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Abstract. Answer Set Programming (ASP) is a well-known prob-
lem solving approach based on nonmonotonic logic programs. Existing
approaches towards integrating function terms into ASP can be orga-
nized in two classes: uninterpreted function symbols and interpreted
functions; we focus on the latter. Existing approaches usually define
interpreted functions in the program (e.g. using term equations), while
evaluation wrt. to a pre-existing external semantics is neglected. How-
ever, this is useful if existing function libraries shall be accessed or if a
function is more naturally implemented in procedural code. In this paper,
we propose the declarative language of hexifu-programs which extends
answer set programs (ASP) with such interpreted functions. However,
rather than just providing a means for evaluating functions, it further
turns interpreted functions into first-class citizens, i.e., functions are rep-
resented by accessible objects in the program. This paves the way for
functionals (higher-order functions), i.e., functions that take other func-
tions as arguments or return them. We provide then a rewriting of such
programs to hex-programs, an extension of ASP with external sources,
and an implementation based on this rewriting. Afterwards we present
applications which motivated our work, e.g. the adoption of design pat-
tern from software engineering. Finally, we discuss properties of the for-
malism and differences to related work.

Keywords: Answer set programming · Nonmonotonic reasoning · FLP
semantics · Function symbols

1 Introduction

Answer Set Programming (ASP) is a declarative programming paradigm based
on nonmonotonic programs and a multi-model semantics [18]. For the integration
of function symbols into ASP there exist basically two fairly different classes of

This research has been supported by the Austrian Science Fund (FWF) project
P27730.

c© Springer International Publishing AG 2017
Y. Lierler and W. Taha (Eds.): PADL 2017, LNCS 10137, pp. 68–85, 2017.
DOI: 10.1007/978-3-319-51676-9 5



Extending Answer Set Programs with Interpreted Functions 69

approaches: viewing them either as uninterpreted function symbols or as inter-
preted functions.

The former view uses them as constructors for structuring information but
with no inherent semantics. It is supported by many state-of-the-art grounders
such as gringo [15] and recent releases of DLV [22]. In this case, the term
multiply(add(4, 5), 3) might be used to represent the computation (4 + 5) · 3,
but since all function terms have a Herbrand semantics (i.e., they evaluate to
themselves), there is no way to actually evaluate the term wrt. the intended
semantics. The second view is followed by some existing approaches which, how-
ever, define functions within programs with first-order-like interpretations using
e.g. term equations in rule heads. This allows for detaching from Herbrand inter-
pretations and syntactically different function terms can be equal, which yields
new modeling possibilities. For instance, loc(redCar) = loc(blueCar) represents
that redCar and blueCar have the same location, in which case the compari-
son evaluates to true, while the terms would never be equal under a Herbrand
semantics.

However, existing approaches do not support the call of functions whose
semantics is defined outside of the logic program. Using such externally defined
functions is motivated by practical observations. Some types of computations
are more naturally implemented in a procedural languages, e.g. because numeric
computations often lead to a large grounding. Moreover, pre-existing libraries of
functions for special purposes (such as mathematical computations and physics
simulations) are typically provided for procedural languages and it would be
cumbersome to redefine them.

In this paper we suggest a new language, called hexifu-programs, to address
this restriction. To this end, we associate function symbols with a given external
semantics. However, rather than just adding a possibility to evaluate terms, it
further turns interpreted functions into first-class citizens (accessible objects)
that can be handled similarly as object constants and terms over uninterpreted
function symbols; but at specific points, their semantics may be applied to para-
meters. This allows for passing them to other functions or retrieving them and
paves the way for functionals (also known as higher-order functions), i.e., func-
tions that take other functions as parameters or return them. Applications can
be found in software design patterns such as the factory and the strategy pattern,
accessing heterogeneous knowledge-bases via a generic interface, and typical use-
cases in functional programming such as a mapping function.

hexifu-programs are based on (and further extend) hex-programs, an exten-
sion of ASP with external sources such as description logic ontologies and Web
resources. hex-programs support external atoms to pass information from the
logic program (given by predicate extensions and constants), to an external
source, which in turn returns values to the program. For instance, the external
atom &synonym[aircraft ](X) might be used to find the synonyms X of aircraft ,
e.g. airplane. However, unlike interpreted functions in hexifu-programs, exter-
nal atoms in standard hex-programs are no first-class citizens and cannot be
accessed as objects, which inhibits the aforementioned applications.
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In more detail, after the preliminaries (Sect. 2), the organization of the paper
and our contributions are as follows:

– In Sect. 3 we present hexifu-programs as our main contribution. To this end,
we first introduce a representation of interpreted functions by terms. Based
on this, we introduce hex-programs with interpreted function (ifu-)atoms.
A special case thereof are ASP programs with interpreted functions.

– In Sect. 4 we define a rewriting of hexifu-programs to standard hex-programs.
This is the basis for the implementation of a hexifu-reasoner.

– In Sect. 5 we present applications of hexifu-programs motivated by design pat-
terns in software engineering, existing applications of KR-formalisms, and typ-
ical applications of functionals in functional programming. We further discuss
how they benefit from the features of hexifu-programs compared to standard
hex-programs.

