
A Domain-Specific Language
for Software-Defined Radio

Geoffrey Mainland(B)

Department of Computer Science, Drexel University, Philadelphia, PA, USA
mainland@drexel.edu

Abstract. Software-defined radio (SDR) is a demanding domain; real-
world wireless protocols require high data rates and low latency. Exist-
ing SDR platforms, typically based on FPGAs, provide the necessary
substrate for meeting these requirements, but the high-level tools avail-
able to program them are not capable of fully exploiting the underlying
hardware to meet rigorous performance requirements. Ziria [11] demon-
strated that a high-level language can compete in this demanding space,
but its design was ad-hoc and overly influenced by the needs of the com-
piler writer since its surface language does double duty as the compiler’s
intermediate language.

We present a re-formulation of Ziria’s surface language that includes
a new type system that allows this language, which is effectful, to elab-
orate into a pure, monadic language where effects such as input/output
and reference manipulation can be distinguished purely by type. This
re-formulation and its elaboration into a core language is embodied in
a new compiler for Ziria, kzc. By choosing an appropriate type system,
awkward syntactic distinctions currently made by Ziria can be elimi-
nated, although our new implementation maintains source compatibility
with the original compiler due to a large body of existing Ziria code (a
full 802.11 physical layer implementation). Our contribution is a descrip-
tion of the surface language, its type system, and its elaboration into a
core language. We also show that far from being limited to the SDR
domain, the constructs built-in to Ziria are applicable to other resource-
constrained domains that require high-speed data processing.

1 Introduction

Software-defined radio promises to bring the productivity benefits of software—
fast development cycles and modular reuse of code—to the world of radio proto-
cols. Radio platforms for SDR, such as USRP [3] and BladeRF [2], provide the
necessary hardware for high-performance radio protocol implementations, but
existing tools for programming these devices fall short on one or more dimen-
sions. The fundamental issue is the tension between ease of programming and
performance.

Although most SDR hardware incorporates an FPGA, which could be pro-
grammed directly, doing so requires not only the use of proprietary tools, but also
fairly low-level knowledge of the underlying FPGA. Instead, platforms like GNU
c© Springer International Publishing AG 2017
Y. Lierler and W. Taha (Eds.): PADL 2017, LNCS 10137, pp. 173–188, 2017.
DOI: 10.1007/978-3-319-51676-9 12



174 G. Mainland

Radio [4] offer a high-level toolkit of signal processing blocks written in Python
and C++. These blocks are composed using a graph-based model where vertices,
i.e., blocks, represent computation, and edges represent communication. While
simple to program, this model does not result in high-speed, low-latency proto-
col implementations. As a programming model, the graph-based paradigm also
has a number of shortcomings. First, it does not specify when a vertex’s state
is initialized. Although edges represent “communication,” how control messages
and data flow are differentiated is not well-defined, and it is unclear how one
vertex could send a control message to another vertex, perhaps one to which it is
not directly connected. There is also no well-defined method for control messages
to reconfigure data flow in the graph. Finally, since each vertex is a black box,
there is no opportunity to jointly optimize multiple vertices’ operations.

SORA [14] was the first SDR programming platform to provide a purely
software-based 802.11 a/b/g implementation that operated at speeds compara-
ble to commodity 802.11 hardware. This was achieved with a carefully hand-
tuned C++ implementation. The SORA implementation is so carefully tuned,
that modifying it while maintaining performance is very difficult. For example,
SORA relies crucially and frequently on lookup tables (LUTs) for performance,
but these LUTs appear simply as array constants in the C source. Questions such
as how these LUTs were generated (by hand?), how one should choose when to
write a function as a LUT, and how one might go about changing an existing
LUT are left unanswered.

Implementing radio protocols directly in FPGA hardware is typically accom-
plished using MATLAB/Simulink; both WARP [9] and SOFDM [5] take this
approach. The resulting programs are graph-based system models that are syn-
thesized to FPGA bitstreams. However, though they can fully exploit the under-
lying FPGA, these models are large, difficult to construct and reason about, and
they are intimately tied to particular platform traits such as the FPGA clock
rate and the bit width of the A/D converter in the radio front end. Further-
more, the MATLAB/Simulink environment does not offer constructs tailored to
the SDR domain.

