The Necessity of A, for Translation and Scale
Invariant Almost-Orthogonality

Michael Wilson

Abstract If v is a measure, we say a set {y}x C L2(v) is almost-orthogonal in
L?(v) if there is an R < oo such that, for all finite linear sums Y A,

/ ‘ZAka‘z dv SRZMUZ-

Ifz=(t,y) € R{"" = R? x (0,00) and f : R? — C, define £,(x) = f((x — 1)/).
If 9 C RY is a cube with sidelength £(Q), define T(Q) = Q x [£(Q)/2.£(Q)).
We say that {¢}7, a finite set of bounded, complex-valued functions with supports
contained in B(0; 1), satisfies the collective non-degeneracy condition (CNDC) if
there is no ray emanating from the origin on which the Fourier transform of every ¢y
vanishes identically. We prove: If i is a doubling measure on R? with the property
that, for some family {¢;}} satisfying CNDC, it is the case that, forevery 1 <k <n
and every choice of points £(Q) € T(Q), Q € D (where D is the family of dyadic
cubes), the set

(P00 }
VD)) pep

is almost-orthogonal in L?(t), then y is a Muckenhoupt A, measure.
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436 M. Wilson
Introduction

We recall that a non-trivial Radon measure v on R is said to be As (in symbols:
Vv € Ay) if, for every € > 0, there is a § > 0 such that, for every cube Q C RY
and every measurable E C Q, having |E|/|Q| < 6 implies v(E) < ev(Q); where,
here and in the future, we use | - | to denote a set’s Lebesgue measure. A non-trivial
Radon measure v on R is said to be doubling if there is a finite C so that, for all
cubes Q C R4, v(2Q) < Cv(Q), where 2Q denotes Q’s concentric double. It is easy
to see that v € Ay, implies that v is doubling; it is not so easy (but classical) that
the converse fails. If v € Ao then dv = v dx for some non-negative v € L} _(R?).

In such a case we say that v € A It is well known that v € A if and only if there
isap > 1 and a finite K, such that, for all cubes Q,

1 A ¢
(—/ dex) < L | vdx, (1)
0l Jo 10l Jo

which is the so-called “reverse-Holder inequality”.

In a recent paper [9] the author proved that, if 4 € A, then, in a precise sense
to be explained shortly, L?() and ordinary, Lebesgue-measure L? have the same
almost-orthogonal systems; where we say that a collection of functions {y}; is
almost-orthogonal in L?(v) if there is a finite R so that, for all finite linear sums

> A,

/ DRERARTET) D @)

He also proved that if i is a doubling measure and L? and L2(u) have (in a precise
sense) the same almost-orthogonal systems, then © must be Ao .

Let us explain what this “precise sense” is.

Ifz = (t.y) € R{"" = R? x (0,00) and f : R — C, we define £,(x) to
be f((x — t)/y). This is the function f dilated and translated relative to the ball
B(t;y), but without any measure-based normalization. If 0 < o < 1 we say that
¢ € Cy if ¢ : R? — C has support contained in B(0; 1) and, for all x and x’ in R¢,
| (x) —p(x')| < |x—x'|%. We write C, o to mean the subspace of ¢’s in C,, satisfying
[ ¢ dx = 0. We call a cube Q dyadic if Q = [j1 25, (j; +1)2%) x- - - x [ja2¥, (ja +1)2)
for some integers ji, ... , jq, and k, and we write £(Q) for Q’s sidelength (which is
2). We call the set of all dyadic cubes D. If Q € D we put zp = (x. £(Q)) € R},
where x¢ is Q’s center. If {$@}p C C,, then

{ ¢¢£QQ) }
: 3)
101 pen
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is a family of Holder-smooth functions, indexed over D, with each one dilated,
translated, and (Lebesgue) measure-normalized to “fit” a dyadic cube Q. If each
gb(Q) € Cqp then it is easy to see that (3) is almost-orthogonal in L?, with an R (as
in (2)) that only depends on « and d. If each ¢© equals a fixed ¢ € C, (a “mother
wavelet”) then (3) is sometimes called a wavelet system [2].

We could also consider the collection

©
bz

Vi(Q)

In [9] the author showed that, if 1 € Ao, then, for every family {¢@}p C C,, the
set (3) is almost-orthogonal in L? if and only if (4) is almost-orthogonal in L?(j1).
He showed that this result has a partial converse: if u is a doubling measure and it
is the case that, for every {¢@}p C C,, the L? almost-orthogonality of (3) implies
the L? (1) almost-orthogonality of (4), then it € Ago.

In a later paper [10] the author strengthened the converse. We define a T-sequence
to be a function ¢ mapping from D into R‘fl such that ¢(Q) € T(Q) forall Q € D.
In [10] the author proved that if u is doubling, and ¢ is any non-trivial, real, radial
function in C, o such that, for all T-sequences ¢, the family

% P10
Vi(Q)

is almost-orthogonal in L?(1), then it € Aoo.

