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Abstract. Optimal power allocation (OPA) is considered to be one of
the key issues in designing a wireless sensor network (WSN). Generally,
the OPA in WSN can be formulated as a numerical optimization problem
with constraints. Differential evolution (DE) is a powerful evolutionary
algorithm for numerical, however, the success of DE in solving a specific
problem crucially depends on appropriately choosing suitable mutation
strategy and its associated control parameter values. Meanwhile, there
is no single parameter setting and strategy that is able to consistently
obtain the best results for the OPA with different number of sensor nodes.
Based on the above considerations, in this paper, a multi-operator based
constrained differential evolution is proposed, where probability matching
and constrained credit assignment techniques are used so as to adaptively
select the most suitable strategy in different phase of the search process
for the OPA. Additionally, the parameter adaptation technique is used
to avoid the fine-tuning of DE parameters for different problems. The
proposed algorithm has been evaluated in several OPA with different
number of sensor nodes, and its performance is compared with single-
strategy based DE variants and other methods. Experimental results
indicate that the proposed algorithm is able to provide better results
than the compared methods.

1 Introduction

A wireless sensor network (WSN) is a network of distributed autonomous devices
that can sense or monitor physical or environmental conditions cooperatively. In
WSNs, there exists a large number of small, inexpensive, spatially distributed
sensor nodes that are deployed in an ad hoc manner in vast geographical areas for
remote operations and these nodes can acquire, process, and transmit data over
wireless medium. WSNs also are used in numerous applications such as security
detection, traffic tracking, environmental monitoring, because of characteristics
of the low cost and ease of operation [1]. In addition, battery supply, storage
resources and commutation bandwidth tremendously restrict the communication
and computational capabilities of sensor nodes [2]. Therefore, there has been
significant research concentrate that revolves around reaping and minimizing
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energy. But above all, it may be impossible to replace or change the batteries of
the sensor nodes because of cost and operating environment considerations [3].
Therefore, the optimal power allocation can be considered as one of the crucial
issues for designing a WSN.

Differential evolution (DE), which was firstly proposed by Storn and Price
[4], is one of the most powerful EAs for global numerical optimization. The
advantages of DE are its simple structure, ease of use, speed, and robustness,
which leads it on many applications, such as data mining, neural network train-
ing, pattern recognition, digital filter design, engineering design, etc. [5]. More
applications of DE can be found in the literature [6].

The OPA in WSN can be seen as a constrained numerical optimization prob-
lem [3]. In addition, the optimal power allocation in WSNs have attained con-
siderable attention. Recently, there are several algorithms are proposed for OPA,
such as particle swarm optimization (PSO) [3,7,8], hybrid DE with biogeography-
based optimization [9]. Both the two algorithms achieved good performance for
independent and identically distributed (i.i.d.) and correlated data fusion in
WSNs. In addition, due to the advantages of DE in the numerical optimization,
recently, DE has been successfully used for the constrained optimization problems
(COPs) by means of employing the constraint-handling techniques [10]. Mean-
while there is no single parameter setting and strategy that is able to consistently
obtain the best results for the OPA with different number of sensor nodes [11].
Therefore, it is worth exploring more effective algorithm for OPA.

Differential mutation is the crucial operator in DE which is operated based
on the distribution of solutions in the current population. New offsprings are
created by combining the parent individual and the mutant individual. Only if
the offspring has better fitness value, it can replace its parent. However, it is a
difficult and crucial task to choose which mutation strategy for the performance
of the DE [12,13]. Based on the above consideration, in this paper, we proposed
a multi-operator differential evolution based on Probability Matching and con-
strained credit assignment for solving the OPA. The proposed method is referred
to as PM-MDE, in short.

2 Preliminaries

In this section, we first briefly describe the optimal power allocation in WSNs,
followed by the description of the classical DE algorithm. Then, the constraint-
handling technique used in this work is introduced. Finally, adaptive strategy
selection is presented.

2.1 Optimal Power Allocation in WSNs

Generally, the power allocation problem can be considered as a constrained
numerical optimization problem and it also can be formulated as follows [3]:

min
Gk≥0

L∑

k=1

G2
k (1)
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subject to

P (E) = Q( 12

√
m2eT A

∑ −1
L Ae) ≤ ε,

Gk ≥ 0,
K = 1, . . . , L.

