
DALI for Cognitive Robotics: Principles
and Prototype Implementation

Stefania Costantini(B), Giovanni De Gasperis, and Giulio Nazzicone

DISIM, Università di L’Aquila, L’Aquila, Italy
stefania.costantini@univaq.it

Abstract. DALI is a logic Prolog-based Multi Agent System Language
and Framework (publicly available on GitHub) developed at University of
L’Aquila since 1999, and includes features aimed at user monitoring and
training in Ambient Intelligent applications. In this paper, we show how
such features can be integrated and extended in view of cognitive robotic
applications; we then illustrate the extensions to the DALI implemen-
tation that allow DALI agents to interact with robotic platforms even
through the cloud.

1 Introduction

Quoting from http://www.ieee-ras.org/cognitive-robotics, “There is growing
need for robots that can interact safely with people in everyday situations.
These robots have to be able to anticipate the effects of their own actions as
well as the actions and needs of the people around them. To achieve this, two
streams of research need to merge, one concerned with physical systems specifi-
cally designed to interact with unconstrained environments and another focusing
on control architectures that explicitly take into account the need to acquire and
use experience.”

Several papers on cognitive robotics can be found in the proceedings of main
Conferences on Artificial Intelligence (e.g., ECAI, IJCAI) and on Agents (e.g.,
AAMAS). The importance of developing “intelligent” adaptive robots can be
particularly appreciated in view of the societal issue of helping the elderly and
the disabled; in fact life expectancy is increased, and consequently the number of
persons needing personalized assistance is increasing as well. ICT (Information
and Communication Technologies) can potentially (and partly already are) of
great help. According to the guidelines provided by the European Union (http://
ec.europa.eu/health/ehealth/policy/index en.htm), the eHealth scenario “refers
to tools and services using information and communication technologies (ICTs)”
that can improve prevention, diagnosis, treatment, monitoring and management
but, also, “Bringing ICT and healthcare together is not simply a matter of
digitizing and communicating matters of health, but rather opening a new world
of doing things in ways that were not possible or even conceivable before. . . ”.
Cognitive robotic systems can potentially also help in any situation where there
is an impaired or disabled person, or more generally any person in need of special
c© Springer International Publishing AG 2017
Y. Lierler and W. Taha (Eds.): PADL 2017, LNCS 10137, pp. 152–162, 2017.
DOI: 10.1007/978-3-319-51676-9 10

http://www.ieee-ras.org/cognitive-robotics
http://ec.europa.eu/health/ehealth/policy/index_en.htm
http://ec.europa.eu/health/ehealth/policy/index_en.htm


DALI for Cognitive Robotics: Principles and Prototype Implementation 153

Fig. 1. Envisaged Smart Healtcare Architecture

assistance. This may include children, not as a substitute but as a support to
parents, family and caregivers.

In [1] we have outlined a comprehensive system (depicted in Fig. 1 and
called Friendly&Kind, for short F&K) based upon logical agents for monitor-
ing patients, where a patient’s personal agent can be embodied in a robot. Some
of the monitoring can be performed locally, where however agents are able, upon
need, to interact with human specialists, knowledge bases, and with the health
system. This while performing routine care chores and, possibly, entertaining the
patient. This should alleviate the healthcare and social security systems from the
burden of having to provide full-time highly specialized human assistants while
allowing elderly people to leave at home rather than be moved to an institution.
The level of synergic knowledge retrieval and integration that such a system can
provide goes beyond the capabilities of a human nurse or personal assistant.

It has been demonstrated that, understandably, humans prefer friendly inter-
faces and robots that show some kind of intelligent and also affective and
“emotional” behavior. There is interesting ongoing work, e.g., by the group
of Prof. Johan Hoorn at Vrije Universiteit Amsterdam about social robotics,
which considers the impact of robots on the user from the point of view of
ethics [2], interaction with the disabled [3] and even acceptable robot appear-
ance. Some of this work is reported in a famous documentary “Alice cares”
(https://vimeo.com/116760085, a scene from this documentary is reported in
Fig. 2), which shows the positive interaction among three old women and a
friendly humanoid care robot. From a cognitive point of view and for exploring

https://vimeo.com/116760085


154 S. Costantini et al.

Fig. 2. Text reading robot assistant, courtesy of “Alice cares” trailer video from Vimeo

the social acceptability of robots as human companions these experiments are
certainly of great importance. However, as concerns “intelligent” behavior the
robots used in the experiments are still under remote control of a human oper-
ator.