The hypotheses that ¢ be real and radial are unnecessary. The “real” assumption
is a computational convenience. The “radial” hypothesis (combined with non-
triviality) simply ensures that a (the Fourier transform of ¢) does not vanish
identically on any ray emanating from the origin. It turns out that smoothness and
cancelation are also red herrings, at least for showing necessity of 1 € Ax. In the
current work we replace these hypotheses with a non-degeneracy condition that can
be applied to subsets of L°°(B(0; 1)) (bounded functions with supports contained
in B(0;1)). This condition allows individual functions in the set to have Fourier
transforms with bad directions. It only requires that no direction be bad for all
of them. Precisely, we say that {¢}| C L°°(B(0; 1)) satisfies the collective non-
degeneracy condition (CNDC) if there is no ray from the origin on which every (ﬁ
is identically 0.

Our main result is:

Theorem 1.1 Let i be a doubling measure on R? and let {¢}} C L>®(B(0; 1))
satisfy CNDC. If, for every 1 < k < n and every T-sequence {, the set

“)

0eD

®)

0eD

(D¢ (0)

Vi(Q)

is almost-orthogonal in L>(1), then (. € Aco.

(6)

0eD
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The meaning of the theorem seems to be: If y is doubling and L?(u) has a
reasonable wavelet basis (one given by normalized translates/dilates of a finite set
of mother wavelets), then y must be Aso.

The proof uses a slightly non-standard characterization of Ax; or, to be more
precise, dyadic Ao,. We recall that a measure v belongs to dyadic Aso (in symbols:
Vv € Ago) if, for every € > 0, there is a § > 0 so that, for all dyadic cubes Q and
all measurable E C Q, |E|/|Q| < § implies v(E) < ev(Q). Obviously Ase C A%,.
It is not hard to show that if v € Ago and v is doubling then v € A,. To prove
Theorem 1.1, it suffices to show that its hypotheses imply p € Ago.

We will call {co}p, a sequence of non-negative numbers indexed over D, a
Carleson sequence if, for all Q' € D,

Y colol < 10, (7)
bcor

This is the same as saying that, for every Q' € D,

/ > coxo | dx < 1Q'l.
Q/

QED
oco’

In section “The One-Dimensional, Dyadic Case” we show that v € A”o’<> if and only
if there is a finite R so that, for all Carleson sequences {co}p and all Q' € D,

> cov(Q) < Rv(Q): ®)
oo

which, the reader will note, is the same as

[/ Z coxo | dv < Rv(Q).

QeD
oco’

We prove Theorem 1.1 by showing that, given its hypotheses, ; must satisfy (8),
for some fixed R, for all Q" € D and all Carleson sequences.

Aside from some technical lemmas, the proof turns on a simple observation.
Suppose that (€2, M, v) is a measure space, and f : Q — C satisfies

/[f|2dv§R/ If| dv < oo 9)
Q Q

for some finite R. Then the Cauchy-Schwarz inequality implies

/ If|dv < Rv(R2). (10)
Q
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(We need the ‘< 00’ in (9): consider f(x) = 1/x on (0, 1) with Lebesgue measure.)
In the proof of Theorem 1.1,  will be a certain “nearly optimal” Q' € D and f will
essentially be a function of the form

Z CoXo:

QeD
oco’

with {cp}p a “nearly optimal” Carleson sequence, carefully defined to have the
second inequality in (9). After some work, Theorem 1.1’s almost-orthogonality
hypothesis will yield the first inequality in (9), giving us (10) (and (8)).

What seems to be going on here is a sneaky version of the self-improving (‘“John-
Nirenberg”) property of BMO. Recall that f € L} (R?) is said to belong to BMO if

loc

1
sup —
oCcRrd |Q|
Q acube

/Qlf—fgldx — Il < oo, (1N

where f denotes @ /. 0 fdx, f’s average over Q. The John-Nirenberg theorem ([4],
p. 144) states that there are postive constants c;(d) and c,(d) such that, if f € BMO,
then for all cubes Q and all numbers A > 0,

{xe @ [f() —fol > AJl = ci(d) exp(=ca(DA/[If1])Q].

This implies that if (11) holds then

1
— / IF — fol? dx < CIIFI2
10| Jo

QCR4
Q acube

for some C depending only on d. In other words,

2

1 ) 1
— | f=folPax<cC — | F=fold
sup |Q|/Qlf Jol”dx < sup |Q|/Qlf foldx

QCR4 QCR4
Q acube Q acube

“the L' norm controls the L norm.”

Because we will need it later, we recall that f € L) _(R?) is said to belong to
dyadic BMO (“f € BMO,;”) if the inequalty (11) holds when the supremum is
taken over all dyadic cubes. We write the resulting (finite) supremum as ||f||«.4-
The analogous John-Nirenberg properties also hold for f € BMO,, with the cubes
now required to belong to D.

In section “The One-Dimensional, Dyadic Case” we state and prove a dyadic
version of our main result, hoping it will illuminate the main ideas in the proof of
Theorem 1.1.

In section “Technical Lemmas” we prove some technical lemmas.
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In section “Proof of Theorem 1.1” we prove Theorem 1.1 and give, as a corollary,
an application to wavelet representations of linear operators.