– In Sect. 6 we discuss finiteness properties and the computational complex-
ity of hexifu-programs. We show how a pre-existing framework for deciding
finite groundability of hex-programs can also be applied to hexifu-programs.
Overall, we show that important properties of hex-programs still hold for
hexifu-programs.

– In Sect. 7 we discuss related work, point out differences to our approach, con-
clude and give an outlook on future work.

2 Preliminaries

We recapitulate hex-programs as follows. Our alphabet consists of possibly infi-
nite, mutually disjoint sets of constant symbols C (including all integers), vari-
ables V , function symbols F , predicate symbols P, and external predicates X .
We let the set of terms T be the least set such that C ⊆ T , V ⊆ T , and
f ∈ F , T̄1, . . . , T̄� ∈ T implies f(T̄1, . . . , T̄�) ∈ T .1 A term is called ground if it
does not contain variables.

We start with basic concepts. A ground (ordinary) atom is of form
p(t1, . . . , t�) with predicate symbol p ∈ P and ground terms t1, . . . , t� ∈ T ,
abbreviated as p(t); we write t ∈ t if t = ti for some 1 ≤ i ≤ �. An assignment
over the (finite) set A of atoms is a set A ⊆ A , where a ∈ A expresses that a
is true and a �∈ A that a is false. A builtin atom is of form t1 ◦ t2 with terms
t1, t2 ∈ T and comparison operator ◦ ∈ {=, �=, <,≤,≥, >}. For a ground builtin
atom t1 ◦ t2 and any assignment A we have that A |= t1 = t2 if t1 is (syntacti-
cally) equal to t2 and A �|= t1 = t2 otherwise. Conversely, A |= t1 �= t2 if t1 and
t2 are (syntactically) different and A �|= t1 �= t2 otherwise. Operators <, ≤, ≥
and > have the standard semantics and are defined only if t1 and t2 are integers.

We recall hex-programs, which generalize (disjunctive) logic programs under
the answer set semantics [18]; for more details and background, see [12].

1 We let T̄ denote a meta-variable (not to be confused with ASP variables in the
object language) which represents a constant from C , an ASP variable from V , or
a ground or non-ground functional terms (e.g. f(a), g(X)).
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Syntax of hex-Programs. hex-programs extend ASP programs by external
atoms to enable a bidirectional interaction between a program and external
sources. A ground external atom is of the form &g[y](t), where y = y1, . . . , yk

is a list of input parameters (predicate names or terms), called input list, and
t = t1, . . . , tl are output terms.

Definition 1. A ground hex-program Π consists of rules

a1 ∨ · · · ∨ ah ← b1, . . . , bm, not bm+1, . . . , not bn ,

where each ai is a ground ordinary atom, and each bj is a ground ordinary,
builtin or external atom; for such a rule r we let H(r) = {a1, . . . , ah} be its
head and B(r) = {b1, . . . , bm, not bm+1, . . . , not bn} be its body.

Semantics of hex-Programs. In the following, assignments are over the set
A of ordinary atoms occurring in the program Π at hand. The semantics of a
ground external atom &g[y](t) wrt. an assignment A is given by the value of a
1+k+l-ary Boolean oracle function f&g that is defined for all possible values of
A, y and t. We say &g[y](t) is true relative to A if f&g(A,y, t) = T, and false if
f&g(A,y, t) = F. Satisfaction of rules and ASP programs [18] is then extended
to hex-rules and programs as follows. An assignment A satisfies an atom a,
denoted A |= a, if a ∈ A, and it does not satisfy it, denoted A �|= a, otherwise.
It satisfies a default-negated atom not a, denoted A |= not a, if A �|= a, and it
does not satisfy it, denoted A �|= not a, otherwise. A rule r is satisfied under
assignment A, denoted A |= r, if A |= a for some a ∈ H(r) or A �|= a for some
a ∈ B(r).

The answer sets of a hex-program Π are defined as follows. Let the Faber-
Leone-Pfeifer-reduct) [13], also called FLP-reduct (unrelated to functional logic
programming), of Π wrt. an assignment A be the set fΠA = {r ∈ Π | A |=
b for all b ∈ B(r)} of all rules whose body is satisfied by A. We define:

Definition 2. An assignment A is an answer set of a hex-program Π, if A is
a ⊆-minimal model of fΠA. 2

Example 1. Consider the program Π = {p ← &id [p]()}, where &id [p]() is true
iff p is true. Then Π has the answer set A1 = ∅ as it is a ⊆-minimal model
of fΠA1 = ∅. ��

We also use programs with variables and consider them as shortcuts for all
ground instances. The answer sets of a program Π with variables are defined as
the answer sets of the program grnd(Π), which results from Π if all variables
V are substituted by all ground terms from T in all possible ways. For now
we assume that safety conditions guarantee the existence of a finite grounding
which suffices for answer set computation and restrict our discussion to ground
programs. We come back to safety in Sect. 6.

