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Preface for Volume 2

On April 4, 2014, we celebrated Cora Sadosky’s life with an afternoon in her honor,
preceded by the 13th New Mexico Analysis Seminar1 on April 3–4, 2014, and
followed by the Western Sectional Meeting of the AMS on April 5–6, 2014, all
held in Albuquerque, New Mexico, USA. It was a mathematical feast, gathering
more than a hundred analysts – fledgling, junior and senior – from all over the
USA and the world such as Canada, India, Mexico, Sweden, the UK, South Korea,
Brazil, Israel, Hungary, Finland, Australia, Venezuela, and Spain, to remember her
outspokenness, her uncompromising ways, her sharp sense of humor, her erudition,
and above all her profound love for mathematics.

Many speakers talked about how their mathematical lives were influenced by
Cora’s magnetic personality and her mentoring early in their careers and as they
grew into independent mathematicians. Particularly felt was her influence among
young Argentinian and Venezuelan mathematicians. Rodolfo Torres, in a splendid
lecture about Cora and her mathematics, transported us through the years from
Buenos Aires to Chicago back to Buenos Aires, from Caracas to the USA back
to Buenos Aires, and from Washington D.C. to California. He reminded us of Cora
always standing up for human rights, Cora president of the Association for Women
in Mathematics (AWM), and Cora always encouraging and fighting for what she
thought was right.

1The 13th New Mexico Analysis Seminar and An Afternoon in Honor of Cora Sadosky were
sponsored by National Science Foundation (NSF) Grant DMS-140042, the Simons Foundation,
and the Efroymson Foundation, and the events were done in cooperation with the Association for
Women in Mathematics (AWM). See the conferences websites:

www.math.unm.edu/conferences/13thAnalysis
people.math.umass.edu/~nahmod/CoraSadosky.html
An Afternoon in Honor of Cora Sadosky was organized by Andrea Nahmod, Cristina Pereyra,

and Wilfredo Urbina. The 13th New Mexico Analysis Seminar organizers were Matt Blair, Cristina
Pereyra, Anna Skripka, and Maxim Zinchenko from the University of New Mexico and Nick
Michalowski from New Mexico State University.

vii

www.math.unm.edu/conferences/13thAnalysis
people.math.umass.edu/~nahmod/CoraSadosky.html
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Cora was born in Buenos Aires, Argentina, on May 23, 1940, and died on
December 3, 2010, in Long Beach, CA. Cora got her PhD in 1965 at the University
of Chicago under the supervision of both Alberto Calderón and Anthoni Zygmund,
the grandparents of the now-known Calderón-Zygmund School. Shortly after her
return from Chicago, she married Daniel J. Goldstein, her lifelong companion
who sadly passed away on March 13, 2014, a few weeks before the Albuquerque
gathering. Daniel and Cora had a daughter, Cora Sol, who is now a political science
professor at California State University in Long Beach, and a granddaughter, Sasha
Malena, who brightened their last years. During her life, Cora wrote more than
50 research papers, a graduate textbook (Interpolation of Operators and Singular
Integrals: An Introduction to Harmonic Analysis, Marcel Dekker 1979), and she
edited two volumes: one celebrating Mischa Cotlar’s 70th birthday (Analysis and
Partial Differential Equations: A Collection of Papers Dedicated to Mischa Cotlar,
CRC Press, 1989) and one celebrating Alberto Calderón’s 75th birthday (Harmonic
Analysis and Partial Differential Equations: Essays in Honor of Alberto Calderón,
edited with M. Christ and C. Kenig, The University of Chicago Press, 1999). In the
first volume, we have included a list as complete as possible of her scholarly work.
Notable are her contributions to harmonic analysis and operator theory, in particular
her lifelong and very fruitful collaboration with Mischa Cotlar.

When news of Cora’s passing spread like wildfire in December 2010, many
people were struck. The mathematical community quickly reacted. The AWM
organized an impromptu memorial at the 2011 Joint Mathematical Meeting (JMM),
as reported by Jill Pipher, at the time AWM president:

Many people wrote to express their sadness and to send remembrances. The AWM business
meeting on Thursday, January 6 at the 2011 JMM was largely devoted to a remembrance of
Cora.

This appeared in the March-April issue of the AWM Newsletter2 which was entirely
dedicated to the memory of Cora Sadosky.

An obituary by Allyn Jackson for Cora Sadosky appeared in Notices of the
American Mathematical Society in April 2011.3

In June 2011, Cathy O’Neal wrote in her blog mathbabe4 a beautiful remem-
brance for Cora:

[. . . ] Cora, whom I met when I was 21, was the person that made me realize there is a
community of women mathematicians, and that I was also welcome to that world. [. . . ]
And I felt honored to have met Cora, whose obvious passion for mathematics was absolutely
awe-inspiring. She was the person who first explained to me that, as women mathematicians,
we will keep growing, keep writing, and keep getting better at math as we grow older [. . . ].
When I googled her this morning, I found out she’d died about 6 months ago. You can read

2President’s Report, AWM Newsletter, Vol. 41, No. 2, March-April 2011, p. 1. This issue was
dedicated to the memory of Cora Sadosky and it was partially reproduced in Volume 1.
3Notices AMS, Vol. 58, Number 4, April 2011, pp. 613–614.
4http://mathbabe.org/2011/06/29/cora-sadosky/

http://mathbabe.org/2011/06/29/cora-sadosky/
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about her difficult and inspiring mathematical career in this biography.5 It made me cry and
made me think about how much the world needs role models like Cora.

In 2013, the Association for Women in Mathematics established the biennial
AWM-Sadosky Prize in Analysis,6 to be awarded every other year starting in 2014.
The purpose of the award is to highlight exceptional research in analysis by a woman
early in her career. Svitlana Mayboroda was the first recipient of the AWM-Sadosky
Research Prize in Analysis awarded in January 2014. Mayboroda contributed a
survey paper joint with Ariel Barton to the first of this series of two volumes. As
the first volume went into press, the second recipient of the award, the 2016 AWM-
Sadosky Prize, was announced: Daniela de Silva, from Columbia University. The
award was presented to her in the January 2016 Joint Mathematical Meeting.

In 2015, Kristin Lauter, president of the AWM, started her report in the May-June
issue of the AWM Newsletter,7 with a couple of paragraphs remembering Cora:

I remember very clearly the day I met Cora Sadosky at an AWM event shortly after I got my
PhD, and, knowing very little about me, she said unabashedly that she didn’t see any reason
that I should not be a professor at Harvard someday. I remember being shocked by this idea,
and pleased that anyone would express such confidence in my potential, and impressed at
the audacity of her ideas and confidence of her convictions.
Now I know how she felt: when I see the incredibly talented and passionate young female
researchers in my field of mathematics, I think to myself that there is no reason on this earth
that some of them should not be professors at Harvard. But we are not there yet . . . and
there still remain many barriers to the advancement and equal treatment of women in our
profession and much work to be done.

In these two volumes, friends, colleagues, and/or mentees have contributed
research papers, surveys, and/or short remembrances about Cora. The remem-
brances were sometimes weaved into the article submitted (either at the beginning or
the end), and we have respected the format each author chose. Many of the authors
gave talks in the 13th New Mexico Analysis Seminar, in An Afternoon in Honor of
Cora Sadosky, and/or in the Special Sessions of the AMS; others could not attend
these events but did not think twice when given the opportunity to contribute to this
homage.

The mathematical contributions naturally align with Cora’s mathematical inter-
ests: harmonic analysis and PDEs, weighted norm inequalities, Banach spaces and
BMO, operator theory, complex analysis, and classical Fourier theory.

Volume 1 contains articles about Cora and her mathematics and mentorship,
remembrances by colleagues and friends, her bibliography according to Math-
SciNet, and survey and research articles on harmonic analysis and partial differential
equations, BMO, Banach and metric spaces, and complex and classical Fourier
analysis.

5Biographies of Women in Mathematics: Cora Sadosky http://www.agnesscott.edu/lriddle/women/
corasadosky.htm
6More details in the AWM-Sadosky Research Prize in Analysis webpage: https://sites.google.com/
site/awmmath/programs/sadosky-prize.
7President’s Report. AWM Newsletter, Vol. 45, No. 3, May-June, p. 1 (2015).

http://www.agnesscott.edu/lriddle/women/corasadosky.htm
http://www.agnesscott.edu/lriddle/women/corasadosky.htm
https://sites.google.com/site/awmmath/programs/sadosky-prize
https://sites.google.com/site/awmmath/programs/sadosky-prize
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The year 2014 saw the resolution of the two-weight problem for the Hilbert
transform à la Muckenhoupt by Michael Lacey, Erik Sawyer, Chun-Yen Shen, and
Ignacio Uriarte-Tuero, a problem that had been open for 40 years. This problem
was solved à la Helson-Szegö by Cora Sadosky and Mischa Cotlar in the early
1980s using complex analysis and operator theory methods. In the last 15 years,
a number of techniques have been developed and refined to yield this result,
including stopping time arguments, Bellman functions, Lerner’s median approach,
and bumped approach.

Volume 2 contains more remembrances and survey and research articles on
weighted norm inequalities, operator theory, complex analysis, dynamical systems,
and dyadic harmonic analysis. The articles illustrate surprising connections to
Tauberian functions, number theory, and wavelet systems. A survey of the two-
weight problem for the Hilbert transform by Michael Lacey is featured.

Before describing in detail the contents of the second volume in this series, we
would like to end with some words by Nikolai Nikolski8 regarding Cora Sadosky’s
joint work with Mischa Cotlar on the two-weight problem:

My next impression on Mischa’s mathematics is dated about 10 years later when his great
series of papers with Cora Sadosky on Generalized Toeplitz Kernels (GTK) started to
appear. On the age when all people involved in “weighted analysis” were excited with the
Muckenhoupt-type approach (which is efficient for real variable applications), the Cotlar-
Sadosky’s idea to develop Helson-Szegö classical techniques was revolutionary. They
immediately obtained important applications of the GTK theory in a variety of domains
where complex analysis language is more appropriate than the real analysis one (scattering
theory, Hankel and Toeplitz operators, dilation theory. . . , but also singular integrals
for so important problems as the famous two-weighted estimates). This Cotlar-Sadosky
series appeared almost simultaneously with the well-known Krein’s school achievements
(Adamyan-Arov-Krein) and the Lax-Phillips approach to scattering theory, but the GTK
theory showed several advantages (as, for example, an important - and growing with time!
- efficiency in several complex variables.)

Contents of Volume 2

We now describe in more detail the contents of the second volume. Volume 2
includes remembrances, photos, two survey articles, and research articles by an
array of mathematicians representing themes at the heart of Cora’s mathematical
interests: weighted inequalities, complex analysis, and operator theory.

In the chapter “Remembering Corita”, author and poet Margaret Randall,
longtime friend of Corita and her parents, Manuel and Cora, shares her memories of
the family, and in chapter “Remembering Cora” Neil Hindman, Howard University
Cora’s former colleague, shares a few memories.

8This is a paragraph in a remembrance for Mischa Cotlar that can be found at www.math.unm.edu/
conferences/10thAnalysis/resources/cotlar/nikolski.pdf.

www.math.unm.edu/conferences/10thAnalysis/resources/cotlar/nikolski.pdf
www.math.unm.edu/conferences/10thAnalysis/resources/cotlar/nikolski.pdf
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In the chapter “The Two-Weight Inequality for the Hilbert Transform: A Primer,”
Michael Lacey surveys the resolution of the two-weight problem for the Hilbert
transform. This is a valuable and insightful survey on the recent advances on the
two-weight inequality for the Hilbert transform, where the author has been a leading
contributor. With the fast development of the field in the last few years, hundreds
of pages have been published. While much of that has quickly become outdated
with the arrival of more powerful and more efficient approaches, there are still
important parts in the non-latest papers that have not been redone or surpassed by
the newest developments. In this survey article, there is a detailed presentation of
the unconditional characterization of the two-weight inequality by Lacey, Sawyer,
Shen, and Uriarte-Tuero, incorporating at the core a refinement by Hytönen. An
earlier conditional result of Nazarov, Treil, and Volberg, under a “pivotal” condition,
is reworked in the style of the more recent papers for the sake of both simplification
and easier comparison. Some important counterexamples and a thorough discussion
of motivation and applications are presented. Michael Lacey reflects in his article
about Cora Sadosky and how his research was strongly influenced by her passion
and interests, he gave a talk titled Cora Sadosky Influence on my Work in an AMS
Special Session on “Harmonic Analysis and Operator Theory (In Memory of Cora
Sadosky)” co-organized by two of the editors of this volume, Stokolos and Urbina,
in Albuquerque on April 2014.

In the chapter “Singular Integrals, Rank-One Perturbations, and Clark Model
in General Situation,” Constance Liaw and Sergei Treil present a survey and
discuss generalizations of the Clark model to the case of non-singular measures
and applications to the study of rank-one perturbations for unitary and self-adjoint
operators. This survey summarizes several well-known papers in that direction
written previously by the authors and gives some new ideas on the construction of
a similar model for dissipative operators. Rank-one perturbations play an important
role in operator theory and mathematical physics. One of the principal attractions of
rank-one perturbations is that for such operators almost everything can be explicitly
computed, and then advanced techniques of harmonic analysis, like the study of
fine properties of Cauchy-type integrals or advanced theory of singular integral
operators, can be applied. These lecture notes give an account of the mini-course
delivered by the authors in the 13th New Mexico Analysis Seminar in April 2014
on Perturbations, Two-Weight Estimates, and Clark Model. Sergei Treil also gave an
invited lecture on Two-Weight Estimates Following Arocena-Cotlar-Sadosky during
“An Afternoon in Honor to Cora Sadosky” held in Albuquerque, NM, in April 2014.

In the chapter “On Two-Weight Estimates for Dyadic Operators,” Oleksandra
Beznosova, Daewon Chung, Jean Moraes, and María Cristina Pereyra discuss
quantitative two-weight estimates for dyadic operators in a nonhomogeneous
setting. They review the prior known estimates for the maximal dyadic function,
dyadic square function, martingale transform, and the dyadic paraproduct. They
compare their results for the dyadic paraproduct to results of Holmes, Lacey, and
Wick on a homogeneous setting where the two weights are assumed to be in the
Muckenhoupt Ap class and the Bloom BMO property is necessary and sufficient for
boundedness of the dyadic paraproduct and its adjoint. In this paper, the weights
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are not necessarily doubling, they satisfy a joint A2 condition, and the dyadic square
function is assumed to be two-weight bounded.

In the chapter “Potential Operators with Mixed Homogeneity,” Calixto Calderón
and Wilfredo Urbina present a fitting tribute to Corita (in the reviewer’s words). In
1966 Cora Sadosky discussed a quasi-homogeneous version of Sobolev’s immersion
theorem. Later the first author and T. Kwembe proved a similar result for potential
operators with kernels having mixed homogeneity very much in the spirit of
Sadosky’s result. The aim of this paper is to extend Calderón-Kwembe’s theorem in
two directions: first by establishing a corresponding result in terms of mixed norms
in the Benedek-Panzone’s sense and second by obtaining results for the case of
unbounded characteristics.

In the chapter “Elementary Proofs of One-Weight Norm Inequalities for Frac-
tional Integral Operators and Commutators,” David Cruz-Uribe presents new proofs
of some recent results concerning weighted inequalities for the fractional integral
operator and its commutator with BMO functions. The author reduces the problem
to obtaining estimates for a sparse fractional operator which majorizes the fractional
integral operators. As pointed out by the author, the advantage of this approach
is its simplicity: it avoids extrapolation, good-� inequalities, and comparisons to
the fractional maximal operator; however the proofs do not give sharp dependence
on the Ap;q characteristic of the weights; nevertheless this dependence is carefully
tracked. This is a nice summary and introduction into the modern dyadic techniques
in weighted inequalities. This chapter should be read in conjunction with the chapter
about two-weight inequalities for fractional integral operators by Sawyer, Shen, and
Uriarte-Tuero in this volume. Cruz-Uribe ends with a very touching personal story
about Cora Sadosky.

In the chapter “Finding Cycles in Nonlinear Autonomous Discrete Dynamical
Systems,” Dmitriy Dmitrishin, Anna Khamitova, Alex Stokolos, and Michai
Tohaneanu provide an exposition of their recent results concerning cycle
localization and stabilization in nonlinear dynamical systems. Both the general
theory and numerical applications to well-known dynamical systems are presented.
Following on the footsteps of the pioneering work of Grebogi, Ott, Pyragas, York,
et al., the authors consider associating to a given map f on R

n and for each N another
map FN on .Rn/N that will stabilize certain unstable orbits common with the initial
map f for appropriately chosen parameters. The authors show for a fixed N not all
unstable orbits may be stabilized by the given control and indicate explicit bounds
on the multiplier of a T-cycle of f that enable control of the above form to stabilize
the orbit. This paper will be of primary interest to those with prior experience in
dynamical systems; fortunately the authors provide a very suitable list of references
for those who wish to study the prerequisites necessary for a good understanding of
this paper. Alex Stokolos gave an invited talk on Complex and Harmonic Analysis
in Nonlinear Dynamics during “An Afternoon in Honor of Cora Sadosky” held
in Albuquerque, NM, in April 2014. Stokolos ends their article with a heartfelt
remembrance of Cora Sadosky.

In the chapter “Smooth Analytic Functions and Model Subspaces,” Konstantin
Dyakonov surveys the canonical Riesz-Nevanlinna factorization in various classes
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of analytic functions on the disk that are smooth up to its boundary and model
subspaces (i.e., invariant subspaces of the backward shift) in the Hardy spaces Hp

and in BMOA. It is the interrelationship and a peculiar cross-fertilization between
these two topics that the author wishes to highlight. This article deals with the
canonical factorization in classes of “smooth” analytic functions on the unit disk
on one hand and the so-called model subspaces on the other hand. The author gives
a (almost) self-contained presentation (with proofs) of several deep and beautiful
results which are related in a natural way to the theory of Hankel and Toeplitz
operators, one of Cora Sadosky’s favorite themes.

In the chapter “Rational Inner Functions on a Square-Matrix Polyball,” Annatoli
Grinshpam, Dmitry Kaliuzhnyi-Verbovetskyi, Victor Vinnikov, and Hugo Woerde-
man establish among other results the existence of a finite-dimensional unitary
realization for every matrix-valued rational inner function from the Schur-Agler
class on a unit square-matrix polyball. It is well known that for polydisks, the
Schur-Agler class and the Schur class only coincide in dimensions 1 and 2.
Furthermore, in the other cases, though one might naively expect otherwise, not
all rational inner functions are in the Schur-Agler class. As a consequence, it is of
interest to characterize those which are. The authors describe those matrix-valued
rational inner functions in the Schur-Agler class over square-matrix polyballs, which
includes the polydisks. This is done in terms of the transfer function representation,
which, as might be expected, coincides with the unitary colligation being finite
dimensional. The last section of the paper attempts in the scalar case to more directly
describe the polynomials appearing the Korányi and Vagi description when dealing
with Schur-Agler class rational inner functions. This connects with much interesting
recent work, including by the authors, on determinantal representations. Finally, a
number of thought-provoking open questions are posed.

In the chapter “A Note on Local Hölder Continuity of Weighted Tauberian
Functions,” Paul Hagelstein and Ioanis Parissis discuss how Solyanik estimates may
be used to establish local Hölder continuity estimates for the Tauberian functions
associated to the Hardy-Littlewood and strong maximal operators in the context
of Muckenhoupt weights. The Tauberian condition for the geometric maximal
operators was introduced by A. Córdoba and R. Fefferman in 1977. In this nice and
clearly written article, the authors introduce the Tauberian function as a weighted
generalization of the halo function, which is a classical object in the theory of
differentiation of integrals, and they establish belonging of the function to the local
Hölder classes, with the Hölder exponent proportional to the reciprocal value of the
A1 norm of the weight. The main tool used is Solyanik estimates – a series of results
initiated by A. Solyanik in 1995 and developed further by the authors of the current
article. In particular, they proved that Solyanik estimates imply the continuity of
halo function for the most important case of density bases. The main result of the
article provides the quantitative version of continuity of the Tauberian function for
bases of all cubes and all rectangles with sides parallel to the coordinate axis. The
novelty of the article is in the remarkable connection of the A1 norm of the weights
with the smoothness of the Tauberian functions.
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In the chapter “Three Observations on Commutators of Singular Integral Oper-
ators with BMO Functions,” Carlos Pérez and Ismael Rivera present interesting
observations concerning commutators of singular integral operators with BMO
functions. Namely, they discuss sharpness of the sub-exponential local decay,
sparse domination result for commutators, and the failure of an endpoint estimate
motivated by the conjugation method. This paper is very useful not only for the
researcher who is carefully studying the commutator but also for the beginners
who want to be acquainted with the theory of commutators. Carlos Pérez gave an
invited talk on Optimality of Exponents and Yano’s Condition in Weighted Estimates
and Endpoint Estimates during “An Afternoon in Honor of Cora Sadosky” held in
Albuquerque, NM, in April 2014.

In the chapter “A Two-Weight Fractional Singular Integral Theorem with Side
Conditions, Energy, and k-Energy Dispersed,” Erik Sawyer, Chun-Yen Shen, and
Ignacio Uriarte-Tuero present a follow-up to a paper of theirs, where the two-weight
inequality for fractional singular integral operators is studied under the assumption
that the pair of weights does not have common point masses. In this chapter, the
authors allow for common point masses. Under appropriate Muckenhoupt (joint A2

˛

and punctured A2
˛ conditions) and ˛-quasi-energy side conditions, the authors show

that a fractional singular integral operator, T˛ , is bounded from one weighted space
to another if certain quasicube testing conditions (involving a globally bi-Lipschitz
map � W Rn ! R

n) hold for T˛ and its dual and if the quasiweak boundedness
property holds for T˛ . Conversely, if T˛ is bounded, then the quasitesting conditions
hold, and the quasiweak boundedness condition holds. It is unknown whether the
quasi-energy conditions are necessary in higher dimensions in general. This is a
highly technical paper and the authors do a very good job placing road maps and
diagrams and sometimes iterating ideas so the reader does not get lost.

