
Selection Equilibria of Higher-Order Games

Jules Hedges1, Paulo Oliva2(B), Evguenia Shprits3, Viktor Winschel4,
and Philipp Zahn5

1 Department of Computer Science, University of Oxford, Oxford, UK
2 Department of Electronic Engineering and Computer Science,

Queen Mary University of London, London, UK
p.oliva@qmul.ac.uk

3 Department of Economics, University of Mannheim, Mannheim, Germany
4 Department of Management, Technology and Economics,

ETH Zürich, Zürich, Switzerland
5 Department of Economics, University of St. Gallen, St. Gallen, Switzerland

Abstract. In applied game theory the modelling of each player’s inten-
tions and motivations is a key aspect. In classical game theory these are
encoded in the payoff functions. In previous work [2,4] a novel way of
modelling games was introduced where players and their goals are more
naturally described by a special class of higher-order functions called
quantifiers. We refer to these as higher-order games. Such games can
be directly and naturally implemented in strongly typed functional pro-
gramming languages such as Haskell [3]. In this paper we introduce a
new solution concept for such higher-order games, which we call selection
equilibrium. The original notion proposed in [4] is now called quantifier
equilibrium. We show that for a special class of games these two notions
coincide, but that in general, the notion of selection equilibrium seems to
be the right notion to consider, as illustrated through variants of coordi-
nation games where agents are modelled via fixed-point operators. This
paper is accompanied by a Haskell implementation of all the definitions
and examples.

1 Introduction

In this paper we introduce a representation of simultaneous move games that
formally summarises the goals of agents via quantifiers and selection functions.
Both quantifiers and selection functions are examples of higher-order functions
(also called functionals or operators) and originate in a game-theoretic approach
to proof theory [2,4].

As shown in [2,4], the standard Nash equilibrium concept can be seamlessly
generalised to this higher-order representation of games. The original work on
these higher-order games used a notion of equilibrium which we will now call
quantifier equilibrium. In this paper we introduce an alternative notion, which
we call selection equilibrium. We prove that quantifier and selection equilibria
coincide in the case of the classical max and arg max operators, but that, gener-
ally, this equivalence does not hold: For other quantifiers and selection functions
c© Springer International Publishing AG 2017
Y. Lierler and W. Taha (Eds.): PADL 2017, LNCS 10137, pp. 136–151, 2017.
DOI: 10.1007/978-3-319-51676-9 9



Selection Equilibria of Higher-Order Games 137

the two different equilibrium concepts yield different sets of equilibria. We give a
sufficient condition for the two notions to coincide based on the notion of closed-
ness of selection functions. We prove that in general, the selection equilibrium
is an equilibrium refinement of the quantifier equilibrium, and present evidence
that for games based on non-closed selection functions, the selection equilibrium
is the appropriate solution concept.

A Haskell implementation of the theory and examples contained in this paper
is available online.1 We chose not to discuss the actual code here in detail due to
lack of space. This code, however, was crucial for the development of the theory
here presented. The ability to implement not just the various players, but also
the outcome functions and the equilibrium checkers, enabled us to quickly test
several different examples of games, with different notions of equilibrium. Careful
testing of a variety of situations ultimately led us to the conclusion that the new
notion of equilibrium for higher-order games is preferable in general. Although
in this paper we could have used any other strongly typed functional language,
in the case of sequential games [2–4] the use of Haskell monads is essential.
In higher-order sequential games one can make use of the fact that the type
of selection functions forms a monad, and backwards induction can be simply
implemented as the “sequencing” of monads.

2 Players, Quantifiers and Selection Functions

A higher order function (or functional) is a function whose domain is itself a set
of functions. Given sets X and Y we denote by X → Y the set of all functions
with domain X and codomain Y . There are familiar examples of higher-order
functions, such as the max operator, which has type max: (X → R) → R

returning the maximum value of a given real-valued function p : X → R. One
will normally write max p as maxx∈X p(x). A corresponding operator is arg max
which returns all the points where the maximum of a function p : X → R is
attained, i.e. arg max: (X → R) → P(X) using P(X) for the power-set2 of X.
Note that as opposed to max, arg max is naturally a multi-valued function, even
when the maximal value is unique.

Of a slightly different nature is the fixed point operator fix: (X → X) →
P(X) which calculates all the fixed points of a given self-mapping p : X → X,
or the anti-fixed-point operator which calculates all points that are not fixed
points.

In this section we define two particular classes of higher-order functions:
quantifiers and selection functions. We first establish that these functions provide
means to represent agents’ goals in an abstract and general way. In particular,
these notions usefully generalise utility maximisation and preference relations.

