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Abstract. This paper presents a study to design, analyze and optimize
an airfoil trailing edge, i.e., shape morphing of the airfoil trailing-edge
topology. The primary idea behind morphing is to improve the wing per-
formance for different flight conditions. Modern aircrafts are designed for
unique operating conditions. In order to obtain the best configuration, a
dynamic optimization algorithm has been developed based on a Multi-
swarm Particle Swarm Optimization algorithm (MPSO), a population-
based stochastic optimization algorithm inspired by the social interaction
among insects or animals. However, with respect to aircraft design and
in the context of computational fluid dynamics (CFD), function evalua-
tions are computationally expensive; typically requiring large computa-
tional grids to obtain a reasonable representation of the flow-field. In this
paper, the developed MPSO algorithm is combined with a Kriging surro-
gate representation of the objective space, to alleviate the computational
effort. The topology of the trailing edge is defined and characterized by
four control points. Two different hypothetical mission profiles are ana-
lyzed. The results exhibit an improvement of around 2% with respect to
the original airfoil for every flight condition treated.

1 Introduction

One of the major challenges in aerospace design is to improve aircraft efficiency
during operation, a requirement borne from the need to accommodate for ris-
ing fuel prices and the mitigation of emissions. The research effort in aircraft
design is primarily driven by this incentive. One of most widely-used strategies
by modern aircraft is using movable control surfaces to improve flight perfor-
mance. For example, flaps and slats, whilst traditionally used during take-off
and landing manoeuvres, can also be used to introduce a variable camber to
the wing, thus providing scope for determining the optimum configuration for a
given flight condition. However, when constrained by limited freedom of move-
ment, it is unlikely that optimal solutions for every possible cruise condition are
attainable. Furthermore, control surface devices result in geometrical discontinu-
ities, which can often reduce the aerodynamic efficiency. In contrast, a morphing
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wing can potentially conform to provide optimal performance at any desired
flight condition. Morphing wing technology can be used for flow-control, aerody-
namic tailoring, improved flight dynamics during manueveres, and improve the
aeroelastic performance and dynamic load response of military aircraft [1,4,5,7].

In this paper a conceptual two-dimensional study is considered. The upper
section of the trailing edge is deformable, since it is possible to achieve similar
results to a fully morphing airfoil [2] without the drastic increase in complexity
and weight. A multi-swarm heuristic, combining surrogate models for the alle-
viation of the computational effort are considered. Surrogates are used in lieu
of the computationally expensive computational fluid dynamic (CFD) model,
whereby the swarm directly navigates the surrogate landscape in order to find
the region in the design space where the optimal solutions are likely located [3].

The dynamic optimization framework is developed to characterize the entire
flight envelope, providing the best aerodynamic design, including morphing para-
meters as well, for that configuration. The framework allows for the identification
of different optimal solutions, where the transition between different flight con-
figurations (and therefore different shape topologies) is ultimately dependent on
minimum energy expenditure during morphing. This ensures that during tran-
sition of flight configurations, the algorithm places a priority to solutions which
avoid drastic changes between successive configurations, with minimal structural
and logistic problems.

2 Geometrical Parametrization

The original (i.e. base) airfoil selected is the NACA 23012, which is a mildly-
cambered low-speed airfoil. The topology of the morphing trailing edge is con-
trolled using four control points, situated along the upper trailing edge section,
as shown in Fig. 1. We choose as original airfoil a NACA 23012. The morphing
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Fig. 1. An example of a morphed airfoil, compared with the original one, the design
variables in input are: inputs = [1,0,1,0].
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is theoretically achieved by manipulating the vertical (i.e. y) coordinate of the
control points. Since the exact configuration is not known in advance, a ran-
dom population of design candidates is first generated, and the optimization
framework hones in on the optimal deviation of the vertical (i.e. y) coordinates
from the original position. The boundaries of the design space are restricted to
y ∈ [−0.015, 0.015], to ensure a robust topology the and manufacturable shape is
guaranteed. To facilitate the optimization process, the boundaries are normalized
to unity, where a value of 0 corresponds to the lowest position for the y coor-
dinate and 1 to the highest position. The four control points provide the basis
for shape morphing, where a piecewise cubic Hermite polynomial interpolation
scheme is used.

3 Surrogate Model

A major obstacle in using population-based optimization frameworks is the often
prohibitive computational expense of the numerical model. To this end, the pur-
suit of higher-order shape parameterization techniques, able to define arbitrarily
complex shapes with minimal design variables, is highly desirable. Nevertheless,
for true multi-disciplinary aircraft design, the numerical model is the most pro-
hibitive element of the framework. The use of surrogate models are very popular
for aerospace design applications since they can be used in lieu of the original
and more costly computational model of the problem [3]. In this context, the
surrogate model can play a very valuable role in increasing the feasibility of
using population-based algorithms in conceptual aircraft design. The surrogates
are constructed using data obtained from the high-fidelity numerical model, and
provide cheap approximations of the original objective functions and constraints
at new locations.