Notations. If A and B are positive quantities depending on some parameters, we
write ‘A ~ B’ (“A and B are comparable”) to mean that there are positive numbers
c1 and ¢; (“comparability constants’) so that

C1A < B < 0A; (12)

and, if ¢; and ¢, depend on parameters, they do not do so in a way that makes (12)
trivial. We often use ‘C’ to denote a constant that might change from occurrence to
occurrence; we will not always say how C changes or what it depends on. If E and
F are sets, we write E C F to express E C F.

We will refer to “finite linear sums” of the form 3 . A,g, (x), where {1, }r is
a set of numbers and {g, }r is a set of functions, both indexed over an infinite set I"
(typically D). “Finite linear sum” will mean a sum in which all but finitely many of
the A,’s are 0. Similarly, a “finite sequence” {1, }r indexed over I" will be one in
which all but finitely many A, ’s are 0.

We indicate the end of a proof with the symbol &.

The One-Dimensional, Dyadic Case

First we prove our characterization of A‘éo (8) (see [7] and [11] for its original form).

Lemma 2.1 A Radon measure | belongs to Ago if and only if there is a finite R so
that (8) holds for all Carleson sequences {cg}p and all Q' € D.

Proof of Lemma 2.1 Suppose that u € Ago. Then p is absolutely continuous, and
we can write du = vdx, with v € Ago. Classical arguments (see [1]) show that
v satisfies (1) with respect to dyadic cubes, for some p > 1. Let M,(-) denote the
dyadic Hardy-Littlewood maximal operator:

Ma(9)(x) = sup / (0] dr.

xeQeD 10

The L7-boundedness of M,(-) and Holder’s inequality imply, for any Q' € D,

1 ; 1 )y 1/
M 7 < | — M /
o1 [, Moo is = (i [ Wity )

1/p
(g o)

CPKP
Q']

v(x) dx;
Q/
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i.e.,
[ atrovax = o)

for all Q" € D. Now let {cy}p be a Carleson sequence. If O’ € D then

S @ = Y coll (@v(@) < /Q My(rgv)d.

ocY ocy’

by standard tent-space arguments (see, e.g., Theorem 2 on page 59 of [4]). Therefore
w € AZ implies (8).

Suppose (8) holds. First we will show that u is absolutely continuous with respect
to Lebesgue measure. Then we will finish the lemma’s proof.

Suppose E is measurable, |E| = 0 and, without loss of generality, E C Qy € D.
Cover E with countably many disjoint cubes Q) C Qp such that

> 1011 = (1/2)]Q0-

Now, having chosen the cubes {Q}};, let {Qﬂc +1J7 be a family of disjoint dyadic
cubes such that: a) E C Uy Q§<+1’ b) each Q§<+1 is a subset of some Q}; ¢) for all 0,

S 10 = (1721, (13)
Q{Jrlch

We can do this for all k because |E| = 0. Inequality (13) implies that, for any Q € D,

Y loi =2l0l. (14)

gco

We give the quick (and well known) proof of (14). By induction, for any QL and any
n>0,

Y 1@l =270k,
Q;:-q-nCQi

which implies that

> 10pl <210
0,0
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for every Q; If Q is arbitrary let {Qﬂ; }i* i+ the maximal Qﬁ;’s contained in Q. The

cubes Q). are disjoint. Therefore

o= " > 10 =210l =20l

i kK % ol el
0,co J* .k okcal, J* .k

proving (14).
Define:

_ 12 ifQ el

€Q .
0 otherwise.

Inequalities (13) and (14) imply that {cy}p is Carleson. Therefore there is a finite R
such that

> (1/2)(Q)) < Ri(Qo) < oo

ok
But, because of a), for all N,

N

NuE) <3 (@) < 2Ru(Qy).

k=1 j

forcing u(E) = 0.

The rest of the proof that u € Ago is like what we just saw, only more careful.
Let Qg € D, E C Qo, and |E|/|Qo| < n << 1.Fork > 1, let {Qi}l be the maximal
dyadic subcubes of Qy such that

[EN Q) o -+

0}

n.

These are the Calderén-Zygmund cubes, taken at “height” 2@+ Dkp of yp relative
to Qp. Because of their maximality, for each @,

|E ﬂ'QH < 2d9W+Dky (1 /)2l H+DE+D

n,
[eA

which implies that every cube Q;c 41 is contained in some ch, and that, for every Qf(,

310 = (17210,
Q;:JHCQ{C
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which is the condition (13) we saw earlier. The same reasoning as before implies
that, for all Q € D,

> 10k < 2001

olco

Almost every point of E is a point of density. Therefore we will keep getting
cubes Q) as long as 2(@+Dkp i less than 1: there is a Ky ~ log(1/n) such that, for

all 1 <k < Ky, |E\ U,Qi| = 0, and hence u(E \ UJ-QL) = 0. (The union UjQ;(
“almost contains” E.) Define:

_ {12 itQe ot

€0 .
0 otherwise.

The sequence {cp}p is Carleson; therefore

3" cou(@) < Ru(Qo).