1 http://www.eecs.qmul.ac.uk/∼pbo/papers/hog-padl-2017.hs.
2 As long as our games are finite we can easily replace powersets with lists, which we

do in the accompanying implementation.

http://www.eecs.qmul.ac.uk/~pbo/papers/hog-padl-2017.hs


138 J. Hedges et al.

2.1 Game Context

To define players’ goals we first need a structure that represents the strategic
situation on which these goals are based. To this end we introduce the concept
of a game context which summarises information of the strategic situation from
the perspective of a single player.

Definition 1 (Game context). For a player A choosing a move from a set
X, having in sight a final outcome in a set R, we call any function p: X → R a
possible game context for the player A.

Consider the following voting contest which we will use as a running example
throughout this paper: three judges are voting simultaneously for one of two
contestants X = {A,B}. The winner is decided by the majority rule maj : X ×
X × X → X. In a setting where judges 1 and 3 have fixed their choices, say
x1 = A and x3 = B, this gives rise to a game context for the second judge,
namely

x2 �→ maj(A, x2, B)

which is in fact the identity function since maj(A, x2, B) = x2. If, on the other
hand, judges 1 and 3 had fixed their choices as x1 = x3 = A, the game context
for player 2 would be the constant function x2 �→ A, since his vote does not
influence the outcome.

One can think of the game context p: X → R as an abstraction of the actual
game context that is determined by knowing the rules of the game, and how each
opponent played. Notice that in the example above the game context which maps
A to B, and B to A, never arises. It would arise, however, if one replaced the
majority rule by the minority rule.

It might seem like we are losing too much information by adopting such
an abstraction. We hope that the examples given here will illustrate that this
level of abstraction is sufficient for modelling players’ individual motivations and
goals. And precisely because it is abstract and it captures the strategic context
of a player as if it was a single decision problem, it allows for a description of
the players’ intrinsic motivations, irrespective of how many players are around,
or which particular game is being played. This is key for obtaining a modular
description of games as well as a modular Haskell implementation.

2.2 Quantifiers and Selection Functions

Suppose now that A makes a decision x ∈ X in a game context p : X → R.
First of all, it is important to realise that the only achievable outcomes in the
context p : X → R are the elements in the image of p, i.e. Im(p) ⊆ R. Out of
these achievable outcomes the player should consider some outcomes to be good
(or acceptable). Since the good outcomes must in particular be achievable, it is
clear that the set of good outcomes can only be defined in relation to the given
context. That dependence, however, can go further than just looking at Im(p).
For instance, an element r ∈ R might be the maximal attainable value of the



Selection Equilibria of Higher-Order Games 139

mapping p1 : X → R, but could be unachievable, sub-optimal or even the worst
outcome in a different context p2 : X → R.

Definition 2 (Quantifiers, [2,4]). Let P(R) denote the power-set of the set
of outcomes R. We call quantifiers3 any higher-order function of type

ϕ: (X → R) → P(R)

from contexts p: X → R to non-empty sets of outcomes ϕ(p) ⊆ R.

The approach of [2,4] is to model players A as quantifiers ϕA : (X → R) →
P(R) We think of ϕA(p) ⊆ R as the set of outcomes the player A considers
preferable in a given game context p : X → R. It is crucial to recognise that this
is a qualitative description of a player, in the sense that an outcome is either
preferable or it is not, with no numerical measure attached.

It could be, however, that the notion of being a “good outcome” indeed comes
from a numeric measure. In fact, the classical example of a quantifier is utility
maximisation, with the outcome set R = R

n consisting of n-tuples of real-valued
payoffs. If we denote by πi : R

n → R the i-projection, then the utility of the ith

player is πi(r). Hence, given a game context p: X → R
n, the good outcomes for

the ith player are precisely those for which the ith coordinate, i.e. his utility, is
maximal. This quantifier is given by

i-max(p) = {r ∈ Im(p) | ri ≥ (πi ◦ p)(x′) for all x′ ∈ X}

where Im(p) denotes the image of the function p : X → R
n, and πi ◦ p denotes

the composition of p with the i-th projection.
For a very different example of a quantifier, when the set of moves is equal to

the set of outcomes R = X there is a quantifier whose good moves are precisely
the fixpoints of the context. This quantifier models a player whose aim is to make
a choice that is equal to the resulting outcome. If the context has no fixpoint,
then the player will be equally satisfied with any outcome. Therefore such a
quantifier can be defined as

fix(p) =

{
{x ∈ X | p(x) = x} if p(x) = x for some x ∈ X

X otherwise.

Just as a quantifier tells us which outcomes a player considers good in each
given context, one can also consider the higher-order function that determines
which moves a player considers good in any given context.

3 The terminology comes from the observation that the usual existential ∃ and uni-
versal ∀ quantifiers of logic can be seen as operations of type (X → B) → B, where
B is the type of booleans. Mostowski [12] also called arbitrary functionals of type
(X → B) → B generalised quantifiers. We are choosing to generalise this further by
replacing the booleans B with an arbitrary type R, and allowing for the operation
to be multi-valued.



140 J. Hedges et al.

Definition 3 (Selection functions). A selection function is any function of
the form4

ε: (X → R) → P(X).