(2)

where ε is the required fusion error probability threshold, L indicates the number
of sensor nodes, m represents the deterministic signal and GK is the amplifier
gain at node k. e is the L-length vector with all ones. The covariance matrix is∑

L = AT
∑

vA+
∑

w, where A = diag(H1G1, . . . , HLGL),
∑

v is the observa-
tion and

∑
w is receiver noise covariances. Specially, when the local observations

and the receiver noise are both i.i.d., the probability of fusion error can be sim-
plified to:

P (E) = Q

⎛

⎝m

2

√√√√
L∑

k=1

H2
KG2

K

δ2vH2
KG2

K + δ2ω

⎞

⎠ ≤ ε. (3)

The inequality in (3) can be expressed as follows:

β ≤
√√√√

L∑

k=1

H2
KG2

K

δ2vH2
KG2

K + δ2ω
(4)

where β = 2
mQ−1(ε) and Q(·) is the complementary Gaussian cumulative distri-

bution function. δv means the variances of the observation noise and δw repre-
sents the receiver noise. Hk indicates the channel fading coefficient. It is needed
to point that Hk follows an exponential distribution (i.e., Rayleigh fading) with
unit mean [9].

Besides the above situation, when the sensor observations are spatially cor-
related, the observation noise covariance matrix

∑
v can be formulated as fol-

lows [14]:

∑
v = δ2v

⎛

⎜⎜⎜⎝

1 ρd · · · ρd(L−2) ρd(L−1)

ρd 1 · · · ρd(L−3) ρd(L−2)

...
...

. . .
...

...
ρd(L−1) ρd(L−2) · · · ρd 1

⎞

⎟⎟⎟⎠ (5)

The inequality in (3) can be expressed as follows:

β ≤
√

eT A
∑ −1

n Ae (6)

where dj = d(j−1), j = 1, . . . L, which means the sensor nodes are equally spaced
along a straight line. Because

∑
v is not diagonal, it is difficult to evaluate

∑ −1
n

in closed form. Therefore, it is necessary to introduce a specific sensor network
model which derives an upper bound for P (E) and is proposed by Wimalajeewa
and Jayaweera [3]. Finally, DE algorithm becomes suitable to use for OPA under
arbitrary correlated observation.
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2.2 Differential Evolution

DE is a simple yet efficient evolutionary algorithm (EA) for global numerical
optimization [4]. For the population initialization, a uniform distribution is usu-
ally used in the literature within the search space. After initialization, DE gen-
erates offsprings based on combining the parent individual and several other
individuals of the same population which means that offsprings are generated
according to mutation operation and crossover operation. An offspring is evalu-
ated by a fitness function and then replaces the parent individual only if it has an
equal or better fitness value. DE repeats this procedure that generates offsprings
and replaces parent individual until a predefined termination criterion is satis-
fied. Generally, the terminal conditions can be fixed either the maximum number
of fitness function evaluations (Max NFFEs) or define a desired solution value
to be reached (V TR).

3 Multi-operator Based Differential Evolution
(PM-MDE)

In this section, we will introduce our proposed PM-MDE algorithm in detail. It
is previously mentioned that there are many mutation strategies in DE and it is
hard to choose the most suitable strategy for different problem in the different
stage of evolution. Therefore, it is significant to autonomously select appropriate
mutation strategy for OPA. To achieve this performance, in this work, we propose
the multi-operator differential evolution for OPA based on Probability Matching
(PM) technique and credit assignment method [15]. The PM technique and the
credit assignment method are integrated into DE to implement the adaptive
strategy selection and the relative fitness improvement calculation. Moreover,
the parameter adaptation method of CR and F proposed in [16] is adopted in
this work.

3.1 Strategy Selection and Probability Matching

Following [17], in this subsection the adaptive strategy selection will be intro-
duced. Firstly, it can be supposed that we have K(K > 1) strategies in
the pool A = {a1, . . . , ak} and a probability vector can be described like
P (t) = {p1(t), . . . , pK(t)} (∀t : pmin ≤ pi(t) ≤ 1;