In the perspective of making such robots really intelligent and autonomous,
research results from many fields of Artificial Intelligence, Automated Reasoning
and Intelligent Software Agents can be usefully exploited. We strongly believe
that in this and in other fields it can be advantageous to define a robot’s cognitive
part as an agent or Multi-Agent System (MAS) defined via declarative agent-
oriented languages. In fact, the behavior of a robot which is aimed at assisting
a human user should be based on user observation, monitoring and training.
I.e., the robot should be equipped with a basic user profile defining the user’s
needs, habits, and preferences; such profile should be then refined via the robot’s
own observation of the user’s behavior over time; the robot should then be able
to supervise and check the user’s activities, and to teach (or remind) a user of
how to perform tasks. In all this, the robot should be able to recognize relevant
complex events from sets of simple ones, and to check and to adapt its own
behavior upon changing circumstances.

There are many logic agent-oriented languages and architectures in compu-
tational logic apt to these aims, among which MetateM, 3APL, GOAL, AgentS-
peak, Impact, KGP and DALI (the reader may refer to the surveys [4–6] and to
the references therein), that might be usefully exploited in robotics, as in fact
many of them already have, or at least many of the examples provided in the
literature concern potential robotic applications.

The DALI language [11,12] has been empowered and experimented over the
years concerning capabilities for the definition and management of an agent’s
memory and experience and for user monitoring and training also by learning
new behavioral patterns (via deep learning or via knowledge exchange); DALI
agents are able to perform complex event processing, and to dynamically check



DALI for Cognitive Robotics: Principles and Prototype Implementation 155

and modify their own behavior also in terms of a special interval temporal logic
(cf. [7–10] and the references therein). However all these features, though exper-
imented in software agents, have never been applied since recently to robotic
applications because DALI lacked a suitable plug-in, that we have now developed.

Such extension to the basic DALI implementation allows action commands
to be exchanged between DALI agents and any robotic platform by using the
YARP middleware. In addition, we have implemented ServerDALI which allows
to locate DALI agents and MAS on a server. This is relevant, as for instance in
the architecture of Fig. 1 the caregiver agents will presumably be copies of the
same one, to which robots’ cognitive functioning can refer; so, a cloud solution
eliminates the need of equipping the (possibly diverse) robot hardware with
sophisticated software; moreover, computationally heavy automated reasoning
tasks can be more efficiently executed on the server.

The novel contribution of this paper is twofold: on the one hand, we have
re-elaborated and extended past work on DALI in the perspective of robotic
applications for the care of persons in need; on the other hand, we have realized
and experimented a practical efficient implementation constructed out of open-
source components. At the present stage, we have been experimenting the use
of a declarative language for defining the cognitive part of robots, and for our
experiments we have adopted simulators rather than real robot hardware. So,
in this context we are not concerned with physical aspects concerning sensors,
actuators, vision, etc., that are however widely studied by specialists.

In Sect. 2 we recall the basic DALI language, while in Sect. 3 we discuss,
also by means of small though significant examples the potential applicability of
DALI in robotic user monitoring and training. In Sect. 4 we illustrate the exten-
sion to robotics of the DALI implementation. Finally, in Sect. 5 we conclude.

2 The Basic DALI Language and Architecture

DALI [11,12] (cf. [13] for a comprehensive list of references) is an Agent-Oriented
Logic Programming language. The DALI Prolog-based Multi Agent System Lan-
guage and Framework has been developed at University of L’Aquila since 1999.

DALI agents are able to deal with several kinds of events: external events,
internal, present and past events.

External events are syntactically indicated by the postfix E. Reaction to
each such event is defined by a reactive rule, of the form EvE :>Reaction where
:> is a special token. The agent remembers to have reacted by converting an
external event into a past event (postfix P). An event perceived but not yet
reacted to is called “present event” and is indicated by postfix N.

In DALI, actions (indicated with postfix A) may have or not preconditions:
in the former case, the actions are defined by actions rules, in the latter case
they are just action atoms. An action rule is characterized by the new token :<.
Similarly to events, actions are recorded as past actions.