In the chapter “A Partition Function Connected with the Göllnitz-Gordon
Identities,” Nicolas A. Smoot presents a Rademacher-type formula for the partition
of a positive integer into parts of special type, associated to the Göllnitz-Gordon
identities. The subject of this paper constitutes a beautiful application of complex
analysis to number theory. The proof of the main result follows in the spirit of the
Rademacher approach and involves its basic components – generating functions,
Rademacher contours, the Hardy-Ramanujan circle method, Bessel functions. The
argument is quite involved but very well written and illustrated by nice sketches.
The paper is almost self-contained and is accessible to nonexpert researchers and
graduate students.

In the chapter “On Toeplitz Operators with Quasi-radial and Pseudo-
homogeneous Symbols,” Nikolai Vassilevskii explores a new wide class of symbols
that generate commutative Banach algebras on each weighted Bergman space
on the unit ball in C

n. These symbols are a natural extension of the previously
studied quasi-radial quasi-homogeneous symbols and contain them as a very special
particular case. The commutative C�-algebras of Toeplitz operators on Bergman
spaces of the unit ball Bn of Cn are fairly well understood nowadays. Some examples
of commutative Banach (not C�) algebras of such operators are known. The current
paper exhibits a new wide class of functions that generate such algebras on each
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of the standard weighted Bergman spaces on B
n. The results are of interest and

contribute toward the (as yet fairly incomplete) understanding of the commutative
subalgebras of Toeplitz operators on the ball in C

n, in dimension larger than one.
In the chapter “A Bump Theorem for Weighted Embedding and Maximal

Operator: The Bellman Function Approach,” Sasha Volberg gives a simple Bellman
function proof of Carlos Pérez’s “bump theorem” for the two-weight estimates of
maximal operators. The author shows how the Bellman function method proves a
certain “discrete” inequality (i.e., a bound on discrete operator), which, in its turn,
implies a bound of a certain continuous operator. The main difference from a, by
now, classical procedure is that here one needs a Bellman “functional.” Since the
operator under consideration (maximal function) is, in some sense, easy, the paper
is intended to give a clear and not very technical presentation of the method.

In the chapter “The Necessity of A1 for Translation and Scale Invariant Almost-
Orthogonality,” Mike Wilson continues his study of general wavelet systems in the
context of weights. For a weight � in the Muckenhoupt class A1, the author has
shown previously that for sufficiently nice mother wavelets and arbitrary T-systems,
the resulting system is almost orthogonal in L2.�/. This paper concerns the converse
result. In the reviewer’s own words: The current version of the converse seems
now fully satisfactory. It has the nice feature then that if you can obtain the
almost orthogonality in L2.d�/ for one choice of a wavelet meeting the minimum
requirements and all T-systems, then one can conclude that � 2 A1, and then that
one has the almost orthogonality in L2.�/ for all reasonable wavelets systems and
all T-systems, by the other direction of the theorem. This “prove it for one, get it for
all” feature, although not uncommon in this general area, is quite pleasing.

Alex Stokolos, Sergei Treil, and Carlos Pérez were invited speakers to “An
Afternoon in Honor of Cora Sadosky.” Beznosova, Cruz-Uribe, and Pereyra and
Stokolos and Urbina were co-organizers of AMS Special Sessions on “Weighted
Norm Inequalities and Related Topics” and on “Harmonic Analysis and Operator
Theory (In Memory of Cora Sadosky),” respectively, on April 5–6, 2014, held
in Albuquerque, NM. Michael Lacey, Oleksandra Beznosova, Daewon Chung,
Jean Moraes, Paul Hagelstein, Dmitry S. Kaliuzhnyi-Verbovetskyi, Constance
Liaw, Nikolai Vassilevskii, and Mike Wilson gave talks in the AMS meeting in
Albuquerque in April and honored there as they are doing here the life and work of
Cora Sadosky. Vinnikov is Cora Sadosky’s coauthor; in fact they were both co-
authors of the abstract for the AMS talk delivered by Kaliuzhnyi-Verbovetskyi.
Other authors could not make it to the conference but were more than happy to
contribute to this volume.
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More Remembrances and photos



Remembering Corita : : :

Margaret Randall

Corita Sadosky—her mother’s name was Cora, so we called her Corita—was an
Argentinean mathematician who belonged to her country’s “lost generation.” What
that meant was that she came of age during the 1970s, dark years of dictatorship
when 30,000 young people were murdered by neo-fascist forces much like those
once again threatening us in so many countries today. Some because they were
actively working against the dictatorships that had taken control in the Southern
Cone of South America. Some because they were simply young, and youth alone
was considered a crime. Most for some combination of both.

I first met Corita and her parents, Cora and Manuel, when we had all taken refuge
in Cuba. Corita and her family, including her husband Daniel Goldstein, had come to
the Caribbean island by way of Venezuela. Eventually they had a daughter, Corasol.
My family and I had come from Mexico. Those years saw interwoven webs of exiles
moving from country to country, often just a few steps ahead of death threats or
worse. Corita and I became instant friends.

In the summer of 1973 it seemed our liberated territories had expanded; Chile,
under Salvador Allende was trying to show the world that freedom could come
not only by means of armed struggle but also through democratic elections. People
throughout the Americas were hopeful. In Peru the Velasco Alvarado government
was developing progressive initiatives, especially for the country’s large Quechua
population. Corita was invited to head a program there, to improve women’s lives.
The program involved an oral history project, in which they would ask women
themselves what they needed.

Looking back, I can’t help but smile. Cora had been invited because she was
a woman, without consideration of her life as a mathematician. She promptly told

M. Randall (�)
Albuquerque, NM, USA
e-mail: mrandall36@gmail.com

M.C. Pereyra et al. (eds.), Harmonic Analysis, Partial Differential Equations, Banach
Spaces, and Operator Theory (Volume 2), Association for Women in Mathematics
Series 5, DOI 10.1007/978-3-319-51593-9_1
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the Peruvian organization issuing the invitation that she was not the best person
for the job. She recommended me—already a feminist and oral historian—and
that is how I happened to travel to Peru in the fall of 1973, just after Pinochet’s
bloody coup toppled the Chilean experiment. Hundreds of Chileans were making
their way across their country’s northern border into Peru. I would spend 3 months
working for the United Nations’ International Labor Office in what turned out to be
a fascinating project. Unfortunately, it too would be doomed.

From then on, Corita’s and my friendship grew. We spent time together in Cuba
and later in Washington, D.C., where she eventually ended up, teaching at Howard
University. Our families, too, remained interwoven—in that strong fabric made up
of Latin American revolutionaries forced to migrate from country to country. I
remember Cora’s sudden death, and a visit to Manuel and his new wife in Buenos
Aires. My son, Gregory, at the time vice president of the University of the Republic
in Uruguay, bestowed an honorary doctorate on Manuel just months before the
latter died. Corita made a life for herself in the United States. Despite having been
displaced from the country of her birth, she adapted to Washington, taught several
generations of upcoming mathematicians, and continued with the research that had
become her life’s passion. My last memories of Corita are from a visit Barbara and
I made to her in our nation’s capital.

When Corita died, it was a shock. We hadn’t been in touch for a few years, but I
had no doubt she was there—in that “there” we shared for so many years although its
physical location might vary. Like many, she died much too young. But, like some,
she had had the strength to overcome a violent displacement that has defeated so
many.

It is wonderful that she is being honored in this beautiful book. She was a good
friend. But she was also an example of the humanity, brilliance and fortitude needed
again today to keep on fighting the good fight against the powers of disrespect and
arrogance so obvious on today’s political scene.

October 2016

Margaret Randall (New York, 1936) is a poet, essayist, oral historian, translator, photog-
rapher and social activist. She lived in Latin America for 23 years (in Mexico, Cuba, and
Nicaragua). Randall’s most recent titles include “She becomes time”, “Che on my mind”,
“Haydée Santamaría, Cuban revolutionary: she led by transgression”, and “Exporting
revolution: Cuba’s global solidarity”. Randall has also devoted herself to translation,
producing “Only the road/Solo el camino”, an anthology of eight decades of Cuban poetry,
among other books. She lives in New Mexico with her partner (now wife) of more than 30
years, the painter Barbara Byers, and travels extensively to read, lecture and teach.



Remembering Cora

Neil Hindman

I spent almost three decades in an office adjacent to Cora’s office. We were in
a building separate from the department office, where most of the Mathematics
Department faculty had their offices. We were fortunate, since we had individual
offices, while those in the other building had two or three people to an office. We
were unfortunate because the university doesn’t tend to turn on the heat in our
building until mid November. We both had electric space heaters, and when we
ran them at the same time, we would blow a circuit breaker.

My main interaction with Cora was the fact that we shared my coffee maker.
Every morning when she came in to the office, she would come and get a cup of
coffee—we both drank it black. And she would occasionally bring in a can of ground
coffee.

Beyond that, the main thing I remember is that Cora did not like to carry the
heavy calculus text book to class. So she would tear out the relevant pages for the
day’s lesson and just take those to class.

N. Hindman (�)
Howard University, Washington, DC, USA
e-mail: nhindman@howard.edu

M.C. Pereyra et al. (eds.), Harmonic Analysis, Partial Differential Equations, Banach
Spaces, and Operator Theory (Volume 2), Association for Women in Mathematics
Series 5, DOI 10.1007/978-3-319-51593-9_2
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Dinner with MSRI’s Human Resources Advisory Committee, November 10, 2004, at the house of
Director David Eisenbud. Photo by Monika Eisenbud



1996 University of Chicago Conference in honor of Alberto Calderón’s 75th Birthday: Front
row, seated (left to right): M. Christ, C. Sadosky, A.P. Calderon, M.A. Muschietti. First row,
standing (left to right): C.E. Kenig, J. Alvarez Alonso, C. Gutierrez, E. Berkson, J. Neuwirth.
Second row, standing (left to right): A. Torchinsky, J. Polking, S. Vagi, R.R. Reitano, A.E. Gatto,
R. Seeley.
Photo courtesy of Cora Sol Goldstein, photographer unknown
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The Two Weight Inequality for the Hilbert
Transform: A Primer

Michael T. Lacey

In memory of my father, H. Elton Lacey

Abstract Given a pair of weights w; � , the two weight inequality for the Hilbert
transform is of the form kH.� f /kL2.w/ � kfkL2.�/. Recent work of Lacey-Sawyer-
Shen-Uriarte-Tuero and Lacey have established a conjecture of Nazarov-Treil-
Volberg, giving a real-variable characterization of which pairs of weights this
inequality holds, provided the pair of weights do not share a common point mass.
In this paper, the characterization is proved, collecting details from across several
papers; counterexamples are detailed; and areas of application are indicated.

Introduction

By a weight we mean a non-negative Borel locally finite measure, typically on R.
We consider the two weight inequality for the Hilbert transform for a pair of weights
w; � on R:

kH.f � �/kL2.w/ � NkfkL2.�/: (1)

Here, N denotes the best constant in the inequality. And H�.x/ is the Hilbert
transform of �

Research supported in part by grant NSF-DMS 0968499, a grant from the Simons Founda-
tion (#229596 to Michael Lacey), and the Australian Research Council through grant ARC-
DP120100399. The author benefited from two research programs, first ‘Operator Related Function
Theory and Time-Frequency Analysis’ at the Centre for Advanced Study at the Norwegian
Academy of Science and Letters in Oslo during 2012–2013, and second ‘Interactions between
Analysis and Geometry’ program at IPAM, UCLA, 2013.

M.T. Lacey (�)
School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA
e-mail: lacey@math.gatech.edu

M.C. Pereyra et al. (eds.), Harmonic Analysis, Partial Differential Equations, Banach
Spaces, and Operator Theory (Volume 2), Association for Women in Mathematics
Series 5, DOI 10.1007/978-3-319-51593-9_3
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H�.x/ �
Z
�.dy/

y � x
: (2)

We do not insist on the existence of the principal value, a point addressed in
section “Principal Values”.

The central question is then a real-variable characterization of the inequality (1).
In the special case that the pair of weights � and w do not share a common point
mass, this was supplied in three papers, one of Lacey-Sawyer-Shen-Uriarte-Tuero
[23] with the refinement of Hytönen [15], and another of the present author [17],
answering a beautiful conjecture of Nazarov-Treil-Volberg [56].

Theorem 1.1 Define two positive constants A2 and T as the best constants in the
inequalities below, uniform over intervals I, and with respect to interchanging the
roles of � and w.

�.I/

jIj
� P.w1RnI ; I/ � A2; (3)

Z
I
H.�1I/

2 dw � T2�.I/: (4)

There holds N ' H � A
1=2
2 C T.

The first condition is an extension of the Muckenhoupt A2 condition to a ‘half
Poisson condition with a hole.’ The exact Poisson extension of � to the upper half-
plane is not needed, rather we use the approximation below, which is roughly the
Poisson extension evaluated at the center of I, and up into the half-plane the length
of I, see Fig. 1.

P.�; I/ �
Z
R

jIj

.jIj C dist.x; I//2
�.dx/: (5)

Fig. 1 The value of P.�; I/ is approximately the Poisson extension of � evaluated at point in the
upper half-plane given by the center of I, and the length of I
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The remaining conditions are referred to as the Sawyer-type testing conditions,
as Eric Sawyer first introduced these conditions into the two weight setting in
his fundamental papers on the maximal function [52], and later the fractional
and Poisson integral operators [53]. It is well-known that the A2 condition (3) is
necessary for the two weight inequality, and it is obvious that the testing conditions
are necessary. Thus, the substance of the Theorem above concerns the sufficiency
of the A2 and testing inequalities for the norm inequality.

This Theorem is a central result in the non-homogeneous harmonic analysis,
as founded in a sequence of influential papers of Nazarov-Treil-Volberg [35–37].
The proof of the theorem is involved, encompassing arguments and points of view
that were spread across several papers [17, 21, 23, 38]. Finally, the interest in the
two weight inequality is well-motivated by applications to operator theory, model
spaces, and spectral theory, themselves spread across additional papers.

The point of this paper is to

(a) state and prove the Theorem, in all detail.
(b) give the proof under the influential pivotal condition, which serves to highlight

where the difficulties arise in the general case;
(c) collect relevant, explicit, counterexamples;
(d) give complements and extensions of the theorem, and the proof techniques;
(e) and point to areas of applications.

Sections proceed directly towards proofs, but many conclude with some context and
discussion. The proof is entirely elementary, assuming only the well known facts
about martingale differences.

An Overview of the Proof

The result is an individual two weight inequality. It characterizes the boundedness
of the Hilbert transform, and no other operator. Therefore, particular properties of
this transform must guide the proof. The elementary examples of these are the
monotonicity principle, Lemma 3.2, valid for all pairs of weights, and then the
energy inequality, Lemma 3.3, valid under the assumption of interval testing and
the A2 condition. These properties are a last vestige of positivity: The kernel 1

y is
monotone increasing on Rnf0g. This feature will deliver to us the energy inequality;
finding it, and unlocking its secrets is the key to the proof.

The main line of the argument begins with the bilinear form hH� f ; giw. It’s
decomposition is made to ‘regularize’ all four quantities in the expression, the two
functions f and g, as well as the ‘irregularities’ of the pair of weights, as expressed
by the energy inequality. Only half of the decomposition needs to be specified, due
to the self-dual nature of the question, and some of these considerations are familiar
to experts in both the T1 and the Tb theorems. But the underlying difficulties do not
have any classical analog.
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Fig. 2 A schematic tree of
the proof of the main theorem

The proof strategy is outlined in Fig. 2. The passage to the ‘triangular forms’
in Lemma 4.1 is a rather standard step in many T1-type theorems. The Calderón-
Zygmund stopping data defined in section “Global to Local Reduction” is the
foundational tool. It (a) controls the values of certain telescoping sums of martingale
differences; (b) regularizes the weights, from the point of view of the energy
inequality; and (c) allows the use of the quasi-orthogonality argument, an important
simplification. The triangular forms are of a ‘local’ and a ‘global’ form, and have
dual forms as well. There are two steps in the analysis, a ‘global to local’ reduction
in section “Global to Local Reduction”, and an analysis of the ‘stopping form’ in
the section “The Stopping Form”.

The stopping data is essential to the ‘global to local reduction’ in Theorem 4.4.
A simple appeal to the testing condition, allows an application of the monotonicity
principle to rephrase the inequality in this Theorem as a certain two-weight
inequality for the Poisson integral. In this inequality, the Poisson integral maps
functions on R to those on R

2
C. The weight on R is, say, � . The weight on R

2
C is

then derived from w in a specific fashion from the stopping data, and hence depend
upon f and the pair of weights. But the Poisson operator is a positive operator, and
one has a quite adequate understanding of their two weight inequalities. We directly
implement this understanding, without proving any more general result.

The local term is then dominated by the analysis of the stopping form (53).
This is again a familiar object, to experts in T1 theorem, addressed by ad hoc off-
diagonal estimates, which absolutely do not apply in the current context. Control of
the irregularities of the weights is now the main point, complicated by the fact that
the stopping form is not intrinsically defined. A notion of ‘size’ is introduced—it
serves as an approximate of the operator norm of the stopping form, and again is
most naturally defined in terms of a measure on R

2
C, derived from the two given

weights. The size lemma, Lemma 6.3, decomposes a stopping form into constituent
parts. Those of large size have a simpler form, which allows one to estimate their
operator norm by size. What is left has smaller size, and so one can recurse. This
argument relies heavily on the Hilbertian structure of the question.
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Some readers will have noticed that a very common set of objects, Carleson
measures, are not mentioned, and indeed, they do not appear in the proof at all.
The wide spread prevalence of Carleson measures in T1 theorems can be traced to
two facts, first that associated paraproducts operators are the principle obstacle to a
simple proof, and second, the paraproduct operators have an essentially canonical
form. In this theorem, neither of these facts hold, and so we have abandoned the
notions of Carleson measures and paraproducts.

Carleson measures are also used to, indirectly, control the sums of martingale
differences. Rather than this, we use the simpler method of stopping data, as
described in section “Global to Local Reduction”.

The A2 Theory

The classical case of an A2 weight corresponds to the case of w.dx/ D w.x/dx, and
w.x/ > 0 a.e. Moreover, the weight � also has density given by �.x/ � w.x/�1. It
is assumed that both w and � are locally integrable, so that they are both weights.
See Fig. 3. Note that w.x/ � �.x/ � 1. The Muckenhoupt A2 condition asserts that
this same equality approximately holds, uniformly over location and scale.

Œw�A2 � sup
I

w.I/

jIj
�
�.I/

jIj
<1:

These are ‘simple’ averages. This condition is equivalent to the uniform norm bound
on L2.w/ for the class of simple averaging operators

f 7!
1

jIj

Z
I
f dx � 1I ; I is an interval.

From this condition flows a rich theory, including the boundedness of all Calderón-
Zygmund operators. The classical result of Hunt-Muckenhoupt-Wheeden [11] states

Fig. 3 For 0 < � < 1, the function w.x/ D jxj1�� is an A2 weight. It and the dual weight
�.x/ D jxj��1 are graphed above. One can check that Œw�A2 ' ��1
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that w in A2 if and only if the Hilbert transform maps L2.w/ to L2.w/. By a
basic change of variables argument, first noted by Sawyer [52], this is equivalent
to H� mapping L2.�/ to L2.w/. Stefanie Petermichl [44] quantified the Hunt-
Muckenhoupt-Wheeden theorem as follows.

Theorem A A weight w 2 A2 if and only if H is bounded from L2.w/ to L2.w/, and
moreover the constant N in (1) satisfies N ' Œw�A2 .

To place this result in the context of our main result, it is classical and easy to see
that the Poisson A2 characteristic satisfies A2 � Œw�2A2 . And, using the remarkable
Haar shift representation of the Hilbert transform due to Petermichl [43], one can
check that the testing condition satisfies T � Œw�A2 . This is what Petermichl’s
original proof did. All existing proofs of Petermichl’s Theorem (see [13, 18, 29])
depend ultimately on known Lebesgue measure estimates for the Hilbert transform,
or closely related operators. For instance, [16, 29] use the weak-L1.dx/ bound for
sparse shift operators. Estimates of these type are irrelevant for the two weight
theorem.

It is perhaps worth emphasizing that the powerful Haar shift technique of
Petermichl, even with its impressive extension by Hytönen [13], seems to be of little
use in the general two weight problem. There are two obstacles: Firstly, in order to
use it, one must essentially have control on a Haar shift operator, independently
of how the grid defining the shift is defined. The resulting condition on the pair
of weights is more subtle than the two weight inequality for the Hilbert transform.
Secondly, one should recover the energy inequality of Lemma 3.3. But, the energy
of any fixed Haar shift is zero, and indeed, the two weight inequality for Haar shift
operators [39] has just a few difficulties in its proof.

By the A2 Theorem, it is meant the linear in A2 bound for all Calderón-Zygmund
operators. This result, pursued by many, and established by Hytönen [13], has many
points of contact with the subject of this note. But, we refer the reader to [14] and
references there in for more information, and see [16] for what is arguably the most
elementary proof.

In the A2 theory, it is essential that w.x/ > 0 a.e. Suppose one relaxes this
condition to w.x/ is positive on a measurable set E � R, and define �.x/ to be
supported on E, and equal to w.x/�1. One can then ask if the Hilbert transform is
bounded for this pair of weights, and Theorem 1.1 applies here. This question is
an instance of the non-homogeneous A2 theory advocated by A. Volberg. One can
hope that specificity in the way the weights are prescribed could introduce some
additional simplifications in the characterization of the two weight inequality in this
setting. But, none has yet been found.

