
Chapter 5
Modeling the Cocktail Party Problem

Mounya Elhilali

Abstract Modeling the cocktail party problem entails developing a computational
framework able to describe what the auditory system does when faced with a
complex auditory scene. While completely intuitive and omnipresent in humans
and animals alike, translating this remarkable ability into a quantitative model
remains a challenge. This chapter touches on difficulties facing the field in terms of
defining the theoretical principles that govern auditory scene analysis, as well as
reconciling current knowledge about perceptual and physiological data with their
formulation into computational models. The chapter reviews some of the compu-
tational theories, algorithmic strategies, and neural infrastructure proposed in the
literature for developing information systems capable of processing multisource
sound inputs. Because of divergent interests from various disciplines in the cocktail
party problem, the body of literature modeling this effect is equally diverse and
multifaceted. The chapter touches on the various approaches used in modeling
auditory scene analysis from biomimetic models to strictly engineering systems.

Keywords Computational auditory scene analysis � Feature extraction � Inference
model � Multichannel audio signal � Population separation � Receptive field �
Source separation � Stereo mixture � Temporal coherence

5.1 Introduction

In everyday life, humans are constantly challenged to attend to specific sound
sources or follow particular conversations in the midst of competing background
chatter—a phenomenon referred to as the “cocktail party problem” (Cherry 1953).
Whether at a real cocktail party, walking down a busy street, or having a conver-
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sation in a crowded coffee shop, sounds reaching a listener’s ears from a particular
sound source almost never exist in isolation. They persistently occur in the presence
of other competing sources and distractors that form a person’s acoustic environ-
ment. This soundscape needs to be organized into meaningful percepts, a process
formally called “auditory scene analysis” (ASA) (Cherry 1957; Bregman 1990).

The ASA challenge is not confined to humans. Animals too, including mam-
mals, penguins, songbirds, and fishes, have to overcome similar difficulties to
navigate their complex auditory scenes, avoid predators, mate, and locate their
newborns (Izumi 2002; Aubin 2004). A similar challenge also faces engineering
systems, from military communication and surveillance devices to smart phones.
Much like biological systems, these technologies have to navigate their sound-
scapes to pick out relevant sound sources (e.g., speech) while ignoring interference
from the surround (Loizou 2013).

It is important to note that auditory scene analysis is not a monolithic process
that is easily defined within an exact framework. Despite its seemingly effortless
and intuitive nature, it is a multifaceted challenge that encompasses various pro-
cesses. It underlies the brain’s ability to detect, identify, and classify sound objects;
to robustly represent and maintain these representations amidst severe distortions;
to guide actions and behaviors in line with complex goals and shifting acoustic
soundscapes; to adapt to and learn from the environment; as well as to integrate
potentially multimodal sensory cues with information in memory, prior knowledge,
and expectations to provide a complete understanding of the scene.

Given its multilayered nature, modeling auditory scene analysis has often been
faced with a lack of a unified vision or agreed-on benchmarks that clearly define the
objectives to be achieved. These goals have varied from tracking only relevant
targets in a scene to a complete scan of all elements in the scene. Despite this
complexity, interest in addressing the problem computationally is driven by a
number of aims: (1) The ability of the brain to parse informative sensory inputs and
track targets of interests amidst severe, unknown, and dynamic interferers is ulti-
mately what gives the biological system its lead over state-of-the-art engineering
systems. Modern technologies strive to replicate this intelligent processing in
computational systems. This goal remains one of the holy grails of audio and
speech systems (Wang and Brown 2006). (2) Computational models of ASA can
provide a strong perspective in guiding neural and perceptual investigations of the
problem in both humans and animals (Cisek et al. 2007). (3) Defining theoretical
principles that govern aspects of the cocktail party problem will guide the field to
develop better benchmarks to compare performance across systems as well as
match up different implementations against the biological system for well-defined
subtasks. (4) Mathematical ASA models can also act as a platform to examine
commonalities across different sensory modalities and shed light on questions of
optimality and efficiency of performance of the biological or engineering system
under different operating conditions and for various tasks and environments.
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5.2 Defining the Problem in the Cocktail Party Problem

Exploring the computational principles of the cocktail party challenge requires
articulating the exact nature of the problem itself as well as considering the
architecture of models that could tackle this challenge. As is the case with the study
of any complex system, it is important to define the system’s input to the task at
hand and the nature of the output. At the input level, the most biological reasonable
expectation of the input is the acoustic signal that impinges on the listener’s ears
either monaurally or binaurally. This corresponds to a single-microphone or
two-microphone recording of the soundscape. Naturally, some engineering appli-
cations extend this notion to the possibility of multiple microphones, which
expands the spatial resolution of the system, though taking it away from the realm
of biological plausibility. This design takes full advantage of the role of spatial
processing in analyzing complex soundscapes without limiting the engineering
application to the same constraints of the biology. This view has indeed opened the
door to many successful “solutions” to certain aspects of the cocktail party problem
by using independent component analysis (ICA) (Hyvarinen et al. 2001) and other
blind source separation (BSS) (Naik and Wang 2014) and beamforming techniques
(van der Kouwe et al. 2001).

