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Preface

This volume contains the papers presented at the Australasian Conference on Artificial
Life and Computational Intelligence (ACALCI 2017) held from January 31 to February
2, 2017, in Geelong, Australia.

The research areas of artificial life and computational intelligence have grown
significantly over recent years. The breadth is reflected in the papers addressing diverse
aspects in the domain, from theoretical developments to learning, optimization, and
applications of such methods to real-world problems.

This volume presents 32 papers, many of them authored by leading researchers in
the field. After a rigorous evaluation of all 47 submissions by the international Program
Committee, 32 manuscripts were selected for single-track oral presentation at ACALCI
2017. All papers underwent a full peer-review with three to four reviewers per paper.

The ACALCI 2017 international Program Committee consisted of over 63 members
from six countries, based on their affiliation. We would like to thank the members
of the international Program Committee, the ACALCI Steering Committee, the local
Organizing Committee, and other members of the organization team for their com-
mendable efforts and contributions to the conference.

We would like to acknowledge the support from RMIT University, Melbourne, and
the organizers of the Australian Computer Science Week (ACSW), who kindly allowed
ACALCI 2017 to be co-located with ACSW 2017 at Deakin University, Geelong.

The support and assistance from Springer and EasyChair are gratefully
acknowledged.

November 2016 Markus Wagner
Xiaodong Li

Tim Hendtlass
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Extending the Delaunay Triangulation Based
Density Measurement to Many-Objective

Optimization

Yutao Qi1(&), Haodong Guo1, and Xiaodong Li2

1 School of Computer Science and Technology, Xidian University, Xi’an, China
ytqi@xidian.edu.cn

2 School of Science, RMIT University, Melbourne, Australia

Abstract. This paper investigates the scalability of the Delaunay triangulation
(DT) based diversity preservation technique for solving many-objective opti-
mization problems (MaOPs). Following the NSGA-II algorithm, the proposed
optimizer with DT based density measurement (NSGAII-DT) determines the
density of individuals according to the DT mesh built on the population in the
objective space. To reduce the computing time, the population is projected onto
a plane before building the DT mesh. Experimental results show that
NSGA-II-DT outperforms NSGA-II on WFG problems with 4, 5 and 6 objec-
tives. Two projection strategies using a unit plane and a least-squares plane in
the objective space are investigated and compared. Our results also show that the
former is more effective than the latter.

Keywords: Evolutionary multi-objective optimization � Diversity
preservation � Delaunay triangulation � Density measurement

1 Introduction

Pareto-dominance based multi-objective evolutionary algorithms (MOEAs) are shown
to be effective for solving multi-objective optimization problems (MOPs) involving
two or three conflicting objectives [1]. Many representative MOEAs, like NSGA-II [2]
and SPEA2 [3], are in this category. In Pareto-dominance based MOEAs, solutions are
compared according to the first order criterion of dominance relation and the second
order criterion of density measurement. However, when dealing with many-objective
optimization problems (MaOPs), which considers four or more objectives [4], the
second order criterion starts to play an increasingly more important role. The reason is
that the proportion of non-dominated solutions in the evolving population becomes
exceedingly large as the number of objectives is increased. In such a case, the density
measurement may be the only effective criterion determining which individual in the
evolving population will survive.

The crowding method, including niching [5, 6] and crowding distance based sorting
[2, 7], is an important kind of diversity preservation technique in MOEAs. In this kind of
methods, the density measurement of an individual in the evolving population is
determined by the distances between a specific individual and its neighbors [2, 8]. For
example, the crowding distance of an individual is defined as the average distance of its

© Springer International Publishing AG 2017
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two neighboring individuals on each objective [2]. It works well on bi-objective
problems, but loses its effectiveness on MOPs with three or more objectives. The
vicinity distance of a particular individual is determined by its k-nearest neighbors in the
objective space [8], where k is usually equal to the number of objectives. It has been
proved that the NSGA-II algorithm with the vicinity distance based diversity preser-
vation method can provide a better population diversity than the original NSGA-II using
the crowding distance measure, especially in the case of tri-objective problems [8].

However, according to the observations in our previous work [9], the density
measurement based on the vicinity distance is only reasonably accurate when the
k-nearest neighbors of a specific individual are scattered around it in the objective
space. When this is not the case, this density measurement will become inaccurate [9].
Such inaccuracy comes from the ignorance of the relative position between individuals.
In addition, the parameter k should be assigned to an appropriate value which is not
necessarily equal to the number of objectives. Deb suggested to maintain population
diversity by using an Voronoi diagram of the population for 3-objective optimization
problems [10], however, it is unclear if this can be applied to MaOPs. In our previous
work, we developed a new density measurement based on Delaunay Triangulation
(DT) which corresponds to the dual graph of the Voronoi diagram. We have verified its
effectiveness on tri-objective problems [9]. Before calculating the DT distance of a
specific individual, a DT mesh is first built on the evolving population in the objective
space. Based on the DT mesh, the DT distance of a specific individual can be computed
by using its neighboring individuals in the DT mesh. In the neighborhood relationship
based on the DT mesh, which was proposed in our previous work [9], both the
Euclidean distance and the relative position between individuals are considered. In
addition, the number of neighbors is adaptively determined by the DT mesh.

In this paper, the DT based density measurement is extended to the scenario of
MaOPs to investigate its performance on problems with 4, 5 and 6 objectives. Con-
sidering the high time complexity of DT mesh construction, this paper proposes that the
individuals in the evolving population are first projected onto a plane in the objective
space before building the DT mesh to reduce the dimensionality. The contributions of
this paper are as follows:

• The DT based density measurement is extended to solve MaOPs, and its effec-
tiveness is validated.

• Two projection strategies using a unit plane and least-squares plane in the objective
space are investigated and compared.

The remainder of this paper is organized as follows. Section 2 describes the DT based
density measurement. Section 3 presents the workflow of the proposed method. Sec-
tion 4 provides the experimental studies. Section 5 concludes this paper.

2 The Delaunay Triangulation Based Density Measurement

A Delaunay triangulation on a point set nicely partitions the convex hull polygon of the
point set into regular triangles, as shown in Fig. 1. It was originally defined on point
sets in a plane [11], but can be easily extended to high dimensional scenario [12].

4 Y. Qi et al.



Given a point set P in the d-dimensional Euclidean space Ed , a k-simplex (k� d) is
defined as the convex combination of k + 1 affinely independent points in P, called
vertices of simplex. For example, a triangle is a 2-simplex and a tetrahedron is a
3- simplex. An s-face of a simplex is the convex combination of a subset of s + 1
vertices of a simplex. For example, a 2-face is a triangular facet, 1-face is an edge,
0-face is a vertex. A triangulation T(P) defined on P is a set of d simplexes such that:

(1) A point p in Ed is a vertex of a simplex in T(P) if and only if p 2 P.
(2) The intersection of two simplexes in T(P) is either empty or a common face.
(3) The set T(P) is maximal, i.e., there does not exist any simplex that can be added to

T(P) without violating the previous rules.

A Delaunay triangulation on point set P, denoted as DT(P), is a particular triangulation,
such that the hypersphere circumscribing of each simplex does not contain any point
from P. The DT(P) is unique if there are no d + 2 points in P lying on the same
hypersphere [11].

In this work, the point set P is an evolving population of individuals in the
d-dimensional objective space. Given the Delaunay triangulation mesh DT(P) on
population P, the DT distance of a specific individual xi in P, denoted as D xið Þ, can be
determined by its connected neighbors xjjxj 2 N xið Þ� �

in DT(P), where N xið Þ denotes
the neighboring set of individual xi with size ki. The DT distance of individual xi is
defined in the following:

D xið Þ ¼
Y

xj2N xið Þ
xixj
�� ��

0

@

1

A

1=ki

xi 2 DT(P) ð1Þ

In which, xixj
�� �� denotes the Euclidean distance between individual xi and xj in the

objective space. The DT distance can be easily incorporated in to the NSGA-II algo-
rithm by replacing the crowding distance in the non-dominated sorting procedure [2].
We discard the boundary determination process which is used in our previous work [9],
in other words we use Eq. (1) to determine the density of all the points.

Figure 1 illustrates the DT mesh built on a population of individuals in the
objective space and shows how to calculate DT distance for each individual. As shown

A

F

C GH

D

E

B

Fig. 1. An example of the density measurement based on the DT mesh.
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in this figure, the individual A has 5 connected neighbors {B, C, D, E, F} in the DT
mesh. The DT distance of this individual can be calculated by ABj j � ACj j � ADj j�ð
AEj j � AFj jÞ1=5. The DT distance of A is a rough and quick estimation of the area
surrounded by the points {B, C, D, E, F}.

3 The NSGA-II-DT Algorithm and Its Variations

The NSGA-II-DT algorithm follows the main framework of NSGA-II. It replaces the
crowding distance measurement in NSGA-II with the Delaunay triangulation based
measurement. The details of NSGA-II-DT are summarized in the Algorithm 1.

It is known that the time complexity of building DT mesh on a set of N points is
OðN d=2d e þN logNÞ [12], and the size of Delaunay faces is OðNbðdþ 1Þ=2cÞ [16], we
need to traverse the faces to get the neighborhood list of each individual, in which d is
the dimensionality of the points in the DT mesh. To be specific, the time complexity is
OðN2Þ for 3 or 4 objective problems which is the time complexity of the original
selection operator in NSGA-II, OðN3Þ for 5 or 6 objective problems. It can be seen that
the time complexity of DT mesh construction grows rapidly as the objective number
increases.

In order to reduce the computing time, we first project the evolving population in
the d-dimensional objective space onto a plane, and then build the DT mesh on the
resulting (d – 1)-dimensional points. In this work, two candidate projection planes are
investigated. One is the unit plane F1 þF2 þ � � � þFd ¼ 1, in which Fiði ¼ 1; . . .; dÞ is
the i-th objective function of the target MaOP. The other is the least-squares plane
which is a linear fitting of the points in the evolving population [13]. In this work, we
denote the NSGA-II-DT variant using a unit projection plane as NSGA-II-DT-1, and
another of NSGA-II-DT variant using a least-squares projection plane as
NSGAII-DT-2.
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An objective normalization technique (line 6 in Algorithm 1) is incorporated into
NSGA-II-DT and its variations for dealing with disparately scaled objectives. Given a
population of individuals Rt, we first identify the maximum and minimum value for
each objective function, denoted as zmaxi and zmini ði ¼ 1; . . .; dÞ. Then, the objective
value of each individual in Rt can be normalized as:

F0
i xð Þ ¼ FiðxÞ

zmaxi � zmini
for i ¼ 1; . . .; d ð2Þ

4 Experimental Studies

In this section, NSGA-II-DT and its variants are compared with NSGA-II using the
crowding distance [2] and the vicinity distance [8] based non-dominated sorting,
denoted as NSGA-II and NSGA-II-VD respectively. Experimental studies are con-
ducted on WFG problems with 4, 5 and 6 objectives [14].

The inverted generational distance (IGD) metric [15] is employed to evaluate the
performances of the compared algorithms. Given a set of uniformly scattered points P�

over the PF of the target MaOPs and the solution set P obtained by the compared
algorithms, the IGD value of P can be calculated as follows.

IGD P; P�ð Þ ¼
P

v2P� d v; Pð Þ
P�j j ð3Þ

where d v; Pð Þ is the minimum Euclidean distance between a particular point v in P� and
the solutions in P. P�j j denotes the size of P�. IGD is a comprehensive metric that
considers both convergence and diversity of the obtained solution set. IGD has a
nonnegative value and the lower the better.

In our experiments, the compared algorithms have the same population size of 200
for 4-objective problems, 400 for 5-objective problems and 600 for 6-objective
problems. The simulated binary crossover (SBX) and polynomial mutation operators
[8] are employed. In the SBX operator, the crossover probability is set to 1.0 and the
distribution index is set to 20. In the polynomial mutation operator, the mutation
probability is set to 1/n where n is the number of decision variables. All runs of the
compared algorithms are terminated when the number of function evaluations reaches
the upper limit of 250,000 for 4-objective problems, 300,000 for 5-objective problems
and 350,000 for 6-objective problems.

Tables 1, 2 and 3 compare the performances of NSGA-II-DT and its variants with
NSGA-II and NSGA-II-VD on WFG problems with 4, 5 and 6 objectives. The mean
and standard deviation (in parentheses) of IGD values are presented, where the best
results among the compared algorithms are highlighted in bold. The Wilcoxon
Rank-Sum test [17] with confidence level 0.95 has been applied to assess the statistical
significance of the experimental results. The symbols “+”, “=” and “−” in the following
tables respectively indicate that the proposed algorithm performs statistically better
than, equivalent to and not as good as the compared algorithms. In these tables, for
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each compared algorithm on each benchmark problem, a performance ranking between
1 and 5 is assigned based on the relative performances of compared algorithms in term
of the average IGD value. The last line of each table illustrates the average ranking of
the compared algorithms.

As shown in Tables 1, 2 and 3, NSGA-II-DT has average rankings of 1.375, 1.000
and 1.125 on MaOPs with 4, 5 and 6 objectives respectively, which indicate that
NSGA-II-DT outperforms NSGA-II, NSGA-II-VD and its two simplified variations.
NSGA-II-DT-1 using unit projection plane performs better than NSGA-II-DT-2 using
the least-squares projection plane. However, the comparative advantage decreases as
the number of objectives goes up. NSGA-II-DT-2 performs not as well as
NSGA-II-VD on MaOPs with 4 and 5 objectives. But NSGA-II-DT-2 outperforms
NSGA-II-VD on 6 objective problems. NSGA-II performs the worst on the investi-
gated MaOPs.

When looking at the comparisons on average running time in Table 4, NSGA-II
runs the fastest, NSGA-II-DT costs the most of the CPU time. NSGA-II-DT-1 and
NSGA-II-DT-2 reduce the run time of NSGA-II-DT down to less than one-third of its
original computing time on 4 objective problems, less than one-fourth on 5 objective
problems and less than one-ninth on 6 objective problems. When comparing
NSGA-II-DT-1 and NSGA-II-DT-2 with NSGA-II-VD, they cost a similar amount of
the run time on 4 objective problems. However, due to the complexity of building the
DT mesh, NSGA-II-DT-1 and NSGA-II-DT-2 cost more than two times of the CPU
time than NSGA-II-VD on 5-objective problems and more than9 times of the CPU time
than NSGA-II-VD on 6-objective problems.

Table 1. Performance comparisons on 4-objective WFG problems.

Problems NSGA-II-DT NSGA-II-DT-1 NSGA-II-DT-2 NSGA-II-VD NSGA-II

WFG1 4.500E-01
(4.007E-02)

3.801E-01
(1.965E-02)−

3.394E-01
(1.289E-02)−

4.457E-01=
(1.882E-02)

4.444E-01=
(2.537E-02)

WFG2 2.829E-01
(1.321E-02)

4.280E-01+
(1.985E-02)

3.436E-01+
(1.436E-02)

4.745E-01+
(2.381E-02)

5.516E-01+
(2.719E-02)

WFG4 5.727E-01
(9.105E-03)

6.575E-01+
(1.179E-02)

7.679E-01+
(2.855E-02)

6.865E-01+
(1.816E-02)

7.591E-01
(1.733E-02)
+

WFG5 6.184E-01
(3.617E-02)

5.994E-01-
(1.498E-02)

7.334E-01+
(3.684E-02)

6.378E-01+
(3.890E-02)

6.774E-01+
(4.638E-02)

WFG6 5.780E-01
(2.243E-02)

6.394E-01+
(4.077E-02)

7.560E-01+
(5.591E-02)

7.013E-01+
(5.812E-02)

7.125E-01+
(6.141E-02)

WFG7 5.484E-01
(7.136E-03)

7.092E-01+
(2.063E-02)

7.505E-01+
(2.252E-02)

7.585E-01+
(1.602E-02)

8.261E-01+
(2.552E-02)

WFG8 6.498E-01
(9.839E-03)

8.640E-01+
(1.818E-02)

9.185E-01+
(3.084E-02)

9.126E-01+
(2.572E-02)

9.366E-01+
(1.871E-02)

WFG9 5.521E-01
(2.7410E-02)

6.300E-01+
(1.499E-02)

7.303E-01+
(2.107E-02)

6.395E-01+
(1.231E-02)

7.437E-01+
(2.393E-02)

Average Rank 1.375 2.000 3.625 3.500 4.500
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Table 2. Performance comparisons on 5-objective WFG problems.

Problems NSGA-II-DT NSGA-II-DT-1 NSGA-II-DT-2 NSGA-II-VD NSGA-II

WFG1 3.506E-01
(1.072E-02)

4.949E-01+
(2.080E-02)

3.985E-01+
(1.638E-02)

5.545E-01+
(2.263E-02)

5.166E-01+
(2.625E-02)

WFG2 3.826E-01
(1.069E-02)

7.042E-01+
(3.275E-02)

4.503E-01+
(2.217E-02)

6.445E-01+
(3.023E-02)

6.710E-01+
(3.595E-02)

WFG4 8.803E-01
(7.635E-03)

9.962E-01+
(1.544E-02)

1.094E+00+
(1.631E-02)

1.036E+00+
(1.299E-02)

1.148E+00+
(2.630E-02)

WFG5 9.303E-01
(3.966E-02)

9.097E-01−
(1.5218E-02)

1.051E+00+
(2.669E-02)

9.810E-01+
(3.626E-02)

1.098E+00+
(6.658E-02)

WFG6 8.909E-01
(2.0127E-02)

9.569E-01+
(2.0400E-02)

1.069E+00+
(2.844E-02)

1.011E+00+
(1.511E-01)

1.069E+00+
(3.390E-02)

WFG7 8.645-01
(6.542E-03)

1.061+00+
(1.584E-02)

1.093+00+
(2.820E-02)

1.165E+00+
(1.371E-02)

1.228E+00+
(2.136-02)

WFG8 9.903-01
(8.190E-03)

1.183E+00+
(7.277-02)

1.301E+00+
(2.862E-02)

1.374E+00+
(2.459E-02)

1.441E+00+
(2.496E-02)

WFG9 8.636E-01
(3.690E-02)

9.814E-01+
(1.334E-02)

1.090E+00+
(2.451E-02)

9.952E-01+
(2.016E-02)

1.307E+00+
(2.822E-02)

Average Rank 1.000 2.000 3.000 2.875 4.250

Table 3. Performance comparisons on 6-objective WFG problems.

Problems NSGA-II-DT NSGA-II-DT-1 NSGA-II-DT-2 NSGA-II-VD NSGA-II

WFG1 4.570E-01
(9.509E-03)

6.385E-01+
(2.544E-02)

5.300E-01+
(1.691E-02)

6.700E-01+
(1.811E-02)

7.222E-01+
(2.236E-02)

WFG2 5.560E-01
(2.450E-02)

1.080E+00 +
(4.537E-02)

7.863E-01+
(7.094E-02)

8.274E-01+
(2.570E-02)

9.239E-01 +
(3.763E-02)

WFG4 1.271E+00
(7.510E-03)

1.403E+00+
(1.477E-02)

1.474E+00+
(2.001E-02)

1.441E+00+
(2.046E-02)

1.653E+00+
(7.632E-02)

WFG5 1.342E+00
(5.245E-02)

1.324E+00−
(1.881E-02)

1.437E+00+
(2.364E-02)

1.348E+00+
(5.013E-02)

1.671E+00+
(2.244E-02)

WFG6 1.319E+00
(7.468E-02)

1.372E+00+
(1.612E-02)

1.442E+00+
(2.621E-02)

1.847E+00+
(1.473E-02)

1.737E+00+
(5.265E-02)

WFG7 1.265E+00
(1.031E-02)

1.489E+00+
(1.852E-02)

1.452E+00+
(2.039E-02)

1.596E+00+
(1.497E-02)

1.685E+00+
(1.812E-02)

WFG8 1.323E+00
(9.708E-03)

1.547E+00+
(2.224E-02)

1.535E+00+
(2.253E-02)

1.726E+00+
(2.832E-02)

1.951E+00+
(3.359E-02)

WFG9 1.250E+00
(1.246E-02)

1.407E+00+
(1.783E-02)

1.492E+00+
(2.115E-02)

1.445E+00+
(2.397E-02)

1.908E+00+
(3.788E-02)

Average Rank 1.125 2.625 2.875 3.625 4.750
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5 Conclusions

In this paper, we have studied the performance of the NSGA-II algorithm with
Delaunay triangulation based density measurement (NSGA-II-DT) on many-objective
optimization problems (MaOPs). To reduce the computing time, NSGA-II-DT is
simplified by projecting the objective vectors of the individuals in the population onto a
plane before building the DT mesh. Two projection strategies using a unit plane and a
least-squares plane in the objective space are investigated and compared. Experimental
results have demonstrated that NSGA-II-DT outperforms the compared algorithms on
WFG problems of 4, 5 and 6 objectives. Our results also show that the projection
strategy using the unit plane is more effective than using the least-squares plane.

Table 4. Comparisons on average CPU times in seconds per run.

Problems Obj.
Num.

NSGA-II-DT NSGA-II-DT-1 NSGA-II-DT-2 NSGA-II-VD NSGA-II

WFG1 4 114.250 32.407 32.413 32.621 28.909
5 109.690 212.960 190.380 75.550 73.469
6 12410.000 1212.700 1227.500 138.540 132.630

WFG2 4 90.561 31.880 31.715 33.173 31.994
5 828.920 199.790 171.240 86.007 73.703
6 10625.000 1109.900 935.360 154.590 136.690

WFG4 4 105.020 35.569 36.006 35.746 28.892
5 847.700 214.920 202.190 83.388 76.790
6 12423.000 1376.100 1247.700 143.190 140.860

WFG5 4 147.130 37.312 37.576 33.603 32.631
5 1157.700 242.070 216.840 82.187 74.764
6 18139.000 1493.900 1365.600 130.170 134.850

WFG6 4 151.190 35.429 35.527 32.800 30.891
5 1524.400 226.050 201.350 81.661 73.314
6 17850.000 1703.800 1496.700 110.600 131.750

WFG7 4 131.830 37.733 37.807 35.644 33.795
5 1130.800 258.920 206.440 85.062 74.520
6 9708.500 1671.500 1463.200 130.730 107.400

WFG8 4 85.475 38.661 39.501 36.810 33.159
5 1096.000 179.750 202.880 101.500 80.891
6 6384.300 918.980 809.180 132.630 120.76

WFG9 4 84.212 38.690 39.060 39.066 32.982
5 609.790 213.600 195.610 85.674 77.495
6 7288.100 829.010 776.710 111.510 131.530

Average 4 113.71 35.96 36.20 34.93 31.66
5 913.13 218.51 198.37 85.13 75.62
6 11853.49 1289.49 1165.24 131.50 129.56
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Abstract. Social dilemmas require individuals to tradeoff self interests
against group interests. Considerable research effort has attempted to
identify conditions that promote cooperation in these social dilemmas.
It has previously been shown altruistic punishment can help promote
cooperation but the mechanisms that make it work are not well under-
stood. We have designed a multi-agent system to investigate altruistic
punishment in tragedy of the commons social dilemmas. Players develop
emotional responses as they interact with others. A zero order Seguno
fuzzy system is used to model the player emotional responses. Players
change strategies when their emotional level exceeds a personal emotional
threshold. Trustworthiness of how other players will act in the future
helps choose the new strategy. Our results show how strategies evolve
in a finite population match predictions made using discrete replicator
equations.

1 Introduction

Social dilemmas are situations where individuals must choose between self inter-
ests and group interests. Typically individuals must decide whether to “coop-
erate” for the benefit of the group or to “defect” for their own benefit. Many
challenging problems such as public land usage, pollution control, and over-
population are examples of social dilemmas. Such dilemmas have two conflicting
properties: (1) individuals benefit the most by defecting, regardless of what oth-
ers do, and (2) everyone does better with mutual cooperation than with mutual
defection. Unfortunately, most social dilemmas end with everyone defecting.

Mathematical games are well-suited for studying social dilemmas. In each
round of these N -player games (N > 2), a population of individuals chooses
whether to cooperate or defect. Players receive a payoff based on their own
c© Springer International Publishing AG 2017
M. Wagner et al. (Eds.): ACALCI 2017, LNAI 10142, pp. 12–24, 2017.
DOI: 10.1007/978-3-319-51691-2 2
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choices and the choices others make. The goal is to gain insight into the human
decision making process by observing how cooperation levels evolve over time.
The most extensively investigated social dilemma game is the public goods game.
Recently investigators have started to look at the tragedy of the commons (ToC)
game [1] which some argue is a better model of real-world problems.

In a ToC game individuals consume a finite resource which is called public
good. Cooperators limit their consumption rate to help preserve the public good
while defectors consume at a higher rate. Some percentage of the public good is
periodically renewed but overconsumption will eventually deplete it. Cooperators
act in the best interests of the group; defectors act in their own self-interest. The
social dilemma is “resolved” if all individuals cooperate—i.e., the defectors all
become cooperators. The inevitable outcome, regrettably, is everyone defects
and the public good is depleted.

Researchers have proposed several methods of preventing the inevitable out-
come. One of the most promising is introducing a third strategy: altruistic pun-
ishment [2]. Defectors are free riders who exploit the actions of cooperators.
Punishers impose a penalty on defectors to coerce them to switch strategies.
This punishment is altruistic in the sense that the punisher pays a cost for
penalizing those defectors.

In some of our previous work [3] we used discrete replicator equations to see
how altruistic punishment can help resolve a ToC in a finite population. These
coupled, first order differential equations predict how the frequency of coopera-
tion (C), defection (D) and altruistic punishment (P ) evolve. Our results showed
the ToC can be resolved if the penalty imposed by the punishers is high enough.
Unfortunately, despite the power of these replicator equations, they do have
one limitation. The strategy frequencies evolve via Darwinian evolution. This
means the evolution is determined strictly by fitness. (The amount consumed
is a measure of fitness.) Strategies that have fitness greater than the average
population fitness grow, while strategies with fitness less than the population
average decrease. Consequently, there is no way of determining how individuals
respond to other player’s choices so there is no way of gaining insight into the
decision making process.

That previous work showed two ways of increasing the punishment: keep
the penalty β fixed and increase the number of punishers or keep the frequency
of punishers x2 fixed and increase β. (The punishment equals x2β.) Altruistic
punishment can effectively help resolve a ToC so long as the punishment level is
high enough.

In our current work we take a different approach. We formulated a multi-
agent system where each player (agent) makes their strategy choice indepen-
dently. Each player has an emotional response to the actions of others. A strat-
egy change is made if the emotional level breaches some threshold. The new
strategy picked is based on trustworthiness—i.e., the expectation of how other
players will choose in future rounds. These emotional levels grow according to
a set of fuzzy rules. Specifically, each player’s emotional state is modelled by
a zero order Seguno fuzzy system. Our results are remarkably similar to the
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results predicted by the discrete replication equations. The difference now is,
since player’s actions are independently decided, our new approach provides a
much more effective framework for studying how emotions and trustworthiness
affect the human decision making process in social dilemmas.

2 Background

Humans naturally develop emotions as they interact with others. These emotions
could be satisfaction, joy, annoyance, anger, sadness, or guilt. If these emotions
grow strong enough they can cause individuals to change how they act in the
future. In part this choice depends on trustworthiness—i.e., it depends on how
they expect others to act in the future based on their prior actions.

The interplay of emotion, trust and judgement has been investigated in many
studies in the literature. Research on the field of social neuroeconomics discusses
the connection between emotion and decision making. Sanfey [4] suggests deci-
sions of trust are dependent on altruism and reciprocation for the trust game
to work. A link has been identified between affective states, such as positive
and negative feelings on unrelated judgements [5,6]. Emotions affect a variety
of decision making processes, including decisions such as whether to trust a
stranger, a politician, or a potential competitor [6]. Moreover, emotion has been
shown to affect related concepts like altruism, risk preferences, and the perceived
likelihood of future events [7–9].

An extensive literature on Emotion exists in the field of social psychology.
The majority of this literature explain how emotions get produced and how
emotional states may impact decisions, including trusting decisions.

For example, Dunn and Sweitzer [10] point out that moods influence judge-
ment in that people engage in specific behaviours because they are motivated to
maintain or repair a current mood state. The authors however suggest that pos-
itive and negative feelings-valence, as observed in mood models are not the only
determinants of trust judgments. They distinguish between emotion and mood
and claim that emotion is a much more complex state than mood. Emotional
states are shorter in duration, more intense and incorporate varied cognitive
appraisals, which include individual perceptions of certainty, control over the
outcome, appraisal of the situation and attribution of the cause of the emotion.
Emotions with the same valence but different control appraisals (self or other)
have been found to have differential impact on trust and decision making.

Mood and emotion are complex concepts and have been discussed here to
provide a general context for this research. The causes for emotional change or
emotional production per se are beyond the scope of this paper. Instead, we
chose a level of abstraction to enable us to focus on the impact of emotion on
game dynamics.

3 System Description

A ToC is an N player game (N > 2). Each round players will consume a fixed
portion of a fixed resource. The amount consumed depends on the strategy.
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C players are interested in preserving the resource so they voluntarily limit the
amount consumed. On the other hand, D players are self-interested so they
consume a higher amount of the resource. Periodically a fraction of the resource
is renewed. However, if the overall consumption rate is too high the renewal
amount is insufficient and the resource is ultimately depleted. Too many D
players will eventually deplete the resource. Hence, the only way to “resolve”
the ToC game is to have the player population contain only C players because
then the consumption rate is less than the renewal rate so the resource is always
available.

D players are free riders because they exploit cooperators. The best individual
outcome is to defect, regardless of what other players do. Unfortunately this leads
to the inevitable outcome of everyone defecting and the fixed resource being
depleted. One way of convincing D players to change strategy is to introduce a
third type of player who is an altruistic punisher.

Definition 1. Altruistic punishment is punishment inflicted on free riders even
if costly to the punisher and even if the punisher receives no material benefits
from it.

P players consume the same amount as a C player but they also penalize
D players. This reduces the D player’s return hopefully making defection less
desirable. The punishment is altruistic in the sense the P player pays a small
cost to inflict this punishment. Thus the payoff to a P player is less than a C
player.

But there is another problem. C players exploit P players because they ben-
efit from punishing D players but they don’t pay any cost for punishing them.
This is referred to as the 2nd order free riding problem. (D players are 1st order
free riders.) To address the 2nd order free riding problem punishers will also
penalize C players who won’t punish. The P player pays an additional cost for
this punishment as well. Previous work has shown altruistic punishment, prop-
erly applied, can help resolve social dilemmas [11,12].

The proposed method is summarized in Algorithm 1 and is explained in more
details below.

Let N be the population size and let k1, k2, k3 be the number of C, P and
D players respectively where

∑
i ki = N . Then the frequency of a strategy i in

the population is xi = ki/N . Let CR1 be the consumption rate for a D player
and CR2 the consumption rate for C or P players where CR1 > CR2. Then the
payoff to a player � is

π(�) =

⎧
⎪⎨

⎪⎩

CR1 − k2β defectors
CR2 − ck2γ cooperators
CR2 − c[(k3α) + (k1η)] punishers

(1)
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Input : Players List(Emotion threshold,Emotion level,Strategy,Payoff)
Output: Players List(Emotion threshold,Emotion level,Strategy,Payoff)
if First Generation then

Emotion level ← 0
Emotion threshold ← rand(5,10)

end
for Each Player do

Play Strategy
end
for Each Player do

Update Payoff
Observe Actions of Other Players
Calculate Delta change in Emotion Using the Fuzzy Rules
Emotion level ← Emotion level + Delta change
if Emotion level ≥ Emotion threshold then

Update strategy
Emotion level ← 0

end

end
Algorithm 1. The logic for updating agents’ emotion levels and strategies.

The punishments and costs are summarized as follows:

1. β > 1 is the punishment each punisher inflicts on a defector
2. γ > 1 is the punishment each punisher inflicts on a cooperator
3. punishers pay a cost α > 1 for each defector punished
4. punishers pay a cost η > 1 for each cooperator punished.
5. c = 0 if there are no D players to remove all costs and punishments. Otherwise

c = 1

In the simulations we used N = 20, CR1 = 82, CR2 = 39, α = 1.0, γ = 0.2
and η = 0.1. β varied depending on the investigation. The initial public goods
capacity was 5000 units and decreased each round (82 units for each D player
and 39 units for each C or P player). After each round, the remaining capacity
was increased by 25%.

Each player has an emotional level (initialized to 0) and an emotional thresh-
old randomly assigned between 5.0 and 10.0. During each round the emotional
levels can change in response to actions taken by the other players. Players
change to a new strategy when their emotional level exceeds their personal emo-
tional threshold. The thresholds were different for each player because individu-
als react differently to situations. For instance, the actions of other players may
anger some players while others may be merely irritated.

We designed a zero order Seguno fuzzy system to model the emotional state
of the players. The emotional levels of each player changes based on the fuzzy
rules (see Table 1). Players know the strategies of other players by observing
their consumption rates. The antecedents for most rules use strategy frequencies
but two rules use assessed penalties. For instance, a C player is “satisfied” if the
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frequency of cooperators is high so there is little or no change in the emotional
level. On the other hand they are “annoyed” if they are paying a high penalty
for free riding (moderate change) and “angry” if the frequency of defectors is
high and the frequency of punishers is low (large change). The rationale for these
rules is given in the table.

Trapezoidal membership functions were used for all of the antecedents based
on strategy frequencies. These are shown in Fig. 1. A Heavyside function was
used for the antecedents using penalties. Specifically, the membership function
for Rule # 2 is

μ(k2γ) =

{
0 k2γ ≤ CR2/2
1 otherwise

(2)

and the membership function for Rule # 5 is

μ(k2β) =

{
0 k2β ≤ CR1/2
1 otherwise

(3)

The reasoning behind this type of membership function is penalties are tol-
erable so long as they are not too heavy. A penalty is considered intolerable if
it reduces the payoff by more than 50%.

Output membership functions in a zero order Seguno fuzzy system are con-
stants. The function will output the values 0, 1 and 5 corresponding to the
three emotional states, satisfied, annoyed and angry, respectively. The constants
were chosen to produce no emotional change (satisfaction), a moderate change
(annoyed) or a large change (angry). A weighted average defuzzification method
was used. Defuzzification determines the change in a player’s emotional state
by adding the crisp output value to the current emotional level of a player.
A strategy is changed when a player’s emotional state exceeds their personal
threshold. The underlying idea is that if a threshold has been breached, then

Fig. 1. Membership functions used to determine emotional state. The domain of dis-
course is the strategy frequency for all rules except for one C and one D rule (see
text).
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staying with the current strategy is no longer acceptable—i.e., a strategy change
is necessary. Even though all players with a given strategy have their emotional
levels increased by the same crisp output value, they do not necessarily change
strategies at the same time. That’s because each player has a different emotional
threshold. The emotional level of a player is reset to zero when a strategy change
occurs.

Table 1. Fuzzy rulebase

No Player Rule Rationale

1 C IF x1 is high THEN y is satisfied Public good being maintained

2 C IF k2γ is high THEN y is annoyed Paying high penalty for free riding

3 C IF x3 is high AND x2 is low
THEN y is angry

Little effort to stop defection

4 D IF x1 is high THEN y is satisfied Small penalty paid for defecting

5 D IF k2β is high THEN y is angry Paying high penalty for free riding

6 P IF x3 is low AND x1 is low
THEN y is satisfied

Few free riders

7 P IF x3 is low AND x1 is high
THEN y is annoyed

Many 2nd order free riders

8 P IF x3 is high THEN y is angry Many 1st order free riders

NOTE: All antecedents use strategy frequencies except Rules 2 and 5. xt
i = ki/N is

the frequency of strategy i at time t, where N is the population size and
∑

i ki = N .

Figure 2 summarizes the conditions used by players to switch strategies. The
rationale for these conditions is provided below.

D players switch to either a cooperator or a punisher depending on the
number of P players in the population. The probability a defector will switch to
a punisher is given by

probDP(k2) =

{
0 k2 < N/2
1 otherwise

(4)

If more than half the population consists of punishers, then the penalty for
defecting is quite high. Switching to a cooperator may not make sense because
with that many punishers the penalty for being a 2nd order free rider is also
likely to be high. These high penalties can be avoided by becoming a punisher.
Moreover, by switching to a punisher, the defector can retaliate against those
other defectors who didn’t switch. If less than half of the population are punish-
ers, then it may make more sense to become a cooperator since the 2nd order
free riding penalty is relatively low. This strategy change is modelled as a prob-
ability to reflect the uncertainty in how individual defectors will choose a new
strategy.
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Fig. 2. Conditions to switch strategies. See text for variable definitions.

C and P players also choose their next strategy probabilistically. However,
this probability is interpreted as a level of trustworthiness and other players will
change their strategies as well to help resolve the ToC. This gives rise to a much
more subtle and complex reasoning process.

There is little point in switching from C to P , since doing so, would do little
to prevent the public good from becoming depleted. On the other hand, it would
be beneficial to become a punisher if the increased penalty might induce defector
strategy changes. Thus, the decision whether a cooperator switches to a punisher
or a defector depends on the current status of the public good.

An example will help to clarify the idea. Suppose the public good capacity
is 5000 units and player consumption rates are the same as their payoffs (minus
any costs or penalties). Then by Eq. (1) each defector consumes 82 units and
each cooperator or defector consumes 39 units. Table 2 shows the public good
status for various population mixtures after one round with a 25% replenishment
of the public good. The public good is preserved only if k3 ≤ 5 because the 25%
replenishment restores at least the amount that was consumed. When k3 > 5 the
replenishment cannot compensate for the consumption so eventually the public
good will be depleted.

To further illustrate the problem consider the specific case where k3 = 6
and k1 + k2 = 14 with an initial public goods capacity of 5000 units. That
mixture consumes 1038 units per round reducing the public good capacity to
3962 units after the first round. A 25% replenishment only raises the capacity to
4953 units, short of the 5000 unit initial capacity. The consumption rate exceeds
the replenishment rate with this population mixture. One D player must switch
to maintain the public good. Suppose no D player switched and one more round
is played. Table 2 shows that the replenishment exceeds the consumption only
if k3 ≤ 4. In other words, to grow the public good now requires at least two D
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Table 2. consumption vs replenishment for various population mixtures. Initial public
good capacity (IPGC) = 5000 and 4953 units, respectively.

k3 k1 + k2 IPGC = 5000 IPGC = 4953

Consumption Replenishmenta Consumption Replenishment∗

0 20 780 1055 780 1043

1 19 823 1044 823 1033

2 18 866 1034 866 1022

3 17 909 1023 909 1011

4 16 952 1012 952 1000

5 15 995 1001 995 990

6 14 1038 991 1038 979

7 13 1081 980 1081 968
aBold indicates mixtures where consumption exceeds replenishment

players to switch strategy. Thus the status of the public goods determines how
many D players must switch.

Cooperators can breach their emotional threshold if they are annoyed for a
sufficiently long enough period or quickly if they are angry. C switches to P with
probability

probCP(n) = e−0.95n (5)

where n is the number of defectors that must switch to preserve the public good.
This probability, shown in Fig. 3, is actually a measure of trustworthiness that the
required number of D players will switch. If the consumption rate is less than the
replenishment rate then n = 0 because even with the D players present the public
good remains viable. The C player then switches to a punisher with probability
1.0 believing the additional penalty on the defectors will cause some of them to
switch. However, if the C player does not trust a sufficient number will switch,
then the C player defects. It is important to note each C player independently
decides whether to switch to P or D. P players also switch strategies if they are
annoyed or angry. They use the same trustworthiness function Eq. (5) to make
decisions. If the P player trusts that a sufficient number of D players can be
coerced to switch with a higher penalty, then β increases by 20%. Conversely,
if a P player does not trust a sufficient number of D players will switch, then
the P player defects instead. In both instances the switch to defector is because
the player does not trust a sufficient number of defectors will switch and so the
public good cannot be saved. The players thus decide to act in their own self
interest and consume as much as they can while some public good still remains.

The ToC game was run for 500 iterations but could be terminated early
for three reasons: (1) the public good is completely depleted, (2) some public
good remains but the population consists entirely of defectors—i.e., k3 = N , or
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Fig. 3. Probability mass function interpreted as a level of trustworthiness the number
of defectors will switch D → C, P if C → P or if β ↑ for punishers. Dashed line is the
equation exp(−0.95n).

(3) the ToC is resolved—i.e., k3 = 0. This latter condition is a fixed point in the
2-D simplex as shown by the following theorem:

Theorem. Every point on the x1 − x2 boundary is a fixed point.

Proof. k3 = 0 on every point of the x1 − x2 boundary. Consequently, all players
get the same payoff because no costs or penalties are imposed. There is therefore
no incentive to change strategies in the future.

4 Results

The first investigation was designed to see how β affects the evolution of strate-
gies within the population. Recall there are two ways of increasing defector pun-
ishment: fix k2 and increase β or fix β and increase k2. The first way is intuitively
obvious; let β grow without bound and eventually defectors see no payoff what-
soever; at that point there is no reason to continue defecting. But practically
speaking β is bounded—punishers are limited in how much punishment they
can impose—so the only realistic way of increasing punishment is to increase
the number of punishers. To test this idea we conducted a series of simulations
fixing β at 4.0 and k3 at 6 (x3 = 0.3). We then increased the number of k2
players and decreased the number of k1 players accordingly to keep

∑
i ki = N .

Figure 4 shows that, if less than half the population are punishers, there sim-
ply isn’t enough punishment to cause defector strategy changes. In other words,
k2β is not a high price to pay for defecting. However, once more than half of
the population contains punishers, the ToC is resolved (red trajectory). More
importantly, the slope of the trajectory shows both cooperators and defectors
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Fig. 4. Evolution of a finite population with β = 4.0 and various number of punishers.
(Color figure online)

are switching to punishers. Eventually punishers completely take over the popu-
lation. These results match well with the replicator equation predictions despite
that in this study β was considerably lower.

The second investigation was designed to see how different player mixtures
affected the population evolution. β was initialized at 7.0 in all runs. First con-
sider the red trajectory in Fig. 5. The population was initialized at ki = [7 7 6]
(equivalently xi = [0.35 0.35 0.3]). The population quickly reaches a fixed point
with some cooperators but mostly punishers which resolved the ToC. The brown
trajectory was initialized at ki = [3 3 14] (equivalently xi = [0.15 0.15 0.7]).
There were not enough punishers present. All of the cooperators switched to
defectors and shortly thereafter the punishers switched to defectors as well.
Eventually defectors take over the population.

The black trajectory is more interesting. The population started with ki =
[14 3 3] (equivalently xi = [0.70 0.15 0.15]). Initially, the vast majority of players

Fig. 5. Evolution of a finite populations for various β values. red: initial [7 7 6] β = 7;
brown: initial [3 3 14] β = 7; black: initial [14 3 3] β = 7. (Color figure online)
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are cooperators. Following the trajectory, all of the punishers quickly decided
to become defectors leaving only defectors and cooperators in the population.
Cooperators don’t punish defectors; thus, under normal circumstances one would
expect defectors to prevail. But surprisingly some cooperators decided to become
punishers. It is noticeable that the slope of the trajectory at this time is parallel
to the x1 − x2 boundary which means the number of defectors isn’t changing.
However, the increased punishment from the growing number of P players starts
to take effect. Eventually all defectors switch and the ToC is resolved.

5 Conclusion

Despite the widespread usage of replicator equations, they do suffer from one
limitation: a lack of ability to provide insight into the human decision making
process. Under replicator dynamics, strategies evolve strictly via Neo-Darwinistic
principles. There is neither reproduction nor mutation. Strategies that produce
payoffs higher than the population average grow while those less than the pop-
ulation average decline. Replicator equations can predict what strategy changes
might occur, but they cannot explain is why they occur. Replicator equations
only suggest proximate causes.

In this investigation, we considered a more realistic model that reflects human
behavior. It takes into account that humans have emotions and rely on their
experience to evaluate the trustworthiness of opponents. We have demonstrated a
more practical and realistic approach to the modelling of strategies and strategy-
change.

However, we only considered three emotions. Most notably guilt was not
included. Guilt has been shown to be a motivating force in social dilemmas
especially when inter-group competition is involved [13]. In the current model
defectors change strategies only when the penalty for defecting is excessive. An
obvious extension is to see how guilt might convince a player to switch from
defection to cooperation.
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Abstract. Options in finance are becoming an increasingly popular
investment instrument. Good returns, however, do depend on finding
the right strategy for trading and risk management. In this paper we
describe a memetic algorithm designed to discover and optimize multi-
leg option strategies for the S&P500 index. Strategies comprising from
one up to six option legs are examined. The fitness function is specif-
ically designed to maximize profitability while seeking a certain trade
success percentage and equity drawdown limit. Using historical option
data from 2005 to 2016, our memetic algorithm discovered a four-leg
option strategy that offers optimum performance.

Keywords: Memetic algorithms · Financial options

1 Introduction

The use of options in finance is gaining popularity as an investment/trading
vehicle as evidenced by the vastly increasing yearly volume of these contracts
traded on options exchanges, such as the CBOE (Chicago Board of Options
Exchange). This is a testament to the great flexibility these investment vehicles
offer. They may be used to profit from an opinion on market direction and/or
volatility or used for hedging.

In this paper, we are seeking to find the answer to the following question: if
we employ a systematic approach to option’s trading where at the start of each
month an option’s strategy is entered into the market and left untouched until
expiration in the following month, what would be the most profitable strategy
as seen over the full set of available historical data? This question is examined
for option strategies consisting of one to six option transactions (or “legs”) and
are not restricted to just currently used strategies. A further question that is
answered is the relative profitability of each of these strategies and consequently
which might be considered the optimum strategy overall?

Apart from using single-leg option’s strategies, such as the short put, there
are also a wide number of other standard multi-leg option’s trading strategies
available such as vertical spreads, strangles and iron condors. Multi-decade back-
tests of the short put and vertical spread strategies on the S&P500 index were
c© Springer International Publishing AG 2017
M. Wagner et al. (Eds.): ACALCI 2017, LNAI 10142, pp. 25–38, 2017.
DOI: 10.1007/978-3-319-51691-2 3
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reported in [1,2] highlighting their efficacy. In contrast to choosing a specific
strategy to backtest, in this paper, we utilize an evolutionary algorithm to search
from amongst the vast array of combinations of options.

Option strategies are based on a variety of decision factors such as whether
the option should be a “call” or “put” and whether it should be “short” or
“long”. In addition a desired “strike price” must be given. The present study
uses a memetic algorithm to search for a suitable set of these decision factors.
The goal is to find strategies that can maximize profitability while at the same
time achieve a minimum trade success rate threshold. In some cases a trader may
want to combine two or more option transactions (legs) to implement an invest-
ment strategy. Our memetic algorithm is specifically designed to accommodate
such strategy searches. We evaluated from one to six leg option strategies using
historical data. The results indicate four-leg options tend to perform the best in
terms of profitability.

To the best of our knowledge, this is the first time that a systematic approach
to the generation and search of multi-leg option strategies guided by predefined
performance metrics has been undertaken and reported.

2 Equity Option Overview

A stock option is a contract between two parties (the buyer and seller) that is
traded on a public exchange. These contracts exist for only a limited time span
and cease to exist at a specified expiration date. Since transactions involving
the stock directly will not be involved here, there is no need to go through the
definition of what the contract allows one to do and/or what obligations are
involved. Nevertheless, the option price is derived from the underlying stock
price. (Consequently options are considered a derivative). So, for example, if
you have an option on IBM, its price would be greatly determined at what price
IBM stock is currently trading. This is referred to as the price of the underlying.

There are just two types of option contracts

1. call option
2. put option

For each of these we can initially buy or sell them to enter into a position.
Thus, as an initiating trade we have four possibilities:

1. buy a call option, hereafter referred to as a long call option
2. sell a call option, hereafter referred to as a short call option
3. buy a put option, hereafter referred to as a long put option
4. sell a put option, hereafter referred to as a short put option

Note that for the short call and short put cases one does not need to have
first bought the option to be able to sell it.

A most important aspect of these option types is the unique profit/loss (P/L)
profiles they feature. To place these in some context, let’s first consider the P/L



Equity Option Strategy Discovery and Optimization 27

Fig. 1. Profit/loss (P/L) profiles: (a) long stock, (b) short stock, (c) long call, (d) short
call, (e) long put, (f) short put. Option profiles are at expiration. The horizontal axis
represents the price of the underlying and the vertical axis is the P/L.

profile of stocks. Generally when one enters into a stock position it is with the
idea of making a profit when the stock increases in price. This is what is referred
to as a long stock position and its P/L profile is shown in Fig. 1a. The horizontal
axis zero crossing point represents the price at which the stock was initially
purchased. This is shown arbitrarily as 100 in Fig. 1a. Consequently, for stock
prices above 100 a profit is made and conversely prices below this represent a
loss.

One may also enter into a short stock position in which profit is made when
the stock price decreases in value. The associated P/L profile is shown in Fig. 1b.

Let us now consider option P/L profiles shown in Figs. 1c–f. These represent
the P/L at option expiration. The price at which the P/L profiles change slope
is referred to as the strike price. This appears as 100 in the figures. There are
usually many options with different strikes available for a stock. These are shown
in a table referred to as the option chain. An example of an option chain is shown
later. As we can see in these profiles the value of the option is highly dependent
on where the underlying stock price is in relation to the option strike price. This
is referred to as moneyness, and leads to the following three situations:

1. At the money (ATM) – the underlying price is at the option strike price.
2. Out of the money (OTM) – the underlying price is on the horizontal segment

of the P/L profile.
3. In the money (ITM) – the underlying price is on the sloping segment of the

P/L profile.

One can enter into an option trade anywhere in the moneyness continuum.
The degree of moneyness can be quantified by using the delta parameter of the
option which is generally available on trading platforms. ATM, OTM and ITM
options have absolute delta values equal to 0.5, less than 0.5 and greater than 0.5,
respectively, with values ranging in a continuum from 0 to 1. We will examine
delta values in a later option chain table.
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So far the discussion has been limited to buying and selling individual options.
However, one can buy and sell multiple options of different types at different
strikes. In this paper we consider combinations of two to six options. This results
in interesting and varying P/L profiles for the composite structure. Each com-
bination of options is referred to as a strategy. It is the purpose of this paper
to discover and optimize strategies which feature useful P/L profiles. The opti-
mization is based on the fitness functions that are employed. We will use two
different functions which are discussed in the next section. These will be eval-
uated with the use of over one decade of historical option’s data. In the end
we will have answered the question of what would have been the best option’s
strategy to have traded over the past decade. And more specifically, what were
to best strikes to use in this strategy?

3 Memetic Algorithm Based Search

In genetics the instructions for building proteins are given by genes. In memetics,
memes are building blocks of cultural know-how that can be replicated and
transmitted. These memes carry instructions for carrying out behavior that can
be passed on via mutation [3]. Moscato coined the term memetic algorithm (MA)
which combined population based search with a refinement method [4]. MAs
have been successfully used in a variety of real-world problem domains such as
flowshop scheduling [5], bioinformatics [6] and molecular structure problems [7].

In MAs each individual in a population represents a potential solution. New
solutions are found using some nature-inspired process such as recombination
in a genetic algorithm or via swarm intelligence operations. These transitional
dynamics are stochastic which therefore lacks any domain specific information
that could improve the search results. In simple MAs, which are used in this
work, local search operations are added as a refinement. This refinement can
be interpreted as a meme that contains domain specific information. The aug-
mentation of a population-based search with a local refinement—resulting in a
MA—produces a more effective result than could be obtained with a population-
based search alone.

In this work the genome is an N -bit binary string that encodes a trading
strategy. This binary string is partitioned into four equal size segments (see
Fig. 2). Each segment represents one of four trading options: a long call option;
a short call option; a long put option; or a short put option. Suppose N=160.
Then there are 40 strike prices within each option type. Each bit within a segment
corresponds to a unique strike price. A bit set to logic 1 thus chooses a particular
option type at a specific strike price. A strategy consists of a combination of
options—i.e., with multiple bits in the binary string set to logic 1.

In determining the fitness of a potential solution the following restrictions
were employed in order to achieve desired results:

1. The slopes of all non-zero slope segments of the P/L profile were restricted
to be that of a single option type. The majority of option strategies are of
this type and so, for this study, this restriction was put in place.
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Fig. 2. The MA genome

2. Strategies containing a long call and short call at the same strike were dis-
carded. Similarly for long put and short put combinations.

3. Due to margin considerations only slightly in the money options were permit-
ted. The term margin refers to the amount of money required in the trading
account in order to put on a strategy. Deep in the money options require a lot
more funding. A somewhat arbitrary decision of allowing just the first three
ITM strikes was made.

For any particular candidate solution, violating any of the above conditions
resulted in a zero fitness value being returned.

The feasibility of a candidate solution was determined on one option chain. If
it failed a zero fitness was returned. However, if it passed then the profitability of
this particular trade was recorded as was the option configuration and associated
delta values of the strike prices. The delta values and option types were then
used to map the discovered strategy to other historical option chains for which
other trade P/L’s can now be determined. At the end of this procedure an array
of trade P/L values for the total historical data period is now available.

We examined the use of two different fitness functions. For the first, the
average P/L per trade and percentage of profitable trades were determined. If the
percentage of profitable trades exceeded a threshold value (we used a threshold
of 80%) the average P/L value was returned as the fitness value, otherwise it
was set to zero. The MA found solutions which maximized the average P/L
value. The second fitness function extends the first. A cumulative sum of the
array of trade P/L values produces the historical equity curve. Now the extra
threshold of requiring the equity drawdown to be with certain limits (we used
a quite restrictive 10% drawdown figure) was imposed on top of the percentage
profitability requirement before setting the fitness value to the average P/L value
determined.

The MA is run for 100 generations with a population size of 100. Each individ-
ual encodes a trading strategy with K options; thus each individual has exactly
K bits set to logic 1 and the N −K remaining bits are logic 0. These K bits can
be in just one segment or, more generally, distributed among the 4 segments. A
preliminary analysis indicated the vast majority of solutions in the search space
are infeasible—i.e., they have zero fitness. The initial population is randomly
generated but only feasible individuals are kept. We did this initialization with
a simple (albeit, effective) brute force method. Specifically, a large number of
N -bit strings were randomly generated but only feasible solutions were put into
the initial population.
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In traditional population-based searches individuals undergo stochastic oper-
ations such as recombination to create new potential solutions. However, given
that feasible solutions are sparse, recombination would most likely not be effec-
tive. (In early trials we found the overwhelming majority of offspring produced
via recombination were infeasible.) Consequently, we simply cloned each parent
and then let local refinement improve the offspring.

The local refinement used follows the Lamarkian Learning paradigm [8].
Lamarkian inheritance assumes traits acquired during an individual’s lifetime are
directly passed on to its offspring. Implementing Lamarkian learning is straight-
forward. A parent is cloned and then mutated. The resultant offspring replaces
its cloned parent in the population if and only if it has higher fitness. Each muta-
tion resets one randomly chosen logic 1 bit and sets a different bit to logic 1. In
the spirit of Lamarkian learning, which conducts only a local search, the newly
set bit will be in the same segment as the bit that was reset. For example, if a
logic 1 bit in the short put option segment was reset, then the randomly chosen
bit to set would also be in the short put option segment. Thus a refinement
keeps the same option type but chooses a different strike price. In this work each
cloned parent was subjected to 4 mutations.

We also used elitism to help improve the search result—i.e., the best fit
individual from the previous generation was cloned and replaced the worst fit
individual in the current generation.

4 Evolutionary Algorithm Search Results

In this section we will examine the results of a number of evolutionary algorithm
optimization runs used to determine optimal option configurations as determined
by the chosen fitness functions. We consider two different fitness functions with
the aim of maximizing

1. Total profit achieved with the probability of a profitable trade being obtained
of greater that 80%.

2. As in (1) but with the further requirement that the maximum drawdown in
equity is limited to less than 10%. This objective mitigates the risk in the
option trading strategy.

The data used in the following studies is the full set of option data available
from IVolatility.com for the S&P500 ETF (Exchange Traded Fund) which has
ticker symbol SPY. This ETF reflects the price of a composite of 500 large
capitalization stocks traded on US stock exchanges. As such, it is considered a
proxy for the overall US market. The option data available spans the time period
from 2005 to 2016. More specifically the first trade is placed on January 10, 2005
and the last trade is completed on July 15, 2016.

A description of the trading strategy follows. The initiation of a trade occurs
on the first trading day of each month. Of the various option expiry periods
available, the options which expire on the 3rd Friday of the following month
are chosen. This is the usual monthly option expiration cycle. Recently weekly

www.IVolatility.com
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expiration cycle options have become available but are not used in this study.
This results in an option holding time of about 45 days, on average which is
our desired holding period. In our study once a trade is initiated it is held until
expiration. This results in being able to use the option pricing on entry from the
data and expiration profit/loss graph to determine option prices at exit (expiry).
With the data available, there are a total of 138 trades.

The option data used provides EOD (end of day) pricing of calls and puts at
various strike prices. This price data is presented as bid and ask prices at each
of the strikes. The bid and ask values represents the prices at which options
may be sold and bought, respectively, and were used as such in our work. Also
provided is the option delta for calls and puts at each strike price. Table 1 shows
representative data for options on October 1, 2010 which expire on November
19, 2010. (The data in this table will also be used in determining the expiration
profit/loss graphs that will be shown in the sequel.) Columns 2 to 4 and 6 to
8 show the bid, ask and delta values for calls and puts, respectively, for the
strike prices shown. Note that the delta values for puts are negative, as per the
definition of delta, however, we are mainly interested in the absolute value. The
strike values are shown in the 5th column in Table 1. For the SPY ETF, strikes
are available at 1 point increments. This is generally not the case for other
securities where strike values may be in 5 or 10 point increments. The strikes
used in our study have been restricted to a range of strikes where call and put
options both have an absolute delta value greater than 0.025. This resulted in
41 different strike values which are shown in Table 1.

The evolutionary algorithm uses the data to determine which option strate-
gies maximize the fitness functions. Six different strategies are found for the
two different fitness functions. These are categorized dependent on the number
of options used by the strategy. These may vary from one to six. Note that
the strategies discovered are not restricted to previously known option strate-
gies. Furthermore, with the results obtained for strategies comprising a different
number of options, it will be possible to assess an optimal number of options in
a strategy.

4.1 Maximizing Profit for a 80% Profitable Strategy

In this subsection we examine the results of using the first fitness function with
the evolutionary algorithm. As mentioned above this aims to find strategies
which maximize the profit where over 80% of trades were profitable over the
period of the historical data.

Table 2 shows the results for the strategies discovered. In particular, the aver-
age profit per trade, total profit for the whole period examined, percentage of
trades that are profitable and the subsequent maximum equity drawdown expe-
rienced are shown. This last metric assumes an initial cash equity of $10,000.

One-Leg Option’s Strategy: With just one option there are only four possible
choices for the strategy: long call, short call, long put or short put. The best
strategy discovered under the first fitness requirement was the short put. In
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Table 1. End of day SPY option chain data on October 1, 2010 for options with expiry
on November 19, 2010. The price of the underlying was 114.61. This data is used to
produce Figs. 3 and 5.

Row no. Call - bid Call - ask Call - delta Strike price Put - bid Put - ask Put - delta

1 25.69 25.97 0.9709 89 0.14 0.17 −0.02538

2 24.71 24.99 0.96767 90 0.16 0.19 −0.02868

3 23.73 24.02 0.96376 91 0.18 0.21 −0.03211

4 22.76 23.04 0.95969 92 0.20 0.23 −0.03568

5 21.79 22.07 0.95492 93 0.23 0.26 −0.04056

6 20.80 21.14 0.94891 94 0.26 0.29 −0.04561

7 19.85 20.13 0.94476 95 0.29 0.32 −0.05088

8 18.89 19.17 0.93825 96 0.33 0.36 −0.05751

9 18.02 18.17 0.92893 97 0.37 0.41 −0.06493

10 17.07 17.22 0.92083 98 0.42 0.46 −0.07321

11 16.13 16.28 0.91137 99 0.48 0.51 −0.08236

12 15.20 15.35 0.90054 100 0.56 0.57 −0.09308

13 14.28 14.42 0.88878 101 0.62 0.65 −0.10495

14 13.36 13.50 0.87600 102 0.70 0.74 −0.11843

15 12.44 12.59 0.86211 103 0.79 0.83 −0.13263

16 11.56 11.70 0.84499 104 0.90 0.93 −0.14958

17 10.67 10.82 0.82705 105 1.03 1.06 −0.16900

18 9.81 9.96 0.80629 106 1.16 1.19 −0.18901

19 8.99 9.10 0.78312 107 1.31 1.35 −0.21226

20 8.17 8.27 0.75779 108 1.51 1.53 −0.23896

21 7.37 7.47 0.72966 109 1.69 1.73 −0.26698

22 6.61 6.69 0.69850 110 1.92 1.96 −0.29869

23 5.87 5.95 0.66440 111 2.18 2.22 −0.33340

24 5.17 5.23 0.62741 112 2.49 2.51 −0.37132

25 4.50 4.56 0.58739 113 2.81 2.84 −0.41191

26 3.87 3.93 0.54459 114 3.17 3.21 −0.45546

27 3.28 3.33 0.49921 115 3.58 3.63 −0.50167

28 2.74 2.79 0.45171 116 4.03 4.07 −0.55041

29 2.25 2.29 0.40253 117 4.54 4.59 −0.60043

30 1.81 1.85 0.35261 118 5.10 5.15 −0.65152

31 1.43 1.47 0.30331 119 5.71 5.80 −0.70137

32 1.11 1.15 0.25603 120 6.37 6.49 −0.75037

33 0.84 0.87 0.21069 121 7.10 7.22 −0.79662

34 0.62 0.66 0.17032 122 7.86 8.00 −0.84080

35 0.45 0.49 0.13473 123 8.67 8.94 −0.87056

36 0.32 0.36 0.10453 124 9.53 9.80 −0.90383

37 0.23 0.26 0.08014 125 10.42 10.70 −0.93211

38 0.16 0.19 0.06061 126 11.34 11.63 −0.95526

39 0.11 0.14 0.04552 127 12.28 12.57 −0.97723

40 0.08 0.10 0.03419 128 13.25 13.53 −0.96887

41 0.06 0.08 0.02708 129 14.22 14.51 −0.97616
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particular, in option parlance, the 30 delta put (i.e. delta = 0.30) was found to
be optimal. From row 22 in Table 1 we see that the resulting option to be used
when placing the trade on October 1, 2010 would have been the 110 strike option
which is noted in Table 2. The average profit per trade achieved in the historical
period examined was approximately $41. Whilst the percentage of profitable
trades was 81.9%, the equity suffered a maximum 60% drawdown. Note that large
drawdowns are suffered by all strategies under the current fitness optimization
rubric. The P/L profile is shown in Fig. 3a.

Two-Leg Option’s Strategy: With two options (with identical expirations) the pos-
sibilities are expanded to include well known strategies such as vertical (credit or
debit) spreads, strangles and risk reversals. The optimum strategy discovered was
a strangle using a put delta of 21 and call delta of 13.5. Since two options are sold
the overall profitability is increased by the receipt of two options’ premiums. This
is reflected in the P/L values shown in Table 2. The maximum drawdown is reduced
in comparison with the previous short put strategy as the put strike in this new
strategy is further away at a 21 delta thus mitigating losses for SPY downside price
movements. The P/L profile using data from Table 1 is shown in Fig. 3b.

Three-Leg Option’s Strategy: The P/L profile for this strategy is shown in Fig. 3c.
In relation to known strategies this strategy may best be described as a risk
reversal with an OTM (out of the money) short call which caps the upside
profitability. Note that even though profitability is seemingly restricted, the short
call brings in extra premium.

Four-Leg Option’s Strategy: The P/L profile for this strategy is shown in Fig. 3d.
This profile is similar to that of the three options’ strategy but now there is an
even higher strike call being sold which brings in further premium. Table 2 shows
that this strategy has an average P/L of $68 per trade which results in it being
the most profitable strategy of the six.

Five and Six Leg Option’s Strategies: The P/L profiles for these strategies are
shown in Fig. 3e and f, respectively. These profiles are similar to the four options’
strategy but in the present cases it appears that cheap far OTM options are
chosen to satisfy the required option tally and don’t provide any further benefit.

Conclusion from the Results Presented in Table 2: The results of the four options’
strategy show it to be the best from those shown in Table 2. The resulting equity
curve for this strategy is shown in Fig. 4 where the starting capital is assumed to
be $10,000. The equity curve simply represents the ongoing cumulative sum of
all trade profits and losses. The large equity drawdown of 48.3% occurred during
the global financial crisis of 2008 and is due to just two extreme losing trades.
These two trades were the ones initiated in October and November, 2008. This
extreme equity drawdown characteristic is true of all the strategies presented
in Table 2 as no effort was made to mitigate this risk. In the next section we
will examine results of a reformulated fitness metric which aims to restrict the
maximum drawdown to an acceptable level.



34 R. Tymerski et al.

Table 2. Option strategies obtained for maximizing profit where over 80% of trades
are profitable in historical data period.

Number

of options

Option

type

(P/C)

Long/short

(L/S)

Delta

(absolute)

value)

Example

(Table 1

data)

Average

profit per

trade ($)

Total

profit

($)

Percent

profitable

(%)

Maximum

drawdown

(%)

1 P S 0.300 110 41 5677 81.9 60.0

2 P S 0.212 107 55 7528 81.1 34.5

C S 0.135 123

3 P S 0.267 109 52 7145 80.4 60.4

C L 0.403 117

C S 0.256 120

4 P S 0.212 107 68 9437 81.2 48.3

C L 0.403 117

C S 0.211 121

C S 0.135 123

5 P S 0.267 109 56 7723 81.2 58.4

C L 0.303 119

C S 0.135 123

C S 0.105 124

C L 0.027 129

6 P S 0.032 91 65 8940 80.4 48.9

P L 0.036 92

P S 0.212 107

C L 0.403 117

C S 0.211 121

C S 0.135 123

Fig. 3. Profit and loss (P/L) profiles for the set of 6 strategies presented in Table 2.
The price of the underlying (SPY) is 114.61. (a) One option: short put, (b) two options:
strangle, (c) three options: risk reversal with an OTM call, (d) four options, (e) five
options, and (f) six options.
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Fig. 4. Equity curve for the four leg option strategy over the period of January 10,
2005 to July 19, 2016. The large drawdown is the result of two losing trades during the
2008 financial crisis.

4.2 Maximizing Profit for a 80% Profitable Strategy While Limiting
the Maximum Equity Drawdown to Less Than 10%

In this subsection we consider an enhancement to the fitness function from the
previous subsection in that a maximum equity drawdown is specified. The results
are shown in Table 3 where a targeted limit of maximum drawdown was specified
as 10%. We will examine each of the six strategies next.

One Leg Option’s Strategy: Here we find that no strategy was able to meet the
dual requirements of 80% of trades being successful whilst limiting the maximum
drawdown to 10%. However the strategy closest to achieving this was the short
put placed at one extreme of the considered range of strikes. This resulted in a
maximum drawdown of 13.5% which at the same time improving the percentage
of profitable trades to 94.9%. However, at this extreme strike value insufficient
premium is garnered so that the average profit per trade is an unacceptable $3.
The P/L profile for this strategy is shown in Fig. 5a.

Two-Legs Option’s Strategy: The strategy chosen is known as a put vertical credit
spread. Basically it comprises of a short put, placed at a 13 delta, hedged by a
long put, placed at a 7 delta. The difference between the strike values determines
the maximum loss that this strategy can suffer. However, the average profit per
trade is also low at just $13. The P/L profile for this strategy is shown in Fig. 5b.

Three-Legs Option’s Strategy: The P/L profile for this strategy is shown in
Fig. 5c. Here we see that the profile has components of a previously discussed
strategy called a strangle, along with a lower strike long put. The strangle short
call is placed at a 17 delta with short put placed at a 13.5 delta. The lower strike
put appearing at a 5.8 delta limits the downside losses.

Four-Legs Option’s Strategy: The P/L profile for this strategy is shown in Fig. 5d.
This profile resembles the three option leg strategy profile but with an extra
lower strike long put which further mitigates downside losses. In fact, in extreme
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downside moves this strategy is profitable due to this extra long added put. With
an average profit of $36, this is the most profitable strategy appearing in Table 3.

Five-Legs Option’s Strategy: The P/L profiles for this strategy are shown in
Fig. 5e. This profile is similar to the four-legs options’ strategy but in the present
case a short put option appears at the low extreme of the available strikes which
appears to be placed there to satisfy the required option tally.

Six-Legs Option’s Strategy: The P/L profiles for this strategy are shown in Fig. 5f.
This profile resembles the four-legs option’s strategy along with an imbedded put
credit spread where greater gains are achieved for moderate underlying upside
moves. This strategy with an average profit per trade of $33 is the second most
profitable strategy shown in Table 3.

Conclusion from the Results Presented in Table 3: Again we find that the four-
legs option’s strategy appears to be the best of all considered. The equity curve
for this strategy is shown in Fig. 6, where we see that we have avoided the
large equity drawdown previously seen during the global financial crisis of 2008.
However, this comes at the price of slightly reduced profitability over the full
time period.

Table 3. Option strategies obtained by maximizing profit where over 80% of trades are
profitable while restricting the maximum drawdown to less than 10% (when possible)
in the historical data period.

Number

of options

Option

type

(P/C)

Long/short

(L/S)

Delta

(absolute)

value)

Example

(Table 1

data)

Average

profit per

trade ($)

Total

profit

($)

Percent

profitable

(%)

Maximum

drawdown

(%)

1 P S 0.025 89 3 408 94.9 13.5

2 P L 0.073 98 13 1735 93.5 9.2

P S 0.133 103

3 P L 0.058 96 30 4113 80.4 9.9

P S 0.135 103

C S 0.170 122

4 P L 0.036 92 36 4967 82.6 8.6

P L 0.041 93

P S 0.212 107

C S 0.105 124

5 P S 0.025 89 30 4190 81.2 9.9

P L 0.041 93

P L 0.046 94

P S 0.150 104

C S 0.135 123

6 P L 0.036 92 33 4527 80.4 8.7

P L 0.046 94

P S 0.212 107

P L 0.371 112

P S 0.412 113

C S 0.105 124
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Fig. 5. Profit and loss (P/L) profiles for the set of 6 strategies presented in Table 3.
The price of the underlying is 114.61. (a) One option (short put), (b) two options
(vertical put credit spread), (c) three options, (d) four options, (e) five options, and
(f) six options.

Fig. 6. Equity curve for the four-legs option’s strategy over the period from January
10, 2005 to July 19, 2016. The maximum drawdown has now been limited to under
10% with the appropriate choice of option strategy.

5 Conclusions

In this paper a memetic algorithm has been used in the search of option strategies
which feature optimum performance based on a backtest using SPY option data
from January 2005 to July, 2016. Performance was first quantified in terms of
profitability and percentage of profitable trades. From a search of option strate-
gies ranging from 1 to 6 option legs, an optimum 4 legs strategy was found which
featured the highest profitability for a greater than 80% winning trade percent-
age. However the equity drawdown during the 2008 global financial crisis was
found to be unacceptably large, as with all the other strategies found which did
not consider this risk metric. Subsequently, the performance criteria was refor-
mulated to include equity drawdown by limiting it to be less than 10%. Further
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searching over option strategies featuring 1 to 6 legs resulted in again finding
that a 4-legs strategy (different from the previous one) was optimum.

To the best of our knowledge, this is the first time that a systematic approach
to the generation and search of multi-leg option’s strategies guided by predefined
performance metrics has been undertaken and reported.

Future extensions to this work will consider other fitness functions. For exam-
ple, in order to maximize the return on capital it becomes desirable to include in
the fitness evaluation a determination of the margin requirements of all potential
solution strategies. This will also tend to mitigate the risk of the strategy since
the margin requirement is a reflection of inherent risk.
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Abstract. We use an adversarial approach inspired by biological coevo-
lution to generate complex line drawings without human guidance. Arti-
ficial artists and critics work against each other in an iterative competi-
tive framework, forcing each to become increasingly sophisticated to out-
play the other. Both the artists and critics are implemented in hercl,
a framework combining linear and stack-based Genetic Programming,
which is well suited to coevolution because the number of competing
agents is kept small while still preserving diversity. The aesthetic qual-
ity of the resulting images arises from the ability of the evolved hercl
programs, making judicious use of register adjustments and loops, to
produce repeated substructures with subtle variations, in the spirit of
low-complexity art.

Keywords: Artist-critic coevolution · Artificial creativity · Adversarial
training

1 Introduction

Several recent papers have explored the development of aesthetically pleasing
images using an evolutionary approach [6,8–11,13]. In most cases, human inter-
action is required to guide evolution towards pleasing images. However, Machado
et al. [10] use an experimental approach inspired by coevolution in nature, which
allows novel imagery to be generated without human interaction (see also [11]).
The core of the coevolution process is the adversarial relationship between an
artist and a critic. The aim of the critic is to distinguish real art from artifi-
cial art (produced by the coevolving artist). The aim of the artist is to produce
images that the critic will believe to be real.

At the beginning of the process, a set of critics are trained on a predeter-
mined set of real and fake images. Then, a set of artists are evolved to produce
art which fools the previously-evolved critics. The images produced by the artists
are then added to the fake dataset that is used to train critics in the next gener-
ation, and the process is iterated indefinitely. Both the artist and the critic must

c© Springer International Publishing AG 2017
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increase in sophistication at each generation in order to surpass the adversary.
The hope is that the continual increase in sophistication will produce imagery
that is appealing, or at least interesting, from a human perspective.

In previous approaches, images were typically generated by artists using
pixel-based methods, where a shade or colour is assigned to each pixel in the
image [8], often based on its x and y co-ordinates, using either a tree-based
Genetic Program [9,10] or a neural network [13]. The critic used either a tree-
based gp [9] or a neural network [10] for classification, with input based on
certain statistical features of the image.

In the present work, we adapt this coevolution approach to the framework
of hierarchical evolutionary re-combination (hercl) as introduced in [2], which
combines features from linear gp and stack-based gp. Each agent (artist or
critic) is a program written in a simple imperative language with instructions
for manipulating a stack, registers and memory. The full list of hercl commands
is given in Table 1.

Table 1. HERCL commands

hercl does not use a population as such, but instead maintains a stack or
ladder of candidate solutions (agents), and a codebank of potential mates (see
Fig. 1). At each step of the algorithm, the agent at the top rung of the ladder is
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Fig. 1. Hierarchical evolutionary re-combination. If the top agent on the ladder
becomes fitter than the one below it, the top agent will move down to replace the
lower agent (which is transferred to the codebank). If the top agent exceeds its max-
imum number of allowable offspring without ever becoming fitter than the one below
it, the top agent is removed from the ladder (and transferred to the codebank).

either mutated or crossed over with a randomly chosen agent from the codebank,
or from an external library. Crossovers and mutations are classified into different
levels according to what portion of code is modified. A large crossover at the
lowest rung of the ladder is followed up by a series of progressively smaller
crossovers and mutations at higher rungs, concentrated in the vicinity of the
large crossover (see [2] for further details).

In the present work, both the artists and the critics are hercl programs.
The artist’s output is interpreted as a sequence of commands in a simple drawing
environment. The critic takes as input a set of features computed from the image,
and returns a number between 0 and 1 representing its confidence that the image
is real.

The advantages of using the hercl framework in this context are as follows:

(a) It enables the artist to work at the level of line drawing rather than per-pixel
manipulation, thus allowing the exploration of a different artistic modality
which is arguably closer to the way humans draw with pen and paper.

(b) The functionality of the artist is extended with programming constructs such
as loops, stack manipulation and incrementing or decrementing of registers,
as well as various basic math functions.

(c) The ladder and codebank arrangement of the hercl framework keeps the
number of competing artists and critics relatively small, thus allowing com-
putationally efficient coevolution.

The use of a stroke-based model for drawing is similar to Simon Colton’s sys-
tem The Painting Fool [4], whose output is more visually complex. Colton’s soft-
ware aims to produce a painterly rendering of a single image, whereas we are more
interested in creating a system capable of generating novel, non-representational
imagery based on a collection of images.
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2 Methodology

Each artist is a hercl program, which when executed outputs a sequence of
messages that are interpreted as commands in a simple graphics environment.
This environment gives the artist control over a virtual pen, which it can rotate
and move to draw lines. The artists take no input and behave deterministically,
and therefore each artist produces only a single image.

Each message is a sequence of integers; the first integer (modulo 5) specifies
the command, and the subsequent integers specify parameters as appropriate
(see Table 2). The artist is limited to a maximum of 900 commands, but it can
also halt of its own accord before this point.

Table 2. Line drawing commands

0 toggle lift pen on/off page
1 move x move pen forward by x pixels (0 ≤ x ≤ 15)
2 turn x turn x degrees clockwise
3 size p set pen radius to p pixels (1 ≤ p ≤ 4)

4
colour v set greyscale value [in greyscale mode]
colour l h s set colour in HSV colour space [in full-colour mode]

Typically the artist is allowed to use any instruction in the hercl syntax,
but in some experiments we disallowed the use of the branch-back instruction,
preventing the artist from implementing loops.

The critics are also hercl programs, which take as input a set of features
computed from an image, and are required to output a single number between
0 and 1, similar to the classification tasks of [3]. The set of features extracted
from the image is primarily based on those used by Datta et al. [5] in their work
on computationally assessing photograph quality, as well as some from [10]. We
also add some features based on corner detection as this pertains specifically to
the line-based drawing method used by our system.

The full list of features is shown in Table 3. For colour images, certain proper-
ties are calculated independently across the Hue, Saturation and Value channels,
resulting in three features. In greyscale mode, the image effectively consists only
of a Value channel, and so the features with superscript H or S are not provided
to the critic. All features except NP and NC are scaled to within [0,1]. Corner
weight and number are computed using the Harris & Stephens corner detection
algorithm, as implemented in OpenCV 2.4. In total, there are 19 features in
greyscale mode and 33 in full-colour mode.

When evolving an artist, its fitness is determined by how well it fools the
set of critics. The image produced by an artist is first converted into a feature
vector, and the critics each give a score based on this vector. The cost function
for the artist is a weighted sum of critics from all previous generations, with
older critics contributing less. For an artist in generation n,
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Table 3. Image features

Feature Abbreviation Source

Mean MH,MS,MV [5,10]

Standard deviation SH , SS , SV [5,10]

Greyscale entropy H [10]

Mean edge weight ME [10]

Standard deviation of edge weight SE [10]

Number of homogenous patches NP [5]

Mean of largest patch PH
1 , PS

1 , PV
1 [5]

Mean of 2nd-largest patch PH
2 , PS

2 , PV
2 [5]

Mean of 3rd-largest patch PH
3 , PS

3 , PV
3 [5]

Mean of 4th-largest patch PH
4 , PS

4 , PV
4 [5]

Mean of 5th-largest patch PH
5 , PS

5 , PV
5 [5]

Size of largest patch A1 [5]

Size of 2nd-largest patch A2 [5]

Size of 3rd-largest patch A3 [5]

Size of 4th-largest patch A4 [5]

Size of 5th-largest patch A5 [5]

Convexity factor C [5]

Mean corner weight MC -

Number of corners NC -

cost = 1 −
n∑

i=1

(1
2

)n−i−1

ci

where ci is the average score across all critics in generation i. Artists are con-
sidered successful when they have achieved a cost below 0.1. The main reason
for using critics from all previous generations is that sometimes the most recent
critics will be good enough that the artist is initially unable to produce an image
which gets a non-zero score. This leaves the artist with a flat fitness landscape
and prevents it from evolving successfully. Including critics from previous gen-
erations helps the artists to improve, particularly in the early generations, and
could perhaps also help prevent suboptimal cycles of forgetting and re-learning
in the coevolutionary dynamics [1].

A library is maintained of the successful artist code from all previous gen-
erations. Code from this library is made available for crossovers and mutations
when evolving the next generation of artists. This enables the artists to evolve
by adapting and re-using code from earlier artists, and encourages them to build
on the artistic “style” developed in previous generations (see Figs. 3, 4 and 5).
However, this may also limit diversity by encouraging similar code throughout
the run.
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Fig. 2. One example image from each dataset: Chinese characters and Colour. (Color
figure online)

Critics are evolved against a labeled dataset consisting of feature vectors
computed from the real and fake image datasets. The target value is 1 for real
images and 0 for fake images. The cost for the critic is the cross-entropy function:

cost = −t log(z) − (1 − t) log(1 − z)

where t is the target label (0 or 1) and z is the value produced by the critic. Any
critic producing a value ≤0 for a real image or ≥1 for a fake image receives a
penalty and is excluded from both the ladder and the codebank. This, combined
with the logarithmic divergence in the cost function, strongly encourages critics
to produce values inside the interval (0, 1) rather than at the extremes. This
makes it easier for the artists to evolve because the fitness landscape has a
continuous gradient.

As in [10], the real and fake datasets are given equal weight, so that the
relative sizes of the two sets do not affect the critic’s evolution. Critics are
accepted when they achieve a cost below 0.1.

3 Experiments

We focus primarily on the results of two runs of the coevolution process, using
a starting set of images of Chinese characters. We call the two runs Loops and
No Loops. The difference between them is that for the latter, we disabled the
branch-back instruction, preventing loop structures from appearing in the artist
code. Both these runs operate in greyscale mode.

The starting dataset consists of 290 greyscale images of Chinese characters
from Wiktionary, each 80×80. There is no particular reason for using this dataset
other than that it contains images that could be feasibly generated within our
drawing framework.

We also conducted one additional run, Colour, to demonstrate the colour-
mode capability. This run used a dataset of 67 colour images taken from a Google
Images search for “circle”, with search settings restricting size to 128 × 128 and
specifying ‘Full colour’. The resulting images all contain circles or round objects,
but generally in combination with other elements or symbols.

For each run, there were three critics and ten artists evolved independently
in each generation (each with its own ladder and codebank).
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4 Results and Discussion

A selection of generated images from each run is shown in Figs. 3, 4 and 5.
Aesthetic qualities of the images are difficult to quantitatively assess, but it is
clear that the system is capable of generating quite a diverse range of complex
imagery with no human guidance.

It is clear from the results, and Fig. 3 in particular, that the complexity of
the images is increasing across phases. This demonstrates that the adversarial
artist-critic relationship is successful in driving the development of complexity.

The difference between the images in Figs. 3 and 4 is notable. We see that
allowing loops results in highly structured patterns in the images, whereas dis-
allowing loops results in images with a more freehand appearance.

The code for the No Loops run tends to be longer, because each stroke has to
be coded individually. In the Loops run, there are many cases where the evolved
code is quite short but manages to generate surprisingly elaborate images. For
example, the left image in the 2nd bottom row of Fig. 4 was generated by this
code:

[<wx<*23.#-!cw8v{.v<wwcv<wwow.v<*vwo;:]

The possibility of creating complex images from short programs draws par-
allels with Schmidhuber’s theory of low-complexity art [12]. What makes these
images particularly interesting (and perhaps aesthetically pleasing) is that they
often contain repeated structures which are similar but not quite identical. The
evolved hercl programs make use of loops and register adjustments to introduce
subtle differences in these substructures, thus mimicking certain developmental
processes in the natural world. This phenomenon can be compared with the
pixel-based approach of [8], where local agents following evolved rules were used
to create an overall “natural-looking” image.

Greyscale entropy is the feature most commonly used by the critics (see
Figs. 6, 7 and 8). Other important features include the mean and standard devi-
ation of the overall image (MV , SV ) and the edge weight (ME , SE), the convex-
ity (C) and the size and mean value of the 2nd largest patch (A2, P

V
2 ). For the

Colour task, which was trained on “circle” images, the mean corner weight and
mean of the largest and 3rd largest patch in the H and S channels are also used.
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Fig. 3. Three images each from
generations 1 to 8 of No Loops run.

Fig. 4. Three images each from
generations 1 to 8 of the Loops run.
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Fig. 5. Six images each from generations 3,5,7,8,9,11,13,15,17,18 of Colour run. (Color
figure online)



48 D. Vickers et al.

H PV
5 PV

2
SE MV PV

3 PV
4 SV A2 ME

5

10

15

20
18

13

9
7 7

6 6 6
5

4

o
cc

u
rr

en
ce

s

Fig. 6. Image features most used by critics for the No Loops run.
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Fig. 7. Image features most used by critics for the Loops run.
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Fig. 8. Image features most used by critics for the Colour run.

5 Conclusion and Future Work

We have successfully adapted the coevolutionary art paradigm to a natural line-
drawing environment. The fact that hercl programs can act as both artist and
critic is testament to the versatility of the hercl framework. Discrimination
based on statistical features of the image, combined with the inherent preference
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for shorter programs, are enough to drive complexity and produce aesthetically
pleasing images.

However, there are clearly certain local and global properties of the images
which are not being captured by these statistical features. In future work, we
plan to explore the use of deep convolutional neural networks in the role of
the critic, similar to the generative adversarial networks recently introduced for
image generation [7]. Another avenue of investigation would be the use of multi-
cell hercl programs (which allow jumping to subroutines), or additional line
drawing commands for moving to a specified (or previously stored) location on
the canvas, to see whether the paradigm can be scaled up to larger and more
sophisticated images.
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Abstract. To estimate the quality of the induced predictive model we
generally use measures of averaged prediction accuracy, such as the rel-
ative mean squared error on test data. Such evaluation fails to provide
local information about reliability of individual predictions, which can
be important in risk-sensitive fields (medicine, finance, industry etc.).
Related work presented several ways for computing individual predic-
tion reliability estimates for single-target regression models, but has not
considered their use with multi-target regression models that predict a
vector of independent target variables. In this paper we adapt the exist-
ing single-target reliability estimates to multi-target models. In this way
we try to design reliability estimates, which can estimate the prediction
errors without knowing true prediction errors, for multi-target regression
algorithms, as well. We approach this in two ways: by aggregating reli-
ability estimates for individual target components, and by generalizing
the existing reliability estimates to higher number of dimensions. The
results revealed favorable performance of the reliability estimates that
are based on bagging variance and local cross-validation approaches. The
results are consistent with the related work in single-target reliability
estimates and provide a support for multi-target decision making.

Keywords: Multi-target regression · Reliability estimate · Supervised
learning · Prediction error

1 Introduction

The aim of supervised learning is to generalize knowledge contained in learn-
ing data and minimize prediction error on yet unseen examples. To estimate
the quality of the induced predictive model we generally use measures of aver-
aged prediction accuracy, such as the relative mean squared error on test data.
Although such evaluation does provide information about the general model
performance, it fails to provide local information about reliability of individual
predictions. Note that in this paper we use term reliability to denote estimated
accuracy, as the true predictive accuracy for unseen (and therefore unlabeled)
examples is not known.
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Having the individual prediction reliability estimates at disposal can rep-
resent a strategic advantage of a decision support system, especially in risk-
sensitive fields, such as medicine, finance or industry. Since a professional’s deci-
sions that are made by consulting a decision support system can have severe
consequences, reliability estimates for individual predictions can provide grounds
for making more informed decisions.

