
Boltzmann Samplers for Closed Simply-Typed
Lambda Terms

Maciej Bendkowski1, Katarzyna Grygiel1, and Paul Tarau2(B)

1 Theoretical Computer Science Department, Faculty of Mathematics and Computer
Science Jagiellonian University, ul. Prof. �Lojasiewicza 6, 30-348 Kraków, Poland

{bendkowski,grygiel}@tcs.uj.edu.pl
2 Department of Computer Science and Engineering,

University of North Texas, Denton, TX, USA
paul.tarau@unt.edu

Abstract. Simply-typed lambda terms are often used in the internal
language of compilers and proof assistants, for which generation of large,
uniformly distributed random terms is instrumental for testing correct-
ness and scalability. Recently, Boltzmann samplers have enabled uniform
random generation of large terms belonging to several families of com-
binatorial objects that have a regular structure, amenable to methods
from analytic combinatorics. Unfortunately, no closed formula or gener-
ating function facilitating such methods is known for closed simply-typed
lambda terms. Moreover, given their asymptotic sparsity in the family of
closed lambda terms, filtering simply-typed terms in the much larger set
of terms generated by a Boltzmann sampler becomes quickly intractable.
By taking advantage of the synergy between logic variables, unification
with occurs check and efficient backtracking in today’s Prolog systems we
advance this technique to term sizes interesting not only for correctness
but also for scalability tests, by deriving Boltzmann samplers returning
in a few seconds simply-typed random lambda terms of size 120 and
above. We also apply our techniques to the generation of uniformly ran-
dom closed simply-typed normal forms and give some hints on pushing
them further via parallel execution algorithms.

Keywords: Boltzmann samplers · Random generation of simply-typed
lambda terms · Type inference · Combinatorics of lambda terms · Ran-
dom generation of simply-typed normal forms

1 Introduction

Simply-typed lambda terms [1,2] enjoy a number of nice properties, such as
strong normalization, i.e., termination for all evaluation-orders, a Cartesian
closed category mapping and a set-theoretical semantics. More importantly, via

The first two authors have been partially supported by the Polish National Science
Center grant 2013/11/B/ST6/00975. The third author has been supported by NSF
grant 1423324.

c© Springer International Publishing AG 2017
Y. Lierler and W. Taha (Eds.): PADL 2017, LNCS 10137, pp. 120–135, 2017.
DOI: 10.1007/978-3-319-51676-9 8

Boltzmann Samplers for Closed Simply-Typed Lambda Terms 121

the Curry-Howard isomorphism, closed lambda terms that are inhabitants of
simple types can be seen as proofs for tautologies in the implicational fragment
of minimal logic which, in turn, correspond to the simple types. Extended with
a fix-point operator, simply-typed lambda terms can be used as the intermedi-
ate language for compiling Turing-complete functional languages. Recent work
on the combinatorics of lambda terms [3–5], relying on generating functions
and techniques from analytic combinatorics [6], has provided counts for several
families of lambda terms and clarified important quantitative properties of inter-
esting subclasses of lambda terms. With the techniques provided by generating
functions [6], it was possible to separate the counting of the terms of a given
size for several families of lambda terms from their more computation intensive
generation, resulting in several additions (e.g., A220894, A224345, A114851)
to the On-Line Encyclopedia of Integer Sequences [7].

On the other hand, the combinatorics of simply-typed lambda terms, given
the absence of closed formulas or context-free grammar-based generators, due to
the intricate interaction between type inference and the applicative structure of
lambda terms, has left important problems open, including the very basic one
of counting the number of closed simply-typed lambda terms of a given size.
At this point, obtaining counts for simply-typed lambda terms requires going
through the more computation-intensive generation process.

Fortunately, by taking advantage of the synergy between logic variables, uni-
fication with occurs check and efficient backtracking it is possible to significantly
accelerate the generation of simply-typed lambda terms [8] by interleaving it with
type inference steps.

While the generators described in the afore-mentioned paper can push the
size of the simply-typed lambda terms by a few steps higher, one may want to
obtain uniformly sampled random terms of significantly larger size, especially if
one is concerned not only about correctness but also about scalability of compil-
ers and program transformation tools used in the implementation of functional
programming languages and proof assistants.

This brings us to the main contribution of this paper. We will first build
efficient generators for simply-typed lambda terms that work by interleaving
term building and type inference steps. From them, we will derive Boltzmann
samplers returning random simply-typed lambda terms [9] of sizes between 120
and 150, assuming a slight variation of the “natural size” introduced in [10],
assigning to each constructor a size given by its arity. We will also extend this
technique to the random generation of simply-typed closed normal forms, based
on the same definition of size.