∑
K
i=1pi(t) = 1). The ra(t)

presents reward which be achieved by a strategy a after its application at time
t. The PM method is used to adaptively update the probability Pa(t) of each
strategy a based on its reward. qa(t) is the known quality (or empirical estimate)
of a strategy a, that is updated as follows [18]:

qa(t + 1) = qa(t) + α · [ra(t) − qa(t)], (7)

where α ∈ (0, 1] is the adaptation rate. The PM method updates the probability
Pa(t) as follows [15,18]:

pa(t + 1) = pmin + (1 − K · Pmin)
qa(t + 1)∑
K
i=1qi(t + 1)

. (8)
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where pmin ∈ (0, 1] represents the minimum probability value of each strategy,
the objective of this is to ensure no operator gets lost. It is indicated by Eq. (8)
that when only one strategy achieves a reward during a long period of time
and all other strategies receive no reward, then its selection probability Pa(t)
converges to pmax = pmin+(1−K ·pmin). It also can be seen that

∑
K
a=1pa(t) = 1

and 0 < Pmin < 1
K .

3.2 Constrained Credit Assignment

As mentioned above, the OPA problem is a constrained optimization problem.
Therefore, to assign the credit for each search operator, we need to design the
constrained credit assignment technique. In this work, the constraint-handling
technique named improved adaptive trade-off model [19] is employed, which was
proposed by Wang and Cai and is the improved version of ATM [20]. In IATM,
the population can be divided into three situations such as infeasible situation,
semi-feasible situation and feasible situation.

In the infeasible situation, the solutions are measured based on their con-
straint violation. In the semi-feasible situation, the population includes both
feasible and infeasible solutions and it can be divided into the feasible group
(Z1) and the infeasible group (Z2) based on the feasibility of each solution. The
infeasible individuals in the semi-feasible situation should be handled and eval-
uated based on their constraint violation. Then, the objective function can be
seen as f(x) and x is the vector of the solution. The objective function value
f(xi) of the solution xi is converted into

f ′(xi) =
{

f(xi), i ∈ Z1

max {ϕ · f(xbest) + (1 − ϕ) · f(xworst), f(xi)}, i ∈ Z2
(9)

where ϕ represents the feasibility ratio of the last population, and xbest and
xworst are the best and worst individual in the feasible group Z1, respectively.
After achieving the changed objective function value of each individual, then it
should be normalized as

fnor(xi) =
f ′(xi) − min

j∈Z1∪Z2
f ′(xj)

max
j∈Z1∪Z2

f ′(xj) − min
j∈Z1∪Z2

f ′(xj)
. (10)

In addition, the normalized constraint violation can be evaluated as

Cnor(xi) =

⎧
⎨

⎩

0, i ∈ Z1
C(xi)− min

j∈Z2
C(xj)

max
j∈Z2

C(xj)− min
j∈Z2

C(xj)
, i ∈ Z2

(11)

where C(x) represents the distance of the solution x from the boundaries of the
feasible set, which also reflects the degree of its constraint violation.

Then, the final fitness function is obtained as follows:

ffinal(xi) = fnor(xi) + Cnor(xi). (12)
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In the feasible situation, it is to say that all solutions are feasible in the
population, the performance of the situation can be evaluated by the objective
function value.

Based on the above fitness transformation technique, similar to the method
in [21], the relative fitness improvement ηi can be calculated by

ηi =

⎧
⎪⎨

⎪⎩

δ1
f(ui)

· (f(xi) − f(ui)), feasible situation
δ2

C(ui)
· (C(xi) − C(ui)), infeasible situation

δ3
ffinal(ui)

· (ffinal(xi) − ffinal(ui)), semi-feasible situation
(13)

where i = 1, . . . , μ. δ is the objective fitness of the best-so-far solution in the
population. xi and vi are the parent and its offspring, respectively.

In [17], four different credit assignment methods are presented, and the aver-
aged normalization reward is able to provide highly-competitive results through
benchmark functions. Based on this consideration, the averaged normalization
reward is selected for the credit assignment in this work and is listed as follows:

ra(t) =
r′
a(t)

max
a=1,...,K

r′
a(t)

(14)

where r′
a(t) is calculated as

r′
a(t) =

∑ |Sa|
i=1 |Sa|
|Sa| (15)

and Sa is the set of all relative fitness improvement ηi of a strategy a (a =
1, · · · ,K) at generation t.