0CQo
But
Ko .
D com(@) = (1/2) Y (@) = (1/2) D) u(@)) = (1/2)Kop(E),
0CQo J.k k=1 j

because, for each k < K, the part of E outside Uijc has p-measure 0. Thus,

W(E) < %M(Qo),

and 2R/Ky — 0asn — 0T: p e A9 . &
If I = [j2%, (j+1)2%) C Ris a dyadic interval, define It = [2j2K71, (2j+1)2¢71)
(I’s left half) and I~ = [(2j 4+ 1)2K71, (2j 4 2)2K71) (I’s right half), and set

hay = x+ — xi—

The functions {/;/|I|'/*};ep are known as the Haar functions, which comprise an
orthonormal basis for L*(R).
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The dyadic analogue of Theorem 1.1 is

Theorem 2.2 Let |4 be a non-trivial Radon measure on R. If

hay

Vi)

is almost-orthogonal in L*(w) then ju € A%,

5)

1€D

Proof of Theorem 2.2. The reader might want to look back at (9) and (10).

Fix Iy € Dand 0 < € << {(Iy). Let F(ly,€) be the familiy of Carleson
sequences {c;}p such that ¢; = 0if I ¢ Iy or £(I) < €. By compactness, there
is a Carleson sequence {¢;}p € F(ly, €) such that

ZZ'IN(I) = sup { ZQ/«L(U ‘{alp € }-(1076)} < 00.
D D

Call the supremum L. Define

f0 =2 e - (Z z,|1|) X0
D D o]

Notice that, because {¢;}p is Carleson,

1
— Zam) <1
o] (D

The function f is supported on I, and satisfies [ f dx = 0. Also, f belongs to BMO,,
with ||[f||«.4 < 2. Let us prove this fact. Take J € D. If J N Iy = @ we have nothing
to prove. If Iy C J then f; = 0 and

[1r=sldr <23 < 210l < 2101,
7 D
If J C Iy then

/lf_fJ|dx§2 >l <2
J

I1eD:ICJ

By the John-Nirenberg theorem, there exists an absolute constant—which we call
C—so that, for all J/ € D,
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\(F ha)I?
/lf—ffl2dx= > T]) < L. (16)
7 1€D: ICJ

where (-,-) denotes the usual (Lebesgue) L? inner product. Because of how we
defined f, the inner products (f,hy)) = 0if I ¢ Iy or £(I) < €. Therefore the
sequence defined by

k) P
T

is a bounded multiple of a sequence from F(ly, €), implying

h
Z Wm? p(l) < CL

with C an absolute constant.
We can write

{f, hay)
= hay.
Z I U]

D

and this is an exact, finite sum, because of f’s special form. We rewrite it as

_hay
N

where

\/M(l).

yi = {f, hay)
0] |I|

The L?(j1) almost-orthogonality of (15) implies that

[vran <R ik =R 10 hm>|2%
D
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But
L=Yan = [ ¢+cdu.
D fo
where
DGR
co = — Cr = 1.
o]
Therefore

[ viau < re (/ i + M(Io)) ,

which implies

/ Fld < Cullo).

and

St < ¢ ([ ilau-+ n ) < Euo a7

D

The sequence {¢,}p is optimal for sequences from F (I, €). Therefore (17) holds for
every sequence in F (/y, €). But the bound holds independent of /; and €; therefore,
by an obvious limiting argument, it holds for all Carleson sequences {c;}p. By
Lemma 2.1, the measure 1 belongs to A% . &

Remark We ask the reader to note how, in the interaction between (16) and (17),
the John-Nirenberg theorem lets us bound an L? norm by an L' norm—which is the
heart of the proof.

Technical Lemmas

The first lemma in this section says that, if every family of the form (6) is almost-
orthogonal in L2(u), then these families must be, in an obvious sense, uniformly
almost-orthogonal.

Lemma 3.1 Let € L*®(B(0; 1)). Suppose that, for every T-sequence ¢, there is a
finite R = R(C, 4, W) such that, for all finite linear sums

V(o)
Aop———,
; /i)
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we have

2
du <R Al (18)
D

Vi
22
> VO
Then there is a finite R = R(u, ¥) such that (18) holds for all T-sequences .

Proof of Lemma 3.1 For every T-sequence {, we can define a linear map L; :
(D) — L*(w) by

Le({Ao}p) = ZA f“i (19)

Inequality (18) shows that the series in (19) converges unconditionally to an
f € L*(p), and that [ lf|2d/,L < RY 5 |Aol* By the Uniform Boundedness
Principle, if no universal R exists, then there is a sequence {1o}p € £*(D) such
that " |Ap|* < 1, and there is a sequence of T-sequences , such that

2

Vi
Ao——=| du — oo. (20)
D Q\/M(Q)
E(Q)

We will patch together a T-sequence C such that { m}p is not almost-orthogonal.
Fix the sequence {Ay}p. If F C D is finite, there is an N = N(F) such that

2

(4309
E Ao——2| du <N
f 0 00 n =<

QeF

for all T-sequences ¢. Thus, because of (20), we know that, if Fy C D is finite and
R is any large number, there is a finite subset F; C D, disjoint from Fy, and there
is a T-sequence (;, such that

2

Ve 0)
Ao | g S R,
/ 2 o pas| k>

QeF

Let R, — o0. Let F; C D be a finite subset and ¢; a T-sequence such that

2

Ve 0)
Ao8© | 4 S R,
/ 2 ol e

QeF



448 M. Wilson

Having defined Fy, F>, ... , Fy, let F,, 41 C D be a finite subset disjoint from U} Fy,
and ¢,+ a T-sequence such that

2

V10
o2 g > Ryt
/ 2t Vi(Q) i

QEJ:rrI»]

Define f :D — R‘f' by

G(Q) ifQe F

é-(Q) - {ZQ lfQ ¢ Uk]:k-

Then 2 is a T-sequence for which (18) fails. &

The proof of Theorem 1.1 uses a general form of the Calderén reproducing
formula. Our approach is based on ideas and methods of Frazier, Jawerth, and
Weiss [3]. We gratefully acknowledge their influence and inspiration.