While choosing the number of input channels for a computational model is a
relatively straightforward decision based on the desired fidelity of the model to
biological processes, defining the actual goal for modeling the cocktail party
problem is an ill-posed query (Haykin and Chen 2005; Lewicki et al. 2014). Brain
mechanisms engaged in processing complex scenes can be interpreted at many
levels. One level is as an analysis or segmentation goal that defines auditory scene
analysis as a stream segregation problem, as envisioned by Bregman and Campbell
(Bregman and Campbell 1971; Bregman 1981). In this view, the cocktail party
problem describes the task whereby a listener is confronted with intertwined sound
sequences from multiple sources and the brain must form separate perceptual
streams (or “sound objects”). A computational implementation of this level focuses
on segregating different sound sources based on their acoustic attributes, including
their spatial location, and binding the appropriate elements together to represent the
perceived streams in a multisource auditory scene. Although this definition iden-
tifies a goal for the computational algorithm, it maintains a significant degree of
ambiguity when it comes to defining the exact relationship between the physical
nature of the sound source and the perceived stream, which is not a one-to-one
mapping.

Think, for instance, of a scenario in which the audience at a symphony hall is
enjoying an orchestral concert. Although the sound sources can be discretely dis-
tinguished in acoustic space, the perceptual experience of this rich auditory scene is
not trivial to segregate. Should the model distinguish woodwinds from the rest of
the instruments or should it focus on flutes versus clarinets versus bassoons?
Uniquely defining the granularity of this segregation task is simply impossible and
ultimately depends either on the goals of the model/system, or—in the case of
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modeling human behavior—on the specific task given to the listener along with any
behavioral metrics. This subsequently raises questions as to the limits of incorpo-
rating information about the sources in the segregation process. Should the model
have knowledge about what a flute or a clarinet sounds like?

More importantly, the segmentation of an auditory scene poses additional, lar-
ger, questions: should the segregation be confined to a two-stream problem con-
sisting of segregating a foreground (or target) stream from the background that
incorporates the entire remainder of the scene; or should the segregation truly
represent “all” possible individual sound streams within the scene itself? When
framed as a figure–ground segregation problem, the degree of complexity is greatly
reduced. It is still incomplete, however, until additional processes (e.g., selective
attention) are incorporated to help dictate what the target or foreground charac-
teristics are. It also requires specifying the underlying priors as to “what” the target
(or target class) is, what its attributes are, and whether there are descriptive or
statistical models that define them.

Alternatively, one can take a different approach and cast the overall goal of the
cocktail party model as arising from a recognition point of view. In this case, the
objective is to provide a recognizable label of the soundscape. This view aligns with
frameworks commonly employed in computer vision and traditions of visual scene
perception (Riesenhuber and Poggio 2002; Xu and Chun 2009) and has found
applications in many sound technologies and speech systems (Chen and Jokinen
2010). Such systems are developed to provide various informative descriptors about
a given a scene; e.g. is human speech present in a recording? Which melody is
playing right now? Can footsteps be tracked in a surveillance microphone? Is there
an abnormal heart murmur in a stethoscope signal? Clearly, the range of infor-
mation that can be potentially conveyed from an auditory scene can be limitless.

Existing technologies have successfully focused on particular aspects of this
recognition task, especially recognizing a single target amidst interfering back-
grounds such as human speech (Virtanen et al. 2012) or tune/melody recognition
systems (Collins 2009). Alternatively, some systems focus on recognizing the
environment that gave rise to the scene itself (Patil and Elhilali 2013; Barchiesi
et al. 2015), while other systems target abnormal or unexpected events in a scene
for surveillance and medical systems (Anemuller et al. 2008; Kaya and Elhilali
2013) or even attempt to learn from the surrounding soundscape (Buxton 2003).

Finally, another body of work interprets the cocktail party problem from a
synthesis point of view, where the intent of the computational model is to syn-
thesize individual streams following the segregation process (e.g., musical track
separation [Collins 2009]), or extract cleaner or denoised versions of a target stream
by suppressing undesired backgrounds, echoes, and reverberations, as is goal of
speech enhancement (Loizou 2013). In these systems, the ultimate goal is to gen-
erate a simplified or cleaned version of the auditory scene that captures only one or
a few signals of interest.

Overall, the lack of uniformity across the body of work addressing the com-
putational bases of auditory scene analysis raises additional challenges when it
comes to assessing the success of such systems: it becomes task dependent and
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contingent on the perspective of the modeler. The lack of well-defined goals is one
of the main hurdles that restricts progress in the field, constrains comparative
studies of existing models, and limits incremental innovation that builds on the
existing body of work. Ultimately, the cocktail party problem is an inherently
cross-disciplinary challenge spanning domains of neuroscience, cognitive science,
behavioral sciences, ethology, psychology, psychophysics, and medicine, as well as
engineering and computer sciences. Naturally, the perspective of each of these
disciplines puts the emphasis on different aspects of the problem and biases the
computational theory to tackle the cocktail party problem at different levels of
abstraction and granularity.

5.3 Principles of Modeling the Cocktail Party Problem

The cocktail party problem falls in the category of general information processing
systems, which can be nicely framed in the context of Marrian models that
emphasize different levels of granularity for understanding the underlying processes
(Marr 1982). Although Marr’s specific tri-level explanation may ultimately be
incomplete (Poggio 2012), it nonetheless provides an integrated framework for
understanding different levels of information processing. At the highest level, the
computational theory describes the overall goal of the system and what a model of
auditory scene analysis needs to achieve. In the case of the cocktail party problem,
this remains one of the most challenging levels to describe. As highlighted in
Sect. 5.2, the cocktail party effect is not a well-defined problem with an agreed-on
objective. Most models strive to provide an informative mapping of a complex
audio signal whether in the form of segregated streams, recognition of sound
events, or synthesized variations of the same scene. At the next level of granularity,
the algorithm describes the approach undertaken to achieve this goal. This level
encompasses approaches based on analysis, recognition, or synthesis. At the lowest
level, the implementation level details the practical realization of the algorithmic
computation in terms of computational primitives or neural mechanisms at different
levels of the hierarchy.