3.3 Strategy Pool

DE has realized using different mutation strategies to achieve different perfor-
mance for solving different problems. Instead of employing the computation-
ally enormous trial-and-error search for the most suitable mutation strategy, we
maintain a strategy candidate pool including four mutation strategies. In this
work, we choose several effective mutation strategies commonly referred to in
DE literatures and choose some of them to construct the strategy candidate
pool which are listed as follows:

(1) “DE/rand/1”:
vi = xr1 + F · (

xr2 − xr3

)
(16)

(2) “DE/current-to-best/1”:

vi = xi + F · (
xbest − xi

)
+ F · (

xr2 − xr3

)
(17)

(3) “DE/rand-to-best/1”:

vi = xr1 + F · (
xbest − xr1

)
+ F · (

xr2 − xr3

)
(18)
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Algorithm 1. The pseudo-code of PM-MDE
1: Set μF = 0.5; μCR = 0.5
2: Generate the initial population randomly
3: Evaluate the fitness for each individual
4: Set K = 4, pmin = 0.05, α = 0.3,and β = 0.8
5: For each strategy a, set qa(t) = 0 and pa(t) = 1/K
6: while The halting criterion is not satisfied do
7: Set SCR = ∅; SF = ∅
8: for i = 1 to NP do
9: CRi = rndni(μCR, 0.1) Fi = rndci(μF , 0.1)

10: Select the strategy SIi based on its probability
11: Select uniform randomly r1 �= r2 �= r3 �= r4 �= r5 �= i
12: jrand = rndint(1, D)
13: for j = 1 to D do
14: if rndrealj [0, 1) < CR or j == jrand then
15: if SIi == 1 then
16: ui,j is generated by strategy (16)
17: else if SIi == 2 then
18: ui,j is generated by strategy (17)
19: else if SIi == 3 then
20: ui,j is generated by strategy (18)
21: else if SIi == 4 then
22: ui,j is generated by strategy (19)
23: end if
24: else
25: ui,j = xi,j

26: end if
27: end for
28: end for
29: for i = 1 to NP do
30: Evaluate the offspring ui based on constraint-handling technique
31: if f(ui) is better than or equal to f(xi) then
32: CRi → SCR; Fi → SF

33: Replace xi with ui

34: end if
35: end for
36: Update the value of μCR and μF

37: Calculate the reward ra(t) for each strategy
38: Update the probability pa(t) for each strategy
39: end while

(4) “DE/current-to-rand/1 ”:

vi = xi + F · (
xr1 − xi

)
+ F · (

xr2 − xr3

)
(19)

where xbest is the best individual in the current generation, r1, r2, r3, r4, r5 ∈
{1, . . . , NP} and r1 �= r2 �= r3 �= r4 �= r5 �= i.
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It is noteworthy that there are many other strategies could also be incor-
porated in the pool; the above strategies are just used as an example for the
evaluation of the proposed method. It must also be pointed out that the size
of the strategy pool and the selection of the strategies used in the pool is not
sure and there are no theoretical studies as of today on the choice of the opti-
mal number of available strategies and on the selection of strategies to form the
strategy pool [12]. Therefore, by combining the above-mentioned two aspects
with the DE algorithm, the PM-MDE method is developed. The pseudo-code
of PM-MDE is illustrated in Algorithm 1. During evolution, at each generation
t, there is only one strategy SIi been selected based on the choice probabil-
ity of the strategy for each target parent i. Then the offspring is generated by
employing the selected strategy. The relative fitness improvement ηi based on
constraint handling technique is calculated and stored in the set SSIi after eval-
uating the offspring. Finally, parameters value of PM-MDE algorithm such as
the reward, quality and probability of each strategy are updated. In addition,
to remedy the parameter fine-tuning, in this work, the parameter adaptation
technique proposed in [16] is used in PM-MDE.

4 Experimental Results and Analysis

In this section, we perform comprehensive experiments to evaluate the perfor-
mance of PM-MDE and compare the results of our methods with a algorithm
named CBBO-DE, which is a hybridization of BBO algorithm and DE algorithm
for OPA.

4.1 Experimental Settings

Without loss of generality, for all experiments, we use the following parameters
unless a change is mentioned:

– Population size: NP = 100;
– μCR = 0.5 and μF = 0.5 [4];
– Number of strategies: K = 4; minimal probability: pmin = 0.05; adaptation

rate: α = 0.3;
– Maximum Number of Fitness Function Evaluations (Max NFFEs): 30, 000.