Related work in this field already presented several ways for computing
reliability estimates for individual predictions. These can be divided to model-
specific, which are tied to particular model formalizations (e.g. confidence inter-
vals in linear regression, variance of target labels in decision tree leaves etc.), or
model-independent, which are designed as wrappers around the learning algo-
rithm and therefore treat it as a black box. Since the latter family is more
general, we chose it as a focus of our work. Although several model-independent
reliability estimates have already been proposed for classification [1,2] as well as
for regression [3,4], they are intended for use only with single-target predictive
models.

Opposed to single-target models, multi-target models aim at predicting a
vector of independent target variables, which can also be of different variable
types. In this paper we extend the existing reliability estimates for individual
regression predictions [3,4] (described in Sect. 2.2) to such multi-target models
with the aim to estimate reliability of the entire vector of target variables as
a whole. In this way we try to design reliability estimates, which can estimate
the prediction errors without knowing true prediction errors, for multi-target
regression algorithms, as well. We propose two main approaches to achieve this
goal, the first one being the aggregation of reliability estimates for individual
target components, and the second one being the generalization of the existing
reliability estimates to higher dimensions. We compare the proposed approaches
by correlating them to the actual prediction error of test examples and rank
them by their performance.

The paper is structured as follows. Section 2 describes the related work in
multi-target modeling and existing single-target reliability estimates for regres-
sion. Section 3 describes the adaptation of reliability estimation to multi-target
predictors. In Sect. 4 we provide evaluation and experimental results and in
Sect. 5 we conclude the paper.

2 Related Work

2.1 Multi-target Modeling

The task of multi-target regression (also called multivariate or multi-response
regression) is simultaneously predicting multiple continuous target variables. The
learning examples take form of ( #»x i,

#»y i) where #»x i = (xi1, xi2, . . . , xik) is a vector
of k attributes and #»y i = (yi1, yi2, . . . , yid) is a vector of d target attributes. As
one could build a separate model for each of the target attributes and then
combine the results, the better way is to predict all of the target attributes #»y i

at once. In this way, the dependencies of the target attributes are implicitly
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modeled as well, producing better predictive performance. The other advantage
of described multi-target model is that the size and complexity of the produced
model is smaller than the combined size of the single-target models [5,6].

Multi-target regression trees are an example of multi-target regression mod-
els. They represent a generalization of single-target regression trees that model
dependency between several input attributes and a single target continuous vari-
able. In contrast to the latter, multi-target regression trees predict a vector of
prediction values that is represented by each leaf of the tree. To induce such a
tree, the adapted impurity measures for each inner nodes are used to determine
the appropriate split. While many tree induction algorithms exist, most of them
are based on the CART model [7] – such are the Segal’s [8] and De’Ath’s [9]
multivariate regression trees. Some others, such as multi-objective regression
trees (MORTs) [10], perform multi-target modeling by extending the predictive
clustering trees [11]. Multi-target trees have also been extended into multivari-
ate random forests model [12] or combined via stacking [13] to achieve better
predictive accuracy.

In contrast to multivariate trees, linear regression has a trivial extension to
the multi-target regression. Instead of solving one system of linear equations, we
need to solve d of them:

Yn×d = Xn×(k+1)β(k+1)×d + En×d.

Here, Y is a matrix of n, d-dimensional vectors of target attributes, X is a
matrix of n attribute vectors (with k attributes and values of xi0 = 1 for all i),
β is a coefficient matrix and E is the residual matrix. After all coefficients are
calculated by minimizing the squared error on training examples [14], we can
use the system of d linear equations to predict each target variable separately.

Similar straightforward extension to multi-target regression is also the
k-nearest neighbor method (kNN). Firstly, the k nearest examples are retrieved
from the learning set and then the label sets of those neighbors are aggregated
in some manner [15].

In our experimental work we evaluate the proposed reliability estimates with
these three models, i.e. multi.target regression trees, multi-target linear regres-
sion and k-nearest neighbors.

2.2 Reliability Estimation of Single-Target Predictions

Several reliability estimates for single-target regression models have already been
proposed in the related work [3,4]. All of the following reliability estimates are
designed as model-independent wrappers and work by manipulating the dataset.
We focus on estimates that use sensitivity analysis approach (i.e., estimates
SAvar and SAbias), bagging (estimate BAGV) and local cross-validation (esti-
mate LCV). They are defined as follows:

1. The principle of sensitivity analysis is to build multiple regression mod-
els based on small variations in input dataset and observe the magnitude
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of changes in outputs. The algorithm for computation of estimates SAvar
and SAbias takes a learning dataset L = {( #»x i, yi)}, i = 1 . . . n, learning
algorithm M and a query example #»q = ( #»x ′, ) as input. It returns the
prediction for #»q and a reliability estimate for that particular example. The
algorithm starts by computing the initial prediction K for #»q using model
M on the initial dataset L. Afterwards, it builds multiple sensitivity models
Mεi

, i = 1, . . . , e by augmenting L with artificially labeled query example into
Lεi

= L ∪ ( #»x ′,K + f (εi)) , i = 1, . . . , e, where f(εi) represents a magnitude
of change that was introduced into the learning data. As an outcome, several
sensitivity predictions Kεi

, i = 1, . . . , e are obtained for the query example #»q .
The assumption of the process is that big differences between initial predic-
tion K and sensitivity predictions Kεi

indicate low reliability of prediction K,
as small changes of the learning dataset should not cause big deviations in the
output. The prediction bias and variance are further modeled as reliability
estimates SAvar and SAbias as follows:

SAvar =
∑

i(Kεi
− K−εi

)
e

SAbias =
∑

i(Kεi
− K) + (K−εi

− K)
2e

where e represents a number of sensitivity models, as described above.
2. Traditional bagging (i.e., ensemble of predictors that are induced on several

samplings of the original dataset with replacement and have the same cardi-
nality) can be generalized to yield reliability estimate as follows. Assuming
that the ensemble contains m regression models, each of them giving predic-
tion K(i), i = 1, . . . ,m, the final prediction K(∗) can be defined as an average
K(∗) =

∑
m K(i)

m and the reliability estimate as a variance (higher value indi-
cating greater instability – lower reliability):

BAGV =
1
m

m∑

i=1

(
K(i) − K(∗)

)2

3. Local cross-validation approach analyses local characteristics of the input
space. The algorithm first finds N nearest examples NEAR = {( #»x j , yj)}, j =
1, . . . , N of the query example #»q = ( #»x ′, ) and performs the leave-one-out
procedure. For each nearest neighbor ( #»x j , yj), j = 1, . . . , N , a local model
using all the remaining nearest neighbors (NEAR \ ( #»x j , yj)) is induced, and
a prediction Kj for the ( #»x j , yj) is computed. In this way, a local error Ej =
yj −Kj is computed for all nearest neighbors and the reliability estimate LCV
is expressed as their weighted sum:

LCV =

∑
( #»x i,yi)∈NEAR d( #»x i,

#»x ′) · (yj − Kj)
∑

( #»x i,yi)∈NEAR d( #»x i,
#»x ′)

where d() is a distance function between learning examples.
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In the following section we focus at applying these single-target reliability esti-
mates with multi-target regression models.

3 Reliability Estimation of Multi-target Predictions

Multi-target regression predictions try to model true values #»y = (y1, y2, . . . , yd),
yi ∈ R and therefore also take the form of a vector

#»

K = (K1,K2, . . . ,Kd),
Ki ∈ R. Here we propose three different approaches for estimating reliabilities of
multi-target regression predictions. Each of them is described in the subsequent
sections.

3.1 Independent Estimation for Each Target Variable

We start by estimating reliability of each target variable independently and con-
struct a vector of corresponding estimates. We compute reliability estimates from
Sect. 2.2 for every component of the prediction vector

#»

K = (K1,K2, . . . ,Kd) to
produce the corresponding vector of reliability estimates #»r = (r1, r2, . . . , rd).
Every target variable yi is treated independently as the only target variable,
ignoring others within the target vector.

3.2 Aggregation of Independent Reliability Estimates

Since a single overall estimate for entire target vector enables simpler comparison
with other predictions and interpretability, we aggregate the individual reliability
estimates into a joint reliability estimate for entire prediction vector. For this we
use two approaches: (1) computation of the arithmetic mean (denoted as AM in
the following) and (2) the Euclidean (or second) norm (denoted as l2):

l2 =

√
√
√
√

d∑

i=1

r2i

3.3 Generalization to Multi-target Prediction

Finally, we generalize the described estimates so they can be used with a higher
number of dimensions, i.e. with the entire prediction vector

#»

K. We achieve this
by modifying the existing methods to measure the distances between prediction
vectors instead by computing differences (subtractions), as shown in Sect. 2.2.
The used distances can be arbitrary distance measures; in our evaluation we
experiment with the Euclidean distance. In the following we describe adaptations
of SAvar, SAbias, BAGV and LCV.
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Sensitivity Analysis. We preserve the same process of sensitivity analysis
and replace the subtractions in reliability estimate definitions with distances, as
follows:

SAvar+ =
∑

i dist(
#»

Kεi
,
#»

K−εi
)

e

SAbias+ =
∑

i dist(
#»

Kεi
,
#»

K) − dist(
#»

K−εi
,
#»

K)
2e

where e represents a number of sensitivity models, dist() is a distance measure
between vectors of target variables,

#»

K is an initial prediction vector and
#»

Kεj
, j =

1, . . . , e are the vectors of sensitivity predictions.

Variance of Bagged Model. We begin by building a bagged ensemble of m
multi-target regression models, where each model contributes its own prediction
vector

#»

K(i) for the query example. We determine the aggregated prediction of
the ensemble as a centroid

#»

K(∗) =
∑m

i=1
#»
K(i)

m of the individual prediction vectors
and define the reliability estimate BAGV + as the variance of distances between
bagged prediction vectors and their centroid

#»

K(∗):

BAGV + =
1
m

m∑

i=1

dist(
#»

K(i),
#»

K(∗))2

where dist() is a distance function between vectors of target variables.

Local Cross-Validation Reliability Estimate. The generalization of the
reliability estimate LCV is straightforward as well, as we only need to redefine
the definition of the local error as the distance between the local prediction
vector

#»

Kj and the vector of actual values #»y j :

LCV + =

∑
( #»x i,

#»y i)∈NEAR d( #»x i,
#»x ′) · dist( #»y j ,

#»

Kj)
∑

( #»x i,
#»y i)∈NEAR d( #»x i,

#»x ′)

where d() is the distance function for finding the nearest neighbors and dist() is
the distance function between target variable vectors.

4 Evaluation and Results

We evaluated all three proposed approaches using 10 datasets and 3 regression
models. The datasets were collected from the UCI data repository of machine
learning datasets [16]. Since we used Euclidean distance to measure differences
in vectors of target variables, we had to normalize the continuous attributes in
dataset to the interval [0, 1] to avoid bias of the distance function to attributes
with greater span of values. We defined the target attributes on our own to
be meaningful according to the domain problem. The details about the used
datasets are shown in Table 1.
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Table 1. Description of the used datasets (in very large datasets, a random sample of
800 instances was only taken).

Dataset No. of
examples

No. of discrete
attributes

No. of continuous
attributes

No. of target
attributes

wimbledon 113 8 18 3

wpbc 194 0 31 2

skillcraft 800∗ 4 11 4

cbm 800∗ 0 16 2

slump 103 0 6 3

wine 800∗ 0 10 2

student 395 30 0 3

housing 506 1 11 2

dow-jones 720 3 9 2

parkinsons 800∗ 2 22 2

Evaluation Protocol. We tested the proposed reliability estimates using the
leave-one-out (LOO) cross-validation, omitting one test (i.e., query) example in
every iteration. For such test example #»q = ( #»x , #»y ), we computed the following:

1. multi-target regression prediction
#»

K,
2. prediction error #»y − #»

K and its mean across target attributes 1
d

∑d
i=1(Ki−yi)2,

3. vector of single-target reliability estimates #»r ,
4. three variants of multi-target reliability estimates

(a) arithmetic mean of the reliability vector AM ,
(b) second norm of the reliability vector l2,
(c) the generalized estimates (SAvar+, SAbias+, BAGV + and LCV +).

Within all three variants of the multi-target reliability estimates we used the
Euclidean distance as the distance metric dist() between predictions. For compu-
tation of SAvar and SAbias we used the default [4] set of sensitivity parameters
E = {0.01, 0.1, 0.5, 1.0, 2.0} and f(ε) = ε · (high − low) where high and low are
interval boundaries of the target variable labels. As SAbias estimate returns a
signed value, its absolute value was used for evaluation. For computation of the
BAGV , we used ensembles with m = 50 models. Finally, with LCV estimate
we considered 5 nearest neighbors and used an Euclidean distance as a distance
function d() between examples.

In our experiments we evaluated if the reliability estimates truly indicate the
magnitude of the prediction error. Since the prediction error is known for test
examples (but was hidden for the computation of the reliability estimates), we
compute the Pearson correlation coefficients between predictions and reliability
estimates and evaluate them for the statistical significance using the two-tailed
t-test with threshold p-value of 0.05.
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Regression Models. We used the following three multi-target regression mod-
els (all implemented in the Python library “scikit-learn” [17]) with default para-
meters:

1. multi-target regression trees (RT): with the mean squared error as a splitting
criterion and maximum tree depth of 6,

2. multi-target linear regression (LR): no explicit parameters,
3. multi-target k-nearest neighbors (kNN): with the number of neighbors k = 5,

uniform weights and Euclidean distance measure.

4.1 Performance with Different Predictive Models

As described earlier, we computed a vector of single target reliability estimates
#»r and three variants of aggregated multi-target reliability estimates (AM , l2

and +) for each reliability estimation approach (SAvar, SAbias, BAGV and
LCV ) and multi-target regression model (RT, LR, kNN). We computed Pear-
son correlation coefficients between the reliability estimates and prediction errors
and evaluated them for statistical significance. In Table 2 we report the percent-
age of domains with statistically significant positive and negative correlations
between prediction errors and reliability estimates for every reliability estima-
tion approach and used regression model. Since for the vector of single-target
reliability estimates we computed the correlation coefficient for each component
separately, the table reports the averaged percentage of domains with the sig-
nificant correlation coefficient across all target variables. This result serves as
a baseline (upper and lower bound) for evaluating the aggregated multi-target
reliability estimates.

Table 2. Percentage of domains with statistically significant positive and negative
correlations between prediction errors and reliability estimates for three multi-target
models and four reliability estimation approaches. Cells are in a form: positive/negative
correlations.

Model SAvar SAbias
#»r AM l2 + #»r AM l2 +

RT 33/32 40/20 40/20 40/20 5/10 20/10 20/10 20/10

LR 55/5 50/0 50/0 50/0 17/0 20/0 20/0 20/0

kNN 0/41 0/50 0/50 0/50 72/0 50/0 50/0 40/0

Avg 29/26 30/23 30/23 30/23 31/3 30/3 30/3 26/3

Model BAGV LCV
#»r AM l2 + #»r AM l2 +

RT 69/10 70/0 70/0 70/0 70/0 50/0 50/0 50/0

LR 65/0 60/0 60/0 60/0 60/3 50/0 60/0 60/0

kNN 82/0 70/0 70/0 70/0 79/0 60/0 60/0 60/0

Avg 72/3 66/0 66/0 66/0 69/1 53/0 56/0 56/0
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Fig. 1. Percentage of domains with statistically significant positive (above axis) and
negative correlations (below axis) for proposed aggregated approaches AM , l2 and +,
for different regression models.

These results are also visually displayed in Fig. 1 along with their averages
across regression models. The table and the figure show that the best result was
achieved using all variants of the reliability estimate BAGV combined with the
multi-target regression trees (RT) and kNN (70% of domains with statistically
significant positive correlations and 0% of domains with negative correlations).
The estimate LCV follows as the second best, while the estimates SAvar and
SAbias achieved much lower performance. The reason for bad performance of the
SAvar estimate with the kNN model is that the local neighborhoods of an exam-
ple in the initial and sensitivity models are very similar (the only exception is the
additionally inserted example); as such, the examples cancel out within the defi-
nition of SAvar almost completely, effectively making the estimate independent
of the query example. That explains 50% domains with negative correlations in
the combination with the kNN model, so that result should be interpreted with
the grain of salt.

If we disregard SAvar, the best average results were achieved using multi-
target kNN regression model, followed by linear regression. All findings are com-
parable to the related work on the reliability estimation of single-target regres-
sion predictions [3], where BAGV and LCV achieved the highest scores as well.
By analysing our four proposed variants, we can see that all three aggregation
approaches (AM , l2 and +) perform comparably with each other.

4.2 Correlations with the Prediction Error

Figure 2 displays an alternative view of the results: the average correlation coef-
ficients between reliability estimates and prediction error, averaged across all
datasets.
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Fig. 2. Average Pearson correlation coefficients for reliability estimate variants AM ,
l2 and + for different regression models.

From the results we can see that all of the proposed estimate variants achieve
the highest average correlations with reliability estimates BAGV (average cor-
relation around 0.24) and LCV (average correlation around 0.20), while SAvar
and SAbias perform worse. They both score an average correlation coefficient
lower than 0.1 and did not reach the average bound for statistical significance.

5 Conclusion

In the paper we proposed several approaches for estimating the reliabilities of
individual multi-target regression predictions. The aggregated variants (AM , l2

and +) produce a single-valued estimate which is preferable for interpretation
and comparison. The last variant (+) is a direct generalization of the single-
target estimators from the related work.

Our evaluation showed that best results were achieved using the BAGV and
the LCV reliability estimates regardless the estimate variant. This complies with
the related work on the single-target predictions, where these two estimates also
performed well. Although all of the proposed variants achieve comparable results,
our proposed generalization of existing methods (+) is still the preferred variant
due to its lower computational complexity (as estimates are only calculated once
for all of the target attributes) and the solid theoretical background.

In our further work we intend to additionally evaluate other reliability esti-
mates in combination with several other regression models. We also plan to test
the adaptation of the proposed methods to multi-target classification.
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Reliability estimation of individual predictions offers many advantages espe-
cially when making decisions in highly sensitive environment. Our work provides
an effective support for model-independent multi-target regression.
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Abstract. Attention is both ubiquitous throughout and key to our cog-
nitive experience. It has been shown to filter out mundane stimuli, while
simultaneously communicating specific stimuli from the lowest levels
of perception through to the highest levels of cognition. In this paper
we present a connectionist system with mechanisms that produce both
exogenous (bottom-up) and endogenous (top-down) attention. The foun-
dational algorithm of our system is the Temporal Pooler (TP), a neocor-
tically inspired algorithm that learns and predicts temporal sequences.
We make a number of modifications to the Temporal Pooler and place
it in a framework which is inspired by predictive coding. We use a novel
technique in which feedback connections elicit endogenous attention by
disrupting the learned representations of attended sequences. Our exper-
iments show that this approach successfully filters attended stimuli and
suppresses unattended stimuli.

Keywords: Attention · Hierarchical Temporal Memory · Predictive
coding

1 Introduction

Attention lies at the heart of cognitive experience. It enables our conscious per-
ception to focus upon specific elements within the vast and dynamic sensorium.
It manifests in many forms: following an object along the horizon, concentrat-
ing on a melody, or mentally solving a mathematical problem. This ubiquity
suggests that attentional mechanisms must be intrinsic to any truly biological
approach to artificial intelligence.

It has been proposed that attention plays a role in the earliest levels of cogni-
tion and perception, acting to filter out stimuli that are not selected as the target
of attention [3,13]. Under this paradigm only the attended stimulus reaches the
highest levels of cognition, while unattended stimuli are filtered out at the early
levels of sensory perception. This filtering of stimuli is also reflected in neural
recordings, where attention has been shown to enhance the responses of neurons
in the neocortex that encode the attended stimulus, while simultaneously sup-
pressing that of unattended stimuli [17,21]. The ability to filter specific stimulus
c© Springer International Publishing AG 2017
M. Wagner et al. (Eds.): ACALCI 2017, LNAI 10142, pp. 61–73, 2017.
DOI: 10.1007/978-3-319-51691-2 6
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has obvious advantages to artificial intelligence systems (e.g. reducing the prob-
lem space), as such there has been a renewed interest in applying attentional
mechanisms to connectionist systems in recent years (we discuss some of this
work in Sect. 2).

Our model fits into a broad body of work that understands the brain as a pre-
diction machine which self-organises to form generative predictions (or hypothe-
ses) of its current and future states. Predictive coding [4,19] has emerged as
the most promising interpretation of this theory, with top-down and lateral pre-
dictions suppressing the responses of feature encoding error-units. This flow of
information and forming of hypotheses has since been generalised as free-energy
minimisation by Friston [8].

Our model attempts to reconcile attentional filtering with predictive suppres-
sion of stimuli. Lateral predictions (formed in the same neocortical region) sup-
press the feedforward output of that region. Surprising stimulus (not predicted)
are communicated as feedforward output to the higher regions. This forms an
exogenous (bottom-up) attentional mechanism based on the Bayesian surprise
theory of exogenous attention, where the least predictable stimulus is the most
salient [11] (note that free-energy can also be formulated as Bayesian surprise
[8]). Endogenous (top-down) attention is modulated by feedback that causes a
targeted disruption in the learned representations. This disruption inhibits pre-
dictions on attended stimuli, and thus the attended stimuli is output from the
region using the same feedforward pathway as endogenous attention.

For simplicity, and to focus on the mechanisms of extracting information
using attention, we implement our model in a single layer system. The foun-
dational algorithm for this system is the Temporal Pooler (TP) [9]. TP is a
connectionist algorithm that has been shown to perform strongly in the domain
of on-line learning anomaly detection [15]. To the TP we add feedback connec-
tions, new types of neurons, and place it in a predictive framework inspired by
predictive coding; we refer to this system as Temporal Pooler plus Attention
(TP+A).

The TP algorithm is based on the Hierarchical Temporal Memory (HTM)
model of the neocortex [10], a predictive model similar to predictive coding,
and employs a number of components directly based on neocortical biology. TP
neurons self-organise using a Hebbian learning inspired method to form synapses
to a subset of other neurons, in contrast to many deep learning systems that use
less biologically plausible methods, such as backpropagation on fully connected
neurons [2]. To implement attentional mechanisms we use the same basic learning
policies and structures as TP, thereby inheriting the biological plausibility of the
HTM approach. In this way TP+A provides a model for how attention may be
implemented in the neocortex, while simultaneously providing a proof-of-concept
for a system that could be incorporated into future AI systems.
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2 Related Work

In recent years there have been an increasing number of studies applying atten-
tional mechanisms to connectionist systems, with much of this work focusing
on visual attention. One such approach is to select only part of an image to be
processed at high resolution [24]. This method has been successfully applied to a
number of domains, including object tracking [5], recognition [5,24], and image
caption generation [1]. Another method applied to connectionist systems is to
use attentional mechanisms to modulate representational nodes in the system.
Wang et al. [25] used two separate neural networks, one encoding the input and
the other encoding top-down prior beliefs of the input’s class; the output vectors
of both networks were combined to produce a modified representation of the
output. This approach was applied to classifying and de-noising handwritten
digits. Attention inspired techniques have also been used to improve the classi-
fication of images using convolutional neural networks [23]. Here feature nodes
of the network were modulated over successive time-steps using a reinforcement
learning policy.

There have been a number of models that attempt to reconcile various atten-
tion related phenomena with predictive coding. Rao and Ballard [20] expanded
their earlier work on predictive coding in the visual cortex [19] by showing
how attentional visual search may work. They applied an outlier mask that
suppressed stimuli which least conformed to a generative model, while making
stimuli that were more likely under the generative model to be more salient.
Subsequently Spratling [22] also expanded Rao and Ballard’s original work by
showing that their equations are mathematically identical to some models of
bias competition, a theory that attention emerges through the modulation of
representational nodes by bias weighting [6]. To demonstrate this model, feed-
back signals, which simulated endogenous attention, were fed into the system
and resulted in phenomena consistent with binding. Perhaps the most prevalent
theory of attention in predictive coding is that of precision weighting [4,7]. This
is achieved by increasing the ‘gain’ on error units that are predicted to provide
the most precise information vis-à-vis the current environment.

Applying TP to a framework based on predictive coding is similar to work of
McCall and Franklin [16], who embedded TP in a predictive coding framework
and tested it for robustness to noise on random temporal sequences. Their sys-
tem uses two hierarchical layers, where the feedforward output from the bottom
layer is the prediction-error. This is formed by subtracting the state of the bot-
tom layer from feedback sent from the top layer. Feedforward and feedback use
bi-directional connections, in contrast to a method introduced by Kneller and
Thornton [12] which uses separate, more biologically plausible, uni-directional
connections. Here, feedback connections are formed using TP’s learning method,
while feedforward connections use the HTM spatial pooler algorithm.
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3 Temporal Pooler Plus Attention

TP+A is designed to perform five tasks: (1) form predictions on temporal
sequences; (2) output prediction errors; (3) output temporal sequences that
are the target of attention (attentional filtering); (4) learn temporal sequences;
(5) learn relationships between attention signals and the temporal sequences.
Tasks 1 and 4 are performed using the TP algorithm (described in Subsects. 3.1
and 3.4), task 2 is accomplished by embedding the TP in a framework inspired
by predictive coding (described in Subsect. 3.2), and tasks 3 and 5 are achieved
using our attentional feedback mechanism (described in Subsects. 3.3 and 3.4).

3.1 Predicting Temporal Sequences

TP+A forms predictions on feedforward input formatted as sparse temporal
sequences; we use the TP algorithm to make these predictions. TP was initially
developed as part of the Cortical Learning Algorithms package (CLA) [9], which
also included the HTM spatial pooler. TP comprises a number of structures
named columns, which are based on mini-columns found in the neocortex [18].
Columns can be set into an active-state by feedforward boolean input. The
resulting activation and deactivation of the columns over successive time-steps
forms the temporal sequences on which the system learns and predicts.

Each column contains a number of artificial neurons called prediction-cells [9].
Prediction-cells have a number of dendrite segments, and each segment contains
a number of synapses. Synapses are uni-directional connections to prediction-
cells in other columns that become active when the prediction-cell they are
connected to is in an active-state. When the number of active synapses in a seg-
ment is greater than the value of parameter actiThreshold the segment enters
an active-state. This, in turn, sets the prediction-cell into a predictive-state.
When a column enters an active-state and one of its prediction-cells was in a
predictive-state, that prediction-cell enters an active-state. If, however, a col-
umn is in an active-state and no prediction-cell was in a predictive-state then
all prediction-cells in that column enter an active-state, representing that any
number of temporal features could have activated the column. It is through this
method that TP encodes and produces predictions on temporal sequences; for a
more in-depth discussion of the algorithm see the CLA white paper [9].

3.2 Outputting the Prediction Error

TP+A applies the TP within a framework based on predictive coding. Our
method differs somewhat from McCall and Franklin [16] who used bi-directional
connections between levels to form and communicate errors and predictions.
Because our study only concerns a single level we only rely on the lateral pre-
dictions (formed by TP) to detect errors. The errors are output by adding a
new type of cell to the TP called an error-cell. Each column has one error-cell.
When a column is active and this activity was not predicted by a prediction-cell
then the error cell will be in an active-state. The state of each error-cell will
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Fig. 1. Diagram of connections within columns. P: prediction-cell, I: input, O: out-
put, E: error-cell, FB: feedback input, A: attention cell. Arrows indicate direction of
information flow. (a) TP column; excitatory connections between prediction-cells can
put them into a predictive-state, if placed into an active-state when in a predictive-
state, they will inhibit other prediction-cells in their column. (b) TP column embedded
in a predictive architecture; output is produced by an error-cell, which is set into an
active-state by a connection to the input, active prediction-cells inhibit this connection.
(c) TP+A column; an attention-cell is excited by feedback axons. When active, the
attention-cell inhibits the inhibitory connections to the input/error-cell connection and
also the dendrite segments of that synapse to prediction-cells in its column.

comprise the feedforward output of TP+A. In Fig. 1b we provide a diagram of
a TP column and its connections embedded in this system.

3.3 Attentional Filtering

Our model uses top-down signals to elicit endogenous attention. In TP+A we
achieve this using feedback axons that input sparse codes into the system.
A new type of cell, the attention-cell, associates this sparse code with activation
of its column. Each column has a single attention-cell and these have a num-
ber of segments with a number of synapses that can connect to an axon. The
activity of these synapses and segments determine whether or not the attention-
cell is placed into an active-state using the same method that determines the
predictive-state of prediction-cells (outlined in Subsect. 3.1). The method we use
for connecting to feedback is the same as Kneller and Thornton [12], however in
experiments they used the Spatial Pooler algorithm and not the TP (so time-
steps were not a factor); the feedback also did not elicit endogenous attention.

If an attention-cell is in an active-state, then the error-cell of its column
will also be in an active-state whenever the column is active-state, even if this
activity was predicted. This causes attended sequences to be output by the error-
cells, where usually they would be suppressed. By using the error-cells to output
attended sequences we remove any need for adding new output channels or sep-
arate data representations. A second effect elicited by an attention-cell when in
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an active-state is that it will inhibit (make inactive) segments of prediction-cells
in other columns that have synapses to prediction-cells in its column. Columns
which have prediction-cells that have been inhibited in this way are more likely
to be in an active-state that was not predicted, due to the disruption of the pre-
diction process caused by the inhibition. This, counter-intuitively, is of benefit as
the segments that are inhibited are likely to be forming predictions based on the
attended sequence. Thus, column activations caused by an attended sequence
can be output by the error-cells even if that column’s attention-cell has not
learned the feedback pattern, preserving the associations between column acti-
vations learned by TP when outputting an attended sequence. Figure 1c provides
a diagram of a column with the attention-cell and its connections.

3.4 Learning

Both prediction-cells and attention-cells use the same TP Hebbian-based learn-
ing algorithm [9]. In prediction-cells this algorithm governs the creation and
destruction of synapses to prediction-cells in other columns, while in attention-
cells it governs the connection of synapses to feedback axons. For improved clar-
ity we have also included pseudo-code in Algorithm1 which has been generalised
for use with both prediction-cells and attention-cells.

Algorithm 1. Learning Under the Markov Assumption
Input: column //column learning is to be performed on
Input: t //current time-step
Input: newSyns,minThreshold, connThresh, permInc, permDec //parameters
1: if column.isActiveAndNotPredicted(t) then
2: potSyns ← getActivePotentialSynapses(t − 1)
3: segment ← findClosestSegment(column, potSyns,minThreshold)
4: if segment = null then
5: cell ← getRandomCell(column)
6: createNewSegment(cell, potSyns, newSyns)
7: else
8: addNewSynapses(segment, potSyns, newSyns)
9: else if column.isActiveAndPredicted(t) then

10: for each cell in column where cell.inPredictiveState(t − 1) do
11: for each segment in cell where segment.active do
12: for each synapse in segment where synapse.active do
13: incrementPermanence(synapse, permInc, connThresh)
14: else if column.isInactiveAndPredicted(t) then
15: for each cell in column where cell.inPredictiveState(t − 1) do
16: for each segment in cell where segment.active do
17: for each synapse in segment where synapse.active do
18: decrementPermanence(synapse, permDec, connThresh)

Cells are initialised with no synapses or segments, these are first created in
response to column activity. Whenever a column is in an active-state and this
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was not predicted by any of its prediction-cells (or, in the case of learning feed-
back, its attention-cell was not in an active-state), we add new synapses to a
cell (lines 1–8). We search all cells for a single segment that has the greatest
overlap with the set of potential synapses (other prediction-cells for prediction-
cell learning, or feedback axons for attention-cell learning) that were active in
the previous time-step; we then add a number of synapses up to the value of
parameter newSyns to the chosen segment (line 8). If no segment had an over-
lap above parameter minThresh then we add a new segment to a random cell
(line 6), this segment will have the value of newSyns of the potential synapses.
Each synapse has a permanence value; when the permanence value is above
parameter connThresh the synapse is connected and can affect their cell’s state,
otherwise it will be disconnected and cannot affect their cell’s state. Synapse
permanence is decremented by the value of permDec whenever the synapse
contributes to a cell falsely predicting its column will be active (lines 14–18; dis-
connecting of a synapse is handled by decrementPermanence()). Synapses have
their permanence incremented by the value of permInc whenever they were in
an active-state and their segment correctly predicts their column will be active,
even if they are disconnected (lines 9–13; connecting of a synapse is handled
by incrementPermanence()). This is the method that the TP uses for learning
under the Markov assumption (only the current time-step can predict the next),
but the TP can learn to predict further in time by engaging this method to
learn the cells which were active the time step prior to a successful prediction.
However, for efficiency we learn under the Markov assumption in this treatment.

4 Experiments and Analysis

To test whether the TP+A can successfully attentionally filter sequence input we
performed experiments using two separate input types: burst sequences (which
allows us to easily visualise the output) and frequent feature sequences (to test
filtering when a subset of columns in a sequence are persistently active).

We use a similar experimental design across all tests. The TP+A has 256
columns and at each time-step is fed a sparse binary input of length 256, where
one element activates one column. We use a single iteration of a 150,000 time-step
training set; between time-step 100,000 and 125,000 whenever a target sequence
is active we apply feedback input that simulates top-down input from a higher
level. The feedback is a randomly generated sparse binary pattern with 256 ele-
ments where each element has 0.025 chance of been set to one. Each element
of this pattern corresponds to a single feedback axon, an element set to one
sets its corresponding axon to active. After training, we switch off learning and
use a 10,000 time-step test set that we apply both with attentional feedback
and without. We used the prediction error on the test set to tune the values of
permInc, permDec, connPerm, and actiThreshold for both prediction-cell and
attention-cell synapses. The number of cells used is 15; exploratory experiments
showed that this number performed robustly across both sequence types. The
quantitative results given are averaged across 10 experimental runs, using dif-
ferent random seeds for the TP+A. To quantify output for particular sequences
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Fig. 2. (a) A sample of a sequence used during the burst sequence tests; white squares
are active columns, black squares represent no column activity; the top image is the
first time-step, and the bottom image is the fifth and final time-step. (b) A sample of
five time-steps (running left to right) of testing; the first row is the input, second row
is the system without attention active, and the third row is the system with attention
on; the middle burst is the target of attention.

we use the sequence error metric, this is the number of activations of error-cells
divided by the number of column activations for each time-step after the first
(we exclude the first as a sequence begins at random in our experiments).

4.1 Burst Sequences

For the first of our experiments we use feedforward input that comprises
sequences which, when formatted in two dimensions, form a distinct visual
‘bursting’ pattern. These type of sequences were used to allow us to better display
the attentional mechanisms; an example of the sequence is shown in Fig. 2a. The
sequences are five time-steps long and can occur at 64 possible starting positions.
Given that a single TP/TP+A region is not translation invariant, each starting
position constitutes a separate sequence. We used the following methodology for
producing the input: at each time-step a sequence has a probability of 0.005 of
becoming active (unless it is already active, in which case the probability is 0.0);
if no sequence is currently active we randomly select one to become active (this
is done to ensure there is column activity on every time-step). We select one
sequence to be the target sequence for the attentional feedback mechanism.

A sample of the output from TP+A during testing is illustrated in Fig. 2b;
where the sequence located in the centre is the target of endogenous attention by
way of feedback. In the second row we see that when there is no active feedback
TP+A suppresses the majority of input; as sequences begin at random, the first
instances will be mostly unpredicted. The third row displays similar suppression
as the second, except for the target burst which is output in its entirety. However,
some imperfections in the system are also illustrated; in the last time-step we
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can see that one element of a newly beginning sequence is suppressed without
attention, while during attention it is not suppressed, as is an element of the
sequence beginning the previous time-step. These irregularities are caused by the
interactions between simultaneous sequences and the attention mechanism. The
predicted element in the newly beginning sequence would, had the sequence not
started, be a false prediction. However, when attention is active the disruption
caused by the attention cell incorrectly causes output not associated with the
target sequence. This is reflected in a quantitative analysis: during testing when
attention is not active sequence error for the unattended sequences is 0.02, rising
to 0.22 when it is active. However countering this is the sequence error for the
attended sequences where the mean average for this set is a perfect 1.0 (i.e. the
entirety of the attended sequences is output). These results indicate that on this
set TP+A’s attention mechanisms have successfully learned to output attended
sequences, although there is some residual output of unattended sequences.

4.2 Frequent Feature Sequences

The frequent feature sequences experiments are designed to test TP+A’s atten-
tional mechanisms when the sequences contain frequently recurring features.
This is of interest as attended stimuli commonly have such features (e.g. a sta-
tionary object, or auditory frequencies). To build the target sequence we chose 15
distinct input elements at random; each of these elements we assign a probabil-
ity, p, that it will be active on any give time-step (8 have p = 0.2, 4 have p = 0.4,
2 have p = 0.6, 1 have p = 0.8). We also have five background sequences with 30
elements chosen at random (these each have p = 0.2), these five sequences are
concatenated to form a 100 time-step long background sequence that is fed into
TP+A and continuously looped during training and testing. The target sequence
will be fed into the system at random time-steps (with a probability of 0.01; or
0.0 if it is already active) and will overlap with the background sequences.

The results from these experiments show an improvement over the bursting
sequences vis-à-vis the sequence error for non-attended sequences (the back-
ground) during attention: with an average of 0.02; compared with 0.01 with no
attention. The target sequence averages 0.95 sequence error during attention,
compared with 0.02 when not attended. These results indicate that features
occurring frequently within a single sequence may improve the capability of
TP+A in separating the target sequence. In Fig. 3a we have included a graph of
error-cell activity during endogenous attention; note that while error-cells related
to target sequence are very active, those for the background are much less so.

To ascertain the exogenous attention capabilities of the system, we inserted
an extra sequence (constructed with the same methodology as the target
sequence) during testing. There was no training on this sequence, so the sys-
tem should be ‘surprised’ by the sequence and output it as error. We graph
these results in Fig. 3b; as can be seen this sequence is highly active, while the
background sequence is largely suppressed. The average sequence error for the
surprising sequence is 0.97, while the background is >0.01. This shows that the
TP+A outputs surprising input, while suppressing predictable input.
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Fig. 3. Graph of error-cell activity, normalised so maximum possible activity is 1.0;
solid line is target sequence, dashed line is background sequences, vertical dotted lines
designate beginning and end of sequence. (a) Error-cell activity during endogenous
attention. (b) Error-cell activity with a surprising sequence (exogenous attention).

5 Discussion

In this work we have presented a model implemented as a connectionist system,
TP+A, which is based on two separate theories of neocortical function, HTM
and predictive coding. This system is designed to attentionally filter sequences
using biologically plausible methods such as feedback, inhibition, and Hebbian
learning. Results from our experiments, provided in Sect. 4, show that TP+A is
capable of filtering out mundane (predicted) input sequences while simultane-
ously outputting sequences that are attended to. This paradigm of attention is in
line with results from cognitive studies that show early levels of perception filter
out unattended stimulus while conveying attended stimulus [13]. The use of feed-
back connections to illicit this type of attention makes this mechanism akin to
endogenous attention, where the higher levels of cognition (or, in our case, higher
levels of the hierarchy) control the attentional mechanisms of the lower levels.
As well as endogenously attended input, TP+A will also relay any input that is
surprising (unpredicted). Because TP+A uses the same output channel for both
surprising and attended input, higher levels of the hierarchy would treat these
signals identically. This is advantageous because a surprising stimulus should,
and does, attract attention; studies have shown that in free viewing exercises
participants attention is directed to the most ‘surprising’ features of scenes [11].

TP is designed to be a general purpose algorithm, capable in operating under
any temporal modality. TP+A inherits this and adds to it mechanisms for both
exogenous and endogenous attention. This goal of generality sets aside TP+A
from many other connectionist attention systems which are specific to visual
attention [5,14]. We also use biologically inspired learning methods that exist in
the original TP in contrast to systems which apply the less biologically plaus-
bile backpropagation (such as [25]), or systems that require the combination of
divergent techniques (such as backpropagation and reinforcement learning [23]).
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TP+A offers two advantages over the precision weighting accounting of atten-
tion in predictive coding [7]. Firstly, TP+A has the internal resources to calculate
the precision of error signals without predictive coding’s need of a secondary sys-
tem that learns to predict such precisions. This can be achieved by an analysis of
the state of the TP (within a HTM hierarchy): here, a high precision error state
is indicated by a small number of temporally extended sequences, whereas a low
precision state is indicated by a larger number of shorter sequences. Secondly,
the TP+A approach does not require that we only attend to those aspects of a
feature that are associated with high precision error signals. So, for example, we
can endogenously attend to features that are perfectly predicted (and so emit no
error signals), or we can attend to aspects of a feature associated with relatively
low precision and ignore aspects with high precision errors. The phenomenology
of ordinary experience suggests that we can endogenously attend in this way, but
existing predictive coding models have difficulty explaining this. Our model of
attention matches more closely to that of Spratling [22], who also used simulated
feedback to stimulate endogenous attention. However, this model was focused on
binding (where disparate features are ‘bound’ into a singular object), whereas
ours reconciles predictive suppression with filtering. Binding in our model, could
be achieved in a hierarchical system where associations between different input
streams are learned at higher levels of the hierarchy. However, with our use of the
TP algorithm, TP+A could be said to apply binding of locally encoded features,
which are then fed upward due to the dendrite inhibition mechanism.

Future work will focus on the incorporation of TP+A into a hierarchy, where
higher layers would need mechanisms to automatically elicit endogenous atten-
tion from lower layers, instead of simulating this feature as we did in this treat-
ment. A fully functioning HTM hierarchy that is capable of action, attention,
and recognition is still only theoretical. Through the inclusion of a mechanism
for attention we believe we have made a significant step towards this goal.

6 Conclusion

We have presented a model for attention in a framework where prediction errors
are suppressed. We proposed that endogenously triggered attentional filtering
could be achieved through the targeted disruption of predictions. To implement
this model we placed the neocortically inspired TP algorithm into a framework
inspired by predictive coding. We added feedback mechanisms and a new neu-
ron, the attention-cell; we refer to this connectionist system as TP+A. Our
experiments show that TP+A successfully displayed phenomena consistent with
both endogenous and exogenous attention. Future work will focus on integrating
TP+A into a hierarchical system.
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Abstract. Efficient Global Optimization (EGO) is a well established
iterative scheme for solving computationally expensive optimization
problems. EGO relies on an underlying Kriging model and maximizes
the expected improvement (EI) function to obtain an infill (sampling)
location. The Kriging model is in turn updated with this new truly eval-
uated solution and the process continues until the termination condition
is met. The serial nature of the process limits its efficiency for applica-
tions where a batch of solutions can be evaluated at the same cost as
a single solution. Examples of such cases include physical experiments
conducted in batches for drug design and material synthesis, and com-
putational analyses executed on parallel infrastructure. In this paper we
present a multi-objective formulation to deal with such classes of prob-
lems, wherein instead of a single solution, a batch of solutions are iden-
tified for concurrent evaluation. The strategies use different objectives
depending on the archive of the evaluated solutions. The performance
the proposed approach is studied on a number of unconstrained and con-
strained benchmarks and compared with contemporary MO formulation
based approaches to demonstrate its competence.

Keywords: Expensive optimization · Efficient Global Optimization ·
Multiple infill sampling criterion

1 Introduction and Background

In engineering optimization problems, the performance of designs or solutions
are often assessed using computationally expensive simulations or physical exper-
iments. Since computational and/or physical resources are limited, efficient opti-
mization methods that use minimal number of evaluations to deliver the opti-
mum solution(s) are sought. The objective(s) and constraint(s) are often highly
nonlinear or even black-box which makes it challenging to identify optimal/near
optimal solutions within a limited budget.

To deal with the above challenges, population based stochastic optimization
algorithms have been used over the years coupled with approximation models.
Such approaches have been extensively studied in the literature and are collectively
c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-51691-2 7



A Batch Infill Strategy for Computationally Expensive Optimization 75

referred to as surrogate assisted optimization (SAO). Various forms of approxi-
mations have been used in the context of SAO, such as Kriging, Response Surface
Methods, Radial Basis Functions, etc., a review of which could be found in [1].

Kriging is one of the most popular models for approximations, as in addition
to the predicted value, it also estimates the uncertainty in prediction. Jones et al.
[2] first exploited this uncertainty measure to propose Efficient Global Optimiza-
tion (EGO) approach unconstrained optimization problems. In this approach, an
infill location is identified for evaluation based on maximization of the expected
improvement (EI) function. For any location in the variable space, the EI func-
tion can be calculated based on the predicted response and the uncertainty asso-
ciated in the prediction. Upon evaluating the solution at this infill solution, the
underlying Kriging model is updated and the process continues until a stopping
condition is met. The EI function consists of two parts [2], the first part, has a
high value for locations where the predicted value is likely to be better than the
best function value obtained so far, whereas the second part has a high value
where uncertainty of the prediction is high. In literature, many variants of EGO
have been proposed to balance these two components, i.e., exploration (desirable
in early stages of the search) and exploitation (desirable in later stages). In one
such approach, Schonlau [3] proposed a modified version of EI function referred
to as generalized expected improvement (GEI), where an additional parameter g
was used to achieve the control between global exploration and local exploitation.
The parameter g was assigned a high value initially to facilitate global explo-
ration (more emphasis on part-1 of EI) and was assigned a lower value in later
stages to focus on local search (more emphasis on part-2 of EI). Another strat-
egy to control these entities was suggested by Sasena [4], where g was gradually
decreased over iterations.

To deal with problems involving constraints, Schonlau et al. [5] penalized
the GEI values of the candidate solutions with a term probability of feasibil-
ity (PF). PF was individually computed for each constraint using a Kriging
model. Assuming all constraints are independent, the overall PF can be cal-
culated as the product of individual values. Forrester et al. [6] also suggested
a similar approach, where instead of GEI, the EI function was penalized. In
another study [7], the expected violation (EV) function was used instead of PF.
While PF measures the probability of a candidate solution being feasible, the
EV calculates the expectation of a candidate solution being infeasible. To sample
near constraint boundaries, a user-defined allowable threshold value of constraint
violation was suggested by Parr et al. [8]. There has also been use of screening
strategies using Support Vector Machine (SVM) classifiers [9]. Solutions that are
likely to be feasible were identified using the SVM classifier and the one with
the best EI was evaluated. Although the approach was novel, training a SVM
with limited number of samples is an issue. While a two-class classifier was used
in the study, for highly constrained optimization problems, there may be only
infeasible solutions to begin with.

All the methods discussed above refer to serial variants of EGO, where, the
evaluation of the solution affects the underlying model through the model update
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process, which in turn affects the selection of the next infill location. If the user
has an option and resources to evaluate multiple solutions simultaneously, such
serial approaches tend to be highly inefficient. To deal with such classes of prob-
lems, batch evaluation strategies within EGO have been proposed with limited
success. In [10], local optimal solutions of the GEI function was used as infill
samples. On the other hand, to deal with the requirement of prescribed batch
sizes, two strategies were introduced in [11] for multi-point sampling, known as
Kriging Believer and Constant Liar. Although these strategies discussed about
batch evaluation, the infill solutions were identified in a serial process.

Recently, Multi-objective (MO) formulations have also been suggested to deal
with batches. For unconstrained problems, Feng et al. [12] suggested to consider
EI part-1 and EI part-2 as two objectives of a MO problem. On the other hand,
Parr et al. [13] proposed an MO formulation for solving constrained problems,
where the EI and PF of each constraint were treated as separate objectives. It
is important to highlight that in the presence of three or more constraints, such
a formulation would result in a many-objective optimization problem (4 or more
objectives), which are known to be significantly more difficult to solve compared
to 2- or 3-objective problems [14]. Lately, Durantin et al. [15] proposed a tri-
objective method where they circumvented this challenge by multiplying the
individual PFs to express the combined PF as one maximization objective. The
other two objectives were the EI (maximize) and the summation of prediction
variance of constraints (minimize). They have included the last objective for
the cases when the global optimum lies within the region where the prediction
variance of the constraints are high. They might get the benefit in case of active
constraints, however, for other constraints it may introduce unnecessary increase
in function evaluations inside the feasible zone. Besides, although they followed
an MO formulation, their method only considered single point infill strategy
which was chosen based on maximum of the product of EI and PF from the
non-dominated (ND) solutions.

The inspiration of this work is based on several observations from existing
literature. The paper attempts to make the following contributions:

• We present a batch infill strategy which relies on a multi-objective formulation.
• This formulation takes into consideration the existing archive of all evaluated

solutions. Three states are possible: (a) all solutions evaluated are infeasi-
ble (highly constrained optimization problems), (b) all solutions are feasi-
ble (typically unconstrained optimization problem, but could also be a mildly
constrained problem) or (c) when at least one feasible solution has been eval-
uated.

• The performance of the proposed strategy is objectively analyzed using differ-
ent types of problems including ones involving very low feasibility that have
been rarely investigated in EGO literature.

• The performance of the strategy is quantitatively compared with contempo-
rary multiple infill strategy based approaches.
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2 Proposed Approach

This work originates from the review of multi-point (batch) infill sampling strate-
gies and constrained EGO literature. Having discussed the background for var-
ious components in the previous section, this section briefly outlines the pro-
posed approach. The pseudo-code of the overarching framework is presented in
Algorithm 1. The details of each components are also elaborated in consequent
subsections.

Algorithm 1. MO-EGOg: Generalized MO based Efficient Global Optimization
with batch evaluation of infill samples
Input: N = No. of initial samples, q = No. of constraints, k = No. of infill samples per iteration,
Archive = Repository of all truly evaluated solutions
Stopping Condition: FEmax = 100 × d; where d is the no. of variables.

1: FE = 0
2: popinit ← initialize()
3: evaluate(popinit)
4: Archive ← archive update(popinit)
5: (xbest, fbest) ← update best solution(Archive)
6: Models ← construct Kriging models(Archive)
7: while FE < FEmax do
8: xinfills ← identify infill samples()
9: evaluate(xinfills)
10: Archive ← archive update(Archive,xinfills)
11: Models ← update Kriging models(Archive)
12: (xbest, fbest) ← update best solution(Archive)
13: FE = FE + k
14: end while
15: Return: xbest and fbest.

2.1 Initialization

A predefined number of solutions is generated initially within the given variable
bounds. Here, we have employed Latin Hypercube Sampling (LHS) method;
although, any other method such as – random generation or full-factorial design
can be used.

2.2 Archive Update

Upon generating the initial solutions, their corresponding objective and con-
straint responses are evaluated parallely and the values are reserved in the
Archive, which is updated any time a new sample is evaluated.

2.3 Constructing/Updating Kriging Models

All unique solutions from the Archive are used to construct the Kriging models
separately for each objective and constraints.
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2.4 Identifying Infill Samples

In this approach, an MO problem needs to be solved initially to generate a set
of candidate solutions. Later, the infill samples are selected from this candidate
solutions set. The whole process consist of the following steps–

Assigning Objectives in MO Optimization Problem

Our proposed approach requires solving an MO problem (bi-objective in this
study) to generate the candidate solutions. However, the objectives of the MO
problem depend upon the history of the archived solutions. There can be three
possible scenarios in which the objectives are assigned in following manners–

• When all archived solutions are infeasible, the best solution is the one having min-
imum constraint violation measure, cvmin. The objectives are hence, EIcvmin and
PF . Here, EIcvmin denotes the EI which is computed with respect to the objective
response of the solution having minimum constraint violation.

• If one or more feasible solutions exist among the archived solutions, the objectives
are both parts of EI (calculated with respect to the best feasible objective response)

penalized by the PF , which we indicate as, EI
fmin(feas)
1 × PF and EI

fmin(feas)
2 ×

PF .
• Finally, if there are all feasible solutions in the archive, the objectives are the two

parts of EI. We symbolize them as EI1 and EI2.
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Fig. 1. Generation of direction vectors for k = 3 and selection of infill samples from
candidate ND solutions.

Solving the MO Problem and Finding Infill Samples

Solving the above-mentioned bi-objective optimization problem results in a ND
front (say, P) with corresponding ND set of variables (say, Q). Any MO opti-
mization algorithm can be used to solve this problem. In our study, we have used
NSGA-II algorithm [16]. Now, selecting the infill samples from the candidate ND
set of solutions is done with the following steps–
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• Construct dir1:k in the objective space via normal boundary intersection
(NBI) [17] (see Fig. 1 for k = 3) in a clockwise manner, i.e., dir1 is along
Obj-k . . . dirk is along Obj-1.

• Calculate pdist, the perpendicular distances from all points in P to all vectors
in dir.

• Assign all P (and Q) to one of dir1:k based on minimum pdist. For equal
pdist, assign them randomly.

• Group all Ps assigned along kth direction into Gk.
• Find P1 and Pk, two extreme points of P, from G1 and Gk.
• Find x1 and xk from Q which are the corresponding solutions of P1 and Pk.
• Store x1 and xk as xinfills.
• Remove dir1 and dirk from dir.
• Similarly, remove G1 and Gk from G.
• Select x2 . . .xk−1 from G2 . . .Gk−1 having maximum shortest distance to an

already evaluated solution and append with xinfills.

2.5 Updating Best Solution

The best solution is updated whenever any new evaluated infill solution is better
than the best in the Archive.

3 Numerical Experiments

In this section we will objectively assess the effectiveness of our approach by
solving several numerical problems and compare with conventional single infill
criterion based EGO (unconstrained and constrained) and MO based single and
multiple infill criterion approaches within EGO framework.

For unconstrained problems, we compare our approach with EGO and EGO-
MO [12], while for constrained problems, we compare with the approaches pre-
sented in [6,13,15]. As explained in [15], EI × PF infill criterion is the most
robust among all single infill constrained handling approaches within EGO
framework and appeared in the book by Forrester et al. [6]. For this reason,
we have chosen this single infill approach for comparison and refer to it as
Forrester EGO. Similarly, the bi-objective formulation based multiple infill cri-
terion described in Parr et al.’s work [13] is called Parr Bi and tri-objective for-
mulation based single infill criterion formulation depicted in Durantin et al. [15]
is named as Durantin Tri. Here, we will first perform an in-depth comparison
and analyze the results delivered by the above-mentioned approaches for a batch
size of 3. Later, the results will be statistically verified by batch sizes of 5 and 7.

3.1 Experimental Settings

The general settings while running MO-EGOg are– (a) Initial sample size was set
to 3d − 1, (b) Stopping condition was set as the maximum number of function
evaluations which was, 100 × d (where, d is the number of variables), (c) 20
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independent runs were conducted using for each problem and the statistics across
these runs was used to evaluate the performance of each approach.

For solving the MO problems, NSGA-II [16] was used with a population size
100 evolved over 50 × d generations. The crossover distribution index was set to
20 and Crossover probability was 0.9 with mutation distribution index 30 and
mutation probability 1/d. These settings have been kept consistent throughout
the study.

3.2 Performance Metrics

The performance metrics to quantitatively assess the performance are–

• Absolute Error: Absolute difference between the best objective value
obtained after the termination of the search process and the true optimum of
the problem under study.

• Performance Profile [18]: In this study, performance profile is used as a
statistical tool for visually observing the performance of different approaches
on median absolute error (AE) metric for the set of problems under study.
The x-axis of a performance profile plot is the goal value, τ (which in this case
represents the median AE of a particular approach relative to the best per-
forming approach for a particular problem) while the y-axis, ρs(τ) denotes the
cumulative distribution of the median AE (i.e., the percentage of problems an
approach is able to solve within a factor τ with respect to the best approach).
Based on this, it is possible to compare the approaches on a given level of
goal value τ . Moreover, the overall performance of individual approaches can
also be estimated by calculating the area (

∫
ρs(τ)dτ) under the corresponding

profile curve. The approach having a larger area is deemed performing better
than others.

• Error Boxplots [19]: Error Boxplots from different runs are also plotted
to visually observe the difference in the error of median runs as well as the
robustness of the approaches. Generally, the smaller the inter-quartile range
of a respective box-plot, the more that approach is immune to the randomness
of the search process.

• Wilcoxon Signed Rank (WSR) Test [20]: WSR test is performed to
determine the statistical difference of absolute errors obtained from all feasible
runs between our proposed approach and other approaches for each problem
under study. The “−”, “+” and “ ≈ ” signs mean that the distribution of the
feasible results set of the respective approach has a statistically lower, higher
or equivalent median values compared to our proposed approach.

3.3 Experimental Results

Unconstrained Problems: Table 1 presents the comparison based on absolute
error metric for our proposed approach, EGO [2] and EGO-MO [12] for k = 3
based on 20 independent runs. The problems under study are Six-hump Camel-
back [21], Branin [21], Goldstein-price [21], Hartman-3 [22] and Hartman-6 [22].
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As mentioned above, for unconstrained problems, our approach considers the
same objectives in the MO formulation as EGO-MO. However, the main differ-
ence is the direction vector aided grouping and infill selection process instead
of Fuzzy C-means clustering employed by the authors in [12]. The advantage of
our approach is evident from the following table.

Table 1. Comparative error statistics among EGO, EGO-MO and MO-EGOg for k =
3. WSR test results are indicated as (–), (+) or (≈) for statistically lower, higher or
equivalent median values compared to MO-EGOg.

Prob. Approaches Min Mean Median Max Std.

Camel EGO 2.0689E-02 1.8123E-01 1.5064E-01 (+) 4.0728E-01 1.1284E-01

EGO-MO 4.1064E-06 8.8395E-02 2.0727E-05 (+) 6.7955E-01 1.7358E-01

MO-EGOg 2.3948E-07 1.9205E-05 2.2112E-05 2.8330E-05 9.4472E-06

Branin EGO 5.3518E-06 9.1751E-04 5.9051E-04 (+) 6.0869E-03 1.2871E-03

EGO-MO 3.5815E-07 6.1213E-05 3.0239E-06 (+) 2.6986E-04 9.2453E-05

MO-EGOg 3.6020E-07 2.0356E-05 1.2696E-06 1.9685E-04 4.8438E-05

Goldstein-Price EGO 2.2613E-01 2.7668E+00 1.3932E+00 (+) 1.0946E+01 2.7215E+00

EGO-MO 1.1155E-01 8.4426E+00 6.2782E+00 (+) 2.6493E+01 7.8166E+00

MO-EGOg 5.1938E-06 1.4322E-04 8.5192E-05 7.3313E-04 1.7482E-04

Hartman-3 EGO 3.0681E-05 5.1800E-04 4.2918E-04 (+) 1.4356E-03 3.6457E-04

EGO-MO 2.0868E-05 7.8117E-05 3.3400E-05 (−) 3.7225E-04 9.3924E-05

MO-EGOg 2.6571E-05 9.0364E-05 7.1093E-05 4.6946E-04 9.5815E-05

Hartman-6 EGO 1.9565E-04 3.8222E-02 1.6790E-03 (+) 1.3777E-01 5.8002E-02

EGO-MO 2.1367E-04 3.5981E-02 1.5906E-03 (≈) 1.3914E-01 5.7833E-02

MO-EGOg 2.3419E-04 3.9309E-02 8.6838E-04 1.4895E-01 6.0519E-02

From the table, one can observe that EGO-MO offers better median absolute
error for 2 out of 5 problems (for Camel and Hartman-3) while our proposed
approach delivers better median absolute errors in rest of the problems. However,
according to the WSR test considering all 20 runs, EGO-MO has statistically
significantly better median error value for Hartman-3 problem, while EGO has
statistically equivalent median error value for Hartman-6 problem. For rest of the
problems, our proposed approach offers statistically significantly better absolute
error values. A close look at the error Boxplots in Fig. 2 obtained from all runs
for all unconstrained problems will help understand the quality of each approach
considering all independent runs. Moreover, the above statement can be further
verified from the normalized median error performance profile plots. Here, the
performance profile plots are illustrated for k = 3, 5, and 7 in Fig. 4. In all cases,
the plots show that, 100% (all 5 problems) are solved by all approaches for all
batch sizes. However, from these plots it can be observed that the performance
profile plot of our approach always lies to the left of all other performance profile
plots which is the indication of having a larger area under the profile curve, hence,
visually exhibiting a better performance compared to other approaches.
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Fig. 2. Unconstrained problems error
Boxplots for k = 3 for 20 independent
runs.
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Fig. 3. Constrained problems error
Boxplots for k = 3 for 20 independent
runs.
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Fig. 4. Unconstrained problems error performance profile plot for k = 3, 5 and 7.

Constrained Problems: Table 2 presents the comparison based on absolute
error metric for our proposed approach, Forrester EGO [6], Durantin Tri [15] and
Parr Bi [13] for k = 3 based on 20 independent runs. The problems under study
are Gomez [21], Sasena [4], g06 [23], g08 [23] and Hesse [24]. One notable point
here is that, although the problems g06 and g08 are only 2 variable problems,
the feasibility their ratios are 0.0066% and 0.8560% [23], which are extremely
low. Hence, none of the initial samples were feasible in any of the 20 runs.
These problems are introduced to show the effectiveness of our approach in the
scenario when all initial samples are infeasible and how fast it can converge
towards feasible region.

From Table 2, it can be observed that, for all constrained problems our pro-
posed approach deliver the best median error while also being statistically sig-
nificantly superior according to WSR test. Here, it is also important to take note
that for g06 problem, Forrester EGO was able to obtain feasible solution in only
1 out of 20 runs, while Parr EGO delivered feasible solutions in 16 out of 20
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Table 2. Comparative error statistics and number of feasible runs among For-
rester EGO, Parr Bi, Durantin Tri and MO-EGOg for k = 3. WSR test results are
indicated as (–), (+) or (≈) for statistically lower, higher or equivalent median values
compared to MO-EGOg.

Prob. Approaches Min Mean Median Max Std. Feas.

runs

Gomez Forrester EGO 3.7113E-03 2.1022E-01 1.5681E-01 (+) 9.1121E-01 2.0279E-01 20

Parr Bi 1.9731E-02 1.2911E-01 8.6955E-02 (+) 6.5044E-01 1.4653E-01 20

Durantin Tri 5.9248E-04 7.7087E-02 3.6043E-02 (+) 3.2955E-01 9.6259E-02 20

MO-EGOg 9.9100E-07 7.8641E-05 1.0369E-05 1.3546E-03 3.0048E-04 20

Sasena Forrester EGO 2.2509E-02 1.7648E-01 1.9041E-01 (+) 3.7514E-01 8.9856E-02 20

Parr Bi 6.0158E-02 2.0950E-01 1.8361E-01 (+) 4.9128E-01 1.1660E-01 20

Durantin Tri 5.0094E-02 3.0362E-01 2.8992E-01 (+) 5.7788E-01 1.4944E-01 20

MO-EGOg 1.2478E-05 2.5913E-04 1.7095E-04 1.0911E-03 2.6191E-04 20

g06 Forrester EGO 3.5789E+03 3.5789E+03 –† 3.5789E+03 0.0000E+00 1

Parr Bi 9.9355E+02 2.3396E+03 2.6372E+03 (+) 3.8705E+03 9.3881E+02 16

Durantin Tri 3.8273E+01 1.0634E+03 5.4453E+02 (+) 4.5561E+03 1.3717E+03 20

MO-EGOg 6.2791E+00 4.0821E+01 3.6567E+01 8.6013E+01 2.1650E+01 20

g08 Forrester EGO 3.0330E-08 4.2849E-02 5.3965E-02 (+) 9.5357E-02 3.4623E-02 20

Parr Bi 2.9322E-03 3.0940E-02 3.1444E-02 (+) 7.2739E-02 2.1964E-02 20

Durantin Tri 5.7283E-07 2.6086E-02 1.5429E-02 (+) 6.9550E-02 2.8145E-02 20

MO-EGOg 8.0649E-09 2.3911E-03 6.5015E-08 (+) 3.3819E-02 7.9490E-03 20

Hesse Forrester EGO 5.3152E-02 3.7184E+00 5.4762E-01 (+) 1.4264E+01 4.9449E+00 20

Parr Bi 4.6977E-02 2.6992E+00 6.7779E-01 (+) 1.6734E+01 3.9976E+00 20

Durantin Tri 2.8711E-03 9.0891E-02 2.5463E-02 (+) 7.8023E-01 1.7898E-01 20

MO-EGOg 5.5925E-05 2.6625E-01 5.2117E-04 5.2390E+00 1.1705E+00 20
†Median run not feasible

runs. On the other hand, our proposed approach MO-EGOg and Durantin Tri
obtained feasible solutions in all 20 runs. The error Boxplots will visually con-
firm this statements which are depicted in Fig. 3. Moreover, the similar median
error performance profile plots in Fig. 5 for k = 3, 5 and 7 also indicate that our
proposed approach is able to solve all constrained problems under study with
minimum absolute error and is invariant to the infill batch size.

100 101 102 103 104 1050

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

Forrester_EGO
Parr_Bi
Durantin_Tri
MO−EGOg

(a) For k = 3

100 102 104 106 1080

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

Forrester_EGO
Parr_Bi
Durantin_Tri
MO−EGOg

(b) For k = 5

100 101 102 103 1040

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

Forrester_EGO
Parr_Bi
Durantin_Tri
MO−EGOg

(c) For k = 7

Fig. 5. Constrained problems error performance profile plot for k = 3, 5 and 7.
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4 Summary and Future Work

Efficient global optimization (EGO) in its conventional form is designed for serial
operation, i.e., one infill solution is evaluated in each iteration. The serial nature
of the original EGO process limits its efficiency for applications where a batch of
solutions can be evaluated at the same cost as a single solution. In this paper we
present and analyze a multi-objective formulation based approach to deal with
such classes of problems, where instead of a single solution, a batch of solutions
is identified and evaluated concurrently. The strategies use different objectives
depending on the archive of the evaluated solutions. The performance of our app-
roach is analyzed using 5 unconstrained and 5 constrained test problems covering
the above problem classes and compared with conventional single infill criterion
based EGO and MO formulation based single and batch evaluation strategies. A
quantitative analysis of performance of the strategies across the complete prob-
lem space is achieved using performance profiles and statistical analysis across
multiple independent runs. The results demonstrate that the proposed approach
offers the best performance across the range of problems. As an extension, we are
currently developing an approach to incorporate EGO based batch infill methods
to solve multi-/many-objective optimization problems as well as to find the knee
solutions of to several classes of problems. In the future work, we intend to solve
some engineering design problems to observe the effectiveness and limitations of
our proposed approach for real-world applications.
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Abstract. There is a phenomenal growth of microblogging-based social
communication services and subscriptions in recent years. Through these
services, users publish a large number of posts within a short period time,
making it extremely hard for readers to keep track of a trending topic. A
solution to this issue is text summarisation, which can generate a short
summary of a trending topic from multiple posts. Most of the existing
summarisation algorithms were proposed for long documents and do not
work well for short microblogging posts. The PR (Phrase Reinforcement)
algorithm was particularly designed to summarise microblogs, however
it is merely able to generate a single-post summary that conveys a sin-
gle topic, potentially overlooking other important information from the
posts. In this paper, we contribute the PRICE (Phrase Reinforcement:
Iteration, Clustering and Extraction) algorithm by extending the original
PR algorithm with the ability to generate both multi-post and single-
post summaries that span over multiple subtopics. Experimental evalu-
ation results show that the PRICE algorithm outperforms the original
PR algorithm in terms of both ROUGE-1 and Content metrics.

Keywords: Microblogging · Text summarisation · Phrase Reinforce-
ment

1 Introduction

Microblogging is one of the latest Web 2.0 technologies that have been success-
fully used in various social communication services [6]. It is a simplified type of
blogging in which its content is limited in length, normally 200 characters or
fewer. One key objective of a microblogging service is to allow users to exchange
succinct information such as news, status updates, and pictures with each other
in a real-time or quasi-real-time fashion [11]. Ever since the inception of Twit-
ter in 2006, the application of microblogging has skyrocketed, extending from
unstructured personal status updates to more structured services such as enter-
tainment [22], e-Business [4], e-Government [19], and e-Learning [8]. With these
services, people post millions of messages every day, for example, over 500 mil-
lion tweets were posted per day in 2013 [14]. A significant challenge that emerges
c© Springer International Publishing AG 2017
M. Wagner et al. (Eds.): ACALCI 2017, LNAI 10142, pp. 86–98, 2017.
DOI: 10.1007/978-3-319-51691-2 8
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in these services is that the returned posts, when looking for a topic phrase, are
simply sorted according to recency not relevancy. As a result, a reader is com-
pelled to manually read through all the posts in sequence in order to keep track
of a trending topic, which is extremely hard when the reader is under a tight time
constraint, for example, when a TV presenter reads real-time messages from the
viewers regarding the program [7], or when a lecturer reads real-time feedback
from the students posted through digital backchannel streams [12].

A solution to this issue is automatic summarisation [20], which can gener-
ate a short summary of the original text. While this technique has mainly been
applied to lengthy documents in order to generate a summary that is signifi-
cantly shorter than yet still conveys important information in the original doc-
uments [13], the main objective of automatic summarisation of microblogs is to
extract important information on a trending topic from the relevant posts rather
than shortening the posts since each post is already short itself [27]. In addition,
text summarisation based on well-established approaches to natural language
processing does not work well for microblogging lexicon that is full of emotions,
abbreviations, dialects and slangs [29]. Several text summarisation algorithms,
which were developed in recent years for general purpose summarisation, work
reasonably well for microblogs [18]. Nevertheless, the PR (Phrase Reinforcement)
algorithm, which was particularly intended for summarising microblogs, works
better when a trending topic has a dominant phrase pattern around the central
topic [27]. However it is merely able to generate a single-post summary that
conveys a single topic, potentially overlooking other important information from
the posts.

In this paper, we contribute the PRICE (Phrase Reinforcement: Iteration,
Clustering and Extraction) algorithm by extending the original PR algorithm
with the ability to generate both multi-post single-post summaries that span
over multiple subtopics. The algorithm first classifies the posts into clusters,
each expressing a subtopic, then iteratively applies the PR algorithm to each of
the clusters, generating a multi-post multi-subtopic summary, and finally applies
the PR algorithm again to the posts in the summary to generate a single-post
multi-subtopic summary. Experimental evaluation results show that the PRICE
algorithm outperforms the original PR algorithm in terms of both ROUGE-1 and
Content metrics. The rest of the paper is organised as follows. We first describe
some relevant microblogging summarisation algorithms in the next section. We
then present our multi-subtopic summarisation approach, including the original
PR algorithm, the clustering algorithm, and the PRICE algorithm. After that,
we discuss the experimental evaluation on the proposed algorithm, including
data, metrics, and results. Finally, we conclude the paper with a summary of
major contributions and future work.

2 Related Work

Text summarisation has a long history of nearly half a century. Early investiga-
tion on extractive summarisation was founded on plain heuristic characteristics
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of the sentences like their place in the document [2], the overall frequency of the
words they have [17], or the importance of the sentences as indicated by some
key phrases [9]. Late work incorporated more refined approaches such as machine
learning [5] and natural language processing [24] and extended to new forms of
documents like websites [32], discussion forums [25], blogs [1] and emails [3].
The objective of automatic text summarisation in most cases is to decrease the
quantity of content that has to be read from lengthy documents. In recent years,
attention has been turned to summarising short and informal microblogging
posts. As such a post is already shorter than a typical document summary, the
main objective is instead to extract a trending topic from the posts [27].

Among the recent summarisation solutions, some work reasonably well for
microblogging posts, including SumBasic [30], the Centroid-based algorithm [26],
hybrid tf.idf [28], the graph-based abstractive algorithm [23], and the key-
bigram extraction based algorithm [31]. Inspired by the observation that words
occurring frequently in document clusters are more likely to occur in human-
produced summaries than those occurring less frequently, SumBasic is able to
generate generic multi-document summaries. SumBasic is an iterative greedy
algorithm where in every iteration the tweet containing the words with the high-
est probability is selected. The probability of a word is defined as the word’s
frequency over the total number of words in the set of tweets, which is abridged
once a tweet has been selected. The centroid-based algorithm uses a centroid
tweet to compare a set of tweets [26]. The set’s centroid is defined as the linear
sum of the tf.idf vectors of the tweets over the total number of tweets in the
set. The set of tweets are then scored through cosine similarity to this centroid
vector and those scored highest are chosen to be included in the summary.

Similarly, hybrid tf.idf extends the standard tf.idf algorithm by first assign-
ing each sentence a weight and then choosing the top-weighted sentence as the
summary. The tf component of the algorithm is calculated by uniting the entire
tweets into one document, while the idf component is calculated as per stan-
dard tf.idf by taking each tweet as an independent document. A normalisation
method is used to prevent the algorithm from being biased towards longer sen-
tences [28]. In the graph-based abstractive algorithm, each sentence has special
words that determine its start and end. The algorithm generates a summary of
tweets by extracting bigrams (nodes) that have the highest scoring path [23]. The
key-bigram extraction based algorithm is a combination of three statistical meth-
ods - hybrid tf.idf , TextRanking and Latent Dirichlet Allocation - to extract
the key-bigrams set from a collection of tweets [31]. The extracted sentences are
ranked using the techniques of overlapping similarity and mutual information,
while the top ranked sentences are chosen to generate the summaries.

These algorithms mostly use weighting schemes to generate summaries, how-
ever, the PR algorithm was specifically designed to extract a single-post trending
topic from a set of tweets, which is founded on the observation that people often
use similar words or expressions to define a specific topic [27]. More details on
the PR algorithm are given in the following section.
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3 Multi-subtopic Summarisation of Microblogging Posts

The original PR algorithm is only able to generate single-topic summaries. The
PRICE algorithm extends it with the ability to generate multi-subtopic sum-
maries through clustering and iterative extractive summarisation. Before pre-
senting the PRICE algorithm, we first introduce the original PR algorithm and
the K-means clustering algorithm.

3.1 The Original PR Algorithm

Beginning with an initial inquiry phrase, the PR algorithm builds a graph to
represent the common sequence of words from the posts. For example, following
are some posts made after the death of “Papa Wemba” on Twitter:

1. congolese singer Papa Wemba dies after collapsing on stage in abidjan in
ivory coast

2. RT: Papa Wemba was the 1st non south african artist in french colony
3. congolese music star Papa Wemba dies on stage
4. world music star Papa Wemba dies after collapsing on stage

The PR algorithm is made up of two halves, where the sub-graph on the left
of the root node incorporates words that come up in particular positions to the
left side of the root node’s phrase, while another sub-graph is situated at the
right side of the root node. Initially, the root node and the current node are the
same and the algorithm gradually adds each of the distinctive words into the
graph as new nodes. Each duplicated word is assigned a count representing the
number of times it has occurred in the set of posts. Figure 1 shows the PR graph
constructed from the above posts.

Fig. 1. The PR graph with the root node of “Papa Wemba”

Once the graph is built, the algorithm weighs the individual nodes in order
to account for the disparities in the words’ informational content. The root node
“Papa Wemba” has zero weight and so do the stop words. The algorithm ini-
tialises the weight of each remaining word with its count value. If the word occurs
away from the root node, its weight is then penalised by its distance to the root
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using the following equation: ∀Ni,W (Ni) = C(Ni) − D(Ni, root) × logb C(Ni),
where Ni is a node, W (Ni) is its weight, C(Ni) is its count, D(Ni, root) is the
distance between Ni and the root node, and logarithm base b is used to cus-
tomise the algorithm to generate a shorter or longer summary (a larger b tends
to generate a longer summary). After that, the algorithm searches for the path
with the highest total weight by comparing all paths starting from the root node
to each non-root node. This path is denoted the best partial path as it only rep-
resents one half of the summary. The algorithm is repeated by initialising the
root node with the partial summary and then rebuilding a new graph in order
to generate the remaining half of the summary. The complete summary is the
most heavily weighed path in the new graph. The highlighted nodes in Fig. 1
correspond to the full summary of those posts: world music star Papa Wemba
dies after collapsing stage abidjan ivory coast.

3.2 The K-means Clustering Algorithm

The original PR algorithm explained above can only generate a single-post single-
topic summary. To allow for a multi-subtopic summary, we will first cluster the
posts using the K-means algorithm [10]. Before the posts are clustered, they need
to be converted into vectors and Algorithm1 describes the process of converting
a post into a vector.

Algorithm 1. Vectorise(Pi): VPi

Input: Pi - a post
Output: VPi

- the vector value of Pi

1: VPi
← 0

2: W ← tokenise(Pi) {W: set of words in Pi}
3: for (∀Wj ∈ W ) do
4: VWj

← 0 {VWj
: vector value of Wj}

5: for (∀Ck ∈ Wj) do
6: Lk ← tolower(Lk) {Lk: letter in Wj}
7: VLk

← (int)Lk {VLk
: vector value of Lk}

8: VWj
← VWj

+ VLk

9: end for
10: VPi

← VPi
+ VWj

11: end for
12:

13: return VPi

Algorithm 2. PRICE(P ): SP

Input: P - set of posts
Output: SP - single-post multi-subtopic summary

of P
1: CK ← Kmeans(P ) {CK: set of k clusters}
2: SCK ← φ {SCK : multi-post multi-subtopic

summary for the set of clusters CK}
3: for (∀Ci ∈ CK) do
4: SCi

← PR(Ci) {SCi
: single-post single-topic

summary for cluster Ci}
5: SCK ← SCK + SCi

6: end for
7: SP ← PR(SCK)
8:

9: return SP

Initially, the algorithm randomly selects k posts as the cluster centroid from
all the computed feature vectors and then assigns each post to their closest clus-
ter centroid according to Jaccard Distance that measures dissimilarity between
two posts of Pi and Pj :

D(Pi, Pj) = 1 − |Pi ∩ Pj |
|Pi ∪ Pj | =

|Pi ∪ Pj | − |Pi ∩ Pj |
|Pi ∪ Pj | .

It is clear that the distance is small if the two posts are similar and that the
distance is 0/1 if the two posts are identical or completely different. The centroid
of each cluster is calculated by first summing up all the post vectors and then
dividing the sum by the total number of posts within the cluster:

ci =
∑

v ∈ Vi

ni
,



Automatic Clustering and Summarisation of Microblogs 91

where ci is the centroid of the i-th cluster, ni is the total number of posts in the
i-th cluster, and Vi is the set of post vectors in the i-th cluster. When a new
post is added to a cluster, the centroid of that cluster is updated by choosing the
post closest to previously calculated centroid. The algorithm is repeated until
all posts are assigned to the corresponding clusters.

3.3 The PRICE Algorithm

Algorithm 2 illustrates the PRICE algorithm in detail. It first classifies the posts
into k clusters each of which has a subtopic surrounding the original trending
topic using the K-means algorithm. After that, it iteratively applies the PR
algorithm to all clusters to generate a multi-post multi-subtopic summary (each
post in the summary corresponds to a subtopic). Finally, it applies the PR
algorithm again to the posts in the summary to generate a single-post multi-
subtopic summary.

4 Experimental Evaluation

To evaluate the performance of the PRICE algorithm, we collect posts from
Twitter and use the ROUGE-1 and the Content metrics [15] to compare the
summary generated by PRICE with those automatically generated by a random
algorithm and the original PR algorithm as well as those manually produced by
human experts.

4.1 Data Collection and Pre-processing

We used Twitter API to collect the top 30 trending topics from different geo-
graphical locations using Yahoo! WOEID Lookup1. We downloaded approxi-
mately 1500 tweets for each trending topic and selected the top 50 tweets for
summarisation. Pre-processing tweets is an essential step so as to remove noisy
data that will affect the performance of both the clustering and the summarisa-
tion algorithms, considering that microblogging posts are generally characterised
as an unstructured and informal means of communication. Algorithm3 describes
our data cleansing process adopted from [27].

4.2 Automatic and Manual Summarisation

To estimate lower and upper performance bounds for the purpose of positioning
the PRICE algorithm and comparing it with the PR algorithm, we adopt manual
summarisation by human experts and automatic summarisation by a random
algorithm. Random summarisation is a naive approach used to derive a lower
bound for performance comparison of automatic summarisation algorithms. It
was implemented by randomly choosing one out of the 50 posts as the summary

1 http://zourbuth.com/tools/woeid/.

http://zourbuth.com/tools/woeid/
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Algorithm 3. Cleansing(P ): CP

Input: P - set of posts
Output: CP - cleansed P
1: Convert any HTML-encoded or Unicode character into its ASCII equivalent or

remove it if no equivalent exists
2: Filter out embedded URLs
3: Discard the post if it is spam
4: Discard the post if it is not in English
5: Discard the post if another post by the same user has already been acquired in

order to prevent a single user from dominating a topic
6: Break each post into sentences and then each sentence into unigrams with

sentence detector tools of nl-sent.bin and ark-tweet-nlp
7: Detect the sentence that contains the topic phrase for the purpose of evaluation
8:
9: return CP

of each trending topic. Manual summarisation was used to get a performance
upper bound and for that purpose two volunteers were asked to produce a manual
summary of no more than 140 characters (as ROUGE-1 is highly sensitive to
summary length) based on its 50 tweets for each trending topic. The volunteers
were given instructions so as to produce the best possible summaries using only
information contained within the posts.

To evaluate the PRICE algorithm, each of the 30 trending topics was clus-
tered into k = 2, 3, 4, 5 subtopics. For each subtopic, the algorithm iterated 1000
times to avoid the sensitivity of random seeding.

4.3 Evaluation Metrics

We use ROUGE-N [15] to evaluate the performance of the PRICE algorithm.
It comprises measures to automatically decide the quality of a summary by
comparing it to summaries produced by human experts. These measures count
the number of overlapping units such as n-grams, word sequences, and word
pairs between an automatic summary and a model summary (also known as a
gold standard) [16] produced by human experts, which are described as follows.

ROUGE-N =

∑
S∈MS

∑
gramn∈S Countmatch(gramn)

∑
S∈MS

∑
gramn∈S Count(gramn)

,

where MS is the set of manual summaries, n is the length of the n-gram gramn,
and Countmatch(gramn) is the maximum number of n-grams co-occurring in an
automatic summary and the set of manual summaries. ROUGE-N is a recall-
based metric since it compares the number of matching n-grams with the total
number of n-grams within the manual summaries. However, it can be converted
into precision-based metric by redefining Count(gramn) to be the number of
n-grams within the automatic summaries. In order to consider both recall and
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precision for the ROUGE-N metric, we introduce F-Measure, a composite mea-
sure combining both precision and recall, which was not used by the original
ROUGE-N:

F-Measure = 2 × Precision × Recall

Precision + Recall
.

We particularly chose ROUGE-1 (n = 1 for unigrams) for our evaluation
as it performs particularly well for short summaries [15], ideal for evaluating
microblogging summarisation algorithms.

We also use Content metric to measure the completeness of an automatically
generated summary by comparing how much information of a manually produced
summary is captured by the automatic summary. To achieve this, we asked the
third volunteer to rate how well an automatically generated summary expresses
the meaning of a manual summary based on a 5-Likert scale: none (1), hardly
any (2), some (3), most (4) and all (5) [15].

4.4 Results

We first evaluate the two manual summaries in order to get an upper bound.
We then evaluate the summaries generated by the random algorithm in order to
get a lower bound. Table 1 shows their ROUGE-1 and Content results.

Table 1. Performance lower and upper bounds

Summarisation method ROUGE-1 Content

Precision Recall F-Measure

Manual 1 0.249 0.166 0.208 4.1

Manual 2 0.166 0.249 0.208 3.7

Manual avg. 0.208 0.208 0.208 3.9

Random 0.127 0.141 0.132 2.25

We can observe that the random algorithm’s average F-Measure of 0.132 is
not bad as compared to the manual’s upper bound of 0.208 possibly due to two
reasons. First, overlapping of unigrams within all posts appears high as many
posts use similar words and ROUGE-1 only compares common words between
manual and automatic summaries. Second, overlapping of unigrams in manual
summaries is generally low as different people tend to extract different words in
their summaries. However, when we compare random and manual based on the
Content metric, random’s score of 2.25 (hardly any) is significantly lower than
that of the manual, 3.9 (some to most), implying the random method captures
significantly less meaning of the manual summaries.
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Table 2. Summaries generated by PRICE, PR, and human experts

Trending

topic

Method Multi-post summary Single-post summary

#Papa

Wemba

Manual 1 - Congolese singer Papa Wemba dies after

collapsing on stage in abidjan in ivory

coast. He was a great musician, who will be

mourned

Manual 2 - Papa Wemba collapsed and died after being

take off stage in Africa, people were very sad

and shocked (he was an amazing musician)

PR

(b= e)

- A truly great loss to african music had inter-

viewed him years back in addis Congo music

legend Papa Wemba dies after collapsing on

stage by the associated press via nyt

PRICE

(b= e,

k=2)

A truly great loss to african music had

interviewed him years back in addis

Congo music legend Papa Wemba dies

after collapsing on stage by the associ-

ated press via yt

A truly great loss to african music had

interviewed him years back in addis Congo

music legend Papa Wemba, a congolese

rumba musician, one of Africa’s most pop-

ular musicians, has died he was 66

Rock it till you die for it unforgettable

loss epic singer rip Papa Wemba a con-

golese rumba musician one of Africa most

popular musicians has died he was 66

Table 2 contains the manual summaries produced by the two volunteers and
the automatic summaries generated the PR (b = e) and the PRICE (b = e, k = 2)
algorithms. It is clear that only the PRICE algorithm can generate a multi-post
summary spanning over two subtopics: (a) Papa Wemba dies, and (b) Papa
Wemba is one of Africa’s most popular musicians. PRICE’s single-post summary
also covers the same two subtopics, while PR only contains a single topic: Papa
Wemba dies.

Figure 2(a) depicts PRICE’s ROUGE-1 performance in relation to the para-
meters of b ∈ {e, 10, 50, 100, 1000} when k = 2. It is clear that increasing b in
the order of e, 10, and 50 improves its F-Measure from 0.137, to 0.149, and to
0.150. After that, further increasing b to 100 and 1000 actually decreases its
performance (F-Measure drops to 0.149 and further to 0.144). Figure 2(c) shows
PRICE’s ROUGE-1 performance in relation to different k values. It reveals a
pattern similar to that in Fig. 2(a) for k = 3, 4, but its performance starts to drop
slightly when k = 5 (consult Table 3 for details). Figures 2(b) and (d) illustrate
the Content metric in relation to b and k. The results are similar to those for
the ROUGE-1 metric, where the performance peaks at b = 50 and k = 2, 3, 4.