The paper is organized as follows. Section 2 describes generators for plain,
closed and simply-typed terms of a given size. Section 3 derives Boltzmann sam-
plers for random generation of simply-typed closed lambda terms. Section 4
describes generators for lambda terms in normal form as well as their closed and
simply-typed subsets. Section 5 derives Boltzmann samplers for random gener-
ation of simply-typed closed lambda terms in normal form. Section 6 discusses
techniques for possibly pushing higher the sizes of generated random terms.
Section 7 overviews related work and Sect. 8 concludes the paper.

122 M. Bendkowski et al.

The paper is structured as a literate Prolog program. The code has been
tested with SWI-Prolog 7.3.8 and YAP 6.3.4. It is also available as a separate
file at http://www.cse.unt.edu/∼tarau/research/2016/ngen.pro.

2 Generators for Lambda Terms of a Given Natural Size

We start by generating all lambda terms of a given size, in the de Bruijn notation.

2.1 De Bruijn notation

De Bruijn indices [11] provide a robust name-free representation of lambda term
variables. Closed terms1 that are identical up to renaming of variables, i.e., are
α-convertible, share a unique representation. This allows each variable occur-
rence to be replaced by a non-negative integer marking the number of lambda
abstractions between the variable and its binder. Following [10] we assume a
unary notation of integers using the constant 0 and the constructor s/1 for
the successor. Lambda abstraction and application constructors are represented
using l/1 and a/2, respectively. And so, the set L of plain lambda terms is given
by the following grammar:

L = LL | λ L | D,

where D denotes the set {0, s(0), s(s(0)),...} of de Bruijn indices.
Throughout the paper we assume that each constructor is of weight equal to

its arity and the size of a lambda term is the sum of the weights of its building
constructors.

2.2 Generating Plain Lambda Terms

Generation of plain lambda terms of a given size proceeds by consuming at each
step a size unit, represented by the constructor s/1. This ensures that, for a
size definition allocating a number of size units to each of the constructors of a
term, generation is constrained to terms of a given size. As there are n+1 leaves
(labeled 0) in a tree with n a/2 constructors, we implement our generator to
consume as many size-units as the arity of each constructor, in particular 0 for
0 and 2 for the constructor a/2. This means that we will obtain the counts for
terms of natural size n + 1 when consuming n size-units.

genLambda(s(S),X):-genLambda(X,S,0).

genLambda(X,N1,N2):-nth_elem(X,N1,N2).

genLambda(l(A),s(N1),N2):-genLambda(A,N1,N2).

genLambda(a(A,B),s(s(N1)),N3):-

genLambda(A,N1,N2),

genLambda(B,N2,N3).

1 A lambda term is called closed if it has no free variables and open otherwise. A term
is called plain if it is either closed or open.

http://www.cse.unt.edu/~tarau/research/2016/ngen.pro

Boltzmann Samplers for Closed Simply-Typed Lambda Terms 123

Note that nth elem/3 consumes progressively larger size-units for variables of
a higher de Bruijn index, a property that conveniently mimics the fact that,
in practical programs, variables located farther from their binders are likely to
occur less frequently than those closer to their binders.

nth_elem(0,N,N).

nth_elem(s(X),s(N1),N2):-nth_elem(X,N1,N2).

Example 1. Plain lambda terms of size 2 (with size of each constructor given
by its arity).

?- genLambda(s(s(s(0))),X).

X = s(s(0)) ; X = l(s(0)) ; X = l(l(0)) ; X = a(0, 0) .

Counts for plain lambda terms are given by the sequence A105633 in [7].

2.3 Generating Closed Lambda Terms

We derive a generator for closed lambda terms by counting with help of a list of
logic variables. At each lambda binder l/1 step, a new variable is added to the
list associated with a path from the root. For now, we simply use the length of
the list as a counter for l/1 nodes on the path.

The predicate genClosed/2 builds this list of logic variables as it generates
binders. When generating a leaf variable, it picks “non-deterministically” one of
the variables among the list of variables corresponding to binders encountered
on a given path from the root Vs. In fact, this list of variables will be ready to
be used later to store the types inferred for a given binder.

genClosed(s(S),X):-genClosed(X,[],S,0).

genClosed(X,Vs,N1,N2):-nth_elem_on(X,Vs,N1,N2).

genClosed(l(A),Vs,s(N1),N2):-genClosed(A,[_|Vs],N1,N2).

genClosed(a(A,B),Vs,s(s(N1)),N3):-

genClosed(A,Vs,N1,N2),

genClosed(B,Vs,N2,N3).

Like nth elem in the case of plain lambda terms, the predicate nth elem on
assigns larger and larger s/1 weights as the de Bruijn indices, computed in
successor arithmetic.

nth_elem_on(0,[_|_],N,N).

nth_elem_on(s(X),[_|Vs],s(N1),N2):-nth_elem_on(X,Vs,N1,N2).