3.1 Kriging Method

Of particular significance in surrogate models is the methodology used. In this
study, the approximated values are modeled by a Gaussian process governed
by prior covariances, known as Kriging (Krige, 1951), which is an interpolating
method featuring the observed data at all sample points. Kriging provides a
statistical prediction of the function at an arbitrary location by minimizing its
mean squared error (MSE).

Kriging methods rely on the notion of autocorrelation. Correlation is usu-
ally thought of as the tendency for two types of variables to be related. For
the derivation of Kriging, the output of a deterministic computer experiment is
treated as a realization of a random function (or stochastic process), which is
defined as the sum of a global trend function fT (x)β and a Gaussian random
function Y (x) as the following:

y(x) = fT (x)β + Y (x), x ∈ �m, (1)
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where f(x) is defined by a set of regression basis functions and β denotes the
vector of the corresponding coefficients, m is the number of dimensions, and x
is the vector of design variables. Now we can obtain the correlation function of
our variables which is only dependent on the Euclidean distance between any
two points x(i) and x(l) in the design space. The random variables are correlated
with each other using the basis expression:

Corr[Y (x)(i), Y (x)(l)] = exp

(
−

k∑
j=1

θj |x(i)
j − x

(l)
j |pj

)
. (2)

The correlation depends on the Euclidean distance and two undefined parameters
θ and p that have to be obtained by means of a numerical optimization technique.
At this point it is possible to formulate the prediction expression:

ŷ(x) = ˆ(μ) + ψTΨ−1(y − 1μ̂), (3)

where ψ is the vector of the basis function, Ψ is the correlation matrix, 1 is a
vector of one, centered around the n sample points and are added to a mean
base term μ̂.

4 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-based stochastic optimiza-
tion technique, inspired by social behavior of bird flocking or fish schooling, and
belongs to the family of swarm intelligence techniques [13]. The potential candi-
dates, called particles, navigate the objective landscape, with their movements
guided by the best known position of each particle as well as the entire swarm’s
best known position. The process is iterated until a satisfactory (or converged)
solution is found. Each particle keeps track of its coordinates in the problem
space, which are associated with the best solution (in terms of fitness) it has
achieved so far. This position is called pbest. Another position that is tracked by
the standard version of the particle swarm optimizer is the overall best position,
and its fitness value, obtained so far by any particle in the population. This
location is called gbest.

The particle swarm optimization (PSO) search process consists of, at each
time step, changing the velocity (accelerating) of each particle towards its pbest
and gbest locations (standard version of PSO). Acceleration is weighted by a
random term, with separate random numbers being generated for acceleration
towards the pbest and gbest locations.

The original process for implementing the standard version of PSO is pro-
vided in Algorithm 1. In the algorithm, a, b and c are constants that separately
control the importance of the three directions which determine the next velocity
and position of the particle. The three components are usually referred to as
inertia (vti), cognitive influence (pbti − xti), and social influence (gbt − xti).
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Algorithm 1. Standard PSO Algorithm

1: Initialise all particles i with random positions x0
i as well as random velocities v0i

2: Initialise the particle’s best known position (pb0i ) to its initial position.
3: Calculate the initial swarm’s best known position gb0.
4: repeat
5: for all Particle i in the swarm do
6: Pick random numbers:
7: Update the particle’s velocity: vt+1

i = a · vt
i + b · rp · (pbt

i − xt
i) + x · rg · (gbt − xt

i)
8: Compute the particle’s new position: xt+1

i = xt
i + vt+1

i

9: if fitness (xt+1
i ) ¡ fitness (pbt

i) then
10: Update the particle’s best known position: pbt+1

i = xt+1
i

11: end if
12: if fitness (pbt+1

i ) ¡ fitness (gbt)) then
13: Update the swarm’s best known position: gbt+1 = pbt+1

i

14: end if
15: end for
16: until termination criterion is met
17: return The best known position: gb.