Recall that if ¢ € Cqy  is real, radial, non-trivial, and normalized so that

®© d
/ ToePr 2 =1
0 y

for all £ # 0, then, if f € U1<,,<OOLP(R‘1), we have

10 = [0 0y @y eyt — 0 T

R y
in various senses [8, 11]. To be consistent with the notation in the introduction, we
have written “y™¢ Y0, in place of the more traditional “y,”. We will continue to
follow this convention.

We define ®(x) to be the inverse Fourier transform of exp(—|&|> — |€|72).
We notice that ® belongs to the Schwartz class S, and that 6(5) and all of ®’s
derivatives vanish to infinite order at the origin.

It is important that ®(£) > 0 on all of R? \ {0}.

Lemma 3.2 Suppose that {¢}} C L®(B(0; 1)) satisfies CNDC. For § € R? \ {0}
define

6= [ 30 (Z@(ysnz) ‘i—y @)
1

The function G(£) is infinitely differentiable on R¢\ {0} and homogeneous of degree
0: G(t&) = G(§) for all t > 0. There are positive numbers ¢, and ¢, such that
c1 <GE) <cyforall§ #N0.
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Proof of lemma. The homogeneity is obvious. Every qﬁk is infinitely differentiable,
and D"‘qbk € L for every k and multi-index . The function ® is also infinitely
differentiable, and, for all o, D*® vanishes rapidly at O and infinity. These imply
that G is infinitely differentiable. The CNDC implies that G(§) never vanishes on
§41 = {£ . || = 1}. The smoothness of G and the compactness of S~ imply
that G lies between two positive constants there, hence on all of RY \ {0}. &

Now, given {¢}] C L*(B(0; 1)) satisfying CNDC, and G as defined by (21),
we set

mE) = - ( 5 (22)

for & # 0, and undefined at the origin. By standard arguments ([4], p. 26), the
Fourier multiplier operators given by

Taf (§) = GE)f (§)

and

T.f(§) = m(E)f (&),

initially defined for f € C§° (R%), extend to bounded operators on L” (R?) for every
1 < p < 00. On these domains they are inverses of each other: 7T, = T,,T¢ = I,
the identity. .

For each ¢, define ¢ (x) = ¢ (—x), and recall that ¢ (£) = Z;k(g). If f € L2(RY)
then

n B . B dy
Tof = / o 100y % (7B 00 (1) 7P 0 (r = 1) -
1 YRy
where we interpret each integral as

R
~ d
i [ ([0 57 @0 5 08000 @) 00— n1ar) L.
R/0c0 €

with the limit existing in L?. As we shall see, if f € C°(RY), the limit also exists
pointwise in x, with the integral being, in a natural sense, absolutely convergent.
Because T, and T are inverses of each other, if f € C§° (Rd),

dtd
f= Z[ (f * T @0,) * O Br)0) (D) 7 P1) 0. (x — 1) — ! y
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where the integrals converge (in the above sense) in L?. Let us define
W (x) = Tn(P) ().

With this notation, we can rewrite the preceding integral formula as

- z drd
=y / U Y Wy * B0y ) 6 Pr) 0y (x —1) 4
T JRY Yy

(We have used the dilation-invariance of T},.)
A look at W’s Fourier transform shows that ¢ € S and f W dx = 0. The same
are true of W;, which we define as

Wi(x) = Wk i ().

With this convention we can compress our integral formula to
" _ _ dtdy
F=30 [ T @00 000 -0 = @23)
1 +

We now prove two lemmas relating to (23).

Lemma 3.3 Suppose that T € S, [Tdx = 0, and y € L*(B(0;1)). There is a
C = C(L,y) such that, if f € C$°(RY) satisfies |Vf| < A pointwise and B is any
positive number; then

? d
/ (/ |(F % YTy () 7Y 0y (x — 1) dt) Y~ cas.
0 R4 y

Remark In our applications of Lemma 3.3, I" = W, y = ¢, and AB ~ 1.

Proof of Lemma 3.3 The function I' satisfies
IT@)| < €1+ x)~

IV (x)| < C(1 + |x[)™?

/F(x) dx =0,

for a fixed constant C. A lemma of Uchiyama [6] says that we can decompose I'
into a rapidly converging sum of dilates of smooth, compactly supported functions,
with integrals equal to 0. Precisely:

o0
L(x) =CY 27D (F)) g (),
j=0
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for an appropriate C, where each F; has support contained in B(0; 1) and satisfies

[Filloo = C

/Fjdxzo.