The Individual Two Weight Problem

Given an operator T , the individual Lp two weight inequality for T is the inequality

kT� fkLp.w/ � NTkfkLp.�/: (6)
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Here and throughout we use the notation T� f � T.� f /. We understand that T
applied to a signed measure � � f should make sense. And, the inequality above
is the preferred form of the inequality as duality is expressed in the natural way:
The inequality (6) is equivalent to

kT�
w gkLp0

.�/ � NTkgkLp0

.w/:

The question is then to characterize the pairs of weights for which (6) holds.
This specificity of the question is of interest for a few canonical operators, ones

for which the corresponding two weight inequality will naturally present itself.
The leading examples of this are, for positive operators, the Hardy operator by
Muckenhoupt [32], the maximal function, Sawyer’s Theorem of 1981 [52] and
Sawyer’s 1988 theorem for the fractional integrals [53]. It is noteworthy that the
two weight inequalities for the Hardy and the Poisson integral are used in the proof
of our main theorem, as are various purely dyadic variants of these Theorems.

It is interesting to that this is not only a chronological list, but it also reflects the
depth of the results as well. The Hardy operator is easiest, characterized by an ‘A2-
type condition,’ as recalled in Theorem F. It was Sawyer’s insight, however, that
the maximal function characterization requires a testing condition. The fractional
integrals are harder still. For the sake of comparison, let us state a special case of
the result for the fractional integrals in one dimension. Besides Sawyer’s results, one
should also consult Casscante-Ortega-Verbitsky [6], as well as those of Vuorinen
[57]. Both results give a characterization in terms of testing conditions. And, while
we state just one case of the general result, one should note that there is no Sobolev
condition imposed on the Lp indices.

Theorem B For two weights w; � , and 0 < ˛ < 1, the operator R� f .x/ �R
f .x � y/ �.dy/

jyj˛
maps L2.�/ to L2.w/ if and only if the testing inequalities below

hold.
Z

I
R� .1I/

2 dw � T2�.I/;
Z

I
Rw.1I/

2 d� � T2w.I/:

Moreover the norm of the operator is equivalent to T, the best constant in the
inequalities above.

The analysis of the individual two weight inequality for positive operators is
much simpler, as is the case of dyadic operators. For certain non-positive dyadic
operators, see the result of Nazarov-Treil-Volberg [39], and the much more recent
works of Vuorinen [57, 58]. These results have found significant interest, due to the
Haar shift operators of Petermichl [43], the remarkable median inequality of Lerner
[28] and its extension in [16], and the Hytönen representation theorem [13].

The Hilbert transform is the first non-positive continuous operator for which
the individual two weight problem has been solved. And, one would only ever
expect that the solution would be of interest (or even possible) for a few canonical
choices of operators, such as Hilbert, Cauchy and Riesz transforms. Foundational to



18 M.T. Lacey

the solution for the Hilbert transform is the monotonicity of the kernel. No other
canonical choice will satisfy such a simple condition. For a special case of the
Cauchy transform [24] one can make progress. But the case of Riesz transforms
is much harder [26, 54].

The individual two weight question makes sense for any 1 < p < 1, and there
are characterizations in this, and other off-diagonal cases for positive operators. For
dyadic analogs of singular integrals Vuorinen [57] has shown that these inequalities
can be characterized by quadratic testing conditions. Also see [27]. The extension
of this characterization to the setting of the Hilbert transform is challenging.

The Hilbert Transform

The two weight inequality for the Hilbert transform was addressed as early as
1976 by Muckenhoupt and Wheeden [33].1But, it received much wider recognition
as an important problem with the 1988 work of Sarason [50]. The latter was
part of important sequence of investigations that identified de Branges spaces as
an essential tool in operator theory. His question concerning the composition of
Toeplitz operators, see section “Sarason’s Question on Toeplitz Operators”, was
raised therein, and advertised again in [51]. This question related the individual
two weight problem for the Hilbert transform to a profound question from operator
theory.

While not stated in the language of the Hilbert transform, Sarason wrote that it
was ‘tempting’ to conjecture that the full Poisson A2 condition would be sufficient
for the two weight inequality. In an important development, F. Nazarov [34] showed
that this was not the case. The two weight problem was seen to be important
to Model spaces, namely certain embedding questions for Model spaces can be
realized as a two weight inequality for the Hilbert transform. In particular, a more
delicate counterexample was developed by Nazarov-Volberg [40] to disprove a
conjectured characterization of the Carleson measures for a model space. The
Nazarov counterexample was also used by Nikol’skiı̆-Treil [42], in the context of
spectral theory.

The Nazarov counterexample is by way of a Bellman function approach. In
section “Example Weights”, we give an explicit example. It is worth noting that
in Sarason’s question, the weights have a density jf j2, for analytic f , and the
subharmonicity could be an important part of the problem. But, in the context of
model spaces, completely singular arbitrary measures can arise. In section “Example
Weights”, one of the weights is uniform measure on a Cantor set.

1In particular, they noted that the simple A2 condition was not sufficient for the boundedness of
the Hilbert transform, and conjectured that half-Poisson A2 conditions would be sufficient, an
indication of the powerful sway held by the Muckenhoupt A2 condition in the early years of the
weighted theory.
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Nazarov-Treil-Volberg were creating the field of non-homogeneous Harmonic
Analysis, in a series of ground-breaking papers [35–37]. Their work, and a
revitalization of the perspective of Eric Sawyer from the 1980’s, lead them to
conjecture the characterization proved in this paper. Moreover, their influential proof
strategy, devised in [38, 56], lead to a verification of the conjecture in the case that
both weights were doubling. This paper uses their strategy, with several additional
features. At the same time, their approach is generic, in that it applies to general
Calderón-Zygmund operators. Specific properties of the Hilbert transform had to be
used in the characterization. These properties were identified in [17, 20, 21, 23], and
the more precise description of what was accomplished at each stage is spread out
throughout the paper.

The Circle

The two weight inequality has an equivalent formulation on the circle, which we
formulate now. Given two weights w; � on the circle group T � R=2	Z, we
consider the norm inequality

Z
T

ˇ̌
ˇ̌
Z

f .y/ � cot
�x � y

2

�
�.dy/

ˇ̌
ˇ̌2 dw � N2kfk2L2.T;�/: (7)

This is abbreviated to kHT

� fkL2.w/ � NkfkL2.�/.

Theorem 1.3 The inequality (7) holds if and only if the pair of weights below satisfy
the conditions below and their duals. For all intervals I � T, with jIj � 1, there are
finite constants A2 and T, such that

�.I/

jIj
� PT.w1TnI/.xI ; 1 � jIj/ < A2; (8)

Z
I
jHT

� 1Ij
2 dw � T2�.I/: (9)

Moreover, letting A2 and T be the best constants in these inequalities and their
duals, there holds N ' A

1=2
2 C T.

In (8), the term PTw.xI ; r/ is the standard Poisson operator on the disk, evaluated
at a point in the unit disk given by the center of the of the interval xI , and the radial
factor r.

Let us indicate how to prove the theorem above from Theorem 1.1. Fix � and w
be two weights on T. Embed the weight w into Œ0; 1� in the natural way, and call
the resulting measure w0. Place three copies of � on the intervals Œ�1; 0�, .0; 1� and
.1; 2�, and call the resulting measure � 0. Thus, � 0 and w0 are two weights on R. It is
clear that � 0 and w0 satisfy the Poisson A2 condition with holes on R.
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For a function f 2 L2.TI �/, let f 0 be three copies of f on the intervals Œ�1; 0�,
.0; 1� and .1; 2�. Viewing T as Œ0; 1�, there is a subtle difference between HT

� f .x/ and
H� 0 f 0.x/, the former computed on T, and the latter on R. Namely

jHT

� �
1
2
H� 0 f 0.x/j �

Z 3

�3

jf 0.y/j � jx � yj2 �.dy/:

It is easy to see that the A2 condition implies that the operator on the right is
bounded. Hence, the testing conditions on T imply those for w0 and � 0. Hence H� 0

maps L2.� 0/ to L2.w0/. From that, we deduce the boundedness of HT

� .

Cora Sadosky. Cora Sadosky and I met only a couple of times, which is a
pity, since my research has been so strongly influenced by her passions and
interests. Her work with Cotlar on the Lp variant of the Helson-Szegő theorem is a
beautiful complex variable result well beyond the reach of the current real-variable
techniques. Her interest in Hankel forms on two and more complex variables has
been my own for several years. And, in a number of small ways, I work to support
more diversity in the profession, again following her lead.

Cora Sadosky’s family came up in 2005, during a three month stay in Argentina,
in a antiquarian bookstore just a few steps from the Casa Rosada in Buenos Aires.
The proprietor, upon hearing I was a mathematician, remembered his own youth and
a compelling Professor Manuel Sadosky. He remembered that the Professor had a
daughter and asked after her. This was the third or fourth conversation of this type
I had in that lovely city! It is a privilege to work on the beautiful subject of mathe-
matics. Even more so to have passion, and insights that others will carry forward.

Preliminaries

Principal Values

We make no assertion about principal values of the Hilbert transform, and do not
expect them to exist in the generality in which we are considering. One can then be
concerned about how the definition is made. There are a couple of different options.
One can impose some sort of truncation on the integrals, and the statements of
the theorems are then understood to be uniform over all truncations. Many of the
different possible truncations will be equivalent, since the A2 condition will hold,
see [31] for a general discussion of this issue. Alternatively, one can formally define

hH� f ; giw �
Z Z

f .y/g.x/
dy dx

y � x

for all f ; g which have closed supports that are a positive distance apart, and extend
H linearly from there.
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In our proof, all of the essential difficulties in the proof arise when f and g have
widely separated supports. The definition of H� in this case is of course by the
formula above.

Dyadic Grids and Haar Functions

A grid is a collection D of left closed, right open intervals so that for all I; J 2 D,
I\ J D ;; I; J. Further say that D is a dyadic grid if for all integers n, the collection
fI 2 D W jIj D 2ng partitions R, aside from the endpoints of the intervals.

For a sub collection F of a dyadic grid D, set 	F I to be the minimal element of
F that contains I; I need not be a member of F. Set 	1F I to be the minimal member
of F that strictly contains I, inductively define 	 tC1

F I D 	1F .	
t
F I/.

Say that the collection D is admissible for weight � if � does not have a point
mass at any endpoint of an interval I 2 D.

Haar Functions

Let D be admissible for � be a weight on R. If I 2 D is such that � assigns non-zero
weight to both children of I, the associated Haar function is chosen to have a non-
negative inner product with the independent variable, hx; h�I .x/i� � 0, a convenient
choice due to the central role of the energy inequality, (19).

h�I .x/ �

s
�.I�/�.IC/

�.I/

 
IC.x/

�.IC/
�

I�.x/

�.I�/

!
: (10)

In this definition, we are identifying an interval with its indicator function, and
we will do so throughout the remainder of the paper. This is an L2.�/-normalized
function, and has � -integral zero. If � is supported only on one child of I, then we
set h�I � 0.

For any dyadic interval I0 with �.I0/ > 0, the non-zero functions among
f�.I0/�1=2I0g[fh�I W I 2 D; I � I0g form an orthonormal basis for L2.I0; �/. We will
use the notation L20.I0; �/ for the subspace of L2.I0; �/ of functions with mean zero.
It has orthonormal basis consisting of the non-zero functions in fh�I W I 2 D; I � I0g.
These are familiar properties. But, another familiar property, that the positive and
negative values of h�I are comparable in absolute value, fails in a dramatic fashion
for non-doubling measures. See Fig. 4.

We will use the notations E�I f D �.I/�1
R

I f d� , Of .I/ D hf ; h�I i� , as well as the
equality below, holding for those I with h�I 6� 0.


�
I f D hf ; h�I i�h�I D ICE

�
I
C

f C I�E
�
I
�

f � IE�I f : (11)
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Fig. 4 Two Haar functions. For the left function, the weight is nearly equally distributed between
the two halves of the interval, in sharp contrast to the function on the right, in which the weight on
the right half is much larger than on the left

This is the familiar martingale difference equality, and so we will refer to 
�
I f

as a martingale difference. It implies the familiar telescoping identity E
�
J f DP

I W I�J E
�
J


�
I f :

The Haar support of a function f 2 L2.�/ is the collection fI W Of .I/ ¤ 0g.

Random Dyadic Grids

Let bD be the standard dyadic grid in R, thus all intervals Œ0; 2n� for n 2 N are in bD.
A random dyadic grid D is specified by ! D f!ng 2 f0; 1g

Z, and the elements are

I D OI PC! � OI C
X

n W 2�n<jIj

2�n!n; OI 2 bD:

The natural uniform probability measure P is placed upon f0; 1gZ.
Fix 0 < " < 1 and r 2 N. An interval I 2 D is said to ."; r/-good if for all

intervals J 2 D with jJj � 2r�1jIj, the distance from @J and either child of I is at
least jIj"jJj1�". Otherwise I is said to be ."; r/-bad. These are the basic properties of
this definition.

Proposition 2.1 These three properties hold.

(1) The property of I D OI PC! being ."; r/-good only depends upon ! and jIj.
(2) pgood � P.I is ."; r/-good/ is independent of I.
(3) pbad � 1 � pgood � "�12�"r.

Proof An interval I D OI PC! is equally likely to be the left or right half of its parent
	1DI, depending only on !n, where jIj D 2n. Similarly, I is equally likely to be
any one of the 2t potential positions in 	 t

DI, and its exact position is determined by
f!n; : : : ; !nCt�1g. This proves the first two claims.

For the last, if I is bad, then for some t > r, there holds dist .I; @	 t
DI/ �

2.1�"/tjIj. For this to happen, it is necessary that the numbers f!s W nCd.1� "/te <
u � nC t � 1g all be equal, and hence are either all 0 or all 1. This clearly proves
that
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pbad �

1X
tDrC1

21�.t�d.1�"/te/ � "�12�"r:

ut

This elementary proposition is used in the following fundamental way. Fix two
weights w; � . With probability one, a random D is admissible for both w and � .
Indeed, the collection of points that are point masses for one of the two weights is
a fixed countable collection of points. And any fixed point has probability zero of
being an endpoint of an interval in D. Hence, we can, with probability one, define
the Haar basis adapted to these two weights. Write the identity operator on L2.�/ by

P�goodf C P�badf where P�goodf �
X

I2D W I is .";r/-good

hf ; h�I i�h�I :

Use the same notation for the weight w.

Proposition 2.2 There holds

EkP�badfk2� � "�12�"rkfk2� :

Proof The location of I and the property of I being bad are independent, hence

EkP�badfk� D E

X
I2D

1I is bad Of .I/
2 D pbadE

X
I2D

Of .I/2 D pbadkfk
2
�

and then the proposition follows. ut

Lemma 2.3 For any constant 1 � C < 1, 0 < " < 1, there is a choice of r 2 N

sufficiently large so that this holds. Let w; � be a pair of weights for which the
constant H and the constant N in (1) are finite. Suppose there holds uniformly over
admissible dyadic grids D,

jhH�P�goodf ;Pw
goodgiwj � CHkfk�kgkw; (12)

then, N � 2CH.

Proof Use Proposition 2.2 on the good and bad projections, as written and the same
version for L2.w/.

jhH� f ; giwj � E
˚
jhH�P�goodf ;Pw

goodgiwj C jhH�P�goodf ;Pw
badgiwj

C jhH�P�badf ;Pw
goodgiwj C jhH�P�badf ;Pw

badgiwj
�
:

The first term is controlled by the assumption (12), and the remaining terms are
controlled by the finiteness of N and average-norm estimate on the bad projection.
By appropriate selection of f 2 L2.�/ and g 2 L2.w/, there holds
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N�0 � CHC C0"�12�"r=2N�0 :

For any fixed ", we can take r � "�1 log "�1, so that the second term can be absorbed
into the left hand side. ut

Context and Discussion

The random grid method was pioneered in [36], and is a critical tool in non-
homogeneous analysis [56], where the weights need not be doubling. It has
a broader set of uses, as witnessed by a powerful representation of a general
Calderón-Zygmund operator as a rapidly convergent sum of dyadic operators due
to Hytönen [13].

The parameterization of the grids used here follows Hytönen [12], but the
statistics of this parameterization are those of the random shift in Nazarov-Treil-
Volberg [35, 36].

Necessary Conditions

Herein, we take up the necessity of the A2 condition from the norm inequality.
Following that is the monotonicity property, an essential property of the Hilbert
transform, and then showing the necessity of the energy inequality from the A2 and
interval testing condition. The energy inequality is foundational to the proof.

The A2 Condition

The A2 condition has different forms, and so we clarify the language associated with
the A2 condition here. The simple A2 condition is

sup
I

�.I/

jIj
�

w.I/

jIj
;

the supremum formed over all intervals I. This reduces to the classical Muckenhoupt
condition if w.dx/ D w.x/dx, where w.x/ > 0 a.e., and �.dx/ D w.x/�1dx. Next,
are the half-Poisson conditions:

sup
I

P.�; I/
w.I/

jIj
<1:
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Finally there is the full Poisson A2 condition

sup
I

P.�; I/ � P.w; I/ <1 (13)

and of course, we only use the Poisson condition with holes, of Hytönen [15].
We verify that the Poisson A2 condition (3) is necessary for the two weight
inequality (1).

Proposition 3.1 Assume that the pair of weights do not share a common point
mass, and that the norm inequality (1) holds. Then, the A2 condition (3) holds.

Proof Fix the interval I D .a; b/ as in (3), and let a 2 I. We will estimate half of
the Poisson integral of w using the notation

pI.x/
2 �

jIj

.jIj C dist.x; I//2
1Œb;1/ (14)

so that P.w � Œb;1/; I/ D kpI � Œb;1/k2L2.w/. Below, we estimate the right half of the
Poisson integral of w.

�.I/

jIj1=2
� P.w � Œb;1/; I/ �

Z
I

Z 1

b

1

jIj C dist.x; I/
�
1

y � x
w.dx/ �.dy/

D hH� .I/; pIiw � N�.I/1=2kpIkw:

Rearranging,

�.I0/

jIj
� P.w � .a;1/; I/ � N2: (15)

Clearly, the same inequality holds for .�1; a�. ut

The Monotonicity Principle

Certain kinds of off-diagonal estimates for the Hilbert transform have concrete
estimates in terms of the Poisson integral. This estimate makes this precise, and
shows moreover that we need not be that careful about exactly which function
appears in the Poisson integral. It is at the core of the entire proof.

Lemma 3.2 (Monotonicity Principle) Suppose that the two weights � and w
satisfy the A2 bound, and neither has a point mass at an endpoint of I. Let J � I.
There holds for any g 2 L2.J;w/, with w-integral zero,

P.�.R � I/; I/
D x

jIj
; g
E
w
� hH.�.R � I//; giw: (16)
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Fig. 5 An illustration of the
monotonicity principle

Here, g D
P

J0

jbg.J0/jhw
J0

, is a Haar multiplier applied to g. Suppose that J � I
is good, with 2rjJj � jIj. Then for any two compactly supported weights j�j � �

supported off of the interval I, there holds

jhH�; giwj � hH�; giw ' P.�; J/
˝ x

jJj
; g
˛
w: (17)

Note that in the first estimate, the Poisson term is always estimated above by
an inner product involving the Hilbert transform. In the second, note that the inner
product can always be made larger by making the weight positive. Moreover, under
moderate assumptions on the support of the weight, the first inequality can be
reversed. See Fig. 5. In that figure, the function � is outside of 2r.1��/J, so that H� is
a smooth increasing function on J. Moreover, the derivative of H� is approximately
jJj�1P.�; J/. So, if we form an inner product with the Haar function hw

J , we only
need to be concerned with the linear approximation to H�. However, the conditions
to get the reversal are particular, and this drives the case analysis in different sections
of the proof.

Proof We consider the first estimate. By linearity, it suffices to consider the case
of g.x/ D hw

J .x/, for J � I, and indeed we can take J D I. We need to separate
the two weights involved. The A2 condition is the only condition needed for the
weak-boundedness principle, Proposition 7.4. Applying it in this setting, notice that
it shows that for � > 1,

jhH� .�I � I/; hw
I ij � A

1=2
2

p
�.�I � I/:

The assumption that � does not have mass at the endpoints of I implies that �.�I�I/
can be made arbitrarily small, as � # 1. Therefore, it suffices to consider H� .R��I/,
for some fixed � > 1.
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Then estimate

hHc.� � .R � �I//; hw
I iw D

Z
R��I

Z
J

1

y � x
hw

J .x/ w.dx/�.dy/

D

Z
R��I

Z
I

�
1

y � x
�

1

y � xJ

�
hw

I .x/ w.dx/ �.dy/

D

Z
R��I

Z
I

x � xJ

.y � x/.y � xJ/
hw

I .x/ w.dx/ �.dy/

�
Z
R�I

Z
I

jIj

.jIj C dist.y; I//2
�

x � xJ

jIj
hw

I .x/ w.dx/ �.dy/

D P.� � .R � �I/; I/
˝ x

jIj
; hw

I

˛
w:

Here, xJ is the center of J, and it can be inserted for the usual reason that hw
J has

w-integral zero. Then, use the fact that .x� xJ/hw
J � 0, and that .y� x/.y� xJ/ > 0.

So (16) holds.
The second inequality (17) comes with the assumption that J � I, 2rjJj < jIj,

whence dist.J; I/ > jJj�jIj1�� � 2r.1��/jJj. Namely, the support of hw
J and that of

� are separated. Then, inserting a constant as we can since the Haar function has
integral zero,

hH�; hw
J iw D

Z
R�I

Z
J

˚ 1

y � x
�

1

y � xJ

�
hw

J .x/ �.dy/w.dx/

D

Z
R�I

Z
J

x � xJ

.y � x/.y � xJ/
hw

J .x/ �.dy/w.dx/

Notice that the integrand is non-negative, hence we can make the integral bigger
in absolute value by replacing j�j by �. This is the first inequality in (17). For the
second equivalence, by the separation in supports, we have 1

.y�x/.y�xJ/
' 1

.y�xJ/2
in

the range of integration. And this finishes the proof. ut

The Energy Inequality

The energy inequality is phrased in terms of the quantity

E.w; I/2 � jIj�2Ew
I

ˇ̌
x � I � E

w
I x
ˇ̌2
D jIj�2

X
J W J�I

hx; hw
J i
2
w: (18)

Lemma 3.3 (The Energy Inequality) For any interval I0 and any partition P of
I0 into intervals such that neither � nor w have point masses at the endpoints, there
holds
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X
I2P

P.�.I0 n I/; I/2E.w; I/2w.I/ � C0H
2�.I0/: (19)

Here, C0 is an absolute constant.