Ziria [11] is a high-level language for wireless physical layer (PHY) protocols,
i.e., the portion of the radio stack that converts radio signals into bits, which are
then passed on to another protocol handler, such as a MAC protocol. Ziria pro-
vides both programmability and SORA-level performance. This is achieved by
a number of compiler optimizations—in effect, instead of an expert C program-
mer doing the work of translating a high-level specification of a wireless PHY
protocol into efficient low-level C code, the Ziria compiler does the work. The
optimizer’s job is made easier by the nature of the restricted application domain:
whole-program analysis is possible, arrays sizes are statically known, and com-
munication between components is performed via built-in language constructs.

In this work, we show how to reformulate the Ziria surface language so that
terms’ types differentiate between the three effects that are meaningful in our
setting: memory assignment/dereference, reading from a queue, and writing to
a queue. The existing surface language uses syntactic constructs to distinguish



A Domain-Specific Language for Software-Defined Radio 175

between code that performs memory assignment/dereferencing and code that
performs IO via queues; our reformulation shows how this syntactic distinction
can be eliminated in favor of a type-based distinction. This reformulation also
enables elaboration of the effectful surface language into a pure, monadic core
language. In other work [8], we show that novel source-to-source transformations
on this core language can jointly optimize across multiple Ziria components, fus-
ing them into a single loop; we include benchmarks demonstrating the perfor-
mance effects of these optimizations in Sect. 6. Concretely, the contributions of
this work are as follows:

– A type system, with a limited form of quantification, that expresses what are
currently syntactic distinctions in Ziria as type distinctions.

– A method for elaborating the effectful Ziria surface language into a pure,
monadic core language.

– A new continuation-based compilation model for Ziria.

Our contributions are embodied in kzc1, a wholly new open source compiler
for the Ziria language that is source-compatible with the existing compiler, wplc2.

2 Background

We first give a brief overview of the Ziria surface language to provide necessary
context. The surface language we describe is identical to the language described
by Stewart et al. [11], and this section does not represent novel work. Ziria
provides an imperative core wrapped with combinators for producer-consumer
computations that operate over streams of data. We illustrate both components
of the language in Listing 2.1, which is the Ziria implementation of the 802.11
scrambler [1, Sect. 16.2.4]. The purpose of the scrambler is to transform the
transmitted bit stream so that it does not contain long runs of ones or zeros,
either of which would make detection at the receiver more difficult.

Line 2 allocates mutable storage for the scrambler’s state; this state is ini-
tialized with the (immutable) value of the parameter init scrmbl st. Both
init scrmbl st and scrmbl st are arrays of seven bits. After initializing the
scrambler state, the scambler enters a repeat loop in line 4 that continually
reads a bit from its input data stream using take, updates the scrambler state,
transforms the consumed bit using the scrambler state, and finally outputs the
transformed bit in line 14 using emit. Although not shown in this snippet, Ziria
also allows immutable values to be bound with let (instead of var). The sur-
face language does not include an explicit dereference construct, instead making
dereferencing implicit, as shown on line 9.

The syntactic distinction between ref manipulation and input/output is made
using do and seq blocks; a seq block sequences IO, whereas a do block
sequences ref manipulation. The repeat language construct takes an IO action

1 The Kyllini Ziria compiler. Ziria is another name for Mount Kyllini in Greece.
2 The wireless programming language compiler.



176 G. Mainland

1 fun comp scrambler(init_scrmbl_st: arr[7] bit) {
2 var scrmbl_st : arr[7] bit := init_scrmbl_st;
3
4 repeat seq {
5 x ← take;
6
7 var tmp : bit;
8 do {
9 tmp := (scrmbl_st[3] ˆ scrmbl_st[0]);

10 scrmbl_st[0:5] := scrmbl_st[1:6];
11 scrmbl_st[6] := tmp;
12 };
13
14 emit (xˆtmp)
15 }
16 }

Listing 2.1. Ziria implementation of 802.11 scrambler.

scrambler(’1011101)
>>>
seq {

var buf : arr[8] bit;
for i in [0, 8] { x ← take; do { buf[i] := x;} };
emits buf;

}

Listing 2.2. Composition along the data path.

and repeats it forever. The resulting computation is termed a stream transformer
because it continually reads input, transforms it, and writes the transformed
value to its output. Both do and seq blocks compose computations along the
control path, and the syntax for this sort of composition is deliberately reminis-
cent of Haskell’s do syntax, as seen in line 5.