Example 2. Closed lambda terms of natural size 5.

?- genClosed(s(s(s(s(s(0))))),X).

X = l(l(l(s(0)))) ; X = l(l(l(l(0)))) ; X = l(l(a(0, 0))) ;

X = l(a(0, l(0))) ; X = l(a(l(0), 0)) ; X = a(l(0), l(0)) .

Counts for closed lambda terms are given by the sequence A275057 in [7].

124 M. Bendkowski et al.

2.4 Generating Simply-Typed Lambda Terms

We will derive a generator for simply-typed lambda terms with help from the
logic variables used simply as counters in the case of closed terms, to contain the
types on which de Bruijn indices pointing to the same binder should agree.

genTypable(X,V,Vs,N1,N2):-genIndex(X,Vs,V,N1,N2).

genTypable(l(A),(X->Xs),Vs,s(N1),N2):-genTypable(A,Xs,[X|Vs],N1,N2).

genTypable(a(A,B),Xs,Vs,s(s(N1)),N3):-

genTypable(A,(X->Xs),Vs,N1,N2),

genTypable(B,X,Vs,N2,N3).

genIndex(0,[V|_],V0,N,N):-unify_with_occurs_check(V0,V).

genIndex(s(X),[_|Vs],V,s(N1),N2):-genIndex(X,Vs,V,N1,N2).

We expose this algorithm via two interfaces: one for plain terms and one for
closed terms.

genPlainTypable(S,X,T):-genTypable(S,_,X,T).

genClosedTypable(S,X,T):-genTypable(S,[],X,T).

genTypable(s(S),Vs,X,T):-genTypable(X,T,Vs,S,0).

For convenience, we shift the sequence by one to match the size definition
where both application nodes and 0 leaves have size 1 as originally given in [10].
As there are n+1 leaf nodes for n application nodes, consuming two units for an
application rather than one for an application and one for a leaf as done in [10],
speeds up the generation process as we are able to apply the size constraints at
application nodes, earlier in the recursive descent.

Example 3. Plain simply-typed lambda terms of natural size 3.

?- genPlainTypable(s(s(s(s(0)))),X,T).

X = s(s(s(0))),T = A ;

X = l(s(s(0))),T = (A->B) ;

X = l(l(s(0))),T = (A->B->A) ;

X = l(l(l(0))),T = (A->B->C->C) ;

X = a(0, s(0)),T = A ;

X = a(0, l(0)),T = A ;

X = a(s(0), 0),T = A ;

X = a(l(0), 0),T = A .

Counts for plain simply-typed lambda terms, up to size 16, are given by the
sequence:

0, 1, 2, 3, 8, 17, 42, 106, 287, 747, 2069, 5732, 16012, 45283, 129232, 370761, 1069972.

Counts for closed simply-typed lambda terms are given by the sequence
A272794 in [7]. The first 16 entries are:

0, 0, 1, 1, 2, 5, 13, 27, 74, 198, 508, 1371, 3809, 10477, 29116, 82419, 233748.

Boltzmann Samplers for Closed Simply-Typed Lambda Terms 125

3 A Boltzmann Sampler for Simply-Typed Terms

A naive way of sampling uniformly random lambda terms is to generate all terms
of a given size and extract a random one out of them. Unfortunately, given the
fact that the number of lambda terms grows exponentially with n, this technique
quickly becomes intractable.

3.1 Designing Boltzmann Samplers

In their breakthrough paper [12], Duchon et al. introduced a powerful framework
of Boltzmann samplers meant for random generation of combinatorial objects.
Exploiting the analytic nature of the formal power series (see, e.g. [6]) related
to the counts of objects in question, as well as their intrinsic recursive structure,
it is possible to develop an efficient sampling algorithm.

The key idea behind Boltzmann samplers consists in setting a proper prob-
ability space defined on the set of combinatorial objects in such a way that any
two objects of the same size are equally likely to be sampled. The price we pay
for the efficiency and uniformity is the lack of control over the exact outcome
size.

The process of sampling lambda terms follows their top-down recursive struc-
ture. At each step, the algorithm decides which constructor to use next, according
to pre-computed branching probabilities. Depending on the type of the chosen
constructor, the sampler either terminates, if 0 was chosen, or proceeds to con-
struct the arguments recursively.

Although the size of the outcome is not deterministic, it is possible to control
its expected size by adjusting the branching probabilities used in the sampling
process. As in [9], the desired branching probabilities can be calibrated to set
the expected size to a given finite value.

Such an approach allows us to rapidly sample random plain lambda terms
of sizes of order 500,000. Given the asymptotic sparsity of closed simply-typed
lambda terms in the set of plain ones [10], the sampling process has to be inter-
leaved with a rejection phase where undesired terms are discarded as soon as
possible and the whole process is restarted. Due to the immense number of
expected retrials, the power of Boltzmann samplers is therefore significantly
constrained. Following our empirical experiments, we calibrated the branching
probabilities so to set the expected outcome size to 120 – the currently biggest
practical size achievable.

