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Abstract. This paper describes PρLog: a tool that combines Prolog
with the ρLog calculus. Such a combination brings strategy-controlled
conditional transformation rules into logic programming. They operate
on sequences of terms. Transformations may lead to several results, which
can be explored by backtracking. Strategies provide a control on rule
applications in a declarative way. They are programmable: users can
construct complex strategies from simpler ones by special combinators.
Different types of first- and second-order variables provide flexible control
on selecting parts from sequences or terms. As a result, the obtained code
is usually pretty compact and declaratively clear. In programs, PρLog-
specific code can be intermixed with the standard Prolog code. The tool
is implemented and tested in SWI-Prolog.

1 Introduction

PρLog is a tool that combines, on the one hand, the power of logic programming
and, on the other hand, the flexibility of strategy-based conditional transforma-
tion systems. Its terms are built over function symbols without fixed arity, using
four different kinds of variables: for individual terms, for sequences of terms, for
function symbols, and for contexts. These variables help to traverse tree forms
of expressions both in horizontal and vertical directions, in one or more steps.
A powerful matching algorithm helps to replace several steps of recursive compu-
tations by pattern matching, which facilitates writing short and intuitively quite
clear code. By the backtracking engine, nondeterministic computations are mod-
eled naturally. Prolog’s meta-programming capabilities allowed to easily write a
compiler from PρLog programs (that consist of a specific Prolog code, actually)
into pure Prolog programs.

PρLog program clauses either define user-constructed strategies by transfor-
mation rules or are ordinary Prolog clauses. Prolog code can be used freely within
PρLog programs, which is especially convenient when some built-in primitives,
arithmetic calculations, or input-output features are needed.

PρLog is based on the ρLog calculus [17] and, essentially, is its executable
implementation. The inference system of the calculus is basically the SLDNF-
resolution, with normal logic program semantics [15]. Therefore, Prolog was a
natural choice to implement it.
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Originally, the ρLog calculus evolved from experiments with extending the
language of Mathematica [24] by a package for advanced rule-based program-
ming [16,18]. Later, these developments influenced an extension of another
symbolic computation system, Maple [19], by a rule-based programming pack-
age called symbtrans (an adaptation of ρLog) used for automatic derivation of
multiscale models of arrays of micro- and nanosystems, see, e.g., [2].

The ρLog calculus has been influenced by the ρ-calculus [5], which, in itself, is
a foundation for the rule-based programming system ELAN [3]. There are some
other languages for programming by rules, such as ASF-SDF [21], CHR [12],
Claire [4], Maude [6], Stratego [22], Tom [1], just to name a few. The ρLog
calculus and, consequently, PρLog differs from them, first of all, by its pattern
matching capabilities. Besides, it adopts logic programming semantics (clauses
are first class concepts, rules/strategies are expressed as clauses) and makes a
heavy use of strategies to control transformations. In earlier papers, we showed
its applicability for XML transformation and Web reasoning [7], and in modeling
rewriting strategies [10]. More recently, it has been used in extraction of frequent
patterns from data mining workflows [20].

The mentioned application papers, naturally, described the language and
some features of PρLog, but they did not give an overview of the entire system.
Moreover, there have been some new developments meanwhile: the library of
built-in strategies has been modified and extended, a lighter version of PρLog has
been implemented, an Emacs-based development environment appeared. There-
fore, we decided to describe the current status of the tool in this paper: to
explain by simple examples how it works, discuss the language, architecture,
built-in strategies, and the development environment.

PρLog sources, Emacs mode, and help on built-in strategies can be down-
loaded from its Web page

http://www.risc.jku.at/people/tkutsia/software/prholog/.

The current version has been tested for SWI-Prolog [23] version 7.2.3 or later.

2 Overview

PρLog atoms are supposed to transform term sequences. Transformations are
labeled by what we call strategies. Such labels (which themselves can be com-
pound terms, not necessarily constant symbols) help to construct more complex
transformations from simpler ones.

An instance of a transformation is finding duplicated elements in a sequence
and removing one of them. Let us call this process double merging. The following
strategy implements the idea:

merge doubles :: (s X , i x , s Y , i x , s Z ) =⇒ (s X , i x , s Y , s Z ).

