
Yuliya Lierler
Walid Taha (Eds.)

 123

LN
CS

 1
01

37

19th International Symposium, PADL 2017
Paris, France, January 16–17, 2017
Proceedings

Practical Aspects of
Declarative Languages

Lecture Notes in Computer Science 10137

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Yuliya Lierler • Walid Taha (Eds.)

Practical Aspects of
Declarative Languages
19th International Symposium, PADL 2017
Paris, France, January 16–17, 2017
Proceedings

123

Editors
Yuliya Lierler
University of Nebraska
Omaha, NE
USA

Walid Taha
Halmstad University
Halmstad
Sweden

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-51675-2 ISBN 978-3-319-51676-9 (eBook)
DOI 10.1007/978-3-319-51676-9

Library of Congress Control Number: 2016961275

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the papers presented at 19th International Symposium on Prac-
tical Aspects of Declarative Languages (PADL 2017) held January 16–17, 2017, in
Paris, France. The symposium was colocated with the 44th ACM SIGPLAN Sympo-
sium on Principles of Programming Languages (POPL 2017).

PADL is a forum for researchers and practitioners to present original work empha-
sizing novel applications and implementation techniques for all forms of declarative
languages, including but not limited to logic, constraint, and functional languages.
Declarative languages have been successfully applied to many different real-world
situations, ranging from database management to active networks, software engineering,
and decision support systems. New developments in theory and implementation have
opened up new application areas. At the same time, applications of declarative lan-
guages to novel problems raise numerous interesting research questions. Examples
include designing for scalability, language extensions for application deployment, and
programming environments. We continue to see that attention to applications and
practical challenges simultaneously benefits from research progress and helps steer
attention to timely challenges.

This year there were 27 submissions. Each submission was reviewed by at least
three Program Committee members. The committee decided to accept 14 papers based
on the merit of each submission and irrespective of any scheduling or space constraints.
The program also included an invited talk. Two of the papers were nominated for the
Best Paper Award:

– “Boltzmann Samplers for Closed Simply-Typed Lambda Terms” by Maciej
Bendkowski, Katarzyna Grygiel and Paul Tarau (Best Student Paper Award)

– “Canonicalizing High-Level Constructs in Picat” by Neng-Fa Zhou and Jonathan
Fruhman (Most Practical Paper Award)

Springer sponsored 250 euro for these awards. The authors were encouraged to
submit the long versions of their work for the rapid publication track to the journal of
Theory and Practice of Logic Programming.

We would like to express thanks to the Association of Logic Programming for their
continuous support of the symposium and Springer for their longstanding, successful
cooperation with the PADL series. We are also grateful to the 31 members of the
PADL 2017 Program Committee and external reviewers. The chairs of POPL 2017
were of great help in steering the organizational details of the event. The conference
was managed with the help of EasyChair.

November 2016 Yuliya Lierler
Walid Taha

Organization

Program Committee

Erika Abraham RWTH Aachen University, Germany
Marcello Balduccini Drexel University, USA
Lars Bergstrom Mozilla Research
Bart Bogaerts KU Leuven, Belgium
Edwin Brady University of St. Andrews, UK
Martin Brain University of Oxford, UK
Mats Carlsson SICS
Manuel Carro Technical University of Madrid (UPM) and IMDEA

Software Institute, Spain
Stefania Costantini Università dell’Aquila, Italy
Marc Denecker KU Leuven, Belgium
Thomas Eiter Vienna University of Technology, Austria
Esra Erdem Sabanci University, Turkey
Thom Fruehwirth University of Ulm, Germany
Marco Gavanelli University of Ferrara, Italy
Martin Gebser University of Potsdam, Germany
Jeremy Gibbons University of Oxford, UK
Hai-Feng Guo University of Nebraska at Omaha, USA
Jurriaan Hage Universiteit Utrecht, The Netherlands
Yuliya Lierler University of Nebraska at Omaha, USA
Geoffrey Mainland Drexel University, USA
Henrik Nilsson University of Nottingham, UK
Enrico Pontelli New Mexico State University, USA
Ricardo Rocha University of Porto, Portugal
Peter Schüller Marmara University, Turkey
Peter Sestoft IT University of Copenhagen, Denmark
Martin Sulzmann Karlsruhe University of Applied Sciences, Germany
Walid Taha Halmstad and Rice Universities, USA
Paul Tarau University of North Texas, USA
Kazunori Ueda Waseda University, Japan
Niki Vazou University of California, San Diego, USA
Philip Wadler University of Edinburgh, UK
Daniel Winograd-Cort University of Pennsylvania, USA
Neng-Fa Zhou CUNY Brooklyn College and Graduate Center, USA
Lukasz Ziarek SUNY Buffalo, USA

Additional Reviewers

Correas Fernández, Jesús
Dao-Tran, Minh
Gall, Daniel
Jansen, Joachim
Kaminski, Roland

Mantadelis, Theofrastos
Mariño, Julio
Morales, Jose F.
Ontañón, Santiago
Ostrowski, Max

Redl, Christoph
Stollenwerk, Andre
Van den Eynde, Tim
You, Jia-Huai
Zaki, Amira

VIII Organization

Contents

Eliminating Irrelevant Non-determinism in Functional Logic Programs 1
Sergio Antoy and Michael Hanus

Canonicalizing High-Level Constructs in Picat . 19
Neng-Fa Zhou and Jonathan Fruhman

An Overview of PqLog . 34
Besik Dundua, Temur Kutsia, and Klaus Reisenberger-Hagmayer

Integrating Answer Set Programming with Object-Oriented Languages 50
Jakob Rath and Christoph Redl

Extending Answer Set Programs with Interpreted Functions
as First-Class Citizens . 68

Christoph Redl

Lowering the Learning Curve for Declarative Programming:
A Python API for the IDP System . 86

Joost Vennekens

Failing Faster: Overlapping Patterns for Property-Based Testing 103
Jonathan Fowler and Graham Hutton

Boltzmann Samplers for Closed Simply-Typed Lambda Terms 120
Maciej Bendkowski, Katarzyna Grygiel, and Paul Tarau

Selection Equilibria of Higher-Order Games . 136
Jules Hedges, Paulo Oliva, Evguenia Shprits, Viktor Winschel,
and Philipp Zahn

DALI for Cognitive Robotics: Principles and Prototype Implementation. 152
Stefania Costantini, Giovanni De Gasperis, and Giulio Nazzicone

Funky Grooves: Declarative Programming of Full-Fledged
Musical Applications . 163

Henrik Nilsson and Guerric Chupin

A Domain-Specific Language for Software-Defined Radio 173
Geoffrey Mainland

A Declarative DSL for Customizing ASCII Art . 189
Felix S. Klock II

http://dx.doi.org/10.1007/978-3-319-51676-9_1
http://dx.doi.org/10.1007/978-3-319-51676-9_2
http://dx.doi.org/10.1007/978-3-319-51676-9_3
http://dx.doi.org/10.1007/978-3-319-51676-9_3
http://dx.doi.org/10.1007/978-3-319-51676-9_4
http://dx.doi.org/10.1007/978-3-319-51676-9_5
http://dx.doi.org/10.1007/978-3-319-51676-9_5
http://dx.doi.org/10.1007/978-3-319-51676-9_6
http://dx.doi.org/10.1007/978-3-319-51676-9_6
http://dx.doi.org/10.1007/978-3-319-51676-9_7
http://dx.doi.org/10.1007/978-3-319-51676-9_8
http://dx.doi.org/10.1007/978-3-319-51676-9_9
http://dx.doi.org/10.1007/978-3-319-51676-9_10
http://dx.doi.org/10.1007/978-3-319-51676-9_11
http://dx.doi.org/10.1007/978-3-319-51676-9_11
http://dx.doi.org/10.1007/978-3-319-51676-9_12
http://dx.doi.org/10.1007/978-3-319-51676-9_13

Using Iterative Deepening for Probabilistic Logic Inference 198
Theofrastos Mantadelis and Ricardo Rocha

Author Index . 215

X Contents

http://dx.doi.org/10.1007/978-3-319-51676-9_14

Eliminating Irrelevant Non-determinism
in Functional Logic Programs

Sergio Antoy1 and Michael Hanus2(B)

1 Computer Science Department, Portland State University, Oregon, USA
antoy@cs.pdx.edu

2 Institut Für Informatik, CAU Kiel, 24098 Kiel, Germany
mh@informatik.uni-kiel.de

Abstract. Functional logic programming languages support non-
deterministic search and a flexible use of defined operations by applying
them to unknown values. The use of these features has the risk that equal
values might be computed several times or I/O computations could fail
due to non-deterministic subcomputations. To detect such problems at
compile time, we present a method to locate non-deterministic opera-
tions. If the non-determinism caused by some operation is semantically
not relevant, the programmer can direct the compiler to produce only
one result of a computation. If all the results of the computations are
equal, this directive preserves the semantics and improves the operational
behavior of programs. We define the declarative meaning of such anno-
tations and propose both testing and verification techniques that respec-
tively increase the confidence or formally prove that the non-determinism
of an operation is irrelevant.

1 Introduction

Functional logic languages combine the most important features of functional
and logic programming in a single language (see [7,18] for recent surveys).
In particular, the functional logic language Curry conceptually extends Haskell
with common features of logic programming, i.e., non-determinism, free vari-
ables, and constraint solving. Non-determinism is useful in programming to write
a specification of a task instead of coding all the details of the task’s solution.
For instance, consider the selection sort algorithm where the smallest element is
placed in front of the sorted remaining elements. In Curry, one can easily specify
the smallest element of a list of integers by
min :: [Int] → Int

min xs@(_ ++ [x] ++ _) | all (x <=) xs = x

Here we use a functional pattern, i.e., an expression with evaluable functions
at pattern positions [4], to express that x is any element of the input list, and
an as pattern (known from Haskell) to refer to the complete input list by xs.
If the condition that x is not greater than any element of the input list xs
is satisfied, we return the selected element x as the smallest one. Operation
min shows an example of don’t care non-determinism. Its definition through a
c© Springer International Publishing AG 2017
Y. Lierler and W. Taha (Eds.): PADL 2017, LNCS 10137, pp. 1–18, 2017.
DOI: 10.1007/978-3-319-51676-9 1

2 S. Antoy and M. Hanus

functional pattern is elegant and declarative, but a consequence is that if there
are repeated occurrences of the minimum in the argument, the minimum is
returned multiple times. Of course, we don’t care which occurrence is returned
since they are all equal.

With this definition of min, the implementation of sorting a list is straight-
forward (delete x xs returns the list xs without the first occurrence of x):
selSort [] = []

selSort xs@(_:_) = m : selSort (delete m xs) where m = min xs

Although this implementation of sorting a list is correct, it has a potential draw-
back when used in larger applications. To ensure a declarative style of computa-
tions, Curry adopts the monadic I/O approach of Haskell. Hence, an application
program computes an I/O action, i.e., a transformation on a state of a “world”
(including physical resources like a terminal or file system), that is applied to a
concrete world when the program is executed. Since it is impossible to copy the
world to apply a non-deterministic I/O action to these copies, the computed I/O
action must be unique [18]. For instance, the execution of the call (“?” denotes
a non-deterministic choice between two values)
print 1 ? print 2

leads to a run-time error (“non-determinism in I/O”). This is intended, since it is
intentionally unspecified whether one should show 1 or 2 on the display. As a con-
sequence, non-deterministic computations need to be encapsulated when using
them in applications performing I/O. Encapsulating non-determinism means
producing the set of every possible non-deterministic result of a computation,
hence a deterministic result. Thus, if the call “print (selSort [1,3,2,1])”
is evaluated without encapsulating the argument, we obtain a non-determinism
error. This is due to the fact that the list contains two smallest elements so that
the auxiliary operation min yields two (equal) results.

The same problem might occur even if only one non-deterministic branch of
a computation leads to a result. For instance, consider the computation of the
last element of a list by an inverse use of list concatenation:
last (_ ++ [x]) = x

Although last yields at most one result for a given list, its use in the context of
an I/O operation causes a run-time error since one cannot decide which of the
alternative I/O actions eventually yields a result.

These are not artificial examples. Such problems occurred to us several
times when putting together applications consisting of more than one hun-
dred modules and thousands of operations. As known from lazy functional
languages, the source of run-time errors is not easy to locate from the run-
time stack available when an error actually occurs. Therefore, we propose a
compile-time analysis to locate potential calls to non-deterministic operations
from a main operation. In this way, a programmer can examine these operations.
If an operation computes, for a given argument, a single result multiple times,
we propose to annotate such operations as deterministic. This information is
used by a compiler to return the result only once since any recomputation would
provide no additional information. This yields an improved operational behavior

Eliminating Irrelevant Non-determinism in Functional Logic Programs 3

(reduction of the computation space) and avoids the kinds of non-determinism
errors sketched above. In our example, we simply annotate the operation min
as deterministic to avoid the non-determinism error. By the use of determin-
ism annotations, we combine the compact and comprehensible specification of
operations with a reasonable operational behavior.

This paper investigates the source of non-determinism in a program, intro-
duces a new concept of deterministic operation and defines its semantics. The
semantic properties of deterministic operations allow us to implement them more
efficiently. Moreover, we discuss methods to check these properties.

2 Functional Logic Programming and Curry

We briefly review those elements of functional logic languages and Curry that
are necessary to understand the contents of this paper. Curry is a declarative
multi-paradigm language combining in a seamless way features from functional
and logic programming. The syntax of Curry is close to Haskell. In addition to
Haskell, Curry allows free (logic) variables in conditions and right-hand sides of
rules. These variables must be explicitly declared unless they are anonymous.
Function calls can contain free variables, in particular variables without a value
at call time. These calls are evaluated lazily where free variables as demanded
arguments are non-deterministically instantiated [3].

Moreover, the patterns of a defining rule are expanded with respect to tra-
ditional functional languages. As a matter of convenience, patterns can be non-
linear, i.e., they might contain multiple occurrences of some variable, which is
an abbreviation for equalities between these occurrences. Patterns can also be
functional [4] to more easily and directly define functions. A functional pattern
is a pattern containing defined operations (and not only data constructors and
variables) occurring in an argument of the left-hand side of a rule. Such a pattern
abbreviates the set of all standard patterns to which the functional pattern can
be evaluated (by narrowing). Details about their semantics and a constructive
implementation of functional patterns by a demand-driven unification procedure
can be found in [4].

Example 1. The following simple program shows the functional and logic fea-
tures of Curry. It defines an operation “++” to concatenate two lists, which is
identical to the Haskell encoding. The second operation, dup, returns some list
element having at least two occurrences:
(++) :: [a] → [a] → [a] dup :: [a] → a

[] ++ ys = ys dup xs | xs == _ ++ [x] ++ _ ++ [x] ++ _

(x:xs) ++ ys = x : (xs ++ ys) = x where x free

The condition of the rule defining dup is solved by instantiating x and the anony-
mous free variables “-”. This evaluation method corresponds to narrowing, but
Curry narrows with possibly non-most-general unifiers to ensure the optimality
of computations [3]. Using a functional pattern, the definition of dup is simply
phrased as:

4 S. Antoy and M. Hanus

dup (_++[x]++_++[x]++_) = x

Note that dup is a non-deterministic operation since it might deliver more than
one result for a given argument, e.g., the evaluation of dup [1,2,2,1] yields the
values 1 and 2. Non-deterministic operations, which are interpreted as mappings
from values into sets of values [16], are an important feature of contemporary
functional logic languages. Hence, there is also a predefined choice operation:
x ? _ = x

_ ? y = y

Thus, the expression “0 ? 1” evaluates to 0 and 1 with the value non-
deterministically chosen.

Default rules, which have recently been proposed [8], are useful in combina-
tion with functional patterns in order to express cases where a functional pattern,
which often corresponds to an infinite set of standard patterns, is not applica-
ble. Any operation can have a single default rule. To avoid syntactic extensions,
default rules are marked by adding the suffix ’default to the operation’s name.
The default rule is applied if no standard rule is applicable (see [8] for a pre-
cise definition in the context of non-deterministic values and free variables). For
instance, by slightly modifying the operation dup, we can easily define a pred-
icate isSet which checks whether a given list represents a set, i.e., does not
contain duplicates:
isSet (_++[x]++_++[x]++_) = False

isSet’default _ = True

Set functions [6] allow the encapsulation of non-deterministic computations in a
strategy-independent manner. For each defined function f , fS denotes the cor-
responding set function. fS encapsulates the non-determinism caused by evalu-
ating f apart from the non-determinism originating from the evaluation of the
arguments to which f is applied. For instance, consider the operation decOrInc
defined by
decOrInc x = (x-1) ? (x+1)

Then “decOrIncS 3” evaluates to (an abstract representation of) the set {2, 4},
i.e., the non-determinism caused by decOrInc is encapsulated into a set. How-
ever, “decOrIncS (2 ? 5)” evaluates to two different sets {1, 3} and {4, 6},
i.e., the non-determinism caused by the argument is not encapsulated.

3 Location of Non-deterministic Operations

To avoid potential problems with non-deterministic operations, first we have to
locate them in a source program. In this section we present our method for this.

Definition 1 (NDD operation). An operation is non-deterministically
defined (NDD) if its defining rules are not inductively sequential1 or some of
the defining rules contain free variables.
1 The defining rules are inductively sequential if their patterns are just case distinctions

on the constructors (see [2] for a precise definition). A consequence of this definition
is that operations defined by functional patterns are NDD.

Eliminating Irrelevant Non-determinism in Functional Logic Programs 5

The operation dup defined in Example 1 shows why the occurrence of free vari-
ables in rules might lead to non-deterministic operations even if the left-hand
sides are inductively sequential. This is due to the fact that free variables are
equivalent to non-deterministic operations that generate all the values [5] of a
given type. For instance, the choice operator “?” defined above by rules with
overlapping left-hand sides can also be defined by rules with non-overlapping
left-hand sides and a free variable:
x ? y = choose b x y choose True x y = x

where b free choose False x y = y

Note that Definition 1 only approximates non-deterministic evaluations. For
instance, the use of the operation f defined by
f = if True then [] else ys++ys where ys free

will never lead to a choice in a computation, although we classify it as non-
deterministically defined. However, our approximation is syntactically decidable.

If NDD operations are not invoked during a functional logic computation,
then this computation is deterministic, i.e., there is no alternative outcome for
the same initial expression. This can be easily proved by induction on the steps of
an evaluation sequence, e.g., using the small-step operational semantics defined
in [1]. Hence, in order to detect the sources of potentially non-deterministic
computations, we have to find NDD operations. However, in a large application
with many libraries, not all NDD operations are relevant since they might not
be called or their calls are encapsulated in set functions. It would not be helpful
to report all NDD operations occurring in a program. Instead, we want to know
only those NDD operations that are called (directly or indirectly) from the main
expression starting the application. For this purpose, we need a dependency
analysis which assigns to each operation the set of all relevant NDD operations.

Definition 2 (Relevant NDD operations). Let F be the set of all defined
operations in a program. For all f ∈ F we denote by fR ⊆ F the set of NDD
operations that are relevant for f : fR is the smallest set such that the following
properties hold:

– If f is an NDD operation, then fR = {f}.
– If f is a set function, then fR = ∅.
– Otherwise: gR ⊆ fR for all g ∈ F occurring in some rule defining f .

The first property ignores further NDD operations called by f if f itself is NDD.
Hence, we return only the “first” NDD operation. In all our practical examples
(see Sect. 5.2), this is sufficient to spot the NDD operation that is actually rel-
evant for the overall non-deterministic behavior. Our implementation supports
also the computation of the transitive closure of relevant NDD operations, but
this often returns too much information.

Relevant NDD operations can be computed by a standard fixpoint analysis.
The fixpoint computation always terminates since F is finite so that the abstract
domain is finite. The implementation and practical results of this analysis are
discussed in Sect. 5.

6 S. Antoy and M. Hanus

4 Deterministic Operations

When we locate a relevant NDD operation in an application, we can avoid its
non-deterministic behavior if it is semantically not relevant, like in the opera-
tions min or isSet defined above. We call operations with semantically irrelevant
non-determinism deterministic. Informally, an operation is deterministic if dif-
ferent values cannot be obtained for the same input. However, the operation can
compute the same value multiple times. Deterministic operations can also fail if
the input is not appropriate. For instance, the operation head defined as
head (x:xs) = x

is deterministic, although it does not yield a result for the empty list.
In order to mark a defined operation as deterministic, we annotate its deter-

minism status in the last arrow of its type signature (this is partially inspired
by the notation of deterministic and non-deterministic operations used in the
semantic models of functional logic programming in [16]). Thus, we express the
determinism status of the operations min and last by the following type signa-
tures:
min :: [Int] →DET Int last :: [a] →DET a

From a declarative point of view, such an annotation is correct, i.e., an operation
is deterministic, if all the results computed by this operation for a given input
are equal. Since we are in a context of a lazy non-deterministic language where
arguments, even if they are ground expressions, might denote several or also
infinite values, a precise definition needs more care. For instance, consider the
identity operation
id :: a → a

id x = x

Intuitively, id is a deterministic operation since it does not introduce any non-
determinism. However, the ground (i.e., variable free) call id (0?1) yields two
different results: 0 and 1. Note that these non-deterministic results are caused
by the arguments and not by id itself.

In order to deal with such subtleties, we need a formal model of the seman-
tics of functional logic programs. The difficulties of combining non-deterministic
operations with a demand-driven evaluation model have been pioneered in [16].
The authors proposed the call-time choice semantics as a reasonable model,
which has been adapted to contemporary functional logic languages. The authors
defined the rewriting logic CRWL as a logical foundation for declarative program-
ming with non-strict and non-deterministic operations. Conceptually, values of
arguments of an operation are determined before the operation is evaluated. In a
lazy strategy, this is naturally obtained by sharing. Since standard term rewrit-
ing does not conform to the intended call-time choice semantics, other notions
of rewriting are necessary to formalize this idea. In this paper we use the simple
reduction relation of [22] which we review in the following.

Expressions occurring in a program contain operations, constructors (intro-
duced in data type declarations), and variables (arguments of operations or free
variables). The goal of a computation is to obtain a value of some expression,

Eliminating Irrelevant Non-determinism in Functional Logic Programs 7

where a value is an expression that does not contain any operation. To cover
demand-driven or non-strict computations, expressions can also contain the spe-
cial symbol ⊥ to represent an undefined or unevaluated value. A partial value is
a value which might contain occurrences of ⊥. A partial constructor substitution
is a substitution that replaces variables by partial values. A context C[·] is an
expression with some “hole”. Then the reduction relation we use throughout this
paper is defined as follows:
C[σ(f t1 . . . tn)] � C[σ(r)] (f t1 . . . tn = r program rule, σ partial constr. subst.)

C[e] � C[⊥] (e expression)

The first rule models call-time choice: if a rule is applied, the actual arguments of
the operation must have been evaluated to partial values. The second rule models
non-strictness by allowing the evaluation of any subexpression to an undefined
value (which is intended if the value of this subexpression is not demanded). As
usual, �∗ denotes the reflexive and transitive closure of this reduction relation.
The equivalence of this rewrite relation and CRWL is shown in [22]. We recall
that two expressions e1 and e2 are equal iff they can be reduced to the same
value, i.e., there exists a value t such that e1 �∗ t and e2 �∗ t.

Now we can formally define the meaning of deterministic operations.

Definition 3 (Deterministic operation). An n-ary operation f is determin-
istic, i.e., a determinism annotation f :: τ1 → · · · τn →DET τ ′ is correct, iff, for all
partial values t1, . . . , tn and evaluations f t1, . . . , tn �∗ r and f t1, . . . , tn �∗ r′

with values r and r′, r = r′ holds.

Clearly, the declaration “id :: a →DET a” is correct, but “dup :: [a] →DET a”
(see Example 1) would not be correct, since “dup [1,2,2,1]” evaluates to 1
and 2. It is not obvious whether the annotation “min :: [Int] →DET Int” is
correct. We discuss methods to check the correctness of determinism annotations
in Sect. 6.

Below, we motivate two crucial design decisions of the definition, namely why
a deterministic operation must have unique result values and not just unique
head normal forms or partial values and why arguments can be evaluated up to
partial values rather then values, i.e., fully evaluated.

An alternative to unique values is unique head normal forms. Often, the
latter is a target of computations in non-strict languages. Head normal form
would be inappropriate since non-determinism may show up under the head,
as in
f x = [x, 0 ? 1]

The expression “f 0” evaluates to the single head normal form [0,0?1] but to
two different values [0,0] and [0,1]. Hence, the number of different results of
an expression might depend on the degree of its evaluation, which is unfortunate
when reasoning about programs in a declarative manner, i.e., without considering
an evaluation strategy. As a consequence of this design, we must evaluate a
deterministic operation application completely, i.e., to normal form, before we
omit all other alternative choices.

8 S. Antoy and M. Hanus

Likewise, unique partial values would be inappropriate since most expressions
might have different partial result values. For example, consider the operation
id defined above. Then “id 1 �∗ 1” and “id 1 �∗ ⊥” are two derivations
with different partial result values. Hence, if we change Definition 3 so that we
require unique partial result values, id would not be deterministic.

The requirement that arguments can be partial values is appropriate since
this allows us to prune the computation space even if an argument has not been
fully evaluated. For instance, consider the following contrived non-deterministic
definition of computing the first element of a list and the definition of an infinite
list:
head (x:xs) = x ones = 1 : ones

head (x:xs) = id x

Note that head is a deterministic operation according to our definition.
The evaluation of the expression head ones demands the head normal form
of the argument, which is 1:ones. If we apply the first rule of head, we obtain
the result value 1 and any attempt to compute another value can be dropped
because 1:ones �∗ 1:⊥ and head is deterministic. Requiring values for the
arguments in Definition 3 would have the consequence that the evaluation of
head [1] yields one result whereas the evaluation of head ones yields two iden-
tical results.

Nevertheless, to check deterministic operations, it is sufficient to consider
their behavior on values provided that each data type is sensible, i.e., has at
least one value:

Proposition 1. Assume types are sensible and that f is an n-ary operation
such that, for all values t1, . . . , tn and evaluations f t1, . . . , tn �∗ r and
f t1, . . . , tn �∗ r′ with values r and r′, r = r′ holds. Then f is a determin-
istic operation.

We could have used this property, where the requirements on arguments and
results are more symmetric, as the definition of deterministic operations. How-
ever, this would unnecessarily restrict the cutting of the search space by deter-
ministic operations, as discussed above.

Our notion of deterministic operations is intended to be a constructive
approximation of determinism in functional logic programs. Hence, we do not
cover all potential determinism, in particular for non-terminating operations.
To see why we cut the search space only if we compute a result value (and not
a partially evaluated expression), consider the operation
inf x = if p x then x : inf (x+1)

else (42 ? x) : inf (x+1)

where p is some predicate on integers. Intuitively, the operation inf does not
branch if p is always satisfied. If p is not satisfied only on the argument 42,
the evaluation of inf branches but does not compute different results. In other
cases, inf might compute different results. In particular, the non-deterministic
branching might occur “arbitrarily late” during the evaluation of a call to inf
so that there is no point to cut the computation space during the computation

Eliminating Irrelevant Non-determinism in Functional Logic Programs 9

of an infinite structure. Thus, we decided to restrict the determinism property
to finite result values.

We demonstrate the advantages of determinism annotations for application
programming by two further examples.

Example 2. We define an operation to sort a list by switching two adjacent
elements which are out of order (a generalization of bubble sort):
bsort :: [Int] →DET [Int]

bsort (xs++[x,y]++ys) | x>y = bsort (xs++[y,x]++ys)

bsort’default xs = xs

The functional pattern in the first rule frees the programmer from specifying
a concrete strategy to find a pair which should be swapped. Actually, the sort
operation works with any strategy to select such pairs. The determinism anno-
tation has the effect that all attempts to compute further values after the first
sorted list are discarded. Without this annotation, we obtain 16 (equal) result
values for the call bsort [4,3,2,1], 768 results for bsort [5,4,3,2,1], and
292864 results for bsort [6,5,4,3,2,1].

Example 3. The simplification of symbolic arithmetic expressions has been used
in [4] to demonstrate the power of functional patterns. The task is to simplify
arithmetic expressions like 1∗(x+0) to x. Based on the definition of a replacement
operation replace, where “replace e p t” is equivalent to the notation e[t]p
commonly used in term rewriting, and a non-deterministic operation evalTo
which evaluates to expressions equivalent to the argument, [4] defines a one-step
simplification operation as
simplifyStep (replace c p (evalTo x)) = replace c p x

The code for completely simplifying expressions, which is omitted in [4], becomes
quite agile with default rules and determinism annotations:
simplify :: Exp →DET Exp

simplify (replace c p (evalTo t)) = simplify (replace c p t)

simplify’default e = e

The correctness of the determinism annotation of simplify depends on the
confluence of the simplification rules specified by evalTo.

5 Practical Aspects

5.1 Implementation

We have implemented the analysis of relevant NDD operations described in
Sect. 3 with the Curry analysis framework CASS [19]. CASS provides the
infrastructure to analyze larger applications in a modular and incremental man-
ner. Our actual analysis does not return only the relevant NDD operations but
also the call sequence (limited to a fixed maximal length to keep the abstract
domain finite) leading to relevant NDD operations from a main expression. This
context information could be helpful to decide at which point non-determinism
should be encapsulated.

10 S. Antoy and M. Hanus

To implement the reduction of the computation space by deterministic oper-
ations, we use existing features of functional logic languages. In particular, deter-
ministic operations are implemented by a preprocessing approach that requires
no language extension. The actual preprocessor is available and integrated into
the compilation chain of the Curry systems PAKCS [20] and KiCS2 [10].

To support the possibility to annotate deterministic operations similarly to
the notation used before, we introduce a type synonym:
type DET a = a

Hence, we can put the type constructor DET around any type without changing
its meaning. For instance, we can write the type annotation of Example 3 as
simplify :: Exp ->DET Exp

Our preprocessor reads a Curry program and looks for such occurrences of DET.
Since a deterministic operation is intended to compute only a single value for
a given argument and ignore all others, we use set functions [6] to compute
and select one value. Since the result sets are evaluated lazily, the computation
of further elements is automatically precluded if we access only one element.
Therefore, the following transformation is sufficient. If the preprocessor finds a
function definition of the form (where tn denotes a sequence of elements t1 . . . tn)

f :: τ1 → . . . → τn →DET τ

f t1n | c1 = e1
...

f tkn | ck = ek

then it is transformed into
f :: τ1 → · · · → τn → τ fND :: τ1 → · · · → τn → τ

f xn = selectValue (fND
S xn) fND t1n | c1 = e1

...
fND tkn | ck = ek

where fND is a new identifier and xn are pairwise distinct variables. Hence, the
original operation is replaced by a call to its set function where some element of the
set is returned by the operation selectValue.2 Due to this transformation, deter-
minism annotations have similarities to strictness annotations (“seq”) in Haskell:
they change the semantics in order to get a more efficient operational behavior.

Note that if the arguments of a deterministic operations are non-deterministic
and have several values, the search space is cut for each value separately. This
is due to the fact that set functions encapsulate the non-determinism of the
function definition but not the non-determinism of the arguments (see Sect. 2).
For instance, consider the operation list2set which transforms a list into a set
by removing duplicated elements (also known as nub in Haskell but specified
without a concrete strategy to find duplicates):
list2set :: [a] →DET [a]

list2set (xs++[e]++ys++[e]++zs) = list2set (xs++[e]++ys++zs)

list2set’default xs = xs

2 Note that this operation on value sets returns some value from the set and ignores the
others, i.e., it implements “don’t care” non-determinism.

Eliminating Irrelevant Non-determinism in Functional Logic Programs 11

Then the call
list2set [True, True ? False, True]

evaluates to two results: [True] and [True,False]. Thanks to the deter-
minism annotation, the result [True] is computed once whereas it would
be computed three times without the determinism annotation. One can even
call deterministic functions with unknown arguments. For instance, list2set
xs == [True,False] is solved by non-deterministically instantiating xs to
[True,False], [True,False,False], [True,False,True], and so on.3 This
shows that a determinism annotation does not imply that the operation can only
be used in a purely functional manner, i.e., to compute an output value from
a given input value, but deterministic operations compute at most one result
for each given input value, which can still be guessed. This makes deterministic
operations more powerful than Prolog’s cut operator.

5.2 Benchmarking

To evaluate our analysis on non-trivial examples, we applied it to some existing
applications where I/O non-determinism errors occurred during their develop-
ment. Since our analysis was not available at that time, we manually located
them in a time-consuming process. For our current test, we re-introduced the
problematic definitions (mainly due to the use of functional patterns) in these
applications. Our current analysis precisely returned these NDD operations as
relevant for the main operation of the applications. The applications we tested
are the KiCS2 compiler, CurryCheck (discussed in Sect. 6.1), the Curry pre-
processor (partially described above), and a web-based information system for
the curricula in the department of computer science in Kiel. For the bench-
marks, we used the Curry implementation KiCS2 (Version 0.5.1) [10] with the
Glasgow Haskell Compiler (GHC 7.6.3, option -O2) as its back end on a Linux
machine (Debian 8.5) with an Intel Core i7-4790 (3.60 Ghz) processor and 8 GiB
of memory.

Figure 1 shows the size of these applications and their analysis times. The
table shows the number of modules, the size (in KB) and the number of lines
of the source code (including all imported libraries), the time to analyze the
complete application for the first time, and the time to re-analyze the complete

Fig. 1. Benchmarks: analysis of relevant NDD operations

3 This behavior is specific to KiCS2. PAKCS suspends on this equation since it has a
more restricted implementation of set functions.

12 S. Antoy and M. Hanus

Fig. 2. Benchmarks: assessing the effect of determinism annotations

application after fixing the problem (in seconds). Note that CASS performs a
modular and incremental analysis, i.e., if some module has been analyzed, it
stores the analysis information and re-analyzes a module only if the module or
some of its (direct or indirect) imported modules have been changed. Hence,
the initial analysis time is the worst-case analysis time which rarely occurs in
practice. The re-analysis time clearly shows the advantage of this incremen-
tal analysis method. Altogether, the benchmarks demonstrate that our analysis
method is effective and efficient enough for realistic applications.

In order to assess the practical consequences of determinism annotations,
we compared the run times of some examples with and without determinism
annotations on the same architecture used in the previous benchmarks. The
timings were performed with the Unix time command measuring the execution
time to compute all solutions (in seconds) of a compiled executable for each
benchmark as a mean of three runs. The programs used for the benchmarks are
the examples presented in the previous sections.

Figure 2 shows the execution times for evaluating the given expression with-
out (“nondet” column) and with (“det” column) a determinism annotation
(where “0.00” means less than 10 ms). Obviously, one can obtain arbitrarily large
speedups by increasing the size of the input. Nevertheless, the numbers indicate
that a non-deterministic implementation where we don’t care about strategies
to solve intermediate problems, like selecting appropriate list elements, is rea-
sonable if the overall operation is deterministic. The example last shows that
determinism annotations can also come with some cost since the machinery
to encapsulate search with set functions is not for free. However, it should be
noted that this comparison is also somehow artificial since a non-encapsulated
top-level non-determinism is compared with an encapsulated computation. In
practice, where the application program performs I/O operation on the top-
level, all intermediate non-deterministic computations need to be encapsulated
as discussed in Sect. 1.

6 Checking Deterministic Operations

If we add determinism annotations to operations that are not deterministic
according to Definition 3, we lose completeness. Since the determinism property is
undecidable in general, we cannot expect an automatic tool to verify this property.

Eliminating Irrelevant Non-determinism in Functional Logic Programs 13

On the other hand, accepting only those determinism annotations where the deter-
minism property can be verified by some sufficient criteria would be too restrictive.
Therefore, the preprocessor outputs for each operation with a determinism anno-
tation a proof obligation as a reminder and puts the task of verifying this prop-
erty into the hands of the programmer. In this section, we discuss some methods
to check or verify the correctness of determinism annotations.

6.1 Testing Deterministic Operations

A first approach to get confidence in the correctness of determinism annota-
tions is testing. Testing can be quite powerful if one tests program properties,
i.e., predicates, with a lot of test data. A well known example of such a property-
based test framework is Haskell’s QuickCheck tool [13] which generates random
test data to test given properties. CurryCheck is a similar new tool for Curry
programs distributed with the Curry systems PAKCS and KiCS2. It uses Easy-
Check [12] for test data generation but automates property testing with addi-
tional features. In particular, CurryCheck automatically tests the correctness of
determinism annotations as follows. If CurryCheck finds an annotation

f :: τ1 → . . . → τn →DET τ

CurryCheck removes the determinism annotation (actually, it copies the code
of f without the determinism annotation, since the annotated operation might
be used in some other property) and adds the following property (where the
property “e #< n” is satisfied if the set of all values of e contains less than n
elements):

fIsDeterministic :: τ1 → · · · → τn → Prop

fIsDeterministic x1 . . . xn = f x1 . . . xn #< 2

This property is tested by systematically enumerating values for x1, . . . , xn.
Although this enumeration is exhaustive only for finite domains, checking deter-
minism properties by testing is a quite useful tool in practice if the test cases are
numerous and well distributed. These test cases are provided by the underlying
EasyCheck library.

6.2 Proving Determinism Annotations

To show the correctness of determinism annotations also for infinite sets of input
values, formal proofs are required. We discuss in this section methods to con-
struct such proofs for particular examples.

A method to determine the determinism of an operation borrows from the
theory of rewriting [24]. We denote by → the standard rewrite relation on terms
and by →∗ its reflexive and transitive closure. Then we can use the following
proposition to verify determinism annotations by rewriting:

Proposition 2. Assume that each data type is sensible and f is an n-ary oper-
ation so that, for all values t1, . . . , tn and rewrite derivations f t1, . . . , tn →∗ r
and f t1, . . . , tn →∗ r′ with values r and r′, r = r′ holds. Then f is deterministic.

14 S. Antoy and M. Hanus

Note that the converse of this proposition does not hold: The operation f
defined as
f x = square (x ? (0-x)) where square x = x*x

is deterministic in the sense of Definiton 3 but the expression f 3 has the following
rewrite derivations (among others):
f 3 →∗ 3 * (3 ? (0-3)) → 3 * 3 → 9

f 3 →∗ 3 * (3 ? (0-3)) → 3 * -3 → -9

There are many cases where Proposition 2 can be applied to verify determinism
annotations. For instance, within the context of rewriting, determinism coincides
with confluence, the property that the end result of a complete sequence of
applications of the rules does not depend on the order in which the rules were
applied. Weak orthogonality is a sufficient condition to ensure confluence, hence
determinism. First we briefly recall this concept, then we show its application
to Example 3.

Given a binary relation → on a set A of “objects” and an element a ∈ A,
we say that a is confluent iff for all b, c ∈ A, if a →∗ b and a →∗ c then
there exists some d ∈ A such that b →∗ d and c →∗ d. If every element of
A is confluent, then A is called confluent (or also Church-Rosser). Confluence
captures determinism in that no element can have two distinct normal forms or
values. When the objects of A are terms, there is a simple syntactic condition,
called weak orthogonality, that ensures confluence. A rewrite system R is weakly
orthogonal iff the following two conditions holds: (1) the rules of R are left-linear,
i.e., no variable in the left-hand side is repeated, and (2) any critical pair (t, s) is
trivial, i,.e. t = s syntactically. We refer to [24, Defintion 2.7.9] for the definition
of critical pair, which is quite technical, but in the following paragraph we show
an application of these concepts to one of our examples.

The simplification of an expression, as in Example 3, can be seen as a rewrite
computation. A rule, l → r, of this computation is constructed as follows: l is
an alternative in the right-hand side of the definition of evalTo and r is the
variable e, for example Add (Lit 0) e → e. An inspection of the rules shows
that they are left-linear. If the left-hand sides of two rules do not overlap, as in a
rule simplifying addition and a rule simplifying multiplication, then the rules can
be applied independently of each other and the order in which they are applied
does not affect the result. If the left-hand sides overlap, then we consider their
most general common instance and rewrite this instance with each rule. The
two results form a critical pair. For example, the two rules of addition overlap,
their most common general instance is Add (Lit 0) (Lit 0), and the critical
pair is (Lit 0, Lit 0). Since the components of the pair are equal, the pair is
trivial. Since all the critical pairs of this system are trivial, the system is weakly
orthogonal, hence confluent, hence deterministic.

A second approach to ensure the determinism of an operation relies on the char-
acteristics of the operation definition. For example, consider the sort operation
bsort defined earlier. A call to bsort t, where t is a list of elements, has either
of two outcomes: (1) the call result in a recursive call bsort t′ where t′ is a per-
mutation of t, or (2) the call outputs t, the argument of bsort. The latter occurs

Eliminating Irrelevant Non-determinism in Functional Logic Programs 15

only when there are no elements out of order in the argument. Since there is only
one permutation of t with this property, this permutation is the only value that
bsort t can ever produce. Hence bsort is deterministic. The pattern exemplified
by bsort is not uncommon, hence this is a simple and useful technique for deter-
minism proofs.

One could also use proof assistants to show determinism properties. Due to
the presence of (don’t know) non-determinism in Curry programs, this requires
the formal representation of the rewriting logic, as sketched in Sect. 4, in the
logic of the proof assistant, as proposed in [14]. However, in simpler examples, it
suffices to show properties about functional computations to show the correct-
ness of determinism annotations. For instance, to show the determinism of the
operation last, we have to show that every concatenation used in the pattern
of last produces the same last element. This proof obligation can be formally
written as

∀l, l1, l2, x1, x2 : (l == l1 ++[x1] ∧ l == l2 ++[x2]) =⇒ x1 == x2

Since the involved operations “==” and “++” are defined in a purely functional
manner, we could apply proof assistants for functional programs to verify this
property. Actually, we formally verified this property with Agda, a dependently
typed functional programming language where proofs are written in a functional
programming style [23]. The similarity of Agda with Haskell eases the translation
of Curry programs into Agda. Actually, [9] describes a method to prove proper-
ties of non-deterministic computations by translating Curry programs into Agda
programs. Using this method, one can mechanically prove that min (see Sect. 1)
is deterministic by verifying its correspondence to a deterministic definition of a
minimum function. Due to lack of space, the Agda proofs are omitted but they
can be found in the long version of this paper.4

7 Related Work

The use of deterministic operations to improve the operational behavior of func-
tional logic computations has a long history. For instance, the SLOG system [15]
used simplification with program rules and inductive axioms to reduce the search
space. Similarly, the more general language ALF exploited deterministic rewrite
computations interspersed in narrowing steps to obtain efficient functional logic
computations [17]. A more dynamic use of deterministic computations was pro-
posed in [21] where the “dynamic cut” as an alternative to Prolog’s static cut
has been introduced. In contrast to the static cut operator in Prolog, all these
proposals aim at keeping the completeness of functional logic computations. In
contrast to our proposal, these older proposals did not characterize a separate
set of deterministic operations since all operations are deterministic due to a
confluence requirement of the involved programs.

This view changed with the introduction of a new semantic foundation of func-
tional logic programming presented in [16]. There, the notion of non-deterministic

4 http://www.informatik.uni-kiel.de/∼mh/papers.

http://www.informatik.uni-kiel.de/~mh/papers

16 S. Antoy and M. Hanus

functions was introduced in functional logic programs and deterministic and non-
deterministic functions are distinguished on a semantic level. The authors used
these two kinds of functions to define the intended models of functional logic
programs. Deterministic functions characterize homomorphisms and interpret
data constructors, whereas user-defined operations are always interpreted as non-
deterministic functions so that they are evaluated in a non-deterministic manner.

Improving computations for deterministic operations in the presence of non-
deterministic operations has also been addressed in [11]. The authors transferred
the idea of dynamic determinism detection in functional logic programs intro-
duced in [21] to functional logic programs with non-deterministic operations.
Dynamic determinism detection is based on the idea to check variable bindings
of actual arguments inside an operation and omit alternatives (as with Prolog’s
cut) if arguments are not bound during the evaluation of the operation. Although
this has some similarities with our approach, it is less general. Due to the use of
set functions, we can still call deterministic operations with free variables and
compute bindings for them in order to cut the search space in computations with
individual bindings. Moreover, [11,21] have strong criteria on operations where
dynamic determinism detection is applied (in particular, no extra variables in
right-hand sides) so that it is not applicable to most of our examples.

The declarative language Mercury5 also supports monadic I/O as well as
non-deterministic computations. To annotate predicates where only one of pos-
sibly several solutions are needed, the user can use committed choice annotations
(cc-nondet, cc-multi) to suppress the computation of several solutions. Since
the Mercury compiler checks these annotations, their usage is restricted in con-
trast to our semantic-based notion of deterministic operations.

8 Conclusions

We presented a method to detect relevant non-deterministic operations in Curry
applications and proposed the use of deterministic operations to improve their
operational behavior. We characterized deterministic operations semantically
w.r.t. their input/output behavior, i.e., deterministic operations might yield mul-
tiple results under the standard semantics but all results are equal for a given
input. We showed that one can exploit this property by cutting the computation
space for such operations if the arguments are sufficiently evaluated. In this way,
we do not only improve their operational behavior, but one can also avoid run-
time problems if these operations are used inside I/O operations, which always
require deterministic subcomputations.

We demonstrated with various examples that deterministic operations fre-
quently occur in functional logic programs. Actually, they occur whenever a
task like selecting list elements or subterms, or applying transformation rules
can be more easily expressed in a non-deterministic manner.

We also discussed how determinism properties can be checked, since they are
decidable only in simple cases. One can automatically test these properties with
5 www.mercurylang.org.

www.mercurylang.org

Eliminating Irrelevant Non-determinism in Functional Logic Programs 17

advanced testing tools which might also prove a property if the set of possible
argument values is finite. We sketched also proof techniques for determinism
annotations. Developing better proof techniques with mechanical support is an
interesting topic for future research.

Acknowledgments. This material is based in part upon work supported by the
National Science Foundation under Grant No. 1317249.

References

1. Albert, E., Hanus, M., Huch, F., Oliver, J., Vidal, G.: Operational semantics for
declarative multi-paradigm languages. J. Symbolic Comput. 40(1), 795–829 (2005)

2. Antoy, S.: Definitional trees. In: Kirchner, H., Levi, G. (eds.) ALP 1992. LNCS,
vol. 632, pp. 143–157. Springer, Heidelberg (1992). doi:10.1007/BFb0013825

3. Antoy, S., Echahed, R., Hanus, M.: A needed narrowing strategy. J. ACM 47(4),
776–822 (2000)

4. Antoy, S., Hanus, M.: Declarative programming with function patterns. In: Hill,
P.M. (ed.) LOPSTR 2005. LNCS, vol. 3901, pp. 6–22. Springer, Heidelberg (2006).
doi:10.1007/11680093 2

5. Antoy, S., Hanus, M.: Overlapping rules and logic variables in functional logic
programs. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp.
87–101. Springer, Heidelberg (2006). doi:10.1007/11799573 9

6. Antoy, S., Hanus, M.: Set functions for functional logic programming. In: Proceed-
ings of PPDP 2009, pp. 73–82. ACM Press (2009)

7. Antoy, S., Hanus, M.: Functional logic programming. Commun. ACM 53(4), 74–85
(2010)

8. Antoy, S., Hanus, M.: Default rules for Curry. In: Gavanelli, M., Reppy, J. (eds.)
PADL 2016. LNCS, vol. 9585, pp. 65–82. Springer, Cham (2016). doi:10.1007/
978-3-319-28228-2 5

9. Antoy, S., Hanus, M., Libby, S.: Proving non-deterministic computations in Agda.
In: Proceedings of 24th International Workshop on Functional and Logic Program-
ming (WFLP 2016), EPTCS (2016)

10. Braßel, B., Hanus, B., Peemöller, B., Reck, F.: KiCS2: a new compiler from Curry
to Haskell. In: Kuchen, H. (ed.) WFLP 2011. LNCS, vol. 6816, pp. 1–18. Springer,
Heidelberg (2011)

11. Caballero, R., López-Fraguas, F.J.: Improving deterministic computations in lazy
functional logic languages. J. Funct. Logic Program. 2003 (2003)

12. Christiansen, J., Fischer, S.: EasyCheck — test data for free. In: Garrigue, J.,
Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 322–336. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-78969-7 23

13. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: Proceedings of ICFP 2000, pp. 268–279. ACM Press (2000)

14. Cleva, J.M., Leach, J., López-Fraguas, F.J.: A logic programming approach to the
verification of functional-logic programs. In: Proceedings of PPDP 2004, pp. 9–19.
ACM Press (2004)

15. Fribourg, L.: Slog: a logic programming language interpreter based on clausal
superposition and rewriting. In: Proceedings of IEEE International Symposium
on Logic Programming, pp. 172–184 (1985)

http://dx.doi.org/10.1007/BFb0013825
http://dx.doi.org/10.1007/11680093_2
http://dx.doi.org/10.1007/11799573_9
http://dx.doi.org/10.1007/978-3-319-28228-2_5
http://dx.doi.org/10.1007/978-3-319-28228-2_5
http://dx.doi.org/10.1007/978-3-540-78969-7_23

18 S. Antoy and M. Hanus

16. González-Moreno, J.C., Hortalá-González, M.T., López-Fraguas, F.J., Rodŕıguez-
Artalejo, M.: An approach to declarative programming based on a rewriting logic.
J. Logic Program. 40, 47–87 (1999)

17. Hanus, M.: Efficient implementation of narrowing and rewriting. In: Boley, H.,
Richter, M.M. (eds.) PDK 1991. LNCS, vol. 567, pp. 344–365. Springer, Heidelberg
(1991). doi:10.1007/BFb0013543

18. Hanus, M.: Functional logic programming: from theory to Curry. In: Voronkov,
A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp. 123–168.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-37651-1 6

19. Hanus, M., Skrlac, F.: A modular and generic analysis server system for functional
logic programs. In: Proceedings of PEPM 2014, pp. 181–188. ACM Press (2014)

20. Hanus, M. et al.: PAKCS: The Portland Aachen Kiel Curry System (2016). http://
www.informatik.uni-kiel.de/∼pakcs/

21. Loogen, R., Winkler, S.: Dynamic detection of determinism in functional logic
languages. Theor. Comput. Sci. 142, 59–87 (1995)

22. López-Fraguas, F.J., Rodŕıguez-Hortalá, J., Sánchez-Hernández, J.: A simple
rewrite notion for call-time choice semantics. In: Proceedings of PPDP 2007, pp.
197–208. ACM Press (2007)

23. Stump, A.: Verified Functional Programming in Agda. ACM and Morgan & Clay-
pool, New York (2016)

24. TeReSe: Term Rewriting Systems, vol. 55 of Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press, Cambridge (2003)

http://dx.doi.org/10.1007/BFb0013543
http://dx.doi.org/10.1007/978-3-642-37651-1_6
http://www.informatik.uni-kiel.de/~pakcs/
http://www.informatik.uni-kiel.de/~pakcs/

Canonicalizing High-Level Constructs in Picat

Neng-Fa Zhou1(B) and Jonathan Fruhman2

1 CUNY Brooklyn College and Graduate Center, New York, USA
zhou@sci.brooklyn.cuny.edu

2 New York, USA

Abstract. Picat is a logic-based multi-paradigm dynamic language that
integrates logic programming, functional programming, constraint pro-
gramming, and scripting. The Picat language is underpinned by the
core logic programming concepts, including logic variables, unification,
and nondeterminism. Picat takes many constructs from other languages,
among which functions, list and array comprehensions, loops, and assign-
ments are convenient for scripting and modeling. This paper gives an
overview of the language features of Picat, and shows how different lan-
guage constructs are compiled into a canonical form.

1 Introduction

Picat is a simple, and yet powerful, logic-based multi-paradigm dynamic language.
Picat was designed with the goal of creating a logic-based general-purpose pro-
gramming language that overcomes the weaknesses of Prolog, is as powerful as
Python and Ruby for scripting, and is on a par with OPL [6] and MiniZinc [10]
for modeling combinatorial problems.

Like Prolog, Picat is based on the core logic programming concepts, includ-
ing logic variables, unification, and nondeterminism realized through depth-first
backtracking search. Picat departs from Prolog in many aspects. Picat uses
pattern-matching rather than unification in the selection of rules. Unification
might be a natural choice in Horn clause resolution for theorem proving [8],
but its power is rarely needed for general programming tasks. In Picat, pattern-
matching rules are fully indexed, while most Prolog implementations only index
clauses on one argument; therefore, Picat can be more scalable than Prolog. Uni-
fication can be considered as an equation over terms [1], and just like constraints
over finite domains, Picat supports unification as an explicit call.

Non-determinism, a powerful feature of logic programming,makes concise solu-
tions possible for many problems, including the simulation of non-deterministic
automata, the parsing of ambiguous grammars, and search problems. In Pro-
log, Horn clauses are backtrackable by default. As it is generally undecidable to
detect determinism, programmers tend to excessively use the cut operator to prune
unnecessary clauses. Picat supports explicit non-determinism, which renders the
cut operator unnecessary. In Picat, rules are deterministic, unless they are explic-
itly annotated as backtrackable.

c© Springer International Publishing AG 2017
Y. Lierler and W. Taha (Eds.): PADL 2017, LNCS 10137, pp. 19–33, 2017.
DOI: 10.1007/978-3-319-51676-9 2

20 N.-F. Zhou and J. Fruhman

Picat supports functions, like many other logic-based languages, such as
Curry [5] and Ciao [7]. In Prolog, a predicate defines a relation, and may succeed
multiple times. It is common for queries to fail in Prolog without the system pro-
viding any clue about the source of the failure. Functions should be used instead
of relations, unless multiple answers are required. It is more convenient to use
functions instead of predicates, because (1) functions are guaranteed to succeed
with a return value; (2) function calls can be nested; and (3) the directionality
of functions often enhances the readability.

Picat provides arrays and loops, which are probably the features that are most
unlike those of Prolog. In Prolog, in order to describe repetitions, programmers
mainly rely on recursion, and occasionally rely on failure-driven loops and higher-
order extensions [15]. The lack of powerful loop constructs has arguably made Pro-
log less acceptable to programmers than other languages. The extension of Prolog
to support constraints has further revealed the weakness of Prolog as a modeling
language. Early attempts to introduce arrays and loops into Prolog for modeling
failed to produce a satisfactory language: most noticeably, array accesses are only
treated as functions in certain contexts, and loops require the declaration of global
variables in ECLiPSe [11] and local variables in B-Prolog [17].

Picat allows list comprehensions to be included as special functions in expres-
sions in order to declaratively construct lists. Picat also supports the assignment
operator :=, whose original motive was to facilitate the compilation of list com-
prehensions. A list comprehension is easily translated into a foreach loop in
which an assignment is utilized to accumulate the constructed list. The deci-
sion to make the assignment operator available to programmers is controversial
but pragmatic. The assignment operator in Picat has earned fondness among
programmers for its simple semantics and convenience.

All of the language constructs, including functions, loops, comprehensions,
and assignments, are provided as syntactic sugar in Picat. They are compiled
away at compile time. This paper gives an overview of the language constructs of
Picat, and shows how they are compiled into canonical-form pattern-matching
rules.

2 The Picat Language

The name “Picat”is an acronym, and the letters in the name summarize Picat’s
features: ‘P’ for pattern-matching, ‘I’ for intuitive programming, ‘C’ for con-
straints, ‘A’ for action rules, and ‘T’ for tabling. This section gives an overview
of the language constructs of Picat. Some of Picat’s features, such as action rules,
tabling, and the tabling-based planner [18], are orthogonal to the language con-
structs, and will not be covered in this article. More details of the Picat language
can be found in [20].

2.1 Data Types

Picat is a logic-based multi-paradigm programming language for general-purpose
applications. Picat’s core is underpinned by logic programming concepts, as seen

Canonicalizing High-Level Constructs in Picat 21

in Prolog, including logic variables, unification, and backtracking. Logic variables,
like variables in mathematics, are value holders. A logic variable can be bound
to any term, including another logic variable. Figure 1 gives the types of terms in
Picat. Picat is a dynamically-typed language, which means that type checking
occurs at runtime.

Fig. 1. Picat’s data types

A variable name is an identifier that begins with a capital letter or the under-
score; for example, X1 and abc are variable names. The underscore itself is
used for anonymous variables, and each occurrence of the underscore indicates
a different variable.

An atomic value can be an atom or a number. An atom is a constant symbol.
An atom name can be either unquoted or quoted. An unquoted name is an
identifier that begins with a lower-case letter, followed by an optional string of
letters, digits, and underscores. A quoted atom is a single-quoted sequence of
arbitrary characters. For example, x1, x 1, ’ abc’, and ’a+b’ are atom names.
A number can be an integer or a real number. Picat supports big integers.

A compound value can be a list or a structure; for example, [a,b,c] is a list,
and f(a,b,c) is a structure.1 Lists are singly-linked lists. A string is a list of
characters; for example, "a+b" is the same as [a,’+’,b]. An array is a special
structure; for example, {a,b,c} is an array. A map is a special structure that
contains a set of key-value pairs, and a set is a special map that only contains
keys; both are hash tables.

Each type provides a set of built-in functions and predicates. Each of the type
names, except term and set, is a type-checking predicate. For example, list(L)
tests if L is a list. Let L be a compound term. The index notation L[I] is a
special function that returns the Ith component of list L, with L[1] referring
to the first element of L. An index notation can take multiple subscripts. The
cons operator [H|T] builds a new list by adding H to the front of T . The
concatenation operator L1 ++ L2 returns the concatenated list of L1 and L2.

1 A structure requires a preceding dollar symbol, as in $f(a,b,c), to distinguish the
structure from a function call, unless the structure is special, or it occurs in a special
context.

22 N.-F. Zhou and J. Fruhman

The equality test T1 == T2 is true if term T1 and term T2 are identical. The
inequality test T1 !== T2 is the same as not T1 == T2. Note that two terms can
be identical even if they are different terms stored in different memory locations.
Also note that two terms of different types can be tested for equality, but they
are never identical. The unification T1 = T2 is true if term T1 and term T2 are
already identical, or if they can be made identical by instantiating the variables
in the terms. The built-in T1 != T2 is the same as not T1 = T2. Note that among
the four comparison operators ==, !==, =, and !=, only = can change the state
of the variables in the compared terms.

2.2 Predicates and Functions

In Picat, predicates and functions are defined with pattern-matching rules. Picat
has two types of rules: the non-backtrackable rule

Head, Cond => Body.

and the backtrackable rule

Head, Cond ?=> Body.

In a predicate definition, the Head takes the form p(t1, . . . , tn), where p is a
predicate name, and n is the arity. The condition Cond, which is an optional
goal, specifies a condition under which the rule is applicable. For a call C, if
C matches Head (i.e., there exists a substitution θ such that Headθ = C) and
Cond succeeds, then the rule is said to be applicable to C. When applying a
rule to call C, Picat rewrites C into Body. If the used rule is non-backtrackable,
then the rewriting is a commitment, and the program can never backtrack to
C. However, if the used rule is backtrackable, then the program will backtrack
to C once Body fails, meaning that Body will be rewritten back to C, and the
next applicable rule will be tried on C. The backtrackable rule is semantically
equivalent to:

Head ?=> Cond, Body.

However, in-line tests that are written to the left of ?=> will be used by the
compiler to index the rule.

The following defines the predicate member:

member(X, [Y|_]) ?=> X = Y.

member(X, [_|T]) => member(X, T).

Like the Prolog built-in member(X,L), this predicate can be utilized to check if
X is a member of the list L, and it can also be utilized to retrieve an element of L
through X by backtracking if X is a variable. Unlike Prolog’s member(X,L), which
can succeed an infinite number of times if L is a variable, the Picat definition
can never succeed more times than the number of elements in L, since pattern-
matching never changes call arguments.

Canonicalizing High-Level Constructs in Picat 23

A function is a special kind of a predicate that is defined by non-backtrackable
rules. In a function definition, the Head takes the form f(t1, . . . , tn) = Term,
where f is a function name and Term is a result to be returned. If Cond and
Body are both true, then they can be omitted together with the => arrow.

The following gives two functions for reversing a list:

naive_reverse([]) = [].

naive_reverse([H|T]) = naive_reverse(T) ++ [H].

reverse(L) = reverse_aux(L, []).

reverse_aux([], Acc) = Acc.

reverse_aux([H|T], Acc) = reverse_aux(T, [H|Acc]).

For a list, if it is empty, then naive reverse returns the empty list; otherwise,
naive reverse attaches the head H to the end of the reversed list of the tail T.
The call naive reverse(L) takes O(n2) time to reverse list L of length n. The
function reverse calls reverse aux, which scans the list while accumulating the
reversed list in the second argument. The call reverse(L) takes linear time to
reverse list L.

Picat, like functional programming languages, discourages the use of side
effects in describing computations. All of the built-in functions in Picat’s basic
module are side-effect-free mathematical functions. Pure, side-effect-free func-
tions are not dependent on the context in which they are applied. This purity
can greatly enhance the readability and maintainability of programs.

Picat’s dot notation makes calling a function look like calling a method on
an object, as in X.to string().reverse(). This uniform function call syntax2

is convenient for chaining function calls in a readable way.

2.3 Loops and Comprehensions

Picat provides loops for describing repetitions and comprehensions for construct-
ing lists and arrays. A foreach loop has the following general form:

foreach (E1 in D1, Cond1, . . ., En in Dn, Condn)
Goal

end

The expression Ei in Di is called an iterator, where Ei is an iterating pattern,
and Di is an expression that gives a compound value. Each Condi is an optional
condition on iterators E1 through Ei. A loop statement forms a name scope:
variables that occur in a loop, but do not occur before the loop in the outer
scope, are local to each iteration of the loop.

A list comprehension has the following general form:

[Exp : E1 in D1, Cond1, . . ., En in Dn, Condn]

2 http://dlang.org/spec/function.html.

http://dlang.org/spec/function.html

24 N.-F. Zhou and J. Fruhman

where Exp is an expression, and the iterators and conditions have the same
format as those used in the foreach loop. A list comprehension is a special
functional notation for creating lists. It includes Exp as an element in the list for
each possible combination of values in the iterators that satisfies the conditions.
Like a loop, a list comprehension also forms a name scope.

An array comprehension has the following general form:

{Exp : E1 in D1, Cond1, . . ., En in Dn, Condn}
An array comprehension first creates a list, and then calls the function to array
to convert the list to an array.