3.2 Deriving a Boltzmann Sampler from an Exhaustive Generator

When generating all terms of a given size, the Prolog system explores all pos-
sibilities via backtracking. For a random generator, deterministic steps will be
used instead, guided by the probabilities determined by the Boltzmann sampler.

Our code is parameterized by the size interval for the generated random
terms as well as the maximum number of steps until the being closed and being
simply-typed constraints are both met. Moreover, the code relies on precomputed

126 M. Bendkowski et al.

constants corresponding to branching probabilities. Their values are obtained
according to the recursive combinatorial specification of lambda terms by deter-
mining the appropriate complex function and evaluating it in the vicinity of its
dominant singularity. The detailed process of computing the desired values is
described in [9]. In our case, it turns out that in order to construct a plain term
of expected size 120 the probabilities in question are as follows:

– the probability of constructing a de Bruijn index is 0.35700035696434995
– the probability of a lambda abstraction is 0.29558095907
– the probability of an application is 0.34741868396.

Furthermore, whenever we decide to create a de Bruijn index the probability
of constructing zero is equal to 0.7044190409261122, while a successor is chosen
with probability 0.29558095907. Hence, at each step of the construction process
we draw uniformly at random a real from the interval [0, 1] and on its basis we
decide which constructor to add.

min_size(120).

max_size(150).

max_steps(10000000).

boltzmann_index(R):-R<0.35700035696434995.

boltzmann_lambda(R):-R<0.6525813160382378.

boltzmann_leaf(R):-R<0.7044190409261122.

The very high value of retries, max steps, is coming from the discussed spar-
sity of simply-typed terms among all plain terms. The Boltzmann sampler can
be fine-tuned via min size and max size to search for terms in an interval for
which the probabilities of the sampler have been calibrated.

The predicate ranTypable returns a term X, its type T as well as the size of
the term and the number of trial steps it took to find the term.

ranTypable(X,T,Size,Steps):-

max_size(Max),

min_size(Min),

max_steps(MaxSteps),

between(1,MaxSteps,Steps),

random(R),

ranTypable(Max,R,X,T,[],0,Size0),

Size0>=Min,

!,

Size is Size0+1.

Note that it calls the predicate random/1, returning a random value between
0 and 1, with the convention that each predicate provides such a value for the
next one(s) it calls, convention that will be consistently followed in the code.

The predicate ranTypable/7 follows the outline of the corresponding non-
deterministic generator, except that it is driven by deterministic choices provided
by the Boltzmann branching probabilities that decide which branch is taken.

Note that the parameter Max preempts growing a term above the specified
size interval as early as that happens. Like in the generator, on which it is based,

Boltzmann Samplers for Closed Simply-Typed Lambda Terms 127

type inference is interleaved with term building. As a result, we prevent building
terms with subterms that are not simply-typed, as soon as such a subterm is
found.

ranTypable(Max,R,X,V,Vs,N1,N2):-boltzmann_index(R),!,

random(NewR),

pickIndex(Max,NewR,X,Vs,V,N1,N2).

ranTypable(Max,R,l(A),(X->Xs),Vs,N1,N3):-boltzmann_lambda(R),!,

next(Max,NewR,N1,N2),

ranTypable(Max,NewR,A,Xs,[X|Vs],N2,N3).

ranTypable(Max,_R,a(A,B),Xs,Vs,N1,N5):-

next(Max,R1,N1,N2),

ranTypable(Max,R1,A,(X->Xs),Vs,N2,N3),

next(Max,R2,N3,N4),

ranTypable(Max,R2,B,X,Vs,N4,N5).

Besides ensuring that types assigned to a leaf are consistent with the type
acquired so far by their binder, the predicate pickIndex/7 also enforces the
property of being a closed term by picking variables from the list of possible
binders above it, on the path to the root.

pickIndex(_,R,0,[V|_],V0,N,N):-boltzmann_leaf(R),!,

unify_with_occurs_check(V0,V).

pickIndex(Max,_,s(X),[_|Vs],V,N1,N3):-

next(Max,NewR,N1,N2),

pickIndex(Max,NewR,X,Vs,V,N2,N3).

Finally, the helper predicate next/4 ensures that the size count accumulated so
far is not above the required interval, while providing a random value to be used
by the next call.

next(Max,R,N1,N2):-N1<Max,N2 is N1+1,random(R).