5.3.1 Algorithmic Strategies

The overall strategy undertaken by most models of the cocktail party problem
focuses on invoking processes that extract “discriminative” cues from the incoming
sensory input in such a way as to facilitate the differentiation of distinct sound
streams or target selection. This is a particularly daunting task because these cues
operate not only locally, but also globally, as sound streams evolve over time.
These strategies have generally clustered into a few standard approaches, as out-
lined next.
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5.3.1.1 The Population-Separation Theory

The premise of the “population-separation” theory and its related “peripheral
channeling” account is that the perceptual organization of sounds into segregated
streams is determined by the physical overlap between neural populations driven by
sensory properties of the input. Van Noorden originally championed this principle
in his doctoral work (van Noorden 1975), where he particularly emphasized the role
of peripheral population separation. Specifically, sounds that activate separate
peripheral channels (defined as tonotopic frequency channels or left–right lateral
channels) would give rise to segregated stream percepts. A number of studies have
in fact provided support for this observation confirming that formation of segre-
gated auditory streams is strongest when sounds occupy separate peripheral
channels (van Noorden 1977; Hartmann and Johnson 1991).

Subsequent experiments have contested the specific premise of peripheral
channeling, showing that separate streams can in fact be formed even when sources
share a common frequency range, as long as they differ along another acoustic
dimension. Numerous psychoacoustic studies have shown that stream segregation
can occur for sounds that differ in timbre (Cusack and Roberts 2000), bandwidth
(Cusack and Roberts 1999), amplitude modulation rate (Grimault et al. 2002),
binaural pitch (Akeroyd et al. 2005), unresolved pitch (Vliegen and Oxenham
1999), phase (Roberts et al. 2002), or perceived spatial location (Darwin and Hukin
1999; Gockel et al. 1999). Although most of these stimulus manipulations do not
evoke peripheral channeling per se, they generate sound sources that activate
separate neural channels at the brainstem or higher levels of auditory processing. In
this way, these findings still support the more general population separation premise
that activation of distinct neural populations (whether at peripheral or central nuclei
of the auditory pathway) is a prerequisite for their perceptual segregation into
distinct streams.

The population separation theory is supported by a number of neurophysio-
logical studies that corroborate the role of feature selectivity in the auditory system
in mediating the organization of sensory cues into segregated perceptual streams.
Evidence of a correlation between responses at individual neuronal sites and per-
ceptual judgments of streaming has been reported in animal models at various
levels of processing from the cochlear nucleus (Pressnitzer et al. 2008) all the way
to auditory cortex (Micheyl et al. 2007; Itatani and Klump 2011). Neural correlates
of stream formation have also been explored in humans, using electroen-
cephalography (EEG), magnetoencephalography (MEG), and functional magnetic
resonance imaging (fMRI) (Simon, Chap. 7). Overall, human studies corroborate
the role of feature selectivity and tonotopic organization along the auditory pathway
in facilitating stream segregation.

Computationally, the role of population separation in the organization of audi-
tory streams can be interpreted as providing a discriminable representation of
acoustic cues that allows mapping the stimulus into a separable space. By pro-
jecting sensory information into a new feature space that provides non- or mini-
mally overlapping manifolds of the data, the neural representation enhances
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discriminability between different auditory streams in the scene, allowing them to
be separated. This operation is reminiscent of classification and regression tech-
niques such as support vector machines and kernel-based classifiers (Duda et al.
2000; Herbrich 2001).

5.3.1.2 The Temporal Coherence Theory

The general population-separation theory accounts for a number of perceptual
findings about stream segregation induced by sufficiently salient differences across
sound dimensions (Moore and Gockel 2002). However, it does not account for
crucial aspects of stream segregation that relate to the relative timing between sound
events. Specifically, as sounds evolve over time, the relative timing between
individual components in a complex scene plays a crucial role in dictating whether
these components will segregate as separate streams or group together as a single
stream. For instance, frequency components that start together (i.e., share a com-
mon onset) are likely to be perceived as grouped together (Darwin and Carlyon
1995), while delays of a few tens of milliseconds can suffice to induce a segregated
percept (Sheft 2008). Similarly, frequency channels that evolve together in time
over hundreds of milliseconds are likely to be perceived as one group, whereas
elements that are out of phase relative to each other are likely to segregate (Micheyl
et al. 2013). These longer time constants over which sound features evolve directly
influence the nature of the stimulus-induced neural response. Indeed, sound com-
ponents—if sufficiently far apart, for example, in frequency—will activate clearly
distinct frequency-selective neural populations regardless of whether there are
perceived as segregated or grouped (Elhilali et al. 2009), hence violating the
population separation premise.

The temporal coherence theory has been proposed to complement the
population-separation theory by addressing its main shortcoming, notably by
incorporating information about the relative timing across neural responses to
sounds over longer time constants (Shamma et al. 2011). This concept emphasizes
the notion of temporal coherence whereby neural populations whose responses are
in phase relative to each other over long time windows (hundreds of milliseconds)
should be treated as if they represent a perceptually coherent stream; conversely,
neural populations whose responses are asynchronous should be treated as repre-
senting sounds that probably belong to different streams.