Proof It follows from (16), viewed in dual fashion, that

P.�.I0 n I/; I/2E.w; I/2w.I/ � kH.�.I0 n I// � Ik2w

� kH.� � I0/ � Ik2w C kH.� � I/ � Ik2w
� kH.� � I0/ � Ik2w C T2�.I/:

Above, we have appealed to the testing assumption (4). Summing over I 2 P , the
second term above is clearly no more than T2�.I0/. And the second term is no more
than

kH.� � I0/ � I0k
2
w � T2�.I0/:

ut

Context and Discussion

In the absence of common point masses, the necessity of the full A2 condition,
namely (13), was easily available, with an argument of Sergei Treil already pointed
out by Sarason in his note [51]. This argument, based upon complex variables,
has close analogs in [38, 56]. A real variable proof is in [20], it is essentially an
elaboration of the argument in the early paper of Muckenhoupt and Wheeden [33].
Despite the necessity, only the half Poisson A2 condition is used, together with
testing, in the proof of sufficiency, in the case of no common point masses.

Higher dimensional extensions of the A2 which are not straight forward, are
discussed in [19]. There are notable distinctions important to higher dimensions.
First, the necessary Poisson type condition only comes in its ‘half’ form. Second,
the power on the Poisson kernel comes as the square of the dimension of the kernel
involved, a feature familiar from the analysis of reproducing kernel spaces. Third,
the degree of the Poisson kernel matches the important derivative Poisson decay,
important to energy considerations, only when the dimension of the kernel is one.

The energy inequality was influenced by the following assumption placed upon
the pair of weights in [38, 56]. Assume that there is a finite constant P so that for all
intervals I0, and all partitions P of I0 into intervals,

X
I2P

P.� � I0; I/
2w.I/ � P2�.I0/: (20)
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Also assume that the dual inequality holds. In the language of Nazarov-Treil-
Volberg, this is the pivotal condition. They proved

Theorem C Assume that w and � do not share a common point mass. Then, there
holds N � A

1=2
2 C TC P.

This is a very strong Theorem, with an important proof. It decisively used the
tools of non-homogeneous harmonic analysis, namely random grids, and good-
bad projections. The pivotal condition controlled certain degeneracies in the pair
of weights, compare to Definition 4.3. To illustrate the difficulties in the general
case, we prove this theorem in section “Proof Under the Pivotal Assumption”.

The pivotal condition holds if the pair of maximal function estimates hold,
namely M� W L2.�/ 7! L2.w/ and Mw W L2.w/ 7! L2.�/. This is easy to see.
From (20),

X
I2P

P.� � I0; I/
2w.I/ �

X
I2P

inf
x2I

M.� � I0/.x/
2w.I/

�

Z
I0

M.� � I0/
2 dw � �.I0/;

by the assumed norm bound on the maximal function. One sees that Theorem C
offered a complete characterization of the two weight inequality for the triple of
operators .H� ;M� ;Mw/. If the pair of weights are doubling, then the boundedness
of the maximal functions is a consequence of the A2 condition.2 The full character-
ization of the boundedness of the Hilbert transform was thus known for doubling
measures. See [56].

The pivotal condition is generic in the following sense. Assuming the pivotal
condition, the Hilbert transform can be replaced by a generic Calderón-Zygmund
operator with one derivative on its kernel. This, and its extension to operators with
a rougher kernel, was fundamental in the paper [45], whose main result was an
important intermediate one in the solution of the A2 conjecture [13].

Nazarov-Treil-Volberg, in language reminiscent of Sarason, wrote that ‘perhaps
the pivotal condition is necessary’ for the boundedness of the Hilbert transform. This
turned out to have a strong measure of truth, in that using the specific structure of the
Hilbert transform, the energy inequality was shown necessary in [20]. Note that one
can formally obtain the pivotal condition (20) from the energy inequality (19) by
raising the energy term E.w; I/ to the zero power, rather than the necessary power 2.
The paper [20] then adapted the approach of [38, 56], essentially imposing a new
weaker condition on the pair of weights in which one raised the energy to a power
intermediate between 0 and 2. In addition, that paper provided an explicit example,

2Alternatively, under the assumption of w being doubling, check that the energy satisfies E.w; I/ �
1, with the implied constant depending upon the doubling constant. Thus, the necessary energy
inequality implies the pivotal condition.
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Fig. 6 The function jIj
jIj2Cjx�xI j

2 are graphed for three separate intervals

recounted in section “Example Weights”, that showed that the pivotal condition (20)
is not necessary for the boundedness of the Hilbert transform.

The energy inequality is rather subtle. The Poisson term P.�; I/ can be much
larger than the simple average, but this is compensated for with the terms
E.w; I/2w.I/. The Fig. 6 is offered to provide some insight into the ‘long tails’
that the Poisson term can have.

Another indication of this subtlety is the observation that the energy inequality
will not follow from just the A2 condition. Given interval I0, and partition P of I0,
one can write

X
I2P

P.�; I/2E.w; I/2w.I/ � A2

X
I2P
jIj � P.�; I/2

D A2

Z
I0

X
I2P

jIj2

.jIj C dist.x; I//2
�.dx/:

To finish, one would have to know that the function inside the integral is bounded.
But, this is not true in general. Though a very tame BMO function, this fact does
not help, since � is a general measure, and need not satisfy any A1 type condition.
Indeed, the proof of the main theorem would be more or less classical if the weights
satisfy a A1 type conditions.

The monotonicity principle, Lemma 3.2, was noted in [21]. It, with the energy
inequality, are essential aspects of the proof.

Global to Local Reduction

Our aim is to prove the estimate (12),

supjhH�P�goodf ;Pw
goodgiwj � Hkfk�kgkw:
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That is, the bilinear form only needs to be controlled for ."; r/-good functions f D
P�goodf and similarly for g, goodness being defined with respect to a fixed dyadic
grid. Suppressing the notation, we write ‘good’ for ‘."; r/-good,’ and it is always
assumed that the dyadic grid D is fixed, and only good intervals are in the Haar
support of f and g. We clearly remark on goodness when the property is used; any
value of 0 < " � 1

4
is sufficient for our purposes. The symbol " is kept throughout,

as a guide to the appearance of the good property of intervals.
The inequality above is reduced to the local estimate, (32), at the end of this

section. It is sufficient to assume that f and g are supported on an interval I0; by
trivial use of the interval testing condition, we can further assume that f and g are of
integral zero in their respective spaces. Thus, f is in the linear span of (good) Haar
functions h�I for I � I0, and similarly for g.

The distinction between J � I and J � I (J � I and 2rjJj � jIj) forces some
case analysis. This is further simplified by this assumption on the Haar supports of
f ; g. There are two integers sf ; sg such that

f D
X

I W I�I0
log2jIj2sf CrZ


�
I f (21)

and similarly for g. Thus, the lengths of the (good) intervals I are restricted to an
equivalence class mod r, which is to say that the scales of f are separated by r,
and the same for g. This will be a convenience at a few technical points below. Set
Df � fI W log2jIj 2 sf � 1 C rZg, so these are the children of the intervals that
appear in (21). Due to the probabilistic way in which the grids are constructed, we
can further assume that I0 2 Df . Also set Dg � fI W log2jIj 2 sg C rZ.

We are to control the bilinear form

hH� f ; giw D
X

I;J W I;J�I0

hH�

�
I f ; 
w

J giw: (22)

The sum is broken into many summands, as is typical in these arguments, but the
manner in which it is done has some important points below. The most important of
these are the two ‘triangular’ forms

Babove.f ; g/ �
X

I W I�I0

X
J W J�IJ

E
�
IJ

�

I f � hH� IJ; 

w
J giw (23)

and the dual form, Bbelow.f ; g/. Here, J � I means that J � I and 2rjJj � jIj,
in words ‘J is strongly contained in I’. And the interval IJ is the child of I that
contains J. Goodness of J justifies the use of this condition. A basic fact, proved in
section “Elementary Estimates”, is

Lemma 4.1 There holds

ˇ̌
hH� f ; giw � Babove.f ; g/ � Bbelow.f ; g/

ˇ̌
� Hkfk�kgkw:
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Thus, the main technical result is as below; it immediately supplies our main
theorem.

Theorem 4.2 There holds

jBabove.f ; g/j � Hkfk�kgkw:

The same inequality holds for the dual form Bbelow.f ; g/.

The remainder of this section is devoted to a reduction of the global Theorem 4.2
to a local estimate described in section “The Stopping Form”. In the local estimate,
the function f is more structured in that it has bounded averages on a fixed interval,
and the pair of functions f ; g are more structured in that their Haar supports avoid
intervals that strongly violate the energy inequality. Still the argument to control this
term requires a subtle recursion.

We construct stopping data, which accomplishes two ends, in that it will control
certain telescoping sums of martingale differences of f , and that it controls certain
degeneracies in an energy estimate on the weights.

Definition 4.3 Define F , the stopping intervals, recursively by initializing I0 2 F ,
and in the recursive step, if F 2 F is minimal, add to F the maximal subintervals
F0 � F, with F0 2 Df , either

f stopping E
�
F0

jf j > C˛f .F/ � E
�
Fjf j.

Energy Stopping kH� .F n F0/ � F0k2w � CH2�.F0/.

That is, we stop if either the average of f becomes too large, or, essentially, the
energy condition becomes too large.

For appropriate constant C, it follows that F is � -Carleson, namely

X
F02F W F0�F

�.F0/ � 1
10
�.F/; F 2 F : (24)

Many properties of the � -Carleson property are used below. But, also note the
following property:

jE�I f j � C˛f .	F I/ (25)

We will use the notation

P�Ff �
X

I2D W 	F IDF


�
I f ; F 2 F : (26)

and a dual projection Qw
Fg, is defined similarly, but importantly, we replace 	FJ D

F by P	FJ D F, meaning that F is the smallest interval in F such that J � F. (Note
that both are projections, but P�Ff is a structured function, while Qw

Fg is not.) The
� -Carleson property allows us to estimate
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X
F2F
f˛f .F/�.F/

1=2 C kP�Ffk� gkQ
w
Fgkw

�

" X
F2F
f˛f .F/

2�.F/C kP�Ffk2� g �
X
F2F
kQw

Fgk2w

#1=2
� kfk�kgkw:

(27)

We will refer to as the quasi-orthogonality argument. It holds only under the
assumption that the projections Qw

F are pairwise orthogonal. It is very useful.
We henceforth concentrate on the ‘above’ forms, with all considerations applying

in their dual formulation to control the ‘below’ forms. Return to the double sum (22),
and define

Babove
F ;loc.f ; g/ �

X
F2F

Babove.P�Ff ;Qw
Fg/: (28)

The global to local reduction is:

Corollary 4.4 (Global to Local Reduction) There holds

ˇ̌
Babove.f ; g/ � Babove

F ;loc.f ; g/
ˇ̌
� Hkfk�kgkw:

Proof Observe that Babove.f ; g/ is a sum over pairs of intervals .I; J/ with J � IJ ,
whence P	FJ � 	F I. Now, the case of P	FJ D 	F I is contained in the form
Babove
F ;loc.f ; g/, hence we need only concern ourselves with the case of P	FJ � 	F I,

that is, we need only bound

X
F2F

X
F02F
F0

�F

Babove
F .P�Ff ;Qw

F0

g/:

Set gF � Qw
Fg. The sum in question is

X
F2F

X
I W I�F

E
�
IJ

�

I f � hH� IF; gFiw: (29)

We invoke, for the first time, the Hilbert-Poisson exchange argument: (a) Replace
the argument of the Hilbert transform by a stopping interval. (b) Invoke the stopping
tree construction to control the sum of martingale differences of f . (c) Apply interval
testing, on the stopping interval. (d) Use the monotonicity principle to dominate the
complementary term in terms of a Poisson integral. (e) Analyze the Poisson term.
(f) Use quasi-orthogonality, as needed.
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The argument of the Hilbert transform is IF, the child of I that contains F. Write
IF D F C .IF � F/, and use linearity of H� . Note that by the standard martingale
difference identity and the construction of stopping data,

ˇ̌
ˇ X

I W I�F

E
�
IF

�

I f
ˇ̌
ˇ � ˛f .F/; F 2 F :

Hence, invoking interval testing,

ˇ̌
ˇX

F2F

X
I W I�F

E
�
IF

�

I f � hH�F; gFiw

ˇ̌
ˇ � X

F2F
˛f .F/

ˇ̌
hH�F; gFiw

ˇ̌

� H
X
F2F

˛f .F/�.F/
1=2kgFkw:

Quasi-orthogonality bounds this last expression.
For the second expression, when the argument of the Hilbert transform is IF �F,

is the objective of section “The Remaining Part of the Global Estimate”. We have
proved

ˇ̌
ˇX

F2F

X
I W I�F

E
�
IJ

�

I f � hH� IF; gFiw

ˇ̌
ˇ � Hkfk�kgkw: (30)

This completes the Hilbert-Poisson exchange argument.

ˇ̌
ˇ X

I W I�F

E
�
IF

�

I f � .IF � F/
ˇ̌
ˇ � ˆ �

X
F02F

˛f .F
0/ � F0; F 2 F :

Therefore, the monotonicity property (17) applies, and yields

ˇ̌
ˇ X

I W I�F

E
�
IF

�

I f � hH� .IF�F/; gFiw

ˇ̌
ˇ � X

J2J �.F/

P� .ˆ �F
c; J/

D x

jJj
; JgF

E
w
; F 2 F :

(31)
Here gF �

P
J2J .F/ W J�FjOg.J/j � h

w
J , so that every term has a positive inner product

with x, and J �.F/ are the maximal good intervals J � F, and J 2 Dg. (If J 62 Dg,
then hg; hw

J iw D 0, by choice of g at the beginning of the proof.)
The control of the sum over F 2 F of (31) ut

It remains to control Babove
F ;loc.f ; g/. Keeping the quasi-orthogonality argument in

mind, appropriate control on the individual summands is enough to control it. To
describe what has been done, one must note that the functions P�Ff need not be
bounded. But, we are only concerned with averages over intervals where the average
will be bounded. In addition this function and Qw

Fg are well-adapted to the pair
of weights w; � . The next lemma, combined with the quasi-orthogonality estimate
clearly completes the proof of the Theorem.
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Lemma 4.5 (The Local Estimate) For each F 2 F , there holds

jBabove.P�Ff ;Qw
Fg/j � Hf˛f .F/�.F/

1=2 C kP�Ffk�gkQ
w
Fgkw: (32)

The first step in the proof of the Lemma above is to invoke the Hilbert-Poisson
exchange argument again, but we will arrive at a Poisson term which falls outside the
immediate scope of the energy inequality. Focusing on the argument of the Hilbert
transform in (32), we write IJ D F� .F� IJ/. When the interval is F, and J is in the
Haar support of Qw

Fg, notice that the scalar

˛f .F/"J �
X

I W J�I�F

E
�
J


�
I f

is bounded by an absolute constant, by construction of the stopping intervals.
Indeed, by the telescoping identity for martingale differences,

˛f .F/"J D
X

I W I��I�F

E
�
I�


�
I f D E

�
IJ

f ;

which is at most C˛f .F/, since P	FJ D F. Therefore, we can write

ˇ̌
ˇ X

I W I�F

X
J W J�I

E
�
J


�
I f � hH�F; 
w

J gi
ˇ̌
ˇ � ˛f .F/

ˇ̌
ˇ˝H�F;

X
J W J�F

"J

w
J g
˛
w

ˇ̌
ˇ (33)

� T˛f .F/�.F/
1=2
��� X

J W J�F

"J

w
J g
���

w
� T�.F/1=2kgkw:

(34)

This uses only interval testing and orthogonality of the martingale differences, and
it matches the first half of the right hand side of (32).

When the argument of the Hilbert transform is F � IJ , this is the stopping form,
the last component of the local part of the problem. It requires a subtle recursion,
described in section “The Stopping Form”.

Context and Discussion

Many T1 theorems have arguments, sometimes subtle ones, about telescoping
sums which collapse. These arguments are systematically handled herein with the
stopping data, as opposed to more intricate Carleson measure arguments.

The use of the energy stopping intervals is motivated by the use of the
corresponding intervals, under the pivotal condition (20), in [38, 56]. However, the
pivotal condition is not necessary for the two weight inequality, while the energy
inequality is necessary from the A2 and interval testing conditions.
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Initial arguments had largely ignored the structure of the pair of functions f ; g
in the inner product hH� f ; giw, instead concentrating on proving an intricate series
of Carleson measure type estimates. This changed with the argument of [21], which
introduced Calderón-Zygmund stopping intervals, and the quasi-orthogonality argu-
ment into the subject. It was only then that the role of the global to local step was
identified, but not proved. Stopping data also allows us to avoid the subtle problem
of absence of canonical paraproducts. Attempts to introduce them induce ad hoc
elements into the proof.

This section begins with the elementary and familiar Lemma 4.1, and then argues
that the control of the triangular form Babove.f ; g/ splits into the ‘global to local’ and
the ‘local’ part. The authors of [23] only had the first reduction. And, using the
techniques of that paper, could prove

Theorem D ([23]) There holds jBabove.f ; g/j � fH C B1gkfk�kgkw,
where H D A

1=2
2 C T, and the remaining constant is the best constant in

jBabove.f ; g/j � B1�.I0/
1=2kgkw;

where jf j � 1I0 , and I0 is any interval. The corresponding estimate holds for the
dual from Bbelow.f ; g/.

This is a powerful Theorem, strongly suggesting that the A2 condition and testing
the Hilbert transform over bounded functions is sufficient for the L2 boundedness of
H� . But, there is no obvious way to deduce such a result from the Theorem above.
Phrasing things differently, it can be very difficult to translate partial information
about the triangular form Babove.f ; g/ to information about hH� f ; giw, a potentially
serious obstacle if a richer theory of two weight inequalities for singular integrals is
to be developed.

The parallel corona was introduced in [22] to surmount this obstacle. With it, the
result that could be proved the first real variable characterization of the two weight
inequality for any continuous singular integral.

Theorem E (Lacey Sawyer Shen Uriarte-Tuero [22]) There holds N ' A
1=2
2 C

T1, where the latter constant is the best constant in the inequalities below, uniform
over all intervals I, and Borel subsets E � I.

Z
I
jH�1Ej

2 dw � T21�.I/;
Z

I
jHw1Ej

2 d� � T21w.I/:

(One tests the Hilbert transform on 1E, but only the weight of the interval I appears
on the right.)

The parallel corona delays the application of Lemma 4.1, this feature combined
with a special function theory specific to Haar expansions for non-doubling
measures, were the critical ingredients.



Two Weight Hilbert 37

The parallel corona has been used to give short transparent proofs of two weight
inequalities for singular integrals. See the last page of Hytönen’s survey [14] and
the article of Tanaka [55].

It is natural to wonder if there are any Lp analogs of the main Theorem. We have
some clues as to how this might work, in the more complicated testing conditions
of Vuorinen [57, 58]. One could see that the global to local reduction would work
under variants of these more complicated testing conditions. The control of the local
term is however a heavily Hilbertian argument, and so potentially very difficult to
extend to an Lp-setting.

The Remaining Part of the Global Estimate

The last part of the global-to-local part of the arugment is this Lemma.

Lemma 5.1 Using the notation of section “Global to Local Reduction”, there holds

ˇ̌
ˇX

F2F

X
I W I�F

E
�
IF

�

I f � hH� .IF n F/; gFiw

ˇ̌
ˇ � Hkfk�kgkw: (35)

Our method of proof has these elements. (a) Use monotonicity to pass to a
positive operator. (b) Identify the inequality needed as an instance of a two weight
inequality, but not for general functions, only one fixed function, and a derived
weight� D ��;w;f that is well-adapted to the function; (c) Invoke the parallel corona
method to prove the desired two weight inequality. Along the way, we will identify
simplifications of the general case of a two weight inequality for a positive operator.

Begin the proof by observing that

ˇ̌
ˇ X

I W I�F

E
�
IF

�

I f � .IF � F/
ˇ̌
ˇ � ˆ �

X
F02F
F0

�F

˛f .F
0/ � F

0

F; F 2 F :

where F
0

F D F0 n F00, with F00 being the F-child of F0 that contains F. Also, by
monotonicity, the left-side of (35) is at most

X
F2F

X
J�2J �.F/

P
� X

F02F
F0

�F

˛f .F
0/ � F

0

F; J
�
	 X

J W J�J�

P	F JDJ�

D x

jJ�j
; h�J

E
�
jhg; hw

J iwj:

The desired estimate is a consequence of new L2-estimate for the modified
Poisson operator

QPf .x; t/ D
Z

f .y/

t2 C .x � y/2
dy (36)
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which is extended to QPf .I/ D Pf .xI ; jIj/. The relevant measure on the upper half-
plane is given by

� WD
X
F2F

X
J�2J �.F/

ıxJ�
;jJ�j

X
J W J�J�

P	F JDJ�

hx; hw
J i
2
w: (37)

Finally, the estimate we need is as below, in which we have eliminated the sum of
J 2 J �.

�����
X

F02F
F2ChF .F0/

˛f .F
0/

X
J2J �.F/

QP.F
0

F; J/ � QJ

�����
�

� Hkfk� : (38)

Here, ChF .F0/ is the collection of F-children of F0, and QJ D J � Œ0; jKj� is the
Carleson box over interval J.