2.1 Composition Along the Data Path

Given the scrambler, which ensures the bits we are transmitting will be suffi-
ciently varied between 1 and 0, we need a way to compose it with other data
producer/consumer components. Instead of composition along the control path,
we want to compose the scrambler along the data path, which is accomplished
using the par operator, >>>.

Listing 2.2 shows an example of composition along both the control and data
paths using the previously defined scrambler function. The first component
in the data path is the scrambler computation. Note that producer-consumer
computations are higher-order; the argument to scrambler here is a bit array



A Domain-Specific Language for Software-Defined Radio 177

constant of length 7, which serves to initialize the scrambler’s state. The second
element in the data path reads 8 elements from its input, collecting them in
a buffer, and then outputs them all at once using emits. The only difference
between emit and emits is that the latter acts as though each element of its
array argument were emitted one-by-one. Because the second element in the
data path terminates, it is a stream computer. The distinction between a stream
transformer and a stream computer is apparent from their types, the topic to
which we now turn.

3 Typing Ziria Programs

The first contribution of this paper is a new type system for the Ziria surface
language that makes a distinction between three effects: ref manipulation (assign-
ment and dereferencing), reading (using take), and writing (using emit). The
kzc compiler performs type inference using this type system, elaborating source
language terms to a core language we describe in Sect. 4. We first informally
sketch our types system.

Like Stewart et al. [11], we make use of an indexed type reminiscent of both
monads and arrows [6], but we use a limited form of quantification to distinguish
between effects. For example, we assign the scrambler in Listing 2.1 the moral
type arr[7] bit → ST T bit bit. The type to the left of the arrow is the argument
to scrambler. The type ST is indexed by three types: T, which indicates that
this term is a stream transformer, and the two types, both bit, specifying the
input and output types, respectively, of the computation. The second half of the
par in listing 2.2 is instead assigned the type ST (C ()) bit (arr[8] bit). Because
this computation terminates with the unit value, i.e., it is a stream computer,
the first index to ST is now C (). The computation reads values of type bit and
writes values of type arr[8] bit, so those types make up the final two indices.

The question remains: how do we differentiate between effects using types?
For pure expressions, the answer is simple: pure expressions have a non-ST type.
Expressions that manipulate references but do not perform IO could be assigned
a type that quantifies over the input and output types of the data stream. For
example, the expression x := 1; could be typed as ∀ α β. ST (C ()) α β.
Similarly, computations that only read or write could be typed by quantifying
over the appropriate index to ST.

Unfortunately, the simple quantification strategy does not allow us to prop-
erly differentiate between terms that perform IO using take and emit and those
that do not. Consider the following example:

seq { x ← take; return 1; }

What type should we assign this term? Its type must certainly have the form
ST (C int) α β for some α and β. It is also clear that we need to quantify over
β because the expression does not write to the data stream. However, although
it does read from its input stream, the term is agnostic to the type of the data
it reads, so it seems reasonable to quantify over both α and β. We conclude that



178 G. Mainland

this expression should have type ∀ α β. ST (C int) α β. Similar reasoning leads
us to assign the same type to this term, which does not perform any input or
output:

seq { return 1; }

The root of the problem is that our quantification scheme does not allow us to
differentiate between terms that are polymorphic in the value read from the data
stream and terms that do not read from the data stream at all.

Our solution will be to add a fourth index to the ST type—but what should
this index be? Since we want to know whether or not a term reads a value
from its input stream, we could make the index a type-level Boolean. We could
also add an additional type-level construct analogous to the C α/T construct
we use to differentiate between transformers and computers, but this makes the
type system more complicated. Instead of adding something new, we will reuse
existing type system mechanisms—in particular, unification. Our new type index
will be left free until a read occurs, at which point it will be unified with the
type index that specifies the type of the input stream. Therefore, when these
two indices are equal, we know a read has occurred, and if they are not equal,
we know that a read has not occurred.

3.1 A Type System for Differentiating Effects

Fig. 1. Ziria type lan-
guage.