By combining together the ideas of feature selectivity (which is at the core of the
population-separation theory) and grouping by temporal coherence, one obtains a
general model of auditory stream formation as illustrated in Fig. 5.1. This model
includes two main bottom-up stages: a feature analysis stage followed by a
coherence analysis stage. The analysis of sound features begins with a frequency
mapping, which simulates the spectral analysis performed at the level of the
cochlea. The output of this initial frequency analysis is used to extract a variety of
spectral and temporal sound features, including spectral shape and bandwidth,
harmonicity, temporal periodicity, and interaural time and level differences. For
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computational convenience, and illustration, these various feature detectors are
assumed to be organized in “maps.” However, it is important to note that an orderly
topographic representation of sound features is not required for the general model to
operate. The key point is that the model includes neurons selective to different
sound features, or different values of a particular feature. Temporal coherence then

Fig. 5.1 Schematic of the temporal coherence strategy for modeling the cocktail party problem.
An incoming signal (bottom of figure) consisting of a mixture of acoustic waveforms emanating
from multiple sources is first analyzed through an array of auditory feature channels. These
features extract cues (e.g., spatial location, pitch, etc.) that enable the segregation of sound
attributes onto different perceptual streams. This process projects the low-dimensional acoustic
signal onto a multidimensional space where different sound components occupy separate
subspaces of the feature space, effectively segregating common sets of elements of the input and
facilitating the process of formation of auditory objects or streams. This process takes advantage of
the intricate time–frequency–space selectivity of neurons along the auditory pathway up to the
level of auditory cortex. A coherence process tracks the trajectory of this feature space over
“cortical” time constants of the order of few hundred milliseconds and binds together the elements
that covary together, hence forming a representation of the foreground stream away from the
background (top of figure). Top-down processes, particularly selective-attention (arrows on
right-hand side) can modulate this entire process by exerting feedback projections that can reshape
selectivity of cortical neurons or modulate ensemble of neurons. This process facilitates
figure/ground segregation. [Figure adapted from Shamma et al. (2011).]
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operates on these neural outputs to bind together elements that covary over time,
while segregating those that are out of synchrony relative to each other (Krishnan
et al. 2014).

It is worth noting that the principle of temporal coherence falls in the general
category of correlational models that have been proposed many decades ago to
address the cocktail party problem (von der Malsburg 1994; Wang and Brown
1999). The correlation output is generated by an autonomous process via neural
coupling that allows neurons to synchronize together if driven by temporally bound
features, forming a topographic map. This concept has been formalized in com-
putational scene analysis models using oscillatory networks, where each population
of synchronized oscillators represents an auditory stream (Wang and Brown 1999;
Brown et al. 2001). In the majority of these models, correlation is defined as
pairwise instantaneous temporal coincidence between temporal trajectories along
different acoustic features.

The concept of “temporal coherence” takes a different view than instantaneous
associations across sound elements (Krishnan et al. 2014). It emphasizes correla-
tions among slow-varying temporal outputs of feature-selective neurons over longer
time scales—of the order of hundreds of milliseconds (Elhilali et al. 2009, 2010).
These time scales are commensurate with dynamics observed in the mammalian
primary auditory cortex. The contrast between the variable time scales of correla-
tions between an oscillatory model and a temporal coherence model is highlighted
in Eq. (5.1):

Crij ¼ 1
C

Z
ri tð Þrj tð Þdt vs: Chij ¼ 1

C

Z
riðtÞ �t hskðtÞ½ � rjðtÞ �t hsk ðtÞ

� ��
dt ð5:1Þ

where riðtÞ is the stimulus-driven response in the ith feature channel, C is an
appropriately chosen normalization constant, �t represents convolution over time t,
and hskðtÞ is the impulse response of a modulation-selective filter with time constant
sk. * is the conjugate symmetry operator that accounts for the fact that the filter
hsk ðtÞ is modeled as a complex-valued system that reflects both the magnitude and
phase alignment of the stimulus with the time integration channel sk . So, although
both correlation and coherence are computing a coincidence across different feature
channels; they are operating at different time scales. The former is an instantaneous
correlation across pairs of feature channels, whereas the latter is an operator that
tracks longer-term correlations, parameterized by filters hkð:Þ over time constants
sk. The coherence operator therefore is effectively tracking the trajectory of activity
across feature channels, which results in a different tracing of coincidence across
feature channels.

It is essential to note that the term temporal coherence used in the literature in the
context of feature binding (Shamma et al. 2011) refers to stimulus-induced temporal
coherence of neural activity and should not be confused with intrinsically generated
temporal coherence, for example, oscillations in the gamma band. The current
chapter refers specifically to the former. However, stimulus-induced neural
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responses may interact with (and enhance or suppress) intrinsically generated
temporal patterns of neural activity (Lakatos et al. 2005).

The role of temporal coherence in providing a framework for feature binding is
not unique to the auditory modality, but has been advanced in other contexts and in
other sensory modalities. It has been suggested that a similar principle operates in
the visual modality (Alais et al. 1998; Blake and Lee, 2005). In addition, it has also
been speculated that temporal coherence between cortical areas corresponding to
different sensory modalities can, in principle, support cross-modal binding, for
example, lip-reading, though not much is known about the exact role of
cross-modal interactions in auditory stream formation (Almajai and Milner 2011;
Mirbagheri et al. 2012).

5.3.1.3 The Inference Theory

The concept of temporal coherence reviewed in Sect. 5.3.1.2 is based on a notion of
tracking the temporal evolution of sound elements. A closely related strategy,
posited as the underlying neural process for organizing a complex acoustic scene, is
that of prediction-based or inference models (Winkler et al. 2009). Inference-based
computation provides a framework for integrating all available cues (e.g., sensory,
contextual, cognitive) to derive likely interpretations of the soundscape. Initially,
this process maps the acoustic input onto a high dimensional representation or onto
feature maps (akin to processes underlying population separation). This mapping
parameterizes the acoustic environment along dimensions that represent an estimate
of the likelihood of a particular decomposition of the soundscape, based on acoustic
attributes. This representation can further be integrated with priors that represent
sensory statistics or dynamics of the acoustic features, as well as potential con-
textual information and any additional prior knowledge. This evidence is then
integrated using an optimal Bayesian framework or alternative strategies to infer
knowledge about the state of the auditory scene and its constituent streams (Friston
2010; Elhilali 2013).