4.1 Optimization in a Dynamic Environment

Many real-world problems are dynamic in the sense that the global optimum
location and value may change with time. The task for the optimization algo-
rithm is to track this shifting optimum. In this context it is possible to adapt the
particle swarm to work in a dynamic environment and in presence of multiple
peaks. The choice of using PSO is obvious, since it shows very useful charac-
teristics for a dynamic environment: simple implementation, very few algorithm
parameters, very efficient global search algorithm, and insensitive to the scaling
of design variables. However the standard PSO is affected by two problems: out-
dated memory; and diversity loss [16]. The first one happens as the environment
changes when the optima may shift in location and/or value. Particle memory
(namely the best location visited in the past, and its corresponding fitness) may
no longer be consistent after the change, with potentially sub-optimal effects on
the search. The problem of outdated memory is typically solved by either assum-
ing that the algorithm knows just when the environment change occurs, or that
it can detect changes. In either case, the algorithm must act with an appropriate
response. Equally troubling as outdated memory is an insufficient diversity after
change. The population takes time to re-diversify and re-converge, resulting in
being unable to track a moving optimum. Loss of diversity arises when a swarm
converges onto a peak. There are two possibilities: when a change occurs, the
new optimum location may either be within or outside the collapsing swarm. In
the former case, there is a good chance that a particle will find itself close to
the new optimum within a few iterations and the swarm will successfully track
the moving target, assuming that the swarm as a whole has sufficient diversity.
However, if the optimum shift is significantly far from the swarm, the low veloc-
ities of the particles will inhibit re-diversification and tracking, and the swarm
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can even oscillate about a false attractor and along a line perpendicular to the
true optimum, in a phenomenon known as linear collapse [14].

In this study we resolve this issue by combining two techniques to treat
the dynamic problems: Charged Particle Swarm Optimization (CPSO) [14] and
Multi-swarm Particle Swarm Optimization (MPSO) [14]. CPSO introduces a
repulsive mechanism that can either be between particles, or from an already
detected optimum. In this model, a swarm is comprised of a charged and a
neutral sub-swarm. Charge enhances diversity in the vicinity of the converging
PSO sub-swarm, so that optimum shifts within this cloud should be trackable.
Implementing the charged PSO is simple, since its structure is similar to the
canonical one, with the addition of an acceleration term in the swarm equations
of motion, which is called electrostatic acceleration ai [15]. The main idea behind
MPSO is to split the population of particles into several interacting swarms.
The aim of these swarms is to position each on different promising peaks of
the fitness landscape. Splitting the main swarm into independent sub-swarms
is unlikely to be effective, since the swarms will not interact. The idea is to
use some parameters to control the interaction between swarms, including two
mechanisms known as exclusion and anti-convergence [17].

Exclusion controls the local interaction between swarms, preventing swarms
from staying on the same peak. Anti-convergence deals with the issue as each
swarm converges onto a peak, i.e., the particles of the swarms are in close prox-
imity to the attractor. The problem is that if there are more peaks than the
number of swarms, it is necessary to ensure that at least one swarm is kept free
for detecting any possible change in the environment.

5 Implementation of the Surrogate Model

Given that the operating principles of optimization and surrogates are defined;
their synergy and integration into the framework must be considered. The surro-
gate is treated as a partially-online black-box emulating function, with inputs as
the normalized control points, and the airfoil lift coefficient (CL), which defines
the flight condition. A local surrogate is referred to cases where CL is fixed (and
so the flight condition). Alternatively, the global surrogate refers to cases where
CL is an additional participating input variable.

The difference between the two objective landscapes is that the local model
ensures more accuracy for a defined flight condition, whereas the global pro-
vides a better prediction for the whole objective landscape. For this reason, it is
possible to discern at least three different approaches:

1. Local surrogates (four variables, i.e. the four control points):
(a) Apply optimization directly to the surrogate model.
(b) Optimize the surrogate with CFD and compute the optimization.

2. Global surrogates (five variables, i.e. the four control points and the lift CL):
(a) Apply optimization directly to the surrogate model.
(b) Optimize the surrogate with CFD and execute the optimization.
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3. Mixed approach: using a global surrogate with local surrogates optimized
with CFD.

A direct application of an optimization method without using the surrogate
is rare, since the computational cost is very high. Each above approach can
be evaluated in terms of: flexibility to the designer, computational intensity
and accuracy. The mixed approach proved to be most efficient. In this case the
global surrogate provides the general information of the space design and the
local surrogates are used as swarms to locate the optima.

6 Application

The practical application of the framework is based on a generic modular, long
endurance unmanned aerial system which intends to fulfil the primary roles of
unarmed reconnaissance, data collection, and surveillance. The morphing opti-
mization will be performed for a hypothetical flight path. This is composed of
three mission objectives which correspond to three different configurations. We
want to find the three optimal configurations to minimize the objective of the
specific phase as restricting the energy spent when performing the morphing.
The three mission objectives considered are:

– Maximum range
– Maneuvering at a defined angle of attack
– Maximum endurance

Both the range and endurance depend on the rate of fuel consumption of the
propulsion system, and therefore, on the type of engine. The range is consid-
ered to be the maximum distance the aircraft can fly and the endurance as the
maximum possible flight duration (irrespective of distance covered, i.e. loiter-
ing). As one might expect, there is a flight condition (attitude and velocity) that
will provide the best range for a given aircraft, and a different flight condition
that will give us maximum endurance. It is clear that if we want to maximize
flight endurance for a defined configuration, we have to minimize the function
f∗ = CD

CL
, where CD is the aerodynamic drag coefficient. Alternatively, to maxi-

mize the range, the cost function to be minimized is f∗ = CD

C
1/2
L

. The maneuvering

has been performed for a fixed angle of attack trying to minimize f∗ = ( 1
CL2 ).

