of 1/c2 when the
usual units are used.

In the thinwall limit, theEuclidean action can be evaluated essentially analytically,
up to corrections which are smaller by at least one power of 1/R. The method of
evaluation is identical to that in [7], we shall not repeat the details, we find

SE = 1

λv2

∫
d2x

1

2
M(R(z, τ ))(Ṙ2 + R′2) + E(R(z, τ )) − E(R0) (24)

where

M(R) =
[
2πn2

e2R2
+ πR

]
(25)

E(R) = n2Φ2

2πR2
+ πR − επR2 (26)

and R0 is the classically stable thin tube string radius.

6 Instantons and the Bulge

6.1 Tunnelling Instanton

We look for an instanton solution that is O(2) symmetric, the appropriate ansatz is

R(z, τ ) = R(
√
z2 + τ 2) = R(ρ) (27)

with the imposed boundary condition that R(∞) = R0.
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Such a solution will describe the transition from a string of radius R0 at τ = −∞,
to a point in τ = ρ0 say at z = 0whena soliton anti-solitonpair is started to be created.
The configuration then develops a bulge which forms when the pair separates to a
radius which has to be again ρ0 because of O(2) invariance and which is the bounce
point of the instanton along the z axis at τ = 0. Finally the subsequent Euclidean
time evolution continues in a manner which is just the (Euclidean) time reversal of
evolution leading up to the bounce point configuration until a simple cosmic string
of radius R0 is re-established for τ ≥ ρ0 and all z, i.e. ρ ≥ ρ0. The action functional
is given by

SE = 2π

λv2

∫
dρ ρ

[
1

2
M(R(ρ))

(
∂R(ρ)

∂ρ

)2

+ E(R(ρ)) − E(R0)

]

. (28)

The instanton equation of motion is

d

dρ

(
ρM(R)

dR

dρ

)
− 1

2
ρM ′(R)

(
dR

dρ

)2

− ρE ′(R) = 0 (29)

with the boundary condition that R(∞) = R0, andwe look for a solution that has R ≈
R1 near ρ = 0. The solution necessarily “bounces” at τ = 0 since ∂R(ρ)/∂τ |τ=0 =
R′(ρ)(τ/ρ)|τ=0 = 0. (The potential singularity at ρ = 0 is not there since a smooth
configuration requires R′(ρ)|ρ=0 = 0.) The equation of motion is better cast as an
essentially conservative dynamical system with a “time” dependent mass and the
potential given by the inversion of the energy function of Eq. (26), but in the presence
of a “time” dependent friction where ρ plays the role of time:

d

dρ

(
M(R)

dR

dρ

)
− 1

2
M ′(R)

(
dR

dρ

)2

− E ′(R) = − 1

ρ

(
M(R)

dR

dρ

)
. (30)

As the equation is “time” dependent, there is no analytic trick to evaluating the
bounce configuration and the corresponding action. However, we can be reasonably
sure of the existence of a solution which starts with a given R ≈ R1 at ρ = 0 and
achieves R = R0 for ρ > ρ0, by showing the existence of an initial condition that
gives an overshoot and another initial condition that gives an undershoot, in the
same manner of proof as in [41]. Actually, numerically integrating to ρ ≈ 80,000
the function falls back to the minimum of the inverted energy functional Eq.26.
On the other hand, we increase the starting point by 0.0001, the numerical solution
overshoots the maximum at R = R0. Thus we have numerically implemented the
overshoot/undershoot criterion of [41].

The cosmic string emerges with a bulge described by the function numerically
evaluated and represented in Fig. 2which corresponds to R(z, τ = 0). A cross section
of the bounce is visualised as the symmetrised figure obtained by reflecting the graph
of Fig. 2 in the R axis, with−∞ < ρ < ∞. A 3-dimensional depiction of the bounce
point is given in Fig. 3.



Stability Longevity and All That: False Vacua and Topological Defects 489

Fig. 2 The collective variable R signifying the radius of the string in the thin wall approximation,
as a function of 2-dimensional radius ρ in the Euclidean τ − z plane

This radius function has argument ρ = √
z2 + τ 2. Due to the Lorentz invariance

of the original action, the subsequent Minkowski time evolution is given by R(ρ) →
R(

√
z2 − t2), which is of course only valid for z2 − t2 ≥ 0. Fixed ρ2 = z2 − t2

describes a space-like hyperbola that asymptotes to the light cone. The value of the
function R(ρ) therefore remains constant along this hyperbola. This means that the
point at which the string has attained the large radius moves away from z ≈ 0 to z →
∞ at essentially the speed of light. The other side of coursemoves towards z → −∞.
Thus the soliton anti-soliton pair separates quickly moving at essentially the speed of
light, leaving behind a fat cosmic string, which is subsequently, classically unstable
to expand and fill all space.