Similarly to quantifiers, the canonical example of a selection function is max-
imising one of the coordinates in R

n, defined by

i-arg max(p) = {x ∈ X | (πi ◦ p)(x) ≥ (πi ◦ p)(x′) for all x′ ∈ X}.

Even in one-dimensional R
1 the arg max selection function is naturally multi-

valued: a function may attain its maximum value at several different points.5

2.3 Relating Quantifiers and Selection Functions

It is clear that quantifiers and selection functions are closely related. One impor-
tant relation between them is that of attainment. Intuitively this means that the
outcome of a good move should be a good outcome.

Definition 4. Given a quantifier ϕ: (X → R) → P(R) and a selection function
ε: (X → R) → P(X), we say that ε attains ϕ iff for all contexts p: X → R it is
the case that

x ∈ ε(p) =⇒ p(x) ∈ ϕ(p).

One can check that the attainability relation holds between the quantifier i -
max and the selection function i -arg max. Any point where the maximum value is
attained will evaluate to the maximum value of the function. More interestingly,
the fixpoint quantifier is also a selection function, and it attains itself since

x ∈ fix(p) =⇒ p(x) ∈ fix(p).

Let us briefly reflect on the game theoretic meaning of attainability. Suppose
we have a quantifier ϕ which describes the outcomes that a player considers
to be good. The quantifier might be unrealistic in the sense that it has no
attainable good outcome. For example, a player may consider it a good outcome
if he received a million dollars, but in his current context there may just not be
a move available which will lead to this outcome. The attainable quantifiers
ϕ : (X → R) → P(R) describe realistic players, i.e. for any game context
p : X → R there is always a move x : X which leads to a good outcome
p(x) ∈ ϕ(p).

Given any selection function ε : (X → R) → P(X), we can form the smallest
quantifier which it attains as follows.

4 Where selection functions have been considered previously [2,4] the focus was on
single-valued ones. However, as multi-valued selection functions are extremely impor-
tant in our examples we have adapted the definitions accordingly.

5 In the following we will assume that quantifiers and selection functions are non-
empty. That is, agents will always have a preferred outcome, respectively move, in
all situations they have to make a decision. See [9] for a discussion.



Selection Equilibria of Higher-Order Games 141

Definition 5. Given a selection function ε : (X → R) → P(X), define the
quantifier ε : (X → R) → P(R) as

ε(p) = {p(x) | x ∈ ε(p)}.

It is easy to check that ε attains ε. Conversely, given any quantifier we can
define a corresponding selection function as follows.

Definition 6. Given a quantifier ϕ : (X → R) → P(R), define the selection
function ϕ : (X → R) → P(X) as

ϕ(p) = {x | p(x) ∈ ϕ(p)}.

Again, it is easy to check that the selection function ϕ attains the quantifier
ϕ. We use the same overline notation, as it will be clear from the setting whether
we are applying it to a quantifier or a selection function.

3 Higher-Order Games

Quantifiers and selection functions as introduced in the previous section can be
used to model games. In this section we define higher-order games, illustrate the
definition using the voting contest as a running example, and, lastly, discuss two
equilibrium concepts.

Definition 7 (Higher-Order Games). An n-players game G, with a set R of
outcomes and sets Xi of strategies for the ith player, consists of an (n+1)-tuple
G = (ε1, . . . , εn, q) where

– for each player 1 ≤ i ≤ n, εi: (Xi → R) → P(Xi) is a selection function
describing the i-th player’s preferred moves in each game context.

– q:
∏n

i=1 Xi → R is the outcome function, i.e., a mapping from the strategy
profile to the final outcome.

(Note that a strategy profile for a game is simply a tuple x:
∏n

i=1 Xi, con-
sisting of a choice of strategy for each player.)

Intuitively, we think of the outcome function q as representing the ‘situation’,
or the rules of the game, while we think of the selection functions as describing
the players. Thus we can imagine the same player in different situations, and
different players in the same situation. This allows us to decompose a modelling
problem into a global and a local part: modelling the situation (i.e. q) and
modelling the individual players (i.e. ε1, . . . , εn).

Remark 1 (Classical Game [13]). The ordinary definition of a normal form game
of n-players with standard payoff functions is a particular case of Definition 7
when

– for each player i the set of strategies is Xi,



142 J. Hedges et al.

Table 1. Voting contest with classical players; Nash equilibria in bold.

J2: A J2: B

J1: A 1,1,0 1,1,0
J1: B 1,1,0 0,0,1

J3: A

J2: A J2: B

J1: A 1,1,0 0,0,1
J1: B 0,0,1 0,0,1

J3: B

– the set of outcomes R is R
n, modelling the vector of payoffs obtained by each

player,
– the selection function of player i is i-arg max: (Xi → R

n) → P(Xi), i.e.
arg max with respect to the ith coordinate, representing the idea that each
player is solely interested in maximising their own payoff,

– the ith component of the outcome function q :
∏n

i=1 Xi → R
n can be viewed

as the payoff function qi :
∏n

j=1 Xj → R of the ith player.