This last inequality is in fact universal, in that we could fix the measuer�, replace
f by an arbitrary function, and the inequality is still true. But this fact is not needed.
And, we can use the fact that f and the measure � are related through the stopping
data, to simplify the proof of (38).

Our knowledge of two weight estimates suggest that the inequality (38) is easiest
to prove by duality, and using the joint stopping data on f and the dual function
� 2 L2.R2C; �/, a technique refered to as the parallel corona. We will reduce the
inequality (38) to two testing inequalities. One will be a reformulation of the energy
inequality and the other will be a consequence of the A2 condition.

By duality, the inequality we establish is

X
F02F

F2ChF .F0/

˛f .F
0/

X
J2J �.F/

QP.F
0

F; J/
Z

QJ

� d� � Hkfk�k�k�: (39)

Here, � is a non-negative function, supported on a Carleson cube QJ0 , where J0 2
J � WD

S
F2F J �.F/. We construct stopping intervals G for � , by initializing G D

fJ0g, and setting ˛J0 .g/ D E
�
QJ0
� . In the recursive step, for minimal J 2 G, we add

to G the maximal subintervals J0
� J with J0 2 J � such that ˛g.J0/ WD E

�
QJ0

� >

10˛g.J/. We let 	GI be the minimal element of G that contains I.
Now, in the sum (39), a given interval J that occurs satisfies either 	GJ � F0

or F0
� 	GJ. (Keep in mind that there could be many intervals G 2 G that lie

between J and F0.) This division splits the sum into two terms, the first is the sum
over F0 2 F of

˛f .F
0/

X
F2ChF .F0/

X
J2J �.F/
	GJ�F0

QP.F
0

F; J/
Z

QJ

� d�: (40)
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And the second is sum over G 2 G of

X
F02F
	GF0DG

F0¤G

˛f .F
0/

X
F2ChF .F0/

X
J2J �.F/
	GJDG

QP.F
0

F; J/
Z

QJ

� d�: (41)

The first testing inequality is this inequality, uniform over F0 2 F .

(40) � H˛f .F
0/�.F0/1=2

" X
G2G

	FGDF0

˛�.G/
2�.QG/

#1=2
: (42)

That this completes the bound of (40) is an immediate consequence of quasi-
orthogonality. By Cauchy-Schwarz applied to the right of (42), note that

X
F2F

˛f .F
0/2�.F0/ � kfk2� ;

and as well, by the construction of the stopping data for � ,

X
F2F

X
G2G

	FGDF0

˛�.G/
2�.QG/ � k�k2�:

This completes half of the proof of (39). The other half follows from the second
testing inequality: Uniformly in G 2 G, there holds

(41) � H˛�.G/�.QG/
1=2

" X
F02F
	GF0DG

˛f .F
0/2�.F0/

#1=2
: (43)

It is bounded again by quasi-orthogonality. It remains to prove the two testing
inequalities (42) and (43).

Proof of (42) This is just the energy inequality. By construction

(40) � ˛f .F
0/

X
F2ChF .F/

X
J2J �.F/
	GJ�F0

˛�.	GJ/ QP� .F
0 n F; J/�.f.xJ; jJj/g/:

Of course we use Cauchy-Schwarz on the right above. Recall the definition of �, to
see that this inequality
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X
F2ChF .F/

X
J2J �.F/
	GJ�F0

QP� .F
0 n F; J/2�.f.xJ; jJj/g/

�
X

F2ChF .F/

X
J2J �.F/
	GJ�F0

QP� .F
0 n F; J/2

X
J0 W J0�J

hx; hw
J0

i2w � H2�.F0/

is simply a reformulation of the energy inequality (19).
The other part of the application of Cauchy-Schwarz is

X
F2ChF .F/

X
J2J �.F/
	GJ�F0

˛�.	GJ/2�.f.xJ; jJj/g/ �
X
G2G

	FG2fF0g[ChF .F0/

˛� .	GJ/2�.QG/:

This completes the proof of (42). ut

Proof of (43) In (41), we dominate
R

QJ
� d� � 10E

�
G� � �.QJ/, and then

express (41) using the dual to the operator QP defined in (36). We have

(41) � E
�
G� �

X
F02F
	GF0DG

F0¤G

˛f .F
0/

X
F2ChF .F0/

X
J2J �.F/
	GJDG

QP.F
0

F; J/�.QJ/ (44)

D E
�
G� �

Z
G

X
F02F
	GF0DG

F0¤G

X
F2ChF .F0/

˛f .F
0/ � F0

F

X
J2J �.F/
	GJDG

QP�
�.QJ/ d� (45)

Apply Cauchy-Schwartz in the variable F0, and L2.�/. One of the terms that result is

X
F02F
	GF0DG

˛f .F
0/2�.F0/:

Compare to the right side of (43). The other term is the following inequality, holding
uniformly in G 2 G:

Z
G

X
F02F
	GF0DG

F0¤G

" X
F2ChF .F0/

X
J2J �.F/
	GJDG

F0
F �
QP�
�.QJ/

#2
d� � A2�.QG/: (46)

As the inequlaity shows, this follows from the A2 condition.
An obstacle to a proof is that the sets QJ overlap. This is addressed with the

definition Wj
J D J � .2�j�1; 2�j�, for j � 0. These sets are disjoint in j and J. We

will then show that for each F0 2 F ,
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Z
R

" X
F2ChF .F0/

X
J2J �.F/
	GJDG

F0
F �
QP�
�.W

j
J/

#2
d� � 2�jA2

X
F2ChF .F0/

X
J2J �.F/
	GJDG

�.Wj
J/: (47)

This easily implies (46).
Two additional summing variables are convenient. For integers k � r, we restrict

the sum to J 2 J �.F/ with 2kjJj D jFj. And, for integers ` � k.1 � �/, we further
require that

2`�1jJj � dist.J; @F/ < 2`jJj: (48)

By goodness, ` � k.1 � �/, but there is in general no other condition that we
have here. Then, we prove this estimate, which is (48), with these two additional
restrictions on J. Uniformly in F0 2 F ,

Z
R

" X
F2ChF .F0/

X
J2J �.F/
	GJDG

2k
jJjDjFj; (48) holds

F0

F �
QP�

�.W
j
J/

#2
d� �2�j�k�`A2

X
F2ChF .F0/

X
J2J �.F/
	GJDG

�.Wj
J/:

(49)

In (49), there are at most 2` intervals J. We can therefore pass the square inside
the sum, at cost of a factor of 2`. But,

Z
F0

F

QP�
�.W

j
J/.x/

2 d�.x/ � �.Wj
J/

Z
F0

F

Z
W

j
J

1

Œy22 C jx � y1j2�2
d�.y/ d�.x/ (50)

� �.Wj
J/
2

22`jJj2
QP� .F

0
F; J/ (51)

� 2�2`�2j�.Wj
J/w.J/ QP� .F

0
F; J/ � 2�2`�2jA2�.W

j
J/: (52)

Here, we have used Cauchy-Schwartz, followed by the estimate below, which holds
for x 2 F0

F,

Z
W

j
J

1

Œy22 C jx � y1j2�2
d�.y/ � �.Wj

J/

22`jJj2.jJj2 C jx � xJj2/
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Then, besides disjointness, the sets Wj
J enjoy the estimate �.Wj

J/ � 2�2jjJj2w.J/,
which follows from the definition of � in (37), and the estimate jx; hw

J j
2 � jJj2w.J/.

Finally, we just appeal to the A2 condition. The bound in (52) is multiplied by 2`,
to prove (49). This finishes the proof. ut

Context and Discussion

The inequality (38) is universal. This was first proved in [23], in the case that the
weights did not share a common point mass. It was down by appealing to the Sawyer
theorem [53] on two weight inequalities for the Poisson operator. This technique
does not allow common point masses, however. Addressing this, Hytönen [15]
found a clever way to use dyadic approximates to the ‘Poisson operator with holes,’
by using dyadic approximates to an arbitrary interval, and prinving a novel dyadic
two weight inequality.

The proof herein does not attempt to prove the universal form of (38). Indeed,
this inequality is not needed. Indeed, the close relationship between the function f ,
and the derived measure � in (37) permits a short self-contained proof.

The Stopping Form

The last step in the proof of Theorem 4.2, hence in the proof of the main theorem,
is to show that the local inequality (32) holds. Using the discussion at the end of the
previous section, this amounts to controlling the stopping form. Given an interval
F 2 F , the stopping form is

Bstop
F .f ; g/ �

X
I W 	F IDF

X
J W J�IJ ; P	F JDF

E
�
IJ

�

I f � hH� .I0 � IJ/;

w
J giw: (53)

Lemma 6.1 There holds for each F 2 F ,

jBstop
I0
.f ; g/j � HkP�Ffk�kQ

w
Fgkw: (54)

The stopping form arises naturally in any proof of a T1 theorem using Haar or
other bases. In the non-homogeneous case, or in the Tb setting, where (adapted)
Haar functions are important tools, it frequently appears in more or less this form.
Regardless of how it arises, the stopping form is treated as a error, in that it is
bounded by some simple geometric series, obtaining decay as e. g. the ratio jJj=jIj
is held fixed. (See for instance [38] (7.16).)

These sorts of arguments, however, implicitly require some additional hypothe-
ses, such as the weights being mutually A1. Of course, the two weights above can



Two Weight Hilbert 43

be mutually singular. There is no a priori control of the stopping form in terms
of simple parameters like jJj=jIj, even supplemented by additional pigeonholing of
various parameters.

Our method is inspired by proofs of Carleson’s Theorem on Fourier series
[5, 10, 25], and has one particular precedent in the current setting, a much simpler
bound for the stopping form in [22].

Admissible Pairs

We can assume that f D P�Ff and g D Qw
Fg. For all pair of intervals J � I � F

that we need to consider, we have P	FJ D F, and hence by the Energy Stopping
condition, there holds

P.�.F � IJ/; IJ/E.w; IJ/
2w.IJ/ � C�.IJ/: (55)

For if not, by monotonicity (16), we would have that the interval IJ would be an
energy stopping interval, hence IJ 2 F , and P	FJ D IJ . It is this condition that is our
starting point for the recursion.

A range of decompositions of the stopping form necessitate a somewhat heavy
notation that we introduce here. The individual summands in the stopping form
involve four distinct intervals, namely F; I; IJ , and J. The interval F will not change
in this argument, and the pair .I; J/ determine IJ . Subsequent decompositions are
easiest to phrase as actions on collections Q of pairs of intervals Q D .Q1;Q2/ with
F 	 Q1 � Q2. (The letter P is already taken for the Poisson integral.) And we
consider the bilinear forms

BQ.f ; g/ �
X
Q2Q

E
�
.Q1/Q2


�
Q1 f � hH� .F � .Q1/Q2 /; 


w
Q2giw:

We will have the standing assumption that for all collections Q that we consider are
admissible.

Definition 6.2 A collection of pairs Q is admissible if it meets these criteria. For
any Q D .Q1;Q2/ 2 Q,

(1) Q2 � Q1 � F, and both Q1 and Q2 are good.
(2) (convexity in Q1) If Q00 2 Q with Q00

2 D Q2 and Q00
1 � I � Q1, with I good,

then there is a Q0 2 Q with Q0
1 D I and Q0

2 D Q2.

The first property is self-explanatory. The second property is convexity in Q1,
subject to goodness, holding Q2 fixed, which is used in the estimates on the stopping
form which conclude the argument. A third property is described below.
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We exclusively use the notation Qk, k D 1; 2 for the collection of intervalsS
fQk W Q 2 Qg, not counting multiplicity. Similarly, set QQ1 � f.Q1/Q2 W Q 2 Qg,

and QQ1 � .Q1/Q2 .

(3) Every interval Q2 2 Q2 satisfies P	FQ2 D F (And so, every QQ1 has F-parent F.)

The last requirement comes from the assumption that the functions f and g be
adapted to Fenergy.F/. We will be appealing to different Hilbertian arguments below,
so we prefer to make this an assumption about the pairs rather than the functions f ; g.
The Hilbert space will be the space of good functions in L2.�/ and L2.w/.

Typically, one only ever needs goodness of the small interval, in this case Q2.
We will use the term size.Q/ below, in which it will be apparent that goodness of
the intervals Q1 will be helpful. Namely, at this point goodness is used to as in the
monotonicity principle, to estimate off-diagonal inner products involving the Hilbert
transform by Poisson averages, and to regularize Poisson averages. Both are made
more explicit in section “Upper Bounds on the Stopping Form”.

The stopping form is obtained with the admissible collection of pairs given by

Q0 D f.I; J/ W J � I � F; I and J are good; P	FJ D Fg: (56)

There holds Bstop
F .f ; g/ D BQ0 .f ; g/.

There is a very important notion of the size of Q.

size.Q/2 � sup
K2 QQ1[Q2

P.�.F � K/;K/2

�.K/jKj2
X

J2Q2 W J�K

hx; hw
J i
2
w: (57)

For admissible Q, there holds size.Q/ � H, as follows (55).
More definitions follow. Set the norm BQ of the bilinear form Q to be the best

constant in the inequality

jBQ.f ; g/j � BQkfk�kgkw:

Thus, our goal is show that BQ � size.Q/ for admissible Q, but we will only be
able to do this directly in the case that the pairs .Q1;Q2/ are weakly decoupled in
a collection Q. The relevant decoupling is precisely described in section “Upper
Bounds on the Stopping Form”.

Say that collections of pairs Qj, for j 2 N, are mutually orthogonal if on the one
hand, the collections .Qj/2, of second coordinates of the pairs, are pairwise disjoint,
and on the other, that the collectionsg.Qj/1 are pairwise disjoint. The concept has to
be different in the first and second coordinates of the pairs, due to the different role
of the intervals QQ1 and Q2, which comes up again in the next paragraph.

The meaning of mutual orthogonality is best expressed through the norm of the
associated bilinear forms. Under the assumption that BQ D

P
j2N BQj , and that the

fQj W j 2 Ng are mutually orthogonal, the following essential inequality holds.
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BQ �
p
2 sup

j2N
BQj : (58)

Indeed, for j 2 N, let…w
j be the projection onto the linear span of the Haar functions

fhw
J W J 2 Qj

2g, and use a similar notation for…�
j . We then have the two inequalities

X
j2N

k…w
j gk2w � kgk

2
w;

X
j2N

k…�
j fk2� � 2kfk

2
� :

Since a given interval I can be in two collections Qj
1, we have the factor of 2 in the

second inequality. Therefore, we have

jBQ.f ; g/j �
X
j2N

jBQj.f ; g/j

D
X
j2N

jBQj.…�
j f ;…w

j g/j

�
X
j2N

BQjk…�
j fk�k…

w
j gkw �

p
2 sup

j2N
BQj � kfk�kgkw:

This proves (58).

The Recursive Argument

This is the essence of the matter.

Lemma 6.3 (Size Lemma) An admissible collection of pairs Q can be partitioned
into collections Qlarge and admissible Qsmall

t , for t 2 N such that

BQ � Csize.Q/C .1C
p
2/ sup

t
BQsmall

t
; (59)

and sup
t2N

size.Qsmall
t / � 1

4
size.Q/: (60)

Here, C > 0 is an absolute constant.

The point of the lemma is that all of the constituent parts are better in some way,
and that the right hand side of (59) involves a favorable supremum. We can quickly
prove the main result of this section.

Proof of Lemma 6.1 The stopping form of this Lemma is of the form BQ.f ; g/ for
admissible choice of Q, with size.Q/ � CH, as we have noted in (56). Define

.�/ � supfBQ W size.Q/ � C�Hg; 0 < � � 1;
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where C > 0 is a sufficiently large, but absolute constant, and the supremum is
over admissible choices of Q. We are free to assume that Q1 and Q2 are further
constrained to be in some fixed, but large, collection of intervals I. Then, it is clear
that .�/ is finite, for all 0 < � � 1. Because of the way the constant H enters
into the definition, it remains to show that .1/ admits an absolute upper bound,
independent of how I is chosen.

It is the consequence of Lemma 6.3 that there holds

.�/ � C�C .1C
p
2/.�=4/; 0 < � � 1: (61)

Iterating this inequality beginning at � D 1 gives us

.1/ � CC .1C
p
2/.1=4/ � � � � � C

1X
tD0



1C

p
2

4

�t
� 4C:

So we have established an absolute upper bound on .1/. ut

Proof of Lemma 6.3

We restate the conclusion of Lemma 6.3 to more closely follow the line of argument
to follow. The collection Q can be partitioned into two collections Qlarge and Qsmall

such that

(1) BQlarge � � , where � � size.Q/.
(2) Qsmall D Qsmall

1 [Qsmall
2 .

(3) The collection Qsmall
1 is admissible, and size.Qsmall

1 / � �
4
.

(4) For a collection of dyadic intervals L, the collection Qsmall
2 is the union of

mutually orthogonal admissible collections Qsmall
2;L , for L 2 L, with

size.Qsmall
2;L / � �

4
; L 2 L:

Thus, we have by inequality (58) for mutually orthogonal collections,

BQ � BQlarge C BQsmall
1 [Qsmall

2

� BQlarge C BQsmall
1
C BQsmall

2

� C� C .1C
p
2/max

˚
BQsmall

1
; sup

L2L
BQsmall

2;L

�
:

This, with the properties of size listed above prove Lemma 6.3 as stated, after a
trivial re-indexing.

In a manner similar to the argument of section “Global to Local Reduction”, there
is an induced measure on the upper half-plane that is relevant to our considerations.
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This time it is given by

�Q D � �
X

J2Q2 W J�F

hx; hw
J i
2
wı.xJ ;jJj/; xJ is the center of J:

The tent over L is the triangular region TL � f.x; y/ W jx � xLj � jLj � yg, so that

�.TL/ D
X

J2Q2 W J�L

hx; hw
J i
2
w:

Observe that

size.Q/2 D sup
K2 QQ1[Q2

P.�.F � K/;K/2

�.K/jKj2
�.TK/:

All else flows from this construction of a subset L of dyadic subintervals of F.
The initial intervals in L are the minimal intervals L 2 QQ1 [Q2 such that

P.�.F � L/;L/2

jLj2
�.TL/ �

�2

16
�.L/: (62)

Since size.Q/ D � , there are such intervals L.
Initialize S (for ‘stock’ or ‘supply’) to be all the dyadic intervals in QQ1 [ Q2

which strictly contain some interval in L. In the recursive step, let L0 be the minimal
elements S 2 S such that

�.TS/ � �
X

L2L W L�S
L is maximal

�.TL/; � D 17
16
: (63)

(The inequality would be trivial if � D 1.) If L0 is empty the recursion stops.
Otherwise, update L  L [ L0, and S  fK 2 S W K 6� L 8L 2 Lg. See
Fig. 7.

Once the recursion stops, report the collection L. It has this crucial property: For
L 2 L, and integers t � 1,

X
L0 W 	 t

LL0DL

�.TL0/ � ��t�.TL/: (64)

Indeed, in the case of t D 1, is a criteria for membership in L, and a simple induction
proves the statement for all t � 1.

The decomposition of Q is based upon the relation of the pairs to the collection
L, namely a pair QQ1;Q2 can (a) both have the same parent in L; (b) have distinct
parents in L; (c) Q2 can have a parent in L, but not QQ1; and (d) Q2 does not have a
parent in L.
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Fig. 7 The shaded smaller tents have been selected, and TL is the minimal tent with �.TL/ larger
than � times the �-measure of the shaded tents

A particularly vexing aspect of the stopping form is the linkage between the
martingale difference on g, which is given by J, and the argument of the Hilbert
transform, F � IJ . The ‘large’ collections constructed below will, in a certain way,
decouple the J and the F � IJ , enough so that norm of the associated bilinear form
can be estimated by the size of Q.

In the ‘small’ collections, there is however no decoupling, but critically, the size
of the collections is smaller, and we only have to estimate the maximal operator
norm among the small collections.

Pairs Comparable to L

Define

QL;t � fQ 2 Q W 	L QQ1 D 	
t
LQ2 D Lg; L 2 L; t 2 N:

These are admissible collections, as the convexity property in Q1, holding Q2

constant, is clearly inherited from Q. Now, observe that for each t 2 N, the
collections fQL;t W L 2 Lg are mutually orthogonal. The collection of intervals
.QL;t/2 are obviously disjoint in L 2 L, with t 2 N held fixed. And, since
membership in these collections is determined in the first coordinate by the interval
QQ1, and the two children of Q1 can have two different parents in L, a given interval I
can appear in at most two collections .gQL;t/1, as L 2 L varies, and t 2 N held fixed.

Define Qsmall
1 to be the union over L 2 L of the collections

Qsmall
L;1 � fQ 2 QL;1 W QQ1 ¤ Lg:

Note in particular that we have only allowed t D 1 above, and QQ1 D L is not
allowed. For these collections, we need only verify that



Two Weight Hilbert 49

Lemma 6.4 There holds

size.Qsmall
L;1 / �

p
.� � 1/ � � D

�

4
; L 2 L; t 2 N: (65)

Proof An interval K 2 ˜.Qsmall
L;1 /1 [Q2 is not in L, by construction. Suppose that K

does not contain any interval in L. By the selection of the initial intervals in L, the
minimal intervals in QQ1 [Q2 which satisfy (62), it follows that the interval K must
fail (62). And so we are done.

Thus, K contains some element of L, whence the inequality (63) must fail.
Namely, rearranging that inequality, and using the measure � associated with Qsmall

L;1 ,

�Qsmall
L;1
.TL/ � .� � 1/

X
L02L W L0�K
L0 is maximal

�.TL/ (66)

�
1

16
�.TL/ �

�2

16
�
jKj2 � �.K/

P.�.L � K/;K/2
: (67)

Here, note that we begin with the measure �Qsmall
L;1

; use � D 1 C 1
16

; and the last
inequality follows from the definition of size. This finishes the proof of (65). ut

The collections below are the first contribution to Qlarge. Take Qlarge
1 �

S
fQlarge

L;1 W

L 2 Lg, where

Qlarge
L;1 � fQ 2 QL;1 W QQ1 D Lg:

Note that Lemma 6.8 applies to this Lemma, take the collection S of that Lemma
to be fLg, and the quantity � in (79) satisfies � � � D size.Q/, by (82). From the
mutual orthogonality (58), we then have

BQlarge
1
�
p
2 sup

L2L
BQlarge

L;1
� �:

The collections QL;t, for L 2 L, and t � 2 are the second contribution to Qlarge,
namely

Qlarge
2 �

[
L2L

[
t�2

QL;t:

For them, we need to estimate BQL;t .
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Lemma 6.5 There holds BQL;t � ��t=2� .