2 For ordinary Π, these are Gelfond & Lifschitz’s answer sets.
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3 Interpreted Functions as First-Class Citizens

Function symbols are often uninterpreted, i.e., they are used for structur-
ing information but have no intrinsic semantics. For instance, the term
multiply(add(4, 5), 3) might represent the expression (4 + 5) · 3, but there is no
way to evaluate it. Existing approaches towards interpreted functions typically
define functions as part of the program, e.g. using term equations (see Sect. 7 for
more details). However, the evaluation wrt. an external semantics was neglected.
On the other hand, external atoms in hex-programs and VI-programs [8], have
such a semantics. But unlike terms, they are not first-class citizens [6], i.e., they
are not objects with an own identity that can be passed as arguments to or
returned from (other) external atoms.

One might support the evaluation of ground terms under a given semantics by
adopting the semantics of builtin atoms such that e.g. X = multiply(add(4, 5), 3)
evaluates to true if X is 27 (assuming that the semantics associated with
the function symbols is as expected) and to false otherwise. However, the
term multiply(add(4, 5), 3) represents the application of the (unnamed) func-
tion ·(p1, p2, p3) = (p1 + p2) · p3 under the concrete parameters 4, 5 and 3, but
not the function itself. Also the non-ground term multiply(add(X,Y ), Z) is only
a shortcut for a number of evaluations of ·(p1, p2, p3) under lists of parameters,
but the function itself is not represented by an accessible object. This prohibits
the composition of new functions, passing them as parameters to other functions,
or retrieving them as return values. To address these restrictions, we propose an
extension of hex-programs with interpreted functions featuring the following:

– Function symbols from F are associated with externally defined semantics.
– Based on F , called basic functions, new functions can be composed.
– Each basic or composed function is represented by a dedicated term t, which

can be used wherever uninterpreted terms (such as constants) can also be
used.

– A term t in the program, which represents a function, can be applied to a
list of parameters to compute the value of the respective function under the
parameters.

We first show how functions can be represented by terms and introduce then
the hex-extension of hexifu-programs.

Representing Interpreted Functions by Terms. We assume that each basic
function f ∈ F has an arity � and a (total) semantics function semf (y) : C � →
T defined for all �-ary vectors y ∈ C � of constants. We let C contain dedicated
constant symbols #i for all integers i ≥ 1, called placeholders, which are used to
represent function parameters.

We then use T as function-representing (fr-)terms to turn interpreted func-
tions into accessible objects. To this end, a ground fr-term t ∈ T represents a
γ(t)-ary function t̂(p1, . . . , pγ(t)), which substitutes all occurrences #i in t by pi,
and then applies the semantics semf (y) of the function symbols f in t, where
γ(t) is the largest i such that #i occurs in t, or 0 if no #i occurs. Intuitively, γ(t)
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is the number of parameters which are expected to be passed to the function
represented by t.

Example 2. The fr-term t1 = multiply(add(#1,#2),#3) represents in standard
mathematical notation the function t̂1(p1, p2, p3) = (p1 + p2) · p3, assuming that
the basic functions multiply and add have the expected semantics.

The fr-term t2 = add(#1, 1) defines the increment function t̂2(p1) = p1 + 1
using basic function add by fixing the second operand to 1, while the first is the
one of t̂2. ��

It is important to note that an fr-term t = f(t1, . . . , t�) with f ∈ F and
t1, . . . , t� ∈ T itself represents a (composed) function, and not the application
of f to t1, . . . , t�. Instead, the subterms t1, . . . , t� define how the function t̂ is
composed of other functions, and constants #i in t specify how the parameters
of t̂ are passed to these basic functions (cf. t1 in the previous example). The
actual parameters p1, . . . , pγ(t) of t̂ are specified at the point when t̂ is applied
as described below.

The semantics of basic functions f ∈ F is directly defined by semf (·). We
now formalize the evaluation of the function t̂ given by an fr-term t under para-
meters p1, . . . , pγ(t) recursively on top of functions semf (·) for all f ∈ F as
follows:

Definition 3. For a list of ground terms t, p1, . . . , pγ(t) we let

val(t, p1, . . . , pγ(t)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

val(semf (t
′), p1, . . . , pγ(t)) if t = f(t) and t′ is free of #i,

f(t′) if t = f(t) and there is a #i in t′,
pi if t = #i for some 1 ≤ i ≤ γ(t),

t otherwise,

where t and t′ are �-ary vectors with t′i = val(ti , p1, . . . , pγ(t)) for all 1 ≤ i ≤ �.

The idea is as follows. If the fr-term t representing the function t̂ to be evaluated
is a nested term f(t) (first two cases), then all subterms t = t1, . . . , t�, which repre-
sent functions that t̂ is composed of, are first recursively evaluated. The results of
these evaluations are given by t′ = t′1, . . . , t

′
�. If t

′ is free of placeholders (first case),
then the semantics of the outermost basic function f is applied. Due to function-
als (shown in more detail in Example 8), the return value of semf (t′) may contain
further functions that must be interpreted, which is why we recursively apply val
to the result. Otherwise (second case), the functional term f(t′) contains at least
one placeholder and is returned as an fr-term representing a new function. For non-
nested terms, placeholders are replaced by the respective parameters (third case),
and all other constants are kept (fourth case).