This inference process can take many forms. Arguably, one of the most bio-
logically plausible implementations invokes predictive coding, which processes
sensory information in terms of predictive interpretations of the underlying events
in the scene (Mumford 1992; Rao and Ballard, 1999). The circuitry underlying such
processing has been studied at various hierarchical levels and has been speculated
to include microcircuitry spanning sensory, parietal, and frontal cortex (Bastos et al.
2012). In the context of the cocktail party problem, such mechanisms have been
linked to the concept of regularity tracking as an underlying mechanism for per-
ception in auditory scenes (Winkler et al. 2009). In this scheme, the brain’s strategy
is to capture the behavior of sound sources in the scene and their time-dependent
statistics by inferring the evolution of sound streams: constantly generating new
expectations that reflect the fidelity of the sensory evidence, and matching these
predictions with the ongoing dynamics of the scene. This strategy has led to suc-
cessful computational models of auditory scene analysis, framed either as discovery
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of predictable patterns in the scene (Mill et al. 2013; Schroger et al. 2014) or as a
tracking operator that follows the evolution of states in the auditory scene and
integrates past behavior of sound sources with their expected trajectories (Elhilali
and Shamma 2008). In many regards, the predictive tracking algorithm can be
related to temporal coherence analysis, provided the temporal dynamics of both
processes operate at similar “slow” time scales (4–20 Hz) commensurate with the
neuronal dynamics at the level of primary auditory cortex (Krishnan et al. 2014).

5.3.1.4 Spatial Models

The spatial location of sound sources is one of the strong cues that facilitate the
process of auditory scene analysis (Culling and Stone, Chap. 3). Acoustic events
that emanate from the same location in space tend to be perceived as belonging to
the same stream whereas events that originate from different locations tend to be
assigned to different streams (Gilkey and Anderson, 2014). The effect of interferers
on the perception of a target is greatly reduced when the signal and masker are
perceived to be at different spatial locations, in a phenomenon referred to as spatial
release from masking (Arbogast et al. 2002). The extent to which spatial separation
of sound sources supports bottom-up stream segregation is an active topic of
research (Middlebrooks, Chap. 6). Nevertheless, there is no doubt that spatial cues
are crucial components in sound lateralization as well as object selection in complex
soundscapes. As such, they have featured in a prominent role in a number of
computational models of auditory scene analysis that operate with two or multiple
microphones.

Models of the cocktail party for stereo and multimicrophone applications have
indeed taken advantage of the spatial layout of the scene, either in conjunction with
other acoustic cues or based solely on spatial processing. Bio-inspired models rely
on binaural cues represented by interaural level, phase, or timing differences to
facilitate the separation of sound components that originate from different locations
(Stern et al. 2005). Central to these bio-inspired spatial models is the mechanism of
cross-correlation or coincidence detection which allows a direct comparison of
signals from the two ears. Building on a theory put forth by Jeffress (1948), an
interaural cross-correlation is computed across different channels that often repre-
sent frequency-selective neural populations. A central processing stage generally
follows to integrate cross-correlation responses across frequency and time (Colburn
and Kulkarni 2005; Trahiotis et al. 2005).

In more engineering-centric models, binaural cues are used in conjunction with
more probabilistic methods as complementary priors or to inform constraints on the
location of sound sources (Marin-Hurtado et al. 2012; Alinaghi et al. 2014). In this
body of work, the statistical structure of the sources or space itself plays a more
prominent role in facilitating the segregation of the different signals. The most
popular approach is this literature is blind source separation (BSS) which refers to a
family of techniques that exploit the statistical structure of sources to separate their
signals in a blind (i.e. unsupervised) manner (Bell and Sejnowski 1995; Naik and

5 Modeling the Cocktail Party Problem 121

http://dx.doi.org/10.1007/978-3-319-51662-2_3
http://dx.doi.org/10.1007/978-3-319-51662-2_6


Wang 2014). Generally, these algorithms are very effective at separating the sound
sources under certain conditions that are gradually being relaxed by ongoing
research efforts (Jutten and Karhunen 2004; Jadhav and Bhalchandra 2008).

Many engineering applications leverage the spatial analysis of a scene using
multiple microphones. The rich sampling of the soundscape at multiple pick-up
points opens the door to alternative techniques such as spatial sampling and
beamforming (Van Veen and Buckley 1988; Krim and Viberg 1996). Such tech-
niques aim at extracting a target source situated at a specific spatial direction using
the sensor array. They focus on determining direction-of-arrival of sounds of
interest, and are effectively filtering methods that operate in three-dimensional
space to boost signals from a direction of interest. Although these techniques fall
short of capitalizing on merits of spatial hearing, some have in fact benefited from
human sound-source localization by employing adaptive beamformers that can
judge the direction of target sounds, or take advantage of head-related transfer
functions to reproduce out-of-head localization, or even incorporate simulations of
room acoustics (Doclo and Moonen 2003; Farmani et al. 2015).

5.3.2 Neural Infrastructure

Most of the strategies discussed in Sect. 5.3.1 rely on intricate machinery or
physical computations to achieve the required analysis of the complex scene. It is
generally accepted that the pathway traveled by incoming acoustic information
along the auditory system carries out the task of decomposing the sensory signal
into its constituting elements and mapping them into perceptual streams (Nelken
2004). This neural transformation aims at extracting various acoustic features such
as frequency, spectral profile, amplitude and frequency modulations, and interaural
cues (Middlebrooks et al. 1980; Schreiner 1998). This feature representation is a
canonical scheme for a discriminative representation of the scene that mediates the
organization of features into segregated streams (Bizley and Cohen 2013).