Figure 1 shows the language of types for Ziria terms. We
do not include array types here as they clutter the pre-
sentation, and adding them is not difficult. Base types,
τ , are as one would expect. Types in ST allow quantifica-
tion over base types in the indices of ST. The first index,
ω, specifies whether this computation is a stream trans-
former (T) or a stream computer (C τ). We will shortly
see the details of how the other three indices are used
to indicate read/write behavior. For completeness, we
include the details of reference handling. Note that types
are stratified so that although references can always be
passed to a function, they can never be returned from
a function, i.e., only “downward reference funargs” are
allowed. This ensures that a reference can never escape
its defining scope, eliminating the need for garbage col-
lection. This reduction in expressivity is perfectly accept-
able in our domain.

The declarative formulation of the Ziria typing
relation is shown in Fig. 2. We include the T-Deref rule
even though, as stated earlier, dereferences are implicit
in the surface language. We return to this point in Sect. 4.
Rule T-Take forces the second and third index of the ST
type to both be α, although it still quantifies over α. This type reflects the fact



A Domain-Specific Language for Software-Defined Radio 179

Fig. 2. Declarative typing relation for Ziria.

that we are reading from the data stream, although we are polymorphic in the
value being read. During type inference, use of take is what causes unification
of the two type indices as mentioned above. Rule T-Emit says that emit is
polymorphic in the input type of the data stream, but it constrains the fourth
index of the ST type (the data stream output type index) to be τ , the type of the
value being emitted. Table 1 maps types to their conceptual meanings, showing
how types differentiate between effects. The essential idea is that a term with
an ST type in which the second and third indices (the data stream input type
indices) are identical reads from its input data stream, even if it is polymorphic
in the type that is read. If the second and third indices differ, then the term
does not read from its input stream. As a final example, the following identify
transformer has the type ∀α. ST α α α:



180 G. Mainland

Table 1. Conceptual meaning of quantification in ST types.

Type Conceptual meaning

∀α β γ. ST ω α β γ A computation that may assign or dereference memory but
does not perform IO

∀α γ. ST ω α α γ A computation that reads one or more values from the data
stream but does nothing with the read value(s)

∀γ. ST ω τ τ γ A computation that reads one or more values of type τ from
the data stream

ST ω τ1 τ1 τ2 A computation that reads one or more values of type τ1 from
the input data stream and writes one or more values of type
τ2 to the output data stream

repeat seq { x ← take; emit x; }

In implementing the kzc compiler, we certainly wanted to differentiate
between pure and impure code for purposes of optimization; that is easily done
via the ST type. However, we also want to differentiate between impure code that
uses memory references and code that may perform IO. The new type system
in Fig. 2 allows for this. In the original incarnation of Ziria, this distinction was
made syntactically via seq and do, and programmers had to manually “lift” code
that used references into the ST monad. With the new type system, it is now
possible to eliminate the do/seq distinction from the surface language; we plan
to add a new alternative syntax that does this, but for compatibility reasons we
have not yet done so.

3.2 Typing Composition Along the Control Path

The rules T-Bind and T-Seq support composition along the control path. The
only notable aspect of these rules is the way the first index of the ST type
assigned to the overall term relates to the first index of the ST type of each
subterm. The first subterm being sequenced must be a computer, i.e., it must
compute a value and terminate, so the its ω index must be C ν. The second
subterm may or may not terminate. That is, it may be a transformer, so its ω
index is unconstrained. The overall term then has an ω index matching that of
the second subterm being sequenced. Note that we could remove the T-Seq rule
and treat sequencing as syntactic sugar for bind.

3.3 Typing Composition Along the Data Path

Typing composition along the data path is done by the rule T-Par. Unlike the
rules for composition along the control path, the subterms c1 and c2 of T-Par
have types whose τ indices (the third through fourth indices in the ST type) that
may differ between the two subterms’ types. Since >>> represents composition



A Domain-Specific Language for Software-Defined Radio 181

along the data path, the terms’ types are instead constrained so that the data
stream output index of the type of c1 matches the data stream input type indices
of the type of c2.