The following gives an example that uses loops and comprehensions:

matrix_multi(A, B) = C =>

C = new_array(A.length, B[1].length),

foreach (I in 1..A.length, J in 1..B[1].length)

C[I,J] = sum([A[I,K]*B[K,J] : K in 1..A[1].length])

end.

The function matrix multi(A,B) takes two matrices, A and B, that are repre-
sented as two-dimensional arrays, and returns the product A× B. All three of the
variables A, B, and C, are non-local to the loop, because they occur before the
loop. Note that, for an aggregate function, such as sum or len, that takes a list
comprehension as the argument, the compiler generates a special function that
computes the aggregate without actually building a list.

Loops are very convenient for scripting. The following gives an example pro-
gram which recursively copies all of the files in a directory and its subdirectories
to the current directory:

import os.

main =>

WD = pwd(),

flatten_dir(WD, WD).

flatten_dir(WD, Dir) =>

Fs = listdir(Dir),

foreach (F in Fs, F !==".", F !=="..")

FullName = full_path(Dir, F),

if directory(FullName) then

flatten_dir(WD, FullName)

else

cp(FullName, full_path(WD, F))

end

end.

full_path(Dir, Name) =

Dir ++ [separator()] ++ Name.

This program imports the os module, from which the built-ins pwd, listdir,
directory, cp, and separator are used. The function listdir(Dir) returns

Canonicalizing High-Level Constructs in Picat 25

a list Fs of files and directories in the directory Dir. For each item F in Fs,
if F is neither "." nor "..", then the program calls full path to construct
the full name FullName of F. If FullName is a directory, then the program
recursively calls flatten dir on the directory; otherwise, it copies the file to
the WD directory.

2.4 Assignments and While Loops

Picat variables are single-assignment, meaning that once a variable is bound to
a value, the variable cannot be bound again, unless the value is a variable or
the value contains variables. In order to simulate imperative language variables,
Picat provides the assignment operator :=. An assignment takes the form

LHS := RHS

where LHS is either a variable or an access of a compound value in the form
X[...]. When LHS is a variable, the assignment does not actually assign
the value of RHS to LHS. Instead, it creates a new variable for LHS to hold
the value of RHS. After the assignment, whenever LHS is accessed in the body,
the new variable is accessed. When LHS is an access in the form X[I], the com-
ponent of X indexed I is updated. This update is undone if execution backtracks
over this assignment.

An assignment in the form X[I] := RHS has global side effects, since the
compound term that is referenced by X is destructively updated, like an assign-
ment in an imperative language. An assignment in the form X := RHS, where
X is a variable, only has a side effect within the body of the rule in which the
assignment occurs. Recall that the compiler introduces a new variable for X and
replaces the remaining occurrences of X by the new variable. Variable assign-
ments do not have cross-predicate or cross-function side effects.

An assignment makes it possible to use a variable to hold values at dif-
ferent stages during computation without inventing new variable names. With
assignments, Picat is able to provide while loops that repeat under a condition.
A while loop has the form:

while (Cond)
Goal

end

As long as Cond succeeds, the loop will repeatedly execute Goal. A do-while
loop has the form:

do
Goal

while (Cond)

A do-while loop is similar to a while loop, except that a do-while loop executes
Goal one time before testing Cond. In order for a while loop to make sense,

26 N.-F. Zhou and J. Fruhman

Goal must contain assignments that change some variables in Cond, unless the
loop is meant to be an infinite loop.3

2.5 Constraint Modeling

Picat provides three solver modules, cp, sat, and mip, for modeling and solv-
ing constraint satisfaction and optimization problems (CSPs). As a constraint
programming language, Picat resembles CLP(FD) [3]: the operators :: and
notin are used for domain constraints, the operators #=, #!=, #>, #>=, #<, #<=,
and #=< are used for arithmetic constraints, and the operators #/\ (and), #\/
(or), #^ (xor), #~ (not), #=> (if), and #<=> (iff) are used for Boolean con-
straints. Picat supports several global constraints, such as all different/1,
element/3, and cumulative/4. In addition to intensional constraints, Picat also
provides two predicates for expressing extensional constraints: table in/2 and
table notin/2.

The following gives a solution for the Fashion Police problem, which was used
in GCJ Round 1 C 2016.4 You have brought along J different jackets (numbered
1, . . . , J), P different pairs of pants (numbered 1, . . . , P), and S different shirts
(1, . . . , S), J ≤ P ≤ S. Every day, you will pick one jacket, one pair of pants, and
one shirt to wear as an outfit. You will be put into jail if you have worn the exact
same outfit twice or if you have worn the same two-garment combination more
than K times in total for some input K. Determine the maximum number of days
that you will be able to avoid being taken to jail. The problem entails finding a
maximum subset of outfits that satisfies the cardinality limit. For example, for
J = 1, P = 1, S = 3, and K = 2, the answer is 2, because (1,1,1) and (1,1,2)
are possible outfits, while adding the third outfit (1,1,3) to the list will violate
the cardinality limit.

import util, sat.

main =>

T = read_line().to_int(),

foreach (TC in 1..T)

[J,P,S,K] = [to_int(Token) : Token in read_line().split()],

not not do_case(TC,J,P,S,K)

end.

do_case(TC,J,P,S,K) =>

L = {{Ij,Ip,Is} : Ij in 1..J, Ip in 1..P, Is in 1..S},

N = J * P * S,

Bs = new_array(N),

Bs :: 0..1,

sum(Bs) #=< J * P * K, % pigeonhole principle

foreach (R1 in 1..N)

L[R1] = {Ij,Ip,Is},

if S > K then

3 It is possible to write an infinite loop as while (true) Goal end.
4 https://code.google.com/codejam/contest/4314486/dashboard#s=p2\&a=2.

https://code.google.com/codejam/contest/4314486/dashboard#s=p2&a=2

Canonicalizing High-Level Constructs in Picat 27

Bs[R1] #=> sum([Bs[R2] : R2 in 1..N, L[R2] = {Ij,Ip,_}]) #=< K

end,

if P > K then

Bs[R1] #=> sum([Bs[R2] : R2 in 1..N, L[R2] = {Ij,_,Is}]) #=< K

end,

if J > K then

Bs[R1] #=> sum([Bs[R2] : R2 in 1..N, L[R2] = {_,Ip,Is}]) #=< K

end

end,

solve([$max(sum(Bs))],Bs),

printf("Case #%w: %w\n", TC,sum(Bs)),

foreach (R in 1..N, Bs[R] == 1, L[R] = {Ij,Ip,Is})

printf("%w %w %w\n", Ij,Ip,Is)

end.

The main predicate first reads in an integer T, which is the number of test
cases. For each test case TC in 1..T, the body of the loop reads in J, P, S, and
K in one line. The call do case(TC,J,P,S,K) solves the case.5

The do case predicate creates an array L of all possible outfits, computes
the number of possible outfits N, and creates an array Bs of N Boolean variables.
Each outfit is associated with one Boolean variable, which indicates whether
the outfit is in the subset. The constraint sum(Bs) #=< J * P * K encodes the
pigeonhole principle.6

The foreach loop ensures that no pair of garments occurs in outfits more
than K times in the subset. For an outfit number R1, let {Ij,Ip,Is} be the
outfit. The constraint

Bs[R1] #=> sum([Bs[R2] : R2 in 1..N, L[R2] = {Ij,Ip,_}]) #=< K

ensures that, if the outfit {Ij,Ip,Is} is in the subset (Bs[R1] = 1), then the
number of the jacket-pants pair {Ij,Ip} does not occur in the outfits more than
K times in the subset. This constraint is only generated if S > K, because if
S ≤ K, it is impossible to have more than K pairs of {Ij,Ip}. The foreach loop
also generates cardinality constraints to ensure that the number of jacket-shirt
pairs and the number of pants-shirt pairs do not exceed the limit.

The statement solve([$max(sum(Bs))],Bs) calls the SAT solver to solve
the constraints such that the objective sum(Bs) is maximized.

GCJ problems normally require some amount of insight to solve, even for
small datasets. This program is based on a straightforward model. Nevertheless,
it solves the large dataset in 3 min, which is within the time limit of 8 min. This
example demonstrates the use of Picat’s language constructs, including arrays,
loops, and list comprehensions, in modeling constraint problems.

3 Canonicalizing the Language Constructs

The Picat implementation adopts the virtual machine TOAM [17], which is a
redesign of the Warren Abstract Machine [16] for fast software emulation. TOAM
5 The double negation not not is used here to discard the generated constraints after

the case is done.
6 Since J ≤ P ≤ S, min(J × P × K, P × S × K, J × S × K) equals J × P × K.

28 N.-F. Zhou and J. Fruhman

provides instructions for encoding pattern-matching rules. An extended TOAM,
which supports tabling and constraint propagation, is described in [17]. The
Picat implementation reuses codes from the B-Prolog system, except the parser,
the preprocessor, and many library built-ins. An early implementation of the
SAT compiler, which translates high-level constraints into CNF, is given in [19].

Picat translates programs into a canonical form, which is further compiled
into TOAM. This section describes the canonical form and the translation of
Picat’s different language constructs into the form. The compilation of the canon-
ical form into TOAM is detailed in [17].

3.1 Canonical-Form Rules

A canonical-form rule takes one of the following forms:

Head, Cond => Body.
Head, Cond ?=> Body.

A canonical-form rule is different from the source-language rule in that Cond
and Body do not include functions, comprehensions, loops, or assignments; all of
these constructs are compiled away by Picat’s preprocessor.

3.2 Transformation of Functions

Picat replaces a function call f(t1, . . . , tn) by a new variable V , and inserts a new
predicate call p(t1, . . . , tn, V) before the goal in which the function call occurs.
For a rule in the definition of f/n

f(t1, . . . , tn) = Exp, Cond => Body.

Picat translates it into the following predicate rule:

p(t1, . . . , tn, V), Cond => Body, V = Exp.

Picat employs an optimization to generate a tail-recursive rule if Exp is a list.
Consider, for example, the following function conc, which concatenates two

lists:

conc([], Ys) = Ys.

conc([X|Xs], Ys) = [X | conc(Xs, Ys)].

Picat translates it into the following predicate:

conc_p([], Ys, Zs) => Zs = Ys.

conc_p([X|Xs], Ys, Zs) =>

Zs = [X|Zs1],

conc_p(Xs, Ys, Zs1).

The Picat compiler incorporates the tail-recursion optimization, which trans-
lates tail-recursive deterministic predicates into iteration. A call to conc p only
allocates one frame on the stack, no matter how long the list is.

Canonicalizing High-Level Constructs in Picat 29

3.3 Transformation of Comprehensions

Picat translates a list comprehension into a foreach loop that uses := to accu-
mulate values. The list comprehension

[Exp : E1 in D1, Cond1, . . ., En in Dn, Condn]

is replaced by a new variable L, and the following statements are inserted into
the context:

L = Tail,
foreach (E1 in D1, Cond1, . . ., En in Dn, Condn)

Tail = [Exp|NewVar],
Tail := NewVar,

end,
Tail = []

Initially, Tail is a free variable. In the body of the loop, the call

Tail = [Exp|NewVar]

binds Tail to the term [Exp|NewVar], and the assignment Tail := NewVar
lets Tail reference the new tail. After the loop, the call Tail = [] binds Tail
to [], completing the list. An alternative translation is possible, which begins
with an empty list, and attaches each value to the end of the list. However, this
translation is not efficient, since it takes linear time to add a value to the end of
a list.

List comprehensions that occur in aggregate functions, including sum(L),
min(L), max(L), and len(L), are compiled in such a way that an aggregate
value is computed, rather than a list. For example, the function call

sum([f(I) : I in 1..100])

is replaced by a new variable Sum, and the following statements are inserted into
the context:

S = 0,

foreach (I in 1..100)

S := S + f(I)

end,

Sum = S

3.4 Transformation of Pure foreach Loops

Picat translates loops into tail-recursive predicates. Consider pure foreach loops
that do not contain assignments. Without loss of generality, consider a foreach
loop that has only one iterator:

foreach (E in D)
Goal

end

30 N.-F. Zhou and J. Fruhman

The general form of the foreach loop can be converted into this form by intro-
ducing if-then statements and nested loops into the loop goal. For a loop state-
ment that has nested loops, the inner-most loop is transformed first.

Let V1, V2, . . ., Vn be the global variables in Goal, i.e., variables that occur
before the loop in the context. If D is a list, then the loop is replaced by a predi-
cate call in the form p(V1,V1, . . . ,Vn,D), where p is a newly generated predicate:

p(V1,V1,. . .,Vn,[]) => true.
p(V1,V1,. . .,Vn,[E|T]) => Goal, p(V1,V1,. . .,Vn,T).

Note that local variables in Goal are not passed to predicate p, and are naturally
localized. If D is an array or a range in the form LB..Step..UB, then the gen-
erated predicate takes extra arguments for iterating over the array or the range
using recursion.

3.5 Transformation of Assignments

An assignment that updates a compound value is transformed into a built-
in predicate called segarg. This subsection shows how to transform assigned
variables.

For an assignment LHS := RHS that occurs in a conjunction of goals, Picat
introduces a new variable for LHS that holds the value of RHS. For example,
consider the following rule:

test => X = 0, X := X + 1, X := X + 2, write(X).

Picat creates a new variable, say X1, to hold the value of X after the assign-
ment X := X + 1. Picat replaces X by X1 on the LHS of the assignment. All
occurrences of X after the assignment are replaced by X1. When encountering
X1 := X1 + 2, Picat creates another new variable, say X2, to hold the value of
X1 after the assignment, and replaces the remaining occurrences of X1 by X2.
When write(X2) is executed, the value held in X2 is printed. After preprocess-
ing, the rule is translated into the following:

test => X = 0, X1 = X + 1, X2 = X1 + 2, write(X2).

For an assignment that occurs in if-then-else, Picat introduces a new predi-
cate. Consider the following example:

go(Z) =>

X = 1, Y = 2,

if Z > 0 then

X := X * Z

else

Y := Y + Z

end,

println([X,Y]).

Picat translates the program into the following:

Canonicalizing High-Level Constructs in Picat 31

go(Z) =>

X = 1, Y = 2,

p(X, Xout, Y, Yout, Z),

println([Xout,Yout]).

p(Xin, Xout, Yin, Yout, Z), Z > 0 =>

Xout = Xin * Z,

Yout = Yin.

p(Xin, Xout, Yin, Yout, Z) =>

Xout = Xin,

Yout = Yin + Z.

One rule is generated for each branch of the if-then-else statement. For each
variable V that occurs on the LHS of an assignment that is inside of the if-then-
else statement, predicate p is passed two arguments, Vin and Vout. In the above
example, X and Y each occur on the LHS of an assignment. Therefore, predicate
p is passed the parameters Xin, Xout, Yin, and Yout.

Similarly, for an assignment that occurs in a loop, Picat passes two variables
to the predicate for the loop: one variable holds the value before the loop goal is
executed, and the other holds the value after the loop goal is executed. Consider
the following example:

sum_list(L, Sum) =>

S = 0,

foreach (E in L)

S := S + E

end,

Sum = S.

Picat translates the program into the following:

sum_list(L, Sum) =>

S = 0,

p(L, S, Sout),

Sum = Sout.

p([], Sin, Sout) =>

Sout = Sin.

p([E|T], Sin, Sout) =>

St = Sin + E,

p(T, St, Sout).

In addition to the list L, Picat passes arguments S and Sout to predicate p. Note
that only the global variables that occur within the loop are passed to p.

4 Related Work

The canonical-form language that is used in the Picat compiler is called matching
clauses in B-Prolog [17]. This canonical form narrows the gap between the high-
level constructs and the underlying virtual machine.

32 N.-F. Zhou and J. Fruhman

Functions are naturally a basic notion in functional logic languages, such as
Curry [5]. Picat, like other logic programming languages, such as Mercury [9] and
Ciao [7], provides functions as a syntax extension. Picat has limited support for
higher-order predicates and functions, and does not support lambda expressions.
The use of higher-order calls in Picat is discouraged because of the overhead.

Classic functional and logic languages rely on recursion and higher-order facil-
ities to describe repetitions. Many modern languages, such as F#7 and OCaml8,
provide looping constructs. Picat’s foreach loop is similar to B-Prolog’s foreach
loop [17], which was inspired by logical loops in ECLiPSe [12]. In ECLiPSe, vari-
ables are assumed to be local to each iteration, unless they are declared global. In
B-Prolog, variables are assumed to be global to all of the iterations, unless they
are declared local. In contrast, Picat adopts a simple and clean scoping rule for
variables, which renders the declaration of local or global variables unnecessary.

The list comprehension, which can be traced back to SETL [13], was made
popular by Haskell. The optimization that computes a value instead of creating
a list when a comprehension is immediately fed into an aggregate function, such
as sum, is a special application of the idea of deforestation [14]. The same idea
is employed in compiling loops whose iterators contain the range .. and the
zip function. The Picat compiler does not apply deforestation to user-defined
functions or built-in functions in other contexts.

It is rare for declarative languages to provide assignments. An assignment of
the form S[I] := RHS is similar to the setarg built-in in Prolog. An assignment
of the form X := RHS, where X is a variable, is translated into unification at com-
pile time. The transformation rules that eliminate assignments are employed in
building the static single assignment form (SSA) for imperative programs, which
simplifies program analysis and compilation [2]. The Picat compiler introduces
a new predicate for every branching statement that contains assignments, even
for if-then-else, which could be compiled inline. This makes it unnecessary to
introduce a phi function [2] when branches merge.

There are abundant examples that demonstrate the usefulness and conve-
nience of Picat’s language constructs for modeling. In [4], several examples are
given for GCJ problems.

5 Conclusion

This paper has presented the Picat language, and has shown how to com-
pile Picat’s high-level language constructs into canonical-form pattern-matching
rules. The high-level language constructs give Picat flexibility and brevity needed
for scripting. Picat provides a comprehensive box of tools for describing and
solving combinatorial search problems. The high-level constructs also facilitate
modeling with these tools.

Acknowledgement. Neng-Fa Zhou is supported in part by the NSF under the grant
number CCF1618046.

7 http://fsharp.org/.
8 http://ocaml.org/.

http://fsharp.org/
http://ocaml.org/

Canonicalizing High-Level Constructs in Picat 33

References

1. Colmerauer, A.: Equations and inequations on finite and infinite trees. In: Pro-
ceedings of FGCS, pp. 85–99. ICOT (1984)

2. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form, the control dependence graph. ACM
Trans. Program. Lang. Syst. 13(4), 451–490 (1991)

3. Dincbas, M., Van Hentenryck, P., Simonis, H., Aggoun, A., Graf, T., Berthier, F.:
The constraint logic programming language CHIP. In FGCS, pp. 693–702 (1988)

4. Dymchenko, S., Mykhailova, M.: Declaratively solving Google code jam problems
with Picat. In: Pontelli, E., Son, T.C. (eds.) PADL 2015. LNCS, vol. 9131, pp.
50–57. Springer, Cham (2015). doi:10.1007/978-3-319-19686-2 4

5. Hanus, M.: Functional logic programming: from theory to curry. In: Programming
Logics, pp. 123–168 (2013)

6. Van Hentenryck, P.: Constraint and integer programming in OPL. INFORMS J.
Comput. 14, 2002 (2002)

7. Hermenegildo, M.V., Bueno, F., Carro, M., López-Garćıa, P., Mera, E., Morales,
J.F., Puebla, G.: An overview of Ciao and its design philosophy. Theor. Pract.
Logic Program. 12(1–2), 219–252 (2012)

8. Kowalski, R., Kuehner, D.: Linear resolution with selection function. Artif. Intell.
2(3–4), 227–260 (1971)

9. Mercury. http://www.mercurylang.org/
10. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.:

MiniZinc: towards a standard CP modelling language. In: Principles and Prac-
tice of Constraint Programming, pp. 529–543 (2007)

11. Schimpf, J.: Logical loops. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp.
224–238. Springer, Heidelberg (2002). doi:10.1007/3-540-45619-8 16

12. Schimpf, J., Shen, K.: Eclipse-from LP to CLP. Theor. Pract. Logic Program.
12(1–2), 127–156 (2012)

13. Schwartz, J.T., Dewar, R.B.K., Dubinsky, E., Schonberg, E.: Programming with
Sets - An Introduction to SETL. Springer, New York (1986)

14. Wadler, P.: Deforestation: transforming programs to eliminate trees. Theor. Com-
put. Sci. 73(2), 231–248 (1990)

15. Warren, D.H.D.: High-order extensions to Prolog - are they needed? Mach. Intell.
10, 441–454 (1982)

16. Warren, D.H.D.: An abstract Prolog instruction set. Technical note 309, SRI Inter-
national (1983)

17. Zhou, N.-F.: The language features and architecture of B-Prolog. Theor. Pract.
Logic Program. 12(1–2), 189–218 (2012)

18. Zhou, N.-F., Barták, R., Dovier, A.: Planning as tabled logic programming. In:
Theory and Practice of Logic Programming (2015)

19. Zhou, N.-F., Kjellerstrand, H.: The Picat-SAT compiler. In: Gavanelli, M., Reppy,
J. (eds.) PADL 2016. LNCS, vol. 9585, pp. 48–62. Springer, Cham (2016). doi:10.
1007/978-3-319-28228-2 4

20. Zhou, N.-F., Kjellerstrand, H., Fruhman, J.: Constraint Solving and Planning with
Picat. Springer, Heidelberg (2015)

http://dx.doi.org/10.1007/978-3-319-19686-2_4
http://www.mercurylang.org/
http://dx.doi.org/10.1007/3-540-45619-8_16
http://dx.doi.org/10.1007/978-3-319-28228-2_4
http://dx.doi.org/10.1007/978-3-319-28228-2_4

An Overview of PρLog

Besik Dundua1, Temur Kutsia2(B), and Klaus Reisenberger-Hagmayer3

1 Vekua Institute of Applied Mathematics, Tbilisi State University, Tbilisi, Georgia
2 RISC, Johannes Kepler University, Linz, Austria

kutsia@risc.jku.at
3 Johannes Kepler University, Linz, Austria

Abstract. This paper describes PρLog: a tool that combines Prolog
with the ρLog calculus. Such a combination brings strategy-controlled
conditional transformation rules into logic programming. They operate
on sequences of terms. Transformations may lead to several results, which
can be explored by backtracking. Strategies provide a control on rule
applications in a declarative way. They are programmable: users can
construct complex strategies from simpler ones by special combinators.
Different types of first- and second-order variables provide flexible control
on selecting parts from sequences or terms. As a result, the obtained code
is usually pretty compact and declaratively clear. In programs, PρLog-
specific code can be intermixed with the standard Prolog code. The tool
is implemented and tested in SWI-Prolog.

1 Introduction

PρLog is a tool that combines, on the one hand, the power of logic programming
and, on the other hand, the flexibility of strategy-based conditional transforma-
tion systems. Its terms are built over function symbols without fixed arity, using
four different kinds of variables: for individual terms, for sequences of terms, for
function symbols, and for contexts. These variables help to traverse tree forms
of expressions both in horizontal and vertical directions, in one or more steps.
A powerful matching algorithm helps to replace several steps of recursive compu-
tations by pattern matching, which facilitates writing short and intuitively quite
clear code. By the backtracking engine, nondeterministic computations are mod-
eled naturally. Prolog’s meta-programming capabilities allowed to easily write a
compiler from PρLog programs (that consist of a specific Prolog code, actually)
into pure Prolog programs.

PρLog program clauses either define user-constructed strategies by transfor-
mation rules or are ordinary Prolog clauses. Prolog code can be used freely within
PρLog programs, which is especially convenient when some built-in primitives,
arithmetic calculations, or input-output features are needed.

PρLog is based on the ρLog calculus [17] and, essentially, is its executable
implementation. The inference system of the calculus is basically the SLDNF-
resolution, with normal logic program semantics [15]. Therefore, Prolog was a
natural choice to implement it.
c© Springer International Publishing AG 2017
Y. Lierler and W. Taha (Eds.): PADL 2017, LNCS 10137, pp. 34–49, 2017.
DOI: 10.1007/978-3-319-51676-9 3

An Overview of PρLog 35

Originally, the ρLog calculus evolved from experiments with extending the
language of Mathematica [24] by a package for advanced rule-based program-
ming [16,18]. Later, these developments influenced an extension of another
symbolic computation system, Maple [19], by a rule-based programming pack-
age called symbtrans (an adaptation of ρLog) used for automatic derivation of
multiscale models of arrays of micro- and nanosystems, see, e.g., [2].

The ρLog calculus has been influenced by the ρ-calculus [5], which, in itself, is
a foundation for the rule-based programming system ELAN [3]. There are some
other languages for programming by rules, such as ASF-SDF [21], CHR [12],
Claire [4], Maude [6], Stratego [22], Tom [1], just to name a few. The ρLog
calculus and, consequently, PρLog differs from them, first of all, by its pattern
matching capabilities. Besides, it adopts logic programming semantics (clauses
are first class concepts, rules/strategies are expressed as clauses) and makes a
heavy use of strategies to control transformations. In earlier papers, we showed
its applicability for XML transformation and Web reasoning [7], and in modeling
rewriting strategies [10]. More recently, it has been used in extraction of frequent
patterns from data mining workflows [20].

The mentioned application papers, naturally, described the language and
some features of PρLog, but they did not give an overview of the entire system.
Moreover, there have been some new developments meanwhile: the library of
built-in strategies has been modified and extended, a lighter version of PρLog has
been implemented, an Emacs-based development environment appeared. There-
fore, we decided to describe the current status of the tool in this paper: to
explain by simple examples how it works, discuss the language, architecture,
built-in strategies, and the development environment.

PρLog sources, Emacs mode, and help on built-in strategies can be down-
loaded from its Web page

http://www.risc.jku.at/people/tkutsia/software/prholog/.

The current version has been tested for SWI-Prolog [23] version 7.2.3 or later.

2 Overview

PρLog atoms are supposed to transform term sequences. Transformations are
labeled by what we call strategies. Such labels (which themselves can be com-
pound terms, not necessarily constant symbols) help to construct more complex
transformations from simpler ones.

An instance of a transformation is finding duplicated elements in a sequence
and removing one of them. Let us call this process double merging. The following
strategy implements the idea:

merge doubles :: (s X , i x , s Y , i x , s Z) =⇒ (s X , i x , s Y , s Z).

The code, as one can see, is pretty short. merge doubles is the strategy name.
It is followed by the separator :: which separates the strategy name from the

http://www.risc.jku.at/people/tkutsia/software/prholog/

36 B. Dundua et al.

transformation. Then comes the transformation itself in the form lhs =⇒ rhs.
It says that if the sequence in lhs contains duplicates (expressed by two copies
of the variable i x , which can match individual terms and therefore, is called
an individual variable) somewhere, then from these two copies only the first
one should be kept in rhs. That “somewhere” is expressed by three sequence
variables, where s X stands for the subsequence before the first occurrence of
i x , s Y takes the subsequence between two occurrences of i x , and s Z matches
the remaining part. These subsequences remain unchanged in the rhs. In PρLog,
variable names start with the first letter of their kind (there are four kinds of
variables: individual, sequence, f unction, context), followed by the underscore.
After the underscore, there comes the actual name. For anonymous variables,
we write just i , s , f , c .

Note that one does not need to code the actual search process of doubles
explicitly. The matching algorithm does the job instead, looking for an appro-
priate instantiation of the variables. There can be several such instantiations.

Now one can ask, e.g., to merge doubles in a number sequence (1, 2, 3, 2, 1):

?- merge doubles :: (1, 2, 3, 2, 1) =⇒ s Result .

First, PρLog returns the substitution {s Result �→ (1, 2, 3, 2)}. Like in Pro-
log, the user may ask for more solutions, and, via backtracking, PρLog gives the
second answer {s Result �→ (1, 2, 3, 1)}. Both are obtained from (1, 2, 3, 2, 1)
by merging one pair of duplicates.

A double-free sequence is just a normal form of this single-step merge doubles
transformation. PρLog has a built-in strategy for computing normal forms,
denoted by nf , and we can use it to define a new strategy merge all doubles
in the following clause (where :-, as in Prolog, stands for the inverse implica-
tion):

merge all doubles :: s X =⇒ s Y :- nf(merge doubles) :: s X =⇒ s Y , !.

The effect of nf is that it applies merge doubles to s X , repeating this process
iteratively as long as it is possible, i.e., as long as doubles can be merged in the
obtained sequences. When merge doubles is no more applicable, it means that
the normal form of the transformation is reached. It is returned in s Y .

Note the Prolog cut at the end. It cuts the alternative ways of computing the
same normal form. In fact, Prolog primitives and clauses can be used in PρLog
programs. Now, for the query

?- merge all doubles :: (1, 2, 3, 2, 1) =⇒ s Result .

we get a single answer s Result �→ (1, 2, 3).
Instead of the cut, we could define merge all doubles purely in PρLog terms:

merge all doubles :: s X =⇒ s Y :-
first one(nf(merge doubles)) :: s X =⇒ s Y .

An Overview of PρLog 37

first one is another PρLog built-in strategy. It applies to a sequence of strate-
gies, finds the first one among them, which successfully transforms the input
sequence, and gives back just one result of the transformation. Here it has a
single argument strategy nf(merge doubles) and returns (by instantiating s Y)
only one result of its application to s X .

In the last clause, the transformation is exactly the same in the clause head
and in the (singleton) body, and both have sequence variables in the left and
right hand sides (s X and s Y). In such cases we can use more succinct notation:

merge all doubles := first one(nf(merge doubles)).

This form is called the strategy definition form: the strategy in its left hand
side (here merge all doubles) is defined as the strategy in its right hand side
(here first one(nf(merge doubles))).

PρLog is good not only in selecting arbitrarily many subexpressions in “hor-
izontal direction” (by sequence variables), but also in working in “vertical direc-
tion”, selecting subterms at arbitrary depth. Context variables provide this flex-
ibility, by matching the context above the subterm to be selected. A context is a
term with a single “hole” in it. When it applies to a term, the latter is “plugged
in” the hole, replacing it. Syntactically, the hole is denoted by a special constant.
In the PρLog system it is hole, but here in the paper we use a more conven-
tional notation •. There is yet another kind of variable, called function variable,
which stands for a function symbol. With the help of these constructs and the
merge doubles strategy, it is pretty easy to define a transformation that merges
double branches in a tree, represented as a term:

merge double branches ::
c Context(f Fun(s X)) =⇒ c Context(f Fun(s Y)) :-
merge doubles :: s X =⇒ s Y .

Here c Context is a context variable and f Fun is a function variable. Now,
we can ask to merge double branches in a given tree:

?- merge double branches ::
f(g(a, b, a, h(c, c)), h(c), g(a, a, b, h(c))) =⇒ i Result .

PρLog returns three results, one after the other, by backtracking:

{i Result �→ f(g(a, b, h(c, c)), h(c), g(a, a, b, h(c)))},

{i Result �→ f(g(a, b, a, h(c)), h(c), g(a, a, b, h(c)))},

{i Result �→ f(g(a, b, a, h(c, c)), h(c), g(a, b, h(c)))}.

To obtain the first one, PρLog matched the context variable c Context to
the context f(•, h(c), g(a, a, b, h(c))), the function variable f Fun to the func-
tion symbol g, and the sequence variable s X to the sequence (a, b, a, h(c, c)).
merge doubles transformed (a, b, a, h(c, c)) to (a, b, h(c, c)). The other results
have been obtained by taking different contexts and respective subbranches.

38 B. Dundua et al.

The right hand side of transformations in the queries need not be variables.
One can have an arbitrary sequence there. For instance, we may be interested
in trees that contain h(c, c):

?- merge double branches ::
f(g(a, b, a, h(c, c)), h(c), g(a, a, b, h(c))) =⇒ c C (h(c, c)).

We get here two answers, which show instantiations of c C by the relevant
contexts:

{c C �→ f(g(a, b, •), h(c), g(a, a, b, h(c)))},

{c C �→ f(g(a, b, a, •), h(c), g(a, b, h(c)))}.

Similar to merging all doubles in a sequence above, we can also define a strat-
egy that merges all identical branches in a tree repeatedly. It is not surprising
that the built-in strategy for normal forms plays a role also here:

merge all double branches := first one(nf(merge double branches)).

For the query

?- merge all double branches ::
f(g(a, b, a, h(c, c)), h(c), g(a, a, b, h(c))) =⇒ s Result .

we get a single answer {s Result �→ f(g(a, b, h(c)), h(c))}.
Finally, note that a strategy can be defined by several clauses, which are

treated as alternatives.

3 The PρLog Language

From the brief overview above one can get a pretty clear idea about the PρLog
language: Its terms and sequences are constructed from function symbols that do
not have fixed arity (variadic, aka unranked, function symbols), using the four
kinds of variables. The constant hole is the exception: it is always used without
arguments. More precisely, terms are either individual variables, or expressions
of one of the following forms: f(s̃), f F (s̃), or c C (t), where f is an unranked
function symbol, t is a term, and s̃ is a finite (possibly empty) sequence of
terms or sequence variables. (These sequences are sometimes called hedges.)
The empty sequence is denoted in the system with eps (for ε), but we use more
conventional notation () in the paper. Two sequences can be concatenated into
one, where the empty sequence plays the role of the unit element of this (meta-
level) concatenation operation. Sequences are written in the parenthesis for easy
parsing (when they contain more than one element) and are flat. A singleton
sequence is identified with its sole element. Contexts are terms with a unique
occurrence of the hole. The previous section contains several examples of terms,
sequences, and contexts.

An Overview of PρLog 39

Substitutions map individual variables to terms, sequence variables to
sequences, function variables to function symbols or function variables, and
context variables to contexts. For example, {c Ctx �→ f(•), i Term �→
g(s X), f Fun �→ g, s H 1 �→ (), s H2 �→ (b, c)} is a substitution. We
can apply substitutions to sequences, which gives sequences as a result.
In particular, if the sequence is a singleton term, then the result of the
application is also a term. Applying the substitution above to a sequence
(c Ctx (i Term), f Fun(s H1 , a, s H2)) give the sequence (f(g(s X)), g(a, b, c)).

Note that sequence variables are not terms, and context variables always
apply to terms, not to arbitrary sequences. This makes terms and contexts closed
under substitution application.

The main computational mechanism for PρLog is matching. Due to sequence
and context variables, it is finitary, which means that a matching problem may
have finitely many solutions. For instance, the sequence (s X , i x , s Y , i x , s Z)
matches (1, 2, 3, 2, 1) in two different ways:

– {s X �→ (), i x �→ 1, s Y �→ (2, 3, 2), s Z �→ ()},
– {s X �→ 1, i x �→ 2, s Y �→ 3, s Z �→ 1}.

In the previous section, we also saw two solutions to the problem of matching
c C (h(c, c)) to the result of applying the strategy merge double branches to the
term f(g(a, b, a, h(c, c)), h(c), g(a, a, b, h(c))).

A ρLog atom (ρ-atom) is a triple consisting of a strategy st (which is a term)
and two (hole-free) sequences s̃1 and s̃2, written as st :: s̃1 =⇒ s̃2. Its negation
is written as st :: s̃1 \=⇒ s̃2. A ρLog literal (ρ-literal) is a ρ-atom or its negation.
A PρLog clause is either a Prolog clause, or a clause of the form st :: s̃1 =⇒
s̃2 :- body (called a ρ-clause) where body is a (possibly empty) conjunction of
ρ- and Prolog literals. Strategy definitions str1 := str2 are shortcuts for clauses
of the form str1 :: s X =⇒ s Y :- str2 :: s X =⇒ s Y .

In fact, PρLog clauses may have a more complex structure, when (some
of) the literals are equipped with membership constraints, constraining possible
values of sequence and context variables. Such constraints are taken into account
in the matching process. For simplicity, we do not consider them in this paper.

A PρLog program is a sequence of PρLog clauses. A query is a conjunction of
ρ- and Prolog literals. A restriction on variable occurrence is imposed on clauses:
ρ-clauses and queries can contain only PρLog variables, while Prolog clauses and
queries can contain only Prolog variables. If a ρ-clause or a query contains a Pro-
log literal, the only variables that can occur in that literal are PρLog individual
variables. (When it comes to evaluating such Prolog literals, the individual vari-
ables are converted into Prolog variables.) A detailed description of PρLog syntax
can be found in the technical report [11] and on its Web page.

We need to make sure that in the program execution process, all solving
problems that arise for PρLog clauses and queries are matching problems, not
unification. The reason is that matching for our language is finitary [14], while
unification is infinitary [8,13]. The latter is undesirable, because it would cause
infinite branching in the program execution tree. Therefore, we would like to
restrict the solving to the fragment that guarantees an existence of a terminating

40 B. Dundua et al.

finitary procedure. Matching is one of such possible fragments. The restriction
we impose on clauses and queries is well-modedness, extends the same notion for
logic programs, introduced in [9]. It forbids uninstantiated variables to appear
in one of the sides of unification problems and, hence, only matching problems
arise.

More specifically, well-modedness is based on the notion of mode of a relation.
A mode for the relation · :: · =⇒ · is a function that defines the input and
output positions of the relation respectively as in(· :: · =⇒ ·) = {1, 2} and
out(· :: · =⇒ ·) = {3}. A mode is defined (uniquely) for a Prolog relation as
well. A clause is moded if all its predicate symbols are moded. We assume that
all ρ-clauses are moded. As for the Prolog clauses, we require modedness only for
those ones that define a predicate that occurs in the body of some ρ-clause. If a
Prolog literal occurs in a query in conjunction with a ρ-clause, then its relation
and the clauses that define this relation are also assumed to be moded.

Roughly, the idea of well-modedness is that the variables in the input posi-
tions should already be seen in the output positions of some earlier literals. Before
defining it formally, we introduce the notation vars(E) for a set of variables
occurring in an expression E, and define vars(E, {p1, ..., pn}) = ∪n

i=1vars(E|pi
),

where E|pi
is the standard notation for a subexpression of E at position pi. The

symbol Va stands for the set of anonymous variables. A ground expression con-
tains no variables. Then well-moded queries and clauses are defined as follows:

Definition 1. A query L1, . . . , Ln is well-moded iff the following conditions
hold for each 1 ≤ i ≤ n:

– vars(Li, in(Li)) ⊆ ∪i−1
j=1vars(Lj , out(Lj)) \ Va.

– If Li is a negative literal, then vars(Li, out(Li)) ⊆ ∪i−1
j=1vars(Lj , out(Lj))∪Va.

– If Li is a ρ-literal, then its strategy term is ground.

A clause L0 :- L1, . . . , Ln is well-moded iff the following hold for each 1 ≤ i ≤ n:

– vars(Li, in(Li)) ∪ vars(L0, out(L0)) ⊆ ∪i−1
j=0vars(Lj , out(Lj)) \ Va.

– If Li is a negative literal, then

vars(Li, out(Li)) ⊆ ∪i−1
j=1vars(Lj , out(Lj)) ∪ Va ∪ vars(L0, in(L0)).

– If L0 and Li are ρ-literals with the strategy terms st0 and sti, respectively,
then vars(sti) ⊆ vars(st0).

It is easy to see that the clauses and queries in Figs. 1 and 2 are well-moded.
PρLog prologwell-moded. Well-modedness of queries is checked when they

are evaluated. There is no restriction on the Prolog clauses if the predicate they
define is not used in a ρ-clause.

PρLog execution principle is based on depth-first inference with leftmost
literal selection in the goal. If the selected literal is a Prolog literal, then it is
evaluated in the standard way. If it is a ρ-atom of the form st :: s̃1 =⇒ s̃2, the
crucial thing is that, due to well-modedness, st and s̃1 do not contain variables.

An Overview of PρLog 41

Then a (renamed copy of a) program clause st ′ :: s̃′
1 =⇒ s̃′

2 :- body is selected,
such that st ′ matches st and s̃′

1 matches s̃1 with a substitution σ. Next, the
selected literal in the query is replaced with the conjunction (body)σ, id :: s̃′

2σ =⇒
s̃2, where id is the built-in strategy for identity: it succeeds iff the rhs matches
the lhs. Evaluation continues further with this new query. Success and failure are
defined in the standard way. Backtracking allows to explore other alternatives
that may come from matching the selected query literal to the head of the same
program clause in a different way, or to the head of another program clause.
Negative literals are processed by the negation-as-failure rule. Well-modedness
guarantees that whenever a negative ρ-literal is selected during the execution
process, there are no variables in it except, maybe, some anonymous variables
that may occur in its right-hand side.

Example 1. To illustrate the described PρLog inference step, consider again the
example about merge all doubles from Sect. 2. To transform the query

?- merge all doubles :: (1, 2, 3, 2, 1) =⇒ s Result .

with the clause

merge all doubles :: s X =⇒ s Y :- nf(merge doubles) :: s X =⇒ s Y , !.,

PρLog takes the matcher {s X �→ (1, 2, 3, 2, 1)}, and produces a new query

?- nf(merge doubles) :: (1, 2, 3, 2, 1) =⇒ s Y , !, id :: s Y =⇒ s Result .

4 Implementation

PρLog is implemented in SWI-Prolog. Its programs have the extension .rho. In
Fig. 1 one can see how exactly the program merge.rho for merging doubles in
sequences and trees, discussed in Sect. 2, looks.

PρLog variables are, actually, Prolog constants. Therefore, one can not
directly rely on Prolog unification to compute values for those variables. Conse-
quently, the answers to the query should be computed as explicit substitutions
showing what PρLog variables map to. It requires a PρLog query to be actually
wrapped to a meta-query that then returns the substitutions. For the queries
considered in Sect. 2, such meta-queries can be seen in Fig. 2. The predicate
symbol used in them is ?.

The substitutions indicate that there is a background solving mechanism in
PρLog that performs matching and computes the corresponding substitutions.
Indeed, we do it by the algorithm from [14], implemented in SWI-Prolog. How-
ever, it turns out that if we do not have context variables, then we can avoid
using this implementation and, instead, compute matching substitutions directly
by Prolog unification, which is, naturally, a more efficient way. We have imple-
mented this version of PρLog as well, calling it PρLog-light. To distinguish, we
sometimes say PρLog-full for the version with context variables.

42 B. Dundua et al.

% Merging double elements in a sequence:

% If the input sequence contains a double, keep the left copy.

merge_doubles :: (s_X, i_x, s_Y, i_x, s_Z) ==> (s_X, i_x, s_Y, s_Z).

% Merging all doubles:

% Return a normal form with respect to merge_doubles.

merge_all_doubles := first_one(nf(merge_doubles)).

% Merging double branches in a tree:

% If the input tree contains a double branch, keep the left one,

% using the merge_doubles strategy.

merge_double_branches ::

c_Context(f_Fun(s_X)) ==> c_Context(f_Fun(s_Y)) :-

merge_doubles :: s_X ==> s_Y.

% Merging all double branches in a tree:

% Return a normal form with respect to merge_double_branches.

merge_all_double_branches := first_one(nf(merge_double_branches)).

Fig. 1. Program merge.rho for merging doubles in sequences and trees.

The PρLog distribution consists exactly of these two parts: PρLog-full and
PρLog-light. Each part has the main file, called prholog.pl and prholog-l.pl,
respectively. They are responsible for setting up the environments and loading
the corresponding version of PρLog. The major parts of both versions are the
parser, compiler, and the library of built-in strategies: parse.pl, compile.pl,
library.pl files for PρLog-full, and parse-l.pl, compile-l.pl, library-l.pl
files for PρLog-light, respectively.

Besides, in the full PρLog there is a solver solve.pl for matching problems
and regular constraints. The light version does not require such a solver, but it
still needs to check regular constraints. It is done in the file constraints-l.pl.

A typical PρLog session starts by invoking SWI-Prolog and consulting themain
PρLog file. After that, the user may write/edit a .rho file in her favorite editor, and
load it by executing the query ?- load(‘...filename.rho’), where ... stands
for the full path. Next, the program can be queried as, e.g., it is shown in Fig. 2.

The parser and the compiler are invoked at the time when a .rho file is
loaded. Besides syntax errors, the parser checks also for well-modedness and for
occurrences of PρLog variables in Prolog literals. If no errors are detected, then
the compiler compiles the filename.rho file into a Prolog file filename.pl,
translating each PρLog clause into a Prolog clause. The file filename.pl is
located in the same directory as filename.rho, loads immediately after the
compilation, and is deleted on the exit.

An Overview of PρLog 43

?- ?(merge_doubles :: (1,2,3,2,1) ==> s_Result, Subst).

Subst = [s_Result---> (1, 2, 3, 2)] ;

Subst = [s_Result---> (1, 2, 3, 1)] ;

false.

?- ?(merge_all_doubles :: (1,2,3,2,1) ==> s_Result, Subst).

Subst = [s_Result---> (1, 2, 3)] ;

false.

?- ?(merge_double_branches ::

f(g(a,b,a,h(c,c)), h(c), g(a,a,b,h(c))) ==> i_Result, Subst).

Subst = [i_Result--->f(g(a, b, h(c, c)), h(c), g(a, a, b, h(c)))] ;

Subst = [i_Result--->f(g(a, b, a, h(c)), h(c), g(a, a, b, h(c)))] ;

Subst = [i_Result--->f(g(a, b, a, h(c, c)), h(c), g(a, b, h(c)))] ;

false.

?- ?(merge_double_branches ::

f(g(a,b,a,h(c,c)), h(c), g(a,a,b,h(c))) ==> c_C(h(c,c)), Subst).

Subst = [c_C--->f(g(a, b, hole), h(c), g(a, a, b, h(c)))] ;

Subst = [c_C--->f(g(a, b, a, hole), h(c), g(a, b, h(c)))] ;

false.

?- ?(merge_all_double_branches ::

f(g(a,b,a,h(c,c)), h(c), g(a,a,b,h(c))) ==> i_Result, Subst).

Subst = [i_Result--->f(g(a, b, h(c)), h(c))] ;

false.

Fig. 2. Querying merge.rho.

The same parsing and compiling process is done when PρLog queries are
evaluated. After compiling, the obtained Prolog query is executed. Answers are
given as explicit substitutions.

5 Library

The library consists of definitions of built-in strategies, implemented in Prolog.
They greatly simplify programming in PρLog. These strategies are protected
and can not be redefined from a PρLog program. Currently there are 14 of them
in the library. Except a couple of exceptions, each of them can be used both
with and without regular constraints. We give a brief overview of some of those
strategies, without mentioning the constraints.

Choice. The syntax of this strategy is

choice(strategy1, . . . , strategyn) :: sequence1 =⇒ sequence2,

where n ≥ 1. It succeeds if and only if for some i, strategy i :: sequence1 =⇒
sequence2 succeeds.

44 B. Dundua et al.

Composition. Composing strategies, making the output sequence of one the
input for the other:

compose(strategy1, . . . , strategyn) :: sequence1 =⇒ sequence2,

where n ≥ 2. First applies strategy1 to sequence1. To its result, strategy2 is
applied and so on. sequence2 is the final result. compose fails if one of its
argument strategies fails in the process.

Closure. The syntax of this strategy is:

closure(strategy) :: sequence1 =⇒ sequence2,

It succeeds if sequence2 belongs to the closure set of transforming sequence1

by strategy . The set elements are computed one after the other, by backtracking.
closure fails if the set is empty. An example of a query would be

? − closure(merge doubles) :: (1, 2, 3, 2, 1) =⇒ s Result .

It gives five answer substitutions via backtracking:

– {s Result �→ (1, 2, 3, 2, 1)},
– {s Result �→ (1, 2, 3, 2)},
– {s Result �→ (1, 2, 3)},
– {s Result �→ (1, 2, 3, 1)},
– {s Result �→ (1, 2, 3)}

Identity. The goal of this strategy is to transform a sequence to its identical one:

id :: sequence1 =⇒ sequence2.

It succeeds iff sequence2 can match sequence1.

Returning all answers of the first applicable strategy, one by one. Denoted by
first all:

first all(strategy1, . . . , strategyn) :: sequence1 =⇒ sequence2,

where n ≥ 1. Tries to apply strategy1 to sequence1. If this fails, it tries the next
strategy and so on. When a strategy is found that succeeds, first all returns all
answers computed by it in sequence2, via backtracking. If no strategy succeeds,
first all fails.

The strategy first one mentioned earlier is similar to first all, with the only
difference that it returns only one answer instead of all of them.

An Overview of PρLog 45

Returning all answers at once. It can be seen as an analog of findall for PρLog.
The syntax is

all answers(strategy) :: sequence1 =⇒ sequence2.

It succeeds if and only if sequence2 is a sequence consisting of terms of the form
ans(s̃1), . . . , ans(s̃n), where s̃1, . . . , s̃n are all the sequences obtained by applying
strategy to sequence1. The symbol ans just plays the role of a constructor, to
distinguish between different answer sequences in sequence2. We could ask

? − all answers(merge doubles) :: (1, 2, 3, 2, 1) =⇒ s Result .

and obtain the answer {s Result �→ (ans(1, 2, 3, 2), ans(1, 2, 3, 1))}.

Interactive mode. The syntax is:

interactive :: sequence1 =⇒ sequence2.

It activates the interactive mode and starts dialog with the user, asking her
to provide a strategy, which is then applied to sequence1. The process is repeated
further so that the output sequence of the previous strategy application becomes
the input for the new strategy provided by the user, and so on. The interactive
process stops when the user types finish. At that moment, the input sequence
that was there is returned in sequence2. interactive fails when the user-provided
strategy fails for the current input sequence.

n-fold iteration. Specifies how many times a strategy can be applied repeatedly:

iterate(strategy , n) :: sequence1 =⇒ sequence2.

It applies strategy repeatedly, n times, starting from sequence1. The result is
returned in sequence2. iterate fails if one of the applications fails.

The normal form strategy nf is similar, but instead of applying a strategy
fixed number of times, it applies it until the transformation is not possible, and
returns the last sequence.

Mapping a strategy to a sequence. Mapping is a common operation in declarative
programming:

map(strategy) :: sequence1 =⇒ sequence2.

It applies strategy to each term of sequence1. For such an input term, strategy
may, in general, return a sequence (not necessarily a single term). A sequence
constructed of these results (in the same order) is then returned in sequence2.
map fails when the application of strategy to a term from sequence1 fails. When
sequence1 is empty, sequence2 is empty as well.

A variation of this strategy, map to subhedges, splits sequence1 nonde-
terministically into nonempty subsequences (when sequence1 is not empty) and
applies strategy to each such subsequence. A sequence constructed from these
results (in the same order) is returned in sequence2. map to subhedges fails
when sequence1 can not split in such a way that the application of strategy
succeeds for each split subsequence. When sequence1 is empty, so is sequence2.

46 B. Dundua et al.

Rewriting. Yet another common transformation, which transforms a term not
necessarily in the top position, but by transforming its subterm, in general:

rewrite(strategy) :: term1 =⇒ term2.

It succeeds if and only if term2 is obtained from term1 by applying strategy
to a subterm of it. Note that one can easily define rewriting inside full PρLog:

rewrite(i Strategy) :: c Context(i Term1) =⇒ c Context(i Term2) :-
i Strategy :: i Term1 =⇒ i Term2.

Nevertheless, we decided to provide the predefined strategy for rewriting in
the library, because it is quite a frequently used transformation.

6 Development Environment

PρLog can be used in any development environment that is suitable for SWI-
Prolog. We provide a special Emacs mode for PρLog, which extends the Stefan
D. Bruda’s Prolog mode for Emacs.1 It supports syntax highlighting, makes it
easy to load PρLog programs and anonymize variables via the menu, etc. Figure 3
can give an idea how it looks.

A tracing tool for PρLog is under development. Prolog trace is too fine-
grained for this purpose, since it goes through all parsing and compilation pred-
icates that are invoked when a PρLog query is evaluated. Instead, the PρLog-
specific tracing/debugging tool should ignore (by default) all intermediate Prolog
steps and show only those that are directly related to PρLog inference.

7 Discussion and Final Remarks

The main advantage of using PρLog is its flexibility in specifying nondetermin-
istic computations, which allows to neatly combine conditional transformation
rules with logic programming. Strategies help to separate transformation rules
from the control on their application, which makes rules reusable in different
transformations. It also means that, unlike Prolog, the user can apply the pro-
gram clauses in different order for different queries, without rewriting the code.

Assume that we have two PρLog rules, one for the top-level transformation
of a term, and the other one for transforming an argument:

transform top(i Strategy) :: i Term1 =⇒ i Term2 :-
i Strategy :: i Term1 =⇒ i Term2.

transform arg(i Strategy) ::
f Fun(s X , i Term1, s Y) =⇒ f Fun(s X , i Term2, s Y) :-
i Strategy :: i Term1 =⇒ i Term2.

1 https://bruda.ca/emacs/prolog mode for emacs.

https://bruda.ca/emacs/prolog_mode_for_emacs

An Overview of PρLog 47

Fig. 3. Emacs PρLog session.

Note that theuse of functionand sequencevariablesmakes the codeuniversal (it
can apply to any term, independent to their top function symbols and thenumber of
arguments) and compact (one does not need to implement the term decomposition
and traversal explicitly, the declarative specification given above is sufficient).

Now, innermost and outermost rewriting strategies can be implemented by
strategy combinations only, imposing the right application order of the transfor-
mation rules.

Innermost rewriting is defined by the following recursive strategy:

innermost rewriting(i Strategy) :=
first all(transform arg(innermost rewriting(i Strategy)),

transform top(i Strategy)).

It gives the priority to the argument transformation by innermost rewriting
(wrt the given strategy) over the top-position transformation (wrt the given
strategy): If the former is applicable, first all makes sure that its all possible
results are returned and the latter is not tried. For instance, assume that str is
some concrete strategy defined by two clauses:

str :: f(s X) =⇒ g(s X). str :: f(f(i X)) =⇒ i X .

48 B. Dundua et al.

If we ask to rewrite h(f(f(a)), f(a)) by innermost rewriting:

? − innermost rewriting(str) ::h(f(f(a)), f(a)) =⇒ i Result .

PρLog will return two results: h(f(g(a)), f(a)) and h(f(f(a)), g(a)).
If we want to experiment with outermost rewriting, we only need to define

the corresponding strategy (essentially, by changing the application order of the
rules, without altering them):

outermost rewriting(i Strategy) :=
first all(transform top(i Strategy),

transform arg(outermost rewriting(i Strategy))).

Rewriting h(f(f(a)), f(a)) by this strategy gives three results: h(g(f(a)), f(a)),
h(a, f(a)), and h(f(f(a)), g(a)).

The definitions also clearly illustrate the difference between these two rewrit-
ing strategies.

If one wants to compute only one result, instead of all, the only change needed
in this case is to replace first all by first one in the corresponding strategy.

This example shows some advantages of PρLog: compact and declarative
code; capabilities of expression traversal without explicitly programming it; the
ability to use clauses in a flexible order with the help of strategies. Besides, PρLog
has access to the whole infrastructure of its underlying Prolog system. These
features make PρLog suitable for nondeterministic computations, implementing
rule-based algorithms and their control, manipulating XML documents, etc.

As future work, one direction is finishing the implementation of PρLog trace.
We also plan to improve the compiler by adding more optimization capabilities.

Acknowledgments. This research is partially supported by the Austrian Science Fund
(FWF) under the projects P 24087-N18 and P 28789-N32, and by the Rustaveli National
Science Foundation (GSRNSF) under the grants FR/508/4-120/14 and YS15 2.1.2 70.

References

1. Balland, E., Brauner, P., Kopetz, R., Moreau, P.-E., Reilles, A.: Tom: piggybacking
rewriting on Java. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 36–47.
Springer, Berlin (2007). doi:10.1007/978-3-540-73449-9 5

2. Belkhir, W., Giorgetti, A., Lenczner, M.: A symbolic transformation language and
its application to a multiscale method. J. Symb. Comput. 65, 49–78 (2014)

3. Borovanský, P., Kirchner, C., Kirchner, H., Moreau, P.-E., Vittek, M.: Elan: a
logical framework based on computational systems. ENTCS 4, 35–50 (1996)

4. Caseau, Y., Josset, F., Laburthe, F.: CLAIRE: combining sets, search and rules to
better express algorithms. TPLP 2(6), 769–805 (2002)

5. Cirstea, H., Kirchner, C.: The rewriting calculus - parts I and II. Logic J. IGPL
9(3), 339–410 (2001)

6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Quesada,
J.F.: Maude: specification and programming in rewriting logic. Theor. Comput. Sci.
285(2), 187–243 (2002)

http://dx.doi.org/10.1007/978-3-540-73449-9_5

An Overview of PρLog 49

7. Coelho, J., Dundua, B., Florido, M., Kutsia, T.: A rule-based approach to
XML processing and Web reasoning. In: Hitzler, P., Lukasiewicz, T. (eds.)
RR 2010. LNCS, vol. 6333, pp. 164–172. Springer, Berlin (2010). doi:10.1007/
978-3-642-15918-3 13

8. Comon, H.: Completion of rewrite systems with membership constraints. Part II:
constraint solving. J. Symb. Comput. 25(4), 421–453 (1998)

9. Dembinski, P., Maluszynski, J.: And-parallelism with intelligent backtracking for
annotated logic programs. In: Proceedings of 1985 Symposium on Logic Program-
ming, pp. 29–38. IEEE-CS (1985)

10. Dundua, B., Kutsia, T., Marin, M.: Strategies in PρLog. In: Fernández, M. (ed.) 9th
International Workshop on Reduction Strategies in Rewriting and Programming,
WRS 2009, vol. 15 of EPTCS, pp. 32–43 (2009)

11. Dundua, B., Kutsia, T., Reisenberger-Hagmayer, K.: An overview of PρLog. RISC
Report Series 16–05, RISC, University of Linz (2016)

12. Frühwirth, T.W.: Theory and practice of constraint handling rules. J. Log. Pro-
gram. 37(1–3), 95–138 (1998)

13. Kutsia, T.: Solving equations with sequence variables and sequence functions. J.
Symb. Comput. 42(3), 352–388 (2007)

14. Kutsia, T., Marin, M.: Matching with regular constraints. In: Sutcliffe, G.,
Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 215–229. Springer,
Berlin (2005). doi:10.1007/11591191 16

15. Lloyd, J.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987)
16. Marin, M., Kutsia, T.: On the implementation of a rule-based programming system

and some of its applications. In: Konev, B., Schmidt, R. (eds.) Proceedings of 4th
International Workshop on the Implementation of Logics, WIL 2004, pp. 55–69
(2003)

17. Marin, M., Kutsia, T.: Foundations of the rule-based system ρLog. J. Appl. Non-
Classical Logics 16(1–2), 151–168 (2006)

18. Marin, M., Piroi, F.: Rule-based programming with Mathematica. In: Proceedings
of the 6th International Mathematica Symposium, Alberta, Canada (2004)

19. Monagan, M.B., Geddes, K.O., Heal, K.M., Labahn, G., Vorkoetter, S.M.,
McCarron, J., DeMarco, P.: Maple 10 programming guide. Maplesoft (2005)

20. Nguyen, P.: Meta-mining: a meta-learning framework to support the recommenda-
tion, planning and optimization of data mining workflows. Ph.D. thesis, Depart-
ment of Computer Science, University of Geneva (2015)

21. van den Brand, M., van Deursen, A., Heering, J., de Jong, H., de Jonge, M.,
Kuipers, T., Klint, P., Moonen, L., Olivier, P.A., Scheerder, J., Vinju, J.J., Visser,
E., Visser, J.: The ASF+SDF meta-environment: a component-based language
development environment. Electr. Notes Theor. Comput. Sci. 44(2), 3–8 (2001)

22. Visser, E.: Stratego: a language for program transformation based on rewriting
strategies. In: Middeldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 357–361.
Springer, Berlin (2001). doi:10.1007/3-540-45127-7 27

23. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-prolog. Theor. Pract.
Logic Program. 12(1–2), 67–96 (2012)

24. Wolfram, S.: The Mathematica Book, 5th edn. Wolfram-Media, Champaign (2003)

http://dx.doi.org/10.1007/978-3-642-15918-3_13
http://dx.doi.org/10.1007/978-3-642-15918-3_13
http://dx.doi.org/10.1007/11591191_16
http://dx.doi.org/10.1007/3-540-45127-7_27

Integrating Answer Set Programming
with Object-Oriented Languages

Jakob Rath(B) and Christoph Redl(B)

Institut für Informationssysteme, Technische Universität Wien,
Favoritenstraße 9-11, 1040 Vienna, Austria

jakob.rath@student.tuwien.ac.at, redl@kr.tuwien.ac.at

Abstract. Answer Set Programming (ASP) is a declarative program-
ming paradigm which allows for easy modeling and solving of hard
problems that are often cumbersome to implement in object-oriented
programming languages. It was successfully applied to a range of appli-
cations from artificial intelligence, such as combinatorial or scheduling
problems. On the other hand, real-world applications for end-users usu-
ally consist also of components which cannot be (easily) solved in ASP,
such as user interaction via graphical user interfaces, presentation of
results, and interfaces to data sources. Instead, realizing such components
is typically in the domain of traditional (object-oriented) programming
languages. To address this issue, we introduce a language which allows for
a formal specification of the input and output of an ASP program, which
can be exploited to easily interface the program from object-oriented
languages using a dedicated library. While the language is independent
from the concrete object-oriented language, we also provide and present
a reference implementation as a Python library. We then discuss some
applications which can be realized on top of our approach.

Keywords: Answer Set Programming · Nonmonotonic reasoning ·
Interface to object-oriented languages

1 Introduction

Answer Set Programming (ASP) is a declarative programming paradigm based
on nonmonotonic reasoning and a multi-model semantics [7]. The problem at
hand is encoded as an ASP program in such a way that its models, called answer
sets, correspond one-to-one to the solutions of the problem. Thanks to disjunc-
tion and default negation, the formalism has a high expressiveness, and thanks
to various language extensions such as aggregates, many problems from artificial
intelligence such as combinatorial and scheduling problems can be encoded in
ASP in an intuitive way. In contrast, solving such problems in traditional object-
oriented programming languages is often cumbersome as an algorithm needs to

This research has been supported by the Austrian Science Fund (FWF) project
P27730.

c© Springer International Publishing AG 2017
Y. Lierler and W. Taha (Eds.): PADL 2017, LNCS 10137, pp. 50–67, 2017.
DOI: 10.1007/978-3-319-51676-9 4

Integrating Answer Set Programming with Object-Oriented Languages 51

be specified. ASP has also been successfully applied to various real-world appli-
cations from industry, e.g. workforce management [12] and automatic suggestion
of holiday plans for tourists [9]; for further examples we refer to [8].