The code, as one can see, is pretty short. merge doubles is the strategy name.
It is followed by the separator :: which separates the strategy name from the

http://www.risc.jku.at/people/tkutsia/software/prholog/
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transformation. Then comes the transformation itself in the form lhs =⇒ rhs.
It says that if the sequence in lhs contains duplicates (expressed by two copies
of the variable i x , which can match individual terms and therefore, is called
an individual variable) somewhere, then from these two copies only the first
one should be kept in rhs. That “somewhere” is expressed by three sequence
variables, where s X stands for the subsequence before the first occurrence of
i x , s Y takes the subsequence between two occurrences of i x , and s Z matches
the remaining part. These subsequences remain unchanged in the rhs. In PρLog,
variable names start with the first letter of their kind (there are four kinds of
variables: individual, sequence, f unction, context), followed by the underscore.
After the underscore, there comes the actual name. For anonymous variables,
we write just i , s , f , c .

Note that one does not need to code the actual search process of doubles
explicitly. The matching algorithm does the job instead, looking for an appro-
priate instantiation of the variables. There can be several such instantiations.

Now one can ask, e.g., to merge doubles in a number sequence (1, 2, 3, 2, 1):

?- merge doubles :: (1, 2, 3, 2, 1) =⇒ s Result .

First, PρLog returns the substitution {s Result �→ (1, 2, 3, 2)}. Like in Pro-
log, the user may ask for more solutions, and, via backtracking, PρLog gives the
second answer {s Result �→ (1, 2, 3, 1)}. Both are obtained from (1, 2, 3, 2, 1)
by merging one pair of duplicates.

A double-free sequence is just a normal form of this single-step merge doubles
transformation. PρLog has a built-in strategy for computing normal forms,
denoted by nf , and we can use it to define a new strategy merge all doubles
in the following clause (where :-, as in Prolog, stands for the inverse implica-
tion):

merge all doubles :: s X =⇒ s Y :- nf(merge doubles) :: s X =⇒ s Y , !.

The effect of nf is that it applies merge doubles to s X , repeating this process
iteratively as long as it is possible, i.e., as long as doubles can be merged in the
obtained sequences. When merge doubles is no more applicable, it means that
the normal form of the transformation is reached. It is returned in s Y .

Note the Prolog cut at the end. It cuts the alternative ways of computing the
same normal form. In fact, Prolog primitives and clauses can be used in PρLog
programs. Now, for the query

?- merge all doubles :: (1, 2, 3, 2, 1) =⇒ s Result .

we get a single answer s Result �→ (1, 2, 3).
Instead of the cut, we could define merge all doubles purely in PρLog terms:

merge all doubles :: s X =⇒ s Y :-
first one(nf(merge doubles)) :: s X =⇒ s Y .
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first one is another PρLog built-in strategy. It applies to a sequence of strate-
gies, finds the first one among them, which successfully transforms the input
sequence, and gives back just one result of the transformation. Here it has a
single argument strategy nf(merge doubles) and returns (by instantiating s Y )
only one result of its application to s X .

In the last clause, the transformation is exactly the same in the clause head
and in the (singleton) body, and both have sequence variables in the left and
right hand sides (s X and s Y ). In such cases we can use more succinct notation:

merge all doubles := first one(nf(merge doubles)).

This form is called the strategy definition form: the strategy in its left hand
side (here merge all doubles) is defined as the strategy in its right hand side
(here first one(nf(merge doubles))).

PρLog is good not only in selecting arbitrarily many subexpressions in “hor-
izontal direction” (by sequence variables), but also in working in “vertical direc-
tion”, selecting subterms at arbitrary depth. Context variables provide this flex-
ibility, by matching the context above the subterm to be selected. A context is a
term with a single “hole” in it. When it applies to a term, the latter is “plugged
in” the hole, replacing it. Syntactically, the hole is denoted by a special constant.
In the PρLog system it is hole, but here in the paper we use a more conven-
tional notation •. There is yet another kind of variable, called function variable,
which stands for a function symbol. With the help of these constructs and the
merge doubles strategy, it is pretty easy to define a transformation that merges
double branches in a tree, represented as a term:

merge double branches ::
c Context(f Fun(s X )) =⇒ c Context(f Fun(s Y )) :-
merge doubles :: s X =⇒ s Y .