Figure 3 shows PR’s ROUGE-1 and Content performance in relation to b. Its
ROUGE-1 performance peaks at b = 100 with the F-Measure of 0.150 (0.147
when b = 50), while its Content performance peaks at b = 50 with the value of
3.2. Results from the PRICE and the PR algorithms confirm that they are both
sensitive to the length of a summary, which is relatively long as compared to
the posts. Therefore a large b (50/100) would yield good results. For the PRICE
algorithm, the number of subtopics is another important factor. Thanks to the
nature of microblogging posts, a summary is only expected to contain a small
set of subtopics and consequently a small k (2/3/4) would yield good results.
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Fig. 2. PRICE’s ROUGE-1 and Content measures based on values of b and k

Table 3. Performance comparison of manual, random, PR and PRICE

Summarisation method ROUGE-1 Content

Precision Recall F-Measure

Manual avg. 0.208 0.208 0.208 3.9

Random 0.127 0.141 0.132 2.25

PR (b = 50) 0.251 0.105 0.147 3.2

PRICE (b = 50, k = 2) 0.268 0.105 0.150 3.26

PRICE (b = 50, k = 3) 0.269 0.105 0.150 3.26

PRICE (b = 50, k = 4) 0.270 0.105 0.150 3.26

PRICE (b = 50, k = 5) 0.265 0.102 0.146 3.26

A summary of the best performance of the PRICE algorithm as compared to
that of the best of the original PR algorithm and those of the manual summari-
sation and the random algorithm is elaborated in Table 3. It can be seen that
PRICE’s performance peaks at b = 50 with the F-Measure of 0.150 and with
the Content measure of 3.26, and is seemingly independent of k as long as it is
small. In contrast, PR’s performance at b = 50 is 0.147 and 3.2 respectively, both
lower than those of the PRICE algorithm, confirming that the PRICE algorithm
makes a clear improvement over the original PR algorithm. In addition, both the
ROUGE-1 and the Content measures of the PRICE algorithm (0.150 and 3.26)
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Fig. 3. PR’s ROUGE-1 and Content measures based on values of b

are significantly better than those of the random algorithm (0.132 and 2.25),
but worse than those of manual summarisation (0.208 and 3.9), confirming the
theoretical lower and upper bounds.

5 Conclusions and Future Work

While the PR algorithm is a good choice for summarising microblogging posts,
it is only effective when the trending topic does not contain subtopics. Our
main contribution is the PRICE algorithm for summarising posts that contain
multiple subtopics revolving around a trending topic. The PRICE algorithm first
harnesses a clustering algorithm to group posts expressing the same subtopics
into clusters, then iteratively applies the PR algorithm to each of the clusters
generating a multi-post multi-subtopic summary, and finally applies the PR
algorithm again to the posts in the summary generating a single-post multi-
subtopic summary. Experimental evaluation results confirm that the PRICE
algorithm outperforms the original PR algorithm in terms of both the ROUGE-
1 and the Content metrics.

We are conscious of the limitations in this work. First of all, we only included
the top 50 posts of each trending topic in our experimental evaluation. We plan
to investigate whether and how the inclusion of a large set of posts, e.g., 500
posts per topic, will influence PRICE’s performance as compared that of PR
and whether the performance improvement is statistically significant. We also
plan to apply the PRICE algorithm to more standard datasets in addition to
the microblog data in order to test whether the proposed algorithm is general
enough to reproduce similar results. Second, the K-means clustering algorithm
was used as a touch stone and we want to systematically study the impact
of different clustering algorithms on PRICE’s performance. Last but not least,
evaluation using the ROUGE-1 and Content metrics relies on human-authored
model summaries and human judges. Given the small number of human experts
involved in our experiments, subjectiveness and bias are likely an issue. We plan
to adopt the Pyramid method [21] that combines multiple human models to yield
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a more reliable gold-standard as well as an automatic assessment method [16]
that does not rely on a gold-standard.
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Abstract. In this paper, we introduce a composite Cellular Automata
(CA) to explore digital morphogenesis in architecture. Consisting of mul-
tiple interleaved one dimensional CA, our model evolves the boundaries
of spatial units in cross sectional diagrams. We investigate the efficacy of
this approach by systematically varying initial conditions and transition
rules. Simulation experiments show that the composite CA can generate
aggregate spatial units to match the characteristics of specific spatial con-
figurations, using a well-known architectural landmark as a benchmark.
Significantly, spatial patterns emerge as a consequence of the evolution
of the system, rather than from prescriptive design decisions.

1 Introduction

The production of high density housing in many large cities has typically focused
on optimizing the use of space, disregarding the quality of the inhabitable spaces
being built. Attributes such as access to sunlight, ventilation, and storage space,
which are generally regarded as essential for ‘better living’ [23], have often been
overlooked. In response to the increased development of living spaces that are
commonly perceived to be sub-standard [11], new urban design rules and reg-
ulations have recently been proposed in Melbourne, Australia. From a design
perspective, the introduction of revised planning rules provides the impetus to
investigate new methods for the creative exploration of design space in search of
novel ways to produce liveable spaces.

In this paper, we introduce a ‘digital morphogenesis’ method to tackle this
design challenge. Here, a composite cellular automata (CA) consisting of mul-
tiple, regularly spaced interleaved 1D CA provides the structure for a designer
to interactively ‘generate and explore’ the design search space. The compos-
ite CA includes a combination of ‘self-assembly,’ ‘pattern formation’ and ‘best
variant’ selection to produce, in this case, cross sectional diagrams of spatial
configurations. Metrics for the evaluation of emergent attributes of the spatial
configurations are introduced in order to allow the designer to interactively select
instances that satisfy the requirements of the task in unexpected ways, poten-
tially leading towards a novel manner of representing and understanding the
design.
c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-51691-2 9
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Our approach represents a departure from the oversimplification that the
‘form–follows–function’ paradigm, strongly enforced on the design practice dur-
ing the modern movement [6]. The rationale behind our ‘bottom-up’ design
methodology is to define a way in which low-level design elements [20] inter-
act in, and with space, in order to enable the exploration of design solution
space, rather than focusing on optimizing a solution based on a fixed set of
requirements. Detailed simulation experiments demonstrate a proof-of-concept
that our composite CA model can automatically synthesize shape and topol-
ogy, in silico, producing abstract diagrams of spatial configurations that, given
the characteristics of the constituent elements (building blocks), can be easily
translated into architectural cross sections.

The remainder of this paper is organised as follows. In Sect. 2, we introduce
work related to computational morphogenesis and generative design. This is
followed by a formal description of CA and a brief review of CA in architectural
design. Our model is introduced in Sect. 3. In Sect. 4, the simulation experiments
are described and results presented. We summarise the results and discuss the
implications of our findings, before briefly outlining avenues for future work in
Sect. 5.

2 Background

2.1 Computational Morphogenesis

Generative systems have been used to investigate novelty in architecture and
urban design since Aristotle [22, p. 30]. Beyond classic examples of generative
systems (Greek orders, Da Vinci’s central plan churches, Durand’s elements,
etc.) there are examples of form generation techniques often used in architecture
and urban design in the twentieth century, e.g. Alexander’s work with ‘patterns’
[1] and Stiny’s ‘shape grammars’ [28].

Computational (or digital) morphogenesis techniques, use digital media as a
generative tool for the derivation of and manipulation of ‘form’ [12,13], where
abstract computer simulations are used to foster the gradual development and
adaptation of shapes [29]. Using bottom-up generative methods, they combine a
number of concepts including self organization, pattern formation, self-assembly
and ‘form-finding.’ Self-organization is a process that increases the order and
statistical complexity of a system as a result of local interactions between
lower-level, simple components [4,26]. Emergence represents the concept of the
patterns, often unpredictable ones, which form in large scale systems [16,21].
Emergent properties arise when a complex system reaches a combined thresh-
old of diversity, organization and connectivity. For example, the self-assembly
of geometric primary elements (or ‘building blocks’) may, in some systems, be
an emergent form-finding property guided by strict rules dictating ‘bonding’
patterns [8,17].
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2.2 Cellular Automata

CA are discrete dynamical systems comprising a number of typically identical
simple components (or cells), with local connectivity over a regular lattice whose
global configuration changes over time, according to a local state transition rule.
CA implementations and functions, regardless of their complexity, regularity and
constraints, require the definition of characteristics (cells, cell-states and neigh-
bourhood) that can be directly interpreted as spatial configurations. Formally,
a CA is defined by:

– an array of cells of length LD (where D is the number of dimensions)
– a neighbourhood size n for each cell c ∈ L
– an alphabet of cell states Σ = {si, . . . , s|Σ|}
– a discrete time step t = 0, 1, . . .
– a state s(c, t) ∈ Σ for each cell c ∈ L at time t
– a transition function ψ : Σ|n| → Σ

At time t + 1, the state of each cell c is updated in parallel using the transition
function and the defined local neighbourhood n. For an elementary 2 state 1D
CA with n = 3 neighbours, there are 28 = 256 possible transition rules. For a 2
state 2D CA with n = 4 neighbour (von Neumann neighbouhood) there are 232 =
4× 109 possible transition rules. The number of rules can be reduced if different
symmetries are adopted. However, as the number of states and neighbourhood
size increase, the state space significantly increases.

CA can be seen as a space for exploratory creativity. Von Neumann [30]
showed that CA may produce very sophisticated self-organized structures, given
a finite number of cells states and short range interactions.

CA have been used effectively to help explain natural phenomena involving
strong and explicit spatial constraints [32,33]. They have been used to model
morphogenesis processes [25], and as a model to generate simple shapes [7], or
specific 2D or 3D target patterns [5]. CA have also been used as part of a more
general ‘meta-design’ design process in engineering [9,18].

2.3 Cellular Automata and Design

In architecture, 3D implementations of CA have been typically used to produce
diagrams of abstract spatial configurations that can serve as starting points
for the further development of architectural or urban form. The cells of the
CA represent 3D spatial units with programmatic characteristics (e.g., housing
units, rooms, public spaces, circulation spaces, etc.), which results in functionally
deterministic outputs.

Coates et al. [6] present a 3D model using cubic cells with binary states (‘occu-
pied’/‘empty’) in search for emergent patterns, emulating the work of Conway
and his ‘Game of Life’ [10]. For this purpose, he explores a series of rule combina-
tions and neighbourhoods. The aim of these experiments was to find mechanisms
for the generation of spatial structures with potential to be used in architectural
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design. Krawczyk [19] uses a similar implementation of 3D CA to evolve spatial
configurations, focusing on how can the abstract outputs of the model be trans-
lated into architectural form. The translation is performed by manipulating the
characteristics of the cells once the model has stopped running, which brings this
approach closer to a more traditional design process. Here, the CA time evolu-
tion is presented as an exploration, where desired outcomes or other parameters
that allow for the evaluation of the system’s performance are not defined.

Herr and Kvan [14] present a different approach, where the constraint of a
fixed, regular lattice for the CA is removed and the designer may interact with
the time evolution of the system, steering the evolution of the CA according
to design goals. This approach integrates the shaping of a design solution with
the reformulation of the design problem, thus reducing the post-processing of
outcomes to detailing. Araghi et al. [2] describe the use of CA in the development
of high density housing where the generation of variety based on additional
design objectives (accessibility and lighting) is the goal. The design requirements
are mapped to cell states within the local neighbourhood, and the transition rules
inform the development of the system. The definition of 3D cells implies a design
operation that binds the form of the cell to a particular function, which renders
the results of the development of said models functionally static.

3 Model

Our composite CA is a digital morphogenesis tool that can be used at the early
stages of an architectural design process. The composite CA is built as an array
of evenly spaced interleaved 1D CA (Fig. 1a), arranged on a grid (Fig. 1b). With
this arrangement it is possible to produce spatial configurations where the ‘cells’
of the CA have a ‘form-making’ role, rather than being functionally predefined.
Our approach focuses on how space can be physically reshaped and characterised
as the system evolves, which represents a departure from the typical use of CA

Fig. 1. (a) A standard 1D CA. (b) The configuration for our composite 1D CA con-
sisting of interleaved horizontal and vertical 1D CA. (c) A representative example of
one spatial unit, defined by the activation of its boundaries.
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in architecture and urban design, where the characteristics of the space are
prescribed by design.

What differentiates our composite CA from a standard 2D CA is the fact
that the multiple 1D CA act as the edges of encapsulated ‘spatial units’ (Fig. 1c).
That is, each edge of a spatial unit is actually a discrete cell in a 1D CA and is
governed by a state transition rule. Here, each cell has a binary state – it can be
either active (on) of inactive (off). If a cell in a 1D CA is off, the spatial units
on either side of it are connected. System dynamics generate ‘complex’ patterns
consisting of concatenated spatial units, defined by active/inactive edges. The
emergent structures are highly sensitive to individual cell states and transition
rules, a system with some similarities to bond percolation models and abstract
genetic regulator systems [31].

In our composite CA, there are two possible states for each cell. Given the
configuration of the interleaved 1D CA, this results in 16 different possible con-
figurations for each of the encapsulated spatial units, illustrated in Fig. 2.

In Fig. 3, we show representative examples of the complex spatial topologies
that emerge as a result of the concatenation or combination of multiple edges
being active/inactive at the same time, which illustrates the exploratory power
of the model. In Fig. 3b, we label the centre of each individual spatial unit and

Fig. 2. 3D representation of the 16 spatial configurations the model is capable of pro-
ducing for a single 2D spatial unit. Binary counting is used to number the active edges.

Fig. 3. (a) A standard 2D CA, where each cell is a spatial unit in itself (3 cell con-
figuration). (b) 3D representation of three possible spatial unit configurations of size
3 units that can be produced with the proposed composite CA model. The centre of
each spatial unit is labelled with a red circle (node). Connecting spatial units are also
shown (edges). (Color figure online)



104 C. Cruz et al.

include connecting edges between adjacent spatial units where appropriate. It
is this formation of aggregates or clusters of connected 2D ‘encapsulated spatial
units’ that subsequently generates a volumetric matrix for spatial organisation
to be used by the designer.

Unlike a traditional 2D CA, where the characteristics of the cells are defined
by their state, in the composite 1D CA, spatial units are neutral, and acquire
their characteristics depending on the configuration of their boundaries.

4 Experiments

A series of simulation experiments were carried out to evaluate the efficacy of the
proposed composite CA model, focussing specifically on the configuration and
characterization of space. The key question guiding the experimental design: Can
the composite CA be used to effectively generate diagrammatic cross-sections of
architectural form?

4.1 Methodology

We start by systematically examining the dynamics of instantiated instances
of the composite CA by varying the initial conditions of each CA and transi-
tion rules. We then examine whether the composite CA can generate (evolve)
aggregate spatial units, with specific spatial attributes, corresponding to config-
urations representing a mix of open and closed spaces.

Parameters. The composite CA consists of x×y regularly spaced 1D CA, where
x and y correspond to the number of cells (L) in the corresponding horizontal and
vertical 1D CA. We examine L = 10. We set the local neighbourhood size n = 3,
and limited the alphabet of cell states to Σ = {0, 1} (i.e. the cell representing
the boundaries of the spatial units are either active or inactive).

The state transition rules are drawn from Wolfram’s [32] elementary 1D CA
rules – representative rules from classes III and IV are used, where Class III
(random) contains rules that generate outcomes with no discernible patterns
and Class IV (complexity) contains rules that generate discernible patterns that
repeat at unpredictable frequencies and locations, as the system develops. Classes
I (uniformity) and II (repetition) have been disregarded at this stage, since they
tend to yield configurations that become static in time.

We use a different state transition rule for each of horizontal and vertical 1D
CA. From class III we selected rules 30 and 60. From class IV we selected rules
54 and 110 (other rules were tested but are not reported in this paper).

In order to allow the experiments to generate a variety of spatial configura-
tions, each simulation trial was run for a maximum of 200 time steps, starting
from uniformly randomly drawn initial cell states. The entire system is updated
simultaneously in discrete time steps.
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Analysis. We introduce a phenotypic diversity measure on the space of the com-
posite CA to analyse emergent behaviour. Specifically, we examine the embedded
‘connectivity graph’ where nodes within the graph correspond to the centre of
active adjacent spatial units in the model (see Fig. 3b). The structure of con-
nected nodes define a ‘local cluster’ or clusters of adjacent spatial units, possibly
corresponding to arbitrarily shaped geometric forms, defined by active/inactive
cells of the composite CA. This graph-based analysis provides a concise way
to examine the spontaneous formation of ‘motifs’ that represent a wide variety
of spatial attributes. Clusters act as a conduit for circulation through differ-
ent interconnecting spatial units and provide a balance between the open and
closed space. It is worth noting that some of the nodes are located outside the
boundaries of the x × y ‘lattice’. When a cluster has one of its nodes with that
condition, it is considered an open cluster.

We use three graph theoretic metrics to characterize the emergent dynamics
for specific rules and time-evolution of the composite CA: M1 the degree distribu-
tion of nodes – the regularity of the aggregation of spatial units (where a low degree
distribution represents a more irregular spatial configuration); M2 the mean and
standard deviation of cluster size – quantifies the level of fragmentation of space;
and M3 the ratio of the number of open and closed clusters (where a cluster is
considered open when it has one or more nodes outside of the lattice) – quantifies
porosity or the connectivity of the spatial configurations to the exterior.

4.2 Results

Time Evolution of the Composite CA. Snap-shots of the evolving connec-
tivity graphs, corresponding to the emergent spatial forms for two different rule
combinations at time steps t = (50, 100, 150, 200), are shown in Fig. 4. It is inter-

Fig. 4. Snap shots of the evolving composite CA. The top and bottom rows show the
connectivity graphs at times t = 0, t = 50, t = 100, t = 150 and t= 200 for rule x60 y110
and x30 y54 respectively. Note that some of the nodes are outside of the lattice (Color
figure online)
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esting to note the variety of cluster sizes and shapes that are being generated,
which provides a wide search space for exploring spatial attributes.

The emergent spatial unit structure – represented by clusters – change shape
significantly over the course of the simulated evolutionary time, to a point where
there is no apparent relationship between generations evolved using a particu-
lar set of rules. For instance, looking at rule combination x60 y110 (Fig. 4, top
row), after 50 generations it is possible to observe an aggregation of similarly
sized shapeless clusters, where the most recognisable elements are the size = 2
closed clusters. However, looking at generation 100 of the same rule combination,
it is possible to note the re-appearance of closed size = 4 formations, also found
at time step t = 0, which exist either as closed clusters or as part of larger ones.
These formations can be interpreted as large, regular empty spaces, which differ-
entiates them from other formations by their attributes – they can be thought of
as motifs. Similarly, looking at time step t = 50, in the snapshots corresponding
to rule combination x30 y54 (Fig. 4, bottom row), close to the top right corner,
it is possible to observe a series of formations cycling around a single boundary,
which could be interpreted as a large subdivided regular area, providing a differ-
ent set of spatial attributes. It is important to note that all these new instances
are generated by the same structural constraints, or transition rules.

To conclude the preliminary analysis, we plot time series values of the cosine
similarity metric (Eq. 1) between the evolving spatial configurations at each time
step of the simulation in Fig. 5.

similarity = cos(θ) =

m∑

i=1

Vi,(t) ×Vi,(t+1)

√
m∑

i=1

V2
i,(t) ×

√
m∑

i=1

V2
i,(t+1)

(1)

Here, V is a vector of graph theoretic metrics of length m, {M1, M2, M3}.
The vector evaluated at consecutive time steps. An inspection of the plot pro-
vides additional supporting evidence for the gradual transition between alter-
native spatial configurations. However, what is most interesting is the sudden
spikes/drops in similarity values (e.g., at t = 100 for x30 y60) over the course of

Fig. 5. Cosine similarity vs time, where the vector of feature at each time corresponds
to average cluster size, std. dev for average cluster size, open clusters/closed clusters
ratio.
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Fig. 6. Typical section of ‘Unitéd’habitation’ by Le Corbusier (a) and its representation
as connectivity graph (b), generated using the alphabet of 16 possible spatial units
illustrated in Fig. 2. (Color figure online)

the time evolution of the model – reminiscent of ‘punctuated equilibria,’ consis-
tent with innovative/adaptive behaviour [24].

Attribute Matching. In the second phase of our analysis, the goal was not
to match any given spatial pattern exactly, but rather to investigate whether
‘interesting’ smaller building blocks (correspond to local cluster or motifs) could
be evolved. The emergent abstract spatial configurations would then be trans-
lated into architectural cross sections as part of the early stage of design.
As a benchmark, the typical section of the interlocking dwelling units of the
‘Unitéd’habitation’ by Le Corbusier is used (see Fig. 6). This choice of benchmark
was motivated by its formal characteristics that allow for a series of potentially
desirable attributes in terms of lighting, ventilation and circulation performance

Fig. 7. (a) Connectivity graph for evolved spatial configuration with cosine similarity
value = 0.975 corresponding to the typical section of Fig. 6. (b) 3D representation of
the evolved connectivity graph, which brings the abstract output of the model to a
language that can be easily interpreted from an architectural perspective. (Color figure
online)
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that could be further investigated as input parameters to be implemented into
the proposed system.

The plot shown in Fig. 7(a) illustrates an example of emergent spatial
form, with a high similarity value, generated by our composite CA. A cosine
similarity value of 0.975 was found using Eq. 1 where A was the benchmark
connectivity graph shown in Fig. 6(b) and B was the evolved connectivity graph
in the plot. Significantly, Fig. 7 illustrates a variety of ‘forms’, which can be
detailed, developed or interpreted by a designer at a later stage, where implicit
meanings of the overall structure and boundary elements of an architectural
space are expanded upon. Figure 7(a) depicts a 3D representation of the plot
in Fig. 7(b), which brings the abstract output generated by evolving the model,
into a language that can easily be interpreted and recognised by architectural
designers as a spatial configuration to be further developed and detailed.

5 Discussion and Conclusion

In this paper, we have described a composite CA that can be used to generate a
variety of spatial configurations by defining the boundaries of ‘encapsulated spa-
tial units,’ as well as their interconnections. The characteristics of the generated
space emerge as a consequence of the evolution of the CA, rather than being
prescribed by design, as properties of the cells, as it happens with more common
implementations of CA in architecture and design. Our goal was to explore the
formation of aggregates or clusters of encapsulated spatial units, in search for
‘interesting’ spatial organizations with potential to be detailed, developed and/or
interpreted by a designer at a later stage. Our model was able to produce clusters
of a wide variety of sizes, shapes and with different ‘spatial attributes’ (regu-
larity, openness, fragmentation, among others). We have described metrics that
can be used to evaluate the emergent patterns against design criteria, which for
the moment can only take the form of aggregations of fixed configurations (see
Fig. 2). Our digital morphogenesis approach seeks to maintain both flexibility
and fluidity, as it is required for creative design exploration.

It can be argued that the strength of the composite CA system is based on
its capability to produce a vast array of configurations that can be evaluated
in terms of their characteristics. In this paper we have shown the analysis of a
few rule combinations, selected from different classes, in order to demonstrate
the efficacy of the approach. However, it appears reasonable to expect different
results if different rules are used.

With all this being said, our composite CA system can be described as a
tool that provides designers with a range of alternatives to satisfy given design
requirements, rather than acting as a direct design tool for completed design
solutions. In its current state, the ability of the model to generate/search the
state space is defined by transition rules and the time evolution of the model.
In our experiments, the benchmark target was a pre-defined spatial configura-
tion. However, we found that searching for a fixed, static configuration limited
the possibilities by constraining the desired output to what has already been
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imagined by other designer, defeating the ultimate purpose of the model – gen-
erating a design space, and searching through it using design criteria, looking
for emergent spatial configurations. Therefore, introducing protocols to search
for characteristics of the space (e.g., open vs. closed space, or mean cluster size),
rather than specific fixed patterns, is seen as a strategy that suits the purpose of
enabling the emergence of unexpected spatial configurations. In this regard, the
development of more accurate metrics to represent ‘spatial attributes’, the devel-
opment of mechanisms to incorporate modifications to the rules as the system
evolves, as well as the introduction of external influences, are seen as plausible
paths to pursue in order to extend the system’s capabilities.

The graph theoretic analysis of the composite CA time evolution has some
similarities with concepts from ‘space syntax’ [15,27]. In space syntax, graphs
are used to represent the sub-divided space in order to identify specific configu-
rations, which are then analyzed via social relations and properties. In contrast,
in our approach we search for configured space in terms of physical attributes,
which may be understood as a connected set of discrete units, rather than a con-
tinuum [3]. This configure space then acts as input into subsequent evolutionary
cycles in a search for new, emergent, spatial configurations.

There are many opportunities to extend this work. One interesting direction
would be to ‘fine tune’ the metrics to better reflect design requirements. Another
avenue is to explore the use of evolutionary algorithms to search for design
‘motifs’ encapsulated by specific metrics and to examine design trade-offs.
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Abstract. Figure-ground segmentation is a process of separating regions
of interest from unimportant backgrounds. It is challenging to separate
objects from target images with high variations (e.g. cluttered back-
grounds),which requires effective feature sets to capture the discriminative
information between object and background regions. Feature construction
is a process of transforming a given set of features to a new set of high-
level features, which considers the interactions between the previous fea-
tures, thus the constructed features can be more meaningful and effective.
As Genetic programming (GP) is a well-suited algorithm for feature con-
struction (FC), it is employed to conduct both multiple FC (MFC) and
single FC (SFC), which aims to improve the segmentation performance for
the first time in this paper. The cooperative coevolution technique is intro-
duced in GP to construct multiple features from different types of image
features separately while conducting feature combination simultaneously,
called as CoevoGPMFC. One wrapper method (wrapperGPSFC) is also
designed, and one well-performing embedded method (embeddedGPSFC)
is introduced as a reference method. Compared with the original features
extracted by existing feature descriptors, the constructed features from the
proposed methods are more robust and performance better on the test set.
Moreover, the features constructed by the three methods achieve similar
performance for the given segmentation tasks.

Keywords: Figure-ground segmentation · Genetic programming ·
Feature construction · Coevolution

1 Introduction

Figure-ground segmentation is a process of separating regions of interest from
unimportant backgrounds, which is regarded as a crucial middle-level task in the
fields of image processing and computer vision [14]. The goal of figure-ground
segmentation is to capture the target regions to facilitate the subsequent higher-
level tasks, e.g. scene understanding [6], object recognition [7]; therefore, the
results of figure-ground segmentation can affect the performance of the subse-
quent tasks.
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To achieve accurate segmentation performance on images with high varia-
tions (e.g. cluttered backgrounds and/or varying objects), a good feature space
that can capture difference between object pixels and background ones is a pre-
requisite. As there are many existing image descriptors, they often provide high
dimensional features with irrelevant information, and often can not match the
patterns in various image domains [13]. In addition, for a given test dataset, it
is often not clear of the optimal feature representation beforehand [13]. As it is
infeasible to try all possible features, conducting feature construction on the fea-
tures extracted by existing descriptors is necessary, which can produce high-level
features with more distinctive information between objects and backgrounds.

Genetic programming (GP) is an evolutionary computation technique, which
can evolve a population of solutions (computer programs) by transforming pop-
ulations of solutions into new and normally better populations to solve given
problems [4]. GP has been regarded as a well-suited technique for feature con-
struction due to the following reasons. Firstly, GP can use tree-like representa-
tion, in which various kinds of functions can be used to combine input features to
linear or non-linear forms without pre-defining the structure. The input features
can be low/middle-level primitive features extracted by existing feature descrip-
tors. GP is flexible and does not require any assumptions or constraints on the
input features [9]. Secondly, GP has high search ability and has the potential to
find global optima, so it is more likely for GP to handle large search space (often
faced by feature construction tasks).

There are different categorization criteria for FC methods. Based on whether
a single feature or multiple features is/are constructed, there are SFC [2] and
MFC methods [10]. In addition, FC methods can fall into three branches based
on how to evaluate the constructed new features in the FC process, i.e. wrapper,
filter and embedded approaches [11]. Wrapper and embedded methods evaluate
the constructed features based on the feedback of a learning algorithm; while
filter methods depend on general characteristics of features. Embedded methods
conduct feature construction and build a learning model in one step; while filter
and wrapper methods treat them as two separate steps. Based on the feedback
of a learning algorithm, it is likely for wrapper methods to construct more effec-
tive features than filter methods, yet they are more computationally intensive;
while filter methods are more efficient [11]. Since modifications to the learn-
ing algorithm may cause poor performance [12], embedded methods are more
conceptually complex.

1.1 Goal

Feature construction has not been commonly studied to solve image segmenta-
tion problems, which deserves more exploration. Our previous work [8] works on
filter and embedded SFC using GP for figure-ground segmentation. Better results
have been achieved by the combined feature set (adding the single constructed
feature into the original feature set) than the original features. However, wrapper
SFC/MFC has not been exploited for complex segmentation problems; therefore,
this paper aims to design wrapper methods to construct both a single feature and
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multiple features using GP. Specifically, the cooperative coevolution technique is
introduced in GP to construct multiple features separately from different types
of image features; while combining the constructed features simultaneously. This
method is called as CoevoGPMFC. A wrapper SFC method, WrapperGPSFC,
is also designed. In addition, the embedded SFC method, EmbeddedGPSFC
[8], is used as a reference method due to its good performance. Specifically, we
investigate the following objectives:

1. whether the constructed feature set can outperform the original features on
complex segmentation tasks;

2. which one of the proposed methods can construct more effective features;
3. how to reveal the effectiveness of the constructed features in distinguishing

object and background pixels.

The rest of this paper is organized as follows. Section 2 introduces the proposed
methods. Section 3 describes experiment preparations, i.e. datasets and evalu-
ation measures. In Sect. 4, results are provided and analyzed. Conclusions are
drawn in Sect. 5.

2 The Proposed Methods

2.1 CoevoGPMFC

Algorithm 1 shows the pseudo code of the proposed method, CoevoGPMFC.
Compared with the standard GP, the major difference lies in the initialisation
stage and the fitness evaluation stage (highlighted in blue color). Specifically,
the target problem is formulated into multiple subproblems. In the initialisation
stage, multiple subpopulations are set up, each of which represents one subprob-
lem. Then the coevolutionary search proceeds in each sub-population indepen-
dently, except for the fitness evaluation of each individual [5], which relies on
other individuals.

Figure 1 shows the fitness evaluation of an individual, which is individual j
in the sub-population i. Firstly, one representative individual from each of the
remaining subpopulations are selected to form the context of the target individ-
ual. The fittest individuals in other subpopulations from the previous generation
are selected as the representative individuals in this work. Secondly, the selected
individuals are combined with the target individual, which are actually three
feature construction functions. With the input of primitive features, the internal
train/test datasets are transformed based on the feature construction functions
(three high-level features are constructed for each internal train/test sample).
Thirdly, a classifier (e.g. decision tree) is trained and evaluated based on the
transformed internal train/test sets to produce the classification accuracy, which
is assigned to the target individual as its fitness value.
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input : M: the number of subpopulations;
G: the maximum number of generations;
The terminal set, function set and GP parameters (Sect. 3.1).

output: Solutions (feature construction functions).

1 for m = 0 to M-1 do
2 For subpopulation Pm, determine the subpopulation size Nm;
3 Create an initial population of Nm GP trees at iteration zero (Pm0) using the

Ramped half-and-half method;

4 end
5 g ← 1
6 while g < G − 1 and the ideal individual (the individual with fitness value == 1.0 )

is not found do
7 for m = 0 to M-1 do
8 Fitness assignment: Individuals from subpopulation Pm are tested by grouping

them with the fittest individuals in the other subpopulations from the previous
generation and assessing their joint fitness (Fig. 1);

9 Create Pm(g+1) from Pmg:

10 begin
11 Set Pm(g+1) empty;

12 for i = 0 to Nm − 1 do
13 Conduct crossover, mutation or reproduction operations based on the

individuals from Pmg;
14 Add the child/children to Pm(g+1);

15 end

16 end

17 end
18 g ← g + 1;

19 end
20 Return the M best individuals from M subpopulations.

Algorithm 1. Pseudo-code of Coevolutionary method (GP procedure
is in red and coevolution procedure is in blue).

Fig. 1. The fitness evaluation of one individual in cooperative coevolution (N is the
number of subpopulations; f0 and cf0 means a feature and a constructed feature with
the index 0 respectively; internal train/test sets means the train and test set used in
the internal GP evolution process for fitness evaluation).
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2.2 WrapperGPSFC

The proposed WrapperGPSFC uses the classification accuracy for the fitness
evaluation, which is the same as CoevoGPMFC. The fitness evaluation of an
individual is shown in Fig. 2. The whole tree rooted on the root node is employed
as a feature construction function, based on which the internal train/test sam-
ples are transformed to new samples. The new internal train/test sets are then
employed to train and evaluate a classifier (e.g. decision tree), and the classifi-
cation accuracy is generated as the fitness value of this individual.

Fig. 2. The fitness evaluation of an individual in WrapperGPSFC method.

3 Experiment Preparations

3.1 GP Settings

Table 1 describes the function set, including five mathematical operators and
two conditional operators. Major GP parameter settings are shown in Table 2,
except for the population size. For CoevoGPMFC, the sizes of three subpopula-
tions are 1024, 32 and 256 respectively; while for SFC methods (i.e. WrapperG-
PSFC and EmbeddedGPSFC), as there is only one single subpopulation, the
size is 1312. Figure 3 shows the terminal set. As there are three subpopulation in
CoevoGPMFC, each subpopulation takes one type of image features as its ter-
minal set (texture features for subpopulation 0; color features for subpopulation
(1) grayscale statistical features for subpopulation (2). For other methods, as
there is only one subpopulation, the terminal set is the same, which contains
all the three types of features. Several feature descriptors are employed in this
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Table 1. Function set.

Function name Definition Function name Definition

+(a1, a2) a1 + a2 −(a1, a2) a1 − a2

*(a1, a2) a1 ∗ a2 %(a1, a2)

{
a1/a2 if a2! = 0

0 if a2 == 0

L(a1) Log|a1|

>(a1, a2)

{
a1 if a1 > a2

a2 if otherwise
<(a1, a2)

{
a1 if a1 < a2

a2 if otherwise

work to extract three general types of image features, i.e. texture, color and
grayscale statistical features, shown in Fig. 3. The extracted features are nor-
malized to [0,1]. Specifically, this paper employs 40 Gabor filters, generated
from five common scales (4, 4

√
2, 8, 8

√
2, 16) and eight common orientations

(0, π
8 ,

2π
8 , 3π

8 , 4π
8 , 5π

8 , 6π
8 , 7π

8 ) to extract Gabor features. Therefore, there are 40
Gabor features in each feature vector (Fig. 3). The mean filter and the median
filter, which are commonly used to remove noise in images, are employed to
extract local statistical features. LBP can transform an image to an array of
integer labels, which can represent the small-scale image appearance. As the
mean, median and LBP methods are local feature descriptors that operate in
blocks, three block sizes are employed in this paper, including 3 × 3 pixels, 5 ×
5 pixels and 9 × 9 pixels, which can capture information at different scales.

Fig. 3. Low/middle-level features (Coevo means the CoevoGPMFC method; Others
refer to WrapperGPSFC and EmbeddedGPSFC; f0 is a feature with 0 as its index and
so forth; subpop represents subpopulation).

3.2 Datasets

Two standard datasets, the Weizmann horse dataset [1] and Pascal VOC2012
(VOC, Visual Object Classes) [3], are employed in this paper. Both datasets con-
sist of images with high variations, which are considered as difficult segmentation
tasks. Figure 4 displays several examples along with the ground truth images
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Table 2. GP parameter settings.

Parameter Setting Parameter Setting

Generation 51 Initialisation HalfBuilder

Crossover rate 0.80 Mutation rate 0.19

Reproduction rate 0.01 Maximum depth 8

(object in white and background in black color). Specifically, the Weizmann
dataset has 328 horse images with varying horse positions. Moreover, certain
images have cluttered backgrounds (e.g. horse227 and horse306), and there are
images with low quality (e.g. horse264). The average size of the Weizmann images
is around 250 × 200 pixels. There are 178 aeroplane images in the Pascal dataset,
which are considered more complex than the Weizmann images, due to the high
variations in object sizes and object shapes (e.g. airliners, fighters and biplanes),
and the cluttered backgrounds. Moreover, some images contain multiple objects
(e.g. 2010 003127), and there are noisy/blurred images, e.g. image 2007 001761
(blurred by motion) and image 2010 002939 (containing noise). Their average
size is around 500 × 350 pixels.

Weizmann

horse224 horse225 horse227 horse264 horse306

Pascal

2007 001761 2010 002939 2010 003127 2010 003132 2011 001880

Fig. 4. Example images.

3.3 Evaluation Measures

The segmentation accuracy (Eq. 1) and F1 score (Eq. 2) are utilised to evaluate
the segmentation results, which are simple and commonly used. Both measures
reach the worst at 0 and the best at 1. Specifically, TP , TN , FP and FN stand
for true positives, true negatives, false positives and false negatives respectively
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Table 3. Training performance (#F means the number of features; ↑, ↓ or = mean
significantly better, worse or similar, compared with original features).

Dataset Method (#F) Training accuracy (%)

J48 NB PART

Weizmann Original features (53) 97.13 70.78 84.52

EmbeddedGPSFC (1) 78.73 ± 0.90

WrapperGPSFC (1) 76.95 ± 1.12 ↓ 75.55 ± 1.38 ↑ 76.70 ± 1.57 ↓
CoevoGPMFC (3) 78.14 ± 0.66 ↓ 75.68 ± 0.94 ↑ 77.20 ± 0.58 ↓

Pasccal Original features (53) 94.92 79.48 89.52

EmbeddedGPSFC (1) 84.51 ± 0.30

WrapperGPSFC (1) 84.07 ± 0.29 ↓ 83.40 ± 0.37 ↑ 84.14 ± 0.33 ↓
CoevoGPMFC (3) 85.18 ± 0.71 ↓ 83.17 ± 0.34 ↑ 84.32 ± 0.65 ↓

Table 4. Test performance (#F means the number of features; ↑, ↓ or = mean signif-
icantly better, worse or similar, compared with original features).

Dataset Method
(#F)

Segmentation accuracy (%) Test F1 score

J48 NB PART J48 NB PART

Weizmann Original
features
(53)

69.84 72.38 76.98 0.544 0.565 0.566

Embedded
GPSFC
(1)

77.18 ± 1.49 ↑ 0.630 ± 0.013 ↑

Wrapper
GPSFC
(1)

74.74↑ ±1.21 74.02↑ ±2.10 74.16↓ ±1.75 0.605↑ ±0.011 0.598↑ ±0.013 0.603↑ ±0.015

Coevo
GPMFC
(3)

74.97↑±1.39 74.38↑±1.53 75.26↓±1.88 0.603↑±0.013 0.596↑±0.010 0.600↑±0.012

Pasccal Original
features
(53)

75.44 83.56 79.60 0.442 0.475 0.475

Embedded
GPSFC
(1)

78.06 ± 1.15 0.484 ± 0.008 ↑

Wrapper
GPSFC
(1)

78.27↑±1.28 79.83↓±1.15 78.09↓±1.16 0.482↑±0.009 0.489↑±0.009 0.480↑±0.009

Coevo
GPMFC
(3)

78.46↑±1.62 80.07↓±0.94 77.82↓±1.63 0.486↑±0.014 0.496↑±0.007 0.477↑±0.013

based on total pixels of all test images. Therefore, the accuracy and F1 scores
are the average values across the test images.

segmentation accuracy =
TP + TN

Total.P ixel.Number.of.All.T est.Images
(1)

F1 = 2 ∗ Precision ∗ Recall/(Precision + Recall)
Precision = TP/(TP + FP )
Recall = TP/(TP + FN)

(2)
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3.4 Experiment Design

The Weizmann dataset has 328 horse images, two thirds of which are used as
training images (218 images), and the remaining of which (110 images) are
for testing. Twenty samples are extracted from each training image (10 from
object/background pixels respectively) to form the training samples. The Pas-
cal dataset contains 178 aeroplane images for segmentation, 88 images of which
are for training and 90 images are for testing (suggested by Everingham [3]).
Since Pascal images are larger than Weizmann images, 50 samples (25 from
object/background pixels respectively) are extracted from each training image.
For wrapper FC methods, i.e. CoevoGPMFC and WrapperGPSFC, the training
set is split to internal train/test sets for fitness evaluation (two thirds of total
samples as the internal train set; the remaining as the internal test set). Three
standard classifiers, i.e. J48, Näıve Bayes (NB) and PART, from the Weka pack-
age are selected to evaluate the constructed features. All GP related experiments
run 30 independent times, and the results are the average of 30 best solutions
(one single best solution from each run).

4 Results

4.1 Training and Test Performance

According to Table 3, the training performance of the constructed multiple fea-
tures produced by CoevoGPMFC and the constructed single features by Embed-
dedGPSFC and WrapperGPSFC are generally worse than that of the original
features on both datasets, except for NB based experiments. However, on the
test dataset (shown in Table 4), the constructed features from all the three meth-
ods achieve better segmentation performance than that of original features in F1
score. It reflects that the constructed features are more robust and have higher
generalization ability than the original features for the given complex segmen-
tation tasks. Note that compared with the original features based on the test
accuracy, the constructed features from WrapperGPSFC and CoevoGPMFC are
worse using PART on Weizmann dataset and features from all three methods are
worse using NB and PART on Pascal dataset, while all the constructed features
achieve higher F1 scores on both datasets. As the majority part of most test
images is background, the test samples of each image are unbalanced; therefore,
F1 score is more reliable than the test accuracy.

When comparing CoevoGPMFC with the wrapper SFC method – Wrapper
GPSFC, CoevoGPMFC achieves generally better training accuracies on both
datasets; and a little better or similar results for testing performance. In
addition, compared with another embedded SFC method – EmbeddedG-
PSFC, CoevoGPMFC produces features with varying segmentation perfor-
mance. Specifically, on the test sets, CoevoGPMFC achieves lower scores on
Weizmann dataset based on both evaluation measures (segmentation accuracy
and F1 score) than EmbeddedGPSFC; while it achieves higher scores on Pascal
dataset. Even though there occurs varying results on different datasets based on
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Fig. 5. Example FC functions evolved by the CoevoGPMFC method based on J48
((a), (b) and (c) are the best solutions of subpopulation 0, 1 and 2 respectively).

different classifiers, statistical results in Tables 3 and 4 indicate that features con-
structed by all the three proposed methods, i.e. CoevoGPMFC, WrapperGPSFC
and EmbeddedGPSFC, achieve similar segmentation performance.

4.2 Further Analyses

Figure 5 displays one best group of feature construction functions evolved by the
CoevoGPMFC method. Figure 5b shows that the FC function is to select the
feature f42, and no further operation is implemented. Based on these functions,
test samples of a Pascal test image (Fig. 6a) are transformed into the constructed
feature spaces respectively. Figure 6b, c and d show the object/background his-
togram in the spaces. It can be seen that the majority of object pixels and
background pixels can be separated in all the constructed feature spaces. More-
over, Fig. 6c shows that feature f42 itself is distinctive, which explains that the
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(a) A test image. (b) Feature space constructed by Fig. 5a.

(c) Feature space constructed by Fig. 5b. (d) Feature space constructed by Fig. 5c.

(e) Original feature (f3) space. (f) Original feature (f52) space.

Fig. 6. Distribution of class object/background pixels in different feature spaces.

solution in Fig. 6c only selects f42 without operations. In contrast, Fig. 6e and f dis-
play the object/background histogram based on two original features, e.g. f3 and
f52, which are used in the solutions in Fig. 5. Both figures show that the majority
of background and object pixels are overlapping, and are not as separable as in the
constructed feature spaces, which reflects that the constructed features contain
more distinguishing information than the original ones. Therefore, the proposed
CoevoGPMFC method can evolve useful functions to build effective high-level
features.

5 Conclusions and Future Work

This paper developed two wrapper FC methods: one is a MFC method
(CoevoGPMFC) and the other is a SFC method (WrapperGPSFC), which aim
to produce more effective features from primitive image features to improve the
segmentation performance on complex figure-ground segmentation tasks. This is
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the first time to employ wrapper GP methods to construct both a single image
feature and multiple features for figure-ground segmentation tasks. Moreover,
a novel MFC method using a coevolutionary technique in GP was designed.
The proposed methods were compared with a well-performing embedded SFC
method (EmbeddedGPSFC), proposed in our previous work [8], by three stan-
dard classifiers, i.e. J48, NB and PART, on two standard image datasets, i.e.
Weizmann and Pascal datasets.

Even though the training performance of the constructed features from
CoevoGPMFC, WrapperGPSFC and EmbeddedGPSFC are generally worse
than that of the original features, they all achieve better segmentation per-
formance in F1 score on the test sets. It reflects that the constructed features
are more robust and have higher generalization ability than the original features
for the given complex segmentation tasks. When comparing CoevoGPMFC with
the SFC methods, WrapperGPSFC and EmbeddedGPSFC, varying yet similar
results on different datasets based on different classifiers are achieved. It indicates
that all the three methods, i.e. CoevoGPMFC, WrapperGPSFC and Embed-
dedGPSFC, produce effective features achieving similar segmentation perfor-
mance. The analyses of the FC functions evolved by CoevoGPMFC show that
objects and backgrounds are better separable based on the constructed features
than the original features.

This paper uses GP to construct features from primitive extracted image fea-
tures, then a classifier is employed to classify pixels on a test image as class object
or background. Therefore, the segmentation tasks contains three stages: feature
extraction, feature construction and pixel classification. In the future, we plan to
design new GP methods, which takes images as input and produces segmented
images directly. The feature extraction/construction and pixel classification will
all be realized in the GP evolution process.
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Abstract. This paper presents a study to design, analyze and optimize
an airfoil trailing edge, i.e., shape morphing of the airfoil trailing-edge
topology. The primary idea behind morphing is to improve the wing per-
formance for different flight conditions. Modern aircrafts are designed for
unique operating conditions. In order to obtain the best configuration, a
dynamic optimization algorithm has been developed based on a Multi-
swarm Particle Swarm Optimization algorithm (MPSO), a population-
based stochastic optimization algorithm inspired by the social interaction
among insects or animals. However, with respect to aircraft design and
in the context of computational fluid dynamics (CFD), function evalua-
tions are computationally expensive; typically requiring large computa-
tional grids to obtain a reasonable representation of the flow-field. In this
paper, the developed MPSO algorithm is combined with a Kriging surro-
gate representation of the objective space, to alleviate the computational
effort. The topology of the trailing edge is defined and characterized by
four control points. Two different hypothetical mission profiles are ana-
lyzed. The results exhibit an improvement of around 2% with respect to
the original airfoil for every flight condition treated.

1 Introduction

One of the major challenges in aerospace design is to improve aircraft efficiency
during operation, a requirement borne from the need to accommodate for ris-
ing fuel prices and the mitigation of emissions. The research effort in aircraft
design is primarily driven by this incentive. One of most widely-used strategies
by modern aircraft is using movable control surfaces to improve flight perfor-
mance. For example, flaps and slats, whilst traditionally used during take-off
and landing manoeuvres, can also be used to introduce a variable camber to
the wing, thus providing scope for determining the optimum configuration for a
given flight condition. However, when constrained by limited freedom of move-
ment, it is unlikely that optimal solutions for every possible cruise condition are
attainable. Furthermore, control surface devices result in geometrical discontinu-
ities, which can often reduce the aerodynamic efficiency. In contrast, a morphing
c© Springer International Publishing AG 2017
M. Wagner et al. (Eds.): ACALCI 2017, LNAI 10142, pp. 124–133, 2017.
DOI: 10.1007/978-3-319-51691-2 11
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wing can potentially conform to provide optimal performance at any desired
flight condition. Morphing wing technology can be used for flow-control, aerody-
namic tailoring, improved flight dynamics during manueveres, and improve the
aeroelastic performance and dynamic load response of military aircraft [1,4,5,7].

In this paper a conceptual two-dimensional study is considered. The upper
section of the trailing edge is deformable, since it is possible to achieve similar
results to a fully morphing airfoil [2] without the drastic increase in complexity
and weight. A multi-swarm heuristic, combining surrogate models for the alle-
viation of the computational effort are considered. Surrogates are used in lieu
of the computationally expensive computational fluid dynamic (CFD) model,
whereby the swarm directly navigates the surrogate landscape in order to find
the region in the design space where the optimal solutions are likely located [3].

The dynamic optimization framework is developed to characterize the entire
flight envelope, providing the best aerodynamic design, including morphing para-
meters as well, for that configuration. The framework allows for the identification
of different optimal solutions, where the transition between different flight con-
figurations (and therefore different shape topologies) is ultimately dependent on
minimum energy expenditure during morphing. This ensures that during tran-
sition of flight configurations, the algorithm places a priority to solutions which
avoid drastic changes between successive configurations, with minimal structural
and logistic problems.

2 Geometrical Parametrization

The original (i.e. base) airfoil selected is the NACA 23012, which is a mildly-
cambered low-speed airfoil. The topology of the morphing trailing edge is con-
trolled using four control points, situated along the upper trailing edge section,
as shown in Fig. 1. We choose as original airfoil a NACA 23012. The morphing
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Fig. 1. An example of a morphed airfoil, compared with the original one, the design
variables in input are: inputs = [1,0,1,0].
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is theoretically achieved by manipulating the vertical (i.e. y) coordinate of the
control points. Since the exact configuration is not known in advance, a ran-
dom population of design candidates is first generated, and the optimization
framework hones in on the optimal deviation of the vertical (i.e. y) coordinates
from the original position. The boundaries of the design space are restricted to
y ∈ [−0.015, 0.015], to ensure a robust topology the and manufacturable shape is
guaranteed. To facilitate the optimization process, the boundaries are normalized
to unity, where a value of 0 corresponds to the lowest position for the y coor-
dinate and 1 to the highest position. The four control points provide the basis
for shape morphing, where a piecewise cubic Hermite polynomial interpolation
scheme is used.

3 Surrogate Model

A major obstacle in using population-based optimization frameworks is the often
prohibitive computational expense of the numerical model. To this end, the pur-
suit of higher-order shape parameterization techniques, able to define arbitrarily
complex shapes with minimal design variables, is highly desirable. Nevertheless,
for true multi-disciplinary aircraft design, the numerical model is the most pro-
hibitive element of the framework. The use of surrogate models are very popular
for aerospace design applications since they can be used in lieu of the original
and more costly computational model of the problem [3]. In this context, the
surrogate model can play a very valuable role in increasing the feasibility of
using population-based algorithms in conceptual aircraft design. The surrogates
are constructed using data obtained from the high-fidelity numerical model, and
provide cheap approximations of the original objective functions and constraints
at new locations.

3.1 Kriging Method

Of particular significance in surrogate models is the methodology used. In this
study, the approximated values are modeled by a Gaussian process governed
by prior covariances, known as Kriging (Krige, 1951), which is an interpolating
method featuring the observed data at all sample points. Kriging provides a
statistical prediction of the function at an arbitrary location by minimizing its
mean squared error (MSE).

Kriging methods rely on the notion of autocorrelation. Correlation is usu-
ally thought of as the tendency for two types of variables to be related. For
the derivation of Kriging, the output of a deterministic computer experiment is
treated as a realization of a random function (or stochastic process), which is
defined as the sum of a global trend function fT (x)β and a Gaussian random
function Y (x) as the following:

y(x) = fT (x)β + Y (x), x ∈ �m, (1)
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where f(x) is defined by a set of regression basis functions and β denotes the
vector of the corresponding coefficients, m is the number of dimensions, and x
is the vector of design variables. Now we can obtain the correlation function of
our variables which is only dependent on the Euclidean distance between any
two points x(i) and x(l) in the design space. The random variables are correlated
with each other using the basis expression:

Corr[Y (x)(i), Y (x)(l)] = exp

(

−
k∑

j=1

θj |x(i)
j − x

(l)
j |pj

)

. (2)

The correlation depends on the Euclidean distance and two undefined parameters
θ and p that have to be obtained by means of a numerical optimization technique.
At this point it is possible to formulate the prediction expression:

ŷ(x) = ˆ(μ) + ψTΨ−1(y − 1μ̂), (3)

where ψ is the vector of the basis function, Ψ is the correlation matrix, 1 is a
vector of one, centered around the n sample points and are added to a mean
base term μ̂.

4 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-based stochastic optimiza-
tion technique, inspired by social behavior of bird flocking or fish schooling, and
belongs to the family of swarm intelligence techniques [13]. The potential candi-
dates, called particles, navigate the objective landscape, with their movements
guided by the best known position of each particle as well as the entire swarm’s
best known position. The process is iterated until a satisfactory (or converged)
solution is found. Each particle keeps track of its coordinates in the problem
space, which are associated with the best solution (in terms of fitness) it has
achieved so far. This position is called pbest. Another position that is tracked by
the standard version of the particle swarm optimizer is the overall best position,
and its fitness value, obtained so far by any particle in the population. This
location is called gbest.

The particle swarm optimization (PSO) search process consists of, at each
time step, changing the velocity (accelerating) of each particle towards its pbest
and gbest locations (standard version of PSO). Acceleration is weighted by a
random term, with separate random numbers being generated for acceleration
towards the pbest and gbest locations.

The original process for implementing the standard version of PSO is pro-
vided in Algorithm 1. In the algorithm, a, b and c are constants that separately
control the importance of the three directions which determine the next velocity
and position of the particle. The three components are usually referred to as
inertia (vti), cognitive influence (pbti − xti), and social influence (gbt − xti).
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Algorithm 1. Standard PSO Algorithm

1: Initialise all particles i with random positions x0
i as well as random velocities v0i

2: Initialise the particle’s best known position (pb0i ) to its initial position.
3: Calculate the initial swarm’s best known position gb0.
4: repeat
5: for all Particle i in the swarm do
6: Pick random numbers:
7: Update the particle’s velocity: vt+1

i = a · vt
i + b · rp · (pbt

i − xt
i) + x · rg · (gbt − xt

i)
8: Compute the particle’s new position: xt+1

i = xt
i + vt+1

i

9: if fitness (xt+1
i ) ¡ fitness (pbt

i) then
10: Update the particle’s best known position: pbt+1

i = xt+1
i

11: end if
12: if fitness (pbt+1

i ) ¡ fitness (gbt)) then
13: Update the swarm’s best known position: gbt+1 = pbt+1

i

14: end if
15: end for
16: until termination criterion is met
17: return The best known position: gb.

4.1 Optimization in a Dynamic Environment

Many real-world problems are dynamic in the sense that the global optimum
location and value may change with time. The task for the optimization algo-
rithm is to track this shifting optimum. In this context it is possible to adapt the
particle swarm to work in a dynamic environment and in presence of multiple
peaks. The choice of using PSO is obvious, since it shows very useful charac-
teristics for a dynamic environment: simple implementation, very few algorithm
parameters, very efficient global search algorithm, and insensitive to the scaling
of design variables. However the standard PSO is affected by two problems: out-
dated memory; and diversity loss [16]. The first one happens as the environment
changes when the optima may shift in location and/or value. Particle memory
(namely the best location visited in the past, and its corresponding fitness) may
no longer be consistent after the change, with potentially sub-optimal effects on
the search. The problem of outdated memory is typically solved by either assum-
ing that the algorithm knows just when the environment change occurs, or that
it can detect changes. In either case, the algorithm must act with an appropriate
response. Equally troubling as outdated memory is an insufficient diversity after
change. The population takes time to re-diversify and re-converge, resulting in
being unable to track a moving optimum. Loss of diversity arises when a swarm
converges onto a peak. There are two possibilities: when a change occurs, the
new optimum location may either be within or outside the collapsing swarm. In
the former case, there is a good chance that a particle will find itself close to
the new optimum within a few iterations and the swarm will successfully track
the moving target, assuming that the swarm as a whole has sufficient diversity.
However, if the optimum shift is significantly far from the swarm, the low veloc-
ities of the particles will inhibit re-diversification and tracking, and the swarm
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can even oscillate about a false attractor and along a line perpendicular to the
true optimum, in a phenomenon known as linear collapse [14].

In this study we resolve this issue by combining two techniques to treat
the dynamic problems: Charged Particle Swarm Optimization (CPSO) [14] and
Multi-swarm Particle Swarm Optimization (MPSO) [14]. CPSO introduces a
repulsive mechanism that can either be between particles, or from an already
detected optimum. In this model, a swarm is comprised of a charged and a
neutral sub-swarm. Charge enhances diversity in the vicinity of the converging
PSO sub-swarm, so that optimum shifts within this cloud should be trackable.
Implementing the charged PSO is simple, since its structure is similar to the
canonical one, with the addition of an acceleration term in the swarm equations
of motion, which is called electrostatic acceleration ai [15]. The main idea behind
MPSO is to split the population of particles into several interacting swarms.
The aim of these swarms is to position each on different promising peaks of
the fitness landscape. Splitting the main swarm into independent sub-swarms
is unlikely to be effective, since the swarms will not interact. The idea is to
use some parameters to control the interaction between swarms, including two
mechanisms known as exclusion and anti-convergence [17].

Exclusion controls the local interaction between swarms, preventing swarms
from staying on the same peak. Anti-convergence deals with the issue as each
swarm converges onto a peak, i.e., the particles of the swarms are in close prox-
imity to the attractor. The problem is that if there are more peaks than the
number of swarms, it is necessary to ensure that at least one swarm is kept free
for detecting any possible change in the environment.

5 Implementation of the Surrogate Model

Given that the operating principles of optimization and surrogates are defined;
their synergy and integration into the framework must be considered. The surro-
gate is treated as a partially-online black-box emulating function, with inputs as
the normalized control points, and the airfoil lift coefficient (CL), which defines
the flight condition. A local surrogate is referred to cases where CL is fixed (and
so the flight condition). Alternatively, the global surrogate refers to cases where
CL is an additional participating input variable.

The difference between the two objective landscapes is that the local model
ensures more accuracy for a defined flight condition, whereas the global pro-
vides a better prediction for the whole objective landscape. For this reason, it is
possible to discern at least three different approaches:

1. Local surrogates (four variables, i.e. the four control points):
(a) Apply optimization directly to the surrogate model.
(b) Optimize the surrogate with CFD and compute the optimization.

2. Global surrogates (five variables, i.e. the four control points and the lift CL):
(a) Apply optimization directly to the surrogate model.
(b) Optimize the surrogate with CFD and execute the optimization.
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3. Mixed approach: using a global surrogate with local surrogates optimized
with CFD.

A direct application of an optimization method without using the surrogate
is rare, since the computational cost is very high. Each above approach can
be evaluated in terms of: flexibility to the designer, computational intensity
and accuracy. The mixed approach proved to be most efficient. In this case the
global surrogate provides the general information of the space design and the
local surrogates are used as swarms to locate the optima.

6 Application

The practical application of the framework is based on a generic modular, long
endurance unmanned aerial system which intends to fulfil the primary roles of
unarmed reconnaissance, data collection, and surveillance. The morphing opti-
mization will be performed for a hypothetical flight path. This is composed of
three mission objectives which correspond to three different configurations. We
want to find the three optimal configurations to minimize the objective of the
specific phase as restricting the energy spent when performing the morphing.
The three mission objectives considered are:

– Maximum range
– Maneuvering at a defined angle of attack
– Maximum endurance

Both the range and endurance depend on the rate of fuel consumption of the
propulsion system, and therefore, on the type of engine. The range is consid-
ered to be the maximum distance the aircraft can fly and the endurance as the
maximum possible flight duration (irrespective of distance covered, i.e. loiter-
ing). As one might expect, there is a flight condition (attitude and velocity) that
will provide the best range for a given aircraft, and a different flight condition
that will give us maximum endurance. It is clear that if we want to maximize
flight endurance for a defined configuration, we have to minimize the function
f∗ = CD

CL
, where CD is the aerodynamic drag coefficient. Alternatively, to maxi-

mize the range, the cost function to be minimized is f∗ = CD

C
1/2
L

. The maneuvering

has been performed for a fixed angle of attack trying to minimize f∗ = ( 1
CL2 ).

There are six design parameters to define both range and endurance, which are
four morphing control points, as well as the wing angle of attack (α) and airspeed
(V ). For simplicity, the altitude is fixed.

7 Results

The optimal framework approach in terms of accuracy, flexibility and compu-
tational cost is the mixed approach. Different combinations of parameters were
considered, to determine the optimal swarm population size, number of swarms,
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and size of the initial training dataset (i.e. number of samples), and are consoli-
dated in Table 1. It is important to note the time of change: such that after every
40 iterations the optimization framework dynamically changes its objective.

The velocities are obtained after having optimized the airfoil without morph-
ing and found out which are the best to accomplish each objective. The results
obtained for each case are shown in Table 2. Each optimization routine provides
four ideal shapes for each objective, with each solution ranked according to the
percentage of improvement and energy expenditure. The improvement, except
for the maneuvering phase, is quite small. Indeed, for range and endurance,
the average improvement is of the order of 1%. Minimum energy expenditure is
determined based on the minimum amount of structural deformation required
to transition between successive states. After this trade-off was performed, the
best three profiles for completing the mission are obtained, which can be seen
in Fig. 2. It is interesting to note the effects of the morphing on the aerody-
namic performance coefficients. For the range the result does not change much,
as compared to the original, instead for the maneuvering we have some interest-
ing improvements. After the first input point there is a regain in pressure and

Table 1. Input parameters for MPSO

Inputs

Number of swarms 12

Particles of each swarm 20

Density (kg/m3) 1,225

Velocity (m/s) 25, 30, 29

Maximum iterations 120

Change interval 40

Number of samples 30

Table 2. Results for range, maneuvering and endurance.

Morphed airfoils Original airfoil Improvement (%)

CL (-) CD (-) f* (-) α (deg) CL (-) CD (-) f* (-) α (deg)

Range 0.76 0.0109 0.0125 6.6 0.78 0.0112 0.0127 6.6 1.3

f∗ =
CD√
CL

0.79 0.0112 0.0126 6.9 0.5

V = 29.2 m
s

0.82 0.0114 0.0126 6.9 0.5

0.76 0.0109 0.0125 6.6 1.1

Maneuvering 0.74 0.0122 1.8211 6.0 0.71 0.0116 1.9802 6.0 5.0

f∗ = 1/C2
L 0.74 0.0127 1.8126 5.3

V = 30 m
s

0.74 0.0122 1.8093 5.5

0.73 0.0123 1.8723 3.9

Endurance 0.98 0.0132 0.0134 8.6 1.09 0.0147 0.0135 9.8 0.7

f∗ = CD/CL 0.97 0.0129 0.0134 8.5 0.8

V = 24.9 m
s

0.96 0.0127 0.0132 8.4 1.9

0.97 0.0130 0.0133 8.6 1.2
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Fig. 2. Best airfoils shape for range, maneuvering and endurance.

consequently an increase of lift, this is exactly what we want to achieve during
this phase. Furthermore, the pitching moment CM is affected by the morphing.

8 Conclusion

This paper has presented a dynamic optimization of a morphing trailing edge.
A population-based dynamic optimization framework is developed, utilizing the
Multi-swarm Particle Swarm Optimization algorithm, in combination with Krig-
ing surrogate models, used to alleviate the computational effort of the high-
fidelity numerical solver. The conceptual study illustrated significant improve-
ment in the flight performance is attainable, with the major improvement expe-
rienced during the phase of maneuvering. In this context an improvement in
aerodynamic performance of approximately 5% is observed, as compared to the
original profile. Cruise aerodynamic performance was improved by 1% to 3%,
which is still significant since minimal energy expenditure in morphing the trail-
ing edge topology of the original profile is considered. Starting from this and
passing from an experimental validation of the numerical analysis, morphing
could, in future, replace the current use of multiple aerodynamic devices (such
as flaps and slats). The framework developed provides a clear scope for future
research direction. The conceptual application simply considers a static two-
dimensional analysis, the real benefits of adopting a dynamic swarm framework
would be to consider the optimal execution of time-accurate aircraft maneuvers.
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Abstract. Latent variables represent unmeasured causal factors. Some,
such as intelligence, cannot be directly measured; others may be, but we
do not know about them or know how to measure them when making our
observations. Regardless, in many cases, the influence of latent variables
is real and important, and optimal modeling cannot be done without
them. However, in many of those cases the influence of latent variables
reveals itself in patterns of measured dependency that cannot be repro-
duced using the observed variables alone, under the assumptions of the
causal Markov property and faithfulness. In such cases, latent variables
may be posited to the advantage of the causal discovery process. All
latent variable discovery takes advantage of this; we make the process
explicit.

Keywords: Bayesian networks · Causal discovery · Latent variables

1 Introduction

Bayesian networks (BNs) are powerful tools for reasoning about uncertainty
and using complex probability distributions. Judea Pearl helped popularize
them [11], bringing together various algorithms enabling their relatively effi-
cient updating in his seminal 1988 text. While sparse networks are tractable,
generating them from human expert opinion in their application reintroduced
the so-called knowledge bottleneck for constructing expert systems, so it was
natural that attention quickly turned to their automated generation from sam-
ple data [15]. While there has been a great deal of work on the machine learning
of Bayesian networks since then, relatively little of it has treated the learning of
BNs with latent (or hidden) variables, despite latent variable models being one
of the most widely used modeling approaches, for example, in the social sciences.
Here we present a new approach to BN learning in the presence of latents.

1.1 Causal Bayesian Networks

A Bayesian network is a directed acyclic graph (DAG) where each node repre-
sents a random variable, and the structure encodes the independence relations
c© Springer International Publishing AG 2017
M. Wagner et al. (Eds.): ACALCI 2017, LNAI 10142, pp. 134–143, 2017.
DOI: 10.1007/978-3-319-51691-2 12
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among the variables in the d-separation relation [11]. The Markov property, which
is a precondition of BN models being valid, records this relation: variables d-
separated in a BN are (conditionally) independent in the system being modeled.
Given these independencies, the joint distribution for a Bayesian network with
variables X1, . . . , Xk factorizes as:

p(x1, . . . , xk) =
k∏

i=1

pi(xi|π(xi)), (1)

where π(xi) denotes the joint values of the parents of variable Xi in the network.
A casual Bayesian network (CBN) is just a Bayesian network under a causal

interpretation of its arcs. That is, in addition to representing probabilistic depen-
dencies and independencies, its arcs represent causal influences, so that, for
example, interventions on a parent variable in the real system will result in
changes in the distributions of its children variables (see [6]). Under such an
interpretation, the Markov property is called the causal Markov property.

Causal discovery algorithms roughly come in two varieties, constraint-based
learners and metric learners. Constraint-based learners, such as PC [15], apply
direct statistical tests for conditional dependencies and independencies between
subsets of variables, constructing networks with corresponding d-separation
properties. Metric learners, such as K2 and CaMML [4,7], score whole networks
at once, searching the model space for an optimal score. Another well-known met-
ric discovery approach, “Structural Expectation Maximization (SEM)”, devel-
oped by Nir Friedman [5], optimizes BIC or MDL scores using Expectation
Maximization.1

All varieties of causal discovery algorithms assume the causal Markov prop-
erty; that is, where the data show (conditional) independencies, the models
discovered will (generally) likewise show independencies, in the form of d-
separation. Similarly, they assume faithfulness, meaning the models discovered
will (generally) not include arc structures (d-connected relationships) which
carry no conditional dependencies. Faithfulness implies that a CBN is a proper
encoding of pattern of dependencies between measured variables. While there is
some dispute in the philosophy of science about the proper boundaries of these
assumptions [1], causal discovery algorithms operate non-problematically under
them across a wide range of problems, and we assume them in our work here.

Under these assumptions, certain dependency patterns, we call them “trig-
gers”, can reliably indicate the presence of unmeasured causes. In this paper,
we first explain these triggers, and then consider how they might be applied in
constraint-based causal discovery, comparing these techniques with some pop-
ular alternatives. We conclude with ideas for their future application in metric
causal discovery.

1 Indeed, Friedman applied SEM to the problem of latent variable discovery as well.
Our empirical results here don’t include SEM due to time constraints after some
initial difficulty in obtaining SEM code.
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1.2 Latent Variable Discovery

Latency is both ubiquitous and important. For example, while Galileo developed
accurate mathematical laws of motion, they remained unexplained until Newton
came up with the previously unmeasured concept of gravity. Gravitational waves
have recently been successfully measured, but for several centuries the variable
played a key role in physical theory without any direct measurement. Latent vari-
able modelling has a long history in statistics, starting with Spearman’s (1904)
work on intelligence testing. Although factor analysis and related methods are
used to posit latent variables and measure their hypothetical effects, they do not
provide clear means for deciding on adding latent variables when the dependency
pattern implied by a given BN doesn’t match the observed dependencies.

One solution is to always use a fully connected structure, since they can
be parameterized to represent any dependency pattern in the observed vari-
ables. However, updating fully connected networks is computationally exponen-
tial, and the parameterization process for them is likewise exponential. Incorpo-
rating latent variables can often greatly simplify a model relative to any fully
observed model with the same probability distribution, as Friedman [5] pointed
out using the example in Fig. 1.

Fig. 1. An illustration of how introducing a latent variable H can simplify a model [5].

But another substantial advantage of latent variable models is that they can
often better encode the conditional dependencies and independencies in the data.
As shown in Fig. 2, if we assume the data show the independencies W |= {Y,Z}
and Z |= {X,W}, it is impossible to construct a network in the observed vari-
ables alone that reflects both of these independencies while also reflecting the
dependencies implied by the d-connections in the latent variable model (i.e., with
the model being faithful). We call dependency patterns with this property—not
being capable of encoding in the observed variables alone assuming both the
causal Markov property and faithfulness—triggers,2 since they can act as trig-
gers to extend a search of the causal model space to incorporate latent variables.

2 Note that we will indifferently refer to the causal models that generate these depen-
dency patterns triggers as well.
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Fig. 2. The Big W: a causal structure with four observed variables and one latent
variable H.

2 Triggers in Latent Variable Discovery

Here we report a systematic search for triggers in models with five or fewer
observed variables and with one latent variable. Latent variables are typically
considered only in scenarios where they are common causes [15], i.e., having two
or more children. As Friedman [5] points out, a latent variable as a leaf or as a
root with only one child would marginalize out without affecting the distribution
over the remaining variables. So too would a latent variable that mediates only
one parent and one child. Therefore, our trigger algorithm restricts itself to
looking for latent common causes. For simplicity, we also restrict it to looking
for triggers with single latent variables rather than multiple latent variables;
however, it will be clear from the algorithm that it could readily be extended to
look for two or three latent variables at a time.3

First, we generated all possible fully observed DAGs for a given number of
observed variables. For each model we produced all possible d-separating evi-
dence sets. For n observed variables, there are 1+Σn−1

i=1 Ci
n evidence sets, includ-

ing the empty set. For example, for the three variables A, B and C, there are
seven evidence sets: φ, {A}, {B}, {C}, {AB}, {AC}, {BC}. We then generated all
the conditional dependencies and independencies based on such evidence sets.
We then examined all possible (single) latent variable models for each DAG by
replacing every pair of connected observed variables by a hidden common cause.
Finally, if the exact set of dependencies implied by a latent variable model could
not be matched by any observed DAG, the dependency pattern of the latent
variable model was identified as a trigger.

The number of distinct triggers, ignoring labels and isolated nodes, is shown
in Table 1. There are two triggers for four observed variables (where “H” repre-
sents the hidden variable), shown as Figs. 3, and 4 shows some example structures
of the 57 possible triggers given five observed variables.

The triggers potentially provide us with better explanations of the depen-
dencies within the data than any model with only observed variables. As we
noted above, a fully connected model can always be parameterized to fit those
dependency patterns, but the price in complexity may well be too high. Smaller

3 Note that these restrictions imply, for example, that we would not be finding any
such latent variable model as that in Fig. 1. However, these restrictions apply only to
our search for useful triggers and their models; subsequent search through the latent
variable model space can find these models, as Friedman’s work [5] demonstrates.
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Table 1. Number of triggers found

Number of observed variables Number of DAGs Number of triggers

3 6 0

4 31 2

5 302 57

Fig. 3. Triggers of four observed variables.

Fig. 4. Some examples of triggers of five observed variables.

fully observed models will not fit the data exactly, and, whereas that may not
matter if the sample size is small, given a larger number of observations, the
more exactly fitting latent model must eventually become the better explana-
tory model. Ideally, we should like to modify causal discovery algorithms to be
able to identify such cases and return the best explanatory models, rather than
only the best observational model.
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3 Generating Simulated Datasets of Triggers

Among the most popular and widely used causal discovery algorithms are FCI
and PC, developed by Clark Glymour’s group and implemented in TETRAD V
[16], PC in particular having been reimplemented in numerous Bayesian network
platforms. Both algorithms can identify latent variables, which are reported as
bi-directed arcs, instead of the normal causal arc, oriented in a single direction.
However, no previous latent variable discovery algorithm has attempted to use
triggers in the discovery process, as we propose to do here.

As an initial exploration of the potential for using triggers we implemented a
trigger filter for PC, yielding “Trigger-PC”, and compared the results with the
unaltered FCI and PC algorithms. Trigger-PC simply returns any latent variable
model corresponding to an identified trigger patterns (identified using χ-square)
and otherwise invokes PC.

The datasets4 we used were generated from all fully observed as well as all
(single) latent variable models with four or five observed variables, and both
the observed and latent variable have either two or three states. We wanted to
test learning performance given a range of dependency strengths, from weak to
medium to strong, so we used a GA algorithm to find parameters reflecting such
ranges, as determined by mutual information between neighboring nodes. For
each of the three varieties of network, we simulated artificial datasets of three
sizes using Netica [8,9]: 100, 1000 and 10000. As Table 2 shows, we produced
datasets for every trigger structure of four and five observed variables. We did
the same thing for all possible DAG structures (ignoring isolated nodes) without
latent variables (Table 3), in order to check for false positives. The result was a
set of about 6000 data sets for comparing our algorithms. This large number of
datasets was due to the different number of states (either 2 or 3), arc strengths
(low, medium and high) and sample sizes (100, 1000 and 10000). For example,
there are 57 trigger structures for 5 observed variables, so there are 57∗2∗3∗3 =
1026 simulated datasets.

Table 2. Number of simulated datasets for trigger structures

Number of observed variables Number of trigger structures Total number of simulated datasets

4 2 36

5 57 1026

4 The datasets are available at: https://sourceforge.net/projects/triggers-of-bn-latent-
variable/.

https://sourceforge.net/projects/triggers-of-bn-latent-variable/
https://sourceforge.net/projects/triggers-of-bn-latent-variable/
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Table 3. Number of simulated datasets for DAG structures (no latent variable)

Number of observed variables Number of DAG structures Total number of simulated datasets

4 24 432

5 268 4824

4 Learning Triggers by FCI and PC Algorithms

We tested FCI, PC and Trigger-PC using the datasets described above, pro-
ducing confusion matrices. Triggers were used to determine True Positive (TP)
and False Negative (FN) results, while fully observed networks (DAGs with no
latents) were used for False Positive (FP) as well as True Negative (TN) results.
If the latent node in every trigger structure is the common cause of two variables
X and Y , then TP, FN, FP and TN are defined as in Table 4.

Table 4. Definitions of TP, FN, TN and FP (in the syntax of FCI and PC)

Definitions

TP The learned model has a bi-directional arc between X and Y

FN The learned model lacks a bi-directional arc between X and Y

TN The learned model has no bi-directional arcs

FP The learned model has one or more bi-directional arcs

For the results reported here, we used the default value (0.05) as the signifi-
cance level (alpha) for all algorithms; we do not report the results for optimized
alphas, as those were not interestingly different. We did not repeat tests on
individual networks in order to compute confidence intervals, as the cumulative
results of 6318 tests tell the story sufficiently well. Table 5 shows the confusion
matrix we use, and all the results are shown in Table 6.

FCI and PC perform quite similarly. They can both find latent variables
when they are there, but with a weak recall rate (TP/Positives) of around 20%.
They also mostly avoid misidentifying ordinary models as latent variable models,
but still have false positive rate of around 13%. Trigger-PC, on the other hand,
is much more reluctant to claim the existence of latent variables, with a recall
rate of only 3%. However, its false positive rate is also very dramatically lower,
at only 0.08%.

The ideal test would be to use a cost/reward matrix to measure the expected
value of these correct and incorrect identifications. However, since we are not
dealing with a specific application, but a general method, we have no cost matrix.
Still, it is plausible that the worst outcome is a false positive. If latent discovery
is meant to somehow supplement or extend existing causal discovery methods
(as we intend), then perhaps the worst outcome is to positively mislead causal
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Table 5. Definition of confusion matrices for identifying latent variables

Algorithm

Latent No latent

Positive TP FP

Negative FN TN

Table 6. Result of confusion matrices for identifying latent variables

FCI PC Trigger-PC

Latent No latent Latent No latent Latent No latent

Positive 211 767 205 615 35 4

Negative 851 4489 857 4641 1027 5252

discovery to search in areas of a model space that introduce non-existent struc-
ture. By contrast, failing to prompt such a search when it is warranted (false
negatives) will not degrade existing discovery methods. In any case, we consider
these preliminary results for trigger-discovery to be quite promising. We now
consider (briefly and speculatively) how we can incorporate trigger discovery in
metric learning.

5 Causal MML (CaMML)

Minimum Message Length (MML) was invented by Chris Wallace (1968), com-
bining Bayes’ rule [2] with Shannon information [13]. The relationship between
message length, the model (M) and the data (D) given the model is:

msglen = − ln(P (M)) − ln(P (D|M)) (2)

This forces a trade-off between the benefits of fitting the data and avoiding
model complexity. MML differs from K2 [4] and MDL [12], as it considers the
relevance to a discovery metric for DAGs of multiple linear extensions and selects
a parameterized mode instead of a model class [7].

Causal discovery via MML (CaMML) [3] applies an MML metric in an
MCMC (Metropolis) sampling process to learn the best fully observed causal
model from sample data [7]. It uses the totally ordered models (TOMs) [7] to
represent their associated DAGs. All TOMs are sampled and the posterior dis-
tributions are estimated by applying the MML score:

PMML(M) = e−IMML(M) (3)

where IMML is the MML score (message length) of the given TOM (M).
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6 Applying Triggers in CaMML

We propose to add a pre-processing phase to CaMML which will perform a
heuristic search for triggers in the data by testing subsets of variables for the
corresponding dependency structures (with either our existing χ-square test or
a new MML test). The subsets will be found using Markov blanket (MB) discov-
ery, which is a related research program we are pursuing. The MBs will either
be sufficiently small for our existing (or modestly extended) trigger pattern dis-
covery tools, or we will need to develop heuristics to select proper subsets of the
MBs.

When triggers are found, a latent variable will be created for the subsequent
sampling process. Since CaMML supports prior probabilities for arcs (O’Donnell
et al. [10]), we will also add arc priors for connecting the latent variable to
its children, as required by the trigger, so that the latent variable submodel
corresponding to the trigger is favored in the sampling.

The sampled model space will be enhanced by adding latent variables while
extending the search method appropriately. For example, if we add a latent
variable H as a common cause to variable A and B, their total ordering will
have two linear extensions, namely, 〈H,A,B〉 and 〈H,B,A〉. So, the Metropolis
search will incorporate both possibilities. Additionally, certain soft constraints
on model mutations will need to be added; for example, a latent variable common
cause should not become a child of its children (although it may become a child
of other variables). Similarly, arc deletions which leave a latent variable a parent
of a single child are pointless, and so will be avoided.

Introducing latents also introduces new issues with parameterization. The
arity of each latent variable will need to be determined, and each of those pos-
sible values will introduce new distributions in the latent variable’s children. All
of these parameters will have to be estimated from data that includes no obser-
vations of the latent variables, a kind of task which can be done by likelihood
optimization, such as EM.

Given that there are 2k(k−1)/2 potential combinations of arcs and k! possible
orderings, there are exactly 2k(k−1)/2 × k! TOMs, where k is the number of
variables. CaMML samples over this space. Furthermore, adding latent variables
will potentially greatly expand this space. In order to achieve reasonable results
in reasonable time, as we said above, we will use priors over the model space
to bias the search in favor of latent models for which we have found direct
evidence. Also, the new parameterization processes will be, at least in the first
instance, conducted locally (e.g., within Markov blankets) rather than optimizing
likelihoods across the entire set of variables. Whether such methods suffice for
good sized models or whether additional heuristics will be needed is a matter
for future research.

7 Conclusion

We have here presented triggers as potentially strong aids to causal discovery in
the presence of unmeasured variables. Applying them in a simple extension of
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PC, we have compared this Trigger-PC with the existing PC and FCI for latent
discovery, finding a quite different performance and one which augurs well for
the use of triggers in a more robust causal discovery program. We have sketched
out a method for incorporating trigger identification in such a program and are
proceeding with its implementation.
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Abstract. This paper considers the problem of personalized journey
planning in complex and large urban areas. Journey planners are con-
sidered as one of the promising solutions for enhancing the transporta-
tion quality in urban cities, hence reducing the congestion and pollution.
Popular journey planning systems, like Google Maps or Yahoo! Maps,
usually ignore users preferences. In this context, however, passengers are
active components of the system having their own preferences towards
traveling and willing to take different routes based on their own prefer-
ences, e.g., the fastest, least transfer, or cheapest journey. A potential
remedy to this problem is to incorporate passengers’ preferences into
the optimization phase of the journey planning system. In this work, an
adapted multi-criteria evolutionary algorithm, which incorporates pas-
sengers’ preferences into the journey planner, is proposed to solve this
problem. The proposed solution was tested over the dataset of city of
Melbourne and the experimental results demonstrates that the proposed
approach, is able to recommend more relevant journeys to the passengers.

Keywords: Multi-modal journey planning · Personalized journeying ·
Genetic algorithm · Evolutionary algorithm

1 Introduction

Journey planning is becoming increasingly important in metropolitan trans-
portation networks. In general, a journey planning problem can be considered
as a multi-criteria scheduling problem, aiming to provide a traveler with vari-
ous alternative plans for a specific journey query. In this context, travelers are
usually faced with many alternatives, and selecting a plan that ‘best’ meet their
needs (particularly for the passengers who are unfamiliar with the transportation
network) becomes a tedious task [20].

Most existing ‘intelligent’ commercial planners only have a small set of prede-
fined preferences (e.g., preferred/prohibited highways or public transit modes)
available to the passengers to choose from and sometimes to rank them (e.g.
Yahoo! trip planner, Google Map, PTV journey planner, OpenTripPlanner) [4].
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Although these planners are becoming increasingly reliable and provide an rea-
sonable level of assistance to passengers, most of them have very limited capa-
bilities when it comes to taking into account sophisticated user preferences: the
ability to dynamically tailor information to the individual needs of each passen-
ger [20]. In designing such a system, passengers play an active role and their
preferences should be considered to provide a high quality service [3]. One pos-
sibility to resolve this issue is integration of the passengers’ preferences into
optimization process of the journey planning. This way, more relevant journey
plans can be identified and recommended to passengers.

As one would expect, this is not a straightforward task. In fact, multi-
criteria journey planning is considered as NP-complete problems [11]. As a more
general-purpose optimization method, evolutionary algorithm (EA) demon-
strates promising performance on solving the multi-criteria combinatorial opti-
mization problems [10]. EA does not require gradient information, and can evolve
a set of solutions in parallel over successive iterations, and ultimately obtain a
set of alternative solutions. With these considerations, in this paper we employ
EA for multi-modal journey planning considering multiple criteria in order to
provide optimal alternative journeys to the travelers.

We investigate how passengers’ preferences can be incorporated into an EA
aiming to produce a set of alternative journeys to recommend to the passen-
gers. To achieve this goal, we express passenger preference via a weight vector
associated with the journey criteria. The objective of the proposed model is to
guide the search into the regions of the solution space that are more appealing
to the passengers. The proposed algorithm has been evaluated on the data set
of the real-life Melbourne urban transportation network [1]. Our experimental
results indicate that the test problems were solved within a reasonable amount
of time while recommending more relevant itineraries to the travelers. In short,
our contributions are the design of an EA-based multi-criteria journey planner,
a weight assignment strategy to utilize the user preferences, and our empirical
evaluation of the journey planner.

The paper is organized as follows. In the next section, some preliminaries
for the rest of the paper are first provided. Section 3 reviews the related works,
and Sect. 4 describes the modeling of the transportation network. Section 5 gives
a detailed description and formulation of the proposed algorithm. In Sect. 6,
the experimental results are evaluated to show the proficiency of the proposed
method. Finally Sect. 7 concludes this study.

2 Preliminaries

In this section, we will define some basic concepts first. We assume that the net-
work has a set of nodes S = {s1, s2, ..., sm} and a set of edges R = {r1, r2, ..., rk}
connecting these nodes and a user query. Each query consists of an origin s1, a
destination s2, a departure time t1 and a subset of allowed transportation modes.

Definition 1. Journey Plan: A journey plan p can be represented as a sequence
of stations (s1, s2, ..., sd) where s1 and sd is the origin and the destination
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respectively. The cost function, {C : p → Rk+} assigns the k dimensional cost
vector (c1p, c

2
p, ..., c

k
p) for journey plan p.

Definition 2. Pareto-dominance: For two journey plans p1, p2 ∈ P , we say that
p1 dominates p2, i.e. p1 � p2 iff ∀cj1 ∧ cj2 : cj1 ≤ cj2 and ∃cj1 < cj2, j ∈ {1, 2, ..., k}.
Definition 3. Pareto-optimal: If ∀x ∈ P : �x � p, the journey plan p is called
Pareto-optimal.

Definition 4. Pareto-optimal Set: It is the set of all Pareto-optimal journey
plans. Formally, Pareto-optimal set of journey plans= {p: ∀x ∈ P : �x � p}.
Definition 5. Multi-criteria Journey Planning: It is the process of finding the
Pareto-optimal set of plans with respect to query q and transportation network N .

3 Prior Work

In the past decades, an increasing number of multi-modal journey planning sys-
tems are becoming available which provide travel suggestions for travelers while
supporting multiple transportation modes [4].

Genetic Algorithm (GA) has been used to solve journey planning for years.
In [12] Gen et al. proposed the first approach to solve such kinds of difficult-to-
solve problems by proposing a priority-based encoding method using constant
chromosomes length to represent paths. Davies and Lingras presented a GA
based strategy to find the shortest path in [9] which adapts the recommended
journey to the changing network information by rerouting it during the execu-
tion time. They focused on the shortest walk problem, where a new Crossover
operator was used to take walking condition into account (i.e. good or bad). All
aforementioned research focused on single criterion problems.

Many studies using GA exist in literature for solving personalized multi-
criteria route planning problems such as tourist sightseeing [7], and car naviga-
tion system [8]. In [7,8] a GA-based planner is proposed using a novel objective
function for generating multiple routes in a car navigation problem. To eval-
uate the fitness a few attributes such as distance, number of turns, mountain
or river side routes are considered as penalties for the objective function. In
[13], Huang et al., applied GA to calculate a set of weights for different objec-
tives and sum them up as the final cost. For multi-modal journey planning
problem, a GA-based approach is presented in [2]. Authors showed the robust-
ness of this approach through an experiment and concluded that proposed algo-
rithm can more efficiently explore the search space. They considered a bi-criteria
problem considering the length and waiting time of a journey. While all these
researches explored different aspects of a journey planning problem, none has
taken into account the passengers preferences to compute personalized journey
plans. Ziliaskopoulos and Wardell proposed a multi-modal journey planner algo-
rithm according to the principles of dynamic programming that considers the
arcs travel time and switching delays [18]. Bielli et al. [5] introduced a tool for
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finding the shortest path in a multi-modal network using geographic information
system (GIS). A similar approach was presented by Zografos and Madas, which
considered the shortest path in terms of least-time shortest path, least number
of mode transfers, or mode and road preferences [19].