Example 3 (cont’d). Reconsider the functional term t = multiply(add(#1,
#2),#3) and suppose t̂ is to be evaluated under parameters 4, 5 and 3, i.e.,
we compute val(t, 4, 5, 3).
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We recursively evaluate the subterms t1 = add(#1,#2) and t2 = #3
of t under 4, 5, 3. To this end, we determine t′1 = val(add(#1,#2), 4, 5, 3)
and t′2 = val(#3, 4, 5, 3). The former is recursively evaluated by computing
val(#1, 4, 5, 3) = 4, val(#2, 4, 5, 3) = 5 and evaluating t′1 = val(semadd(4, 5))=9.
The latter yields t′2 = val(#3, 4, 5, 3) = 3.

Finally, since none of t′1, t
′
2 contains placeholders, we evaluate

val(semmultiply(t′1, t
′
2)) = val(semmultiply(9, 3)) = 27, and thus we have val(t, 4,

5, 3) = 27. ��
Beginning from the deepest nesting level, val(·) evaluates the functions t̂ is

composed of recursively but stops if some #i occur. Functions with a smaller
nesting level than the placeholder remain uninterpreted until their parameters
are specified. Although pre-existing placeholders in t are replaced during evalu-
ation, new placeholders may be introduced by p1, . . . , p�.

Example 4. Consider t = add(#1, 1) and suppose t̂ is evaluated under p1 =
add(#1,#2). Then t′ = val(t, p1) = add(add(#1,#2), 1) represents the new
function t̂′(p1, p2) = (p1 + p2) + 1 with two parameters that returns the incre-
ment of their sum. The fr-term t′ can then be used to apply t̂′ to parameters,
e.g. val(t′, 10, 20) = 31. ��
Programs with Interpreted Functions. Next, we need a means for applying
functions given by fr-terms to parameters, i.e., for accessing val(·) from the pro-
gram. To this end, we introduce interpreted function (ifu-)atoms, whose syntax
is inspired by builtin atoms:

Definition 4. An interpreted function (ifu-)atom is of kind R̄ =$ T̄ [P̄1, . . . , P̄�],
where R̄ ∈ T is a comparison operand, T̄ ∈ T is an fr-term, and P̄1, . . . , P̄� ∈ T
are parameters.

Here, the subscript $ of the comparison operator is used to distinguish an ifu-
atom from equality builtin atoms. While builtin atoms over = compares terms
syntactically, =$ evaluates the term on the right-hand side before comparison.
We have that R̄, T̄ , P̄1, . . . , P̄� are possibly non-ground to allow exploiting the
ASP grounder.

Informally, a ground ifu-atom r =$ t[p1, . . . , pγ(t)] is intended to be true iff r
is equal to the value of the function represented by fr-term t under parameters
p1, . . . , pγ(t) holds. Based on Definition 3 we define:

Definition 5. A ground ifu-atom a of form r =$ t[t1, . . . , tn] is true wrt. assign-
ment A, denoted A |= a, if n = γ(t) and r has the value of val(t, t1, . . . , tn), and
false, denoted A �|= a, otherwise.

Example 5. The ifu-atom X =$ add(#1, 1)[Y ] applies the increment function,
represented by the fr-term add(#1, 1), to the parameter Y and compares the
result with X. ��
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Note that because functions are represented by terms, an ifu-atom contains
a pair of parentheses (from the fr-term) followed by a pair of brackets (from the
parameter list). However, as we will see in the next example, using ASP variables
as fr-term conceals the parentheses, which results in a syntax similar to standard
mathematical notation. We formalize hex-programs with ifu-atoms as follows:

Definition 6. A hex-program with interpreted functions (hexifu) is a hex-
program, where rule bodies may contain ifu-atoms.

The notions of models of rules/programs and of answer sets carry over.

Example 6. Consider the fact compInitials(concat(first(#1),first(#2))) ←. The
fr-term in the extension of compInitials represents a function that constructs
a person’s initials from given first and last names. The function is based on
the basic functions concat and first for string concatenation and extracting the
first character of a string, respectively. If facts of kind person(F,L) ← repre-
sent persons with first name F and last name L, the rule initials(F,L, I) ←
person(F,L), compInitials(C), I =$ C[F,L] computes the initials of all persons
by applying the function, which is accessible via C, to the parameters.

As the example demonstrates, terms that represent interpreted functions
are accessible from the extension of predicates. That is, an fr-term t occurs as
parameters of an atom of kind f (t) ←. The application of the function to a list
p of parameters is then possible using a rule of kind res(T ) ← f(T ), R =$ T [p].

4 Implementation of Interpreted Functions Using
hex-Programs

We realized hexifu-programs on top of standard hex-programs using a rewriting.
The basic idea is to pass a ground fr-term t and γ(t) parameters to a dedicated
external atom &eval , which resembles the function val(·) from Definition 3 by
substituting each placeholder #i for the i-th argument pi and recursively eval-
uating subterms.