Internal events is the feature that makes DALI agent agents proactive. An
internal event is syntactically indicated by the postfix I, and its description is



156 S. Costantini et al.

composed of two rules. The first one contains the conditions (knowledge, past
events, procedures, etc.) that must be true so that the reaction (in the second
rule) may happen. Thus, a DALI agent is able to react to its own conclusions.
Internal events are automatically attempted with a default frequency customiz-
able by means of directives in the initialization file.

The DALI communication architecture implements the DALI/FIPA protocol,
which consists of the main FIPA primitives, plus few new primitives which are
particular to DALI and provides the possibility of defining meta-rules for filtering
incoming and out-coming messages, and for accessing and querying external
ontologies in the semantics web.

DALI provides a plugin to an answer set solver, so complex reasoning tasks
such as, e.g., planning and preference handling can be performed in Answer
Set Programming (ASP), which is a state-of-the art technology for dealing with
hard computational problems (cf., among many, [14] and the references therein);
several efficient ASP solvers are in fact freely available and are periodically
checked and compared over well-established benchmarks, and over challenging
sample applications proposed at the yearly ASP competition (cf. the ASPCOMP
web sites).

3 DALI Advanced Features and Possible Applications
to Robotics

The robotic applications that we particularly envisage concern (since [15]) user
monitoring and training in any context, but especially for the care of elderly and
disabled persons. In our setting, agents interact with users (i) with the objective
of training a user in some particular task, and (ii) with the aim of monitoring
the user for ensuring some degree of consistence and coherence in user behavior.

Agents are able to be aware, by prior knowledge or via some form of learning,
of the behavioral patterns that the user is adopting, and to learn rules and plans
also from other agents (by imitation or by being told). Assume as a simple
example that an agent has been somehow able to learn that the user normally
takes a drink when coming back home. This can be represented by a rule such as:

drink :- arrive home.

This learned rule can possibly be associated with a certainty factor. When
the rule becomes later confronted with subsequent experience, its certainty factor
will be updated accordingly. Whenever this factor exceeds a threshold, this may
lead to assert new meta-rules, such as:

USUALLY drinkWHEN arrive home.

User monitoring can be performed via temporal-logic-like rules like the fol-
lowing one:

NEVER drink alchool AND take medicine.



DALI for Cognitive Robotics: Principles and Prototype Implementation 157

Such a rule acts as a constraint which has priority over former ones; so, the
agent will actively discourage the user to drink while taking medicines. In [16]
the semantics of such expressions is defined, also in relation to the possibility of
defining the interval where some events/actions must or must not occur.

The following example concerns a robot aiding to supervise a baby, thus
relieving caregivers from some of their tasks. If the baby is hungry, the robot
should feed the baby with available baby food (feeding is an action, indicated
with postfix A) paying attention to choose the healthier among those that the
baby likes. Conjunction food(F ), available(F ) provides a number of values for
F , among which one is chosen. In particular, the choice will correspond to a
maximum in the partial order imposed by the binary predicates best preferred
and healthier in the given order. This construct for complex preference, the p-set,
was originally introduced in [17].

baby is hungryE :>
{feed babyA(F ) : food(F ), available babyf (F ) : best preferred , healthier}.
In the example below, the robot again assists parents taking care of a child.

The child has to go to school (mandatory goal, indicated by postfix G) and
is about to skip breakfast because she prefers cereals that unfortunately are
finished. The agent, based upon the monitoring condition (never skip breakfast)
will be able to suggest alternative food, in particular the best preferred among
available options.

go to schoolG : NEVER skip breakfast(D) :: cereals finished :::
suggestA(alternative food) IN {cookies, cake slice : best preferred}.

The monitoring component can however also include meta-axioms such as
for instance the following one, which states that a user action which is necessary
to reach a mandatory objective should necessarily be undertaken. The agent can
fulfill this statement either by convincing the user to do so, or to resort to human
caregivers’ help:

ALWAYS do(user,A) WHEN mandatory goal(G), required(G ,A)

Such a meta-rule could be applied to practical cases such as the following:

mandatory goal(healthy).
required(healthy , take medicineA).