The T-Par rule uses of the join operator, ·� ·, to determine the ω type index
of the result of the par. This operator guarantees that two stream transformers
may be composed on the data path, as may a stream computer and a stream
transformer, but it prevents two stream computers from being composed along
the data path. We could imagine adding a fourth case to the join operator,
C α � C α = C α, but this complicates the semantics as it requires additional
synchronization on the final computed result. This change would also complicate
the implementation; with the current semantics, we are guaranteed that at most
one side of the par will ever terminate and call the par’s continuation.

The final subtlety in T-Par is the context splitting operation, ⊕. The context
splitting operation ⊕ splits the portion of the context that contains variables that
have type ref τ , leaving the rest of the context as-is. This ensures that the type
environments for the two subterms, Γ1 and Γ2, contain completely distinct sets
of references, thus preventing race conditions. An additional check on function
calls ensures aliasing does not occur, ⊕ can perform a purely syntactic check on
Γ ; see Mainland [8] for details.

3.4 Type Inference in Practice

The described typing relation is declarative. When, then, do we apply rules
T-Gen and T-Inst? Similar to standard syntax-directed systems based on
Hindley-Milner, we instantiate types immediately and generalize at “let”; for
example, when inferring the type of a function body, we immediately instantiate
any occurrence of take or emit, and we then generalize once we have inferred
the type of the entire function body. Inference makes use of the standard
unification algorithm. We plan to formalize the inference algorithm, but on its
own it is standard—the novel aspect of inference is the use of the indexed type
ST to differentiate between various effects and the process of elaborating to the
core language, which we describe in the next section.

3.5 Types for Streaming Combinators

The type system we have presented supports a general form of stream combinator
and is not specific to the SDR domain or the Ziria language. The technique
we use to reflect read operations in the ST type by forcing unification of two
type indices is even more general. In effect, we are differentiating between
two kinds of polymorphism: polymorphism that arises because read values are
used polymorphically, as in the identity function, and polymorphism that arises
because values aren’t read at all. Because we are simply forcing type equality—in
our case, via the typing rule for take—we minimize the number of extra features
that need to be added to the type system. We expect these techniques to be
transferable to any domain where typed streaming combinators are useful.



182 G. Mainland

4 Elaborating to Core

The kzc compiler performs type inference on the Ziria surface language and
elaborates it to the core language given in Fig. 3. Unlike the surface language,
the core language contains only a single syntactic category: expressions. There is
no need for a syntactic distinction between pure terms, terms that use memory
references, and terms that perform IO, because the type system described in
Sect. 3 provides the needed distinctions. Also unlike the surface language, the
core language makes memory dereferencing explicit. Explicit memory reference
operations in the core language make some analyses in the compiler easier to
perform; for example, it allows the compiler to determine that an expression is
pure merely based on its type. However, forcing the programmer to use explicit
dereferencing in the surface language seems overly burdensome; despite our use
of monadic bind, we want the surface language to be as close to typical “curly
brace and semicolon” imperative code as possible while still being fundamentally
functional.

Fig. 3. The expression core language.

Elaboration makes use of a new form of
judgment:

F ;Γ �val
e : τ � F ′; e′

Like the typing judgment, the elaboration
judgment assigns a type τ to a term
e. However, it also elaborates a surface
language term e to a core term e′.
Recall from Sect. 3.1 that references are
not first-class in Ziria—they can never
be returned from a function or otherwise
escape the scope of their originating binder.
This judgment form is a value elaboration;
it elaborates a Ziria term, which may
contain implicit dereferences, into a core
term in which all dereferences are made
explicit. The extra component F that is
threaded through the elaboration judgment
is the elaborated term’s value context ; it is
a function from core terms to core terms
that transforms an elaborated term so that all implicit dereferences are bound.

The intuition behind the function F is that it will insert the necessary
bindings around an elaborated term to ensure that dereferenced values are
properly bound. For example, if we have a surface language term x + y where x
and y are references of type ref int, it will be elaborated to a term x′ + y′, where
x′ and y′ are fresh variables, along with a value context:

λe.(x′ : int) ←!x ; (y′ : int) ←!y ; e

The value context will continue to accumulate bindings until it is applied.
Figure 4 shows a fragment of the elaboration rules; we do not include the full



A Domain-Specific Language for Software-Defined Radio 183

set of rules due to space constraints. Note that in rule V-If, the subterms are
all elaborated with empty value contexts, i.e., the identity function, and the
resulting value contexts are applied immediately to the subterms. This ensures,
for example, that dereferences required for the then branch are performed only
within the then branch. The binopτ1,τ2 meta-function maps a surface language
binary operator binop whose arguments have types τ1 and τ2 to the type of the
operator’s result; this allows us to, for example, overload + at multiple numeric
types.