There are six design parameters to define both range and endurance, which are
four morphing control points, as well as the wing angle of attack (α) and airspeed
(V ). For simplicity, the altitude is fixed.

7 Results

The optimal framework approach in terms of accuracy, flexibility and compu-
tational cost is the mixed approach. Different combinations of parameters were
considered, to determine the optimal swarm population size, number of swarms,
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and size of the initial training dataset (i.e. number of samples), and are consoli-
dated in Table 1. It is important to note the time of change: such that after every
40 iterations the optimization framework dynamically changes its objective.

The velocities are obtained after having optimized the airfoil without morph-
ing and found out which are the best to accomplish each objective. The results
obtained for each case are shown in Table 2. Each optimization routine provides
four ideal shapes for each objective, with each solution ranked according to the
percentage of improvement and energy expenditure. The improvement, except
for the maneuvering phase, is quite small. Indeed, for range and endurance,
the average improvement is of the order of 1%. Minimum energy expenditure is
determined based on the minimum amount of structural deformation required
to transition between successive states. After this trade-off was performed, the
best three profiles for completing the mission are obtained, which can be seen
in Fig. 2. It is interesting to note the effects of the morphing on the aerody-
namic performance coefficients. For the range the result does not change much,
as compared to the original, instead for the maneuvering we have some interest-
ing improvements. After the first input point there is a regain in pressure and

Table 1. Input parameters for MPSO

Inputs

Number of swarms 12

Particles of each swarm 20

Density (kg/m3) 1,225

Velocity (m/s) 25, 30, 29

Maximum iterations 120

Change interval 40

Number of samples 30

Table 2. Results for range, maneuvering and endurance.

Morphed airfoils Original airfoil Improvement (%)

CL (-) CD (-) f* (-) α (deg) CL (-) CD (-) f* (-) α (deg)

Range 0.76 0.0109 0.0125 6.6 0.78 0.0112 0.0127 6.6 1.3

f∗ =
CD√
CL

0.79 0.0112 0.0126 6.9 0.5

V = 29.2 m
s

0.82 0.0114 0.0126 6.9 0.5

0.76 0.0109 0.0125 6.6 1.1

Maneuvering 0.74 0.0122 1.8211 6.0 0.71 0.0116 1.9802 6.0 5.0

f∗ = 1/C2
L 0.74 0.0127 1.8126 5.3

V = 30 m
s

0.74 0.0122 1.8093 5.5

0.73 0.0123 1.8723 3.9

Endurance 0.98 0.0132 0.0134 8.6 1.09 0.0147 0.0135 9.8 0.7

f∗ = CD/CL 0.97 0.0129 0.0134 8.5 0.8

V = 24.9 m
s

0.96 0.0127 0.0132 8.4 1.9

0.97 0.0130 0.0133 8.6 1.2
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Fig. 2. Best airfoils shape for range, maneuvering and endurance.

consequently an increase of lift, this is exactly what we want to achieve during
this phase. Furthermore, the pitching moment CM is affected by the morphing.

8 Conclusion

This paper has presented a dynamic optimization of a morphing trailing edge.
A population-based dynamic optimization framework is developed, utilizing the
Multi-swarm Particle Swarm Optimization algorithm, in combination with Krig-
ing surrogate models, used to alleviate the computational effort of the high-
fidelity numerical solver. The conceptual study illustrated significant improve-
ment in the flight performance is attainable, with the major improvement expe-
rienced during the phase of maneuvering. In this context an improvement in
aerodynamic performance of approximately 5% is observed, as compared to the
original profile. Cruise aerodynamic performance was improved by 1% to 3%,
which is still significant since minimal energy expenditure in morphing the trail-
ing edge topology of the original profile is considered. Starting from this and
passing from an experimental validation of the numerical analysis, morphing
could, in future, replace the current use of multiple aerodynamic devices (such
as flaps and slats). The framework developed provides a clear scope for future
research direction. The conceptual application simply considers a static two-
dimensional analysis, the real benefits of adopting a dynamic swarm framework
would be to consider the optimal execution of time-accurate aircraft maneuvers.
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