However, typical applications for end-users also contain components which
cannot be (easily) solved in ASP, but their realization is rather in the domain of
traditional object-oriented languages. These components include, for instance,
graphical user interfaces, presentation of results, and interfaces to data sources.
As a concrete example, consider a packing problem which needs to be solved
by employees of a logistics company, such as to distribute a set of goods to a
minimum number of trucks under given side constraints. While the core problem
is a typical use case for ASP, if it occurs as part of a real application, data needs
to be imported from databases, parameters need to be entered by the user, and
the results must be further processed by other system components, such as for
accounting purposes. In ASP, the input is specified via facts and the output is
presented as answer sets. However, since typical users of such an application are
no computer scientists and are not used to read and write formal notations, more
appropriate interfaces must be developed. Moreover, even if users are used to
ASP programs, a manual transfer of data between the ASP program and other
components is cumbersome. Instead, this should be transparent from the user.
Hence, an interface between the ASP program and other components is needed.

An ad hoc solution when developing an application is to implement such an
interface from scratch. To this end, facts are generated and piped to the ASP
solver, which computes its answer sets that are then parsed and transformed
into objects. However, while the details of generating facts and transforming the
answer sets to objects depend on the application, it seems that these steps are
similar in most cases. This calls for a generic interface which can be instantiated
depending on the application at hand.

To address this issue, we present a language for ASP which allows the pro-
grammer to annotate ASP programs with specifications of their input and out-
put. Based on these annotations, the ASP program can then be used from the
object-oriented code similarly to modules by sending input to it and retrieving
its answer sets in form of objects. We specify the language independently of the
concrete object-oriented language and the ASP solver at hand. Instead, the for-
malism can be instantiated for arbitrary languages resp. solvers which provide
a certain minimum set of features. However, we also provide an implementation
of this language for Python, using the dlvhex solver [11] as solver backend.

Unlike existing approaches such as JASP [4] and EmbASP [5], our system
uses annotations of the ASP program rather than embeddings of the ASP pro-
gram into the object-oriented code, and the input and output is specified in
a language-independent manner. This has the advantage that the program is
more independent of the remaining components of the application, which allows
for easier adoption or integration into multiple applications (which might even
be implemented in different programming languages), similarly to modules in
software engineering. As a further difference to some existing approaches such
as [10], which modifies the ASP language by providing access to objects defined

52 J. Rath and C. Redl

in the object-oriented code, our language does not modify but rather extend
ASP in a conservative way using annotations, i.e., all annotated programs in our
system are still ordinary ASP programs and can also be used independently.

The structure of the remaining part of the paper is as follows:

– In Sect. 2 we recapitulate the syntax and semantics of ASP.
– In Sect. 3 we introduce the language for specifying the input and output of

ASP programs and illustrate it with examples.
– In Sect. 4 we present our prototypical implementation py-aspio (ASP

Interface to Object-oriented programs) in Python.
– In Sect. 5 we discuss possible real-world applications in more detail.
– In Sect. 6 we discuss related work and point out differences to ours.
– In Sect. 7 we conclude and give an outlook on possible future work.

2 Preliminaries

We briefly recapitulate Answer Set Programming (ASP) [7], and refer to [1] for
a more in-depth overview of the field of ASP. Our alphabet consists of possibly
infinite sets of constant symbols C (including all integers), variables V , function
symbols F , and predicate symbols P. We assume that V is disjoint from all
other sets, while symbols may be shared between the other sets. We let the set of
terms T be the least set such that C ⊆ T , V ⊆ T , and f ∈ F , T1, . . . , T� ∈ T
implies f(T1, . . . , T�) ∈ T . An (ordinary) atom is of form p(t1, . . . , t�) with
predicate symbol p ∈ P and terms t1, . . . , t� ∈ T , abbreviated as p(t); we write
t ∈ t if t = ti for some 1 ≤ i ≤ �. A term resp. atom is called ground if it does
not contain variables. A (default) literal is either an atom a or a default-negated
atom not a.

Definition 1. An answer set program P consists of rules

a1 ∨ · · · ∨ ak ← b1, . . . , bm,not bm+1, . . . ,not bn , (1)

where each ai and each bj is an atom. A non-disjunctive rule with empty body
(i.e., k = 1 and n = 0) is called a fact.

For such a rule r we let H(r) = {a1, . . . , ak} be its head, B+(r) = {b1, . . . , bm}
be its positive body and B−(r) = {bm+1, . . . , bn} be its negative body. A rule
resp. program is ground if it contains only ground atoms.

An interpretation I is a subset of the set of atoms A(P) occurring in the
ground program P at hand, where a ∈ I, also denoted I |= a, expresses that a is
true and a �∈ I, also denoted I �|= a, that a is false. Conversely, a negated literal
not a is satisfied under I, denoted I |= not a, if I �|= a, and it is unsatisfied,
denoted I �|= not a, otherwise. A ground rule r of form (1) is satisfied under I,
denoted I |= r, if ai ∈ I for some 1 ≤ i ≤ k, or bi �∈ I for some 1 ≤ i ≤ m, or
bi ∈ I for some m+1 ≤ i ≤ n. A ground program P is satisfied under I, denoted
I |= P , if each r ∈ P is satisfied under I. A set of literals L is satisfied under I,
denoted I |= L, if I |= l for all l ∈ S.

Integrating Answer Set Programming with Object-Oriented Languages 53

The answer sets of a ground program P are defined using the (GL-)reduct [7]
P I = {H(r) ← B+(r) | r ∈ P, I �|= b for all b ∈ B−(r)} of P wrt. an interpreta-
tion I.

Definition 2. An interpretation I is an answer set of a ground program P , if
I is a ⊆-minimal model of P I .

Example 1. Consider the program P = {a ← not b; b ← not a}. Its answer sets
are I1 = {a} and I2 = {b}. �

We let AS (P) be the set of answer sets of P . The answer sets of a program
P with variables are given by the answer sets of its grounding grnd(P), which
results from P if all variables are replaced by all terms in all possible ways.
Throughout the rest of the paper we assume that suitable safety conditions on
P guarantee that grnd(P) is finite.

3 Specifying the External Interface of ASP Programs

In this section we present a language which allows for specifying the interfaces
of ASP programs in order to use them from object-oriented code. It comprises
of the input specification, which declares what input arguments are expected
and how they are mapped to ASP facts, and the output specification, which
defines how the answer sets are mapped back to objects. The language is realized
by conservative annotations added to the program, while the rules remain in
ordinary ASP syntax and thus can also be used stand-alone. Each program has
exactly one input and exactly one output specification.

In view of the implementation (cf. Sect. 4), such an ASP program can then
be interfaced from the object-oriented program using a library, which receives
the ASP program and input arguments as parameters. It then evaluates the ASP
program under the given input and returns its results as objects generated from
its answer sets. This is described by

O = eval(P, v1, . . . , vn),

where P is an ASP program, v1, . . . , vn are input arguments, and O is a set of
objects corresponding one-to-one to the answer sets (which in turn correspond
to the solutions to the problem at hand). The object-oriented code can then
process these objects in a loop.

Internally, the evaluation of an ASP program from object-oriented code with
given input arguments consists of three steps:

1. Facts are generated from the input arguments according to the input specifi-
cation.

2. These facts along with the original ASP program are passed to the ASP
solver.

3. The answer sets are transformed into objects according to the output speci-
fication.

54 J. Rath and C. Redl

The exact transformation performed by eval will be described in the rest of this
section. However, we first make some assumptions about the object-oriented
language at hand. This is in order to allow for instantiating the approach also
for arbitrary programming languages which provide the following minimum set
of features (while we provide a reference implementation for Python, cf. Sect. 4).

3.1 The Object-Oriented Language

Most importantly, our system assumes the language to be object-oriented. Data
is organized in classes, which, for the purposes of this paper, are definitions
of structures with named attributes and methods. An object is an instance of a
class which assigns certain values to its attributes and is accessible via a variable
in the object-oriented code. For an object x we let x. attr be the value of the
attribute attr .

The language must provide at least the classes str and int with the usual
functionality for representing character strings and integers, respectively. More-
over, classes that are to be used during input mapping are required to provide
a toString method which returns a string representation of the object at hand,
that can be used as an ASP constant.

Furthermore, the following collection types are required, i.e., types that allow
for storing (ordered or unordered) groups of objects. For these collection types
we allow type parameters T specified in angle brackets; that is, the type of objects
which can be stored in the respective collection is constrained by this parameter.

– Set〈T 〉: a collection of unique objects of type T .
– Dictionary〈K,V 〉: a mapping from objects of type K (the keys) to objects of

type V (the values).
– Tuple〈T1, . . . , Tn〉: an ordered list of fixed length n, where the component at

position i is of type Ti for 1 ≤ i ≤ n.
– Sequence〈T 〉: a finite ordered sequence containing objects of type T , where

elements are addressable by an integer index.

For a collection object x of type Tuple or a Sequence, let x[i] for i ∈ N be its
i-th element.

3.2 Input Specification

We now describe our language for specifying the input of an ASP program. The
input specification defines the expected arguments and how they are mapped to
ASP facts. Before we introduce the language for the general case, we show an
intuitive example.

Example 2. Assume we have a graph represented by a set of instances of the
class Node. The attribute label of this class is a unique string identifying the
node, and the attribute neighbors is a list containing the neighbor nodes. The
following input specification takes such a set of nodes as input and maps it to
the two predicates vertex and edge:

Integrating Answer Set Programming with Object-Oriented Languages 55

1 INPUT (Set<Node> nodes) {
2 vertex(n.label) for n in nodes;
3 edge(n.label, m.label) for n in nodes for m in n.neighbors;}

More precisely, the input of the ASP program is a set of nodes, given as
an instance of class Set<Node>, where Node is a custom class defined in the
object-oriented code. Given this input, line 2 defines the predicate vertex by
generating a fact vertex(n.label) for every object n in the set nodes.

Similarly, line 3 defines the predicate edge from the adjacency lists of the
nodes. To this end, the loop-like construct iterates over the nodes and for each
node over its (attribute) neighbors. Multiple iterations are evaluated from left
to right, i.e., variables bound in an iteration are available in all iterations to the
right, and in the predicate arguments. The outer loop iterates over all nodes,
and, for each node, the inner loop over its neighbors. �

Definition of the Language. In general, an input specification ι is of the form

INPUT (t1 v1, . . . , tn vn) {s1; s2; . . . sk; }
where v1, . . . , vn are input parameters to the ASP program of types t1, . . . , tn,
and s1, . . . , sk are predicate specifications defined as follows. Each predicate spec-
ification si for 1 ≤ i ≤ k is of form

p(x1, . . . , xm) for w1 in y1 . . .for w� in y� (2)

where p ∈ P is a predicate symbol, x1, . . . , xm are objects of any type, w1, . . . , w�

are (iteration) variables, and y1, . . . , y� are collections.
The first step in the evaluation of a program P with an input specifi-

cation ι of the above form under parameters v1, . . . , vn, i.e., the evaluation
of eval(P, v1, . . . , vn), is the construction of facts genFacts(ι, v1, . . . , vn) =⋃

1≤i≤k genFacts(si, v1, . . . , vn) from the given parameters. To this end, each
predicate specification si of form (2) is handled independently as follows and
yields a set of input facts genFacts(si, v1, . . . , vn).

The constructs for wi in yi in a predicate specification s for 1 ≤ i ≤ � are
iteration clauses which are used to let wi iterate over the contents of collection yi,
similarly to loops in procedural languages. If yi is a Set, then wi iterates over its
elements, if it is a Dictionary resp. Sequence/Tuple, then wi iterates over
its pairs of the current key resp. index and value. Multiple iteration clauses are
nested from left to right, i.e., the leftmost iteration clause defines the outermost
iteration. For a predicate specification of form (2), an iteration variable wi can
be accessed in all yj with j > i and in x1, . . . , xn.

Such a predicate specification s generates all facts genFacts(s, v1, . . . , vn)
of the form p(u1, . . . , um), where each term uj ∈ T for 1 ≤ j ≤ m is the
string representation xj.toString() of the corresponding object xj . In xj , all
iteration variables w1, . . . , w� defined by s and all input parameters v1, . . . , vn

can be accessed.

Language Shortcuts. When iterating over a Sequence y using for w in y, the
current index and element are accessed by w[0] and w[1], respectively. Iteration

56 J. Rath and C. Redl

over a Dictionary y works analogously, where w[0] and w[1] yield the current key
and value, respectively. Towards a more readable notation, further allow to use
a list of iteration variables (w1, . . . , wm) in place of a single iteration variable w.
Then, wi is automatically assigned the value of w[i] for all 1 ≤ i ≤ m. For
instance, an iteration for w in y over the key-value pairs (w[0], w[1]) in the
Dictionary y may be written as for (k, v) in y. In case of iteration over nested
collection types, this shortcut can be repeated recursively, i.e., an element in a
list of iteration variables can itself be a list. Additionally, it is possible to use
the anonymous variable . Each occurrence of is viewed as a new variable that
is never referenced.

Example 3. The following example illustrates the iteration over a sequence. The
input is a series of measurements of the current temperature and humidity ,
respectively, which corresponds to the type Sequence<Tuple<int, int>>;
the time point serves as index in this sequence.
1 INPUT (Sequence<Tuple<int, int>> readings) {
2 temperature(x[0], x[1][0]) for x in readings;
3 humidity(t, hum) for (t,(_,hum)) in readings; }

The specification of the predicate temperature uses a single iteration variable
x. Since readings is of type Sequence, this iteration variable x is assigned pairs
of the current index and value, where the value itself is a pair of temperature
and humidity. Hence, x[0] refers to the current index and x[1] refers to a pair of
measurements, where x[1][0] is the temperature and x[1][1] is the humidity. In
contrast, the definition of humidity uses a (nested) pair of iteration variables
(t, (, hum)) which are directly assigned the time point t and the humidity hum.
Since the temperature value is not used in this definition, it is ignored by using
an anonymous variable. �

3.3 Output Specification

The evaluation of an ASP program yields a collection of answer sets. The output
specification enables the object-oriented program to extract information from
them by assigning values to the attributes of a certain class depending on the
atoms in the current answer set. Then, each answer set yields one instance of
this class.

Before we introduce the language in the general case we present an intuitive
example.

Example 4. Assume we have evaluated an ASP program that computes a graph
represented by the predicates vertex and edge (cf. Example 2), and received the
answer set I. Assume that every vertex v has exactly one associated color c
represented by color(v, c). Consider the answer set

I = {vertex (a), vertex (b), vertex (c), edge(a, b), edge(a, c),
color(a, blue), color(b, red), color(c, red)}

and the following output specification:

Integrating Answer Set Programming with Object-Oriented Languages 57

1 OUTPUT {
2 labels = set { query: vertex(X); content: X; };
3 red_nodes = set { query: color(X, red); content: X; }; }

It defines the values of the attributes labels and red nodes of the out-
put class, depending on the current answer set I. The value of the attribute
labels is a new instance of class Set , whose elements x are extracted from
atoms vertex (x) ∈ I. To this end, the query specifies a set of literals which are
matched against the atoms in the answer set I. For every match, the argument
terms of the matched atoms are assigned to the corresponding variables in the
query, and an element to be added to the Set instance is constructed according
to the content property. In this example, for the given answer set I, the value
of labels will thus correspond to the set {a, b, c}. Similarly, the set red nodes
contains the labels of all red-colored nodes, i.e., the values {b, c}. �

Definition of the Language. We now explain output specifications in the gen-
eral case. The basic building blocks are (attribute) expressions which transform
atoms, sets of atoms, and/or the results of subexpressions to attribute values
(see below). The value mapOutput(e, I) of an expression e is itself an object,
that is constructed relative to a fixed answer set I. Based on expressions, an
output specification ω is then of the form

OUTPUT {w1 = e1; . . . wk = ek; }

where w1, . . . , wk are pairwise distinct attributes and e1, . . . , ek are expressions.
For a program P with such an output specification ω, each answer set I ∈ AS (P)
is then mapped to an object mapOutput(ω, I), which contains the attributes wi,
whose values are given by mapOutput(ei, I), for all 1 ≤ i ≤ k.

– Basic Expressions are integer and string constants e which evaluate to them-
selves, i.e., mapOutput(e, I) = e for all I. We show their usage together with
collection expressions.

– Collection Expressions are of one of the following forms:
• set {query : q; content : e; }
• sequence {query : q; index : i; content : e; }
• dictionary {query : q; key : k; content : e; }

In all cases, the query q = l1, . . . , ln specifies a set of (possibly nonground) liter-
als, where each variable must occur in a positive literal akin to safe rules, which
are to be checked against the answer set I at hand in order to find substitutions
S(q) = {σ : V (q) → T | I |= σ(q)} for the variables V (q) occurring in q, which
satisfy the query under I, akin to query answering. Then, for each such substitu-
tion σ, content e specifies a (sub)expression which defines how to construct an
object from the current variable substitution. In the simplest case, this is a vari-
able occurring in q which will, after application of the substitution σ, be a basic
expression (i.e., a constant). However, the content can also be nested collection
or composite (see below) expressions, in which case it is recursively evaluated.

58 J. Rath and C. Redl

Moreover, for sequence, i is a variable or integer constant, and for dictionary,
k is a (sub)expression.

ThevaluemapOutput(e, I) of the expression e=set {query :q;content :e′; }
wrt. an answer set I is a Set with the elements {mapOutput(σ(e′), I) | σ ∈ S(q)},
where σ(e′) results from e′ if all variables X occurring in e′ are replaced by σ(X).

Given the expression e = sequence {query: q; index: Y ; content : e′; },
the value mapOutput(e, I) wrt. an answer set I is an instance of Sequence con-
taining all elements mapOutput(σ(e′), I) for σ ∈ S(q), ordered by the index σ(Y)
(which is assumed to be an integer and yields an error otherwise).

Example 5. To illustrate, consider the following output specification:

1 OUTPUT {
2 indices = set { query: p(I, X); content: int(I); };
3 xs = sequence { query: p(I, X); index: I; content: X; }; }

The definition of indices gathers the first argument of all atoms of p into
a Set . Note that all constant symbols are mapped to str instances by default.
The constructor int can be used to convert strings to int values. On the other
hand, the definition of xs constructs an instance of Sequence. The positions of
the elements in xs are determined by the variable given as index, which must
occur in query. For instance, for the answer set I = {p(0, a), p(1, b), p(2, a)},
the value of indices is the set {0, 1, 2} and the value of xs is the sequence
(a, b, a). �

Similarly, given e = dictionary {query : q; key : k; content : v; }, the
value mapOutput(e, I) wrt. an answer set I is an instance of Dictionary ,
which maps for all σ ∈ S(q) the key mapOutput(σ(k), I) to the value
mapOutput(σ(v), I). Note that the result of applying a substitution σ to the
key k is a general expression itself, which needs to be recursively evaluated.
This is opposed to the index in the previous paragraph, which is, after appli-
cation of σ, always a basic expression.

Example 6. The following output specification demonstrates how collection
expressions can be nested. We assume that every node x is assigned exactly
one color c, which is represented by an atom color(x, c). Suppose we want to
extract a dictionary which maps each color to the set of nodes with that color.
This is done as follows:

1 OUTPUT {
2 labels_by_color = dictionary {
3 query: color(X, C);
4 key: C;
5 content: set { query: color(L, C); content: L; }; }; }

Evaluating this expression under the answer set I from Example 4, the dictionary
labels by color yields the mappings blue �→ {a} and red �→ {b, c}. Note that
the variable C is introduced in the dictionary expression and for every match
σ of its query color(X, C), the set expression is evaluated with C fixed to
the matched value σ(C), thus generating a set of labels colored by color C. �

Integrating Answer Set Programming with Object-Oriented Languages 59

– Composite Expressions are instances of custom classes of the object-oriented
language. They are created by passing appropriate parameters to their con-
structors, i.e., the expression cls(e1, . . . , ek) with (sub)expressions e1, . . . , ek

creates an instance of the class cls by calling its constructor with the argu-
ments constructed by the (sub)expressions e1, . . . , ek. A special case thereof is
the instantiation of Tuple, which is written as (e1, . . . , ek).

Example 7. We continue with the answer set I from Example 4.

1 OUTPUT {
2 graph = Graph(
3 set { query: vertex(X); content: X; },
4 set { query: edge(X, Y); content: (X, Y); });
5 colored_nodes = set {
6 query: color(X, C);
7 content: ColoredNode(X, C); }; }

The variable graph holds an instance of the custom class Graph, which is
to be defined in the object-oriented language. To create the Graph instance,
its constructor is called with the set of labels (cf. Example 4) and the set of
edges as parameters. The set of edges is defined by a Tuple (x, y) for each
atom edge(x, y) ∈ I. This example also demonstrates nesting of expressions.
The constructor call contains two set expressions, and the content of the
second set contains a tuple expression.

The value of colored nodes is a Set of instances of the class ColoredNode,
which is defined in the object-oriented language. �

3.4 Overall Evaluation

Given an ASP program P with input specification ι and output specifica-
tion ω, we can now describe the complete evaluation process under input argu-
ments v1, . . . , vn by

eval(P, v1, . . . , vn) = {mapOutput(ω, I) | I ∈ AS (P ∪ genFacts(ι, v1, . . . , vn))}.

That is, in the process of evaluating P with input arguments v1, . . . , vn we
first generate the set of facts F from the input arguments according to the input
specification of P . Then, the answer sets of P ∪ F are computed. Finally, each
answer set is mapped back to an object as per the output specification of P ,
yielding a set of objects that can be processed in the object-oriented code.

4 Implementation in Python

We have implemented the language from the previous section in the
py-aspio library1 (ASP Interface to Object-oriented programs) in the Python

1 Available at https://github.com/hexhex/py-aspio.

https://github.com/hexhex/py-aspio

60 J. Rath and C. Redl

programming language2. The library utilizes dlvhex 3 as the underlying answer
set solver, but adaptation to other reasoners is simple.

Object Model. In our implementation, an object x is accepted to have an
attribute attr if getattr(x, "attr") does not raise an AttributeError4.
Subscripts x[i] can be used on any object x that supports subscription, not just
Sequence and Tuple instances. For the output mapping, by default, we substitute
the builtin Python classes int, str, tuple, frozenset, list, and dict for
the respective abstract types int , str , Tuple, Set , Sequence, and Dictionary .
In Python, the contents of sets and the keys of dictionaries are required to
be hashable objects. Since list and dict are mutable collections and thus
not hashable, they cannot immediately be used as contents of sets. However, it
easy to replace these types by immutable, hashable variants either by using a
constructor in the output specification, or by setting configuration parameters
of the py-aspio library.

Interface of py-aspio. When interfacing an ASP program using the py-aspio
library, it is expected to contain the input and output specifications as defined
above in special comments starting with %! inside the ASP code (while normal
comments in ASP begin with just %). This ensures that annotations are conser-
vative in the sense that the program uses still valid ASP syntax and can also be
used independently of the py-aspio library.

The central interface to the program is then provided by the class Program.
It represents an ASP program and provides methods to evaluate it under given
input and access its answer sets as objects. The actual ASP code can be provided
either as file or as string passed to the constructor of the class. The input and
output specifications contained in the program are parsed and interpreted at the
time a program is accessed for the first time. Then, once a Program instance
was created, the program can be evaluated multiple times with varying input
arguments.

In the following we assume that p is an instance of Program. The ASP
program is evaluated by calling the method p.solve(...) with arguments as
defined by the input specification. This method returns a Python iterable that
contains a Result instance for every answer set that has been computed. These
Result objects possess attributes corresponding to the variables defined in the
output specification of p.

If custom class constructors are used in the output specification, py-aspio
needs to be able to resolve class names. To this end, we distinguish two types of
names:

– Qualified names (e.g., package.module.Class) are automatically resolved.
– Unqualified names must be registered manually before evaluating the ASP pro-

gram. The programmer can either register each name separately with method

2 https://www.python.org.
3 http://www.kr.tuwien.ac.at/research/systems/dlvhex/.
4 Information about Python-specific terms is available at https://docs.python.org/3/.

https://www.python.org
http://www.kr.tuwien.ac.at/research/systems/dlvhex/
https://docs.python.org/3/

Integrating Answer Set Programming with Object-Oriented Languages 61

calls of form p.register(MyClass), or import all global names in the
current scope with p.register dict(globals()).

Most settings in py-aspio have global and local counterparts. For example, it
is possible to register names locally for the ASP program p by calling its instance
methods, e.g., p.register(...). On the other hand, simpler applications
that need to set up these bindings once for all ASP programs may call the global
counterparts on the py-aspio module: aspio.register(...).

Example 8. We show now a complete example of how the py-aspio library is
used. The Python script in Listing 1 loads the ASP program shown in Listing 2
and demonstrates three ways of evaluating the program and accessing the output
data.

Listing 1. Python program in the file coloring.py

1 from collections import namedtuple
2 import aspio
3 # Define classes and create sample data
4 Node = namedtuple('Node', ['label'])
5 ColoredNode = namedtuple('ColoredNode', ['label', 'color'])
6 Arc = namedtuple('Arc', ['start', 'end'])
7 a, b, c = Node('a'), Node('b'), Node('c')
8 nodes = {a, b, c}
9 arcs = {Arc(a, b), Arc(a, c), Arc(b, c)}

10 # Register class names with aspio
11 aspio.register_dict(globals())
12 # Load ASP program and input/output specifications from file
13 prog = aspio.Program(filename='coloring.dl')
14 # Iterate over all answer sets
15 for result in prog.solve(nodes, arcs):
16 print(result.colored_nodes)
17 # Shortcut if only one variable is needed (note prefix "each_")
18 for colored_nodes in prog.solve(nodes, arcs).each_colored_nodes:
19 print(colored_nodes)
20 # Compute a single answer set
21 result = prog.solve_one(nodes, arcs)
22 if result is not None: print(result.colored_nodes)
23 else: print('no answer set')

Listing 2. Mapping specification and ASP code in the file coloring.dl

1 %! INPUT (Set<Node> nodes, Set<Arc> arcs) {
2 %! node(n.label) for n in nodes;
3 %! edge(arc.start.label, arc.end.label) for arc in arcs; }
4 %! OUTPUT {
5 %! colored_nodes = set {
6 %! query: color(X, C);
7 %! content: ColoredNode(X, C); }; }
8 color(X, red) v color(X, green) v color(X, blue) :- node(X).
9 :- edge(X, Y), color(X, C), color(Y, C).

The input specification defines two input parameters, nodes and arcs
(cf. Listing 2, line 1). The solve method must thus be called with

62 J. Rath and C. Redl

User Code

ASP Program

Input Arguments Input Mapper

PY-ASPIO

Facade

Output Mapper

Facts

ASP Solver

Answer Sets

User Application PY-ASPIO Library ASP Solver

Fig. 1. py-aspio Architecture (data flow , control flow)

two arguments. The output specification declares a single output variable
colored nodes (cf. Listing 2, line 5), which is accessed with the same name
in the Python code (cf. Listing 1, line 16). �

Implementation Architecture. Our system runs the ASP solver as a sub-
process to compute answer sets, communicating via pipes and temporary files.
Its architecture is shown in Fig. 1. Upon invoking the solver, py-aspio imme-
diately returns a wrapper object representing the set of answer sets. Iterating
over this wrapper object yields each answer set as soon as it is available, i.e., the
client code is not forced to wait until all answer sets have been computed. To
reduce communication overhead, py-aspio uses the solver’s --filter option
in order to capture only predicates that are needed to construct output objects,
which may allow for optimizations in the solver. The output objects themselves
are constructed at the time when they are first accessed by the client code, which
is realized by exploiting Python’s attribute access mechanism.

The exact mapping of objects to ASP terms depends on their type. Integers
are passed to the solver as-is to allow use of arithmetic, and strings are passed as
quoted string constants (where enclosed quotation marks have been replaced by
an appropriate escape sequence). Any other objects are first converted to strings
by calling Python’s str function and then mapped to quoted string constants.

For more detailed information about the py-aspio library, we refer to the
library’s documentation and example programs available at https://github.com/
hexhex/py-aspio.

5 Applications

In this section we discuss possible applications of the py-aspio library. As noted
in Sect. 1, Answer Set Programming has proven well suited for solving computa-
tionally hard problems. Typical examples are planning and scheduling problems
under domain-specific constraints. They are cumbersome to implement in clas-
sical languages but can be modeled easily in a declarative language.

https://github.com/hexhex/py-aspio
https://github.com/hexhex/py-aspio

Integrating Answer Set Programming with Object-Oriented Languages 63

However, a solution of the underlying computational problem in form of an
ASP program is usually not enough to allow practical application. End-users
are typically not trained in logic programming and thus cannot be expected
to directly edit ASP files, to enter input data in form of facts or to interpret
the answer sets. Moreover, even for trained personnel, manual data entry in this
form would be inefficient and calls for automated interfaces to other system com-
ponents which realize, e.g., user interfaces, interfaces to data sources, or other
parts which cannot (easily) be solved in ASP. Such an interface is provided by the
py-aspio library. Since Python is suitable for developing state-of-the-art graph-
ical user interfaces (GUI, e.g., using pyqt5) and Web applications (e.g., using
django6), one can create a Python program to support data entry and presen-
tation of results. With help of the py-aspio library, it is then easy to integrate
an ASP program to solve the actual underlying problem.

We now discuss some concrete possible applications.

Creating Timetables for Schools. The pupils of a typical school are grouped
as classes and each class, depending on its grade and possibly specialization,
needs to receive instruction in certain subjects for a fixed number of hours per
week. Every teacher can teach certain subjects and each class should be assigned
one fixed teacher per subject. The challenge is then to find a timetable where
each class fulfills the teaching requirements while observing a large number of
constraints, e.g., a class cannot be taught two subjects at the same time, certain
subjects require special facilities which may be limited; we refer to Faber et al. [3]
for a more thorough discussion.

Since the application is to be used by the administrative personnel which is in
charge of the creation of timetables it should come with an easy-to-use GUI. The
application further needs to connect to a database for retrieval of information
about classes, such as their teaching requirements, available teachers and their
subjects. The GUI may present this data and allow for specifying constraints
and desired properties (e.g., that the music room is not available on Fridays).
These components are typically implemented in an object-oriented language.

However, the actual creation of the timetable is more easily realized in ASP.
To this end, py-aspio can be used to interface the ASP program. An input
specification can be used to pass the input from the GUI to the program, and
an output specification is used to extract the candidate timetables into objects
which can be displayed in the GUI.

Afterwards, the results can be further processed by the object-oriented com-
ponents. For instance, timetables may be printed for distribution to classes and
teachers. To this end, the application first needs to layout the data in a print-
able format and then send this layout to the printer by relying on the printing
functions of the operating system, which cannot be done in ASP.
Workforce Allocation Problem. As part of their regular operation, compa-
nies need to assign workers to tasks under a number of (possibly weak) con-
straints such as necessary skills and legal restrictions. Creating these allocation
5 https://www.riverbankcomputing.com/software/pyqt/intro.
6 https://www.djangoproject.com/.

https://www.riverbankcomputing.com/software/pyqt/intro
https://www.djangoproject.com/

64 J. Rath and C. Redl

plans manually is a time-intensive and error-prone task. Ricca et al. [12] have
developed an encoding in ASP, and a GUI in Java on top of the ASP program.
Here, again, the object-oriented part of such an application needs to interface
with other systems and the user to retrieve input data, and the output of the
ASP program (allocation plans, employee statistics and/or a list of constraint
violations) is used for additional processing. Besides displaying the plans, the
system might generate reports about the workload statistics and forward them
to the responsible managers, and automatically notify the workers of their new
assignments once approved by the user.

6 Discussion and Related Work

The specification language has been designed to be independent from the con-
crete object-oriented language. While the types on the input parameters are
not strictly required by our Python implementation, they allow our approach
to be implemented for statically-typed languages such as C++ and Java. An
implementation in C++, for example, can be realized with a separate compila-
tion step, turning the annotated ASP program into a function that accepts the
input parameters from the input specification and returns a result with a struc-
ture as defined in the output specification. The types of the expressions in the
output specification can be inferred automatically to allow static declarations
of the output variables, e.g. both definitions in Example 4 result in instances
of Set〈str〉.

Our system uses the dlvhex solver as backend, which can solve HEX pro-
grams in addition to plain ASP programs. HEX is an extension of ASP that
allows the incorporation of external computation sources (cf. [2] for details).
Currently, external computation sources can be implemented via dlvhex plug-
ins written either in C++ or Python. In the latter case, py-aspio allows for a
seamless integration of application components, which cannot be easily realized
in ASP, a declarative component, and the possibility to make callbacks to the
procedural code.

We now discuss differences to existing works on bridging the gap between
ASP and procedural or object-oriented languages. Oetsch et al. [10] present a
system that integrates ASP with Java programs. As in our system, the ASP
code resides in a separate file and is annotated with input parameters (here,
the annotations show similarity to a Java function definition). However, in this
system the input arguments are accessed from the rules of the ASP program
using dedicated atoms, and special atoms govern the creation of output objects.
Another approach is JASP [4], which extends Java by constructs to allow ASP
code to be directly embedded in Java code, forming a hybrid language. This
hybrid language is compiled to pure Java code that uses a lower-level API to
interact with the ASP solver. An interesting aspect of this system is that stan-
dardized annotations of the Java Persistence API (JPA) for object-relational
mapping are used to interface with ASP. In contrast to both JASP and the
system presented by Oetsch et al., we do not modify the syntax of ASP itself.

Integrating Answer Set Programming with Object-Oriented Languages 65

Because of this, all annotated programs are still valid ASP programs that can
continue to be used in existing systems. Furthermore, most ASP variations can
immediately be used without adaptation of the mapping library, e.g. external
atoms via existing dlvhex plugins can already be used with py-aspio.

EmbASP [5] is a recent work that describes the abstract architecture of
an ASP framework and implements this framework as a Java library with an
emphasis on support for mobile platforms. However, while EmbASP intends to
provide a language-agnostic ASP framework, the definitions of the input/output
mapping still depend on Java-specific features (alternatives for other languages
are discussed briefly). The mapping is guided by custom annotations on Java
classes, which are associated one-to-one with a predicate, where annotations on
their fields define the argument positions. asp4j 7 is a Java library that utilizes
custom class annotations to guide the mapping process, similar to EmbASP.
Unlike JASP, EmbASP and asp4j, the mapping annotations in our system are
in the ASP code and separate from the object-oriented code. This means the ASP
program forms a self-contained component, with the input and output specifica-
tions defining an external, object-oriented interface to the declarative ASP part,
while still being independent from the concrete object-oriented language. This
approach enables the ASP component to be maintained separately, and allows
a single ASP file to be used simultaneously by multiple applications (possibly
in different programming languages, provided the custom classes have the same
names). While the ASP programmer still needs certain knowledge about the
object-oriented world, the object-oriented programmer can call the ASP compo-
nent as-is, without requiring much accomodation on the OOP side, e.g., usually
no separate data-holding objects need to be constructed by the client code when
using our approach.

Tweety [13] is a collection of Java libraries with the goal of providing a
general framework for many different approaches to knowledge representation
and reasoning. Its ASP component includes a parser for ASP programs, classes
to construct ASP programs in Java, and connections to several solvers. PyASP8

provides a Python wrapper of the answer set solving tools gringo and clasp from
the Potassco suite [6]. While both Tweety and PyASP provide an easy way to
invoke an ASP solver from object-oriented code, the burden of mapping between
objects and facts/answer sets is still mostly on the user because input data is
passed by manually instantiating fact objects, and answer sets are returned as
lists of literals which, again, must be inspected manually.

7 Conclusion and Outlook

We have introduced a language to provide an object-oriented interface for ASP
programs. It allows for the specification of input and output data of ASP
programs in terms of objects of a conventional object-oriented language.
The language is flexible and can be implemented for arbitrary object-oriented
7 https://github.com/hbeck/asp4j.
8 https://pypi.python.org/pypi/pyasp.

https://github.com/hbeck/asp4j
https://pypi.python.org/pypi/pyasp

66 J. Rath and C. Redl

languages which provide a minimum set of features. The approach does not
depend on a specific ASP dialect or solver, which allows many ASP extensions
to be used together with input/output specifications. However, we also provide
a reference implementation py-aspio in Python that enables programmers to
easily evaluate ASP programs from Python code with the help of this language.
This implementation currently supports dlvhex as underlying ASP solver, thus
offering access to the full power of HEX programs in addition to regular ASP
programs.

For future work, one possible starting point concerns the language itself.
More features, such as the possibility to handle errors (e.g. duplicate indices
when creating sequences) may be added to increase flexibility. Also, because of
the independence of the specification language from a concrete object-oriented
language, implementations for other languages may be provided. In particu-
lar, for statically typed, compiled languages such as C++ and Java. While this
paper focuses on interfacing with object-oriented languages, the same approach
can conceivably be extended to other languages that provide appropriate data
structures (e.g., in Haskell, record types might be used instead of classes). More-
over, the ASP solver is currently executed in a separate process, which incurs
overhead from inter-process communication. It is worthwhile to investigate the
impact of this overhead and, in case this is significant, integrate the ASP solver
as a shared library in the host process to enable more efficient communication.

References

1. Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: a primer.
In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S.,
Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web 2009. LNCS, vol.
5689, pp. 40–110. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03754-2 2.
http://www.kr.tuwien.ac.at/staff/tkren/pub/2009/rw2009-asp.pdf

2. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-
order reasoning and external evaluations in answer-set programming. In: IJCAI,
pp. 90–96. Professional Book Center (2005)

3. Faber, W., Leone, N., Pfeifer, G.: Representing school timetabling in a disjunc-
tive logic programming language. In: Proceedings of the 13th Workshop on Logic
Programming (WLP 1998), vol. 194 (1998)

4. Febbraro, O., Leone, N., Grasso, G., Ricca, F.: JASP: A framework for integrating
answer set programming with java. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.)
Proceedings of the Thirteenth International Conference Principles of Knowledge
Representation and Reasoning, KR 2012, Rome, Italy, 10–14 June 2012. AAAI
Press (2012). http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4520

5. Fuscà, D., Germano, S., Zangari, J., Anastasio, M., Calimeri, F., Perri, S.: A frame-
work for easing the development of applications embedding answer set program-
ming. In: Cheney, J., Vidal, G. (eds.) Proceedings of the 18th International Sympo-
sium on Principles and Practice of Declarative Programming, Edinburgh, United
Kingdom, 5–7 September 2016, pp. 38–49. ACM (2016) http://doi.acm.org/10.
1145/2967973.2968594

http://dx.doi.org/10.1007/978-3-642-03754-2_2
http://www.kr.tuwien.ac.at/staff/tkren/pub/2009/rw2009-asp.pdf
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4520
http://doi.acm.org/10.1145/2967973.2968594
http://doi.acm.org/10.1145/2967973.2968594

Integrating Answer Set Programming with Object-Oriented Languages 67

6. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider,
M.: Potassco: the potsdam answer set solving collection. AI Commun. 24(2),
107–124 (2011). http://www.mpi-inf.mpg.de/departments/rg1/conferences/
deduction10/papers/martin-gebser.pdf

7. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3–4), 365–386 (1991)

8. Grasso, G., Leone, N., Manna, M., Ricca, F.: ASP at work: spin-off and applica-
tions of the DLV system. In: Balduccini, M., Son, T.C. (eds.) Logic Programming,
Knowledge Representation, and Nonmonotonic Reasoning. LNCS, vol. 6565, pp.
432–451. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20832-4 27

9. Ielpa, S.M., Iiritano, S., Leone, N., Ricca, F.: An ASP-based system for e-Tourism.
In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp.
368–381. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04238-6 31

10. Oetsch, J., Pührer, J., Tompits, H.: Extending Object-Oriented Languages by
Declarative Specifications of Complex Objects using Answer-Set Programming.
CoRR abs/1112.0922 (2011). http://arxiv.org/abs/1112.0922

11. Redl, C.: The DLVHEX system for knowledge representation: recent advances (sys-
tem description). In: Theory and Practice of Logic Programming

12. Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano, S., Leone, N.:
Team-building with answer set programming in the Gioia-Tauro seaport. TPLP
12(3), 361–381 (2012). http://dx.doi.org/10.1017/S147106841100007X

13. Thimm, M.: Tweety: a comprehensive collection of java libraries for logical aspects
of artificial intelligence and knowledge representation. In: Baral, C., Giacomo,
G.D., Eiter, T. (eds.) Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the Fourteenth International Conference, KR 2014, Vienna, Austria,
20–24 July 2014. AAAI Press (2014). http://www.aaai.org/ocs/index.php/KR/
KR14/paper/view/7811

http://www.mpi-inf.mpg.de/departments/rg1/conferences/deduction10/papers/martin-gebser.pdf
http://www.mpi-inf.mpg.de/departments/rg1/conferences/deduction10/papers/martin-gebser.pdf
http://dx.doi.org/10.1007/978-3-642-20832-4_27
http://dx.doi.org/10.1007/978-3-642-04238-6_31
http://arxiv.org/abs/1112.0922
http://dx.doi.org/10.1017/S147106841100007X
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7811
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7811

Extending Answer Set Programs
with Interpreted Functions

as First-Class Citizens

Christoph Redl(B)

Institut für Informationssysteme, Technische Universität Wien,
Favoritenstraße 9-11, 1040 Vienna, Austria

redl@kr.tuwien.ac.at

Abstract. Answer Set Programming (ASP) is a well-known prob-
lem solving approach based on nonmonotonic logic programs. Existing
approaches towards integrating function terms into ASP can be orga-
nized in two classes: uninterpreted function symbols and interpreted
functions; we focus on the latter. Existing approaches usually define
interpreted functions in the program (e.g. using term equations), while
evaluation wrt. to a pre-existing external semantics is neglected. How-
ever, this is useful if existing function libraries shall be accessed or if a
function is more naturally implemented in procedural code. In this paper,
we propose the declarative language of hexifu-programs which extends
answer set programs (ASP) with such interpreted functions. However,
rather than just providing a means for evaluating functions, it further
turns interpreted functions into first-class citizens, i.e., functions are rep-
resented by accessible objects in the program. This paves the way for
functionals (higher-order functions), i.e., functions that take other func-
tions as arguments or return them. We provide then a rewriting of such
programs to hex-programs, an extension of ASP with external sources,
and an implementation based on this rewriting. Afterwards we present
applications which motivated our work, e.g. the adoption of design pat-
tern from software engineering. Finally, we discuss properties of the for-
malism and differences to related work.

Keywords: Answer set programming · Nonmonotonic reasoning · FLP
semantics · Function symbols

1 Introduction

Answer Set Programming (ASP) is a declarative programming paradigm based
on nonmonotonic programs and a multi-model semantics [18]. For the integration
of function symbols into ASP there exist basically two fairly different classes of

This research has been supported by the Austrian Science Fund (FWF) project
P27730.

c© Springer International Publishing AG 2017
Y. Lierler and W. Taha (Eds.): PADL 2017, LNCS 10137, pp. 68–85, 2017.
DOI: 10.1007/978-3-319-51676-9 5

Extending Answer Set Programs with Interpreted Functions 69

approaches: viewing them either as uninterpreted function symbols or as inter-
preted functions.

The former view uses them as constructors for structuring information but
with no inherent semantics. It is supported by many state-of-the-art grounders
such as gringo [15] and recent releases of DLV [22]. In this case, the term
multiply(add(4, 5), 3) might be used to represent the computation (4 + 5) · 3,
but since all function terms have a Herbrand semantics (i.e., they evaluate to
themselves), there is no way to actually evaluate the term wrt. the intended
semantics. The second view is followed by some existing approaches which, how-
ever, define functions within programs with first-order-like interpretations using
e.g. term equations in rule heads. This allows for detaching from Herbrand inter-
pretations and syntactically different function terms can be equal, which yields
new modeling possibilities. For instance, loc(redCar) = loc(blueCar) represents
that redCar and blueCar have the same location, in which case the compari-
son evaluates to true, while the terms would never be equal under a Herbrand
semantics.

However, existing approaches do not support the call of functions whose
semantics is defined outside of the logic program. Using such externally defined
functions is motivated by practical observations. Some types of computations
are more naturally implemented in a procedural languages, e.g. because numeric
computations often lead to a large grounding. Moreover, pre-existing libraries of
functions for special purposes (such as mathematical computations and physics
simulations) are typically provided for procedural languages and it would be
cumbersome to redefine them.

In this paper we suggest a new language, called hexifu-programs, to address
this restriction. To this end, we associate function symbols with a given external
semantics. However, rather than just adding a possibility to evaluate terms, it
further turns interpreted functions into first-class citizens (accessible objects)
that can be handled similarly as object constants and terms over uninterpreted
function symbols; but at specific points, their semantics may be applied to para-
meters. This allows for passing them to other functions or retrieving them and
paves the way for functionals (also known as higher-order functions), i.e., func-
tions that take other functions as parameters or return them. Applications can
be found in software design patterns such as the factory and the strategy pattern,
accessing heterogeneous knowledge-bases via a generic interface, and typical use-
cases in functional programming such as a mapping function.

hexifu-programs are based on (and further extend) hex-programs, an exten-
sion of ASP with external sources such as description logic ontologies and Web
resources. hex-programs support external atoms to pass information from the
logic program (given by predicate extensions and constants), to an external
source, which in turn returns values to the program. For instance, the external
atom &synonym[aircraft](X) might be used to find the synonyms X of aircraft ,
e.g. airplane. However, unlike interpreted functions in hexifu-programs, exter-
nal atoms in standard hex-programs are no first-class citizens and cannot be
accessed as objects, which inhibits the aforementioned applications.

70 C. Redl

In more detail, after the preliminaries (Sect. 2), the organization of the paper
and our contributions are as follows:

– In Sect. 3 we present hexifu-programs as our main contribution. To this end,
we first introduce a representation of interpreted functions by terms. Based
on this, we introduce hex-programs with interpreted function (ifu-)atoms.
A special case thereof are ASP programs with interpreted functions.

– In Sect. 4 we define a rewriting of hexifu-programs to standard hex-programs.
This is the basis for the implementation of a hexifu-reasoner.

– In Sect. 5 we present applications of hexifu-programs motivated by design pat-
terns in software engineering, existing applications of KR-formalisms, and typ-
ical applications of functionals in functional programming. We further discuss
how they benefit from the features of hexifu-programs compared to standard
hex-programs.

– In Sect. 6 we discuss finiteness properties and the computational complex-
ity of hexifu-programs. We show how a pre-existing framework for deciding
finite groundability of hex-programs can also be applied to hexifu-programs.
Overall, we show that important properties of hex-programs still hold for
hexifu-programs.

– In Sect. 7 we discuss related work, point out differences to our approach, con-
clude and give an outlook on future work.

2 Preliminaries

We recapitulate hex-programs as follows. Our alphabet consists of possibly infi-
nite, mutually disjoint sets of constant symbols C (including all integers), vari-
ables V , function symbols F , predicate symbols P, and external predicates X .
We let the set of terms T be the least set such that C ⊆ T , V ⊆ T , and
f ∈ F , T̄1, . . . , T̄� ∈ T implies f(T̄1, . . . , T̄�) ∈ T .1 A term is called ground if it
does not contain variables.

We start with basic concepts. A ground (ordinary) atom is of form
p(t1, . . . , t�) with predicate symbol p ∈ P and ground terms t1, . . . , t� ∈ T ,
abbreviated as p(t); we write t ∈ t if t = ti for some 1 ≤ i ≤ �. An assignment
over the (finite) set A of atoms is a set A ⊆ A , where a ∈ A expresses that a
is true and a �∈ A that a is false. A builtin atom is of form t1 ◦ t2 with terms
t1, t2 ∈ T and comparison operator ◦ ∈ {=, �=, <,≤,≥, >}. For a ground builtin
atom t1 ◦ t2 and any assignment A we have that A |= t1 = t2 if t1 is (syntacti-
cally) equal to t2 and A �|= t1 = t2 otherwise. Conversely, A |= t1 �= t2 if t1 and
t2 are (syntactically) different and A �|= t1 �= t2 otherwise. Operators <, ≤, ≥
and > have the standard semantics and are defined only if t1 and t2 are integers.

We recall hex-programs, which generalize (disjunctive) logic programs under
the answer set semantics [18]; for more details and background, see [12].

1 We let T̄ denote a meta-variable (not to be confused with ASP variables in the
object language) which represents a constant from C , an ASP variable from V , or
a ground or non-ground functional terms (e.g. f(a), g(X)).

Extending Answer Set Programs with Interpreted Functions 71

Syntax of hex-Programs. hex-programs extend ASP programs by external
atoms to enable a bidirectional interaction between a program and external
sources. A ground external atom is of the form &g[y](t), where y = y1, . . . , yk

is a list of input parameters (predicate names or terms), called input list, and
t = t1, . . . , tl are output terms.

Definition 1. A ground hex-program Π consists of rules

a1 ∨ · · · ∨ ah ← b1, . . . , bm, not bm+1, . . . , not bn ,

where each ai is a ground ordinary atom, and each bj is a ground ordinary,
builtin or external atom; for such a rule r we let H(r) = {a1, . . . , ah} be its
head and B(r) = {b1, . . . , bm, not bm+1, . . . , not bn} be its body.

Semantics of hex-Programs. In the following, assignments are over the set
A of ordinary atoms occurring in the program Π at hand. The semantics of a
ground external atom &g[y](t) wrt. an assignment A is given by the value of a
1+k+l-ary Boolean oracle function f&g that is defined for all possible values of
A, y and t. We say &g[y](t) is true relative to A if f&g(A,y, t) = T, and false if
f&g(A,y, t) = F. Satisfaction of rules and ASP programs [18] is then extended
to hex-rules and programs as follows. An assignment A satisfies an atom a,
denoted A |= a, if a ∈ A, and it does not satisfy it, denoted A �|= a, otherwise.
It satisfies a default-negated atom not a, denoted A |= not a, if A �|= a, and it
does not satisfy it, denoted A �|= not a, otherwise. A rule r is satisfied under
assignment A, denoted A |= r, if A |= a for some a ∈ H(r) or A �|= a for some
a ∈ B(r).

The answer sets of a hex-program Π are defined as follows. Let the Faber-
Leone-Pfeifer-reduct) [13], also called FLP-reduct (unrelated to functional logic
programming), of Π wrt. an assignment A be the set fΠA = {r ∈ Π | A |=
b for all b ∈ B(r)} of all rules whose body is satisfied by A. We define:

Definition 2. An assignment A is an answer set of a hex-program Π, if A is
a ⊆-minimal model of fΠA. 2

Example 1. Consider the program Π = {p ← &id [p]()}, where &id [p]() is true
iff p is true. Then Π has the answer set A1 = ∅ as it is a ⊆-minimal model
of fΠA1 = ∅. ��

We also use programs with variables and consider them as shortcuts for all
ground instances. The answer sets of a program Π with variables are defined as
the answer sets of the program grnd(Π), which results from Π if all variables
V are substituted by all ground terms from T in all possible ways. For now
we assume that safety conditions guarantee the existence of a finite grounding
which suffices for answer set computation and restrict our discussion to ground
programs. We come back to safety in Sect. 6.

2 For ordinary Π, these are Gelfond & Lifschitz’s answer sets.

72 C. Redl

3 Interpreted Functions as First-Class Citizens

Function symbols are often uninterpreted, i.e., they are used for structur-
ing information but have no intrinsic semantics. For instance, the term
multiply(add(4, 5), 3) might represent the expression (4 + 5) · 3, but there is no
way to evaluate it. Existing approaches towards interpreted functions typically
define functions as part of the program, e.g. using term equations (see Sect. 7 for
more details). However, the evaluation wrt. an external semantics was neglected.
On the other hand, external atoms in hex-programs and VI-programs [8], have
such a semantics. But unlike terms, they are not first-class citizens [6], i.e., they
are not objects with an own identity that can be passed as arguments to or
returned from (other) external atoms.

One might support the evaluation of ground terms under a given semantics by
adopting the semantics of builtin atoms such that e.g. X = multiply(add(4, 5), 3)
evaluates to true if X is 27 (assuming that the semantics associated with
the function symbols is as expected) and to false otherwise. However, the
term multiply(add(4, 5), 3) represents the application of the (unnamed) func-
tion ·(p1, p2, p3) = (p1 + p2) · p3 under the concrete parameters 4, 5 and 3, but
not the function itself. Also the non-ground term multiply(add(X,Y), Z) is only
a shortcut for a number of evaluations of ·(p1, p2, p3) under lists of parameters,
but the function itself is not represented by an accessible object. This prohibits
the composition of new functions, passing them as parameters to other functions,
or retrieving them as return values. To address these restrictions, we propose an
extension of hex-programs with interpreted functions featuring the following:

– Function symbols from F are associated with externally defined semantics.
– Based on F , called basic functions, new functions can be composed.
– Each basic or composed function is represented by a dedicated term t, which

can be used wherever uninterpreted terms (such as constants) can also be
used.

– A term t in the program, which represents a function, can be applied to a
list of parameters to compute the value of the respective function under the
parameters.

We first show how functions can be represented by terms and introduce then
the hex-extension of hexifu-programs.

Representing Interpreted Functions by Terms. We assume that each basic
function f ∈ F has an arity � and a (total) semantics function semf (y) : C � →
T defined for all �-ary vectors y ∈ C � of constants. We let C contain dedicated
constant symbols #i for all integers i ≥ 1, called placeholders, which are used to
represent function parameters.

We then use T as function-representing (fr-)terms to turn interpreted func-
tions into accessible objects. To this end, a ground fr-term t ∈ T represents a
γ(t)-ary function t̂(p1, . . . , pγ(t)), which substitutes all occurrences #i in t by pi,
and then applies the semantics semf (y) of the function symbols f in t, where
γ(t) is the largest i such that #i occurs in t, or 0 if no #i occurs. Intuitively, γ(t)

Extending Answer Set Programs with Interpreted Functions 73

is the number of parameters which are expected to be passed to the function
represented by t.

Example 2. The fr-term t1 = multiply(add(#1,#2),#3) represents in standard
mathematical notation the function t̂1(p1, p2, p3) = (p1 + p2) · p3, assuming that
the basic functions multiply and add have the expected semantics.

The fr-term t2 = add(#1, 1) defines the increment function t̂2(p1) = p1 + 1
using basic function add by fixing the second operand to 1, while the first is the
one of t̂2. ��

It is important to note that an fr-term t = f(t1, . . . , t�) with f ∈ F and
t1, . . . , t� ∈ T itself represents a (composed) function, and not the application
of f to t1, . . . , t�. Instead, the subterms t1, . . . , t� define how the function t̂ is
composed of other functions, and constants #i in t specify how the parameters
of t̂ are passed to these basic functions (cf. t1 in the previous example). The
actual parameters p1, . . . , pγ(t) of t̂ are specified at the point when t̂ is applied
as described below.

The semantics of basic functions f ∈ F is directly defined by semf (·). We
now formalize the evaluation of the function t̂ given by an fr-term t under para-
meters p1, . . . , pγ(t) recursively on top of functions semf (·) for all f ∈ F as
follows:

Definition 3. For a list of ground terms t, p1, . . . , pγ(t) we let

val(t, p1, . . . , pγ(t)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

val(semf (t
′), p1, . . . , pγ(t)) if t = f(t) and t′ is free of #i,

f(t′) if t = f(t) and there is a #i in t′,
pi if t = #i for some 1 ≤ i ≤ γ(t),

t otherwise,

where t and t′ are �-ary vectors with t′i = val(ti , p1, . . . , pγ(t)) for all 1 ≤ i ≤ �.

The idea is as follows. If the fr-term t representing the function t̂ to be evaluated
is a nested term f(t) (first two cases), then all subterms t = t1, . . . , t�, which repre-
sent functions that t̂ is composed of, are first recursively evaluated. The results of
these evaluations are given by t′ = t′1, . . . , t

′
�. If t

′ is free of placeholders (first case),
then the semantics of the outermost basic function f is applied. Due to function-
als (shown in more detail in Example 8), the return value of semf (t′) may contain
further functions that must be interpreted, which is why we recursively apply val
to the result. Otherwise (second case), the functional term f(t′) contains at least
one placeholder and is returned as an fr-term representing a new function. For non-
nested terms, placeholders are replaced by the respective parameters (third case),
and all other constants are kept (fourth case).

Example 3 (cont’d). Reconsider the functional term t = multiply(add(#1,
#2),#3) and suppose t̂ is to be evaluated under parameters 4, 5 and 3, i.e.,
we compute val(t, 4, 5, 3).

74 C. Redl

We recursively evaluate the subterms t1 = add(#1,#2) and t2 = #3
of t under 4, 5, 3. To this end, we determine t′1 = val(add(#1,#2), 4, 5, 3)
and t′2 = val(#3, 4, 5, 3). The former is recursively evaluated by computing
val(#1, 4, 5, 3) = 4, val(#2, 4, 5, 3) = 5 and evaluating t′1 = val(semadd(4, 5))=9.
The latter yields t′2 = val(#3, 4, 5, 3) = 3.

Finally, since none of t′1, t
′
2 contains placeholders, we evaluate

val(semmultiply(t′1, t
′
2)) = val(semmultiply(9, 3)) = 27, and thus we have val(t, 4,

5, 3) = 27. ��
Beginning from the deepest nesting level, val(·) evaluates the functions t̂ is

composed of recursively but stops if some #i occur. Functions with a smaller
nesting level than the placeholder remain uninterpreted until their parameters
are specified. Although pre-existing placeholders in t are replaced during evalu-
ation, new placeholders may be introduced by p1, . . . , p�.

Example 4. Consider t = add(#1, 1) and suppose t̂ is evaluated under p1 =
add(#1,#2). Then t′ = val(t, p1) = add(add(#1,#2), 1) represents the new
function t̂′(p1, p2) = (p1 + p2) + 1 with two parameters that returns the incre-
ment of their sum. The fr-term t′ can then be used to apply t̂′ to parameters,
e.g. val(t′, 10, 20) = 31. ��
Programs with Interpreted Functions. Next, we need a means for applying
functions given by fr-terms to parameters, i.e., for accessing val(·) from the pro-
gram. To this end, we introduce interpreted function (ifu-)atoms, whose syntax
is inspired by builtin atoms:

Definition 4. An interpreted function (ifu-)atom is of kind R̄ =$ T̄ [P̄1, . . . , P̄�],
where R̄ ∈ T is a comparison operand, T̄ ∈ T is an fr-term, and P̄1, . . . , P̄� ∈ T
are parameters.

Here, the subscript $ of the comparison operator is used to distinguish an ifu-
atom from equality builtin atoms. While builtin atoms over = compares terms
syntactically, =$ evaluates the term on the right-hand side before comparison.
We have that R̄, T̄ , P̄1, . . . , P̄� are possibly non-ground to allow exploiting the
ASP grounder.

Informally, a ground ifu-atom r =$ t[p1, . . . , pγ(t)] is intended to be true iff r
is equal to the value of the function represented by fr-term t under parameters
p1, . . . , pγ(t) holds. Based on Definition 3 we define:

Definition 5. A ground ifu-atom a of form r =$ t[t1, . . . , tn] is true wrt. assign-
ment A, denoted A |= a, if n = γ(t) and r has the value of val(t, t1, . . . , tn), and
false, denoted A �|= a, otherwise.

Example 5. The ifu-atom X =$ add(#1, 1)[Y] applies the increment function,
represented by the fr-term add(#1, 1), to the parameter Y and compares the
result with X. ��

Extending Answer Set Programs with Interpreted Functions 75

Note that because functions are represented by terms, an ifu-atom contains
a pair of parentheses (from the fr-term) followed by a pair of brackets (from the
parameter list). However, as we will see in the next example, using ASP variables
as fr-term conceals the parentheses, which results in a syntax similar to standard
mathematical notation. We formalize hex-programs with ifu-atoms as follows:

Definition 6. A hex-program with interpreted functions (hexifu) is a hex-
program, where rule bodies may contain ifu-atoms.

The notions of models of rules/programs and of answer sets carry over.

Example 6. Consider the fact compInitials(concat(first(#1),first(#2))) ←. The
fr-term in the extension of compInitials represents a function that constructs
a person’s initials from given first and last names. The function is based on
the basic functions concat and first for string concatenation and extracting the
first character of a string, respectively. If facts of kind person(F,L) ← repre-
sent persons with first name F and last name L, the rule initials(F,L, I) ←
person(F,L), compInitials(C), I =$ C[F,L] computes the initials of all persons
by applying the function, which is accessible via C, to the parameters.

As the example demonstrates, terms that represent interpreted functions
are accessible from the extension of predicates. That is, an fr-term t occurs as
parameters of an atom of kind f (t) ←. The application of the function to a list
p of parameters is then possible using a rule of kind res(T) ← f(T), R =$ T [p].

4 Implementation of Interpreted Functions Using
hex-Programs

We realized hexifu-programs on top of standard hex-programs using a rewriting.
The basic idea is to pass a ground fr-term t and γ(t) parameters to a dedicated
external atom &eval , which resembles the function val(·) from Definition 3 by
substituting each placeholder #i for the i-th argument pi and recursively eval-
uating subterms.

For each integer n, let f&evaln(A, t , p1, . . . , pn, r) be the semantics of an exter-
nal predicate &evaln which has as input a term t with n = γ(t) and parameter
values p1, . . . , pn, and returns the value of the function term in r; as the number
of parameters is also visible from the parameter list, we drop the subscript n

from &eval in the following.

Definition 7. For an assignment A and list of ground terms t, p1, . . . , pn

s.t. γ(t) = n, let f&eval(A, t, p1, . . . , pn, r) = σ where σ = T if r =
val(t , p1, . . . , pn) and σ = F otherwise.

The oracle function f&eval may access semantics functions semf (·) of all
basic functions f ∈ F . This allows for translating hexifu-programs to standard
hex-programs:

76 C. Redl

Definition 8. The translation of an ifu-atom a of kind R̄ =$ T̄ [P̄1, . . . , P̄�] to
an external atom is given by τ(a) = &eval [T̄ , P̄1, . . . , P̄�](R̄).