Here c Context is a context variable and f Fun is a function variable. Now,
we can ask to merge double branches in a given tree:

?- merge double branches ::
f(g(a, b, a, h(c, c)), h(c), g(a, a, b, h(c))) =⇒ i Result .

PρLog returns three results, one after the other, by backtracking:

{i Result �→ f(g(a, b, h(c, c)), h(c), g(a, a, b, h(c)))},

{i Result �→ f(g(a, b, a, h(c)), h(c), g(a, a, b, h(c)))},

{i Result �→ f(g(a, b, a, h(c, c)), h(c), g(a, b, h(c)))}.

To obtain the first one, PρLog matched the context variable c Context to
the context f(•, h(c), g(a, a, b, h(c))), the function variable f Fun to the func-
tion symbol g, and the sequence variable s X to the sequence (a, b, a, h(c, c)).
merge doubles transformed (a, b, a, h(c, c)) to (a, b, h(c, c)). The other results
have been obtained by taking different contexts and respective subbranches.
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The right hand side of transformations in the queries need not be variables.
One can have an arbitrary sequence there. For instance, we may be interested
in trees that contain h(c, c):

?- merge double branches ::
f(g(a, b, a, h(c, c)), h(c), g(a, a, b, h(c))) =⇒ c C (h(c, c)).

We get here two answers, which show instantiations of c C by the relevant
contexts:

{c C �→ f(g(a, b, •), h(c), g(a, a, b, h(c)))},

{c C �→ f(g(a, b, a, •), h(c), g(a, b, h(c)))}.

Similar to merging all doubles in a sequence above, we can also define a strat-
egy that merges all identical branches in a tree repeatedly. It is not surprising
that the built-in strategy for normal forms plays a role also here:

merge all double branches := first one(nf(merge double branches)).

For the query

?- merge all double branches ::
f(g(a, b, a, h(c, c)), h(c), g(a, a, b, h(c))) =⇒ s Result .

we get a single answer {s Result �→ f(g(a, b, h(c)), h(c))}.
Finally, note that a strategy can be defined by several clauses, which are

treated as alternatives.

3 The PρLog Language

From the brief overview above one can get a pretty clear idea about the PρLog
language: Its terms and sequences are constructed from function symbols that do
not have fixed arity (variadic, aka unranked, function symbols), using the four
kinds of variables. The constant hole is the exception: it is always used without
arguments. More precisely, terms are either individual variables, or expressions
of one of the following forms: f(s̃), f F (s̃), or c C (t), where f is an unranked
function symbol, t is a term, and s̃ is a finite (possibly empty) sequence of
terms or sequence variables. (These sequences are sometimes called hedges.)
The empty sequence is denoted in the system with eps (for ε), but we use more
conventional notation ( ) in the paper. Two sequences can be concatenated into
one, where the empty sequence plays the role of the unit element of this (meta-
level) concatenation operation. Sequences are written in the parenthesis for easy
parsing (when they contain more than one element) and are flat. A singleton
sequence is identified with its sole element. Contexts are terms with a unique
occurrence of the hole. The previous section contains several examples of terms,
sequences, and contexts.



An Overview of PρLog 39

Substitutions map individual variables to terms, sequence variables to
sequences, function variables to function symbols or function variables, and
context variables to contexts. For example, {c Ctx �→ f(•), i Term �→
g(s X ), f Fun �→ g, s H 1 �→ ( ), s H2 �→ (b, c)} is a substitution. We
can apply substitutions to sequences, which gives sequences as a result.
In particular, if the sequence is a singleton term, then the result of the
application is also a term. Applying the substitution above to a sequence
(c Ctx (i Term), f Fun(s H1 , a, s H2 )) give the sequence (f(g(s X )), g(a, b, c)).

Note that sequence variables are not terms, and context variables always
apply to terms, not to arbitrary sequences. This makes terms and contexts closed
under substitution application.

The main computational mechanism for PρLog is matching. Due to sequence
and context variables, it is finitary, which means that a matching problem may
have finitely many solutions. For instance, the sequence (s X , i x , s Y , i x , s Z )
matches (1, 2, 3, 2, 1) in two different ways:

– {s X �→ ( ), i x �→ 1, s Y �→ (2, 3, 2), s Z �→ ( )},
– {s X �→ 1, i x �→ 2, s Y �→ 3, s Z �→ 1}.