4 Problem Formulation

4.1 Input Network

A multi-modal journey planning task is determined by a user query (i.e., a
request to the planner), and the snapshot of a multi-modal transit network. In
this section, we provide a formal definitions of these parameters. The transporta-
tion modes that we focus on are public transit modes (e.g., bus or train), bicycles
available in the bike-sharing stations, and walking.

A multi-modal network snapshot can be represented as a structure
(N,R,H,Mw,Mc) that encodes knowledge about the current status and the
predicted evolution of a transport network during a time horizon [0, T ] ⊂ R.
The variable N represents a set of locations on the map (e.g., bus station and
bike stations). In addition, given a user query, the origin and the destination
locations are added to N . R defines a set of routes. A route r is an ordered
sequence of n ∈ N locations, equivalent to the stops along the route. H is a
collection of trips such that, each trip, h ∈ H, is a vehicle (e.g. a bus) going
along a route as a sequence of nodes (v1, ... ,vm). The trip k departs at node v1
at a specific time and proceeds to nodes (v2, ... ,vm) in the order determined by
the route. Mw and Mc provide walking and cycling times for pairs of locations
in the network.

A user query is shown by a tuple (o, d, t0,m, q), where o and d are the ori-
gin and the destination locations; t0 is the start time; m specifies a subset of
transportation modes that should be considered; and q defines parameters such
as the maximum walking and cycling time, allowed by the user.

In order to model the transportation network, we represent every movement
in the multi-modal network by a leg. Each leg has a start node, an end node,
an expected start time, and an expected end time. Formally speaking, letting
L denote the set of legs, a leg corresponding to index i ∈ L is defined by
((vki , t

k
i ), (v

k
(i+1), t

′k
(i+1)), k), where vki is the start node, vk(i+1) is the end node, tki

is the expected start time, t′k(i+1)is the expected end time, and the mode number
k is the index of the scheduled trip service that executes leg i.

Using this model, a path (i.e., journey plan) can be represented as a sequence
of legs (i1, i2, ... ,im) where i(h+1) is among the successors of the leg ih for all
h ∈ {1, ...,m − 1}. Each path is evaluated against N criteria. In this paper, the
journey criteria includes travel time, monetary cost, CO2 emission, and personal
energy consumption as journey’s criteria.
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4.2 Weight Assignment Strategies

In the literature, weight assignment strategies are divided into two main cat-
egories [14]: (1) Assigning fixed weights (equal or unequal) to each objective,
known as Fixed Weight strategy (FW) and (2) Assigning random weights to
each criterion based on a set of pre-defined constraints, known as Randomly
Weights Assignment strategy (RAW). In this paper, we examine both strategies
with our proposed algorithm.

The Random Weights Assignment strategy (RAW) [14], randomly generates
normalized weights for each objective while meeting constraints defined by the
passenger. Formally, given a constraint w1 ≥ w2, RAW first generates a value
from 0 to 1 for w2 followed by generating a second value for w1 from w2 to 1. It
is worth noting that RAW dynamically changes the weights at each generation
until the best solution is obtained or the termination criterion is met. The goal
is to ensure that multiple search directions can be explored [14].

To estimate the fixed weight vectors for the travelers, we proposed a method
using Analytical Hierarchy Process (AHP) [9]. In the AHP, a scale of numbers is
required to make a pairwise comparison. For this purpose, the linguistic terms
equal, moderate, strong and extreme importance are enumerated using the num-
bers 1, 3, 5, and 7, respectively. Formally, using definitions 6 to 9, pair-wise state-
ments are calculated based on the passengers preferences which demonstrate the
strength of their preferences. Then, the preference information is converted to
weightings using an estimation procedure (Eq. 2).

Definition 6. Objective i is ‘moderately more important’ than objective j (i.e.
i > j) iff user prefers objective i over j.

Definition 7. Objective i is ‘strongly more important’ than objective j (i.e.
i >> j) iff ∃k|i > j and k > j and i > k.

Definition 8. Objective i is ‘extremely more important’ than objective j (i.e.
i >>> j) iff ∃k|i > j and k >> j and i > k.

Definition 9. Objective i and j are considered ‘equally important’ (i.e. i ∼ j)
iff none of the above definitions apply to them.

The preference statements specified are converted to a matrix M where, mi,j

is the importance of objective i compared with objective j.

mi,j =

⎧
⎪⎪⎨

⎪⎪⎩

1 iff i ∼ j
3 iff i > j
5 iff i >> j
7 iff i >>> j

(1)

Finally, for each criterion, the weights can be calculated by:

wi =
(
∏

j mi,j)
1
5

∑
i(

∏
j mi,j)

1
5

(2)
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5 Proposed Method

In this section, we describe the proposed evolutionary-based solver for personal-
ized journey planning.

5.1 Personalized Multi-criteria Genetic Algorithm (PMGA)

NSGA-II [10] is a fast and elitist multi-criteria genetic algorithm character-
ized by its effective non-domination sorting and diversity preservation. NSGA-II
algorithm tries to approximate the whole Pareto front and to distribute the
obtained non-dominated solutions evenly. However, in preference-based multi-
criteria optimization, we are only interested in a particular region of the Pareto
front according to a preference vector expressed by the user.

The core idea of PMGA lies in replacing the crowding distance indicator
used in NSGA-II with a journey utility indicator which expresses the quality of a
specific journey based on user preferences (Algorithm 1). The proposed algorithm
attempts to find a set of preferred Pareto-optimal journeys for a specific traveler
where the journeys’ utility are higher, i.e., individual solutions are added into the
next population based on the utility indicator rather than the crowding distance.
In other words, using preferences’ weight vector, a value of µ is calculated and
assigned to each individual solution s belonging to the population. The utility
function is defined as below where j refers to a journey. Note that, a higher value
of µ indicates that j is a better journey hence has a higher chance to be in the
next generation.

µ(j, w) =
P∑

o=1

wo

(
Uo
j − minj(Uo

j )
(maxj(Uo

j ) − minj(Uo
j ))

)

(3)

where wo is weighing of the objective o satisfying (
∑P

o=1 wo = 1) and Uo
j is

utility of each criterion in a journey given by:

Uo
j =

M∑

m=1

aomXm,j (4)

where aom is unit of criterion o for mode m, and Xm,j is the distance traveled by
transportation mode m in route j (km). Note that the higher utility indicates
that a particular journey is closer to the user preferences and therefore is more
preferable to the commuter.

In the following, we describe the basic operators of the algorithm.

5.2 Basic Operators of the Proposed Algorithm

The proposed GA-based multi-criteria journey planner engine works in five steps.
Encoding of the chromosomes and initialization are the first step. Each chromo-
some represents a path in the multi-modal network and is defined as a set of legs.
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Algorithm 1. PMGAs algorithm
1: procedure PMGA(N, b)
2: pop ← randPop(), t ← 1, Pt ← 1, Qt ← ∅ � Initialization
3: Select individuals from Qt, apply crossover and

mutation and add the offspring into Qt

4: Rt ← Qt + Pt

5: Sort Rt into non-dominated fronts F = {F1, F2, ..., Fk}
6: Pt+1 ← ∅, i ← 1
7: Until |Pt + 1| + |Fi| ≤ N

|Pt + 1| ← |Pt + 1| ∪ |Fi|, i ← i + 1.
8: For each individual s in the Fi calculate the μ(s)
9: Sort Fi based on μ

10: Select individuals from Fi until |Pt+1 = N
11: t ← t + 1, Qt ← ∅
12: go to step 3 until the termination condition is satisfied
13: end procedure

Since the number of legs in a path is not predefined, variable length chromosomes
are used.

Initialization: The Random Walks algorithm (RW) [16] is used to initialize the
population. This method enables us to explore the search space better by gen-
erating more diverse paths comparing with other approaches such as A*, depth-
first, and breadth-first search algorithms [16]. Note that during population ini-
tialization; a station might be visited twice. Therefore, the repair function is
applied to the chromosomes to remove possible loops in the path.

Crossover: As shown in Fig. 1, in order to apply the crossover operation, two
parents should have at least one common gene (leg) except for source and desti-
nation legs. One possible crossover point (i.e., common leg) is randomly picked
whenever there are many possible crossover points. If a matching leg is found,
then the solutions are crossed after the matching leg as shown in Fig. 1. Finally,
the repair function is applied to the generated offspring to remove possible loops.

Fig. 1. Crossover: gray nodes represent crossover nodes

Mutation: Mutation is implemented by selecting a sub-path from the chromo-
some and replacing it with a new path. First, we randomly select two trip legs
from a solution which is the candidate for mutation. Then, a new time horizon T ′

is defined equal to the departure time of the second leg. Then RW is utilized to
find an alternative path connecting selected two service legs. Fig. 2 clarifies the
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proposed mutation operator. The repair function is also applied after mutation
to eliminate loops along the path. Note that both crossovers and mutations are
applied with predefined probabilities coming from a uniform distribution.

Fig. 2. Path mutation: dark gray vertices represent the local source and destination
vertices, and the light gray vertices represent a different path connecting them.

Repair Function: Since each chromosome is a set of legs connecting transit sta-
tions, modifying the value of any genes during crossover and mutation may cause
the chromosome to show invalid paths. To overcome this issue, a repair proce-
dure is introduced to ensure that newly generated chromosomes show feasible
path (i.e., have no loops). This procedure is done by identifying and removing
the genes from a solution which are building a loop as following.

In a given path, first, all legs that have common departure station is found.
Then, the sub-path between these two legs is removed excluding the second leg
(i.e., the leg with a greater departure time). Figure 3 demonstrates an example
of the repair function.

Fig. 3. An example of repair function

6 Experiment

In this Section, we evaluate the performance of the proposed scheme. We used
the real GFTS data [1], from city of Melbourne, Australia, consisting of sev-
eral information such as stop locations, routes, and timetable. A total of 3617
locations considered including 3559 bus stops, 44 bike stations, and 14 points of
interest. For the multi-modal network, all pairs of nodes, within 0.25 km radius,
are connected by walking legs. Cycling legs are only available between two bike
stations within the distance of one hour. The speed of walking and cycling legs is
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5 km/h and 12 km/h respectively. We implemented our algorithm in MATLAB,
and performed our experiments on a 2.2-GHz Core-i5 Intel PC.

To build the synthesized dataset, on which the tests were performed, a set of
20 passengers were created and for each user, and a set of 100 random queries
are assigned as follows:

Passengers: we defined 20 artificial passengers with a set of predefined con-
straints based on their preferences on criteria (Table 1 demonstrates 5 randomly
selected passengers that we considered in this section). For example, for a partic-
ular user, the constraints are set to w1 > w2, w3 > w1, and w2 > w4 which indi-
cates that the travelers prefers travel time over the number of transfer, monetary
cost over travel time and CO2 emission over energy expedition of the journey.
We applied RAW and the proposed FW strategy [15] to generate weight vector
for a particular user based on his/her preferences constraint.

Query: for each passenger, a set of 100 journey queries (instances) are cre-
ated. Each service k operating within the time horizon is extracted from the
timetables as described in Sect. 2. The maximum walking and cycling time is set
to 15 and 60 min respectively.

Solver Settings: for each instance listed above, the experiment is repeated
25 times and the average result is recorded. Regarding to the PMGA settings,
crossover, and mutation probabilities are set to 1.0 and 0.4 per iteration respec-
tively. Population size is set to 100 and the maximum function evaluations is set
to 10000 (i.e. 100 generations).

In order to evaluate the effectiveness of the proposed algorithm, it has been
tested against two evolutionary algorithms namely NSGA-II [10], and G-MOEA
[6]. G-MOEA is a modified version of MOEA/D [17] algorithm and utilizes
decomposition methods to convert a multi-criteria optimization problem into
a single-criterion problem. G-MOEA, allows the user to specify the linear trade-
off between criteria and uses these trade-off information to guide the search
towards the more desired regions of the Pareto-optimal front.

Table 1. 5 randomly selected passengers and their preference statements

User Preference statements

1 w1 ≥ w2, w3 ≥ w1, w2 ≥ w1

2 w2 ≥ w1, w3 ≥ w4

3 w1 ≥ w3, w3 ≥ w2, w1 ≥ w2

4 w2 ≥ w3, w3 ≥ w4, w2 ≥ w1

5 w1 ≥ w2

6.1 Quality Indicators

The permanence of each algorithm is investigated in terms of both diversity
and convergence. Therefore, we use two metrics, Inverted Generational Distance
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(IGD) [17] and Hyper-Volume (HV) [17] for measuring diversity and convergence
respectively. Each metric is calculated based on the obtained solutions of each
algorithm.

Hyper-Volume: Hyper-volume Metric (HV) measures the volume between
all solutions in an obtained solution set and a nadir point (i.e., a vector of the
worst objective function values obtained by the solution set) defined as:

HV (Q) = volume

(
Q⋃

i=1

ci

)

(5)

where Q is the solution set and ci is a hypercube constructed by taking a solution
i and the nadir point as its diagonal corners. Note that higher HV values indicate
a better convergence and diversity of solutions on the Pareto-optimal front.

Inverted Generational Distance: Inverted Generational Distance (IGD)
[17] is a metric that can measure both diversity and convergence of the solutions
simultaneously. it calculates the average closest distance of the sample points on
the Pareto-optimal front to the obtained solutions, and is defined as:

IGD(P ∗, Q) =
∑

v∈P d(v,Q)
|P | (6)

where d(v,Q) is the Euclidean distance between each solution v in Pareto-
optimal solution set P ∗ and the nearest member in the obtained solution set Q.

It is worth noting, as the true Pareto-optimal set is unknown in our study, we
merged the solution sets of all algorithms and used the non-dominated solutions
of the merged solution sets as the substitute to the true Pareto-optimal front.
Table 2 shows the mean and the standard deviation for 25 independent runs of
PMGA, NSGA-II, and G-MOEA using three different performance measures.

6.2 Experimentation Results and Discussion

Table 2 shows for each algorithm the average journey utility in the estimated
Pareto-optimal front. It can be seen that PMOGA outperformed NSGA-II by
a big margin, since NSGA-II did not consider user preferences and treated all
the criteria with equal priority. As to G-MOEA, PMOGA found better journey
solutions as PMGA used the journey utility as an indicator to guide the search.
Regarding to different weight assignment strategies, we observed that in most
cases, the proposed FW strategy can help PMGA to achieve a better perfor-
mance. The reason why FW performed better than RAW can be explained as
follow: AHP captures both subjective and objective evaluation measures, pro-
viding a more accurate direction for guiding the search towards finding optimal
solutions, thus proposing more suitable journeys in terms of journey quality.

With regarding to the hyper-volume (HV) indicator, our proposed algorithm
with fixed weight strategy (PMGA+FW) outperformed other algorithms in most
cases. This suggests that FW assignment produced a good approximation of pref-
erence weights, i.e., more accurate direction towards the Pareto-optimal front,
thereby finding a better approximation of the preferred Pareto-optimal front.
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Table 2. Results on the test problems. The mean and standard deviation of 25 inde-
pendent runs are reported.

User Metric PMGA+FW PMGA+RAW NSGA-II G-MOEA

1 Utility 7.6990e-01
(1.9860e-02)

6.3420e-01
(3.7020e-02)

5.6340e-01
(2.8780e-02)

7.1710e-01
(5.6020e-02)

HV 4.6030e-01
(2.4710e-02)

2.0320e-01
(4.1180e-02)

3.5990e-01
(8.6500e-02)

4.4570e-01
(4.8940e-02)

IGD 3.5230e-03
(2.9190e-04)

6.1850e-03
(8.5370e-04)

5.4080e-03
(7.2420e-05)

5.9250e-03
(2.8520e-05)

2 Utility 7.8680e-01
(4.3380e-02)

7.8740e-01
(1.8890e-02)

6.9010e-01
(1.3440e-02)

7.0990e-01
(4.4870e-02)

HV 8.3940e-01
(4.2310e-02)

7.4250e-01
(7.2060e-02)

3.0390e-01
(2.3520e-02)

6.9530e-01
(3.3700e-02)

IGD 4.2830e-03
(6.6900e-05)

6.6750e-03
(2.9330e-04)

5.0350e-03
(4.9110e-05)

6.1350e-03
(6.8430e-05)

3 Utility 7.3580e-01
(1.7710e-02)

7.3110e-01
(1.4780e-02)

5.0680e-01
(6.1820e-02)

7.2350e-01
(6.1930e-02)

HV 7.0660e-01
(4.9140e-02)

7.7210e-01
(4.9270e-02)

5.2010e-01
(1.6490e-02)

6.8130e-01
(1.1230e-02)

IGD 5.4070e-03
(3.8250e-05)

7.6040e-04
(5.9930e-05)

6.0110e-03
(1.2330e-05)

6.4890e-03
(5.1690e-05)

4 Utility 7.5160e-01
(2.0550e-02)

7.4120e-01
(3.9540e-02)

5.8770e-01
(3.3730e-03)

6.5710e-01
(4.6070e-02)

HV 8.0810e-01
(5.0680e-02)

7.7810e-01
(1.3970e-02)

3.7260e-01
(8.5590e-02)

2.5310e-01
(3.5500e-03)

IGD 2.4550e-04
(7.4080e-05)

2.7790e-03
(8.2220e-04)

5.4860e-03
(5.6280e-05)

4.7030e-03
(4.3930e-05)

5 Utility 6.4870e-01
(6.4940e-02)

5.6630e-01
(2.7740e-02)

5.4630e-01
(2.5110e-02)

6.3150e-01
(2.4680e-02)

HV 6.7680e-01
(7.2420e-02)

6.5910e-01
(5.3760e-02)

5.6430e-01
(6.0050e-02)

6.6790e-01
(3.9480e-02)

IGD 2.3230e-03
(6.4330e-05)

1.4130e-03
(1.6840e-05)

7.3830e-03
(2.8980e-05)

2.5030e-03
(5.8230e-05)

With regard to the IGD indicator, the values of IGD indicate that, in most
cases, the final solution set obtained by PMGA+FW is closer to the Pareto-
optimal front than the other methods, which means that proposed algorithm
gave a better approximation of the Pareto-optimal front. After closely examining
the results, we noticed that the solutions that have a high value of the travel time
are not well approximated. This is due to the time-expansion nature of the graph
and the fact that we use the random walk approach for population initialization
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and mutation, which gave a higher chance for solutions with a small amount of
time to be found.

7 Conclusion

In this work, we have modeled the personalized multi-criteria journey planning
problem in multi-modal transportation networks and provided a modified version
of NSGA-II algorithm to solve the problem. The proposed approach has been
tested on a transit network of Melbourne, Australia, to evaluate the algorithm.
The experimental results demonstrated that the proposed approach, i.e., PMGA,
is able to provide a good approximation of the desired area of Pareto-optimal
front, which is more relevant to the passengers.
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Abstract. Personalized journey planning is becoming increasingly pop-
ular, due to strong practical interests in high-quality route solutions
aligned with commuter preferences. In a journey planning system, trav-
elers are not just mere users of the systems, instead they represent an
active component willing to take different routes based on their own
preferences, e.g., the fastest, least number of changes, or cheapest jour-
ney. In this work, we propose a novel preference estimation method that
incorporates implicit relevance feedback methods into the journey plan-
ner, aiming to provide more relevant journeys to the commuters. Our
method utilizes commuters’ travel history to estimate the corresponding
preference model. The model is adaptive and can be updated iteratively
during the user/planner interactions. By conducting experiments on a
real dataset, it can be demonstrated that the proposed method provide
more relevant journeys even in absence of explicit ratings from the users.

Keywords: Personalized journey planning · Preference learning ·
Multi-modal journey planning

1 Introduction

In modern life, route planning is gaining more and more importance. As trans-
portation networks become more complex and mobility in our society more
important, the demand for efficient methods in route planning increases even
further. Journey planning has become an important component of a transporta-
tion system, assisting commuters by providing information that reduces barriers
to traveling. In its simplest form, a journey planner system finds the ‘best’ route
between the origin and the destination of the journey, for a given transportation
network [2]. A more realistic planner combines other types of information such
as real-time data about traffic jams or transit conditions to find better quality
routes [18].

Currently, the majority of ‘intelligent’ commercial journey planners only have
a small set of predefined preferences (e.g., preferred highways or public transit
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modes) made available for passengers to choose from and rank [Yahoo! trip plan-
ner, PTV journey planner, Google Map, openTripPlanner) [7]. Although these
planners are reliable and offer an acceptable assistance to commuters, they have
limited capabilities, especially when it comes to tailoring information based on
the individual needs of passengers [11]. This issue could be alleviated by incorpo-
rating users’ preferences into the optimization process of the journey planning.
This way, more suitable journey plans can be identified and recommended to the
commuters.

Moreover, as urban transport networks continue to expand in size and com-
plexity, so does the amount of available information to the commuters. For exam-
ple, Melbourne’s public transportation network has more than 700 routes with
thousands of stations [1]. The preference information can also be used to reduce
the complexity of the planner by reducing the search space for a particular user,
i.e., searching for relevant transit information.

In this paper, we investigate the possibility of providing personalized travel
information, by mining the commuters’ travel history, with little or no direct
feedback from the commuters. In order to reveal the individual differences in
the travel patterns, we describe a probabilistic preferences learning approach,
based on implicit feedback, to model the commuter’s preferences. The choice
of this theoretical framework is motivated by several reasons: firstly, implicit
feedback is very well suited to the problem, as it is not convenient for a commuter
to explicitly express her preferences; secondly, the probabilistic nature of the
model makes it more tolerant towards inconsistent journeys and its performance
improves as the user interacts with the system.

To achieve the aforementioned goals, we introduce a preference learning (PL)
approach, whereby passenger preferences are expressed as a weight vector asso-
ciated with the journey criteria. The objective of the PL model is to learn the
criteria weights for a particular user (i.e. passenger’s preferences over journey
criteria). For this purpose, we define a multi-criteria decision making problem
(MCDM) in which a decision maker (i.e. commuter) evaluates a pair of solutions
(i.e. journeys) against each other. These pairwise inclinations (a � b) form the
training dataset which is used to reveal the relative preference weight vector that
this commuter associates with the journey criteria. To obtain a binary compar-
ison in the form of a � b, for a particular query, we assume the user prefers the
selected journey a to another journey b which is recommended by the system.
In summary, the contributions of this work are listed as follows:

– First, we propose a preference learning algorithm to learn the travelers behav-
ioral patterns to be used in personalized journey recommendation. This learn-
ing model, improves the quality of the journey plans, and recommend journeys
that better satisfy the passenger requirements.

– Second, we demonstrate and evaluate the value of relevance feedback methods
in the area on journey planning on the real-world data.

The rest of the paper is structured as follows: In the next section, we review
the related works. In Sect. 3, we describe the problem formulation, and in Sect. 4
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our proposed preference learning method. The experimental results are presented
in Sect. 5. We conclude the paper in Sect. 6.

2 Prior Work

Journey planners often recommend multiple journeys for a user query. A varia-
tion of the time-dependent shortest path algorithm is usually applied to search
into a directed graph consisting of nodes, corresponding to points of interests
such as public transit stations, and edges corresponding to a possible route
between them [9]. The search may be optimized on different criteria, for example,
the fastest, least changes or cheapest journeys [17].

Designing a personalized journey planner is not trivial for several reasons [16].
The large size and complex transportation networks, besides different types of
passengers, are just a few challenges that a personalized service has to overcome.
Apart from that, the notion of ‘journey quality’ is difficult to define and is likely
to change from person to person, resulting in the shortest trip being rarely the
best one for a given user.

In the last decade, a several studies have been conducted into the problem of
personalized journey planning. Most of these methods are based on explicit feed-
back of the commuters [4,12,14,15]. Analysis of trip planner log files [13] can help
improve transit service by providing better journeys to the commuters. Log files
were useful for identifying new locations to be assessed for better understanding
commuters’ behaviors. In [19], the fuzzy set theory was utilized to model com-
plex user preferences where preferences were explicitly expressed and integrated
in a query language.

Journey personalisation by mining public transport data has been addressed
in [18]. For this purpose, a relation between urban mobility and fare purchasing
habits in London public transport is established. The authors revealed a relation
between fare purchasing habits [18] and urban mobility, and proposed personal-
ized ticket recommendations based on the estimated future travel patterns.

Liu et al. [14] combined knowledge about the transportation network with
brute-force search to propose a route planning system. The authors demon-
strated that how geographical knowledge can be used to reveal the useful route
segments of the network to the planner. To this end, authors assumed that users
prefer main roads, hence the planner combine the main roads to form the plan.

In [15] the authors proposed a journey planner which is able to learn prefer-
ences using user feedback. In this work, users’ are asked to express their prefer-
ences among recommended journeys when interacting with the system. A train-
ing dataset is formed using the feedback resulting from these interactions and a
perceptron-style training algorithm is applied to the training set. The authors
assumed a fixed user preference model which only concern route length, driving
time and turn angles.

McGinty and Smyth [16] proposed a case-based route planning approach that
generates routes which reflect implicit preferences of individual users. Unlike
[5], they did not assume a fixed preference model. Instead, the user preference
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is represented as a collection previous route sections that were considered as
satisfactory by the traveler. New queries are answered by reusing and combining
those relevant satisfactory sections.

Studies on context-aware journeying can be found in [2,10,18]. In these works,
authors integrated the context of a journey, such as travel time, traffic condition,
weather conditions, etc. to provide personalize journey plans. They exploit a
weighted function f to compute the overall score of a journey. Each of these
route characteristics are weighted, to express the importance of them, using
predefined weights explicitly specified by the users.

The main aspect which distinguishes our approach from the works [2,10,18]
is that similar to [4,12,16] we use implicit feedback to model the user prefer-
ences. Moreover, unlike [5,6], we aim to provide a robust and iterative model,
as opposed to a fixed model, to learn the passenger preferences.

3 Problem Formulation

3.1 Input Network

A multi-modal journey planning task is determined by a user query (i.e., a
request to the planner), and the snapshot of a multi-modal transit network. In
this section, we provide a formal definitions of these parameters. The trans-
portation modes that we focus on are public transit modes (e.g. bus, train, etc.),
bicycles available in the bike-sharing stations, and walking.

A multi-modal network snapshot is represented as a structure (N,R,H,
Mw,Mc) that encodes knowledge about the current status and the predicted
evolution of a transport network during a time horizon [0, T ] ⊂ R. The variable
N represents a set of locations on the map (e.g., bus station and bike stations).
In addition, given a user query, the origin and the destination locations are added
to N . R defines a set of routes. A route r is an ordered sequence of n ∈ N loca-
tions, equivalent to the stops along the route. H is a collection of trips such that,
each trip, h ∈ H, is a vehicle (e.g. a bus) going along a route as a sequence of
nodes (v1, ... ,vm). The trip h departs at node v1 at a specific time and proceeds
to nodes (v2, ... ,vm) in the order determined by the route. Mw and Mc provide
walking and cycling times for pairs of locations in the network.

A user query is shown by a tuple (o, d, t0,m, q), where o and d are the ori-
gin and the destination locations; t0 is the start time; m specifies a subset of
transportation modes that should be considered; and q defines parameters such
as the maximum walking and cycling time, allowed by the user.

In order to model the transportation network, we represent every movement
in the multi-modal network by a leg. Each leg has a start node, an end node,
an expected start time, and an expected end time. Formally speaking, letting
L denotes the set of legs, a leg corresponding to index i ∈ L is defined by
((vk

i , tki ), (v
k
(i+1), t

′k
(i+1)), k), where vk

i is the start node, vk
(i+1) is the end node,

tki is the expected start time, t′k(i+1) is the expected end time, and the mode
number k is the index of the scheduled trip service that executes leg i.
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Using this model, a path (i.e. journey plan) can be represented as a sequence
of legs (i1, i2, ... ,im) where i(h+1) is among the successors of the leg ih for all
h ∈ {1, ...,m − 1}. Each path is evaluated against N criteria. In this paper, the
journey criteria includes travel time, monetary cost, CO2 emission, and personal
energy consumption.

3.2 Personalized Multi-criteria Journey Planning Paradigm
(MCJP)

The MCJP models are typically focused on delivering the best solutions for a
given query. We consider a MCJP paradigm as shown in Fig. 1, characterized
with:

– a set of journeys S = {j1, j2, ... ,jM}. Formally, each journey can be repre-
sented as a vector ji = {j

(1)
i , j

(2)
i , ... ,j(N)

i } where, j
(j)
i is the evaluation of the

journey ji against criterion cj and N is the number of criteria.

– the set of pairwise rankings of journeys, R = {r1, r2, , rM}, as given by the
commuter.

Each commuter is represented by a weight vector w = {w1, w2, ... ,wN} where
each criterion cj , j = (1, ... ,N), is associated with a weight value, wj . The
objective of the present work is to infer this weight vector w, as shown in the
MCDM paradigm in Fig. 1.

From a set of journeys S, we construct a set of pairwise inclinations (J, j) ∈
S satisfying J � j (i.e. the passenger prefers Journey J over j) where J =
(J1, J2, ... ,JN ) and j = (j1, j2, , jN ) are journeys evaluated against N criteria.
U(j, w), denotes the utility of a particular journey for a particular passenger.
Equation 1 calculates the utility of a journey based on its criteria value as well
as the user preferences’ weight vector. Note that, we assume the passengers are
rational, meaning that if a passenger prefers journey a over b (i.e. a � b), the
utility of journey a must be greater that b (i.e. U(a,w) ≥ U(b, w)). The journey
utility, U(j, w), for a particular passenger is defined as:

Fig. 1. Multi-criteria journey planning paradigm
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U(j, w) =
P∑

o=1

wo

(
Uo
j − minj(Uo

j )
(maxj(Uo

j ) − minj(Uo
j ))

)

(1)

where wo is weighing of the objective o satisfying (
∑P

o=1 wo = 1) and Uo
j is

utility of each criterion in a journey given by:

Uo
j =

M∑

m=1

ao
mXm,j (2)

where ao
m is unit of criterion o for transportation mode m, and Xm,j is the

distance traveled by mode m in journey j (km).
Note that the higher utility indicates that a particular journey is closer to

the user preferences and therefore is more preferable to the commuter.
Formally, letting TS as the training set, consisting of pairwise inclinations,

TS = t1, t2, ... ,tK , where K is the number of pairs in the training set, the objec-
tive is to find a weight vector, i.e. w = (w1, w2, ... ,wN ) ∈ RN , for a particular
user such that Eq. 3 holds good for the whole training set:

U(J,w) ≥ U(j, w),
N∑

i=1

Wi = 1
(3)

where, U(j, w), indicates to the utility of a particular journey for a particular
passenger.

4 Proposed Preference Learning Method

In this section, we construct the underlying preference model of a passenger from
his/her revealed preferences, by applying preference learning (PL) methods. We
provide the preference information in the form of pairwise comparisons between
solutions. We aim to estimate the criteria weight vector that this passenger has
in mind given the set of journeys and the pairwise preferences revealed by his/her
travel history. Once the passenger’s preference model is learnt, in the form of the
weight vector, it is then used to predict her ranking for a new set of journeys.
The comparison of this prediction with the ‘true ranking’ offers a means for
assessing the performance of our method.

More specifically, using the training dataset, we estimate the ‘most likely’
weight vector that the traveler has in mind for the different criteria; i.e., maxi-
mum likelihood estimation. The obtained weight vector is subsequently applied
to a new set of journeys (test dataset) and the corresponding journey utility
scores are determined to rank them. We determine the performance accuracy of
the preference learning process by comparing the predicted rankings with the
actual ground truth rankings. In the following section, we describe the preference
learning method.
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4.1 Preferences Estimating

As mentioned earlier, the training dataset is used to estimate a probabilistic
model which results in the ‘most likely’ weight vector that the traveler has in
mind for the different criteria, i.e., a weight vector w∗ which maximizes the
probability of having U(J,w) > U(j, w), when J � j in the training set. To
calculate the probability of J � j, for a pairwise inclinations, we utilized the
preference model of discrete choice presented in [3], that is:

P (J � j|w) =
exp(U(J,w))

exp(U(J,w)) + exp(U(j, w))
(4)

Note that the probability of J � j would increase with the increasing value
of U(J,w) − U(j, w) and for U(J,w) − U(j, w) = 0, results in the probability of
0.5 which represents a tie.

Since pairs are independent, the probability of J � j for a complete sample
of training set, TS, is given by

P (TS,w) =
K∏

n=1

P (Jn � jn|w)

=
K∏

n=1

exp(U(Jn, w))
exp(U(Jn, w)) + exp(U(jn, w))

(5)

where, K is the total number of pairs.
Note that P (S|w) is likelihood function of the weight vector w that takes the

shape of a N-dimensional surface covered by it based on the maximum likelihood
estimation (MLE). The preference weight vector estimator, w∗, is the maximizer
of this function, i.e. w∗ = argmaxw∈RN P (S|w).

To obtain a minimization problem we consider −P (S|w), and the log-
likelihood is being used since P (S|w) and its log function are monotonically
related to each other. It can be written as Eq. 6 as a constrained optimization
problem and returns the maximum likelihood estimator w∗, given the training
set, TS.

minimize : − log(P (TS,w)) = −
K∑

n=1

U(Jn, w) +

+
K∑

n=1

log(exp((U(Jn, w))) + log(exp(U(jn, w)))

(6)

subject to :

+
N∑

i=1

wi = 1,

+ wi ∈ [0, 1], for i = 1...N.
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Since P (S|w) is differentiable, we use the gradient descent method to obtain
the updating rule for the weights (wi, i = (1, , N))

wi(I + 1) = wi(I) − β
∂(P (TS|w))

∂wi
(7)

which results in Eq. 8 where, wi(I) denotes the estimate of wi after Ith iteration,
and β (0 ≤ β ≤ 1) denotes the learning rate.

wi(I + 1) = wi(I) + β

(
exp(U(Jn, w))

exp(U(Jn, w)) + exp(U(jn, w))
(Ji − ji)

)

(8)

4.2 An Illustrative Example of Our Approach

Let us consider a person with a weight vector (.4, .4, .1, .1) who wants to go from
city A to city B, with a departure at 16:00. Considering the journey criteria as
travel time, monetary cost, CO2 emission and energy consumption respectively,
we can infer that he/she prefers a route which is fast and not expensive. Assume
that the following journeys are recommended to his/her, as shown in Table 1, in
which columns 1 to 4 represent the criteria values for each journey. The obtained
utility score, are calculated in accordance with his/her weight vector, is given
in column 7 of Table 1. As we mentioned earlier, we assume the commuters are
rational hence he/she is going to select the 3rd journey simply because it has the
highest utility score. Based on her selection, the following pairwise inclinations
are generated: ((j3 � j1), (j3 � j2), (j3 � j4)).

Table 1. An example of query result

Journey Criteria Predicted score Actual score

k C1 C2 C3 C4

1 .2 .3 .3 .2 .251 .25

2 .2 .2 .1 .5 .239 .22

3 .4 .3 .2 .1 .292 .31

4 .1 .2 .4 .2 .143 .14

In a real world scenario, however, it is rare to have the prior knowledge of the
accurate preferences weight vectors. This limits the usefulness of such an app-
roach in practice. Our PL-based approach does not require users to explicitly
define their preferences. Instead, it requires only the travel history of users, pair-
wise inclinations, which are used to generate the preference weight vector. Let
(.33, .42, .09, .16) be the learned weight vector as the result of preference learning
method. The obtained utility scores, calculated in accordance with the estimated
weight vector, is given in column 6 of Table 1 which result in selection of the 3rd
journey again due to the highest utility score. Although our preference-based
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approach is simple and intuitive, it is robust, being probabilistic in nature, and
it’s performance improves with bigger datasets as the user/system interactions
increase.

5 Experiment

In this section, we evaluate the performance of the proposed scheme. We used
the real GFTS data [1], from city of Melbourne, Australia, consisting of sev-
eral information such as stop locations, routes, and timetable. A total of 3617
locations considered including 3559 bus stops, 44 bike stations, and 14 points of
interest. For the multi-modal network, all pairs of nodes, within 0.25 km radius,
are connected by walking legs. Cycling legs are only available between two bike
stations within the distance of one hour. The speed of walking and cycling legs is
5 km/h and 12 km/h respectively. We implemented our algorithm in MATLAB,
and performed our experiments on a 2.2-GHz Core-i5 Intel PC.

To simulate user preferences, we synthesized 30 random queries for a set of
50 users as follows:

Passengers: we defined 50 artificial passengers with a set of predefined con-
straints based on their preferences on criteria. For example, for a particular
user, the constraints are set to w1 > w2, w3 > w1, and w2 > w4 which indi-
cates that he/she prefers travel time over number of transfer, monetary cost over
travel time and CO2 emission over energy expedition. We used Random Weight
Assignment strategy (RWA) [7] to generate weight vector for a particular user
based on his/her preference constraints.

Query: for each passenger, a set of 30 journey queries (instances) are created.
Each service k operating within the time horizon is determined by a scheduled
route extracted from the timetables as described in Sect. 2. The maximum walk-
ing and cycling time is set to 15 and 60 min respectively.

In order to test and compare the accuracy of the proposed techniques, we use
a leave-one-out approach. A bit more concretely, we randomly select a passenger
and a query, and recommend five journeys to the passenger. Then, we utilize the
actual and estimated weight vector to rate the recommended journeys. Finally,
in order to evaluate the accuracy of the prediction, we compare the predicted
with the actual ratings. We utilized the MAE (Mean Absolute Error) metric in
order to evaluate the accuracy of such predictions [8,17]. The MAE is derived
using the following equation:

MAE =
1
n

n∑

i=1

|fi − yi| (9)

where n is the number of predictions, fi is the predicted rank of the journey i
and yi is the actual value. In short, MAE presents the average difference between
the predicted rank and the actual rank.
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In order to interpret the values of MAE, it is important to consider the
scale on which the ratings are performed. Indeed, an MAE of 0.5 indicates that
the predictions, on average, differed by 0.5 of the actual ranking. In order to
evaluate the impact of this difference, it is important to consider the scale of
the predictions. For example, a MAE of 0.5 on a scale of 5 represents 10 %
whereas on a scale of 20, it only represents 2.5 % and consequently a lower impact
on accuracy. Since, for each query, five journeys are recommended to the user,
we assess the actual impact of prediction on scale of 5. Figure 3 highlights the
average impact of MAE of the ten randomly selected passengers which indicates
that in almost 80 % of the instances the estimated weight vector ranked the
journeys similar to the actual user (Table 2).

Table 2. MAE comparision

Passengers

1 2 3 4 5 6 7 8 9 10

Avg MAE 0.850 0.894 0.886 1.06 1.04 1.004 0.894 1.02 1.06 1.000

Max MAE 1.600 2.000 2.000 1.800 1.800 2.000 2.000 1.800 1.600 1.800

We utilize the journey utility metric to evaluate the performance of PL-based
estimator, and observed its evolution through the preference learning phase of
the algorithm. Figure 2 demonstrates the average utility of the selected journey
(i.e. first ranked journey) for a randomly selected passenger for each iteration.
As it shown in Fig. 2, as the algorithm improves the estimated preferences (i.e.
red line), the average utility of selected journeys increases and gets closer to
the average utility of the actual user (i.e. blue line) which means the model is
successful in terms of preferences learning.

Fig. 2. Average journey utility comparision for a randomly selected passenger (Color
figure online)



Estimating Passenger Preferences Using Implicit Relevance Feedback 167

Fig. 3. Average MAE interpretation

6 Conclusion

This paper has examined the problem of personalized journey planning. Our
learning algorithm seeks to estimate a commuter’s preference model, based on
her historical travel data in the form of pair-wise inclinations of journeys. Our
proposed scheme is unique in a way that it does not require the explicit rating
for journeys as a prerequisite, and is therefore quite practical in the real life
scenarios. The proposed method helps to understand the priorities that a pas-
senger has in mind and it can be applied to suggest more relevant journeys to
the commuters. Besides, the probabilistic nature of the model makes it robust
to inconsistent travel histories preference statements. Although the experimen-
tal results show the usefulness of the proposed approach, further investigations
should be applied on real data, as opposed the synthetic data, to better prove
its performance.
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Abstract. In this paper, we propose a hybrid approach for segmenting the left
ventricle out of magnetic resonance sequences and apply results of the segmen-
tation for heart quantification. The hybrid approach uses a thresholding-based
region growing algorithm coupled with gradient vector flow (GVF). Results of the
segmentation steps were used for the quantification process and yielded values of
175.4 ± 51.52 (ml), 66 ± 38.97 (ml), and 61.60 ± 12.79 (%) for end diastolic
volume (EDV), end systolic volume (ESV), and ejection fraction (EF),
respectively.

Keywords: Gradient vector flow � Left ventricle � Segmentation � Cine MRI
sequences

1 Introduction

Approximately 17.5 million people worldwide die of fatal cardiovascular diseases
every year [1]. To diagnose a human heart condition, quantitative assessment of the
heart is a preliminary and vital task that helps in treatment planning for a patient [2–5].
Numerous modalities are used for imaging of the complete cardiac cycle of the human
heart including echocardiography, computed tomography (CT), radionuclide cine
angiography, and cine magnetic resonance imaging (CMRI) [6]. Because of its non-
invasive nature and high resolution, CMRI is considered to be a gold standard for
quantifying human heart functionality [7, 8]. For quantification purposes, the end
systolic and end diastolic performances are considered for the calculation of useful
clinical parameters such as end systolic volume (ESV), end diastolic volume (EDV),
and ejection fraction (EF). For calculation of these clinical parameters, the left ventricle
(LV) must be segmented from CMRI sequences. In daily clinical practice, LV seg-
mentation is performed manually. This manual segmentation of LV regions from
CMRI sequences is difficult task, and it takes an average of 20–25 min for an expert to
quantify the function of a single heart. In the past few decades, research has been
carried out to overcome this problem. As a result, some dedicated software packages
have been introduced to carry out the desired task [9, 10]; however, such packages are
not fully automated and require human intervention at some level. Researchers have
also proposed automatic or semi-automatic solutions for tasks such as active appear-
ance models, random walks, graph cuts, multispeed region growing, Gaussian mixture
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models, and dynamic programing. The existing approaches involve difficulties when
segmenting the LV from basal and apical slices. Especially, traces of aorta in the basal
slices compromise the performance of an algorithm. The performance of the graph cut
method is good for LV segmentation from cine MRI sequences, but this algorithm
faces the problem of high computation time. In the current work, an effort is made to
segment the LV region properly in basal and apical slices, where segmentation is
normally considered to be difficult and results are not satisfactory. This approach takes
advantage of the spatiotemporal continuity of CMRI sequences. For experimental
purposes, the second annual data science bowl dataset, which is available on the data
science community “Kaggle” [14], was used.

2 Literature Review

The short axis (SAX) view is normally considered for the quantification of human heart
functionality [11–24]. This is a two-chamber cross-sectional view of the left and right
ventricles. As blood is contained within the LV and is pumped out to the rest of the
body with each heartbeat, many researchers only focused on the boundary walls of the
LV where the blood pool is contained. These boundary walls are known as the
endocardial contour. It is very difficult to extract the endocardial contour in basal and
apical slices. Several methods have been developed to complete the desired segmen-
tation task so that the quantification process could be made automatic.

2.1 Histogram-Based Methods

In histogram-based methods, a single traverse through all the pixels in an image is
used, and then a histogram of all pixels is computed. Peak and valley values of the
histogram are noted and are used to divide the pixels of the image into clusters [13–16].
For clustering of an image, either color or intensity values are used as a parameter. In
the case of intensity-based clustering, single or multiple threshold values are selected.
On the basis of these threshold values, the images are divided into clusters. Bhan et al.
[15] have described automatic segmentation of LV from cine MRIs. In their study,
local adaptive K-mean clustering was used to group the pixels of an image into clusters
on the basis of intensity. This process helped in the differentiation of foreground pixels
from background pixels. After K-mean clustering, connected component labeling was
carried out to group different regions on the basis of their properties in order to extract
the exact LV region from temporal phases in different slices. In another study [16],
fuzzy c-mean clustering was used with connected component labeling to extract the LV
region from the MRI frames. Fuzzy c-mean is a pixel-based clustering method used to
divide an MRI frame into foreground and background images. Using this method, the
researchers reduced the computation time of the process. Gupta et al. [17] proposed a
multilevel thresholding mechanism for the segmentation of MRI frames. Their work
describes an adaptable segmentation mechanism in which techniques of histogram
quantization in groups are used as a preprocessing step. Histogram slope percentage
and maximum entropy are used to define multiple threshold values for the
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segmentation process. The algorithm automatically acquires threshold values by
inspection of histograms. Tian et al. [18] used the k-mean algorithm based on his-
togram analysis, which was used to deal with the intrinsic limitations of k-means and to
determine the initial centroids for k-mean clustering. In their study, local maxima were
computed by analysis of the histogram. After computing local maxima, the global
maximum was determined to select the seed point to initiate the clustering process with
the k-means algorithm. The problem with histogram based technique is to properly
identify the peak and valley vales for the histogram, because if a low resolution image
is provided as an input, the histogram obtained is not appropriate.

2.2 Statistical Model-Based Methods

The statistical model-based methods involve development of a human heart model by
learning geometric- or intensity-based features of the heart. The model is globally
aligned to an image and is then deformed to fit the contents of the image under
observation. Statistical models have two variants: an active shape model (ASM) and an
active appearance model (AAM) [19]. The left ventricle segmentation model presented
by Danilouchkine et al. [20] uses line parameterization for the preprocessing step. With
the help of Fuzzy inference for determination of updated steps for edge detection,
problems of under- and over-estimation are solved. Statistical model based methods
require segmentation of large training sets to cover the inter-patient variance.

2.3 Region-Based Methods

In this class of method, the image is divided into regions on the basis of different
properties of the image such as intensity, texture, and pattern. Wang et al. [21]
developed an automated algorithm named LV_FAST in which LV segmentation was
carried out using spatiotemporal continuity of the LV. In this algorithm, the researchers
used an iteratively decreasing threshold region-growing method to segment the LV
region in the entire MRI stack. Li et al. [22] proposed a semi-automated method for the
segmentation of epicardium and endocardium of LV. Thickness of myocardium was
also calculated in their study. The process of segmentation was initialized by selection
of the seed point in the LV cavity. Maximum likelihood was used to determine the LV
and thickness of myocardium. The main problem with region-based methods is the
seed point initialization. Some methods even require more than one seed point for the
segmentation task.

2.4 Graph-Based Methods

In the graph cut method, image segmentation is performed by calculating a graph of the
entire image. Graph contains the nodes and edges information of entire image. Each
pixel in the image serves as a node in the graph. The node with the minimal cut i.e. the
edge having minimal weight is used to differentiate the object pixels from background.
In this method, a region of interest (ROI) is needed to initialize the segmentation
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process. This method provides the optimum global solution, and another positive
aspect is extension of the results to 3D or even higher applications. In the study of Ray
and Goyal [23], medical parameters like ESV, EDV, and EF were calculated. Graph cut
labeling was used for segmentation of cardiac cine MRIs without an initializing seed
point for the segmentation process. Urshler et al. [24] suggested a live wire mechanism
for segmentation of the left ventricle. This task was completed by the combination of
an intelligent scissors algorithm and Dijikstra’s algorithm. However, a problem with
the proposed method is that it needs an expert radiologist for seed initialization. Graph
based methods require high computation time for segmentation per frame.

2.5 Deformable Model-Based Methods

In deformable model-based methods, region boundaries are delineated using 2D closed
curves or a 3D surface that deforms due to internal or external forces. External forces
can be derived from the feature set or by the original picture itself and deform the curve
or surface to locate the desired shape in the image including lines, contours, or edges.
Zheng et al. [25] defined a shape prior that can be used to detect local variations. In this
method, an annotated heart model was used to image objects by optimizing similarity
or affine transformation between features of the annotated model and the image under
observation. In deformable models the main problem is how to initiate the delineation
problem. This area is less explored from the researchers.

2.6 Atlas-Based Methods

In the atlas-based methods, an atlas of different structures in a given image type is
created. Using atlas information, an image can be segmented into different objects by
mapping. These methods coordinate the space of the given image to that of the atlas
through the registration process. In contrast to deformable models, atlas-based seg-
mentation is carried out implicitly based on shape information, and then either labeled
areas from different atlases are concatenated [26] or registered atlases are deformed to
define an image [27]. In atlas based methods, it’s a complicated task to develop an atlas
which can cover all the cases encounter in real-time patients data.

3 Methodology

Figure 1 shows the segmentation process adopted in this study. The process is divided
into two phases. The first phase includes seed point selection to initiate the segmen-
tation process and the segmentation of all midlevel slices. Seed point selection is
carried out using criteria developed in reference [21], in which heart localization was
carried out by calculating a difference image using two temporal phases among the
slices from the MRI stack of a patient’s data. The first temporal phase is the nominal
end diastolic frame, and the second is the nominal end systolic frame. The algorithm
used for segmenting all phases in middle slices is region growing [28]. Extracting the
LV endocardial contour in middle slices is easy because LV region temporal continuity
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in each phase in these slices is smooth. The second phase of the process is to obtain the
endocardial contour information in the most basal and apical slices of the stack.
Cine MRI imaging sequences lack smooth temporal continuity in the most basal and
apical slices.

For this reason, segmentation of the left ventricle in such slices is a challenging
task, and a simple algorithm fails in such areas. Thus, development of a more
sophisticated mechanism is needed for the desired task.

To track the endocardial edge information in basal and apical slices of the MRI
stack, a gradient vector flow (GVF)-based active contour method is used [29]. This
method needs 2D plane or 3D surface information to initiate the contour delineating
process in the temporal frame under observation. GVF based active contour does not
need the initialization values close to the boundary, it converges to the boundary. GVF
is snake based algorithm, here 2D snake is defined by vðsÞ ¼ xðsÞ; yðsÞ½ �. GVF mini-
mizes the energy function E as:

E ¼
Z1

0

EintðvðsÞÞþEimageðvðsÞÞþEconðvðsÞÞds

Where, Eint is used to show the energy of the contour due to bending, Eimage is the
intensity contained in the image and Econ is known as constrained energy. By mini-
mizing the energy function GVF is able to differentiate between foreground and
background pixels. So by tracking foreground and background pixels algorithm is able
to obtain the edge map of the image. After having edge map the initiated contour
converges to the desired nearest contour in the edge map extracted. As GVF needs
curve information to initiate the delineation process (snake). For this purpose, the
contour information extracted in phase one from middle slices is used to initiate the
delineation process of apical and basal slices. To initiate the delineation process in the
basal slice, the phase in apical slice which nearest to the last phase of middle slice
towards basal direction is selected as a reference point since it shows spatiotemporal
continuity to its neighboring slice, i.e. Pbði ¼ nÞ, where b is the basal slice, and n is the
maximum temporal phase in the slice, which is 5 in our case. Final contour points
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Fig. 1. Work flow of the segmentation process
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obtained by boundary tracing of LV endocardium in the nearest temporal phase of the
neighboring middle slice are provided as initiation curve points. Area Abði ¼ nÞ for
phase Pbði ¼ nÞ is calculated from the extracted LV endocrdial mask. After segmen-
tation of the reference phase, final contour points of the frame are propagated to the
adjacent frame to start the delineation process. The process of delineating boundaries
and area calculation is conducted on every temporal phase in the slice in descending
order until the first phase of the slice. Calculated area AbðiÞ of a phase PbðiÞ is com-
pared with its preceding phase area Abði� 1Þ. If the area of PbðiÞ is greater than the
preceding one, the LV region is presumed to be overestimated. In this case, the specific
case is skipped, and a jump is performed to the next phase Pbðiþ 1Þ. Segmentation of
the new phase is carried out, and its area is calculated. The skipped phase area is
estimated by calculating the average of Abðiþ 1Þ and Abði� 1Þ. The same process is
carried out on the apical slice except that the reference phase in the slice is the first
temporal phase and the contour information is propagated from first to last temporal
phases in the slice. Extracted masks of the LV region are passed through some mor-
phological operations to fill the holes that arise during the segmentation process. To
keep the contour smooth, a membrane and thin plate energy mechanism are used. After
calculating the area of each temporal phase in the MRI slices, quantification parameters
for the heart such as ESV, EDV, and EF are calculated.

4 Experimental Results

The experiments were carried out on the second annual data science bowl, available
online at the data science community “Kaggle.” In this data set, MRI sequences from
more than 1000 patients are given. Each stack of MRI contain 30 images, which are
associated with single cycle of heart. In Figs. 2 and 3, a typical MRI stack of single
patient is presented. In Fig. 2, a typical diastolic cycle of from a patient data is pre-
sented and in Fig. 3, a typical systolic cycle is given. These two cycles constitutes to
single heartbeat. From these two figure, it can be seen that there are 30 frames. These
frames are divided into six slices through the vertical axis, and each slice contains five
temporal phases (horizontal axis). In this study, we utilize a hybrid approach composed
of thresholding-based region growing and a GVF-based active contour method using
temporal continuity as a key for the segmentation of cine MRI images.

Using thresholding-based region growing segmentation, it was easy to segment and
estimate the area of the LV blood pool in midlevel slices. Results of the segmentation and
estimation in middle slices is given in the figure with frames having green LV region.
However by using the mentioned method segmentation results for apical and basal slices
were not good. Here the algorithm segmented the LV region improperly, which in turn
resulting in bad estimate of LV area. To tackle this problem GVF-based active contour
segmentation was carried out in these slices. Figure 4, shows the results of the
GVF-based active contour model in a single temporal phase of a basal slice. The delin-
eation process of basal and apical slices is complicated compared with middle slices. The
results show that application of GVF-based active contour with the help of temporal
information from the previous phases in adjacent slices gives satisfactory results.
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Results of the proposed method are compared with one of the pre implemented
automatic LV segmentation technique named LV_FAST [21]. The results are com-
pared in terms of quantification parameters EDV, ESV, and EF, which are listed in
Table 1. First column of the table shows the ground truth data provided for EDV, ESV,
and EF respectively by the experts using manual segmentation. This ground truth data
is available online along with the data set which is used for the current work [14].
Second and third columns of the table show the results for LV-FAST, and the proposed
method, respectively. All the readings listed in the table are in the form of mean and
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standard deviation. For experiment purpose 100 random cases were selected from the
data set. Segmentation process was applied to MRI stack of the chosen 100 cases and at
the end quantification parameters were calculated. From the table it can be easily
noticed that the readings of the clinical parameters obtained using the proposed method
is closer to the ground truth data available i.e. having less deviation from the original
readings as compared to LV-FAST.

5 Conclusion and Future Work

LV quantification is a trivial task that is practiced in cardiac clinics on a daily basis. As
manual segmentation of a patient’s whole MRI stack is a time consuming task,
researchers have introduced automatic mechanisms to speed up segmentation of the
stack for the quantification process. Such automatic mechanisms fail when segmenting
basal and apical slices because temporal continuity is not as smooth in these slices as in
middle slices. Thus, the focus of our research was to introduce an algorithm that can
overcome this difficulty. It can be verified from the result section that the thresholding-
based region growing segmentation performed well in middle slices but failed in apical
and basal slices. By the addition of extra segmentation step to the pipeline the issue is
resolved. The results of our algorithm provided satisfactory results when segmenting
the basal and apical slices; therefore, this approach can be considered for real-time

Fig. 4. Delineation of a typical temporal phase from basal slice

Table 1. Results for EDV, ESV and EF of the 100 random cases using manual segmentation,
LV-FAST, and the proposed method

Quantification parameter Manual segmentation LV-FAST Proposed method

End diastolic volume (ml) 174.3 ± 53.11 176.2 ± 31.46 175.4 ± 51.52
End systolic volume (ml) 67.8 ± 38.71 65.73 ± 72 66 ± 38.97
Ejection fraction (%) 60.30 ± 11.90 62.60 ± 14.23 61.60 ± 12.79
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applications. Future aspects of the work might explore volumetric parameters in the left
ventricle in the 3D domain, which would provide better quantification.
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Abstract. This paper proposes a hybrid feature selection scheme for identify-
ing the most discriminant fault signatures using an improved class separability
criteria—the local compactness and global separability (LCGS)—of distribution
in feature dimension to diagnose bearing faults. The hybrid model consists of
filter based selection and wrapper based selection. In the filter phase, a
sequential forward floating selection (SFFS) algorithm is employed to yield a
series of suboptimal feature subset candidates using LCGS based feature subset
evaluation metric. In the wrapper phase, the most discriminant feature subset is
then selected from suboptimal feature subsets based on maximum average
classification accuracy estimation of support vector machine (SVM) classifier
using them. The effectiveness of the proposed hybrid feature selection method is
verified with fault diagnosis application for low speed rolling element bearings
under various conditions. Experimental results indicate that the proposed
method outperforms the state-of-the-art algorithm when selecting the most
discriminate fault feature subset, yielding 1.4% to 17.74% diagnostic perfor-
mance improvement in average classification accuracy.

Keywords: Acoustic emission � Data-driven diagnostics model � Feature
selection � Support vector machine � Low speed bearing fault detection and
diagnosis

1 Introduction

Bearings are the most crucial component of low-speed machinery because they support
heavy loads with stationary rotational speeds and are subject to unexpected failures [1].
If bearing defects remain undetected, they will eventually lead to catastrophic machine
failure. Therefore, reliable fault diagnosis of rolling element bearings (REBs) is an
urgent issue in the fault diagnosis research community [1, 2].

Data-driven fault detection and diagnosis (FDD) methods are often the best suited
in the context of industry applications [3, 4]. The essence of a data-driven FDD scheme
is data (or signal) acquisition, feature extraction and analysis, and classification. In
data-driven FDD, vibration and current signals are widely utilized to detect faults to
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minimize the risk of unexpected machine failures and ensure satisfactory performance
of high-speed machinery [3, 4]. On the other hand, acoustic emission (AE) techniques
are used to detect faults in the very early stage of cracks and spalls even when the
machine operates at very low speed [1, 5].

To realize highly reliable data driven FDD methods, it is necessary to deploy
different signal processing techniques to extract intrinsic information about bearing
defects from the signal of defective bearings [4–6]. Consequently, to develop an
effective FDD strategy that works well for a diverse range of different fault conditions,
this paper proposes a heterogeneous feature model, comprising statistical features in
time domain, frequency domain, and envelope spectrum of an AE signal, to extract as
much fault information as possible. In practice, however, a large number of fault
features configuring these high-dimensional feature vectors may contain redundant or
irrelevant information, which can degrade diagnosis performance.

Recent intelligent FDD techniques have adopted hybrid feature selection technique
(HFS) that exploits the advantages of the filter and wrapper methods [7, 8] to ensure
best features so that they can improve classification accuracy and reduce computational
complexity in the classification process. The wrapper approach selects the feature
subset with feature variables showing the highest classification accuracy for a particular
classifier, while the filter approach creates a rank of the feature variables or feature
subsets using some property values or an evaluation model [8]. This paper explores an
HFS scheme that combines both the wrapper and filter approaches [6–9].

The feature subsets can be generated by performing a complete, sequential or
heuristic search (e.g. GA [12]) of the feature space. A complete search ensures a
high-quality feature subset, but it is very costly in terms of computational time. In
contrast, a sequential forward floating search (SFFS) [10, 11], which is a variant of
sequential forward search, is comparatively faster and provides a good tradeoff between
computational complexity and quality of selected optimal features. Since one of the
most significant tasks in the HFS scheme is to accurately evaluate feature subsets, this
paper employs improved class separability criteria, a key contribution of this study,—
the ratio between local compactness and global separability (LCGS)—for evaluating
feature subsets by analyzing class samples distribution in a feature space. Several
feature evaluation methods have been proposed depending upon classification accuracy
or Euclidean distance-based feature distribution criteria [5, 10, 12]. Kang et al. recently
proposed a feature subset evaluation method using intra-class compactness and the
inter-class distance calculated using average pairwise Euclidian distances [4]. How-
ever, they did not consider all possible feature distributions. Moreover, the intra-class
compactness value considers dense areas only and ignores samples that are located in
less dense areas or on the outskirts of a class, affecting the multiclass distribution.
Similarly, a high distance value between two classes can dominate the distance values
between other classes, and hence the overall interclass separation value.

To address this limitation of conventional average distance based methods, this
paper proposes HFS-LCGS that uses the new feature evaluation metric, LCGS, as an
objective function for SFFS while feature subsets are evaluated in the filter phase to
select a series of suboptimal feature subsets. In the wrapper phase of the HFS-LCGS,
these suboptimal feature subsets are further evaluated, by estimating the classification
accuracy of SVM classifier [13] to select the most discriminant features. Finally, the
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selected discriminant feature vector is tested for a low-speed rolling element bearing
fault diagnosis application.

The remaining parts of this paper are designed as follows. Section 2 explains the
experiment setup and AE signal acquisition technique. Section 3 describes the pro-
posed fault diagnosis scheme with hybrid feature selection methodology. Experimental
results are given in Sect. 4, and concluding remarks are in Sect. 5.

2 Experiment Setup and Acoustic Emission Signal
Acquisition

The standard scheme for measuring the AE signal is introduced in Fig. 1. We employ
some of the most widely used sensors and equipment in the real industries. To capture
intrinsic information about defect-bearing and bearing with no defect (BND) condi-
tions, the study records AE signals at 250 kHz sampling rate using a PCI-2 system that
is connected with a wide-band AE sensor (WS α is from Acoustics Corporation of
Physical [5]). The effectiveness of experiment setup and datasets can be studied further
in [5, 14]. In this study, AE signals are collected for formulating four experimental
datasets of different crack sizes (i.e., small crack and big crack) and different operating
speed (i.e., 300 rpm, 500 rpm). Table 1 presents the summary of different datasets.
Each dataset contains eight types of signal including defect free and seven defective
bearing based on crack position: (a) bearing with outer race crack (BCO), (b) bearing
with inner crack (BCI), (c) bearing with roller race crack (BCR), and combination of
these faults, i.e. (d) bearing with inner and outer cracks (BCIO); (e) bearing with inner
and outer cracks (BCOR) (f) bearing with inner and roller cracks (BCIR) and (g) inner,
outer, and roller cracks (BCIOR) and (h) normal condition (BND).

Fig. 1. Screenshot of the self-designed experiment setup, (a) standard equipment setup, (b) PCI
based AE system for data acquisition.
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3 Proposed Fault Diagnosis Methodology

Figure 2 depicts an overall flow diagram of the fault diagnosis method used in the
study. The method is composed of the two important processes: a discriminatory
feature selection process for deciding the most discriminatory fault signature subset and
an online performance evaluation process for validating the effectiveness of the pro-
posed hybrid feature selection.

3.1 Heterogeneous Feature Extraction Models

One of the main ideas of this study is that diverse feature extraction paradigms are
simultaneously combined to generate a hybrid pool of features, which has the higher
discriminative power of accurately detecting each fault. None of the formerly analyzed
publications [6, 15] propose a combination of feature models from different single
processing techniques, thus prompting us to the representative feature models of this
study, i.e., statistical features from time domain and frequency domain of the raw AE
signal and envelope power spectrum magnitudes.

The most prevalently used time-domain statistical features are RMS, crest factor
(CF), square root of amplitude (SRA), impulse factor (IF), shape factor (SF), kurtosis
value (KV), peak-to-peak value (PPV), skewness value (SV), and kurtosis factor

Table 1. Summary of acoustic emission (AE) data acquisition conditions, including the use of
two different operating conditions and two crack sizes

Dataset Average rotational speed (RPM) Sizes of cracks in the
bearing’s outer and/or inner
roller raceways
Length Width Depth

Dataset 1a

Dataset 2a
300
500

3 mm 0.35 mm 0.30 mm

Dataset 3a

Dataset 4a
300
500

12 mm 0.49 mm 0.50 mm

a90 AE signals for each fault type; sampling frequency fs = 250 kHz; each
signal is 10 s long.

Fig. 2. An overall block diagram of improved bearing fault diagnosis model with HFS scheme

A Hybrid Feature Selection Scheme Based on Local Compactness 183



(KF) margin factor (MF), whereas the frequency-domain statistical features are RMS
frequency (RMSF), frequency center (FC), and root variance frequency (RVF).
Tables 1 and 2 provide the time- and frequency-domain statistical features, along with
the mathematical relations to calculate them. A total number of statistical parameters
(i.e. features) is (10 + 3) or 13.

In addition to above features, there are four characteristics, or defects, frequencies:
Ball Pass Frequency Inner raceway (BPFI), Ball Spin Frequency (BSF), and Ball Pass
Frequency Outer raceway (BPFO) and Fundamental Train Frequency (FTF), at which
faulty symptoms must be observable [15]. Therefore, statistical values (e.g. calculated
around the harmonics of these defect frequencies in an envelope power spectrum) are
useful for bearing fault diagnosis [14]. These four faulty symptoms can be described in
Eq. (1) [5, 15]:

BPFO ¼ Nrollers � Fshaft

2
1� Bd

Pd
cos acangle

� �
;BPFI ¼ Nrollers � Fshaft

2
1þ Bd

Pd
cos acangle

� �
;

BSF ¼ Pd � Fshaft

2� Bd
1� Bd

Pd
cos acangle

� �2
 !

; and; FTF ¼ Fshaft

2
1� Bd

Pd
cos acangle

� �
;

ð1Þ

These frequencies depend on several parameters: number of rollers (Nrollers), shaft
speed (Fshaft), pitch diameter (Pd), the roller diameter (Bd), and contact angle (αcangle),
which are available in the bearing manufacturer specification.

Though envelope power spectrum is efficient in identifying the bearing defect, it is
important to note that a bearing defect symptom is not easily detectible around har-
monics of the defect frequency (BPFO, BPFI, 2 × BSP) in the power spectrum since
bearing fault signal is inherently nonlinear and stationary [5]. It is, therefore, conve-
nient to find frequency band using band pass filter to identify the defect region. Further,
an enveloping power spectrum is highly sensitive to events with very low impacts (e.g.
sidebands). Therefore, we construct a rectangular window by carefully analyzing
bearing dynamic characteristics that can be seen Fig. 3. These formulations of defect
regions are defined in Eqs. (2), (3) and (4) respectively for outer, inner and roller
defects, Outer race defect window range:

from 1� AVorder

2

� �
� BPFOhð Þ; to 1þ AVorder

2

� �
� BPFOhð Þ; ð2Þ

Table 2. Ten time-domain statistical features of an AE signal
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Inner race defect window range:

from 1� AVorder

2

� �
� BPFIh � 2 � Sshaft
� �

; to 1þ AVorder

2

� �
� BPFIh þ 2 � Sshaft
� �

;

ð3Þ
Roller defect window range:

from 1� AVorder

2

� �
� BPFOh � 2 � FTFð Þ; to 1þ AVorder

2

� �
� BPFOh þ 2 � FTFð Þ:

ð4Þ

where ‘h’ is the number the harmonics, and we consider up to 4 harmonics. AV defines
the arbitrary variation to fit the window around the defect frequency BPFO, BPFI, and
2 × BSF, where a minimum value of margin is considered to fit the rectangle; in this
case, the value is 2% of the defect frequency [16]. Therefore, 3 × 4 = 12 envelope
features were extracted, i.e. no. characteristic frequencies × no. harmonics. In sum-
mary, the dimensionality of feature model used in HFS-LCGS feature selection process
is Nfeature � Nanal:samples � Nclasses where number features, Nfeature = 25, the number of
analysis data samples, Nanal.samples = 30, and the number of fault classes, Nclasses = 8.

3.2 Proposed HFS-LCGS Scheme

Figure 4 describes the overall process of the proposed HFS-LCGS, which consists of a
filter-based feature selection part in which the feature subsets are evaluated based on
local compactness and global separability (LCGS) criteria, and a wrapper based part
that selects the optimal features based on classification accuracy.

It is quite evident that the effectiveness of HFS-LCGS depends on the robustness of
the feature evaluation metric, the LCGS when the subsets are assessed with SFFS
(Table 3).

As shown in the Fig. 4, this paper first evaluates the feature subset on randomly
selected 1/3rd of the analysis dataset and repeat this process for N iterations. More
details of this HFS-LCGS approach are given below.

Fig. 3. Defect frequency range in envelope spectrum (a) outer, (b) inner, (c) roller defects

A Hybrid Feature Selection Scheme Based on Local Compactness 185



(1) A feature evaluation metric to assess the quality of feature subset in HFS-LCGS.

SFFS is used to yield discriminate fault signature subset candidates at the filter-based
feature selection phase. To find the useful subset candidates, a precise feature evalu-
ation metric is required. As explained in Sect. 1, a recent feature evaluation metric
based on average Euclidian distance used to measure within-class distance and
between-class distance [4]. In practice, the average distance based feature evaluation
metric does not consider the complexity of class and significantly overlooks the overlap
in between-class distances. Our study develops an improved evaluation metric as local
compactness for within-class distance and global separability for between class dis-
tance. To compute local compactness for a specific feature (e.g. fnth), the mean of
feature distribution (Cc_M) of each class and the distance of outmost sample (Cc_dist)
(instead of average distance) from the class mean is calculated. Finally, local com-
pactness of each feature variable is calculated by averaging all Cc_dist. Figure 5(a)
presents the process of local compactness factor calculation and the Eq. (5) depicts the
final calculation of local compactness (LC) factor.

Local compactnessðLCÞ ¼ 1
Nc

XNc

c¼1

dc; ð5Þ

Where Nc is the total number of classes and dc is the distance of the outmost sample
from the class mean.

Fig. 4. Overall procedure of the developed hybrid feature selection (HFS) scheme

Table 3. Ten frequency-domain statistical features of an AE signal

RMSF ¼ 1
N

PN
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f 2i
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FC ¼ 1

N

PN
i¼1

fi RVF ¼ 1
N

PN
i¼1

fi � FCð Þ2
� �1=2
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To calculate the global separability, a global mean of all samples of all classes and
mean of the individual class are calculated. The class separability distances (i.e. d1,2),
which represent the distance between the mean of one class to that of another, as well
as the global separability distances (i.e. gd1), which represent the distance between the
mean of a class to the global mean, are computed, as can be seen in Fig. 5(b) for an
example 3-class. Finally, the global separability (GS) is calculated by Eq. (6), which
can be extended for any finite number of multi-class (i.e. 8 classes in this study)
separability measure. The overall process is depicted in Fig. 5(b).

Global separabilityðGSÞ ¼ 1
Nc

XNc

c¼1

gdcð Þ þ
Xc

c 6¼j;j¼1

dc;j
� � !

ð6Þ

Now that LCGS feature evaluation metric is at hand, we define a function, OBJ, to
combine GS and LS, and consider the simplest form in Eq. (7) to maximize the OBJ
function (as the ratio of highest value of GS and the lowest value of LC):

OBJ ¼ GS
LC

ð7Þ

The evaluation metric in Eq. (7) is utilized for any feature subset yield by SFFS to
get a series of discriminant feature subset candidates, which are further utilized with
classifier in the wrapper approach to obtain the most discriminant features.

(2) Accuracy estimation of the SVM classifier in the wrapper method of HFS-LCGS.

In the wrapper-based feature selection of HFS-LCGS scheme, it is necessary to predict
classification accuracy of the SVM classifier using a couple of discriminatory feature
subset candidates due to the multiple cross-validations in the proposed hybrid feature
selection scheme. As seen in Fig. 4, the execution process for hybrid feature selection
is performed using k-fold cross-validation (k = 3). After N times (N = 10)
cross-validations, this study contains N × k discriminatory feature subset candidates.

Fig. 5. The conception of proposed evaluation metric—local compactness and global separa-
bility (LCGS) calculation, (a) local compactness (e.g. in 1-D feature space) and (b) global separa
bility, where black circles define the local compactness (e.g. in 2-D feature space)
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Hence, the predictive average classification accuracies are estimated using SVM
classifier for all selected feature subsets for selecting most discriminant feature.

3.3 Fault Classification for Online Diagnosis

As depicted in Fig. 3, the proposed HFS-LCGS model selects the most discriminant
feature elements that are further utilized for online validation of the bearing fault
diagnosis model. In the online process, we also use the one-against-all support
(OAASVM) classifier [13] for multi-faults classification with linear kernel function to
validate our selected feature sets in terms of the classification accuracy. The SVM with
linear kernel function classifier is one of the most popular classification methods and is
widely used due to simplicity and computational efficiency.

4 Experiment Results and Discussion

The proposed methodology is tested on four datasets with eight fault types obtained
from different operating conditions, as shown in Table 1. The datasets are divided into
two categories: one for offline feature analysis for discriminant feature selection and the
other for online evaluation. The analysis datasets consist of 30 of the 90 signals for
each fault type for a given speed condition. The remaining 60 signals (is kept higher
than analysis data to ensure the reliability of diagnosis performance) of each fault class
are used as the unknown signals for online evaluation of the proposed fault diagnosis
scheme.

The designed objective function in Eq. (7) is highly effective for assessing the
features quality by calculating LCGS value. As explained in Sect. 3.2(2), N × k (or
total 30) discriminatory feature subset candidates are created by the proposed
HFS-LCGS. Predictive classification accuracy of 30 discriminatory features subject
candidates is estimated by OAASVM classifier, as seen in Fig. 6 for dataset 1. In the
wrapper based analysis, the final subset is then selected for each dataset (see Table 1)
based on not only predictive accuracy but also the frequency of the discriminatory
feature subset candidates. To verify the above results of HFS-LCGS, we compare with
a state-of-the-art feature evaluation metric using average distance in [4]. Table 4
summarizes the most discriminant features for the proposed HFS-LCGS and [4].

Finally, in online fault diagnosis process, only the most discriminant features (see
Table 4) are extracted from the unknown signals of the evaluation dataset, and the
OAASVM classifier [13] is applied to calculate the classification accuracy. Addition-
ally, k-fold cross validation (k-cv) [17], an efficient method for estimating generalized
classification performance, is deployed to evaluate the diagnosis performance of the
developed HFS-LCGS versus the state-of-art algorithm [4], in terms of average clas-
sification accuracy (avg.) and sensitivity that are defined as below [17]:

avg: ¼
PL
k
Nrtp

Nsample
� 100 %ð Þ; and Sensitivity ¼ Nrtp

Nrtp þ Ntfn
� 100 % ð8Þ
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where sensitivity is the number of positive classes that are correctly identified as
positive, L is the number of fault classes or categories (i.e. L = 8 in this study), Nrtp is
the rate of true positives, and the number total samples is Nsample.

Experimental results listed in Table 5 clearly demonstrate that the proposed feature
selection model outperforms the other approaches under different conditions. In the
datasets for small crack size, the weakly generated fault signals are not significantly
distinguishable, affecting the classification performance. The proposed feature selection
model selects the best subset of features with the best distribution in the high-
dimensional feature space to increase the classification performance of the fault
diagnosis system. In contrast, the existing average distance based approaches do not
consider the distribution of features and render a reduced classification performance.

To further analyze this effectiveness phenomenon, our paper exploits a two-
dimensional representation of discriminative feature selected by the developed HFS-
LCGS and by the state-of-the-art method. It is evident from Fig. 7 that the proposed
algorithm selects feature subset with most separable class distribution compared to its
counterpart.

Fig. 6. Estimated classification accuracy of SVM classifier for 30 feature subsets candidates

Table 4. Final most discriminant feature set of four datasets

Datasets Methodology
The most discriminant feature subset
by HFS-LCGS (Proposed)

The most discriminant feature subset by
state-of-the-art algorithm [4]

Dataset 1 {2, 10} {10, 11, 13}
Dataset 2 {2, 9, 11} {9, 10, 13, 17, 19}
Dataset 3 {1, 13, 14} {2, 10, 11, 19, 20}
Dataset 4 {2, 13} {2, 12, 13, 17}
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5 Conclusions

The HFS-LCGS method was developed to select discriminant features by calculating
local compactness and global separability (LCGS), which is not achievable in traditional
Euclidian distance based separability. The key contribution of HFS-LCGS is to assess
the quality of feature subsets based on LCGS. This evaluation metric is designed as the
ratio of local class compactness and global separability. Using this evaluation metric,
SFFS yields discriminant feature subset candidates and the most discriminant feature
subsets, which is finally determined via accuracy estimating of the SVM classifier in the
wrapper approach. Experimental results indicate that the proposed method is more
effective for identifying the most discriminatory feature subset by achieving diagnostic
performance improvements from 1.4% to 17.74% in average classification accuracy.
Moreover, our study proves that the proposed hybrid feature selection can effectively
reduce computational overhead for fault diagnosis since HFS-LCGS selects the most
compact features subset from a high-dimensional features vector.
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Abstract. The k-nearest neighbor (k-NN) method is a simple and highly
effective classifier, but the classification accuracy of k-NN is degraded and
becomes highly sensitive to the neighborhood size k in multi-classification
problems, where the density of data samples varies across different classes. This
is mainly due to the method using only a distance-based measure of similarity
between different samples. In this paper, we propose a density-weighted distance
similarity metric, which considers the relative densities of samples in addition to
the distances between samples to improve the classification accuracy of standard
k-NN. The performance of the proposed k-NN approach is not affected by the
neighborhood size k. Experimental results show that the proposed approach
yields better classification accuracy than traditional k-NN for fault diagnosis of
rolling element bearings.

Keywords: K-NN � Fault diagnosis � Bearings � Distance-based similarity �
Density-based similarity

1 Introduction

With advancements in technology and increasing global competitiveness, it has
become imperative for industries to implement appropriate maintenance strategies to
optimize both overall equipment effectiveness and productivity [1]. Rotating machinery
is widely used in various industries. Thus, to prevent sudden operational failures,
condition monitoring of bearings has become an integral part of maintenance programs,
as bearing defects account for a significant proportion of the equipment failure [2].
Accurate and reliable diagnosis of bearing defects is therefore an important research
problem.

Many data driven approaches have been proposed to diagnose bearing defects.
These methods are generally accomplished in three stages: data acquisition, feature
extraction, and fault detection and diagnosis. The first stage involves probing with
accelerometers to quantify the vibration levels of machine components, especially the
bearing housing [3]. To extract features for fault diagnosis, the feature vector of these
vibration signals is extracted through time domain, frequency domain, and time–
frequency analysis [4]. For classification, several classifiers have been used, including
k-nearest neighbor (k-NN).
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The k-NN is non-parametric approach and eager learning generates an explicit
model at training time. This method classifies a new test sample based on the majority
of its k nearest training samples [5]. The k nearest training samples are determined by
calculating the distances of the test sample from all the other samples in the training
data. However, this traditional implementation is computationally expensive though its
speedup classification is feasible for industrial environments [6]. First, determining the
appropriate neighborhood size or the value of k can be a problem. There are no general
rules, and it has to be done empirically on a case-by-case basis. This limitation affects
both the classification accuracy and the computation time of the k-NN classifier.
Second, the variation in the relative densities of the training samples belonging to
different classes can result in misclassification due to the use of only a distance-based
measure of similarity in traditional k-NN [7].

To overcome this drawback inherent in k-NN, many researchers have developed
algorithms with both fixed k and varying k for k-NN. Jiang et al. [8] proposed choosing
k only for a two-class classifier if the classes are unbalanced. Hand and Vinciotti [9]
proposed selective-based neighborhood naïve Bayes, a one-layout-one cross-validation
approach, where the k value is dynamically chosen. A weight-adjusted k-NN algorithm
was proposed that adds weights when calculating the distances in the training data [10].
Jia et al. [11] employed a distance-weighted k-NN method in which a weighted class
probability estimate is added to the class labels in order to make a decision on the class
information. Wesam and Murtaja [12] proposed a technique in which the classification
can easily be done if there are clusters of different densities, where classification of the
bearing faults is done through using a local outlier factor. This method utilizes distance-
and density-based information to detect the outliers. Despite these improvements in the
accuracy of class information for the test sample, the sensitivity to the k value persists.

Unlike traditional k-NN, which seeks to increase the reliability of the fault diag-
nosis of the bearing by reducing the method’s sensitivity to k, in this paper, we propose
a density-weighted distance-based similarity measure to improve the accuracy of k-NN.
We apply a distance-based probabilistic k-NN algorithm, and we employ a probability
density factor to scale the calculated metric to determine the class information of the
test sample.

The remaining parts of this paper are organized as follows. Section 2 describes the
proposed algorithm, including a density-weighted distance-based similarity measure for
fault diagnosis. Section 3 presents the experimental results, and Sect. 4 provides the
conclusions of this paper.

2 Proposed Methodology

When a vibration signal is obtained that has fault signatures, the proposed methodology
extracts the feature vector and computes the membership value of each class in the test
sample. Based on each of these values, a decision is made regarding which class the
sample belongs to. This procedure is shown in Fig. 1.
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2.1 Data Acquisition

For data acquisition, we employed a test bench that uses IMS bearing data repository.
Recording were made on four bearing with accelerometers, that were installed on a
shaft and kept at a constant speed of 2000 rpm and a radial load of 6000 lbs. These
recordings of 1-second duration are made every 10 min at a fixed sampling rate of
20 kHz. With a test-to-failure experiment, failure occurred after exceeding the designed
life time of the bearing [13]. In the experiment, we used three data recordings with the
following faults: a bearing crack inner fault (BCIF), a bearing crack roller fault
(BCRF), and a bearing crack outer fault (BCOF). BCIF, BCRF occurred on bearing 3
and bearing 4 in test set 1, and BCOF occurred on bearing 1 of test set 2. We applied a
3-sigma rule of thumb as a threshold to differentiate the data between normal and faulty
bearing information. For applying the threshold value, we calculated the root mean
square (RMS) value of each second of recorded data, and we defined an RMS value
that fell beyond the threshold as indicating faulty signal information. Thus we have
obtained 146 of 2155, 689 of 2155, 282 of 984 data samples as faulty BCIF, BCRF,
BCOF samples from all samples of bearing 3 and bearing 4 of set 1, and bearing 1 of
set 2 respectively.

2.2 Feature Extraction

According to [14], the mapping process of a measured sensor signal into the feature
vector space is considered a significant step for formulating intelligent fault diagnosis
schemes, where statistical parameters from the time and frequency domains are
employed. The feature extraction process has been validated by many researchers [15–
18]. In this study, we consider only the faulty part of the signal after applying a
threshold, and we use the same faulty signatures for identification of bearing defects
obtained over the given 1-second data recordings, xðnÞ. The statistical parameter in the
time domain includes the square root of the amplitude (SRA):

SRA ¼ 1
N

XN
n¼1

ffiffiffiffiffiffiffiffiffiffiffi
xðnÞj j

p !
; ð1Þ

where N is the total number of samples in 1 s of data sampled at 20 kHz.
The three parameters in the frequency domain are the frequency center (FC), the

root mean square frequency (RMSF), and the root variance frequency (RVF):

Fig. 1. Proposed methodology for classification using a density-weighted distance-based
similarity metric.
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FC ¼ 1
N

XN
f¼1

Sðf Þ; ð2Þ

RMSF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
f¼1

Sðf Þ2
vuut ; ð3Þ

RVF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
f¼1

ðSðf Þ � FCÞ2
vuut ; ð4Þ

where Sðf Þ is the magnitude response of the fast Fourier transform of xðnÞ and N is the
number of frequency bins.

2.3 Assign Membership Values to the Test Sample

To assign a set of membership values (MVs) to the test sample, the probabilities of the
class information based on distance and density are needed. When a test sample is
added to a space distributed with training samples data with different class information,
the sample’s probability of a class is determined from its nearest neighbor information.
In addition, the test sample is grouped with each of the available classes, and the
corresponding probabilities based on the densities are calculated. Using these two
probabilities, a membership value is computed for each associated class. We consider a
finite data sample fðt1; x1Þ; . . .ðtN ; xNÞg, where each tn 2 f1; 2::;Cg denotes the class
label and the D-dimensional feature vector xN 2 RD.

2.3.1 Probability of Class Information Based on the Distance (a)
As shown in Fig. 2, when a new test sample is introduced, its k nearest neighbors are
identified based on the Euclidean distances to every sample, and the probability of the
test sample class information is calculated by using a measure of likelihood for a
particular class [14].

In one scenario, a new test sample ŷ1 in the data-distributed space falls in between
three classes, as shown in Fig. 3. The computed nearest neighbors are samples of
class 1 and class 3, two from each, and one sample of class 2 (k = 5 is taken), so the

Fig. 2. Calculation of the probability of a class for new test samples.
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probabilities of the test samples for classes 1, 2, and 3 are 0.4, 0.2 and 0.4, respectively.
In another scenario, for a new test sample ŷ2, all computed nearest neighbors are of the
same class, class 2. Thus, the probabilities of new samples of classes 1, 2, and 3 are 0,
0, and 1, respectively. These obtained values are used to compute the membership
factor for each class.

2.3.2 Probability of Class Information Based on the Density (b)
As shown in Fig. 4, when a new test sample ŷ1 is added to the data distributed space,
we need to group the new sample into a class based on the information from the
training data samples.

Fig. 3. Probabilities of classes for a test sample, based on distance.

Fig. 4. Probabilities of classes for a sample, based on density.

Reliable Fault Diagnosis of Bearings 197



The k nearest neighbors are determined based on the Euclidean distances between
all data samples. The maximum of nearest neighbors distances of every sample in the
class are considered for computing the probability density function (PDF) for that
particular data group. Thus the selected nearest neighbor distance measures PDFs
might yield the same probability for different samples both with higher distances and
smaller distances, and in order to explicitly avoid confusion in classification, the
probabilities of the density distribution are modified, as shown in Fig. 5. Initially, we
find the peak of the distribution function (PDFmax), and the probabilities that fall before
the maximum of the density function are modified using

PDF
��! ¼ PDFmax þðPDFmax � PDFÞ; ð5Þ

where PDF
��!

is the modified pdf of the sample and PDF is the actual value.

Once the modified density distribution has been normalized, the probability of the
test sample is considered as a weight that can be used for scaling the probability
obtained from the distance-based similarity of that particular class. This entire proce-
dure is repeated for all available classes. The obtained values are used to compute the
membership factor for each class. Figure 6 shows the flow of the computational
procedure.

Fig. 5. (a) Actual probability density distribution (b) modified probability density function
distribution.

Fig. 6. Computing the probability of class information based on density.
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2.3.3 Assigning Membership Values
For N test data samples, we assign the membership value (MV) for C classes by using
the following formula:

MVt
n ¼ at þð1� atÞbt; n ¼ 1; 2; 3. . .N; t ¼ 1; 2; 3. . .C MV 2 ð0; 1Þ; ð6Þ

where a 2 ð0; 1Þ is the probability of a class of the test sample based on the distance,
and b 2 ð0; 1Þ is the probability of a class based on density similarity.