For hexifu-program Π, we let τ(Π) be Π after replacing each ifu-atom a by
τ(a).

We demonstrate the translation with the following example:

Example 7 (cont’d). Reconsider the fr-term t = concat(first(#1),first(#2)).
Then N =$ t[tom, johnson] is translated to &eval [t, tom, johnson](N). This
external atom is true for N = tj and false otherwise. ��

This translation is sound and complete wrt. the semantics given by
Definition 5.

Proposition 1. An assignment A is an answer set of a hexifu-program Π if
an only if it is an answer set of the hex-program τ(Π).

Interpreted functions have been implemented in the dlvhex solver,
cf. http://www.kr.tuwien.ac.at/research/systems/dlvhex. The syntax is as in
this paper, with =$ written as = $. The system comes with several examples
with interpreted functions.

5 Applications of HEXIFU-Programs

We now present several applications of hexifu-programs. For each of them, we
show how they benefit from the features of hexifu-programs compared to stan-
dard hex-programs.

Software Design Patterns. Our main motivation for hexifu-programs were
functionals. They can be used to realize programming methods motivated by
design patterns in software engineering, cf. e.g. [14]. An example is the abstract
factory pattern which uses a factory class F for creating objects of one of several
concrete classes C1, . . . , Cn which implement the same interface C. Instead of
instantiating one of C1, . . . , Cn directly, the decision which class to instantiate is
delegated to factory F . The client retrieves only a reference of type C and uses it
abstractly without knowing (and caring) which of the concrete types C1, . . . , Cn

the reference refers to.
Similarly, functionals in hexifu-programs allow for retrieving a function from

an external atom that can later be used without knowing its exact type.

Example 8. Consider function getHashFunction() that serves as a factory and
returns a unary function, which is unknown to the implementer of the hex-
program but still has an associated semantics that can be applied. Then r(H) ←
F =$ getHashFunction()[],H =$ F (padl) evaluates getHashFunction() (without
parameters) to retrieve a concrete hash function F , which is subsequently applied
to compute the hash value H of padl . ��

http://www.kr.tuwien.ac.at/research/systems/dlvhex

Extending Answer Set Programs with Interpreted Functions 77

A similar example is the strategy pattern, where the algorithm/technique to
be applied is selected at runtime based on the data at hand. For instance, a
validation to be performed for incoming data usually depends on the type of the
data. As a concrete example, consider matching strings against regular expres-
sions. The regular expression for checking phone numbers is clearly different from
one for checking email addresses. In such cases, the selection of an appropriate
validation function can be done by a dedicated function &getValidator [type](V)
which implements the logic of the decision, i.e., the construction of an appropri-
ate regular expression, depending on the type ∈ {phone, email , url , . . .} of the
given data. The concrete verification function returned by the selection function
can then be applied to a value:

Example 9. Suppose &getValidator [type](V) returns a function V for verifying
data of the given type. Provided that the returned verification functions evaluate
to 1 if the check is passed and to 0 otherwise, a concrete value is verified by the
ifu-atom 1 =$ V (value).

Suppose employee data is given by facts of form emp(id , attType, attValue),
where id is a unique identifier for each employee, and attType and attValue
specify the value of a certain attribute. For example, emp(3 ,firstname, john)
defines that the first name of employee 3 is john. In the following, r1 imports a
verification function for each attribute type specified for at least one employee
and r2 applies it to all values of this type.

r1 : validators(AttType,V) ← emp(Id ,AttType,AttValue),&getValidator [AttType](V).

r2 : invalid(Id) ← emp(Id ,AttType,AttValue), validators(AttType,V), 0 =$ V [AttValue].

The program derives invalid(id) for all identifiers id of employee with invalid
entries.

Benefits: Without functionals and interpreted functions as accessible objects,
one must implement separate validation rules for all attribute type, which differ
only in the external atom which performs the evaluation, but be of the same
structure otherwise. This would introduce redundancies which make it more
cumbersome to maintain the program. ��
Integrating Heterogeneous Knowledge Bases. Another example is the inte-
gration of multiple data sources which are possibly implemented in different for-
malisms, as realized e.g. by multi-context systems [5]. A functional can serve as
a central dictionary that supports lookups of concrete knowledge-bases with a
common query interface. Lookups are then answered with functions that allow
for accessing the concrete knowledge-base abstractly without knowing its type
and location.

Example 10. For instance, suppose lookup(#1) provides access to the cen-
tral dictionary and is accessible via predicate l. Then rule data(A) ←
l(D),K =$ D[employee], A =$ K[query] can be used to answer queries over the
employee knowledge-base using the access function D, which returns an abstract
knowledge-base K that can be used to answer queries without knowing its type.

78 C. Redl

Benefits: As above, without functionals separate rules of the same basic struc-
ture must be defined for each type of knowledge-based, which differ only in the
external atom. ��
Realizing Traditional Higher-order Functions. Also typical (generic)
higher-order functions known from functional programming can be realized on
top of hexifu. These include, e.g., map for applying a custom function to all
elements from a list, fold for aggregating values in a data structure, or sort with
a custom comparison function.

Example 11. Consider the external atom &map[f, p](X) which applies function
f , given as an fr-term, to all elements in the extension of predicate p and the
function for computing a person’s initials as shown in Example 6. Then the rule
res(R) ← compInitials(C), R =$ &map[C, person](X) can be used to compute
the initials of all persons in the extension of predicate person.

Benefits: Without functionals as accessible objects, one may define
&map[fn, p](X) where fn is the name of a function to be applied to p. However,
all functions identified by such names must be known to the implementation of
&map and are not arbitrary. ��
Syntax Relaxation. Finally, interpreted function symbols are also a more nat-
ural alternative for external atoms with functional behavior such as string func-
tions (concatenation, substring, etc.). The syntax is lightweight and similar to
builtin atoms.

Discussion. While it is possible to simulate functionals by standard hex-
programs if all involved external sources are provided by the imple-
menter of the hex-program, this is in general not the case. For instance,
Example 8 can be implemented such that not the hash function but only its
name N is imported into the program. Consider the modified rule r(H) ←
&getHashFunctionName[](N),&applyHashFunction[N, padl](H). The name of
the hash function N is passed to a dedicated external atom &applyHashFunction,
which internally selects the function identified by N and applies it to the given
string. Now N plays the role of F from Example 8, but is instantiated with a
string instead of an fr-term. The parameters of &applyHashFunction do not con-
tain fr-terms but only object constants, i.e., &applyHashFunction is not a func-
tional. However, now &applyHashFunction must be aware of all possible hash
functions; if a new one is added, the external source &applyHashFunction must
be modified. This is impractical if the function to be passed as argument and the
functional itself are provided by different third parties, or if one is provided by a
third party and the other one is newly developed. Then the programmer cannot
modify the sources and moving functionality from one source to the other is not
possible. Also if the set of possible functional parameters is unrestricted, such
as for &map, simulating functionals by a standard function is not possible, as it
would need to be prepared for an infinite number of possible functions.

Extending Answer Set Programs with Interpreted Functions 79

6 Properties of HEXIFU-Programs

We now investigate relations to programs with uninterpreted function symbols,
finiteness and computational properties of hexifu-programs.

Relations to Uninterpreted Function Symbols. One can show that ASP- or
hex-programs with uninterpreted functions amount to a special case of hexifu-
programs, where each function term is interpreted by itself.

Proposition 2. Let Π be a hex-program and let Π ′ be the hexifu-program
resulting from Π if each builtin atom x ◦ y is replaced by x =$ y and semf (y) =
f(y) for all function symbols f and y ∈ C γ(f). Then the answer sets of Π and
Π ′ coincide.

Finite Groundability. We call a program Π finitely groundable if there is a
finite Π ′ ⊆ grnd(Π) s.t. Π and Π ′ have the same answer sets. In this case,
it is implied that all answer sets are also finite. For uninterpreted function
symbols, several safety concepts have been introduced which allow for decid-
ing finite groundability. For instance, the notion of ω-restricted logic programs,
which hinges on predicate dependencies, allows function symbols under a level
mapping to control the introduction of new terms with function symbols to
ensure decidability [29]. More expressive variants thereof are λ-restricted [17],
argument-restricted programs [23] and bounded programs [19]. For an overview
of classes of programs with uninterpreted function symbols, cf. e.g. [1].

However, since we consider interpreted functions, these notions are not
directly applicable. A hexifu-program might be finitely groundable, while it is
not finitely groundable if functions are left uninterpreted, or vice versa.

Example 12. Consider the hexifu-program Π = {p(a); p(Y) ← p(X), Y =$

id(X)} where id is an interpreted function s.t. semid(t) = t for all terms t ∈
T . Its only answer set is A = {p(a)}. In contrast, if id is considered as an
uninterpreted function symbol as in Π ′ = {p(a); p(Y) ← p(X), Y = id(X)},
then there is no finite grounding as the rule derives infinitely many atoms of
form p(idn(a)) for all n ≥ 0. ��

Conversely, it can also happen that a hex-program with uninterpreted func-
tion symbols is finitely groundable, but after assigning a semantics to the func-
tions it is not.

Example 13. Consider the hex-program Π = {a ← 2 = inc(1); int(X) ←
a,X > 0}. Then its only answer set is A = ∅ because 2 = inc(1) is false, thus
a is unsupported and the rule int(X) ← a,X > 0 is never applicable. However,
if function inc is interpreted with seminc(n) = n + 1 for all n ≥ 0, as in the
hexifu-program Π ′ = {a ← 2 =$ inc(1); int(X) ← a,X > 0}, then 2 =$ inc(1)
is always true, a is derived and int(X) ← a,X > 0 derives infinitely many atoms,
i.e., Π ′ is not finitely groundable. ��

80 C. Redl

Because interpreted functions are closely related to external atoms, as evi-
denced by our rewriting, it is appropriate to reuse concepts for hex-programs.
The liberal safety framework [11] is defined for hex-programs and derives finite
groundability of programs based on its syntactic structure and semantic proper-
ties of external atoms, where the latter are asserted by the provider of an external
source. Such properties are, e.g., the existence of a well-ordering (the output of
an external source is no greater than its input according to some ordering),
monotonicity/antimonotonicity, and finite domains of external atoms.

Example 14. Π = {reachable(s); reachable(Y) ← reachable(X),&edge[X](Y)}.
Without any knowledge about the semantics of the external atom e =
&edge[X](Y), the program potentially introduces infinitely many new values
because e is involved in a cycle, finitely groundability is not guaranteed. How-
ever, if the output domain of e is known to be finite3, then the framework
identifies the program as finitely groundable. ��

For a hexifu-program Π, the basic idea is to apply the framework to the
hex-program τ(Π). Known properties of basic functions are exploited similarly
as for external atoms. Equivalence of Π and τ(Π) wrt. answer sets establishes
then the following result.

Proposition 3. A hexifu-program Π is finitely groundable iff τ(Π) is finitely
groundable.

Due to the result, convenient finiteness properties of hex-programs carry
over to hexifu-programs.

Computational Complexity. For the computational aspect, one can first
observe that unlike external atoms, ifu-atoms can only have input terms but
no input predicates. Therefore, ifu-atoms can be evaluated once the program’s
grounding is available, but there is no need for interleaving this process with
model building.

In the following, we assume that the program at hand is finitely ground-
able and analyze the complexity wrt. the program’s grounding. This is because
the grounding size depends on the semantics of the involved basic functions
and, unlike ordinary ASP, one cannot specify an upper bound for the size of the
grounding in terms of the size of the original program. For example, consider the
rule p(Y) ← inc(I), p(X), Y =$ I(X), where inc(min(add(#1, 1), lim(c))) ←
defines a bounded increment function. That is, the function increments parame-
ter #1 up to a certain limit, which is given by the unary basic function lim(c).
Obviously, the limit for the increment function, and thus the size of the ground-
ing of Π, depends on the value of lim(c).

In contrast to complexity results for hex-programs [12], we cannot reason-
ably restrict the Herbrand universe to be finite as this contradicts the idea of

3 The external atom &edge[X](Y) is intended to return the neighbors Y of X in a
fixed finite graph, thus Π computes the nodes which are reachable from a given start
node s.

Extending Answer Set Programs with Interpreted Functions 81

functionals which may introduce new functions. Instead, we can only rely on
safety conditions (see above) which ensure that the grounding has a finite, but
otherwise arbitrary size.

Then, if we assume that all functions have complexities in C, one can then
show that complexity results of ordinary ASP [9] carry over to hexifu-programs:

Proposition 4. Deciding if a ground hexifu-program Π has an answer set is
in C ◦ ΣP

2 in general and in C ◦ NP if Π is disjunction-free.

Here, C ◦ΣP
2 denote that the problem is decidable using the power of classes

C and ΣP
2 in sequence. Note that either of the two classes might dominate the

overall complexity. For instance, C ◦ ΣP
2 reduces to ΣP

2 if C = P . Similarily for
C ◦ NP .

Since deciding consistency of a ground hex-program is (ΣP
2)C-complete

where C is the complexity of the external atoms [12], we conclude that hexifu-
programs are potentially even easier but not harder, i.e., positive properties of
hex-programs carry over.

7 Related Work and Conclusion

Related Work. We give an overview of existing approaches towards function
terms with non-Herbrand semantics. They all have in common that the semantics
is not given by an external theory but rather defined as part of the program and
that none of the following approaches allows for accessing functions as first-class
citizens.

The idea of integrating functions and logic programs is related to the field
of functional logic programming (FLP), cf. [20,21] for an overview. However,
this integration aims at a tighter coupling of the two declarative paradigms,
for instance by defining functions as equality clauses within the logic pro-
gram. For example, the facts append([], L) = L ← and append([E|R], L) =
[E|append(R,L)] ← might be used to define a list concatenation function. Arith-
metic operators are allowed in some approaches such as [2]. This allows for iden-
tifying syntactically different terms as semantically equivalent. Functions defined
in this way are then applied similarly as in term rewriting systems (cf. narrow-
ing). However, FLP integrates features of functional programming directly into
logic programs, while our approach aims at using externally defined functions
within the program. Although our approach also supports the construction of
new functions in the logic program, this works by composition of existing func-
tions rather than equality clauses (cf. Example 4).

Intensional function symbols detach from Herbrand interpretations and use
rules to define functions by other functions or predicates, cf. [3,7,24]. For
instance, loc(X) = garage ← car(X), not loc(X) �= garage expresses that cars
are in the garage by default. Although relations to ASP modulo theories and
to SMT are identified, cf. [4], this analysis is limited to specific theories (e.g.,
arithmetics).

82 C. Redl

A different kind of approaches define functions as part of the program’s first-
order-like interpretations, cf. e.g. [25,26]. For instance, if color(n) represents the
color of node n, the constraint ← edge(X,Y), color(X) �= color(Y) represents
that adjacent nodes have different colors. When computing the reduct of the pro-
gram wrt. an interpretation, function terms are evaluated and replaced by the
value of the function. As a consequence, the evaluation is a strictly non-recursive
process. However, the possibility to evaluate a function term to a constant is sim-
ilar as in our approach. The approach corresponds to the previously developed
one by [26], as proven in [7]. The definition of the function color(·) is part of the
program’s answer.

HiLog-programs have a second-order syntax which allow arbitrary terms
to occur as predicate names [27]. For instance, the program P =
{closure(R)(X,Y) ← R(X,Y); closure(R)(X,Z) ← R(X,Y), closure(R)(Y,Z)}
defines the transitive closure of arbitrary relations R. In another rule, the clo-
sure of a concrete relation edge can be accessed using a HiLog literal of for
closure(edge)(X,Y). However, the semantics of HiLog is actually first-order,
as evidenced by a translation of HiLog-programs to normal programs. To this
end, general terms which are used as predicates are represented by standard
predicates and function symbols. For instance, closure(R)(X,Y) is represented
by call(u3(u2(closure, R),X, Y)). The idea of using terms such as closure(R)
to represent functions which depend on other functions is similar to our fr-
terms, but relations and functions are defined within the program rather than
externally.

The grounder gringo provides an interface which supports calls to functions
written in the scripting language Lua4 before grounding, after a model has been
found, and after termination [16]. However, unlike in hexifu-programs, calls to
such functions are constrained to happen only at specific evaluation phases and
is not interleaved with model building. Also the use of functions as first-class
citizens is not possible.

Last but not least, some reasoners such as DLV support pre-defined inter-
preted functions, e.g. for list processing (appending elements, retrieving the head
element, etc.). However, the set of supported functions is fixed and hard-wired
within the reasoner, while custom external functions are not supported. The
same is true for well-known aggregate functions.

Uninterpreted function symbols are supported by ASP systems such as the
grounder gringo [15] and recent releases of DLV [22]. Previous research often
focused on the identification of classes of programs for which reasoning tasks,
such as answer set computation or query answering, are decidable, cf. e.g. [1].
External sources as in hex-programs were exploited in context of uninter-
preted function symbols for the composition and decomposition of nested func-
tion terms, cf. [8,10]. However, the function symbols themselves do not have
an externally defined semantics. In terms of our notation, the external pred-
icates &composek with k input and 1 output parameter, and &decomposek

with 1 input and k output parameters for each k ≥ 0 are used for composing

4 http://www.lua.org.

http://www.lua.org

Extending Answer Set Programs with Interpreted Functions 83

and decomposing function terms. To this end, f&composek
(A, f, t1, . . . , tk, x) =

f&decomposek
(A, x, f, t1, . . . , tk) = v with v = T if x = f(t1, . . . , tk) and v = F

otherwise. However, all external predicates had fixed purposes and function sym-
bols where not given a semantics.

Discussion. While having externally defined functions is central to our app-
roach and motivated by practical observations (need for accessing pre-existing
libraries, more natural or efficient implementation of some types of computa-
tions which invonve numeric computations, etc.), our approach can in principle
also be instantiated in such a way that functions can be defined within the pro-
gram, similarily to other approaches. To this end, one can pre-define a fixed
set of basic functions which suffice to construct arbitrary functions (or at least
arbitrary functions from a certain domain) by composition.5

Conclusion. We introduced hexifu-programs, i.e., logic programs with inter-
preted functions. In contrast to existing approaches towards interpreted func-
tions and also in contrast to hex-programs, the new approach paves the way
for functionals, i.e., functions that take other functions as parameters or return
them.

However, rather than functional logic programming (cf. e.g. [20,21]), we do
not aim at a tight integration of the two paradigms which allows for defining
functions as part of the program, but rather at evaluating externally defined
functions. Our approach is in particular flexible as it turns functions into objects
that are accessible in the program.

Currently, interpreted functions are either externally defined basic functions
or compositions thereof. Future work may include the support for additional
means for defining new functions such as currying [28], i.e., the translation of
a function f : D1 × · · · × Dn → R with n parameters into a function f ′ : D1 →
(D2 → (· · · (Dn → R))) with one parameter that returns another function in
the remaining n − 1 parameters. Also the support for functions with predicate
parameters, such as supported by external atoms, is an interesting starting point.
Finally, while we focused on functions in this work, also external atoms with non-
functional behavior might be turned into first-class citizens. Both of the last two
ideas might be realized based on parameters resp. return values whose domain
consists of sets of elements.

References

1. Alviano, M., Calimeri, F., Ianni, G., Faber, W., Leone, N.: Function symbols in
ASP: overview and perspectives 31 (2011)

2. Balduccini, M.: ASP with non-herbrand partial functions: a language and system
for practical use. TPLP 13(4–5), 547–561 (2013)

5 To see that this is always possible, let runTM (m, i) be a function which maps the
definition of a turing machine m and an input string i to the tape content after the
machine encoded by m under input i terminates. Then any function f(x) can be
defined as runTM (mf , i), where i encodes arguments x and mf is a turing machine
which computes f .

84 C. Redl

3. Bartholomew, M., Lee, J.: Stable models of formulas with intensional functions.
In: Proceedings of International Conference on Principles of Knowledge Represen-
tation and Reasoning KR, pp. 2–12 (2012)

4. Bartholomew, M., Lee, J.: Functional stable model semantics and answer set pro-
gramming modulo theories. In: Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence, IJCAI 2013, pp. 718–724. AAAI Press
(2013)

5. Brewka, G., Roelofsen, F., Serafini, L.: Contextual default reasoning. In: Pro-
ceedings of the Twentieth International Joint Conference on Artificial Intelligence
(IJCAI 2007), January 6–12, 2007, Hyderabad, India (2007)

6. Burstall, R.: Christopher strachey-understanding programming languages. Higher-
Order Symbolic Comput. 13(1), 51–55 (2000)

7. Cabalar, P.: Functional answer set programming. CoRR abs/1006.3678. http://
arxiv.org/abs/1006.3678(2010)

8. Calimeri, F., Cozza, S., Ianni, G.: External sources of knowledge and value inven-
tion in logic programming. Ann. Math. Artif. Intell. 50(3–4), 333–361 (2007)

9. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)

10. Eiter, Thomas, Fink, Michael, Krennwallner, Thomas, Redl, Christoph: hex-
programs with existential quantification. In: Hanus, Michael, Rocha, Ricardo (eds.)
WLP 2013. LNCS (LNAI), vol. 8439, pp. 99–117. Springer, Cham (2014). doi:10.
1007/978-3-319-08909-6 7

11. Eiter, T., Fink, M., Krennwallner, T., Redl, C.: Domain expansion for ASP-
programs with external sources. Artif. Intell. 233, 84–121 (2016)

12. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-
order reasoning and external evaluations in answer-set programming. In: IJCAI,
pp. 90–96. Professional Book Center (2005)

13. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates
in answer set programming. Artif. Intell. 175(1), 278–298 (2011)

14. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co. Inc.,
Boston (1995)

15. Gebser, M., Kaminski, R., König, A., Schaub, T.: Advances in gringo series 3.
In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp.
345–351. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20895-9 39

16. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider,
M.: Potassco: the potsdam answer set solving collection. AI Commun. 24(2), 107–
124 (2011)

17. Gebser, M., Schaub, T., Thiele, S.: GrinGo: a new grounder for answer set program-
ming. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol.
4483, pp. 266–271. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72200-7 24

18. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3–4), 365–386 (1991)

19. Greco, S., Molinaro, C., Trubitsyna, I.: Bounded programs: A new decidable class
of logic programs with function symbols. In: Proceedings of the Twenty-Third
International Joint Conference on Artificial Intelligence (IJCAI 2013), pp. 926–
931. AAAI Press (2013)

20. Hanus, M.: Multi-paradigm declarative languages. In: Dahl, V., Niemelä, I. (eds.)
ICLP 2007. LNCS, vol. 4670, pp. 45–75. Springer, Berlin (2007). doi:10.1007/
978-3-540-74610-2 5

http://arxiv.org/abs/1006.3678
http://arxiv.org/abs/1006.3678
http://dx.doi.org/10.1007/978-3-319-08909-6_7
http://dx.doi.org/10.1007/978-3-319-08909-6_7
http://dx.doi.org/10.1007/978-3-642-20895-9_39
http://dx.doi.org/10.1007/978-3-540-72200-7_24
http://dx.doi.org/10.1007/978-3-540-74610-2_5
http://dx.doi.org/10.1007/978-3-540-74610-2_5

Extending Answer Set Programs with Interpreted Functions 85

21. Hanus, M.: The integration of functions into logic programming: From theory to
practice. J. Logic Program. 1920, Supplement 1, 583–628 , special Issue: Ten Years
of Logic Programming (1994)

22. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The DLV system for knowledge representation and reasoning. ACM TOCL 7(3),
499–562 (2006)

23. Lierler, Y., Lifschitz, V.: One more decidable class of finitely ground programs. In:
Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 489–493. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-02846-5 40

24. Lifschitz, V.: Logic programs with intensional functions. In: Proceedings of Interna-
tional Conference on Principles of Knowledge Representation and Reasoning (KR)
(2012)

25. Lin, F., Wang, Y.: Answer set programming with functions. In: Brewka, G., Lang,
J. (eds.) Proceedings of the Eleventh International Conference on Principles of
Knowledge Representation and Reasoning, KR 2008, Sydney, Australia, September
16–19, 2008, pp. 454–465. AAAI Press (2008)

26. Pearce, D., Valverde, A.: Towards a first order equilibrium logic for nonmonotonic
reasoning. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229,
pp. 147–160. Springer, Berlin (2004). doi:10.1007/978-3-540-30227-8 15

27. Ross, K.A.: On negation in HiLog. J. Logic Program. 18(1), 206–215 (1994)
28. Schönfinkel, M.: Über die bausteine der mathematischen logik. Math. Ann. 92,

305–316 (1924)
29. Syrjänen, T.: Omega-restricted logic programs. In: Eiter, T., Faber, W.,

Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 267–280.
Springer, Berlin (2001). doi:10.1007/3-540-45402-0 20

http://dx.doi.org/10.1007/978-3-642-02846-5_40
http://dx.doi.org/10.1007/978-3-540-30227-8_15
http://dx.doi.org/10.1007/3-540-45402-0_20

Lowering the Learning Curve for Declarative
Programming: A Python API for the IDP

System

Joost Vennekens(B)

Department Computerscience @ Technology Campus De Nayer,
KU Leuven, J.-P. De Nayerlaan 5, 2860 Sint-katelijne-waver, Belgium

joost.vennekens@kuleuven.be

Abstract. Programmers may be hesitant to use declarative systems,
because of the associated learning curve. In this paper, we present an
API that integrates the IDP Knowledge Base system into the Python
programming language. IDP is a state-of-the-art logical system, which
uses SAT, SMT, Logic Programming and Answer Set Programming tech-
nology. Python is currently one of the most widely used (teaching) lan-
guages for programming. The first goal of our API is to allow a Python
programmer to use the declarative power of IDP, without needing to
learn any new syntax or semantics. The second goal is allow IDP to be
added to/removed from an existing code base with minimal changes.

1 Introduction

In many contexts where software is currently developed, programmer time is
more valuable than computer time. In other words, it is more important to
quickly and reliably produce working code, than to optimize the code’s run-
time. In addition to standard software engineering practices, declarative methods
could play an important role in reducing development time. Indeed, a declarative
specification of the end result that should be produced contains, in a sense, the
minimum of information that must somehow be made available to the computer
in order for it to be able to produce the desired output. Moreover, in addition
to writing a program from scratch, maintaining and updating a program are
typically also quite time consuming tasks. Here too, declarative methods may
offer significant advantages, due to their inherent modularity.

In light of these observations, we may expect that recent years would have
shown a significant increase in the use of declarative methods throughout indus-
trial software engineering practice. However, evidence to this effect seems to
lacking. There may be many reasons for this. Perhaps companies are frequently
using declarative methods, but prefer to keep this information hidden. Or, per-
haps declarative methods are not being widely used because the majority of
software engineers work on simple “CRUD” (create-read-update-delete) appli-
cations, for which these methods are overkill.

c© Springer International Publishing AG 2017
Y. Lierler and W. Taha (Eds.): PADL 2017, LNCS 10137, pp. 86–102, 2017.
DOI: 10.1007/978-3-319-51676-9 6

Lowering the Learning Curve for Declarative Programming 87

In this paper, we posit the hypothesis that there does exist a larger potential
for declarative methods in software engineering than is currently being exploited,
and that this potential is not being realised because of the following two con-
tributing factors:

– Many programmers are not familiar with state-of-the-art declarative systems.
While their education may have contained, say, an introductory course on
Prolog programming, there would still be a substantial learning effort required
before they could, e.g., solve real-world problems by means of, e.g., a modern
Answer Set Programming (ASP) [10] or SMT [4] solver.

– Programming typically takes place in a larger context, where there are cowork-
ers to be collaborated with, external systems to be interfaced with, users that
need visualisations, etc. If a declarative solution cannot be easily integrated
with existing code, it might be practically impossible to adopt it.

In this paper, we investigate how we might integrate a state-of-the-art declar-
ative system within a well-known and widely-used host language, such that:

– There is essentially no learning curve for programmers who already know the
host language.

– The interface between the declarative system and the imperative host language
uses the existing syntax and semantics of host-language objects, so that the
declarative system may easily be replaced by a piece of host-language code,
should this ever prove necessary.

In this way, the resulting API fixes the two problems mentioned above and may
therefore contribute to a wider adoption of declarative methods in industry. This
may prove especially useful for fast prototyping, where declarative systems may
offer a substantial benefit. In addition, our API may also offer a convenient way
for teachers to introduce students to declarative methods.

In Sect. 2, we first discuss why we have chosen our particular combination of
declarative system and host language. Section 3 then examines to what extent the
host language offers objects and expressions that correspond to the inputs needed
by the declarative system. Based on this analysis, Sect. 4 then presents the API
that we have developed. Section 5 briefly discusses some notes on its current imple-
mentation. In Sect. 6, we present several use cases that demonstrate how the API
may be used. Section 7 discusses related work. We conclude in Sect. 8.

Part of this work has been presented to a Logic Programming audience
at the International Workshop on User-Oriented Logic Programming (2015) of
the International Conference on Logic Programming (ICLP) 2015. The present
paper extends this work by a more thorough discussion of the approach, a better
comparison to related work and more illustrative examples.

2 Choice of Languages

There exists an important distinction between declarative programming languages
(such as Prolog) and declarative specification languages (such as Answer Set Pro-
gramming). The first kind of languages has an associated operational semantics,

88 J. Vennekens

which allows algorithms to be specified in the language. By contrast, the second
kind lack such an operational semantics, which makes these languages “purely”
declarative: a user can specify knowledge about a problem domain, but he cannot
express computations.

Both kinds of languages have their own advantages. Because this paper con-
siders the integration of a declarative system with an imperative host language,
it makes the most sense to use a declarative specification language. In this way,
we obtain a clean separation between imperative and declarative aspects, which
allows us to benefit to the fullest from the advantages of the declarative approach.

There exist many declarative specification languages: ASP [10], SAT/SMT
[4], ProB [2], etc. In order to achieve our stated goals, we choose a language that
is based as much as possible on classical first-order logic. This will allow us to
use the boolean connectives and quantifiers that are part of the host language,
without changing their semantics. In this paper, we have selected to use the IDP
system [3]. The input language of this system, denoted as FO(·), is a conservative
extension of classical first-order logic, with features such as aggregates, a type
system, arithmetic and inductive definitions. As we will show in the next section,
this input language can be seamlessly integrated into our chosen host language.

As our host language, we choose Python. On the one hand, this is a suit-
able choice because we need a somewhat flexible host language in order to be
able to achieve an elegant integration. On the other hand, we also want to use
a language that is wide-spread and well-known. Python is reported to be the
most popular teaching language for introductory computer science courses1 and
the third most popular programming language overall2. We have chosen to use
version 2.7 (instead of 3.x), because most of the teaching material currently in
use still seems to make use of this version.

In the next section, we explore how the FO(·) input language of the IDP
system can be represented in Python.

3 Finite First-Order Logic in Python

A vocabulary Σ of first-order logic (FO) consists of a set of function symbols
and a set of predicate symbols. The FO(·) language uses a typed variant of
FO, which allows formulas to be written in a more compact way, while also
helping to avoid errors. In this variant, a number of the unary predicate symbols
are designated as types, and each other predicate symbol P with arity n (as
well as each function symbol F with arity n) is given a typing P (T1, . . . , Tn)
(respectively, F (T1, . . . , Tn) : T0), which defines the types of its arguments (and
its range, in case of a function symbol).

A finite structure S for a vocabulary Σ consists of a finite domain D and an
assignment to each symbol σ ∈ Σ of an interpretation σS . If P is a predicate
1 http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-

introductory-teaching-language-at-top-us-universities/fulltext.
2 http://spectrum.ieee.org/computing/software/the-2016-top-programming-

languages.

http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages
http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages

Lowering the Learning Curve for Declarative Programming 89

symbol of arity n, then PS is an n-ary relation on D. The interpretations TS
i of

all the types Ti ∈ Σ must form a partition of the domain D of S. In addition,
the interpretation PS of each predicate P (T1, . . . , Tn) must be well-typed, i.e.,
PS ⊆ TS

1 × · · · × TS
n . Similarly, the interpretation FS of a function symbol

F (T1, . . . , Tn) : T0 is a function FS : TS
1 × · · · × TS

n → TS
0 .

In Python, we can use sets of tuples to represent the interpretation of a
predicate symbols and dictionaries to represent the interpretation of a function
symbol. To illustrate, we consider the example of representing and solving a
sudoku puzzle. The puzzle grid consists of 81 cells, which are subdivided into
9 rows, 9 columns and 9 smaller 3 × 3 squares. The layout of this grid can
be represented by a type Cell and binary predicates SameRow, SameCol and
SameSqu, each with typing (Cell, Cell). In Python:

Cell = range(81)
SameRow = [(i, j) for i in Cell for j in Cell

if i % 9 == j % 9]
SameCol = [(i, j) for i in Cell for j in Cell

if i / 9 == j / 9]
SameSqu = [(i, j) for i in Cell for j in Cell

if i/3 == j/3 and (i%9)/3 == (j%9)/3]

To represent the numbers that are given in the sudoku grid, we use a (total)
function Given(Cell): Number, with the type Number ranging over 0 to 9,
where 0 is assigned to the empty cells.

Number = range(9)
Given = { 0: 8, 1: 5, 3: 0, 4: 0, 5: 0 ... }

The task of solving a sudoku puzzle is that of finding a solution, represented
by e.g. a function Sol(Cell): Number, that satisfies all the necessary constraints.

Sol = { 0: 8, 1: 5, 3: 2, 4: 3, 5: 6 ... }

The constraints that must be satisfied by Sol can be expressed by first-order
formulas over the vocabulary Σ. For instance:

∀x[Cell], y[Cell]
(
SameRow(x, y) ∨ SameCol(x, y) ∨ SameSqu(x, y) (1)

⇒ Sol(x) �= Sol(y) ∨ x = y
)
.

Here, the notation x[Type] is used to indicate the type of the quantified variables.
Obviously, this information can also be derived automatically from the typing
of the predicates.

The following table shows how we can translate the logical connectives into
Python expressions:

90 J. Vennekens

Formula φ Python expression φpy

P (t1, . . . , tn) (t1,...,tn) in P
¬φ not φpy

φ ∨ ψ φpy or ψpy

φ ∧ ψ φpy and ψpy

∀x[Type] : ψ ⇒ φ all(φpy for x in Type if ψpy)
∃x[Type] : ψ ∧ φ any(φpy for x in Type if ψpy)

For instance, formula (1) corresponds to:

all(Sol[x] != Sol[y] or x == y for x in Cell for y in Cell
if (x,y) in SameRow or (x,y) in SameCol or (x,y) in SameSqu)

In addition to satisfying this property, Sol also has to coincide with Given
for all cells where the latter function is not 0:

not any(Sol[x] != Given[x] for x in Cell if Given[x] != 0)

Moreover, Sol should not leave any cells empty (i.e., 0 should not occur in its
range):

all(Sol[x] != 0 for x in Cell)

If the above three Python expressions all evaluate to true, then Sol is a
correct solution to the sudoku instance described by Given.

The input language FO(·) of the IDP system extends classical first-order logic
with a number of additional features. Most of the aggregates it supports are also
part of Python, e.g., min, max and sum. Another interesting feature of FO(·) are
its inductive definitions. An example is the definition of the transitive closure T
of a graph G:

{
∀x[Node], y[Node] T (x, y) ← ∃z T (x, z) ∧ T (z, y).
∀x[Node], y[Node] T (x, y) ← G(x, y).

}

In FO(·), this definition expresses that T is the least fixpoint of the operator
induced by the two rules. A similar construct is not readily available in Python,
but we can explicitly compute the least fixpoint, using a λ-expression that cor-
responds to the disjunction of the two rules of the definition.

def lfp(f, x=[]):
y = f(x)
return y if y == x else lfp(f,y)

node_pairs = [(x,y) for x in Node for y in Node]

d = lambda T: (lambda (x,y): ((x,y) in G or
any((x,z) in G and (z,y) in T for z in Node)))

TC = lfp(lambda T: filter(d(T), node_pairs))

Lowering the Learning Curve for Declarative Programming 91

In addition to such monotone inductive definitions, IDP also allows non-
monotone inductive definitions, such as definitions over a well-founded order.
The IDP system interprets such non-monotone definitions by, essentially, the
well-founded model semantics [17]. As shown in [5], this coincides with how such
definitions are interpreted in mathematical texts. Again, also this computation
could be done explicitly in Python, using a λ-expression that corresponds to the
disjunction of the rules of the definition.

Having examined how we can express various parts of FO(·) in Python, we
now present our Python API to the IDP system.

4 Python Interface to the IDP System

The central concept in the API is that of a knowledge base (KB). A new KB can
be created as follows.

from pyidp.typedIDP import IDP
kb = IDP()

A KB consists of a vocabulary, a structure for (part of) this vocabulary and a
number of constraints that must be satisfied. For instance, the vocabulary and
structure for the sudoku example can be added to the KB as follows:

kb.Type("Cell", range(81))
kb.Type("Number", range(10))
kb.Predicate("SameRow(Cell,Cell)", [(x,y) for ...])
kb.Predicate("SameCol(Cell,Cell)", [(x,y) for ...])
kb.Predicate("SameSqu(Cell,Cell)", [(x,y) for ...])
kb.Function("Given(Cell): Number", { 0: 8, ... })
kb.Function("Sol(Cell): Number", { 0: 8, ... })

Each of these statements adds a symbol to the vocabulary of the KB and assigns
an interpretation to it (using the same Python expressions as in Sect. 3). The
API also allows to first declare the symbol and later use the assignment operator
= to assign it a value. Once a symbol σ has been added to a KB kb, it can be
referred to as kb.σ. Predicates implement the MutableSet interface, while func-
tions implement Mapping. This allows these logical object to behave as Python
programmers would expect, e.g.:

kb.SameRow.add((0,1))
kb.Given [0] = 7

This also allows us to evaluate the boolean Python expressions that correspond
to the rules of sudoku:

all(kb.Sol[x] != kb.Sol[y] or x == y
for x in kb.Cell for y in kb.Cell if (x,y) in kb.SameRow

or (x,y) in kb.SameCol or (x,y) in kb.SameSqu)

Instead of immediately evaluating this expression, we can also add it as a
constraint to the knowledge base:

92 J. Vennekens

kb.Constraint(
"""all(Sol[x] != Sol[y] or x == y

for x in Cell for y in Cell if (x,y) in SameRow
or (x,y) in SameCol or (x,y) in SameSqu)""")

Each KB has a boolean property satisfiable that can be checked to find
out if all constraints that have been added to it are in fact satisfied by the KB’s
current interpretation of the vocabulary.

if kb.satisfiable:
print "Sudoku is solved."

From a logical perspective, inspecting the value of this property triggers IDP’s
inference task of model checking : for the finite structure S that is represented by
the KB and for the constraints φ1, . . . , φn that belong to the KB, it is checked
whether S |= ∧

1≤i≤n φi.
In addition to this inference task, IDP also supports model expansion: given

a structure S0 for a subvocabulary Σ0 ⊆ Σ of the vocabulary of the formulas
φ1, . . . , φn, compute a structure S for the vocabulary Σ\Σ0 such that (S0∪S) |=
φ1 ∧ · · · ∧ φn. This task is known to capture the complexity class NP [13].

Our API supports this inference task in a very simple way: if the programmer
declares a vocabulary symbol but does not assign an interpretation to it, then
any attempt to inspect the value of this symbol will trigger a call to IDP’s model
expansion algorithm. This will then automatically fill in the interpretation of this
symbol in accordance with the constraints. If multiple different interpretations
are possible, one is arbitrarily selected (but, if there are multiple such symbols,
then the same model is used to generate the interpretation for all of them, so
that the interpretations for different symbols are always mutually consistent).
In case of the sudoku example, if we had only declared the symbol Sol, without
assigning it a value:

kb.Function("Sol(Cell): Number")

then the following code would compute and print a solution to the given sudoku
instance:

for x in kb.Cell:
print kb.Sol[x]

A final feature of our API is that it also supports the inductive definitions
of FO(·). The method Define may be used to at once declare a symbol and
define it by means of a λ-expression. In the context of the sudoku example, we
may use this to define the following auxiliary concept:

kb.Define("Diff(Cell,Cell)",
"""lambda x,y: (x,y) in SameRow

or (x,y) in SameCol or (x,y) in SameSqu""")

In words, this statement defines that Diff is the set of all pairs of cells (x, y)
for which the given λ-expression holds. Once this concept has been defined, it
can be used to simplify the main sudoku constraint.

Lowering the Learning Curve for Declarative Programming 93

kb.Constraint("""all(Sol[x] != Sol[y]
for (x,y) in Diff if x != y)""")

Even though the above example does not demonstrate this, in general, these
definitions may be inductive. For instance, the definition of transitive closure
can be given as:

kb.Define("T(Node,Node)",
"""lambda x,y: (x,y) in G

or any((x,z) in G and (z,y) in T for z in Node)""")

Discussion. The above API allows the IDP system to be used from Python
without requiring any knowledge that a Python programmer does not already
possess: semantical objects (i.e., interpretations of predicate and function sym-
bols) take the form of standard Python sets and dictionaries, while constraints
take the form of standard Python boolean expressions, and definitions make use
of standard Python λ-expressions. All of these Python objects and expressions
can be used in all of the normal ways and retain their normal semantics. More-
over, even those arguments that are passed as strings (e.g., to the Constraint
method) are handled by the Python parser within the API, so standard syntac-
tical rules apply and standard messages are generated for syntax errors.

In order to make effective use of this API, a Python programmer therefore
only has to know two things:

– The property satisfiable of a KB is true if and only if all Python expres-
sions that were added as constraints would normally (i.e., under their Python
semantics) evaluate to true;

– If some symbol of a KB is not assigned a value, then a value will be automat-
ically computed in such a way that all of the constraints would evaluate to
true.

A small exception to the above discussion is that our API of course also
requires the programmer to declare a typed vocabulary. This is something which
has no counterpart in the dynamically typed Python language, and which there-
fore also requires some additional explanation. However, given the simplicity of
the type system, this should be trivial to understand for any programmer.

In summary, we may therefore conclude that the API should be immediately
usable with minimal learning effort.

5 Notes on Implementation

The implementation of our API is available for download from the following URL:

https://bitbucket.org/joostv/pyidp

Also the examples presented in this paper can be found here.
Interfacing with the IDP system is currently done in a decoupled way: when

the API detects that the IDP system needs to be called, it prepares a text file

https://bitbucket.org/joostv/pyidp

94 J. Vennekens

with the appropriate vocabulary, structure and theory; it then calls IDP as an
external process and parses its output. The results of this call are cached, so that
IDP is not invoked again, as long as the KB does not change. Obviously, a tighter
integration, which avoids calling IDP as an external process and communicating
through text files, would improve the efficiency of the API. Moreover, a tight
integration might be developed which would allow us to keep an instance of the
IDP system running, such that only the differences with the previous invokation
need to be communicated when a new invokation is needed.

The IDP system offers various options which can be used to speed up certain
computations. For instance, it can make use of the XSB Prolog system3 [14] to
handle inductive definitions. The KB objects offered by our API have a method
set idp option that can be used to set such options. For instance, XSB is
enabled by:

kb.set_idp_option("xsb", "true")

6 Use Cases

In this section, we examine several ways in which the API can be used. We
pay particular attention to the ease with which our API can be integrated into
existing Python code and the functionality that it can deliver. Because we specif-
ically aim at reducing the programming effort in situations where efficiency is
of secondary importance (such as prototyping), we do not investigate compu-
tational complexity. In general, however, solutions using our API will of course
be significantly slower than purpose-built algorithms in the host language (but
comparable to using IDP as a stand-alone system).

6.1 Solving Combinatorial Problems

A typical use case for declarative systems is the solving of combinatorial prob-
lems. As an example, we consider the problem of solving Hidato puzzles. The
goal of such puzzles is to fill in the numbers 1 to n in a grid of n cells, such that
each i and i+1 are in adjoining cells (horizontally, vertically or diagonally), tak-
ing into account the fact that the position of certain numbers is fixed up-front.
We have taken a Python solver for such puzzles that is available online4 and
adapted it to our API.

As a vocabulary, we use types to represent the rows (R), columns (C) and
numbers (Nb) that need to be entered in the cells. The predicate Cell(R,C)
describes which combinations of row and column numbers corresponds to cells,
while Given(R,C,Nb) gives the numbers that are already filled in. We will
describe the solution to the puzzle by means of functions Row and Col that
map each number to the row/column in which this number is filled in.

3 http://xsb.sourceforge.net/.
4 http://rosettacode.org/wiki/Solve a Hidato puzzle#Python.

http://xsb.sourceforge.net/
http://rosettacode.org/wiki/Solve_a_Hidato_puzzle#Python

Lowering the Learning Curve for Declarative Programming 95

hid = IDP()
hid.Type("R", [1])
hid.Type("C", [1])
hid.Type("Nb", [1])
hid.Predicate("Cell(R,C)", [])
hid.Predicate("Given(R,C,Nb)", [])
hid.Function("Row(Nb): R")
hid.Function("Col(Nb): C")

As constraints, we first need to express that the solution must coincide with
the numbers that are given.

hid.Constraint("all(Row(v) == r and Col(v) == c for (r,c,v) in Given)")

Next, each cell may only contain one number and numbers may only appear
in the cells:

hid.Constraint(
"""all(c == d for c in Nb for d in Nb

if Row(c) == Row(d) and Col(c) == Col(d))""")
hid.Constraint("all(Cell(Row(n),Col(n)) for n in Nb)")

Finally, there is the constraint that each number must be in the Moore neigh-
bourhood of its successor.

hid.Constraint(
"""all(abs(Row(c) - Row(c+1)) < 2

and abs(Col(c) - Col(c+1)) < 2
for c in Nb if c < max(Nb))""")

The Python solution from which we start defines three functions: setup
initialises the data structure representing the puzzle, solve computes the solu-
tion and printboard visualises it. By making a few small changes to setup
and printboard, we can make these functions use the KB hid constructed
above. We thereby replace the entire solve function, as the solution will now
be computed by the IDP system as soon as printboard tries to visualise it.

def setup(s):
lines = s.splitlines()
hid.C = range(len(lines[0].split()))
hid.R = range(len(lines))
cellcount = 1
for r, row in enumerate(lines):

for c, cell in enumerate(row.split()):
if cell == ".": # not a cell

continue
hid.Nb.add(cellcount)
hid.Cell.add((r,c))
if cell != "__": # cell not empty

96 J. Vennekens

hid.Given.add((r,c,int(cell)))
cellcount += 1

def print_board():
d = {-1: "", 0: "__"}
bmax = max(hid.Nb)
form = "%" + str(len(str(bmax)) + 1) + "s"
matrix = [[’ ’ for i in hid.C]

for i in hid.R]
for c in hid.Nb:

matrix[hid.Row[c]][hid.Col[c]] = c
for r in matrix:

print "".join(map(lambda x:form%x,r))

We can now solve a Hidato puzzle as follows:

hi = """\
__ 33 35 __ __ . . .
__ __ 24 22 __ . . .
__ __ __ 21 __ __ . .
__ 26 __ 13 40 11 . .
27 __ __ __ 9 __ 1 .
. . __ __ 18 __ __ .
. . . . __ 7 __ __
. 5 __"""

setup(hi)
print_board()

6.2 Working with Graphs

The following class GraphKB extends the generic IDP Knowledge Base class
with some specific functionality for working with undirected graphs. When con-
structing such a GraphKB, the nodes of the graph can be initialised by means
of a given set and the edges by means of an adjacency list. The predicate Edge
is defined as the symmetric closure of the adjacency list. This class also offers a
convenience method to define the transitive closure of a given relation.

class GraphKB(IDP):

def __init__(self, nodes=[0], adj_list=[]):
super(GraphKB, self).__init__()
self.Type("Node", nodes)
self.Predicate("Adj(Node,Node)", adj_list)
self.Define("Edge(Node,Node)",

"lambda x,y: Adj(x,y) or Adj(y,x)")

Lowering the Learning Curve for Declarative Programming 97

def def_TC(self, original, tc_name):
formula = """lambda x,y: {0}(x,y) or
any({1}(x,z) and {1}(z,y)

for z in Node)""".format(original, tc_name)
self.Define(tc_name+"(Node, Node)", formula)

We can now check if a given adjacency list describes a fully connected graph:

conn = GraphKB(nodes, adj)
conn.def_TC("Edge", "Path")
conn.Constraint("all(Path(x,y) for x in Node for y in Node)")
if conn.satisfiable:

print "Graph is fully connected"

We can use a similar KB to count the number of connected components in
the graph. We do this by selecting a single representative from each component
(its “Root”) and then counting the number of these representatives.

cc = GraphKB(nodes, adj)
cc.def_TC("Edge", "Path")
cc.Predicate("Root(Node)")
cc.Constraint("""all(any(Path(r,x) for r in Root)

for x in Node if not Root(x))""")
cc.Constraint("""not any(Path(x,y)

for x in Root for y in Root if x != y)""")
print "Components: {0}".format(len(comp.Root))

In graph theory, an undirected graph is called a tree if it is connected and
does not contain cycles. When checking for a cycle in an undirected graph, we
of course have to exclude the trivial two-node cycles that would result from
traversing the same undirected edge in both directions. This in fact makes it
easier to use IDP to check that there is a cycle, than to check that there is
not one. The following knowledge base tries to guess the direction in which to
traverse each edge in order to produce a cycle. If it is unsatisfiable, there are no
cycles.

cyclic = GraphKB()
cyclic.Predicate("Traverse(Node,Node)")
cyclic.Constraint("all(Edge(x,y) for (x,y) in Traverse)")
cyclic.Constraint(
"not any(Traverse(y,x) for (x,y) in Traverse)")

cyclic.def_TC("Traverse", "TravTC")
cyclic.Constraint("any(TravTC(x,x) for x in Node)")

We can now combine the two knowledge bases to check whether a given
adjacency list indeed describes a tree.

def is_tree(adj_list):
cyclic.Adjacent = adj_list
conn.Adjacent = adj_list
return (bool(conn.satisfiable)

and not bool(cyclic.satisfiable))

98 J. Vennekens

This example illustrates how additional functionality can be built on top of
the KB objects of our API. In addition, the ability to combine the results of
calls to different KBs also allows us to implement functionality that would be
harder to implement in a single IDP KB.

6.3 Flexible Input/output

Bio-informatics applications may need to translate between strings of bases and
strings of amino acids. In this translation, a codon (i.e., a sequence of three bases)
corresponds to a single amino acid, according to a fixed and well-known table.
For instance, the following nine bases correspond to the following three amino
acids:

a c t︸︷︷︸ g a g
︸ ︷︷ ︸

t c a︸︷︷︸

T E S

The following knowledge base declaratively defines the relation between the
two different kinds of sequence. Here, the sequences are represented by mappings
of indices to, respectively, bases and amino acids.

k = IDP()
k.Type("Base", [’t’, ’c’, ’a’, ’g’])
codons = [(a,b,c) for a in k.Base

for b in k.Base for c in k.Base]
amino_acids = (’FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRR’+

’IIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG’)
k.Type("AmAcid", set(amino_acids))
k.Type("AIndex")
k.Type("BIndex")

k.Function("Codon(Base, Base, Base): AmAcid",
dict(zip(codons, amino_acids)))

k.Function("BaseAt(BIndex): Base")
k.Function("AmAcidAt(AIndex): AmAcid")
k.Constraint(

"""all(Codon(BaseAt(3*i), BaseAt(3*i+1), BaseAt(3*i+2))
== AmAcidAt(i) for i in PIndex)""")

The following function translates a regular Python list into a dictionary that
maps list indices to values. It will be convenient to construct an interpretation
for the BaseAt and/or AmAcidAt functions.

def sequence(list_):
return dict(enumerate(list))

Using the above knowledge base, we can translate bases to amino acids as
follows:

Lowering the Learning Curve for Declarative Programming 99

bases = ’actgagtca’
k.BaseAt = sequence(bases)
k.BIndex = range(len(bases))
k.AIndex = range(len(seq) / 3)
print k.AmAcidAt

Because of its purely declarative nature, the same knowledge base can also
be used to perform the translation in the other direction.

amino_acids = ’TES’
k.AmAcidAt = sequence(amino_acids)
k.PAndex = range(len(seq))
k.BIndex = range(len(seq) * 3)
print k.BaseAt

6.4 Self-maintaining Data-Structures

Whenever the interpretation of one or more symbols in the vocabulary of a
knowledge base changes, the API will automatically recompute the interpreta-
tion of the other symbols as soon as this is needed. To illustrate, we implement
the following simple method of constructing a random fully connected directed
acyclic graph:

– While there are still unconnected nodes:
• Randomly select a pair (x, y) of unconnected nodes
• Add an edge from x to y

Using the GraphKB class of Sect. 6.2, we can implement this as follows:

kb = GraphKB(["a","b","c","d"])
kb.def_TC("Edge", "TC")
kb.Define("Unconnected(Node,Node)",
"""lambda x,y: x != y and not (TC(x,y) or TC(y,x))""")

import random
while len(kb.Unconnected) > 0:

kb.Edge.add(random.choice(list(kb.Unconnected)))
print kb.Edge

Each time the Edge relation is updated in the while-loop, the knowledge
base is automatically invoked to keep the Unconnected relation up-to-date.

7 Related Work

There is already a long history of work attempting to close the gap between
imperative and declarative programming [1]. We briefly compare our approach
to some recent work in this area.

100 J. Vennekens

Several such approaches exist in the domain of Answer Set Programming.
In [9], Python is used a layer on top of the ASP solver Claps, in order invoke this
solver in this different ways. In [7], Python and ASP are more tightly coupled: the
ASP solver cannot only be invoked from Python, but various pieces of Python
code can also be called during the solving process. In contrast to our system, both
these approaches expect the Python programs to be written by a knowledgable
ASP programmer. The approach of [8] is most similar to ours: it embeds ASP
in Java, allowing information contained in standard Java data structures to be
completed or checked by means of ASP programs. However, while standard Java
data standard structures are used, the ASP programs are still written in their
standard syntax, again requiring a knowledgable ASP programmer.

In [16], an approach is presented in which a constraint solver is not added to
a single host language, but can be used in the development of a domain-specific
language in Racket. Like ours, the motivation behind this work is to allow the
power of declarative systems to be more widely used. However, their approach
differs, because they count on an intermediary—the designer of the domain-
specific language—to hide the complexity of the declarative system, whereas our
approach focuses on creating an interface that is natural enough to offer KB
functionality directly.

In [11], a constraint solver is integrated into the Scala language. As ours
does, their approach reuses the syntax of the host language to interface with the
declarative system. A key difference is that, in their approach, the programmer
is explicitly manipulating, combining and solving constraints, which makes the
constraint solver more present in the eventual source code. A second difference
is of course that Scala currently appears to be less widely known than Python.

In [12], a reasoner for FO extended with transitive closure is integrated into
Java. Their KB language is therefore very similar to (but more restricted than)
that of IDP. When it comes to the integration in Java, there are two main differ-
ences to our approach. First, the declarative knowledge is not written in expres-
sions of the host language, but in a separate language (the Alloy-like JFSL [18]).
Second, the integration into Java is done in an object-oriented way: the program-
mer defines classes in which formulas are added as, among others, class invariants,
method pre-/postconditions and frame conditions. In comparison, our Python
API seems more lightweight, since it does not require an object-oriented approach.
When it comes to computational performance, [12] reports good results, which our
implementation is not able to match.

In summary, we believe that our approach fills a niche as an easy-to-learn
rapid prototyping API, that, due to Python’s current popularity, may speak to
a large audience.

8 Conclusions and Future Work

Developing an algorithm to solve a particular computational problem may
require a substantial effort. Moreover, it may be time-consuming to adapt such
an algorithm to even small changes in the problem specification. The use of

Lowering the Learning Curve for Declarative Programming 101

a declarative system may therefore provide an interesting alternative, especially
in situations were flexibility and development speed are of prime importance
(and computational efficiency is not). Typically, this occurs in the prototyping
stages of an application.

Programmers may nevertheless be reluctant to use a declarative system for
a number of reasons:

– the system may be hard to learn for themselves or for their coworkers;
– generating input for the system in the appropriate format may require a large

effort, as may parsing the output of the system and extracting the necessary
information from it.

In this paper, we have presented a Python API for the IDP system that
avoids these problems. It uses only standard Python objects and expressions,
which has two main benefits:

– there is essentially no learning curve: the programmer needs to know nothing
about the IDP system or its input syntax in order to make successful use of
the API;

– it is easy to incorporate the API into existing Python code, or to replace an
existing use of the API by native Python code.

We have presented several use cases of this API, illustrating its use to solve
computational problems, to perform various graph computations, to implement
flexible input/output behaviour and self-maintaining data structures.

One problem with the current implementation of our API is that there
is no support for debugging the declarative specification, which may be espe-
cially problematic if the specification contains a bug that makes it inconsistent.
In future work, we will address this issue. This will enable us to conduct exper-
iments in which the API is used by programmers who are not familiar with the
IDP system.

References

1. Apt, K.R., Schaerf, A.: Programming in alma-0, or imperative and declarative
programming reconciled. In: FroCos (1998)

2. Bendisposto, J., Clark, J., Dobrikov, I., Karner, P., Krings, S., Ladenberger, L.,
Leuschel, M. and Plagge, D.: ProB 2.0 tutorial. In: Proceedings of the 4th Rodin
User and Developer Workshop, TUCS Lecture Notes (2013)

3. Bruynooghe, M., Blockeel, H., Bogaerts, B., De Cat, B., De Pooter, S., Jansen, J.,
Labarre, A., Ramon, J., Denecker, M., Verwer, S.: Predicate logic as a modeling
language: modeling and solving some machine learning and data mining problems
with IDP3. Theor. Pract. Logic Program. 15(06), 783–817 (2014). Accepted

4. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3 24

5. Denecker, M.: The well-founded semantics is the principle of inductive definition.
In: Dix, J., Cerro, L.F., Furbach, U. (eds.) JELIA 1998. LNCS (LNAI), vol. 1489,
pp. 1–16. Springer, Heidelberg (1998). doi:10.1007/3-540-49545-2 1

http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/3-540-49545-2_1

102 J. Vennekens

6. Denecker, M., Ternovska, E.: A logic of nonmonotone inductive definitions. ACM
Trans. Comput. Logic 9(2), 14 (2008)

7. Eiter, T., Fink, M., Ianni, G., Krennwallner, T., Redl, C., Schüller, P.: A model
building framework for answer set programming with external computations.
Theor. Pract. Logic Program. 16(4), 418–464 (2016)

8. Febbraro, O., Grasso, G., Ricca, F., Leone, N., JASP: A framework for integrating
answer set programming with Java. In: KR (2012)

9. Gebser, M., Kaminski, R., Obermeier, P., Schaub, T.: Ricochet robots reloaded:
a case-study in multi-shot ASP solving. In: Eiter, T., Strass, H., Truszczyński,
M., Woltran, S. (eds.) Advances in Knowledge Representation, Logic Program-
ming, and Abstract Argumentation. LNCS (LNAI), vol. 9060, pp. 17–32. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-14726-0 2

10. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: a conflict-driven
answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007.
LNCS (LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-72200-7 23

11. Köksal, A., Kuncak, V., Suter, P.: Constraints as control. In: POPL2012 (2012)
12. Milicevic, A., Rayside, D., Yessenov, K., Jackson, D.: Unifying execution of imper-

ative and declarative code. In: Proceedings of 33rd International Conference on
Software Engineering (ICSE) (2011)

13. Mitchell, D.G, Ternovska, E.: A framework for representing and solving NP search
problems. In: AAAI, pp. 430–435 (2005)

14. Swift, T., Warren, D.S.: XSB: extending prolog with tabled logic programming.
Theor. Pract. Logic Program. 12(1–2), 157–187 (2012)

15. Tasharrofi, S., Ternovska, E.: A semantic account for modularity in multi-language
modelling of search problems. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) Fro-
CoS 2011. LNCS (LNAI), vol. 6989, pp. 259–274. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-24364-6 18

16. Torlak, E., Bodik, R.: Growing solver aided languages with ROSETTA. In: Pro-
ceedings of ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (2013)

17. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. J. ACM 38(3), 620–650 (1991)

18. Yessenov, K.: A lightweight specification language for bounded program verifica-
tion. Master’s thesis, MIT (2009)

http://dx.doi.org/10.1007/978-3-319-14726-0_2
http://dx.doi.org/10.1007/978-3-540-72200-7_23
http://dx.doi.org/10.1007/978-3-540-72200-7_23
http://dx.doi.org/10.1007/978-3-642-24364-6_18

Failing Faster: Overlapping Patterns
for Property-Based Testing

Jonathan Fowler(B) and Graham Hutton

School of Computer Science, University of Nottingham, Nottingham, UK
psxjf@nottingham.ac.uk

Abstract. In property-based testing, a key problem is generating input
data that satisfies the precondition of a property. One approach is to
attempt to do so automatically, from the definition of the precondi-
tion itself. This idea has been realised using the technique of needed
narrowing, as in the Lazy SmallCheck system, however in practice this
method often leads to excessive backtracking resulting in poor efficiency.
To reduce the amount of backtracking, we develop an extension to needed
narrowing that allows preconditions to fail faster based on the use of
overlapping patterns. We formalise our extension, show how it can be
implemented, and demonstrate that it improves efficiency in many cases.

1 Introduction

Property-based testing, popularised by systems such as QuickCheck [4], is an
automated approach to testing in which a program is validated against a specifi-
cation. In most tools, the specification consists of properties written as programs
outputting Boolean values. Input data is generated randomly or systematically,
and the program is executed in an attempt to find a counterexample. In order
to generate the input data, it is often required to write a custom generator. For
example, consider the following simple property of a sorting function:

propSort n l = perm n l =⇒ sort l ≡ [0 . . (n − 1)]

This property has two arguments, given by a number n and a list of numbers l .
The property itself states that if the list l is a permutation of the numbers from
0 to n −1, then sorting this list will give the expected result. However, while the
above definition captures a valid property, it suffers from a practical problem.
In particular, if we use a standard generator for a list of numbers, then the
precondition perm n l will rarely be met, making it difficult to generate enough
test cases to adequately test the sort function.