Moreover, all experiments were run 30 times. Simulations have been car-
ried out for various values of parameters: fusion error threshold ε, correlation
degree ρ, and number of sensors (L), and the performances of the different algo-
rithms are shown for different combinations: ρ = {0, 0.01, 0.1, 0.5}. ρ = 0 rep-
resents the uncorrelated case. The fusion error threshold ε takes its values in
{0.1, 0.05, 0.01, 0.001}. The observation signal-to-noise ratio (SNR) r0 was set at
10 dB.
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4.2 Numerical Results

In this section, in order to compare the performance of the adaptive strategy
selection for OPA, the DE with fixed strategy and recently proposed algorithm
for OPA are considered. For fair comparison, the adaptive parameters control
keeps the same in all simulation. The statistical features (mean, and standard
deviation values) of the best feasible solutions obtained after 30 independent
runs for each case study are used to evaluate the performance of the competing
algorithms. Numerical results of competing algorithms for OPA problems in
WSNs are shown in Tables 1, 2, 3, 4 and 5 when the observations are i.i.d and

Table 1. Numerical results of DE with fixed strategy and PM-MDE to optimal power
allocation in WSNs when the observation are i.i.d. with ρ = 0, ε = 0.1 and different
number of sensors.

L
PM-MDE DE1 DE2 DE3 DE4

Mean±(Std) Mean±(Std) Mean±(Std) Mean±(Std) Mean±(Std)
10 3.17E+00 ± (3.43E-11) 3.17E+00 ± (3.38E-06) 3.17E+00 ± (8.65E-09) 3.17E+00± (8.53E-10) 3.17E+00± (1.99E-03)
20 1.93E+00 ± (3.71E-07) 1.93E+00 ± (1.10E-06) 1.93E+00 ± (8.52E-06) 1.93E+00 ± (1.69E-04) 1.97E+00 ± (1.43E-02)
50 8.67E-01 ± (4.23E-03) 8.68E-01± (1.24E-03) 8.66E-01 ± (2.45E-04) 8.75E-01 ±( 3.69E-03) 1.24E+00 ± (9.33E-02)

100 8.52E-01 ± (2.35E-02) 5.78E+01 ± (3.77E+01) 6.54E+03 ± (9.84E+02) 1.53E+03 ± (1.35E+02) 4.07E+00 ± (9.53E-01)
150 9.59E-01 ± (7.99E-02) 1.31E+00 ± (8.52E-02) 2.44E+00 ± (2.75E-01) 8.74E+03 ± (3.85E+03) 2.45E+02 ± (7.61E+01)
200 1.08E+00 ± (3.78E-01) 1.28E+01 ± (5.12E+01) 3.49E+02 ± (7.76E+01) 8.88E+04 ± (2.87E+04) 2.00E+03 ± (5.06E+02)

1, 2, 3, 4 respectively represent DE algorithm with DE/rand/1, DE/best/1, DE/current-to-best/1, DE/rand-to-best/1 strategy.

Table 2. Numerical results of PM-MDE with CBBO-DE to optimal power allocation
in WSNs when the observation are i.i.d. with ρ = 0, ε = {0.1, 0.05, 0.01, 0.001} and
different number of sensors.

ε PM-MDE CBBO-DE

Mean ± (Std) Mean ± (Std)

L = 10

0.1 3.1727E+00 ± (9.2849E-05) 3.1725E+00± (1.1803E-06)

0.05 5.9254E+00± (5.5930E-08) 5.9723E+00 ± (4.4272E-05)

0.01 1.5130E+01 ± (3.5448E-08) 1.1530E+01 ± (8.0724E-10)

0.001 4.0317E+01 ± (3.9498E-04) 4.0245E+01± (5.5876E-06)

L = 20

0.1 1.9343E+00 ± (1.3791E-03) 1.9333E+00± (1.4882E-03)

0.05 3.6141E+00± (1.7754E-03) 3.6413E+00 ± (1.0540E-03)

0.01 9.1009E+00 ± (4.0275E-03) 9.0985E+00± (6.7927E-04)

0.001 2.1601E+01 ± (4.2999E-03) 2.1598E+01± (6.4187E-04)

L = 50

0.1 1.1192E+00± (6.2244E-02) 2.7516E+00 ± (3.9133E-01)

0.05 1.9591E+00± (9.7700E-02) 4.5611E+00 ± (6.5277E-01)

0.01 4.7101E+00± (8.9643E-02) 6.2178E+00 ± (5.0805E-01)

0.001 1.0306E+01± (1.2003E-01) 1.1093E+01 ± (6.0068E-01)
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Table 3. Numerical results of PM-MDE with CBBO-DE to optimal power allocation
in WSNs when the observation are correlated with ρ = {0.01, 0.1, 0.5}, L = 10, ε =
{0.1, 0.05, 0.01, 0.001}.