For each integer n, let f&evaln(A, t , p1, . . . , pn, r) be the semantics of an exter-
nal predicate &evaln which has as input a term t with n = γ(t) and parameter
values p1, . . . , pn, and returns the value of the function term in r; as the number
of parameters is also visible from the parameter list, we drop the subscript n

from &eval in the following.

Definition 7. For an assignment A and list of ground terms t, p1, . . . , pn

s.t. γ(t) = n, let f&eval(A, t, p1, . . . , pn, r) = σ where σ = T if r =
val(t , p1, . . . , pn) and σ = F otherwise.

The oracle function f&eval may access semantics functions semf (·) of all
basic functions f ∈ F . This allows for translating hexifu-programs to standard
hex-programs:
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Definition 8. The translation of an ifu-atom a of kind R̄ =$ T̄ [P̄1, . . . , P̄�] to
an external atom is given by τ(a) = &eval [T̄ , P̄1, . . . , P̄�](R̄).

For hexifu-program Π, we let τ(Π) be Π after replacing each ifu-atom a by
τ(a).

We demonstrate the translation with the following example:

Example 7 (cont’d). Reconsider the fr-term t = concat(first(#1),first(#2)).
Then N =$ t[tom, johnson] is translated to &eval [t, tom, johnson](N). This
external atom is true for N = tj and false otherwise. ��

This translation is sound and complete wrt. the semantics given by
Definition 5.

Proposition 1. An assignment A is an answer set of a hexifu-program Π if
an only if it is an answer set of the hex-program τ(Π).

Interpreted functions have been implemented in the dlvhex solver,
cf. http://www.kr.tuwien.ac.at/research/systems/dlvhex. The syntax is as in
this paper, with =$ written as = $. The system comes with several examples
with interpreted functions.

5 Applications of HEXIFU-Programs

We now present several applications of hexifu-programs. For each of them, we
show how they benefit from the features of hexifu-programs compared to stan-
dard hex-programs.

Software Design Patterns. Our main motivation for hexifu-programs were
functionals. They can be used to realize programming methods motivated by
design patterns in software engineering, cf. e.g. [14]. An example is the abstract
factory pattern which uses a factory class F for creating objects of one of several
concrete classes C1, . . . , Cn which implement the same interface C. Instead of
instantiating one of C1, . . . , Cn directly, the decision which class to instantiate is
delegated to factory F . The client retrieves only a reference of type C and uses it
abstractly without knowing (and caring) which of the concrete types C1, . . . , Cn

the reference refers to.
Similarly, functionals in hexifu-programs allow for retrieving a function from

an external atom that can later be used without knowing its exact type.

Example 8. Consider function getHashFunction() that serves as a factory and
returns a unary function, which is unknown to the implementer of the hex-
program but still has an associated semantics that can be applied. Then r(H) ←
F =$ getHashFunction()[],H =$ F (padl) evaluates getHashFunction() (without
parameters) to retrieve a concrete hash function F , which is subsequently applied
to compute the hash value H of padl . ��

http://www.kr.tuwien.ac.at/research/systems/dlvhex


Extending Answer Set Programs with Interpreted Functions 77

A similar example is the strategy pattern, where the algorithm/technique to
be applied is selected at runtime based on the data at hand. For instance, a
validation to be performed for incoming data usually depends on the type of the
data. As a concrete example, consider matching strings against regular expres-
sions. The regular expression for checking phone numbers is clearly different from
one for checking email addresses. In such cases, the selection of an appropriate
validation function can be done by a dedicated function &getValidator [type](V )
which implements the logic of the decision, i.e., the construction of an appropri-
ate regular expression, depending on the type ∈ {phone, email , url , . . .} of the
given data. The concrete verification function returned by the selection function
can then be applied to a value:

Example 9. Suppose &getValidator [type](V ) returns a function V for verifying
data of the given type. Provided that the returned verification functions evaluate
to 1 if the check is passed and to 0 otherwise, a concrete value is verified by the
ifu-atom 1 =$ V (value).

Suppose employee data is given by facts of form emp(id , attType, attValue),
where id is a unique identifier for each employee, and attType and attValue
specify the value of a certain attribute. For example, emp(3 ,firstname, john)
defines that the first name of employee 3 is john. In the following, r1 imports a
verification function for each attribute type specified for at least one employee
and r2 applies it to all values of this type.

r1 : validators(AttType,V ) ← emp(Id ,AttType,AttValue),&getValidator [AttType](V ).

r2 : invalid(Id) ← emp(Id ,AttType,AttValue), validators(AttType,V ), 0 =$ V [AttValue].

The program derives invalid(id) for all identifiers id of employee with invalid
entries.

Benefits: Without functionals and interpreted functions as accessible objects,
one must implement separate validation rules for all attribute type, which differ
only in the external atom which performs the evaluation, but be of the same
structure otherwise. This would introduce redundancies which make it more
cumbersome to maintain the program. ��
Integrating Heterogeneous Knowledge Bases. Another example is the inte-
gration of multiple data sources which are possibly implemented in different for-
malisms, as realized e.g. by multi-context systems [5]. A functional can serve as
a central dictionary that supports lookups of concrete knowledge-bases with a
common query interface. Lookups are then answered with functions that allow
for accessing the concrete knowledge-base abstractly without knowing its type
and location.