Remark 2. For an implementation in a simply-typed language (as opposed to
dependently typed) such as Haskell, it is convenient either to fix the number
of players and store the data in tuples, or to take the sets Xi to be equal and
store the data in homogeneous lists. (See also [1].) In the accompanying imple-
mentation we opt for the latter, because in our running example the Xi are
equal.

3.1 Example: Voting Contest

Reconsider the voting contest outlined in Sect. 2.1: There are three players, the
judges J = {J1, J2, J3}, who each vote for one of two contestants A or B. The
winner is determined by the simple majority rule. We analyse two instances of
this game with different motivations of players while keeping the overall structure
of the game fixed.

Classical Players. Suppose the judges rank the contestants according to a prefer-
ence ordering. Say judges 1 and 2 prefer A and judge 3 prefers B. Table 1 depicts
a payoff matrix which encodes this situation, including the rules for choosing a
winner (majority) and the goals of each individual player. The two separate
tables show the cases when judge 3 has played either A (left table) or B (right
table). Within each table, we also have the four possibilities for the voting of
judge 2 (columns) and judge 1 (rows). A numeric value such as 1, 1, 0 says that
in that particular play judges 1 and 2 got payoff 1, but judge 3 got payoff 0.

How is such a game modelled following Definition 7? The set of strategies in
this case is the same as the set of possible outcomes, i.e. Xi = R = {A,B}. The
outcome function q : X1 × X2 × X3 → R is the majority function maj : X ×
X × X → X, e.g. maj(A,B,B) = B. It remains for us to find suitable selection
functions representing the goals of the three players. Consider two order relations
on X, call it B ≺′ A and A ≺′′ B. The judges wish to maximise the final outcome



Selection Equilibria of Higher-Order Games 143

Table 2. Voting contest with Keynesian players; Nash equilibria in bold.

J2: A J2: B

J1: A 1,1,1 1,0,1
J1: B 1,1,1 0,1,0

J3: A

J2: A J2: B

J1: A 1,1,0 0,1,1
J1: B 0,0,1 0,1,1

J3: B

with respect to their preferred ordering. Hence the three selection functions are

ε1 = ε2 = ≺′-arg max
ε3 = ≺′′-arg max .

Therefore, the game is described by the tuple of higher-order functionals

G = (≺′-arg max,≺′-arg max,≺′′-arg max,maj).

Keynesian Players. Now, consider the case where the first judge J1 still ranks
the candidates according to a preference ordering B ≺ A. The second and third
judges, however, have no preference relations over the candidates per se, but
want to vote for the winning candidate. They are Keynesian6 players.

It is possible to model such a game via standard payoff matrices, and Table 2
presents such an encoding. If there is a majority for a candidate and player J2 or
J3 votes for the majority candidate they will get a certain payoff, say 1. If they
vote for another candidate, their payoff is lower, say 0. Note, however, that in
the process of attaching payoffs to strategies, one has to compute the outcome
of the votes and then check for the second and the third player whether their
vote is in line with the outcome.

Let us now contrast this with the higher-order modelling of games. First note
that from the game G of the previous example, only the “motivation” of players
2 and 3 have changed. Accordingly, we will only need to adjust their selection
functions so as to capture their new goal which is to vote for the winner of the
contest. Such a goal is exactly captured by equipping J2 and J3 with the fixpoint
selection function fix : (X → X) → P(X), defined in Sect. 2.2. Note that it is
neither necessary to change the structure of the game nor to manually compute
anything. The new game with the two Keynesian judges is directly described by
the tuple

GK = (≺-arg max,fix,fix,maj).

One can say that in the higher-order modelling of games we have equipped the
individual players themselves with the problem solving ability that we used to
compute the payoff matrices such that they represent the motivations of the
Keynesian players.

6 The economist John Maynard Keynes [11] remarked that investors in financial mar-
kets can be described as not being interested in the outcome per se but that they
want to behave in line with the majority (in order to “buy low and sell high”). This
behaviour can be elegantly captured as fixed point goals.



144 J. Hedges et al.

3.2 Quantifier Equilibrium

Let us now discuss two different notions of equilibria for higher-order games.
Consider a game with n players, and a strategy profile x ∈ ∏n

i=1 Xi. Given an
outcome function q :

∏n
i=1Xi → R, the game outcome resulting from this choice

of strategy profile is q(x). We can describe the game context in which player i
unilaterally changes his strategy as

Uq
i (x)(x′

i) = q(x[i �→ x′
i])

where x[i �→ x′
i] is the tuple obtained from x by replacing the ith entry of the

tuple x with x′
i. Note that indeed Uq

i (x) has type Xi → R, the appropriate type
of a game context for player i.