(Uchiyama’s lemma actually yields ||VFj|cc < C, but we don’t need that.) The
function (Fj) g 2 has support contained in B(0; 2/) and the function ((F))0.21)) 0.y)
has support contained in B(0;2y). The smoothness of f and the cancelation in F;
imply that
If %y~ ((F)2)) om0 < CAZY Iy~ ((F)o2))om
< CA2y2M = cAUtDy

for any ¢, and therefore

o0
[f %y Ty ()] < CAY  27/@HDoj+hy,
j=0

= CAy.

Since ||y |1 < C(y),
/Rd |(F % YT (1) Y yi0 (x — 1)| di < CAy,

implying

B J 5 .
/0 (/1;‘1 |(f*yidr(o’}’)(t))yidy(o,y)(x—t)| d[) ;y < /0 (CAy);y

= CAB,

proving the lemma. &

The next lemma uses a standard definition and one derived from it.
Definition 3.4 If 0 C R? is a cube then we set 0 = Q x (0,£(Q)) C R4
(sometimes called the “Carleson box” above Q) and R(Q) = {(t,y) € R’f" :
d((t,y), @) > £(Q)}, where d(-,-) denotes the usual Euclidean distance to a set
. Rdtl
inRY™.
Lemma 3.5 LetT" € S and y € L*(B(0; 1)). There is constant C = C(T, y) such
that if f € L'(R?) and the support of f is contained in a cube Q then
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d
[ 15 Ty o= 0] S < o [ ila

forall x € Q.

Proof of Lemma 3.5. For j = 0,1,2 ..., define Ri(Q) = {(t,y) € R(Q)
20(Q) < d((t,y),0) < 2+14(Q)}, and observe that R(Q) = US°R;(Q). Since y
has its support contained in B(0; 1), yo(x —1) = V(XTﬂ) can be non-zero only
if |[x — ¢t| < y. Therefore there is a positive ¢ = c¢(d) such that, if x € Q and
(1,y) € Ri(Q), Y0,y (x— 1) will be zero unless y > ¢2€(Q). If y > ¢2/£(Q), Holder’s
inequality implies

If %y Ty ] < CUQ)™IIfIh

and
/R ) [(F %y T () y v (x — )] dt < C@LQ)IIf |1

If (1,y) € R;(Q) then y < 272{(Q). Therefore:

i [0 # 5Ty @)y yopx =] 2

< C 200 ([ |(F % YTy )y 'y (= 1) di)
< CQ)If.

Summing over j finishes the proof. &

Proof of Theorem 1.1.

For the rest of this section, u will be a fixed doubling measure.
The proof of Theorem 1.1 works by rewriting each of the n summands in (23) as
an average of sums of the form

Z @0

\/ n(Q)
where ( is a T-sequence. We now describe how this rewriting will go. If Q =
125, G+ 1)2%) x -+ x [i225, (a + 1)25) € D we set 1o = (j125, 25, ..., ja2%),

the “left-most corner” of Q. Define V,, = [0, 1)“' , the “unit” dyadic cube. If Q € D,
we define a bijective mapping o (Q,-,-) : T(Vy) — T(Q) by
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0(Q.7.1) = (1g + LQ)T. L(Q)n).

We point out some properties of this mapping. If g : T(Q) — C is measurable we
can define i : T(Vy) — C by h(z,n) = g(a(Q, 7,n)). By the change-of-variables
formula,

dtdn

[ st ™ o1 [ neon) (24)
7(Q) y T(Vo)

We can write

dtd
NS W) 0. (1) Y (B0 0y (x — 1) 2

as
_ —_ dtdy
[ 3. W00) @ “
T(Q) y
where (-, -) is the ordinary L? inner product. Because of (24), this is equal to
101 [0y @M, (W)o(0.0.0) (B)o0.e.m) (6) 52
= 101" [y 172U (@0ot0mm) (@Ko (0. (x) 2L
Therefore, we can formally rewrite the integral in (23) as:
Y0 Jriy ¥ (W) () (0 L2
= fT(Vo) (ZD |Q|_1 <f, (lpk)U(Q.r.n)) (d)k)a(Q,f,ﬂ) (x)) 77_2d @ (25)

Of course, if the summation only runs over a finite set of Q’s (as it will for us), the
equality is literal.
In proving Theorem 1.1, it will be more convenient to write (25) as

vV 1(0) n

Proof of Theorem 1.1 We fix, once and for all, a function b € C§° (R?) that is non-
negative, has support contained in B(0; 1/2), and satisfies [ bdx = 1. Recall our
definition of zp = (xg, £(Q)), where x¢ is Q’s center and £(Q) is Q’s sidelength. If
Q C R? s any cube then b, is supported in Q and satisfies S/ b, dx = |Q|. If v is
any doubling measure then

o T _— d d
/ [ (1017 ¢. @don) \/M(Q)) M] 2 drdn
T(Vﬂ) D

/ bey dv ~ 1(Q). (26)
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with comparability constants depending on b and v. If Oy € D and 2 << 1, we
define F(Qy, 2) to be the family of Carleson sequences {cp}p such that g = 0 if
O ¢ Qo or £(Q) < 2L(Qp). It is clear that the set of numbers

Qo)™ cou(Q) : Qo €D, {eolp € F(Qo.2) 27)
D

is bounded above by 1+ |j|. Call the actual supremum L(j). Theorem 1.1 will follow
once we show that sup; L(j) < oo.