6.2 Tunnelling Amplitude

In the 3 + 1 dimensional example we have presented the bounce action needs to be
found numerically. It is reasonable to expect that as ε → 0 the tunnelling barrier will
get progressively bigger and at some point the tunnelling amplitude will vanish. On
the other hand, there should exist a limiting value, call it εc, where the tunnelling
barrier disappears at the so-called dissociation point [1, 28, 42], such that as ε → εc,
the action of the instanton will vanish, analogous to what was found in [7]. This is
not possible to demonstrate in this case. However, for the bounce found above, we
compare its implications to the other situations. Given the bounce action, the decay
rate per unit length of the cosmic string will be of the form
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(a)

(b)

Fig. 3 aCosmic string profile at the bounce point. bCut away of the cosmic string profile at bounce
point

Γ = Ac.s.

(
S0(ε)

2π

)
e−S0(ε). (31)

where Ac.s. is the determinantal factor excluding the zeromodes and
(

S0(ε)
2π

)
is the cor-

rection obtained after taking into account the two zero modes of the bulge instanton.
These correspond to invariance under Euclidean time translation and spatial transla-
tion along the cosmic string [41]. In general, there will be a length L of cosmic string
per volume L3. For a second order phase transition to themetastable vacuum, L is the
correlation length at the temperature of the transition which satisfies L−1 ≈ λv2Tc
[43]. For first order transitions, it is not clear what the density of cosmic strings will
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be. We will keep L as a parameter but we do expect that it is microscopic. Then in a
large volumeΩ , we will have a total length NL of cosmic string, where N = Ω/L3.
Thus the decay rate for the volume Ω will be

Γ × (NL) = Γ

(
Ω

L2

)
= Ac.s.

(
S0(ε)

2π

)
e−S0(ε)

Ω

L2
(32)

or the decay rate per unit volume will be

Γ

L2
=

Ac.s.
(

S0(ε)
2π

)
e−S0(ε)

L2
. (33)

A comparable calculation with point-like defects [7] would give a decay rate per unit
volume of the form

Γ point like

L3
=

Apoint like
(

Spoint like0 (ε)

2π

)3/2
e−Spoint like0 (ε)

L3
(34)

and the corresponding decay rate from vacuum bubbles (without topological defects)
[41] would be

Γ vac. bubble = Avac. bubble

(
Svac. bubble0 (ε)

2π

)2

e−Svac. bubble0 (ε). (35)

Since the length scale L is expected to be microscopic, we would then find that
the number of defects in a macroscopic volume (i.e. universe) could be incredibly
large, suggesting that the decay rate from topological defects would dominate over
the decay rate obtained from simple vacuum bubbles la Coleman [41]. Of course the
details do depend on the actual values of the Euclidean action and the determinantal
factor that is obtained in each case.

7 Conclusion

Metastable classical lumps, also referred to as embedded defects can be found in
several theories. The conditions on the geometry of the vacuum manifold that give
rise to such defects were spelt out in [20]. We have studied the related question of
fermion zero-energy modes on such objects. It is possible to construct examples
of cosmic strings in which the presence of zero-modes signals a fractional fermion
number both for Dirac andMajoranamasses. It then follows that such a cosmic string
cannot decay in isolation because it belongs to a distinct superselected Quantum
Mechanical sector. Thus a potentially metastable object can enjoy induced stability
due to its bound state with fermions.
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Although decay is not permitted in isolation, it certainly becomes possible when
more than one such objects come together in appropriate numbers. In the early
Universe such objects could have formed depending on the unifying group and its
breaking pattern. Their disappearance would be slow because it can only proceed
through encounters between objects with complementary fermion numbers adding
up to an integer. Another mode of decay is permitted by change in the ground state
in the course of a phase transition. When additional Higgs fields acquire a vacuum
expectation value, in turn altering the boundary conditions for the Dirac or Majorana
equation, the number of induced zero modes may change from being odd to even
thus imparting the strings an integer fermion number. The decay can then proceed
at the rates calculated in [20]. Such a possibility, for the case of topologically stable
string can be found for realistic unification models in [14, 15, 44, 45].

There are many instances where the vacuum can be meta-stable. The symmetry
broken vacuum can be metastable. Such solutions for the vacuum can be important
for cosmology and for the case of supersymmetry breaking see [46] and themany ref-
erences therein. In string cosmology, the inflationary scenario that has been obtained
in [47], also gives rise to a vacuum that is meta-stable, and it must necessarily be
long-lived to have cosmological relevance.

In a condensed matter context symmetry breaking ground states are also of great
importance. For example, there are two types of superconductors [48]. The cosmic
string is called a vortex line solution in this context, and it is relevant to type II
superconductors. The vortex line contains an unbroken symmetry region that carries
a net magnetic flux, surrounded by a region of broken symmetry. If the temperature
is raised, the true vacuum becomes the unbroken vacuum, and it is possible that the
system exists in a superheated state where the false vacuum is meta-stable [49]. This
technique has actually been used to construct detectors for particle physics [50]. Our
analysis might even describe the decay of vortex lines in superfluid liquid 3Helium
[51].

The decay of all of these metastable states could be described through the tun-
nelling transition mediated by instantons in the manner that we have computed in
this article. For appropriate limiting values of the parameters, for example when
ε → εc, the suppression of tunnelling is absent, and the existence of vortex lines
or cosmic strings could cause the decay of the meta-stable vacuum without bound.
Experimental observation of this situation would be interesting.
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