Example 4. A uniformly random simply-typed lambda term of size 137 and its
type, obtained after 1070126 trial steps in 4.388 s.

l(a(l(l(l(l(l(a(s(s(0)),a(l(a(l(l(l(0))),l(a(0,a(0,a(s(s(0)),

a(l(a(l(0),a(a(l(l(l(l(s(s(s(0))))))),s(s(0))),a(0,a(0,a(l(l(0)),

l(a(l(l(l(s(s(s(0)))))),s(0))))))))),l(0)))))))),a(0,a(s(s(0)),

a(a(s(0),0),0)))))))))),l(a(l(a(0,a(l(l(s(0))),l(l(l(0)))))),

l(a(l(a(0,a(l(a(l(l(l(l(s(0))))),l(s(s(0))))),l(s(0))))),a(l(l(a(l(0),

l(a(l(l(l(a(0,a(0,l(l(0))))))),l(s(0))))))),s(s(0)))))))))

(A->B->((C->D->D)->E->F->G)->(((E->F->G)->G)->

((E->F->G)->G)->C->D->D)->((E->F->G)->G)->E->F->G)

4 Generating Simply-Typed Normal Forms

Normal forms are lambda terms that cannot be further β-reduced. In other
words, they avoid redexes as subterms, i.e., applications with lambda abstrac-
tions on their left branches.

128 M. Bendkowski et al.

4.1 Generating Normal Forms of Given Size

To generate normal forms we simply add to genLambda the constraint
notLambda/1 ensuring that the left branch of an application node is anything
except an l/1 lambda node.

genNF(s(S),X):-genNF(X,S,0).

genNF(X,N1,N2):-nth_elem(X,N1,N2).

genNF(l(A),s(N1),N2):-genNF(A,N1,N2).

genNF(a(A,B),s(s(N1)),N3):-notLambda(A),genNF(A,N1,N2),genNF(B,N2,N3).

notLambda(0).

notLambda(s(_)).

notLambda(a(_,_)).

Example 5. Plain normal forms of natural size 5.

?- genNF(s(s(s(s(0)))),X).

X = s(s(s(0))) ;

X = l(s(s(0))) ;

X = l(l(s(0))) ;

X = l(l(l(0))) ;

X = l(a(0, 0)) ;

X = a(0, s(0)) ;

X = a(0, l(0)) ;

X = a(s(0), 0) .

Counts for plain (untyped) normal forms, up to size 16, are given by the sequence:

0, 1, 2, 4, 8, 17, 38, 89, 216, 539, 1374, 3562, 9360, 24871, 66706, 180340, 490912.

4.2 Interleaving Generation and Type Inference

Like in the case of the set of simply-typed lambda terms, we can define the more
efficient combined generator and type inferrer predicate genTypableNF/5.

genPlainTypableNF(S,X,T):-genTypableNF(S,_,X,T).

genClosedTypableNF(S,X,T):-genTypableNF(S,[],X,T).

genTypableNF(s(S),Vs,X,T):-genTypableNF(X,T,Vs,S,0).

genTypableNF(X,V,Vs,N1,N2):-genIndex(X,Vs,V,N1,N2).

genTypableNF(l(A),(X->Xs),Vs,s(N1),N2):-genTypableNF(A,Xs,[X|Vs],N1,N2).

genTypableNF(a(A,B),Xs,Vs,s(s(N1)),N3):-notLambda(A),

genTypableNF(A,(X->Xs),Vs,N1,N2),

genTypableNF(B,X,Vs,N2,N3).

Example 6. Simply-typed normal forms of size 6 and their types.

Boltzmann Samplers for Closed Simply-Typed Lambda Terms 129

?- genClosedTypableNF(s(s(s(s(s(0))))),X,T).

X = l(l(l(s(0)))),T = (A->B->C->B) ;

X = l(l(l(l(0)))),T = (A->B->C->D->D) ;

X = l(a(0, l(0))),T = (((A->A)->B)->B) ;

We are now able to efficiently generate counts for simply-typed normal forms
of a given size.

Example 7. Counts for closed simply-typed normal forms up to size 18.

0, 0, 1, 1, 2, 3, 7, 11, 25, 52, 110, 241, 537, 1219, 2767, 6439, 14945, 35253, 83214.

5 Boltzmann Sampler for Simply-Typed Normal Forms

When restricted to normal forms, the Boltzmann sampler is derived in a similar
way from the corresponding exhaustive generator. In order to find the appro-
priate branching probabilities, we exploit the following combinatorial system
defining the set N of normal forms using the set M of so called neutral forms.

N = M | λ N
M = MN | D

A normal form is either a neutral term, or an abstraction followed with a normal
form. A neutral term, in turn, is either an application of a neutral term to a
normal form, or a de Bruijn index.

With this description of normal forms, we are ready to recompute the branch-
ing probabilities (see [12] for details) for a Boltzmann sampler generating normal
forms. Similarly as in the case of plain terms, we calibrated the branching prob-
abilities so to set the expected outcome size to 120.