To overcome this problem, a custom generator is often used. For example,
the QuickCheck system [4] provides a range of type-classes and combinators for
building custom generators, using which we can define a generator for properties
such as propSort . Nevertheless, writing custom generators is time consuming and
for more complex examples, such as generating well-typed terms, is the subject of
ongoing research [12,17]. Furthermore, it is difficult to combine such generators,
c© Springer International Publishing AG 2017
Y. Lierler and W. Taha (Eds.): PADL 2017, LNCS 10137, pp. 103–119, 2017.
DOI: 10.1007/978-3-319-51676-9 7

104 J. Fowler and G. Hutton

in the sense that two generators that are efficient in isolation may no longer be
efficient when they are combined together in some way.

Another approach is to attempt to derive an efficient generator from the def-
inition of the precondition, in our example the property perm. One realisation
of this approach is to use the technique of needed narrowing [1,10] from func-
tional logic programming. For example, Lazy Smallcheck [19] adopts a narrowing
strategy and EasyCheck [2] directly uses the needed narrowing language Curry.
Using this approach, a program is evaluated in a speculative manner. Beginning
with a free input variable, the variable is refined by choosing a constructor when
the value is required to proceed with evaluation. If evaluation ends negatively
then the process backtracks, while if it ends positively then we have generated a
value satisfying the condition. However, a naturally written property often does
not make an efficient generator. In particular, the generator may be forced to
backtrack excessively if it finds itself in a branch of the program for which the
constraints are never satisfied, as we shall see in the next section.

In this paper, we explore a new technique to help reduce the amount of
backtracking that is required in a needed-narrowing approach to property-based
testing. The technique, which is a generalisation of the parallel conjunction app-
roach used in several tools [3,13,19], allows evaluation of multiple branches of
the program simultaneously, potentially allowing a result to be derived at an
earlier stage of refinement. Particularly for commonly-used operators such as
conjunction, disjunction and addition, both arguments can be evaluated in tan-
dem. To achieve this, we use a form of overlapping pattern matching. The pattern
matching is resolved in an order-independent fashion and overlapping patterns
are allowed. More precisely, in this paper we:

– Motivate and introduce the use of overlapping patterns for needed narrowing
property-based testing using our permutation example (Sect. 2).

– Define our source language and formalise the notion of overlapping patterns
within this language using a needed narrowing semantics (Sect. 3).

– Give an overview of our prototype implementation (Sect. 4), and explore the
benefits of overlapping patterns in two case studies (Sect. 5).

– Compare with related work (Sect. 6) and conclude (Sect. 7).

The paper is aimed at a general functional programming audience with some
experience of property-based testing systems such as QuickCheck, but no spe-
cialist knowledge of needed narrowing is assumed. For the purposes of examples,
we use a Haskell-like syntax and semantics. Although we only apply our tech-
nique to property-based testing, we believe it could also be used to improve the
efficiency of other tools and languages based on needed narrowing.

2 Motivation and Basic Idea

To motivate the need for overlapping pattern matching we take a deeper look at
the example from the introduction. We show that naively evaluating the perm
precondition with a needed narrowing strategy results in excessive backtracking,

Failing Faster: Overlapping Patterns for Property-Based Testing 105

and how the use of an overlapping conjunction operator mitigates the problem.
We begin by defining the perm condition as follows:

perm :: Nat → [Nat] → Bool
perm n l = length l ≡ n ∧ all (<n) l ∧ allDiff l

That is, a list l is a permutation of the natural numbers below a given limit n
if three conditions are satisfied: the list has the correct length, all the numbers
in the list are below the limit, and all the numbers in the list are different. Pre-
conditions defined as a conjunction of constraints in this manner are a common
pattern in properties. Because needed narrowing is more effective on algebraic
data types than on primitive data types [16], we assume an inductive type Nat
of natural numbers built up from basic constructors Zero and Suc.

By running a needed narrowing evaluation on the above definition for perm,
we can generate values satisfying the constraints. Needed narrowing is based
upon the idea of extending normal evaluation to include free variables, with the
values of such variables being refined as evaluation proceeds. We give a brief
overview to the technique below; for a more in-depth introduction, see [9,15].

At the start of evaluation, a free variable is chosen for each argument of the
program and the program is reduced until the value of a variable is required
to continue. The program is then suspended on the variable. To allow further
progress, a constructor is chosen for the suspended variable and the program is
then reduced further in the same way. If evaluation fails to succeed we backtrack,
choosing alternative constructors for each variable.

For example, if we consider the first constraint length l ≡ n in perm for the
case when n = 4, needed narrowing will yield the following solution:

l = [x0, x1, x2, x3]

Along the way we would discard lists such as [x0, x1, x2] which fail to satisfy the
constraint. The variables x0–x3 are free in the solution, in the sense they can be
substituted for any value while still satisfying the constraint. Continuing with
evaluation of the second constraint, all (<4) l , we further refine the variables.
We consider a partial solution, in which the constraint is not yet satisfied, to
illustrate a situation in which excessive backtracking will occur:

l = [1, 1, x2, x3]

This list begins with two ones and according to the current constraint, all (<4) l ,
we have neither failed nor succeeded and as such we should carry on refining x2

and x3. However, when we arrive at the final constraint, allDiff l , this partial
solution will fail, and we have to backtrack over all combinations of x2 and
x3 before we can continue again. Moreover, as we consider generating longer
permutations, the amount of backtracking increases exponentially.

Note that the problem is not resolved by reordering the constraints. For
example, suppose that we swapped the order of the last two constraints:

perm n l = length l ≡ n ∧ allDiff l ∧ all (<n) l

106 J. Fowler and G. Hutton

Then we quickly run into a similar issue. For example, the partial solution,
l = [4, x1, x2, x3] does not fail the allDiff l constraint, however it will fail the
all (<4) l constraint but only after the remaining variables x1–x3 are refined
while evaluating allDiff . In both cases, the backtracking is caused because a
partial solution fails to satisfy a later constraint but this is not evident at the
time due to the evaluation order. A natural way to avoid this problem is to
evaluate all the constraints simultaneously, rather than sequentially.

To realise this behaviour, we replace traditional pattern matching in our
language with overlapping pattern matching. Pattern matching in the language
is then order-independent, and in each iteration of needed narrowing all relevant
arguments to a pattern match are normalised. By way of example, consider the
logical conjunction operator, which is traditionally defined as follows:

False ∧ = False
True ∧ x = x

Using this definition, progress can only be made by evaluating the first argument
of a conjunction, because each clause of the definition depends on the value of
the first argument. Instead, we re-define the operator using overlapping patterns,
using a special-purpose pragma to indicate the change in intended semantics:

{-# OVERLAP (∧) #-}
False ∧ = False

∧ False = False
True ∧ x = x
x ∧ True = x

The definition has two new clauses, given by simply commuting the order of
the arguments in the original definition. The idea is that a pattern match can
succeed on any of the four clauses, independent of the order that they are stated
in. Using this definition, progress can be made by evaluating either argument of
the conjunction as the new clauses are no longer dependent on the first argument.
For example, we can now reduce x ∧ False to False for any expression x , which
is not the case with the original definition. To take advantage of this additional
power, the underlying needed narrowing mechanism must be modified to evaluate
both arguments of the pattern match before it refines variables.

In perm example above, we considered the list l = [1, 1, x2, x3] and found that
it required a large amount of backtracking. In particular, the constraint allDiff l
only failed once we had considered all combinations of x2 and x3. The new
overlapping conjunction operator avoids this problem because it is not biased
to the left-argument, allowing allDiff l to fail immediately for this example list
without the need to further refine the remaining variables.

This additional efficiency is also borne out in practice. For example, using
the implementation that we describe in Sect. 4, in the time it takes to generate
one hundred valid permutations of length eight for the perm constraint defined
using the traditional conjunction operator, we can generate one hundred valid
permutations of length thirty using the overlapping version.

Failing Faster: Overlapping Patterns for Property-Based Testing 107

However, we have to be careful when using overlapping pattern matching not
to introduce non-determinism. Consider the following dangerous function:

{-# OVERLAP danger #-}
danger False = False
danger False = True
danger True True = True

Using this definition, danger False False can reduce to either False or True,
depending on whether the first or second clause is used, and is therefore non-
deterministic. To counter this, we require confluence laws which guarantee that
evaluation is deterministic if all expressions are terminating.

Other logical operators such as disjunction and implication can be defined
using overlapping patterns in a similar manner to conjunction, and will ben-
efit from similar improvements in efficiency. The mechanism can also be used
with other data types. For example it is straightfoward to define overlapping
versions of the addition and maximum operators on natural numbers, and for
the applicative operator <∗> on the Maybe type [14]. As illustrated by the lat-
ter example, overlapping definitions are not restricted to commutative operators.
The maximum function is defined and used in Sect. 5, and a range of other useful
overlapping definitions are provided in our implementation [8].

3 Generalizing and Formalizing

In this section we define the syntax and semantics of our language of overlapping
patterns. We consider the normalising subset of the language and show that a
confluence restriction on definitions is sufficient to guarantee that the language
is deterministic. We then extend the semantics with needed narrowing, and show
that the new semantics is sound and complete with respect to the original.

We use a simple functional programming core language with definitions, con-
structors, variables, lambda expressions and application. To simplify the theory,
the language only allows one form of pattern matching: at the top-level of a
function definition, interpreted in an overlapping, order-independent manner.
However, other forms of pattern matching, such as case expressions and non-
overlapping patterns, can readily be rewritten in this form.

The syntax of the language is formally defined as follows:

Defn X ::= Var Patt = ExprX
ExprX ::= Con | Var | X | ExprX ExprX | λVar . ExprX
Patt ::= Con Patt | Var

That is, a definition is made up of a list of clauses, with a pattern for each
argument on the left and an expression on the right. We use an overline to
represent a list of elements, e.g. Patt is a potentially empty list of patterns.
Expressions and definitions are parameterised by a set of free variables X, which

108 J. Fowler and G. Hutton

is only used in the needed narrowing semantics. The language has standard set
of typing rules, which we omit for brevity. Each type has a set of constructors
and the patterns used in definitions should form a covering of these constructors.
Each variable should only appear once in a pattern, and the only free variables
in an expression should be those that appear in the set X .

We often use f for definitions, e for expressions, c for constructors, u and v
for closed variables, x and y for free variables, and p and q for patterns.

3.1 Semantics

We give a standard small-step operational semantics to the language in a con-
textual style. We start by defining a full reduction semantics, in which any
reducible term in an expression can be reduced. This allows us to define notions
of equivalence and establish confluence properties. We then define a call-by-name
evaluation strategy by limiting the form of contexts that can be used, which is
then used to define the needed narrowing strategy.

First we define a local semantics →R ⊆ ExprX ×ExprX that performs basic
reduction steps on expressions, which is then lifted into an evaluation context. As
usual, a substitution is a mapping from variables to expressions, and we write
e[s] for the application of a substitution to each variable in an expression, ∅
for the identity substitution that maps each variable to itself, and s; t for the
composition of substitutions. The first local rule is the standard β-rule:

(λv.e) e′ →R e[v 	→ e′]
sub

The second rule states that we can reduce a definition if the pattern of any of its
clauses matches the arguments, where f p = e ∈ defn(f) means that the clause
f p = e is part of the definition for the function f . In contrast to traditional
pattern matching, the clauses of a definition may be applied in any order.

f p = e′ ∈ defn(f) Matches(p, e, s)
f e →R e′[s]

match

The predicate Matches used above captures the idea of a successful match of
expressions against patterns, where Match gives the definition for a single pat-
tern, Matches for a list of patterns, and s is the resulting substitution:

Match(v, e, {v 	→ e})
Matches(p, e, s)
Match(c p, c e, s)

Matches(ε, ε, ∅)
Match(p, e, s) Matches(p, e, t)

Matches(p p, e e, s; t)

Failing Faster: Overlapping Patterns for Property-Based Testing 109

In turn, a context is an expression with a singular hole in any location, as
defined by the following set of inference rules:

[] context
hole

C context
(λv.C) context

lam

C context
(C e) context

app-l
C context

(e C) context
app-r

We use inference rules above rather than a grammer because the extra generality
of this notation is used when contexts are revised later on. As usual, we write C[e]
for the result of replacing the hole in C with the expression e.

Using the local semantics and the notion of contexts we can now define the
full reduction semantics for expressions in our language.

Definition 1. The full reduction semantics, →⊆ ExprX ×ExprX , is given by:

e →R e′ C context
C[e] → C[e′]

Definition 2. →∗ is the reflexive/transitive closure of →.

To ensure that our language is deterministic and avoid examples such as
danger False False from Sect. 2 that have more than one normal form, we require
all definitions to satisfy a confluence property. To formalise this property we first
define the notions of definitional equivalence and unification.

Definition 3. Two expressions are definitionally equivalent, written e ≡ e′, if
there exists reduction sequences from e and e′ to the same expression:

e ≡ e′ ⇐⇒ ∃e′′. e →∗ e′′ ∧ e′ →∗ e′′

Informally, two patterns are unifiable if there exists an expression which
matches both the patterns. We can formalise this by giving a pair of substitutions
which when applied to each pattern yield the common expression.

Definition 4. The most general unifier is defined by the inference rules below.
Unify(p, q, s1, s2) denotes the unification of patterns p and q by substitutions
s1 and s2, and similarly for a list of patterns with Unifies. Note we are using
the assumption that every variable appears only once in each pattern here.

Unifies(p, q, s1, s2)
Unify(c p, c q, s1, s2) Unify(v, p, {v 	→ p}, ∅)

Unify(p, v, ∅, {v 	→ p})

Unifies(ε, ε, ∅, ∅)
Unify(p, q, s1, s2) Unifies(p, q, s′

1, s′
2)

Unifies(p p, q q, s1; s′
1, s2; s′

2)

110 J. Fowler and G. Hutton

This definition has the expected behaviour, that is:

Unify(p, q, s1, s2) =⇒ p[s1] = q[s2] (unifier)
∧ ∀t1t2. p[t1] = q[t2]. ∃r. s1; r = t1 ∧ s2; r = t2 (most general)

If the patterns of two clauses of a definition are unifiable then, given a suit-
able context, it is possible for two different MATCH reductions in our semantics
to be applied. In order to maintain determinism for such clauses a confluence
restriction is required. The confluence restriction states that the right-hand sides
of each pair of clauses must be definitionally equivalent under their unifying sub-
stitution if one exists. For the terminating subset of the language we can check
whether a definition satisfies the confluence property automatically by generat-
ing the unifiers pairwise and normalising each clause.

Definition 5. A definition satisfies the confluence restriction if for any pair of
clauses, f p = e and f q = e′, we have the following property:

Unifies(p, q, s1, s2) =⇒ e[s1] ≡ e′[s2]

Theorem 1. The relation →∗ is confluent if all the definitions satisfy the con-
fluence restriction, i.e. for any reductions e →∗ e1, e →∗ e2, there exists an
expression e′ such that e1 →∗ e′ and e2 →∗ e′.

Proof. By parallel reduction with special consideration for overlapping
patterns. ��

It follows in the standard way from the above confluence property that any
expression that only has finite reduction sequences has precisely one normal form.
Hence, our semantics is deterministic for such expressions. We return to the issue
of expressions with infinite reduction sequences in the concluding section.

3.2 Evaluation Order

Our current semantics allows reduction rules to be applied in any context and
in any order. This is convenient for defining the behavioural properties of the
semantics, but in order to define the needed narrowing semantics and give an
efficient implementation, we need to restrict where reduction rules are applied.
To do this we define a subset of contexts called evaluation contexts.

Our notion of evaluation context is call-by-name, and hence only evaluates
the left-hand side of an application. When the left-most expression is a definition,
we evaluate the arguments until a pattern match is possible. For efficiency, we
only reduce arguments that could lead to a pattern match. Sometimes more
than one argument needs to be reduced to allow a pattern match, in which case
we reduce the arguments in a left-biased order. The rules are defined formally
below, where C is a list of expressions with one context.

• evalcxt
hole

C evalcxt
(C e) evalcxt

app-l
Subjects(C, f)

(f C) evalcxt
args

Failing Faster: Overlapping Patterns for Property-Based Testing 111

The Subject predicates specify the parts of the arguments that should be
reduced. The contexts which form the subjects have a clause of the definition for
which they are the first sub-expression blocking the pattern match. All expres-
sions to the left of the subject should already match their respective patterns in
the clause. The predicates are defined by the following rules:

Subject(C, p) Matches(p, e0,) f p0 p p1 = ∈ defn(f)
Subjects(e0 C e1, f)

C evalcxt
Subject(C, c p)

Subject(C, p) Matches(p0, e0,)
Subject(c e0 C e1, c p0 p p1)

Definition 6. The evaluation reduction semantics, →E , is now defined by:

C evalcxt e →R e′

C[e] →E C[e′]

3.3 Needed Narrowing

The needed narrowing semantics reduces an expression until all the evaluation
contexts are suspended on a free variable. At this point we refine the left-most
suspending variable to a new value, with the resulting refinements to the free
variables being stored in an accompanying substitution. We call this type of
substitution a refinement to disambiguate it from the general notion.

Formally, a refinement σ of type X 	→ Y is a function from the free variable
set X to partial values with free variables Y , where a partial value is a term build
up from constructors and variables. Composition of refinements, which we denote
by >=>, is defined in the standard way. The null refinement, return ∈ X 	→ X,
corresponds to the trivial substitution that maps each free variable to itself.

Definition 7. The narrowing set of a expression, narrowing(e), is the set of
refinements that replace the left-most suspended variable with a constructor of
the correct type with new free variables for the fields. The narrowing set should
be complete, in the sense that it contains every constructor of the type.

For example, the narrowing set for an expression suspended on a variable x
of type Nat is (where x/c is the point refinement replacing x with c):

{x/ Zero, x/ Suc y} (y is a fresh variable)

We can now define the needed narrowing reduction as follows:

Definition 8. The needed narrowing reduction, � ⊆ ExprX × (ExprY × X 	→
Y), is defined by the following two inference rules:

e →E e′

e � 〈e′, return〉
e �→E σ ∈ narrowing(e)

e � 〈e[σ], σ〉

112 J. Fowler and G. Hutton

The first rule states that any evaluation reduction is also a needed narrowing
reduction, with no refinement necessary. The second states that if no such reduc-
tion is possible then a refinement from the narrowing set should be used.

Definition 9. The natural extension to the reflexive/transitive closure of the
needed narrowing reduction is given by composing the resulting refinements:

e �∗ 〈e[σ], σ〉
e � 〈e, σ〉 e′ �∗ 〈e′′, σ′〉

e �∗ 〈e′′, σ >=> σ′〉

Note that in the reflexive case we use an arbitrary substituton σ rather than
the null refinement return, as this simplifies the formulation of the completeness
result for our new semantics, which we now present along with soundness.

Theorem 2. (Needed narrowing is sound.) For every needed narrowing reduc-
tion sequence there exists a corresponding reduction in the original semantics:

e �∗ 〈e′, σ〉 =⇒ e[σ] →∗
E e′

Proof. By induction on the needed narrowing reduction chain. ��
To ensure that the corresponding completeness theorem is valid, we restrict

our attention to expressions that strongly normalise under any refinement, which
we denote using the predicate Norm.

Theorem 3. (Needed narrowing is complete.) For every reduction of a normal-
ising expression there is a corresponding needed narrowing reduction:

Norm(e0) ∧ e0[σ] →∗
E e1 =⇒ ∃ e′

1. e0 �∗ 〈e′
1, σ〉 ∧ e1 ≡ e′

1

Proof. By induction on the length of reduction sequences, which are guaranteed
to be finite by the normalisation precondition. In order to complete the proof,
we require a slightly generalised induction hypothesis:

Norm(e0) ∧ Norm(e′
0) ∧ e0[σ] →∗

E e1 ∧ e0 ≡ e′
0

=⇒ ∃ e′
1. e0′ �∗ 〈e′

1, σ〉 ∧ e1 ≡ e′
1

��

4 Implementation

In this section we give an overview of our prototype implementation of a
property-based testing system based upon the ideas that we have introduced
in the previous sections. The system itself is freely available on GitHub [8].

The source language used in the implementation is a core functional lan-
guage with a Haskell-like syntax. The language includes algebraic data types
and supports definitions with both overlapping and traditional pattern match-
ing. Definitions are not currently checked for confluence, but as noted earlier
this would be possible in a more mature implementation. For the purposes of

Failing Faster: Overlapping Patterns for Property-Based Testing 113

the case studies in the next section we use Haskell syntax, which is translated
into caseless monomorphic code in our implementation.

The implementation realises the needed-narrowing evaluation in a virtual
machine encoded in Haskell. The result of evaluation is given by a lazy search
tree, where each node comprises a free variable and sub-trees that provide con-
structor bindings for the variable, and the leaves are normal-form results. Dif-
ferent search strategies correspond to different methods of traversing the tree.

Properties in our system are functions with return type Result , which repre-
sents three possible outcomes: a failed precondition, in which case the test case
is invalid; a successful result, where the test case satisfies the property; and a
failure, where the test case is a counterexample. Properties are typically defined
using a specialised implication operator (=⇒) :: Bool → Bool → Result .

Our system implements a random search strategy. At each node we select
a random constructor according to a defined distribution, until we arrive at a
result. If the precondition failed, we backtrack to try and find a valid result. It
is sensible to limit the amount of backtracking as sometimes we might arrive at
a state with no nearby solutions. We do this by limiting how many variables we
can reverse, randomly enumerating all possible constructors at each variable in
an attempt to find a continuation. For example, if the backtrack limit is set to
three, and a failure occurs at a node which is twelve deep in the tree, we will
backtrack to a minimum of depth nine in search of a solution.

5 Case Studies

In this section we consider two examples of using our system in practice. The
first example involves the generation of ordered trees and demonstrates how
overlapping patterns can be used to encode bespoke size constraints. The second
generates typed expressions for a simple language and demonstrates a useful
technique for writing efficient narrowing generators. In both examples we focus
on the generation of data satisfying a constraint.

Our aim in each case is to find a definition of the constraint that eliminates
the need for backtracking (apart from rebinding of a single constructor). We
say that such a constraint fails fast. Formally, a constraint fails fast if when
testing any partial value against the constraint it either directly fails or there is
a refinement of the value that succeeds. The needed narrowing generator formed
by a constraint which fails fast is generally efficient. All our examples, together
with more detailed performance results, are available on GitHub [8].

5.1 Ordered Trees

Consider a type of binary trees with natural numbers stored in the nodes, with
the additional constraint that numbers within the tree are ordered:

114 J. Fowler and G. Hutton

data Tree = Leaf | Node Tree Nat Tree
ordered :: Tree → Bool
ordered Leaf = True
ordered (Node t0 a t1) = allTree (� a) t0 ∧ allTree (� a) t1

∧ ordered t0 ∧ ordered t1

Note that ordered uses the overlapping version of conjunction to ensure that it
can be tested in an efficient manner, and is defined using an auxiliary function
allTree that checks if every element in a tree satisfies a given condition.

Now consider a function to delete a number from a tree while still maintaining
the ordering invariant, as captured by the following property [15,16]:

propDelete :: Nat → Tree → Bool
propDelete a t = ordered t =⇒ ordered (delete a t)

Unfortunately, if we test this property in its current form it will often fail to halt,
because randomly generated values of recursively defined types such as trees are
often infinite. To resolve this problem, narrowing-based testers usually limit
the size of the solution by depth or by the number of constructors [15,16,19].
However, these metrics are often too simple to avoid backtracking.

To avoid bactracking in our example we need to limit only the depth of
the tree and not the depth of elements (limiting the depth of elements limits
their value but they have a minimum value dictated by the preceding elements.)
Overlapping patterns allow us to limit the size with bespoke constraints. A
function to calculate the depth of a tree can be defined as follows:

depthTree :: Tree → Nat
depthTree Leaf = Zero
depthTree (Node t1 t2) = Suc (max (depthTree t1) (depthTree t2))

In turn, our property can then be refined to include a depth limit:

propDelete n a t = ordered t ∧ depthTree t � n =⇒ ordered (delete a t)

The use of overlapping patterns is crucial in two ways for this kind of example.
Firstly, in the new definition of propDelete, the sizing constraint relies on over-
lapping conjunction to be visible while the ordering constraint is being tested.
Secondly, and more interestingly, the definition for depthTree relies on an over-
lapping version of the maximum function for natural numbers:

{-# OVERLAP max #-}
max :: Nat → Nat → Nat
max Zero Zero = Zero
max (Suc x) y = Suc (max x (pred y))
max x (Suc y) = Suc (max (pred x) y)

The auxiliary function pred decrements a natural number, stopping at zero. A
traditional maximum function would be left-biased and so the right branch of
the tree could become arbitrarily large without triggering the size limit.

Failing Faster: Overlapping Patterns for Property-Based Testing 115

The constraint ordered t ∧ depthTree t � n fails fast for any n. Although on
initial testing overlapping patterns may not seem to give a performance benefit,
analysis of the results show that without overlapping patterns the distribution
is heavily skewed towards trivial small trees. If the shape of the tree is given,
overlapping patterns offer a significant performance improvement.

5.2 Well-Typed Expressions

In this example we generate typed expressions for a simple language. We use this
example to demonstrate a technique for building constraints that fail fast which
combines well with the use of overlapping patterns. The language has addition,
conditional expressions, natural numbers, and logical values:

data Expr = Add Expr Expr | If Expr Expr Expr | N Nat | B Bool

A useful property for this language states that for any well-typed expression
up to a given depth, evaluating the expression will not produce an error:

propEval n e = typed e ∧ depthExpr e � n =⇒ notError (eval e)

We will focus on the typed condition. This condition has a simple definition in
terms of a more general function typeof that attempts to determine the type
of an expression, which may be either Nat or Bool , with the Maybe mechanism
being used handle the possibility that an expression may be ill-typed:

data Type = Nat | Bool
typeof :: Expr → Maybe Type
typeof (Add e e ′) = case (typeof e, typeof e ′) of

(Just Nat , Just Nat) → Just Nat
→ Nothing

typeof (If e e ′ e ′′) = case (typeof e, typeof e ′, typeof e ′′) of
(Just Bool , Just t ′, Just t ′′) | t ′ ≡ t ′′ → Just t ′

→ Nothing
typeof (N) = Just Nat
typeof (B) = Just Bool

However, the function typeof has an inefficient narrowing semantics. For exam-
ple, an expression of the form If (Add u v) w x is ill-typed for any u, v ,w , x ,
because it is already evident that the first argument is not a logical value, but a
version of typed defined using the function typeof would not be able to deduce
this until specific expressions had been filled in for the variables u and v . In
other words, the typed condition does not fail fast.

To solve this problem we define an alternative constraint, hastype :: Expr →
Type → Bool , in which the type of the expression is taken as an argument
rather then returned as a result. In this manner, the type is refined during the
narrowing process alongside the expression itself.

116 J. Fowler and G. Hutton

hastype (Add e e ′) Nat = hastype e Nat ∧ hastype e ′ Nat
hastype (If e e ′ e ′′) t = hastype e Bool ∧ hastype e ′ t ∧ hastype e ′′ t
hastype (N) Nat = True
hastype (B) Bool = True
hastype = False

If we reconsider our example expression, If (Add u v) w x , then we can see our
new typing constraint identifies this as being ill-typed:

hastype (If (Add u v) w x) t
= hastype (Add u v) Bool ∧ hastype w t ∧ hastype x t
= False ∧ hastype w t ∧ hastype x t
= False

The hastype program does not fail fast but satisfies a similar weaker condition:
any partial value formed by evaluating the constraint with free arguments either
directly fails when applied to the constraint, or there is a refinement of the value
that succeeds. Using the hastype constraint, our original property concerning
well-typed expressions up to a given depth can now be reformulated to include
the type of the expression as an additional narrowing variable:

propEval n t e = hastype e t ∧ depthExpr t � n =⇒ noError (eval e)

Note that the typing variable has no effect on the validity of the property,
and is only used to make the narrowing process more efficient. Without the use
of overlapping conjunction, attempting to generate expressions that satisfy both
of these constraints simultaneously would typically fail to terminate, whereas
the above definition can generate such expressions in an efficient manner.

5.3 Other Examples

We have also considered two more sophisticated examples, in the form of red-
black trees and simply-typed lambda expressions. In both cases we were able
to create generators that are both practical in terms of efficiency and modular
in terms of how they are writen. For example, in the case of red-black trees,
the required constraint is obtained simply by combining separate constraints for
red nodes, black nodes, the ordering of elements, and the depth of the tree. Our
final red-black tree implementation is similar to that used the Reach system [15],
except that the additional efficiency that arises from using overlapping patterns
results in the consistent finding of a bug which this system struggles to find.

6 Related Work

The functional logic language Curry [11] implements needed narrowing, and
supports the use of overlapping patterns in definitions. However, the semantics is
different to our system. In particular, our overlapping patterns are deterministic,

Failing Faster: Overlapping Patterns for Property-Based Testing 117

with evaluation proceeding along a single branch, whereas in Curry such patterns
are non-determistic, with evaluation considering every matching branch.

The form of overlapping patterns that we use in our system is similar to that
proposed by Cockx [5,6], who develops the idea in the context of dependent type
theory and the Agda programming language. However, the intended purpose is
different, with our aim being to improve the performance of property-based
testing under a needed-narrowing semantics, and Cockx seeking to simply the
development of proofs in a dependently-typed setting.

A number of narrowing-based testing tools use the notion of parallel con-
junction. The idea originates in Lindblad’s work on data generation [13] and
Lazy Smallcheck [19], both of which use an enumerative style of testing. Subse-
quently, parallel conjunction has been used by Claessen et al. [3] to randomly
generate data with a uniform distribution. Parallel conjunction is equivalent to
overlapping conjunction, but whereas previous testing work using this operator
has been more practically focused, we have given a precise narrowing semantics
for a general form of overlapping definitions. The research of Claessen et al. is
the most similar to our work, in that they also use a narrowing-style for random
testing. However, their aim of producing a uniform distribution, via the use of
Feat [7], makes backtracking hard to avoid for many problems.

7 Conclusion and Future Work

In this article we have motivated and formalised an extension to needed narrow-
ing to allow overlapping patterns in definitions. We use the needed narrowing
evaluation to generate data satisfying a constraint from a program specifying a
constraint. Overlapping patterns allow us to achieve this in an efficient manner
using composable constraints. Below we discuss some limitations of our app-
roach, and suggest some possible directions for further work.

While overlapping patterns can improve the performance of property-based
testing, the use of narrowing can lead to subtle performance issues, as we saw in
Sect. 5 with the typeof constraint. To avoid performance issues close attention
must be paid to possible sources of backtracking. Overlapping patterns help
by making it easier to define constraints with limited backtracking, but they
are no silver bullet, and further research is required to establish appropriate
methodologies for identifying and limiting sources of backtracking.

The use of an overlapping conjunction operator is ubiquitous and perfor-
mance critical in our examples, but it is not yet clear whether the more general
notion of overlapping patterns is necessary. For example, in the case studies that
we have considered the use of other overlapping functions, such as max , can be
replaced by additional narrowing variables. However, the resulting function will
usually be less general than its overlapping counterpart.

The interaction between other language features, narrowing and overlapping
patterns is also an interesting topic for further work. Adding the capability to
refine and narrow first and higher-order functions is one area for which the trie
representation of partial functions used in the extended Lazy Smallcheck [18]

118 J. Fowler and G. Hutton

offers a starting direction. We are also keen to explore how our approach can be
extended to handle coinductive types and dependent types.

To demonstrate the practicality of our approach, we developed a prototype
implementation in Haskell. It would be interesting to add overlapping patterns
to a more established tool, either a property based testing library such Lazy
Smallcheck [19], or a functional logic language such as Curry [11]. An alternative
approach to enable practical use would be to extend the implementation to
automatically translate a precondition into a QuickCheck generator [4].

References

1. Antoy, S., Echahed, R., Hanus, M.: A needed narrowing strategy. J. ACM 47(4),
776–822 (2000)

2. Christiansen, J., Fischer, S.: EasyCheck — test data for free. In: Garrigue, J.,
Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 322–336. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-78969-7 23

3. Claessen, K., Dureg̊ard, J., Pa�lka, M.H.: Generating constrained random data
with uniform distribution. In: Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS,
vol. 8475, pp. 18–34. Springer, Heidelberg (2014). doi:10.1007/978-3-319-07151-0 2

4. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: International Conference on Functional Programming (2000)

5. Cockx, J.: Overlapping and Order-Independent Patterns in Type Theory. Ph.D.
thesis, Master thesis, KU Leuven (2013)

6. Cockx, J., Piessens, F., Devriese, D.: Overlapping and order-independent patterns.
In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 87–106. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-54833-8 6

7. Dureg̊ard, J., Jansson, P., Wang, M.: Feat: functional enumeration of algebraic
types. In: Haskell Symposium, vol. 47, no. 12 (2012)

8. Fowler, J.: The overlap check system for property-based testing (2016). https://
github.com/JonFowler/OverlapCheck

9. Fowler, J., Huttom, G.: Towards a theory of reach. In: Serrano, M., Hage, J. (eds.)
TFP 2015. LNCS, vol. 9547, pp. 22–39. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-39110-6 2

10. Hanus, M.: A unified computation model for functional and logic programming.
In: Symposium on Principles of Programming Languages (1997)

11. Hanus, M.: Curry - An Integrated Functional Logic Language. Technical report
(2016)

12. Hritcu, C., Hughes, J., Pierce, B.C., Spector-Zabusky, A., Vytiniotis, D., Azevedo
de Amorim, A., Lampropoulos, L.: Testing noninterference, quickly. In: ACM SIG-
PLAN Notices, vol. 48 (2013)

13. Lindblad, F.: Property directed generation of first-order test data. In: Symposium
on the Trends in Functional Programming (2007)

14. McBride, C., Paterson, R.: Applicative programming with effects. J. Funct. Pro-
gram. 18(1), 1–13 (2008)

15. Naylor, M., Runciman, C.: Finding inputs that reach a target expression. In: Inter-
national Conference on Source Code Analysis and Manipulation (2007)

16. Naylor, M.F.: Hardware-Assisted and Target-Directed Evaluation of Functional
Programs. Ph.D. thesis. University of York (2008)

http://dx.doi.org/10.1007/978-3-540-78969-7_23
http://dx.doi.org/10.1007/978-3-319-07151-0_2
http://dx.doi.org/10.1007/978-3-642-54833-8_6
https://github.com/JonFowler/OverlapCheck
https://github.com/JonFowler/OverlapCheck
http://dx.doi.org/10.1007/978-3-319-39110-6_2
http://dx.doi.org/10.1007/978-3-319-39110-6_2

Failing Faster: Overlapping Patterns for Property-Based Testing 119

17. Pa�lka, M.H., Claessen, K., Russo, A., Hughes, J.: Testing an optimising compiler
by generating random lambda terms. In: International Workshop on Automation
of Software Test (2011)

18. Reich, J.S., Naylor, M., Runciman, C.: Advances in lazy smallcheck. In: Hinze, R.
(ed.) IFL 2012. LNCS, vol. 8241, pp. 53–70. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-41582-1 4

19. Runciman, C., Naylor, M., Lindblad, F.: SmallCheck and lazy smallcheck auto-
matic exhaustive testing for small values. In: Symposium on Haskell (2008)

http://dx.doi.org/10.1007/978-3-642-41582-1_4
http://dx.doi.org/10.1007/978-3-642-41582-1_4

Boltzmann Samplers for Closed Simply-Typed
Lambda Terms

Maciej Bendkowski1, Katarzyna Grygiel1, and Paul Tarau2(B)

1 Theoretical Computer Science Department, Faculty of Mathematics and Computer
Science Jagiellonian University, ul. Prof. �Lojasiewicza 6, 30-348 Kraków, Poland

{bendkowski,grygiel}@tcs.uj.edu.pl
2 Department of Computer Science and Engineering,

University of North Texas, Denton, TX, USA
paul.tarau@unt.edu

Abstract. Simply-typed lambda terms are often used in the internal
language of compilers and proof assistants, for which generation of large,
uniformly distributed random terms is instrumental for testing correct-
ness and scalability. Recently, Boltzmann samplers have enabled uniform
random generation of large terms belonging to several families of com-
binatorial objects that have a regular structure, amenable to methods
from analytic combinatorics. Unfortunately, no closed formula or gener-
ating function facilitating such methods is known for closed simply-typed
lambda terms. Moreover, given their asymptotic sparsity in the family of
closed lambda terms, filtering simply-typed terms in the much larger set
of terms generated by a Boltzmann sampler becomes quickly intractable.
By taking advantage of the synergy between logic variables, unification
with occurs check and efficient backtracking in today’s Prolog systems we
advance this technique to term sizes interesting not only for correctness
but also for scalability tests, by deriving Boltzmann samplers returning
in a few seconds simply-typed random lambda terms of size 120 and
above. We also apply our techniques to the generation of uniformly ran-
dom closed simply-typed normal forms and give some hints on pushing
them further via parallel execution algorithms.

Keywords: Boltzmann samplers · Random generation of simply-typed
lambda terms · Type inference · Combinatorics of lambda terms · Ran-
dom generation of simply-typed normal forms

1 Introduction

Simply-typed lambda terms [1,2] enjoy a number of nice properties, such as
strong normalization, i.e., termination for all evaluation-orders, a Cartesian
closed category mapping and a set-theoretical semantics. More importantly, via

The first two authors have been partially supported by the Polish National Science
Center grant 2013/11/B/ST6/00975. The third author has been supported by NSF
grant 1423324.

c© Springer International Publishing AG 2017
Y. Lierler and W. Taha (Eds.): PADL 2017, LNCS 10137, pp. 120–135, 2017.
DOI: 10.1007/978-3-319-51676-9 8

Boltzmann Samplers for Closed Simply-Typed Lambda Terms 121

the Curry-Howard isomorphism, closed lambda terms that are inhabitants of
simple types can be seen as proofs for tautologies in the implicational fragment
of minimal logic which, in turn, correspond to the simple types. Extended with
a fix-point operator, simply-typed lambda terms can be used as the intermedi-
ate language for compiling Turing-complete functional languages. Recent work
on the combinatorics of lambda terms [3–5], relying on generating functions
and techniques from analytic combinatorics [6], has provided counts for several
families of lambda terms and clarified important quantitative properties of inter-
esting subclasses of lambda terms. With the techniques provided by generating
functions [6], it was possible to separate the counting of the terms of a given
size for several families of lambda terms from their more computation intensive
generation, resulting in several additions (e.g., A220894, A224345, A114851)
to the On-Line Encyclopedia of Integer Sequences [7].

On the other hand, the combinatorics of simply-typed lambda terms, given
the absence of closed formulas or context-free grammar-based generators, due to
the intricate interaction between type inference and the applicative structure of
lambda terms, has left important problems open, including the very basic one
of counting the number of closed simply-typed lambda terms of a given size.
At this point, obtaining counts for simply-typed lambda terms requires going
through the more computation-intensive generation process.

Fortunately, by taking advantage of the synergy between logic variables, uni-
fication with occurs check and efficient backtracking it is possible to significantly
accelerate the generation of simply-typed lambda terms [8] by interleaving it with
type inference steps.

While the generators described in the afore-mentioned paper can push the
size of the simply-typed lambda terms by a few steps higher, one may want to
obtain uniformly sampled random terms of significantly larger size, especially if
one is concerned not only about correctness but also about scalability of compil-
ers and program transformation tools used in the implementation of functional
programming languages and proof assistants.

This brings us to the main contribution of this paper. We will first build
efficient generators for simply-typed lambda terms that work by interleaving
term building and type inference steps. From them, we will derive Boltzmann
samplers returning random simply-typed lambda terms [9] of sizes between 120
and 150, assuming a slight variation of the “natural size” introduced in [10],
assigning to each constructor a size given by its arity. We will also extend this
technique to the random generation of simply-typed closed normal forms, based
on the same definition of size.

The paper is organized as follows. Section 2 describes generators for plain,
closed and simply-typed terms of a given size. Section 3 derives Boltzmann sam-
plers for random generation of simply-typed closed lambda terms. Section 4
describes generators for lambda terms in normal form as well as their closed and
simply-typed subsets. Section 5 derives Boltzmann samplers for random gener-
ation of simply-typed closed lambda terms in normal form. Section 6 discusses
techniques for possibly pushing higher the sizes of generated random terms.
Section 7 overviews related work and Sect. 8 concludes the paper.

122 M. Bendkowski et al.

The paper is structured as a literate Prolog program. The code has been
tested with SWI-Prolog 7.3.8 and YAP 6.3.4. It is also available as a separate
file at http://www.cse.unt.edu/∼tarau/research/2016/ngen.pro.

2 Generators for Lambda Terms of a Given Natural Size

We start by generating all lambda terms of a given size, in the de Bruijn notation.

2.1 De Bruijn notation

De Bruijn indices [11] provide a robust name-free representation of lambda term
variables. Closed terms1 that are identical up to renaming of variables, i.e., are
α-convertible, share a unique representation. This allows each variable occur-
rence to be replaced by a non-negative integer marking the number of lambda
abstractions between the variable and its binder. Following [10] we assume a
unary notation of integers using the constant 0 and the constructor s/1 for
the successor. Lambda abstraction and application constructors are represented
using l/1 and a/2, respectively. And so, the set L of plain lambda terms is given
by the following grammar:

L = LL | λ L | D,

where D denotes the set {0, s(0), s(s(0)),...} of de Bruijn indices.
Throughout the paper we assume that each constructor is of weight equal to

its arity and the size of a lambda term is the sum of the weights of its building
constructors.

2.2 Generating Plain Lambda Terms

Generation of plain lambda terms of a given size proceeds by consuming at each
step a size unit, represented by the constructor s/1. This ensures that, for a
size definition allocating a number of size units to each of the constructors of a
term, generation is constrained to terms of a given size. As there are n+1 leaves
(labeled 0) in a tree with n a/2 constructors, we implement our generator to
consume as many size-units as the arity of each constructor, in particular 0 for
0 and 2 for the constructor a/2. This means that we will obtain the counts for
terms of natural size n + 1 when consuming n size-units.

genLambda(s(S),X):-genLambda(X,S,0).

genLambda(X,N1,N2):-nth_elem(X,N1,N2).

genLambda(l(A),s(N1),N2):-genLambda(A,N1,N2).

genLambda(a(A,B),s(s(N1)),N3):-

genLambda(A,N1,N2),

genLambda(B,N2,N3).

1 A lambda term is called closed if it has no free variables and open otherwise. A term
is called plain if it is either closed or open.

http://www.cse.unt.edu/~tarau/research/2016/ngen.pro

Boltzmann Samplers for Closed Simply-Typed Lambda Terms 123

Note that nth elem/3 consumes progressively larger size-units for variables of
a higher de Bruijn index, a property that conveniently mimics the fact that,
in practical programs, variables located farther from their binders are likely to
occur less frequently than those closer to their binders.

nth_elem(0,N,N).

nth_elem(s(X),s(N1),N2):-nth_elem(X,N1,N2).

Example 1. Plain lambda terms of size 2 (with size of each constructor given
by its arity).

?- genLambda(s(s(s(0))),X).

X = s(s(0)) ; X = l(s(0)) ; X = l(l(0)) ; X = a(0, 0) .

Counts for plain lambda terms are given by the sequence A105633 in [7].

2.3 Generating Closed Lambda Terms

We derive a generator for closed lambda terms by counting with help of a list of
logic variables. At each lambda binder l/1 step, a new variable is added to the
list associated with a path from the root. For now, we simply use the length of
the list as a counter for l/1 nodes on the path.

The predicate genClosed/2 builds this list of logic variables as it generates
binders. When generating a leaf variable, it picks “non-deterministically” one of
the variables among the list of variables corresponding to binders encountered
on a given path from the root Vs. In fact, this list of variables will be ready to
be used later to store the types inferred for a given binder.

genClosed(s(S),X):-genClosed(X,[],S,0).

genClosed(X,Vs,N1,N2):-nth_elem_on(X,Vs,N1,N2).

genClosed(l(A),Vs,s(N1),N2):-genClosed(A,[_|Vs],N1,N2).

genClosed(a(A,B),Vs,s(s(N1)),N3):-

genClosed(A,Vs,N1,N2),

genClosed(B,Vs,N2,N3).

Like nth elem in the case of plain lambda terms, the predicate nth elem on
assigns larger and larger s/1 weights as the de Bruijn indices, computed in
successor arithmetic.

nth_elem_on(0,[_|_],N,N).

nth_elem_on(s(X),[_|Vs],s(N1),N2):-nth_elem_on(X,Vs,N1,N2).

Example 2. Closed lambda terms of natural size 5.

?- genClosed(s(s(s(s(s(0))))),X).

X = l(l(l(s(0)))) ; X = l(l(l(l(0)))) ; X = l(l(a(0, 0))) ;

X = l(a(0, l(0))) ; X = l(a(l(0), 0)) ; X = a(l(0), l(0)) .

Counts for closed lambda terms are given by the sequence A275057 in [7].

124 M. Bendkowski et al.

2.4 Generating Simply-Typed Lambda Terms

We will derive a generator for simply-typed lambda terms with help from the
logic variables used simply as counters in the case of closed terms, to contain the
types on which de Bruijn indices pointing to the same binder should agree.

genTypable(X,V,Vs,N1,N2):-genIndex(X,Vs,V,N1,N2).

genTypable(l(A),(X->Xs),Vs,s(N1),N2):-genTypable(A,Xs,[X|Vs],N1,N2).

genTypable(a(A,B),Xs,Vs,s(s(N1)),N3):-

genTypable(A,(X->Xs),Vs,N1,N2),

genTypable(B,X,Vs,N2,N3).

genIndex(0,[V|_],V0,N,N):-unify_with_occurs_check(V0,V).

genIndex(s(X),[_|Vs],V,s(N1),N2):-genIndex(X,Vs,V,N1,N2).

We expose this algorithm via two interfaces: one for plain terms and one for
closed terms.

genPlainTypable(S,X,T):-genTypable(S,_,X,T).

genClosedTypable(S,X,T):-genTypable(S,[],X,T).

genTypable(s(S),Vs,X,T):-genTypable(X,T,Vs,S,0).

For convenience, we shift the sequence by one to match the size definition
where both application nodes and 0 leaves have size 1 as originally given in [10].
As there are n+1 leaf nodes for n application nodes, consuming two units for an
application rather than one for an application and one for a leaf as done in [10],
speeds up the generation process as we are able to apply the size constraints at
application nodes, earlier in the recursive descent.

Example 3. Plain simply-typed lambda terms of natural size 3.

?- genPlainTypable(s(s(s(s(0)))),X,T).

X = s(s(s(0))),T = A ;

X = l(s(s(0))),T = (A->B) ;

X = l(l(s(0))),T = (A->B->A) ;

X = l(l(l(0))),T = (A->B->C->C) ;

X = a(0, s(0)),T = A ;

X = a(0, l(0)),T = A ;

X = a(s(0), 0),T = A ;

X = a(l(0), 0),T = A .

Counts for plain simply-typed lambda terms, up to size 16, are given by the
sequence:

0, 1, 2, 3, 8, 17, 42, 106, 287, 747, 2069, 5732, 16012, 45283, 129232, 370761, 1069972.

Counts for closed simply-typed lambda terms are given by the sequence
A272794 in [7]. The first 16 entries are:

0, 0, 1, 1, 2, 5, 13, 27, 74, 198, 508, 1371, 3809, 10477, 29116, 82419, 233748.

Boltzmann Samplers for Closed Simply-Typed Lambda Terms 125

3 A Boltzmann Sampler for Simply-Typed Terms

A naive way of sampling uniformly random lambda terms is to generate all terms
of a given size and extract a random one out of them. Unfortunately, given the
fact that the number of lambda terms grows exponentially with n, this technique
quickly becomes intractable.

3.1 Designing Boltzmann Samplers

In their breakthrough paper [12], Duchon et al. introduced a powerful framework
of Boltzmann samplers meant for random generation of combinatorial objects.
Exploiting the analytic nature of the formal power series (see, e.g. [6]) related
to the counts of objects in question, as well as their intrinsic recursive structure,
it is possible to develop an efficient sampling algorithm.

The key idea behind Boltzmann samplers consists in setting a proper prob-
ability space defined on the set of combinatorial objects in such a way that any
two objects of the same size are equally likely to be sampled. The price we pay
for the efficiency and uniformity is the lack of control over the exact outcome
size.

The process of sampling lambda terms follows their top-down recursive struc-
ture. At each step, the algorithm decides which constructor to use next, according
to pre-computed branching probabilities. Depending on the type of the chosen
constructor, the sampler either terminates, if 0 was chosen, or proceeds to con-
struct the arguments recursively.

Although the size of the outcome is not deterministic, it is possible to control
its expected size by adjusting the branching probabilities used in the sampling
process. As in [9], the desired branching probabilities can be calibrated to set
the expected size to a given finite value.

Such an approach allows us to rapidly sample random plain lambda terms
of sizes of order 500,000. Given the asymptotic sparsity of closed simply-typed
lambda terms in the set of plain ones [10], the sampling process has to be inter-
leaved with a rejection phase where undesired terms are discarded as soon as
possible and the whole process is restarted. Due to the immense number of
expected retrials, the power of Boltzmann samplers is therefore significantly
constrained. Following our empirical experiments, we calibrated the branching
probabilities so to set the expected outcome size to 120 – the currently biggest
practical size achievable.

3.2 Deriving a Boltzmann Sampler from an Exhaustive Generator

When generating all terms of a given size, the Prolog system explores all pos-
sibilities via backtracking. For a random generator, deterministic steps will be
used instead, guided by the probabilities determined by the Boltzmann sampler.

Our code is parameterized by the size interval for the generated random
terms as well as the maximum number of steps until the being closed and being
simply-typed constraints are both met. Moreover, the code relies on precomputed

126 M. Bendkowski et al.

constants corresponding to branching probabilities. Their values are obtained
according to the recursive combinatorial specification of lambda terms by deter-
mining the appropriate complex function and evaluating it in the vicinity of its
dominant singularity. The detailed process of computing the desired values is
described in [9]. In our case, it turns out that in order to construct a plain term
of expected size 120 the probabilities in question are as follows:

– the probability of constructing a de Bruijn index is 0.35700035696434995
– the probability of a lambda abstraction is 0.29558095907
– the probability of an application is 0.34741868396.

Furthermore, whenever we decide to create a de Bruijn index the probability
of constructing zero is equal to 0.7044190409261122, while a successor is chosen
with probability 0.29558095907. Hence, at each step of the construction process
we draw uniformly at random a real from the interval [0, 1] and on its basis we
decide which constructor to add.

min_size(120).

max_size(150).

max_steps(10000000).

boltzmann_index(R):-R<0.35700035696434995.

boltzmann_lambda(R):-R<0.6525813160382378.

boltzmann_leaf(R):-R<0.7044190409261122.

The very high value of retries, max steps, is coming from the discussed spar-
sity of simply-typed terms among all plain terms. The Boltzmann sampler can
be fine-tuned via min size and max size to search for terms in an interval for
which the probabilities of the sampler have been calibrated.

The predicate ranTypable returns a term X, its type T as well as the size of
the term and the number of trial steps it took to find the term.

ranTypable(X,T,Size,Steps):-

max_size(Max),

min_size(Min),

max_steps(MaxSteps),

between(1,MaxSteps,Steps),

random(R),

ranTypable(Max,R,X,T,[],0,Size0),

Size0>=Min,

!,

Size is Size0+1.

Note that it calls the predicate random/1, returning a random value between
0 and 1, with the convention that each predicate provides such a value for the
next one(s) it calls, convention that will be consistently followed in the code.

The predicate ranTypable/7 follows the outline of the corresponding non-
deterministic generator, except that it is driven by deterministic choices provided
by the Boltzmann branching probabilities that decide which branch is taken.

Note that the parameter Max preempts growing a term above the specified
size interval as early as that happens. Like in the generator, on which it is based,

Boltzmann Samplers for Closed Simply-Typed Lambda Terms 127

type inference is interleaved with term building. As a result, we prevent building
terms with subterms that are not simply-typed, as soon as such a subterm is
found.

ranTypable(Max,R,X,V,Vs,N1,N2):-boltzmann_index(R),!,

random(NewR),

pickIndex(Max,NewR,X,Vs,V,N1,N2).

ranTypable(Max,R,l(A),(X->Xs),Vs,N1,N3):-boltzmann_lambda(R),!,

next(Max,NewR,N1,N2),

ranTypable(Max,NewR,A,Xs,[X|Vs],N2,N3).

ranTypable(Max,_R,a(A,B),Xs,Vs,N1,N5):-

next(Max,R1,N1,N2),

ranTypable(Max,R1,A,(X->Xs),Vs,N2,N3),

next(Max,R2,N3,N4),

ranTypable(Max,R2,B,X,Vs,N4,N5).

Besides ensuring that types assigned to a leaf are consistent with the type
acquired so far by their binder, the predicate pickIndex/7 also enforces the
property of being a closed term by picking variables from the list of possible
binders above it, on the path to the root.

pickIndex(_,R,0,[V|_],V0,N,N):-boltzmann_leaf(R),!,

unify_with_occurs_check(V0,V).

pickIndex(Max,_,s(X),[_|Vs],V,N1,N3):-

next(Max,NewR,N1,N2),

pickIndex(Max,NewR,X,Vs,V,N2,N3).

Finally, the helper predicate next/4 ensures that the size count accumulated so
far is not above the required interval, while providing a random value to be used
by the next call.

next(Max,R,N1,N2):-N1<Max,N2 is N1+1,random(R).

Example 4. A uniformly random simply-typed lambda term of size 137 and its
type, obtained after 1070126 trial steps in 4.388 s.

l(a(l(l(l(l(l(a(s(s(0)),a(l(a(l(l(l(0))),l(a(0,a(0,a(s(s(0)),

a(l(a(l(0),a(a(l(l(l(l(s(s(s(0))))))),s(s(0))),a(0,a(0,a(l(l(0)),

l(a(l(l(l(s(s(s(0)))))),s(0))))))))),l(0)))))))),a(0,a(s(s(0)),

a(a(s(0),0),0)))))))))),l(a(l(a(0,a(l(l(s(0))),l(l(l(0)))))),

l(a(l(a(0,a(l(a(l(l(l(l(s(0))))),l(s(s(0))))),l(s(0))))),a(l(l(a(l(0),

l(a(l(l(l(a(0,a(0,l(l(0))))))),l(s(0))))))),s(s(0)))))))))

(A->B->((C->D->D)->E->F->G)->(((E->F->G)->G)->

((E->F->G)->G)->C->D->D)->((E->F->G)->G)->E->F->G)

4 Generating Simply-Typed Normal Forms

Normal forms are lambda terms that cannot be further β-reduced. In other
words, they avoid redexes as subterms, i.e., applications with lambda abstrac-
tions on their left branches.

128 M. Bendkowski et al.

4.1 Generating Normal Forms of Given Size

To generate normal forms we simply add to genLambda the constraint
notLambda/1 ensuring that the left branch of an application node is anything
except an l/1 lambda node.

genNF(s(S),X):-genNF(X,S,0).

genNF(X,N1,N2):-nth_elem(X,N1,N2).

genNF(l(A),s(N1),N2):-genNF(A,N1,N2).

genNF(a(A,B),s(s(N1)),N3):-notLambda(A),genNF(A,N1,N2),genNF(B,N2,N3).

notLambda(0).

notLambda(s(_)).

notLambda(a(_,_)).

Example 5. Plain normal forms of natural size 5.

?- genNF(s(s(s(s(0)))),X).

X = s(s(s(0))) ;

X = l(s(s(0))) ;

X = l(l(s(0))) ;

X = l(l(l(0))) ;

X = l(a(0, 0)) ;

X = a(0, s(0)) ;

X = a(0, l(0)) ;

X = a(s(0), 0) .

Counts for plain (untyped) normal forms, up to size 16, are given by the sequence:

0, 1, 2, 4, 8, 17, 38, 89, 216, 539, 1374, 3562, 9360, 24871, 66706, 180340, 490912.

4.2 Interleaving Generation and Type Inference

Like in the case of the set of simply-typed lambda terms, we can define the more
efficient combined generator and type inferrer predicate genTypableNF/5.

genPlainTypableNF(S,X,T):-genTypableNF(S,_,X,T).

genClosedTypableNF(S,X,T):-genTypableNF(S,[],X,T).

genTypableNF(s(S),Vs,X,T):-genTypableNF(X,T,Vs,S,0).

genTypableNF(X,V,Vs,N1,N2):-genIndex(X,Vs,V,N1,N2).

genTypableNF(l(A),(X->Xs),Vs,s(N1),N2):-genTypableNF(A,Xs,[X|Vs],N1,N2).

genTypableNF(a(A,B),Xs,Vs,s(s(N1)),N3):-notLambda(A),

genTypableNF(A,(X->Xs),Vs,N1,N2),

genTypableNF(B,X,Vs,N2,N3).

Example 6. Simply-typed normal forms of size 6 and their types.

Boltzmann Samplers for Closed Simply-Typed Lambda Terms 129

?- genClosedTypableNF(s(s(s(s(s(0))))),X,T).

X = l(l(l(s(0)))),T = (A->B->C->B) ;

X = l(l(l(l(0)))),T = (A->B->C->D->D) ;

X = l(a(0, l(0))),T = (((A->A)->B)->B) ;

We are now able to efficiently generate counts for simply-typed normal forms
of a given size.

Example 7. Counts for closed simply-typed normal forms up to size 18.

0, 0, 1, 1, 2, 3, 7, 11, 25, 52, 110, 241, 537, 1219, 2767, 6439, 14945, 35253, 83214.

5 Boltzmann Sampler for Simply-Typed Normal Forms

When restricted to normal forms, the Boltzmann sampler is derived in a similar
way from the corresponding exhaustive generator. In order to find the appro-
priate branching probabilities, we exploit the following combinatorial system
defining the set N of normal forms using the set M of so called neutral forms.

N = M | λ N
M = MN | D

A normal form is either a neutral term, or an abstraction followed with a normal
form. A neutral term, in turn, is either an application of a neutral term to a
normal form, or a de Bruijn index.

With this description of normal forms, we are ready to recompute the branch-
ing probabilities (see [12] for details) for a Boltzmann sampler generating normal
forms. Similarly as in the case of plain terms, we calibrated the branching prob-
abilities so to set the expected outcome size to 120.

The resulting probabilities are given by the following predicates:

boltzmann_nf_lambda(R):-R<0.3333158264186935. % an l/1, otherwise neutral

boltzmann_nf_index(R):-R<0.5062759837493023. % neutral: index, not a/2

boltzmann_nf_leaf(R):-R<0.6666841735813065. % neutral: 0, otherwise s/1

The predicate ranTypableNF generates a simply-typed term X in normal form
and its type T, while computing the size of the term and the number of trial steps
used to find it. Note the use of Prolog’s CUT ! operation to stop the search once
the right size is reached.

ranTypableNF(X,T,Size,Steps):-

max_nf_size(Max),

min_nf_size(Min),

max_nf_steps(MaxSteps),

between(1,MaxSteps,Steps),

random(R),

ranTypableNF(Max,R,X,T,[],0,Size0),

Size0>=Min,

!,

Size is Size0+1.

130 M. Bendkowski et al.

First, a probabilistic choice is made between a normal form wrapped up by
a lambda binder and a neutral term.

ranTypableNF(Max,R,l(A),(X->Xs),Vs,N1,N3):-

boltzmann_nf_lambda(R),!, %lambda

next(Max,NewR,N1,N2),

ranTypableNF(Max,NewR,A,Xs,[X|Vs],N2,N3).

The choice between the next two clauses is decided by the guard
boltzmann nf index. If satisfied, the recursive path towards a de Bruijn index
is chosen. Otherwise, an application is generated. Note the use of the CUT oper-
ation (! to commit to the first clause when its guard succeeds.

ranTypableNF(Max,R,X,V,Vs,N1,N2):-boltzmann_nf_index(R),!,

random(NewR),

pickIndexNF(Max,NewR,X,Vs,V,N1,N2). % an index

ranTypableNF(Max,_R,a(A,B),Xs,Vs,N1,N5):- % an application

next(Max,R1,N1,N2),

ranTypableNF(Max,R1,A,(X->Xs),Vs,N2,N3),

next(Max,R2,N3,N4),

ranTypableNF(Max,R2,B,X,Vs,N4,N5).

Finally, the choice is made between the two alternatives deciding how many
successor steps are taken until a 0 leaf is reached.

pickIndexNF(_,R,0,[V|_],V0,N,N):-boltzmann_nf_leaf(R),!, % zero

unify_with_occurs_check(V0,V).

pickIndexNF(Max,_,s(X),[_|Vs],V,N1,N3):- % successor

next(Max,NewR,N1,N2),

pickIndexNF(Max,NewR,X,Vs,V,N2,N3).

Example 8. A random simply-typed term of size 63 in normal form and its
type, generated after 1312485 trial steps in less than a second.

l(l(l(l(a(a(s(s(0)),l(a(0,a(l(l(s(0))),l(l(l(l(l(a(s(0),l(l(a(s(0),

l(s(0))))))))))))))),l(a(a(l(l(a(l(s(0)),a(a(a(l(s(0)),a(l(0),0)),

l(s(s(0)))),l(l(l(0))))))),0),l(0))))))))

(A->((((B->C->D->E->((((F->G)->H)->G->H)->I)->J->I)->K)->K)->

(L->((M->N->O->O)->L)->(M->N->O->O)->L)->P)->Q->R->P)

As there are fewer lambda terms of a given size in normal form, one may wonder
why we are not reaching comparable or larger sizes to plain lambda terms, where
our sampler was able to generate terms over size 120. An investigation of the
relative densities of simply-typed terms in the two sets provides the explanation.

The table in Fig. 1 compares the changes in density for simply-typed terms
and simply-typed normal forms. The first column lists the sizes of the terms.
Column A lists the number of closed simply-typed terms of a given size. Column
B lists the ratio between plain terms and simply-typed terms. Column C lists
counts for closed simply-typed normal forms. Column D lists the ratio between

Boltzmann Samplers for Closed Simply-Typed Lambda Terms 131

Fig. 1. Comparison of the ratios of simply-typed terms and simply-typed normal forms

terms in normal form and closed simply-typed terms in normal form. Finally,
column E computes the ratio of the two densities given in columns B and D.