Computationally, the incoming signal can be modeled as undergoing a series of
mappings from acoustic space to a new feature space whose dimensionality facil-
itates the segregation or grouping of sound components into corresponding per-
ceptual streams. At the core of this transformation is the concept of a receptive field,
which has been instrumental in providing a functional descriptor of sensitivity of
auditory neurons, as well as offering a computational medium for parameterizing
the auditory feature space (Eggermont 2013). A receptive field can be thought of as
a two-dimensional descriptor of the time-frequency sound features that best drive an
auditory neuron, hence the name spectrotemporal receptive field (STRF) (Elhilali
et al. 2013). It can be viewed as a time-dependent spectral transfer function, or a
frequency-dependent dynamical filter (deCharms et al. 1998; Klein et al. 2000). In
other words, if one views a neuron as a dynamical system, the STRF provides a
descriptor of the linearized system function along both time and frequency, which
maps the values of an input s at different time instants to a value of the output
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(or response) r at the current time t (Korenberg and Hunter 1996), as described in
Eq. (5.2):

rðtÞ ¼
X
f

Z
STRF s; fð Þs t � s; fð Þds ð5:2Þ

Receptive field descriptors have been successfully approximated at subcortical
(Escabi and Schreiner 2002; Bandyopadhyay and Young 2013), as well as cortical
stages (Depireux et al. 2001; Miller et al. 2002). By and large, convergent evidence
suggests that the accumulation of transformations through these diverse receptive
fields from the periphery up to auditory cortex is instrumental in providing the rich
high-dimensional space necessary for segregating components of an acoustic scene
(Sharpee et al. 2011; Christison-Lagay et al. 2015).

Indeed, a number of studies suggest that the organization of sound elements into
mental representations of auditory objects may reside as early as primary auditory
cortex (A1) (Nelken and Bar-Yosef 2008; Bizley and Cohen 2013). The neural
representation of sounds as viewed through cortical receptive fields covers a rich
feature space that spans at least three key dimensions (Fig. 5.2b): (1) best fre-
quencies (BF) that cover the entire auditory range (Schreiner 1998; Klein et al.
2003); (2) bandwidths that span a wide range from very broad (2–3 octaves) to
narrowly tuned (<0.25 octave) (Schreiner and Sutter 1992; Versnel et al. 1995);
(3) dynamics that range from very slow to relatively fast (1–30 Hz) (Lu et al. 2001;
Miller et al. 2002). This variability along different acoustic attributes is at the core
of a multidimensional neural representation of sound mixtures, which in turn

Fig. 5.2 Schematic of the concept of receptive field. (a) A spectrotemporal receptive field (STRF)
operates as a two-dimensional filter that integrates stimulus information across time and frequency
that best matches its selectivity. The corresponding neural response reflects the signal components
that best drive the filter itself. (b) The selectivity of STRFs spans a high-dimensional space that
spans tonotopic frequency, temporal modulations, and spectral modulations. Each STRF can be
thought of as a mapping to a small portion of this space. The collection of responses through a
network of neurons would correspond to a mapping onto a high-dimensional space
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facilitates the execution of a number of strategies for modeling the cocktail party
problem (Cooke and Ellis 2001; Elhilali and Shamma 2008). State-of-the-art
models of auditory scene analysis also build on the same foundation, of a rich
feature space extended to nonlinear manifolds. Current techniques using deep belief
architectures, convolutional neural networks, and multivariate analysis have also
been shown to exploit a rich time–frequency mapping similar to that observed in
neural receptive fields to facilitate tasks of source separation (Le Roux et al. 2015;
Simpson 2015).

5.4 Bottom-up Models of the Cocktail Party Problem

Together, the strategies driving modeling efforts of the cocktail party problem draw
on viewpoints prompted by multidisciplinary efforts spanning the engineering,
psychology, and neuroscience communities. On one end of the spectrum, numerous
studies have attempted strict engineering approaches such as the successful appli-
cation of blind source separation techniques (Roweis 2001; Jang and Lee 2003),
statistical speech models (Varga and Moore 1990; Yoon et al. 2009), and other
machine learning algorithms (Ming et al. 2013; Souden et al. 2013). Most of these
approaches construct systems that exploit statistical knowledge about the target of
interest (e.g., existing database of the target speaker’s voice), mine data about the
physical or source characteristics of a target (e.g., knowledge about sources of
noise), or utilize spatial characteristics of the receivers (usually in a multimicro-
phone setting) to hone in on desired signals to be segregated (Kristjansson et al.
2006; Madhu and Martin 2011). The statistical characteristics and possibly inde-
pendence or uniqueness of the different sources (or at least the sound class of
interest) are at the core of these approaches.

Despite their undeniable success, these algorithms often violate fundamental
aspects of the manner in which humans and animals perform this task. They are
generally constrained by their own mathematical formulations, are mostly appli-
cable and effective in multisensor configurations, and/or require prior knowledge
and training on the task at hand. By design, these systems target particular con-
figurations of the sensory environment or require existing training databases or
general knowledge about the task or target of interest. This reliance on training data
or task-specific prior knowledge generally limits the applicability of these algo-
rithms to general-purpose tasks. In this regard, the gap between these computational
approaches and biological audition is still wide. A major effort in such
engineering-centric systems deals with which patterns to extract from the scene and
how to best capitalize on existing knowledge to perform the segregation, recog-
nition, or synthesis task.