We call the n functions Uq
i (1 ≤ i ≤ n) the unilateral maps of the game.

They were introduced in [6] in which it is shown that the proof of Nash’s theorem
amounts to showing that the unilateral maps have certain topological (continuity
and closure) properties. The concept of a context was introduced later in [7], so
now we can say that Uq

i (x): Xi → R is the game context in which the ith player
can unilaterally change his strategy, therefore we call it a unilateral context.

Using this notation we can abstract the classical definition of Nash equilib-
rium to our framework.

Definition 8 (Quantifier equilibrium). Given a game G = (ε1, . . . , εn, q),
we say that a strategy profile x ∈ ∏n

i=1 Xi is in quantifier equilibrium if

q(x) ∈ εi(Uq
i (x))

for all players 1 ≤ i ≤ n.

As with the usual notion of Nash equilibrium, we are also saying that a strategy
profile is in quantifier equilibrium if no player has a motivation to unilaterally
change their strategy. This is expressed formally by saying that preferred out-
comes, specified by the selection function when applied to the unilateral context,
contain the outcome obtained by sticking with the current strategy.

For illustration, we now compute a quantifier equilibrium for the voting con-
test game with classical players

G = (≺′-arg max,≺′-arg max,≺′′-arg max,maj)

as described in Sect. 3.1 in the notation of quantifiers and unilateral contexts.
We look at two possible strategy profiles: BBB and BBA. We claim that BBB
is a quantifier equilibrium. Note that BBB has outcome maj(BBB) = B. Let
us verify this for player 1. The unilateral context of player 1 is

Umaj
1 (BBB)(x) = maj(xBB) = B,

meaning that in the given context the outcome is B no matter what player 1
chooses to play. The maximisation quantifier applied to such a unilateral context
gives

ε1(Umaj
1 (BBB)) = �1-max(Umaj

1 (BBB)) = {B},



Selection Equilibria of Higher-Order Games 145

meaning that, in the given context, player 1’s preferred outcome is B. Hence,
we can conclude by maj(BBB) = B ∈ {B} = ε1(Umaj

1 (BBB)) that B is a
quantifier equilibrium strategy for player 1. This condition holds for each player
and allows us to conclude that BBB is a quantifier equilibrium.

On the other hand, we show that BBA is not in quantifier equilibrium. We
have that

maj(BBA) = B /∈ {A} = ε1(Umaj
1 (BBA)).

since Umaj
1 (BBA)(x) = maj(xBA) = x. In other words, the strategy profile

BBA gives rise to a game context Umaj
1 (BBA) where player 1 has an incentive

to change his strategy to A, so that the new outcome maj(ABA) = A is better
than the previous outcome B.

This game has three quantifier equilibria: {AAA,AAB,BBB}. They are
exactly the same as the Nash equilibria in the normal form representation
(cf. Table 1). We will discuss this coincidence in more detail in Sect. 4.2.

3.3 Selection Equilibrium

The definition of quantifier equilibrium is based on quantifiers. However, we can
also use selection functions directly to define an equilibrium condition.

Definition 9 (Selection equilibrium). Given a game G = (ε1, . . . , εn, q), we
say that a strategy profile x ∈ ∏n

i=1 Xi is in selection equilibrium if

xi ∈ εi(Uq
i (x))

for all players 1 ≤ i ≤ n, where xi is the ith component of the tuple x.

As in the previous subsection, let us illustrate the concept above using the
voting contest with classical players from Sect. 3.1. The set of selection equilibria
is {AAA,AAB,BBB}, the same as the set of quantifier equilibria.

Consider BBB and the rationale for player 1. As seen above, his unilateral
context is

Umaj
1 (BBB)(x) = maj(xBB) = B.

Hence, given this game context his selection function calculates

ε1(Umaj
1 (BBB)) = {B}

As before, given that he is not pivotal, an improvement by switching votes is
not possible. The same condition holds analogously for the other players.

Let us now investigate the strategy profile BBA. The unilateral context is

Umaj
1 (BBA)(x) = maj(xBA) = x.

Given this context, the selection function tells us that player 1 would switch
to A:

ε1(Umaj
1 (BBA)) = {A}.

Hence, BBA is not a selection equilibrium.



146 J. Hedges et al.

4 Relationship Between Equilibrium Concepts

In this section we show that selection equilibrium is a strict refinement of quanti-
fier equilibrium. Moreover, we show that for a special class of selection functions,
which we call closed selection functions, the two notions coincide. The obvious
question then arises: which concept is more reasonable when games involve non-
closed selection functions? We will argue by example that in such cases selection
equilibrium is the adequate concept.

4.1 Closed Selection Functions

Selection functions such as i-arg max(p), which one obtains from utility functions
as discussed in Sect. 2.2, are examples of what we call closed selection functions.