Example 10. For instance, suppose lookup(#1) provides access to the cen-
tral dictionary and is accessible via predicate l. Then rule data(A) ←
l(D),K =$ D[employee], A =$ K[query ] can be used to answer queries over the
employee knowledge-base using the access function D, which returns an abstract
knowledge-base K that can be used to answer queries without knowing its type.
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Benefits: As above, without functionals separate rules of the same basic struc-
ture must be defined for each type of knowledge-based, which differ only in the
external atom. ��
Realizing Traditional Higher-order Functions. Also typical (generic)
higher-order functions known from functional programming can be realized on
top of hexifu. These include, e.g., map for applying a custom function to all
elements from a list, fold for aggregating values in a data structure, or sort with
a custom comparison function.

Example 11. Consider the external atom &map[f, p](X) which applies function
f , given as an fr-term, to all elements in the extension of predicate p and the
function for computing a person’s initials as shown in Example 6. Then the rule
res(R) ← compInitials(C), R =$ &map[C, person](X) can be used to compute
the initials of all persons in the extension of predicate person.

Benefits: Without functionals as accessible objects, one may define
&map[fn, p](X) where fn is the name of a function to be applied to p. However,
all functions identified by such names must be known to the implementation of
&map and are not arbitrary. ��
Syntax Relaxation. Finally, interpreted function symbols are also a more nat-
ural alternative for external atoms with functional behavior such as string func-
tions (concatenation, substring, etc.). The syntax is lightweight and similar to
builtin atoms.

Discussion. While it is possible to simulate functionals by standard hex-
programs if all involved external sources are provided by the imple-
menter of the hex-program, this is in general not the case. For instance,
Example 8 can be implemented such that not the hash function but only its
name N is imported into the program. Consider the modified rule r(H) ←
&getHashFunctionName[](N),&applyHashFunction[N, padl ](H). The name of
the hash function N is passed to a dedicated external atom &applyHashFunction,
which internally selects the function identified by N and applies it to the given
string. Now N plays the role of F from Example 8, but is instantiated with a
string instead of an fr-term. The parameters of &applyHashFunction do not con-
tain fr-terms but only object constants, i.e., &applyHashFunction is not a func-
tional. However, now &applyHashFunction must be aware of all possible hash
functions; if a new one is added, the external source &applyHashFunction must
be modified. This is impractical if the function to be passed as argument and the
functional itself are provided by different third parties, or if one is provided by a
third party and the other one is newly developed. Then the programmer cannot
modify the sources and moving functionality from one source to the other is not
possible. Also if the set of possible functional parameters is unrestricted, such
as for &map, simulating functionals by a standard function is not possible, as it
would need to be prepared for an infinite number of possible functions.
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6 Properties of HEXIFU-Programs

We now investigate relations to programs with uninterpreted function symbols,
finiteness and computational properties of hexifu-programs.

Relations to Uninterpreted Function Symbols. One can show that ASP- or
hex-programs with uninterpreted functions amount to a special case of hexifu-
programs, where each function term is interpreted by itself.

Proposition 2. Let Π be a hex-program and let Π ′ be the hexifu-program
resulting from Π if each builtin atom x ◦ y is replaced by x =$ y and semf (y) =
f(y) for all function symbols f and y ∈ C γ(f). Then the answer sets of Π and
Π ′ coincide.

Finite Groundability. We call a program Π finitely groundable if there is a
finite Π ′ ⊆ grnd(Π) s.t. Π and Π ′ have the same answer sets. In this case,
it is implied that all answer sets are also finite. For uninterpreted function
symbols, several safety concepts have been introduced which allow for decid-
ing finite groundability. For instance, the notion of ω-restricted logic programs,
which hinges on predicate dependencies, allows function symbols under a level
mapping to control the introduction of new terms with function symbols to
ensure decidability [29]. More expressive variants thereof are λ-restricted [17],
argument-restricted programs [23] and bounded programs [19]. For an overview
of classes of programs with uninterpreted function symbols, cf. e.g. [1].

However, since we consider interpreted functions, these notions are not
directly applicable. A hexifu-program might be finitely groundable, while it is
not finitely groundable if functions are left uninterpreted, or vice versa.

Example 12. Consider the hexifu-program Π = {p(a); p(Y ) ← p(X), Y =$

id(X)} where id is an interpreted function s.t. semid(t) = t for all terms t ∈
T . Its only answer set is A = {p(a)}. In contrast, if id is considered as an
uninterpreted function symbol as in Π ′ = {p(a); p(Y ) ← p(X), Y = id(X)},
then there is no finite grounding as the rule derives infinitely many atoms of
form p(idn(a)) for all n ≥ 0. ��

Conversely, it can also happen that a hex-program with uninterpreted func-
tion symbols is finitely groundable, but after assigning a semantics to the func-
tions it is not.