The best success stories in the category of engineering-centric systems are
automatic speech recognition systems (Waibel and Lee 1990; Rabiner and Juang
1993) that focus on recognition of speech sounds even in the presence of unknown
interferers and background noise. Although these systems are not immune to noise,
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they have made great strides in improving the recognition accuracy by combining
acoustic and language models that represent statistical representations of the sounds
that make up each word and sequence of words as dictated by the grammatical rules
of the language. This training knowledge is often combined by powerful machine
learning tools such as convolutional systems and deep learning techniques (Hinton
et al. 2012; Deng et al. 2013). These powerful tools, combined with abundance of
training data, distance the challenge from the details of the feature analysis and
compensate any weaknesses in the chosen signal representations by the strength of
the statistical structure of the models. Unfortunately, these formulations limit any
progress in truly understanding the strengths of the multiscale and parallel pro-
cessing underlying sound processing in the auditory system and limit translating
successes from these engineering approaches into cocktail party models that can
truly mimic brain functions.

On the other end of the spectrum are perceptually driven studies that focus on
factors influencing auditory scene analysis, in particular the segregation/binding
cues that govern the simultaneous and sequential integration of sound patterns into
objects emanating from a same environmental event (Bregman 1990; Carlyon
2004). These efforts have triggered a lot of interest in constructing biologically
inspired systems that can perform intelligent processing of complex sound mixtures.
Early instantiations of these models were strongly focused on the peripheral rep-
resentations of sound. These models focused on peripheral selectivity, possibly
allowing competition between different channels to result in a dominant foreground
stream (Beauvois and Meddis 1996; McCabe and Denham 1997).

Other studies took more pragmatic approaches to modeling the cocktail party
problem; particularly capitalizing on the salient acoustic attributes that can be
tracked for individual sources to segregate them from competing backgrounds.
Early work by Parsons (1976) and Weintraub (1985) focused on tracking the
fundamental frequency of concurrent speakers. The role of a particular auditory
feature (e.g., pitch) was later extended to additional acoustic cues and grouping
dimensions following the basic premise of Gestalt principles and population sep-
aration theory, but with different computational implementations of the binding and
integration stage (Brown and Cooke 1994).

The extraction of acoustic features has also been a cornerstone of
correlation-based models mentioned in Sect. 5.3.1, by exploiting synchrony
between different oscillators as a reflection of a grouped perceptual stream (Brown
and Cooke 1998; Wang and Brown 1999). Synchrony of individual oscillators is
initiated by regularity in the sound’s spectrotemporal elements, and hence lateral
connections between oscillators are implemented to encode harmonicity and
proximity in time and frequency. A similar concept of feature extraction is also at
the core of coherence-based models that emphasize the role of temporal integration
over relatively long time scales; hence viewing feature analysis through the lens of
temporal properties at the level of the mammalian primary auditory cortex
(Shamma et al. 2011; Krishnan et al. 2014).

By and large, biomimetic models of auditory analysis of complex scenes have
universally invoked the extraction of acoustic features as a foundation of any
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subsequent processing. However, these implementations largely favor a bottom-up
processing view (Fig. 5.1), relying on the salience of stimulus events. The
models—with few exceptions—often abstract away intricate and indispensable
contributions of goal-directed top-down processing and shy away from incorpo-
rating truly adaptive and task-dependent neural processing under top-down control.

5.5 Top-Down Processes and the Cocktail Party Problem

Along with the physical properties of sounds in the environment, listeners exploit
learned knowledge from their recent and lifelong experiences to further comple-
ment processing of complex auditory scenes (Bregman 1990; Ciocca 2008). These
learned “schemas” encompass a listener’s familiarity with the statistical structure of
sound sources (e.g., natural sounds), recent and long-term memories about specific
sources, expectation about the state of the world (e.g., speech sounds produced
through a human vocal tract), as well as their attentional state which helps steer
brain processes towards targets of interest while ignoring background interferers.
These processes are believed to play a crucial role in tackling the cocktail party
problem because they impose constraints on the space of possible solutions. They
can be viewed as top-down or feedback projections that control the system’s per-
formance to meet desired behaviors.

Of all schema-based processes, attention is one of the most widely studied
top-down mechanisms affecting the cocktail party problem (Shinn-Cunningham,
Chap. 2). It is a crucial component in the scene analysis process because it dictates
what the targets of interest are, and orients the listener to the desired sound source
or sources. It ultimately acts as a processing bottleneck that appropriately allocates
neural resources to informative events in the acoustic scene and selectively filters
the most relevant sensory inputs (Whiteley and Sahani 2012). While clearly
behaviorally crucial, the specific roles of attention in auditory scene analysis remain
an unsettled question in the field. It is certainly true that attention can strongly affect
stream segregation. For instance, the ability to switch at will between hearing
certain tone sequences as one or two streams can be thought of as an effect of
attention, but the question of whether attention is necessary for streaming remains a
matter of debate (Carlyon et al. 2001; Macken et al. 2003).

The bulk of the current literature suggests that at least some forms of stream
segregation occur in the absence of attention, in what is termed “primitive” stream
segregation (Bregman 1990; Sussman et al. 2007). As outlined in Sect. 5.3, the vast
majority of cocktail party models have indeed implemented successful renditions of
the problem solution in absence of any role of selective attention. Stream segre-
gation may also be thought of as a process that facilitates attention (rather than only
vice versa) in that it becomes possible to pay exclusive attention to tones of a single
frequency only if they are successfully segregated from other tones in the sequence
(Shinn-Cunningham 2008).
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In the case of alternating tone sequences, early work by Van Noorden provided a
useful distinction by defining two boundaries, the fission boundary and the
coherence boundary (van Noorden 1975). The fission boundary defines the fre-
quency difference (or other dimension) below which segregation is not possible,
while the coherence boundary defines the point above which integration is not
possible. The area in between these two boundaries can be thought of as the region
in which attention can play a particularly important role in determining whether one
or two streams are heard.