Definition 10 (Closedness). A selection function ε: (X → R) → P(X) is
said to be closed if whenever x ∈ ε(p) and p(x) = p(x′) then x′ ∈ ε(p).

Intuitively, a closed selection function is one which chooses optimal moves
only based on the outcomes they generate. Two moves that lead to the same
outcome are therefore indistinguishable, they are either both good or bad. It
is easy to see that the selection function arg max is closed. Agents modelled
via closed selection functions do not put any preferences on moves that lead to
identical outcomes.

An example of a non-closed selection function is the fixpoint operator

fix : (X → X) → P(X).

defined in Sect. 2.2. To see that fix is non-closed, we might have two points x �= x′

which both map to x (i.e. p(x) = p(x′) = x) so that x is a fixed point but x′ is
not.

One can consider translating quantifiers into selection functions and back
into quantifiers, or conversely.

Proposition 1. For all p : X → R we have

(i) ϕ(p) = ϕ(p) if ϕ is an attainable quantifier of type (X → R) → P(R)
(ii) ε(p) ⊆ ε(p) for any selection functions of type (X → R) → P(X).

Proof. These are easy to derive. Let us briefly outline ε(p) ⊆ ε(p). Suppose
x ∈ ε(p) is a good move in the game context p : X → R. By Definition 5 we
have that p(x) ∈ ε(p). Finally, by Definition 6 we have that x ∈ ε(p). �

The proposition above shows that on attainable quantifiers the double-
overline operation calculates the same quantifier we started with. On general
selection functions, however, the mapping ε �→ ε can be viewed as a closure
operator.7 Intuitively, the new selection function ε will have the same good out-
comes as the original one, but it might consider many more moves to be good as
well, as it does not distinguish moves which both lead to equally good outcomes.
7 Note that we might have a strict inclusion ε(p) ⊂ ε(p) in case we have x1 �= x2, with

x1 ∈ ε(p) and x2 �∈ ε(p) but p(x1) = p(x2).



Selection Equilibria of Higher-Order Games 147

Proposition 2. A selection function ε is closed if and only if ε = ε.

Proof. Assume first that ε is closed, i.e.

(i) x ∈ ε(p) and p(x) = p(x′) then x′ ∈ ε(p).

By Proposition 1 is it enough to show that if x′ ∈ ε(p) then x′ ∈ ε(p). Assuming
x′ ∈ ε(p), and by Definition 6 we have

(ii) p(x′) ∈ ε(p).

By Definition 5, (ii) says that p(x′) = p(x) for some x ∈ ε(p). By (i) it follows
that x ∈ ε(p).
Conversely, assume that ε = ε and that x ∈ ε(p) and p(x) = p(x′). We wish to
show that x′ ∈ ε(p). Since x ∈ ε(p) then p(x) ∈ ε(p). But since p(x) = p(x′)
we have that p(x′) ∈ ε(p). Hence, x′ ∈ ε(p). But since ε = ε it follows that
x′ ∈ ε(p). �

4.2 Selection Refines Quantifier Equilibrium

The following theorem shows that selection equilibrium is a refinement of quan-
tifier equilibrium.

Theorem 1. Every selection equilibrium is a quantifier equilibrium.

Proof. Recall that by definition, for every context p we have x ∈ εi(p) =⇒
p(x) ∈ εi(p), since εi(p) = {p(x) | x ∈ εi(p)}. Assuming that x is a selection
equilibrium we have xi ∈ εi(Uq

i (x)) Therefore Uq
i (x)(xi) ∈ εi(Uq

i (x)). It remains
to note that Uq

i (x)(xi) = q(x), because x[i �→ xi] = x. �
However, for closed selection functions the two notions coincide:

Theorem 2. If εi = εi, for 1 ≤ i ≤ n, then the two equilibrium concepts
coincide.

Proof. Given the previous theorem, it remains to show that under the assump-
tion εi = εi any strategy profile x in quantifier equilibrium is also in selec-
tion equilibrium. Fix i and suppose x is such that q(x) ∈ εi(Uq

i (x)). Since
Uq
i (x)(xi) = q(x), we have Uq

i (x)(xi) ∈ εi(Uq
i (x)). By the definition of εi it

follows that xi ∈ εi(Uq
i (x)). Therefore, since εi = εi, we obtain xi ∈ εi(Uq

i (x)).�
The theorem above explains why in the voting contest with classical pref-

erences the strategy profiles that were quantifier equilibrium were the same as
those in selection equilibrium. This example can be modelled with closed selec-
tion functions. Moreover, since arg max can be easily shown to be closed, in the
classical modelling of games via maximising players, our two notions of equi-
librium also coincide. The following theorem shows that they both indeed also
coincide with the standard notion of Nash equilibrium.



148 J. Hedges et al.

Theorem 3. In a classical game (see Remark 1) the standard definition of Nash
equilibrium and the equilibrium notions of Definitions 8 and 9 are equivalent.