From this, we can conclude from (58) that

BQlarge
2
�
X
t�2

BSfQL;t W L2Lg

�
p
2
X
t�2

sup
L2L

BQL;t � �
X
t�2

��t=2 � �:

Proof For L 2 L, let SL, the L-children of L. For each Q 2 QL;t, we must have
Q2 � 	SL Q2 � QQ1. Then, divide the collection QL;t into three collections Q`

L;t,
` D 1; 2; 3, where

Q1
L;t � fQ 2 QL;t W Q2 � 	SL Q2g;

Q2
L;t � fQ 2 QL;t W Q2 6� 	SL Q2 � QQ1g;

and Q3
L;t � QL;t � .Q1

L;t [ Q2
L;t/ is the complementary collection. Notice that Q1

L;t
equals the whole collection QL;t for t > rC 1.

We treat them in turn. The collections Q1
L;t fit the hypotheses of Lemma 6.8, just

take the collection of intervals S of that Lemma to be SL. It follows that BQ1
L;t

�
ˇ.t/, where the latter is the best constant in the inequality

X
J2.QL;t/2 W J�K

P.�.F � K/; J/2
˝ x

jJj
; hw

J

˛2
w � ˇ.t/2�.K/; K 2 SL; L 2 L; t � 2:

(68)
We will prove the estimate below, which is clearly summable in t 2 N to the estimate
we want.

Lemma 6.6 There holds ˇ.t/ � ��t=2� .

Proof We have the estimate without decay in t, ˇ.t/ � size.Q/, as follows
from (82). Use this estimate for 1 � t � r C 3, say. In the case of t > r C 3,
the essential property is (64). The left hand side of (68) is dominated by the sum
below. Note that we index the sum first over L0, which are r C 1-fold L-children of
K, whence L0 � K, followed by t � r � 2-fold L-children of L0.

X
L02L

	
rC1
L L0DK

X
L002L

	 t�r�2
L L00DL0

X
J2Q2 W J�L00

P.�.F � K/; J/2
˝ x

jJj
; hw

J

˛2
w (69)

(77)
�

X
L02L

	
rC1
L L0DK

P.�.F � K/;L0/2

jL0j2

X
L002L

	 t�r�2
L L00DL0

�.TL00/ (70)
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(64)
� ��tCrC2

X
L02L

	
rC1
L L0DK

P.�.F � K/;L0/2

jL0j2
�.TL0/ (71)

� ��t�2
X
L02L

	
rC1
L L0DK

�.L0/ � �2��t�.K/: (72)

We have also used (77), and then the central property (64) following from the
construction of L, finally appealing to the definition of size. Hence, ˇ.t/ � ���t=2.
This completes the analysis of Q1

L;t. ut

We need only consider the collections Q2
L;t for 1 � t � rC 1, and they fall under

the scope of Lemma 6.9. A variant of (82) shows that BQ2
L;t

� � . Similarly, we need

only consider the collections Q3
L;t for 1 � t � r C 1. It follows that we must have

2r � jQ1j=jQ2j � 2
2rC2. Namely, this ratio can take only one of a finite number of

values, implying that Lemma 6.10 applies easily to this case to complete the proof.
ut

Pairs Not Strictly Comparable to L

It remains to consider the pairs Q 2 Q such that QQ1 does not have a parent in L. The
collection Qsmall

2 is taken to be the (much smaller) collection

Qsmall
2 � fQ 2 Q W Q2 does not have a parent in Lg:

Observe that size.Qsmall
2 / �

p
.� � 1/� � �

4
. This is as required for this collection.

(The collections Qsmall
1 and Qsmall

2 are also mutually orthogonal, but this fact is not
needed for our proof.)

Proof Suppose � < size.Qsmall
2 /. Then, there is an interval K 2 ˜.Qsmall

1 /1[ .Qsmall
2 /2

so that

�2�.K/ �
P.�.F � K/;K/2

jKj2
�Qsmall

2
.TK/:

Suppose that K does not contain any interval in L. It follows from the initial intervals
added to L, see (62), that we must have � � �

4
.

Thus, K contains an interval in L. This means that K must fail the inequality (63).
Therefore, we have

�2�.K/ � .� � 1/
P.�.F � K/;K/2

jKj2
�.TK/ �

�2

16
�.K/:

This relies upon the definition of size, and proves our claim. ut
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For the pairs not yet in one of our collections, it must be that Q2 has a parent
in L, but not QQ1. Using L�, the maximal intervals in L, divide them into the three
collections

Qlarge
3 � fQ 2 Q W Q2 � 	L� Q2 � QQ1g; (73)

Qlarge
4 � fQ 2 Q W Q2 6� 	L� Q2 � QQ1g; (74)

Qlarge
5 � fQ 2 Q W Q2 6� 	L� Q2 �

QQ1; and 	L� Q2 6� QQ1g: (75)

Observe that Lemma 6.8, with (82), gives

BQlarge
3

� �: (76)

Take the collection S of Lemma 6.8 to be L�.
Observe that Lemma 6.9 applies to show that the estimate (76) holds for Qlarge

4 .
Take S of that Lemma to be L�. The estimate from Lemma 6.9 is given in terms of
�, as defined in (94). But, is at most � .

In the last collection, Qlarge
5 , notice that the conditions placed upon the pair

implies that jQ1j � 2
2rC2jQ2j, for all Q 2 Qlarge

5 . It therefore follows from a straight
forward application of Lemma 6.10, that (76) holds for this collection as well.

Upper Bounds on the Stopping Form

We prove upper bounds on the norm of the stopping form in a situation in which
there is some decoupling between the martingale difference on g, and the argument
of the Hilbert transform. First, an elementary observation.

Proposition 6.7 For intervals J � L � K, with L either good, or the child of a
good interval,

P.�.F � K/; J/

jJj
'

P.�.F � K/;L/

jLj
: (77)

Proof The property of interval I being good, says that if I � QI, and 2r�1jIj � jQIj,
then the distance of either child of I to the boundary of QI is at least jIj�jQIj1�� . Thus,
in the case that L is the child of a good interval, the parent OL of L is contained in K,
and 2r�1j OLj � jKj, so by the definition of goodness,

dist.J;F � K/ � dist.L;F � K/

� jLj�jKj1�� � 2r.1��/jLj:

The same inequality holds if L is good. Then, one has the equivalence above, by
inspection of the Poisson integrals. ut



Two Weight Hilbert 53

Lemma 6.8 Let S be a collection of pairwise disjoint intervals in F. Let Q be
admissible such that for each Q 2 Q, there is an S 2 S with Q2 � S � QQ1. Then,
there holds

jBQ.f ; g/j � �kfk�kgkw; (78)

where �2 � sup
S2S

1

�.S/

X
J2Q2 W J�S

P.�.F � S/; J/2
˝ x

jJj
; hw

J i
2
w: (79)

It is useful to note that � is always smaller than the size: For S 2 S , let J � be the
maximal intervals J 2 Q2 with J � S, and note that (77) applies to see that

X
J2Q2 W J�S

P.�.F � S/; J/2
˝ x

jJj
; hw

J

˛2
w D

X
J�2J �

X
J2Q W J�J�

P.�.F � S/; J/2
˝ x

jJj
; hw

J

˛2
w

(80)

�
X

J�2J �

P.�.F � S/; J�/2

jJ�j2

X
J2Q W J�J�

hx; hw
J i
2
w

(81)

�
X

J�2J �

�.J�/ � size.Q/�.S/: (82)

Proof An interesting part of the proof is that it depends very much on cancellative
properties of the martingale differences of f . (Absolute values must be taken outside
the sum defining the stopping form!) This argument will invoke the stopping data,
and part of the Hilbert-Poisson exchange argument.

Assume, as we can, that the Haar support of f is contained in Q1. Take F and
˛f .�/ to be stopping data defined in this way: First, add to F the interval F, and
set ˛f .F/ � E

�
Fjf j. Inductively, if F 2 F is minimal, add to F the maximal

children F0 such that ˛f .F0/ � E
�
F0

jf j > 4˛f .F/. This is a simple form of the
stopping data construction in section “Global to Local Reduction”. In particular
quasi-orthogonality (27) holds.

Write the bilinear form as

BQ.f ; g/ D
X

J

hH�'J; 

w
J giw (83)

where 'J �
X

Q2Q W Q2DJ

E
�
J


�
Q1 f � .F �

QQ1/: (84)

The function 'J is well-behaved, as we now explain. At each point x with 'J.x/ ¤ 0,
the sum above is over pairs Q such that Q2 D J and x 2 F � QQ1. By the convexity
property of admissible collections, the sum is over consecutive (good) martingale
differences of f . The basic telescoping property of these differences shows that the
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sum is bounded by the stopping value ˛f .	FJ/. Let I� be the maximal interval of
the form QQ1 with x 2 F � QQ1, and let I� be the child of the minimal such interval
which contains J. Then,

j'J.x/j D
ˇ̌
ˇ X

Q2Q W Q2DJ
x2I� QQ1

E
�
J


�
Q1 f .x/

ˇ̌
ˇ

D
ˇ̌
E
�
I�

f � E
�
I
�

f
ˇ̌
� ˛f .	FJ/.F � S/;

(85)

where S is the S-parent of J.
We can estimate as below, for F 2 F :

„.F/ �
ˇ̌
ˇ X

Q2Q W 	FQ2DF

EQ2

�
Q1 f � hH� .F � QQ1/;


w
J giw

ˇ̌
ˇ (86)

(84)
D
ˇ̌
ˇ X

J2Q2 W 	F JDF

hH�'J; 

w
J giw

ˇ̌
ˇ (87)

(85)
� ˛f .F/

X
S2S

	FSDF

X
J2Q2
J�S

P.�.F � S/; J/
ˇ̌˝ x

jJj
; 
w

J g
˛
w

ˇ̌
(88)

� ˛f .F/
h X

S2S
	FSDF

X
J2Q2
J�S

P.�.F � S/; J/2
˝ x

jJj
; hw

J

˛2
w �

X
J2Q2
	F JDF

Og.J/2
i1=2

(89)

(79)
� size.Q/˛f .F/

h X
S2S

	FSDF

�.S/ �
X

J2Q2
	F JDF

Og.J/2
i1=2

(90)

� size.Q/˛f .F/�.F/
1=2
h X

J2Q2 W 	F JDF

Og.J/2
i1=2

: (91)

The top line follows from (84). In the second, we appeal to (85) and monotonicity
principle, the latter being available to us since J � S implies J � S, by hypothesis.
We also take advantage of the strong assumptions on the intervals in Q2: If J 2 Q2,
we must have 	FJ D 	F .	SJ/. The third line is Cauchy–Schwarz, followed by the
appeal to the hypothesis (79), while the last line uses the fact that the intervals in S
are pairwise disjoint.

The quasi-orthogonality argument (27) completes the proof, namely we have

X
F2F

„.F/ � size.Q/kfk�kgkw: (92)

ut
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Lemma 6.9 Let S be a collection of pairwise disjoint intervals in F. Let Q be
admissible such that for each Q 2 Q, there is an S 2 S with Q2 � S � QQ1. Then,
there holds

jBQ.f ; g/j � �kfk�kgkw; (93)

where �2 � sup
S2S

P.�.Q1 � 	 QQ1
S/; S/2

�.S/jSj2
X

J2Q2 W J�S

hx; hw
J i
2
w: (94)

Proof Construct stopping data F and ˛f .�/ as in the proof of Lemma 6.8. The
fundamental inequality (85) is again used. Then, by the monotonicity principle (17),
there holds for F 2 F ,

„.F/ �
ˇ̌
ˇ X

Q2Q W 	F Q2DF

EQ2

�
Q1 f � hH� .F � QQ1/;


w
Q2giw

ˇ̌
ˇ

� ˛f .F/
X

S2S W 	F SDF

P.�.F � 	
QQ1

S/; S/
X

J2Q2 W J�S

˝ x

jSj
; hw

J

˛
w � jOg.J/j

� ˛f .F/
h X

S2S W 	F SDF

P.�.F � 	
QQ1

S/; S/2
X

J2Q2 W J�S

˝ x

jSj
; hw

J

˛2
w �

X
J2Q2 W J�S

Og.J/2
i1=2

� �˛f .F/
h X

S2S W 	F SDF

�.S/�
X

J2Q2 W J�S

Og.J/2
i1=2

� �˛f .F/�.F/
1=2
h X

J2Q2 W 	F JDF

Og.J/2
i1=2

:

After the monotonicity principle (17), we have used Cauchy-Schwarz, and the
definition of �. The quasi-orthogonality argument (27) then completes the analysis
of this term, see (92). ut

The last Lemma that we need is elementary, and is contained in the methods
of [38].

Lemma 6.10 Let u � r C 1 be an integer, and Q be an admissible collection of
pairs such that jQ1j D 2

ujQ2j for all Q 2 Q. There holds

jBQ.f ; g/j � size.Q/kfk�kgkw:

Proof Recall the form of the stopping form in (53). Observe, from inspection of the
definition of the Haar function (10), that

jE�IJ

�

I f j �
jOf .I/j

�.IJ/1=2
:
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Then, an elementary application of the monotonicity principle gives us

jBQ.f ; g/j �
X
I2Q1

jOf .I/j
X

J W .I;J/2Q
�.IJ/

�1=2P.�.F � IJ/; J/
˝ x

jJj
; hw

J

˛
wjOg.J/j

� kfk�

� X
I2Q1

� X
J W .I;J/2Q

1

�.IJ/
P.�.F � IJ/; J/

˝ x

jJj
; hw

J

˛
wjOg.J/j

�2�1=2

� size.Q/kfk�kgkw

This follows immediately from Cauchy-Schwarz, and the fact that for each J 2 Q2,
there is a unique I 2 Q1 such that the pair .I; J/ contribute to the sum above. ut

Context and Discussion

The proof herein succeeds because the notion of size approximates the operator
norm of the stopping form. Moreover, the ‘large’ portions of the stopping form,
there is a decoupling that takes place.

It is very interesting that one can prove unconditional results about the two
weight Hilbert transform, following the techniques in [23], without solving the local
problem.

Elementary Estimates

This section is devoted to the proof of Lemma 4.1. The estimates fall into many
subcases, and are of a more classical nature, albeit the A2 assumption is critical. (In
fact, all the estimates in this section depend only on the half-Poisson A2 hypothesis,
but this is not systematically tracked in the notation.) In addition, all estimates
should be interpreted as uniform over all smooth truncations. Some of these are off-
diagonal estimates, for which the smooth truncations are important. The uniformity
over truncations is however suppressed in notation.

First some basic estimates are collected. This is property of good intervals, which
can be effectively used in non-critical situations.

Lemma 7.1 For three intervals J; I; I0 2 D with J � I � I0, jJj D 2�sjIj, with
s � r and J good, then

P.� � .I0 � I/; J/ � 2�.1�"/sP.� � I0; I/: (95)
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Proof Note that for x 2 I0 � I we have

dist.x; J/ � jIj1�"jJj" D 2s.1�"/jJj:

Using this in the definition of the Poisson integral, we get

P.� � .I0 � I/; J/ � 2
Z

I0

�I

jJj

dist.x; J/2
�.dx/

� jJj
jIj

Z
I0

�I

jIj

.jJj C dist.x; J//2
�.dx/

� 2�s.1�2"/
Z

I0

�I

jIj

.jIj C dist.x; I//2
�.dx/ D 2�s.1�2"/P.�.I0 � I/; I/:

ut

Proposition 7.2 Suppose that two intervals I; J 2 D satisfy jIj � jJj, and 3I \ J D
;, then

sup
0<˛<ˇ

jhH.� I/; hw
J iwj � �.I/

p
w.J/

jJj

.jJj C dist.I; J//2
(96)

Proof Since hw
J has w-integral zero, estimate as below, where xJ is the center of J.

jhHI; hw
J iwj D

ˇ̌
ˇ
Z

I

Z
J

K˛;ˇ.y � x/ � hw
J .x/ w.dx/�.dy/

ˇ̌
ˇ

D
ˇ̌
ˇ
Z

I

Z
J

˚
K˛;ˇ.y � x/ � K˛;ˇ.y � xJ/

�
hw

J .x/ w.dx/�.dy/
ˇ̌
ˇ

�
Z

I

Z
J

jJj

.jJj C dist.I; J//2
jhw

J .x/j w.dx/�.dy/:

The Lemma follows by inspection. ut

Proposition 7.3 Suppose that two intervals I; J 2 D satisfy 2sjJj D jIj, where
s > r, the interval J is good, and J � 3I n I, then

sup
0<˛<ˇ

jhH.� I/; hw
J iwj � 2�.1�2"/s�.I/

p
w.J/jIj�1 (97)

Proof Under the assumption of the Lemma, the proof of Proposition 7.2 holds,
supplying the estimate estimate of that Lemma. But, the extra assumption that J is
good implies that dist.J; I/ > 2s.1�"/jJj, and then the estimate follows by inspection.

ut
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The Weak Boundedness Inequality

The following inequality is a weak-boundedness inequality, a consequence of the
A2 inequality. Here, we look at the Hilbert transform inequality on two disjoint
intervals.

Proposition 7.4 There holds for all disjoint intervals I; J with no point masses at
their endpoints,

sup
0<˛<ˇ

jhH.� f � I/; g � Jiwj � A
1=2
2 kfk�kgkw: (98)

The constant on the right can in fact be taken as follows. For a point a that separates
the interiors of I and J, with I to the left of a,

sup
r>0

P.�1.�1;a/; .a; aC r//
w.a; aC r/

r
C P.w1.a;1/; .a; aC r//

�.a � r; a/

r
: (99)

In particular, for arbitrary intervals I and J with no point masses at the endpoints,

jhH� I; Jiwj � A
1=2
2 Œ�.I/w.J/�1=2 (100)

It is useful to note that the global integrability of indicators is then a consequence
of the A2 and interval testing conditions.

Since the intervals are disjoint, there is no possibility of cancellation in the
estimate, and it therefore is closely relate to the Hardy inequality. In the two weight
setting, this has been characterized by Muckenhoupt [32].

Theorem F For weightsbw and � supported on RC.

���
Z
.0;x/

f �.dy/
���

Ow
� Bkfk� ; (101)

where B2 ' sup
0<r<1

Z
.r;1/

bw.dx/ �
Z
.0;r/

�.dy/: (102)

For the sake of completeness, we recall Muckenhoupt’s proof of this result. This
preparation is proved by integration by parts.

Proposition 7.7 Let � be an increasing function on .0;1/, with �.0/ D 0 and �
strictly positive on .0;1/. Then,

Z
.0;x�

�.t/�1=2d�.t/ � 2�.x/1=2; (103)

with equality if � is continuous.
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Proof of Theorem F We are free to assume that the function �.x/ D �..0; x// is
strictly positive on .0;1/. Then, multiply and divide by �.x/1=4, and use Cauchy–
Schwarz to see that

���
Z
.0;x/

f �.dy/
���2

Ow
�

Z
.0;1/

Z
.0;x/

f .y/�.y/1=2 �.dy/ �
Z
.0;x/

�.y/�1=2 �.dy/ Ow.dx/

� 2

Z
.0;1/

Z
.0;x/

f .y/�.y/1=2 �.dy/ � �.x/1=2 Ow.dx/

D 2

Z
.0;1/

f .y/�.y/1=2
Z
.y;1/

�.x/1=2 Ow.dx/ �.dy/

Above, we have used (103), and then Fubini. Concentrate on the inner integral. Our
definition of B and Proposition 7.7 gives us

B

Z
.y;1/

"Z
.x;1/

Ow.dt/

#�1=2

Ow.dx/ � 2B

"Z
.y;1/

Ow.dt/

#1=2

And, now we can estimate

���
Z
.0;x/

f �.dy/
���2

Ow
� 4B

Z
.0;1/

f .y/�.y/1=2
"Z

.y;1/

Ow.dt/

#1=2
�.dy/ � 4B2kfk2� :

The proof is complete. ut

Proof of Proposition 7.4 Interval testing and (98) prove the estimate (100), so we
turn to the proof of (98).

After a translation, we can assume that 0 separates the interiors of I and J. Let us
assume that I is to the left of zero. We change the problem. Set Q�.dx/ D �.�dx/ for
x � 0, and for f 2 L2.I; �/, set �.x/ D f .�x/. Then,

hH� f ; giw D
Z
.�1;0/

Z
.0;1/

f .y/g.x/

y � x
�.dy/w.dx/ (104)

D �

Z
.0;1/

Z
.0;1/

�.y/g.x/

xC y
Q�.dy/w.dx/: (105)

The double integral is split into dual terms, one of which is

Z
.0;1/

Z
.0;x/

�.y/g.x/

xC y
Q�.dy/ w.dx/: (106)

We analyze this bilinear form.
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Note that xC y ' x in (106). Thus, it suffices to estimate

Z
.0;1/

ˇ̌
ˇ
Z
.0;x/

�.y/

x
Q�.dy/

ˇ̌
ˇ2 w.dx/ D

Z
.0;1/

ˇ̌
ˇ
Z
.0;x/

�.y/

x
Q�.dy/

ˇ̌
ˇ2 w.dx/

x2
� B2k�k2Q� :

where B is as in (102), and Ow.dx/ D w.dx/
x2

and � D Q�
It remains to estimate the constant B, For any 0 < r <1,

Z
.0;r/
Q�.dy/

Z
.r;1/

dbw D �.�r; 0/

r

Z
.r;1/

r

x2
w.dx/ � A2:

The more precise conclusion (99) can be read off from this inequality. Recall
that (105) is split into two bilinear forms, and we have only considered one of them.
This explains the symmetric form of (99). ut

The Different Subcases of Lemma 4.1

Lemma 4.1 follows from appropriate bounds on these bilinear forms, and their duals.