The plot in Fig. 2 shows the much faster growing sparsity of simply-typed
normal forms, measured as the ratio between plain terms and their simply-typed
subset and respectively the ratio between normal forms and their simply-typed
subset, i.e., the results shown in columns B and D, for sizes up to 20.

Finally, the plot in Fig. 3 shows the ratio between these two quantities, i.e.,
those listed in column E, for sizes up to 20. In both charts the horizontal axis
stands for the size, while the vertical one for the number of terms.

Fig. 2. Sparsity of simply-typed terms (lower curve) vs. simply-typed normal forms
(upper curve)

Therefore, we see that closed simply-typed normal forms are becoming very
sparse much earlier than their plain counterparts. While, e.g., for size 20 there
are around 1/16 closed simply-typed terms for each term, at the same size, for
each term in normal form there are around 1/60 simply-typed closed terms in
normal form. As at sizes above 50 the total number of terms is intractably high,
the increased sparsity of the simply-typed terms in normal form becomes the
critical element limiting the chances of successful search.

132 M. Bendkowski et al.

Fig. 3. Ratio between the density of simply-typed closed normal forms and that of
simply-typed closed lambda terms

We leave as an open problem the study of the asymptotic behavior of the
ratio between the density of simply-typed closed normal forms in the set of all
normal forms and the density of simply-typed closed lambda terms in the set
of lambda terms. While our empirical data hints to the possibility that it is
asymptotically 0 for n → ∞, it is still possible to converge to a small finite limit.
Also, this behavior could be dependent on the size definition we are using.

6 Discussion

An interesting open problem is if our method can be pushed significantly farther.
We have looked into deep hashing based indexing (term hash in SWI Prolog) and
tabling-based dynamic programming algorithms, using de Bruijn terms. Unfor-
tunately as subterms of closed terms are not necessarily closed, even if de Bruijn
terms can be used as ground keys, their associated types are incomplete and
dependent on the context in which they are inferred.

While it only offers a constant factor speed-up, parallel execution is a more
promising possibility. For exhaustive generation, given the small granularity of
the generation and type inference process, the most useful parallel execution
mechanism would simply split the task of combined generation and inference
process into a number of disjoint sets. For instance, assuming size n, and k ≤ n
l/1 constructors, one would launch a thread exploring all possible choices, with
the remaining n − k size-units to be shared by the applications a/2 and the
weights of indices s/1.

For the generation of random terms via Boltzmann sampling, one would
simply launch as many threads as the number of processors, with each thread
exploring independently the search space.

Boltzmann Samplers for Closed Simply-Typed Lambda Terms 133

7 Related Work

The problem of counting and generating uniformly random lambda terms is
extensively studied in the literature.

In [5] authors considered a canonical representation of closed lambda terms in
which variables do not contribute to the overall term size. The same model was
investigated in [3], where a sampling method based on a ranking-unranking app-
roach was developed. A binary variant of lambda calculus was considered in [9],
leading to a generation method employing Boltzmann samplers. The natural
size notion was introduced in [10]. The presented results included quantitative
investigations of certain semantic properties, such as strong normalization or
typability.

Other, non-uniform generation, approaches are also studied in the context
of automated software verification. Prominent examples include Quickcheck [13]
and GAST [14] – two frameworks offering facilities for random (yet not neces-
sarily uniform) and exhaustive test generation, used in the verification of user-
defined function properties and invariants.

In [15] a “type-directed” mechanism for generation of random terms was
introduced, resulting in more realistic (from the particular use case point of view)
terms, employed successfully in discovering optimization bugs in the Glasgow
Haskell Compiler (GHC).

Function synthesis, given a finite set of input-output examples, was consid-
ered in [16]. In this approach, the set of candidate functions is restricted to
a subset of primitive recursive functions with abstract syntax trees defined by
some context-free grammar, yielding an effective method of finding “natural”
functions matching the given example set.

A statistical exploration of the structure of the simple types of lambda terms
of a given size in [17] gives indications that some types frequent in human-written
programs are among the most frequently inferred ones for terms of a given size.

8 Conclusion

We have derived from logic programs for exhaustive generation of lambda terms
programs that generated uniformly distributed simply-typed lambda terms via
Boltzmann samplers.

This has put at test a simple but effective program transformation technique
naturally available in logic programming languages: interleaving generators and
constraints by integrating them in the same predicate.

For the exhaustive generation, we have also managed to work within the
minimalist framework of Horn clauses with sound unification, showing that non-
trivial combinatorial problems can be handled without any of Prolog’s impure
features.

Our empirical study of Boltzmann samplers has revealed an intriguing dis-
crepancy between the case of simply-typed terms and simply-typed normal

134 M. Bendkowski et al.

forms. While these two classes of terms are both known to asymptotically van-
ish, the significantly faster growth of the sparsity of the later has limited our
Boltzmann sampler to sizes below 60.

Our techniques, combining unification of logic variables with Prolog’s back-
tracking mechanism, recommend logic programming as a convenient metalan-
guage for the manipulation of various families of lambda terms and the study of
their combinatorial and computational properties.

The ability to generate uniformly random simply-typed closed lambda terms
of sizes above 120 opens the doors for applications to testing compiler compo-
nents for functional languages and proof assistants, not only for correctness but
also for scalability. We hope that simply-typed lambda terms above 120 can be
also useful to spot out performance and memory management issues for several
algorithms used in these tools, including β-reduction, lambda lifting and type
inference.

References

1. Hindley, J.R., Seldin, J.P.: Lambda-Calculus and Combinators: An Introduction,
vol. 13. Cambridge University Press, Cambridge (2008)

2. Barendregt, H.P.: Lambda calculi with types. In: Handbook of Logic in Computer
Science, vol. 2. Oxford University Press (1991)

3. Grygiel, K., Lescanne, P.: Counting and generating lambda terms. J. Funct. Pro-
gram. 23(5), 594–628 (2013)

4. Bodini, O., Gardy, D., Gittenberger, B.: Lambda terms of bounded unary height.
In: 2011 Proceedings of the Eighth Workshop on Analytic Algorithmics and Com-
binatorics (ANALCO), pp. 23–32 (2011)

5. David, R., Grygiel, K., Kozik, J., Raffalli, C., Theyssier, G., Zaionc, M.: Asymp-
totically almost all λ-terms are strongly normalizing. Logical Meth. Comput. Sci.
9(1:02), 1–30 (2013)

6. Flajolet, P., Sedgewick, R.: Analytic Combinatorics, 1st edn. Cambridge University
Press, New York (2009)

7. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences (2014). https://
oeis.org/

8. Tarau, P.: On logic programming representations of lambda terms: de Bruijn
indices, compression, type inference, combinatorial generation, normalization. In:
Pontelli, E., Son, T.C. (eds.) PADL 2015. LNCS, vol. 9131, pp. 115–131. Springer,
Cham (2015). doi:10.1007/978-3-319-19686-2 9

9. Grygiel, K., Lescanne, P.: Counting and generating terms in the binary lambda
calculus. J. Funct. Program. 25, e24 (2015)

10. Bendkowski, M., Grygiel, K., Lescanne, P., Zaionc, M.: A natural counting of
lambda terms. In: Freivalds, R.M., Engels, G., Catania, B. (eds.) SOFSEM
2016. LNCS, vol. 9587, pp. 183–194. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49192-8 15

11. de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Indagationes Math. 34, 381–392 (1972)

12. Duchon, P., Flajolet, P., Louchard, G., Schaeffer, G.: Boltzmann samplers for the
random generation of combinatorial structures. Comb. Probab. Comput. 13(4–5),
577–625 (2004)

https://oeis.org/
https://oeis.org/
http://dx.doi.org/10.1007/978-3-319-19686-2_9
http://dx.doi.org/10.1007/978-3-662-49192-8_15
http://dx.doi.org/10.1007/978-3-662-49192-8_15

Boltzmann Samplers for Closed Simply-Typed Lambda Terms 135

13. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: Proceedings of the Fifth ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2000, pp. 268–279. ACM, New York
(2000)

14. Koopman, P., Alimarine, A., Tretmans, J., Plasmeijer, R.: Gast: generic auto-
mated software testing. In: Peña, R., Arts, T. (eds.) IFL 2002. LNCS, vol. 2670,
pp. 84–100. Springer, Berlin (2003). doi:10.1007/3-540-44854-3 6

15. Palka, M.H., Claessen, K., Russo, A., Hughes, J.: Testing an optimising compiler by
generating random lambda terms. In: Proceedings of the 6th International Work-
shop on Automation of Software Test, AST 2011, pp. 91–97. ACM, New York
(2011)

16. Koopman, P., Plasmeijer, R.: Systematic synthesis of functions, pp. 68–83. The
University of Nottingham (2006)

17. Tarau, P.: On Type-directed Generation of Lambda Terms. In: De Vos, M., Eiter,
T., Lierler, Y., Toni, F. (eds.) 31st International Conference on Logic Programming
(ICLP 2015), Technical Communications, Cork, Ireland, CEUR (2015). http://
ceur-ws.org/Vol-1433/

http://dx.doi.org/10.1007/3-540-44854-3_6
http://ceur-ws.org/Vol-1433/
http://ceur-ws.org/Vol-1433/

Selection Equilibria of Higher-Order Games

Jules Hedges1, Paulo Oliva2(B), Evguenia Shprits3, Viktor Winschel4,
and Philipp Zahn5

1 Department of Computer Science, University of Oxford, Oxford, UK
2 Department of Electronic Engineering and Computer Science,

Queen Mary University of London, London, UK
p.oliva@qmul.ac.uk

3 Department of Economics, University of Mannheim, Mannheim, Germany
4 Department of Management, Technology and Economics,

ETH Zürich, Zürich, Switzerland
5 Department of Economics, University of St. Gallen, St. Gallen, Switzerland

Abstract. In applied game theory the modelling of each player’s inten-
tions and motivations is a key aspect. In classical game theory these are
encoded in the payoff functions. In previous work [2,4] a novel way of
modelling games was introduced where players and their goals are more
naturally described by a special class of higher-order functions called
quantifiers. We refer to these as higher-order games. Such games can
be directly and naturally implemented in strongly typed functional pro-
gramming languages such as Haskell [3]. In this paper we introduce a
new solution concept for such higher-order games, which we call selection
equilibrium. The original notion proposed in [4] is now called quantifier
equilibrium. We show that for a special class of games these two notions
coincide, but that in general, the notion of selection equilibrium seems to
be the right notion to consider, as illustrated through variants of coordi-
nation games where agents are modelled via fixed-point operators. This
paper is accompanied by a Haskell implementation of all the definitions
and examples.

1 Introduction

In this paper we introduce a representation of simultaneous move games that
formally summarises the goals of agents via quantifiers and selection functions.
Both quantifiers and selection functions are examples of higher-order functions
(also called functionals or operators) and originate in a game-theoretic approach
to proof theory [2,4].

As shown in [2,4], the standard Nash equilibrium concept can be seamlessly
generalised to this higher-order representation of games. The original work on
these higher-order games used a notion of equilibrium which we will now call
quantifier equilibrium. In this paper we introduce an alternative notion, which
we call selection equilibrium. We prove that quantifier and selection equilibria
coincide in the case of the classical max and arg max operators, but that, gener-
ally, this equivalence does not hold: For other quantifiers and selection functions
c© Springer International Publishing AG 2017
Y. Lierler and W. Taha (Eds.): PADL 2017, LNCS 10137, pp. 136–151, 2017.
DOI: 10.1007/978-3-319-51676-9 9

Selection Equilibria of Higher-Order Games 137

the two different equilibrium concepts yield different sets of equilibria. We give a
sufficient condition for the two notions to coincide based on the notion of closed-
ness of selection functions. We prove that in general, the selection equilibrium
is an equilibrium refinement of the quantifier equilibrium, and present evidence
that for games based on non-closed selection functions, the selection equilibrium
is the appropriate solution concept.

A Haskell implementation of the theory and examples contained in this paper
is available online.1 We chose not to discuss the actual code here in detail due to
lack of space. This code, however, was crucial for the development of the theory
here presented. The ability to implement not just the various players, but also
the outcome functions and the equilibrium checkers, enabled us to quickly test
several different examples of games, with different notions of equilibrium. Careful
testing of a variety of situations ultimately led us to the conclusion that the new
notion of equilibrium for higher-order games is preferable in general. Although
in this paper we could have used any other strongly typed functional language,
in the case of sequential games [2–4] the use of Haskell monads is essential.
In higher-order sequential games one can make use of the fact that the type
of selection functions forms a monad, and backwards induction can be simply
implemented as the “sequencing” of monads.

2 Players, Quantifiers and Selection Functions

A higher order function (or functional) is a function whose domain is itself a set
of functions. Given sets X and Y we denote by X → Y the set of all functions
with domain X and codomain Y . There are familiar examples of higher-order
functions, such as the max operator, which has type max: (X → R) → R

returning the maximum value of a given real-valued function p : X → R. One
will normally write max p as maxx∈X p(x). A corresponding operator is arg max
which returns all the points where the maximum of a function p : X → R is
attained, i.e. arg max: (X → R) → P(X) using P(X) for the power-set2 of X.
Note that as opposed to max, arg max is naturally a multi-valued function, even
when the maximal value is unique.

Of a slightly different nature is the fixed point operator fix: (X → X) →
P(X) which calculates all the fixed points of a given self-mapping p : X → X,
or the anti-fixed-point operator which calculates all points that are not fixed
points.

In this section we define two particular classes of higher-order functions:
quantifiers and selection functions. We first establish that these functions provide
means to represent agents’ goals in an abstract and general way. In particular,
these notions usefully generalise utility maximisation and preference relations.

1 http://www.eecs.qmul.ac.uk/∼pbo/papers/hog-padl-2017.hs.
2 As long as our games are finite we can easily replace powersets with lists, which we

do in the accompanying implementation.

http://www.eecs.qmul.ac.uk/~pbo/papers/hog-padl-2017.hs

138 J. Hedges et al.

2.1 Game Context

To define players’ goals we first need a structure that represents the strategic
situation on which these goals are based. To this end we introduce the concept
of a game context which summarises information of the strategic situation from
the perspective of a single player.

Definition 1 (Game context). For a player A choosing a move from a set
X, having in sight a final outcome in a set R, we call any function p: X → R a
possible game context for the player A.

Consider the following voting contest which we will use as a running example
throughout this paper: three judges are voting simultaneously for one of two
contestants X = {A,B}. The winner is decided by the majority rule maj : X ×
X × X → X. In a setting where judges 1 and 3 have fixed their choices, say
x1 = A and x3 = B, this gives rise to a game context for the second judge,
namely

x2 �→ maj(A, x2, B)

which is in fact the identity function since maj(A, x2, B) = x2. If, on the other
hand, judges 1 and 3 had fixed their choices as x1 = x3 = A, the game context
for player 2 would be the constant function x2 �→ A, since his vote does not
influence the outcome.

One can think of the game context p: X → R as an abstraction of the actual
game context that is determined by knowing the rules of the game, and how each
opponent played. Notice that in the example above the game context which maps
A to B, and B to A, never arises. It would arise, however, if one replaced the
majority rule by the minority rule.

It might seem like we are losing too much information by adopting such
an abstraction. We hope that the examples given here will illustrate that this
level of abstraction is sufficient for modelling players’ individual motivations and
goals. And precisely because it is abstract and it captures the strategic context
of a player as if it was a single decision problem, it allows for a description of
the players’ intrinsic motivations, irrespective of how many players are around,
or which particular game is being played. This is key for obtaining a modular
description of games as well as a modular Haskell implementation.

2.2 Quantifiers and Selection Functions

Suppose now that A makes a decision x ∈ X in a game context p : X → R.
First of all, it is important to realise that the only achievable outcomes in the
context p : X → R are the elements in the image of p, i.e. Im(p) ⊆ R. Out of
these achievable outcomes the player should consider some outcomes to be good
(or acceptable). Since the good outcomes must in particular be achievable, it is
clear that the set of good outcomes can only be defined in relation to the given
context. That dependence, however, can go further than just looking at Im(p).
For instance, an element r ∈ R might be the maximal attainable value of the

Selection Equilibria of Higher-Order Games 139

mapping p1 : X → R, but could be unachievable, sub-optimal or even the worst
outcome in a different context p2 : X → R.

Definition 2 (Quantifiers, [2,4]). Let P(R) denote the power-set of the set
of outcomes R. We call quantifiers3 any higher-order function of type

ϕ: (X → R) → P(R)

from contexts p: X → R to non-empty sets of outcomes ϕ(p) ⊆ R.

The approach of [2,4] is to model players A as quantifiers ϕA : (X → R) →
P(R) We think of ϕA(p) ⊆ R as the set of outcomes the player A considers
preferable in a given game context p : X → R. It is crucial to recognise that this
is a qualitative description of a player, in the sense that an outcome is either
preferable or it is not, with no numerical measure attached.

It could be, however, that the notion of being a “good outcome” indeed comes
from a numeric measure. In fact, the classical example of a quantifier is utility
maximisation, with the outcome set R = R

n consisting of n-tuples of real-valued
payoffs. If we denote by πi : R

n → R the i-projection, then the utility of the ith

player is πi(r). Hence, given a game context p: X → R
n, the good outcomes for

the ith player are precisely those for which the ith coordinate, i.e. his utility, is
maximal. This quantifier is given by

i-max(p) = {r ∈ Im(p) | ri ≥ (πi ◦ p)(x′) for all x′ ∈ X}

where Im(p) denotes the image of the function p : X → R
n, and πi ◦ p denotes

the composition of p with the i-th projection.
For a very different example of a quantifier, when the set of moves is equal to

the set of outcomes R = X there is a quantifier whose good moves are precisely
the fixpoints of the context. This quantifier models a player whose aim is to make
a choice that is equal to the resulting outcome. If the context has no fixpoint,
then the player will be equally satisfied with any outcome. Therefore such a
quantifier can be defined as

fix(p) =

{
{x ∈ X | p(x) = x} if p(x) = x for some x ∈ X

X otherwise.

Just as a quantifier tells us which outcomes a player considers good in each
given context, one can also consider the higher-order function that determines
which moves a player considers good in any given context.

3 The terminology comes from the observation that the usual existential ∃ and uni-
versal ∀ quantifiers of logic can be seen as operations of type (X → B) → B, where
B is the type of booleans. Mostowski [12] also called arbitrary functionals of type
(X → B) → B generalised quantifiers. We are choosing to generalise this further by
replacing the booleans B with an arbitrary type R, and allowing for the operation
to be multi-valued.

140 J. Hedges et al.

Definition 3 (Selection functions). A selection function is any function of
the form4

ε: (X → R) → P(X).

Similarly to quantifiers, the canonical example of a selection function is max-
imising one of the coordinates in R

n, defined by

i-arg max(p) = {x ∈ X | (πi ◦ p)(x) ≥ (πi ◦ p)(x′) for all x′ ∈ X}.

Even in one-dimensional R
1 the arg max selection function is naturally multi-

valued: a function may attain its maximum value at several different points.5

2.3 Relating Quantifiers and Selection Functions

It is clear that quantifiers and selection functions are closely related. One impor-
tant relation between them is that of attainment. Intuitively this means that the
outcome of a good move should be a good outcome.

Definition 4. Given a quantifier ϕ: (X → R) → P(R) and a selection function
ε: (X → R) → P(X), we say that ε attains ϕ iff for all contexts p: X → R it is
the case that

x ∈ ε(p) =⇒ p(x) ∈ ϕ(p).

One can check that the attainability relation holds between the quantifier i -
max and the selection function i -arg max. Any point where the maximum value is
attained will evaluate to the maximum value of the function. More interestingly,
the fixpoint quantifier is also a selection function, and it attains itself since

x ∈ fix(p) =⇒ p(x) ∈ fix(p).

Let us briefly reflect on the game theoretic meaning of attainability. Suppose
we have a quantifier ϕ which describes the outcomes that a player considers
to be good. The quantifier might be unrealistic in the sense that it has no
attainable good outcome. For example, a player may consider it a good outcome
if he received a million dollars, but in his current context there may just not be
a move available which will lead to this outcome. The attainable quantifiers
ϕ : (X → R) → P(R) describe realistic players, i.e. for any game context
p : X → R there is always a move x : X which leads to a good outcome
p(x) ∈ ϕ(p).

Given any selection function ε : (X → R) → P(X), we can form the smallest
quantifier which it attains as follows.

4 Where selection functions have been considered previously [2,4] the focus was on
single-valued ones. However, as multi-valued selection functions are extremely impor-
tant in our examples we have adapted the definitions accordingly.

5 In the following we will assume that quantifiers and selection functions are non-
empty. That is, agents will always have a preferred outcome, respectively move, in
all situations they have to make a decision. See [9] for a discussion.

Selection Equilibria of Higher-Order Games 141

Definition 5. Given a selection function ε : (X → R) → P(X), define the
quantifier ε : (X → R) → P(R) as

ε(p) = {p(x) | x ∈ ε(p)}.

It is easy to check that ε attains ε. Conversely, given any quantifier we can
define a corresponding selection function as follows.

Definition 6. Given a quantifier ϕ : (X → R) → P(R), define the selection
function ϕ : (X → R) → P(X) as

ϕ(p) = {x | p(x) ∈ ϕ(p)}.

Again, it is easy to check that the selection function ϕ attains the quantifier
ϕ. We use the same overline notation, as it will be clear from the setting whether
we are applying it to a quantifier or a selection function.

3 Higher-Order Games

Quantifiers and selection functions as introduced in the previous section can be
used to model games. In this section we define higher-order games, illustrate the
definition using the voting contest as a running example, and, lastly, discuss two
equilibrium concepts.

Definition 7 (Higher-Order Games). An n-players game G, with a set R of
outcomes and sets Xi of strategies for the ith player, consists of an (n+1)-tuple
G = (ε1, . . . , εn, q) where

– for each player 1 ≤ i ≤ n, εi: (Xi → R) → P(Xi) is a selection function
describing the i-th player’s preferred moves in each game context.

– q:
∏n

i=1 Xi → R is the outcome function, i.e., a mapping from the strategy
profile to the final outcome.

(Note that a strategy profile for a game is simply a tuple x:
∏n

i=1 Xi, con-
sisting of a choice of strategy for each player.)

Intuitively, we think of the outcome function q as representing the ‘situation’,
or the rules of the game, while we think of the selection functions as describing
the players. Thus we can imagine the same player in different situations, and
different players in the same situation. This allows us to decompose a modelling
problem into a global and a local part: modelling the situation (i.e. q) and
modelling the individual players (i.e. ε1, . . . , εn).

Remark 1 (Classical Game [13]). The ordinary definition of a normal form game
of n-players with standard payoff functions is a particular case of Definition 7
when

– for each player i the set of strategies is Xi,

142 J. Hedges et al.

Table 1. Voting contest with classical players; Nash equilibria in bold.

J2: A J2: B

J1: A 1,1,0 1,1,0
J1: B 1,1,0 0,0,1

J3: A

J2: A J2: B

J1: A 1,1,0 0,0,1
J1: B 0,0,1 0,0,1

J3: B

– the set of outcomes R is R
n, modelling the vector of payoffs obtained by each

player,
– the selection function of player i is i-arg max: (Xi → R

n) → P(Xi), i.e.
arg max with respect to the ith coordinate, representing the idea that each
player is solely interested in maximising their own payoff,

– the ith component of the outcome function q :
∏n

i=1 Xi → R
n can be viewed

as the payoff function qi :
∏n

j=1 Xj → R of the ith player.

Remark 2. For an implementation in a simply-typed language (as opposed to
dependently typed) such as Haskell, it is convenient either to fix the number
of players and store the data in tuples, or to take the sets Xi to be equal and
store the data in homogeneous lists. (See also [1].) In the accompanying imple-
mentation we opt for the latter, because in our running example the Xi are
equal.

3.1 Example: Voting Contest

Reconsider the voting contest outlined in Sect. 2.1: There are three players, the
judges J = {J1, J2, J3}, who each vote for one of two contestants A or B. The
winner is determined by the simple majority rule. We analyse two instances of
this game with different motivations of players while keeping the overall structure
of the game fixed.

Classical Players. Suppose the judges rank the contestants according to a prefer-
ence ordering. Say judges 1 and 2 prefer A and judge 3 prefers B. Table 1 depicts
a payoff matrix which encodes this situation, including the rules for choosing a
winner (majority) and the goals of each individual player. The two separate
tables show the cases when judge 3 has played either A (left table) or B (right
table). Within each table, we also have the four possibilities for the voting of
judge 2 (columns) and judge 1 (rows). A numeric value such as 1, 1, 0 says that
in that particular play judges 1 and 2 got payoff 1, but judge 3 got payoff 0.

How is such a game modelled following Definition 7? The set of strategies in
this case is the same as the set of possible outcomes, i.e. Xi = R = {A,B}. The
outcome function q : X1 × X2 × X3 → R is the majority function maj : X ×
X × X → X, e.g. maj(A,B,B) = B. It remains for us to find suitable selection
functions representing the goals of the three players. Consider two order relations
on X, call it B ≺′ A and A ≺′′ B. The judges wish to maximise the final outcome

Selection Equilibria of Higher-Order Games 143

Table 2. Voting contest with Keynesian players; Nash equilibria in bold.

J2: A J2: B

J1: A 1,1,1 1,0,1
J1: B 1,1,1 0,1,0

J3: A

J2: A J2: B

J1: A 1,1,0 0,1,1
J1: B 0,0,1 0,1,1

J3: B

with respect to their preferred ordering. Hence the three selection functions are

ε1 = ε2 = ≺′-arg max
ε3 = ≺′′-arg max .

Therefore, the game is described by the tuple of higher-order functionals

G = (≺′-arg max,≺′-arg max,≺′′-arg max,maj).

Keynesian Players. Now, consider the case where the first judge J1 still ranks
the candidates according to a preference ordering B ≺ A. The second and third
judges, however, have no preference relations over the candidates per se, but
want to vote for the winning candidate. They are Keynesian6 players.

It is possible to model such a game via standard payoff matrices, and Table 2
presents such an encoding. If there is a majority for a candidate and player J2 or
J3 votes for the majority candidate they will get a certain payoff, say 1. If they
vote for another candidate, their payoff is lower, say 0. Note, however, that in
the process of attaching payoffs to strategies, one has to compute the outcome
of the votes and then check for the second and the third player whether their
vote is in line with the outcome.

Let us now contrast this with the higher-order modelling of games. First note
that from the game G of the previous example, only the “motivation” of players
2 and 3 have changed. Accordingly, we will only need to adjust their selection
functions so as to capture their new goal which is to vote for the winner of the
contest. Such a goal is exactly captured by equipping J2 and J3 with the fixpoint
selection function fix : (X → X) → P(X), defined in Sect. 2.2. Note that it is
neither necessary to change the structure of the game nor to manually compute
anything. The new game with the two Keynesian judges is directly described by
the tuple

GK = (≺-arg max,fix,fix,maj).

One can say that in the higher-order modelling of games we have equipped the
individual players themselves with the problem solving ability that we used to
compute the payoff matrices such that they represent the motivations of the
Keynesian players.

6 The economist John Maynard Keynes [11] remarked that investors in financial mar-
kets can be described as not being interested in the outcome per se but that they
want to behave in line with the majority (in order to “buy low and sell high”). This
behaviour can be elegantly captured as fixed point goals.

144 J. Hedges et al.

3.2 Quantifier Equilibrium

Let us now discuss two different notions of equilibria for higher-order games.
Consider a game with n players, and a strategy profile x ∈ ∏n

i=1 Xi. Given an
outcome function q :

∏n
i=1Xi → R, the game outcome resulting from this choice

of strategy profile is q(x). We can describe the game context in which player i
unilaterally changes his strategy as

Uq
i (x)(x′

i) = q(x[i �→ x′
i])

where x[i �→ x′
i] is the tuple obtained from x by replacing the ith entry of the

tuple x with x′
i. Note that indeed Uq

i (x) has type Xi → R, the appropriate type
of a game context for player i.

We call the n functions Uq
i (1 ≤ i ≤ n) the unilateral maps of the game.

They were introduced in [6] in which it is shown that the proof of Nash’s theorem
amounts to showing that the unilateral maps have certain topological (continuity
and closure) properties. The concept of a context was introduced later in [7], so
now we can say that Uq

i (x): Xi → R is the game context in which the ith player
can unilaterally change his strategy, therefore we call it a unilateral context.

Using this notation we can abstract the classical definition of Nash equilib-
rium to our framework.

Definition 8 (Quantifier equilibrium). Given a game G = (ε1, . . . , εn, q),
we say that a strategy profile x ∈ ∏n

i=1 Xi is in quantifier equilibrium if

q(x) ∈ εi(Uq
i (x))

for all players 1 ≤ i ≤ n.

As with the usual notion of Nash equilibrium, we are also saying that a strategy
profile is in quantifier equilibrium if no player has a motivation to unilaterally
change their strategy. This is expressed formally by saying that preferred out-
comes, specified by the selection function when applied to the unilateral context,
contain the outcome obtained by sticking with the current strategy.

For illustration, we now compute a quantifier equilibrium for the voting con-
test game with classical players

G = (≺′-arg max,≺′-arg max,≺′′-arg max,maj)

as described in Sect. 3.1 in the notation of quantifiers and unilateral contexts.
We look at two possible strategy profiles: BBB and BBA. We claim that BBB
is a quantifier equilibrium. Note that BBB has outcome maj(BBB) = B. Let
us verify this for player 1. The unilateral context of player 1 is

Umaj
1 (BBB)(x) = maj(xBB) = B,

meaning that in the given context the outcome is B no matter what player 1
chooses to play. The maximisation quantifier applied to such a unilateral context
gives

ε1(Umaj
1 (BBB)) = �1-max(Umaj

1 (BBB)) = {B},

Selection Equilibria of Higher-Order Games 145

meaning that, in the given context, player 1’s preferred outcome is B. Hence,
we can conclude by maj(BBB) = B ∈ {B} = ε1(Umaj

1 (BBB)) that B is a
quantifier equilibrium strategy for player 1. This condition holds for each player
and allows us to conclude that BBB is a quantifier equilibrium.

On the other hand, we show that BBA is not in quantifier equilibrium. We
have that

maj(BBA) = B /∈ {A} = ε1(Umaj
1 (BBA)).

since Umaj
1 (BBA)(x) = maj(xBA) = x. In other words, the strategy profile

BBA gives rise to a game context Umaj
1 (BBA) where player 1 has an incentive

to change his strategy to A, so that the new outcome maj(ABA) = A is better
than the previous outcome B.

This game has three quantifier equilibria: {AAA,AAB,BBB}. They are
exactly the same as the Nash equilibria in the normal form representation
(cf. Table 1). We will discuss this coincidence in more detail in Sect. 4.2.

3.3 Selection Equilibrium

The definition of quantifier equilibrium is based on quantifiers. However, we can
also use selection functions directly to define an equilibrium condition.

Definition 9 (Selection equilibrium). Given a game G = (ε1, . . . , εn, q), we
say that a strategy profile x ∈ ∏n

i=1 Xi is in selection equilibrium if

xi ∈ εi(Uq
i (x))

for all players 1 ≤ i ≤ n, where xi is the ith component of the tuple x.

As in the previous subsection, let us illustrate the concept above using the
voting contest with classical players from Sect. 3.1. The set of selection equilibria
is {AAA,AAB,BBB}, the same as the set of quantifier equilibria.

Consider BBB and the rationale for player 1. As seen above, his unilateral
context is

Umaj
1 (BBB)(x) = maj(xBB) = B.

Hence, given this game context his selection function calculates

ε1(Umaj
1 (BBB)) = {B}

As before, given that he is not pivotal, an improvement by switching votes is
not possible. The same condition holds analogously for the other players.

Let us now investigate the strategy profile BBA. The unilateral context is

Umaj
1 (BBA)(x) = maj(xBA) = x.

Given this context, the selection function tells us that player 1 would switch
to A:

ε1(Umaj
1 (BBA)) = {A}.

Hence, BBA is not a selection equilibrium.

146 J. Hedges et al.

4 Relationship Between Equilibrium Concepts

In this section we show that selection equilibrium is a strict refinement of quanti-
fier equilibrium. Moreover, we show that for a special class of selection functions,
which we call closed selection functions, the two notions coincide. The obvious
question then arises: which concept is more reasonable when games involve non-
closed selection functions? We will argue by example that in such cases selection
equilibrium is the adequate concept.

4.1 Closed Selection Functions

Selection functions such as i-arg max(p), which one obtains from utility functions
as discussed in Sect. 2.2, are examples of what we call closed selection functions.

Definition 10 (Closedness). A selection function ε: (X → R) → P(X) is
said to be closed if whenever x ∈ ε(p) and p(x) = p(x′) then x′ ∈ ε(p).

Intuitively, a closed selection function is one which chooses optimal moves
only based on the outcomes they generate. Two moves that lead to the same
outcome are therefore indistinguishable, they are either both good or bad. It
is easy to see that the selection function arg max is closed. Agents modelled
via closed selection functions do not put any preferences on moves that lead to
identical outcomes.

An example of a non-closed selection function is the fixpoint operator

fix : (X → X) → P(X).

defined in Sect. 2.2. To see that fix is non-closed, we might have two points x �= x′

which both map to x (i.e. p(x) = p(x′) = x) so that x is a fixed point but x′ is
not.

One can consider translating quantifiers into selection functions and back
into quantifiers, or conversely.

Proposition 1. For all p : X → R we have

(i) ϕ(p) = ϕ(p) if ϕ is an attainable quantifier of type (X → R) → P(R)
(ii) ε(p) ⊆ ε(p) for any selection functions of type (X → R) → P(X).

Proof. These are easy to derive. Let us briefly outline ε(p) ⊆ ε(p). Suppose
x ∈ ε(p) is a good move in the game context p : X → R. By Definition 5 we
have that p(x) ∈ ε(p). Finally, by Definition 6 we have that x ∈ ε(p). �

The proposition above shows that on attainable quantifiers the double-
overline operation calculates the same quantifier we started with. On general
selection functions, however, the mapping ε �→ ε can be viewed as a closure
operator.7 Intuitively, the new selection function ε will have the same good out-
comes as the original one, but it might consider many more moves to be good as
well, as it does not distinguish moves which both lead to equally good outcomes.
7 Note that we might have a strict inclusion ε(p) ⊂ ε(p) in case we have x1 �= x2, with

x1 ∈ ε(p) and x2 �∈ ε(p) but p(x1) = p(x2).

Selection Equilibria of Higher-Order Games 147

Proposition 2. A selection function ε is closed if and only if ε = ε.

Proof. Assume first that ε is closed, i.e.

(i) x ∈ ε(p) and p(x) = p(x′) then x′ ∈ ε(p).

By Proposition 1 is it enough to show that if x′ ∈ ε(p) then x′ ∈ ε(p). Assuming
x′ ∈ ε(p), and by Definition 6 we have

(ii) p(x′) ∈ ε(p).

By Definition 5, (ii) says that p(x′) = p(x) for some x ∈ ε(p). By (i) it follows
that x ∈ ε(p).
Conversely, assume that ε = ε and that x ∈ ε(p) and p(x) = p(x′). We wish to
show that x′ ∈ ε(p). Since x ∈ ε(p) then p(x) ∈ ε(p). But since p(x) = p(x′)
we have that p(x′) ∈ ε(p). Hence, x′ ∈ ε(p). But since ε = ε it follows that
x′ ∈ ε(p). �

4.2 Selection Refines Quantifier Equilibrium

The following theorem shows that selection equilibrium is a refinement of quan-
tifier equilibrium.

Theorem 1. Every selection equilibrium is a quantifier equilibrium.

Proof. Recall that by definition, for every context p we have x ∈ εi(p) =⇒
p(x) ∈ εi(p), since εi(p) = {p(x) | x ∈ εi(p)}. Assuming that x is a selection
equilibrium we have xi ∈ εi(Uq

i (x)) Therefore Uq
i (x)(xi) ∈ εi(Uq

i (x)). It remains
to note that Uq

i (x)(xi) = q(x), because x[i �→ xi] = x. �
However, for closed selection functions the two notions coincide:

Theorem 2. If εi = εi, for 1 ≤ i ≤ n, then the two equilibrium concepts
coincide.

Proof. Given the previous theorem, it remains to show that under the assump-
tion εi = εi any strategy profile x in quantifier equilibrium is also in selec-
tion equilibrium. Fix i and suppose x is such that q(x) ∈ εi(Uq

i (x)). Since
Uq
i (x)(xi) = q(x), we have Uq

i (x)(xi) ∈ εi(Uq
i (x)). By the definition of εi it

follows that xi ∈ εi(Uq
i (x)). Therefore, since εi = εi, we obtain xi ∈ εi(Uq

i (x)).�
The theorem above explains why in the voting contest with classical pref-

erences the strategy profiles that were quantifier equilibrium were the same as
those in selection equilibrium. This example can be modelled with closed selec-
tion functions. Moreover, since arg max can be easily shown to be closed, in the
classical modelling of games via maximising players, our two notions of equi-
librium also coincide. The following theorem shows that they both indeed also
coincide with the standard notion of Nash equilibrium.

148 J. Hedges et al.

Theorem 3. In a classical game (see Remark 1) the standard definition of Nash
equilibrium and the equilibrium notions of Definitions 8 and 9 are equivalent.

Proof. Suppose the set of outcomes R is R
n and that the selection functions εi are

i-arg max, i.e. maximising with respect to ith coordinate. Unfolding Definition 9
and that of a unilateral context Uq

i (x), we see that a tuple x is an equilibrium
strategy profile if for all 1 ≤ i ≤ n

xi ∈ i-arg max
x∈Xi

q(x[i �→ x]).

But xi is a point on which the function p(x) = q(x[i �→ x]) attains its maximum
precisely when p(xi) ∈ maxx∈Xi

p(x). Hence

q(x) = q(x[i �→ xi]) = p(xi) = max
x∈Xi

p(x) = max
x∈Xi

q(x[i �→ x])

which is the standard definition of a Nash equilibrium: for each player i, the
outcome obtained by not changing the strategy, i.e. q(x), is the best possi-
ble amongst the outcomes when any other available strategy is considered, i.e.
maxx∈Xi

q(x[i �→ x]). �
Theorem 3 above shows that in the case of classical games the usual concept

of a Nash equilibrium coincides with both the quantifier equilibrium and the
selection equilibrium. On the other hand, for general games, Theorem 1 proves
that every selection equilibrium is a quantifier equilibrium.

selection equilibria � quantifier equilibria

In the following section we give examples showing that the inclusion above is
strict, i.e. that there are games where selection equilibrium is a strict refinement
of quantifier equilibrium. By Theorem 2 these examples necessarily make use of
players modelled by non-closed selection functions.

4.3 Illustrating the Two Solution Concepts

In Sect. 3.1 we have discussed the representation of the voting contest with Key-
nesian players game both in normal form as well as in higher-order functions.
Here, we will turn to analysing the equilibria of its higher-order representation

GK = (≺-arg max,fix,fix,maj).

We begin with quantifier equilibria (see Table 3). These include the strategy
profiles where judges (players) J2 and J3 are both coordinated but also profiles
where either J2 or J3 is in the minority. Readers are encouraged to download
the Haskell implementation, and interactively verify entries of this table.

We illustrate the rationale for the strategy profile AAB of the Keynesian
player 3. The outcome of AAB is maj(AAB) = A. The unilateral context of
player 3 is

Umaj
3 (AAB)(x) = maj(AAx) = A

Selection Equilibria of Higher-Order Games 149

Table 3. Players: max, fix, fix

Strategy Outcome Quantifier eq. Defects Selection eq. Defects

AAA A � �
AAB A � - J3

ABA A � - J2

ABB B � �
BAA A � �
BAB B - J1 - J1, J2

BBA B - J1 - J1, J3

BBB B � �

meaning that the outcome is (still) A if player 3 unilaterally changes from B to
A. The fixed point quantifier applied to this context gives

ε3(Umaj
3 (AAB)) = fix(Umaj

3 (AAB)) = {A}

meaning that A is the outcome resulting from an optimal choice. Hence, we can
conclude by

maj(AAB) = A ∈ {A} = ε3(Umaj
3 (AAB))

that player 3 is happy with his choice of move B according to the quantifier
equilibrium notion. This already demonstrates the problem with the quantifier
equilibrium notion, since the Keynesian player 3 has voted for B but A is the
winner, so he should not be happy at all!

Now, let us turn to the selection equilibria. Table 3 also contains the selection
equilibria and it shows that they are a strict subset of the quantifier equilibria.
Consider again the strategy profile AAB, focusing on the third player. In the
case of the selection equilibrium we have

B /∈ {A} = fix(Umaj
3 (AAB)) = ε3(Umaj

3 (AAB))

meaning that player 3 is not happy with his current choice of strategy B with
respect to the strategy profile AAB.

Remark 3. Given Theorem 2 it follows immediately that fix: (X → X) → P(X)
is not a closed selection function. Indeed, it is easy to calculate that

fix(p) = {x | p(x) = p(y), for some y such that y = p(y)},

i.e. fix(p) is the inverse image of fix(p), so it contains not only all fixed points of
p but also points that map through p to a fixed point.

The selection equilibria are precisely those in which J2 and J3 are coordi-
nated, and J1 is not pivotal in any of these. For illustration, consider the strategy

150 J. Hedges et al.

AAA, which is a selection equilibrium of this game. Suppose the moves of J1 and
J2 are fixed, but J3 may unilaterally change strategy. The unilateral context is

Umaj
3 (AAA)(x) = maj(AAx) = A

Thus the unilateral context is a constant function, and its set of fixpoints is

fix(Umaj
3 (AAA)) = {A}.

This tells us that J3 has no incentive to unilaterally change to the strategy B,
because he will no longer be voting for the winner.

On the other hand, for the strategy ABB the two Keynesian players are
indifferent, because if either of them unilaterally changes to A then A will become
the majority and they will still be voting for the winner. This is still a selection
equilibrium (as we would expect) because the unilateral context is the identity
function, and in particular B is a fixpoint.

As a last point, let us compare the selection and quantifier equilibria of
Table 3 with the Nash equilibria in the normal form game. The payoff matrix
in Table 2 also depicts Nash equilibria payoffs as marked in bold. Note that
the latter are the same as the selection equilibria. Thus, in general selection
equilibrium appears to be the adequate solution concept.

Coordination. As a last point, consider a game where all players want to vote
for the winner of the contest. Table 4 represents the payoffs of this game; Nash
equilibria are in bold. Clearly the only two equilibria are when all judges vote
unanimously for a given contestant. Judges J1, J2 and J3 want to vote for the
winner, so the selection functions are all given by the fixpoint operator.

Table 4. Nash equilibria of coordination game

J2: A J2: B
J1: A 1,1,1 1,0,1
J1: B 0,1,1 1,1,0

J3: A

J2: A J2: B
J1: A 1,1,0 0,1,1
J1: B 1,0,1 1,1,1

J3: B

The selection equilibria of the higher-order representation of this game are
exactly the coordinated strategies. This game is a good example of why quan-
tifier equilibria are not suitable for modelling games with non-closed selection
functions: every strategy is a quantifier equilibrium of this game, but the selec-
tion equilibrium captures the intuition perfectly that the equilibria should be
the strategy profiles that are maximally coordinated, namely AAA and BBB.

5 Conclusion

In this paper, we introduced a representation of strategic games based on quanti-
fiers and selection functions as well as a new equilibrium concept, and showed by

Selection Equilibria of Higher-Order Games 151

example that the selection equilibrium is the appropriate concept as it works well
even when players are described by non-closed selection functions. We focused
on simultaneous move games. Yet, the theory as well as the implementation nat-
urally extend to sequential games. Moreover, multi-valued selection functions as
formulated here have sparked new research avenues, for instance on so called
“open games” [5,8,10], a compositional approach to game theory.

References

1. Botta, N., Ionescu, C., Brady, E.: Sequential decision problems, dependently typed
solutions. In: Proceedings of PLMMS 2013 (2013)

2. Escardó, M., Oliva, P.: Selection functions, bar recursion and backward induction.
Math. Struct. Comput. Sci. 20(2), 127–168 (2010)

3. Escardó, M., Oliva, P.: What sequential games, the Tychonoff theorem and the
double-negation shift have in common. In: Proceedings of the Third ACM SIG-
PLAN Workshop on Mathematically Structured Functional Programming (MSFP
2010), pp. 21–32 (2010)

4. Escardó, M., Oliva, P.: Sequential games and optimal strategies. Proc. R. Soc.
Lond. A Math. Phys. Eng. Sci. 467(2130), 1519–1545 (2011)

5. Ghani, N., Hedges, J.: A compositional approach to economic game theory.
arXiv:1603.04641 (2016)

6. Hedges, J.: A generalization of Nash’s theorem with higher-order functionals.
Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 469(2154) (2013). http://rspa.
royalsocietypublishing.org/content/469/2154/20130041

7. Hedges, J.: Monad transformers for backtracking search. In: Proceedings of the
5th Workshop on Mathematically Structured Functional Programming, pp. 31–50.
Open Publishing Association (2014)

8. Hedges, J.: Towards compositional game theory. Ph.D. thesis, Queen Mary
University of London (2016)

9. Hedges, J., Oliva, P., Sprits, E., Winschel, V., Zahn, P.: Higher-order decision
theory. arXiv preprint cs.GT, arXiv:1506.01003 (2015)

10. Hedges, J., Sprits, E., Winschel, V., Zahn, P.: Compositionality and string diagrams
for game theory. arXiv:1604.06061 (2015)

11. Keynes, J.M.: General Theory of Employment, Interest and Money. Macmillan,
London (1936)

12. Mostowski, A.: On a generalization of quantifiers. Fundamenta Mathematicae 44,
12–36 (1957)

13. Osborne, M., Rubinstein, A.: Course in Game Theory. MIT Press, Cambridge
(1994)

http://arxiv.org/abs/1603.04641
http://rspa.royalsocietypublishing.org/content/469/2154/20130041
http://rspa.royalsocietypublishing.org/content/469/2154/20130041
http://arxiv.org/abs/1506.01003
http://arxiv.org/abs/1604.06061

DALI for Cognitive Robotics: Principles
and Prototype Implementation

Stefania Costantini(B), Giovanni De Gasperis, and Giulio Nazzicone

DISIM, Università di L’Aquila, L’Aquila, Italy
stefania.costantini@univaq.it

Abstract. DALI is a logic Prolog-based Multi Agent System Language
and Framework (publicly available on GitHub) developed at University of
L’Aquila since 1999, and includes features aimed at user monitoring and
training in Ambient Intelligent applications. In this paper, we show how
such features can be integrated and extended in view of cognitive robotic
applications; we then illustrate the extensions to the DALI implemen-
tation that allow DALI agents to interact with robotic platforms even
through the cloud.

1 Introduction

Quoting from http://www.ieee-ras.org/cognitive-robotics, “There is growing
need for robots that can interact safely with people in everyday situations.
These robots have to be able to anticipate the effects of their own actions as
well as the actions and needs of the people around them. To achieve this, two
streams of research need to merge, one concerned with physical systems specifi-
cally designed to interact with unconstrained environments and another focusing
on control architectures that explicitly take into account the need to acquire and
use experience.”

Several papers on cognitive robotics can be found in the proceedings of main
Conferences on Artificial Intelligence (e.g., ECAI, IJCAI) and on Agents (e.g.,
AAMAS). The importance of developing “intelligent” adaptive robots can be
particularly appreciated in view of the societal issue of helping the elderly and
the disabled; in fact life expectancy is increased, and consequently the number of
persons needing personalized assistance is increasing as well. ICT (Information
and Communication Technologies) can potentially (and partly already are) of
great help. According to the guidelines provided by the European Union (http://
ec.europa.eu/health/ehealth/policy/index en.htm), the eHealth scenario “refers
to tools and services using information and communication technologies (ICTs)”
that can improve prevention, diagnosis, treatment, monitoring and management
but, also, “Bringing ICT and healthcare together is not simply a matter of
digitizing and communicating matters of health, but rather opening a new world
of doing things in ways that were not possible or even conceivable before. . . ”.
Cognitive robotic systems can potentially also help in any situation where there
is an impaired or disabled person, or more generally any person in need of special
c© Springer International Publishing AG 2017
Y. Lierler and W. Taha (Eds.): PADL 2017, LNCS 10137, pp. 152–162, 2017.
DOI: 10.1007/978-3-319-51676-9 10

http://www.ieee-ras.org/cognitive-robotics
http://ec.europa.eu/health/ehealth/policy/index_en.htm
http://ec.europa.eu/health/ehealth/policy/index_en.htm

DALI for Cognitive Robotics: Principles and Prototype Implementation 153

Fig. 1. Envisaged Smart Healtcare Architecture

assistance. This may include children, not as a substitute but as a support to
parents, family and caregivers.

In [1] we have outlined a comprehensive system (depicted in Fig. 1 and
called Friendly&Kind, for short F&K) based upon logical agents for monitor-
ing patients, where a patient’s personal agent can be embodied in a robot. Some
of the monitoring can be performed locally, where however agents are able, upon
need, to interact with human specialists, knowledge bases, and with the health
system. This while performing routine care chores and, possibly, entertaining the
patient. This should alleviate the healthcare and social security systems from the
burden of having to provide full-time highly specialized human assistants while
allowing elderly people to leave at home rather than be moved to an institution.
The level of synergic knowledge retrieval and integration that such a system can
provide goes beyond the capabilities of a human nurse or personal assistant.

It has been demonstrated that, understandably, humans prefer friendly inter-
faces and robots that show some kind of intelligent and also affective and
“emotional” behavior. There is interesting ongoing work, e.g., by the group
of Prof. Johan Hoorn at Vrije Universiteit Amsterdam about social robotics,
which considers the impact of robots on the user from the point of view of
ethics [2], interaction with the disabled [3] and even acceptable robot appear-
ance. Some of this work is reported in a famous documentary “Alice cares”
(https://vimeo.com/116760085, a scene from this documentary is reported in
Fig. 2), which shows the positive interaction among three old women and a
friendly humanoid care robot. From a cognitive point of view and for exploring

https://vimeo.com/116760085

154 S. Costantini et al.

Fig. 2. Text reading robot assistant, courtesy of “Alice cares” trailer video from Vimeo

the social acceptability of robots as human companions these experiments are
certainly of great importance. However, as concerns “intelligent” behavior the
robots used in the experiments are still under remote control of a human oper-
ator.

In the perspective of making such robots really intelligent and autonomous,
research results from many fields of Artificial Intelligence, Automated Reasoning
and Intelligent Software Agents can be usefully exploited. We strongly believe
that in this and in other fields it can be advantageous to define a robot’s cognitive
part as an agent or Multi-Agent System (MAS) defined via declarative agent-
oriented languages. In fact, the behavior of a robot which is aimed at assisting
a human user should be based on user observation, monitoring and training.
I.e., the robot should be equipped with a basic user profile defining the user’s
needs, habits, and preferences; such profile should be then refined via the robot’s
own observation of the user’s behavior over time; the robot should then be able
to supervise and check the user’s activities, and to teach (or remind) a user of
how to perform tasks. In all this, the robot should be able to recognize relevant
complex events from sets of simple ones, and to check and to adapt its own
behavior upon changing circumstances.

There are many logic agent-oriented languages and architectures in compu-
tational logic apt to these aims, among which MetateM, 3APL, GOAL, AgentS-
peak, Impact, KGP and DALI (the reader may refer to the surveys [4–6] and to
the references therein), that might be usefully exploited in robotics, as in fact
many of them already have, or at least many of the examples provided in the
literature concern potential robotic applications.

The DALI language [11,12] has been empowered and experimented over the
years concerning capabilities for the definition and management of an agent’s
memory and experience and for user monitoring and training also by learning
new behavioral patterns (via deep learning or via knowledge exchange); DALI
agents are able to perform complex event processing, and to dynamically check

DALI for Cognitive Robotics: Principles and Prototype Implementation 155

and modify their own behavior also in terms of a special interval temporal logic
(cf. [7–10] and the references therein). However all these features, though exper-
imented in software agents, have never been applied since recently to robotic
applications because DALI lacked a suitable plug-in, that we have now developed.

Such extension to the basic DALI implementation allows action commands
to be exchanged between DALI agents and any robotic platform by using the
YARP middleware. In addition, we have implemented ServerDALI which allows
to locate DALI agents and MAS on a server. This is relevant, as for instance in
the architecture of Fig. 1 the caregiver agents will presumably be copies of the
same one, to which robots’ cognitive functioning can refer; so, a cloud solution
eliminates the need of equipping the (possibly diverse) robot hardware with
sophisticated software; moreover, computationally heavy automated reasoning
tasks can be more efficiently executed on the server.

The novel contribution of this paper is twofold: on the one hand, we have
re-elaborated and extended past work on DALI in the perspective of robotic
applications for the care of persons in need; on the other hand, we have realized
and experimented a practical efficient implementation constructed out of open-
source components. At the present stage, we have been experimenting the use
of a declarative language for defining the cognitive part of robots, and for our
experiments we have adopted simulators rather than real robot hardware. So,
in this context we are not concerned with physical aspects concerning sensors,
actuators, vision, etc., that are however widely studied by specialists.

In Sect. 2 we recall the basic DALI language, while in Sect. 3 we discuss,
also by means of small though significant examples the potential applicability of
DALI in robotic user monitoring and training. In Sect. 4 we illustrate the exten-
sion to robotics of the DALI implementation. Finally, in Sect. 5 we conclude.

2 The Basic DALI Language and Architecture

DALI [11,12] (cf. [13] for a comprehensive list of references) is an Agent-Oriented
Logic Programming language. The DALI Prolog-based Multi Agent System Lan-
guage and Framework has been developed at University of L’Aquila since 1999.

DALI agents are able to deal with several kinds of events: external events,
internal, present and past events.

External events are syntactically indicated by the postfix E. Reaction to
each such event is defined by a reactive rule, of the form EvE :>Reaction where
:> is a special token. The agent remembers to have reacted by converting an
external event into a past event (postfix P). An event perceived but not yet
reacted to is called “present event” and is indicated by postfix N.

In DALI, actions (indicated with postfix A) may have or not preconditions:
in the former case, the actions are defined by actions rules, in the latter case
they are just action atoms. An action rule is characterized by the new token :<.
Similarly to events, actions are recorded as past actions.

Internal events is the feature that makes DALI agent agents proactive. An
internal event is syntactically indicated by the postfix I, and its description is

156 S. Costantini et al.

composed of two rules. The first one contains the conditions (knowledge, past
events, procedures, etc.) that must be true so that the reaction (in the second
rule) may happen. Thus, a DALI agent is able to react to its own conclusions.
Internal events are automatically attempted with a default frequency customiz-
able by means of directives in the initialization file.

The DALI communication architecture implements the DALI/FIPA protocol,
which consists of the main FIPA primitives, plus few new primitives which are
particular to DALI and provides the possibility of defining meta-rules for filtering
incoming and out-coming messages, and for accessing and querying external
ontologies in the semantics web.

DALI provides a plugin to an answer set solver, so complex reasoning tasks
such as, e.g., planning and preference handling can be performed in Answer
Set Programming (ASP), which is a state-of-the art technology for dealing with
hard computational problems (cf., among many, [14] and the references therein);
several efficient ASP solvers are in fact freely available and are periodically
checked and compared over well-established benchmarks, and over challenging
sample applications proposed at the yearly ASP competition (cf. the ASPCOMP
web sites).

3 DALI Advanced Features and Possible Applications
to Robotics

The robotic applications that we particularly envisage concern (since [15]) user
monitoring and training in any context, but especially for the care of elderly and
disabled persons. In our setting, agents interact with users (i) with the objective
of training a user in some particular task, and (ii) with the aim of monitoring
the user for ensuring some degree of consistence and coherence in user behavior.

Agents are able to be aware, by prior knowledge or via some form of learning,
of the behavioral patterns that the user is adopting, and to learn rules and plans
also from other agents (by imitation or by being told). Assume as a simple
example that an agent has been somehow able to learn that the user normally
takes a drink when coming back home. This can be represented by a rule such as:

drink :- arrive home.

This learned rule can possibly be associated with a certainty factor. When
the rule becomes later confronted with subsequent experience, its certainty factor
will be updated accordingly. Whenever this factor exceeds a threshold, this may
lead to assert new meta-rules, such as:

USUALLY drinkWHEN arrive home.

User monitoring can be performed via temporal-logic-like rules like the fol-
lowing one:

NEVER drink alchool AND take medicine.

DALI for Cognitive Robotics: Principles and Prototype Implementation 157

Such a rule acts as a constraint which has priority over former ones; so, the
agent will actively discourage the user to drink while taking medicines. In [16]
the semantics of such expressions is defined, also in relation to the possibility of
defining the interval where some events/actions must or must not occur.

The following example concerns a robot aiding to supervise a baby, thus
relieving caregivers from some of their tasks. If the baby is hungry, the robot
should feed the baby with available baby food (feeding is an action, indicated
with postfix A) paying attention to choose the healthier among those that the
baby likes. Conjunction food(F), available(F) provides a number of values for
F , among which one is chosen. In particular, the choice will correspond to a
maximum in the partial order imposed by the binary predicates best preferred
and healthier in the given order. This construct for complex preference, the p-set,
was originally introduced in [17].

baby is hungryE :>
{feed babyA(F) : food(F), available babyf (F) : best preferred , healthier}.
In the example below, the robot again assists parents taking care of a child.

The child has to go to school (mandatory goal, indicated by postfix G) and
is about to skip breakfast because she prefers cereals that unfortunately are
finished. The agent, based upon the monitoring condition (never skip breakfast)
will be able to suggest alternative food, in particular the best preferred among
available options.

go to schoolG : NEVER skip breakfast(D) :: cereals finished :::
suggestA(alternative food) IN {cookies, cake slice : best preferred}.

The monitoring component can however also include meta-axioms such as
for instance the following one, which states that a user action which is necessary
to reach a mandatory objective should necessarily be undertaken. The agent can
fulfill this statement either by convincing the user to do so, or to resort to human
caregivers’ help:

ALWAYS do(user,A) WHEN mandatory goal(G), required(G ,A)

Such a meta-rule could be applied to practical cases such as the following:

mandatory goal(healthy).
required(healthy , take medicineA).

ASP modules can be exploited in order to plan actions which might be per-
formed in given situations, and to extract necessary actions, which are those
actions included in all possible plans. Given ASP module M (defined in a sep-
arate text file), in the example below reaction to event evE can be either any
action which can be inferred (from M) as a possible reaction, or a necessary
action, again according to M . Events are indicated with postfix E, reaction is
indicated with :> . Connective > expresses preference: the former option is pre-
ferred over the latter if the condition after the :- holds; necessary and action are

158 S. Costantini et al.

distinguished predicates applicable over ASP modules’ results. So, in this sample
rule necessary actions are preferred in a critical situation. Otherwise, any of the
two options may be taken.

evE :> necessary(M,N)|action(M,A) : M > A :- critical situation.

The above examples are witnesses of a re-elaboration of past work on DALI in
the perspective of cognitive robotics applications. Though small, the examples
should have practically demonstrated that DALI has indeed the potential for
acting as an agent language in this realm. However, a suitable interface between
DALI agents and robotic hardware or simulators was lacking. Such an interface
has been recently implemented, and is presented in the next section.

4 The Extended DALI Implementation

The DALI programming environment at the current stage of development [18]
offers a multi-platform folder environment including Sicstus Prolog programs (as
DALI is implemented in Sicstus), shells scripts, and Python scripts.

For the development of DALI agents and MAS, a programmer can sim-
ply use any text editor to write DALI agents’ programs and the necessary
start/configuration scripts; more proficiently, she could use a web-based system-
independent integrated development environment where agents editing is man-
aged through an HTML5/AJAX-based online editor, with start/stop command
buttons and agents logs output for runtime verification, handling signals and
events from the DALI engine running in the background. The system is designed
so as to be able to interact with other services by means of JSON data events.
Such an external service can be a virtual robotics simulator. Thus, an entire
complex anthropomorphic cognitive robot like the iCub [19] could be controlled
by a DALI MAS.

The software components diagram in Fig. 3 shows how DALI has been encap-
sulated and integrated with other modules through a Python “glue code” layer,
called PyDALI. Each DALI agent is an instance of the Prolog program “DALI
Interpreter”. The multi-platform open source library pexpect (http://github.
com/pexpect/pexpect) has been adopted for building a Python middle layer
to automate the interaction with the Sicstus Prolog environment, seen as an
instance of the class PySicstus. In this way, by abstracting via the PyDALI
class, a DALI agent instance process can be configured, loaded, started, exe-
cuted and terminated. A MAS can then be handled via the most abstract class
“MAS”.

The Python code can then been imported in any Python program by
using the open source Twisted (http://github.com/twisted/twisted) program-
ming library. This allows the interaction of DALI agents with other software
modules/server/clients by means of asynchronous JSON events. In particular,
what we call the Multi-standard DALI Bus is in practice a middle layer com-
munication protocol that converts any JSON event coming from the outside

http://github.com/pexpect/pexpect
http://github.com/pexpect/pexpect
http://github.com/twisted/twisted

DALI for Cognitive Robotics: Principles and Prototype Implementation 159

Fig. 3. Software components diagram of the extended DALI architecture

Fig. 4. Runtime deployment diagram of the extended DALI architecture

world to an internal FIPA event in a Linda tuple space1, that the DALI MAS
thus receives as an external event. Specific actions performed within the DALI
MAS can generate FIPA events that are converted to JSON event so as to send
commands to external actuators, that can be either real robotic actuators or
virtual robotic components in a virtual robotics simulator. A typical runtime
deployment diagram can be seen in Fig. 4.

1 Linda is a model of coordination and communication among parallel processes
providing a logically global associative memory, called a “tuplespace”, in which
processes store and retrieve tuples. It is available for Sicstus Prolog and it is therefore
used as a communication middleware in the DALI implementation.

160 S. Costantini et al.

The central Multi-standard DALI bus collects asynchronous data events from
different sources, translating them into counterparts in the Linda tuple space
whenever an agent is the destination. It also collects action messages from
agents and translates them into JSON structures compatible with the desti-
nation, through the Python service aggregator/container. There may also be
external sensors that directly generate Linda tuple messages, or external sensors
mediated by the Python container.