Let us consider the scenarios, shown in Fig. 3, with two test data samples y1
! and

y2
!. The sample y2

! is surrounded by the k nearest neighbors of the same class, and the
probability of a is 1 for that particular class and 0 for the remaining classes. In this case,
the sample belongs to class 2, and the decision is made on distance or density infor-
mation. Thus, when we compute our formula, the density scaling does not impact the
determination of the membership value. In the case of data sample y1

!, among the
k nearest neighbors, the majority rule of the traditional k-NN classifier would be prone
to misclassification. In the proposed method, when computing the membership value
for a class, our formula includes the probability of density-based information and scales
the probability based on the distance information accordingly, therefore providing more
reliable information regarding the class information of the test data sample.

2.4 Classification

For each test data sample, we have a set of membership values for each available class.
We find the maximum of the membership values to determine the class information of
a test sample:

C�y ¼ maxðMVtÞ; t ¼ 1; 2; 3. . .Cn:

The calculated class information is then compared to the original class information
of the test sample to determine the efficiency of the proposed algorithm.

3 Experimental Results and Analysis

We tested the proposed algorithm on the IMS bearing dataset, considering three types
of fault signature class information: BCIF, BCRF, and BCOF. Because typical k-NN
does not have a training stage, it does not entail a training time cost. To evaluate the
proposed methodology, we divided all the data samples from the dataset into two parts
(1:1), randomly assigning them to either a training dataset or a test dataset. Then, we
assigned each sample in the test dataset a set of membership values, which were scaled
factors based on distance and density similarity measures. The class of a sample was
determined based on the maximum value of the set of membership values for all
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Table 1. Accuracy of the proposed method compared with traditional k-NN.

k Algorithm BCIF BCOF BCRF

2 Traditional 99.60 79.30 92.60
Proposed 99.20 83.20 97.38

3 Traditional 93.54 86.20 79.94
Proposed 98.10 84.60 96.84

4 Traditional 89.90 79.30 81.87
Proposed 100.0 85.00 96.16

5 Traditional 80.82 88.32 84.09
Proposed 96.13 87.89 96.59

6 Traditional 80.82 81.20 80.44
Proposed 96.34 92.08 93.82

7 Traditional 83.40 74.60 69.97
Proposed 94.50 92.30 93.82

8 Traditional 91.23 83.40 87.75
Proposed 93.10 92.64 93.80

9 Traditional 84.60 79.30 62.45
Proposed 91.75 93.45 93.05

10 Traditional 87.33 86.90 86.53
Proposed 92.33 91.53 93.85

11 Traditional 89.90 65.00 98.87
Proposed 100.0 87.10 90.07

12 Traditional 89.05 82.44 80.66
Proposed 93.40 92.35 93.04

13 Traditional 78.00 70.00 78.80
Proposed 91.40 92.50 93.61

14 Traditional 88.90 65.00 88.05
Proposed 92.50 93.01 92.54

15 Traditional 89.00 79.00 83.08
Proposed 94.90 91.03 90.49

16 Traditional 84.33 84.55 78.42
Proposed 93.01 92.00 91.95

17 Traditional 85.66 85.66 85.66
Proposed 94.67 91.33 91.27

18 Traditional 98.00 74.30 78.80
Proposed 92.10 93.00 93.33

19 Traditional 91.00 79.00 81.10
Proposed 92.22 92.27 92.89

20 Traditional 91.32 73.00 86.21
Proposed 94.12 91.35 91.58
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available classes, which differentiates our proposed approach from other modified
k-NN classification techniques by making it insensitive to the k value.

To determine the classification accuracy, we compared the class information
obtained using the proposed method to the original class information of the test sample.
In this study, we examined the statistical feature set that is used by many researchers
to identify various bearing conditions in performance evaluation processes. In our
experiment, we performed a k-fold cross-validation for a k-value set at 5. To evaluate
the performance of our algorithm, we compared our proposed method to the traditional
k-NN classification technique. The results are provided in Table 1 for different values
of k and for the 3 tested fault signature classes. Figure 7 compares the overall effi-
ciencies for the traditional k-NN and for our proposed method. We observe that, when
using traditional k-NN, the classification accuracy varies with the neighborhood size
k. However, our proposed method is not sensitive to the k value. Especially at higher
values of k, the individual classification of classes is more consistent than with tradi-
tional k-NN.

4 Conclusions

In this study, we have proposed an improved k-NN classifier that uses a density-
weighted distance-based similarity measure. The proposed method improves the
diagnostic performance by using our fault diagnosis scheme for rolling element
bearings, which we tested based on bearing fault data obtained from IMS. The pro-
posed method showed significant improvement in accuracy, compared to traditional
k-NN, and its performance was robust to variations in the value of k, unlike traditional

Fig. 7. Comparison of overall experimental accuracies of the proposed versus traditional k-NN.
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k-NN. These improvements reduce the complexity and increase the reliability of
classification, as the empirical calculation of the optimal value of k is no longer
required.
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Abstract. As the generalization of TSP (Travelling Salesman Problem), TSPN
(TSP with Neighborhoods) is closely related to several important real-world
applications. However, TSPN is significantly more challenging than TSP as it is
inherently a mixed optimization task containing both combinatorial and con-
tinuous components. Different from previous studies where TSPN is either
tackled by approximation algorithms or formulated as a mixed integer problem,
we present a hybrid framework in which metaheuristics and classical TSP sol-
vers are combined strategically to produce high quality solutions for TSPN with
arbitrary neighborhoods. The most distinctive feature of our solution is that it
imposes no explicit restriction on the shape and size of neighborhoods, while
many existing TSPN solutions require the neighborhoods to be disks or ellipses.
Furthermore, various continuous optimization algorithms and TSP solvers can
be conveniently adopted as necessary. Experiment results show that, using two
off-the-shelf routines and without any specific performance tuning efforts, our
method can efficiently solve TSPN instances with up to 25 regions, which are
represented by both convex and concave random polygons.

Keywords: TSP � TSPN � Neighborhood � Hybrid � Metaheuristic

1 Introduction

TSP (Travelling Salesman Problem) is a well-known combinatorial optimization
problem, which has been extensively studied in the past decades [1]. Given a set of
n cities and their locations, an optimal (shortest) cyclic tour is required that visits each
city once and only once. Although it is possible to work out the optimal solution via
brute force search for small n values, TSP is an NP-hard problem and the size of the
search space (possible permutations of cities) grows quickly as n increases, making
exact methods computationally prohibitive. Since TSP has found wide applications in
robot motion planning, logistics and manufacturing, there are already a number of
techniques that can effectively tackle TSP instances with hundreds of cities using
approximation, heuristic or metaheuristic algorithms [2–4]. Furthermore, the classical
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TSP can be also extended to non-Euclidean spaces as well as a variety of interesting
problems, such as Asymmetric TSP and Generalized TSP (One-of-a-Set TSP) [5].

TSPN (TSP with Neighborhoods) is an extension of TSP in which each city is
represented by a continuous region called neighborhood and the optimal solution is the
shortest path that visits/connects all regions [6]. It is easy to see that when the size of
the region reduces to zero, TSPN is identical to TSP. There are several scenarios in
practice that can be formulated as TSPN. For example, given a set of geographically
distributed wireless sensors, it may be necessary to use a mobile robot to collect the
data from each sensor. Since each sensor has an effective communication range, typ-
ically represented by a disk, the mobile robot can download the data once it reaches the
boundary of the disk, instead of the exact location of the sensor itself. Similarly, a
postman delivering parcels to villages does not necessarily need to visit each household
in person. Instead, one resident in each village can serve as the agent to distribute
parcels to other residents in the same village. In both cases, the objective of route
planning is to find the shortest cyclic path that intersects with each region.

A formal definition of TSPN is as follows:

minimize:
Xn�1

i¼1

d psðiÞ; ps iþ 1ð Þ
� �þ d psðnÞ; ps 1ð Þ

� � ð1Þ

subject to:

pi 2 Qi � R
m; i 2 ½1; n� ð2Þ

s ið Þ 2 1; n½ �; s ið Þ 6¼ s jð Þ; 8i 6¼ j ð3Þ

According to Eq. 1, a TSPN tour contains n path segments, which sequentially
connect n regions. Equation 2 requires that each access point p must be within its
corresponding region Q. The fundamental property of TSP is ensured in Eq. 3 so that
each access point is visited once and only once. In our work, we assume that the
distances between any two points are symmetric.

TSPN is significantly more challenging than TSP as it contains both combinatorial
and continuous components. In fact, it is necessary to identify a proper access point for
each region as well as simultaneously find the optimal permutation of these access
points, which is itself a TSP task. These two objectives are also correlated. Given a set
of access points, its quality depends on the specific permutation while the quality of a
permutation depends on the access points selected. Since the objective function con-
tains different variable types, most optimization techniques cannot be applied in a
straightforward manner. After all, due to the presence of the continuous component, the
search space of TSPN is infinite, making it impossible to guarantee an optimal solution,
unless additional constraints are imposed on the regions.

In the literature, TSPN is largely attempted by approximation algorithms, which
aim at finding a PTAS (Polynomial-Time Approximation Scheme) for TSPN [7–10].
The major issue is that strict assumptions on neighborhoods (e.g., disks or fat objects
of comparable sizes) are essential for producing relatively compact approximation
factors, which are still often very large along with high time complexity. Since the
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implementations of these algorithms can be complicated and very few if any experi-
mental studies have been reported, their practicability remains unclear. TSPN can be
also formulated as a non-convex Mixed-Integer Nonlinear Program (MINLP), which
has the attractive feature that fixing all the integer variables can yield a convex non-
linear problem [11]. However, although the technique is claimed to be highly efficient,
only TSPN instances with up to 16 regions were tested. Furthermore, since each region
is specified by a set of inequalities, all regions are effectively restricted to convex
polygons. There are also a few studies on using metaheuristics for solving TSPN where
the regions are represented by disks of varying sizes [12, 13].

In practice, the shapes of regions can be complex. For example, a large number of
wireless sensors can be deployed in several areas that are distant from each other.
However, within each area, sensors may be densely distributed (sufficiently close to
each other) so that it is possible to transfer data from all sensors to a specific sensor
using multi-hop communication. As a result, instead of requiring the mobile robot to
visit each sensor, it only needs to visit a single sensor located in each area. Since the
communication range of each sensor is a disk, the neighborhood can be viewed as the
overlapping of many disks, creating an arbitrarily complex region (Fig. 1).

In this paper, we present a hybrid framework for solving TSPN with arbitrary
neighborhoods. The key feature is that there is little if any assumption on the shape of
regions, other than being able to sequentially represent each possible access point along
the region boundary. Meanwhile, the continuous component (optimization of access
points) is handled by a competent metaheuristic while the combinatorial component
(optimization of the order of access points) is handled by an efficient TSP solver.
Actually, the TSP solver is used as the fitness function in the metaheuristic to evaluate
the quality of candidate access points and is otherwise independent from the meta-
heuristic. By doing so, our method can benefit from state-of-the-art techniques in both
communities and is easy to apply by using off-the-shelf implementations.

Section 2 gives the representation of neighborhoods and access points used in our
work. It also shows the extra challenge due to non-convex regions. Section 3 presents

Fig. 1. An example of two clusters of wireless sensors. The effective range of each sensor is
shown as a disk and the overall shape of each cluster is very complex.

206 B. Yuan and T. Zhang



the details of the proposed hybrid framework while experiment results are shown in
Sect. 4 to demonstrate the performance of our method. This paper is concluded in
Sect. 5 with some discussions on the direction of future work.

2 Methodology

For the convenience of computing, each region (neighborhood) is specified by a ran-
dom simple polygon in the 2D Euclidean space. The number of edges can be manually
controlled and each polygon can be either convex or concave (Fig. 2), reflecting the
most general situation. Note that any neighborhoods can be reasonably approximated
by polygons with a large number of edges.

Meanwhile, creating random simple polygons is not a trivial task. A simple
polygon means a polygon without any intersecting sides. In this paper, we use an open
source routine based on the Delaunay triangulation of a set of random points [14].
Depending on the desired complexity of polygons, a number of random points are
generated within an area and a polygon is then created based on them. Alternatively,
given a specific region (e.g., the map of a city), we can sequentially sample data points
along the boundary to form the polygon.

Once the parameters (coordinates of vertices) of a polygon are determined, a key
factor is how to represent each access point. In the 2D space, each access point can be
naïvely represented by its X and Y coordinates. However, it is not convenient as two
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Fig. 2. A concave polygon with 6 vertices. The top-right vertex is assumed to be the starting
point. Each vertex is encoded as a continuous value along the anti-clockwise direction.
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values are needed (with possibly different ranges) and special constraint handling is
required to make sure that the access point is valid (located on the boundary). More
specifically, metaheuristics often apply operators such as crossover and mutation on
candidate solutions, altering their values randomly. As a result, a simple box-bounded
search space is preferred as metaheuristics often do not come with advanced constraint
handling strategies.

For regular shapes such disks, it is possible to use the polar coordinate system
according to which each access point is encoded as an angle value. Since there is no
specific assumption on the shape of neighborhoods, we cannot rely on any parametric
representation of the boundary. Instead, we propose to use the following coding
scheme, which is applicable to any type of polygons:

E xð Þ ¼
Pk�1

i¼0 d vi; viþ 1ð Þ þ d vk; xð Þ
L

ð4Þ

Given a polygon and its ordered list of vertices v0, …, vn−1, assume vk is the vertex
directly preceding access point x and L is the length of the entire boundary. Access
point x is encoded as the ratio between its distance from v0 along the boundary and the
perimeter of the polygon, as shown in Eq. 4. By doing so, each access point is rep-
resented by a single variable within [0, 1) and any value within [0, 1) corresponds to a
unique access point on the boundary. Note that any vertex can by chosen as the starting
point v0 and the direction (clockwise vs. anti-clockwise) is not critical. Figure 2 shows
the encoded values of the 6 vertices following the anti-clockwise direction where the
top-right vertex is regarded as v0.

Finally, non-convex regions present significant challenges to traditional TSPN
techniques. For example, for disk regions, it is easy to predict the distribution of
optimal access points given the order of disks, reducing the search space dramatically.
Furthermore, convex optimization methods are no longer valid as the search area
cannot be represented by a set of inequalities. Also, the structure of the search space is
likely to be more complex with non-convex regions. For example, given a disk and an
external point x, assume that the nearest point on the disk boundary is x′. As the access
point moves away from x′, the distance between x and the access point is expected to
increase monotonically, creating a smooth landscape. However, for non-convex
regions, this is not necessarily the truth. Instead, the resulting landscape may be highly
multimodal with several peaks (local optima), which creates much higher-level diffi-
culty for optimization techniques.

3 Framework

The motivation of proposing a hybrid framework is largely due to the fact that solving
TSPN involves two sub-tasks: the optimization of the locations of access points
(continuous) and the optimization of the order of access points (combinatorial). The
classical optimization community has produced many efficient TSP solvers, which can
reliably find high quality tours for problems with hundreds of cities within a fairly
small amount of time. Meanwhile, the metaheuristic community has come up with
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competent stochastic algorithms that can effectively handle multimodal problems with
little assumption on their structure (e.g., being convex or differentiable). After all,
although metaheuristics can be used to solve TSP, their performance is typically not
comparable to state-of-the-art TSP solvers based on well-studied heuristics.

The objective is to introduce a general TSPN solution, which builds upon existing
research outcomes and can hide most of the unnecessary details from practitioners.
Unlike many existing studies that present specifically tailored methods, which are often
sophisticated and difficult to deploy, our framework is easy to implement by incor-
porating off-the-shelf routines. Although it is possible to formulate TSPN as a mixed
optimization problem where the two types of variables are optimized simultaneously,
the two sub-tasks can be accomplished separately. In Fig. 3, the metaheuristic is
dedicated to optimizing the locations of access points while the quality (fitness) of each
set of candidate access points is evaluated by a TSP solver, which returns the length of
the TSP tour (expected to be identical or sufficiently close to the optimal tour for small
scale problems). By doing so, the two sub-tasks are solved alternately, which reduces
the complexity of the original problem and makes different algorithms work on their
most suitable problems. In fact, users only need to specify the coding scheme and select
the desired optimization routines (Algorithm 1).

Algorithm 1: Hybrid TSPN Solution

Input:  Coordinates of vertices of n polygons
Output: p(access points), τ(permutation)
P ← a population of random n-D vectors
Repeat until stopping criteria met

Repeat evaluate each vector pi in P
C ← Decode(pi) 
[Li,τi]← TSP_Solver(C)
Return tour length Li as the fitness

End
P← Metaheuristic(P,L)

End
Return best p* and τ* found

Given n regions, the original optimization problem is as follows where x is an n−D
real vector (locations) and τ is the permutation of n regions:

minx mins f ðx; sÞ ð5Þ

In Eq. 5, f (x, τ) returns the length of the tour defined by x and τ. In the proposed
framework, the objective function used by the metaheuristic is:
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gðxÞ ¼ f ðx; s�Þ where s� : mins f ðx; sÞ ð6Þ

According to Eq. 6, g(x) works by finding the optimal τ* for the given x and
returning the corresponding f (x, τ*) value as the quality of the candidate solution. It is
clear that, if f (x, τ) takes its minimum value at [xg, τg], it is always the truth that g(xg) is
also the minimum value of g(x), which proves the correctness of our method.

4 Experiments

The objective of the experiments is to demonstrate the simplicity and effectiveness of
the proposed framework. For this purpose, we selected an open source metaheuristic
routine CMA-ES [15, 16] due to its featured capability of working with small popu-
lations and handling complex dependences among variables and an open source TSP
solver [17]. These two methods were not meant to be the optimal choices and no
specific performance tuning was conducted.

4.1 Case Studies

Each polygon was created randomly within a 1-by-1 area with up to 6 edges, which can
be either convex or concave. The diversity of generated polygons can be observed
intuitively in Fig. 4. All polygons were distributed randomly within a 5-by-5 area
without overlapping. Most of the parameter settings in CMA-ES were as the default,
except the search boundary, which was bounded between 0 and 1 in each dimension, in
accordance with the encoding scheme. Note that the dimension of the continuous
search space is equal to the number of regions. As to the TSP solver, it works by
randomly selecting a starting node and building an initial tour using the nearest
neighbor method, which is then gradually improved by the 2-opt algorithm.

Figure 4 shows an example of a TSPN tour among 10 polygons. The access point
of each region is shown in circle. For TSPN, it is generally not feasible to have the prior
knowledge about the optimal tour. Meanwhile, existing TSPN techniques are often not
directly applicable to complex neighborhoods and cannot be used for comparison

Fig. 3. The proposed hybrid framework for solving TSPN with arbitrary neighborhoods
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purpose. Nevertheless, it is still possible to verify the effectiveness of our method by
examining the performance curve in Fig. 5. At the beginning of iteration, the length of
the best tour was around 15.5. In fact, each tour in the initial population was created by
randomly selecting a set of access points and applying the TSP solver to find the
corresponding shortest path. As a result, these tours were partially optimized TSPN
solutions and can be used as the base line. After only 50 iterations, the length of the
best tour was already reduced to 12.5 and kept improving slightly till 12.45, which was
a common pattern across different trials. After all, for this relatively small scale
instance, the quality of the resulting tour can be also inspected visually.

Figure 6 shows an example of a TSPN tour among 25 polygons. It is clear that, for
problems at this scale, it is already very difficult to manually work out a near-optimal
solution. However, our method constructed a TSPN tour with length under 17 and the
quality of the tour can again be observed: there were several cases where a single line
segment connected multiple regions, a desirable feature for producing short tours.

The efficiency of our method is also evident. On an entry level desktop computer
with Intel i5-3470S at 2.9 GHz CPU, 10-region TSPN instances were typically solved
to a reasonable level in less than 5 s while 25-region TSPN instances required less than
15 s. Note that metaheuristics such as CMA-ES often feature good potential of par-
allelism and one to two orders of magnitude speedup can be expected using advanced
parallel computing techniques such as GPU computing [18].

4.2 Problem Analysis

Finally, it is equally important to have some insights into the structure of the problem to
understand the challenges confronted by optimization algorithms. We focus on the
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Fig. 4. A 10-region TSPN tour, showing the selected access point of each region
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Fig. 6. A 25-region TSPN tour, showing the selected access point of each region
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continuous sub-task as the combinatorial part (TSP) has been extensively studied in the
literature. Figure 7 (left) shows a TSPN instance with three polygons so that the
optimal permutation is trivial. Totally 10,000 random candidates were generated with
each one represented by a 3-D vector within the range [0, 1). The fitness of each
candidate was evaluated by the length of the corresponding tour (i.e., a triangle). The
candidate with the shortest distance was regarded as the optimal solution and its
distances to all other candidates were calculated.

In Fig. 7 (right), each candidate is represented by its Euclidean distance to the best
solution (horizontal axis) and its fitness value (vertical axis). This type of plot is often
referred to as the fitness-distance plot [19], which can provide intuitive information
about the difficulty of problems. It is clear that in the region close to the best solution,
there is a positive correlation between fitness and distance: the closer a candidate to the
best candidate, the better its quality. This pattern generally indicates optimization
friendly problem structure, as it provides an effective guidance on the search direction.
However, things are quite different on the far side. Candidates in these regions tend to
get worse (longer tours) when moving closer to the best candidate, which may
unfortunately create a deceptive search space and mislead the optimization process.

There are a number of factors that can influence the correlation between fitness and
distance. For example, the pattern in Fig. 7 (right) may imply that the problem is
inherently multimodal and traditional gradient based methods may not work well. Note
that the encoding scheme will also have direct impact on the problem structure.

5 Conclusion

As a class of optimization problems with significant practical implications, TSPN with
arbitrary neighborhoods presents unprecedented challenges to approximation algo-
rithms and convex optimization techniques and no effective solutions are available in
the literature. In our work, we present a novel hybrid framework that combines
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Fig. 7. A TSPN example with three polygons (left) and the fitness-distance plot (right), which
shows the relationship between the quality of candidates and their distances to the best solution.
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competent algorithms from both continuous and combinatorial optimization commu-
nities to tackle TSPN with complex neighborhoods. Without the need to directly
confront a mixed optimization problem, our method features demonstrated simplicity
(largely using off-the-shelf routines), flexibility (imposing little assumption on neigh-
borhoods) and efficiency (solving non-trivial TSPN instances in seconds). The current
preliminary study can serve as the foundation for more comprehensive research on
solving large-scale TSPN instances as well as many interesting related problems such
as the safari route problem and the zookeeper route problem. We will also make the
source code available online to help researchers and practitioners further extend and
investigate this hybrid framework.
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Abstract. A dynamic Optimisation Problem with Unknown Active Variables
(DOPUAV) is a dynamic problem in which the activity of the variables changes
as time passes, to simulate the dynamicity in the problem’s variables. In this
paper, several variations of genetic algorithms are proposed to solve DOPUAV.
They are called Detectable techniques. These techniques try to detect where the
problem changes, before detecting the active variables. These variations are
tested, then the best variation is compared with the best previously used algo-
rithms namely Hyper Mutation (HyperM), Random Immigration GA (RIGA), as
well as simple GA (SGA). The results and statistical analysis show the supe-
riority of our proposed algorithm.

Keywords: Active � Detectable � Dynamic optimisation problems � Genetic
algorithms

1 Introduction

Dynamic optimisation (DO) is one of the most important optimisation circumstances
that relates to real-life applications. This is because most of these applications change
as time passes e.g. the traffic congestion and conditions in transportation. Therefore,
DO has received increasing attention in the optimisation research area. In the literature
of DO, most of the research considered dynamicity in functions and constraints. In
these types of dynamic optimisation, the objective functions and the problem’s con-
straints change as time passes. However, there are motivations to investigate other
types of dynamicity, e.g. variables and their boundaries [1, 2]. In 2014, we proposed a
dynamic optimisation problem with changeable effective variables, in which the
effective/active variables change as time passes [3]. Additionally, a class of algorithms
was proposed to solve such problems. These algorithms tried to detect the active
variables at regular intervals of a specific number of generations. They were called
periodic genetic algorithms (PerGAs). One of the PerGAs variations was superior when
compared with a simple GA (SGA).
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In this paper, the Dynamic Optimisation Problem with Unknown Active Variables
(DOPUAV) is further investigated. DOPUAV is a dynamic problem, in which the
activity of its variables changes as time passes, to simulate the dynamicity in the
problem’s variables. To solve it, we propose a type of algorithms, which tries to detect
if a problem changes every specific number of generations. Then, if a change is
detected, the algorithm attempts to detect the active variables. These types of algo-
rithms are called the Detectable approaches. Therefore, they consist of two basic
processes, i.e. problem change detection and active variables detection. This paper
investigates these processes to solve DOPUAV. Then, this type of algorithms is paired
with genetic algorithms (DetGAs), additionally some variations of DetGA are com-
pared to determine the best variation of such algorithms. Finally, the best variation is
compared with the best previously used algorithm, periodic GA (PerGA) [3], along
with state-of-the-art dynamic algorithms, i.e. Hyper Mutation (HyperM), and Random
Immigration GA (RIGA), as well as simple GA (SGA).

The rest of this paper is organised as follows. In Sect. 2, the dynamic optimisation
problem with unknown active variables (DOPUAV) is defined. In Sect. 3, the
detectable Genetic Algorithms-based (DetGA) is proposed and its processes are pre-
sented. In Sect. 4, some DetGA variations are coded, tested and compared, and then the
best variation is compared with the best previously used algorithm, along with the
above stated dynamic algorithms. Furthermore, a discussion of the implications of the
results and some suggestions for future work concludes this paper in Sect. 5.

2 Dynamic Optimisation Problem with Unknown Active
Variables

The dynamic Optimisation Problem with Unknown Active Variables (DOPUAV) is a
dynamic optimisation problem in which the activity of its variables changes as time
passes. Therefore, in some time periods a particular set of variables affect the objective
function while others do not.

To simulate such a dynamic problem, a mask is used to define which variables
should be active and inactive. This mask consists of zeros and ones and has a length
equal to the problem’s dimensions. These zeros and ones are similar to coefficients for
problem variables, where ones are multiplied by the active variables, and zeros are
multiplied by the inactive variables. The creation of the problem mask is presented in
the next section.

2.1 Mask Creation

To formulate DOPUAV, the activity of the variables is simulated using a mask. A mask
is a vector of the same length as the problem’s dimensionality, and it consists of binary
values of zeros and ones. In this mask, a ‘Zero’ value indicates that the variable is
currently inactive, while a ‘One’ value represents an active variable.

An example of how the mask would be created as follows. Suppose that a problem
has 5 variables as its maximum number of variables, and that 40% of these variables
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are inactive. Therefore, 2 random indices are generated, for example, 2 and 4, and are
given ‘Zero’ values to simulate the inactivity of these variables, as shown in Fig. 1.

To evaluate a solution with this mask, mask values are multiplied by the actual
values of the solution’s variables, then this multiplication result will be evaluated to get
the objective function value of that solution. Figure 2 clarifies this process as follows:

Suppose that the sphere function (
P

x2) is used as an objective function, so the
fitness value of this solution is 43 (9 + 9 + 25), not 63 (9 + 4 + 9 + 16 + 25), as it
would be if the solution’s variables were used on their own.

2.2 An Illustrative Example for DOPUAV

In this section, an illustrative example is provided to clarify how a DOPUAV would be
a challengeable problem for conventional algorithms.

Suppose that the sphere function is used as an objective function, and it has two
variables (x1 and x2), and there are different problem masks over three time periods. In
the 1st time period, a problem mask is [1, 0]. In the 2nd time period, a problem mask is
[0, 1]. In the 3rd time period, a problem mask is [1, 1].

Let a simple genetic algorithm (SGA) be used to solve this DOPUAV, to test how it
might perform. During this process, the convergence and standard deviations of the
three variable are detected over the best 10 solutions in each generation. This GA has a
real-coded representation, tournament selection, single-point crossover and uniform
mutation. The experimental settings are presented in Table 1. Note that these settings
are the same in the remaining part of this paper, unless otherwise stated.

1 0 1 0 1

Fig. 1. Example for a problem mask

Mask values
Solution values

Actual values to be evalu-
ated

1 0 11 0
3 2 -3 4 5
3 0 -3 0 5

Fig. 2. Using the mask for solution evaluation

Table 1. Experimental settings

Parameter Settings

Population size 50
Selection pressure Two chromosomes
Crossover probability 0.60
Mutation probability 0.10
Elitism probability 0.02

218 A.F.M. AbdAllah et al.



Variables’ Convergence
The convergence of the variables represents where variable values converge towards a
specific value. The convergence of variable x1 and x2 are shown in Figs. 3 and 4
respectively as follows:

From these figures, it is clear that when a variable is active it converges to a specific
value that would achieve better fitness function (0 value for the optimal solution). The
figures show that x1 converge from the 1st to the 100th generation; as it is active. When
x1 is switched to be inactive from the 101st to the 200th generation, it randomly
diverges to different values, while x2 converges as it is switched to be active. Also,
from the 201st to the 300th generation, both x1 and x2 converge as being active.
Finally, Fig. 5 shows how the activity of the variables affect the fitness function
convergence.

From Figs. 3 and 4, when a variable is active it affects the objective functions and
the solving algorithms, so it converges. On the other hand, when inactive it diverges.
Finally, in Fig. 5, when the activity of the variable changes the best solution increases
at generation 10 and 20. Therefore, DOPUAV might be difficult for conventional
algorithms to solve.

Here, we also tried to record and track one of the properties of the variables e.g. the
standard deviation of each variable to check how it might be affected by the activity of

Fig. 3. The convergence of the first variable

Fig. 4. The convergence of the second variable
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the variable. In this paper, the standard deviation of the variable shows how the values
of a variable differ from each other in the best 10 solutions in the current population.

In this figure, it is clear that when a variable is active in a time period, its standard
deviation becomes smaller than that of the other. This is because of its convergence, as
illustrated and shown in the previous figures (Fig. 6).

3 Detectable Genetic Algorithms-Based Techniques

Detectable Genetic Algorithms-based techniques (DetGAs) are GAs that try to detect
whether there is a change in the problem or not. If a change is detected it tries to detect
the current mask that affects the problem in the current time period. Therefore, DetGAs
try to save fitness evaluations by not periodically detecting the mask every number of
generations, in contrast to periodic GAs (PerGAs) [3]. Figure 7 shows the basic
structure for a DetGA.

Note that during the mutation process, variables that are detected as inactive are not
mutated. This is to prevent them diverging, as shown in the previous section.

Fig. 5. Best solution over generations

Fig. 6. Variables’ standard deviations over generations
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3.1 Change Detection Process

In the change detection process, a solution is regularly re-evaluated every g genera-
tions, where g is a parameter that determines how often the problem change should be
detected. If the fitness value of this solution is changed, the problem is detected to be
changed, otherwise not. In DOPUAV, the change of the inactive variables affects the
problem fitness landscape in contrast to DOP that have changes in the fitness function
or constraints [4], where changes might affect only a part of its landscape. Therefore,
one solution (detector) is used for change detection of DOPUAV.

3.2 Mask Detection Process

When a change is detected, a mask detection process (Algorithm 1) is used. Hence the
efficiency of an algorithm for solving DOPUAV depends on determining and tracking
the active dimensions to be optimised. This is because inactive variables do not
undergo mutation process.

Fig. 7. The basic structure of the DetGA

Algorithm 1: Single-point sample mask detection procedure

(a) A random solution is chosen from the current population.
(b) Calculate its actual fitness, let it be F1.
(c) For each dimension, a random value is generated:

(c.i) The value of the objective function (fitness) is recalculated for the solution with 
the new random value, let it be F2.

(c.ii) If F1 is equal to F2, then this dimension is detected as inactive (its detected mask 
value is equal to 0), otherwise it is detected as active (its detected mask value is equal to 1).
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To determine how effectively the mask should be detected for DOPUAV, some
experiments were conducted. In step (c) in Algorithm 1, when generating a random
value, the value must be non-zero and not same absolute value as its original value.
This is done to reduce the false detections by reducing the chance that a new value has
the same fitness as its old value.

4 Experimental Setup and Results

The experiments in this paper are twofold. First, some variations for DetGA are created
to determine the best frequency of change detection. Second, the best variation from
these variations will be compared with other algorithms. These comparisons are con-
ducted in regards to two main settings:

• Number of inactive variables (NOIV); this determines how many variables are
inactive

• Frequency of change (FOC); this determines how often the problem changes.

To compare the quality of the obtained solutions from the compared algorithms, a
variation of the Best-of-Generation measure is used, where best-of-generation values
are averaged over all generations [5]. The average of the Best-of-Generation measure
(ABOG) is calculated as follows:

�FBOG ¼ 1
N

XN
j¼1

1
G

XG
i¼1

FBOGij

 !
ð1Þ

where �FBOG is the mean best-of-generation fitness, G is the number of generations, N is
the total number of runs and FBOGij is the best-of-generation fitness of generation i of
run j of an algorithm on a problem [6]. As mentioned in the literature, one of the pitfalls
of ABOGs is bias, as problems have different scales in different change periods.
Furthermore, solved functions have different scales for their objective functions values.
The �FBOG of each change of a function is normalised between 0 and 1, using the best
and worst �FBOG for all compared algorithms at each change. Then, these values are
averaged over the total number of changes.

In this paper, eight different objective functions are used. Of these, five are com-
pletely separable problems, while the last three functions are non-separable. The five
separable problems are Sphere, Ackley, Griewank, Restrigin and Weierstrass [7], while
the other three are non-separable functions, namely, Levy, Rosenbrock and Trid [8].
Note that fitness evaluations used in the problem change detection and mask detection
processes are calculated from the allowed budget of FOC.

4.1 DetGA Variations

To evaluate the performance of the proposed techniques, first some variations are
created for comparison to determine how often the problem change should be
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effectively detected to solve DOPUAV. These variations are DetGA1, DetGA5,
DetGA10 and DetGA20 in which the problem change is detected every 1, 5, 10 and 20
generations respectively. Experimental settings are shown in Table 2.

ABOGs Normalised Scores
First, the DetGA variations are compared using the normalised scores for ABOGs, as
previously mentioned. Note that lower values are better and the lowest are shown as
bold and shaded entries. Tables 3 and 4 show results of normalised ABOFGs for the
compared techniques in regards to the NOIV and the FOC respectively.

From the previous tables, it is clearly observed that DetGA1 is the best DetGA
compared with others. Also, the performance of the DetGAs degrades when the period
of the change detection increases: DetGA1 outperforms DetGA5, DetGA5 outperforms
DetGA10, etc.

Freidman Test
A statistical significance test was also used to rank the group of algorithms. That test
was the non-parametric Friedman test, which is similar to the parametric repeated
measure ANOVA [1, 9]. A non-parametric statistical test was used because the
obtained solutions of the compared algorithms are not normally distributed. The
Friedman test was performed with a confidence level of 95% (α = 0.05) on all the
values, with regard to the particular variations of the parameters of DOPUAVs, with

Table 2. Problems parameters

Parameter Settings

Number of variables 20
The frequency of change (FOC) 500, 2000, 8000
The severity of change (NOIV) 5 and 10 inactive variables

Table 3. ABOGs normalised score for DetGAs variations in regards to NOIV

NOIV DetGA1 DetGA5 DetGA10 DetGA20
5 0.1248 0.4685 0.6843 0.7416

10 0.0910 0.4130 0.7083 0.7988
Average 0.1079 0.4407 0.6963 0.7702

Table 4. ABOGs normalised score for DetGAs variations in regards to FOC

FOC DetGA1 DetGA5 DetGA10 DetGA20
500 0.0682 0.4070 0.5898 0.8592
2000 0.1474 0.4414 0.7630 0.7308
8000 0.1080 0.4738 0.7362 0.7206

Average 0.1079 0.4407 0.6963 0.7702
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the null hypothesis being that there is no significant differences among the perfor-
mances of the compared algorithms. The computational value of the p-value is a very
small value, less than 0.00001. The Friedman average ranks test for the compared
DetGAs is shown in Table 5; this table supports the above-mentioned observations.

4.2 Comparing with State-of-the-Art Algorithms

In this section, to evaluate the performance of the best variation for DetGA (DetGA1),
it is compared with some other state-of-the-art algorithms to solve DOPUAVs. These
algorithms are:

• Best PerGAs (PerGA5) [3],
• Simple GA (SGA),
• Hypermutation Genetic Algorithm (HyperM) and
• Random Immigration Genetic Algorithm (RIGA)

The first GA is the best variation of Periodic GAs (PerGAs), which periodically
detect the mask of the problem every 5 generations. The second GA is a simple GA
(SGA), in which its operators work normally without any modifications. In other
words, processes of selection, crossover and mutation deal with all variables without
any consideration of the activity of variables. The other two algorithms (HyperM and
RIGA) are used because these two algorithms have been extensively and intensively
studied, so using them facilitates comparing new experimental data with existing
results. In both HyperM and RIGA, base mutation equals 0.001 [10, 11]. In HyperM,
the hyper rate of the mutation is assigned to 0.5 [10], whereas, in RIGA, the percentage
of random immigration is assigned to 0.3 [11]. Note that HyperM switches to
hyper-mutation rate when the fitness of the best found solution is increased in min-
imisation problems, otherwise, it uses the base mutation rate.

ABOGs Normalised Scores
First, these algorithms are compared using the normalised scores for ABOGs. Note that
lower values are better and the lowest are shown as bold and shaded entries. Table 6
shows results of normalised ABOFGs for the compared techniques in regards to NOIV,
whereas Table 7 shows the comparison in regards to FOC.

Table 5. Friedman test ranks test for DetGAs

DetGA1 DetGA5 DetGA10 DetGA20
Average rank 1.78 2.38 2.88 2.96

Table 6. ABOGs normalised score for the compared algorithms in regards to NOIV

NOIV DetGA1 PerGA5 SGA RIGA HyperM
5 0.0298 0.1543 0.4551 0.6769 0.8100

10 0.0247 0.1418 0.1908 0.5749 0.9439
Average 0.0272 0.1481 0.3229 0.6259 0.8769
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From the previous tables, first in regards to NOIV, as NOIV increases, the number
of active variables decreases, which simplifies the problem by containing a smaller
number of variables that affect the objective function. So the scores are getting less
when NOIV increases. However, as HyperM had a very low base mutation rate so its
performance degrades as the number of active variables decreases. In contrast, as FOC
increases, variables have more time to incorrectly mutate. So, for SGA and RIGA, their
scores get worse as FOC increases. However, FOC does not adversely affect HyperM;
this is because of its low rate.

Between the state-of-the-art algorithms, HyperM is the worst as its default mutation
rate is too low (0.001) and it is triggered to use the hyper mutation rate if and only if the
fitness of the current best solution is higher than the new best solution in the current
generation. Therefore, this trigger condition might not be applied in DOPUAVs.
Finally, algorithms that take into consideration the activity of the variables outperform
all other compared algorithms, especially DetGA1. This is because DetGA1 uses the
mask detection process when the problem changes; this lets it save more fitness
evaluations.

Wilcoxon Signed-Rank Test
A Wilcoxon signed rank test [12] was used to statistically judge the difference between
paired scores. As a null hypothesis, it is assumed that there is no significant difference
between the obtained values of two samples, whereas the alternative hypothesis is that
there is a significant difference at a 5% significance level. Based on the obtained results,
one of three signs (+, −, and ≈) is assigned when the first algorithm was significantly
better, worse than, or no significant difference with the second algorithm, respectively.
Here, DetGA1 is compared with the other algorithms. Tables 8 and 9 show the Wil-
coxon signed rank test in regards to NOIV and FOC, respectively.

Table 7. ABOGs normalised score for the compared algorithms in regards to FOC

FOC DetGA1 PerGA5 SGA RIGA HyperM
500 0.0429 0.1524 0.2302 0.5957 0.9456

2000 0.0259 0.1825 0.3478 0.6088 0.8926
8000 0.0129 0.1092 0.3909 0.6733 0.7926

Average 0.0272 0.1481 0.3229 0.6259 0.8769

Table 8. Wilcoxon signed rank test results for compared algorithms in regards to the NOIV

NOIV Comparison Better Worse Significance

5 DetGA1-to-PerGA5 200 40 +
DetGA1-to-SGA 192 48 +
DetGA1-to-RIGA 239 19 +
DetGA1-to-HyperM 238 2 +

10 DetGA1-to-PerGA5 223 17 +
DetGA1-to-SGA 187 53 +
DetGA1-to-RIGA 237 3 +
DetGA1-to-HyperM 239 1 +
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From Wilcoxon signed rank test results, it is clearly shown that DetGA1 is sig-
nificantly the best algorithm for solving DOPUAVs.

Friedman Test
Finally, a Freidman average ranks test is used to rank the algorithms. Its results are
shown in Table 10; this table supports the above-mentioned observations.

5 Summary and Future Work

The Dynamic Optimisation Problem with Unknown Active Variables (DOPUAV) is a
dynamic problem, in which the activity of the variables changes as time passes, to
simulate the dynamicity in a problem’s variables. In this paper, Detectable genetic
algorithms (DetGAs) are used to solve DOPUAV. DetGAs try to detect as a problem
changes, before detecting the active variables. From DetGAs tested variations,
DetGA1, which detects the problem every generation, outperforms the others. Fur-
thermore, DetGA1 is compared with state-of-the-art algorithms, and from these com-
parisons, DetGA1 proved that it was better, based on statistical analysis compared to all
the compared algorithms.

There are many directions for future work. The first direction, because Detectable GA
consumes fitness evaluations for detecting problem change, might be better to implicitly
detect the mask by observing some behaviour of the problem variables, rather than
detecting the problem mask. The second direction is attempting to solve the paired
DOPUAVs with dynamic constrained optimisation problems (DCOPs) [4].

Table 9. Wilcoxon signed rank test results for compared algorithms in regards to the FOC

FOC Comparison Better Worse Significance

500 DetGA1-to-PerGA5 130 30 +
DetGA1-to-SGA 126 34 +
DetGA1-to-RIGA 160 0 +
DetGA1-to-HyperM 159 1 +

2000 DetGA1-to-PerGA5 145 15 +
DetGA1-to-SGA 124 36 +
DetGA1-to-RIGA 154 6 +
DetGA1-to-HyperM 159 1 +

8000 DetGA1-to-PerGA5 148 12 +
DetGA1-to-SGA 129 31 +
DetGA1-to-RIGA 160 0 +
DetGA1-to-HyperM 159 1 +

Table 10. Freidman test mean ranks for the compared algorithms

DetGA1 PerGA5 SGA RIGA HyperM
Mean Rank 1.34 2.29 2.75 4.06 4.56
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Abstract. It is known that neighbourhood structures affect search per-
formance. In this study we analyse a series of neighbourhood structures
to facilitate the search. The well known steepest descent (SD) local
search algorithm is used in this study as it is parameter free. The search
problem used is the Google Machine Reassignment Problem (GMRP).
GMRP is a recent real world problem proposed at ROADEF/EURO
challenge 2012 competition. It consists in reassigning a set of services
into a set of machines for which the aim is to improve the machine usage
while satisfying numerous constraints. In this paper, the effectiveness of
three neighbourhood structures and their combinations are evaluated on
GMRP instances, which are very diverse in terms of number of processes,
resources and machines. The results show that neighbourhood structure
does have impact on search performance. A combined neighbourhood
structures with SD can achieve results better than SD with single neigh-
bourhood structure.

Keywords: Google Machine Reassignment Problem · Neighbourhood
structures · Cloud computing · Evolutionary algorithms

1 Introduction

Cloud computing is a fast growing area, which is to provide network access to
computing resources including storage, processing and network bandwidth [2,4].
Service providers like Google and Amazon need to manage a large-scale data
centers of which the computing resources are to be shared by end users with
high quality of service. Recently, with the steady growth of cloud services and
Internet, the importance of solving such resource management problems becomes
one of the most important targets in the optimisation community [4]. Our study
aims to investigate better methodology to optimise cloud computing resource
allocation. The task can be considered as a combinatorial optimisation problem.

In particular Google Machine Reassignment Problem (GMRP) is used as the
benchmark task. GMRP is proposed at ROADEF/EURO challenge 2012 com-
petition [1]. The main goal of this problem is to optimise the usage of cloud
computing resources by reassigning a set of processes across a pool of servers
subject to a set of hard constraints which can not be violated. A number of
c© Springer International Publishing AG 2017
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algorithms have been proposed to solve GMRP. These include simulated anneal-
ing [11,12,15], variable neighbourhood search [5], constraint programming-based
large neighbourhood search [9], large neighbourhood search [3], multi-start iter-
ated local search [8], memetic algorithm [13], late acceptance hill-climbing [14]
and restricted iterated local search [6].

In this work, we study the behaviours of different neighbourhood structures
on GMRP. A well known local search algorithm, steepest descent (SD) [10], is
used as the base method, as it is completely parameter free [7,17]. SD starts with
an initial solution, then generates a neighbourhood solution. SD repeatedly sub-
stitutes the current solution by the best newly generated solution until there is
no more improvement [17]. Three different neighbourhood structures are investi-
gated in this work. They are Shift, Swap and reassigning big process. The effects
of these neighbourhood structures and their combinations on SD algorithm are
evaluated on instances of GMRP from ROADED/EURO 2012 challenge. These
instances are very diverse in size and features.

The remainder of the paper is organised as follow: In Sect. 2, we present the
problem description. Section 3 describes the neighbourhood structures with the
SD algorithm. Section 4 explains the experimental setting including the problem
instances. Section 5 shows the experimental results. Section 6 is for discussion
which mainly covers the comparison with state of the art methods. This study
is concluded at Sect. 7. The future work is discussed in the last section.

2 Problem Description

GMRP is a combinatorial optimisation problem proposed at ROADEF/EURO
Challenge 2012 Competition [1]. The main elements of this problem are a set of
machines M and a set of processes P. The goal of this problem is to find the
optimal way to assign process p ∈ P to machines m ∈ M in order to improve the
usage of a given set of machines. One machine consists of a set of resources such
as CPUs and RAM. One process can be moved from one machine to another to
improve overall machine usage. The allocation of processes must not violate the
following hard constraints:

– Capacity constraints: the sum of requirements of resource of all processes does
not exceed the capacity of the allocated machine.

– Conflict constraints: processes of the same service must be allocated into dif-
ferent machines.

– Transient usage constraints: if a process is moved from one machine to another,
it requires adequate amount of capacity on both machines.

– Spread constraints: the set of machines is partitioned into locations and
processes of the same service should be allocated to machines in a number
of distinct locations.

– Dependency constraints: the set of machines are partitioned into neighbour-
hoods. Then, if there is a service depends on another service, then the process
of first one should be assigned to the neighbouring machine of second one or
vice versa.
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A feasible solution to GMRP is a process-machine assignment which satisfies
all hard constraints and minimises the weighted cost function as much as possible
which is calculated as follows:

f =
∑

r∈R

weightloadCost(r) × loadCost(r)

+
∑

b∈B

weightbalanceCost(b) × balanceCost(b)

+ weightprocessMoveCost × processMoveCost

+ weightserviceMoveCost × serviceMoveCost

+ weightmachineMoveCost × machineMoveCost (1)

where R is a set of resources, loadCost represents the used capacity by resource
r which exceeds the safety capacity, balanceCost represents the use of available
machine, processMoveCost is the cost of moving a process from its current
machine to a new one, serviceMoveCost represents the maximum number of
moved processes over services and machineMoveCost represents the sum of
all moves weighted by relevant machine cost. weightloadCost, weightbalanceCost,
weightprocessMoveCost, weightserviceMoveCost and weightmachineMoveCost define
the importance of each individual cost.

For more details about the constraints, the costs and their weights can be
found on the challenge documentation [1]. Note that the quality of a solution
is evaluated by the given solution checker, which returns fitness measure to the
best solution generated by our proposed algorithm. Another important aspect of
this challenge is the time limit. All methods have to finish within the 5-minute
timeframe to ensure the fairness of the comparison.

3 Methodology

The aim of this paper is to study the behaviours of different neighbourhood
structures on the algorithm for GMRP. We use steepest descent (SD) algorithm
to facilitate this study. Fundamentally SD is in the family of gradient descent
algorithms, which are to find a local minimum for a certain problem. It starts
with an initial random solution and uses a step function to move the search
process to other possibly better solutions. The solutions of the next steps are
usually in negative direction of the gradient. The move of solution is an iterative
process which will eventually converge to the best or the local minimum. It is a
kind of first-order algorithm as only the first derivative of the function is used
for the descent. Formally the process can be described as:

Xs+1 = Xs − λ∇f(Xs) (2)

where Xs is the solution at Step s, ∇f() is the gradient or the first derivative.
In the formula λ is the step size. Based on the choice of this size, variations
of descent algorithm can be generated for example Backtracking, Barzilai and
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Borwein. SD is also one type of gradient descent variations. In SD, the step size
λ is simply the “best” choice which leads to the minimum objective value. SD
can be expressed as:

λs = arg min
λ

f(Xk − λ∇f(Xs)) (3)

where the step size at Step s is the minimum descent hence called steepest
descent algorithm. The descent process is repetitive and will stop when there
is no more improvement [7,10,17]. SD converges linearly and is sensitive to the
landscape of problems.

The reason why we choice SD algorithm is that SD is completely parameter
free. As shown in the above formulae of SD, no parameter tuning is necessary.
This feature allows us to compare different neighbourhood structures without
bias from parameter settings [7,17].

Note that SD is traditionally used for continuous non-linear optimisation
problems. SD can be modified to suit combinatorial optimisation problems. In
this study we enumerate all neighbourhoods around the current solution instead
of using Eqs. 2 and 3. The modified SD for GMRP is illustrated in Fig. 1.

The initial solution is generated randomly based on the given instance and
evaluated using Eq. 1. The search algorithm then looks around the neighbours of
the current solution using a neighbourhood structure. In this work, we use three
different neighbourhood structures within SD to deal with GMRP. They are:

– Shift neighbourhood structure: A neighbour solution is generated by
selecting a process in the current solution and shifting it from its current
machine to a different machine.

– Swap neighbourhood structure: A neighbour solution is generated by
selecting two processes in the current solution and swapping them. These two
processes are located at different machines.

– Move Big: In this approach a process with large size is selected and moved to
a different machine. The size of such a process is equal to the total resources
that required by this process. Moving big processes seems more effective in
keeping balance in machine loads.

A search process could use one of the three neighbourhood structures to
generate the solutions of next iteration. In addition these three structures can be
combined as one structure which is denoted as Combined. With the “Combined”
structure, a neighbour solution is generated by randomly picking one of the
three structures during the search process of SD. The aim is to combine the
advantages of these three structures so the search can be more effective. The
stopping condition is either no improvement can be found or the maximum time
limit is reached. Note GMRP challenge does have a 5-minute limit meaning
the search process can not be running for longer than that time period. This
is to ensure the real-time or near real-time performance of the optimisation
algorithms. The solution returned at termination of SD will be considered as the
final solution.
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Fig. 1. Flowchart of Steepest Descent (SD) algorithm

4 Experiments

As mentioned early GMRP instances proposed in ROADEF/EURO 2012 chal-
lenge are used in this investigation. This is a well-known benchmark for cloud-
ing computing optimisation. Five different instances are involved in this study.
They have different characteristics in terms of number of machines, number of
processes, neighbourhood, and so on. Table 1 shows the main characteristics of
the these instances.

These parameters in the table are:

– R is the number of processes;
– TR is the number of resources that need transient usage;
– M is the number of machines;



Neighbourhood Analysis: A Case Study on GMRP 233

Table 1. The characteristics of the GMRP instances

Instance R TR M P S L N B SD Initial cost

a1 1 2 0 4 100 79 4 1 1 0 49,528,750

a1 2 4 1 100 1000 980 4 2 0 40 1,061,649,570

a1 3 3 1 100 1000 216 25 5 0 342 583,662,270

a1 4 3 1 50 1000 142 50 50 1 297 632,499,600

a1 5 4 1 12 1000 981 4 2 1 32 782,189,690

– P is the number of processes;
– S is the number of services;
– L is the number of locations;
– N is the number of neighbourhoods;
– B is number of triples;
– SD is the number of service dependencies;
– InitialCost is the cost assigned with these instances.

As can be seen from Table 1, the number machines in these instances ranges
from 4 to 100, and the number of processes ranges from 100 to 1,000. They are
quite diverse and could evaluate the impact of neighbourhood structure more
effectively. For each experiment we run the search process 30 times on every
instance. This is to ensure the results are representative enough and to minimise
bias in the comparisons.

5 Results

The experimental results over 30 runs on the four neighbourhood structures are
summarised in Table 2. The comparison is based on the best obtained results for
each instances. The smaller the number, the lower the cost hence the better the
result. In the table, the result in bold is the best result among all neighbourhood
structure on one instance, e.g. the best of that row.

Table 2. Comparing four neighbourhood structures: Shift, Swap, Move-Big and
Combined

Instance Shift Swap Move-Big Combined

a1 1 44,306,887 44,306,935 44,306,635 44,306,501

a1 2 777,650,528 777,650,817 777,650,474 777,645,128

a1 3 583,006,941 583,006,983 583,006,897 583,006,051

a1 4 251,015,689 251,015,688 251,015,659 251,015,654

a1 5 727,579,589 727,579,586 727,579,582 727,579,474

It can be seen that on all instances, the combined neighbourhood structure
achieved the best result. All bold results are in the column of “Combined”. In
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fact “Combined” neighbourhood achieved the best on all instances. This result
indicates the effectiveness of combined neighbourhood structures compared to
other. It can be more adaptive towards the search space by contributing different
types of neighbours during a search.

Another observation from the results is that “Move-big” performed consid-
erably better than “Shift” and “Swap”. That shows the need of moving a block
of processes in generating neighbours. Both “Shift” and “Swap” generate neigh-
bours with single process change. Their performances are quite similar although
“Shift” appears slightly better than “Swap”.

The results are further analysed by conducting a Wilcoxon statistical test
to examine whether a significant difference (α = 0.05) exists between the com-
bined neighbourhood structures and other structures (Shift, Swap and Move-
Big). Table 3 shows the p-values for all tested instances. From the table, we
can see that the p-values on all instances are less than 0.05 which means the
combined neighbourhood structures is significantly better than others.

Table 3. The p-values of combined neighbourhood structures against Shift, Swap and
Move-Big

Combined VS Shift Swap Move-big

Instance p-value p-value p-value

a1 1 0.00 0.00 0.01

a1 2 0.00 0.00 0.02

a1 3 0.02 0.03 0.00

a1 4 0.00 0.00 0.02

a1 5 0.01 0.00 0.00

6 Discussion

From the above experimental results we can see that the neighbourhood struc-
tures do have impact on search performance. Different structure copes with
search space differently. With the combined neighbourhood structure, the search
can better adapt to the surrounding hence appear more effective.

Although the aim of this study is not to achieve the best possible results for
GMRP, but to investigate the impact of neighbourhood structures, we can still
compare with the results with that from state of the art algorithms reported in
the literature. These leading algorithms include:

1. MNLS: Multi-neighborhood local search [16].
2. VNS: Variable neighbourhood search [5].
3. CLNS: CP-based large neighbourhood search [9].
4. LNS: Large neighbourhood search [3].
5. MILS: Multi-start iterated local search [8].
6. SA: Simulated annealing [11].
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Restricted iterated local search [6] is another leading algorithm. However it
has no results reported on these GMRP instances hence we excluded it from the
comparison. Table 4 lists the results from the aforementioned six leading algo-
rithms for GMRP, plus the results from our SD with combined neighbourhood
structure.

Table 4. Comparing with state of the art algorithms on GMRP

a1 1 a1 2 a1 3 a1 4 a1 5

MNLS 44,306,501 777,535,597 583,005,717 248,324,245 727,578,309

VNS 44,306,501 777,536,907 583,005,818 251,524,763 727,578,310

CLNS 44,306,501 778,654,204 583,005,829 251,189,168 727,578,311

LNS 44,306,575 788,074,333 583,006,204 278,114,660 727,578,362

MILS 44,306,501 780,499,081 583,006,015 258,024,574 727,578,412

SA 44,306,935 777,533,311 583,009,439 260,693,258 727,578,311

SD Combined 44,306,501 777,645,128 583,006,051 251,015,654 727,579,474

Based on Table 4, we can see that “SD Combined” is at least comparable to
these leading algorithms. On instance a1 1, it achieved lowest cost although a
few others also achieved equivalent performance. On instance a1 2, “SD Com-
bined” is better than CLNS. It is also better than LNS and SA on a1 3. On a1 4
our method is only second to MNLS and better than the rest including VNS,
CLNS, LNS, MILS and SA. On the last instance a1 5, our method is marginally
worse than these leading algorithms. It should be noted that MNLS is a mul-
tiple neighbourhood algorithm while our study only uses single neighbourhood
structure at this stage. Therefore it is easily to see why MNLS has such a good
performance.

7 Conclusions

In this paper, we investigated the effect of different neighbourhood structures
on the search performance when solving Google Machine Reassignment problem
which is a typical combinatorial optimisation task. We investigated three single
structures “Shift”, “Swap” and “Move Big”, and a combined structure. The
search itself is based on steepest descent algorithm which is a kind of parameter
free local search. Five instances from the Google challenge were used to evaluated
the performance of the algorithm. Based on the experimental results, we conclude
that neighbourhood structure does have impact on the search performance.

Based on this study we can see that the combined neighbourhood structure is
more effective than a single neighbourhood structure. This is possibly due to the
ability to choose a structure based on search status. In term of a single structure,
generating neighbours based on moving blocks of processes seems more effective
than that based on moving single processes.
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The comparison between combined neighbourhood structure plus steepest
descent with existing state of the art algorithms shows that our method is at
least comparable to these leading methods. Although the aim of this study is
not to claim top performance, the study shows that with right neighbourhood
structures it is possible to achieve top performance.

8 Future Work

This study opens a range of directions for future investigations. One extension
is to involve multiple neighbours during the search similar to a population based
search. This would lead to high effectiveness and a new method which can outper-
form other methods. Another immediate future work is involving more instances
for evaluation. More neighbourhood structures will be investigated as well such
as swapping multiple processes.
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16. Wang, Z., Lü, Z., Ye, T.: Multi-neighborhood local search optimization for machine
reassignment problem. Comput. Oper. Res. 68, 16–29 (2016)

17. Qinghua, W., Hao, J.-K., Glover, F.: Multi-neighborhood tabu search for the max-
imum weight clique problem. Ann. Oper. Res. 196(1), 611–634 (2012)

http://dx.doi.org/10.1007/978-3-319-31204-0_18
http://dx.doi.org/10.1007/978-3-319-50127-7_13
http://dx.doi.org/10.1007/978-3-319-49049-6_31


Optimisation Algorithms and
Applications



Multi-objective Optimisation with Multiple
Preferred Regions

Md. Shahriar Mahbub1,2, Markus Wagner3(B), and Luigi Crema1

1 Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo, Trento, Italy
2 University of Trento, Via Sommarive 9, 38123 Povo, Trento, Italy

3 University of Adelaide, Adelaide, SA 5005, Australia
markus.wagner@adelaide.edu.au

Abstract. The typical goal in multi-objective optimization is to find a
set of good and well-distributed solutions. It has become popular to focus
on specific regions of the objective space, e.g., due to market demands
or personal preferences.

In the past, a range of different approaches has been proposed to
consider preferences for regions, including reference points and weights.
While the former technique requires knowledge over the true set of trade-
offs (and a notion of “closeness”) in order to perform well, it is not trivial
to encode a non-standard preference for the latter.

With this article, we contribute to the set of algorithms that consider
preferences. In particular, we propose the easy-to-use concept of “pre-
ferred regions” that can be used by laypeople, we explain algorithmic
modifications of NSGAII and AGE, and we validate their effectiveness
on benchmark problems and on a real-world problem.

Keywords: Multi-objective optimization · Preference · Evolutionary
algorithm

1 Introduction

For the last two decades, multi-objective evolutionary algorithms (MOEA) have
been successfully used to solve multi-objective optimization (MOO) problems.
Most real-world problems are MOO problems rather than single objective prob-
lems, where it is often found that multiple conflicting objectives exist. Typically,
the goal of a MOEA is to find a set of trade-off solutions that are well-distributed
over the objective space. Ideally, these solutions are on or at least close to the
true set of trade-offs called Pareto front. Sometimes, however, the decision mak-
ers/users have little interest in exploring the entire objective space. It may be
more interesting to them to explore some preferred regions of a front due to
market demands, due to financial pressure, or simply due to curiosity.

Let us consider an energy system optimization problem, where the goal is to
minimize CO2 emission and annual cost [14]. In this case, a reference system is
analyzed (generally the current system), optimized systems are identified, and
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then compared with the reference system. Decision makers are often interested
in exploring several regions defined by either CO2 emission or annual cost. For
example, if a reference scenario has x amount of CO2 emissions, the interesting
regions could be 10–20% and 35–40% reduction of x.

There are a few algorithmic advantages in exploring preferred regions over
exploring the entire objective space. These include faster convergence speed and
better approximation of Pareto front [15]. Based on the idea of incorporating
user preference, a wide range of different concepts and algorithms has been pro-
posed (see [1,25] for comprehensive surveys, as it is impossible to list all relevant
work here), such as (i) defining reference-point(s) [18,19] and specifying weights
in the objective space [9,16]. However, the problem with these approaches typi-
cally is that it is difficult to set the corresponding parameters without knowing
the shape of the true Pareto front. Therefore, we propose modifications of generic
algorithms that require only very intuitive preference encoding in the form of
intervals, as outlined above in the energy system example above.

The structure of this article is as follows. First, we introduce basic definitions
in Sect. 2 including the idea of preferences for MOEAs. In Sect. 3 we show how
we integrate preference information in two algorithms. Lastly, we present and
discuss the results of our experimental studies in Sects. 4 and 5.

2 Definitions and Basic Principles

Without loss of generality, a multi-objective problem can be formulated as:

min F (A) = (f1(A), f2(A), ...fm(A))T A ∈ R
n (1)

where A = (a1, ..., an) is a vector of n decision variables and m is the number of
objectives. In the context of multi-objective optimisation, the optimal solutions
are also referred to as non-dominated solutions. In a minimization problem, a
solution A is considered non-dominated in comparison to another solution A∗

when no objective value of A∗ is less than that of A and at least one objective
value of A∗ is greater than that of A. If necessary, the feasibility of solutions can
be considered as well, however, this is not necessary in our study. For a more
complete introduction to multi-objective optimization, we refer the interested
reader to the overview articles [4,12,24].

There is a fundamental difference between how reference points and weights
are defined, and how our preferred regions are defined. A reference point is
defined by specifying values for all the dimensions for a point in the objective
space. In contrast to this, a preferred region is defined by specifying an upper
and lower bound of one particular dimension. For example, if a two-objective
problem (objectives are plotted along x and y-axes) is considered, a user can
define three preferred regions by setting three upper and lower bounds for inter-
vals along either the x or y axis. Figure 1 illustrates an example of three preferred
regions (bounded by three different color vertical lines). In this figure, we also
show three reference points (gray crosses) which might have been set by a user.
As the user lacks knowledge about the shape of the front, these points are not
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on the true Pareto front. Consequently, it is left up to the MOEA to follow
its own interpretation of “closeness” in order to distribute the solutions around
the reference. One outcome is that the solution density is high near the refer-
ence point and the density decreases with increasing distance (see Fig. 1 for the
outcome of one run by r-NSGAII [7] using the shown reference points). As men-
tioned before, it is also possible to use weights in the objective space in order
to encode preferences. In Fig. 1 we indicate this using a color gradient along
the x-axis, where a preference for smaller x-values is encoded. The preference
formulation for a single objective using weights is relatively simple, however,
the formulation becomes tricky when multiple objectives are preferred, and it
becomes very complicated when reference points or preferred regions are to be
encoded (using weights). The concept of our interval-based regions, on the other
hand, is straightforward to use even for laypeople. To the best of our knowledge,
even though there are lots of similar approaches, this is the first time this rather
simple concept of intervals along axes is used in the context of MOO.

Fig. 1. Reference points, weights in the objective space, and preferred regions. (Color
figure online)

3 Preferred Regions for Different MOEAs

In the following, we present the ideas related to preferred regions and the adap-
tation of the ideas into different MOEAs.

3.1 Ideas Adopted in pNSGAII

We adopt several ideas in NSGAII [6] resulting in pNSGAII. Algorithm1 presents
the main loop of the proposed pNSGAII. There are couple of modifications with
respect to the original NSGAII. Firstly, each solution is associated with a par-
ticular region (step # 4). Secondly, a parent selection procedure is used (step #
8); thirdly, the individuals of a merged population (containing solutions of the
previous generation and the offspring) are associated with nR regions (step #
11) such that for each region, 2∗αi individuals are associated. Based on the asso-
ciation, the merged population is divided into nR sub-populations (step # 12).
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Algorithm 1. Main loop of pNSGAII
1: nR � Number of given regions
2: α � A set containing user-defined preferred number of solutions for each region;

αi is the number of preferred solutions for ith region

3: Initialize population P with
∑nR

i=1 αi random individuals and O ← ∅
4: Associate α number of solutions with nR regions
5: while Stopping criteria not met do
6: for z ← 1 to nR do
7: for j ← 1 to αz/2 do
8: Select two parents using modified parent selection procedure
9: Generate offspring and add to O

10: P ← P ∪ O
11: Associate 2 ∗ α number of solutions with nR regions
12: Divide P into nR sub-populations (SPi; i = 1, . . . , nR)
13: for i ← 1 to nR do
14: Rank SPi and select αi solutions based on ranking and crowding distance

15: Add these solutions to SPi

16: P ←
nR⋃

i=1

SPi

Sub-populations are used to increase the likelihood of achieving the targeted αi

well-distributed solutions per preferred region. Lastly, a modified ranking pro-
cedure (step # 14) is applied to rank the solutions of the sub-populations.1

The first important addition to pNSGAII is the association of solutions to
regions. Before the optimization, the user provides the preferred number of solu-
tions associated with each region. During the optimization, the solutions are
assigned greedily to the regions based on the distance between solutions and
regions (see Algorithm 2). The distance from a solution (that is outside of the
region) to a region is calculated as min(|fi(A)−Ru|, |fi(A)−Rl|), where fi(A) is
the objective value (the objective dimension on which a user specifies the ranges)
of a solution. The distance is 0 if a solution is inside a preferred region. Finally,
Fig. 2 illustrates an example of Algorithm 2 in step # 11 of Algorithm 1.

In our parent selection procedure, a parent is selected in either one of the
following two ways: (i) from the same region that the procedure is currently
working on (zth region, step # 6 of Algorithm 1), (ii) from other regions. The
selection of parents from other regions depends on a user-defined probability pps.
This approach enables us to prevent an algorithm from getting trapped on a local
multi-dimensional front, which we have observed in preliminary experiments.

When a parent is selected from the current working region, a tournament
selection based approach is adopted. To select a parent, a given number of tour-
naments are played between randomly selected associated individuals (associated

1 Consequently, our pNSGAII is somewhat equivalent to an island model approach for
multi-objective optimization, with islands being responsible for preferred regions. In
contrast to existing island model-MOO approaches (e.g. [2]), we are focussing on
user-defined parts of the search space that are defined in an easy-to-use way.
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Fig. 2. Association of solutions with regions

Algorithm 2. Associating regions to solutions
1: Ru, Rl � Upper and lower bounds of given regions
2: S � A set containing all the solutions
3: cα ← 0 � Current number of associated solutions with regions
4: for s ∈ S do
5: for i ← 1 to nR do
6: if s is within Ri

u and Ri
l And cαi < αi then

7: Associate s with ith region; cαi ← cαi + 1 and exit the loop
8: if s is not yet associated then
9: Depending on the status of cαj , associate s with the region j that has

minimum distance to s (if cαj = αj , associate s with the region that has
second least distance)

10: cαj ← cαj + 1

with the zth region). The winner is decided based on the ordered criteria: (i) dis-
tance from a given region, (ii) overall constraints violation [5], (iii) dominance
relation. The order of the criteria is strictly followed. Therefore, if a solution is
closer than another solution with respect to a given region, then the subsequent
two criteria are not considered. The overall constraint violation and dominance
relations come into play when two solutions are within the given region.

To rank the individuals, we propose a ranking procedure based on dominance
relations and closeness of an individual to the preferred regions (same ordered
criteria as in parent selection). However, we do not apply the proposed ranking
procedure in all generations, as narrowing down the search to some particu-
lar regions from the beginning may be problematic. Therefore, for a particular
generation (Step # 14, Algorithm1), only one of the two ranking procedures
(i.e., default NSGAII ranking procedure and proposed ranking procedure) is

applied with probability prk =
(

usedBudget
totalBudget

)n

. The shape of this schedule can
be controlled through the exponent n. For n = 1, the probability of applying the
proposed ranking procedure is increased linearly over time. For larger values of
n, the probability increases sharply in later stages of the algorithm’s run.
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3.2 pAGE

The algorithm Approximation-Guided Evolution (AGE) [3] in its original for-
mulation uses an archive A in which it maintains a list of all non-dominated
solutions seen. This archive can grow and thus slow down the algorithm. In its
newer version, AGE maintains an archive Aε that is an ε-approximation of all
non-dominated solutions encountered [21,23] and it uses more efficient parent
selection [22]. In the following, we present two straightforward uses of the archive
to guide the optimization towards preferred regions (see Algorithm 3). We name
the two different uses pAGEonline and pAGEoffline.

Algorithm 3. (μ + λ)-Approximation Guided Evolution with preferences
1: Initialize population P with μ random individuals, and set archive A ← P .
2: for each generation do
3: Initialize offspring population O ← ∅
4: for j ← 1 to λ do
5: Select two random individuals from P , and apply crossover and mutation
6: Add new individual to O, if it is not dominated by any individual from P

7: Insert each offspring in the archive A and in the population, i.e., P ← P ∪ O
8: [pAGEonline] remove each outlier from P with pr

9: while |P | > μ do
10: Remove p from P for which the approximation of A by P is the smallest

when p is left away

11: [pAGEoffline] 12.1: Remove all outliers from archive A
12.2: P ← A
12.3: if |P | > μ then apply steps 9–10 to reduce the P

pAGEonline largely corresponds to any of the above-mentioned AGE vari-
ants. After the generation of the offspring set O based on the population P ,
AGE would normally proceed to consider the union P ∪ O and then reduce this
set greedily to approximate the archive. At this point, we insert one action (step
# 8): from the union P ∪O we remove each of the solutions that are outside the
preferred regions with probability pr.

In preliminary experiments we observed that a static choice of pr = 1 can
be problematic, as this always removes all outliers. As an alternative to this we
decided to increase pr by reusing the exponential schedule for prk that we already
use in pNSGAII. This way, the pressure remains low for a long time, which
allows pAGEonline to find the front, and in the last generations pAGEonline
can focus on spreading out the solutions within the preferred regions. Note that
this schedule is by no means optimal.

pAGEoffline corresponds to the original AGE with post-processing added.
First, pAGEoffline removes all outliers (solutions outside the preferred regions)
from the archive A, and it assigns a copy of this reduced archive to the population
P . Then, as P might be larger than the desired population size, we use AGE’s
internal reduction mechanism from steps # 9–10 so that P approximates A well.
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4 Experimental Study

We conduct a range of experiments to analyze the performance of our proposed
algorithms pNSGAII, pAGEonline, and pAGEoffline. The benchmark problems
include five two-dimensional benchmark problems from the ZDT family [11] and
two three-dimensional problems from the DTLZ family [11]. To the best of our
knowledge, no directly comparable algorithms for multiple preferred regions are
available from the literature; algorithms that consider reference point(s) have
a different goal, which puts them at a disadvantage by definition (see Sect. 2).
Therefore, we compare our approaches with their original algorithms, and we
vary the evaluation budgets and population sizes to investigate the effectiveness.

4.1 Experimental Setup

We developed all algorithms in the jMetal framework [8], which is a Java-
based multi-objective meta-heuristic framework. Initially, each pMOEA variant
is tested on the ZDT family with two configurations, based on population size μ
and maximum function evaluations (FE). Table 1 presents the different config-
urations used in the experiments. The configurations are chosen in this way to
demonstrate the efficiency of pMOEA in terms of convergence speed.

We consider short and long runs with an evaluation budget of FE = 12000
and FE = 24000 respectively. On the ZDT2 family, we conduct only short runs
of the pMOEAs, and we compare these with short and long runs of the original
MOEAs to investigate the efficiency. For the DTLZ3 functions, we only use a
single configuration of the original algorithm since the solutions with an increased
population size, are otherwise the solutions would be very thinly spread out over
the three-dimensional front.4

In this study, the regions are defined in terms of Rl and Ru along the first
objective. The regions are [0.80, 0.95], [0.40, 0.50] and [0.15, 0.20]. Moreover, we
set α = [10, 10, 10] for pNSGAII so that 10 solutions will be associated with each
region - this was chosen arbitrarily, however, it is possible to have different num-
bers of solutions associated with different regions. Simulated binary crossover,
polynomial mutation, and binary tournament selection [6] are used with their
default values in the jMetal framework. In addition, n = 10 is used for prk and
pr for pNSGAII and pAGEonline, respectively. pps = 0.20 is used within pNS-
GAII’s parent selection procedure. In pAGEonline, εgrid = 0.01 is used for the
approximating archive.

2 The ZDT functions are used as provided by the jMetal framework. The number of
decision variables is 30 for ZDT1/2/3 and 10 for ZDT4/6.

3 Number of decision variables is 12 for DTLZ2/3, as set in the jMetal framework.
4 If we use μ = 30 for typical MOEA (please see Table 1) then it is less probable to find

adequate number of solutions in preferred regions, that makes it difficult to compare
with pMOEA. In addition, compared in terms of FE, MOEA uses 50 less function
evaluations than pMOEA only because the number is compatible with μ (no extra
function evaluations after completing last generation).



248 M.S. Mahbub et al.

Table 1. Configurations in terms of
population size μ and evaluation bud-
get FE to test the efficiency of the
interval-based preferences.

Problem Algorithm μ FE

ZDT pMOEA 30 12000
MOEA 30 12000

100 12000
100 24000

DTLZ pMOEA 30 50000
MOEA 150 49950

Fig. 3. Pareto fronts obtained by pAGEof-
fline and pNSGAII on ZDT1 problem.

Over the years, a number of evaluation metrics for multi-objective opti-
mization algorithms have been proposed. We use the popular ones available
in the jMetal framework, i.e., the covered hypervolume (HV) [10], and additive
ε-approximation (EPS) [13] to measure the performance of the MOEAs5. We
use them with a simple modification, i.e., separately for each preferred region.
As the true Pareto front is required for the calculation of EPS values, we use
the ones provided by the jMetal framework. From these, we extract the regional
fronts from the original ones by discarding all outliers. To calculate HV values,
we define the reference point for each region to be based on the extreme values
in the preferred region. For example, in the introductory Fig. 1, these reference
points are (0.2, 0.62), (0.5, 0.38), and (0.95, 0.1). It is important to note that
performance indicators for preference-incorporating algorithms exist (e.g. [10]),
however, these are for reference point-based approaches and thus not applicable.

We run each algorithm independently 100 times and report the averaged
indicator values in the following.6

4.2 Results and Discussion

Firstly, we present in Fig. 3 an example of Pareto fronts obtained. We can observe
that the solutions are concentrated in the user-defined regions.

Next, we report the results in terms of mean values and the corresponding
standard deviations of HV and EPS for each region. Figure 4 shows a subset of
the results. In different colours and by using markers of different shapes, we show
how our pMOEAs perform compared to their original variants. The top two rows
of plots show the results for the NSGAII variants (colour , different shapes indi-
cating the different configurations), and in the third row we show the AGE results
(colour ). In the following, we summarize the results (See footnote 6).
5 We do not report other indicator values, such as inverted generational distance

(IGD) [20] or the Hausdorff distance [19] due to space constraints.
6 We uploaded all code and results to https://github.com/shaikatcse/pMOEAs. This

includes pSPEA2 as an algorithm and also IGD indicator values.

https://github.com/shaikatcse/pMOEAs
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Fig. 4. Comparison of our pMOEAs with their original variants on the ZDT functions
with m = 2. The Regions 1–3 are defined in Sect. 4.1. Shown are the means and
standard deviations of 100 independent runs. From top to bottom, we show the results
of NSGAII variants (colour ), and AGE variants (colour ). Within each block of
four (respectively five) markers, we first show our pMOEA variant with , then with

and the original algorithm with two population sizes (μ = 30 and μ = 100,
FE = 12, 000 each), and then with the original algorithm with twice the evaluation
budget (μ = 100, FE = 24, 000). For pAGE, instead of solid circles, the crossed
circles denote our pAGEoffline (×) and pAGEonline (+) variants. In short, the original
algorithm with twice the evaluation budget typically performs similar to our pMOEAs.
(Color figure online)

Most of the time, pNSGAII outperforms NSGAII with the same evaluation
budget (FE = 12000) regardless of μ. pNSGAII performs similarly to NSGAII
(FE = 24000) a number of times, i.e. on all regions for ZDT1/ZDT2 and regions
#1/#2 for ZDT6. pNSGAII fails to converge on ZDT4 due to local optima.

The next row in Fig. 4 demonstrates the comparison of pAGE variants (i.e.,
online and offline) and AGE with different configurations; we limit ourselves
to approximation values due to space constraints. pAGEonline and offline per-
form consistently better in comparison to the generic AGE (with FE = 12000
regardless of μ) for almost all the regions and all the problems. When comparing
with AGE (FE = 24000), sometimes pAGE performs better (ZDT1 and ZDT3),
sometimes similar (ZDT2, ZDT6) and sometimes worse (ZDT4).
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Fig. 5. Comparison of our pMOEAs (μ = 30, FE = 50, 000) on a subset of the
DTLZ functions with m = 3. denotes pNSGAII and denotes our pAGEoffline
(×) and pAGEonline (+) variants, and and denote the original AGE algorithm
with μ = 100, FE = 50, 000 and μ = 150, FE = 49, 950 respectively. Typically, our
pMOEAs achieve significantly better approximations of the preferred regions.

To briefly demonstrate that the approach also works on three-dimensional
problems, we show a few results in Fig. 5; all other algorithms and configura-
tions performed worse and were left away due to space constraints. Although
on the two-dimensional ZDT problems, all pMOEAs performed similarly (when
comparing them with each other, see Fig. 4), it is clear from Fig. 5 that pAGE
achieves better approximations than pNSGAII. The original AGE is not able to
find the front given the computational budget (being 1–10 units away), whereas
our pMOEAs achieve good approximations of the fronts with the same budget
(being only 0.05–0.5 unit away). Between pAGEonline and pAGEoffline, there
is no clear winner.

We conclude from these results that our pMOEAs are efficient and effective
for considering user-defined regions.

5 pNSGAII on Energy System Optimization Problem

To investigate the performance of our approach on a real-world problem, we have
applied pNSGAII on an energy system optimization problem [14]. We are not
considering pAGE here as it does not have any means of dealing with constraints.

The general goal of the problem is to identify multiple optimal systems in
order to minimize CO2 emission and annual cost. Here, we want to identify
multiple optimal systems for three specific regions of interest (i.e., 10 solutions
for each region) for the Aalborg energy system [17]. The three regions are defined
in terms of CO2 emission (i.e., [0.40, 0.5], [0.0, 0.15] and [−0.40, −0.50]). For
example, we are interested in identifying 10 optimal solutions in a region within
0.40 to 0.5 million tons of CO2 emission. Details of energy system optimization
framework and Aalborg energy system can be found in [14].

The result is illustrated in Fig. 6; x-axis presents emission in million tons and
y-axis presents annual cost in million Danish Krone. The gray points represent
the true Pareto front, which is approximated by considering the outcomes of 240
independent runs of multi-objective algorithms. The red marker show the solu-
tions found by our pNSGAII (μ = 30, EF = 6000, problem-specific constraint
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Fig. 6. Result of the energy system optimization. Shown is the final solution set
computed by pNSGAII. (Color figure online)

handling was added): 10 solutions per region are found, and they are very close to
optimal solutions. As the experiment achieved these set goals, we conclude that
our proposed approach can not only be successfully applied to test functions,
but also to real-world optimization problems.

6 Conclusions

In this article, we proposed the concept of incorporating multiple user preferences
into MOEAs via the use of intervals. The concept was designed with laypeople
in mind who might not have detailed knowledge about the objective space.

We presented modifications for two MOEAs to handle multiple preferences,
and we demonstrated the resulting capability on two- and three-dimensional
test problems. On two-dimensional problems, our pMOEAs typically achieve
the same hypervolume and additive approximation values as the original algo-
rithms, where the latter had twice the evaluation budget. On three-dimensional
problems, our online and offline variants of AGE with preferences perform best.
Finally, the effectiveness of the algorithm is investigated on a real-world problem.

As solutions can be spread too diversely over the objective space for higher
dimension problems (having more than 3 objectives), we think that preferences
in general can be an interesting option for decision makers.

Our future work will include the adaption of the techniques to the higher
dimensional problems. Technically, the extension is straightforward, as the inter-
vals just have to be added to an internal array. Whether the approaches are
effective in higher-dimensional objective spaces remains to be seen.

Acknowledgements. This work has been supported by the ARC Discovery Early
Career Researcher Award DE160100850.
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Abstract. Architecture design is one of the most important steps in
software development, since design decisions affect the quality of the
final system (e.g. reliability and performance). Due to the ever-growing
complexity and size of software systems, deciding on the best design
is a computationally intensive and complex task. This issue has been
tackled by using optimisation method, such as local search and genetic
algorithms. Genetic algorithms work well in rugged fitness landscapes,
whereas local search methods are successful when the search space is
smooth. The strengths of these two algorithms have been combined to
create memetic algorithms, which have shown to be more efficient than
genetic algorithms and local search on their own. A major point of con-
cern with memetic algorithms is the likelihood of loosing the exploration
capacity because of the ‘exploitative’ nature of local search. To address
this issue, this work uses an adaptive scheme to control the local search
application. The utilised scheme takes into account the diversity of the
current population. Based on the diversity indicator, it decides whether
to call local search or not. Experiments were conducted on the compo-
nent deployment problem to evaluates the effectiveness of the proposed
algorithm with and without the adaptive local search algorithm.

Keywords: Architecture optimisation · Adaptive memetic algorithm ·
Component deployment

1 Introduction

The design of software architectures is one of the most creative and difficult
stages of software development. The decisions made at this stage affect the qual-
ity of the final system. For instance, deciding how to deploy software components
into the hardware architecture affects the reliability of the system. When fre-
quently interacting components are deployed into different hardware hosts, the
failure rate of the network being used will have an impact on the reliability of the
system. Perhaps a better solution is to deploy these frequently interacting com-
ponents into the same hardware host. This, however, has an impact on safety,
due to common cause failures. If one of the components is a redundant replica of
c© Springer International Publishing AG 2017
M. Wagner et al. (Eds.): ACALCI 2017, LNAI 10142, pp. 254–265, 2017.
DOI: 10.1007/978-3-319-51691-2 22
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the other, the components should be deployed into different hosts. As a result,
the failure of the hardware unit that hosts one of the redundant components is
not going to affect the working of the other components, and the system may
continue without failing.

In small-scale software systems, where quality considerations are limited to
one or two non-functional attributes, making design decisions may not be diffi-
cult. However, software systems are becoming more complex, with more quality
attributes to consider, which usually conflict with each other, such as cost and
reliability. The scale of software systems is also growing, which makes software
architecture design an increasingly difficult endeavour. In order to assist soft-
ware architect with design decision, optimisation methods can be used. Many
examples of such approaches can be found in the literature, where optimisation
methods have been applied to software product line architectures [14], to assist
with class design [24] and software architecture design [2,17].

Current approaches in automating the architecture design space exploration
focus on search-based methods [4]. This is mainly due to the complexity of the
problem, which is usually related to the large set of possible solutions, and the
non-linear and non-differentiable quality attributes, such as safety, reliability and
performance. The area is broadly known as search-based software engineering
(SBSE), and is concerned with finding a near-optimal solution in a reasonable
amount of time for problems where exact methods are not feasible. Examples of
search-based methods applied to software architecture design are genetic algo-
rithms (GAs) [8] and local search (LS) [11]. GAs are stochastic search methods
that mimic the evolutionary process of natural selection in solving optimisa-
tion problems. The crossover and mutation operators create new solutions from
existing solutions by combining information from parent solutions, or introduc-
ing new information. LS examines a set of neighbouring points and moves to
the one having the best fitness (smallest in minimisation problems, and highest
in maximisation problems). The process is then iterated from the newly chosen
solution.

Since LS only considers neighbouring solutions, it is prone to getting stuck in
a local optima [1]. This is not an issue for GAs. On the other hand, results from
the applications of traditional GAs demonstrate that these methods may expe-
rience slow convergence when solving constrained optimisation problems [22].
The strengths of GAs and LS have been combined to create a new optimisation
method known as memetic algorithm (MA). MAs incorporates LS with the tra-
ditional GA to compensate for its slow convergence as LS possesses an efficient
exploitation process. Yet, the application of LS at every iteration has a great
effect on the behaviour of the MA and search efficacy. This is mainly due to
the fact that calling LS at every iteration is computationally expensive and the
search may lose the exploration capacity.

To address this issue, we propose an adaptive memetic algorithm (AMA),
which adaptively controls the application of LS based on the diversity of the
current population. The adaptation scheme does not only save computational
time but can also balance between GA exploration and LS exploitation. The
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proposed AMA is applied to component deployment optimisation problem [2,6],
which is one of the aspects that has to be considered during architecture design
of embedded systems. A set of experiments is designed with randomly generated
instances, which are used to evaluate the performance of the proposed AMA.
A comparison between the results of GA, LS, the standard MA and proposed
AMA is conducted.

The findings from this work help in designing better optimisation algorithms
for software architecture optimisation problems, and more in general, for soft-
ware engineering problems. They show that combining the strengths of optimi-
sation methods by hybridising them lead to better optimisation strategies. The
adaptation mechanisms is necessary, since different problem instances may have
different fitness landscapes, which makes certain search strategies more success-
ful than others. The success of the search method is problem dependent, hence
adaptive methods that change the search strategy based on feedback from the
optimisation process outperform static search strategies.

2 Related Work

The component deployment problem, and the effect of the deployment architec-
tures on the quality of the final system has been observed by many authors, in
both software and embedded systems domain [20,21], focusing on models propa-
gating hardware quality attributes to the software level. A systematic literature
review on software architecture optimisation methods provides an overview of
the different models used to estimate the quality of a software system [4].

Methods that automate the design space exploration with respect to various
quality attributes and constraints use approximate methods. Some approaches
consider user requirements as constraints [16], whereas others seek an optimal
deployment, or at least solutions that are near-optimal [6], often in combina-
tion with constraints [2,6]. Aleti et al. [5] formulated the component deployment
problem as a biobjective problem with data transmission reliability and commu-
nication overhead as fitness functions. Memory capacity constraints, location and
colocation constraints were considered in the formulation. The problem was later
re-formulated in terms of reliability optimisation, and solved using a constraint
programming technique [26].