Fig. 4. Value elaboration relation for Ziria.

The process of maintaining a value context and elaborating to a pure,
monadic language allows us to provide an impure surface language to the user,
who does not have to worry about manually sequencing dereferencing, while
reaping the benefits of a pure, monadic core language within the compiler.

5 Compilation Model

Stewart et al. [11] describe a tick-proc compilation model for compiling Ziria
terms to C. In this model, each Ziria computation compiles to two blocks of code:
a tick block that determines whether the computation needs to consume from
the data stream to proceed, in which case it jumps to the upstream computation,
or if it has data to emit, in which case it jumps to the downstream component.
If the computation can proceed without IO, the proc block of code is executed.
This compilation model results in overhead for every sequenced computation,
since each sequenced computation requires both a tick and a proc block even
if the computation itself does not perform IO.



184 G. Mainland

Our compilation model is based on the observation that the only time one
computation needs to “jump” to another computation is inside a par construct,
c1>>>c2, when c2 is executing and needs to read from upstream, or when c1 is
executing and needs to write downstream. Conceptually, we track the current
continuation of both c1 and c2. When we are executing c2 and encounter a take,
we save the current continuation and jump to c1’s saved continuation. When we
then encounter an emit in c1, we save its current continuation, save a pointer
to the emitted value, and jump to c2’s current continuation with the pointer as
an argument. This gives rise to a coroutine-style execution model.

Since our compiler is a whole-program compiler, we can map this execution
model to C code by using either GCC-style first-class labels, which are available
in clang, gcc, and Intel’s icc, or we can use a single switch statement
to trampoline between continuations. Like the original Ziria compiler, for
single-threaded Ziria code we completely avoid queues by storing a pointer to
emitted values instead of queueing the values. Unlike the original Ziria compiler,
we can also avoid copying emitted values in most cases using a data flow analysis
that makes use of the fact that dereferences are explicit in our core language [8].
Our new compilation model imposes zero overhead for sequencing computation
that do not perform IO.

6 Evaluation

The type system described in Sect. 3, elaboration to the core language described
in Sect. 4, and compilation model described in Sect. 5 are all implemented in
the kzc compiler. The existing Ziria WiFi implementation can be compiled with
kzc, which also passes the extensive Ziria test suite. In this section we provide
a performance evaluation to demonstrate that kzc works and that the new
implementation strategies it uses do not impose additional overhead—in fact, kzc
produces better code than the existing Ziria compiler, wplc. The performance
results we provide are fully described by Mainland [8]; we do not claim the
demonstrated performance improvements as contributions in this paper. All
data was collected on an i7–4770 CPU running at 3.40 GHz under Ubuntu 16.04,
generated C code was compiled with GCC 5.43, all runs were repeated 100 times,
and we assume a normal distribution. All Ziria programs evaluated in this section
are taken from the publicly available Ziria release [12].

The transmitter and receiver performance of kzc and wplc are shown in
Figs. 5a and b. The ratios of the data rates of the two implementations are given
in Fig. 6a. Code compiled by kzc is always as fast as code compiled by wplc, and
in most cases it is at least 10% faster. The relative performance of individual
pipeline blocks is broken out in Fig. 6b. We use the same runtime primitives as
wplc, so the performance differences between the two implementations can be
attributed directly to the differences in their compilation models. Our original
expectation was that there was limited room for improvement in the transmitter
and receiver pipelines because they use primitive blocks like FFT, IFFT, and
3 -march=native -mtune=native -Ofast.



A Domain-Specific Language for Software-Defined Radio 185

Fig. 5. Transmitter and receiver data rates. The receiver consumes a quadrature
signal consisting of pairs of 16-bit numbers representing IQ samples. The transmitter
consumes bits. Error bars show one standard deviation above and below the mean.