ε PM-MDE CBBO-DE

Mean ± (Std) Mean ± (Std)

ρ = 0.01

0.1 3.1834E+00 ± (1.6035E-04) 3.1833E+00± (3.8557E-04)

0.05 5.9502E+00± (4.3685E-07) 5.9975E+00 ± (4.0340E-05)

0.01 1.5255E+01 ± (3.3372E-08) 1.5255E+01 ± (1.8879E-09)

0.001 4.0980E+01± (3.4452E-04) 4.1046E+01 ± (4.6323E-04)

ρ = 0.1

0.1 3.2792E+00± (9.9562E-05) 3.2834E+00 ± (1.1153E-04)

0.05 6.1755E+00± (5.6832E-09) 6.2391E+00 ± (3.8481E-05)

0.01 1.6489E+01± (4.6071E-06) 1.6562E+01 ± (3.5623E-09)

0.001 4.8644E+01± (1.1203E-10) 4.9077E+01 ± (7.8106E-04)

ρ = 0.5

0.1 3.5839E+00± (8.5642E-04) 3.8583E+00 ± (2.3158E-04)

0.05 6.9964E+00± (3.6859E-04) 8.1361E+00 ± (8.0422E-05)

0.01 2.2803E+01± (8.8792E-04) 3.4349E+01 ± (8.0846E-07)

0.001 1.0778E+02± (6.7852E+00) 7.3514E+02 ± (6.6360E-02)

correlated. In addition, the best result among competing algorithms in Tables 1,
2, 3, 4 and 5 are shown in boldface.

Firstly, we choose four strategies which are frequently used in DE literature
as the competing algorithm in Table 1. From results in the Table 1 we can see
that PM-MDE algorithm we proposed is significantly better than DE with fixed
strategies on most of the value of L (sensors) when the observations are i.i.d with
ρ = 0 and ε = 0.1. Second, in L = 50, DE algorithm with DE/best/1 obtains
best results and better results were found by PM-MDE among all competing
algorithms. Important observations about the convergence rate and stability of
different algorithms can be made from the results presented in Table 1 and these
results suggest that the overall convergence rate of PM-MDE is the best or
second best for OPA in the competing algorithms.

Table 2 shows a comparison of the performances of PM-MDE algorithm and
CBBO-DE algorithm, for the different values of ε and L, in the uncorrelated
case (ρ = 0). Firstly, various simulations of PM-MDE with ε chosen from
{0.1, 0.05, 0.01, 0.001} shown that PM-MDE algorithm emerged the best candi-
date result for L = 10 and L = 50 sensors in terms of the best mean results. For
the L = 20 sensors case, the CBBO-DE produces the best mean results. Sec-
ondly, simulation results also indicate that PM-MDE does function efficiently
within the large number of sensors.
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Table 4. Numerical results of PM-MDE with CBBO-DE to optimal power allocation
in WSNs when the observation are correlated with ρ = {0.01, 0.1, 0.5}, L = 20, ε =
{0.1, 0.05, 0.01, 0.001}.

ε PM-MDE CBBO-DE

Mean ± (Std) Mean ± (Std)

ρ = 0.01

0.1 1.9394E+00± (1.7861E-03) 1.9396E+00 ± (2.1426E-03)

0.05 3.6292E+00± (2.6169E-03) 3.6559E+00 ± (9.7422E-04)

0.01 9.1634E+01 ± (3.7387E-03) 9.1607E+00± (8.9830E-04)

0.001 2.1842E+01 ± (3.1386E-03) 2.1842E+01 ± (3.9883E-03)

ρ = 0.1

0.1 1.9908E+00 ± (3.5774E-03) 1.9905E+00± (1.3193E-03)

0.05 3.7594E+00± (3.6727E-03) 3.7958E+00 ± (1.8885E-03)

0.01 9.7554E+01± (5.4935E-03) 9.7894E+01 ± (9.1896E-04)