In the previous section, we also saw two solutions to the problem of matching
c C (h(c, c)) to the result of applying the strategy merge double branches to the
term f(g(a, b, a, h(c, c)), h(c), g(a, a, b, h(c))).

A ρLog atom (ρ-atom) is a triple consisting of a strategy st (which is a term)
and two (hole-free) sequences s̃1 and s̃2, written as st :: s̃1 =⇒ s̃2. Its negation
is written as st :: s̃1 \=⇒ s̃2. A ρLog literal (ρ-literal) is a ρ-atom or its negation.
A PρLog clause is either a Prolog clause, or a clause of the form st :: s̃1 =⇒
s̃2 :- body (called a ρ-clause) where body is a (possibly empty) conjunction of
ρ- and Prolog literals. Strategy definitions str1 := str2 are shortcuts for clauses
of the form str1 :: s X =⇒ s Y :- str2 :: s X =⇒ s Y .

In fact, PρLog clauses may have a more complex structure, when (some
of) the literals are equipped with membership constraints, constraining possible
values of sequence and context variables. Such constraints are taken into account
in the matching process. For simplicity, we do not consider them in this paper.

A PρLog program is a sequence of PρLog clauses. A query is a conjunction of
ρ- and Prolog literals. A restriction on variable occurrence is imposed on clauses:
ρ-clauses and queries can contain only PρLog variables, while Prolog clauses and
queries can contain only Prolog variables. If a ρ-clause or a query contains a Pro-
log literal, the only variables that can occur in that literal are PρLog individual
variables. (When it comes to evaluating such Prolog literals, the individual vari-
ables are converted into Prolog variables.) A detailed description of PρLog syntax
can be found in the technical report [11] and on its Web page.

We need to make sure that in the program execution process, all solving
problems that arise for PρLog clauses and queries are matching problems, not
unification. The reason is that matching for our language is finitary [14], while
unification is infinitary [8,13]. The latter is undesirable, because it would cause
infinite branching in the program execution tree. Therefore, we would like to
restrict the solving to the fragment that guarantees an existence of a terminating
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finitary procedure. Matching is one of such possible fragments. The restriction
we impose on clauses and queries is well-modedness, extends the same notion for
logic programs, introduced in [9]. It forbids uninstantiated variables to appear
in one of the sides of unification problems and, hence, only matching problems
arise.

More specifically, well-modedness is based on the notion of mode of a relation.
A mode for the relation · :: · =⇒ · is a function that defines the input and
output positions of the relation respectively as in(· :: · =⇒ ·) = {1, 2} and
out(· :: · =⇒ ·) = {3}. A mode is defined (uniquely) for a Prolog relation as
well. A clause is moded if all its predicate symbols are moded. We assume that
all ρ-clauses are moded. As for the Prolog clauses, we require modedness only for
those ones that define a predicate that occurs in the body of some ρ-clause. If a
Prolog literal occurs in a query in conjunction with a ρ-clause, then its relation
and the clauses that define this relation are also assumed to be moded.

Roughly, the idea of well-modedness is that the variables in the input posi-
tions should already be seen in the output positions of some earlier literals. Before
defining it formally, we introduce the notation vars(E) for a set of variables
occurring in an expression E, and define vars(E, {p1, ..., pn}) = ∪n

i=1vars(E|pi
),

where E|pi
is the standard notation for a subexpression of E at position pi. The

symbol Va stands for the set of anonymous variables. A ground expression con-
tains no variables. Then well-moded queries and clauses are defined as follows:

Definition 1. A query L1, . . . , Ln is well-moded iff the following conditions
hold for each 1 ≤ i ≤ n:

– vars(Li, in(Li)) ⊆ ∪i−1
j=1vars(Lj , out(Lj)) \ Va.

– If Li is a negative literal, then vars(Li, out(Li)) ⊆ ∪i−1
j=1vars(Lj , out(Lj))∪Va.

– If Li is a ρ-literal, then its strategy term is ground.

A clause L0 :- L1, . . . , Ln is well-moded iff the following hold for each 1 ≤ i ≤ n:

– vars(Li, in(Li)) ∪ vars(L0, out(L0)) ⊆ ∪i−1
j=0vars(Lj , out(Lj)) \ Va.