In general, approximate algorithms used for the optimisation of software
architectures fall into two categories: heuristic [6,12] and meta-heuristics meth-
ods, such as genetic algorithms [2,3], tabu search [19] and ant colony optimisa-
tion (ACO) [5,26]. The review of the related approaches shows that approximate
optimisation methods, and in particular evolutionary algorithms, are widely and
successfully used to solve complex problems in the area of software architectures.
However, these achievements are the result of careful algorithm design which
involves substantial efforts in defining a problem’s representation and the selec-
tion of the algorithm parameters [2]. These efforts are a reflection of the fact
that approximate methods behave differently for different problems and even
problem instances [9].
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In recent years, there has been an increasing attention on developing variants
of adaptive memetic algorithms (AMAs). Most of these works are concerned with
either how to adaptively change the parameter settings of employed local search
algorithm or how to adaptively select a local search algorithm at each stage of
the evolution process [22]. Yet, only a few works focused on how to adaptively
decide if the local search should be applied or not. For example, Neri et al. [23]
proposed a fast adaptive memetic algorithm that utilises a pool of local search
algorithms for continuous optimisation problems. The application of the local
search algorithm is controlled by fitness diversity of the current population,
improving the performance of the MA.

Krasnogor and Smith [18] proposed MA with self-adaptive local search for the
travelling salesman problem. The Monte Carlo like local search is executed in two
different ways: when the population is diverse, it tries to exploit the current area
of the search space and when the diversification of the population is low, it acts
as a exploration method. The proposed MA was found to produce very promising
results. Tang et al. [25] introduced a parallel memetic algorithm for solving large
scale combinatorial optimisation problems. The method employs two diversity
strategies: static adaptive strategy and dynamic adaptive strategy to control
the application of the local search algorithm. Both strategies were tested on
the large-scale quadratic assignment problems and it was shown that MA with
adaptive produce competitive solutions when compared to the traditional MA.

Despite their success in solving difficult optimisation problems, MAs and
adaptive MAs have not been applied to the software architecture optimisation
problem. Adaptive MAs adjust the search strategy to the problem being opti-
mised using feedback from the optimisation process. The adaptation of the search
strategy is motivated by the fact that different problems require different opti-
misation methods [10]. When new problems arise, it is not possible to know
beforehand what optimisation strategy would be successful. Ideally, the opti-
misation method should be adapted during the run [7], which prompted the
application of an adaptive MA to solve the component deployment problem.

3 Component Deployment

One of the most crucial decisions that have to be made during the design of
embedded systems is the deployment of software components to the hardware
hosts, and the assignment of inter-component communications to network links.
The way the components are deployed affects many aspects of the final system,
such as the processing speed of the software components, how much hardware is
used or the reliability of the execution of different functionalities [5,21].

Software components are denoted as C = {c1, c2, ..., cn}, where n ∈ N. The
software system starts its execution in one software component. During the exe-
cution of the system, other components may be activated. Each component is
annotated with the following properties: memory size sz expressed in kilobytes
(KB), workload wl, which is the computational cost measured in million instruc-
tions (MI), initiation probability qi, denoting the probability that the execution
of a system starts from component ci.
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Software components may interact during the execution of the software sys-
tem. Each interaction from component ci to cj is annotated with the following
properties: data size dsij in kilobytes, refers to the amount of data transmitted
from software component ci to cj during a single communication event, next-step
probability pij the probability that the execution of component ci ends with a
call to component cj .

The hardware architecture is composed of a distributed set of hardware
hosts, denoted as H = {h1, h2, ..., hm}, where m ∈ N is the number of the
hardware units, with different capacities of memory, processing power, access
to sensors and other peripherals. The parameters of the hardware architecture
are as follows: memory capacity (cp) expressed in kilobytes, processing speed
(ps) is the instruction-processing capacity of the hardware unit, expressed in
million instructions per second (MIPS), failure rate (fr), which characterises the
probability of a single hardware unit failure. The hardware hosts are connected
via links denoted as N = {n1, n2, ...ns}, with the following properties: data rate
(drij) is the data transmission rate of the bus, expressed in kilobytes per second
(KBPS), failure rate (frij) is the exponential distribution characterising the data
communication failure of each link.

The component deployment problem is defined as D = {d | d : C → H},
where D is the set of all functions assigning components to hardware resources.
Each deployment solution is encoded as di = [di(c1), di(c2), ..., di(cn)], where
di(cj) represents the hardware host where component cj is deployed.

3.1 Reliability Estimation

The reliability of a software system is obtained from the mean and variance
of the number of executions of components, and the failure parameters of the
components [21]. Initially, the reliability of a component ci is calculated as

Ri = e
−frd(ci)·

wli
psd(ci) , where d(ci) is the deployment function that gives the host

where the component ci has been allocated. The reliability of a communication
network is a function of the data rates dr and data sizes ds required for software
communication. The reliability of the communication between component ci and

cj is calculated as Rij = e
−frd(ci)d(cj)·

dsij
drd(ci)d(cj) .

The reliability of a software systems depends on the number of times each
component is executed. The expected number of executions for each component
v : C → R≥0 is estimated as vi = qi +

∑
j∈I vj · pji, where I denotes the index

set of all components. The execution transfer probabilities pji are represented
in a matrix form Pn×n, where n is the number of components. Similarly, the
probabilities qi of initiating the execution at component ci are represented by
matrix Qn×1. The matrix of expected number of executions for all components
Vn×1 is calculated as V = Q + PT · V .

The reliability of a system is also affected by the failure rate of the network.
The higher the network usage, the higher is the probability of producing an
incorrect output. Naturally, the execution of a software system cannot start in
a network link, and the only predecessor of link lij is component ci. Hence, the
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expected number of using the network links v : C × C → R≥0 is calculated as
vij = vi · pij . Finally, the reliability of a deployment architecture d ∈ D is

R =
n∏

i=1

Rvi
i

∏

i,j (if used)

R
vij

ij . (1)

Equation (1) is the objective function used for optimising the deployment of
software components to hardware hosts.

Hardware resources have limited memory, which enforces a constraint on
the possible components that can be deployed into each hardware host. During
the allocation of software components, memory restrictions have to be dealt
with, in order to make sure that there is available memory in the hardware
units. Formally, the memory constraint is defined as

∑n
i=1 szixij ≤ cpj , ∀j ∈

{1, . . . ,m}, where xij is 1 if the software component i is deployed on the hardware
unit j, and 0 otherwise.

4 Adaptive Memetic Algorithm

Similar to a traditional GA, the adaptive memetic algorithm (AMA) [22] starts
with a population of solutions, which may be randomly generated or obtained
through expert knowledge. AMA repeatedly modifies solutions through the
application of crossover and mutation operators. The selection operator chooses
the next generation of solutions.

Different from GA, AMA employs LS in an adaptive manner to refine the
solution quality and to improve the convergence process. However, LS is a com-
putationally expensive process, since at each step, it has to evaluate all neigh-
bouring solutions (worst case). Furthermore, LS is an intensification process
which may lead to premature convergence, hence it should be applied with care.

To minimise the computational cost, and carefully tune the balance between
exploration by GA and exploitation by LS, AMA employs a population diversity-
based metric to decide when to apply LS. Most likely, when population diversity
is low, LS-based intensification would not help to improve the quality of the solu-
tions, since the population might have already converged. On the other hand,
high diversity in the population means that the exploration process has cre-
ated a good spread of solutions in the search space, and LS has more space for
improvement (intensification). The pseudocode of the proposed AMA is shown
in Algorithm 1.

AMA takes as input the population size (PS), crossover rate (CR), muta-
tion rate (MR) and the maximum number of generations (Max G) (line 1).
Next, a population of PS solutions are randomly generated (line 2) and then
evaluated (line 3). The main loop of AMA is executed for a fixed number of
generations (lines 5–24). At each generation, AMA selects two parents from the
given population of solutions (lines 7 and 8) using stochastic universal sampling
(SUS). Next, AMA checks the crossover probability condition (line 9), and calls
the crossover operator (single-point crossover) to combine the selected parents
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Algorithm 1. Adaptive memetic algorithm
1 Input: Population size, PS, crossover rate, CR, mutation rate, MR, and the

maximum number of generations, Max G;
2 P Sol ← RandomlyGeneratePopulation(PS);
3 Evaluate P Sol;
4 iter ← 0 ;
5 while iter <Max G do
6 /*Selection procedure*/;
7 P1 ← SUS(P Sol) ;
8 P2 ← SUS(P Sol) ;
9 if Rand([0,1])<CR then

10 /*Apply the crossover operator*/;
11 P ′

1, P
′
2 ← Crossover(P1, P2);

12 end
13 if Rand([0,1]) <MR then
14 /*Apply the mutation operator*/;
15 Mutate(P ′

1, P
′
2);

16 end

17 D ← 1 −
∣
∣
∣

favg−fbest
fworst−fbest

∣
∣
∣;

18 if D >th then
19 /*Call the local search algorithm*/;
20 LS(P ′

1, P
′
2);

21 end
22 Update the population (P Sol);
23 iter ← iter + 1;

24 end
25 Output Best solution found

(line 11). Based on the mutation probability (line 13), the solutions generated
by the crossover operator are modified by the one-flip mutation operator, which
changes the mapping of a random component from a given offspring (line 15).
Next, AMA calculates the diversity of the population [23] as follows (line 17):

D = 1 −
∣
∣
∣
∣
favg − fbest
fworst − fbest

∣
∣
∣
∣ (2)

where favg, fbest and fworst are the average fitness of the population, the fitness
of the best solution, and the fitness of the worst solution, respectively. LS is
executed if the diversity metric is greater than the threshold value th (line 20).
In this work, we use the simple descent local search algorithm (SDLS). SDLS
takes both offsprings (P ′

1, P
′
2) and iteratively improves their quality by checking

their neighbours and substituting them with the first better neighbour. The
one-flip procedure is used as the neighbourhood operator.

One-flip neighbourhood operator changes the allocation of a single com-
ponent, and produces a new solution d′

i from an existing solution di by
changing the mapping of a single components; for example, for a given
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k: d′
i = [di(c1), d′

i(c2), ..., di(ck), ..., di(cn)], while the original parent solution is
equal to di = [di(c1), di(c2), ..., di(ck), ..., di(cn)]. From one solution di, we can
generate 2n new solutions corresponding to the n positions and 2 values for
each position. The local search procedure is applied for a predefined number of
function evaluations.

5 Experiments

To evaluate the performance of the adaptive memetic algorithm, we perform
a set of experiments on randomly generated instances from the components
deployment problem. The problems are generated using realistic ranges for the
software and hardware parameters. The tool with the problem generator, opti-
misation algorithms and results can be downloaded from http://users.monash.
edu.au/∼aldeidaa/ArcheOpterix.html.

5.1 Experimental Settings

Approximation algorithms and heuristics are not guaranteed to give the optimal
solution of an optimisation problem. However, they can provide good solutions
in practice under circumstances where complete algorithms are not justifiable,
difficult to implement, impractical or simply not needed. Hence, results concern-
ing the performance of approximate algorithms such as memetic algorithms, are
usually reported as mean values over repeated trials. For the current compari-
son, all algorithms were granted 100 000 function evaluations per trial, repeating
the trials 30 times for each optimisation scheme and problem instance. The allo-
cation of 100 000 is based on pilot experiments. Although there are indications
that all algorithms still make small but steady improvements after this number
of evaluations, the improvements are minor.

5.2 Problem Instances

The validity of the presented experiments may be questioned on the grounds that
the results may only reflect the performance of the approaches in certain problem
instances, and there is a chance that the approaches may perform differently for
other problems. In the design of experiment, we aimed at reducing this threat
by generating problem instances of different sizes and characteristics. Instead of
manually setting specific problem properties, we developed a problem generator
integrated in ArcheOpterix [3]. The configuration of the problem instances are:

13 hosts 23 components (H13_C23), 18 hosts 28 components (H18_C28),

18 hosts 35 components (H18_C35), 24 hosts 35 components (H24_C35),

24 hosts 41 components (H13_C23), 30 hosts 44 components (H30_C44),

45 hosts 67 components (H45_C67), 45 hosts 87 components (H45_C87).

http://users.monash.edu.au/~aldeidaa/ArcheOpterix.html
http://users.monash.edu.au/~aldeidaa/ArcheOpterix.html
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5.3 Benchmark Optimisation Algorithms

The proposed AMA is compared against traditional MA, GA, and LS. LS is
computationally expensive, hence it should be used with reservations. In AMA,
LS algorithm is used when the diversity of the solutions, measured using Eq. 2
drops. The value of the threshold (th) is set to 0.8. This is a hyper-parameter
that may require to be tuned for different optimisation problem instances.

The crossover and mutation rates for the genetic algorithm, MA and AMA
are set to 0.9 and 0.1 respectively. The population size is 50. At every iteration,
40 new solutions are created. The population size is preserved through an elitist
strategy, which selects the best individuals. The tuning of the hyper-parameter
and parameter values was performed using a sequential parameter optimisation
technique [13]. To decrease the number of runs required for parameter tuning, we
employ a racing technique, which uses a variable number of runs depending on
the performance of the parameter configuration. Hyper-parameter and parame-
ter configurations are tested against the best configuration so far, using at least
the same number of function evaluations as employed for the best configuration.

6 Results

The experiments were performed on a 64-core 2.26 GHz processor computer.
There was little difference in the run-times of the different optimisation schemes
for the same problem instances. The main difference in run-time was observed
between the different problem instances. Solving the smaller instances was obvi-
ously faster, since the evaluation of the quality attributes takes less time.

Results from the experiments in terms of mean and standard deviation for the
compared algorithms (AMA, MA, GA and LS) are shown in Table 1. The pro-
posed AMA outperforms the other optimisation schemes in all problem instances
in terms of mean performance. This indicates that the adaptive application of
LS algorithm is beneficial when used in combination with the GA.

On its own, LS has a really poor performance, and is outperformed by all the
other optimisation methods in the majority of the problems used in the exper-
iments. For the largest problem (H45 C87), however, the local search performs
better than GA. This is not only the largest instance, but also the most con-
strained one. Hence the feasible areas of the search space are limited. The LS
algorithm performs small steps, hence once a feasible solution is found, LS is
efficient in exploiting that region of the search space. The crossover operator of
GA, on the other hand, becomes disruptive, and is not able to generate feasible
solutions.

The second best-performing algorithm is the traditional MA, which uses LS
deterministically. The performance of the LS on its own is overall worse than
the other methods. This could be due to the high computational cost associated
with evaluating all neighbouring solutions (worse case scenario).

As AMA consistently outperforms the three other optimisation schemes, we
use the Kolmogorov-Smirnov (KS) non-parametric test to check for a statistical



An Adaptive Memetic Algorithm for the Architecture Optimisation Problem 263

Table 1. The mean and standard deviation of results for all problem instances and
optimisation schemes.

Problem AMA MA GA LS

mean std mean std mean std mean std

H13 C23 0.999887 0.6e-5 0.999884 0.5e-5 0.999883 0.4e-5 0.999869 0.6e-5

H18 C28 0.999862 0.2e-5 0.999860 0.3e-5 0.999849 0.7e-5 0.999847 0.5e-5

H18 C35 0.999835 0.2e-5 0.999833 0.2e-5 0.999833 0.2e-5 0.999819 0.5e-5

H24 C35 0.998633 2.8e-5 0.998571 2.4e-5 0.998543 1.3e-5 0.998484 2.4e-5

H24 C41 0.998977 1.4e-5 0.998937 2.0e-5 0.998968 0.7e-5 0.998792 3.3e-5

H30 C44 0.999998 0.0 0.999996 0.0 0.999995 0.0 0.999994 0.0

H45 C67 0.993284 4.3e-5 0.993224 4.6e-5 0.993194 4.5e-5 0.993011 6.5e-5

H45 C87 0.999992 0.0 0.999992 0.0 0.999991 0.0 0.999992 0.0

difference. The 30 independent runs of the repeated trials for each of the opti-
misation scheme and problem instances were submitted to the KS test analysis.
AMA was compared to the other three optimisation schemes, with a null hypoth-
esis of no significant difference between the performances (AMA vs. MA, AMA
vs. GA, and AMA vs. LS). The significance coefficients (p-values) of the tests
are shown in Table 2.

Table 2. KS tests of results from all problem instances and optimisation schemes:
adaptive memetic algorithm (AMA) is compared against a memetic algorithm (MA),
a genetic algorithm (GA), and a local search (LS) method.

H13C23 H18C28 H18C35 H24C35 H24C41 H30C44 H45C67 H45C87

AMA-MA 0.05 0.04 0.05 <0.01 <0.01 <0.01 0.01 <0.01

AMA-GA 0.02 <0.01 0.2 <0.01 <0.01 <0.01 0.01 <0.01

AMA-LS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

The results from the KS tests, which were used for checking if there is any
significant difference between the datasets under the assumption that they are
not normally distributed, result in a rejection of the null hypothesis at a 95%
confidence level in the majority of the trials. This indicates that the superior
performance of the proposed AMA is statistically significant.

There is only one trial (H18 C35) where the performance of AMA, although
better than the performance of the GA, is not statistically significantly better.
AMA is a combination of GA and LS. In this trial, the LS performs poorly,
which may explain why the AMA is not as successful as in the other cases.
The fitness landscape of H18 C35 seems to be rugged and multi-modal, which
creates difficult gradients that are an impediment for the LS. An adaptation
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of the threshold value used for the selection of LS (Eq. 2) may solve this issue.
In future work, the adaptation of the threshold value for the LS selection is a
priority.

7 Conclusion

This work presented an adaptive memetic algorithm for the architecture opti-
misation problem. The proposed algorithm uses the simple descent local search
algorithm to refine the quality of the solution and to improve the convergence
process. To avoid the situation of being more exploitative than explorative as well
as reducing the computational time wastage, an adaptive scheme is used to con-
trol the simple descent application frequency. Computational experiments were
carried out using the component deployment optimisation instances to assess the
performance of the proposed adaptive memetic algorithm against genetic algo-
rithm, traditional memetic algorithm and local search algorithm. The proposed
adaptive memetic algorithm excelled compared to the benchmark algorithms,
which shows that adaptively controlling the local search application frequency
during the search process can assist the memetic algorithm to get the best results.
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Abstract. Hybrid methods are highly effective means of solving com-
binatorial optimization problems and have become increasingly popular.
In particular, integrations of exact and incomplete methods have proved
to be effective where the hybrid takes advantage of the relative perfor-
mance of each individual method. However, these methods often require
significant run-times to determine good feasible solutions. One way of
reducing run-times is to parallelize these algorithms. For large NP-hard
problems, parallelization must be done with care, since changes to the
algorithm can affect its performance in unpredictable ways. In this paper
we develop two parallel variants of constraint-based ACO and test them
on a problem arising in the Australian mining industry. We demonstrate
that parallelization significantly reduces run times with each parallel vari-
ant providing advantages with respect to feasibility and solution quality.

1 Introduction

Combinatorial optimization problems (COPs) that are NP-hard are of signifi-
cant interest in Operations Research. Metaheuristics can be effective at solving
these problems [4] but often breakdown when the COPs involve non-trivial hard
constraints. Thus, combining Metaheuristics with exact methods designed to
deal with constraints, such as constraint programming (CP) [11] provides a way
of identifying good feasible solutions.

Thiruvady and colleagues [20] considered a Resource Constrained Job
Scheduling (RCJS) problem which typically arises in mining supply chains. Here,
every mine (machine) requires a number of jobs to be completed to meet demand
at the ports. Production restrictions and maintenance requirements at the mine
mean that the jobs possibly start after a delay (release times). Additionally, there
are precedences between jobs which are enforced by the arrival of ships at the
ports requiring different minerals. While the jobs execute, they use a resource
(e.g. electricity) of which there is limited capacity (a renewable resource [5]).
The ships must be loaded at ports at pre-specified preferred times (soft due
c© Springer International Publishing AG 2017
M. Wagner et al. (Eds.): ACALCI 2017, LNAI 10142, pp. 266–278, 2017.
DOI: 10.1007/978-3-319-51691-2 23



Resource Constrained Job Scheduling with Parallel Constraint-Based ACO 267

times) which leads to minimizing tardiness as the objective. Moreover, in order
to meet contractual obligations the ships must be loaded within a short window
following the preferred time (hard due times). While hybrid methods have been
shown to be effective on this problem, the run-time requirements are often large.
For example, [20] ran their algorithms for 30 min and were still unable to find
feasible solutions for some large instances.

Parallel implementations of ACO have been shown to effectively reduce run-
times [7,8,13,16]. Randall and Lewis [13] (parallel ants or solutions) and Ling
et al. [9] (parallel colonies) use MPI to investigate a parallel implementation of
ACO on the travelling salesman problem. The study by Ellabib et al. [8] also
shows that local search can be incorporated in a straight-forward manner.

To the authors’ knowledge, few studies consider ACO with multi-core shared
memory programming [7,18]. Delisle et al. [7] consider a scheduling problem in
an aluminium casting centre and show that ACO can be effectively parallelized
for this problem. Thiruvady et al. [18] conducted a study of parallel ACO on the
RCJS problem without the hard deadline. While their parallel implementation
is effective, in the presence of the hard deadline line, ACO itself is not effec-
tive. Thus, a straightforward extension to the problem considered here is not
possible. Studies with parallel Beam search are even scarcer. During the search
candidate partial solutions are compared together and only the most promising
ones kept for the next iteration. This introduces dependency between solutions
during construction, potentially making parallel implementation less efficient.
One example is the study by Ravishanker [14], who proposed a parallel imple-
mentation of Beam search for speech recognition on multiple cores with a shared
memory architecture.

In this study, we develop two parallel variants of CP-Beam-ACO [17], a
hybrid combining Beam-ACO [3] and CP. We investigate their performance on
the RCJS problem described earlier [20]. While parallelization is conceptually
straight-forward, there are several difficulties in practice. Firstly, the methods
have to lend themselves to a parallel framework and it is not obvious how to do
so in the context of Beam search and CP. Secondly, while CP-Beam-ACO can
be theoretically parallelized, the efficiency of parallelization depends on imple-
mentation details where minor changes can lead to significantly different results.
We find that effective parallelization can indeed be obtained, however, the two
different schemes are better suited to finding feasibility or improving solution
quality.

The paper is organized as follows. The details of the problem are presented
in Sect. 2. Section 3 presents the CP-Beam-ACO hybrid and Sect. 4 presents the
parallelized variants. Section 5 provides details of the experiments conducted and
the results. A critical discussion is provided in Sect. 6 and Sect. 7 concludes the
paper.

2 Problem Specification

We are given a number of machines M = {1, . . . , l} where a number of jobs
J = {1, . . . , n} must be executed. A job i is associated with a release time
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(ri), processing time (pi), soft due time (di), hard deadline (d̄i), a weight (wi),
resource usage (gi) and the machine on which the job must execute (mi). Each
machine may only execute one job at a time and once a job commences, it must
complete. Jobs on a machine may have precedences between them, i.e., i → j
forces i to complete before j commences. We represent a solution to the problem
by sequence of jobs π = {π1, . . . , πn}. This sequence can be used to generate a
resource feasible schedule (x(π)) where start times for all jobs can be assigned
(S = {s1, . . . , sn}). Note that it may not be possible to find a scheduling scheme
x(·) such that all hard deadlines are met. Denote the set of jobs executing at
time t by Pt. Then

Pt = {j | sj ≤ t < sj + pj , j ∈ J } (1)

x(π) is resource feasible if
∑

k∈Pt

gk ≤ G ∀t (2)

where gk is the resource requirement of job k which uses some proportion of
the maximum resource available G. Thus, the resource consumption of all jobs
executing at the same time must not exceed the available resource. If it is not
possible to meet the hard deadline for all tasks, the next obvious objective is to
finish each task as early as possible, known as minimizing tardiness, as explored
in [2,15,20]. In line with these studies, we seek to minimize the total weighted-
tardiness x(π)

f(x(π)) =
n∑

i=0

wπi
× T (x(πi)) (3)

where T (x(πi)) = max(sπi
+ pπi

− dπi
, 0) is the tardiness of the job πi.

3 CP-Beam-ACO

Here we briefly review the CP-Beam-ACO algorithm described in [20]. Further
details can be found in the original work. The high-level ACO algorithm is
presented in Algorithm 1.

After initialization of the pheromones (T , line 3), the main algorithm (lines
4–10) for each of na ants proceeds as follows:

ConstructJobSequence(): A random number q ∈ (0, 1] is drawn and compared
with a pre-defined parameter q0 = 0.5. If q < q0, job k is selected as the ith job
(πi = k) according to

k = max
j∈J \{π1,...,πi−1}

τij × ηj (4)

otherwise, k is selected probabilistically according to

p(πi = k) =
τik × ηk∑

j∈J \{π1,...,πi−1} (τij × ηj)
(5)
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where ηk is a heuristic value defined as wk/dk which favors selecting jobs with
large weights and early due times. Every selection of a job k at position i has
the following update

τik = τik × ρ + τmin (6)

which ensures diversification. ρ is the learning rate (to apply evaporation) and
τmin = 0.001 ensures that there is always a non-zero probability for selecting
any job at any position.

PlaceJobs(): A schedule σ(π) is obtained from a sequence via the placement
scheme discussed in [20]. Starting at the first time point a feasible schedule can
be ensured that satisfies the precedence and resource constraints. Note that,
the sequence of jobs may violate the constraints. However, to account for prece-
dences, jobs are only placed once their preceding jobs have been completed. The
resulting solution is added to the set of solutions for that iteration Siter.

Algorithm 1. ACS for the RCJS problem
1: input: An RCJS instance
2: πbs := null (global best)
3: initialize T
4: while termination conditions not satisfied do
5: Siter := ∅
6: for j = 1 to na do
7: πj := ConstructJobSequence()
8: PlaceJobs(πj)
9: Siter := Siter ∪ {πj}
10: end for
11: πib := argmin{f(π)|π ∈ Siter}
12: πib := LocalSearch()

13: Update(πib,πbs)

14: PheromoneUpdate(T ,πbs)

15: cf := ComputeConvergence(πib)
16: if cf = true then initialize T end if
17: end while
18: output: πbs

After the main loop concludes, the best solution from that iteration is cho-
sen πib (line 11). LocalSearch(): The iteration best solution πib is potentially
improved by (a) randomly swapping pairs of jobs a fixed number of times
(b) by selecting an index l randomly, selecting a m jobs from l and mov-
ing them to the end of the sequence. All jobs at l + m to the end of the
sequence are moved up to m (known as β-sampling [21]). If either of these
leads to an improvement πib is updated. Update(πib, πbs): πbs is set to πib if
f(σ(πib)) < f(σ(πbs)) where f(σ(πib)) is the total weighted tardiness of the
solution. PheromoneUpdate(T , πbs): The global best solution is used to update
the pheromones. For job i appearing at position j, τij is updated according to

τij = τij × ρ + δπbs (7)

where δπbs = Q/f(σ(πbs)) and Q is a scaling factor chosen so that 0.01 ≤ δπbs ≤
0.1. ρ = 0.01 is the learning rate discussed earlier. If a global best solution is
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unavailable, there is no reward (a negative reward may be investigated in the
future). ComputeConvergence(πib): If πib does not change for 10 iterations, we
assume convergence and the pheromone matrix is re-initialized: τij = 0.5 ∀i, j.

In the CP-Beam-ACO, the ConstructJobSequence() routine is implemented
as a probabilistic Beam search with CP. This procedure is presented in Algo-
rithm2. A solution consists of two sequences (π, π̂), the first being the partial
sequence and the second being a list of waiting jobs. In selectJob(D , T ), a job
is selected using the pheromones. It is tested with the CP solver1 if all its pre-
ceding jobs (PRj) have been scheduled (updateJobs(π̄, π̂, j ), where j is the
selected job). Once j is added to π̄, π̂ is examined to determine which jobs may
be scheduled next, and these jobs are scheduled as soon as possible considering
the release times. The job is placed in the waiting list if its predecessors have
not been completed (line 13). The current partial solution is now placed in the
Beam if it has passed the CP test or if the new job is waiting (line 15). The final
step is to determine promising solutions (Reduce(Bt+1, θ)) via an estimate and
θ best of these are selected.

Algorithm 2. ConstructJobSequence (Probabilistic Beam Search with CP)

1: input: (θ, μ, T )
2: B0 = {π1 = (), . . . , πθ = ()}
3: t = 0
4: while t < n and |Bt| > 0 do
5: for i ∈ Bt do
6: k ← 0, D = domain(πi

t+1)

7: while k < μ ∧ D �= ∅ do
8: (π, π̂) ← πi, feasible = true
9: j = selectJob(D, T )
10: if PRj in σ(π) then
11: feasible = updateJobs(π̄, π̂, j)
12: else
13: π̂ ← append(π̂, j)
14: end if
15: if feasible then Bt+1 = Bt+1 ∪ (π, π̂)
16: k ← k + 1, D = D \ j
17: end while
18: end for
19: Bt+1 = Reduce(Bt+1, θ)
20: t ← t + 1
21: end while
22: output: argmax{f(π) | π ∈ Bn−1}

The estimate is an important step that can significantly improve the search.
Here we follow other studies [10,17,19,20] and use stochastic sampling as a
generic way of obtaining estimates.

4 Parallel CP-Beam-ACO

In the previous section we introduced the CP-Beam-ACO algorithm. In what
follows we described how the execution of this algorithm can be parallelized.
1 The CP solver maintains all the constraints in the system. A job j is posted to the

solver and either success or failure is returned.
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4.1 Parallelized Stochastic Sampling

We profiled a typical execution of the algorithm and found that the sampling loop
(in Reduce(Bt+1, θ)) was the most CPU-intensive component. Thus, paralleliza-
tion of the sampling loop is a reasonable approach to reducing the run-time of this
algorithm. Parallelizing the sampling loop means that all cores would attempt
to access the pheromone matrix. To avoid simultaneous access, we restricted
the pheromone matrix in two ways. In the first, termed full lock, the entire
pheromone matrix is locked each time it is accessed by a core. The drawback of
this method is that a core may need to wait until a previous core has updated
the matrix before accessing it, reducing performance. In the second method, we
locked each row of the matrix. This method reduces the time a core may need
to wait for another core (we measured this at 52µs), but incurs additional over-
heads due to the multiple locks. This method also has the advantage of limiting
the impact of false sharing on ccNUMA (cache coherent Non Uniform Memory
Access) architectures [6], a well-known effect of shared memory approaches on
this architecture. If two cores modify the same cache line, then this line needs to
be reloaded decreasing performance. By locking the entire row of the matrix, we
are reducing the probability of more than one processor accessing the same cache
line. We profiled a typical serial execution of the algorithm on one instance and
determined the maximal theoretical speedup, as described by Amdahl’s law [1].

S(n) =
1

B + 1
n (1 − B)

(8)

Here S is the maximal speedup available, B is the percentage of the algorithm
that must be run in parallel, and n is the number of cores available. We tested
the speedup achieved as a function of the number of cores for different number of
samples. All tests were run on an Intel Xeon Processor E5-2650 with 8 physical
cores (no Hyper-Threading). This machine has two processors on each node, so
that up to 16 cores could be used. However, we have chosen to run only on 8
cores to avoid the impact of inter-socket communication.

4.2 Full Parallelization

This parallelization variant considers multiple Beam-ACO instances running in
parallel while sharing the same pheromone matrix. We employed a similar strat-
egy to the sampling parallelization by locking the rows of the matrix. In this
method, the algorithm is run nearly entirely in parallel and so the theoretical
maximal speedup is roughly equal to the number of cores. However, this method
constitutes a change in algorithm so that direct comparison in terms of speedup
with the original algorithm would be misleading, as the algorithm’s performance
must also be taken into account, as we demonstrate in Sect. 5. We thus consider
as serial implementation the modified version with the parallelization deacti-
vated and running on a single core. When evaluating this method we fixed the
number of samples at 32. We emphasize that this way of parallelizing the algo-
rithm effectively generates 8 times (for 8 cores) as many solutions (ants) as the
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parallel stochastic sampling approach. The pheromone matrix is shared across all
these solutions, and modified during subsequent calls to the PheromoneUpdate()
routine.

5 Experiments and Results

CP-Beam-ACO was implemented in C++ and compiled using Intel Compiler
14.1. OpenMP was used [6] for the parallel implementations. All experiments
were run on a computer with 2 Intel Xeon E5-2650 processors running at
2.00 GHz and a 20 Mb cache on each node. This amounts to a total of 16 cores
but as previously mentioned we use up to 8 cores to keep all the communica-
tion intra-socket. Each algorithm was run 19 times per instance (the 20th run
timed-out on a subset of the instances) and allowed one hour of wall clock time.

We conducted experiments on the problem instances from the study by [20]
and also used the same hard due times. For a complete comparison of the two
parallelized variants we examined available speedup as well as the ability to find
feasible solutions and the resulting solution qualities.

5.1 Comparing Speedup

Figure 1 shows the available speedup (time taken for serial version/time taken
for parallel version) for 1–8 cores for the two parallel variants. The best possi-
ble improvement (dashed black line) and the maximal theoretical speedup (96
samples, dashed blue line) are shown for comparison. The figure shows that the
Full parallel variant (solid black line) achieves excellent speedup. Parallelizing
the stochastic sampling loop is also effective, but this is only maintained for
8 cores and when using 64 or more samples. Thus, when speedup is the only
consideration, the best results are obtained for the Full parallel variant followed
by parallel sampling with 64 or more samples.
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Fig. 1. Speedup as a function of the number of cores for the Full parallel and parallel
stochastic sampling variants. See legend for details. (Color figure online)
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The figure also demonstrates the relative weakness of the full lock method
(solid green line). When using 4 cores, the speedups of this version and the 8
samples implementation are similar, but the performance of the full lock version
decreases when the number of cores increases due to the deadlocks in the critical
section. For this reason we focused on the version in which the rows of the
pheromone matrix are locked, which we simply refer to as parallel sampling.

5.2 Comparing Feasibility

We first compared the feasibility results obtained with all implementations. We
focus on instances where feasibility is difficult to find and do not report results for
instances in which all implementations always or never find feasibility. Figure 2
shows the probability of finding a feasible solution for five instances in which
finding feasibility was difficult. Our results show that using fewer than 16 or
more than 96 samples tends to decrease the chance of finding feasibility. For the
full parallel version, 32 samples were used but this particular variant was com-
paratively ineffective at finding feasibility irrespective of the number of samples
selected. A potential reason for this is that the multiple beam-searches share
the same pheromone matrix, effectively reducing the learning rate. For the ser-
ial implementation we chose the optimal number of samples separately for each
instance. In other words, we compare the parallel implementations against the
best performing serial version. Thus, Fig. 2 demonstrates that there is always a
parallel solution that is an improvement over its serial counterpart.

Overall, these results show that parallelizing provides a net benefit for the
algorithm performance and that stochastic sampling is a useful guide towards
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Fig. 2. Probability of finding feasible solutions for all implementations. A scale cor-
responding to 100% is shown on the left (black line). The results are shown for five
instance in which finding feasibility was difficult. The x axis specifies the implemen-
tation. The numbers 4, 8, 16, 32, 64, 96 and 128 are the number of samples used.
Full is the Full parallel implementation with 32 samples and serial is the Full parallel
implementation running on one core.
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finding feasibility. There is a trade-off point at 96 samples after which the excess
stochastic sampling is not useful. This may be because the extra time spent on
stochastic sampling results in fewer iterations and less time spent on the CP
component, which may not be useful.

5.3 Comparing Solution Quality

Next we compared the solution quality of the parallelized variants. We chose
instances in which feasibility is found at least once, discarding instances in which
some of the implementations always fail. Figure 3 shows the % difference to the
best solution. Interestingly, the solution qualities worsen with increasing samples.
The full parallel implementation is by far the best performing algorithm, followed
by the parallelized sampling variant with only four samples. Thus, if feasibility
is found, the full parallel implementation is the algorithm of choice.
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Fig. 3. Solution quality for all parallel implementations averaged over machine size.
The numbers 4, 8, 16, 32, 64, 96 and 128 are the number of samples used. Full is the
full parallel implementation with 32 samples.

When we focus on solution quality for problems in which feasibility is difficult
to find we see a similar trend - increasing the number of samples results in worse
solution quality. Figure 4 shows the % difference to the best solution for the four
most difficult problems. We have removed problem 7–47 from this comparison
since only implementations with 16 or 32 samples found feasible solutions. For
these difficult problems using only four samples is the most effective implementa-
tion, followed by the full parallel implementation. Comparing against the serial
version (with optimal number of samples chosen) we see that there is always a
superior parallel implementation.

These results show that stochastic sampling is well suited for finding feasibil-
ity. However, once feasibility is found, a larger number of samples does not result
in improved solution quality. One indicator of solution quality is the number of
iterations performed by the algorithm - more iterations improve the solutions.
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Fig. 4. Solution quality results for all implementations for four difficult instances. The
numbers 4, 8, 16, 32, 64, 96 and 128 are the number of samples used. Full is the full
parallel implementation with 32 samples and serial is the Full parallel implementation
running on one core.

We examined the relationship between the number of iterations and solution
quality to see if this can explain our results. Figure 5 shows the % difference to
maximum number of iterations performed (pink bars) as well as the % difference
to best solution (blue bars).

The figure clearly shows that increasing the number of samples results in
fewer overall iterations and reduced solution quality. This implies that once
feasibility is found, higher quality solutions are obtained by iterating more, not
by increasing the number of samples. This contrasts with the previous finding
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Fig. 5. Superimposing % difference to maximum number of iterations performed (pink
bars) on % difference to best solution (blue bars), averaged across all instances. Both
quantities have been normalized to sum to one in order to fit on the same scale. The
numbers 4, 8, 16, 32, 64, 96 and 128 are the number of samples used. Full is the full
parallel implementation with 32 samples. (Color figure online)
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that more samples lead to improved feasibility finding (Fig. 2). The comparison
also includes the Full parallel implementation which shows that good quality
solutions are obtained with far fewer iterations. However, we emphasize that
the Full parallel implementation constitutes a change in algorithm for which the
number of iterations cannot be directly compared with the parallel sampling
algorithm.

6 Discussion

The two parallelized variants showed significant improvements in speedup com-
pared to the serial counterpart (Fig. 1). Comparing each algorithm’s performance
revealed that each parallelization scheme is best suited for different criteria. Par-
allelizing the sampling loop allowed significant run-time improvement when using
64 or more samples (Fig. 1). The combined improvement in run-time and larger
number of samples was best suited for finding feasible solutions (Fig. 2). In con-
trast, the second parallelized variant, in which multiple Beam-ACO instances ran
in parallel, was comparatively poor at finding feasible solutions but far superior
at finding better solutions if feasibility was found (Fig. 3).

Since the two parallelized variants constitute two different algorithms, it is
not trivial to reduce the relative strengths of these parallelized variants to a single
source. However, two key factors deserve further consideration. First, due to the
nature of parallelization, the Full parallel variant achieved excellent improvement
in run-time. Put differently, the Full parallel method made better use of the
available computing resources in a given time frame compared to the parallellized
stochastic sampling loop. Secondly, our results are consistent with a trade-off
between finding feasible and good quality solutions. Parallelizing the stochastic
sampling loop and using more samples means that more of the search space
is sampled, and this clearly aids in finding feasibility. However, on instances
where obtaining feasibility is easier, beam search is more effective at honing in
on promising areas of the search space, resulting in better quality solutions.

7 Conclusion

In this study, we considered parallel variants of a constraint-based ACO algo-
rithm for resource constraint job scheduling. We show that parallel variants of
the CP-Beam-ACO are more effective than their serial counterparts. We found
that the choice of implementation depends on the criteria of evaluation - whether
feasibility (parallelized stochastic sampling) or quality of the solution (full par-
allelization) are of interest.

Previously, CP-Beam-ACO has been shown to be effective on similar prob-
lems to the one considered here [17,19]. One possible future direction is to inves-
tigate whether or not the parallel implementations considered here are also useful
on those problems. We would expect that as the relative importance of the CP
solver and stochastic sampling is different for these problems, some modifications
may be necessary to obtain optimal performance. Understanding which parallel
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variant is best suited for a given problem requires further investigation. A second
possibility is to consider parallel implementations via MPI [12]. There are likely
to be significant advantages with a full parallel version especially if we are able
to make use of several hundred nodes. There may not be a similar advantage
with stochastic sampling, because increasing the number of samples beyond a
critical point does not result in further gains.
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Abstract. An Australian company is faced with the logistics problem
of distributing small quantities of fibre boards to hundreds of customers
every day. The resulting Heterogeneous Fleet Vehicle Routing Problem
with Time Windows and Three-Dimensional Loading Constraints has to
be solved within a single hour, hence the use of a heuristic instead of an
exact method. In previous work, the loading was performed after opti-
mising the routes, which in some cases generated infeasible solutions in
need of a repair mechanism. In this work, the feasibility of the loading
constraints is maintained during the route optimisation. Iterated Local
Search has proved very effective at solving vehicle routing problems. Its
success is mainly due to its biased sampling of locl optima. However, its
performance heavily depends on the perturbation procedure. We trialled
different perturbation procedures where the first one perturbs the given
solution by moving deliveries that incur the highest cost on the objective
function, whilst the second one moves deliveries that have been shifted
less frequently by the local search in previous iterations. Our industry
partner provided six sets of daily orders which have varied characteris-
tics in terms of the number of customers, customer distribution, number
of fibre boards and fibre boards’ sizes. Our investigations show that an
instance becomes more constrained when the customer order contains
many different board sizes, which makes it harder to find feasible solu-
tions. The results show that the proposed perturbation procedures sig-
nificantly enhances the performance of iterated local search specifically
on such constrained problems.
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1 Introduction

The vehicle routing problem (VRP) describes the problem of finding an optimal
distributing schedule between depot and customers using a fleet of vehicles [11].
Due to its practical application in supply chain management, transportation and
logistics, several variants have been proposed over the last 40 years, most promi-
nently the Capacitated VRP (CVRP), VRP with Time Windows (VRPTW),
Multiple Depot VRP (MDVRP) and the Periodic VRP (PVRP). The Three-
Dimensional Loading Capacitated VRP (3L-CVRP) was formulated only 2006
as the combination of the VRP and Three-Dimensional Loading, where the objec-
tive is not only to find a set of routes but also to satisfy the given constraints
imposed by the 3-dimensional nature of the goods and vehicle [11]. Consequently,
due to its practical importance, a number of studies have addressed this prob-
lem with the inclusion of various constrains such as heterogeneous fleet and time
windows [18].

The distribution problem faced by our industry partner combines three-
dimensional loading of fibre boards with a heterogeneous fleet and time windows
(3L-HFCVRPTW). Both VRP and loading have been proved tp be NP-hard
problems and our 3L-HFCVRPTW is combination of VRP and loading. It is
highly unlikely that an exact algorithm exists which can solve a 3L-HFCVRPTW
of practical complexity to optimality within the time frame prescribed by the
processes of our industry partner.

In previous work it was observed that calling the loading module after route
optimisation often generates infeasible solutions [17]. In this work, we apply
an Iterated Local Search (ILS) algorithm to the 3L-HFCVRPTW that calls
the loading module during the optimisation process. ILS improves on an initial
solution by locally optimising it and has proved successful with VRP problems
before [1,7,20]. Importantly, ILS can easily be hybridised with other optimisation
heuristics [3]. Its success has been shown to be highly dependent on the perturba-
tion procedure employed [3]. Lourenço et al. [15] expressed this notion as “A good
perturbation transforms one excellent solution into an excellent starting point
for a local search”. In this work, we propose two perturbation procedures for
the ILS. The first perturbs the current solution by moving deliveries which incur
the highest cost on the objective function, while the second one moves deliveries
that have been moved the least frequently. The performance of the proposed
algorithm is assessed using six real-world instances provided by our industrial
partner, which are very diverse in size and features. An extensive experimen-
tal comparison was conducted to evaluate the value added by the perturbation
procedures.

2 Related Work

The Vehicle Routing Problem (VRP) was first introduced by Dantzig and
Ramser [8]. Over the years, VRP and it variants have been widely researched in
the optimisation literature. A comprehensive review on the VRP and it variants
is available in [4,5,13,22].
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The 3L-CVRP is based on the integration of CVRP and three-dimensional
loading. A large number of methods have been successfully applied to this prob-
lem. A review of the integration of VRP and loading is available in [24]. Gendreau
et al. [11] applied a taboo search to the 3L-CVRP that treats the loading prob-
lem as a subproblem which takes into account additional constraints such as the
sequence, fragility and stability.

Tarantilis et al. [21] devised six heuristics for placing rectangular items within
a vehicle. After each placement, the coordinates for the next possible placements
are calculated. While minimising the length of the load, the heuristics place the
next item prioritising the width or height axis, maximising the touching surface
along the width or height axis and maximising the touching surfaces excluding
the walls of the item. The heuristics are employed in the order of complexity until
a feasible solution has been found. The algorithm creates feasible initial solutions
by ordering customers in descending order by item volume and assigning them to
a minimal number of routes subject to successful packing. If no feasible solution is
found, a vehicle is added to form a new route. A guided local search employs one
of three search moves with equal probability: relocation of customer within route,
swap of customers, relocating a customer to another route. In each case, the
entire neighbourhood (all possible placements of the chosen customer according
to the move) is considered, while preserving feasibility. A tabu list is used for
the reversal of moves.

Duhamel et al. [9] applied a GRASP and Evolutionary Local Search (ELS)
to the 3L-CVRP, which develops initial solutions by combining the tours and
splitting them again. Before splitting, a perturbation is introduced, and a local
search consisting of 2-opt transpositions are applied within and between routes.
The load construction algorithm considers 90◦ rotations but and treats the height
dimension as a cost. It includes a look-ahead step for pre-empting placements
that prohibit new additions of items. The route building is completed before the
resulting sequence of orders is submitted to the load building procedure. The
method is compared to Gendreau et al. [11] and Fuellerer et al. [10] and appears
to achieve better solutions in most trial runs.

Fuellerer et al. [10] devised an ant colony optimisation (ACO) approach to the
3L-CVRP which employs the bottom left [2] and touching perimeter algorithms
[14] for the ensuing loading phase. The ACO implementation is an adaptation
of the savings algorithm [6] by Reimann et al. [19]. It assigns each customer to
a separate route, then calculates the possible savings from combining the routes
and probabilistically chooses one of the combinations based on both pheromone
and savings heuristic. The pheromone values are updated based on the F best
solutions; each solution contributes pheromone according to its rank. To accom-
modate the packing task, a second heuristic is added which describes the packing
density achieved by including each item in a route. The ACO construction phase,
which is followed by a local search, allows infeasible solutions and includes a
penalty value in the objective function. The results are compared with the tabu
search approach by Gendreau et al. [11].
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Moura and Oliveira [16] considered a VRP with time windows integrated
with the container loading problem (CLP) where the objective is to minimise
the number of vehicles used with a subgoal of minimising the total travel time.
In addition to enforcing vehicle capacity, a stable load must be formed. The
algorithms applied are random search, 2-opt local search and GRASP with a
local search component.

Wei et al. [25] describe a 3L-HFVRP formulation which includes a heteroge-
neous fleet and three-dimensional loading. Route optimisation takes place first,
the result is then checked for feasibility using the loading algorithm. The route
optimisation comprises multiple stages which start from an initial solution built
according to Clarke and Wright’s algorithm [6]. The subsequent local and global
search phases alternate adaptively depending on the improvements made. Two
global search strategies, a ruin-reconstruct approach which removes large-volume
orders and reinserts them, and a concat-split method, which combines all routes
and subdivides them again, are applied according to their relative success rates.
The shake procedure, which randomly picks two or three orders from the same
route and inserts them optimally into a second route (also used by Tricoire
et al. [23]) can be seen as a semi-global move intended to escape from possible
local optima in between local search moves.

Recently, Junqueira and Morabito [12] applied simulated annealing and
record-to-record travel algorithms to generate the routing paths. The perfor-
mances of the proposed algorithms were evaluated using the vehicle routing
benchmark instances and real world instances provided by Brazilian company.
The proposed algorithms produce relatively good solutions for real instances.

3 Problem Description

The Melbourne distribution centre (MDC) of our industry partner plans the
next-day deliveries during one hour after the cut-off time for orders. The MDC
is equipped with three types of custom-made delivery trucks with flat platforms
and spaces for dividers which keep the stacks of fibre boards in place.

Customers can order boards of different sizes, each in different quantities. The
quantities are typically small - larger orders are delivered separately. Boards are
packed into ‘packs’ and stacked on the truck platforms. If a customer orders
several sizes, it may be meaningful to subdivide the delivery for this customer
into several packs and place them onto different stacks on the trucks, while
strictly maintaining LIFO order. The number of trucks needed for the deliveries
depends on the capacity of the truck and the volume of the orders.

The problem at hand can formally be described as a complete graph G (V,E)
where V represents a set of customers V = {0, ..., n}, 0 denotes the MDC and
{1, ..., n} represent customers. The vertices are connected by edges E = {eij :
i �= j and i, j ∈ V }.

Objective Function: Each edge is associate with a travel distance cij expressed in
minutes. Melbourne traffic is heavy on certain roads and fluctuates greatly during
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the day, hence distances do not reflect the problem accurately. The assumption
cij = cji is a simplification made for this first formulation. Equation 1 expresses
the summation of the cost; eij takes the value 0 if the edge between customers
i and j is not used, 1 otherwise. Position 0 denotes the MDC and connects to
twice as many customers as there are routes. Waiting times δi only apply when
the truck arrives before the start of the time window of customer i.

f(x) =
n∑

i=0

n∑

j=0,j �=i

eijcij +
n∑

i=1

δi (1)

Depending on the availability of a forklift on site, and the number of packs
to be delivered, customer drop-offs may take between 5 and 25 min, considered
as the service time si.

Most customers are happy to receive their delivery any time during the day,
but a subset of 10–20% of all customers can only receive their deliveries. The
time window constraint is expressed in Eq. 2, which expresses that all travel
ci,i+1 and service times si of the customers {0...k − 1} in route rx combined
have to be greater than or equal to the start time of customer k’s time windows
start time tsk and smaller than the end time tek reduced by the service time sk
of customer k. It is assumed that the load has to be unloaded before the end of
the time window, and that an early arrival incurs a waiting time δ which adds
to the objective value of the solution.

tsk − δ ≤
k−1∑

i=0,i∈rx

ci,i+1 + si ≥ tek − sk (2)

The problem is described in more detail in [17].

4 Proposed Methodology

The ILS application proposed here relies on an initial feasible solution. While
constructing the initial solution, the algorithm calls loading module to enforce
the loading constraints. At each iteration of the local search procedure, the
algorithm calls the loading module to check the modified solution for a predefined
number of iterations. The locally optimised solution is accepted only if it is
feasible.

4.1 Initial Solution

The initial solution is created using the Nearest Neighbour (NN) heuristic. NN
starts at the depot and adds the closest customer, then the customer closest to
the last added subject to the loading constraints. When no further customer can
be added, a new route is created.
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4.2 Routing Module

The route optimisation is effected by ILS in combination with two alternative
permutation procedures.

ILS is a generic heuristic framework that can cover any optimisation strategy
that works on a single solution. The optimisation process alternates between a
global diversification move and a local search which makes small improving steps,
often, but not necessarily, taking the solution to a local optimum. In most cases,
the local search procedure is defined as a process that makes small improving
moves until no improvement is possible, such as stochastic local search or steepest
descent. The ILS algorithm as defined by Lourenço et al. [15], however, does not
prescribe the local search to be greedy. It only has to define reasonably small
moves that form a neighbourhood around the current solution. A listing of the
generic ILS is shown in Algorithm 1.

Algorithm 1: Generic Iterated Local Search
1 s ← GenerateInitialSolution();
2 while termination criterion not met do
3 s′ ← Local search (s);

4 s′′ ← Acceptance criterion (s′, s, history);
5 s ← Perturbation (s′′, history);
6 end

The algorithm locally optimises the current solution, then verifies whether
the resulting solution is accepted for perturbation. If not, the perturbation pro-
cedure, which is a global move aimed at diversification, perturbs the previous
solution again. Within this framework, we define the perturbation and local
search procedures as well as the acceptance criterion to suit the fibre board
delivery problem as follows.

1. Local search : We adopted a stochastic local search which accepts only moves
that improve the quality. The choice of local search move can affect the per-
formance of the algorithm significantly. In this work we consider combinations
of the following choices of local search move for the 3L-HFCVRPTW:

– swap chooses two deliveries randomly within a route and transposes
them.

– displacement selects a delivery from a route and moves it to a different
location in the same route.

– routeshift selects a random customer delivery to move to a different
route.

A local search which does not permit shifting deliveries between routes is too
restrictive to achieve good optima. Therefore, routeshift is always combined
with either swap or displacement or both in our algorithm.

2. Perturbation procedure : The perturbation procedure plays an important
part in the performance of ILS, helping the search diversify and escape from
local optima. In the simplest case, the perturbation procedure re-randomises
a locally optimised solution by randomly moving some deliveries from their
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current positions in a route and inserting them in a different position in the
same or different route. However, this can lead to very poor decisions which
position some deliveries so suboptimally that the ensuing local search is likely
to reverse the change and revert to the same local optimum. Using domain
information in the perturbation can be expected to lead to better starting
solutions for the local search. Naturally, the changes have to lead to a diversi-
fication rather than attempting to further optimise a locally optimal solution.
In this work, we experimented with the following perturbation moves:
(a) Frequency-based perturbation (F-ILS): This procedure perturbs

the current solution by prioritising less frequently displaced deliveries.
A delivery is always moved to the position that minimises the delivery’s
contribution to the objective function. Note that the position depends on
the remainder of the solution, as the delivery has to be moved between
two deliveries that immediately follow each other in the current solution.

(b) Cost-based perturbation (C-ILS): This procedure chooses the cus-
tomers that are currently the most expensive to visit in terms of the
objective function. They are relocated at the cheapest position as in the
frequency-based procedure.

3. Acceptance criterion : The acceptance criterion decides whether to accept
or reject the solution generated by the local search procedure for the next
iteration. In this work, we only accept a solution when it is better than the
previously known best.

4.3 Loading Module

The loading module optimises the placement of customer deliveries in the cus-
tomised vehicles. It receives a permutation of customer orders prescribed by the
outcome of the routing module. The boards of a delivery have to be packed into
one or more packs to be placed in stacks that are laid out on the platform of the
truck.

Once all sizes have been determined, a preliminary layout on the bottom of
the truck including the number of ‘rows’ of stacks is decided. Because all parts
of a customer delivery have to be accessible from either side of the truck, a row
can have one or two stacks abreast.

Given the preliminary layout, the loading module uses a depth-first search
algorithm to place each pack on a stack. If a pack placement leads to an invalid
solution given the constraints and the heights of the stacks, it is removed and
possibly re-packed before another placement on stacks is attempted. If none of
the possible placements succeeds, the algorithm backtracks to remove further
customer layers before rebuilding the layers again. The recursive backtracking
procedure is exhaustive and only viable due to the relative homogeneity of the
board sizes and the fact that the choices of alternative packs are limited by the
number of stacks.
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5 Experimental Setup

In this section, we introduce the benchmark instances that were used in our
experimental studies and the parameter settings of the algorithms.

5.1 Benchmark Instances

We use six different 3L-HFCVRPTW instances provided by our industrial part-
ner. Theses instances have various characteristics in terms of number of cus-
tomers, customer distribution, number of items and items size. Table 1 shows
the main characteristics of the 3L-HFCVRPTW instances.

Table 1. Features of the instances

Instance Number of customers Total number of items Total demands

LM-20JAN-1 158 3711 178100KG

LM-14MAR-2 130 2922 155214KG

LM-11MAR-3 120 2458 108786KG

LM-13DEC-4 95 2528 153445KG

LM-17MAR-5 106 2175 148221KG

LM-21MAR-6 110 2797 117475KG

Because each customer’s delivery has to be bundled into packs and placed
on one or more stacks in a LIFO order and a board can be no larger than 1.5
times the width and depth of the board underneath, customer orders with large
numbers of different sizes are more challenging to place than deliveries with
boards of a single size. Figure 1 shows the distribution of combinations of item

Fig. 1. Histogram of the number of different board sizes a delivery contains (1 means
all boards in the delivery are of the same size), while the y-axis refers to the number
of deliveries that have these numbers of different sizes.
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sizes in all instances. The loading problem becomes more complex the more
diverse the boards in a delivery are in size. If a customer orders 3 different sizes,
this delivery likely has to be split up to be allocated to several stacks. This, in
turn, leads to more stacks that accommodate the different sizes without violating
the rule of a maximum overhang of 1/3 of a board.

5.2 Comparison of Algorithms

In addition to the F-ILS and C-ILS algorithms that perturb solutions based
on frequency of displacement and cost of access respectively, we also included
a random displacement procedure for comparison (R-ILS). Each perturbation
strategy was paired with one of the local search strategies - routeshift with
either displacement (d-rs) or swap (s-rs) or both (d-s-rs) as described in Sect. 1.

5.3 ILS Parameter Settings

To tune the three parameters required for ILS, we have conducted preliminary
trials using 30 independent trials with different parameters combinations. Based
on the results, the stopping criterion was set to 100 non-improving evaluations
of the acceptance criterion (line 4 of Algorithm 1), the perturbation size is set
to 10% of the total number of customers in each instance, and the local search
termination criterion is set to 10 non-improving fitness evaluations.

6 Results and Discussion

The computational results over 30 runs of the nine ILS algorithms for the six
3L-HFCVRPTW instances are summarised in Table 2. The results are compared
in terms of best, worst and average (Avg) total delivery time (makespan) as well
as the number of fitness evaluations (FE) spent. In the table, we indicate in bold
font the best results obtained across algorithms. In all cases, C-ILS performs
best, but requires the largest number of function evaluations.

The results in Table 2 show that C-ILS with both displacement and swap
move performs better than the competing ILS algorithms in terms of both best
and average results. Permutations which shift the most costly customers to visit
seems the best strategy by a large margin. The results also confirm that a rela-
tively greedy perturbation procedure helps maintain better solutions to locally
optimise. Displacing the deliveries that have the longest access path is almost
in itself a local search move, and we would suspect that this might not help
diversification. Strong perturbations do not seem to benefit the solution. Even
the frequency-based choice of delivery to move performs significantly better than
the random choice.

All local search strategies include routeshift to ensure the algorithm is able to
reassign deliveries to different routes. Combining both swap and displacement
with routeshift clearly provides superior results with all instances. Almost all
algorithms provide their best result using all three operators (with the exception
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Table 2. Comparison of the R-ILS, C-ILS and F-ILS perturbation strategies combined
with local search moves displacement (d), swap (s) and routeshift (rs).

Dataset # Initial R-ILS F-ILS C-ILS

solution d-rs s-rs d-s-rs d-rs s-rs d-s-rs d-rs s-rs d-s-rs

LM-20JAN-1 Best 4475 4426 4423 4392 4364 4351 4292 4252 4276 4147

Worst - 4474 4474 4472 4470 4472 4392 4296 4292 4199

Avg - 4453.4 4452.66 4441.63 4435.4 4435.33 4344.06 4269.93 4284.3 4169.46

FE - 391,503 387,701 397,012 486,991 471,131 461,498 506,707 503,014 512,108

LM-14MAR-2 Best 5872 5783 5805 5784 5560 5525 5562 4631 4641 4521

Worst - 5871 5872 5872 5798 5772 5784 4796 4796 4596

Avg - 5844.73 5838.26 5839.03 5735.93 5730.06 5734.2 4741.93 4734.13 4561.6

FE - 477,098 496,810 477,109 534,393 551,608 572,751 681,201 685,617 688,653

LM-11MAR-3 Best 3962 3792 3749 3737 3574 3498 3469 3188 3171 2932

Worst - 3954 3946 3896 3954 3946 3896 3305 3298 2999

Avg - 3873.76 3840.53 3841.7 3865.53 3827.86 3832.76 3246.5 3250.73 2962.9

FE - 487,688 481,667 483,647 518,172 525,087 542,012 581,391 587,607 587,989

LM-13DEC-4 Best 2433 2425 2423 2420 2276 2236 2201 1964 1893 1821

Worst - 2433 2431 2433 2433 2431 2433 1998 1999 1898

Avg - 2430.4 2427 2426.9 2425.33 2420.6 2419.33 1979.63 1945.96 1858

FE - 892,971 892,931 892,950 892,901 891,547 897,851 911,586 919,763 905,712

LM-17MAR-5 Best 4322 3964 3853 3810 3724 3713 3701 3476 3456 2997

Worst - 3997 3997 3996 3997 3995 3948 3764 3494 3094

Avg - 3978.66 3904.11 3934.8 3970.66 3894.63 3833.73 3558.63 3472.1 3045.9

FE - 873,640 873,864 873,989 878,074 879,112 879,182 881,007 881,543 885,177

LM-21MAR-6 Best 4213 3875 3897 3841 3765 3763 3621 3338 3216 3140

Worst - 3998 3999 3993 3984 3979 3979 3494 3375 3296

Avg - 3950.06 3946.26 3947.06 3939.2 3937.5 3934.06 3442.23 3311.6 3247.93

FE - 715,310 723,218 711,167 784,911 781,813 787,952 857,671 861,855 893,360

of R-ILS and F-ILS on the LM-14MAR-2 instance, where the differences are
negligible). To achieve the superior quality, C-ILS(displacement-swap-routeshift)
uses the most function evaluations across the algorithms.

To answer the question whether the diversity of the delivered goods influence
the solution, we calculated the percentage of improvement the best solution made
compared to the initial solution. LM-20JAN is by far the most diverse data set,
the only one with up to 6 different boards in some deliveries. Its improvement
over the initial solution is only 7% compared to 23% for all others. The LM-
17MAR-5 dataset has a maximum of 3 different board sizes per customer, and its
improvement over the initial solution is 30%. It appears the number of different
boards has a significant influence on the optimisability of the data sets.

Table 3. The p-values of the results of C-ILS(displacement-swap-routeshift) versus all
other algorithms

Dataset R-ILS(d-rs) R-ILS(s-rs) R-ILS(d-s-rs) F-ILS(d-rs) F-ILS(s-rs) F-ILS(d-s-rs) C-ILS(d-rs) C-ILS(s-rs)

LM-20JAN-1 2.18E-56 1.63E-56 3.84E-51 1.83E-41 4.05E-42 2.36E-39 2.67E-31 9.21E-43

LM-14MAR-2 6.65E-75 3.40E-84 3.29E-82 1.93E-66 9.85E-68 4.35E-69 7.65E-81 4.49E-82

LM-11MAR-3 4.49E-66 1.61E-68 1.65E-72 1.97E-56 9.41E-55 5.59E-55 3.87E-44 6.01E-46

LM-13DEC-4 2.44E-72 3.19E-72 3.69E-72 7.99E-62 2.17E-58 2.09E-55 3.85E-32 1.10E-18

LM-17MAR-5 3.88E-76 1.31E-60 5.99E-62 3.64E-63 1.27E-57 4.15E-56 1.24E-43 1.61E-56

LM-21MAR-6 4.14E-60 1.28E-61 2.01E-60 2.05E-55 2.24E-56 8.03E-49 3.49E-30 4.72E-09
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To verify the significance of the differences, we carried out a statistical com-
parisons using Wilcoxon test with 0.05 confidence level. Table 3 shows the p-
values of C-ILS(displacement-swap-routeshift), which confirm that the differ-
ences are significant across algorithms and instances.

7 Conclusion

ILS has been shown to be a successful approach to VRP problems before. Our
experiments show that the permutation strategy as well as the local search neigh-
bourhood have a decisive influence on solution quality. Applying a perturbation
that chooses the deliveries to move according to the magnitude of their current
cost contributions leads to clearly superior results. Similarly, using both a swap
and a displacement move in combination with an inter-route shift move in the
local search procedure has shown to benefit the results greatly.

References

1. Avci, M., Topaloglu, S.: An adaptive local search algorithm for vehicle routing
problem with simultaneous and mixed pickups and deliveries. Comput. Ind. Eng.
83, 15–29 (2015)

2. Baker, B., Coffman Jr., E., Rivest, R.: Orthogonal packings in two dimensions.
SIAM J. Comput. 9(4), 846–855 (1980)

3. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and
conceptual comparison. ACM Comput. Surv. (CSUR) 35(3), 268–308 (2003)
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Abstract. Cooperative co-evolution (CC) is a framework that can be
used to ‘scale up’ EAs to solve high dimensional optimization problems.
This approach employs a divide and conquer strategy, which decomposes
a high dimensional problem into sub-components that are optimized sep-
arately. However, the traditional CC framework typically employs only
one EA to solve all the sub-components, which may be ineffective. In
this paper, we propose a new memetic cooperative co-evolution (MCC)
framework which divides a high dimensional problem into several sepa-
rable and non-separable sub-components based on the underlying struc-
ture of variable interactions. Then, different local search methods are
employed to enhance the search of an EA to solve the separable and
non-separable sub-components. The proposed MCC model was evalu-
ated on two benchmark sets with 35 benchmark problems. The experi-
mental results confirmed the effectiveness of our proposed model, when
compared against two traditional CC algorithms and a state-of-the-art
memetic algorithm.

Keywords: Cooperative co-evolution · Memetic algorithm · Large scale
global optimization · Continuous optimization problem

1 Introduction

Large scale optimization problems are very challenging for evolutionary algo-
rithms (EAs) to solve. This in part may be attributed to the fact that (a)
the search space of an optimization problem grows exponentially as the dimen-
sionality increases [1]; (b) the complexity of an optimization problem usually
grows as the dimensionality increases [2]; and (c) the computational cost of
using some EAs (e.g., estimation of distribution algorithms) when solving very
high-dimensional problems is extremely high [3].
c© Springer International Publishing AG 2017
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Cooperative co-evolution (CC) [4] has been used with some success to ‘scale
up’ EAs to solve high dimensional problems [5–7]. This approach employs a
divide and conquer strategy, which decomposes a high dimensional problem
into several sub-components that are optimized cooperatively. When optimiz-
ing each sub-component, representatives (typically the best sub-solutions found)
from other sub-components are combined with individuals in the optimized sub-
component, to form complete candidate solutions that can be evaluated. How-
ever, the traditional CC framework typically employs only one EA to solve all
the sub-components, which may be ineffective.

In this paper, we propose a new memetic cooperative co-evolution (MCC)
framework, which employs local search methods to enhance the search of an
EA. The proposed MCC framework decomposes a large scale optimization prob-
lem into several sub-components based on the variable interaction structures.
Then, an EA can be used to solve each sub-component cooperatively. Differ-
ent local search methods (S operator [8] and R operator [9]) are selected to
improve the best solution found by the EA for the separable and non-separable
sub-components respectively. The S operator perturbs one decision variable at a
time, therefore it is sufficient to solve separable sub-components. The R operator
perturbs all the decision variables together to adapt to the local gradient of the
fitness landscape, therefore, it is more appropriate to use when attempting to
solve non-separable sub-components. The step sizes of the local search methods
are updated using the diversity of the current population in the EA.

We have evaluated the efficacy of the proposed MCC framework using bench-
mark problems from the special sessions on large scale global optimization at
CEC’2010 [10] and CEC’2013 [11]. Comprehensive numerical simulations showed
that the proposed MCC framework achieved significantly better solution quality
than the traditional CC framework. When compared against a state-of-the-art
memetic algorithm, it achieved comparable or better solution quality.

The remainder of this paper is organized as follows. Section 2 describes the
traditional CC framework. Section 3 describes the proposed MCC framework
in detail. Section 4 describes the experiments to evaluate the proposed MCC
framework, and analyzes the experimental results. Section 5 concludes the paper.

2 Cooperative Co-evolution

The standard cooperative co-evolution (CC) [4] framework consists of two stages:
decomposition and optimization.

In the decomposition stage, an optimization problem is decomposed into
several sub-components. The existing decomposition methods can be classified
into two different categories: predetermined decomposition and automatic decom-
position. The predetermined decomposition methods determine the number of
sub-components and the size of each sub-component before the decomposition
stage starts, e.g., uni-variable grouping [4], Sk grouping [12], random grouping
[13], delta grouping [14] and k-means grouping [15]. These methods work well
when combined with EAs to solve fully separable problems. However, the per-
formance deteriorates quickly when used to solve partially separable problems
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Algorithm 1. Memetic Cooperative Co-evolution
1: Automatically decompose a large scale problem into several sub-components
2: while Cycle < CycleMax do
3: for each sub-component sj do
4: Apply an EA on the sub-component sj
5: if sj is a separable sub-component then
6: Apply S operator on the best solution found by the EA
7: else
8: Apply R operator on the best solution found by the EA
9: end if

10: end for
11: end while
12: return the best solution ever found

or fully non-separable problems. The main reason is that such approaches do
not take the underlying variable interaction structure into consideration.

The automatic decomposition methods automatically identify and place the
interacting decision variables into the same sub-component. It is important to
note that automatic decomposition caters to the underlying variable interaction
structure encapsulated within the search landscape. Representative automatic
decomposition methods include differential grouping [5], extended differential
grouping [16], global differential grouping [17], cooperative co-evolution with
variable interaction learning [18], statistical variable interdependence learning
[19], and the fast variable interdependence searching [20].

In the optimization stage, an evolutionary algorithm can be used to opti-
mize each sub-component based on a context vector. The context vector is a
complete candidate solution, typically consisting of the best sub-solutions from
each sub-component. When optimizing the ith sub-component, the context vec-
tor (excluding the ith sub-solution) is used to combine with the individuals in the
ith sub-component, to form complete candidate solutions that can be evaluated.
It has been recently found that using only one context vector may be too greedy
[21]. Therefore, the adaptive multi-context CC [21] framework is proposed, which
employs more than one context vector to co-evolve sub-components.

3 Memetic Cooperative Co-evolution

In this section, the proposed memetic cooperative co-evolution (MCC) model is
described in detail (Algorithm 1).

In the decomposition stage, any automatic decomposition method can be
used to divide a large scale optimization problem into several sub-components.
An automatic method decomposes an optimization problem based on the under-
lying structure of variable interactions. Taking the following objective function
as an example

f(x) := x2
1 + x2

2 + (x3 − x4)
2 + (x4 − x5)

2 + (x6 − x7)
2,x ∈ [−1, 1]7, (1)
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Interaction
Structure

x1 x2 x3 x4 x5 x6 x7

Auto Dec-
omposition

x1 x2 x3 x4 x5 x6 x7

group 1 group 2 group 3

Fig. 1. The variable interaction structure and the automatic decomposition of the
objective function given in Eq. (1). The notation xi ↔ xj denotes that decision variable
xi directly interacts with xj .

decision variables {x3, x4, x5} interact, as well as {x6, x7}. Therefore, the decision
variables should be divided into three sub-components {x1, x2}, {x3, x4, x5} and
{x6, x7}, as shown in Fig. 1.

It is important to note that the level of interaction between given decision
variables may be different. For example, in Eq. (1), both (x3, x4) and (x3, x5)
interact with each other. However, x3 and x4 interact directly; x3 and x5 are
linked by x4. The former is called direct interaction and the latter is called
indirect interaction. The formal definitions of direct interaction and indirect
interaction are described in [16,22].

In the optimization stage, an EA can be used to solve each sub-component
cooperatively. If the sub-component consists of a group of separable decision
variables, a local search method – S operator [8] is used to further improve the
best solution found by the EA. The S operator perturbs one decision variable at a
time, therefore it is sufficient to solve separable problems. If the sub-component
consists of a group of non-separable decision variables, the R operator [9] is
used to further improve the best solution found by the EA. The R operator
perturbs all the decision variables together to adapt to the local gradient of the
fitness landscape, therefore, it is more appropriate to use when attempting to
solve non-separable problems. The differences between the S and R operators
are illustrated in Fig. 2.

The step sizes of the S and R operators are updated using the diversity of
the current population in the EA:

Step S = min
(
r, 0.1(ub − lb)

)
, Step R = min

(
r, 0.04(ub − lb)

)
, (2)

where ub and lb are the upper bounds and lower bounds of the search space,
and r is the diversity of the current population, which is estimated as follows:

r =
1

N

N∑

i=1

||xbest, pop(i, :)||2, (3)

where pop is the current population, xbest is the best solution in the current
population, and N is the population size. Please note that the initial step size
for S operator is larger than the initial step size for R operator. The reason for
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�
x1

x2 �

0

�
S

(a) Sep Contour

�
x1

x2 �

0

(b) Nonsep Contour

Fig. 2. The search approaches of the S and R operators. Figure (a) and (b) are the
contours of a separable and non-separable fitness landscapes respectively. The S oper-
ator searches in the direction of each decision variable. The R operator searches in the
direction of the local derivative.

this is that S operator always decreases the step size during the search, while
the R operator can increase or decrease the step size later on.

4 Experiments

4.1 Methodology

The decomposition method – extended differential grouping (XDG) [16] and the
EA – Self-adaptive Differential Evolution with Neighborhood Search (SaNSDE)
[23] were embedded into the proposed memetic cooperative co-evolution (MCC)
model to evaluate its efficacy. The XDG method was used, as it can identify both
direct and indirect variable interactions. The SaNSDE algorithm was selected for
its good performance and wide usage to solve large scale optimization problems.
We denote the proposed memetic algorithm as MCC-XDG.

The proposed MCC-XDG algorithm was used to solve the CEC’2010 [10]
and CEC’2013 [11] large scale benchmark problems. The maximum number of
function evaluations was set to 3×106, divided between the decomposition stage
and optimization stage. The threshold value for XDG was set to 0.1, and the
population size for SaNSDE was set to 50. In each cycle, the maximal number
of iterations for SaNSDE was set to 200, and the maximal number of function
evaluations for local search methods was set to 10d, where d is the dimensionality.
For each benchmark problem, the median, mean and standard deviation of the
best solutions found by the MCC-XDG algorithm based on 30 independent runs
were recorded.

The performance of the MCC-XDG algorithm was compared with the per-
formance of two traditional CC algorithms: DECC-XDG (SaNSDE with XDG)
and DECC-G (SaNSDE with random grouping [13]), as well as a state-of-the-art
memetic algorithm: MA-SW-Chains [24]. The MA-SW-Chains algorithm assigns
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to each individual a local search intensity that depends on its features, by chain-
ing different local search applications. It achieved the best performance in the
CEC 2010 special session and competition on large scale global optimization.
The parameter settings for the three algorithms were consistent with the origi-
nal papers. The Wilcoxon rank-sum test (significance level α = 0.05) with Holm
p-value correction [25] was conducted in a pairwise fashion to find the best per-
forming algorithm.

4.2 Results

The experimental results of the proposed MCC-XDG algorithm when used to
solve the CEC’2010 and CEC’2013 benchmark problems are presented in Table 1
and Table 2 respectively. It achieved the best solution quality on 17 out of 20
CEC’2010 benchmark problems and 8 out of 15 CEC’2013 benchmark problems
when compared against three other algorithms. The experimental results showed
that the MCC-XDG algorithm can solve some of the benchmark problems to
great accuracy (median), e.g., CEC’2010 f1, f3, f6 to f8, f11, f12, f16 and f17.

Comparison with DECC-XDG. The proposed MCC-XDG algorithm
achieved equal or better results across all the CEC’2010 and CEC’2013 bench-
mark problems compared against the DECC-XDG algorithm. In some cases,
the median of the best solution found by the MCC-XDG is much better than
that found by the DECC-XDG algorithm. Taking CEC’2010 f7 as an example,
the median of the best solution found by MCC-XDG is 5.86 × 10−21, which is
much smaller (better) than the median of the best solution found by DECC-
XDG (2.34 × 102). It is important to note that the only difference between the
MCC-XDG and DECC-XDG algorithms is that MCC-XDG uses local search
methods to enhance the search of the EA – SaNSDE, while DECC-XDG only
uses SaNSDE to solve each sub-component. Therefore, the experimental results
confirmed the effectiveness of the MCC model and the local search methods.

Comparison with DECC-G. The proposed MCC-XDG algorithm achieved
equal or better results than the DECC-G algorithm across all the benchmark
problems except for CEC’2010 f2 and CEC’2013 f2. The DECC-G algorithm
uses a predetermined decomposition method – random grouping. On CEC’2010
f2 and CEC’2013 f2, the DECC-G achieved the best solution quality when
compared against the other three algorithms. However, on other benchmark
problems especially partially non-separable problems (CEC’2010 f4 to f18 and
CEC’2013 f4 to f11), the DECC-G algorithm was outperformed by the other
three algorithms. The reason for this is that the DECC-G algorithm (random
grouping) decomposes an optimization problem without considering any variable
interaction.

Comparison with MA-SW-Chains. The proposed MCC-XDG algorithm
achieved comparable or better results than a state-of-the-art memetic algorithm
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Table 1. The results of the proposed MCC-XDG algorithm when used to solve the
CEC’2010 benchmark problems. The MCC-XDG algorithm is compared with DECC-
XDG, DECC-G and MA-SW-Chains. The best performances are highlighted in bold
(Wilcoxon rank-sum tests (α = 0.05) with Holm p-value correction).

Func Stats MCC-XDG DECC-XDG DECC-G MA-SW-Chains

f1 Median 0.00e+00 5.57e+02 6.06e-14 2.67e-14

Mean 6.08e-29 1.37e+04 9.14e-14 3.80e-14

Std 2.21e-28 4.11e+04 7.87e-14 4.91e-14

f2 Median 2.96e+03 4.42e+03 1.16e+02 8.47e+02

Mean 3.04e+03 4.43e+03 1.13e+02 8.40e+02

Std 2.51e+02 1.56e+02 2.64e+01 4.88e+01

f3 Median 1.42e-14 1.68e+01 1.79e+00 5.16e-13

Mean 7.55e-01 1.67e+01 1.77e+00 5.76e-13

Std 3.77e+00 3.53e-01 3.14e-01 2.73e-13

f4 Median 3.55e+11 7.38e+11 1.17e+13 3.10e+11

Mean 3.73e+11 7.37e+11 1.09e+13 2.97e+11

Std 1.41e+11 1.44e+11 2.83e+12 6.19e+10

f5 Median 8.15e+07 1.54e+08 2.25e+08 2.30e+08

Mean 8.64e+07 1.53e+08 2.46e+08 2.18e+08

Std 2.55e+07 2.27e+07 5.40e+07 5.75e+07

f6 Median 3.55e-09 1.64e+01 4.94e+06 2.45e+00

Mean 4.10e+04 1.63e+01 5.03e+06 1.42e+05

Std 2.05e+05 3.60e-01 8.77e+05 3.96e+05

f7 Median 5.86e-21 2.34e+02 4.40e+06 7.94e-03

Mean 6.21e-21 7.50e+02 5.13e+06 1.17e+02

Std 2.02e-21 1.62e+03 3.69e+06 2.37e+02

f8 Median 8.18e-19 6.55e+00 8.71e+07 2.76e+06

Mean 1.43e+06 4.78e+05 7.34e+07 6.90e+06

Std 1.95e+06 1.32e+06 3.16e+07 1.90e+07

f9 Median 1.41e+06 1.12e+08 2.43e+08 1.48e+07

Mean 1.59e+06 1.15e+08 2.41e+08 1.49e+07

Std 8.42e+05 1.33e+07 2.67e+07 1.61e+06

f10 Median 2.32e+03 5.23e+03 9.47e+03 2.02e+03

Mean 2.33e+03 5.23e+03 9.28e+03 2.01e+03

Std 1.14e+02 1.40e+02 1.29e+03 1.59e+02

f11 Median 1.62e-05 1.07e+01 2.53e+01 3.77e+01

Mean 3.97e-01 1.08e+01 2.51e+01 3.86e+01

Std 7.17e-01 8.89e-01 1.45e+00 8.06e+00

f12 Median 2.83e-06 1.21e+04 4.49e+04 3.09e-06

Mean 4.40e-06 1.23e+04 4.47e+04 3.24e-06

Std 6.20e-06 2.50e+03 5.11e+03 5.78e-07

f13 Median 8.83e+00 3.83e+03 3.12e+03 8.61e+02

Mean 1.86e+01 3.76e+03 3.99e+03 9.83e+02

Std 3.12e+01 1.34e+03 2.52e+03 5.66e+02

f14 Median 1.05e+07 6.01e+08 5.88e+08 3.23e+07

Mean 1.07e+07 5.97e+08 5.85e+08 3.25e+07

Std 3.08e+06 3.42e+07 4.44e+07 2.46e+06

f15 Median 2.48e+03 6.35e+03 6.63e+03 2.67e+03

Mean 2.46e+03 6.34e+03 8.60e+03 2.68e+03

Std 9.87e+01 9.01e+01 3.22e+03 9.95e+01

f16 Median 2.23e-12 1.78e-08 7.89e+01 9.32e+01

Mean 5.59e-01 1.77e-08 7.76e+01 9.95e+01

Std 8.66e-01 1.83e-09 1.46e+01 1.53e+01

f17 Median 5.54e-01 1.25e+05 1.78e+05 1.28e+00

Mean 8.51e-01 1.26e+05 1.76e+05 1.27e+00

Std 9.23e-01 5.34e+03 1.02e+04 1.24e-01

f18 Median 3.11e+02 1.36e+03 2.57e+04 1.41e+03

Mean 3.77e+02 1.38e+03 2.44e+04 1.57e+03

Std 2.61e+02 1.39e+02 1.24e+04 6.73e+02

f19 Median 2.64e+05 1.72e+06 7.87e+05 3.75e+05

Mean 2.67e+05 1.73e+06 7.74e+05 3.80e+05

Std 2.56e+04 1.14e+05 3.94e+04 2.34e+04

f20 Median 6.80e+02 3.49e+04 3.36e+03 1.04e+03

Mean 6.88e+02 2.01e+05 3.39e+03 1.06e+03

Std 1.66e+02 8.09e+05 3.04e+02 9.38e+01
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Table 2. The results of the proposed MCC-XDG algorithm when used to solve the
CEC’2013 benchmark problems. The MCC-XDG algorithm is compared with DECC-
XDG, DECC-G and MA-SW-Chains. The best performances are highlighted in bold
(Wilcoxon rank-sum tests (α = 0.05) with Holm p-value correction).

Func Stats MCC-XDG DECC-XDG DECC-G MA-SW-Chains

f1 Median 0.00e+00 5.32e-01 1.31e-11 7.12e-13

Mean 3.16e-29 3.73e+01 2.58e-11 1.34e-12

Std 9.51e-29 1.24e+02 3.83e-11 2.45e-12

f2 Median 5.50e+03 1.29e+04 8.24e+01 1.24e+03

Mean 5.81e+03 1.27e+04 8.53e+01 1.25e+03

Std 1.29e+03 6.40e+02 2.71e+01 1.05e+02

f3 Median 2.01e+01 2.13e+01 2.01e+01 6.83e-13

Mean 2.01e+01 2.13e+01 2.01e+01 6.85e-13

Std 1.27e-02 1.64e-02 3.10e-03 2.12e-13

f4 Median 3.28e+09 7.87e+09 8.48e+10 2.75e+09

Mean 3.43e+09 8.07e+09 9.00e+10 3.81e+09

Std 1.03e+09 2.02e+09 3.63e+10 2.73e+09

f5 Median 4.22e+06 4.00e+06 8.61e+06 2.03e+06

Mean 4.21e+06 4.21e+06 8.27e+06 2.25e+06

Std 9.80e+05 6.86e+05 1.32e+06 1.30e+06

f6 Median 1.00e+06 1.06e+06 1.05e+06 6.33e+02

Mean 1.00e+06 1.06e+06 1.05e+06 1.86e+04

Std 1.28e+04 1.32e+03 1.44e+03 2.54e+04

f7 Median 1.27e+04 1.40e+07 2.82e+08 4.03e+06

Mean 1.47e+04 1.40e+07 3.53e+08 3.85e+06

Std 1.03e+04 5.88e+06 2.35e+08 6.34e+05

f8 Median 6.30e+13 2.77e+14 2.50e+15 4.60e+13

Mean 7.72e+13 3.16e+14 2.90e+15 4.62e+13

Std 4.10e+13 1.89e+14 1.31e+15 9.02e+12

f9 Median 2.60e+08 4.92e+08 5.68e+08 1.36e+08

Mean 2.55e+08 4.90e+08 5.94e+08 1.44e+08

Std 4.69e+07 2.83e+07 1.36e+08 2.55e+07

f10 Median 9.12e+07 9.42e+07 9.28e+07 3.34e+02

Mean 9.14e+07 9.43e+07 9.29e+07 3.72e+04

Std 8.53e+05 3.20e+05 5.88e+05 6.25e+04

f11 Median 7.09e+06 6.08e+08 5.19e+10 2.10e+08

Mean 1.27e+07 6.27e+08 5.93e+10 2.10e+08

Std 1.20e+07 2.84e+08 4.23e+10 2.35e+07

f12 Median 6.63e+02 3.82e+03 3.35e+03 1.25e+03

Mean 7.03e+02 4.40e+03 3.41e+03 1.24e+03

Std 1.84e+02 2.02e+03 2.85e+02 8.33e+01

f13 Median 1.99e+06 1.01e+09 5.56e+09 1.91e+07

Mean 3.14e+06 1.22e+09 5.74e+09 1.98e+07

Std 2.25e+06 5.13e+08 2.37e+09 2.30e+06

f14 Median 1.20e+07 2.34e+09 6.35e+10 1.43e+08

Mean 1.25e+07 3.44e+09 7.68e+10 1.45e+08

Std 3.18e+06 2.94e+09 4.96e+10 1.60e+07

f15 Median 6.63e+05 9.65e+06 5.03e+06 5.80e+06

Mean 6.67e+05 1.00e+07 5.13e+06 5.98e+06

Std 1.59e+05 1.51e+06 4.36e+05 1.42e+06



A Memetic Cooperative Co-evolution 299

– MA-SW-Chains across the CEC’2010 benchmark problems. The main differ-
ence between the MCC-XDG and MA-SW-Chains algorithms is that MCC-XDG
solves an optimization problem by a divide and conquer strategy, while MA-SW-
Chains solves an optimization problem as a whole. Therefore, the experimental
results confirmed the effectiveness of the divide and conquer strategy – cooper-
ative co-evolution. It is important to note that on CEC’2010 f3, the proposed
MCC-XDG algorithm was reported to outperform the MA-SW-Chains algo-
rithm, in spite of the fact that the mean of the best solution found by MCC-
XDG is worse than the mean of the best solution found by MA-SW-Chains. The
reason for this is that the Wilcoxon rank sum test examines whether two samples
are from continuous distributions with equal medians instead of means. On the
CEC’2013 benchmark problems, the proposed MCC-XDG algorithm performed
equally well with the MA-SW-Chains algorithm.