The resulting probabilities are given by the following predicates:

boltzmann_nf_lambda(R):-R<0.3333158264186935. % an l/1, otherwise neutral

boltzmann_nf_index(R):-R<0.5062759837493023. % neutral: index, not a/2

boltzmann_nf_leaf(R):-R<0.6666841735813065. % neutral: 0, otherwise s/1

The predicate ranTypableNF generates a simply-typed term X in normal form
and its type T, while computing the size of the term and the number of trial steps
used to find it. Note the use of Prolog’s CUT ! operation to stop the search once
the right size is reached.

ranTypableNF(X,T,Size,Steps):-

max_nf_size(Max),

min_nf_size(Min),

max_nf_steps(MaxSteps),

between(1,MaxSteps,Steps),

random(R),

ranTypableNF(Max,R,X,T,[],0,Size0),

Size0>=Min,

!,

Size is Size0+1.

130 M. Bendkowski et al.

First, a probabilistic choice is made between a normal form wrapped up by
a lambda binder and a neutral term.

ranTypableNF(Max,R,l(A),(X->Xs),Vs,N1,N3):-

boltzmann_nf_lambda(R),!, %lambda

next(Max,NewR,N1,N2),

ranTypableNF(Max,NewR,A,Xs,[X|Vs],N2,N3).

The choice between the next two clauses is decided by the guard
boltzmann nf index. If satisfied, the recursive path towards a de Bruijn index
is chosen. Otherwise, an application is generated. Note the use of the CUT oper-
ation (! to commit to the first clause when its guard succeeds.

ranTypableNF(Max,R,X,V,Vs,N1,N2):-boltzmann_nf_index(R),!,

random(NewR),

pickIndexNF(Max,NewR,X,Vs,V,N1,N2). % an index

ranTypableNF(Max,_R,a(A,B),Xs,Vs,N1,N5):- % an application

next(Max,R1,N1,N2),

ranTypableNF(Max,R1,A,(X->Xs),Vs,N2,N3),

next(Max,R2,N3,N4),

ranTypableNF(Max,R2,B,X,Vs,N4,N5).

Finally, the choice is made between the two alternatives deciding how many
successor steps are taken until a 0 leaf is reached.

pickIndexNF(_,R,0,[V|_],V0,N,N):-boltzmann_nf_leaf(R),!, % zero

unify_with_occurs_check(V0,V).

pickIndexNF(Max,_,s(X),[_|Vs],V,N1,N3):- % successor

next(Max,NewR,N1,N2),

pickIndexNF(Max,NewR,X,Vs,V,N2,N3).

Example 8. A random simply-typed term of size 63 in normal form and its
type, generated after 1312485 trial steps in less than a second.

l(l(l(l(a(a(s(s(0)),l(a(0,a(l(l(s(0))),l(l(l(l(l(a(s(0),l(l(a(s(0),

l(s(0))))))))))))))),l(a(a(l(l(a(l(s(0)),a(a(a(l(s(0)),a(l(0),0)),

l(s(s(0)))),l(l(l(0))))))),0),l(0))))))))

(A->((((B->C->D->E->((((F->G)->H)->G->H)->I)->J->I)->K)->K)->

(L->((M->N->O->O)->L)->(M->N->O->O)->L)->P)->Q->R->P)

As there are fewer lambda terms of a given size in normal form, one may wonder
why we are not reaching comparable or larger sizes to plain lambda terms, where
our sampler was able to generate terms over size 120. An investigation of the
relative densities of simply-typed terms in the two sets provides the explanation.

The table in Fig. 1 compares the changes in density for simply-typed terms
and simply-typed normal forms. The first column lists the sizes of the terms.
Column A lists the number of closed simply-typed terms of a given size. Column
B lists the ratio between plain terms and simply-typed terms. Column C lists
counts for closed simply-typed normal forms. Column D lists the ratio between

Boltzmann Samplers for Closed Simply-Typed Lambda Terms 131

Fig. 1. Comparison of the ratios of simply-typed terms and simply-typed normal forms

terms in normal form and closed simply-typed terms in normal form. Finally,
column E computes the ratio of the two densities given in columns B and D.

The plot in Fig. 2 shows the much faster growing sparsity of simply-typed
normal forms, measured as the ratio between plain terms and their simply-typed
subset and respectively the ratio between normal forms and their simply-typed
subset, i.e., the results shown in columns B and D, for sizes up to 20.

Finally, the plot in Fig. 3 shows the ratio between these two quantities, i.e.,
those listed in column E, for sizes up to 20. In both charts the horizontal axis
stands for the size, while the vertical one for the number of terms.