Though some computational models of the cocktail party problem have
attempted to reproduce these effects (Beauvois and Meddis 1996; Wang and Chang
2008), they have not truly incorporated any mechanisms manipulating the atten-
tional state of listener/model in a way that mimics the presumed feedback control
exerted by attentional projections on feedforward sensory processing.

At the physiological level, a growing body of literature has established that
auditory experience throughout adulthood can have profound global effects by
reshaping cortical maps and significant local effects by transforming receptive field
properties of neurons in primary auditory cortex (Suga et al. 1997; Weinberger
2001). The exact form of this remarkable plasticity is determined by the salience or
task relevance of the spectral and temporal characteristics of the acoustic stimuli
(Kilgard et al. 2001). Recent findings have also shown that cortical responses are
heavily modulated by the attentional state of the brain and undergo rapid,
short-term, and task-dependent changes that reflect not only the incoming sensory
cues but also behavioral goals (Fritz et al. 2007; Mesgarani and Chang 2012). In
this kind of adaptive plasticity, selective functional reconfiguration or resetting of
the underlying cortical circuitry leads to changes in receptive field properties that
may enhance perception in a cocktail party (Shamma and Fritz 2014).

Unfortunately, there is a notable lack of the incorporation of cognitive or
adaptive mechanisms into mathematical models of auditory cortical processing and,
ultimately, implementations of cocktail party models. This deficiency is itself
motivated by lack of information and ignorance of the neural mechanisms under-
lying the ability of cortical circuits to adapt online to changing behavioral demands.
In contrast, active and adaptive processing has more commonly been explored in
models of the visual system. These implementations typically model parallels of
predictive coding in the visual thalamus (LGN), contextual modulation in primary
visual cortex (V1), attentional modulation in higher cortical areas (V2 and V4, and
area MT), as well as decision making in parietal and frontal cortex. A commonly
used formulation for such systems is that of generative models, whereby sensory
input can be explained as being caused by hidden “causes” or “states” in the world
(Duda et al. 2000). The model then estimates the probability of these causes based
on inputs incoming up to a certain point in time. Modeling based on hidden causes
or states is amenable to predictive coding, similar to concepts discussed in
Sect. 5.3.1.3. In other words, the models employ a probabilistic formulation where
optimization functions can then be defined as maximizing posterior probabilities,
which is equivalent to minimizing the prediction error generated by this model.
Some studies have presented successful implementations of these models as
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hierarchical systems of early and higher visual cortical processing (Rao and Ballard
1999; Lee and Mumford 2003). This body of work has often relied on a linear
formulation of the generative model, hence benefiting from existing linear hidden
state estimation techniques such as Kalman filtering. The tracking of these latent
states was also formulated to adapt the model parameters continuously to the
statistics in the visual scene, hence giving the system a desired plastic behavior.
Other techniques have also been explored to go beyond the generative model
approach. Systems based on belief propagation, graphical models, as well as
inference in recurrent networks have shown variable success in interpreting
top-down feedback as prior probabilities (Rao 2005).

Recent models and frameworks for modeling the cocktail party effect and its
biological bases have begun focusing on the role of schema-based processes,
particularly attention in both its bottom-up and top-down forms in biasing selection
and organization of sensory events (Shamma et al. 2011; Kaya and Elhilali 2014).
Ultimately, progress in the integration of top-down processes in cocktail party
models is closely tied to progress in unraveling neural mechanisms underlying
cognitive effects on sensory processing, as well as models of feedback loops in
shaping auditory processing of complex scenes.

5.6 Summary

The challenge of auditory scene analysis is a problem facing biological and engi-
neering systems alike. Computational auditory scene analysis is a young field that
aims at providing theoretical insights and solutions to the cocktail party problem
that can inform neuroscience research as well as benefit audio applications. Though
a lofty goal, translating perceptual phenomena related to the cocktail party problem
to exact mathematical formulations requires more concise definitions of the prob-
lem, well-defined constraints on the desired system, as well as clear measureable
outcomes and behaviors. Indeed, the cocktail party problem is a phenomenological
description of multiple tasks related to processing complex soundscapes. These
range from detection and recognition to tracking, description, and audio resynthesis.
Translating these problems into computational models leaves the field somewhat
fragmented.

Nonetheless, a rich body of computational models has offered insights into how
the brain might tackle the cocktail party challenge. These invoke the rich feature
selectivity that underlies neural processing through the auditory pathway from the
periphery all the way to auditory cortex. The neural transformations up to sensory
cortex offer part of the solution to the segregation of sound mixtures along infor-
mative dimensions for further processing. Additional processes such as temporal
coherence play a role in the binding process that combines relevant acoustic cues
onto perceptual streams corresponding to perceived objects. Computational models
also capitalize on the structure of sound sources to track the regularities or dynamics
of sound events over time.
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All in all, models inspired from brain processes have laid the conceptual
groundwork for interpreting the transformation from an acoustic space of a mixture
of sound sources to a perceptual space with segregated streams. Translating this
foundation into practical engineering applications and evaluating its effectiveness
remains one of the big challenges in the field. In conjunction, additional factors,
particularly with regard to schema-based processes (e.g., attention, learning), add
extra hurdles in developing full solutions to the cocktail party problem that could
come close to emulating the biological system. As the growing yet limited
knowledge of the neural underpinnings of schema-based processes sheds light on
their role in cocktail parties, truly intelligent systems will undoubtedly emerge that
can mimic the complex processing exhibited by the brain when dealing with the
cocktail party problem.
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