Bnearby.f ; g/ �
X

I;J W 2�r�1jIj�jJj�jIj
3I\J¤;

jhH�

�
I f ; 
w

J �iwj; (107)

Bfar.f ; g/ �
X

I;J W 3I\3JD;

jhH�

�
I f ; 
w

J �iwj; (108)

Bclose.f ; g/ �
X

I;J W 2r jJj�jIj
J�3InI

jhH�

�
I f ; 
w

J �iwj; (109)

Badjacent.f ; g/ �
X

I;J W J�IJ

jE�I�IJ

�

I f hH� .I � IJ/;

w
J �iwj: (110)

Lemma 7.8 For ? 2 fnearby; far; close; adjacentg, there holds

B?.f ; g/ � A
1=2
2 kfk�kgkw:
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The Nearby Term

One can check directly that for each interval I, with child I0, there holds jE�I0

h�I j �
�.I0/�1=2. It then follows from (98) that jhH�h�I ; h

w
J iwj � H. And then,

Bnearby.f ; g/ � H
X

I;J W 2�r�1jIj�jJj�jIj
3I\J¤;

jOf .I/Og.J/j � Hkfk�kgkw:

The last line follows from the fact that for each I, there are only a bounded number
of J occurring in the sum.

Here, and below, we will be using the notation Of .I/ D hf ; h�I i� .

The Far Term

We consider the case of jJj � jIj, and 3I \ 3J ¤ ;. It follows that J � 3sC1I n 3sI
for some integer s � 1. For an interval K, integer s � r and t � 0, consider the two
projections

…�
K;s;tf �

X
I W I�3tC2Kn3tC1K

jIjDjKj


�
I f

…w
K;s;tg �

X
J W J�3tK
2sjJjDjKj


w
J g:

These projections satisfy, for fixed s; t,

X
K

k…�
K;s;tfk

2
� � kfk

2
� ; (111)

with a similar bound for …w
K;s;tg. Also, we need to bound

X
s�r

X
t�0

ˇ̌
hH�…

�
K;s;tf ;…

w
K;s;tgiw

ˇ̌
: (112)

But, using the fact that
w
J g has mean zero, and the distance between the support

of …�
K;s;tf and …w

K;s;tg is approximately 3tjKj, we have

ˇ̌
hH�…

�
K;s;tf ;…

w
K;s;tgiw

ˇ̌
� 2�sjKj

32tjKj2
k…�

K;s;tfkL1.�/k…
w
K;s;tgkL1.w/
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�
p
�.3tC2K/w.3tK/

2s32tjKj
k…�

K;s;tfk�k…
w
K;s;tgkw

� 2�s3�tA
1=2
2 k…

�
K;s;tfk�k…

w
K;s;tgkw:

Since we have gained geometric decay in s, and t, and we have the inequality (111),
we can easily complete the proof of (112).

The Close Term

For integers s � r, the sum below a relative length of J with respect to I.
Applying (97),

X
I;J W 2sjJjDjIj

J�3InI

jhH�

�
I f ; 
w

J �iwj � 2.1�2"/s
X

I;J W 2sjJjDjIj
J�3InI

jOf .I/Og.J/j

p
�.I/w.J/

jIj

� 2.1�2"/s
X

I

jOf .I/j

p
�.I/

jIj

X
J W 2sjJjDjIj

J�3InI

jOg.J/j
p

w.J/

We have the geometric decay in s. Apply Cauchy–Schwarz, one term is kfk� . The
other term, squared, is

X
I

�.I/

jIj2
X

J W 2sjJjDjIj
J�3InI

Og.J/2�
X

J W 2sjJjDjIj
J�3InI

w.J/ � A2

X
I

X
J W 2sjJjDjIj

J�3InI

Og.J/2 � A2kgk
2
w:

This completes the estimate.

The Adjacent Term

We argue as in the previous case. It is easy to see that jE�I�IJ

�

I f j � jOf .I/j�.I �
IJ/

�1=2.
For � ¤ � 0 2 f˙g, and consider the sum below, where s plays the same role as

before.

X
I;J W 2sjJjDjIj
J�IC.� 0jIj/

ˇ̌
E
�
I�

�

I f � hH� I� ;

w
J giw

ˇ̌
� 2�.1�2"/s

X
I;J W 2sjJjDjIj
J�IC.� 0jIj/

jOf .I/Og.J/j

p
�.I� /w.J/

jIj

� 2�.1�2"/sA
1=2
2 kfk�kgkw:

The details are suppressed.
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Context and Discussion

The techniques of this section are all drawn from the work of Nazarov-Treil-Volberg
[38, 56], aside from the use of the two weight Hardy inequality, which is drawn
from [20].

Proof Under the Pivotal Assumption

We prove an upper bound for a two weight inequality assuming a pivotal condition
on a pair of weights. The setup is as follows. Let K.y/ satisfy the size and gradient
condition

jx � yj � jrK.x; y/j C jK.x; y/j � jx � yj�1:

We will consider the operator Tf given formally by p.v.
R

K.x; y/f .y/ dy. In the two
weight setting, no principal value need exist, so given two weights �;w, we consider
the constant NT , which is be the best constant in the inequality

���
Z

K.x; y/f .y/ �.dy/
���

w
� NTkfk� :

Let P be the best constant in the pivotal inequality, defined as follows. For any
interval I0 and any partition P of I0 into intervals such that neither � nor w have
point masses at the endpoints, there holds

X
I2P

P.�.I0 n I/; I/2w.I/ � P2�.I0/: (113)

We also require that the dual inequality, with the roles of w and � reversed, holds.
One can note that this inequality will hold if the maximal function satisfies the two
weight inequality kM� fkw � kfk� , and its dual.

Theorem 8.1 (Nazarov-Treil-Volberg [56]) Assume that the pair of weights w; �
satisfy the A2 condition (3), and the pivotal conditions hold, namely P <1. Then,
there holds NT � TT CA

1=2
2 C P, where T is the best constant in the inequalities

Z
I
jT� Ij2 w.dx/ � T2T�.I/;

Z
I
jTwIj2 �.dx/ � T2Tw.I/:

We give the proof, with the goal of highlighting some of the difficulties that one
must face in the general case. In addition, a quantitative higher dimensional version
of this Theorem was key to [45]. We will use Calderón-Zygmund stopping data, to
facilitate comparisons to the general case. This will also give an easier proof than is
in [45, 56].
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Off-Diagonal Estimates

We need a typical off-diagonal estimate, one that is far less refined than the
monotonicity principle.

Lemma 8.2 For all 0 < ˛ < ˇ, good intervals J � I, and function f is supported
off of I, there holds

jhT� f ; gij � P.� jf j � Ic; I/w.J/1=2kgkw: (114)

for any function g 2 L2.w/, supported on J and with integral zero.

Proof Use the standard subtraction argument to see that

jhT� f ; g.x/ij D
ˇ̌
ˇ
Z

J

Z
RnI
fK.x; y/ � K.xJ; y/gf .y/g.x/ �.dy/w.dx/

ˇ̌
ˇ

�
Z

J

Z
RnI

jx � xJj

.xJ � y/2
� jf .y/g.x/j �.dy/w.dx/:

The bound follows by Cauchy–Schwarz and inspection. ut

The Global to Local Reduction

One need only prove that

jhT�P�goodf ;Pw
goodgiwj � Tkfk�kgkw;

where T � TT C A
1=2
2 C P. The set up is much like section “Global to Local

Reduction”. We will understand that the functions f and g can be assumed to be
good functions. In fact, f has the ‘thin’ Haar expansion in (21), and similarly for g,
in order to reduce some case analysis below.

In analogy to (23), define

Babove.f ; g/ �
X

I W I�I0

X
J W J�I

E
�
IJ

�

I f � hT� IJ; 

w
J giw; (115)

and define Bbelow.f ; g/ similarly. Since Lemma 4.1 depends only on the A2 assump-
tion, we have
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Lemma 8.3 There holds

ˇ̌
hT� f ; giw � Babove.f ; g/ � Bbelow.f ; g/

ˇ̌
� A

1=2
2 kfk�kgkw:

Thus, the main technical result is

Lemma 8.4 There holds

jBabove.f ; g/j � Tkfk�kgkw: (116)

The same inequality holds for Bbelow.f ; g/.

The stopping intervals are defined similarly.

Definition 8.5 Define F , the stopping intervals, recursively by initializing I0 2 F ,
and in the recursive step, if F 2 F is minimal, add to F the maximal subintervals
F0 � F, with F0 2 Df , so that meet either of these conditions:

f stopping E
�
F0

jf j > C˛f .F/ � E
�
Fjf j.

Pivotal Stopping P.� � I0; I/2w.I/ > 10P
2�.I/.

That is, we stop if either the average of f becomes too large, or, essentially, the
pivotal quantity becomes too large.

We use the same notation as in section “Global to Local Reduction”, and in
analogy to Corollary 4.4, there holds

Lemma 8.6 (The Global to Local Reduction) There holds

jBabove
F ;glob.f ; g/j � Tkfk�kgkw; (117)

where Babove
F ;glob.f ; g/ �

X
I;J W P	F J�I

J�I

E
�
IJ

�

I f � hT� IJ; 

w
J giw: (118)

Proof This variant of the ‘Hilbert-Poisson exchange’ argument is needed. Holding
F 2 F fixed, we sum over J with P	FJ D F and I with F � I. Then, the argument
of T� is IF which is written as IF D F C .IF n F/. Defining "F by

X
I W I�F

E
�
IJ

�

I f � "F˛f .F/;

these constants are bounded by a constant: j"Fj � 1. Then,

ˆ.F/ �
ˇ̌
ˇ X

I W I�F

X
J W P	F JDF

E
�
IF

�

I f � hT�F; 
w
J giw

ˇ̌
ˇ

D
ˇ̌
ˇ
D
T�F;

X
J W P	F JDF

"J

w
J g
E
w

ˇ̌
ˇ � T˛f .F/�.F/

1=2kQw
Fgkw
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This depends upon the testing assumption on T� applied to intervals. The operator
Qw

Fg is the Haar projection defined at (26). Quasi-orthogonality as in (27) finishes
the sum over F 2 F .

The complementary case is that of the global-to-local reduction. But, under the
pivotal condition there is a geometric decay along the stopping tree. For F 2 F ,
and integer j, let chj.F/ be the j-fold descendants of F in the collection F . That
is, ch0.F/ D fFg, and F0 2 F0 2 chjC1.F/ iff F0 is the child of some interval
F00 2 chj.F/.

We will index by F 2 F , F0 2 ch1.F/, and F00 2 chj.F0/, where j � 0.
Using (114) and critically, Lemma 7.1, we have

ˇ̌
ˇ X

I W 	F IDF

E
�
IF0

f hT� .IF0 n F0/;Qw
F00

giw

ˇ̌
ˇ � ˛f .F/P.� � .F n F0/;F00/w.F00/kQw

F00

gkw

� ˛f .F/2
.1��/j

P.� � .F n F00/;F00/w.F00/1=2kQw
F00

gkw:

We have geometric decay in j above. Moreover, summing over F0 and F00, we can
appeal to the pivotal condition (20) to see that

X
F002chjC1.F/

P.� � .F n F00/;F00/w.F00/1=2kQw
F00

gkw

�

� X
F002chjC1.F/

P.� � .F n F00/;F00/2w.F00/ �
X

F002chjC1.F/

kQw
F00

gk2w

�1=2

� P

�
�.F/

X
F002chjC1.F/

kQw
F00

gk2w

�1=2
:

Then, quasi-orthogonality is used to estimate

X
F2F

˛f .F/

�
�.F/

X
F002chjC1.F/

kQw
F00

gk2w

�1=2
� kfk�kgkw:

This completes the global to local reduction. ut

The Local Estimate

It remains to prove the following local estimate:

jBabove.P�Ff ; g/j � T
˚
˛f .F/�.F/

1=2 C kP�Ffk�
�
kgkw; Qw

Fg D g;

for then quasi-orthogonality will complete the bound on Babove
F .f ; g/.
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In the bilinear form above, the argument of T� is, for a pair of intervals J � I,
IJ D .F � IJ/C F. Using linearity, and focusing on the argument of T� being F, we
can repeat the argument of (34), which depends upon the fact that the averages of f
are controlled. Below, there is an requirement that IJ has F-parent F, which we are
free to add since Qw

Fg D g.

ˇ̌
ˇ X

I W 	F IDF

X
J W P	F IJDF

E
�
IJ

�

I f � hT�F; 
w
J giw

ˇ̌
ˇ � T˛f .F/�.F/

1=2kgkw:

This bound follows the argument of (34), and we suppress the details.
It therefore remains to consider the stopping form

Bstop
F .f ; g/ �

X
I W 	F IDF

X
J W P	F IJDF

E
�
IJ

�

I f � hT� .I0 � IJ/;

w
J giw:

Lemma 8.7 For all F 2 F , there holds

jBstop
F .f ; g/j � Pkfk�kgkw:

Proof This depends very much on the selection of stopping intervals. In fact there is
geometric decay, holding the relative lengths of I and J fixed. Estimate for integers
s � r,

X
I W 	F IDF

X
J W J�IJ ;	F IJ DF

jIjD2s
jJj

jE�IJ

�

I f � hT� .I0 � IJ/;

w
J giwj

�
X

I W 	F IDF

X
�2f˙g

jOf .I/j

�.I� /1=2

X
J W J�I� ;	F IJ DF

jIjD2s
jJj

P.�.F � I� /; J/h
x

jJj

; hw
J iwjOg.J/j

� Ms

h X
I W 	F IDF

Of .I/2
i1=2

�
h X

J W J�F

Og.I/2
i1=2

where M2
s � max

�2f˙g

sup
I W 	F I�DF

1

�.I� /

X
J W J�I� ;	F IJ DF

jIjD2s
jJj

P.�.F � I� /; J/
2w.J/:

Here, we have used (a) used the bound jE�IJ

�

I f j � jOf .I/j
�.I� /1=2

; (b) appealed to (114);
(c) used Cauchy–Schwarz, together with the fact that for J � F, there is a unique I
containing it, with length 2sjJj.

It remains to bound Ms, gaining a geometric decay in s, and appealing to the
pivotal condition. Return to the inequality (95), to gain the geometric decay,
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X
J W J�I� ;	F IJDF

jIjD2sjJj

P.�.F � I� /; J/
2w.J/ � 2�.1�"/sP.� � F; I� /

2w.I� / � 2�.1�"/sP2�.I� /;

where the decisive point is that I� has F-parent F, hence it must fail the pivotal
stopping condition. ut

Example Weights

The sharpness of the different conditions in the main theorem is the subject of the
this section.

Theorem 9.1 There are pairs of weights �;w, with no common point masses, that
satisfy any one of these conditions.

(1) The pair of weights satisfies the full Poisson A2 condition, but the norm
inequality for the Hilbert transform (1) does not hold.

(2) The pair of weights satisfies the full Poisson A2 condition, and the testing
inequality (4), but the norm inequality for the Hilbert transform (1) does not
hold.

(3) The pair of weights satisfy the two weight norm inequality (1), but not the
pivotal condition (20).

Point (1) is a counterexample to Sarason’s Conjecture, first disproved by Nazarov
[34]. In contrast to his argument, an explicit pair of weights are exhibited.

The Initial Steps in the Main Construction

Let C D
T1

nD0 Cn be the standard middle third Cantor set in the unit interval. Thus,
C0 D Œ0; 1�, C1 D Œ0;

1
3
� [ Œ 2

3
; 1�, and more generally

Cn D
[˚

Œx; xC 3�n� W x D
nX

jD1

�j3
�j; �j 2 f0; 2g

�
:

Let w be the standard uniform measure on C. Thus w.I/ D 2�n on each component
of Cn, n 2 N0. This is phrased slightly differently. Let K be the collection of
components of all the sets Cn. Then, for each K 2 K, there holds w.K/ D jKj

ln 2
ln 3 .

The weight � will be a sum of point masses selected from the intervals in G,
taken to be the components of the open set Œ0; 1� � C. (G is for ‘gap’. See Fig. 8.)
Consider the Hw restricted an interval G 2 G. This is a smooth, monotone function,
hence it has a unique zero zG (Fig. 9). Then, the weight � is
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Fig. 8 The approximates to the Cantor set C on the left, and on the right, the gaps, namely the
components of Œ0; 1�� C . The intervals on the left are in K, and those on the right are in G

Fig. 9 The selection of the
points zG and z0

G for a gap
interval G. The function Hw,
restricted to G is monotone
increasing, hence has a
unique zero, the point zG. The
second point z0

G will be to the
right, but a distance to the
boundary of G that is at least
cjGj, for absolute constant
0 < c < 1

2

� �
X
G2G

sG � ızG ; (119)

where sG > 0 will be chosen momentarily, consistent with the A2 condition. A
second measure is given by � 0 �

P
G2G sG � ız0

G
, where z0

G is the unique point in G

at which Hw.z0
G/ D jGj

�1C ln 2
ln 3 . See Fig. 9.

The constants sG are be specified by the simple A2 ratio

w.3G/

jGj
�
�.G/

jGj
D 2; that is sG D 2jGj

2� ln 2
ln 3 : (120)

To see this, note that

w.3G/ D w.G � jGj/C w.GC jGj/ D 2jGj
ln 2
ln 3 ;

since G˙jGj are components of some Cn. With this definition, the basic facts about
the w and � come from the geometry of the Cantor set and the relations below,

w.I/ � jIj ln 2ln 3 ; I is triadic,

�.I/ � jIj2� ln 2
ln 3 I is triadic, I not strictly contained in any G 2 G:

(121)
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On the other hand, if I 2 G [K, the inequalities above can be reversed, namely

w.3I/ ' jIj
ln 2
ln 3 ; �.I/ ' jIj2�

ln 2
ln 3 ; I 2 G [K: (122)

The properties of these measures that we are establishing are as follows.

Lemma 9.2 For the measures just defined, there holds

(1) The Hilbert transform H� is bounded from L2.�/ to L2.w/.
(2) The Hilbert transform H� 0 is unbounded from L2.� 0/ to L2.w/, but the pair of

weights satisfy the A2 condition, and the testing conditions

sup
I an interval

� 0.I/�1
Z

I
jH� 0Ij2 dw <1:

Concerning point 2, the unboundedness of Hw is direct from the construction
of � 0.

Z
.Hw/2 d� 0 D

X
G2G

Hw.z0
G/
2� 0.fz0

Gg/ (123)

D
X
G2G
jGj2�

ln 2
ln 3�2.1� ln 2

ln 3 / D
X
G2G
jGjC

ln 2
ln 3 D1: (124)

There are exactly 2n�1 elements of G of length 3�n, proving the sum is infinite.

The Poisson A2 Condition

Lemma 9.3 For either weight � 2 f�; � 0g, the pair of weights w; � satisfy the A2
condition.

Proof It suffices to check the A2 condition on the triadic intervals in the unit interval.
Let us begin by showing that for any triadic interval I 2 K [ G,

P.�; I/ � �.I/

jIj
; and P.w; I/ � w.3I/

jIj
: (125)

For then, the control of the simple A2 ratio will imply the control of the full A2 ratio.
(For the inequality on w, the triple of the interval appears on the right, since w.I/
can be zero if I 2 G.) Now, it will be clear that this argument is insensitive to the
location of the points zG and z0

G, so the same argument for � will work equally well
for � 0.
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Let us consider � . Using (122), there holds

P.�; I/ �
�.I/

jIj
C

1X
kD1

Z
3kIn3k�1I

jIj

.jIj2 C dist.x; I//2
�.dx/

� �.I/

jIj
C

1X
kD1

�.3kI/

3kj3kIj

� �.I/

jIj
C

1X
kD1

3�kj3kIj1�
ln 2
ln 3 � �.I/

jIj

1X
kD0

3�k ln 2
ln 3 � �.I/

jIj
:

Turning to the weight w, one has

P.w; I/ �
w.3I/

jIj
C

1X
kD2

Z
3kIn3k�1I

jIj

.jIj2 C dist.x; I//2
w.dx/

� w.3I/

jIj
C

1X
kD2

w.3kI/

3kj3kIj

� w.3I/

jIj
C

1X
kD2

3�kj3kIj�1C
ln 2
ln 3 � w.3I/

jIj

1X
kD1

3�k.2� ln 2
ln 3 / � w.3I/

jIj
:

The A2 product P.�; I/ � P.w; I/ has been bounded for I 2 K [ G. Suppose that
I is a triadic interval that is not in these two collections. Then, I must be strictly
contained in some gap G 2 G. Writing I.k/ D G, where, I.k/ denotes the k-fold
parent of I in the triadic grid, we have w.G/ D 0. Hence,

P.w; I/ D
Z
Œ0;1�nG

jIj

.jIj C dist.x; I//2
w.dx/ ' 3�kP.w;G/:

First, consider � restricted to the gap G:

P.w; I/P.� � G; I/ � 3�kP.w;G/
�.G/

jIj
' P.w;G/

�.G/

jGj
� 1:

Now, we have to consider the Poisson average of � off of the gap G, in which case
we have

P.� � .Œ0; 1� n G/; I/ ' 3�kP.�;G/;

and so the estimate follows. ut
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The Testing Conditions

We turn to the testing conditions, using in an essential way the precise definition of
the weight � : it gives a huge cancellation, which simplifies things considerably.