– If Li is a negative literal, then

vars(Li, out(Li)) ⊆ ∪i−1
j=1vars(Lj , out(Lj)) ∪ Va ∪ vars(L0, in(L0)).

– If L0 and Li are ρ-literals with the strategy terms st0 and sti, respectively,
then vars(sti) ⊆ vars(st0).

It is easy to see that the clauses and queries in Figs. 1 and 2 are well-moded.
PρLog prologwell-moded. Well-modedness of queries is checked when they

are evaluated. There is no restriction on the Prolog clauses if the predicate they
define is not used in a ρ-clause.

PρLog execution principle is based on depth-first inference with leftmost
literal selection in the goal. If the selected literal is a Prolog literal, then it is
evaluated in the standard way. If it is a ρ-atom of the form st :: s̃1 =⇒ s̃2, the
crucial thing is that, due to well-modedness, st and s̃1 do not contain variables.
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Then a (renamed copy of a) program clause st ′ :: s̃′
1 =⇒ s̃′

2 :- body is selected,
such that st ′ matches st and s̃′

1 matches s̃1 with a substitution σ. Next, the
selected literal in the query is replaced with the conjunction (body)σ, id :: s̃′

2σ =⇒
s̃2, where id is the built-in strategy for identity: it succeeds iff the rhs matches
the lhs. Evaluation continues further with this new query. Success and failure are
defined in the standard way. Backtracking allows to explore other alternatives
that may come from matching the selected query literal to the head of the same
program clause in a different way, or to the head of another program clause.
Negative literals are processed by the negation-as-failure rule. Well-modedness
guarantees that whenever a negative ρ-literal is selected during the execution
process, there are no variables in it except, maybe, some anonymous variables
that may occur in its right-hand side.

Example 1. To illustrate the described PρLog inference step, consider again the
example about merge all doubles from Sect. 2. To transform the query

?- merge all doubles :: (1, 2, 3, 2, 1) =⇒ s Result .

with the clause

merge all doubles :: s X =⇒ s Y :- nf(merge doubles) :: s X =⇒ s Y , !.,

PρLog takes the matcher {s X �→ (1, 2, 3, 2, 1)}, and produces a new query

?- nf(merge doubles) :: (1, 2, 3, 2, 1) =⇒ s Y , !, id :: s Y =⇒ s Result .

4 Implementation

PρLog is implemented in SWI-Prolog. Its programs have the extension .rho. In
Fig. 1 one can see how exactly the program merge.rho for merging doubles in
sequences and trees, discussed in Sect. 2, looks.

PρLog variables are, actually, Prolog constants. Therefore, one can not
directly rely on Prolog unification to compute values for those variables. Conse-
quently, the answers to the query should be computed as explicit substitutions
showing what PρLog variables map to. It requires a PρLog query to be actually
wrapped to a meta-query that then returns the substitutions. For the queries
considered in Sect. 2, such meta-queries can be seen in Fig. 2. The predicate
symbol used in them is ?.

The substitutions indicate that there is a background solving mechanism in
PρLog that performs matching and computes the corresponding substitutions.
Indeed, we do it by the algorithm from [14], implemented in SWI-Prolog. How-
ever, it turns out that if we do not have context variables, then we can avoid
using this implementation and, instead, compute matching substitutions directly
by Prolog unification, which is, naturally, a more efficient way. We have imple-
mented this version of PρLog as well, calling it PρLog-light. To distinguish, we
sometimes say PρLog-full for the version with context variables.
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% Merging double elements in a sequence:

% If the input sequence contains a double, keep the left copy.

merge_doubles :: (s_X, i_x, s_Y, i_x, s_Z) ==> (s_X, i_x, s_Y, s_Z).

% Merging all doubles:

% Return a normal form with respect to merge_doubles.

merge_all_doubles := first_one(nf(merge_doubles)).

% Merging double branches in a tree:

% If the input tree contains a double branch, keep the left one,

% using the merge_doubles strategy.

merge_double_branches ::

c_Context(f_Fun(s_X)) ==> c_Context(f_Fun(s_Y)) :-

merge_doubles :: s_X ==> s_Y.