5 Conclusion

In this paper, we have investigated the effectiveness of the cooperative co-
evolution framework when used to ‘scale up’ EAs to solve large scale optimiza-
tion problems. A new memetic cooperative co-evolution framework was pro-
posed, which employs local search methods (S and R operators) to enhance the
search of an EA to solve separable and non-separable sub-components. Com-
prehensive experimental results showed that the proposed memetic cooperative
co-evolution framework improved the performance of the traditional coopera-
tive co-evolution framework. When compared against a state-of-the-art memetic
algorithm, it achieved comparable or better solution quality.
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Abstract. Dynamic job shop scheduling (DJSS) problems are combi-
natorial optimisation problems that have been extensively studied in
the literature due to their difficulty and their applicability to real-world
manufacturing systems, e.g., car manufacturing systems. In a DJSS prob-
lem instance, jobs arrive on the shop floor to be processed on specific
sequences of machines on the shop floor and unforeseen events such as
dynamic job arrivals and machine breakdown occur that affect the prop-
erties of the shop floor. Many researchers have proposed genetic program-
ming based hyper-heuristic (GP-HH) approaches to evolve high quality
dispatching rules for DJSS problems with dynamic job arrivals, outper-
forming good man-made rules for the problems. However, no GP-HH
approaches have been proposed for DJSS problems with dynamic job
arrivals and machine breakdowns, and it is not known how well GP gen-
eralises over both DJSS problem instances with no machine breakdown to
problem instances with machine breakdown. Therefore, this paper inves-
tigates the generality of GP for DJSS problem with dynamic job arrivals
and machine breakdowns. To do this, a machine breakdown specific DJSS
dataset is proposed, and an analysis procedure is used to observe the dif-
ferences in the structures of the GP rules when evolved under different
machine breakdown scenarios. The results show that performance and
the distributions of the terminals for the evolved rules is sensitive to the
frequency of machine breakdowns in the training instances used to evolve
the rules.

1 Introduction

In the field of operations research, job shop scheduling (JSS) and other scheduling
problems have been extensively researched for the past 50 years [1]. In a JSS
problem, there is a shop floor that usually contains a fixed number of machines
and the machines are used to process incoming jobs [1]. A job needs to be
processed on a sequence of specific machines and machines on the shop floor can
only process one job at a time. The goal in a JSS problem is to find a schedule,
c© Springer International Publishing AG 2017
M. Wagner et al. (Eds.): ACALCI 2017, LNAI 10142, pp. 301–313, 2017.
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a solution that gives the sequences of times that the jobs are processed at the
machines, that is the optimal given an objective function [1]. For example, in
a JSS problem with makespan as the objective, the goal is to find a schedule
which completes all jobs as early as possible [1].

In a real-world scenario, it is likely that unforeseen events such as dynamic job
arrivals and machine breakdowns affect the properties of the shop floor in a JSS
problem instance [2]. A JSS problem instances with dynamic job arrivals is called
a dynamic JSS (DJSS) problem instance [2]. In a DJSS problem instance with
dynamic job arrivals, the properties of the arriving jobs are unknown (until they
arrive on the shop floor) and the number of jobs that arrive on the shop floor is
unknown. To handle DJSS problems with dynamic job arrivals, researchers have
proposed various dispatching rule approaches. Dispatching rules [1] are iterative
heuristics that determine the job that is selected to be processed by the machine
when it is available. This decision process for determining the job that is selected
by the available machine is called a decision situation [3]. Dispatching rules are
effective for DJSS problems with dynamic job arrivals because they can react
quickly to the arrival of new jobs and can cope with the dynamic environment
[4]. In addition, because they are easy to interpret by operators on the shop
floor [4], they are used extensively in real-world manufacturing environments,
e.g., semi-conductor manufacturing [5]. However, a limitation of dispatching rule
approaches is that they are tailored to a specific JSS problem. Although humans
are very good at identifying good building blocks for heuristics [6], construct-
ing effective heuristics from the building blocks require extensive trial-and-error
testing [4,5]. Therefore, genetic programming based hyper-heuristic (GP-HH)
approaches have been proposed in the literature to automatically evolve dis-
patching rules for DJSS problems [7]. GP-HH is provided heuristic building
blocks, DJSS problem instances for training and searches in the heuristic space
to find high quality solutions for the DJSS problem [6]. It has been shown in the
literature that GP evolved rules generally perform better than man-made rules
for different DJSS problems [7].

There are several factors that need to be considered to develop an effective
GP-HH approach to DJSS problems. One of the factors is that evolved rules need
to generalise well [6,7]. In other words, the evolved rules trained over a specific
problem domain needs to perform well on unseen problem instances both within
and outside the problem domain. Generality has been covered in the literature
for DJSS problems with dynamic job arrivals [7]. However, although generality
of GP for DJSS with dynamic job arrivals have been investigated [4,5,7], it is
not known how well GP can generalise for over DJSS problem instances with no
machine breakdowns and with machine breakdowns. When a machine breakdown
occurs, any job that is being processed on the machine is interrupted and the
machine needs to be repaired for a specific amount of time before it is back
“online” again. Machine breakdowns can severely disrupt the processing that
occurs on the shop floor.
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1.1 Goal

The goal of this paper is to investigate the generality of GP for DJSS problems
with dynamic job arrivals and machine breakdowns, and to analyse the termi-
nals that are effective for DJSS problem instances with machine breakdowns.
By analysing the generalisation ability of the evolved rules, it may be possible
to determine whether the standard GP-HH approach is suitable for the DJSS
problem with machine breakdowns. Otherwise, if the standard GP-HH approach
cannot generalise well over the DJSS problems with machine breakdowns, then
the analysis of the terminals may provide insight for developing new extensions
to the standard GP-HH approach that are more effective for the DJSS problem.
To achieve the goal, this paper carries out the following objectives:

(a) Develop a new DJSS dataset for generating problem instances with dynamic
job arrivals and machine breakdown.

(b) Investigate the generality of an existing GP-HH [4,8] by evolving and evalu-
ating the rules over different combinations of machine breakdown scenarios.

(c) Analyse the structure of the GP rules to extract information on the distri-
butions of the terminals for the evolved rules.

1.2 Organisation

First, we cover the background to DJSS in Sect. 2, which provides the problem
definitions and outlines sample GP-HH approaches to DJSS problems. After-
wards, Sect. 3 describes the testing framework that is used to test the generality
of GP-HH approach for the DJSS problem. Section 4 describes the benchmark
GP-HH approach that is used to evolve the rules, the fitness function and the
GP parameters. Finally, Sect. 5 gives the results and an analysis of the findings,
and Sect. 6 gives the concluding remarks and future works.

2 Background

This section covers the problem definition, including the notations used and the
description of the DJSS problem with dynamic job arrivals and machine break-
downs. It then discusses the related work to DJSS problems in the literature.

2.1 Problem Definition

We use the following notation for the DJSS problem handled by the GP-HH
approach. There are M machines on the shop floor, and a job j arrives on the
shop floor with the sequence of operations σ1j , . . . , σ(Nj)j . The processing time
for the operation σij is denoted as pij , and the operation’s ready time is denoted
as rij . In addition, the time when a job arrives on the shop floor is abbreviated
to rj . A job j also has a due date dj and a weight wj . If the completion time
Cj is greater than the job’s due date dj , then the job is tardy and has tardiness
Tj = Cj − dj . From this, the mean weighted tardiness (MWT) for a schedule is
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defined as 1
N

∑N
j wjTj [1]. MWT and other tardiness objectives have commonly

been used in the literature to evaluate the effectiveness of heuristics for DJSS
problems [4,5,8].

The two dynamic components for the DJSS problem are dynamic job arrivals
and machine breakdowns. In a DJSS problem instance with dynamic job arrival,
a job j’s attributes are unknown until job j arrives on the shop floor at time rj .
On the other hand, machine breakdowns are unforeseen events where a machine
m is shut down at time bt

m, and requires tr
m time to repair the machine. During

the repair time, the machine is unable to process any new operations. If a job’s
operation is being processed on the machine at the moment of the machine
breakdown, then the operation is suspended and resumed after the machine is
repaired and is available. In other words, if a job j’s operation σij was started
at sij at machine m before the machine breaks down at time bt

m and requires
tr

m time to repair. Then the job j’s operation is resumed at time bt
m + tr

m, and
the operation completes at sij +pij + tr

m. This definition of machine breakdown
was proposed by Holthaus [9].

2.2 Related Work

Many researchers have developed priority-based dispatching rule approaches to
handling different DJSS problems. Examples of priority-based dispatching rule
are cost over time (COVERT) rule and apparent tardiness cost (ATC) rule [10]
for JSS problems with tardiness objectives. Additionally, other effective man-
made dispatching rule approaches have been proposed and investigated in the
literature for JSS problems [1]. In particular, Holthaus [9] investigates the perfor-
mances of man-made dispatching rules that DJSS problems with dynamic job
arrivals and machine breakdowns for different objective functions. He showed
that for due date related objectives, including MWT, the rules have different
performances for the different configurations associated with two attributes: the
average time it takes for the machine to be repaired and the approximate amount
time the machines are broken down for over the duration of the job processing.

In addition to manually designing dispatching rules, there have been many
GP-HH approaches that evolve dispatching rules to DJSS problems in the liter-
ature [3–5,7,8]. In addition, several of the GP-HH approaches to JSS also inves-
tigate the generality of GP evolved rules by applying them to different problem
domains [4,5]. Nguyen et al. [4] showed that GP rules evolved using static JSS
problem instances do not perform as well as some man-made dispatching rules
(such as the ATC rule) in a DJSS problem with dynamic job arrivals. Therefore,
if problem instances are encountered outside of the problem domain that the
rules were trained on, new rules may need to be evolved to be competitive with
existing approaches to the problem instances. On the other hand, Burke et al.
[6] proposed a method improving the generality of rules evolved by GP for a
2-D bin packing problem. They generate both “best-fit” GP rules by applying
the GP over training sets consisting of problem instances with specific proper-
ties and “generalist” GP rules by evolving the rules over problem instances with
different properties. They showed that GP can evolve good reusable rules, and
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general rules can sometimes outperform best-fit rules. Finally, Branke et al. [7]
provides a survey of various evolutionary computation approaches to scheduling
problems in the literature that also addresses the generality of GP evolved rules.

JSS problems with machine breakdowns have also been covered extensively
in the literature. Many research have proposed predictive-reactive [2] approaches
to DJSS problems with machine breakdowns. Predictive-reactive algorithms first
generate an initial schedule for the DJSS problem instance, and then generates a
new schedule, i.e., reschedules, when a machine breaks downs during processing.
They have been effectively applied to JSS problems where the job properties
are known a priori, but are not suitable for DJSS problems with dynamic job
arrivals, as the schedule needs to constantly be updated with the arrival of
new jobs. Therefore, for DJSS problems with dynamic job arrivals and machine
breakdowns, completely-reactive approaches [2,9], where the schedule is gen-
erated during processing, have been proposed. This includes dispatching rule
approaches. Ouelhadj and Petrovic [2] provides a survey for various approaches
to DJSS problems with machine breakdowns.

3 Framework for Investigating the Generality of GP

This section describes the framework that is used to investigate the generality of
GP-HH for DJSS problems with dynamic job arrivals and machine breakdowns.
This covers the DJSS dataset containing the problem instances with machine
breakdowns, how the rules are evolved from problem instances with different
machine breakdown scenarios from the dataset, and the procedure for analysing
the structures of the GP evolved rules.

3.1 Generating DJSS Problem Instances Using Simulations

The standard approach in the literature to generate DJSS problem instances is
to use discrete-event simulations [3,5,8,9]. This means that the job arrivals, the
machine breakdown events and the repair times for the breakdowns are generated
stochastically. For this paper, the dataset Δ used to evaluate the generality of
GP is modified from the dataset proposed by Holthaus [9], which has been
used effectively to evaluate and analyse man-made dispatching rules in DJSS
problems with dynamic job arrivals and machine breakdowns. The following
parameters are kept consistent as the ones originally used by Holthaus. The
problem instances have M = 10 machines on the shop floor. The processing
times for an operation for a job is generated from a uniform distribution between
[1, 49]. In other words, the mean processing time of the operations is μ = 25. For
generating an arriving job, the arrival times of the jobs are generated according
to a Poisson process with mean λ. The utilisation rate is a standard parameter
used in DJSS discrete-event simulations that defines the expected proportion
of time that the machines are occupied processing the jobs against the total
duration of simulation [5,9]. Because of this, the mean arrival time is often
defined by the utilisation rate of the problem instances, and is given in Eq. (1)
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[5,9]. In the equation, ρ is the utilisation rate and pM is the expected number
of operations per job divided by the number of machines. The utilisation rate
is set to ρ = 0.9, which is consistent with Holthaus’s dataset. For our paper,
there is no re-entry, i.e., a job cannot have at least two separate operations on
the same machine [1]. This means that a job can have at most 10 operations,
and the number of operations per job is modified to be random between 2 to 10
operations, i.e., pM = (2 + 10)/2 = 6.

λ =
ρ × pM

(1/μ)
(1)

The due date of arriving job j dj = rj + h
∑Nj

i=1 pij , where h multiplied to
the sum processing times of the job is the due date tightness factor. Tightness
of h = 3 and h = 5 are used, where h = 3 represents tight due dates and
h = 5 loose due dates. This is adjusted from the original tightness values of
h = 4, 8 used by Holthaus [9], as preliminary experiments found that due date
tightness h = 8 resulted in GP evolved rules generating schedules for problem
instances where the MWT values are zero. The weight of a job is either 1, 2, or
4 with probabilities 0.2, 0.6 and 0.2 respectively, which is a standard method of
generating weights for jobs in due-date related DJSS problems [4,8]. For each
problem instance, there is a “warm-up” period of 500 jobs which do not con-
tribute towards the objective value, and jobs continue arriving until the 2500th
job has been completed. However, all jobs that have arrived on the shop floor
need to be completed before the problem instance is completed. From Holthaus’s
dataset [9], the machine repair times and the times between machine breakdowns
(excluding the repair times) are exponentially distributed. The mean repair time
(RTM) and the mean time between machine breakdowns (BTM) are the same
for all machines on the floor. In addition, for the configuration used to gen-
erate a problem instance, RTM depends on the mean processing times of the
operations μ and the machine breakdown level parameter (BL). The machine
breakdown level can be considered as the proportion of time the machine is
being repaired during processing, e.g., if BL = 0.025 and the all jobs took 2500
time units to process, then the total repair time for all machines is approximately
0.025 × 2500 = 62.5 time units. In other words, the machine breakdown level is
given by BL = RTM/(BTM+RTM), which means that BTM = RTM/BL−RTM
[9]. The dataset has variable configurations for the following parameters: due date
tightness (h), mean repair times of machines (RTM) and breakdown level (BL).
The configurations can have RTM ∈ {μ, 5μ, 10μ} and BL ∈ {0, 0.025, 0.05}.
Overall, the two due date tightness configurations and the configurations for the
machine breakdowns results in a total of 18 different configurations.

3.2 GP-HH Training Procedure

To evolve and evaluate the GP rules, different subsets of DJSS problem instances
in the dataset are used to evolve different sets of GP rules. Figure 1 shows an
overview of how the dataset Δ is used to evolve different sets of GP rules that are
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Machine Breakdown
Level (BL)

Generalist Rule Set

Best-Fit Rule Set

BL = 0 BL = 0.025 BL = 0.05

Δ

ΔN/M ΔM/H

ΔN ΔM ΔH

Fig. 1. Overview of how the dataset used for the DJSS problem is partitioned to train
GP rules specialised for different machine breakdown configurations.

either “generalists” or “best-fit” over the machine breakdown level (BL). The
generalist rules are designed to be effective for the different machine breakdown
scenarios, whereas the best-fit rules [6] are designed to be effective for specific
machine breakdown scenarios. For the scope of this paper, the machine break-
down level parameter allows us to analyse the generality of GP rules in DJSS
problems with dynamic job arrivals and machine breakdowns. First, the dataset
Δ containing 18 different configurations for generating problem instances is par-
titioned into three subsets based on the machine breakdown level. In the subsets,
machine breakdown level BL = 0 means that the generated problem instances
do not have machine breakdowns, BL = 0.025 and BL = 0.05 means that the
generated problem instances have “medium” and “high” levels of machine break-
downs respectively. The subsets are denoted as ΔN , ΔM and ΔH respectively
and contain six different configurations. The best-fit rules are evolved from ΔN ,
ΔM and ΔH and are designed to cope with the specific level of machine break-
down. Additionally, ΔN/M and ΔM/H combine two smaller subsets together
(e.g. ΔN and ΔM for ΔN/M , and are used to evolve “intermediate” sets of
rules. If the intermediate rules are competitive by the best-fit rules, e.g., rule
evolved from ΔH does not perform significantly worse than ΔM/H for problem
instances with BL = 0.05, then it is likely that GP can generalise well over
different machine breakdown scenarios even without incorporating information
about machine breakdowns. Finally, all possible configurations in the dataset
Δ, i.e., configurations from ΔN , ΔM and ΔH combined, are used to evolve the
final set of general rules. Overall, this results in a total of 6 sets of GP rules
that range from generalists to best-fit over the DJSS problem. This procedure
was first covered by Burke et al. [6] for improving the generality of the GP-HH
approach for a bin packing problem.

The set of rules evolved from a specific training set is denoted as ‘DR-’
with the suffix as the training set. For example, DR-N denotes the set of GP
evolved rules which have been evolved from subset ΔN , i.e., problem instances
with no machine breakdowns. In addition, at each generation, the seeds used to
stochastically generate the jobs and the machine breakdowns are rotated for the
training procedure of the GP-HH. This means that the problem instances used
in one generation will be different to the problem instances used for the next
generation. This has shown to improve the generalisation ability of the evolved
rules for DJSS problems [5].
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3.3 Rule Terminal Analysis Procedure

For analysing the effectiveness of GP rules, existing literature have proposed
methods where small numbers of rules are sampled from the sets of evolved rules
and the tree structures of the rules are analysed [4,5,8]. However, for investigat-
ing the generality of GP over different machine breakdown scenarios, it may be
more effective to analyse the structures of entire sets of rules instead of sampling
specific rules from the sets, as GP needs to be able to evolve good rules consis-
tently. However, it is too cumbersome to directly analyse the tree structures of
the sets of rules directly. Therefore, the distributions of the terminals that make
up the GP rule is analysed. For example, if the due date terminal occurs more
frequently for the rules in DR-H than the rules in DR-N, then it means that
processing urgent job is more important for problem instances with high level
of machine breakdowns than problem instances with no machine breakdowns.
To calculate the distribution, the proportion of the terminals that make up an
evolved rule is first calculated. For example, suppose that an evolved rule has 23
PT terminals out of 150 terminals that make up the rule. Then the 23/150 is the
proportion of PT terminals that make up the rule. Afterwards, the proportions
are normalised over the set of evolved rules.

4 Experimental Design

This section covers the benchmark GP-HH approach that is investigated for
this paper, which is based off existing GP-HH approaches. This includes the
GP representation, terminal set, function set and fitness measure used for the
individuals. Afterwards, the parameters used for the GP-HH is detailed.

4.1 GP Representation, Terminals and Function Sets

The most prominent method of evolving priority-based dispatching rule using
GP is to use a tree-based GP, where the individuals represent arithmetic function
trees [7]. For this paper, we modify the arithmetic representation proposed by
Nguyen et al. [4] to evolve priority-based dispatching rules. In addition, a look-
ahead terminal set proposed by Hunt et al. [8] that have effectively been applied
to a DJSS problem with unforeseen job arrivals will be incorporated into the
terminal set. The list of terminals used for the GP-HH process are shown in
Table 1 for a job j waiting at machine m∗.

The function set includes of the arithmetic operators +, −, ×, and protected
/, where protected / returns one if the denominator is zero. The rest of the
operators for the function set are if, which returns the value of the second
branch if the value of the first branch is greater than or equal to zero or returns
the value of the third branch otherwise, max and min operators.
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Table 1. Terminal set for GP

Standard RJ Operation ready time of job j

PT Operation processing time of job j

RO Remaining number of operations of job j

RT Remaining total processing times of job j

RM Machine m∗’s ready time

DD Due date dj

W Job’s weight wj

# Random number from 0 to 1

Look-ahead NPT Next operation processing time of job j

NNQ Number of idle jobs waiting at the next machine

NQW Average waiting time of last 5 jobs at the next machine

AQW Average waiting time of last 5 jobs at all machines

4.2 Calculating a GP Individual’s Fitness

For the evaluation procedure, the individuals are applied to the DJSS train-
ing instances as non-delay dispatching rules [1]. A non-delay dispatching rule
greedily attempts to minimise the idle time from when a machine is available to
when it starts processing the next job [1]. From this, the MWT over the training
instances is normalised using the ATC rule, where a standard k = 3 value is used
for the ATC parameter [10]. The normalisation procedure have been used in the
literatures [5] to reduce the bias towards specific problem instances that are
more likely to have a higher optimal MWT values than other problem instances
in the training set. Given that MWTω,γ and MWTref,γ are the MWT of the
schedule generated by individual ω and the reference rule for training instance
γ respectively, the fitness fω of an individual ω is given in Eq. (2).

fω =
1

|Δtrain|
Ttrain∑

γ∈Δtrain

MWTω,γ

MWTref,γ
(2)

4.3 GP Parameter Settings

The parameters used for GP are modified from the parameters used by GP-HH
approaches to DJSS problems in the literature [4,8] after carrying out parame-
ter tuning on the population size and the crossover, mutation and reproduction
rates. After the parameter tuning, the population size is set to 256 to reduce the
computational cost, and the number of generations is set to 51. The crossover,
mutation and reproduction rates are 80%, 10% and 10% respectively. The max-
imum depth of an individual is 8, and the maximum depth of an individual that
can be initialised is 2. Tournament selection of size 7 is used during the selection
process. Finally, the parameter value used for the ATC reference rule is set to
k = 3.0 [10].
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5 Experimental Results

This section covers the evaluation of the GP-HH approach over the DJSS prob-
lem with dynamic job arrivals and machine breakdowns. First, 30 independent
runs of the GP processes are carried out over the training sets, resulting in DR-
N, DR-M, DR-H, DR-N/M, DR-M/H and DR-All each consisting of 30 rules.
The sets of GP evolved rules are applied to the problem instances in the test
set, and the qualities of the schedules are compared against each other as part
of the general evaluation procedure. Afterwards, an analysis on the structures
of the evolved rules is carried out.

5.1 Evolved Rule Performance Evaluation

Each configuration in the test set is used to generate 30 different problem
instances as part of the test set. In total, this results in a total of 18 × 30 = 540
test instances using the 18 different configurations. The sets of GP evolved rules
are then applied to the test instances to generate schedules for the problem
instances, and the MWT of the schedules are compared against each other as
part of the general evaluation procedure. A set of GP evolved rules is significantly
better than another rule set if the difference in the MWT values satisfies the two
sided Student’s t-test at p = 0.05. The performances of the rule sets over the dif-
ferent problem instances are shown in Fig. 2. Each box plot shows the results over
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Fig. 2. The comparisons of the mean weighted tardiness performances of the GP rules
evolved over different training sets over the problem instances in the test set.
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problem instances in a configuration, and the configurations are categorised by
the breakdown level and due date tightness, where 〈BL = 0.025, h = 3〉 denotes
that breakdown level is 2.5% and due date tightness is 3.

From the results, we can see that for the problem instances generated with
BL = 0 and BL = 0.05 DR-N and DR-H generally perform well over the
respective problem domain they are trained on, but perform poorly on prob-
lem instances with high level of machine breakdowns (for DR-N) and problem
instances with no machine breakdowns (for DR-H). Under the statistical test, the
difference in the performance is significant between DR-N and DR-H. When the
best-fit rules DR-N and DR-H are compared to the intermediate rules DR-N/M
and DR-M/H, the two best-fit rules perform slightly better than the intermedi-
ate rules over their respective machine breakdown levels the specialise rules are
evolved on. The difference in the performances are significant between DR-H and
DR-M/H, but not between DR-N and DR-N/M. However, on machine break-
down level BL = 0.025, it is observed that most sets of rules with the exception
of DR-H have a similar performance to each other, where the slight differences in
the performances are not significant. Finally, the generalist rule DR-All perform
well over problem instances with no machine breakdowns and problem instances
with machine breakdown level BL = 0.025, but performs significantly worse than
DR-H and DR-M/H for problem instances with BL = 0.05. Overall, it may be
likely that standard GP-HH approach may not be able to generalise well when
it comes to DJSS problems with dynamic job arrivals with machine breakdowns,
and the quality of the rules evolved by a standard GP-HH approach is likely to
sensitive to the proportion of time that the machine is broken down during the
simulation.

5.2 GP Terminal Distribution Analysis

After evaluating the performances of the GP evolved rules, the terminals that
are used by the GP rules are compared against each other to analyse the make
up of the rules. For the sets of GP rules, the proportion of the rule structure
made up of the terminals are shown in Fig. 3.

From Fig. 3, the most prominent terminals that are used by all sets of rules
is the processing time of current operation (PT), followed by the due date of
the job (DD) and the number of jobs waiting at the next machine (NNQ). On
the other hand, DR-H have a higher proportion of due date terminal compared
to the other sets of evolved rules. This is likely due to the fact that in problem
instances with high machine breakdown level (e.g. BL = 0.05) processing time
becomes unreliable in determining on predicting the expected duration of time
that a job requires on the machine for the operation to complete. Compared to
problem instances with lower machine breakdown levels (e.g. BL = 0 and BL =
0.025), it is more likely in the problem instances with high machine breakdown
levels that the machine breaks down during processing of a job. This results
in the job getting stuck on the machine while it is being repaired and taking
longer than expected to finish processing. Instead, processing urgent jobs may
be more reliable method of generating good schedules for problem instances
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Fig. 3. The proportion of terminals used by the sets of rules evolved by the GP-HH
approaches.

with high level of machine breakdowns. Therefore, this may potentially result
in individuals that use high proportion of the processing time terminal, that
prioritise processing shorter job processing times, generating worse schedules for
the problem instances than individuals that use high proportion of the due date
terminal, that prioritise processing urgent jobs. In addition, DR-H has a lower
proportion of terminals that take the attributes for when the job reaches the
next machine (NNQ, NPT and NQW), as the additional uncertainty introduced
by the high level of machine breakdown may make the terminals less effective at
reducing the myopic nature of dispatching rules [8].

6 Conclusions

This paper investigates the generality of a standard GP-HH approach to a DJSS
problem subject to dynamic job arrivals and machine breakdowns. This is done
by first developing a DJSS dataset for evaluating GP-HH approaches. After-
wards, a standard GP-HH approach that evolves priority-based dispatching rules
is applied to a new dataset for generating DJSS problem instances. Finally, the
distributions of the terminals in the GP rules evolved from different machine
breakdown scenarios are analysed. From the performance results and the results
of analysing the terminal distributions, this paper makes the following findings:

(a) GP-HH approaches in the literature have been shown to be generalise well
over different problem domains (including JSS) [6,7]. However, for the DJSS
problem with dynamic job arrivals and machine breakdowns, the results
show that a standard GP-HH approach is sensitive to the level of machine
breakdowns. In addition, a generalist set of rules evolved by a standard
GP-HH approach is unable to cover for high level of machine breakdowns.
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(b) Analysis of the distribution of the terminals for the evolved rules show that
there are higher proportions of DD terminal and lower proportion of NNQ,
NPT, NQW and PT terminals in rules evolved on training instances with
high levels of machine breakdowns compared to the other evolved rules. This
is likely due to the added uncertainty associated with the duration of time
required to process a job.

For future work, a GP-HH approach that incorporates terminals that use
machine breakdown specific attributes could potentially evolve rules that can
outperform rules evolved by a standard GP-HH approach and improve the gen-
erality of GP rules over different machine breakdown scenarios. For example,
it is likely that incorporating terminals such as the next time the machine is
expected to break down and the expected true processing time may generate
rules which perform well over both DJSS problem instances with and without
machine breakdowns.
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Abstract. The size, scope and variety of the experimental analyses of
metaheuristics has increased in recent years, aiming to develop new pro-
cedures and techniques to improve our understanding of optimization
algorithms and problems. In this paper, we compare particle swarm opti-
mization and differential evolution on a set of real-world clustering prob-
lems. Generally, experimental comparisons focus on presenting a statis-
tical summary of algorithm performance, however this hides valuable
information about the algorithm behaviour on the problems in ques-
tion. Instead, we take an exploratory approach, focussing on extracting
deeper insights and understanding from the experimental results data.
We make progress on understanding the fitness landscapes of the set of
clustering problems, as well as analysing current and previous experi-
mental results for algorithms applied to these problems. Consequently,
the paper makes two contributions: (a) Advancing our understanding of
what factors make this set of problem instances easy or hard for given
algorithms; (b) Demonstrating the need to be careful in experimental
evaluations and that better insights can be obtained with exploratory
analysis.

1 Introduction

A large number of algorithms, including evolutionary algorithms and meta-
heuristics have been developed for solving black-box optimization problems. An
important current research direction is to better understand the relationship
between different classes and instances of black-box optimization problems and
algorithms. For example, what types of problems does some Algorithm, A per-
form well on, and what is it about those problems and Algorithm A that makes
this so?

In this paper, we use a set of real-world data clustering problems that has
recently been explored and used to evaluate several algorithms. We apply instan-
tiations of two of the most well known and widely used nature-inspired meta-
heuristics: Particle Swarm Optimization (PSO) and Differential Evolution (DE).
We take an interactive, exploratory approach, focussed on understanding more
about the problem instances and building on previous experimental results.
c© Springer International Publishing AG 2017
M. Wagner et al. (Eds.): ACALCI 2017, LNAI 10142, pp. 314–325, 2017.
DOI: 10.1007/978-3-319-51691-2 27
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An outline of the paper is as follows. In Sect. 2, we review relevant literature
on clustering using PSO and DE, and the clustering benchmark problem set to
be used. Sect. 3 gives details of our experiments, as well as presenting a typical
summary of the performance results and a comparison with previous results on
the same problem set. Section 4 presents the main analysis of the results. A
summary of the paper and conclusions are given in Sect. 5.

2 Background

2.1 Experimental Algorithmics and Exploratory Landscape
Analysis in Continuous Black-Box Optimization

The field of experimental algorithmics has developed over many years across
computer science [18,24]. More recently it has received growing attention in evo-
lutionary computation and metaheuristics. Bartz-Beielstein discusses the appli-
cation of experimental methodologies to the design and analysis of metaheuristics
including techniques from experimental design and statistics [4]. This includes
Sequential Parameter Optimization (SPO): an iterative methodology for improv-
ing the performance of algorithms via exploratory data analysis and computa-
tional statistics. As implied by the No Free Lunch Theorems, meaningful perfor-
mance differences between algorithms are possible with respect to a given class or
type of problems. Consequently, there has been growing interest in Exploratory
Landscape Analysis (ELA) techniques to study features of problems that can
be used to discriminate, categorize and compare algorithm behaviour [19,21].
In this paper, we adopt these methodologies. Rather than focussing on tuning
algorithms for peak performance, we focus on deepening our understanding of a
specific set of problem instances, via the application of algorithm instances and
analysis of the results data.

In recent years a number of benchmark problem sets have been developed,
including the BBOB problem sets and the CEC benchmarks [13,16]. Problem
generators have also been proposed as a source of benchmark problems [11,25].
While these benchmarks are useful for evaluating and comparing algorithms,
they are for the most part artificial test functions. In this paper we utilize a
real-world representative set of data clustering problems.

2.2 Clustering, PSO and DE

In this paper we are concerned with continuous black-box optimization. Specifi-
cally, we focus on partitional data clustering, an important class of problems in
machine learning and data analysis [2]. Given a set X = {x1, x2, ..., xn}⊆IRd of
n data points, the sum of squares clustering problem is to find a set of k cluster
centers C = {c1, c2, ..., ck} ∈ IRd to minimize:

f (C|X) =
n∑

i=1

k∑

j=1

bi,j xi − cj
2
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where

bi,j =

{
1 if xi − cj = minj xi − cj

0 otherwise

Note that this defines an optimization problem of dimensionality k × d.
Clustering has been the focus of a large amount of literature from differ-

ent fields, including operations research, optimization and metaheuristics. The
focus of our work is to try and improve our understanding of a set of clustering
problems, to identify problem features and properties that can subsequently be
used to develop more powerful comparisons of algorithms and to gain insights
into the mapping between problems and algorithms. In this paper, we select two
of the most well-known and widely used algorithms in continuous evolutionary
optimization: PSO and DE. Even when we restrict our attention to these two
algorithms, the clustering literature is still substantial. Literature reviews on
PSO-based clustering are given by [1,23]. Unfortunately (as discussed in [12]), it
is difficult to compare and extract insights from the large amount of experimental
results presented in much of the literature. Researchers have used many different
datasets and k values to create test problems. Different evaluation criteria (e.g.
inter-cluter distance, quantization error) have also been used.

A Genetic Algorithm variant was proposed for clustering in [7], using the
Iris and other real world datasets. Evaluation was based on the rand index,
SSE and the validity index. A hybrid of DE and PSO is proposed in [26] which
used the Caliński and Harabasz (CH) index and Silhouette statistic (SIL) index
as evaluation criteria for several real world data sets. Three different criteria
including Marriott’s Criteria, Trace Within Criteria and Variance Ratio Criteria
were used in [15]. [10,20] have used inter clustering and intra clustering distance
as a performance metric for clustering on Iris and other data sets. One of the
papers using DE for clustering claims that the Iris dataset, (i.e. with k = 3), does
not pose much difficulty towards algorithms [22]. The experiments below agree
with this, but also show that the Iris dataset can pose a significant challenge for
algorithms when different values of k are used. Another paper [8] has clustered
the Ruspini data set using particle swarms i.e. PSO and included plots of Ruspini
dataset with different number of cluster centres used. The results are interesting
but there is no further analysis to try and understand why the difficulty level of
problem changes with the value of k.

2.3 A Benchmark Set of Clustering Problem Instances

Recently, a set of clustering problem instances was proposed for the evaluation
and comparison of continuous black-box optimization algorithms [12]. These
problem instances have been previously used in the literature, but without a
standard problem definitions and some unawareness of existing work, it is dif-
ficult to compare these results or extract useful insights from them. For each
problem instance, an initial feasible solution space is specified based on the
data. The global optima are now reported for these problems to high precision [9]
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(see http://realopt.uqcloud.net/ for more details). This problem set is scalable,
easy to understand, representative of a class of real-world problems, and appears
to be challenging for many algorithms.

Experimental results on these problems show that Covariance Matrix Adap-
tation Evolutionary Strategies(CMA-ES) are able to find higher quality solutions
(sometimes the global optimum) than the widely-used (non-black-box) k-means
clustering algorithm. In fact, the performance of k-means strongly deteriorates
on larger problem instances, as does the Nelder-Mead simplex algorithm. Nev-
ertheless, finding the global optimum for some of the larger problem instances
was unsuccessful even for CMA-ES. The problem set was also used in [5] who
applied two versions of Differential Evolution (DE). The results improved on the
performance of CMA-ES. However, some of the problems instances appear to be
very challenging, with very low success rates reported to date.

2.4 Correcting the Global Optimum of the German Towns (k=9)
Problem

We have recently become aware that, unfortunately, one of the global optimum
values originally reported in [9] appears to be incorrect. For the German Towns
(k = 9) problem, the value was reported as 7.80442e9. However, subsequent
papers [3,14] use the value 8.42374e9 and declare it to be the global opti-
mum, however this error does not appear to be explicitly stated in any paper.
This means that it is possible (though perhaps unlikely) that the success rates
reported in [5] and in [12] (i.e. whether the global optimum was found on any
trial) are incorrect. In this paper we use the revised value.

3 Experimental Details and Performance Results

3.1 Experimental Details

We used Matlab implementations of both algorithms from the Yarpiz website
(http://yarpiz.com/category/metaheuristics). We make no attempt to tune the
parameters of the algorithms, using common/default values. Each algorithm
was given a population size of 100. The parameters used for DE are: CR =
0.1, f1 = 0.2 and f2 = 0.8. For PSO we used the following parameters: Iner-
tia Weight(w) = 1.0, Damping Ratio (wdamp) = 0.99, Personal Learning Coef-
ficient(c1) = 1.5, Global Learning Coefficient(c2) = 2.0. The mean and standard
deviation values of the best found objective function values over one hundred
uniform random restarts are reported in Table 1. Success Rate (SR) counts how
many times the algorithm could actually reach the global optimum value (to
at least six significant figures) out of the one hundred trials. We started with a
large number of function evaluations but we noticed that both of the algorithm
instances converged after at most 2000 evaluations on these problems. Hence,
each restart is given a fixed budget of 2000 function evaluations.

http://realopt.uqcloud.net/
http://yarpiz.com/category/metaheuristics
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Table 1. Experimental results for DE and PSO on German Towns, Iris and Ruspini.
The best results for each problem are highlighted in bold.

D k f* DE SR PSO SR

G 2 6.02547e+11 6.0255e+11 (1.4e+07) 85/100 6.0255e+11 (0) 100/100

3 2.94506e+11 2.9451e+11 (7.1e+06) 57/100 2.9451e+11 (0) 100/100

4 1.04474e+11 1.0448e+11 (8.1e+06) 54/100 1.2158e+11 (5.4e+10) 91/100

5 5.97615e+10 6.0660e+10 (6.2e+09) 32/100 8.6410e+10 (2.0e+10) 34/100

6 3.59085e+10 4.0340e+10 (1.1e+10) 9/100 6.5306e+10 (2.3e+10) 23/100

7 2.19832e+10 2.5219e+10 (5.7e+09) 9/100 5.1067e+10 (2.3e+10) 5/100

8 1.33854e+10 1.8831e+10 (6.5e+09) 0/100 4.3374e+10 (2.2e+10) 3/100

9 8.42374e+09 1.5839e+10 (7.3e+09) 0/100 3.6884e+10 (1.7e+10) 0/100

10 6.44648e+09 1.3871e+10 (5.1e+09) 0/100 3.1273e+10 (1.8e+10) 0/100

I 2 152.3478 1.5234e+02 (2.8e-14) 100/100 1.5234e+02 (2.8e-14) 100/100

3 78.85144 7.8854e+01 (1.0e-02) 41/100 8.6937e+01 (2.3e+01) 55/100

4 57.22847 5.9921e+01 (2.2e+00) 1/100 6.5611e+01 (1.3e+01) 39/100

5 46.4461 5.9888e+01 (5.3e+00) 1/100 5.5976e+01 (8.7e+00) 10/100

6 39.0399 6.3657e+01 (5.3e+00) 0/100 4.8645e+01 (6.5e+00) 6/100

7 34.2982 6.7888e+01 (5.8e+00) 0/100 4.6121e+01 (7.7e+00) 0/100

8 29.9889 7.0228e+01 (4.8e+00) 0/100 4.1810e+01 (6.2e+00) 0/100

9 27.7860 7.2046e+01 (5.3e+00) 0/100 3.9792e+01 (7.1e+00) 0/100

10 25.8340 7.3952e+01 (5.8e+00) 0/100 3.8060e+01 (5.5e+00) 0/100

R 2 89337.8321 8.9338e+04 (0) 100/100 8.9338e+04 (0) 100/100

3 51063.4750 5.1085e+04 (3.9e+01) 76/100 5.1103e+04 (4.5e+01) 57/100

4 12881.0512 1.2881e+04 (1.0e-11) 100/100 1.2881e+04 (1.0e-11) 100/100

5 10126.7197 1.0138e+04 (1.2e+02) 98/100 1.0396e+04 (5.2e+02) 73/100

6 8575.4068 8.6645e+03 (1.7e+02) 42/100 8.7862e+03 (3.4e+02) 31/100

7 7126.1985 7.6699e+03 (8.3e+02) 21/100 7.5064e+03 (4.0e+02) 17/100

8 6149.6390 7.4918e+03 (1.3e+03) 9/100 6.5029e+03 (3.8e+02) 7/100

9 5181.6518 7.2541e+03 (1.5e+03) 7/100 5.6709e+03 (3.9e+02) 11/100

10 4446.2821 7.5048e+03 (1.4e+03) 2/100 4.8793e+03 (3.6e+02) 15/100

3.2 Results Summary

For the smallest problem sizes (e.g. k = 2, 3), both algorithms performed very
well, locating the global optimum with a high success rate. On the German
Towns problems, DE has a better average performance than PSO but (with the
exception of k = 7), the success rate of PSO is higher than DE. On the Iris
problems, DE is best for small problems but for k ≥ 5 PSO performs better
in terms of average fitness value. PSO has a higher success rate for k = 3 −
6, particularly for k = 4 ( 39

100 compared to 1
100 ). Both algorithms have very

poor or no success in finding the global optimum for larger problems. On the
Ruspini problems DE performs better for lower dimensions and, in contrast
to the German Towns and Iris problems, DE has a higher success rate than
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PSO (k = 2 − 8). For k = 7 − 10, PSO has a better average performance.
but for higher values of k (k > 7) PSO has a higher Success Rate and better
mean objective function value. We focus mainly on the Ruspini dataset as it is
two dimensional and its results are easily visualizable. Our results are generally
similar to those in [5]. They are typically a little worse, however we have used
only 2000 fitness function evaluations compared to (up to) 20000. Our success
rates are estimated from 100 runs compared to 50. Large differences between
our results and Berthier’s [5] occur for the success rates of algorithms on two of
the Ruspini problems. We obtained 100% for k = 4 and 98% for k = 5, whereas
Berthier reported 0–2% success for CMA-ES, DE and PDE ([5], Table 3).

4 Exploratory Results Analysis

4.1 Fitness Distributions and Attractors of Experimental Trials

Significant insights can be gained by looking at the results of the individual trials
in our experiments. The scale of fitness values differs across the problem instances
and datasets: therefore we divide by the global optimum fitness values for each
problem and obtain performance ratio values. Figure 1 shows the distribution of
these values for each trial. It is evident from the figure that even when the number
of attraction points is large, their distribution tends to be non-Gaussian, with
many results clustered around certain fitness values. Over the problem set DE
typically finds more attractors than PSO. It is also clear that the “performance
profiles” of each algorithm are significantly different across the different datasets.
In the case of German Towns, solutions found by DE are closer to the global
optimum but in case of Ruspini and Iris, solutions found by PSO are more close
to global optimum. The mean and standard deviation values in Table 1 are the
perfect summary of data that follows a Gaussian distribution, however our fitness
results are far from Gaussian.

Table 2 shows counts of the number of different fitness values (i.e. conver-
gence points) found for each problem, which gives an empirical estimate (and
at least a lower bound) of the number of attractors for PSO and DE. For some
problems (Iris with k = 2, Ruspini with k = 2 and 4), one or both algorithms
had only one attractor (the global optimum). In this case, the mean perfor-
mance trivially equals the attractor fitness value and the standard deviation
is zero (Table 1). When the number of attractors is small, the mean and stan-
dard deviation are often a misleading summary of the results. For example, the
Ruspini k = 3 problem has two attractors (Table 2) which are both found with
reasonable probability (Table 1; DE finds the global optimum 76 times and the
other attractor 24 times while PSO finds the global optimum 57 times and the
other attractor 43 times). For these results, the mean lies between the two values
(weighted by the attraction frequencies). In other words, the algorithms never
find a solution with fitness value close to the mean! This effect is likely when
any algorithm converges to a relatively small number of attractors, though this is
something rarely reported in papers presenting experimental results. For the Iris
problem instances, Table 1 shows that both algorithms have a high success rate
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Fig. 1. Fitness values found by DE (red×) and PSO (blue+) for the Ruspini (Top), Iris
(middle) and German Towns (bottom) problem instances. The average of the results
for each algorithm is also shown with a line. (Color figure online)
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Table 2. The number of unique solutions found for DE and PSO on the problem set,
from 100 trials.

k 2 3 4 5 6 7 8 9 10

German DE 3 8 20 39 76 89 97 100 100

German PSO 1 1 2 3 6 8 10 14 14

Iris DE 1 47 100 100 100 100 100 100 100

Iris PSO 1 3 12 24 34 41 51 58 70

Ruspini DE 1 2 1 3 13 49 77 92 99

Ruspini PSO 1 2 1 7 16 30 44 60 60

for k = 3 which is the natural number of clusters in the data. The performance
degrades quickly after k = 5. Surprisingly, DE always gets stuck in a diferent
solution for k ≥ 4. Even for k = 3 it finds the global optimum only 47 times.
PSO is attracted towards fewer different solutions. But overall its success rate
is not much larger. For k = 4 we also observe that the mean fitness function
value for DE is better than PSO however the success rate for PSO is higher
than DE. This is an indication that relying on mean performance values can be
misleading.

4.2 Natural Clusterings: Examining Results Around the Ruspini
k = 4 Instance

In the results for DE and PSO, the average performance for the Ruspini k = 3
problem is worse compared with k = 4 and 5. This is interesting because the
performance of algorithms generally degrades with increasing dimensions (with
the notable exception of the Griewank function [17]). This behaviour was also
observed for k-means, CMA-ES and DE in [5,12]. To understand this behaviour
we focused on the solution that each algorithm finds. For k = 3 both algorithms
find only two different solutions that have very similar fitness values. But the
solutions (Fig. 2) are very different (roughly symmetrical: one cluster center at
the top and two at the bottom, or vice-versa). We hypothesize that the fitness
landscape contains two major basins of attraction (at least for DE and PSO).
That is why we see a performance degradation with k = 3. For the k = 4 problem,
both algorithms perform very well, always finding the global optimum. Figure 2
shows that the Ruspini dataset is naturally arranged such that it visually forms
four major clusters. It is argued [6] that cluster center solutions become stable
when we cluster data according to the natural clustering of the dataset. For DE
and PSO, the fitness landscape has a single major basin of attraction. For the
k = 5 problem, the average fitness for DE is better than PSO. This is because
PSO is attracted to seven different solutions. On the other hand, DE only finds
three attractors. These different solutions are shown in Fig. 3.
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Fig. 2. Solutions found for Ruspini instances with k = 3 and k = 4 plotted on each
other.
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Fig. 3. Solutions found for Ruspini instances with k = 5. DE has three attractors
while PSO has seven. “True clusters” indicate the global optimum with other attractors
shown as resulting cluster1,2...)

4.3 Neutrality in the Standard Problem Formulation

Visualization of the solutions found by the algorithms on larger problem sizes
reveals that the problem formulation causes a significant effect on the fitness
landscapes. We have seen that on larger Ruspini problem instances, DE con-
verges to a larger number of poorer solutions compared to PSO, resulting in a
large standard deviation in the results. Figure 4 compares example solutions for
the algorithms for k = 9 and 10. We can see that the solutions found by DE
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often have a cluster centre which is not located close to any of the data points.
Such a cluster centre makes no contribution to the fitness function since it is
not the closest centre for any data point. It follows that the fitness landscape
is neutral with respect to this cluster centre (i.e. two of the variables in the
solution vector). The landscape is perfectly flat in response to changes to these
variables as long as the cluster center accounts for no data points. The problem
is commonly formulated in this way (e.g. [2]) though sometimes a constraint is
added, requiring that every cluster center account for at least one data point
(e.g. [3]).

The above insight could be used to improve the performance of algorithms
(e.g. with a restart strategy). Berthier’s Progressive Differential Evolution (PDE)
works by optimizing with respect to a single cluster centre and then iteratively
adding new centres (e.g. every 100th generation in his experiments). Intuitively,
this seems less vulnerable to end up in a neutral region of the landscape, which
may explain the performance improvement reported for PDE [5] Alternatively,
the problem could be formulated to incorporate the constraint (e.g. using a
penalty term). One the other hand, neutrality might be a feature that occurs
in other real-world problems (e.g. in machine learning where sparse models are
widely used). In that case, it is of interest to see how algorithms perform when
faced with problems that have some degree of neutrality.
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Fig. 4. Example solutions for Ruspini problems with k = 9 and k = 10.
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5 Summary

This paper has presented an exploratory experimental study of clustering bench-
mark problems, using instances of DE and PSO. The results reveal important
problem features, notably the natural clustering in the data and the existence of
flat regions on the fitness landscape. This leads to a better understanding of the
performance of algorithms on these problems. More generally, the paper advo-
cates an exploratory, problem-centric approach to the experimental analysis of
algorithms.
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Abstract. Job Shop Scheduling is an important combinatorial opti-
misation problem in practice. It usually contains many (four or more)
potentially conflicting objectives such as makespan and mean weighted
tardiness. On the other hand, evolving dispatching rules using genetic
programming has demonstrated to be a promising approach to solving
job shop scheduling due to its flexibility and scalability. In this paper, we
aim to solve many-objective job shop scheduling with genetic program-
ming and NSGA-III. However, NSGA-III is originally designed to work
with uniformly distributed reference points which do not match well with
the discrete and non-uniform Pareto front in job shop scheduling prob-
lems, resulting in many useless points during evolution. These useless
points can significantly affect the performance of NSGA-III and genetic
programming. To address this issue and inspired by particle swarm opti-
misation, a new reference point adaptation mechanism has been proposed
in this paper. Experiment results on many-objective benchmark job shop
scheduling instances clearly show that prominent improvement in per-
formance can be achieved upon using our reference point adaptation
mechanism in NSGA-III and genetic programming.

Keywords: Job shop scheduling · Many-objective optimisation ·
Genetic programming · Reference points

1 Introduction

Job Shop Scheduling (JSS) [12] is one of the most important combinatorial
optimisation problems in practice and has a wide range of applications in many
industries such as manufacturing and cloud computing. In a JSS problem, a
group of jobs with predetermined routes are assigned to a fixed set of machines.
The problem requires us to design a schedule that dictates job processing in an
optimal way so that some pre-defined objectives (e.g. makespan, tardiness and
total revenue) can be achieved successfully without violating any domain-specific
constraints.

JSS problems are known to be NP-hard [1]. As a matter of fact, no exact
methods exist in practice to obtain optimal schedules within a reasonable amount
c© Springer International Publishing AG 2017
M. Wagner et al. (Eds.): ACALCI 2017, LNAI 10142, pp. 326–338, 2017.
DOI: 10.1007/978-3-319-51691-2 28
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of time when the number of jobs and machines becomes large. Hence heuris-
tic and meta-heuristic methods play a more dominating role for solving many
practical JSS problems. Among these methods, dispatching rules are frequently
exploited due to their flexibility, scalability and efficiency, especially when a job
shop exhibits high levels of dynamics.

Conceptually, dispatching rules can be treated as priority functions that
assign priorities to every job waiting to be processed by a machine. Whenever
the machine becomes idle, the job with the highest priority value according to
a dispatching rule will be selected for processing. Such a dispatching rule will
therefore incrementally determine the complete schedule for any JSS problems.
In this paper we will focus mainly on non-delay dispatching rules since they
avoid any unnecessary delay on idle machines whenever there are incomplete
jobs pending on them.

Despite of prominent success, designing useful dispatching rules remains to be
a challenging research problem. Particularly dispatching rules designed manually
based on one JSS problem instance or one scheduling objective (e.g. minimiz-
ing the mean flow time) often perform poorly when the scheduling conditions
change (e.g. minimizing the maximal tardiness). To tackle this challenge, many
researchers have successfully developed Genetic Programming Hyper-Heuristic
(GP-HH) techniques for automatic design of dispatching rules under various
scheduling objectives. A comprehensive survey on related GP-HH research works
can be found in [2,3].

It is widely evidenced in the literature that JSS by nature presents several
potentially conflicting objectives, including for example the makespan, mean
flowtime, maximum tardiness, maximum lateness, total workload and proportion
of tardy jobs. A very recent work also suggests that it is important to consider
many objectives (i.e. more than three objectives) concurrently while solving a
wide range of JSS problems [8]. Driven by this understanding, a new algorithm
called GP-NSGA-III that seamlessly combines GP-HH with NSGA-III [5] was
proposed, which is one of the state-of-the-art evolutionary many-objective opti-
misation algorithm [8]. In comparison to other approaches that combine GP-HH
with multi-objective optimisation algorithms including NSGA-II [4] and SPEA2
[15], GP-NSGA-III can achieve significantly better performance on 4-objective
and 5-objective JSS problems [8].

Despite the promising results with GP-NSGA-III, it was found that many
references points are useless, i.e. they are never associated with any dispatching
rules on the evolved Pareto front. Similar observations have also been witnessed
in [7] while applying NSGA-III to other optimisation problems. There is a close
relationship between the number of useless points and the performance of the
algorithm. Therefore, to evolve high-quality dispatching rules, it is essential to
match the distribution of the reference points with the distribution of the Pareto
front, which is often irregular (e.g. discrete and non-uniform).

To address this key issue in GP-NSGA-III, the main goal of this study is to
develop an effective reference point adaptation mechanism to enhance the match
between reference points and the Pareto-front evolved by GP-HH. Guided by
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this goal, we have developed a new adaptation mechanism inspired by Particle
Swarm Optimisation (PSO) which has been proven to be highly effective for
approximating arbitrary distributions such as the fitness landscape [6,10]. In
this paper, to prevent all reference points from converging to a small area in
the objective space, we have modified the standard particle dynamics in PSO
so that every reference point (i.e. a separate particle in PSO) can be optionally
attracted towards one of multiple global best locations. We have also removed
the influence of personal best locations since they may not promise good matches
with the evolved Pareto-front in future generations.

Driven by the aim of reducing the number of useless reference points and
enhancing the matches between the reference points and the evolved Pareto-
front, we organize the rest of paper as follows. Section 2 covers the research
background, including the JSS problem description, the reference point adap-
tation problem and the related works. Section 3 introduces GP-A-NSGA-III in
detail. Section 4 reports the experimental design. Section 5 covers results and
discussions. Finally, Sect. 6 concludes this paper and highlights possible future
research.

2 Research Background

In this section, the JSS problem will be described first. Then we will discuss
some related works.

2.1 Description of JSS Problems

In a JSS problem, N jobs are initially assigned to M machines. Each job ji, 1 ≤
i ≤ N has a sequence of m operations to be performed, i.e. {o1i , . . . , o

m
i }. Each

operation oki should be processed on one machine mk
i , 1 ≤ i ≤ M with the

processing time pki . Let rki be the time for operation oki to be ready for processing.
Ri is the ready time of the first operation of job ji, which is also known as the
release time. Any solution to such a JSS problems has to comply with three
common constraints, as described below.

1. An operation is performed on a machine without interruption. This means
that all operations are non-preemptive.

2. The operation cannot start until its previous operation has been completed.
In the other words, the operations follow precedence constraints.

3. Each machine is persistently available and should process only one operation
of any job at any given time.

Similar to [8], we consider JSS problems with four objectives, i.e. the mean
flowtime, maximal flowtime, mean weighted tardiness and maximal weighted
tardiness. Clearly, each objective is expected to be minimised.
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2.2 Problem for Using Uniformly Distributed Reference Points

As mentioned in the introduction, NSGA-III is originally designed to work with
a fixed set of uniformly distributed reference points. However, for many combi-
natorial optimisation problems such as the JSS problems, the true Pareto-front
is usually irregular and discontinuous. Therefore direct application of NSGA-III
will lead to many useless points.

In essence, reference points are adopted in NSGA-III to replace the crowding
distance mechanism introduced in NSGA-II for high-dimensional objective space
and hence to promote solution diversity [5]. Clearly, if only a few reference points
are truly associated with the Pareto-optimal dispatching rules evolved by GP-
HH at the current generation, it is not easy to distinguish and select these rules
to improve diversity for future generations. In other words, a majority of useful
reference points will be associated with many candidate dispatching rules. Some
rules can be far from the corresponding reference point. Such a dispatching
rule should enjoy higher selection opportunity but may not be selected during
evolution simply because it is associated with a popular reference point. Due to
the above reason, we found that better matches between reference points and
the evolved Pareto-front can help enhance solution diversity and therefore the
performance of GP-NSGA-III. As a consequence, developing a reference point
adaptation mechanism becomes a key research issue to be tackled in this paper.

2.3 Related Work

A study of the literature shows that many past research works focused primar-
ily on solving single-objective JSS problems [11]. Recently, huge efforts have
been made in the evolutionary computation (EC) community to develop multi-
objective algorithms for JSS. Among these algorithms, Pareto-optimal methods
have clearly attracted substantial research attention [9]. Inspired by their success,
a few efforts have also been made towards addressing many-objective JSS prob-
lems [8]. Particularly, the GP-NSGA-III algorithm proposed in [8] is amongst
the first in the literature to try to cope with exponentially increasing objective
space by using NSGA-III. However, the use of uniformly distributed reference
points in NSGA-III presents a new research challenge.

Jain and Deb have already proposed an interesting mechanism for adjusting
reference points in NSGA-III [7]. However, their mechanism requires the number
of reference points to be changed dynamically and is difficult to implement in
high-dimensional objective space. When the number of reference points becomes
large, the efficiency of their mechanism may also be affected. Nevertheless, their
mechanism is very effective for addressing constrained general-purpose optimi-
sation problems. Without considering constraints, we prefer to adopt a much
simpler approach for reference point adaptation. Specifically our approach does
not change the total number of reference points during evolution and is easy
to implement regardless of the number of objectives under consideration. It is
particularly suitable for the JSS problems described in Subsect. 2.1.
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3 Adaptive Reference Points for Many-Objective JSS

The framework of the proposed GP-A-NSGA-III is described in Algorithm1.
The framework is similar to that of the GP-NSGA-III [8], and the differences
(for adaptive reference points) are highlighted. Particularly, when initialising the
reference points (line 2), a velocity vector V is initialised along with the position
vector X for each reference point. Then, the PSO parameters are specified (line
3). In each generation, the reference points are updated (line 10) after each
population update.

Algorithm 1. The framework of GP-A-NSGA-III.
Input : A training set Itrain and rules P
Output: A set of non-dominated rules P ∗

1 Initialise and evaluate the population P 0 of rules by the ramped-half-and-half
method;

2 Initialise the position X and velocity V of reference points Z ;

3 Set parameter wmin, wmax, c2 ;

4 Calculate the reference points Z Set g ← 0;
5 while g < gmax do
6 Generate the offspring population Qg using the crossover, mutation and

reproduction of GP;
7 foreach Q ∈ Qg do Evaluate rule Q;
8 Rg ← P g ∪ Qg;

9 Form the new population P g+1 from Rg by the NSGA-III selection;

10 Update(Z) ;

11 g ← g + 1;

12 end
13 return The non-dominated individuals P ∗ ⊆ Pgmax ;

3.1 Reference Point Update

The PSO-based reference point update scheme Update(Z) is described in
Algorithm 2. In the algorithm, each reference point is seen as a particle. The
fitness of a particle is defined as the number of individuals in the population
associated to it, which is to be maximised. That is, the global best particle is
the one with the most individuals associated to it. Note that when updating the
velocity (line 6), the term for the local best position is ignored. It can be seen
that the fitness of particles (reference points) depends on the distribution of the
whole swarm, and the positions of other particles. Thus, it may not be meaning-
ful to move towards the local best, which can become worse upon movements of
other particles. Furthermore, there is no elitism for the global best (line 3). This
way, the reference points can have sufficient diversity.
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Algorithm 2. Update of the reference points.
Input : Reference points Z = (X ,V )
Output: Updated reference points Zg

1 Calculate fitness fit(Z i)= number of individuals associated for each Z i ∈ Z ;
2 Calculate w = wmax − g · (wmax − wmin)/gmax;
3 Calculate the global best Z∗ = arg max{fit(Z)} ;
4 for i = 1 → NumParticles do
5 for j = 1 → NumObjs do

6 V g
i,j = w ∗ V g−1

i,j + c2 ∗ rand() ∗ (Z∗ − Xg−1
i,j );

7 Xg
i,j = Xg−1

i,j + V g
i,j ;

8 end

9 end
10 return Zg = (Xg,V g);

Algorithm 3. The fitness evaluation.
Input : A training set Itrain and an individual (rule) P
Output: The fitness f (P ) of the rule P

1 foreach I in Itrain do
2 Construct a schedule Δ(P, I) by applying the rule P to the JSS instance I;

Calculate the objective values f (Δ(P, I));
3 end
4 f (P ) ← 1

|Itrain|
∑

I∈Itrain
f (Δ(P, I)); ;

5 return f (P );

3.2 Fitness Evaluation

For evaluating each GP individual (lines 1 and 7 of Algorithm1), it is applied to
a set of JSS training instances Itrain as a dispatching rule, and the normalised
objective values of the resultant schedules are set to its fitness values. The pseudo
code of the fitness evaluation is given in Algorithm3.

4 Experimental Design

To verify the effectiveness of the proposed adaptive reference point scheme, we
compared the performance of GP-A-NSGA-III with the baseline GP-NSGA-III
in the experimental studies. We selected the Taillard (TA) static JSS benchmark
instances [13] as the testbed. The TA set has been widely used as the test JSS
instances in literature. It consists of 80 instances (ID from 1 to 80) divided into 8
groups, each having 10 instances. The number of jobs varies from 15 to 100 and
the number of machines ranges from 15 to 20. The instances belonging to the
same group have the same numbers of jobs and machines. In the experiments,
the 80 TA instances were split in half, each with 40 instances. Then, one subset
was used as the training set and the other was the test set. Since the instances
are static, all the jobs are available from time zero. The due date dd(ji) of each
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job ji is calculated as dd(ji) = λ × ∑m
k=1 pki , where the due date factor λ is set

to 1.3. In the experiments, we considered four potentially conflicting objectives:
mean flowtime (MF), maximal weighted tardiness (MaxWT), maximal flowtime
(MaxF) and mean weighted tardiness (MWT). For both GP-A-NSGA-III and
GP-NSGA-III, 40 independent runs were conducted.

4.1 Parameter Settings

Both GP-A-NSGA-III and GP-NSGA-III adopt the GP representation (tree-
based) and evolutionary operators (e.g. initialisation, crossover and mutation)
along with the fitness evaluation scheme of NSGA-III. For both compared algo-
rithms, the population size is set to 1024. The crossover, mutation and repro-
duction rates are set to 85%, 10% and 5% respectively. The maximal depth is
set to 8. The population is initialised by the ramp-half-and-half method. In each
generation, the parents are selected by the tournament selection with size of 7.
The maximal number of generations is set to 51. The terminal set is described in
Table 1. The function set includes the basic arithmetic operators (the protected
division operator returns 1 if the denominator is zero), the 2-argument “min”
and “max” operators and the 3-argument “If” operator that returns the second
argument if the first argument is positive, and the third argument otherwise.

For the PSO parameters, we set c2 = 2, wmin = 0.4 and wmax = 0.9, which
are standard settings used by many existing works.

Table 1. Terminal set of GP for JSS.

Attribute Notation

Processing time of the operation PT

Inverse processing time of the operation IPT

Processing time of the next operation NOPT

Ready time of the operation ORT

Ready time of the next machine NMRT

Work remaining WKR

Number of operation remaining NOR

Work in the next queue WINQ

Number of operations in the next queue NOINQ

Flow due date FDD

Due date DD

Weight W

Number of operations in the queue NOIQ

Work in the queue WIQ

Ready time of the machine MRT

In the experiments, the two commonly used measures in multi-objective opti-
misation, i.e. Inverted Generational Distance (IGD) [14] and Hyper-Volume (HV)
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[16] are used to compare the algorithms. To calculate IGD and HV, we first nor-
malised the objectives into the range [0,1] by linear normalisation. The maximal
and minimal values for each objective were obtained from the results of all the
runs of both compared algorithms. After the normalisation, the nadir point was
set to (1, 1) for calculating HV. Note that IGD needs a set of uniformly distrib-
uted points in the true Pareto front, which cannot be known in multi-objective
JSS problems. Therefore, we approximate the true Pareto front by selecting the
non-dominated solutions among the final solutions from all the runs of the two
compared algorithms.

5 Results and Discussions

During the GP search process, a rule is evaluated on the 40 training instances,
and the fitness function for each objective is defined as the average normalised
objective value of the schedule obtained by applying that rule to each of the 40
training instances. For each algorithm, 40 GP runs obtained 40 final dispatching
rules. Then, the rules were tested on the 40 test instances.

5.1 Overall Results

Table 2 shows the mean and standard deviation of the test performance (HV and
IGD) of the rules obtained by GP-NSGA-III and GP-A-NSGA-III. In addition,
for each test instance, the Wilcoxon rank sum test with the significance level of
0.05 was conducted separately on both the HV and IGD of the rules obtained
by the two compared algorithms. That is, if p-value is smaller than 0.05, then
the best algorithm is considered significantly better than the other algorithm.
The significantly better results was marked in bold. The table reveals that GP-
A-NSGA-III performs significantly better than GP-NSGA-III in most of the test
instances. In the case of HV, GP-A-NSGA-III performed significantly better on
24 out of 40 test instances. On the other hand, GP-NSGA-III performed sig-
nificantly better only on 6 instances. For the remaining 10 instances, the two
compared algorithms performed statistically the same. In regard to IGD, Table 2
exhibits the same pattern. GP-A-NSGA-III achieved significantly better perfor-
mance on 21 out of the 40 test instances. In contrast, GP-NSGA-III performed
significantly better on 13 instances.

When taking a closer look at the Table 2, it can be found that GP-A-NSGA-
III not only performed better on smaller instances but also is more effective on
more challenging and larger instances. For some test instances (e.g. instances
1, 10, 24), GP-A-NSGA-III achieved a huge improvement. This demonstrates
the usefulness of the proposed adaptive reference point scheme, which can find
better association with population members and thus obtained well distributed
reference points.
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Table 2. The mean and standard deviation over the HV and IGD values of the 40
independent runs of the compared algorithms in the 4-obj experiment. The significantly
better results are shown in bold.

Problem instances HV IGD

ID #J #M GP-NSGA-III GP-A-NSGA-III GP-NSGA-III GP-A-NSGA-III

1 15 15 .0096 (.0145) .2414 (.0368) .0265 (.0008) .0088 (.0113)

2 15 15 .1600 (.0182) .1666 (.0110) .0254 (.0005) .0218 (.0004)

3 15 15 .0806 (.0125) .0906 (.0127) .0205 (.0008) .0292 (.0006)

4 15 15 .1263 (.0183) .0692 (.0091) .01765 (.0007) .0218 (.0006)

5 15 15 .1661 (.0202) .1752 (.0192) .0190 (.0005) .0237 (.0007)

6 20 15 .1271 (.0176) .1421 (.0139) .0154 (.0004) .0211 (.0004)

7 20 15 .2488 (.0683) .2538 (.0695) .0079 (.0013) .0077 (.0014)

8 20 15 .1115 (.0201) .2015 (.0253) .0186 (.0006) .01819 (.0026)

9 20 15 .1700 (.0148) .1839 (.0219) .0170 (.0005) .0149 (.0005)

10 20 15 .1086 (.0151) .3580 (.0366) .0156 (.0002) .0160 (.0003)

11 20 20 .0114 (.0038) .1087 (.0118) .0299 (.0006) .0240 (.0008)

12 20 20 .0852 (.0133) .1206 (.0134) .0173 (.0004) .0222 (.0006)

13 20 20 .1540 (.0151) .1569 (.0326) .0188 (.0003) .0137 (.0002)

14 20 20 .0504 (.01103) .0704 (.0118) .0328 (.0008) .0272 (.0007)

15 20 20 .3985 (.0225) .2454 (.0199) .0109 (.0004) .0150 (.0002)

16 30 15 .2465 (.030) .2375 (.0234) .0144 (.0006) .0140 (.0002)

17 30 15 .1813 (.0096) .2278 (.0229) .0138 (.0003) .0097 (.0004)

18 30 15 .3198 (.0233) .1957 (.0132) .0131 (.0004) .0152 (.0003)

19 30 15 .2789 (.0126) .3004 (.0197) .0150 (.0004) .0114 (.0004)

20 30 15 .2575 (.0312) .2124 (.0312) .0144 (.0005) .0195 (.0003)

21 30 20 .1347 (.0657) .2325 (.0792) .0135 (.0022) .0098 (.0014)

22 30 20 .2365 (.0472) .3027 (.0470) .0065 (.0010) .0052 (.0006)

23 30 20 .2944 (.0398) .2984 (.0410) .0046 (.00004) .0045 (.0005)

24 30 20 .3812 (.0503) .6161 (.0174) .0070 (.0009) .0018 (.0004)

25 30 20 .5199 (.0477) .5290 (.0396) .0059 (.0012) .0046 (.0005)

26 50 15 .4563 (.0417) .4872 (.0270) .0051 (.0009) .0039 (.0004)

27 50 15 .5710 (.0361) .5685 (.0304) .0040 (.0009) .0032 (.0003)

28 50 15 .4598 (.0398) .4966 (.0250) .0049 (.0010) .0036 (.0003)

29 50 15 .4862 (.0372) .5125 (.0251) .0045 (.0007) .0037 (.0003)

30 50 15 .4510 (.0406) .4732 (.0240) .0033 (.0005) .0026 (.0002)

31 50 20 .5085 (.0424) .5147 (.0295) .0053 (.0008) .0042 (.0004)

32 50 20 .4378 (.0476) .4266 (.0375) .0046 (.0006) .0041 (.0004)

33 50 20 .3422 (.0266) .4383 (.0838) .0125 (.0006) .0069 (.0051)

34 50 20 .3828 (.0384) .4089 (.0262) .0036 (.00005) .0030 (.00029)

35 50 20 .5558 (.0349) .5763 (.0165) .0025 (.0005) .0020 (.0001)

36 100 20 .3648 (.0179) .2972 (.0093) .010 (.0003) .0130 (.0006)

37 100 20 .3442 (.0142) .2844 (.0101) .0086 (.0003) .0107 (.0003)

38 100 20 .3006 (.0196) .3025 (.0136) .0067 (.0009) .0066 (.0002)

39 100 20 .6495 (.0185) .6515 (.0191) .0010 (.0001) .0010 (.0001)

40 100 20 .3658 (.0158) .3828 (.0100) .0085 (. (.0003) .0088 (.0002)
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5.2 Further Analysis

To further investigate how the adaptive reference point scheme affect the GP
search process, we plot (a) the average number of useless references points (those
associated with no individual in the population); (b) the average HV of the
non-dominated solutions obtained so far and (c) the average IGD of the non-
dominated solutions obtained so far for each generation during the 40 indepen-
dent runs of the two compared algorithms, as given in Fig. 1.

From Fig. 1, it is obvious that the adaptive reference point scheme can signif-
icantly reduce the number of useless points during the GP search process. With-
out adaptive points, the number of useless references points in GP-NSGA-III
kept increasing from 910 to about 980. On the contrary, in GP-A-NSGA-III, the
number of useless reference points first increased and then decreased to almost
the same level as the beginning. This indicates that especially at the later stage
of the search, the adaptive reference point scheme led to less useless reference
points, and thus a better refinement of the regions around the population.

Figure 1 show that GP-A-NSGA-III obtained better convergence curves in
terms of both HV and IGD. This shows that the reduction of useless reference
points can lead to better non-dominated sets.
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Fig. 1. The curves of the average number of useless reference points, HV and IGD
values of the non-dominated solutions on the training set during the 40 independent
GP runs.

Figure 2 shows the distribution of the reference points and the fitness values
of the population in generations 1 and 50 of GP-A-NSGA-III. It can be seen that
in generation 1, the reference points are close to the initial uniform distribution,
and the fitness distribution of the population is relatively uniform as well. In
generation 50, on the other hand, the distributions of the reference points and
the fitness values of the population become very similar to each other. This is
consistent with our expectation, which is to use a similar distribution of reference
points as that of the population to fine tune the promising area around the
population.
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Fig. 2. Parallel coordinate plot for the distribution of the reference points and the
fitness values of the population in generations 1 and 50 of GP-A-NSGA-III.

6 Conclusion

The goal of this study was to identify a key research issue involved in using
NSGA-III effectively, i.e. the simple adoption of uniformly distributed reference
points failed to promote solution diversity during evolution and affected the
performance of GP-HH. This goal has been successfully achieved by proposing a
new reference point adaptation mechanism inspired by PSO. Important changes
to particle dynamics in PSO have also been introduced in our mechanism to pre-
vent majority of reference points from converging to small areas in the objective
space. In the subsequent experimental evaluations based on the Taillard bench-
mark set, we successfully showed that the proposed reference point adaptation
mechanism can significantly improve the performance of GP-HH and NSGA-III
in terms of both HV and IGD.

In the future, we plan to study the potential usefulness of Gaussian Process-
ing modelling techniques for more accurate approximation of the Pareto front.
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The use of local search and niching techniques could also significantly improve
solution diversity and boost performance of GP-NSGA-III. Their use with our
reference point adaptation mechanism deserves further investigation.
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Abstract. Optimal power allocation (OPA) is considered to be one of
the key issues in designing a wireless sensor network (WSN). Generally,
the OPA in WSN can be formulated as a numerical optimization problem
with constraints. Differential evolution (DE) is a powerful evolutionary
algorithm for numerical, however, the success of DE in solving a specific
problem crucially depends on appropriately choosing suitable mutation
strategy and its associated control parameter values. Meanwhile, there
is no single parameter setting and strategy that is able to consistently
obtain the best results for the OPA with different number of sensor nodes.
Based on the above considerations, in this paper, a multi-operator based
constrained differential evolution is proposed, where probability matching
and constrained credit assignment techniques are used so as to adaptively
select the most suitable strategy in different phase of the search process
for the OPA. Additionally, the parameter adaptation technique is used
to avoid the fine-tuning of DE parameters for different problems. The
proposed algorithm has been evaluated in several OPA with different
number of sensor nodes, and its performance is compared with single-
strategy based DE variants and other methods. Experimental results
indicate that the proposed algorithm is able to provide better results
than the compared methods.

1 Introduction

A wireless sensor network (WSN) is a network of distributed autonomous devices
that can sense or monitor physical or environmental conditions cooperatively. In
WSNs, there exists a large number of small, inexpensive, spatially distributed
sensor nodes that are deployed in an ad hoc manner in vast geographical areas for
remote operations and these nodes can acquire, process, and transmit data over
wireless medium. WSNs also are used in numerous applications such as security
detection, traffic tracking, environmental monitoring, because of characteristics
of the low cost and ease of operation [1]. In addition, battery supply, storage
resources and commutation bandwidth tremendously restrict the communication
and computational capabilities of sensor nodes [2]. Therefore, there has been
significant research concentrate that revolves around reaping and minimizing
c© Springer International Publishing AG 2017
M. Wagner et al. (Eds.): ACALCI 2017, LNAI 10142, pp. 339–352, 2017.
DOI: 10.1007/978-3-319-51691-2 29
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energy. But above all, it may be impossible to replace or change the batteries of
the sensor nodes because of cost and operating environment considerations [3].
Therefore, the optimal power allocation can be considered as one of the crucial
issues for designing a WSN.

Differential evolution (DE), which was firstly proposed by Storn and Price
[4], is one of the most powerful EAs for global numerical optimization. The
advantages of DE are its simple structure, ease of use, speed, and robustness,
which leads it on many applications, such as data mining, neural network train-
ing, pattern recognition, digital filter design, engineering design, etc. [5]. More
applications of DE can be found in the literature [6].

The OPA in WSN can be seen as a constrained numerical optimization prob-
lem [3]. In addition, the optimal power allocation in WSNs have attained con-
siderable attention. Recently, there are several algorithms are proposed for OPA,
such as particle swarm optimization (PSO) [3,7,8], hybrid DE with biogeography-
based optimization [9]. Both the two algorithms achieved good performance for
independent and identically distributed (i.i.d.) and correlated data fusion in
WSNs. In addition, due to the advantages of DE in the numerical optimization,
recently, DE has been successfully used for the constrained optimization problems
(COPs) by means of employing the constraint-handling techniques [10]. Mean-
while there is no single parameter setting and strategy that is able to consistently
obtain the best results for the OPA with different number of sensor nodes [11].
Therefore, it is worth exploring more effective algorithm for OPA.

Differential mutation is the crucial operator in DE which is operated based
on the distribution of solutions in the current population. New offsprings are
created by combining the parent individual and the mutant individual. Only if
the offspring has better fitness value, it can replace its parent. However, it is a
difficult and crucial task to choose which mutation strategy for the performance
of the DE [12,13]. Based on the above consideration, in this paper, we proposed
a multi-operator differential evolution based on Probability Matching and con-
strained credit assignment for solving the OPA. The proposed method is referred
to as PM-MDE, in short.

2 Preliminaries

In this section, we first briefly describe the optimal power allocation in WSNs,
followed by the description of the classical DE algorithm. Then, the constraint-
handling technique used in this work is introduced. Finally, adaptive strategy
selection is presented.

2.1 Optimal Power Allocation in WSNs

Generally, the power allocation problem can be considered as a constrained
numerical optimization problem and it also can be formulated as follows [3]:

min
Gk≥0

L∑

k=1

G2
k (1)
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subject to

P (E) = Q( 12

√
m2eT A

∑ −1
L Ae) ≤ ε,

Gk ≥ 0,
K = 1, . . . , L.

(2)

where ε is the required fusion error probability threshold, L indicates the number
of sensor nodes, m represents the deterministic signal and GK is the amplifier
gain at node k. e is the L-length vector with all ones. The covariance matrix is∑

L = AT
∑

vA+
∑

w, where A = diag(H1G1, . . . , HLGL),
∑

v is the observa-
tion and

∑
w is receiver noise covariances. Specially, when the local observations

and the receiver noise are both i.i.d., the probability of fusion error can be sim-
plified to:
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⎛
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The inequality in (3) can be expressed as follows:

β ≤
√
√
√
√

L∑

k=1

H2
KG2

K

δ2vH2
KG2

K + δ2ω
(4)

where β = 2
mQ−1(ε) and Q(·) is the complementary Gaussian cumulative distri-

bution function. δv means the variances of the observation noise and δw repre-
sents the receiver noise. Hk indicates the channel fading coefficient. It is needed
to point that Hk follows an exponential distribution (i.e., Rayleigh fading) with
unit mean [9].

Besides the above situation, when the sensor observations are spatially cor-
related, the observation noise covariance matrix

∑
v can be formulated as fol-

lows [14]:

∑
v = δ2v

⎛

⎜
⎜
⎜
⎝

1 ρd · · · ρd(L−2) ρd(L−1)

ρd 1 · · · ρd(L−3) ρd(L−2)

...
...

. . .
...

...
ρd(L−1) ρd(L−2) · · · ρd 1

⎞

⎟
⎟
⎟
⎠

(5)

The inequality in (3) can be expressed as follows:

β ≤
√

eT A
∑ −1

n Ae (6)

where dj = d(j−1), j = 1, . . . L, which means the sensor nodes are equally spaced
along a straight line. Because

∑
v is not diagonal, it is difficult to evaluate

∑ −1
n

in closed form. Therefore, it is necessary to introduce a specific sensor network
model which derives an upper bound for P (E) and is proposed by Wimalajeewa
and Jayaweera [3]. Finally, DE algorithm becomes suitable to use for OPA under
arbitrary correlated observation.
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2.2 Differential Evolution

DE is a simple yet efficient evolutionary algorithm (EA) for global numerical
optimization [4]. For the population initialization, a uniform distribution is usu-
ally used in the literature within the search space. After initialization, DE gen-
erates offsprings based on combining the parent individual and several other
individuals of the same population which means that offsprings are generated
according to mutation operation and crossover operation. An offspring is evalu-
ated by a fitness function and then replaces the parent individual only if it has an
equal or better fitness value. DE repeats this procedure that generates offsprings
and replaces parent individual until a predefined termination criterion is satis-
fied. Generally, the terminal conditions can be fixed either the maximum number
of fitness function evaluations (Max NFFEs) or define a desired solution value
to be reached (V TR).

3 Multi-operator Based Differential Evolution
(PM-MDE)

In this section, we will introduce our proposed PM-MDE algorithm in detail. It
is previously mentioned that there are many mutation strategies in DE and it is
hard to choose the most suitable strategy for different problem in the different
stage of evolution. Therefore, it is significant to autonomously select appropriate
mutation strategy for OPA. To achieve this performance, in this work, we propose
the multi-operator differential evolution for OPA based on Probability Matching
(PM) technique and credit assignment method [15]. The PM technique and the
credit assignment method are integrated into DE to implement the adaptive
strategy selection and the relative fitness improvement calculation. Moreover,
the parameter adaptation method of CR and F proposed in [16] is adopted in
this work.

3.1 Strategy Selection and Probability Matching

Following [17], in this subsection the adaptive strategy selection will be intro-
duced. Firstly, it can be supposed that we have K(K > 1) strategies in
the pool A = {a1, . . . , ak} and a probability vector can be described like
P (t) = {p1(t), . . . , pK(t)} (∀t : pmin ≤ pi(t) ≤ 1;

∑
K
i=1pi(t) = 1). The ra(t)

presents reward which be achieved by a strategy a after its application at time
t. The PM method is used to adaptively update the probability Pa(t) of each
strategy a based on its reward. qa(t) is the known quality (or empirical estimate)
of a strategy a, that is updated as follows [18]:

qa(t + 1) = qa(t) + α · [ra(t) − qa(t)], (7)

where α ∈ (0, 1] is the adaptation rate. The PM method updates the probability
Pa(t) as follows [15,18]:

pa(t + 1) = pmin + (1 − K · Pmin)
qa(t + 1)

∑
K
i=1qi(t + 1)

. (8)
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where pmin ∈ (0, 1] represents the minimum probability value of each strategy,
the objective of this is to ensure no operator gets lost. It is indicated by Eq. (8)
that when only one strategy achieves a reward during a long period of time
and all other strategies receive no reward, then its selection probability Pa(t)
converges to pmax = pmin+(1−K ·pmin). It also can be seen that

∑
K
a=1pa(t) = 1

and 0 < Pmin < 1
K .

3.2 Constrained Credit Assignment

As mentioned above, the OPA problem is a constrained optimization problem.
Therefore, to assign the credit for each search operator, we need to design the
constrained credit assignment technique. In this work, the constraint-handling
technique named improved adaptive trade-off model [19] is employed, which was
proposed by Wang and Cai and is the improved version of ATM [20]. In IATM,
the population can be divided into three situations such as infeasible situation,
semi-feasible situation and feasible situation.

In the infeasible situation, the solutions are measured based on their con-
straint violation. In the semi-feasible situation, the population includes both
feasible and infeasible solutions and it can be divided into the feasible group
(Z1) and the infeasible group (Z2) based on the feasibility of each solution. The
infeasible individuals in the semi-feasible situation should be handled and eval-
uated based on their constraint violation. Then, the objective function can be
seen as f(x) and x is the vector of the solution. The objective function value
f(xi) of the solution xi is converted into

f ′(xi) =
{

f(xi), i ∈ Z1

max {ϕ · f(xbest) + (1 − ϕ) · f(xworst), f(xi)}, i ∈ Z2
(9)

where ϕ represents the feasibility ratio of the last population, and xbest and
xworst are the best and worst individual in the feasible group Z1, respectively.
After achieving the changed objective function value of each individual, then it
should be normalized as

fnor(xi) =
f ′(xi) − min

j∈Z1∪Z2
f ′(xj)

max
j∈Z1∪Z2

f ′(xj) − min
j∈Z1∪Z2

f ′(xj)
. (10)

In addition, the normalized constraint violation can be evaluated as

Cnor(xi) =

⎧
⎨

⎩

0, i ∈ Z1
C(xi)− min

j∈Z2
C(xj)

max
j∈Z2

C(xj)− min
j∈Z2

C(xj)
, i ∈ Z2

(11)

where C(x) represents the distance of the solution x from the boundaries of the
feasible set, which also reflects the degree of its constraint violation.

Then, the final fitness function is obtained as follows:

ffinal(xi) = fnor(xi) + Cnor(xi). (12)
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In the feasible situation, it is to say that all solutions are feasible in the
population, the performance of the situation can be evaluated by the objective
function value.

Based on the above fitness transformation technique, similar to the method
in [21], the relative fitness improvement ηi can be calculated by

ηi =

⎧
⎪⎨

⎪⎩

δ1
f(ui)

· (f(xi) − f(ui)), feasible situation
δ2

C(ui)
· (C(xi) − C(ui)), infeasible situation

δ3
ffinal(ui)

· (ffinal(xi) − ffinal(ui)), semi-feasible situation
(13)

where i = 1, . . . , μ. δ is the objective fitness of the best-so-far solution in the
population. xi and vi are the parent and its offspring, respectively.

In [17], four different credit assignment methods are presented, and the aver-
aged normalization reward is able to provide highly-competitive results through
benchmark functions. Based on this consideration, the averaged normalization
reward is selected for the credit assignment in this work and is listed as follows:

ra(t) =
r′
a(t)

max
a=1,...,K

r′
a(t)

(14)

where r′
a(t) is calculated as

r′
a(t) =

∑ |Sa|
i=1 |Sa|
|Sa| (15)

and Sa is the set of all relative fitness improvement ηi of a strategy a (a =
1, · · · ,K) at generation t.

3.3 Strategy Pool

DE has realized using different mutation strategies to achieve different perfor-
mance for solving different problems. Instead of employing the computation-
ally enormous trial-and-error search for the most suitable mutation strategy, we
maintain a strategy candidate pool including four mutation strategies. In this
work, we choose several effective mutation strategies commonly referred to in
DE literatures and choose some of them to construct the strategy candidate
pool which are listed as follows:

(1) “DE/rand/1”:
vi = xr1 + F · (

xr2 − xr3

)
(16)

(2) “DE/current-to-best/1”:

vi = xi + F · (xbest − xi

)
+ F · (

xr2 − xr3

)
(17)

(3) “DE/rand-to-best/1”:

vi = xr1 + F · (xbest − xr1

)
+ F · (

xr2 − xr3

)
(18)
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Algorithm 1. The pseudo-code of PM-MDE
1: Set μF = 0.5; μCR = 0.5
2: Generate the initial population randomly
3: Evaluate the fitness for each individual
4: Set K = 4, pmin = 0.05, α = 0.3,and β = 0.8
5: For each strategy a, set qa(t) = 0 and pa(t) = 1/K
6: while The halting criterion is not satisfied do
7: Set SCR = ∅; SF = ∅
8: for i = 1 to NP do
9: CRi = rndni(μCR, 0.1) Fi = rndci(μF , 0.1)

10: Select the strategy SIi based on its probability
11: Select uniform randomly r1 �= r2 �= r3 �= r4 �= r5 �= i
12: jrand = rndint(1, D)
13: for j = 1 to D do
14: if rndrealj [0, 1) < CR or j == jrand then
15: if SIi == 1 then
16: ui,j is generated by strategy (16)
17: else if SIi == 2 then
18: ui,j is generated by strategy (17)
19: else if SIi == 3 then
20: ui,j is generated by strategy (18)
21: else if SIi == 4 then
22: ui,j is generated by strategy (19)
23: end if
24: else
25: ui,j = xi,j

26: end if
27: end for
28: end for
29: for i = 1 to NP do
30: Evaluate the offspring ui based on constraint-handling technique
31: if f(ui) is better than or equal to f(xi) then
32: CRi → SCR; Fi → SF

33: Replace xi with ui

34: end if
35: end for
36: Update the value of μCR and μF

37: Calculate the reward ra(t) for each strategy
38: Update the probability pa(t) for each strategy
39: end while

(4) “DE/current-to-rand/1 ”:

vi = xi + F · (xr1 − xi

)
+ F · (

xr2 − xr3

)
(19)

where xbest is the best individual in the current generation, r1, r2, r3, r4, r5 ∈
{1, . . . , NP} and r1 �= r2 �= r3 �= r4 �= r5 �= i.
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It is noteworthy that there are many other strategies could also be incor-
porated in the pool; the above strategies are just used as an example for the
evaluation of the proposed method. It must also be pointed out that the size
of the strategy pool and the selection of the strategies used in the pool is not
sure and there are no theoretical studies as of today on the choice of the opti-
mal number of available strategies and on the selection of strategies to form the
strategy pool [12]. Therefore, by combining the above-mentioned two aspects
with the DE algorithm, the PM-MDE method is developed. The pseudo-code
of PM-MDE is illustrated in Algorithm 1. During evolution, at each generation
t, there is only one strategy SIi been selected based on the choice probabil-
ity of the strategy for each target parent i. Then the offspring is generated by
employing the selected strategy. The relative fitness improvement ηi based on
constraint handling technique is calculated and stored in the set SSIi after eval-
uating the offspring. Finally, parameters value of PM-MDE algorithm such as
the reward, quality and probability of each strategy are updated. In addition,
to remedy the parameter fine-tuning, in this work, the parameter adaptation
technique proposed in [16] is used in PM-MDE.