Proof. Suppose the set of outcomes R is R
n and that the selection functions εi are

i-arg max, i.e. maximising with respect to ith coordinate. Unfolding Definition 9
and that of a unilateral context Uq

i (x), we see that a tuple x is an equilibrium
strategy profile if for all 1 ≤ i ≤ n

xi ∈ i-arg max
x∈Xi

q(x[i �→ x]).

But xi is a point on which the function p(x) = q(x[i �→ x]) attains its maximum
precisely when p(xi) ∈ maxx∈Xi

p(x). Hence

q(x) = q(x[i �→ xi]) = p(xi) = max
x∈Xi

p(x) = max
x∈Xi

q(x[i �→ x])

which is the standard definition of a Nash equilibrium: for each player i, the
outcome obtained by not changing the strategy, i.e. q(x), is the best possi-
ble amongst the outcomes when any other available strategy is considered, i.e.
maxx∈Xi

q(x[i �→ x]). �
Theorem 3 above shows that in the case of classical games the usual concept

of a Nash equilibrium coincides with both the quantifier equilibrium and the
selection equilibrium. On the other hand, for general games, Theorem 1 proves
that every selection equilibrium is a quantifier equilibrium.

selection equilibria � quantifier equilibria

In the following section we give examples showing that the inclusion above is
strict, i.e. that there are games where selection equilibrium is a strict refinement
of quantifier equilibrium. By Theorem 2 these examples necessarily make use of
players modelled by non-closed selection functions.

4.3 Illustrating the Two Solution Concepts

In Sect. 3.1 we have discussed the representation of the voting contest with Key-
nesian players game both in normal form as well as in higher-order functions.
Here, we will turn to analysing the equilibria of its higher-order representation

GK = (≺-arg max,fix,fix,maj).

We begin with quantifier equilibria (see Table 3). These include the strategy
profiles where judges (players) J2 and J3 are both coordinated but also profiles
where either J2 or J3 is in the minority. Readers are encouraged to download
the Haskell implementation, and interactively verify entries of this table.

We illustrate the rationale for the strategy profile AAB of the Keynesian
player 3. The outcome of AAB is maj(AAB) = A. The unilateral context of
player 3 is

Umaj
3 (AAB)(x) = maj(AAx) = A



Selection Equilibria of Higher-Order Games 149

Table 3. Players: max, fix, fix

Strategy Outcome Quantifier eq. Defects Selection eq. Defects

AAA A � �
AAB A � - J3

ABA A � - J2

ABB B � �
BAA A � �
BAB B - J1 - J1, J2

BBA B - J1 - J1, J3

BBB B � �

meaning that the outcome is (still) A if player 3 unilaterally changes from B to
A. The fixed point quantifier applied to this context gives

ε3(Umaj
3 (AAB)) = fix(Umaj

3 (AAB)) = {A}

meaning that A is the outcome resulting from an optimal choice. Hence, we can
conclude by

maj(AAB) = A ∈ {A} = ε3(Umaj
3 (AAB))

that player 3 is happy with his choice of move B according to the quantifier
equilibrium notion. This already demonstrates the problem with the quantifier
equilibrium notion, since the Keynesian player 3 has voted for B but A is the
winner, so he should not be happy at all!

Now, let us turn to the selection equilibria. Table 3 also contains the selection
equilibria and it shows that they are a strict subset of the quantifier equilibria.
Consider again the strategy profile AAB, focusing on the third player. In the
case of the selection equilibrium we have

B /∈ {A} = fix(Umaj
3 (AAB)) = ε3(Umaj

3 (AAB))

meaning that player 3 is not happy with his current choice of strategy B with
respect to the strategy profile AAB.

Remark 3. Given Theorem 2 it follows immediately that fix: (X → X) → P(X)
is not a closed selection function. Indeed, it is easy to calculate that

fix(p) = {x | p(x) = p(y), for some y such that y = p(y)},

i.e. fix(p) is the inverse image of fix(p), so it contains not only all fixed points of
p but also points that map through p to a fixed point.

The selection equilibria are precisely those in which J2 and J3 are coordi-
nated, and J1 is not pivotal in any of these. For illustration, consider the strategy



150 J. Hedges et al.

AAA, which is a selection equilibrium of this game. Suppose the moves of J1 and
J2 are fixed, but J3 may unilaterally change strategy. The unilateral context is

Umaj
3 (AAA)(x) = maj(AAx) = A

Thus the unilateral context is a constant function, and its set of fixpoints is

fix(Umaj
3 (AAA)) = {A}.

This tells us that J3 has no incentive to unilaterally change to the strategy B,
because he will no longer be voting for the winner.

On the other hand, for the strategy ABB the two Keynesian players are
indifferent, because if either of them unilaterally changes to A then A will become
the majority and they will still be voting for the winner. This is still a selection
equilibrium (as we would expect) because the unilateral context is the identity
function, and in particular B is a fixpoint.