% Merging all double branches in a tree:

% Return a normal form with respect to merge_double_branches.

merge_all_double_branches := first_one(nf(merge_double_branches)).

Fig. 1. Program merge.rho for merging doubles in sequences and trees.

The PρLog distribution consists exactly of these two parts: PρLog-full and
PρLog-light. Each part has the main file, called prholog.pl and prholog-l.pl,
respectively. They are responsible for setting up the environments and loading
the corresponding version of PρLog. The major parts of both versions are the
parser, compiler, and the library of built-in strategies: parse.pl, compile.pl,
library.pl files for PρLog-full, and parse-l.pl, compile-l.pl, library-l.pl
files for PρLog-light, respectively.

Besides, in the full PρLog there is a solver solve.pl for matching problems
and regular constraints. The light version does not require such a solver, but it
still needs to check regular constraints. It is done in the file constraints-l.pl.

A typical PρLog session starts by invoking SWI-Prolog and consulting themain
PρLog file. After that, the user may write/edit a .rho file in her favorite editor, and
load it by executing the query ?- load(‘...filename.rho’), where ... stands
for the full path. Next, the program can be queried as, e.g., it is shown in Fig. 2.

The parser and the compiler are invoked at the time when a .rho file is
loaded. Besides syntax errors, the parser checks also for well-modedness and for
occurrences of PρLog variables in Prolog literals. If no errors are detected, then
the compiler compiles the filename.rho file into a Prolog file filename.pl,
translating each PρLog clause into a Prolog clause. The file filename.pl is
located in the same directory as filename.rho, loads immediately after the
compilation, and is deleted on the exit.
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?- ?(merge_doubles :: (1,2,3,2,1) ==> s_Result, Subst).

Subst = [s_Result---> (1, 2, 3, 2)] ;

Subst = [s_Result---> (1, 2, 3, 1)] ;

false.

?- ?(merge_all_doubles :: (1,2,3,2,1) ==> s_Result, Subst).

Subst = [s_Result---> (1, 2, 3)] ;

false.

?- ?(merge_double_branches ::

f(g(a,b,a,h(c,c)), h(c), g(a,a,b,h(c))) ==> i_Result, Subst).

Subst = [i_Result--->f(g(a, b, h(c, c)), h(c), g(a, a, b, h(c)))] ;

Subst = [i_Result--->f(g(a, b, a, h(c)), h(c), g(a, a, b, h(c)))] ;

Subst = [i_Result--->f(g(a, b, a, h(c, c)), h(c), g(a, b, h(c)))] ;

false.

?- ?(merge_double_branches ::

f(g(a,b,a,h(c,c)), h(c), g(a,a,b,h(c))) ==> c_C(h(c,c)), Subst).

Subst = [c_C--->f(g(a, b, hole), h(c), g(a, a, b, h(c)))] ;

Subst = [c_C--->f(g(a, b, a, hole), h(c), g(a, b, h(c)))] ;

false.

?- ?(merge_all_double_branches ::

f(g(a,b,a,h(c,c)), h(c), g(a,a,b,h(c))) ==> i_Result, Subst).

Subst = [i_Result--->f(g(a, b, h(c)), h(c))] ;

false.

Fig. 2. Querying merge.rho.

The same parsing and compiling process is done when PρLog queries are
evaluated. After compiling, the obtained Prolog query is executed. Answers are
given as explicit substitutions.

5 Library

The library consists of definitions of built-in strategies, implemented in Prolog.
They greatly simplify programming in PρLog. These strategies are protected
and can not be redefined from a PρLog program. Currently there are 14 of them
in the library. Except a couple of exceptions, each of them can be used both
with and without regular constraints. We give a brief overview of some of those
strategies, without mentioning the constraints.

Choice. The syntax of this strategy is

choice(strategy1, . . . , strategyn) :: sequence1 =⇒ sequence2,

where n ≥ 1. It succeeds if and only if for some i, strategy i :: sequence1 =⇒
sequence2 succeeds.
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Composition. Composing strategies, making the output sequence of one the
input for the other:

compose(strategy1, . . . , strategyn) :: sequence1 =⇒ sequence2,

where n ≥ 2. First applies strategy1 to sequence1. To its result, strategy2 is
applied and so on. sequence2 is the final result. compose fails if one of its
argument strategies fails in the process.