Viterbi, which tend to be the bottlenecks. However, we are pleased that we
were nonetheless able to gain a 10% performance increase over an already
highly-optimizing compiler.

7 Related Work

7.1 SDR

Our work is directly based on the original Ziria compiler [11]. Although we do not
reuse any code from the Ziria compiler, we evaluate our implementation using
Ziria’s WiFi implementation, including its standard library routines, written in
C, such as FFT, IFFT, and Viterbi.

Most SDR platforms are based on FPGAs [9,10]. Platforms supporting
development of SDR applications on commodity CPUs have become more
common [3,14], in particular due to the availability of the GNU Radio [4]
environment. There are numerous approaches to programming SDR applications;
however, these platforms do not provide the combination of performance and
powerful abstractions needed for SDR, instead relying on graph-based models of
signal processing.

Mainland [8] describes a number of source-to-source transformations on the
core language from Sect. 4 and additional optimizations that are responsible for
much of the performance increase over wplc shown in Sect. 6.

7.2 Capturing Effects in Types

If we were to re-cast Ziria as an embedded DSL, especially if we were to embed
it in Haskell, extensible effects [7] would be an obvious path to differentiating
between pure terms, terms that manipulate memory references, and terms
that perform IO. However, utilizing extensible effects in our setting would
require a substantially more general—and more complicated—type system. The
type system we present in Sect. 3 has just enough features to support our



186 G. Mainland

Fig. 6. Performance improvement ratios. These figures show the relative
improvement of kzc over wplc both for entire transmitter/receiver pipelines and for
individual blocks. The vertical axis gives the ratio of the throughput of the kzc-compiled
version to the throughput of the wplc-compiled version. Error bars show the bound of
the ratio when the two metrics being compared range from one standard deviation
below the mean to one standard deviation above the mean. Note that Fig. 6a uses a
linear scale, whereas Fig. 6b uses a log scale.

requirements, and we have not previously seen the technique of constraining two
type indices to be equal in order to distinguish between a term that consumes
a value, but is polymorphic in its input, and a term that is polymorphic in its
input because it doesn’t consume anything at all.

It is not clear how to type Ziria’s par combinator (>>>) in an EDSL setting. We
see this as an argument for a non-embedded DSL. Choosing a stand-alone DSL
also allows us to provide syntax that is more familiar to Ziria’s likely customers,
imperative programmers, and provide an impure surface language.

7.3 Elaboration to a Pure Language

Our technique for elaborating the impure surface language into a pure, monadic
core language is reminiscent of the technique described by Swamy et al. [13] for
adding monadic programming to ML. Our elaboration is constrained to a single
monad (ST) and, again, provides just enough type system support for the feature
we desire. Implementing a more general, extensible system of elaboration would
require a significantly more complicated type system and compiler.

8 Conclusions and Future Work

We have presented a type system and elaboration procedure for mapping the
high-level, impure language Ziria to a pure, monadic core language where terms’
effects are distinguished by their type rather than syntactically. We have also
described an improved compilation model for Ziria that avoids unnecessary



A Domain-Specific Language for Software-Defined Radio 187

control flow and imposes zero additional overhead for sequencing computations
that do not perform IO. All work we describe is implemented in the kzc compiler,
and benchmarks show our implementation improves upon the existing Ziria
system.

Although a more complicated type system could perhaps capture our
elaboration procedure and technique for tracking effects in types, we believe we
have hit a domain-specific sweet-spot—a more general type system would require
a more complex implementation. Far from being limited to the software-defined
radio domain, our techniques apply to general producer-consumer computations
where combinators like take and emit are provided as language built-ins.
Providing these built-in communication primitives allows kzc to use our
efficient compilation method—the compiler is able to know when communication
between components is occurring and can optimize this communication across
components.

8.1 Future Work

Our immediate goal is to eliminate the seq/do distinction in the surface
language via a new Ziria dialect, thereby providing a more natural surface
language for SDR programmers. In order to provide backwards-compatibility,
this will likely require adding a simple module system to allow for code written
in both Ziria dialects to coexist in the same program. We will not abandon
whole-program compilation, as this is vital for cross-component optimizations
such as fusion [8].