Example 13. Consider the hex-program Π = {a ← 2 = inc(1); int(X) ←
a,X > 0}. Then its only answer set is A = ∅ because 2 = inc(1) is false, thus
a is unsupported and the rule int(X) ← a,X > 0 is never applicable. However,
if function inc is interpreted with seminc(n) = n + 1 for all n ≥ 0, as in the
hexifu-program Π ′ = {a ← 2 =$ inc(1); int(X) ← a,X > 0}, then 2 =$ inc(1)
is always true, a is derived and int(X) ← a,X > 0 derives infinitely many atoms,
i.e., Π ′ is not finitely groundable. ��
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Because interpreted functions are closely related to external atoms, as evi-
denced by our rewriting, it is appropriate to reuse concepts for hex-programs.
The liberal safety framework [11] is defined for hex-programs and derives finite
groundability of programs based on its syntactic structure and semantic proper-
ties of external atoms, where the latter are asserted by the provider of an external
source. Such properties are, e.g., the existence of a well-ordering (the output of
an external source is no greater than its input according to some ordering),
monotonicity/antimonotonicity, and finite domains of external atoms.

Example 14. Π = {reachable(s); reachable(Y ) ← reachable(X),&edge[X](Y )}.
Without any knowledge about the semantics of the external atom e =
&edge[X](Y ), the program potentially introduces infinitely many new values
because e is involved in a cycle, finitely groundability is not guaranteed. How-
ever, if the output domain of e is known to be finite3, then the framework
identifies the program as finitely groundable. ��

For a hexifu-program Π, the basic idea is to apply the framework to the
hex-program τ(Π). Known properties of basic functions are exploited similarly
as for external atoms. Equivalence of Π and τ(Π) wrt. answer sets establishes
then the following result.

Proposition 3. A hexifu-program Π is finitely groundable iff τ(Π) is finitely
groundable.

Due to the result, convenient finiteness properties of hex-programs carry
over to hexifu-programs.

Computational Complexity. For the computational aspect, one can first
observe that unlike external atoms, ifu-atoms can only have input terms but
no input predicates. Therefore, ifu-atoms can be evaluated once the program’s
grounding is available, but there is no need for interleaving this process with
model building.

In the following, we assume that the program at hand is finitely ground-
able and analyze the complexity wrt. the program’s grounding. This is because
the grounding size depends on the semantics of the involved basic functions
and, unlike ordinary ASP, one cannot specify an upper bound for the size of the
grounding in terms of the size of the original program. For example, consider the
rule p(Y ) ← inc(I), p(X), Y =$ I(X), where inc(min(add(#1, 1), lim(c))) ←
defines a bounded increment function. That is, the function increments parame-
ter #1 up to a certain limit, which is given by the unary basic function lim(c).
Obviously, the limit for the increment function, and thus the size of the ground-
ing of Π, depends on the value of lim(c).

In contrast to complexity results for hex-programs [12], we cannot reason-
ably restrict the Herbrand universe to be finite as this contradicts the idea of

3 The external atom &edge[X](Y ) is intended to return the neighbors Y of X in a
fixed finite graph, thus Π computes the nodes which are reachable from a given start
node s.
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functionals which may introduce new functions. Instead, we can only rely on
safety conditions (see above) which ensure that the grounding has a finite, but
otherwise arbitrary size.

Then, if we assume that all functions have complexities in C, one can then
show that complexity results of ordinary ASP [9] carry over to hexifu-programs:

Proposition 4. Deciding if a ground hexifu-program Π has an answer set is
in C ◦ ΣP

2 in general and in C ◦ NP if Π is disjunction-free.

Here, C ◦ΣP
2 denote that the problem is decidable using the power of classes

C and ΣP
2 in sequence. Note that either of the two classes might dominate the

overall complexity. For instance, C ◦ ΣP
2 reduces to ΣP

2 if C = P . Similarily for
C ◦ NP .

Since deciding consistency of a ground hex-program is (ΣP
2 )C-complete

where C is the complexity of the external atoms [12], we conclude that hexifu-
programs are potentially even easier but not harder, i.e., positive properties of
hex-programs carry over.

7 Related Work and Conclusion

Related Work. We give an overview of existing approaches towards function
terms with non-Herbrand semantics. They all have in common that the semantics
is not given by an external theory but rather defined as part of the program and
that none of the following approaches allows for accessing functions as first-class
citizens.

The idea of integrating functions and logic programs is related to the field
of functional logic programming (FLP), cf. [20,21] for an overview. However,
this integration aims at a tighter coupling of the two declarative paradigms,
for instance by defining functions as equality clauses within the logic pro-
gram. For example, the facts append([], L) = L ← and append([E|R], L) =
[E|append(R,L)] ← might be used to define a list concatenation function. Arith-
metic operators are allowed in some approaches such as [2]. This allows for iden-
tifying syntactically different terms as semantically equivalent. Functions defined
in this way are then applied similarly as in term rewriting systems (cf. narrow-
ing). However, FLP integrates features of functional programming directly into
logic programs, while our approach aims at using externally defined functions
within the program. Although our approach also supports the construction of
new functions in the logic program, this works by composition of existing func-
tions rather than equality clauses (cf. Example 4).