Fig. 2. Sparsity of simply-typed terms (lower curve) vs. simply-typed normal forms
(upper curve)

Therefore, we see that closed simply-typed normal forms are becoming very
sparse much earlier than their plain counterparts. While, e.g., for size 20 there
are around 1/16 closed simply-typed terms for each term, at the same size, for
each term in normal form there are around 1/60 simply-typed closed terms in
normal form. As at sizes above 50 the total number of terms is intractably high,
the increased sparsity of the simply-typed terms in normal form becomes the
critical element limiting the chances of successful search.

132 M. Bendkowski et al.

Fig. 3. Ratio between the density of simply-typed closed normal forms and that of
simply-typed closed lambda terms

We leave as an open problem the study of the asymptotic behavior of the
ratio between the density of simply-typed closed normal forms in the set of all
normal forms and the density of simply-typed closed lambda terms in the set
of lambda terms. While our empirical data hints to the possibility that it is
asymptotically 0 for n → ∞, it is still possible to converge to a small finite limit.
Also, this behavior could be dependent on the size definition we are using.

6 Discussion

An interesting open problem is if our method can be pushed significantly farther.
We have looked into deep hashing based indexing (term hash in SWI Prolog) and
tabling-based dynamic programming algorithms, using de Bruijn terms. Unfor-
tunately as subterms of closed terms are not necessarily closed, even if de Bruijn
terms can be used as ground keys, their associated types are incomplete and
dependent on the context in which they are inferred.

While it only offers a constant factor speed-up, parallel execution is a more
promising possibility. For exhaustive generation, given the small granularity of
the generation and type inference process, the most useful parallel execution
mechanism would simply split the task of combined generation and inference
process into a number of disjoint sets. For instance, assuming size n, and k ≤ n
l/1 constructors, one would launch a thread exploring all possible choices, with
the remaining n − k size-units to be shared by the applications a/2 and the
weights of indices s/1.

For the generation of random terms via Boltzmann sampling, one would
simply launch as many threads as the number of processors, with each thread
exploring independently the search space.

Boltzmann Samplers for Closed Simply-Typed Lambda Terms 133

7 Related Work

The problem of counting and generating uniformly random lambda terms is
extensively studied in the literature.

In [5] authors considered a canonical representation of closed lambda terms in
which variables do not contribute to the overall term size. The same model was
investigated in [3], where a sampling method based on a ranking-unranking app-
roach was developed. A binary variant of lambda calculus was considered in [9],
leading to a generation method employing Boltzmann samplers. The natural
size notion was introduced in [10]. The presented results included quantitative
investigations of certain semantic properties, such as strong normalization or
typability.

Other, non-uniform generation, approaches are also studied in the context
of automated software verification. Prominent examples include Quickcheck [13]
and GAST [14] – two frameworks offering facilities for random (yet not neces-
sarily uniform) and exhaustive test generation, used in the verification of user-
defined function properties and invariants.

In [15] a “type-directed” mechanism for generation of random terms was
introduced, resulting in more realistic (from the particular use case point of view)
terms, employed successfully in discovering optimization bugs in the Glasgow
Haskell Compiler (GHC).

Function synthesis, given a finite set of input-output examples, was consid-
ered in [16]. In this approach, the set of candidate functions is restricted to
a subset of primitive recursive functions with abstract syntax trees defined by
some context-free grammar, yielding an effective method of finding “natural”
functions matching the given example set.

A statistical exploration of the structure of the simple types of lambda terms
of a given size in [17] gives indications that some types frequent in human-written
programs are among the most frequently inferred ones for terms of a given size.

8 Conclusion

We have derived from logic programs for exhaustive generation of lambda terms
programs that generated uniformly distributed simply-typed lambda terms via
Boltzmann samplers.

This has put at test a simple but effective program transformation technique
naturally available in logic programming languages: interleaving generators and
constraints by integrating them in the same predicate.

For the exhaustive generation, we have also managed to work within the
minimalist framework of Horn clauses with sound unification, showing that non-
trivial combinatorial problems can be handled without any of Prolog’s impure
features.

Our empirical study of Boltzmann samplers has revealed an intriguing dis-
crepancy between the case of simply-typed terms and simply-typed normal

134 M. Bendkowski et al.

forms. While these two classes of terms are both known to asymptotically van-
ish, the significantly faster growth of the sparsity of the later has limited our
Boltzmann sampler to sizes below 60.

Our techniques, combining unification of logic variables with Prolog’s back-
tracking mechanism, recommend logic programming as a convenient metalan-
guage for the manipulation of various families of lambda terms and the study of
their combinatorial and computational properties.

The ability to generate uniformly random simply-typed closed lambda terms
of sizes above 120 opens the doors for applications to testing compiler compo-
nents for functional languages and proof assistants, not only for correctness but
also for scalability. We hope that simply-typed lambda terms above 120 can be
also useful to spot out performance and memory management issues for several
algorithms used in these tools, including β-reduction, lambda lifting and type
inference.