Longer term, we plan to target the FPGA hardware in common SDR
platforms directly by generating HDL, such as VHDL or Verilog, directly from
Ziria and gradually moving portions of the 802.11 pipeline into hardware. We
are also actively working on implementing blocks like FFT, IFFT, and Viterbi
directly in Ziria, with promising results. Eventually, we hope to re-implement
SOFDM [5] in Ziria and use that experience to make Ziria a viable language for
hardware development. We also plan to broaden the applicability Ziria, including
applications such as wireless MAC protocols and video codecs. Finally, we plan
to fully formalize our algorithmic inference algorithm.

References

1. IEEE Std 802.11TM–2012, pp. 1–2793, March 2012
2. bladeRF Software Defined Radio, September 2016. https://www.nuand.com/
3. USRP Software Defined Radio (SDR) online catalog, September 2016. https://

www.ettus.com/product
4. Blossom, E.: GNU radio: tools for exploring the radio frequency spectrum. Linux

J. 2004(122), 4 (2004)
5. Chacko, J., Sahin, C., Nguyen, D., Pfeil, D., Kandasamy, N., Dandekar,

K.: FPGA-based latency-insensitive OFDM pipeline for wireless research. In:
Proceedings of the 2014 IEEE Conference on High Performance Extreme
Computing Conference (HPEC 2014), Waltham, MA, pp. 1–6, September 2014

https://www.nuand.com/
https://www.ettus.com/product
https://www.ettus.com/product


188 G. Mainland

6. Hughes, J.: Generalising monads to arrows. Sci. Comput. Program. 37(1–3),
67–111 (2000)

7. Kiselyov, O., Sabry, A., Swords, C.: Extensible effects: an alternative to monad
transformers. In: Proceedings of the 2013 ACM SIGPLAN Symposium on Haskell
(Haskell 2013), Boston, MA, pp. 59–70, September 2013

8. Mainland, G.: Better living through operational semantics: an optimizing compiler
for radio protocols (2016, in submission)

9. Murphy, P., Sabharwal, A., Aazhang, B.: Design of WARP: a flexible wireless
open-access research platform. In: Proceedings of the 14th European Signal
Processing Conference (EUSIPCO 2006), Florence, Italy, pp. 1–5, September 2006

10. Ng, M.C., Fleming, K.E., Vutukuru, M., Gross, S., Arvind, Balakrishnan, H.:
Airblue: a system for cross-layer wireless protocol development. In: Proceedings
of the 6th ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS 2010), La Jolla, CA, pp. 4:1–4:11 (2010)

11. Stewart, G., Gowda, M., Mainland, G., Radunovic, B., Vytiniotis, D., Agulló,
C.L.: Ziria: an optimizing compiler for wireless PHY programming. In: Proceedings
of the 20th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2015), Istanbul, Turkey, March 2015

12. Stewart, G., Vytiniotis, D., Mainland, G., Radunovic, B., de Vries, E.: Ziria, version
85cc34db, April 2016. https://github.com/dimitriv/Ziria

13. Swamy, N., Guts, N., Leijen, D., Hicks, M.: Lightweight monadic programming
in ML. In: Proceeding of the 16th ACM SIGPLAN International Conference on
Functional Programming (ICFP 2011), Tokyo, Japan, pp. 15–27, September 2011

14. Tan, K., Zhang, J., Fang, J., Liu, H., Ye, Y., Wang, S., Zhang, Y., Wu, H.,
Wang, W., Voelker, G.M.: Sora: high performance software radio using general
purpose multi-core processors. In: Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 2009), Boston, MA, pp.
75–90, April 2009

https://github.com/dimitriv/Ziria

	A Domain-Specific Language for Software-Defined Radio
	1 Introduction
	2 Background
	2.1 Composition Along the Data Path

	3 Typing Ziria Programs
	3.1 A Type System for Differentiating Effects
	3.2 Typing Composition Along the Control Path
	3.3 Typing Composition Along the Data Path
	3.4 Type Inference in Practice
	3.5 Types for Streaming Combinators

	4 Elaborating to Core
	5 Compilation Model
	6 Evaluation
	7 Related Work
	7.1 SDR
	7.2 Capturing Effects in Types
	7.3 Elaboration to a Pure Language

	8 Conclusions and Future Work
	8.1 Future Work

	References