0.001 2.4182E+01± (3.4839E-03) 2.4324E+01 ± (1.9630E-03)

ρ = 0.5

0.1 2.1879E+00± (7.4038E-03) 2.3026E+00 ± (2.1919E-03)

0.05 4.3232E+00± (2.1397E-02) 4.8357E+00 ± (2.7079E-03)

0.01 1.2547E+01± (8.5490E-02) 1.5865E+01 ± (3.2673E-03)

0.001 3.6247E+01± (9.1529E-02) 6.0685E+01 ± (6.5080E-02)

Tables 3, 4 and 5 show the results of the comparison with CBBO-DE when
the observations are correlated in the case of L = 10, 20, 50 sensors for dif-
ferent values of the fusion error probability ε and the degree of correlation
ρ, respectively. In the experiments reported above, the results are shown for
ρ = {0, 0.01, 0.1, 0.5} and ε = {0.1, 0.05, 0.01, 0.001}. It can be seen that in each
case, PM-MDE respectively outperforms other competing algorithm in 10, 8,
and 12. From Table 5, specifically, we can see that PM-MDE has emerged as
the best performer since it obtained the best mean results in the all cases. It is
similar to the observation from above experiments, where PM-MDE algorithm
does show obvious performance improvement for OPA, especially in the large
number of sensors PM-MDE algorithm obtains better performance.

Overall, according to the results shown in Tables 1, 2, 3, 4 and 5 and the above
analysis, we can conclude that when the observations are i.i.d and correlated
(Tables 3, 4 and 5), the performance improvement for PM-MDE, compared to the
other competing algorithm, was better for L = 10, 20, and 50 sensors. Meanwhile,
PM-MDE obtains better results for the larger sensors.
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Table 5. Numerical results of PM-MDE with CBBO-DE to optimal power allocation
in WSNs when the observation are correlated with ρ = {0.01, 0.1, 0.5}, L = 50 senors,
ε = {0.1, 0.05, 0.01, 0.001} and different number of sensors.

ε PM-MDE CBBO-DE

Mean ± (Std) Mean ± (Std)

ρ = 0.01

0.1 1.2346E+00± (1.1103E-01) 2.7742E+00 ± (5.6072E-01)

0.05 2.0543E+00± (8.4439E-02) 4.1691E+00 ± (3.8860E-01)

0.01 4.8249E+00 ± (1.3068E-01) 6.0532E+00 ± 7.9833E-01

0.001 1.0521E+01± (7.3975E-02) 1.0746E+01 ± (3.3081E-01)

ρ = 0.1

0.1 1.2406E+00± (9.4525E-02) 3.0813E+00 ± (4.3000E-01)

0.05 2.1356E+00± (8.8744E-02) 4.3770E+00 ± (6.2806E-01)

0.01 5.1088E+00 ± (8.1419E-02) 6.6532E+00 ± (1.0134E+00)

0.001 1.1284E+01± (1.2038E-01) 1.1669E+01 ± (5.8073E-01)

ρ = 0.5

0.1 1.3432E+00± (8.8691E-02) 2.9672E+00 ± (4.6985E-01)

0.05 2.4334E+00± (5.5883E-02) 4.6214E+00 ± (5.7670E-01)

0.01 6.2096E+00 ± (1.1285E-01) 7.4210E+00 ± (3.2418E-01)

0.001 1.4824E+01± (1.5434E-01) 1.8449E+01 ± (3.6772E-02)

5 Conclusions

Optimal power allocation (OPA) is considered to be one of the key issues in
designing a wireless sensor network (WSN). In this paper, multi-operator dif-
ferential evolution is proposed for the optimal power allocation in WSNs. Com-
bining with the constraint-handling technique, DE can be used to deal with
OPA. However, the DE performance mainly depends on mutation and crossover
operators. This new algorithm adaptively chooses the suitable strategy for a spe-
cific problem, meanwhile the probability matching technique and credit assign-
ment method are integrated into DE algorithm. In addition, PM-MDE is com-
pared with DE algorithm using fixed strategy and CBBO-DE algorithm proposed
in [11] for OPA. The numerical results indicate that PM-MDE has outperformed
the other competing algorithms for several types of simulation case studies,
including both independent local observation cases and correlated observation
cases. It has also been observed that, PM-MDE algorithm function efficiently
within the large number of sensors.
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