ASP modules can be exploited in order to plan actions which might be per-
formed in given situations, and to extract necessary actions, which are those
actions included in all possible plans. Given ASP module M (defined in a sep-
arate text file), in the example below reaction to event evE can be either any
action which can be inferred (from M) as a possible reaction, or a necessary
action, again according to M . Events are indicated with postfix E, reaction is
indicated with :> . Connective > expresses preference: the former option is pre-
ferred over the latter if the condition after the :- holds; necessary and action are



158 S. Costantini et al.

distinguished predicates applicable over ASP modules’ results. So, in this sample
rule necessary actions are preferred in a critical situation. Otherwise, any of the
two options may be taken.

evE :> necessary(M,N)|action(M,A) : M > A :- critical situation.

The above examples are witnesses of a re-elaboration of past work on DALI in
the perspective of cognitive robotics applications. Though small, the examples
should have practically demonstrated that DALI has indeed the potential for
acting as an agent language in this realm. However, a suitable interface between
DALI agents and robotic hardware or simulators was lacking. Such an interface
has been recently implemented, and is presented in the next section.

4 The Extended DALI Implementation

The DALI programming environment at the current stage of development [18]
offers a multi-platform folder environment including Sicstus Prolog programs (as
DALI is implemented in Sicstus), shells scripts, and Python scripts.

For the development of DALI agents and MAS, a programmer can sim-
ply use any text editor to write DALI agents’ programs and the necessary
start/configuration scripts; more proficiently, she could use a web-based system-
independent integrated development environment where agents editing is man-
aged through an HTML5/AJAX-based online editor, with start/stop command
buttons and agents logs output for runtime verification, handling signals and
events from the DALI engine running in the background. The system is designed
so as to be able to interact with other services by means of JSON data events.
Such an external service can be a virtual robotics simulator. Thus, an entire
complex anthropomorphic cognitive robot like the iCub [19] could be controlled
by a DALI MAS.

The software components diagram in Fig. 3 shows how DALI has been encap-
sulated and integrated with other modules through a Python “glue code” layer,
called PyDALI. Each DALI agent is an instance of the Prolog program “DALI
Interpreter”. The multi-platform open source library pexpect (http://github.
com/pexpect/pexpect) has been adopted for building a Python middle layer
to automate the interaction with the Sicstus Prolog environment, seen as an
instance of the class PySicstus. In this way, by abstracting via the PyDALI
class, a DALI agent instance process can be configured, loaded, started, exe-
cuted and terminated. A MAS can then be handled via the most abstract class
“MAS”.

The Python code can then been imported in any Python program by
using the open source Twisted (http://github.com/twisted/twisted) program-
ming library. This allows the interaction of DALI agents with other software
modules/server/clients by means of asynchronous JSON events. In particular,
what we call the Multi-standard DALI Bus is in practice a middle layer com-
munication protocol that converts any JSON event coming from the outside

http://github.com/pexpect/pexpect
http://github.com/pexpect/pexpect
http://github.com/twisted/twisted


DALI for Cognitive Robotics: Principles and Prototype Implementation 159

Fig. 3. Software components diagram of the extended DALI architecture

Fig. 4. Runtime deployment diagram of the extended DALI architecture

world to an internal FIPA event in a Linda tuple space1, that the DALI MAS
thus receives as an external event. Specific actions performed within the DALI
MAS can generate FIPA events that are converted to JSON event so as to send
commands to external actuators, that can be either real robotic actuators or
virtual robotic components in a virtual robotics simulator. A typical runtime
deployment diagram can be seen in Fig. 4.

1 Linda is a model of coordination and communication among parallel processes
providing a logically global associative memory, called a “tuplespace”, in which
processes store and retrieve tuples. It is available for Sicstus Prolog and it is therefore
used as a communication middleware in the DALI implementation.



160 S. Costantini et al.

The central Multi-standard DALI bus collects asynchronous data events from
different sources, translating them into counterparts in the Linda tuple space
whenever an agent is the destination. It also collects action messages from
agents and translates them into JSON structures compatible with the desti-
nation, through the Python service aggregator/container. There may also be
external sensors that directly generate Linda tuple messages, or external sensors
mediated by the Python container.