YARP Integration. YARP, “Yet An other Robotic Platform” (http://github.
com/robotology/yarp) “supports building a robot control system as a collection
of programs communicating in a peer-to-peer way, with an extensible family of
connection types (tcp, udp, multicast, local, MPI, mjpg-over-http, XML/RPC,
tcpros,. . .) that can be swapped in and out to match your needs.”. A C++ pro-
gram, typically embedded in a robot, generates raw data and sends them to the
YARP port “/sender”. This port could be connected to a “/receiver” YARP port
by means of a channel configurator. We have developed a simple Python pro-
gram which registers itself as the handler of the “/receiver” port, and translates
the data into a Linda tuple space accessible by DALI agents.

DALI MAS Controlling the iCub Virtual Robot. “The iCub is a 53 degree-
of-freedom cognitive humanoid robot which has been developed as an open-systems
research platform” [19]. iCub uses YARP extensively as robotic protocol for inter-
nal data events. So, DALI agents can be developed to asynchronously receive
data events from iCub sensors and send outcomes of logical decisions/actions
through YARP ports. Ports have to be accurately selected in order to work at
the highest possible level of abstraction, where logic programming and reasoning
capabilities of DALI agents are more appropriate. Lower level ports should be
controlled by conventional cybernetic controllers, in a hierarchical control struc-
ture where loop speed is higher closer to the hardware (or virtual hardware in
case of a simulator).

ServerDALI. The DALI cloud solution is encapsulated in “docker” container,
that2 includes everything needed to run the code in a platform-independent
way. Composed together with the iCub YARP docker container, a cloud com-
puting based MAS could control the cognitive aspect of an embodied robot. The
ServerDALI application allows a DALI MAS to be made available to users also
via web or mobile applications. ServerDALI and a sample web interface have
been programmed using PHP, CSS3, Javascript and HTML5. The entire MAS
is made available analogously to a single object, so its external users are not
required to possess any notion about Agents or Artificial Intelligence. This is
accomplished via a special agent (called Ermes) which is added to any MAS and
acts as an interface between the MAS and the external web based environment;
in particular, via the ServerProlog library PHP and JSON objects can be trans-
lated into messages that Ermes can then dispatch, and vice versa. This solution
can be generalized to other agent-oriented frameworks and to different external
languages.
2 Docker is an open-source multi-platform tool to automate the deployment of Linux
lightweight containers, see http://www.docker.com/technologies/overview.

http://github.com/robotology/yarp
http://github.com/robotology/yarp
http://www.docker.com/technologies/overview

DALI for Cognitive Robotics: Principles and Prototype Implementation 161

5 Conclusions

In this paper we have showed the potential usefulness of the DALI logical agent-
oriented programming language in the cognitive robotic domain; we particularly
envisage applications for user monitoring and training concerning elderly or dis-
abled persons, or children (in cooperation with parents or caregivers). We have
then illustrated in some detail the extensions to the previously-existing DALI
implementation which allow DALI agents to be actually exploited in the robotic
realm. Therefore, DALI agents can now be developed to act as high level cogni-
tive robotic controllers, and can be automatically integrated with conventional
embedded controllers. The cloud package ServerDALI allows a DALI MAS to
be integrated in any practical environment. Realistic experiments are planned
in the near future in the context of the F&K project.

References

1. Aielli, F., Ancona, D., Caianiello, P., Costantini, S., De Gasperis, G., Di Marco,
A., Ferrando, A., Mascardi, V.: Friendly&Kind with your health: human-friendly
knowledge-intensive dynamic systems for the e-health domain. In: Bajo, J., et al.
(eds.) PAAMS 2016. CCIS, vol. 616, pp. 15–26. Springer, Heidelberg (2016)

2. van Kemenade, M., Konijn, E.A., Hoorn, J.F.: Robots humanize care - moral
concerns versus witnessed benefits for the elderly. In: Verdier, C., Bienkiewicz,
M., Fred, A.L.N., Gamboa, H., Elias, D. (eds.) Proceedings of HEALTHINF 2015,
pp. 648–653. SciTePress (2015)

3. Paauwe, R.A., Keyson, D.V., Hoorn, J.F., Konijn, E.A.: Minimal requirements
of realism in social robots: designing for patients with acquired brain injury. In:
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems, pp. 2139–2144. ACM (2015)

4. Fisher, M., Bordini, R.H., Hirsch, B., Torroni, P.: Computational logics and agents:
a road map of current technologies and future trends. Comput. Int. J. 23(1), 61–91
(2007)

5. Bordini, R.H., Braubach, L., Dastani, M., ElSeghrouchni, A.F., Gomez-Sanz, J.,
Leite, J., O’Hare, G., Pokahr, A., Ricci, A.: A survey of programming languages
and platforms for multi-agent systems. Informatica (Slovenia) 30(1), 33–44 (2006)

6. d’Inverno, M., Fisher, M., Lomuscio, A., Luck, M., de Rijke, M., Ryan, M.,
Wooldridge, M.: Formalisms for multi-agent systems. Knowl. Eng. Rev. 12(3),
315–321 (1997)

7. Costantini, S., De Gasperis, G.: Memory, experience and adaptation in logical
agents. In: Casillas, J., Mart́ınez-López, F.J., Vicari, R., De la Prieta, F. (eds.)
Management Intelligent Systems. AISC, vol. 220, pp. 17–24. Springer, Heidelberg
(2013)

8. Costantini, S., Dell’Acqua, P., Pereira, L.M.: Conditional learning of rules and
plans by knowledge exchange in logical agents. In: Bassiliades, N., Governatori,
G., Paschke, A. (eds.) RuleML 2011. LNCS, vol. 6826, pp. 250–265. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-22546-8 20

9. Costantini, S.: ACE: a flexible environment for complex event processing in logical
agents. In: Baldoni, M., Baresi, L., Dastani, M. (eds.) EMAS 2015. LNCS, vol.
9318, pp. 70–91. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26184-3 5

http://dx.doi.org/10.1007/978-3-642-22546-8_20
http://dx.doi.org/10.1007/978-3-319-26184-3_5

162 S. Costantini et al.

10. Costantini, S., De Gasperis, G.: Runtime self-checking via temporal (meta-)axioms
for assurance of logical agent systems. In: Proceedings of LAMAS 2014, 7th Work-
shop on Logical Aspects of Multi-agent Systems, held at AAMAS 2014, pp. 241–255
(2014)

11. Costantini, S., Tocchio, A.: A logic programming language for multi-agent systems.
In: Flesca, S., Greco, S., Ianni, G., Leone, N. (eds.) JELIA 2002. LNCS, vol. 2424,
pp. 1–13. Springer, Heidelberg (2002). doi:10.1007/3-540-45757-7 1

12. Costantini, S., Tocchio, A.: The DALI logic programming agent-oriented language.
In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS, vol. 3229, pp. 685–688.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30227-8 57

13. Costantini, S.: The DALI agent-oriented logic programming language: summary
and references 2016 (2016). http://www.di.univaq.it/stefcost/info.htm

14. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, New York (2003)

15. Costantini, S., Dell’Acqua, P., Pereira, L.M., Toni, F.: Towards a model of evolving
agents for ambient intelligence. In: Proceedings of the Symposium on Artificial
Societies for Ambient Intelligence (ASAmI 2007) (2007)

16. Costantini, S.: Self-checking logical agents. In: 8th Latin American Works, LA-
NMR 2012. CEUR Workshop Proceedings, vol. 911. CEUR-WS.org (2012). 3–30
Invited Paper, Extended Abstract in Proceedings of AAMAS 2013

17. Costantini, S., Formisano, A.: Modeling preferences and conditional preferences on
resource consumption and production in ASP. J. Alg. Cogn. Inf. Logic 64(1), 3–15
(2009)

18. De Gasperis, G., Costantini, S., Nazzicone, G.: DALI multi agent systems frame-
work, July 2016. http://github.com/AAAI-DISIM-UnivAQ/DALI

19. Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., Von Hofsten,
C., Rosander, K., Lopes, M., Santos-Victor, J., et al.: The iCub humanoid robot: an
open-systems platform for research in cognitive development. Neural Netw. 23(8),
1125–1134 (2010)

http://dx.doi.org/10.1007/3-540-45757-7_1
http://dx.doi.org/10.1007/978-3-540-30227-8_57
http://www.di.univaq.it/stefcost/info.htm
http://github.com/AAAI-DISIM-UnivAQ/DALI

Funky Grooves: Declarative Programming
of Full-Fledged Musical Applications

Henrik Nilsson1(B) and Guerric Chupin2

1 School of Computer Science, University of Nottingham, Nottingham, UK
nhn@cs.nott.ac.uk

2 ENSTA ParisTech, Palaiseau, France
guerric.chupin@ensta-paristech.fr

Abstract. There are many systems and languages for music that essen-
tially are declarative, often following the synchronous dataflow paradigm.
As these tools, however, are mainly aimed at artists, their application
focus tends to be narrow and their usefulness as general purpose tools
for developing musical applications limited, at least if one desires to
stay declarative. This paper demonstrates that Functional Reactive Pro-
gramming (FRP) in combination with Reactive Values and Relations
(RVR) is one way of addressing this gap. The former, in the synchronous
dataflow tradition, aligns with the temporal and declarative nature of
music, while the latter allows declarative interfacing with external com-
ponents as needed for full-fledged musical applications. The paper is a
case study around the development of an interactive cellular automaton
for composing groove-based music.

Keywords: Functional reactive programming · Reactive values and
relations · Synchronous dataflow · Hybrid systems · Music

1 Introduction

Time, simultaneity, and synchronisation are all inherent aspects of music. Fur-
ther, there is much that is declarative about music, such as musical notation
and many underpinning aspects of music theory. This suggests that a time-
aware, declarative paradigm like synchronous dataflow [5] might be a good fit
for musical applications. Indeed, there are numerous successful examples of lan-
guages and systems targeting music that broadly fall into that category, such as
CSound1, Max/MSP2, and Pure Data3 just to mention three.

However, systems like these primarily target artists and are not in themselves
general purpose languages. It may be possible to extend them to support novel
applications, but this usually involves non-declarative programming and working

1 http://www.csounds.com/.
2 https://cycling74.com/products/max/.
3 https://puredata.info/.

c© Springer International Publishing AG 2017
Y. Lierler and W. Taha (Eds.): PADL 2017, LNCS 10137, pp. 163–172, 2017.
DOI: 10.1007/978-3-319-51676-9 11

http://www.csounds.com/
https://cycling74.com/products/max/
https://puredata.info/

164 H. Nilsson and G. Chupin

around limitations such as lack of support for complex data structures [7, p. 170]
or difficulties to express dynamically changing behaviour [7, p. 156][1].

With this application paper, we aim to demonstrate that Functional Reactive
Programming (FRP) [8,13] in combination with Reactive Values and Relations
(RVR) [15] is a viable and compelling approach to developing full-fledged musical
applications in a declarative style, and, by extension, other kinds of interactive
applications where time and simultaneity are central. To cite Berry [2]:

From the points of view of modeling and programming, there is actually
not much difference between programming an airplane or an electronic
orchestra.

A more detailed account of this work is available as a technical report [12].
FRP combines the full power of polymorphic functional programming with

synchronous dataflow, thus catering for the aforementioned temporal aspects
while not being restricted by being tied to any specific application domain. Its
suitability for musical applications has been demonstrated a number of times. For
example, it constitutes an integral part of the computer music system Euterpea4,
which supports a broad range of musical applications [10], and it has been used
for implementing modular synthesizers [9].

Generally, though, the core logic is only one aspect of a modern, compelling
software application. In particular, musical applications usually require sophis-
ticated, tailored GUIs and musical I/O, such as audio or MIDI. In practice, such
requirements necessitate interfacing with large, complex, and often platform-
specific imperative frameworks. In contrast to earlier work [9], we do consider
external interfacing here: RVR was developed specifically to meet that need in
a declarative manner.

The paper constitutes a case study of the development of a medium-sized
musical application inspired by the reacTogon [4], an interactive (hardware)
cellular automaton for groove-based music. The FRP system used is Yampa [13].
To challenge our frameworks, we have adapted and extended the basic idea of the
reacTogon considerably to create a useful and flexible application that fits into a
contemporary studio setting. Through an overview of the developed application
and highlights of techniques and code fragments, we hope to convince the reader
that our approach works in practice for real applications and has many merits.
The source code for the application is publicly available on GitLab5.

2 Background

2.1 Time in Music

Change over time is an inherent aspect of music. Further, at least when consid-
ered at some level of abstraction, such as a musical score or from the perspective
of music theory, music exhibits both discrete-time, and continuous-time aspects
4 http://www.euterpea.com/.
5 https://gitlab.com/chupin/arpeggigon.

http://www.euterpea.com/
https://gitlab.com/chupin/arpeggigon

Funky Grooves: Declarative Programming 165

[6, p. 127]. In music theory, this is referred to as striated and smooth time,
a distinction usually attributed to the composer Pierre Boulez [3]. For exam-
ple, the notes in a musical score begin at discrete points in time. On the other
hand, crescendo is the gradual increase of the loudness, ritardando is the gradual
decrease of the tempo, and portamento is the gradual change of the pitch from
one note to another. Contemporary electronic musical genres provide many other
examples of gradual change as an integral part of the music, such as smooth filter
sweeps or rhythmic changes of the volume.

Of course, there are many more aspects of time in music than discrete vs.
continuous [6, pp. 123–130]. However, for musical applications, support for devel-
oping mixed discrete- and continuous-time systems, often referred to as hybrid
systems, is a good baseline.

2.2 Functional Reactive Programming and Yampa

Functional Reactive Programming (FRP) [8] is a declarative approach to imple-
menting reactive applications centred around programming with time-varying
values in the synchronous dataflow tradition [5]. In this paper, we are using the
arrows-based [11] FRP system Yampa [13]. It is realised as an embedding in
Haskell and it supports hybrid systems whose structure may change over time.
Thus, as discussed in Sect. 2.1, it is a good fit for musical applications. Further,
the arrows-based programming model is close to the visual “boxes and arrows”
approach. This also goes well with musical applications, as evidenced by systems
like Max/MSP and similar. We outline some of the basic aspects of Yampa in
the following for the benefit of readers not familiar with it. A more in-depth
account can be found in e.g. the accompanying technical report [12].

Yampa is based on two central concepts: signals and signal functions.
A signal is a function from time to values of some type:

Signal α ≈ Time → α

Time is (notionally) continuous, represented as a non-negative real number.
(We will return to discrete time shortly.) The type parameter α specifies the
type of values carried by the signal. A signal function is a function from Signal
to Signal :

SF α β ≈ Signal α → Signal β

When a value of type SF α β is applied to an input signal of type Signal α,
it produces an output signal of type Signal β. Signal functions are first class
entities in Yampa. Signals, however, are not: they only exist indirectly through
the notion of signal function.

Programming in Yampa consists of defining signal functions compositionally
using Yampa’s library of primitive signal functions and a set of combinators.
Some central arrow combinators are arr that lifts an ordinary function to a
stateless signal function, serial composition ≫, parallel composition &&&, and
the fixed point combinator loop. Figure 1 illustrates these combinators pictori-
ally. In practice, Paterson’s arrow notation [14] is often used to facilitate writing

166 H. Nilsson and G. Chupin

Fig. 1. Basic signal function combinators.

arrow code. It is a variation of Haskell’s do-notation and essentially allows dia-
grams to be described textually by naming the arrows.

The Event type models discrete-time signals:

data Event a = NoEvent | Event a

A signal function whose output signal is of type Event T for some type T is
called an event source. The value carried by an event occurrence may be used
to convey information about the occurrence.

A family of switching primitives enable the system structure to change in
response to events. The simplest such primitive is switch:

switch :: SF a (b,Event c) → (c → SF a b) → SF a b

Once the switching event occurs, switch applies its second argument to the value
carried by the event and switches into the resulting signal function. Yampa also
includes parallel switching constructs that maintain dynamic collections of signal
functions connected in parallel [13].

2.3 Reactive Values and Relations

A Reactive Value (RV) [15] is a typed mutable value with access rights and
change notification. RVs provide a light-weight and uniform interface to GUI
widgets and other external components such as files and network devices. Each
entity is represented as a collection of RVs, each of which encloses an individual
property. RVs can be transformed and combined using a range of combinators,
including lifting of pure functions and lenses.

Reactive Relations (RR) specify how RVs are related separately from their
definitions. An RR may be uni- or bi-directional. Once RVs have been related,
changes will be propagated automatically among them to ensure that the stated
relation is respected.

3 The Arpeggigon

Our application is called Arpeggigon, from arpeggio and hexagon. It was
inspired by Mark Burton’s hardware reacTogon: a “chain reactive performance

Funky Grooves: Declarative Programming 167

Fig. 2. The Arpeggigon (Color figure online)

arpeggiator” [4]. However, we have expanded considerably upon the basic idea
to create a software application we believe is both genuinely useful in a contem-
porary studio setting and a credible test case for our approach.

3.1 The reacTogon

Central to the design of the reacTogon is the Harmonic Table6: a way to arrange
musical notes on a hexagonal grid. The various directions correspond to different
musically meaningful intervals. For example, each step along the vertical axis
corresponds to a perfect fifth. The reacTogon uses this layout to implement a
cellular automaton. See Fig. 2 for our adaptation of the idea. Tokens of a few
different kinds are placed on the grid, at most one token per cell. These tokens
govern how play heads move around the grid, as well as the initial position and
direction of the play heads. When a play head hits a token, the kind of token
determines what happens next. First, for most tokens, a note corresponding to
the position of the token is played. Second, either the direction of the play head
is changed, it is split into new play heads, or it is absorbed. Thus, arpeggiated
chords or other sequences of notes are described. These can further be transposed
in response to playing a keyboard, allowing the reacTogon to be performed.

3.2 Features and Architecture

Our Arpeggigon is a software realization of the reacTogon concept. The main
features our Arpeggigon provides over the reacTogon are:

– Multiple layers: one or more cellular automata run in parallel. Layers can be
added, removed, and edited dynamically through a tabbed GUI.

6 https://en.wikipedia.org/wiki/Harmonic table note layout.

https://en.wikipedia.org/wiki/Harmonic_table_note_layout

168 H. Nilsson and G. Chupin

User GUI

Common
Control

MIDI
Keyboard

Layers
MIDI

Translator

MIDI
Synthesizer

Fig. 3. The Arpeggigon architecture

– Extended attributes for tokens, such as note length, accent, and slide.
– Per-cell repeat count for local modification of the topology of the grid.
– MIDI integration.
– Saving and loading of configurations.

Figure 2 shows a screenshot. Dynamic addition and removal of layers means
that both the core logic of the application and the GUI must support structural
changes while the application is running. Note the different kinds of tokens to the
right of the grid. They can be dragged and dropped onto the grid to configure a
layer, even while the Arpeggigon is running. The play heads are coloured green.

Figure 3 illustrates the architecture of the Arpeggigon. The rectangles repre-
sent the main system components. The thin arrows represent internal commu-
nication, the thick ones MIDI I/O, and the dashed ones user interaction.

GUI is the graphical user interface. It includes a model of the state of global
parameters, such as the overall system tempo, and the current configuration
of each layer. Common Control is responsible for system-wide aspects, such as
generating a global clock (reflecting the system tempo) that keeps the layers syn-
chronised. Layers is the instances of the actual automata, each generating notes.
MIDI Translator translates high-level internal note events and control signals into
low-level MIDI messages, merging and serialising the output from all layers.

GUI communicates the current system configuration to Common Control and
Layers. Note that this data is time-varying as the user can change the configura-
tion any time. Layers needs to communicate the positions of the play heads back
to GUI for animation purposes. This is thus also a time-varying signal.

4 Implementation

4.1 Layers

At its core, each layer of the Arpeggigon is a cellular automaton that advances
one step per layer beat. Its semantics is embodied by a transition function:

advanceHeads :: Board → BeatNo → RelPitch → Strength → [PlayHead]
→ ([PlayHead], [Note])

Funky Grooves: Declarative Programming 169

In essence, given the current configuration of tokens on the hexagonal grid,
henceforth the board, it maps the state of the play heads (position, direction,
and a repeat counter) to an updated play head state and a list of notes to be
played at this beat. The number of play heads may change as a play head may
be split or absorbed. The remaining parameters give the current transposition of
the layer, the strength with which notes should be played, and the beat number
within a bar allowing specific notes in a bar to be accented (played stronger).

Using the scanl -like Yampa function accumBy , advanceHeads is readily lifted
into an event-processing signal function:

automaton :: [PlayHead] → SF (Board ,DynamicLayerCtrl ,Event BeatNo)
(Event [Note], [PlayHead])

The static parameter is the initial state of the play heads. The first of the three
input signals carries the current configuration of the board, originating from GUI
(Fig. 3). The second carries a record of dynamic control parameters for the layer,
including transposition, play strength, and the length of a layer beat, originating
from GUI and MIDI Keyboard. These two are continuous-time signals, reflecting
the fact that the configuration of the board can change and a key be struck on
the MIDI keyboard at any time, not just at a beat. The third is the discrete-time
layer beat clock, from Common Control, carrying the beat number within a bar.
The output signals are the notes to be played, to be sent to MIDI Translator, and
the state of the play heads for animation purposes, to be sent back to GUI. Note
the close correspondence to the architecture in Fig. 3.

4.2 Synchronisation

As an example of turning Yampa’s continuous-time capabilities to musical appli-
cations, consider automating gradual tempo changes. Imagine two sliders to set
a fast and a slow tempo, a button to select between them, and a further slider
to set the rate at which the tempo should change. The following signal func-
tion derives a smoothly changing tempo from these controls, regulated to within
0.1 bpm of the desired tempo. Note the feedback (enabled by rec):

smoothTempo :: Tempo → SF (Bool ,Tempo,Tempo,Rate) Tempo
smoothTempo tempo0 = proc (select1 , tempo1 , tempo2 , rate) → do
rec
let desiredTempo = if select1 then tempo1 else tempo2

diff = desiredTempo − currentTempo
rate ′ = if diff > 0.1 then rate

else if diff < −0.1 then − rate
else 0

currentTempo ← arr (+tempo0) ≪ integral −≺ rate ′

returnA−≺ currentTempo

170 H. Nilsson and G. Chupin

4.3 GUI and Interaction

The GUI of the Arpeggigon is written using the cross-platform widget toolkit
GTK+. The Arpeggigon does not generate any audio by itself; it needs to be
connected to an external, MIDI-capable hardware or software synthesizer. MIDI
I/O is handled by the JACK Audio Connection Kit.

All code for interfacing with the external world is structured using reactive
values and relations (RVR). Much of this code is of course monadic (in the IO
monad). However, as it is mostly concerned with creating and interconnecting
interface entities, the code has a fairly declarative reading as a sequence of entity
definitions and specifications of how they are related.

As a case in point, consider the following code for the system tempo slider:

globalSettings :: IO (VBox ,ReactiveFieldReadWrite IO Int)
globalSettings = do

globalSettingsBox ← vBoxNew False 10
tempoAdj ← adjustmentNew 120 40 200 1 1 1
tempoLabel ← labelNew (Just "Tempo")
boxPackStart globalSettingsBox tempoLabel PackNatural 0
tempoScale ← hScaleNew tempoAdj
boxPackStart globalSettingsBox tempoScale PackNatural 0
scaleSetDigits tempoScale 0
let tempoRV =

bijection (floor , fromIntegral) ‘liftRW ‘ scaleValueReactive tempoScale
return (globalSettingsBox , tempoRV)

In essence, this code defines a box, a label, and a slider, and visually relates
them by placing the last two inside the box. This is all standard GTK+.
A read/write, integer-valued reactive value (RV) is finally defined and related
to the real-valued value of the slider: scaleValueReactive associates a slider with
an RV, while liftRW derives a new RV from an existing one by specifying two
conversion functions, one for reading and one for writing.

Finally, the RVR part and the Yampa part of the Arpeggigon are connected
by the following function:

yampaReactiveDual ::
a → SF a b → IO (ReactiveFieldWrite IO a,ReactiveFieldRead IO b)

This creates two reactive values: one for the input and one for the output of the
signal function. After writing a value to the input, the corresponding output at
that point in time can be read.

Funky Grooves: Declarative Programming 171

5 Conclusions

This paper demonstrated how Functional Reactive Programming in combination
with Reactive Values and Relations can be used to develop a realistic, non-trivial
musical application. On the whole, we found that these two frameworks together
were very well suited for this task. The performance was good, including critical
aspects like jitter, without much effort so far having been spent on optimisation.
Heap usage and overall memory footprint was modest. See the accompanying
technical report for details [12]. Further, as most of the techniques we demon-
strated are not limited to a musical context, we suggest that this is a good
approach for programming time-aware, interactive applications in general.

Acknowledgments. The authors would like to thank Ivan Perez and Henning
Thielemann for support and advice with the reactive libraries and the Haskell JACK
bindings respectively, Michel Mauny for co-supervising the second author’s summer
internship with the Functional Programming Laboratory in Nottingham, and François
Pessaux and anonymous reviewers for helpful feedback.

References

1. Baudart, G., Mandel, L., Pouzet, M.: Programming mixed music in ReactiveML.
In: 1st Workshop on Functional Art, Music, Modeling and Design (FARM), Boston,
USA, pp. 11–22. ACM, September 2013

2. Berry, G.: Formally unifying modeling and design for embedded systems - a per-
sonal view. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp.
134–149. Springer, Heidelberg (2016). doi:10.1007/978-3-319-47169-3 11

3. Boulez, P.: Penser la musique aujourd’hui. Gallimard, Paris (1964)
4. Burton, M.: The reacTogon: a chain reactive performance arpeggiator (2007).

https://www.youtube.com/watch?v=AklKy2NDpqs
5. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.A.: LUSTRE: a declarative lan-

guage for programming synchronous systems. In: 14th Symposium on Principles
of Programming Languages (POPL). ACM, New York (1987)

6. Cont, A.: Antescofo: anticipatory synchronization and control of interactive para-
meters in computer music. In: International Computer Music Conference (ICMC),
Belfast, Ireland, pp. 33–40, August 2008

7. Cont, A., Anticipation, M.M.: From the time of music to music of time. Ph.D.
thesis. University of California San Diego (UCSD) and University of Pierre
et Marie Curie (Paris VI) (2008)

8. Elliott, C., Hudak, P.: Functional reactive animation. In: 2nd International Con-
ference on Functional Programming (ICFP), pp. 163–173, June 1997

9. Giorgidze, G., Nilsson, H.: Switched-On Yampa. In: Hudak, P., Warren, D.S. (eds.)
PADL 2008. LNCS, vol. 4902, pp. 282–298. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-77442-6 19

10. Hudak, P., Quick, D., Santolucito, M., Winograd-Cort, D.: Real-time interac-
tive music in Haskell. In: 3rd International Workshop on Functional Art, Music,
Modelling and Design (FARM), Vancouver, BC, Canada, pp. 15–16. ACM,
September 2015

http://dx.doi.org/10.1007/978-3-319-47169-3_11
https://www.youtube.com/watch?v=AklKy2NDpqs
http://dx.doi.org/10.1007/978-3-540-77442-6_19
http://dx.doi.org/10.1007/978-3-540-77442-6_19

172 H. Nilsson and G. Chupin

11. Hughes, J.: Generalising monads to arrows. Sci. Comput. Program. 37, 67–111
(2000)

12. Nilsson, H., Chupin, G.: The Arpeggigon: Declarative programming of a full-fledged
musical application. Technical report, November 2016. http://eprints.nottingham.
ac.uk/38657

13. Nilsson, H., Courtney, A., Peterson, J.: Functional reactive programming,
continued. In: Haskell Workshop, Pittsburgh, PA, USA, pp. 51–64. ACM, October
2002

14. Paterson, R.: A new notation for arrows. In: International Conference on Functional
Programming (ICFP), Firenze, Italy, pp. 229–240, September 2001

15. Perez, I., Nilsson, H.: Bridging the GUI gap with reactive values and relations.
In: 8th ACM SIGPLAN Symposium on Haskell, Vancouver, Canada, pp. 47–58.
ACM (2015)

http://eprints.nottingham.ac.uk/38657
http://eprints.nottingham.ac.uk/38657

A Domain-Specific Language
for Software-Defined Radio

Geoffrey Mainland(B)

Department of Computer Science, Drexel University, Philadelphia, PA, USA
mainland@drexel.edu

Abstract. Software-defined radio (SDR) is a demanding domain; real-
world wireless protocols require high data rates and low latency. Exist-
ing SDR platforms, typically based on FPGAs, provide the necessary
substrate for meeting these requirements, but the high-level tools avail-
able to program them are not capable of fully exploiting the underlying
hardware to meet rigorous performance requirements. Ziria [11] demon-
strated that a high-level language can compete in this demanding space,
but its design was ad-hoc and overly influenced by the needs of the com-
piler writer since its surface language does double duty as the compiler’s
intermediate language.

We present a re-formulation of Ziria’s surface language that includes
a new type system that allows this language, which is effectful, to elab-
orate into a pure, monadic language where effects such as input/output
and reference manipulation can be distinguished purely by type. This
re-formulation and its elaboration into a core language is embodied in
a new compiler for Ziria, kzc. By choosing an appropriate type system,
awkward syntactic distinctions currently made by Ziria can be elimi-
nated, although our new implementation maintains source compatibility
with the original compiler due to a large body of existing Ziria code (a
full 802.11 physical layer implementation). Our contribution is a descrip-
tion of the surface language, its type system, and its elaboration into a
core language. We also show that far from being limited to the SDR
domain, the constructs built-in to Ziria are applicable to other resource-
constrained domains that require high-speed data processing.

1 Introduction

Software-defined radio promises to bring the productivity benefits of software—
fast development cycles and modular reuse of code—to the world of radio proto-
cols. Radio platforms for SDR, such as USRP [3] and BladeRF [2], provide the
necessary hardware for high-performance radio protocol implementations, but
existing tools for programming these devices fall short on one or more dimen-
sions. The fundamental issue is the tension between ease of programming and
performance.

Although most SDR hardware incorporates an FPGA, which could be pro-
grammed directly, doing so requires not only the use of proprietary tools, but also
fairly low-level knowledge of the underlying FPGA. Instead, platforms like GNU
c© Springer International Publishing AG 2017
Y. Lierler and W. Taha (Eds.): PADL 2017, LNCS 10137, pp. 173–188, 2017.
DOI: 10.1007/978-3-319-51676-9 12

174 G. Mainland

Radio [4] offer a high-level toolkit of signal processing blocks written in Python
and C++. These blocks are composed using a graph-based model where vertices,
i.e., blocks, represent computation, and edges represent communication. While
simple to program, this model does not result in high-speed, low-latency proto-
col implementations. As a programming model, the graph-based paradigm also
has a number of shortcomings. First, it does not specify when a vertex’s state
is initialized. Although edges represent “communication,” how control messages
and data flow are differentiated is not well-defined, and it is unclear how one
vertex could send a control message to another vertex, perhaps one to which it is
not directly connected. There is also no well-defined method for control messages
to reconfigure data flow in the graph. Finally, since each vertex is a black box,
there is no opportunity to jointly optimize multiple vertices’ operations.

SORA [14] was the first SDR programming platform to provide a purely
software-based 802.11 a/b/g implementation that operated at speeds compara-
ble to commodity 802.11 hardware. This was achieved with a carefully hand-
tuned C++ implementation. The SORA implementation is so carefully tuned,
that modifying it while maintaining performance is very difficult. For example,
SORA relies crucially and frequently on lookup tables (LUTs) for performance,
but these LUTs appear simply as array constants in the C source. Questions such
as how these LUTs were generated (by hand?), how one should choose when to
write a function as a LUT, and how one might go about changing an existing
LUT are left unanswered.

Implementing radio protocols directly in FPGA hardware is typically accom-
plished using MATLAB/Simulink; both WARP [9] and SOFDM [5] take this
approach. The resulting programs are graph-based system models that are syn-
thesized to FPGA bitstreams. However, though they can fully exploit the under-
lying FPGA, these models are large, difficult to construct and reason about, and
they are intimately tied to particular platform traits such as the FPGA clock
rate and the bit width of the A/D converter in the radio front end. Further-
more, the MATLAB/Simulink environment does not offer constructs tailored to
the SDR domain.

Ziria [11] is a high-level language for wireless physical layer (PHY) protocols,
i.e., the portion of the radio stack that converts radio signals into bits, which are
then passed on to another protocol handler, such as a MAC protocol. Ziria pro-
vides both programmability and SORA-level performance. This is achieved by
a number of compiler optimizations—in effect, instead of an expert C program-
mer doing the work of translating a high-level specification of a wireless PHY
protocol into efficient low-level C code, the Ziria compiler does the work. The
optimizer’s job is made easier by the nature of the restricted application domain:
whole-program analysis is possible, arrays sizes are statically known, and com-
munication between components is performed via built-in language constructs.

In this work, we show how to reformulate the Ziria surface language so that
terms’ types differentiate between the three effects that are meaningful in our
setting: memory assignment/dereference, reading from a queue, and writing to
a queue. The existing surface language uses syntactic constructs to distinguish

A Domain-Specific Language for Software-Defined Radio 175

between code that performs memory assignment/dereferencing and code that
performs IO via queues; our reformulation shows how this syntactic distinction
can be eliminated in favor of a type-based distinction. This reformulation also
enables elaboration of the effectful surface language into a pure, monadic core
language. In other work [8], we show that novel source-to-source transformations
on this core language can jointly optimize across multiple Ziria components, fus-
ing them into a single loop; we include benchmarks demonstrating the perfor-
mance effects of these optimizations in Sect. 6. Concretely, the contributions of
this work are as follows:

– A type system, with a limited form of quantification, that expresses what are
currently syntactic distinctions in Ziria as type distinctions.

– A method for elaborating the effectful Ziria surface language into a pure,
monadic core language.

– A new continuation-based compilation model for Ziria.

Our contributions are embodied in kzc1, a wholly new open source compiler
for the Ziria language that is source-compatible with the existing compiler, wplc2.

2 Background

We first give a brief overview of the Ziria surface language to provide necessary
context. The surface language we describe is identical to the language described
by Stewart et al. [11], and this section does not represent novel work. Ziria
provides an imperative core wrapped with combinators for producer-consumer
computations that operate over streams of data. We illustrate both components
of the language in Listing 2.1, which is the Ziria implementation of the 802.11
scrambler [1, Sect. 16.2.4]. The purpose of the scrambler is to transform the
transmitted bit stream so that it does not contain long runs of ones or zeros,
either of which would make detection at the receiver more difficult.

Line 2 allocates mutable storage for the scrambler’s state; this state is ini-
tialized with the (immutable) value of the parameter init scrmbl st. Both
init scrmbl st and scrmbl st are arrays of seven bits. After initializing the
scrambler state, the scambler enters a repeat loop in line 4 that continually
reads a bit from its input data stream using take, updates the scrambler state,
transforms the consumed bit using the scrambler state, and finally outputs the
transformed bit in line 14 using emit. Although not shown in this snippet, Ziria
also allows immutable values to be bound with let (instead of var). The sur-
face language does not include an explicit dereference construct, instead making
dereferencing implicit, as shown on line 9.

The syntactic distinction between ref manipulation and input/output is made
using do and seq blocks; a seq block sequences IO, whereas a do block
sequences ref manipulation. The repeat language construct takes an IO action

1 The Kyllini Ziria compiler. Ziria is another name for Mount Kyllini in Greece.
2 The wireless programming language compiler.

176 G. Mainland

1 fun comp scrambler(init_scrmbl_st: arr[7] bit) {
2 var scrmbl_st : arr[7] bit := init_scrmbl_st;
3
4 repeat seq {
5 x ← take;
6
7 var tmp : bit;
8 do {
9 tmp := (scrmbl_st[3] ˆ scrmbl_st[0]);

10 scrmbl_st[0:5] := scrmbl_st[1:6];
11 scrmbl_st[6] := tmp;
12 };
13
14 emit (xˆtmp)
15 }
16 }

Listing 2.1. Ziria implementation of 802.11 scrambler.

scrambler(’1011101)
>>>
seq {

var buf : arr[8] bit;
for i in [0, 8] { x ← take; do { buf[i] := x;} };
emits buf;

}

Listing 2.2. Composition along the data path.

and repeats it forever. The resulting computation is termed a stream transformer
because it continually reads input, transforms it, and writes the transformed
value to its output. Both do and seq blocks compose computations along the
control path, and the syntax for this sort of composition is deliberately reminis-
cent of Haskell’s do syntax, as seen in line 5.

2.1 Composition Along the Data Path

Given the scrambler, which ensures the bits we are transmitting will be suffi-
ciently varied between 1 and 0, we need a way to compose it with other data
producer/consumer components. Instead of composition along the control path,
we want to compose the scrambler along the data path, which is accomplished
using the par operator, >>>.

Listing 2.2 shows an example of composition along both the control and data
paths using the previously defined scrambler function. The first component
in the data path is the scrambler computation. Note that producer-consumer
computations are higher-order; the argument to scrambler here is a bit array

A Domain-Specific Language for Software-Defined Radio 177

constant of length 7, which serves to initialize the scrambler’s state. The second
element in the data path reads 8 elements from its input, collecting them in
a buffer, and then outputs them all at once using emits. The only difference
between emit and emits is that the latter acts as though each element of its
array argument were emitted one-by-one. Because the second element in the
data path terminates, it is a stream computer. The distinction between a stream
transformer and a stream computer is apparent from their types, the topic to
which we now turn.

3 Typing Ziria Programs

The first contribution of this paper is a new type system for the Ziria surface
language that makes a distinction between three effects: ref manipulation (assign-
ment and dereferencing), reading (using take), and writing (using emit). The
kzc compiler performs type inference using this type system, elaborating source
language terms to a core language we describe in Sect. 4. We first informally
sketch our types system.

Like Stewart et al. [11], we make use of an indexed type reminiscent of both
monads and arrows [6], but we use a limited form of quantification to distinguish
between effects. For example, we assign the scrambler in Listing 2.1 the moral
type arr[7] bit → ST T bit bit. The type to the left of the arrow is the argument
to scrambler. The type ST is indexed by three types: T, which indicates that
this term is a stream transformer, and the two types, both bit, specifying the
input and output types, respectively, of the computation. The second half of the
par in listing 2.2 is instead assigned the type ST (C ()) bit (arr[8] bit). Because
this computation terminates with the unit value, i.e., it is a stream computer,
the first index to ST is now C (). The computation reads values of type bit and
writes values of type arr[8] bit, so those types make up the final two indices.

The question remains: how do we differentiate between effects using types?
For pure expressions, the answer is simple: pure expressions have a non-ST type.
Expressions that manipulate references but do not perform IO could be assigned
a type that quantifies over the input and output types of the data stream. For
example, the expression x := 1; could be typed as ∀ α β. ST (C ()) α β.
Similarly, computations that only read or write could be typed by quantifying
over the appropriate index to ST.

Unfortunately, the simple quantification strategy does not allow us to prop-
erly differentiate between terms that perform IO using take and emit and those
that do not. Consider the following example:

seq { x ← take; return 1; }

What type should we assign this term? Its type must certainly have the form
ST (C int) α β for some α and β. It is also clear that we need to quantify over
β because the expression does not write to the data stream. However, although
it does read from its input stream, the term is agnostic to the type of the data
it reads, so it seems reasonable to quantify over both α and β. We conclude that

178 G. Mainland

this expression should have type ∀ α β. ST (C int) α β. Similar reasoning leads
us to assign the same type to this term, which does not perform any input or
output:

seq { return 1; }

The root of the problem is that our quantification scheme does not allow us to
differentiate between terms that are polymorphic in the value read from the data
stream and terms that do not read from the data stream at all.

Our solution will be to add a fourth index to the ST type—but what should
this index be? Since we want to know whether or not a term reads a value
from its input stream, we could make the index a type-level Boolean. We could
also add an additional type-level construct analogous to the C α/T construct
we use to differentiate between transformers and computers, but this makes the
type system more complicated. Instead of adding something new, we will reuse
existing type system mechanisms—in particular, unification. Our new type index
will be left free until a read occurs, at which point it will be unified with the
type index that specifies the type of the input stream. Therefore, when these
two indices are equal, we know a read has occurred, and if they are not equal,
we know that a read has not occurred.

3.1 A Type System for Differentiating Effects

Fig. 1. Ziria type lan-
guage.

Figure 1 shows the language of types for Ziria terms. We
do not include array types here as they clutter the pre-
sentation, and adding them is not difficult. Base types,
τ , are as one would expect. Types in ST allow quantifica-
tion over base types in the indices of ST. The first index,
ω, specifies whether this computation is a stream trans-
former (T) or a stream computer (C τ). We will shortly
see the details of how the other three indices are used
to indicate read/write behavior. For completeness, we
include the details of reference handling. Note that types
are stratified so that although references can always be
passed to a function, they can never be returned from
a function, i.e., only “downward reference funargs” are
allowed. This ensures that a reference can never escape
its defining scope, eliminating the need for garbage col-
lection. This reduction in expressivity is perfectly accept-
able in our domain.

The declarative formulation of the Ziria typing
relation is shown in Fig. 2. We include the T-Deref rule
even though, as stated earlier, dereferences are implicit
in the surface language. We return to this point in Sect. 4.
Rule T-Take forces the second and third index of the ST
type to both be α, although it still quantifies over α. This type reflects the fact

A Domain-Specific Language for Software-Defined Radio 179

Fig. 2. Declarative typing relation for Ziria.

that we are reading from the data stream, although we are polymorphic in the
value being read. During type inference, use of take is what causes unification
of the two type indices as mentioned above. Rule T-Emit says that emit is
polymorphic in the input type of the data stream, but it constrains the fourth
index of the ST type (the data stream output type index) to be τ , the type of the
value being emitted. Table 1 maps types to their conceptual meanings, showing
how types differentiate between effects. The essential idea is that a term with
an ST type in which the second and third indices (the data stream input type
indices) are identical reads from its input data stream, even if it is polymorphic
in the type that is read. If the second and third indices differ, then the term
does not read from its input stream. As a final example, the following identify
transformer has the type ∀α. ST α α α:

180 G. Mainland

Table 1. Conceptual meaning of quantification in ST types.

Type Conceptual meaning

∀α β γ. ST ω α β γ A computation that may assign or dereference memory but
does not perform IO

∀α γ. ST ω α α γ A computation that reads one or more values from the data
stream but does nothing with the read value(s)

∀γ. ST ω τ τ γ A computation that reads one or more values of type τ from
the data stream

ST ω τ1 τ1 τ2 A computation that reads one or more values of type τ1 from
the input data stream and writes one or more values of type
τ2 to the output data stream

repeat seq { x ← take; emit x; }

In implementing the kzc compiler, we certainly wanted to differentiate
between pure and impure code for purposes of optimization; that is easily done
via the ST type. However, we also want to differentiate between impure code that
uses memory references and code that may perform IO. The new type system
in Fig. 2 allows for this. In the original incarnation of Ziria, this distinction was
made syntactically via seq and do, and programmers had to manually “lift” code
that used references into the ST monad. With the new type system, it is now
possible to eliminate the do/seq distinction from the surface language; we plan
to add a new alternative syntax that does this, but for compatibility reasons we
have not yet done so.

3.2 Typing Composition Along the Control Path

The rules T-Bind and T-Seq support composition along the control path. The
only notable aspect of these rules is the way the first index of the ST type
assigned to the overall term relates to the first index of the ST type of each
subterm. The first subterm being sequenced must be a computer, i.e., it must
compute a value and terminate, so the its ω index must be C ν. The second
subterm may or may not terminate. That is, it may be a transformer, so its ω
index is unconstrained. The overall term then has an ω index matching that of
the second subterm being sequenced. Note that we could remove the T-Seq rule
and treat sequencing as syntactic sugar for bind.

3.3 Typing Composition Along the Data Path

Typing composition along the data path is done by the rule T-Par. Unlike the
rules for composition along the control path, the subterms c1 and c2 of T-Par
have types whose τ indices (the third through fourth indices in the ST type) that
may differ between the two subterms’ types. Since >>> represents composition

A Domain-Specific Language for Software-Defined Radio 181

along the data path, the terms’ types are instead constrained so that the data
stream output index of the type of c1 matches the data stream input type indices
of the type of c2.

The T-Par rule uses of the join operator, ·� ·, to determine the ω type index
of the result of the par. This operator guarantees that two stream transformers
may be composed on the data path, as may a stream computer and a stream
transformer, but it prevents two stream computers from being composed along
the data path. We could imagine adding a fourth case to the join operator,
C α � C α = C α, but this complicates the semantics as it requires additional
synchronization on the final computed result. This change would also complicate
the implementation; with the current semantics, we are guaranteed that at most
one side of the par will ever terminate and call the par’s continuation.

The final subtlety in T-Par is the context splitting operation, ⊕. The context
splitting operation ⊕ splits the portion of the context that contains variables that
have type ref τ , leaving the rest of the context as-is. This ensures that the type
environments for the two subterms, Γ1 and Γ2, contain completely distinct sets
of references, thus preventing race conditions. An additional check on function
calls ensures aliasing does not occur, ⊕ can perform a purely syntactic check on
Γ ; see Mainland [8] for details.

3.4 Type Inference in Practice

The described typing relation is declarative. When, then, do we apply rules
T-Gen and T-Inst? Similar to standard syntax-directed systems based on
Hindley-Milner, we instantiate types immediately and generalize at “let”; for
example, when inferring the type of a function body, we immediately instantiate
any occurrence of take or emit, and we then generalize once we have inferred
the type of the entire function body. Inference makes use of the standard
unification algorithm. We plan to formalize the inference algorithm, but on its
own it is standard—the novel aspect of inference is the use of the indexed type
ST to differentiate between various effects and the process of elaborating to the
core language, which we describe in the next section.

3.5 Types for Streaming Combinators

The type system we have presented supports a general form of stream combinator
and is not specific to the SDR domain or the Ziria language. The technique
we use to reflect read operations in the ST type by forcing unification of two
type indices is even more general. In effect, we are differentiating between
two kinds of polymorphism: polymorphism that arises because read values are
used polymorphically, as in the identity function, and polymorphism that arises
because values aren’t read at all. Because we are simply forcing type equality—in
our case, via the typing rule for take—we minimize the number of extra features
that need to be added to the type system. We expect these techniques to be
transferable to any domain where typed streaming combinators are useful.

182 G. Mainland

4 Elaborating to Core

The kzc compiler performs type inference on the Ziria surface language and
elaborates it to the core language given in Fig. 3. Unlike the surface language,
the core language contains only a single syntactic category: expressions. There is
no need for a syntactic distinction between pure terms, terms that use memory
references, and terms that perform IO, because the type system described in
Sect. 3 provides the needed distinctions. Also unlike the surface language, the
core language makes memory dereferencing explicit. Explicit memory reference
operations in the core language make some analyses in the compiler easier to
perform; for example, it allows the compiler to determine that an expression is
pure merely based on its type. However, forcing the programmer to use explicit
dereferencing in the surface language seems overly burdensome; despite our use
of monadic bind, we want the surface language to be as close to typical “curly
brace and semicolon” imperative code as possible while still being fundamentally
functional.

Fig. 3. The expression core language.

Elaboration makes use of a new form of
judgment:

F ;Γ �val
e : τ � F ′; e′

Like the typing judgment, the elaboration
judgment assigns a type τ to a term
e. However, it also elaborates a surface
language term e to a core term e′.
Recall from Sect. 3.1 that references are
not first-class in Ziria—they can never
be returned from a function or otherwise
escape the scope of their originating binder.
This judgment form is a value elaboration;
it elaborates a Ziria term, which may
contain implicit dereferences, into a core
term in which all dereferences are made
explicit. The extra component F that is
threaded through the elaboration judgment
is the elaborated term’s value context ; it is
a function from core terms to core terms
that transforms an elaborated term so that all implicit dereferences are bound.

The intuition behind the function F is that it will insert the necessary
bindings around an elaborated term to ensure that dereferenced values are
properly bound. For example, if we have a surface language term x + y where x
and y are references of type ref int, it will be elaborated to a term x′ + y′, where
x′ and y′ are fresh variables, along with a value context:

λe.(x′ : int) ←!x ; (y′ : int) ←!y ; e

The value context will continue to accumulate bindings until it is applied.
Figure 4 shows a fragment of the elaboration rules; we do not include the full

A Domain-Specific Language for Software-Defined Radio 183

set of rules due to space constraints. Note that in rule V-If, the subterms are
all elaborated with empty value contexts, i.e., the identity function, and the
resulting value contexts are applied immediately to the subterms. This ensures,
for example, that dereferences required for the then branch are performed only
within the then branch. The binopτ1,τ2 meta-function maps a surface language
binary operator binop whose arguments have types τ1 and τ2 to the type of the
operator’s result; this allows us to, for example, overload + at multiple numeric
types.

Fig. 4. Value elaboration relation for Ziria.

The process of maintaining a value context and elaborating to a pure,
monadic language allows us to provide an impure surface language to the user,
who does not have to worry about manually sequencing dereferencing, while
reaping the benefits of a pure, monadic core language within the compiler.

5 Compilation Model

Stewart et al. [11] describe a tick-proc compilation model for compiling Ziria
terms to C. In this model, each Ziria computation compiles to two blocks of code:
a tick block that determines whether the computation needs to consume from
the data stream to proceed, in which case it jumps to the upstream computation,
or if it has data to emit, in which case it jumps to the downstream component.
If the computation can proceed without IO, the proc block of code is executed.
This compilation model results in overhead for every sequenced computation,
since each sequenced computation requires both a tick and a proc block even
if the computation itself does not perform IO.

184 G. Mainland

Our compilation model is based on the observation that the only time one
computation needs to “jump” to another computation is inside a par construct,
c1>>>c2, when c2 is executing and needs to read from upstream, or when c1 is
executing and needs to write downstream. Conceptually, we track the current
continuation of both c1 and c2. When we are executing c2 and encounter a take,
we save the current continuation and jump to c1’s saved continuation. When we
then encounter an emit in c1, we save its current continuation, save a pointer
to the emitted value, and jump to c2’s current continuation with the pointer as
an argument. This gives rise to a coroutine-style execution model.

Since our compiler is a whole-program compiler, we can map this execution
model to C code by using either GCC-style first-class labels, which are available
in clang, gcc, and Intel’s icc, or we can use a single switch statement
to trampoline between continuations. Like the original Ziria compiler, for
single-threaded Ziria code we completely avoid queues by storing a pointer to
emitted values instead of queueing the values. Unlike the original Ziria compiler,
we can also avoid copying emitted values in most cases using a data flow analysis
that makes use of the fact that dereferences are explicit in our core language [8].
Our new compilation model imposes zero overhead for sequencing computation
that do not perform IO.

6 Evaluation

The type system described in Sect. 3, elaboration to the core language described
in Sect. 4, and compilation model described in Sect. 5 are all implemented in
the kzc compiler. The existing Ziria WiFi implementation can be compiled with
kzc, which also passes the extensive Ziria test suite. In this section we provide
a performance evaluation to demonstrate that kzc works and that the new
implementation strategies it uses do not impose additional overhead—in fact, kzc
produces better code than the existing Ziria compiler, wplc. The performance
results we provide are fully described by Mainland [8]; we do not claim the
demonstrated performance improvements as contributions in this paper. All
data was collected on an i7–4770 CPU running at 3.40 GHz under Ubuntu 16.04,
generated C code was compiled with GCC 5.43, all runs were repeated 100 times,
and we assume a normal distribution. All Ziria programs evaluated in this section
are taken from the publicly available Ziria release [12].

The transmitter and receiver performance of kzc and wplc are shown in
Figs. 5a and b. The ratios of the data rates of the two implementations are given
in Fig. 6a. Code compiled by kzc is always as fast as code compiled by wplc, and
in most cases it is at least 10% faster. The relative performance of individual
pipeline blocks is broken out in Fig. 6b. We use the same runtime primitives as
wplc, so the performance differences between the two implementations can be
attributed directly to the differences in their compilation models. Our original
expectation was that there was limited room for improvement in the transmitter
and receiver pipelines because they use primitive blocks like FFT, IFFT, and
3 -march=native -mtune=native -Ofast.

A Domain-Specific Language for Software-Defined Radio 185

Fig. 5. Transmitter and receiver data rates. The receiver consumes a quadrature
signal consisting of pairs of 16-bit numbers representing IQ samples. The transmitter
consumes bits. Error bars show one standard deviation above and below the mean.

Viterbi, which tend to be the bottlenecks. However, we are pleased that we
were nonetheless able to gain a 10% performance increase over an already
highly-optimizing compiler.

7 Related Work

7.1 SDR

Our work is directly based on the original Ziria compiler [11]. Although we do not
reuse any code from the Ziria compiler, we evaluate our implementation using
Ziria’s WiFi implementation, including its standard library routines, written in
C, such as FFT, IFFT, and Viterbi.

Most SDR platforms are based on FPGAs [9,10]. Platforms supporting
development of SDR applications on commodity CPUs have become more
common [3,14], in particular due to the availability of the GNU Radio [4]
environment. There are numerous approaches to programming SDR applications;
however, these platforms do not provide the combination of performance and
powerful abstractions needed for SDR, instead relying on graph-based models of
signal processing.

Mainland [8] describes a number of source-to-source transformations on the
core language from Sect. 4 and additional optimizations that are responsible for
much of the performance increase over wplc shown in Sect. 6.

7.2 Capturing Effects in Types

If we were to re-cast Ziria as an embedded DSL, especially if we were to embed
it in Haskell, extensible effects [7] would be an obvious path to differentiating
between pure terms, terms that manipulate memory references, and terms
that perform IO. However, utilizing extensible effects in our setting would
require a substantially more general—and more complicated—type system. The
type system we present in Sect. 3 has just enough features to support our

186 G. Mainland

Fig. 6. Performance improvement ratios. These figures show the relative
improvement of kzc over wplc both for entire transmitter/receiver pipelines and for
individual blocks. The vertical axis gives the ratio of the throughput of the kzc-compiled
version to the throughput of the wplc-compiled version. Error bars show the bound of
the ratio when the two metrics being compared range from one standard deviation
below the mean to one standard deviation above the mean. Note that Fig. 6a uses a
linear scale, whereas Fig. 6b uses a log scale.

requirements, and we have not previously seen the technique of constraining two
type indices to be equal in order to distinguish between a term that consumes
a value, but is polymorphic in its input, and a term that is polymorphic in its
input because it doesn’t consume anything at all.

It is not clear how to type Ziria’s par combinator (>>>) in an EDSL setting. We
see this as an argument for a non-embedded DSL. Choosing a stand-alone DSL
also allows us to provide syntax that is more familiar to Ziria’s likely customers,
imperative programmers, and provide an impure surface language.

7.3 Elaboration to a Pure Language

Our technique for elaborating the impure surface language into a pure, monadic
core language is reminiscent of the technique described by Swamy et al. [13] for
adding monadic programming to ML. Our elaboration is constrained to a single
monad (ST) and, again, provides just enough type system support for the feature
we desire. Implementing a more general, extensible system of elaboration would
require a significantly more complicated type system and compiler.

8 Conclusions and Future Work

We have presented a type system and elaboration procedure for mapping the
high-level, impure language Ziria to a pure, monadic core language where terms’
effects are distinguished by their type rather than syntactically. We have also
described an improved compilation model for Ziria that avoids unnecessary

A Domain-Specific Language for Software-Defined Radio 187

control flow and imposes zero additional overhead for sequencing computations
that do not perform IO. All work we describe is implemented in the kzc compiler,
and benchmarks show our implementation improves upon the existing Ziria
system.

Although a more complicated type system could perhaps capture our
elaboration procedure and technique for tracking effects in types, we believe we
have hit a domain-specific sweet-spot—a more general type system would require
a more complex implementation. Far from being limited to the software-defined
radio domain, our techniques apply to general producer-consumer computations
where combinators like take and emit are provided as language built-ins.
Providing these built-in communication primitives allows kzc to use our
efficient compilation method—the compiler is able to know when communication
between components is occurring and can optimize this communication across
components.

8.1 Future Work

Our immediate goal is to eliminate the seq/do distinction in the surface
language via a new Ziria dialect, thereby providing a more natural surface
language for SDR programmers. In order to provide backwards-compatibility,
this will likely require adding a simple module system to allow for code written
in both Ziria dialects to coexist in the same program. We will not abandon
whole-program compilation, as this is vital for cross-component optimizations
such as fusion [8].

Longer term, we plan to target the FPGA hardware in common SDR
platforms directly by generating HDL, such as VHDL or Verilog, directly from
Ziria and gradually moving portions of the 802.11 pipeline into hardware. We
are also actively working on implementing blocks like FFT, IFFT, and Viterbi
directly in Ziria, with promising results. Eventually, we hope to re-implement
SOFDM [5] in Ziria and use that experience to make Ziria a viable language for
hardware development. We also plan to broaden the applicability Ziria, including
applications such as wireless MAC protocols and video codecs. Finally, we plan
to fully formalize our algorithmic inference algorithm.

References

1. IEEE Std 802.11TM–2012, pp. 1–2793, March 2012
2. bladeRF Software Defined Radio, September 2016. https://www.nuand.com/
3. USRP Software Defined Radio (SDR) online catalog, September 2016. https://

www.ettus.com/product
4. Blossom, E.: GNU radio: tools for exploring the radio frequency spectrum. Linux

J. 2004(122), 4 (2004)
5. Chacko, J., Sahin, C., Nguyen, D., Pfeil, D., Kandasamy, N., Dandekar,

K.: FPGA-based latency-insensitive OFDM pipeline for wireless research. In:
Proceedings of the 2014 IEEE Conference on High Performance Extreme
Computing Conference (HPEC 2014), Waltham, MA, pp. 1–6, September 2014

https://www.nuand.com/
https://www.ettus.com/product
https://www.ettus.com/product

188 G. Mainland

6. Hughes, J.: Generalising monads to arrows. Sci. Comput. Program. 37(1–3),
67–111 (2000)

7. Kiselyov, O., Sabry, A., Swords, C.: Extensible effects: an alternative to monad
transformers. In: Proceedings of the 2013 ACM SIGPLAN Symposium on Haskell
(Haskell 2013), Boston, MA, pp. 59–70, September 2013

8. Mainland, G.: Better living through operational semantics: an optimizing compiler
for radio protocols (2016, in submission)

9. Murphy, P., Sabharwal, A., Aazhang, B.: Design of WARP: a flexible wireless
open-access research platform. In: Proceedings of the 14th European Signal
Processing Conference (EUSIPCO 2006), Florence, Italy, pp. 1–5, September 2006

10. Ng, M.C., Fleming, K.E., Vutukuru, M., Gross, S., Arvind, Balakrishnan, H.:
Airblue: a system for cross-layer wireless protocol development. In: Proceedings
of the 6th ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS 2010), La Jolla, CA, pp. 4:1–4:11 (2010)

11. Stewart, G., Gowda, M., Mainland, G., Radunovic, B., Vytiniotis, D., Agulló,
C.L.: Ziria: an optimizing compiler for wireless PHY programming. In: Proceedings
of the 20th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2015), Istanbul, Turkey, March 2015

12. Stewart, G., Vytiniotis, D., Mainland, G., Radunovic, B., de Vries, E.: Ziria, version
85cc34db, April 2016. https://github.com/dimitriv/Ziria

13. Swamy, N., Guts, N., Leijen, D., Hicks, M.: Lightweight monadic programming
in ML. In: Proceeding of the 16th ACM SIGPLAN International Conference on
Functional Programming (ICFP 2011), Tokyo, Japan, pp. 15–27, September 2011

14. Tan, K., Zhang, J., Fang, J., Liu, H., Ye, Y., Wang, S., Zhang, Y., Wu, H.,
Wang, W., Voelker, G.M.: Sora: high performance software radio using general
purpose multi-core processors. In: Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 2009), Boston, MA, pp.
75–90, April 2009

https://github.com/dimitriv/Ziria

A Declarative DSL for Customizing ASCII Art

Felix S. Klock II(B)

Mozilla Research, San Francisco, USA
pnkfelix@mozilla.com

Abstract. When writing source comments or blog posts, developers
often choose to express diagrams as ASCII art, accepting the drawback
that it is ugly. mon-artist is a software library, inspired by a2s, that
converts blocks of text-based art into SVG elements far more pleasing to
the eye than the original text. mon-artist allows custom SVG generation
by revising the rules used for detecting and rendering graphical “paths”
within the text, and uses a declarative DSL to encode its rendering rules.

.-------------------. +-----+
| | | |
| | +-----+
| | ^
| | |
| | +--+--+
| | | |
’-------------------’ +-----+
Hello World

1 Introduction

When authoring technical diagrams in source comments or blog posts, develop-
ers must choose between using some external tool or staying within their text
editor. External tools, such as a vector graphics application, a picture descrip-
tion language, or scanning in a drawing, are inconvenient and remove one from
the task at hand. However, text-based art usually implies an ugly rendering for
the end audience.

mon-artist is a software library that will convert blocks of text-based art
into scalable vector graphics (SVG) elements that are often far more pleasing to
the eye than the original lines of text. Our handling of ASCII art is inspired by
a2s [1], but our support for customized connective rules is novel.

1.1 Goals

We want to translate ASCII art into embeddable SVG.

c© Springer International Publishing AG 2017
Y. Lierler and W. Taha (Eds.): PADL 2017, LNCS 10137, pp. 189–197, 2017.
DOI: 10.1007/978-3-319-51676-9 13

190 F.S. Klock

Fig. 1. Example ASCII art and rendered SVG

Correspondence. The output should not wildly deviate from the input. Con-
sider the input from page 1, which yields Fig. 1: two equivalently sized rectangles
on the right-hand side, with their top and bottom edges coincident with the top
and bottom edges of the rectangle on the left. Also: the left rectangle has rounded
corners, “Hello World” lies beneath it, and an arrow points up between the right
rectangles.

Customizable Rules. Different art communities have different conventions.
E.g. rounded corners are encoded via . and ' in a2s [1] (left) but via / and \ in
ditaa [2] (right):

.----. /----\
| | (a2s) | | (ditaa)
’----’ \----/

Also, one cannot predict what character combinations users will embed into
their diagrams, especially when supporting Unicode combinations.

Rather than hard code all rendering logic into the tool, we allow the end
user to add or override rules. In addition, the rendering rules dictate how to find
objects in the diagram. If characters are not found to be part of some path via
the rules, they are instead rendered as text.