Closure. The syntax of this strategy is:

closure(strategy) :: sequence1 =⇒ sequence2,

It succeeds if sequence2 belongs to the closure set of transforming sequence1

by strategy . The set elements are computed one after the other, by backtracking.
closure fails if the set is empty. An example of a query would be

? − closure(merge doubles) :: (1, 2, 3, 2, 1) =⇒ s Result .

It gives five answer substitutions via backtracking:

– {s Result �→ (1, 2, 3, 2, 1)},
– {s Result �→ (1, 2, 3, 2)},
– {s Result �→ (1, 2, 3)},
– {s Result �→ (1, 2, 3, 1)},
– {s Result �→ (1, 2, 3)}

Identity. The goal of this strategy is to transform a sequence to its identical one:

id :: sequence1 =⇒ sequence2.

It succeeds iff sequence2 can match sequence1.

Returning all answers of the first applicable strategy, one by one. Denoted by
first all:

first all(strategy1, . . . , strategyn) :: sequence1 =⇒ sequence2,

where n ≥ 1. Tries to apply strategy1 to sequence1. If this fails, it tries the next
strategy and so on. When a strategy is found that succeeds, first all returns all
answers computed by it in sequence2, via backtracking. If no strategy succeeds,
first all fails.

The strategy first one mentioned earlier is similar to first all, with the only
difference that it returns only one answer instead of all of them.
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Returning all answers at once. It can be seen as an analog of findall for PρLog.
The syntax is

all answers(strategy) :: sequence1 =⇒ sequence2.

It succeeds if and only if sequence2 is a sequence consisting of terms of the form
ans(s̃1), . . . , ans(s̃n), where s̃1, . . . , s̃n are all the sequences obtained by applying
strategy to sequence1. The symbol ans just plays the role of a constructor, to
distinguish between different answer sequences in sequence2. We could ask

? − all answers(merge doubles) :: (1, 2, 3, 2, 1) =⇒ s Result .

and obtain the answer {s Result �→ (ans(1, 2, 3, 2), ans(1, 2, 3, 1))}.

Interactive mode. The syntax is:

interactive :: sequence1 =⇒ sequence2.

It activates the interactive mode and starts dialog with the user, asking her
to provide a strategy, which is then applied to sequence1. The process is repeated
further so that the output sequence of the previous strategy application becomes
the input for the new strategy provided by the user, and so on. The interactive
process stops when the user types finish. At that moment, the input sequence
that was there is returned in sequence2. interactive fails when the user-provided
strategy fails for the current input sequence.

n-fold iteration. Specifies how many times a strategy can be applied repeatedly:

iterate(strategy , n) :: sequence1 =⇒ sequence2.

It applies strategy repeatedly, n times, starting from sequence1. The result is
returned in sequence2. iterate fails if one of the applications fails.

The normal form strategy nf is similar, but instead of applying a strategy
fixed number of times, it applies it until the transformation is not possible, and
returns the last sequence.

Mapping a strategy to a sequence. Mapping is a common operation in declarative
programming:

map(strategy) :: sequence1 =⇒ sequence2.

It applies strategy to each term of sequence1. For such an input term, strategy
may, in general, return a sequence (not necessarily a single term). A sequence
constructed of these results (in the same order) is then returned in sequence2.
map fails when the application of strategy to a term from sequence1 fails. When
sequence1 is empty, sequence2 is empty as well.

A variation of this strategy, map to subhedges, splits sequence1 nonde-
terministically into nonempty subsequences (when sequence1 is not empty) and
applies strategy to each such subsequence. A sequence constructed from these
results (in the same order) is returned in sequence2. map to subhedges fails
when sequence1 can not split in such a way that the application of strategy
succeeds for each split subsequence. When sequence1 is empty, so is sequence2.
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Rewriting. Yet another common transformation, which transforms a term not
necessarily in the top position, but by transforming its subterm, in general:

rewrite(strategy) :: term1 =⇒ term2.

It succeeds if and only if term2 is obtained from term1 by applying strategy
to a subterm of it. Note that one can easily define rewriting inside full PρLog:

rewrite(i Strategy) :: c Context(i Term1) =⇒ c Context(i Term2) :-
i Strategy :: i Term1 =⇒ i Term2.