YARP Integration. YARP, “Yet An other Robotic Platform” (http://github.
com/robotology/yarp) “supports building a robot control system as a collection
of programs communicating in a peer-to-peer way, with an extensible family of
connection types (tcp, udp, multicast, local, MPI, mjpg-over-http, XML/RPC,
tcpros,. . . ) that can be swapped in and out to match your needs.”. A C++ pro-
gram, typically embedded in a robot, generates raw data and sends them to the
YARP port “/sender”. This port could be connected to a “/receiver” YARP port
by means of a channel configurator. We have developed a simple Python pro-
gram which registers itself as the handler of the “/receiver” port, and translates
the data into a Linda tuple space accessible by DALI agents.

DALI MAS Controlling the iCub Virtual Robot. “The iCub is a 53 degree-
of-freedom cognitive humanoid robot which has been developed as an open-systems
research platform” [19]. iCub uses YARP extensively as robotic protocol for inter-
nal data events. So, DALI agents can be developed to asynchronously receive
data events from iCub sensors and send outcomes of logical decisions/actions
through YARP ports. Ports have to be accurately selected in order to work at
the highest possible level of abstraction, where logic programming and reasoning
capabilities of DALI agents are more appropriate. Lower level ports should be
controlled by conventional cybernetic controllers, in a hierarchical control struc-
ture where loop speed is higher closer to the hardware (or virtual hardware in
case of a simulator).

ServerDALI. The DALI cloud solution is encapsulated in “docker” container,
that2 includes everything needed to run the code in a platform-independent
way. Composed together with the iCub YARP docker container, a cloud com-
puting based MAS could control the cognitive aspect of an embodied robot. The
ServerDALI application allows a DALI MAS to be made available to users also
via web or mobile applications. ServerDALI and a sample web interface have
been programmed using PHP, CSS3, Javascript and HTML5. The entire MAS
is made available analogously to a single object, so its external users are not
required to possess any notion about Agents or Artificial Intelligence. This is
accomplished via a special agent (called Ermes) which is added to any MAS and
acts as an interface between the MAS and the external web based environment;
in particular, via the ServerProlog library PHP and JSON objects can be trans-
lated into messages that Ermes can then dispatch, and vice versa. This solution
can be generalized to other agent-oriented frameworks and to different external
languages.
2 Docker is an open-source multi-platform tool to automate the deployment of Linux
lightweight containers, see http://www.docker.com/technologies/overview.

http://github.com/robotology/yarp
http://github.com/robotology/yarp
http://www.docker.com/technologies/overview


DALI for Cognitive Robotics: Principles and Prototype Implementation 161

5 Conclusions

In this paper we have showed the potential usefulness of the DALI logical agent-
oriented programming language in the cognitive robotic domain; we particularly
envisage applications for user monitoring and training concerning elderly or dis-
abled persons, or children (in cooperation with parents or caregivers). We have
then illustrated in some detail the extensions to the previously-existing DALI
implementation which allow DALI agents to be actually exploited in the robotic
realm. Therefore, DALI agents can now be developed to act as high level cogni-
tive robotic controllers, and can be automatically integrated with conventional
embedded controllers. The cloud package ServerDALI allows a DALI MAS to
be integrated in any practical environment. Realistic experiments are planned
in the near future in the context of the F&K project.

References

1. Aielli, F., Ancona, D., Caianiello, P., Costantini, S., De Gasperis, G., Di Marco,
A., Ferrando, A., Mascardi, V.: Friendly&Kind with your health: human-friendly
knowledge-intensive dynamic systems for the e-health domain. In: Bajo, J., et al.
(eds.) PAAMS 2016. CCIS, vol. 616, pp. 15–26. Springer, Heidelberg (2016)

2. van Kemenade, M., Konijn, E.A., Hoorn, J.F.: Robots humanize care - moral
concerns versus witnessed benefits for the elderly. In: Verdier, C., Bienkiewicz,
M., Fred, A.L.N., Gamboa, H., Elias, D. (eds.) Proceedings of HEALTHINF 2015,
pp. 648–653. SciTePress (2015)

3. Paauwe, R.A., Keyson, D.V., Hoorn, J.F., Konijn, E.A.: Minimal requirements
of realism in social robots: designing for patients with acquired brain injury. In:
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems, pp. 2139–2144. ACM (2015)

4. Fisher, M., Bordini, R.H., Hirsch, B., Torroni, P.: Computational logics and agents:
a road map of current technologies and future trends. Comput. Int. J. 23(1), 61–91
(2007)