Fix j. There exist a Oy € D and a Carleson sequence {¢o}p € F(Qp,2) such
that

1(Q0)™" Y Eon(Q) = (1/2)L().
D

Fix Qp and {Co}. Theorem 1.1 will follow if we show that £(Qo) ™' "5 Cop(Q) is
bounded by a number independent of Qy and j.

Define
f@) = by ().
D
Because of (26),
[ fdu~Y " Eou(Q) ~ L()i(Qy). (28)
D

As with Theorem 2.2, the “game” now is to show that

/ If?dp < C / Ifl du, (29)

for some C < oo independent of Qy and j; because, as we have seen, the Cauchy-
Schwarz inequality will imply

/ Ifldp < Cu(Qo):
which, with (28), will yield
L(j) = C,

for some absolute C independent of Q and j.
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Because of (28), (29) will follow from
2 .
[ vian < cLoucon.

It is obvious that f is supported inside Qy and satisfies [ |[f|dx < |Qo|. It will be
important to us that f € BMO, with a BMO norm bounded by a constant depending
only on b and d; so let us prove this. Write f = Zk fi, where

)= Y Eoby,(0).

0: €(Q)=2*

Each f; is infinitely differentiable and satisfies: (i) |[fi]loo < 1; and (ii) | Vfi|loo <

C27k. We note that inequality (ii) implies |Vf| < C(2£(Qy))~" pointwise.
Let Q' be a cube and write

f= > f+ > fi=Fi+F.

k:2k=£(0) ke 2k<e(Q")
We can cover Q' with C(d) congruent dyadic cubes {ij"}lc(d) such that (1/2)£(Q') <

Uoy) < £(Q’), which implies that, if Q € D and £(Q) < £(Q’), then £(Q) < Loy
for every j; hence, if Q N Q' # @ then Q C Q7 for some j. Then:

/;/ |F2(x)|dx = [Q/ Z Cobyy(x) | dx

0:4(0)<U(Q)

C(d)

=3[ | X wbuto |
=179 0:0CQf
Cc(d)

<> > &lol
Jj=1 Q:QCQj*
C(d)

<> 107
1

< C|Q'].

On the other hand, |VF;(x)| < C/£(Q’), implying that
| 1R - oolar = cio
Q/

Therefore f belongs to BMO, with anorm < C.
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We invoke a standard fact about BMO ([4], p. 159): If h € BMO, T' € S, and
[ T dx = 0, then, for all cubes Q C R?,

1 / _ , dtdy )
=[xy Ty 0 —= = ClIAl,
01 Jo Oy -
where the constant C only depends on I'. This implies that, for h € BMO, the
sequence of numbers {cp}p defined by

dtdy
co= |Q|/ 5 T (O 22

is a bounded multiple of a Carleson sequence.
We can write f = g1 + g» + g3 + g4, Where

n

dtdy

g1(x) = / _ (F Y (W) 0 D) Y (@) o (x — 1) —

1 /Ay y<21(Q0)}

- dtdy
g2(0) = f | %y (W) 0 () y B0 — 1) 2L

T /Ay 271(Q0) <y<L(Q0)}

. _ _ dtdy
430 = / %y~ (W) 0 () y (B0 (2 — 1) 22

T J{y): €(Q0)<y<3(Qo)} y

n

dtd
a®=Y /{ e O G0 (-0 T

Lemmas 3.3 and 3.5 imply that the integrals on the right-hand sides all converge
absolutely. By Lemma 3.5, g4 is pointwise bounded by C|Qo|™" [ |f|dx < C for
x € Qo, and it is easy to see that the same bound holds for g3. Since f € C$°(RY)
and |Vf| < C(2€(Qy))”" pointwise, Lemma 3.3 implies that |g|| is bounded by
an absolute constant in Qy. Thus, for x € Qy, we may write f = g» + G, where
|G| < C, and C does not depend on Q or j.

By Lemma 3.1, there is an R such that, for every 1 < k < n, every T-sequence {,
and every finite sequence {Ap}p C C,

/

2
du <R Al
D

S e (D) (0)
o V(@)
We claim that

, |g2|* die < CRL(j)1(Qo) (30)

for a constant C depending on p and d, but not on Qg or j. Since fQo |G)?du <
Cu(Qo), proving (30) will finish the proof.
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__There exist N = N(d) dyadic cubes {0:}), congruent to Q, such that
0, N Qg # B. If x € Qg then the support restriction on the ¢ ’s implies that

n

dtdy
ww=Y [ (5™ (W00 )y @iy (r—1) T2
=17 {@y): 1€UY 01, 27 14(Q0) <y<(Qo) }
ForeachO <i<Nand 1 < k < n, define
dt dy
) = [ (F %y (W0 0 () Y ()0 (6 — 1) T2
{(t.y): 1€0i, 27 1(Qo)<y<€(Qo)}
Inequality (30) will follow once we show
/ lyixl® die < CRLG)1(Q1). 31

because w’s doubling property implies ©(Q;) < Cu(Qo).
For 0 < i < N, we define F; to be the (finite!) family of dyadic subcubes Q of Q;
such that 27¢(Q;) < £(Q) < £(Q;). We can then write:

yu@ = 3 / %y (W) 0y (1) y~ "(¢>k)<0v>(x—r)—

Q€F;