Intensional function symbols detach from Herbrand interpretations and use
rules to define functions by other functions or predicates, cf. [3,7,24]. For
instance, loc(X) = garage ← car(X), not loc(X) �= garage expresses that cars
are in the garage by default. Although relations to ASP modulo theories and
to SMT are identified, cf. [4], this analysis is limited to specific theories (e.g.,
arithmetics).
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A different kind of approaches define functions as part of the program’s first-
order-like interpretations, cf. e.g. [25,26]. For instance, if color(n) represents the
color of node n, the constraint ← edge(X,Y ), color(X) �= color(Y ) represents
that adjacent nodes have different colors. When computing the reduct of the pro-
gram wrt. an interpretation, function terms are evaluated and replaced by the
value of the function. As a consequence, the evaluation is a strictly non-recursive
process. However, the possibility to evaluate a function term to a constant is sim-
ilar as in our approach. The approach corresponds to the previously developed
one by [26], as proven in [7]. The definition of the function color(·) is part of the
program’s answer.

HiLog-programs have a second-order syntax which allow arbitrary terms
to occur as predicate names [27]. For instance, the program P =
{closure(R)(X,Y ) ← R(X,Y ); closure(R)(X,Z) ← R(X,Y ), closure(R)(Y,Z)}
defines the transitive closure of arbitrary relations R. In another rule, the clo-
sure of a concrete relation edge can be accessed using a HiLog literal of for
closure(edge)(X,Y ). However, the semantics of HiLog is actually first-order,
as evidenced by a translation of HiLog-programs to normal programs. To this
end, general terms which are used as predicates are represented by standard
predicates and function symbols. For instance, closure(R)(X,Y ) is represented
by call(u3(u2(closure, R),X, Y )). The idea of using terms such as closure(R)
to represent functions which depend on other functions is similar to our fr-
terms, but relations and functions are defined within the program rather than
externally.

The grounder gringo provides an interface which supports calls to functions
written in the scripting language Lua4 before grounding, after a model has been
found, and after termination [16]. However, unlike in hexifu-programs, calls to
such functions are constrained to happen only at specific evaluation phases and
is not interleaved with model building. Also the use of functions as first-class
citizens is not possible.

Last but not least, some reasoners such as DLV support pre-defined inter-
preted functions, e.g. for list processing (appending elements, retrieving the head
element, etc.). However, the set of supported functions is fixed and hard-wired
within the reasoner, while custom external functions are not supported. The
same is true for well-known aggregate functions.

Uninterpreted function symbols are supported by ASP systems such as the
grounder gringo [15] and recent releases of DLV [22]. Previous research often
focused on the identification of classes of programs for which reasoning tasks,
such as answer set computation or query answering, are decidable, cf. e.g. [1].
External sources as in hex-programs were exploited in context of uninter-
preted function symbols for the composition and decomposition of nested func-
tion terms, cf. [8,10]. However, the function symbols themselves do not have
an externally defined semantics. In terms of our notation, the external pred-
icates &composek with k input and 1 output parameter, and &decomposek

with 1 input and k output parameters for each k ≥ 0 are used for composing

4 http://www.lua.org.

http://www.lua.org
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and decomposing function terms. To this end, f&composek
(A, f, t1, . . . , tk, x) =

f&decomposek
(A, x, f, t1, . . . , tk) = v with v = T if x = f(t1, . . . , tk) and v = F

otherwise. However, all external predicates had fixed purposes and function sym-
bols where not given a semantics.

Discussion. While having externally defined functions is central to our app-
roach and motivated by practical observations (need for accessing pre-existing
libraries, more natural or efficient implementation of some types of computa-
tions which invonve numeric computations, etc.), our approach can in principle
also be instantiated in such a way that functions can be defined within the pro-
gram, similarily to other approaches. To this end, one can pre-define a fixed
set of basic functions which suffice to construct arbitrary functions (or at least
arbitrary functions from a certain domain) by composition.5

Conclusion. We introduced hexifu-programs, i.e., logic programs with inter-
preted functions. In contrast to existing approaches towards interpreted func-
tions and also in contrast to hex-programs, the new approach paves the way
for functionals, i.e., functions that take other functions as parameters or return
them.

However, rather than functional logic programming (cf. e.g. [20,21]), we do
not aim at a tight integration of the two paradigms which allows for defining
functions as part of the program, but rather at evaluating externally defined
functions. Our approach is in particular flexible as it turns functions into objects
that are accessible in the program.

Currently, interpreted functions are either externally defined basic functions
or compositions thereof. Future work may include the support for additional
means for defining new functions such as currying [28], i.e., the translation of
a function f : D1 × · · · × Dn → R with n parameters into a function f ′ : D1 →
(D2 → (· · · (Dn → R))) with one parameter that returns another function in
the remaining n − 1 parameters. Also the support for functions with predicate
parameters, such as supported by external atoms, is an interesting starting point.
Finally, while we focused on functions in this work, also external atoms with non-
functional behavior might be turned into first-class citizens. Both of the last two
ideas might be realized based on parameters resp. return values whose domain
consists of sets of elements.
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