As a last point, let us compare the selection and quantifier equilibria of
Table 3 with the Nash equilibria in the normal form game. The payoff matrix
in Table 2 also depicts Nash equilibria payoffs as marked in bold. Note that
the latter are the same as the selection equilibria. Thus, in general selection
equilibrium appears to be the adequate solution concept.

Coordination. As a last point, consider a game where all players want to vote
for the winner of the contest. Table 4 represents the payoffs of this game; Nash
equilibria are in bold. Clearly the only two equilibria are when all judges vote
unanimously for a given contestant. Judges J1, J2 and J3 want to vote for the
winner, so the selection functions are all given by the fixpoint operator.

Table 4. Nash equilibria of coordination game

J2: A J2: B
J1: A 1,1,1 1,0,1
J1: B 0,1,1 1,1,0

J3: A

J2: A J2: B
J1: A 1,1,0 0,1,1
J1: B 1,0,1 1,1,1

J3: B

The selection equilibria of the higher-order representation of this game are
exactly the coordinated strategies. This game is a good example of why quan-
tifier equilibria are not suitable for modelling games with non-closed selection
functions: every strategy is a quantifier equilibrium of this game, but the selec-
tion equilibrium captures the intuition perfectly that the equilibria should be
the strategy profiles that are maximally coordinated, namely AAA and BBB.

5 Conclusion

In this paper, we introduced a representation of strategic games based on quanti-
fiers and selection functions as well as a new equilibrium concept, and showed by



Selection Equilibria of Higher-Order Games 151

example that the selection equilibrium is the appropriate concept as it works well
even when players are described by non-closed selection functions. We focused
on simultaneous move games. Yet, the theory as well as the implementation nat-
urally extend to sequential games. Moreover, multi-valued selection functions as
formulated here have sparked new research avenues, for instance on so called
“open games” [5,8,10], a compositional approach to game theory.

References

1. Botta, N., Ionescu, C., Brady, E.: Sequential decision problems, dependently typed
solutions. In: Proceedings of PLMMS 2013 (2013)

2. Escardó, M., Oliva, P.: Selection functions, bar recursion and backward induction.
Math. Struct. Comput. Sci. 20(2), 127–168 (2010)

3. Escardó, M., Oliva, P.: What sequential games, the Tychonoff theorem and the
double-negation shift have in common. In: Proceedings of the Third ACM SIG-
PLAN Workshop on Mathematically Structured Functional Programming (MSFP
2010), pp. 21–32 (2010)

4. Escardó, M., Oliva, P.: Sequential games and optimal strategies. Proc. R. Soc.
Lond. A Math. Phys. Eng. Sci. 467(2130), 1519–1545 (2011)

5. Ghani, N., Hedges, J.: A compositional approach to economic game theory.
arXiv:1603.04641 (2016)

6. Hedges, J.: A generalization of Nash’s theorem with higher-order functionals.
Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 469(2154) (2013). http://rspa.
royalsocietypublishing.org/content/469/2154/20130041

7. Hedges, J.: Monad transformers for backtracking search. In: Proceedings of the
5th Workshop on Mathematically Structured Functional Programming, pp. 31–50.
Open Publishing Association (2014)

8. Hedges, J.: Towards compositional game theory. Ph.D. thesis, Queen Mary
University of London (2016)

9. Hedges, J., Oliva, P., Sprits, E., Winschel, V., Zahn, P.: Higher-order decision
theory. arXiv preprint cs.GT, arXiv:1506.01003 (2015)

10. Hedges, J., Sprits, E., Winschel, V., Zahn, P.: Compositionality and string diagrams
for game theory. arXiv:1604.06061 (2015)

11. Keynes, J.M.: General Theory of Employment, Interest and Money. Macmillan,
London (1936)

12. Mostowski, A.: On a generalization of quantifiers. Fundamenta Mathematicae 44,
12–36 (1957)

13. Osborne, M., Rubinstein, A.: Course in Game Theory. MIT Press, Cambridge
(1994)

http://arxiv.org/abs/1603.04641
http://rspa.royalsocietypublishing.org/content/469/2154/20130041
http://rspa.royalsocietypublishing.org/content/469/2154/20130041
http://arxiv.org/abs/1506.01003
http://arxiv.org/abs/1604.06061

	Selection Equilibria of Higher-Order Games
	1 Introduction
	2 Players, Quantifiers and Selection Functions
	2.1 Game Context
	2.2 Quantifiers and Selection Functions
	2.3 Relating Quantifiers and Selection Functions

	3 Higher-Order Games
	3.1 Example: Voting Contest
	3.2 Quantifier Equilibrium
	3.3 Selection Equilibrium

	4 Relationship Between Equilibrium Concepts
	4.1 Closed Selection Functions
	4.2 Selection Refines Quantifier Equilibrium
	4.3 Illustrating the Two Solution Concepts

	5 Conclusion
	References