Nevertheless, we decided to provide the predefined strategy for rewriting in
the library, because it is quite a frequently used transformation.

6 Development Environment

PρLog can be used in any development environment that is suitable for SWI-
Prolog. We provide a special Emacs mode for PρLog, which extends the Stefan
D. Bruda’s Prolog mode for Emacs.1 It supports syntax highlighting, makes it
easy to load PρLog programs and anonymize variables via the menu, etc. Figure 3
can give an idea how it looks.

A tracing tool for PρLog is under development. Prolog trace is too fine-
grained for this purpose, since it goes through all parsing and compilation pred-
icates that are invoked when a PρLog query is evaluated. Instead, the PρLog-
specific tracing/debugging tool should ignore (by default) all intermediate Prolog
steps and show only those that are directly related to PρLog inference.

7 Discussion and Final Remarks

The main advantage of using PρLog is its flexibility in specifying nondetermin-
istic computations, which allows to neatly combine conditional transformation
rules with logic programming. Strategies help to separate transformation rules
from the control on their application, which makes rules reusable in different
transformations. It also means that, unlike Prolog, the user can apply the pro-
gram clauses in different order for different queries, without rewriting the code.

Assume that we have two PρLog rules, one for the top-level transformation
of a term, and the other one for transforming an argument:

transform top(i Strategy) :: i Term1 =⇒ i Term2 :-
i Strategy :: i Term1 =⇒ i Term2.

transform arg(i Strategy) ::
f Fun(s X , i Term1, s Y ) =⇒ f Fun(s X , i Term2, s Y ) :-
i Strategy :: i Term1 =⇒ i Term2.

1 https://bruda.ca/emacs/prolog mode for emacs.

https://bruda.ca/emacs/prolog_mode_for_emacs
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Fig. 3. Emacs PρLog session.

Note that theuse of functionand sequencevariablesmakes the codeuniversal (it
can apply to any term, independent to their top function symbols and thenumber of
arguments) and compact (one does not need to implement the term decomposition
and traversal explicitly, the declarative specification given above is sufficient).

Now, innermost and outermost rewriting strategies can be implemented by
strategy combinations only, imposing the right application order of the transfor-
mation rules.

Innermost rewriting is defined by the following recursive strategy:

innermost rewriting(i Strategy) :=
first all(transform arg(innermost rewriting(i Strategy)),

transform top(i Strategy)).

It gives the priority to the argument transformation by innermost rewriting
(wrt the given strategy) over the top-position transformation (wrt the given
strategy): If the former is applicable, first all makes sure that its all possible
results are returned and the latter is not tried. For instance, assume that str is
some concrete strategy defined by two clauses:

str :: f(s X ) =⇒ g(s X ). str :: f(f(i X )) =⇒ i X .
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If we ask to rewrite h(f(f(a)), f(a)) by innermost rewriting:

? − innermost rewriting(str) ::h(f(f(a)), f(a)) =⇒ i Result .

PρLog will return two results: h(f(g(a)), f(a)) and h(f(f(a)), g(a)).
If we want to experiment with outermost rewriting, we only need to define

the corresponding strategy (essentially, by changing the application order of the
rules, without altering them):

outermost rewriting(i Strategy) :=
first all(transform top(i Strategy),

transform arg(outermost rewriting(i Strategy))).

Rewriting h(f(f(a)), f(a)) by this strategy gives three results: h(g(f(a)), f(a)),
h(a, f(a)), and h(f(f(a)), g(a)).

The definitions also clearly illustrate the difference between these two rewrit-
ing strategies.

If one wants to compute only one result, instead of all, the only change needed
in this case is to replace first all by first one in the corresponding strategy.

This example shows some advantages of PρLog: compact and declarative
code; capabilities of expression traversal without explicitly programming it; the
ability to use clauses in a flexible order with the help of strategies. Besides, PρLog
has access to the whole infrastructure of its underlying Prolog system. These
features make PρLog suitable for nondeterministic computations, implementing
rule-based algorithms and their control, manipulating XML documents, etc.

As future work, one direction is finishing the implementation of PρLog trace.
We also plan to improve the compiler by adding more optimization capabilities.
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