5. Bordini, R.H., Braubach, L., Dastani, M., ElSeghrouchni, A.F., Gomez-Sanz, J.,
Leite, J., O’Hare, G., Pokahr, A., Ricci, A.: A survey of programming languages
and platforms for multi-agent systems. Informatica (Slovenia) 30(1), 33–44 (2006)

6. d’Inverno, M., Fisher, M., Lomuscio, A., Luck, M., de Rijke, M., Ryan, M.,
Wooldridge, M.: Formalisms for multi-agent systems. Knowl. Eng. Rev. 12(3),
315–321 (1997)

7. Costantini, S., De Gasperis, G.: Memory, experience and adaptation in logical
agents. In: Casillas, J., Mart́ınez-López, F.J., Vicari, R., De la Prieta, F. (eds.)
Management Intelligent Systems. AISC, vol. 220, pp. 17–24. Springer, Heidelberg
(2013)

8. Costantini, S., Dell’Acqua, P., Pereira, L.M.: Conditional learning of rules and
plans by knowledge exchange in logical agents. In: Bassiliades, N., Governatori,
G., Paschke, A. (eds.) RuleML 2011. LNCS, vol. 6826, pp. 250–265. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-22546-8 20

9. Costantini, S.: ACE: a flexible environment for complex event processing in logical
agents. In: Baldoni, M., Baresi, L., Dastani, M. (eds.) EMAS 2015. LNCS, vol.
9318, pp. 70–91. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26184-3 5

http://dx.doi.org/10.1007/978-3-642-22546-8_20
http://dx.doi.org/10.1007/978-3-319-26184-3_5


162 S. Costantini et al.

10. Costantini, S., De Gasperis, G.: Runtime self-checking via temporal (meta-)axioms
for assurance of logical agent systems. In: Proceedings of LAMAS 2014, 7th Work-
shop on Logical Aspects of Multi-agent Systems, held at AAMAS 2014, pp. 241–255
(2014)

11. Costantini, S., Tocchio, A.: A logic programming language for multi-agent systems.
In: Flesca, S., Greco, S., Ianni, G., Leone, N. (eds.) JELIA 2002. LNCS, vol. 2424,
pp. 1–13. Springer, Heidelberg (2002). doi:10.1007/3-540-45757-7 1

12. Costantini, S., Tocchio, A.: The DALI logic programming agent-oriented language.
In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS, vol. 3229, pp. 685–688.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30227-8 57

13. Costantini, S.: The DALI agent-oriented logic programming language: summary
and references 2016 (2016). http://www.di.univaq.it/stefcost/info.htm

14. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, New York (2003)

15. Costantini, S., Dell’Acqua, P., Pereira, L.M., Toni, F.: Towards a model of evolving
agents for ambient intelligence. In: Proceedings of the Symposium on Artificial
Societies for Ambient Intelligence (ASAmI 2007) (2007)

16. Costantini, S.: Self-checking logical agents. In: 8th Latin American Works, LA-
NMR 2012. CEUR Workshop Proceedings, vol. 911. CEUR-WS.org (2012). 3–30
Invited Paper, Extended Abstract in Proceedings of AAMAS 2013

17. Costantini, S., Formisano, A.: Modeling preferences and conditional preferences on
resource consumption and production in ASP. J. Alg. Cogn. Inf. Logic 64(1), 3–15
(2009)

18. De Gasperis, G., Costantini, S., Nazzicone, G.: DALI multi agent systems frame-
work, July 2016. http://github.com/AAAI-DISIM-UnivAQ/DALI

19. Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., Von Hofsten,
C., Rosander, K., Lopes, M., Santos-Victor, J., et al.: The iCub humanoid robot: an
open-systems platform for research in cognitive development. Neural Netw. 23(8),
1125–1134 (2010)

http://dx.doi.org/10.1007/3-540-45757-7_1
http://dx.doi.org/10.1007/978-3-540-30227-8_57
http://www.di.univaq.it/stefcost/info.htm
http://github.com/AAAI-DISIM-UnivAQ/DALI

	DALI for Cognitive Robotics: Principles and Prototype Implementation
	1 Introduction
	2 The Basic DALI Language and Architecture
	3 DALI Advanced Features and Possible Applications to Robotics
	4 The Extended DALI Implementation
	5 Conclusions
	References