Compositional Rules. It should be easy to anticipate how the rendering
process is affected by adding rules. Most rules are compositional : each dictates
how a single cell in the grid is rendered (more precisely, how the portion of a
path flowing through that cell is rendered).

Expose Underlying SVG. Some SVG attributes can be inferred from the art
itself (e.g. whether a stroke should be solid or dashed), but many attributes have
no natural ASCII art representation. Therefore, the syntax provides a way to
inject attributes directly via markup in the text.

Not Arbitrary Artwork. We cannot ensure ideal rendering of arbitrary ASCII
art. We assume authors are willing to tailor their diagrams, and in some cases,
the rendering rules.

A Declarative DSL for Customizing ASCII Art 191

2 Review of SVG

This paper uses a small subset of the functionality provided by SVG. An SVG
document is XML made up of a sequence of either <path> or <text> elements.

A <path> can carry stroke, fill, and d attributes; stroke says how to
draw the path, and fill indicates how to fill the space it encloses.

The d attribute describes the path’s shape, encoded in a compact command
language describing a pen moving across a plane. The M command starts a new
subpath and moves the pen’s position to the argument coordinate, without draw-
ing. Commands like L, A, Q, and C draw lines, arcs, quadratic bezier and cubic
bezier curves from the current position to some new position. The Z command
closes the current subpath, drawing a line directly to the first coordinate in the
subpath.

Uppercase letters indicate that the coordinates are to be interpreted as an
absolute (relative to some global origin), while lowercase letters indicate that the
argument coordinates are interpreted as relative to the current pen position.

3 Rules Encoded via Oriented Tuples

Each rule dictates how to render a character it matches, in the context of the
immediately neighboring characters on the current path.

Each ASCII art diagram is a grid formed by lines of characters. Each element
of the grid has eight immediate neighbors, referenced via compass based notation
by combining N(orth), S(outh), E(ast) and W(est).

A path is a sequence of cells, where each cell is an immediate neighbor of its
predecessor according to the compass coordinates.

Paths are discovered by attempting to match the rendering rules against
neighboring cells in the ASCII art grid. The rules are kept in a list, where earlier
rules take precedence.

A rule matches a fragment by matching the current character as well as
matching the immediate neighbors on the path. Each rule takes the form 〈match〉
draw 〈rendering〉, first saying what pair or triple of characters the rule matches,
and then how to render the central matched character.

The core model provides four kinds of 〈match〉 forms:

loop 〈prevchar〉 〈dir〉 〈currchar〉 〈dir〉 〈nextchar〉
step 〈prevchar〉 〈dir〉 〈currchar〉 〈dir〉 〈nextchar〉
start 〈currchar〉 〈dir〉 〈nextchar〉
end 〈prevchar〉 〈dir〉 〈currchar〉

You can read the match pattern specified in each rule as a triple (or pair) of
sets of characters, joined by the directions that link them.

192 F.S. Klock

Each of 〈prevchar〉, 〈currchar〉, 〈nextchar〉, is a character or set of char-
acters, or ANY as the set of all non-whitespace unicode characters. A 〈dir〉 is a
non-empty set of compass directions; ANY is the full set of eight directions.

All SVG paths have to start somewhere. We distinguish between closed paths,
which always end at the same position as they start, and open paths, which can
have distinct start and end points.

All closed paths are initially matched via loop. For example, the matcher
loop '/' NE '+' E '-' states that a closed path can start at a + if there is a
- east of the + and the last character in the path is a / southwest of the +.

The bulk of any path is made up of characters that neither start nor end
the path, which are matched by step. For example, step '-' E '-' E '-'
specifies a path can proceed eastward through three dashes --- in a row.

All open paths are initially matched by start. This has only two characters
because the first character in an open path has no predecessor; so 〈prevchar〉〈dir〉
is absent. Likewise, the end rule, which specifies how to terminate an open path,
is missing the 〈dir〉〈nextchar〉.

4 The Path Search Process

Given a list of rule instances, a backtracking depth-first search finds paths in
the character grid, starting from each unused cell.

After finding a path through a sequence of cells, we mark those cells as
“used”, to avoid wasting time initiating searches from used points. However,
used cells can be made part of other paths that start from an unused cell. Thus,
characters can be reused in distinct paths.

At a high-level, the ASCII art processing, inspired by the source code for
a2s [1], works as follows: First attempt to match as many closed paths as possi-
ble, marking cells from successfully matched paths as “used” during the search.
Second, match open paths from the characters that remain on the grid.

A search for an open path may in fact yield a suffix of a longer path. There-
fore, after successfully matching an open path via a forward search, we addi-
tionally attempt to extend the path backwards; our simple declarative rules are
reversible.

After accumulating as many closed and open paths as possible, and removing
their characters from the grid, we finally scan the grid row by row and accumulate
any remaining characters into <text> elements.

5 Rendering Templates

After accumulating paths, the next step is to render them into SVG <path>
elements. This has two parts: how to build the d attribute of <path>, and how
to add other attributes. The 〈rendering〉 in a rule provides answers for both.

Since one rule can match distinct locations on the grid, we use a template
system to substitute coordinates into the rules. A 〈rendering〉 is a template
string, followed by an optional collection of XML key/value attribute pairs.

A Declarative DSL for Customizing ASCII Art 193

5.1 Template Strings

The template string specifies what text should be injected into the d attribute
for the <path> to render the 〈currchar〉 of the rule, in the context of the
neighboring cells specified by the rule.

Curly braces are used to delimit expressions within a template string that
are to be evaluated during rendering and replaced with numbers or coordinates.

There are nine “primitive points” one can reference within a template string.
One of them {C}, lies at the center of a cell. The other eight lie along edges of
the cell, shown on the left side of Fig. 2.

Fig. 2. Primitive points

For example, the rule start '-' W-̈+" draw "M {E} L {W}" says that if
you start a path with a dash and then continue westward to join with a dash
or plus, then the resulting d attribute for the <path> should start by moving
(M) to the middle of the east edge ({E}) of the cell with the first dash, and then
draw a line (L) to the middle of the west edge ({W}).

Rules compose with other rules. Therefore rules should end with a pen posi-
tion consistent with the rules that could follow it.

In addition to the template syntax already listed, one can alternatively spec-
ify one of the primitive points along the edge in terms of the previous or next
cell, by writing {I}, {O}, {RI}, or {RO}. {I} is the edge from which we came;
likewise {O} is the outgoing neighbor. {RI} and {RO} are the reflections of those
points through the center. For example, if the incoming neighbor is to the north-
east of the current cell, then {I} is the same as {NE} and {RI} is the same as
{SW} (illustrated in the dashed path on right side of Fig. 2).

5.2 Attribute Injection

A template string is intended to handle local rendering of the current character.
However, sometimes you want a single character to have a global effect on a path.

194 F.S. Klock

A simple example, inspired by a2s, is making a vertical line dashed by putting
a: anywhere on the line.

To express this, each 〈rendering〉 ends with a list of zero or more (key, value)-
attributes. When the rendering system encounters a use of such a rule, it adds
all such attributes to the path currently being rendered.

5.3 Path Identification

The id attribute is used to uniquely identify the path so other content can
reference it. We use an a2s-inspired markdown style syntax for encoding id: if
while matching a path we encounter a neighbor to the south or east that has the
form [name], and if the path search is successful, we treat the path as having
name as its id attribute.

Another feature inspired by a2s: the art can end with lines of the form:
[name]: attributes. All attributes for a given name are then added to the
path identified by name. This eases adding attributes without adding new rules.

5.4 Collapsing Rules with maybe

Sometimes a step rule starts with the same 〈prevchar〉 〈dir〉 〈currchar〉 com-
ponents as some end rule, and the two also share the same draw 〈rendering〉.
Rather than write two variations on one step rule, one can surround its 〈dir〉
〈nextchar〉 with the text (maybe and). All this means is one step using maybe
can expand into two rules: a core step and an end.

6 Example Rule Set and Rendering

Below is a relatively small self-contained example rule set. It demonstrates some
of the functionality, such as the use of template expressions like {O}, {E}, or
{RO}. It also shows the use of the 〈prevchar〉 and 〈nextchar〉 to constrain the
application of rules to certain contexts.

‘+‘ is corner of loop; it joins with lines. Move to center

loop "|-/\\" ANY ’+’ (N,S) "|" draw "M {C}"

loop "|-/\\" ANY ’+’ (E,W) "-" draw "M {C}"

‘-‘, ‘|‘, and ‘+‘ can start if next works. Draw line across.

start ’-’ (E,W) "-+" draw "M {RO} L {O}"

start ’|’ (N,S) "|+" draw "M {RO} L {O}"

start ’+’ ANY ANY draw "M {C}"

‘.‘and ‘’‘ make rounded corners. Draw curve through center.

step ANY (E,NE,N,NW,W) ’.’ (E,SE,S,SW,W) "-|\\/" draw "Q {C} {O}"

step ANY (E,SE,S,SW,W) ’\’’ (E,NE,N,NW,W) "-|\\/" draw "Q {C} {O}"

... for a loop, draw curve from incoming edge to outgoing one.

loop ANY (E,NE,N,NW,W) ’.’ (E,SE,S,SW,W) "-|\\/" draw "M {I} Q {C} {O}"

A Declarative DSL for Customizing ASCII Art 195

loop ANY (E,SE,S,SW,W) ’\’’ (E,NE,N,NW,W) "-|\\/" draw "M {I} Q {C} {O}"

‘-‘and ‘|‘ connect w/ most things. Draw line to outgoing edge.

step "+-.’" (E, W) ’-’ (maybe (E, W) "-+.’>") draw "L {O}"

step "+|.’" (N, S) ’|’ (maybe (N, S) "|+.’") draw "L {O}"

‘+‘ is a corner; ensure compatible. Just draw line to center

(the rest of corner is handled by next character, if present).

step "|-/\\>" ANY ’+’ (maybe (N,S) "|") draw "L {C}"

step "|-/\\>" ANY ’+’ (maybe (E,W) "-") draw "L {C}"

step "|-/\\>" ANY ’+’ (NE,SW) "/") draw "L {C}"

step "|-/\\>" ANY ’+’ (NW,SE) "\\") draw "L {C}"

‘/‘, ‘\‘ are diagonals. Draw line to outgoing corner.

step ANY (NE, SW) ’/’ (maybe (NE, SW) "/+.’") draw "L {O}"

step ANY (NW, SE) ’\\’ (maybe (NW, SE) "\\+.’") draw "L {O}"

Special case arrowhead code (1st does not touch; 2nd + 3rd do)

end ’-’ E ’>’ draw "L {C} l 3,0 m -3,-3 l 3,3 l -3,3 m 0,-3"

step ’-’ E ’>’ E ’+’ draw "L {E} m -2,0 l 4,0 m -4,-3 \

l 4,3 l -4,3 m 0,-3 m 4,0"

step ’+’ W ’>’ W ’-’ draw "M {E} m -2,0 l 4,0 m -4,-3 \

l 4,3 l -4,3 m 0,-3 m 4,0 M {E} L {C}"

Figures 1 and 2 were both rendered using the tool. Figure 3 shows how the limited
rules given above can yield interesting output, based on the following input.

.----. .----.
| | +------>|[b] |

+-+-+ | / \ .->+ b +->
| a | ’--+ \ / | |
+---+ ’ ’----’
[a] |

+--+---+
/ c /[c]

+----+-+
|

[a]: stroke-dasharray="5,3"
[b]: stroke-dasharray="15,2"
[c]: fill="yellow"

7 Related Work

7.1 ASCII Art Rendering

There exist pre-existing software ASCII art renderers. Examples include ditaa
[2] and a2s [1]; the design of the latter heavily influenced this work. However,

196 F.S. Klock

Fig. 3. Rendered demo

we are not aware of any such tool that allows the user to customize the rendering
process for arbitrary character combinations.

7.2 Picture Description Languages

There are many domain specific languages for describing pictures in an abstract
manner, such as Metapost [3], Tikz/PGF [4], Graphviz [5], and mermaid [6].

None of these attempt to reflect the desired image in the rendering of the
source text itself, however.

7.3 Object Modelling Languages

One can encode information in object modelling languages and then rely on tools
to render the models graphically. Examples of such modelling languages include
UML [7], Alloy [8], and Message Sequence Charts as encoded in mscgen [9].

8 Conclusion

mon-artist includes a declarative language for encoding rules to guide a search
and rendering process when converting an ASCII art diagram to an SVG docu-
ment.

The language was originally designed to be user extensible; it remains to be
seen whether such extension is actually usable in practice.

Nonetheless, I have made heavy use of the tool in my own diagram authoring,
and found the ability to modify the rules to accommodate idiosyncracies in a
particular diagram (e.g. the use of -> in type signatures, which needed to remain
text, not a path) was useful.

A Declarative DSL for Customizing ASCII Art 197

References

1. O’Dell, D.H.: ASCIIToSVG: an ASCII art diagram to SVG converter. https://9vx.
org/dho/a2s/index.html

2. Sideris, S.: DITAA, DIagrams Through ASCII Art. http://ditaa.sourceforge.net/
3. Hobby, J.D.: A user’s manual for MetaPost. AT&T Bell Laboratories, Murray Hill

(1992)
4. Tantau, T.: The TikZ and PGF packages: manual for version 3.0.0. (2015)
5. Gansner, E.R., North, S.C.: An open graph visualization system and its applications

to software engineering. Softw. Pract. Exp. 30, 1203–1233 (2000)
6. Sveidqvist, K.: Mermaid - generation of diagrams and flowcharts from text in a

similar manner as markdown. https://knsv.github.io/mermaid/
7. Booch, G., Rumbaugh, J., Jacobson, I.: Unified Modeling Language User Guide.

Addison-Wesley Object Technology Series, 2nd edn. Addison-Wesley Professional,
Reading (2005)

8. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11, 256–290 (2002)

9. McTernan, M.: Mscgen. http://www.mcternan.me.uk/mscgen/

https://9vx.org/dho/a2s/index.html
https://9vx.org/dho/a2s/index.html
http://ditaa.sourceforge.net/
https://knsv.github.io/mermaid/
http://www.mcternan.me.uk/mscgen/

Using Iterative Deepening
for Probabilistic Logic Inference

Theofrastos Mantadelis(B) and Ricardo Rocha

CRACS & INESC TEC, Faculty of Sciences, University of Porto,
Rua do Campo Alegre, 1021, 4169-007 Porto, Portugal

{theo.mantadelis,ricroc}@dcc.fc.up.pt

Abstract. We present a novel approach that uses an iterative deepening
algorithm in order to perform probabilistic logic inference for ProbLog,
a probabilistic extension of Prolog. The most used inference method for
ProbLog is exact inference combined with tabling. Tabled exact infer-
ence first collects a set of SLG derivations which contain the probabilis-
tic structure of the ProbLog program including the cycles. At a second
step, inference requires handling these cycles in order to create a non-
cyclic Boolean representation of the probabilistic information. Finally,
the Boolean representation is compiled to a data structure where infer-
ence can be performed in linear time. Previous work has illustrated that
there are two limiting factors for ProbLog’s exact inference. The first
factor is the target compilation language and the second factor is the
handling of the cycles. In this paper, we address the second factor by
presenting an iterative deepening algorithm which handles cycles and
produces solutions to problems that previously ProbLog was not able to
solve. Our experimental results show that our iterative deepening app-
roach gets approximate bounded values in almost all cases and in most
cases we are able to get the exact result for the same or one lower scaling
factor.

Keywords: Probabilistic logic programming · Inference engine · Cycle
handling · Iterative deepening · ProbLog

1 Introduction

ProbLog [8] is a probabilistic framework that extends Prolog with probabilistic
facts. ProbLog’s most fundamental task is the efficient computation of a query’s
success probability and, for that, ProbLog employs several inference methods
and uses several different state-of-the-art technologies. The most used inference
method for ProbLog is exact inference. ProbLog is also able to compute con-
ditional probabilities, solve multiple queries and compute the probabilities of
answers. State-of-the-art Probabilistic Logic Programming (PLP) systems, such
as ProbLog, often use a three step inference mechanism: (i) SLD/SLG logic
resolution; (ii) Boolean formula preprocessing; and (iii) knowledge compilation.

c© Springer International Publishing AG 2017
Y. Lierler and W. Taha (Eds.): PADL 2017, LNCS 10137, pp. 198–213, 2017.
DOI: 10.1007/978-3-319-51676-9 14

Using Iterative Deepening for Probabilistic Logic Inference 199

Inference in PLP systems impose several challenges which still have not been
fully addressed. Currently, an important limitation is the efficiency of knowledge
compilation of highly connected graphs. At the Boolean formula preprocessing
step, big cyclic graph based problems are also almost intractable. Motivated by
the need of providing a solution for these problems, several approximation meth-
ods have been proposed. One of the most prominent and used for ProbLog is pro-
gram sampling [8]. Program sampling is able to compute a result for many queries
that would be intractable for exact inference, but program sampling is usually
much more time consuming than exact inference when the problem is tractable,
making it often an unusable inference method. Initial work in ProbLog [8], pro-
posed an approach based in the k-best derivations. This approach works for the
calculation of lower bound probabilities with a small k. The early stopped deriva-
tions which are used to compute the upper bound probability become intractable
even for a small k. The scaling of k-best derivations approach was proven in most
cases worst than tabled exact inference, thus making it unusable.

SkILL [4], a Stochastic Inductive Logic Learner which produces First Order
Logic theories from probabilistic annotated data, uses MetaProbLog1 as its
inference engine to analyse the probabilistic data. In particular, SkILL uses
MetaProbLog’s exact inference to compute the success probability of induced
theories. When exact inference for a theory is intractable, SkILL then com-
putes the probability of that theory by using MetaProbLog’s program sam-
pling inference. Whenever SkILL resolves to program sampling, the time over-
head is significant. Motivated by the above observations and SkILL’s usage of
MetaProbLog, we have identified the need to be able to compute an approxima-
tion for intractable queries in speeds comparable to exact inference.

To address the mentioned problems, we propose a new inference method
based on iterative deepening search. The underlying idea is to perform the
Boolean formula preprocessing step in a bounded fashion producing two Boolean
formulae: one more specific and one more general than the exact Boolean for-
mula. Afterwards, we compute the probability of the two bounded formulae as
lower and upper bounded probabilities. Finally, after completing an iteration,
we can increase the bound and compute the next iteration until we either reach
an exact probability, a desirable bound interval, a maximum bound, or time out.
Our approach thus incrementally computes the Boolean formula preprocess-
ing step and as a result generates and compiles subformulae that incremen-
tally grow/shrink towards the exact formula creating a lower/upper probability
bound, respectively. In this way, we are able to compute good approximations
in a very fast way even for the hardest problems.

The main contributions of this paper are:

1. The application of iterative deepening to handle cycles in probabilistic logic
programs in order to compute lower and upper bounds.

1 MetaProbLog is an implementation of the ProbLog semantics and can be found at:
www.dcc.fc.up.pt/metaproblog. Other implementations are ProbLog1 and ProbLog2
and can be found at: http://dtai.cs.kuleuven.be/problog.

www.dcc.fc.up.pt/metaproblog

200 T. Mantadelis and R. Rocha

2. The full integration and compatibility of the new algorithm with all existing
optimizations and system features in MetaProbLog, such as: variable com-
paction [12], general (stratified) negation, multiple queries and evidence.

3. An experimental evaluation of iterative deepening using three key datasets
against exact inference and program sampling inference. The iterative deep-
ening algorithm clearly over performed the other inference methods in two
datasets and equally performed with exact inference at the third dataset.

The rest of the paper is structured as follows. First, we briefly introduce
ProbLog and the distribution semantics in Sect. 2.1. We then present AND-
OR graphs, which are a fundamental step for our method, in Sect. 2.2. The
detailed description of our algorithm is given in Sect. 3. Section 4 contains the
experimental evaluation. Finally, future work and conclusions are presented in
Sect. 6.

2 ProbLog

We start by giving a brief introduction to ProbLog which follows the distribu-
tion semantics [16], and by defining the success probability of logic programs.
Then, we describe the exact inference method and how the collective proofs are
represented as AND-OR graphs.

2.1 ProbLog and the Distribution Semantics

ProbLog programs use the syntax of Prolog and extend it with probabilistic
facts [8]. A ProbLog program T consists of a set of facts annotated with prob-
abilities pi :: pf i (called probabilistic facts) together with a set of standard
definite clauses or definite clauses that also contain positive and/or negative
probabilistic facts in their body h : −b1, . . . , bn (called background knowledge
(BK)). A probabilistic fact pf i is true with probability pi. These facts corre-
spond to random variables, which are assumed to be mutually independent. We
define LT = {p1 :: pf1, . . . , pn :: pfn} as the set of all probabilistic facts in a
ProbLog program. Formally, a ProbLog program is of the form T = LT ∪ BK.
Finally, as syntactic sugar, ProbLog implementations allow probabilistic heads
to definite clauses.

We define as possible world LT = Ltrue ∪ Lfalse and Ltrue ∪ Lfalse =
∅, where Ltrue and Lfalse are the sets containing all probabilistic facts of the
ProbLog program T that are set to true and false, respectively. It is clear that a
ProbLog program T has a number of possible worlds exponential to the number
of probabilistic facts (2N where N is the number of probabilistic facts).

The probability of a possible world (Pworld) equals to the product of the
probability of all probabilistic facts in Ltrue and 1 - probability of all probabilistic
facts in Lfalse, i.e.,

Pworld =
∏

pi::pfi∈Ltrue

pi ·
∏

pj ::pfj∈Lfalse

(1 − pj),

Using Iterative Deepening for Probabilistic Logic Inference 201

where Ltrue ∪ Lfalse = LT and Ltrue ∩ Lfalse = ∅. The sum of the probabilities
of all possible worlds equals to:

∑

wi∈Worlds

Pwi
= 1.0.

The most fundamental task of ProbLog is to calculate the success prob-
ability of a query. In ProbLog, inquiring the success probability of a query
means asking for the probability that a randomly selected possible world sat-
isfies that query. Such worlds contain the probabilistic facts needed to satisfy
the query, but can also contain more probabilistic facts. The success probabil-
ity Ps(q|T) of a query q is the summation of the probabilities of all possible
worlds for which there exists a substitution θ such that qθ is entailed by T ,
i.e., Ps(q|T) =

∑
wi∈Worlds P (q|wi) · Pwi

, where P (q|wi) = 1.0 if there exists
a substitution θ such that wi ∪ BK |= qθ and P (q|wi) = 0.0 otherwise. The
equation states that we are able to calculate the success probability of a query
by summing the probabilities of all worlds that satisfy the query.

The naive approach of enumerating all possible worlds and then summing the
ones that satisfy the query quickly becomes computationally intractable. For that
reason ProbLog uses different strategies to calculate the success probability of a
query. The most used inference method of ProbLog is the exact inference method
with general (stratified) negation and tabling support. ProbLog complies to the
closed world assumption and for that reason the ProbLog’s general negation
mechanism is limited to stratified programs [10]. Exact inference is a three step
inference approach:

1. SLG resolution is used to prove the query and collect the proofs that com-
pactly represent the possible worlds where the query succeeds. For the purpose
of this paper, we will use SLG resolution for ProbLog programs as presented
in [10].

2. Boolean formula preprocessing takes the compact representation of the
possible worlds in order to perform cycle handling [10] and optimize it as a
Boolean formula [11].

3. Knowledge compilation is used to compile the collected Boolean formula
to Reduced Ordered Binary Decision Diagrams (ROBDDs) [1], or to smooth
decomposable Deterministic Negated Normal Form (sd-DNNF) [7], or to Sen-
tient Decision Diagrams (SDDs) [6].

2.2 AND-OR Graphs

We represent the collected proofs as an AND-OR graph. An AND-OR graph
is a directed graph composed by AND and OR nodes. An AND node indicates
that all child nodes must be true, while an OR node indicates that at least one
of the child nodes must be true. The SLG derivations of a query q with respect
to a logic program can be represented as an AND-OR graph. To solve a query
q, the different clauses (ci∈1..m : −li,1, ..., li,n.) of the predicate q are processed
as follows. For each different clause ci all literals li,j in the body are grouped as

202 T. Mantadelis and R. Rocha

children of an AND node. The different AND nodes are then grouped as children
of an OR node labeled with q.

An AND-OR graph of a query has the following characteristics: (i) cycles
that appear in the logic program also appear in the AND-OR graph; (ii) for
each subgoal g there is only one OR node; (iii) an OR-node has multiple parents
if the subgoal is repeated and goals proven as facts are represented by special
OR nodes without children, called terminal nodes; and (iv) the edge from a child
node to a parent node states that the parent depends on the child node.

Formally, an AND-OR graph for a query q is a directed graph G = (Vand, Vor,
Vterm, E) with Vand a set of AND nodes, Vor a set of labeled OR nodes, Vterm ⊂
Vor a set of terminal nodes, Vnonterm = Vor\Vterm and E ⊆ R a set of directed
edges, where R = (Vand × Vor) ∪ (Vnonterm × Vand) ∪ (Vnonterm × Vor) and the
OR node with label q as root.

In order to compile the collected proofs, ProbLog must first process the
AND-OR graph and produce a Boolean formula that does not contain cyclic
references but, often, converting a cyclic AND-OR graph to a non cyclic one
is a hard task [10]. Furthermore, compiling an AND-OR graph to any of the
knowledge compilation approaches has complexity exponential to the tree width
of the AND-OR graph [7]. In this paper, we propose a new method to iteratively
compute the Boolean formula to two Boolean formulae, one more specific and
one more general. In that way, we are able to compute lower and upper bounds
with lower complexity than computing the exact probability.

Figure 1 presents the probabilistic graph for the following ProbLog program,
which will be used as our running example.

0.5::e(a,b). 0.4::e(a,c). 0.6::e(a,f).
0.2::e(b,a). 0.8::e(b,c). 0.7::e(b,f).
0.9::e(c,a). 0.1::e(c,b). 0.3::e(c,f).

p(X, Y) :- e(X, Y).
p(X, Y) :- e(X, Z), Z \= Y, p(Z, Y).

In order to prove the query p(a, f), SLG resolution collects the AND-OR
graph presented in Fig. 2. The query defines the entry point of the AND-OR
graph which we annotate by shading the node gray. With rhombus we annotate
the AND nodes; with ellipses we annotate the OR nodes (notice that all OR
nodes are labeled with a logical goal); and with rectangles we annotate the
leaf nodes which are the probabilistic facts. The AND-OR graph represents not
only the relevant information used to proven the query by SLG resolution but
also any cycle found in the proving. For example, observe that the OR nodes
{p(a, f); p(b, f); p(c, f)} all have paths (by following the directed edges) through
AND nodes that would return to the initial OR node, thus creating the cycles.

When computing the exact probability of query q, one requires to handle the
cycles that are introduced in the AND-OR graph. ProbLog uses the algorithm
presented at [10], which treats positive cycles [3] as failures. The algorithm is
implicitly transforming the AND-OR graph to a larger one (in the worst case

Using Iterative Deepening for Probabilistic Logic Inference 203

Fig. 1. An example probabilistic graph.

Fig. 2. The AND-OR graph collected by SLG resolution for query p(a, f) for the
probabilistic graph of Fig. 1.

exponentially larger). Figure 3 presents the transformed graph where the cycles
have been fully handled; we annotate the detected cycles with double octagons.
The reader can notice that some nodes, such as {p(b, f); p(c, f)}, appear in dif-
ferent paths and that others, such as {p(a, f) = cycle, p(b, f) = cycle}, are
characterized as cycles when they appear twice in the same path. The cycle
handling algorithm, uses a set of logical rules and memoization that permits
the re-usage of computations. This re-usage allows a significant reduction of the
work and size of the expansion. Still, the cycle handling remains an exponentially
hard task and often generates a very large AND-OR graph where the knowledge
compilation step often fails.

3 Iterative Deepening Cycle Handling

The proposed approach does not modify at all the first step (SLG resolution); it
introduces a new cycle handling algorithm at the second step (Boolean formula
preprocessing) which is fully compatible with all existing optimizations; and it
modifies the third step by calling it multiple times in order to compute the
probabilities of different bounds.

The underlying idea of our approach is similar to the iterative deepening
depth first search (DFS) algorithm but, instead of searching for a specific node,
we are interested in traversing the whole graph structure (or as much of it as
possible) and transform it to a cyclic free graph.

Algorithm 1 presents the generalized AND-OR graph to ROBDD defini-
tions approach with iterative deepening modifications, which includes the rele-
vant parts of the original cycle handling algorithm together with the extensions

204 T. Mantadelis and R. Rocha

Fig. 3. The cyclic free AND-OR graph that ProbLog produces before ROBDD compi-
lation.

required to implement an iterative deepening strategy. Optimizations and the
handling for general negation has been omitted for simplification. The exten-
sions are noted as underlined text. Our inference method calls Algorithm 1 for a
user-defined number of iterations and, at each iteration, the bound is increased
by a user-defined step.

Algorithm 1 recursively traverses the AND-OR graph structure calling at
each recursion level the auxiliary procedure Preprocessing Method() (line
2 in Algorithm 1), which is responsible of handling an AND-OR graph that
contains a single OR node. ProbLog supports several different preprocessing
methods. In this work, we used the Recursive Node Merging preprocessing
method [11]. The preprocessing procedure is responsible for writing the AND-OR
graph as a depth breadth trie. MetaProbLog uses depth breadth tries in order to
perform optimizations on the writing of Boolean formulae. For the purposes of
this paper, the reader can assume that a depth breadth trie is a simple represen-
tation of the Boolean formula. For more details on the preprocessing methods
we direct the reader to [11]. We note that these optimizations are independent
from this work but our implementation is fully compatible and fully supports
them.

Whenever an AND-OR subgraph Tnested is found, the algorithm needs to
choose the appropriate of four different conditions. First, the algorithm verifies
if Tnested introduces a positive cycle [3] and handles it as a failure [10] (lines 5–6 in
Algorithm 1). The second condition occurs when the Tnested has been processed
earlier and the results can be reused (lines 7–10 in Algorithm 1). If neither
the first nor second condition apply, the algorithm checks whether Tnested was
encountered within the introduced bound of the iteration. If Tnested is within
the bound (lines 11–15 in Algorithm 1), then the algorithm will recursively
try to compute the newly found reference. Otherwise, if it is out of the bound

Using Iterative Deepening for Probabilistic Logic Inference 205

Algorithm 1. The generalized AND-OR graph to ROBDD definitions approach
with iterative deepening
input The AND-OR graph T , the depth breadth trie DBT where the generated

ROBDD definitions are stored, the ancestor AND-OR graphs AT of the AND-OR

graph T , the reference Lbegin to the next free ROBDD definition, the current depth

(Depth) in the AND-OR graph, the available bound (Bound) of this iteration and

a Boolean starting value for Assumed.

output Updates DBT to contain the ROBDD definitions generated for T and returns

the representative reference Lend and the Boolean variable Assumed that indicates

whether an assumption was taken.

call as (Lend, Assumed) := ProcessAND−OR(T , DBT , ∅, Lbegin, 1, Bound, false).

1: function ProcessAND−OR(T , DBT , AT , Lbegin, Depth, Bound, Assumed)

2: (Lend, Tnested) := Preprocessing Method(T , DBT , Lbegin)

3: if Tnested �= null then {T contains a sub AND-OR graph Tnested}
4: ATnested := AT ∪ {T}
5: if Tnested ∈ ATnested then {Tnested introduces a cycle}
6: Replace the occurrence of Tnested in AND-OR graph T with false.

7: else if Is Memoized(Tnested, ATnested , Bound − Depth) then

8: (LTnested , AssumedTnested) := Get Memoized Result(Tnested, ATnested ,

Bound − Depth)

9: Replace the occurrence of Tnested in AND-OR graph T with LTnested .

10: Assumed := Assumed ∪ AssumedTnested

11: else if Depth < Bound then {Tnested is not a cycle, neither is memoized and

current depth is still in bound}
12: (LTnested , AssumedTnested) := ProcessAND−OR(Tnested, DBT , ATnested ,

Lend+1, Depth+1, Bound, Assumed)

13: Replace the occurrence of Tnested in AND-OR graph T with LTnested .

14: Lend := LTnested

15: Assumed := Assumed ∪ AssumedTnested

16: else {Current depth is out of bound}
17: Assume LTnested is false for lower inference and true of upper inference

18: Replace the occurrence of Tnested in AND-OR graph T with LTnested .

19: Lend := LTnested

20: Assumed := true

21: return ProcessAND−OR(T , DBT , AT , Lend+1, Depth+1, Bound,

Assumed)

22: else {T is fully processed}
23: Memoize(T , AT , Bound − Depth, Lend, Assumed)

24: return (Lend, Assumed)

(lines 16–20 in Algorithm 1), then the algorithm will assume either false or
true depending on whether it is a lower or upper iteration. After replacing the
AND-OR subgraph, the algorithm continues recursively by increasing by one

206 T. Mantadelis and R. Rocha

the used depth (line 21 in Algorithm 1). Finally, when an AND-OR graph is
fully processed (contains a single node), the result is memoized for reuse and the
result is returned (lines 22–24 in Algorithm 1).

For cyclic handling, we use a memoization technique that compares the sub-
sets of the ancestors of AND-OR graphs [10]. This technique allows us to dis-
cover cycles and to widen our re-usage compared with the normal DFS strategy.
When the algorithm memorizes a computed AND-OR graph, it keeps track of the
ancestors in list AT (called the ancestor list) of the AND-OR graph in order to
identify the possibly introduced cycles. With iterative deepening, the algorithm
also requires to memoize the number of recursions remaining (Bound − Depth)
and whether an assumption was taken (Assumed) for computing the AND-OR
graph (line 23 in Algorithm 1). When the algorithm checks whether a memo-
ized result can be reused, in addition of checking the ancestor list, it also needs
to check whether the number of used recursions of the stored AND-OR graph
is equal or greater than the currently remaining recursions. In case the memo-
rized recursions are less than the currently remaining recursions, it means that
the memorized AND-OR graph reference contains less probabilistic information
than what the current iteration is able to compute and thus the memorized
result is not reused. This way we can allow iterations with different bounds to
use previously computed results.

For example, assume that the AND-OR graph t(1) with the ancestor list At(1)

at the lower iteration with Bound = 5 in the recursion with Depth = 3 has been
computed as the ROBBD definition Lt(1) with no assumptions. The algorithm
then memoizes the term: and−or graph(t(1), At(1), 2, Lt(1), false) and can reuse
this computations of t(1) in any lower iteration with ancestor list Anew

t(1) as long
Bound − Depth ≤ 2 and At(1) ⊆ Anew

t(1) .
When the current depth equals the bound of the current iteration, any occur-

rence of a sub graph is assumed to be false for lower bounded iterations and true
for upper bounded iterations. In this way, we lose probabilistic information but
we ensure that the probability will be a lower/upper bound of the exact probabil-
ity. This simple strategy gives us lower and upper bounds for AND-OR graphs
that do not contain general negation. By memorizing and returning for each
AND-OR subgraph whether an assumption was taken to compute the result, we
know if the stored result of the AND-OR graph is the equivalent of the exact
result for that AND-OR graph. This allows us to detect when we computed an
iteration that provides an equivalent to exact Boolean formulae regardless the
actual probability results.

Returning to our example, we illustrate how the AND-OR graph of Fig. 1
would appear for the first two iterations of our iterative deepening algorithm.
The first iteration would produce the AND-OR graph presented in Fig. 4 and the
second iteration would produce the AND-OR graph presented in Fig. 5. For this
specific example, on the third iteration, the computed AND-OR graph would
be identical with the AND-OR graph computed by the exact method, which is
presented in Fig. 3. With octagons we annotated the nodes that the iterative
deepening approach assumed true or false.

Using Iterative Deepening for Probabilistic Logic Inference 207

Fig. 4. AND-OR graph after one iteration of the iterative deepening algorithm.

Fig. 5. AND-OR graph after two iterations of the iterative deepening algorithm.

After each iteration of the iterative deepening algorithm, ProbLog compiles
the computed Boolean formulae using a knowledge compilation approach in order
to efficiently compute the probability. For our implementation and description,
we used ROBDDs.

Finally, this algorithm is executed iteratively with the user being able to
choose: (i) the starting bound; (ii) the step; and (iii) several ending conditions,
such as, specific bound, lower to upper probability difference being less than a
value, or reach a time limit. The algorithm also automatically terminates if it
detects the computation of the exact probability.

Implementation-wise, we have introduced three different inference methods
that the user can use, namely: lower iterative; upper iterative; and bounded iter-
ative (the combination of the two). These new methods are compatible with all
features and optimization techniques that exact inference uses.

3.1 General Negation and Conditional Probability

ProbLog programs with general negation impose a complication to the itera-
tive algorithm assumption taking. Whenever the algorithm takes an assumption,
the number of enclosing negations of the assumed subgraph define whether the
assumption should be false or true. If the enclosed graph is an odd number of

208 T. Mantadelis and R. Rocha

times enclosed then we must assume true for lower bound and false for upper
bound. In order to handle the above complication, the moment we encounter
a general negation, we need to push it deeper in the computation by using De
Morgan’s laws, i.e., in practice we are transforming the next AND-OR subgraph.
This mechanism causes a small overhead when general negation is encountered.

ProbLog queries that have evidence impose the interesting theoretical ques-
tion whether the results are bounded. In ProbLog, we define the probability
of a query q with evidence e as P (q|e) = P (q∩e)

P (e) . Our iterative method com-

putes lower and upper bounds, Pl(q|e) = Pl(q∩e)
Pl(e)

, Pu(q|e) = Pu(q∩e)
Pu(e)

, respec-
tively. We would like to prove that Pl(q|e) ≤ P (q|e) ≤ Pu(q|e). Unfortu-
nately, we can prove the opposite by using set theory. Assume two sets Q,
E such that (i) at lower iteration i, Qi = Q and ∅ �= Ei ⊂ E and that (ii)
Qi ∩ Ei = Q ∩ E then clearly Pl(Qi ∩ Ei) = P (Q ∩ E) and Pl(Ei) < P (E)
resulting in Pl(Qi|Ei) > P (Q|E). For example, if Q = Qi = {pf1 ∪ pf2 ∪ pf3},
E = {pf1 ∪ (pf2 ∩ pf4)} and Ei = {pf1 ∪ (pf2 ∩ false)} = {pf1} then
Pl(Qi|Ei) = P ({pf1})

P ({pf1}) = 1 > P (Q|E) = P ({pf1})
P ({pf1∪(pf2∩pf4)}) . Similarly one can

miss proof Pu(q|e) ≥ P (q|e).
Thus, the proposed algorithm does not compute lower and upper bounded

probabilities for queries with evidence. Our solution to this problem is to swap
the divisors of the lower and upper iterations and compute the probabilities
as follows: Pl(q|e) = Pl(q|e)

Pu(e)
and Pu(q|e) = min(Pu(q|e)

Pl(e)
, 1). Clearly, as Pu(e) ≥

P (e), Pl(q ∩ e) ≤ P (q ∩ e) then Pl(q∩e)
Pu(e)

≤ P (q∩e)
P (e) (similarly for the upper bound).

4 Experimental Results

For the purpose of this paper, we have implemented the proposed algorithm in
MetaProbLog. MetaProbLog is an efficient implementation of ProbLog that is
closely integrated with Yap Prolog [5] and is used in SkILL [4]. MetaProbLog
supports both ROBDDs and sd-DNNFs as a knowledge compilation language.
Previous experimental evaluations have shown that ROBDDs are able to solve
more problems than sd-DNNFs in the context of MetaProbLog and sd-DNNFs
only perform better in conditional queries [12,17]. For that reason, in our exper-
iments we use ROBDDs.

We have experimented with 3 benchmark sets, namely Alzheimer, Smokers
and Grid, which have been previously used for testing the performance of differ-
ent ProbLog implementations. The Alzheimer benchmark set [8] was generated
from a real-world biological dataset of Alzheimer genes. Due to the complexity
and importance of this dataset, it has been established as the most used testing
ground for ProbLog. We used three different queries (Q1, Q2, Q3) and their
reversed instances (Q1, Q2, Q3)2. In order to see the scaling of the inference

2 Q1 = p(hgnc 983,hgnc 620), Q1 = p(hgnc 620,hgnc 983),
Q2 = p(hgnc 582,hgnc 620), Q2 = p(hgnc 620,hgnc 582),
Q3 = p(hgnc 983,hgnc 582) and Q3 = p(hgnc 582,hgnc 983).

Using Iterative Deepening for Probabilistic Logic Inference 209

methods based on the size of the graph, we increased the number of edges by
300 in each scale step starting from 1500 edges until 6000 edges (16 scale steps
in total). The Smokers benchmark set [14] was introduced for testing multi-
ple queries and queries with evidence. The scale parameter for Smokers is the
number of persons in the social network, currently our dataset has up to 51 peo-
ple. The Grid benchmark set [17] was constructed as a worst case scenario for
ProbLog1 and MetaProbLog inference and is a fully connected grid that always
contains the probabilistic information at the deepest step and, as such, it is the
worst case scenario for our iterative algorithm.

The environment for our experiments was a Supermicro AS-2042G-72RF4
server with four AMD Opteron(tm) Processor 6376 (16 cores each, 64 cores
in total) and 256 GB of RAM memory. The benchmarks where executed concur-
rently and each had a total of one hour for time out.

The foremost target of our approach is to enable us to compute an approx-
imation in queries where exact inference is unable to compute any result. Fur-
thermore, we would like our iterative inference method to be able to compute
the exact inference and detect its computation when that is possible. Further
than simply comparing our approach with the usual exact inference, we also used
variable compaction for the Alzheimer dataset as presented in [12]. We noticed
that variable compaction permitted us to compute more upper bounded queries
and that, in general, variable compaction improved the performance (decreased
the runtime) of the iterative inference method.

Table 1 presents the scaling results of our approach compared with exact
inference. The queries Q1 to Q3 are sorted from easier to hardest. One can
notice that, for Alzheimer queries, exact inference usually times out at after
3000 edges. The presented iterative approach almost always computes results
for all Alzheimer queries and in most cases computes the exact result for at
least one scaling factor lower than what exact inference would compute. From
a theoretical point of view, we were expecting iterative deepening to be able to
compute the N − 1 iteration of all benchmarks that exact inference was able to
return the result. Theoretically, the complexity of computing iterations from 1
to N − 1 is equal to O(N) for iterative deepening strategies. Finally, we notice
that computing upper bounded Boolean formulae is a significantly harder task
than computing lower bounded Boolean formulae and some times even harder
than computing exact Boolean formulae.

Regarding the Smokers datasets, we see similar behavior as with the
Alzheimer dataset. The exact inference stops at queries with up to 40 peo-
ple while our iterative deepening approach computed results for all our queries.
Finally, for the Grid dataset our approach behaved as we expected. Our iterative
deepening approach is able to compute the same queries as with exact inference.
This was expected as the Grid problems push the probabilistic information very
deep in the iterations and always time out on the knowledge compilation step.
The results for the program sampling inference method show that it underper-
forms in the Alzheimer dataset problems, but it is ideal to solve problems like
the ones introduced by the Grid dataset, where it easily solves the 15× 15 graph.

210 T. Mantadelis and R. Rocha

Table 1. Highest scaling results for exact, program sampling, lower iterative, and upper
iterative inference methods over the three datasets (columns no). For the Alzheimer
dataset, we also present the results with variable compaction (columns comp). In
parenthesis, we present the highest scaling factor at which the iterative inference
detected that it has computed the exact probability.

Dataset/query Exact Program

sampling

Lower iterative Upper iterative

no comp no comp no comp

Alzheimer Q1 6000 6000 6000 6000 (6000) 6000 (6000) 6000 (6000) 6000 (6000)

Alzheimer Q1 5100 3900 3300 6000 (3300) 6000 (3300) 2700 (2700) 3900 (2700)

Alzheimer Q2 3000 3300 6000 6000 (3000) 6000 (2700) 6000 (3000) 6000 (3000)

Alzheimer Q2 3000 3300 2100 6000 (2400) 6000 (2400) 2400 (2400) 3900 (2700)

Alzheimer Q3 3000 3000 2700 6000 (2400) 6000 (2400) 6000 (2400) 6000 (2400)

Alzheimer Q3 2400 2400 3900 5700 (2100) 6000 (2100) 6000 (2100) 6000 (2100)

Smokers 40 – – 51 (40) – 51 (40) –

Grid 7× 7 – 15× 15 7× 7 (7× 7) – 7× 7 (7× 7) –

The second question we want to answer is how good is our approximations.
Theoretically, it is difficult to answer this question, as we do not have a way to
compute the amount of probabilistic information the next iterations would add.
Practically, for most queries, we are able to compute both an upper and lower
bound giving an indication of how good our approximation is. We use the same
notion of precision as used in [18], but we also distinguish the queries where we
are able to compute the exact probability. Table 2 shows the results.

For the Alzheimer dataset, we can see that there is a beneficial impact from
enabling variable compaction. The impact comes from improved results in the
upper bound computations. We also want to note that sometimes, even if the
computed upper bounds are high, the computed lower bound probabilities are
the exact probability but our system could not detect that (in brackets we present
how the results would be affected if we could identify those cases).

In this regard, the Alzheimer Q1 imposes an interesting problem for discus-
sion. For that specific query, exact inference managed to compute the probability
for graphs with up to 5100 edges. Our iterative deepening approach is able to
compute the exact probability (as a lower bound) of that query for graphs with
any number of edges in a identical execution time, but it fails to compute upper
bound probabilities and it is also unable to automatically detect that the exact
probability has been computed. The underlying reason for the complexity of this
specific query is that it contains a complex graph that always leads to cycles but
do not contributes to the query. The iterative deepening approach for the lower
bound is able to drop this graph but is unable to detect that it is actually com-
puting the exact probability. On the other hand, the upper bound computation
is assuming that the complex graph contributes to the probability mass and
always returns a probability of 1.0.

Using Iterative Deepening for Probabilistic Logic Inference 211

Table 2. Precision results of computed bounds by iterative deepening inference
(columns no). For the Alzheimer dataset, we also present the results with variable
compaction (column comp). In brackets are the results where exact probability is
computed but is not detected. For program sampling we count the number of pro-
grams that reached a 95% confidence to be within a 0.01 interval.

Precision Alzheimer Smokers
no comp no

Exact (<0.00001) 40 (+9) 41 (+9) 304
Almost exact ([0.00001, 0.01)) 0 2 22
Tight bounds ([0.01, 0.25)) 29 26 27
Loose bounds (>=0.25) 27 (−9) 27 (−9) 4
Queries solved by iterative deepening 96 96 357
Queries solved by exact inference 48 46 305
Queries solved by program sampling 55 - -

5 Related Work

Lately, there has been a growing interest in combining probabilistic information
with logic expressions, giving rise to different PLP systems, such as PRISM [16],
IBAL [13], Alchemy [14], ProbLog [8] and PITA [15], among others. These sys-
tems use both exact and approximate inference methods in order to compute
the marginal or/and conditional probabilities.

A similar inference method with our proposal is mentioned in [2]. Their
iterative method is not described in detail and the authors only mention that it
underperforms exact inference. By examining the provided source code, we have
derived that their iterative method is used to generate growing subformulae that
are given for knowledge compilation, i.e., their system handles the cycles before,
at the logic part, assuming that the probabilistic derivations do not contain
any cyclic information. Thus, their method does not generate a cyclic structure
when representing the Boolean formulae like is in our proposal. As they conclude,
exact inference or a k-best approximation is more appropriate in their setting
(lack of cycles). Another similar approach is the anytime (approximate) inference
method [18]. The main difference to our approach is that anytime inference fully
constructs a CNF formula by executing the exact Boolean formula preprocessing
step once and, then, performs incrementally the knowledge compilation step to
a set of chosen subformulae. Theoretically, iterative deepening inference and
anytime inference could be combined in order to improve the results of each
other. Iterative deepening could be used in the Boolean formula preprocessing
step and anytime inference in the knowledge compilation step and, in that way,
the two approaches could be seen as the complement of each other. Finally [13]
mentions the use of an iterative deepening algorithm in order to provide anytime
inference for IBAL but the details of the algorithm are omitted from the paper.

212 T. Mantadelis and R. Rocha

6 Conclusions and Future Work

We have introduced a new approximate inference method for probabilistic logic
programs based on a iterative deepening algorithm that, at each iteration, com-
putes lower and upper bounds. Our algorithm is able to detect when an itera-
tion would compute the exact probability either because the bounds converge
or because the iteration examines the complete AND-OR graph. The proposed
inference method can be used for any logic based system that collects SLG-
derivations and needs to extract a cycle free Boolean formula from the deriva-
tions. This includes the PLP systems ProbLog1, ProbLog2, MetaProbLog, PITA
and a version of PRISM that uses MTBBDs. Furthermore, some ASP systems
use similar technology to handle Non-tight programs [9].

We also discuss how the new inference method is able to handle condi-
tional queries and queries with general negation. Furthermore, our new inference
method is compatible with all optimizations that the current system supports
and, specifically, when it is combined with variable compaction, it is able to
compute deeper iterations that enables us to get better bounds. The current
implementation in MetaProbLog provides three new inference methods, namely:
problog lower iterative/2, problog upper iterative/2 and the combina-
tion of the two problog bounded iterative/2.

We performed a set of experiments on important applications of ProbLog
that cover a wide range of different problems and we showed how our method
enables us to solve queries that for exact inference were intractable. With the
Alzheimer dataset, we presented the beneficial impact of variable compaction
for our method. We used the Smokers dataset in order to compare our method
against exact inference in the tasks of conditional and multiple queries. Our
method clearly outperforms the exact inference being able to return results for
all queries tests and returning the exact result for all but one query that exact
inference could compute. Finally, we used the Grid dataset as a worst case sce-
nario problem for our approach. Using Grid, we showed that in a worst case
scenario our method performs similarly with exact inference, as expected.

For future work, we will extend the algorithm to use multi-threading in order
to perform multiple knowledge compilations at the same time; investigate how
to theoretically tighten the bounds of conditional queries; and take advantage of
previous iterations compiled ROBDDs for incremental compilation. The devel-
opment of this inference method was motivated by the SkILL system [4] and, as
such, we intent to integrate the new method in SkILL. Finally, we are studying
the combination of our approximate method with TP −Compilation [18] in order
to boost even further the knowledge compilation step.

Acknowledgments. We want to thank the anonymous reviewers for their valuable
comments. This work is partially funded by the ERDF through the COMPETE 2020
Programme within project POCI-01-0145-FEDER-006961, and by National Funds
through the FCT as part of project UID/EEA/50014/2013.

Using Iterative Deepening for Probabilistic Logic Inference 213

References

1. Akers, S.B.: Binary decision diagrams. IEEE Trans. Comput. 27(6), 509–516 (1978)
2. Bragaglia, S., Riguzzi, F.: Approximate inference for logic programs with annotated

disjunctions. In: Frasconi, P., Lisi, F.A. (eds.) ILP 2010. LNCS, vol. 6489, pp. 30–
37. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21295-6 7

3. Chen, W., Warren, D.S.: Tabled evaluation with delaying for general logic pro-
grams. J. ACM 43(1), 20–74 (1996)

4. Côrte-Real, J., Mantadelis, T., de Castro Dutra, I., Rocha, R.: SkILL - a stochas-
tic inductive logic learner. In: International Conference on Machine Learning and
Applications (ICMLA), pp. 555–558 (2015)

5. Costa, V.S., Rocha, R., Damas, L.: The YAP prolog system. Theory Pract. Logic
Program. (TPLP) 12(1–2), 5–34 (2012)

6. Darwiche, A.: SDD: a new canonical representation of propositional knowledge
bases. In: International Joint Conference on Artificial Intelligence (IJCAI), vol. 2,
pp. 819–826 (2011)

7. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Reason.
(JAIR) 17, 229–264 (2002)

8. Kimmig, A., Demoen, B., De Raedt, L., Santos Costa, V., Rocha, R.: On the
implementation of the probabilistic logic programming language ProbLog. Theory
Pract. Logic Program. (TPLP) 11(2–3), 235–262 (2011)

9. Lierler, Y., Maratea, M.: Cmodels-2: SAT-based answer set solver enhanced to
non-tight programs. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS, vol.
2923, pp. 346–350. Springer, Heidelberg (2003). doi:10.1007/978-3-540-24609-1 32

10. Mantadelis, T., Janssens, G.: Dedicated tabling for a probabilistic setting. In: Inter-
national Conference on Logic Programming (ICLP). Leibniz International Proceed-
ings in Informatics (LIPIcs), vol. 7, pp. 124–133 (2010)

11. Mantadelis, T., Rocha, R., Kimmig, A., Janssens, G.: Preprocessing Boolean for-
mulae for BDDs in a probabilistic context. In: Janhunen, T., Niemelä, I. (eds.)
JELIA 2010. LNCS, vol. 6341, pp. 260–272. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-15675-5 23

12. Mantadelis, T., Shterionov, D., Janssens, G.: Compacting Boolean formulae for infer-
ence in probabilistic logic programming. In: Calimeri, F., Ianni, G., Truszczynski, M.
(eds.) LPNMR 2015. LNCS, vol. 9345, pp. 425–438. Springer, Cham (2015). doi:10.
1007/978-3-319-23264-5 35

13. Pfeffer, A.: IBAL: a probabilistic rational programming language. In: International
Joint Conference on Artificial Intelligence (IJCAI), pp. 733–740 (2001)

14. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–
136 (2006)

15. Riguzzi, F., Swift, T.: The PITA system: tabling and answer subsumption for
reasoning under uncertainty. Comput. Res. Repository abs/1107.4747 (2011)

16. Sato, T., Kameya, Y.: PRISM: a language for symbolic-statistical modeling. In:
International Joint Conference on Artificial Intelligence (IJCAI), pp. 1330–1339
(1997)

17. Shterionov, D., Janssens, G.: Implementation and performance of probabilistic
inference pipelines. In: Pontelli, E., Son, T.C. (eds.) PADL 2015. LNCS, vol. 9131,
pp. 90–104. Springer, Cham (2015). doi:10.1007/978-3-319-19686-2 7

18. Vlasselaer, J., Van den Broeck, G., Kimmig, A., Meert, W., De Raedt, L.: Anytime
inference in probabilistic logic programs with Tp-compilation. In: International
Joint Conference on Artificial Intelligence (IJCAI), pp. 1852–1858 (2015)

http://dx.doi.org/10.1007/978-3-642-21295-6_7
http://dx.doi.org/10.1007/978-3-540-24609-1_32
http://dx.doi.org/10.1007/978-3-642-15675-5_23
http://dx.doi.org/10.1007/978-3-642-15675-5_23
http://dx.doi.org/10.1007/978-3-319-23264-5_35
http://dx.doi.org/10.1007/978-3-319-23264-5_35
http://dx.doi.org/10.1007/978-3-319-19686-2_7

Author Index

Antoy, Sergio 1

Bendkowski, Maciej 120

Chupin, Guerric 163
Costantini, Stefania 152

De Gasperis, Giovanni 152
Dundua, Besik 34

Fowler, Jonathan 103
Fruhman, Jonathan 19

Grygiel, Katarzyna 120

Hanus, Michael 1
Hedges, Jules 136
Hutton, Graham 103

Klock II, Felix S. 189
Kutsia, Temur 34

Mainland, Geoffrey 173
Mantadelis, Theofrastos 198

Nazzicone, Giulio 152
Nilsson, Henrik 163

Oliva, Paulo 136

Rath, Jakob 50
Redl, Christoph 50, 68
Reisenberger-Hagmayer, Klaus 34
Rocha, Ricardo 198

Shprits, Evguenia 136

Tarau, Paul 120

Vennekens, Joost 86

Winschel, Viktor 136

Zahn, Philipp 136
Zhou, Neng-Fa 19

	Preface
	Organization
	Contents
	Eliminating Irrelevant Non-determinism in Functional Logic Programs
	1 Introduction
	2 Functional Logic Programming and Curry
	3 Location of Non-deterministic Operations
	4 Deterministic Operations
	5 Practical Aspects
	5.1 Implementation
	5.2 Benchmarking

	6 Checking Deterministic Operations
	6.1 Testing Deterministic Operations
	6.2 Proving Determinism Annotations

	7 Related Work
	8 Conclusions
	References

	Canonicalizing High-Level Constructs in Picat
	1 Introduction
	2 The Picat Language
	2.1 Data Types
	2.2 Predicates and Functions
	2.3 Loops and Comprehensions
	2.4 Assignments and While Loops
	2.5 Constraint Modeling

	3 Canonicalizing the Language Constructs
	3.1 Canonical-Form Rules
	3.2 Transformation of Functions
	3.3 Transformation of Comprehensions
	3.4 Transformation of Pure foreach Loops
	3.5 Transformation of Assignments

	4 Related Work
	5 Conclusion
	References

	An Overview of PLog
	1 Introduction
	2 Overview
	3 The PLog Language
	4 Implementation
	5 Library
	6 Development Environment
	7 Discussion and Final Remarks
	References

	Integrating Answer Set Programming with Object-Oriented Languages
	1 Introduction
	2 Preliminaries
	3 Specifying the External Interface of ASP Programs
	3.1 The Object-Oriented Language
	3.2 Input Specification
	3.3 Output Specification
	3.4 Overall Evaluation

	4 Implementation in Python
	5 Applications
	6 Discussion and Related Work
	7 Conclusion and Outlook
	References

	Extending Answer Set Programs with Interpreted Functions as First-Class Citizens
	1 Introduction
	2 Preliminaries
	3 Interpreted Functions as First-Class Citizens
	4 Implementation of Interpreted Functions Using hex-Programs
	5 Applications of HEXIFU-Programs
	6 Properties of HEXIFU-Programs
	7 Related Work and Conclusion
	References

	Lowering the Learning Curve for Declarative Programming: A Python API for the IDP System
	1 Introduction
	2 Choice of Languages
	3 Finite First-Order Logic in Python
	4 Python Interface to the IDP System
	5 Notes on Implementation
	6 Use Cases
	6.1 Solving Combinatorial Problems
	6.2 Working with Graphs
	6.3 Flexible Input/output
	6.4 Self-maintaining Data-Structures

	7 Related Work
	8 Conclusions and Future Work
	References

	Failing Faster: Overlapping Patterns for Property-Based Testing
	1 Introduction
	2 Motivation and Basic Idea
	3 Generalizing and Formalizing
	3.1 Semantics
	3.2 Evaluation Order
	3.3 Needed Narrowing

	4 Implementation
	5 Case Studies
	5.1 Ordered Trees
	5.2 Well-Typed Expressions
	5.3 Other Examples

	6 Related Work
	7 Conclusion and Future Work
	References

	Boltzmann Samplers for Closed Simply-Typed Lambda Terms
	1 Introduction
	2 Generators for Lambda Terms of a Given Natural Size
	2.1 De Bruijn notation
	2.2 Generating Plain Lambda Terms
	2.3 Generating Closed Lambda Terms
	2.4 Generating Simply-Typed Lambda Terms

	3 A Boltzmann Sampler for Simply-Typed Terms
	3.1 Designing Boltzmann Samplers
	3.2 Deriving a Boltzmann Sampler from an Exhaustive Generator

	4 Generating Simply-Typed Normal Forms
	4.1 Generating Normal Forms of Given Size
	4.2 Interleaving Generation and Type Inference

	5 Boltzmann Sampler for Simply-Typed Normal Forms
	6 Discussion
	7 Related Work
	8 Conclusion
	References

	Selection Equilibria of Higher-Order Games
	1 Introduction
	2 Players, Quantifiers and Selection Functions
	2.1 Game Context
	2.2 Quantifiers and Selection Functions
	2.3 Relating Quantifiers and Selection Functions

	3 Higher-Order Games
	3.1 Example: Voting Contest
	3.2 Quantifier Equilibrium
	3.3 Selection Equilibrium

	4 Relationship Between Equilibrium Concepts
	4.1 Closed Selection Functions
	4.2 Selection Refines Quantifier Equilibrium
	4.3 Illustrating the Two Solution Concepts

	5 Conclusion
	References

	DALI for Cognitive Robotics: Principles and Prototype Implementation
	1 Introduction
	2 The Basic DALI Language and Architecture
	3 DALI Advanced Features and Possible Applications to Robotics
	4 The Extended DALI Implementation
	5 Conclusions
	References

	Funky Grooves: Declarative Programming of Full-Fledged Musical Applications
	1 Introduction
	2 Background
	2.1 Time in Music
	2.2 Functional Reactive Programming and Yampa
	2.3 Reactive Values and Relations

	3 The Arpeggigon
	3.1 The reacTogon
	3.2 Features and Architecture

	4 Implementation
	4.1 Layers
	4.2 Synchronisation
	4.3 GUI and Interaction

	5 Conclusions
	References

	A Domain-Specific Language for Software-Defined Radio
	1 Introduction
	2 Background
	2.1 Composition Along the Data Path

	3 Typing Ziria Programs
	3.1 A Type System for Differentiating Effects
	3.2 Typing Composition Along the Control Path
	3.3 Typing Composition Along the Data Path
	3.4 Type Inference in Practice
	3.5 Types for Streaming Combinators

	4 Elaborating to Core
	5 Compilation Model
	6 Evaluation
	7 Related Work
	7.1 SDR
	7.2 Capturing Effects in Types
	7.3 Elaboration to a Pure Language

	8 Conclusions and Future Work
	8.1 Future Work

	References

	A Declarative DSL for Customizing ASCII Art
	1 Introduction
	1.1 Goals

	2 Review of SVG
	3 Rules Encoded via Oriented Tuples
	4 The Path Search Process
	5 Rendering Templates
	5.1 Template Strings
	5.2 Attribute Injection
	5.3 Path Identification
	5.4 Collapsing Rules with maybe

	6 Example Rule Set and Rendering
	7 Related Work
	7.1 ASCII Art Rendering
	7.2 Picture Description Languages
	7.3 Object Modelling Languages

	8 Conclusion
	References

	Using Iterative Deepening for Probabilistic Logic Inference
	1 Introduction
	2 ProbLog
	2.1 ProbLog and the Distribution Semantics
	2.2 AND-OR Graphs

	3 Iterative Deepening Cycle Handling
	3.1 General Negation and Conditional Probability

	4 Experimental Results
	5 Related Work
	6 Conclusions and Future Work
	References

	Author Index