We rewrite the last equation as

yiax) = [T

For each (7, n) € T(Vy),

o0 _,ydtd
[ (1017 . Wigrm) V(@) P20 ]n 2 ddn

vV 1(Q) U

Vo) QEF;

2
- (D)o (0.7 (%)
! 5 \II o(0,1, ——— d
/ Q;Ti[@ {7, (oo n))\/M(Q)] O m

is less than or equal to R times

M) w(Q).

Z ‘|Q|_1(f’ (\Ijk)a(Q,z,n))\/M(Q)‘z = Z ( R
Q€F;

QeF;

Thus, by the generalized Minkowski inequality,

1/2
12 (Yoo ? _,,drd
(/|yi,k|2dﬂ) le/Z/ > ('V( ) @ )| )M(Q) 2 280
00 \ g7, || n
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But (T(Vy),n™ @) is a finite measure space (with a total measure only
depending on d); therefore,

12
I, (YD) s(0,e) g drdn
/nv(» Q;;i ( [k ) e

is less than or equal to a dimensional constant times

1/2
I, (W) 0.0) |* g drdn )
Q%:E /r(vO) [( 10| ) M(Q)} ! n 7

which implies that

, (W) 0o ? _.dtd
[imsban=cry [ [(W) M(Q)} o g

Q€ F;

|(fv (\Ijk)o(Q.f.n)Hz —2d drdn
= CR .
QZ; (fw ( lor ) T ) e

But, for each Q € F;, by the change of variables formula (24),

I, (Woem) P\ sy dTdn _ _ dtdy
[ (Ml ) 2 ot [y 0 2
(Vo) |0 n T(0) y

and, because f € BMO, with ||f||« < C, the sequence defined by
_ _ dtdy
cor=107" [ I e Wy 0P <

Q) y

is a bounded multiple of a Carleson sequence. By our definition of L(j),

> coim(Q) < CL(G)(Q)

Q€F;

(because all of the Q’s occurring in the sum satisfy £(Q) > 2/£(Q;) and are contained
in Q;). Therefore
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/Iml du < CRY

QeF;

= CR Y coi(Q)

QcFi
< CRL() (@),

(IQI ! / [ O et : ) Q)

finishing the proof of Theorem 1.1. &

We present an easy corollary of Theorem 1.1. We first note that, by duality, if
{Ylx C L2(v) satisfies (2), then, for all f € L(v),

S < [y (32)
k

(where we use (-,-), to denote the inner product in L*(v)); and, conversely, if
{Ylx C L2(v) satisfies (32), it satisfies (2).
In [9] the author looked at linear operators of the form

(f’w(Q)>
20 Hol, 49

for a doubling measure v, sequences of functions {y@}p and {$?@}p in C,, and
T-sequences ¢ and ¢’. One can think of (33) as a simple model for a wavelet
representation of a Calder6n-Zygmund singular integral operator (see [5] and
references cited there). By Littlewood-Paley theory, if the ¥(©@’s and ¢©@’s lie
in Cyo and v € Ay then (33) defines a bounded linear operator on L?(v) in the
following sense: If 7, C F, C JF3 C --- is any increasing sequence of finite
subsets of D such that D = U, F; then, for all f € L?(v),

{ 1//4“ (Q)) (Q)

v(0Q) o)) (34)

T()(x) = hm Z

exists in L?(v) and T2y < C(v, oz)|U‘||Lz(v) We present a partial converse:

Corollary 4.1 Suppose that | is doubling. Let {¢y}] C L*°(B(0; 1)) satisfy CNDC
and suppose that, for each 1 < k < n and each T-sequence ¢, the series

Z V. (‘b"()g)@ % (¢)eo) (1), (35)

defined as in (34), yields an L* (i) bounded linear operator. Then |1 € Aso

I'This also holds in L”(v), 1 < p < 00, and the cancelation hypotheses can be weakened [9].
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Proof Call the operator defined by (35) T. If T is L*(t) bounded then
|/ T()Fdul < C [ fP dp forall f € I2(u). But

- (. @eo)ul
T(f)f du )
/ ; (@)

Therefore, by the converse to (32), (6) is almost-orthogonal in L?(i1). QED. &

Remark We believe the most natural application of Corollary 4.1 is this. Let
Y € Cq be real, radial, and non-trivial. If u is doubling and the series

; . ;f(g (QQ)) Vo) (¥)

(with the sum defined as above) gives an L?>(u) bounded operator for every
T-sequence £, then y € Ax.

Acknowledgements We are grateful to the referee for spotting a gap in the proof of Lemma 2.1
and for valuable suggestions on improving the paper’s exposition.
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