References

1. Hindley, J.R., Seldin, J.P.: Lambda-Calculus and Combinators: An Introduction,
vol. 13. Cambridge University Press, Cambridge (2008)

2. Barendregt, H.P.: Lambda calculi with types. In: Handbook of Logic in Computer
Science, vol. 2. Oxford University Press (1991)

3. Grygiel, K., Lescanne, P.: Counting and generating lambda terms. J. Funct. Pro-
gram. 23(5), 594–628 (2013)

4. Bodini, O., Gardy, D., Gittenberger, B.: Lambda terms of bounded unary height.
In: 2011 Proceedings of the Eighth Workshop on Analytic Algorithmics and Com-
binatorics (ANALCO), pp. 23–32 (2011)

5. David, R., Grygiel, K., Kozik, J., Raffalli, C., Theyssier, G., Zaionc, M.: Asymp-
totically almost all λ-terms are strongly normalizing. Logical Meth. Comput. Sci.
9(1:02), 1–30 (2013)

6. Flajolet, P., Sedgewick, R.: Analytic Combinatorics, 1st edn. Cambridge University
Press, New York (2009)

7. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences (2014). https://
oeis.org/

8. Tarau, P.: On logic programming representations of lambda terms: de Bruijn
indices, compression, type inference, combinatorial generation, normalization. In:
Pontelli, E., Son, T.C. (eds.) PADL 2015. LNCS, vol. 9131, pp. 115–131. Springer,
Cham (2015). doi:10.1007/978-3-319-19686-2 9

9. Grygiel, K., Lescanne, P.: Counting and generating terms in the binary lambda
calculus. J. Funct. Program. 25, e24 (2015)

10. Bendkowski, M., Grygiel, K., Lescanne, P., Zaionc, M.: A natural counting of
lambda terms. In: Freivalds, R.M., Engels, G., Catania, B. (eds.) SOFSEM
2016. LNCS, vol. 9587, pp. 183–194. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49192-8 15

11. de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Indagationes Math. 34, 381–392 (1972)

12. Duchon, P., Flajolet, P., Louchard, G., Schaeffer, G.: Boltzmann samplers for the
random generation of combinatorial structures. Comb. Probab. Comput. 13(4–5),
577–625 (2004)

https://oeis.org/
https://oeis.org/
http://dx.doi.org/10.1007/978-3-319-19686-2_9
http://dx.doi.org/10.1007/978-3-662-49192-8_15
http://dx.doi.org/10.1007/978-3-662-49192-8_15

Boltzmann Samplers for Closed Simply-Typed Lambda Terms 135

13. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: Proceedings of the Fifth ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2000, pp. 268–279. ACM, New York
(2000)

14. Koopman, P., Alimarine, A., Tretmans, J., Plasmeijer, R.: Gast: generic auto-
mated software testing. In: Peña, R., Arts, T. (eds.) IFL 2002. LNCS, vol. 2670,
pp. 84–100. Springer, Berlin (2003). doi:10.1007/3-540-44854-3 6

15. Palka, M.H., Claessen, K., Russo, A., Hughes, J.: Testing an optimising compiler by
generating random lambda terms. In: Proceedings of the 6th International Work-
shop on Automation of Software Test, AST 2011, pp. 91–97. ACM, New York
(2011)

16. Koopman, P., Plasmeijer, R.: Systematic synthesis of functions, pp. 68–83. The
University of Nottingham (2006)

17. Tarau, P.: On Type-directed Generation of Lambda Terms. In: De Vos, M., Eiter,
T., Lierler, Y., Toni, F. (eds.) 31st International Conference on Logic Programming
(ICLP 2015), Technical Communications, Cork, Ireland, CEUR (2015). http://
ceur-ws.org/Vol-1433/

http://dx.doi.org/10.1007/3-540-44854-3_6
http://ceur-ws.org/Vol-1433/
http://ceur-ws.org/Vol-1433/

	Boltzmann Samplers for Closed Simply-Typed Lambda Terms
	1 Introduction
	2 Generators for Lambda Terms of a Given Natural Size
	2.1 De Bruijn notation
	2.2 Generating Plain Lambda Terms
	2.3 Generating Closed Lambda Terms
	2.4 Generating Simply-Typed Lambda Terms

	3 A Boltzmann Sampler for Simply-Typed Terms
	3.1 Designing Boltzmann Samplers
	3.2 Deriving a Boltzmann Sampler from an Exhaustive Generator

	4 Generating Simply-Typed Normal Forms
	4.1 Generating Normal Forms of Given Size
	4.2 Interleaving Generation and Type Inference

	5 Boltzmann Sampler for Simply-Typed Normal Forms
	6 Discussion
	7 Related Work
	8 Conclusion
	References