4 Experimental Results and Analysis

In this section, we perform comprehensive experiments to evaluate the perfor-
mance of PM-MDE and compare the results of our methods with a algorithm
named CBBO-DE, which is a hybridization of BBO algorithm and DE algorithm
for OPA.

4.1 Experimental Settings

Without loss of generality, for all experiments, we use the following parameters
unless a change is mentioned:

– Population size: NP = 100;
– μCR = 0.5 and μF = 0.5 [4];
– Number of strategies: K = 4; minimal probability: pmin = 0.05; adaptation

rate: α = 0.3;
– Maximum Number of Fitness Function Evaluations (Max NFFEs): 30, 000.

Moreover, all experiments were run 30 times. Simulations have been car-
ried out for various values of parameters: fusion error threshold ε, correlation
degree ρ, and number of sensors (L), and the performances of the different algo-
rithms are shown for different combinations: ρ = {0, 0.01, 0.1, 0.5}. ρ = 0 rep-
resents the uncorrelated case. The fusion error threshold ε takes its values in
{0.1, 0.05, 0.01, 0.001}. The observation signal-to-noise ratio (SNR) r0 was set at
10 dB.
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4.2 Numerical Results

In this section, in order to compare the performance of the adaptive strategy
selection for OPA, the DE with fixed strategy and recently proposed algorithm
for OPA are considered. For fair comparison, the adaptive parameters control
keeps the same in all simulation. The statistical features (mean, and standard
deviation values) of the best feasible solutions obtained after 30 independent
runs for each case study are used to evaluate the performance of the competing
algorithms. Numerical results of competing algorithms for OPA problems in
WSNs are shown in Tables 1, 2, 3, 4 and 5 when the observations are i.i.d and

Table 1. Numerical results of DE with fixed strategy and PM-MDE to optimal power
allocation in WSNs when the observation are i.i.d. with ρ = 0, ε = 0.1 and different
number of sensors.

L
PM-MDE DE1 DE2 DE3 DE4

Mean±(Std) Mean±(Std) Mean±(Std) Mean±(Std) Mean±(Std)
10 3.17E+00 ± (3.43E-11) 3.17E+00 ± (3.38E-06) 3.17E+00 ± (8.65E-09) 3.17E+00± (8.53E-10) 3.17E+00± (1.99E-03)
20 1.93E+00 ± (3.71E-07) 1.93E+00 ± (1.10E-06) 1.93E+00 ± (8.52E-06) 1.93E+00 ± (1.69E-04) 1.97E+00 ± (1.43E-02)
50 8.67E-01 ± (4.23E-03) 8.68E-01± (1.24E-03) 8.66E-01 ± (2.45E-04) 8.75E-01 ±( 3.69E-03) 1.24E+00 ± (9.33E-02)

100 8.52E-01 ± (2.35E-02) 5.78E+01 ± (3.77E+01) 6.54E+03 ± (9.84E+02) 1.53E+03 ± (1.35E+02) 4.07E+00 ± (9.53E-01)
150 9.59E-01 ± (7.99E-02) 1.31E+00 ± (8.52E-02) 2.44E+00 ± (2.75E-01) 8.74E+03 ± (3.85E+03) 2.45E+02 ± (7.61E+01)
200 1.08E+00 ± (3.78E-01) 1.28E+01 ± (5.12E+01) 3.49E+02 ± (7.76E+01) 8.88E+04 ± (2.87E+04) 2.00E+03 ± (5.06E+02)

1, 2, 3, 4 respectively represent DE algorithm with DE/rand/1, DE/best/1, DE/current-to-best/1, DE/rand-to-best/1 strategy.

Table 2. Numerical results of PM-MDE with CBBO-DE to optimal power allocation
in WSNs when the observation are i.i.d. with ρ = 0, ε = {0.1, 0.05, 0.01, 0.001} and
different number of sensors.

ε PM-MDE CBBO-DE

Mean ± (Std) Mean ± (Std)

L = 10

0.1 3.1727E+00 ± (9.2849E-05) 3.1725E+00± (1.1803E-06)

0.05 5.9254E+00± (5.5930E-08) 5.9723E+00 ± (4.4272E-05)

0.01 1.5130E+01 ± (3.5448E-08) 1.1530E+01 ± (8.0724E-10)

0.001 4.0317E+01 ± (3.9498E-04) 4.0245E+01± (5.5876E-06)

L = 20

0.1 1.9343E+00 ± (1.3791E-03) 1.9333E+00± (1.4882E-03)

0.05 3.6141E+00± (1.7754E-03) 3.6413E+00 ± (1.0540E-03)

0.01 9.1009E+00 ± (4.0275E-03) 9.0985E+00± (6.7927E-04)

0.001 2.1601E+01 ± (4.2999E-03) 2.1598E+01± (6.4187E-04)

L = 50

0.1 1.1192E+00± (6.2244E-02) 2.7516E+00 ± (3.9133E-01)

0.05 1.9591E+00± (9.7700E-02) 4.5611E+00 ± (6.5277E-01)

0.01 4.7101E+00± (8.9643E-02) 6.2178E+00 ± (5.0805E-01)

0.001 1.0306E+01± (1.2003E-01) 1.1093E+01 ± (6.0068E-01)
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Table 3. Numerical results of PM-MDE with CBBO-DE to optimal power allocation
in WSNs when the observation are correlated with ρ = {0.01, 0.1, 0.5}, L = 10, ε =
{0.1, 0.05, 0.01, 0.001}.

ε PM-MDE CBBO-DE

Mean ± (Std) Mean ± (Std)

ρ = 0.01

0.1 3.1834E+00 ± (1.6035E-04) 3.1833E+00± (3.8557E-04)

0.05 5.9502E+00± (4.3685E-07) 5.9975E+00 ± (4.0340E-05)

0.01 1.5255E+01 ± (3.3372E-08) 1.5255E+01 ± (1.8879E-09)

0.001 4.0980E+01± (3.4452E-04) 4.1046E+01 ± (4.6323E-04)

ρ = 0.1

0.1 3.2792E+00± (9.9562E-05) 3.2834E+00 ± (1.1153E-04)

0.05 6.1755E+00± (5.6832E-09) 6.2391E+00 ± (3.8481E-05)

0.01 1.6489E+01± (4.6071E-06) 1.6562E+01 ± (3.5623E-09)

0.001 4.8644E+01± (1.1203E-10) 4.9077E+01 ± (7.8106E-04)

ρ = 0.5

0.1 3.5839E+00± (8.5642E-04) 3.8583E+00 ± (2.3158E-04)

0.05 6.9964E+00± (3.6859E-04) 8.1361E+00 ± (8.0422E-05)

0.01 2.2803E+01± (8.8792E-04) 3.4349E+01 ± (8.0846E-07)

0.001 1.0778E+02± (6.7852E+00) 7.3514E+02 ± (6.6360E-02)

correlated. In addition, the best result among competing algorithms in Tables 1,
2, 3, 4 and 5 are shown in boldface.

Firstly, we choose four strategies which are frequently used in DE literature
as the competing algorithm in Table 1. From results in the Table 1 we can see
that PM-MDE algorithm we proposed is significantly better than DE with fixed
strategies on most of the value of L (sensors) when the observations are i.i.d with
ρ = 0 and ε = 0.1. Second, in L = 50, DE algorithm with DE/best/1 obtains
best results and better results were found by PM-MDE among all competing
algorithms. Important observations about the convergence rate and stability of
different algorithms can be made from the results presented in Table 1 and these
results suggest that the overall convergence rate of PM-MDE is the best or
second best for OPA in the competing algorithms.

Table 2 shows a comparison of the performances of PM-MDE algorithm and
CBBO-DE algorithm, for the different values of ε and L, in the uncorrelated
case (ρ = 0). Firstly, various simulations of PM-MDE with ε chosen from
{0.1, 0.05, 0.01, 0.001} shown that PM-MDE algorithm emerged the best candi-
date result for L = 10 and L = 50 sensors in terms of the best mean results. For
the L = 20 sensors case, the CBBO-DE produces the best mean results. Sec-
ondly, simulation results also indicate that PM-MDE does function efficiently
within the large number of sensors.
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Table 4. Numerical results of PM-MDE with CBBO-DE to optimal power allocation
in WSNs when the observation are correlated with ρ = {0.01, 0.1, 0.5}, L = 20, ε =
{0.1, 0.05, 0.01, 0.001}.

ε PM-MDE CBBO-DE

Mean ± (Std) Mean ± (Std)

ρ = 0.01

0.1 1.9394E+00± (1.7861E-03) 1.9396E+00 ± (2.1426E-03)

0.05 3.6292E+00± (2.6169E-03) 3.6559E+00 ± (9.7422E-04)

0.01 9.1634E+01 ± (3.7387E-03) 9.1607E+00± (8.9830E-04)

0.001 2.1842E+01 ± (3.1386E-03) 2.1842E+01 ± (3.9883E-03)

ρ = 0.1

0.1 1.9908E+00 ± (3.5774E-03) 1.9905E+00± (1.3193E-03)

0.05 3.7594E+00± (3.6727E-03) 3.7958E+00 ± (1.8885E-03)

0.01 9.7554E+01± (5.4935E-03) 9.7894E+01 ± (9.1896E-04)

0.001 2.4182E+01± (3.4839E-03) 2.4324E+01 ± (1.9630E-03)

ρ = 0.5

0.1 2.1879E+00± (7.4038E-03) 2.3026E+00 ± (2.1919E-03)

0.05 4.3232E+00± (2.1397E-02) 4.8357E+00 ± (2.7079E-03)

0.01 1.2547E+01± (8.5490E-02) 1.5865E+01 ± (3.2673E-03)

0.001 3.6247E+01± (9.1529E-02) 6.0685E+01 ± (6.5080E-02)

Tables 3, 4 and 5 show the results of the comparison with CBBO-DE when
the observations are correlated in the case of L = 10, 20, 50 sensors for dif-
ferent values of the fusion error probability ε and the degree of correlation
ρ, respectively. In the experiments reported above, the results are shown for
ρ = {0, 0.01, 0.1, 0.5} and ε = {0.1, 0.05, 0.01, 0.001}. It can be seen that in each
case, PM-MDE respectively outperforms other competing algorithm in 10, 8,
and 12. From Table 5, specifically, we can see that PM-MDE has emerged as
the best performer since it obtained the best mean results in the all cases. It is
similar to the observation from above experiments, where PM-MDE algorithm
does show obvious performance improvement for OPA, especially in the large
number of sensors PM-MDE algorithm obtains better performance.

Overall, according to the results shown in Tables 1, 2, 3, 4 and 5 and the above
analysis, we can conclude that when the observations are i.i.d and correlated
(Tables 3, 4 and 5), the performance improvement for PM-MDE, compared to the
other competing algorithm, was better for L = 10, 20, and 50 sensors. Meanwhile,
PM-MDE obtains better results for the larger sensors.
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Table 5. Numerical results of PM-MDE with CBBO-DE to optimal power allocation
in WSNs when the observation are correlated with ρ = {0.01, 0.1, 0.5}, L = 50 senors,
ε = {0.1, 0.05, 0.01, 0.001} and different number of sensors.

ε PM-MDE CBBO-DE

Mean ± (Std) Mean ± (Std)

ρ = 0.01

0.1 1.2346E+00± (1.1103E-01) 2.7742E+00 ± (5.6072E-01)

0.05 2.0543E+00± (8.4439E-02) 4.1691E+00 ± (3.8860E-01)

0.01 4.8249E+00 ± (1.3068E-01) 6.0532E+00 ± 7.9833E-01

0.001 1.0521E+01± (7.3975E-02) 1.0746E+01 ± (3.3081E-01)

ρ = 0.1

0.1 1.2406E+00± (9.4525E-02) 3.0813E+00 ± (4.3000E-01)

0.05 2.1356E+00± (8.8744E-02) 4.3770E+00 ± (6.2806E-01)

0.01 5.1088E+00 ± (8.1419E-02) 6.6532E+00 ± (1.0134E+00)

0.001 1.1284E+01± (1.2038E-01) 1.1669E+01 ± (5.8073E-01)

ρ = 0.5

0.1 1.3432E+00± (8.8691E-02) 2.9672E+00 ± (4.6985E-01)

0.05 2.4334E+00± (5.5883E-02) 4.6214E+00 ± (5.7670E-01)

0.01 6.2096E+00 ± (1.1285E-01) 7.4210E+00 ± (3.2418E-01)

0.001 1.4824E+01± (1.5434E-01) 1.8449E+01 ± (3.6772E-02)

5 Conclusions

Optimal power allocation (OPA) is considered to be one of the key issues in
designing a wireless sensor network (WSN). In this paper, multi-operator dif-
ferential evolution is proposed for the optimal power allocation in WSNs. Com-
bining with the constraint-handling technique, DE can be used to deal with
OPA. However, the DE performance mainly depends on mutation and crossover
operators. This new algorithm adaptively chooses the suitable strategy for a spe-
cific problem, meanwhile the probability matching technique and credit assign-
ment method are integrated into DE algorithm. In addition, PM-MDE is com-
pared with DE algorithm using fixed strategy and CBBO-DE algorithm proposed
in [11] for OPA. The numerical results indicate that PM-MDE has outperformed
the other competing algorithms for several types of simulation case studies,
including both independent local observation cases and correlated observation
cases. It has also been observed that, PM-MDE algorithm function efficiently
within the large number of sensors.
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Abstract. The multi-armed bandit (MAB) problem is an important
model for studying the exploration-exploitation tradeoff in sequential
decision making. In this problem, a gambler has to repeatedly choose
between a number of slot machine arms to maximize the total payout,
where the total number of plays is fixed. Although many methods have
been proposed to solve the MAB problem, most have been designed for
problems with a small number of arms. To ensure convergence to the
optimal arm, many of these methods, including state-of-the-art methods
such as UCB [2], require sweeping over the entire set of arms. As a
result, such methods perform poorly in problems with a large number
of arms. This paper proposes a new method for solving such large-scale
MAB problems. The method, called Cross-Entropy-based Multi Armed
Bandit (CEMAB), uses the Cross-Entropy method as a noisy optimizer
to find the optimal arm with as little cost as possible. Experimental
results indicate that CEMAB outperforms state-of-the-art methods for
solving MABs with a large number of arms.

Keywords: Cross-Entropy method · Sequential decision making ·
Multi-armed bandit

1 Introduction

A fundamental question in sequential decision making is how to select the best
action sequence even if the consequence of each action may not be exactly known.
In its simplest form, this question can be studied as a Multi-Armed Bandit
(MAB) [9] problem. Under this framework, selecting an action is akin to select-
ing which slot machine to play from a number of such machines. The question
becomes how to balance between playing machines that have been giving good
rewards in the past (often called exploitation) and machines that have not been
tried before (often called exploration), such that the total reward received is as
close as possible to the total reward that would have been received if the player
had always played the highest-paying machine.
c© Springer International Publishing AG 2017
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Many methods, such as ε-greedy [13], softmax [11], and UCB [2], have been
proposed to solve the above problem of balancing exploration and exploitation.
In fact, many of such methods have become the foundation of today’s Reinforce-
ment Learning [11]. However, except for a few [4,6], most methods [5] try and
estimate the reward of each and every action, to ensure that the best action is
not missed. Therefore, their effectiveness is limited to problems with a relatively
small number of arms (e.g., fewer than 20). Unfortunately, this assumption is
quickly becoming unrealistic in a growing number of applications. For instance,
one can now choose from hundreds of drug cocktails – combinations of various
types of drugs at various dosages – in personalized medicine, choose one of hun-
dreds of different combinations of investment portfolios, and select a subset of
tens of millions of possible combinations of data and sensors that can be used to
analyze consumer preferences. As a result, most of today’s methods for solving
MABs [5] are no longer effective for solving the more recent large-scale problems.

To alleviate the difficulty of solving MABs with a large number of dis-
crete actions, we propose a novel method called Cross-Entropy-based Multi-
Armed Bandit (CEMAB). Key to CEMAB is the use of the Cross-Entropy (CE)
method [10] as a stochastic optimization method to identify the best action.
By doing so, CEMAB can significantly reduce the number of actions to test
before identifying the best action, assuming that the reward for pulling an arm
is retrieved from an unknown fixed distribution. Preliminary results on standard
test cases for MAB indicate that the number of arms to pull before CEMAB
identifies the (close to) optimal arms is not directly dependent on the number
of arms in the problem, which indicates that CEMAB is able to scale up well.
This observation is supported by our simulation results, where tests on vari-
ous MAB problems with up to 10,000 arms indicate that CEMAB outperforms
state-of-the-art MAB solvers on large problems.

2 Background and Related Work

2.1 Multi-Armed Bandit Problem

The MAB problem was first described in [9]. In this problem, a gambler has to
decide which of several slot machines (often called arms) to play, where each
machine gives a different reward according to some unknown distribution. The
goal is to maximize the total reward of all the plays. Ideally, the player should
only pull the machine that yields, on average, the highest reward.

More formally, let the set of arms be denoted by K = {1, . . . , |K|}. Each arm
k ∈ K corresponds to an unknown reward distribution Dk with support [0, 1]
and expectation μk. In this paper, we assume that the reward distributions are
fixed (that is, they do not change over time) and independent of each other. At
each time step t, an arm kt ∈ K is pulled and a reward rkt

, drawn from Dkt
,

is received. Many objective functions have been proposed for MAB [5]. In this
paper, we use the simple objective [9] to maximize the expected total reward
received within a fixed number T of plays, i.e.,
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max
(k1,k2,...,kT )∈KT

E

[
T∑

t=1

rkt

]

= max
(k1,k2,...,kT )∈KT

T∑

t=1

μkt
. (1)

An equivalent goal is to minimize the total regret [2], which is:

min
(k1,k2,...,kT )∈KT

(

T max
k∈K

μk −
T∑

t=1

μkt

)

. (2)

Various methods for solving MAB have been proposed. The rest of this sub-
section provides a brief overview of the most commonly-used methods, which we
will use for comparison later on.

ε-greedy [13]. The ε-greedy method is the simplest and most widespread way
to solve the MAB problem. At each time step, the algorithm has a probability
ε to select an arm uniformly at random (exploration) and a probability 1 − ε
to choose the arm with the highest estimated reward so far (exploitation). In
general, this strategy does not converge to the optimal arm.

Softmax [11]. Softmax picks each arm with a probability according to its empir-
ical performance. The probability of each arm in Softmax can be based on
the Boltzmann distribution pk = eμ̂k/T /

∑|K|
k=1 eμ̂k/T , where μ̂k is an esti-

mate of the expected reward μk and T is the temperature. If T is very small,
the arm with the highest estimated reward will have a large probability of
being chosen (exploitation). In contrast, when T is very large, all {pk} are
approximately equal, so that in this case Softmax is purely exploring.

Exp3 [3]. Exp3 (exponential weight algorithm for exploration and exploitation)
is a famous variant of Softmax. The probability of choosing arm k is defined
by pk = (1−γ)wk/

∑|K|
j=1 wj +γ/|K|. The weights {wj} are updated after each

step. In particular, after arm k is chosen (yielding reward rk), the weight wk

is updated as wk ← wk expγrk/pk|K|. It can be shown that the “weak regret”,
defined as

(
T maxk∈K μk − ∑T

t=1 rt

)
, is bounded under Exp3.

UCB [2]. The UCB is a family of algorithms for which optimal logarithmic
regret can be achieved uniformly over time, assuming that all reward dis-
tributions have bounded support [2]. The simplest member of this family
is UCB1. It records the number of times that each arm has been played,
visits(k), and after each choice k updates its current estimate of μk via
μ̂k ← μ̂k + (rk − μ̂k)/visits(k). At the beginning, each arm is played
once (full sweep). Subsequently, at each time t arm k is chosen that satis-
fies k = argmaxk=1,...,|K|μ̂k +

√
C log t/visits(k).

Thompson Sampling (TS) [1]. Thompson sampling is a Bayesian sampling
algorithm based on [12]. For each arm k, the knowledge of the expected
reward μk is described by a Beta(αk, βk) distribution. At time t, random
variables θk, k = 1, . . . , |K| are generated from each of these distributions.
The index k∗ corresponding to the largest of the {θk} is the arm to play. If
r is the corresponding reward, then a Bernoulli trial B with probability r is
generated. If B = 1, then αk∗ is increased by 1, otherwise βk∗ is increased
by 1.
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All of the above methods have been designed for various types of reward
function, e.g., stochastic and deterministic, and have various ways to commit to
arms that have performed well so far. However, they have not been designed for
problems with a large number of arms. In fact, the state-of-the art method, UCB,
explicitly requires a sweep of the entire set of arms, which will be problematic
when the MAB problem has hundreds or thousands of arms. This problem is
exactly the focus of our paper.

2.2 Cross-Entropy (CE) Method for Noisy Optimization

The CE method [10] is a randomized optimization method that has proved to be
very useful for solving noisy optimization problems; i.e., optimization problems
in which the objective function is contaminated by noise. As the MAB problem
can be viewed as a type of noisy optimization problem, the CE can be viable.

To introduce the CE idea, suppose the goal is to find the optimum of a
function S(x) on a set X , where S(x) is not known, but estimates Ŝ(x) can be
obtained, e.g., by simulation. The CE method consists of the following steps:

1. Generate independent samples X1, . . . , XN from some probability distribu-
tion on X , parameterized by a vector v. For every x ∈ X , the corresponding
family of distributions should contain the “degenerate distribution” at x,
which assigns all its probability mass to the point x.

2. Obtain estimates of the corresponding function values Ŝ(X1), . . . , Ŝ(XN ), and
identify the worst of the best Ne = ρN samples — the so-called elite samples.
Typically, ρ ∈ (0.01, 0.1).

3. Update the parameter v based on the elite samples. This involves the mini-
mization of the Kullback-Leibler divergence (cross-entropy distance). In prac-
tice this often means that the parameters are updated according to their
maximum likelihood estimates, using only the elite samples.

The method thus produces a sequence of parameters v1, v2, . . . that converges
to (approximately) the parameter value that corresponds to the degenerate dis-
tribution at the maximizer x∗.

3 Cross-Entropy-based Multi-Armed Bandit (CEMAB)

3.1 The Method

The key idea of CEMAB is to transform the MAB problem into a simpler sto-
chastic optimization problem, and then solve this simpler problem using CE. To
this end, notice that, under the assumption that the reward distributions of the
arms do not change over time, the maximum reward of MAB (i.e., (1)) can be
simplified as follows:

max
(k1,k2,...,kT )∈KT

T∑

t=1

μkt
= T · max

k∈K
μk. (3)
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Solving the right hand side of (3) is in general simpler than solving the original
MAB problem (left hand side of (3)) because, the solutions of the simplified
problem lies in a space of size |K|, while the solution of the original problem
lies in a space of size |K|T . This difference in computational complexity becomes
more pronounced as the number of arms increases. Therefore, to be effective in
solving MABs with a large number of arms, CEMAB finds the best sequence of
arms by searching the optimal arm to play.

Despite this simplification, the stochastic nature of MAB remains, as the
expected reward μk of any arm k ∈ K is not known a priori and can only be
estimated by playing the arm. Therefore, to keep the total reward high, CEMAB
strives to avoid using arms with low rewards as much as possible when searching
for the best arm. To this end, CEMAB adopts CE for noisy optimization and
modifies it to suit the nature of the MAB problem. It uses the quantile statistics
in CE and carefully adapts it to degrade the probability of selecting the bad arms
gracefully, such that it can find the best arm quickly, while avoiding pulling arms
with low reward as much as possible but without starving the arms that might be
optimal. The CEMAB algorithm is presented in Algorithm1, which is followed
by a discussion of the algorithm.

Algorithm 1. CEMAB Method
Input: The number of arms |K|, a (black box) function reward() to sample

random rewards. CE parameters: sample size N , elite sample size
Ne = ρN and learning rate α ∈ (0, 1). Maximum number of plays T (for
simplicity, we assume T = MN).

Output: Total reward G.
1 Set µ ← 01×|K|, visits ← 01×|K| and p ← (1/|K|)1×|K|.
2 for τ ← 1 to M do
3 A ← [ ]. // empty matrix

4 for i ← 1 to N do
5 Draw an arm k from the discrete distribution parameterized by p.
6 r ← reward(k). // Draw an immediate reward

7 G ← G + r.
8 visits(k) ← visits(k) + 1.
9 µ(k) ← µ(k) + (r − µ(k))/visits(k).

10 A ← [X; [k,µ(k)]]. // Append row [k,µ(k)] to A

11 p̃ ← update(|K|, Ne, A).
12 Using the learning rate α, update p as

p ← (1 − α)p + α p̃. (4)

13 return G

To find the optimal arm k∗ (i.e., the arm that solves the right-hand-side
of (3)), CE starts by initializing the probability p of pulling a particular arm
uniformly (Line 1). It iteratively chooses an arm (say k ∈ K) to play, based on the
probability p, receives a reward r, which is drawn randomly from the unknown
distribution Dk, and updates the estimated expected reward μk (Line 9). This



358 E. Wang et al.

Algorithm 2. update(|K|, Ne, A) for CEMAB-truncated
1 for k ← 1 to |K| do
2 Rearrange A by sorting its rows according to the second column, from

largest to smallest.

3 p̃(k) = 1
Ne

∑Ne
j=1 I{A(j,1)=k}

4 return p̃

Algorithm 3. update(|K|,−, A) for CEMAB-proportional
1 for k ← 1 to |K| do
2 For each arm k sampled in A, get the latest estimate µ(k).

3 p̃(k) = pkµ(k)
∑K

j=1 pjµ(j)
.

4 return p̃

sampling and estimation process repeats until one is confident that updating
the selection probability p will benefit the optimization procedure. Once the
probability is updated, the iterative sampling and estimation procedure repeats
using the new selection probability.

Key to the performance of CE is how it updates its selection probability
(Lines 11–12). A straightforward application of CE for noisy optimization would
estimate the expected reward of all of the arms, and only after all estimates
are improved, the probability p is updated. However, in the MAB problem, an
estimate of the expected reward of any arm can only be improved by playing an
arm, and each play incurs a reward. Therefore, CEMAB updates the probability
p in an asynchronous manner: It clusters a sequence of N samples of the arm
into a single batch and updates the probability p after each batch ends. Note
that at the end of each batch the estimated expected reward of some of the arms
may not have improved at all. Therefore, a smoothing mechanism (Line 12) is
needed, to avoid being overcommitted to the new estimate of the different arms
and also to guarantee that each arm has a non-zero probability of being visited.

Similar to most CE-based algorithms, CEMAB updates the probability p
on the basis of the estimate Ŝ of the samples. The question is how the prob-
ability p should be updated based on the set of samples (Line 11). To this
end, we propose two strategies: CEMAB-truncated and CEMAB-proportional.
In CEMAB-truncated, we use the traditional CE updating formula, ignoring any
arm that does not make it to the elite sample set. Specifically, the probability
update rule for CEMAB-truncated is in Algorithm2. In CEMAB-proportional,
we assign the probability based on the estimated values Ŝ of each arm after the
batch ends, and never set the probability of selecting an arm to be zero. The
description of this update strategy is given in Algorithm3.
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3.2 Time Complexity and Convergence Properties

Similar to many state-of-the-art methods for solving MABs, such as Exp3 [3] and
UCB [2], the most time-consuming part of CEMAB is its update step, i.e., Line
11 of Algorithm 1. For CEMAB-truncated, each update will take O(N log(N) +
max(|K|, Ne)), where the first component is due to sorting the samples within
a batch (Line 2 of Algorithm2). For CEMAB-proportional, each update will
take O(|K|). Although Thompson sampling, Exp3 and UCB (current state-of-
the-art methods) require O(|K|) for each update too, the number of updates
for CEMAB is much less than for these two methods. Exp3 and UCB update
their probability for selecting an arm at each step, but CEMAB updates its
probability for selecting the arms only once per batch, i.e., M = T/N times for
a total of T plays.

CEMAB-proportional is guaranteed to converge to the optimal expected
reward, assuming that the cumulative distribution function of the reward of
the optimal arm is strictly increasing. The proof is a straightforward applica-
tion of the proof of the CE-proportional algorithm for noisy optimization [7].
We do not have a theoretical proof that CEMAB-truncated will converge to
the optimal expected reward. However, under the aforementioned assumption
on the cumulative distribution function, CEMAB-truncated converges to the
quantile of the total reward function. This proof is a straightforward applica-
tion of the proof of the commonly used CE algorithm for noisy optimization in
[8]. CEMAB-truncated is more aggressive in its distribution update compared
to CEMAB-proportional, and therefore we can expect that CEMAB-truncated
tends to converge to a particular arm faster than CEMAB-proportional, which
is good if the quantile function of the total reward is equivalent to the expected
total reward.

4 Experimental Results

The goal of our experiments are two-fold: First is to test the proposed methods
against existing MAB methods on well-known benchmarks and understand the
properties of the proposed methods better (Sect. 4.1), so as to also help us in
setting the parameters for tests on large MAB problems. The second and ulti-
mate goal is to test the performance of our proposed methods on large MAB
problems (Sect. 4.2).

We compare the empirical performance of ε-greedy (with 0 initialization),
ε-greedy (play once), Softmax, Exp3, and UCB1, with our proposed CE-based
methods on discrete (Bernoulli) and continuous (truncated Gaussian) reward
distributions. Note that we use two types of ε-greedy: One initializes the estimate
of the expected reward to zero (denoted as E1), while the other initializes the
estimate of the expected reward based on the reward received when playing the
arm once (denoted as E2). The reason for these two versions is that we found
significant performance differences between ε-greedy with these two different
initializations, as will be seen later on.
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4.1 Small-Scale MABs

Experimental Setup

We test our methods and comparators on 10 small-scale MAB problems, with
up to 10 arms. Table 1 details the reward distributions of these problems.

The first 6 problems (i.e., B1–B6) are MABs with discrete reward distrib-
utions, which is the benchmark used in [2]. The reward of each arm in each
of these problems is sampled from a Bernoulli distribution, where the success
probability corresponds to the probability of generating a reward of 1 and the
failure probability corresponds to the probability of generating a reward of 0.
For example, B1 defines an MAB with 2 arms, where the reward of arm 1 follows
a Bernoulli distribution with success probability 0.9, while the reward of arm
2 follows a Bernoulli distribution with success probability 0.6. B1–B3 specify
MABs with 2 arms and B4–B6 define MABs with 10 arms, where the reward
of each arm is Bernoulli distributed. Note that B3 and B6 are relatively “diffi-
cult”, because the reward of the optimal arm has a higher variance and the gaps
μ∗ − μk, k = 1, . . . , 10 are small.

The last 4 problems (i.e., G1–G4) are MABs with continuous reward distrib-
utions, in particular truncated normal distributions with support [0, 1]. Table 1
specifies the mean and standard deviation of the Gaussian distribution of each
arm in each MAB problem. In this set of problems, G2 and G4 are quite challeng-
ing. The standard deviations of the reward distributions in these two problems

Table 1. Bx refers to Bernoulli distributions and Gx to truncated Gaussian distribu-
tions.

1 2 3 4 5 6 7 8 9 10

Mean of B1 0.9 0.6

Mean of B2 0.9 0.8

Mean of B3 0.55 0.45

Mean of B4 0.9 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Mean of B5 0.9 0.8 0.8 0.8 0.7 0.7 0.7 0.6 0.6 0.6

Mean of B6 0.55 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

Mean of G1 0.3 0.6

Std of G1 0.2 0.2

Mean of G2 0.3 0.6

Std of G2 0.6 0.2

Mean of G3 0.5 0.2 0.4 0.3 0.8 0.1 0.7 0.8 0.3 0.9

Std of G3 0.3 0.2 0.3 0.1 0.1 0.2 0.5 0.4 0.2 0.1

Mean of G4 0.5 0.2 0.4 0.3 0.8 0.1 0.7 0.8 0.3 0.9

Std of G4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
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are large and the support of these distributions also overlap significantly, which
makes it difficult to distinguish between the best arm and bad arms.

To set the parameters for testing, we first run a set of preliminary tests for
each algorithm on each problem in Table 1 with a wide range of parameters.
The parameters are summarized in Table 2. For each algorithm, the best para-
meters are those that maximize the most problems across the 10 MAB problems
described above.

Table 2. Parameter range

Method Parameters tested Best parameter

CEMAB-truncated N ∈ [50, 100], ρ ∈ [0.1, 0.5], α ∈ [0.6, 1] N = 50, ρ = 0.5, α = 0.8

CEMAB-proportional N ∈ [50, 100], α ∈ [0.7, 1] N = 50, α = 0.7

ε-greedy (E1 and E2) ε ∈ [0.01, 0.4] ε = 0.1 (E1), ε = 0.05 (E2)

Softmax t ∈ [0.01, 0.5] t = 0.1

Exp3 γ ∈ [0.1, 0.7] γ = 0.2

UCB C ∈ [0.05, 3] C = 0.1

Results

Figure 1 presents the performance of CEMAB and the comparator methods in
B5, B6, G3, and G4, which are the more difficult problems among the 10 small
problems defined in Table 1. The trend for the performance of the other MAB
problems is similar, and hence we do not present them due to space constraints.

In this set of problems, TS achieves the lowest total regret in B5 and B6,
followed by UCB and both CEMABs. In G3 and G4, UCB takes first place,
while one of the CEMABs is second. The reason is that in B6 the best arm (i.e.,
arm 1) does not show significant performance difference at the beginning, and it
is quite easy for CE-truncated to underestimate this arm and set a probability
zero during updating step. Once this happens, CEMAB-truncated fails to iden-
tify the best arm, and as time progresses the difference in the total regret will
become more apparent. However, by avoiding this aggressive update, CEMAB-
proportional perform well and is similar to UCB in G4. It is important to note
that the best empirical parameter here is C = 0.1, rather than the default value
C = 2.

Softmax and Exp3, have the worst performance. In Softmax, the use of the
Boltzmann distribution is likely to exaggerate an arm with a “good” estimate.
For Exp3, it is important to note that this method is designed for non-stochastic
MAB problems. A particular arm is highly influenced by only the current reward
rather than the current estimate of the reward for each arm, which is a downside
for stochastic problems, which we address in this paper.

It is also interesting to note that the performance of the simplest algorithm,
ε-greedy, differs significantly when applying different initializations. Variant E1
initializes the reward estimate of each arm with 0, while variant E2 initializes
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Fig. 1. The average total regret on 4 problem sets, B5, B6, G3 and G4. All algorithms
use the best parameters and all experiments are repeated 50 times.

the reward estimate based on the reward received when playing the arm once.
The performance of E2 is better in this set of small-scale problems. However, in
the next section we will see that E1 is better for large-scale problems.

4.2 Large-Scale MABs

To assess CEMAB’s performance for large problems, we test the algorithms on
problems with an increasing number of arms. For each number of arms, we test
the algorithms on four different MAB problems, as shown in Table 3, which
consists of two LB (Large Bernoulli) that represent MABs whose reward distri-
butions are Bernoulli distributed and two LG (Large Gaussian) that represent
MABs whose reward distributions are truncated Gaussian with support [0, 1].

Table 3. Large-scale MAB settings

LB1 μk ∼ U(0, 1)

LB2 10% of μk ∼ U(0.75, 1) and the rest of μk ∼ U(0, 0.25)

LG1 μk ∼ U(0, 1), σk ∼ U(0, 0.25)

LG2 10% of μk ∼ U(0.75, 1) and the rest of μk ∼ U(0, 0.25), σk ∼ U(0, 0.25)
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Table 4. The average total reward for large MABs. All algorithms use the best para-
meters (as per Table 2) and all experiments are repeated 200 times. The best method
is highlighted in boldface. If the difference between the best and second best method
is not statistically significant (meaning that one method lies in the 95% confidence
interval of the other), we highlight both of them.

|K| Method LB1 LB2

The number of plays T The number of plays T

1,000 5,000 10,000 20,000 1,000 5,000 10,000 20,000

100 CE1 893 4749 9569 19207 718 4106 8342 16817

CE2 806 4612 9463 19184 741 4192 8571 17341

E1 864 4572 9230 18547 820 4139 8288 16597

E2 868 4686 9460 19010 767 4167 8437 17022

UCB 833 4674 9538 19225 787 4311 8788 17796

softmax 859 4407 8866 17798 801 4127 8305 16686

Exp3 580 3564 7702 16285 241 2610 6202 13550

TS 856 4695 9557 19323 678 4168 8634 17615

1,000 CE1 896 4788 9651 19380 784 4493 9130 18402

CE2 810 4655 9559 19409 792 4538 9297 18850

E1 868 4510 9131 18496 771 4352 8885 18019

E2 500 4129 8802 18532 197 3852 8635 18217

UCB 499 3812 8358 17906 197 3730 8568 18361

softmax 875 4470 8989 18043 853 4445 8976 18074

Exp3 507 2666 5643 12378 202 1122 2601 7114

TS 580 4027 8957 18886 305 3949 8925 18897

10,000 CE1 895 4784 9644 19367 795 4554 9251 18649

CE2 809 4655 9554 19393 800 4574 9358 18969

E1 863 4479 9025 18158 761 4322 8812 17818

E2 515 2492 5013 14126 181 1004 2007 11022

UCB 515 2486 5007 12135 182 1004 2007 9880

softmax 832 4341 8786 17734 776 4264 8725 17734

Exp3 500 2510 5040 10154 201 1006 2026 4109

TS 511 2707 5811 13091 207 1191 3081 10433

|K| Method LG1 LG2

The number of plays T The number of plays T

1,000 5,000 10,000 20,000 1,000 5,000 10,000 20,000

100 CE1 885 4624 9297 18644 772 4378 8884 17897

CE2 800 4484 9150 18512 767 4435 9068 18341

E1 868 4463 8973 17995 783 4411 8977 18109

E2 877 4562 9177 18415 879 4685 9443 18956

UCB 804 4450 9110 18506 863 4777 9705 19578

softmax 833 4242 8513 17067 813 4282 8682 17551

Exp3 559 3449 7457 15737 281 2752 6678 14878

TS 785 4406 9071 18477 851 4779 9706 19580

1,000 CE1 876 4599 9254 18564 778 4405 8937 18004

CE2 782 4441 9109 18499 763 4381 8990 18236

E1 865 4532 9180 18542 768 4340 8895 18043

E2 499 4358 9183 18835 238 4051 8818 18351

UCB 500 3560 7750 16852 238 3440 8071 17711

softmax 811 4125 8281 16609 816 4235 8535 17165

Exp3 504 2624 5493 11865 242 1287 2831 7095

TS 563 3713 8186 17729 312 3670 8378 18004

10,000 CE1 877 4612 9281 18618 779 4394 8913 17951

CE2 788 4470 9153 18572 770 4369 8934 18113

E1 876 4568 9247 18656 774 4313 8815 17894

E2 488 2475 4997 14736 241 1207 2394 11942

UCB 488 2477 4997 12390 240 1207 2393 9131

softmax 794 4102 8275 16648 740 4030 8227 16690

Exp3 501 2506 5027 10108 239 1200 2412 4865

TS 507 2661 5637 12469 244 1339 3164 9783



364 E. Wang et al.

For LB1, the success probability (i.e., the probability of sampling a reward
of 1) of each reward distribution is uniformly sampled from (0, 1). For LB2,
10% of the arms have rewards drawn from a Bernoulli distribution whose suc-
cess probability is sampled from (0.75, 1) and 90% have rewards drawn from a
Bernoulli distribution whose success probability is sampled from (0, 0.25). For
LG1, the means are uniformly sampled from interval (0, 1), while for LG2, 10% of
the means are sampled from (0.75, 1) uniformly at random and 90% are sampled
from (0, 0.25) uniformly at random. The standard deviations for both LG1 and
LG2 are sampled uniformly at random from (0, 0.25) for each arm. All of these
parameters for the reward distributions are sampled independently for each arm.
It is not hard to see that LB2 and LG2 is harder than LB1 and LG1, since it
requires a strategy that has a good capability of exploring, rather than keep
playing the best arm so far.

For these tests, each algorithm uses the best parameters as found in Table 2.
The results of these tests for |K| = 100, 1000, and 10000 are summarized in
Table 4. The results indicate that, as the number of arms increases, CEMAB
outperforms all other methods, including UCB. The reason for the significantly
decreasing performance of UCB is that it must play each arm at least once to
estimate the performance of each arm, so that it can converge to the optimal
solution. However, exactly because of this, its performance becomes impractical
as the number of arms increases. On the other hand, CEMAB incrementally
improves its estimate on the performance of the arms based on sampling, without
ever requiring to play the entire set of arms at first. This causes the convergence
property of CEMAB to be weaker than UCB, but its empirical performance to
be significantly better in large problems.

It is also interesting to note that the simple ε-greedy with zero initial estimate
(E1) is a relatively strong competitor. In fact, for problems with a large number
of arms, this simple methods is a stronger competitor than the state-of-the-art
UCB. Note that for the Gaussian reward case, the gap between rewards is much
less than for the Bernoulli case. As a result, even if an arm that is played is not
very good, the reward obtained by playing a better arm will not be much higher.
This could be a reason why the performance of E1 is comparable to CEMAB’s
in the Gaussian, while it loses in the Bernoulli case.

5 Conclusion

We proposed a new approach, CEMAB, for solving MABs with a large number of
discrete arms. It uses the Cross-Entropy method as a noisy optimization method
to search for the best arm with as little regret as possible. We presented and
evaluated the CEMAB algorithm with two variants for the updating procedure.
Using results on CE for noisy optimization, one of the variants is guaranteed to
converge to the optimal arm, under certain conditions on the reward function.
Empirical results on a number of MAB problems with an increasing number of
arms indicate that CEMAB outperforms state-of-the-art methods.
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Abstract. Web services are independently programmable application
components which scatter over the Internet. Network latency is one of
the major concerns of web service application. Thus, physical locations of
web services and users should be taken into account for web service com-
position. In this paper, we propose a new solution based on the modified
binary PSO-based (MBPSO) approach which employs an adaptive iner-
tia technique to allocating web service locations. Although several heuris-
tic approaches have been proposed for web service location-allocation,
to our best knowledge, this is the first time applying PSO to solve the
problem. A simulated experiment is done using the WS-DREAM dataset
with five different complexities. To compare with genetic algorithm and
original binary PSO approaches, the proposed MBPSO approach has
advantages in most situations.

1 Introduction

The advent of Service Oriented Architecture (SOA) has significantly reformed
the software industry. From 2006, many industry leaders, such as IBM, eBay, and
HP, adopt SOA and “They are all reported seeing benefits from it.” [20]. The
reason for SOA becoming increasingly popular is that SOA meets two significant
industrial requirements: scalability and reusability.

These two requirements can not be achieved without the help of web ser-
vices. A web service, also called an atomic web service, is a self-describing,
self-contained software which can be published on the Internet and invoked
by other web services [7]. This characteristic allows integration among inter-
organizational and heterogeneous services on the Web at runtime. Because each
service runs separately, computation and storage resource can be dynamically
added to it. Hence, there is no resource bottleneck that limits the performance;
The scalability is achieved. In addition, an atomic service can be composited in
a variety of service compositions. The great reusability and scalability are the
most important features and advantages of SOA [23].

Currently, most enterprise level of SOA applications is SOAP-based [4]. The
SOAP-based web service technology has been developed since 1999; its devel-
opment environment and tools are well established. However, a fundamental
problem, which limits the performance of the SOAP-based application, is that
they communicate with HTTP verb “post”, which does not have an idempotent
semantic [8]. Therefore, SOAP-based applications do not support web cache.
c© Springer International Publishing AG 2017
M. Wagner et al. (Eds.): ACALCI 2017, LNAI 10142, pp. 366–377, 2017.
DOI: 10.1007/978-3-319-51691-2 31
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Hence, without the support of multiple levels of Web caches, network latency
has become a neglected issue in a SOA application design. One intuitive solution
is to deploy web services to the locations that close to user concentrated area so
that the network latency is minimized. Currently, many researchers are aware
of the location-allocation problem [18,25] and included location-awareness into
their research. Most of these research deal with web service composition develop-
ers’ perspective on the selection of web services with location-awareness. While
our research is intended to look for a near-optimal web service allocation plan
for web service providers so that their profit can be maximized.

Some conventional optimization techniques are proposed in [1,25] to address
the location-allocation problem. Integer programming and greedy algorithm are
applied in their approaches. Due to the nature of integer programming, it is
extremely slow when applying on a large amount of data. In [12], we proposed a
formulation and a single-objective Memory Filtering Genetic Algorithm (MFGA)
to solve the problem and the experiment shows that our approach performs well.
However, as the web service location-allocation is a multi-objective problem in
nature. A multi-objective optimization approach is more appropriate to address
the problem.

In this paper, we propose a multi-objective approach for web service location-
allocation problem with an aggregation method. Two decisive Quality of Service
(QoS) aspects: cost and response time, are established as optimization objectives.
In addition, another powerful heuristic algorithm, Particle Swarm Optimization
(PSO) is used to solve the problem.

PSO, introduced by Kennedy and Eberhart in 1995 [14], is one signifi-
cant branch of swarm intelligence paradigms. In recent decades, a considerable
amount of research applied PSO in solving real-world optimization problems
[27]. The idea of PSO originates from the swarm behavior of birds flocking and
fish schooling. In PSO, a collective intelligence is used to guide individuals to
search for global optimal solutions [5].

There are continuous, discrete [22], and binary [16] variants of PSO. The
nature of web service location-allocation problem is binary (explained in
Sect. 3.1). Therefore, in this paper, we propose a modified binary PSO-based
(MBPSO) approach which applied dynamic inertia weight for solving the web
service location-allocation. More precisely, three main objectives shown in below
will be investigated.

– To propose a multi-objective formulation for service location-allocation
problem.

– To propose a MBPSO approach can be used to solve the service location-
allocation problem.

– To evaluate the proposed MBPSO approach in terms of its effectiveness and
efficiency in solving the service location-allocation problem, comparing with
other existing approaches.

The remainder of this paper is organized as follows. Section 2 is a review
of recent research on web service location-allocation and the binary PSO.
Section 3 is a description of web service location-allocation and our proposed
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problem model. Section 4 presents MBPSO approach to the web service location-
allocation. Sections 5 and 6 present experimental evaluation results of our pro-
posed MBPSO approach to service location-allocation problem. Finally, we draw
our conclusions and future prospects in Sect. 7.

2 Related Work and Background

2.1 Related Work

The majority of recent studies on web service quality can be sorted into two
categories, service selection [26] and service composition [9]. In general, ser-
vice selection is to seek the better service instances while service composition
is to build better service workflow. The objective of these research is similar,
to improve the service quality in several dimensions, e.g. response time, service
execution cost, service availability, and service reliability. However, these stud-
ies are from the perspective of service consumers and ignoring service providers
have more privileges to improve the service qualities.

Comparing with service selection and service composition, web ser-
vice location-related research is a newborn in this domain. In study [19],
Liu and Lu, have proved that location and time have a big impact on service
quality and propose a location-related service composition framework. However,
this study does not contain any comparison with other existing approaches. In
study [25], authors proposed using integer programming techniques to solve the
web service location-allocation problem. However, the results show integer pro-
gramming can not obtain satisfactory performance in a large-scale dataset.

Although web service location-allocation still in its infant stage. Traditional
location-allocation problem has been extensively investigated. Using PSO-based
approaches to solve the traditional location-allocation problem also appear in
recently years. Studies [10,11] have proposed using discrete particle swarm to
solve the location-allocation problem, the results show PSO-based approaches
can achieve a better performance than many meta-heuristic approaches, such as
genetic algorithm (GA) and simulated annealing (SA). However, the nature of
web service location-allocation problem is quite different. Traditional location-
allocation problem usually is based on one kind of facility, such as fire station and
hospital. Hence, the location optimization just considers the distance from a ser-
vice consumer to the nearest facility. However, for web service location-allocation
we need to consider the distance from multiple users to multiple services. In [12],
a genetic algorithm based approach was used as a heuristic method to optimized
the service allocation matrix. In this paper, a MBPSO was used as a heuristic
method to optimize the proposed problem.

2.2 Review of Binary PSO

The originated purpose of PSO is to solve the continuous problems. It has also
been proven that PSO has advancement than other meta-heuristic approaches
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in solving the continuous problem [6]. To solve binary problems, Kenndy and
Eberhart [15] introduce binary PSO (BPSO). Service location-allocation problem
is a binary problem. Therefore, we present a brief review of PSO and BPSO in
this section. Suppose that our search space is d-dimensional, a particle i is a
potential solution in this d-dimensional space. A d-dimensional vector is used to
represent the particle position, say Xi = (xi1, xi2, . . . , xid). A swarm is a set of
potential solutions in current optimization problem search space. The velocity
vector represents the next movement and direction of a particle, which is defined
as Vi = (vi1, vi2, . . . , vid). Pi,best and Pg,best respectively represent the personal
best and global best position. Hence, they are also represented as a d-dimensional
position vector. The position and velocity of each particle is updated by iteration
according to Pi,best and Pg,best. Due to the evolutionary nature, the position and
velocity of each particle is updated by iteration according to Pi,best and Pg,best.
The position and velocity of particles are updated by the following formulae:

V t+1
i = w · V t

i + c1ϕ1(Pi,best − Xi) + c2ϕ2(Pg,best − Xi) (1)

Xt+1
i = Xt

i + V t+1
i (2)

where c1 and c2 are positive constants, whereas ϕ1 and ϕ2 are two random
variables with range between 0 and 1. w is the inertia weight which represents
the impact of current velocity on the new velocity. The feature that drives PSO
is social interaction. The behaviour of particles within the swarm is affected by
each other.

A velocity clamp was introduced to avoid the phenomenon of “swarm explo-
ration” [16]. In order to keep the swarm from moving far beyond the search space,
velocity is limited within the range [−vmax, vmax]. vmax is normally defined as
vmax = k × xmax [2], where k is a clamping factor. In a case where the search
space is bounded by [−xmin, xmax], vmax = k × (xmax − xmin)/2.

In BPSO, the main change is that the velocity does not represents the next
movement and direction for particles. Velocity is a probability that effects a bit
(position) of particle to takes on 1 or 0. In the BPSO, for updating velocities
will be the same as Eq. 1. For updating particle the vector position is restricted
to only 1 and 0. The updating equation in Eq. 2 is reformulate in Eq. 3.

Xt+1
i =

{
0 if Rand ≥ S(V t+1

i )
1 if Rand < S(V t+1

i )
(3)

where S is the sigmoid function that transform the particle velocity to the proba-
bility as the following Eq. 4. Rand is the random number which range from 0 to 1.

S(V t+1
i ) =

1

1 + e−V t+1
i

(4)
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3 Problem Modelling

3.1 Problem Description

The aim of service location-allocation problem is to find appropriate physical
locations for web service composition so that both overall response time and
cost are reduced.

The overall response time is largely depend on the communication of atomic
web services. That is, an atomic service could communicate with end-user or
other web services depend on their functionalities. Considering all sources of
invocations of web services is infeasible and cumbersome. One solution is to only
take into account the invocation from end-users. Consequently, we are trying to
deploy all atomic services to the locations that close to end-users. This solution
not only reduces the overall network latency but also hugely reduces the compu-
tational complexity. To ensure that a service composition is complete, we define
a constraint that force every service to be deployed at least at one location.

The other objective is to reduce the establish cost of atomic services. Appar-
ently, deploying all atomic services to every end-user’s location could ensure the
best quality. But it is also unnecessary to guarantee high quality for every end-
user. A web service provider always desires a solution that minimize the cost
as well as maximize the quality. Therefore, the second objective is to deploy
services to locations that produces minimum cost.

In order to accomplish these two objectives, three types of input data are
used in the formulation - network latency, service demand, and service establish
cost. They are expressed in matrix forms.

network latency matrix Tij denotes the network latency between an user
concentrated location i and a candidate location j. A user concentrated location
is the location that has a large number of end-users of a web service composition.
A candidate location is a location at where we consider deploying web services.
service demand matrix Fs denotes the popularity of an atomic service s. Each
entry is a percentile that indicates the importance of an atomic service among the
service composition. In order to obtain this data, a data preprocessing procedure
is described in Sect. 5.1 which is first introduced in [12]. establish cost matrix Csj

denotes the establish cost of an atomic service s in a candidate location j.
A web service is either deploy or not deploy in a location. Thus, the nature of

web service location-allocation problem is binary. We define a binary matrix web
service allocation matrix Asj as the representation of a solution which denotes
deployment of an atomic service s at a candidate location j. An entry is either 1
or 0 which denotes deployment or not. In the next section, we would apply the
above data to establish two objective functions and the fitness function.

3.2 Problem Objectives

As we mentioned in the previous section, the web service location-allocation
problem can be seen as a multi-objective problem. The first objective intends to
reduce the overall latency of a service composition. This objective function can
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be explained in two intuitive purposes. Firstly, popular atomic web services are
encouraged to be deployed at multiple locations so that it reduces the overall
latency. Secondly, the location with lower latency is always preferred.

TotalT ime =
∑

s=1

∑

i=1

risfs (5)

Where ris is the response time between a user location i and a service s. ris can
be obtained using the network latency matrix Tij and the web service allocation
matrix Asj :

ris = MIN{tij |j ∈ {1, . . . , n} and asj = 1} (6)

ris denotes the minimum response time from an atomic web service s to a
user location i. When there are multiple deployments of a service, a candidate
location with smaller latency value is always chosen. Although the choice of
minimum latency might not be true in a real-life scenario, it encourages the
optimization process to minimize the response time.

One of the objectives is to minimize the overall cost, which is the sum of all
deployed services.

TotalCost =
∑

j=1

∑

s=1

csjasj (7)

Finally, we apply an aggregation method that combines two objectives into a
fitness function (Eq. 8). Parameters w1 and w2 are the constant weights for the
response time objective and cost objective respectively.

FitnessFunction = MIN((w1

∑

i=1

∑

s=1

risfi + w2

∑

j=1

∑

s=1

csjasj) ∗ P ) (8)

P is a penalty function for punishing a solution that violates the service
constraint. When all services have been deployed, the fitness value remains
unchanged. Otherwise, its fitness value is punished by multiplying a large num-
ber N . This technique is called death penalty [17].

P =

{
1 if

∑
j asj ≥ 1

N otherwise
(9)

4 Modified BPSO for Web Service Location-Allocation

4.1 Encoding Scheme

In BPSO, a particle is a potential solution which is represented by a fix-length
binary vector. However, a potential service allocation solution is often repre-
sented by a binary matrix. In order to use BPSO, we need to transfer service
location-allocation design represented in a binary matrix into PSO particle rep-
resentation. As seen in Fig. 1, a matrix used for represent service allocation and



372 B. Tan et al.

relevant calculation are transferred into a vector which can then be used for the
BPSO evolutionary progress. In a binary service location allocation matrix, an
element Asj denote whether service s is allocated at location j.

Fig. 1. Encoding scheme example

4.2 Algorithm

As shown in Algorithm 1, the particles are generated in random position with
corresponding velocity randomly. Then, the swarm will get into the evolutionary
process. First, calculating the fitness value for each particle and replace the
personal best if current fitness value is better. After this step, searching the
global best individual in the whole population. Last, updating the velocity and
particle position according to Eqs. 1, 3 and 4. Repeat the evolutionary process
until the termination condition is met.

Algorithm 1. BPSO for Web Service Location-allocation
Initialize particles(swarm)P
Initialize velocity V 0

i For each particle Xi

while Termination Condition is not met do
for Each particle Xi do

Calculate the fitness value
if New fitness value is better than personal best Pi,best then

Set new fitness value as Pi,best

end if
end for
Select the best particle as global best Pg,best

for Each particle Xi do
Update V t

i according to Eq. 1
Do Velocity Clamping
Update Xi according to Eq. 3 and Eq. 4

end for
end while
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4.3 Parameters

As we discussed in Sect. 2.2, choosing parameters are difficulties for BPSO
because their underlying effects are different than the original one. In BPSO,the
parameters includes c1, c2 and w. Both c1 and c2 are acceleration coeffi-
cients, which determine the influences of personal best and global best solu-
tion on particle’s current velocity. As we can see in velocity update Eq. 1, term
c1ϕ1(Pi,best − Xi) represents the influence of the personal best position vector.
Term c2ϕ2(Pg,best − Xi) represents the influence of global best position to cur-
rent particle position. If term c1ϕ1(Pi,best − Xi) has a relatively large value, the
flight of a particle will be driven to its personal best position, otherwise particle
will be driven more to the global best position. Existing studies proposed many
method to optimized these parameters.

While w is the inertia weight which controls the influence of previous velocity.
We employ an adaptive inertia weight parameter that proposed by Yi et al.
[21]. The adapative inertia makes the search start with exploration gradually
move towards exploitation. During the evolution process, inertia weight linear
increasing according to Eq. 10, where π and π stand for the number of iteratioins
elaspsed and the maximal number of iterations respectively. w and w denote the
lower and upper bounds of w. 0 ≤ ρ ≤ 1 is the parameter to control the number
of iterations to make w increase from w to w. If ρ = 0, there is no adapation in
inertia. If ρ = 1, w linearly increases throughout the search process.

w =

{
w + π·(w−w)

ρ·π , if π ≤ ρ · π

w , if ρ · π < π ≤ π
(10)

5 Design of Experiments

In this section, experiments are designed for comparing the performance of
MBPSO, MFGA and BPSO. Two measurements are taken into account, execu-
tion time and fitness value. Execution time is the searching time which excluded
the file IO operations. Fitness values are the calculation results based on the
fitness function Eq. 8.

5.1 Dataset

The datasets used for the experiments were generated from the WS-DREAM
dataset [28]. The WS-DREAM dataset is a collection of historical data from
339 users and 5824 web services located in different locations. It records several
non-functional attributes about the web services, including latency, throughput,
availability, etc. We generate the network latency matrix by selecting a subset
of 339 by 5824 matrix of latency. For example, in Table 1, in order to generate
the first problem, which contains 20 user locations and 15 candidate locations.
We randomly select 20 rows which denote 20 user locations, then we select 15
columns which are the candidate locations. Next step is to replace the columns
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that contain “null” by other columns to ensure the dataset is complete. The
Service establish cost matrix were randomly generated from a normal distribu-
tion with μ = 100 and σ = 20. The service demand matrix is generated follow
several steps that described in Algorithm 2 with Problem 2 as an example. We
assign each atomic service a weight k to represent the atomic service demand. k
is randomly selected from Pareto distribution because according to the popular
20-80-rule, 20% of service requests count for 80% of overall service requests [13].
We randomly select r services as a stimulation of a web service composition.
Hence, the term 1/rs denotes the service position weight.

Algorithm 2. Generate service demand matrix
Generate a set of symbolic atomic services W = {w1, w2, . . . , w30}
for 1 to 10 do

Randomly generate a number r ∈ [1, 30]
Randomly select r atomic services
Assign each atomic services a weight k ∈ [0, 1] generate from a Pareto distribution
with scale = 100 and shape = 1.

end for
calculate the demand of each atomic web service according to fs =

∑10
s=1 ks ∗ 1/rs

Furthermore, all the input data involved in this experiments were normal-
ized into interval [0, 1]. Five problems of different complexity levels of data were
extracted from WS-DREAM. Table 1 outlines the extracted data and it corre-
sponding attributes.

Table 1. Hypothetical web service location-allocation problems

Problem ID User location Candidate location Composite services Atomic services

1 10 5 1 5

2 20 15 5 20

3 40 25 10 50

4 40 25 20 100

5 80 40 40 200

5.2 Environment and Parameters

The experiments were conducted on a personal laptop with 2.3 GHz CPU and
4.0 GB RAM. For each approach, 30 independent runs are performed for each
problem with constant population size 100. The maximum number of iteration
is 250, but it will termination earlier if some condition is met, such as objective
value is not changed during 10 iterations. The weight of response time and estab-
lish cost were set to 0.5 and 0.5, which means the importance of response time
and establish cost were equivalent in this model. It is also can be adjusted when
service providers have different preferences. For MFGA, the initial crossover and
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mutation possibility are 0.6 and 0.2, which is the configuration in our previ-
ous study [12]. We apply tournament selection with tournament size of 10 and
elitism which carry over the top 20 individuals into the next generation without
modification. For PSO-based approaches, We set c1 and c2 equal 1.427 accord-
ing to study [3]. In MBPSO, We set ρ = 0.9, w = 0.4, and w = 1.0 in adaptive
inertia according to [21]; in standard BPSO we set w = 0.689 according to study
[3]. Velocity clamping is one crucial issue in BPSO. Since the parameters cause
opposite behavior between continuous PSO and BPSO. In continuous PSO, a
large velocity encourages exploration; while in BPSO, a larger velocity limits
the possibility of changing the bit. Therefore, the velocity should be clamped in
a small range. We set the clamping factor to 8 in order to obtain Vmax = 4 in
these experiments, because it is always allow a possibility of s(Vmax) = 0.0018
for a bit to flip [24].

6 Results and Analysis

This section shows the experimental results of MBPSO, BPSO and MFGA
approaches in solving the service location-allocation problems with our prede-
fined complexity levels. Table 2 demonstrates the fitness value and execution
time comparison of three algorithms; the fitness is smaller the better as we are
minimizing the fitness function. Each row represents the values and standard
deviation among three methods on a predefined problem. We apply Wilcoxon
signed rank test on the fitness values and mark the statistical significant values.

Table 2. Fitness value and execution time (second) comparison among BPSO,
MBPSO, and MFGA

Problems Fitness Execution time

Methods

BPSO MBPSO MFGA BPSO MBPSO MFGA

1 0.034 ± 0.003 0.033 ± 0.003 0.028 ± 0.0002 0.22 ± 0.03 0.21 ± 0.02 0.18 ± 0.04

2 0.168 ± 0.005 0.146 ± 0.009 00.15 ± 0.004 6.54 ± 0.67 6.18 ± 0.1 5.40 ± 0.09

3 0.202 ± 0.002 0.186 ± 0.006 0.192 ± 0.002 60.6 ± 1.92 60.4 ± 1.57 57.01 ± 1.67

4 0.218 ± 0.001 0.207 ± 0.004 0.21 ± 0.002 116.9 ± 1.05 117.2 ± 1.89 112.81 ± 1.84

5 0.231 ± 0.0007 0.225 ± 0.0008 0.227 ± 0.0006 957.2 ± 10.3 962.0 ± 12.9 954.1 ± 11.1

As illustrated in Table 2, overall, the performance of MBPSO has an
advantage in solving larger problems. MFGA is significantly better than PSO
approaches for the first problem and there is no significant difference for the
second problem. As the complexity increases, MBPSO shows a stronger search
ability. In comparison between BPSO and MBPSO, clearly, MBPSO is better
than original approach in every problem. Due to the adaptive inertia weights,
MBPSO would first move fast in the search space and gradually focuses on local
area. It proves that the adapative inertia not only good at solving well-defined
test functions, but also performance well in real-world problem.
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In terms of execution time, MFGA has a clear advantage, because MFGA uses
a memory pool to store the top 10 percent of chromosomes. This technique can
reduce the repeated evaluation time. There is no significant difference between
BPSO and MBPSO as their only difference is the adaptive inertia.

In summary, our proposed MBPSO can effectively and effeciently solve the
web service location-allocation problem in most cases.

7 Conclusion and Future Work

In this paper, we propose a multi-objective with an aggregation method to for-
mulate the web service location-allocation problem. We also apply a MBPSO to
search for a near-optimal solution. We have shown that the MBPSO can be used
to solve service location-allocation problem in a relatively efficient and effective
way, similar to our previous proposed MFGA based approach.

Future work probably includes more constraints into the problem model (i.e.
throughput, availability, and reliability). We will also investigate the settings of
the parameters used in the MBPSO approaches.
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Abstract. In this paper, a multiobjective evolutionary algorithm based
on decomposition (MOEA/D) based is proposed to solve the unit com-
mitment (UC) problem in uncertain environment as a multi-objective
optimization problem considering cost, emission, and reliability as the
multiple objectives. The uncertainties occurring due to thermal gen-
erator outage and load forecast error are incorporated using expected
energy not served (EENS) reliability index and EENS cost is used to
reflect the reliability objective. Since, UC is a mixed-integer optimiza-
tion problem, a hybrid strategy is integrated within the framework of
decomposition-based MOEA such that genetic algorithm (GA) evolves
the binary variables while differential evolution (DE) evolves the contin-
uous variables. To enhance the performance of the presented algorithm,
novel non-uniform weight vector distribution strategies are proposed.
The effectiveness of the non-uniform weight vector distribution strategy
is verified through stringent simulated results on different test systems.

1 Introduction

The unit commitment (UC) problem is one of the most important problems in
power system operation. The UC is a day-ahead scheduling problem and com-
prises of two tasks: one is determining the on/off status of the thermal units; the
other is the power dispatch which requires distributing the system load demand
to the committed thermal units. The classical UC problem requires effectively
performing the above two tasks to meet the forecasted load demand over a par-
ticular time horizon, satisfying a large set of units and system constraints and
meeting the (only) objective of minimizing the system operation cost [1]. The
UC is a nonlinear, mixed-integer, combinatorial, high-dimensional, and highly
constrained optimization problem, and belongs to the set of NP-hard problems
[1]. Due to its economic importance, the UC has for long been a problem of
significant interest for power system companies.
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In the literature, several stochastic search based techniques such as genetic
algorithm (GA) [2,3], particle swarm optimization (PSO) [4], differential evolu-
tion [5], hybrid of GA and DE [6,7] etc., have been proposed for solving the clas-
sical UC problem. These stochastic search based techniques have attracted wide
recognition due to their ease of implementation, capability of accommodating
complex problem characteristics, and attaining optimal/near-optimal solution.

The UC problem is generally solved in the literature with system operation
cost as the single (economic) objective function while the objectives related to
emission and the reliability are generally neglected. Nevertheless, for realistic
decision making, the system operators would prefer to consider various uncer-
tainties in the problem, and include emission and reliability as additional objec-
tives along with system operation cost, and obtain trade-off optimal solutions
[8]. However, UC considering system operation cost, emission, and reliability
as the multiple objectives is a nonlinear, mixed-integer, combinatorial, high-
dimensional, highly constrained multiobjective optimization problem. Hence, it
is a challenge to efficiently incorporate the various uncertainties and solve UC
as a multi-objective optimization problem to obtain different trade-off optimal
solutions [8].

1.1 Brief Review of Methods Proposed for Multiobjective UC
Problem

Recently, several studies have solved the UC problem as a MOP consider-
ing objectives such as system operation cost, emission, reliability, transmission
losses. In [9], an algorithm based on integration of NSGA-II (non-dominated
sorting genetic algorithm-II) [10] with problem specific genetic operators, prior-
ity list (PL) based heuristic initialization, and repair operation, is presented for
the multi-objective economic/emission (MOEE-UC) problem. In [11], a multi-
objective memetic evolutionary algorithm (EA) based on combination of NSGA-
II and problem specific local search operators is proposed to solve the MOEE-UC
problem. In [12], an enhanced hybrid multi-objective evolutionary algorithm
based on decomposition (MOEA/D) is proposed to solve the MOEE-UC prob-
lem.

In [8], the NSGA-II based algorithm presented in [9] is extended, and
the multi-objective economic/emission/reliability UC (MOEER-UC) problem is
solved in which reliability is included as an additional objective along with eco-
nomic and emission objectives. A fuzzy assisted hybrid of (a) binary and real-
coded artificial bee colony (ABC) algorithm [13] and (b) binary and real-coded
cuckoo search algorithm (CSA) [14] have been proposed to solve the UC problem
considering system operation cost, emission, and reliability objectives.

1.2 Proposed Work

In this paper, the MOEER-UC problem i.e., multi-objective UC problem consid-
ering system operation cost, emission, and reliability as the multiple conflicting
objectives is addressed. The uncertainties occurring due to thermal unit outage
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and load forecast error are taken into account. These uncertainties are incor-
porated using expected energy not served (EENS) reliability index while EENS
cost is used to reflect the reliability objective.

To solve the MOEER-UC problem, the framework of multi-objective evolu-
tionary algorithm based on decomposition (MOEA/D) [15] is selected. MOEA/D
is an evolutionary multi-objective optimization framework proposed by Zhang
and Li in 2007 [15]. MOEA/D decomposes a multiobjective optimization prob-
lem into a number of scalar optimization subproblems and optimizes them in
a collaborative manner using an evolutionary algorithm. Each subproblem is
optimized by utilizing the information from its several neighboring subproblems
only. An improved version of MOEA/D, termed MOEA/D-DE, in which the
SBX crossover operator is replaced by the DE operator is suggested by Li and
Zhang in 2009 [16]. Since the proposition of the original MOEA/D framework,
several studies have been conducted in the literature either to overcome the
limitations in design components of the original MOEA/D, or to improve the
performance of MOEA/D. Interested readers are referred to a recent survey on
decomposition-based MOEAs [17].

Inspired from the performance of MOEA/D and MOEA/D-DE in the lit-
erature, in this paper, the framework of MOEA/D-DE [16] is chosen. In their
original study, MOEA/D as well as MOEA/D-DE are mainly investigated on
continuous MOPs. However, as mentioned earlier, the UC is a mixed-integer
optimization problem and thus the algorithm employed should be able to effi-
ciently explore both the binary search space as well as the continuous search
space. Therefore, to efficiently solve the mixed-integer UC problem, in this paper,
a hybrid methodology is incorporated within the MOEA/D framework. In the
proposed algorithm, GA and DE are synergized such that GA evolves the binary
component of the solution (i.e., chromosome) while DE evolves the continuous
component of the solution. Such a hybrid algorithm of GA and DE has been
found to be promising on the single-objective UC problem [6,7] as well as on the
bi-objective UC problem [12].

In the original study of MOEA/D [15] and most of its subsequent variants,
the weight vectors corresponding to different scalar optimization subproblems are
uniformly distributed. However, in this paper, MOEA/D with uniform weight
vector distribution is not found to obtain well distributed set of trade-off solu-
tions. Thus, in this paper, two non-uniform weight vector distribution strategies
are developed and investigated to enhance the performance of MOEA/D-DE on
the MOEER-UC problem.

The rest of the paper is organized as follows. Section 2 presents the prob-
lem formulation. Section 3 presents the framework of the hybrid MOEA/D-DE.
Section 4 presents the proposed non-uniform weight vector distribution strategies
and the experimental study. Section 5 presents the conclusions and the future
work.
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2 Problem Formulation

In this section, the multi-objective UC problem formulation is presented. It is
noted that the nomenclature is presented in Table 1.

Table 1. Nomenclature

Indices

i Generating unit index

t Hourly time index

Variables

Et
i Pollutants produced by unit i at hour t in lb

f t
i Fuel cost of unit i at hour t in $/h

P t
i Power generated by unit i at time t

TON,it
/
TOFF,it Continuously on/off time of unit i up to hour t

ut
i Unit commitment status of unit i at time t (1 = ON , 0 = OFF )

Constants

ai, bi, ci Fuel cost coefficients of unit i

a1i, b1i, c1i Emission coefficients of unit i

CR Crossover rate of Differential Evolution

CSCi Cold start-up cost of unit i

F Scaling factor of Differential Evolution

HSCi Hot start-up cost of unit i

Lt Load demand at hour t

max gen Maximum generations/iterations

MUT i/MDT i Minimum up/down time of unit i

N Number of generating units

Pmin,i Rated lower limit generation of unit i

Pmax,i Rated upper limit generation of unit i

SDt
i Shut-down cost of unit i at hour t

SU t
i Start-up cost of unit i at hour t

SRt System spinning reserve requirement at hour t

Tcold,i Cold start hour of unit i

Tmax Number of hours considered (scheduling horizon)

2.1 Objective Functions

1. System Operation Cost: The first objective function (F1) is to minimize the
system operation cost (SOC), where SOC includes the fuel cost and the transition
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cost of all the generating units over the entire scheduling horizon [11]. The fuel
cost f t

i of unit i is considered to be quadratic function of its power output during
hour t [11].

f t
i = aiP

t
i
2 + biP

t
i + ci (1)

The transition cost is the sum of the start-up costs and the shut-down costs.
In this paper, the shut-down costs have not been taken into consideration in
accordance with the literature [11] while the start-up cost is modeled as follows:

SU t
i =

{
HSCi, if MDTi ≤ T t

OFF,i ≤ MDTi + Tcold,i

CSCi, if T t
OFF,i > MDTi + Tcold,i

(2)

Subsequently, the first objective function is given by minimization of the
following cost function [11].

F1 =
Tmax∑

t=1

N∑

i=1

(
f t
i .u

t
i + SU t

i (1 − ut−1
i )ut

i

)
(3)

2. Emission: The second objective function (F2) is the reduction of emission of
air-pollutants into the atmosphere [11].

F2 =
Tmax∑

t=1

N∑

i=1

(
Et

i .u
t
i

)
(4)

where Et
i (lb) represents the quantity of pollutants produced by unit i at time t

and is defined in accordance with the literature [11] as:

Ei
t = a1iP

t
i
2 + b1iP

t
i + c1i (5)

3. Expected Energy Not Served (EENS) Cost: The third objective function (F3)
is to maximize the reliability of the system. The function used to represent the
reliability of the system is the expected energy not served (EENS) cost [18] which
is defined as the product of the expected energy not served (EENS) and value of
lost load (VOLL) determined using survey [18]. It is noted that VOLL represents
the average value (in $/MWh) that consumers place on the accidental loss of 1
MWh of electricity [18]. Since, predicting the generation outages and deviation
of load demand from the forecasted demand during the actual implementation
of a particular generation schedule is impossible, only an EENS cost (also called
outage cost) can be computed. The EENS cost is given by:

F3 = V OLL × EENStot (6)

where EENStot is total expected unserved energy for the entire scheduling
horizon.

It is noted that the lower the EENS cost, the higher is the reliability of the
system and vice-versa.
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2.2 Constraints

1. System power balance: the total power generation at hour t must be equal to
the load demand for that hour.

N∑

i=1

(P t
i .u

t
i) = Lt, t = 1, 2, . . . Tmax (7)

2. Unit minimum up/down time: if a unit i is turned on/off, it must remain
on/off for at least its minimum up/down time (MUT i/MDT i) duration.

T t
ON,i ≥ MUT i

T t
OFF,i ≥ MDT i

(8)

3. Unit generation limits: for stable operation, the power output of each gener-
ator is restricted within its limits.

Pmin,i ≤ P t
i ≤ Pmax,i (9)

4. Maximum system operation cost: this constraint is incorporated as:

F1 ≤ SOCmax (10)

where F1 represents the objective function system operation cost and
SOCmax is the user-defined upper limit for solution’s SOC.

5. Maximum Emission: this constraint is incorporated as:

F2 ≤ Emismax (11)

where F2 represents the objective function emission and Emismax is the user-
defined upper limit for solution’s emission.

6. Maximum EENS cost: this constraint is incorporated as:

F3 ≤ EENSCmax (12)

where F3 represents the objective function EENS cost and EENSCmax is
the user-defined upper limit for solution’s EENS cost.

3 Proposed Algorithm

In this section, the proposed algorithm MOEA/D-DE is vividly presented in the
context of the MOEER-UC problem.

3.1 Chromosome Representation

For every chromosome, a N ×Tmax binary unit commitment matrix (UCM) rep-
resents the thermal generator on/off status and a N × Tmax real power matrix
(RPM) represents the corresponding power dispatch. It is noted that a chromo-
some’s actual generation schedule is represented by its resultant power matrix
(Res.PM) which is obtained by multiplying the corresponding elements of UCM
and RPM.
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3.2 Generation of Initial Population

The initial population (i.e., UCM and RPM of the chromosomes) is randomly
generated.

3.3 Fitness Evaluation

Since, UC is a highly constrained optimization problem, the performance of the
algorithm depends upon how the algorithm handles the constraints.

Boundary Constraint Handling
The generator limit constraints given by (9) are handled according to the

bound handling approach known as set on boundary.

Load Demand Equality Constraint Repair Operator
In the proposed algorithm, a repair operator based on priority list (PL) of

the thermal units is applied to repair chromosomes that violate the load demand
equality constraint [8].

Constraint Violation Evaluation
At first, all the constraints are normalized because different constraints may

take different orders of magnitude. Thereafter, all normalized constraint viola-
tions are added to calculate the overall constraint violation of a chromosome.

Objective Function Evaluation
The system operation cost and emission objectives are calculated for each

chromosome using its Res.PM (which is obtained by multiplying the corre-
sponding elements of UCM and RPM as mentioned earlier) while the EENS
cost objective is evaluated using the procedure detailed in Sect. 4.

3.4 Variation Operation: Hybrid of GA with DE

The variation operation is the step where GA and DE are synergized at every
generation. In the variation operation, the binary UC variables are evolved using
GA operators while the continuous power dispatch variables are evolved using
DE operators [6]. The GA operators are window crossover, swap window muta-
tion, and window mutation while the DE operators are DE/rand/1 mutation and
binomial crossover. Interested readers are referred to the study [12] for further
details.

3.5 Replacement

At every generation, once corresponding to an index i the variation operation is
completed i.e., the child’s (say xchild’s) UCM and RPM are created using GA
and DE, respectively; the UCM and RPM are combined to evaluate the fitness of
the xchild. Thereafter, xchild is compared with a randomly picked solution in the
neighborhood (say y) of index i and the replacement/update of neighborhood
takes place according to the rules based on superiority of feasibility [12].
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3.6 Stopping Criterion

The algorithm stops if the maximum number of generations (set as input) is
reached. Once the algorithm stops, the solutions in the final population of
MOEA/D-DE represent the trade-off optimal solutions obtained for the problem.

4 Experimental Study

In this section, the proposed non-uniform weight vector distribution strategies
are presented and the performance of the proposed algorithm is investigated on
the MOEER-UC problem. The proposed algorithm is developed on C platform
and executed on PC with Intel 3.10 GHz processor. To investigate the scala-
bility, the proposed algorithm is tested on the MOEER-UC problem for power
systems with 10, 20, and 60 units in a 24 h scheduling horizon [11]. The stan-
dard deviation (σt

load) of the load forecast error is assumed to be 5% of the
hourly load demand [19] and VOLL is assumed to be 5000$/MWh [18]. For
each experiment, 15 independent simulation trials are conducted to investigate
the robustness of the proposed algorithm. To investigate the performance of
the proposed algorithm, three separate performance indicators have been used -
Generational Distance (GD) [20] for convergence, Generalized Spread [20] for
diversity and Hypervolume (HV) [20] for combined assessment of convergence
and diversity.

4.1 Case Study - MOEA/D-DE with Non-uniform Weight Vector
Distribution

At first, MOEA/D-DE with uniform weight vector distribution is implemented
on 10, 20 and 60 unit systems. Figure 1a, b, and c depict the distribution of the
final non-dominated solutions found by MOEA/D-DE in a single run (with best
HV metric) on 10, 20, and 60 unit systems. These results show that there is a
limitation in the performance of MOEA/D-DE as many solutions are clustered
at the boundary.

(a) 10 unit system (b) 20 unit system (c) 60 unit system

Fig. 1. The distribution of the final non-dominated solutions found by MOEA/D-DE
with uniform weight vector distribution scheme on different test systems.
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It is well known that the performance of decomposition-based MOEAs is
highly dependent on the weight vector generation method. The original MOEA/D
and MOEA/D-DE employ evenly distributed weight vectors generated using the
simplex-lattice design method. However, the assumption that an evenly [9] or uni-
formly [19] distributed weight vectors can provide uniformly distributed P-O solu-
tions has been comprehensively refuted in some recent studies [21].

Thus, in this paper, two novel weight-vector distribution strategies are inves-
tigated within the framework of MOEA/D-DE. The target of the proposed
strategies is to help MOEA/D-DE achieve a better distribution in the mid-
dle of the P-O front while maintaining the performance in terms of convergence
throughout the P-O front. The proposed weight-vector distribution strategies
are as follows:

1. In the first non-uniform weight-vector distribution scheme, named NUWD,
an increased number of weight vectors are first generated using the simplex-
lattice design method. Thereafter, the weight vectors are randomly removed
from the outer layers of the distribution to help the algorithm focus its search
more towards the center of the PF. Figure 2a shows the uniform weight-vector
distribution employed for a three-objective optimization problem in the orig-
inal MOEA/D-DE [16]. The weight vectors generated using the proposed
NUWD strategy is depicted in Fig. 2b. Thus, in the NUWD scheme, more
number of subproblems are allocated to find increased number of solutions
towards the center of the PF while relatively fewer subproblems are allocated
towards the edges of the PF.

2. In the second non-uniform weight-vector distribution scheme, named NUWD-
Cos, the following sinusoidal function is selected to generate the weight vector
distribution:

λk′
i = g(λk

i ) = (acos(2λk
i − 1)/π) i = 1, 2, . . . , NP ; k = 1, 2. (13)

where λk′
i replaces λk

i as input in the algorithm MOEA/D-DE. The weight
vectors generated using the proposed NUWD-Cos strategy is depicted in
Fig. 2c.

It is observed from Figs. 2b and c that both the NUWD strategies gener-
ate higher number of weight vectors towards the center of the weight vector
distribution and relatively fewer number of weight vectors towards the edges.
Further, the NUWD scheme generates asymmetrical weight vector distribution
as the weight vectors are randomly removed from the outer layer of the distribu-
tion. On the other hand, the NUWD-Cos scheme generates a more symmetrical
weight vector distribution.

Next, the proposed non-uniform weight-vector distribution strategies are
incorporated within MOEA/D-DE and the performance of the resulting algo-
rithms, named MOEA/D-DE-NUWD and MOEA/D-DE-NUWD-Cos, are com-
pared against MOEA/D-DE (i.e., with the uniform weight vector distribution
(UWD) strategy). Figures 3, 4, and 5 illustrate the comparison of the UWD
and the NUWD variants for 10, 20, and 60 unit systems on the basis of GD,
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(a) UWD (b) NUWD (c) NUWD-Cos

Fig. 2. (a) Uniform weight vector distribution (UWD) in the original MOEA/D-DE,
(b) proposed NUWD scheme, and (c) proposed NUWD-Cos scheme for 3-objective
optimization problem.

Spread, and HV metric, respectively. Following are the observations from the
above figures:

– The performance of the UWD and the NUWD variants is comparable in terms
of GD metric (refer Fig. 3).

– In terms of spread metric, the NUWD-Cos variant significantly outperforms
the UWD and the NUWD variant on 20 and 60 unit systems (refer Fig. 4).

– In terms of HV metric, the NUWD-Cos variant is significantly superior to the
UWD and the NUWD variant on all the test systems (refer Fig. 5).

To further analyze the performance in the objective space, the distribution
of the final non-dominated solutions with the highest HV values found on 10, 20,
and 60 unit systems by the NUWD-Cos variant is plotted in Fig. 6, respectively.
It is visually evident from the figures that the NUWD-Cos variant attracts more
solutions towards the center and provides significantly better distribution of
solutions than the UWD variant (refer Fig. 1), particularly on the 20 and 60
unit systems.

This case study demonstrated that the non-uniform weight vector distribu-
tion strategy (NUWD-Cos) significantly improves the performance of MOEA/D-
DE on the MOEER-UC problem. However, Fig. 6 shows that even with the
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Fig. 3. GD metric comparison among MOEA/D-DE with UWD, NUWD, and NUWD-
Cos weight vector distributions on different test systems
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Fig. 4. Spread metric comparison among MOEA/D-DE with UWD, NUWD, and
NUWD-Cos weight vector distributions on different test systems
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Fig. 5. HV metric comparison among MOEA/D-DE with UWD, NUWD, and NUWD-
Cos weight vector distributions on different test systems.
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Fig. 6. The distribution of the final non-dominated solutions found by MOEA/D-DE
with NUWD-Cos weight vector distribution scheme on different test systems.
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NUWD-Cos weight vector distribution strategy, there is clustering of solutions
towards the edges of the PF but the severity is less. This indicates that in the
future, there is scope for further improvement in the performance of the proposed
MOEA/D-DE on the MOEER-UC problem.

5 Conclusions and Future Work

In this paper, a MOEA/D based on hybrid of GA and DE was applied to solve
the UC problem considering system operation cost, emission, and reliability as
the multiple conflicting objectives in uncertain environment.

However, a limitation was observed in the performance of hybrid MOEA/D-
DE as several solutions were found to be clustered at the boundary of the
objective space. Therefore, two non-uniform weight vector distribution (NUWD)
strategies were proposed to bias the search direction of MOEA/D-DE in the
three-objective space and reduce the clustering of solutions. The comparative
analysis of MOEA/D-DE and MOEA/D-DE with the proposed NUWD strate-
gies i.e., MOEA/D-DE-NUWD and MOEA/D-DE-NUWD-Cos, revealed that
MOEA/D-DE-NUWD-Cos significantly outperforms the other two variants, and
provides much better distribution of solutions. However, it was observed that
with MOEA/D-DE-NUWD-Cos as well, there is clustering towards the edges of
the trade-off surface but the severity is less. Hence, in future, more sophisticated
weight vector distribution strategies can be designed to improve the performance
of the proposed algorithm on MOEER-UC problem.

Further, it is noted that the NUWD strategies proposed in this paper are
problem specific. In other words, the NUWD strategies were developed to specif-
ically tackle the limitation of UWD strategy with respect to the performance
of algorithm on MOEER-UC problem. Thus, the proposed NUWD strategies
are not generic and cannot be adopted to obtain uniform distribution of solu-
tions on other problems. However, this paper shows that NUWD strategies may
lead to improved performance of decomposition-based MOEAs. An interesting
future work can be investigation of the performance of MOEA/D-AWA [22] on
MOEER-UC problem, in which weight vector adaptation strategy is incorpo-
rated. Moreover, novel weight vector adaptation strategies can be developed.
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