Lemma 9.4 For any interval I, there holds

Z
I
jHwIj2 d� � w.I/: (126)

Proof By construction of � , there are two reductions. The first is simple, namely
that the two endpoints of the interval I can be taken to be an endpoint of an interval
in G. The second comes from the construction of � : Hw � 0, relative to d� measure.
Hence,

Z
I
jHwIj2 d� D

Z
I
Hw.Œ0; 1� � I/2 d�;

namely the complement of I is the argument of the Hilbert transform on the right.
Then, one abandons all further cancellations. Let us show that for all intervals

K 2 K (the components of the sets Cn which generate the Cantor set),

Z
K
jHwKrtj

2 d� � w.K/; (127)

where Krt is the right component of Œ0; 1� n K. The same estimate holds for the left
component, and this completes the proof. For, if we set Irt to be the right component
of Œ0; 1� n I, and take K1;K2; : : : ; to be the maximal intervals in K contained in I,
there holds

Z
I
.HwIrt/

2 d� �
1X

nD1

Z
Kn
.HwKn

rt/
2 d�

�
1X

nD1

w.Kn/ � w.I/:

Now, for K 2 K, let K1;K2; : : : ; be the maximal intervals in K that lie to the right
of K. Arranging them in increasing length, note that the length of K1 is either jKj or
3jKj. For n � 2, the length of Kn increases by a factor of 3, and dist.K;Kn/ � jKnj,
and hence there are at most 1 � log3jKj such intervals in K. Here is an illustration:
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Then, one has the estimate below, where the sum is of a decreasing geometric
series, estimated by its first term.

jHwKrtj �
1X

nD1

w.Kn/

jKnj
'

w.K/

jKj
:

Hence, (127) follows from the control of the A2 ratio. ut

An important part of the remaining arguments is that points zG, and z0
G cannot

cluster close to the boundary of G.

Lemma 9.5 There is a constant 0 < c < 1
2

such that

jzG � z0
Gj � cjGj:

Proof Estimate Hw at the midpoint z00
G of a component G. By symmetry of the

Hilbert transform, and the Cantor set, it always holds that H.w13G/.z0
G/ D 0, so

that appealing to (121),

jHw.z00
G/j D jH.w1.3G/c/.z

00
G/j

�
nX

kD2

w.3kG/

j3kGj

�
nX

kD2

j3kGj�1C
ln 2
ln 3 � jGj�1C ln 2

ln 3

Next, we turn to a derivative calculation. The function Hw, restricted to G is a
smooth function, one that diverges at the end points of G at a rate that reflect the
fractal dimension of G. For any x 2 G note that

d

dx
Hw.x/ D

Z
C

w.dy/

.y � x/2

� w.3G/

jGj2
' jGj�2C

ln 2
ln 3 :

This is a uniform lower bound, and in fact the lower bound is very poor at the
boundaries of G. Indeed,

d

dx
Hw.x/ � dist.x; @G/�2C

ln 2
ln 3 :

It follows that we have to have jzG � z0
Gj < cjGj, for some 0 < c < 1

2
. That is, one

need only move at fixed small multiple of jGj, passing from the location of the zero
zG to the point z0

G. ut
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The second half of the testing intervals inequalities is as follows.

Lemma 9.6 For � 2 f�; � 0g, and any interval I,

Z
I
jH�Ij2 dw � �.I/: (128)

Proof For the sake of specificity, let � D � . Indeed, by Lemma 9.5, the same
argument will work for � 0. To fix ideas, let us assume that I 2 K. Write the left,
middle and right thirds of I as I�1; I0; I1, respectively. Then, note that

Z
I
H� .I/

2 dw D
Z

I
�1[I1

H� .I/
2 dw (129)

�
Z

I
�1[I1

H� .I0/
2 dwC

Z
I
�1

H� .I0 C I1/
2 dwC

Z
I1

H� .I�1 C I0/
2 dw

(130)

C

Z
I
�1

H� .I�1/
2 dwC

Z
I1

H� .I1/
2 dw: (131)

The first term on the right is simple. On the interval I0, � is a point mass, at a point
that is at distance � cjIj from I˙1. Thus, by (122),

Z
I
�1[I1

H� .I0/
2 dw � jIj

4�2 ln 2
ln 3

jIj2
jIj

ln 2
ln 3 ' �.I/:

That completes the first integral. The remaining two integrals in (130) are handled
by a similar argument.

Concerning the two integrals in (131), one should note that I˙1 2 K and that
�.I˙1/ � 3

�2C2 ln 2
ln 3 �.I/. This geometric factor is smaller than 1

2
, therefore one can

recurse on (130) and (131) to see that

Z
K

H� .K/
2 dw � �.K/; K 2 K: (132)

For a general interval I, since � is a sum of Dirac masses, we can assume that the
interval I is in a canonical form. Namely, each endpoint of I can be assumed to be
an endpoint of an interval in G. The basic inequality is

X
K2KI

Z
K
jH� .I � K/j2 dw � �.I/; (133)

where KI is the maximal elements of K contained in I. The integration is over K,
and the argument of the Hilbert transform is I � K.
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To see that (133) implies the Lemma, note that by (132),

Z
I
H� .I/

2 dw D
X

K2KI

Z
K

H� .I/
2 dw

�
X

K2KI

Z
K

H� .I � K/2 dwC
X

K2KI

Z
K

H� .K/2 dw

� �.I/C
X

K2KI

�.K/ � �.I/:

In fact, (133) follows from

Z
K
jH� .I � K/j2 dw � �.I/2

jIj2
w.K/; K 2 KI : (134)

For this is summed over K 2 KI , and then one uses the A2 property.
To prove (134), all hope of cancellation is abandoned. For an interval K 2 KI , let

us consider component Irt of I�K which lies to the right of K. It has a Whitney like
decomposition into a finite sequence of intervals J1; : : : ; Jt that we construct now.
These intervals will have the property that they are (a) pairwise disjoint, (b) their
union is Irt, (c) and dist.K; supp.�Js// � jJsj � 3

s
2 jKj, for all 1 � s � t.

Now, J1 D K C jKj 2 G. If this interval is not contained in I, it follows that K
contains the right hand endpoint of I, and there is nothing to prove. Assuming that
J1 � I, the inductive step is this. Given J1; : : : ; Js, as above, whose union is not Irt

(1) If Js 2 G, then Js C jJsj 2 K. If this interval is contained in Irt, then we take
JsC1 D Js C jJsj 2 K, and repeat the recursion. Otherwise, we update Js �
Irt �

Ss�1
uD1 Jt, and the recursion stops.

(2) If Js 2 K, then it follows that Js�1 2 G, and the element of G immediately
to the right of Js is 3.Js C 6jJsj/. If this interval is contained in Irt, then we
take JsC1 D 3.Js C 6jJsj/ 2 G, and repeat the recursion. Otherwise, we update
Js � Irt �

Ss�1
uD1 Jt, and the recursion stops.

With this construction, it follows that

jH� .Irt/ � Kj �
tX

uD1

�.Js/

jJsj
�

1X
nD1

jJsj
1� ln 2

ln 3 � �.I/

jIj
:

This proves the ‘right half’ of (134), that is, when the argument of the Hilbert
transform is Irt. The ‘left half’ is the same, so the proof is complete. ut

At this point, we have proven that the pair of weights .w; � 0/ satisfy the full
Poisson A2 condition, and the testing condition (128). But, kHwkL2.� 0/ is infinite,
by (124). Hence, points (1) and (2) of Theorem 9.1 are shown.
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We have also shown that the pair of weights .w; �/ satisfy the full Poisson
A2 condition, and both sets of testing conditions. Hence, by our main theorem,
Hw is bounded from L2.w/ to L2.�/. This pair of weights also fail the pivotal
condition (20) of Nazarov-Treil-Volberg [38]. This is verified by observing that the
collection G of gaps is a partition of Œ0; 1�, and

X
G2G

P.w;G/2w.G/ '
X
G2G

w.3G/2

jGj2
�.I/

'
X
G2G

w.3G/ '
X
G2G
jGj

ln 2
ln 3 D1

since G contains 2n intervals of length 3�n, for all integers n. Here, we have
used (125), followed by (121). Since infx2G Mw.x/ � P.w;G/, this also shows that
the maximal function M is not bounded from L2.w/ to L2.�/.

Notice in contrast that the energy inequality (19) for the partition G is trivial,
since � restricted to any interval G is a point mass, hence E.�;G/ D 0, for all
G 2 G.

Context and Discussion

Counterexamples were an important source of inspiration on these questions. The
early paper of Muckenhoupt and Wheeden [33] includes an example of the fact that
the simple A2 condition is not sufficient for the two weight inequality. For instance,
the boundedness of the simple A2 ratio is simple to check for the pair w D ı0, and
�.dx/ D x1Œ0;1/dx. Then, one sees that for f D 1

x 1Œ1;L�,

p
log L ' kfk� 
 log L ' kH� fkw; L > 1:

Thus, the Hilbert transform is unbounded. And, one can directly see that the half-
Poisson A2 condition fails.

Much harder, is the fact that the Poisson A2 condition is not sufficient. This was
the contribution of Nazarov [34]. This example lead to the conjecture of Nazarov-
Treil-Volberg [56] proved herein. A more delicate example, of a pair of weights
which satisfied the Poisson A2 condition, and one set of testing conditions, say (4),
but not the norm inequality was that of Nazarov-Volberg [40]. Also see Nikol’skiı̆-
Treil [42], for a related example to disprove a conjecture about similarity to a normal
operator. Both of these latter examples were based upon Nazarov’s indirect example.

The example given here is directly inspired by a Cantor set type example in
Sawyer’s two weight maximal function paper [52]. It is drawn from [20], with the
purpose to show that the pivotal condition of Nazarov-Treil-Volberg [38, 56] was
not necessary for the two weight inequality to hold. This was an explicit example,
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and also pointed to the primary role of the notion of energy. It is very interesting
and delicate, in that the point masses have to be placed on the zeros of the Hilbert
transform, in order to obtain the boundedness of the transform. It is also humbling
in that it still does not reveal how delicate the proof of the sufficiency in the main
theorem needs to be.

It is subtle example of Maria Carmen Reguera [47] and Reguera-Thiele [49] that
proves this, as is pointed out by Reguera-Scurry [48].

Theorem G There is a pair of weights for which the maximal function M� is
bounded from L2.�/ ! L2.w/ and Mw is bounded from L2.w/ ! L2.�/, but norm
inequality for the Hilbert transform (1) does not hold.

This is quite a bit more intricate than the examples we have presented. It had
been suggested, in the early days of the weighted theory, that the boundedness
of the maximal functions would be sufficient for the norm boundedness of the
Hilbert transform. On the other hand, if one considers ‘off-diagonal’ estimates, then
boundedness of the maximal function is sufficient for norm inequalities for singular
integrals [8].

Applications of the Main Inequality

The interest in the two weight problem stems from a range of potential applications
arising in sophisticated arenas of complex function and spectral theory. The
motivations for these questions are complicated, and based upon subtle theories. The
connections to the two weight Hilbert transform are not always immediate, and the
properties of interest are frequently more intricate than those of mere boundedness
of a transform. Nevertheless, the acknowledged experts Belov-Mengestie-Seip in
[4] write “. . . we have found it both useful and conceptually appealing to transform
the subject into a study of the mapping properties of discrete Hilbert transforms.
We have learned to appreciate that the essential difficulties thus seem to appear in
a more succinct form.” A brief guide to the subjects, and some of the ‘essential
difficulties’ follow.

Sarason’s Question on Toeplitz Operators

This question arose from Sarason’s work on exposed points of H1 [50]. Indeed,
this was part of an influential body of work that pointed to the distinguished role
of de Branges spaces in the subject. This paper contains examples of pairs of
functions f ; g, for which the individual Toeplitz operators where unbounded, but
the composition bounded.
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Question 1 (Sarason [51]) Characterize those pairs of outer functions g; h 2 H2

for which the composition of Toeplitz operators TgTh is bounded on H2.

Following [51], for a function h 2 L2.T/, the Toeplitz operator Th can be thought
of as taking f 2 H2 to the space of analytic functions by the definition

Thf .z/ �
1

2	

Z
@D

f .ei� /h.ei� /kz.ei� / d�;

where kw.z/ �
.1�jwj2/1=2

1�wz is the reproducing kernel.
Also in [51] is an argument of S. Treil that a Poisson A2 condition is necessary

condition for the boundedness of the composition:

sup
z2D

Pjf j2.z/Pjgj2.z/ <1; (135)

where P denotes the Poisson extension to the unit disk. Sarason wrote that ‘It is
tempting to conjecture that the last condition is also sufficient for the boundedness
of TgTh.’ This statement, widely referred to as the Sarason Conjecture, is of interest
in both the Hardy and Bergman space settings.(Aleman-Pott-Reguera [2] have
resolved the conjecture in the negative in a Bergman space setting. A striking
argument in which they prove the boundedness of the Bergman projection is
equivalent to the boundedness of the positive part of the Bergman projection. This
allows a much simpler counterexample to be identified.)

The connection with the two weight problem for the Hilbert transform is indi-
cated by the diagram from [7] §5, see Fig. 10. In the diagram, Mh is multiplication
by h and PC is the Riesz projection from L2 to H2. The boundedness is equivalent
to

MgPCMf W H2 7! H2:

The structure of outer functions leads to these simplifications. Since the product
of analytic is analytic, the second H2 above can be replaced by L2, and then, the
outside multiplication Mg can then be replaced by Mjgj. Thus, we are considering

Fig. 10 Sarason’s Question
concerns the top line of the
diagram, which is equivalent
to the lower part of the
diagram. The operator Mh on
the left is an isometry onto its
range, while Mg, the operator
on the right is an isometry
between the two spaces
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MjgjPCMf W H2 7! L2. Now, f is anti-analytic, so we can replace H2 above by L2.
Moreover, the multiplication operator Mf=jf j is unitary, since an outer function can
be equal to zero on T only on a set of measure zero. Thus, it is equivalent to consider

MjgjPCMjf j W L2 7! L2:

This is a two weight inequality for PC. (Sergei Treil helped us with the history of
this question.)

The Riesz projection is a linear combination of the identity and the Hilbert
transform, and our main theorem will apply to it. Note that the inequality

kPC.jf j�/kL2.jgj2dx/ � k�kL2.dx/

is equivalent to

kPC.jf j
2 /kL2.jgj2dx/ � k kL2.jf j2dx/:

Recall that PC D I� 	
i H, according to how we defined the Hilbert transform, where

I represents the identity operator. In the two weight setting, we interpret the norm
inequality kPC.� f /kw � kfk� , as uniform over all truncations 0 < � < 1 defined by

PC;� .� f / � � f C
i

	

Z
�<jx�yj<��1

f .y/
�.dy/

y � x

Theorem 10.1 For pairs of weights w; � that absolutely continuous with respect to
Lebesgue measure, the norm inequality kPC.� f /kw � kfk� holds if and only if the
pair of weights satisfy the Poisson A2 condition (3), and these testing inequalities
hold, uniformly over all intervals I, for a finite positive constant P,

Z
I
jPC.�1I/j

2 w.dx/ � P2�.I/;
Z

I
jPC.w1I/j

2 �.dx/ � P2w.I/:

One must be sure that the A2 inequality is necessary from the norm inequality. As
it suffices to test real-valued functions, the real-variable proof given here will suffice.
This in particular shows that for the densities of the weights, �.x/ � w.x/ � A2, for
a.e.x. Thus, the identity part of the norm, and testing, inequalities are trivial. The
remaining parts just concern the Hilbert transform, so one can use the main result.

If one is interested in the Sarason question for functions f ; g that are not outer,
there is no simple reduction to the two weight inequality for the Hilbert transform,
and the problem is quite subtle, as the role of the multiplier PCMf is more involved
than that of just a weight.
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Model Spaces

For a probability measure � on T, define a holomorphic function � on D by the
Poisson integral

1

1 � �.z/
�
Z
T

1

1 � z
�.d/:

This is an inner function: A holomorphic map of D to itself which is unimodular
a.e. on T. Also, �.0/ D 1. (The measure � is a Clark measure for � , frequently
written as �1.)

The shift operator Sf .z/ D zf .z/ on H2 has invariant subspace �H2 D f� f W f 2
H2g, whence K� � H2 � �H2 is invariant for S�. Beurling’s theorem states that
every invariant subspace for S� is of this form. The model operator is S� � P�S,
where P� is the orthogonal projection from H2 onto K� . Remarkably, subject to mild
conditions, every contractive operator on a Hilbert space is unitarily equivalent to
a properly chosen S� . For this, and other reasons, properties of the K� spaces have
broad significance.

The spaces K� and L2.�/ are unitarily equivalent, with the unitary map from
f 2 L2.�/ to F 2 K� given by

F.z/ D .1 � �.z//
Z
T

f ./

1 � z
�.d/:

One is interested in those measures� on T for which the natural embedding operator
is bounded from K� to L2.�/, namely, is it the case that kFk� � kFkK� . We see that
this bound is equivalent to

Z
T

ˇ̌
ˇ
Z
T

f ./

1 � z
�.d/

ˇ̌
ˇ2j1 � �.z/j2�.dz/ � kfk2� :

That is, the question is equivalent to a two weight inequality for the Hilbert
transform on T.

From this perspective, one can lift counterexamples concerning the two weight
Hilbert transform to those for embedding operators, which is the tactic of [40],
from which we have taken this condensed presentation. A characterization of the
embedding question can be read off from our main theorem.

But note that Clark measure is on T, by definition, and the second measure
� is constrained to be supported on T, whereas the disk would be the natural
assumption. In the case where � is supported on the disk, and one seeks an isometric
embedding, the question has a remarkable answer, found by Aleksandrov [1]. The
general question is resolved in [24], which gives a characterization of a two weight
inequality for the Cauchy transform, under these restrictions on the supports of the
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weights. The method of the proof is similar to that of the Hilbert transform, with
some additional complications.

The model spaces are also important to spectral theory, and the subject of
rank one perturbations of a unitary operator. In spectral theory, it is important to
understand the structure of the unitary operator that sends the Hilbert space to
into L2 of the spectral measure. Weighted Hilbert transforms arise therein. See for
instance [42], which uses the example of Nazarov showing that the A2 condition is
not sufficient for the boundedness of the Hilbert transform. Also see [30].

We point the interested readers to [41, 46], and the many citations therein for
more information about these subjects.

de Branges Spaces

We recall the setting of [3, 4]. For a sequence of distinct points � D f�ng � C and
a sequence of positive numbers v D fvng consider the Cauchy transform

H.�;v/ W a D fang 7!
X

n W z¤�n

anvn

z � �n

This is well defined for a 2 `2v and z 2 �, defined by

� �
n
z 2 C W

X
n W z¤�n

vn

jz � �nj2
<1

o
:

Call H.�; v/ the space of functions analytic on� given by the image of `2v under
H.�;v/. For appropriate choices of .�; v/, these Hilbert spaces have deep connections
to analytic function spaces. For instance, the reproducing kernels of H.�; v/ are

kz./ �
X

n

vn

.z � �n/. � �n/
; z 2 �:

And, many natural questions, such as the structure of frames of reproducing kernels
for H.�; v/, require knowledge about the two weight inequality for the Cauchy
transform. For instance, the main real-variable result in [4] is a characterization of
a two weight inequality, but under the requirement that both measures be a sum of
point masses on sparse collections of points. This yields interesting results in the
setting of de Branges spaces.

The definition of H.�; v/ provides just one possible representation of a de
Branges space, a class of Hilbert spaces with remarkable properties. The standard
reference for them is [9]. Beginning from the works of Sarason [50], they have
become an essential part of subject of analytic function spaces.
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Abstract We start with considering rank one self-adjoint perturbations A˛ D AC
˛. � ; '/' with cyclic vector ' 2 H on a separable Hilbert space H. The spectral
representation of the perturbed operator A˛ is realized by a (unitary) operator of
a special type: the Hilbert transform in the two-weight setting, the weights being
spectral measures of the operators A and A˛ .

Similar results will be presented for unitary rank one perturbations of unitary
operators, leading to singular integral operators on the circle.

This motivates the study of abstract singular integral operators, in particular the
regularization of such operator in very general settings.

Further, starting with contractive rank one perturbations we present the Clark
theory for arbitrary spectral measures (i.e. for arbitrary, possibly not inner character-
istic functions). We present a description of the Clark operator and its adjoint in the
general settings. Singular integral operators, in particular the so-called normalized
Cauchy transform again plays a prominent role.

Finally, we present a possible way to construct the Clark theory for dissipative
rank one perturbations of self-adjoint operators.
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These lecture notes give an account of the mini-course delivered by the authors,
which was centered around (Liaw and Treil, J Funct Anal 257(6):1947–1975,
2009; Rev Mat Iberoam 29(1):53–74, 2013; J Anal Math). Unpublished results are
restricted to the last part of this manuscript.

2010 Mathematics Subject Classification. 42B20, 44A15, 47A10, 47A20, 47A55.

Introduction

Rank one perturbations play an important role in operator theory and mathematical
physics. One of the principal attractions of rank one perturbations is that for such
operators almost everything can be explicitly computed, and then the advanced
technique of Harmonic Analysis, like the study of fine properties of Cauchy type
integrals, or advanced theory of singular integral operators can be applied.

Main Players

Rank One Perturbations

Self-adjoint rank one perturbations occurred naturally in mathematical physics
[45]. For example, a change in the boundary condition of a limit-point half-line
Schrödinger operator from Dirichlet to Neumann, or to mixed conditions, can be
reformulated as adding a rank one perturbation (see for example [40]).

The technique of rank one perturbations was used in some results on orthogonal
polynomials and Jacobi matrices, and there are some interesting applications to free
probability (see e.g. [9, 10]). They also turned out to be useful in the investigation of
certain random Hamiltonian systems called Anderson models and the longstanding
Anderson localization conjecture [8]. Many specializations of this conjecture were
studied in literature and the field is still very active (see e.g. [2, 17, 19–21], also see
[28, 46] for a recent account of parts of the field). Rank one perturbations play a role
in [1, 27, 30, 41]. Recent studies of closely related unitary Anderson models as well
as accessible explanations of the physical relevance of these models can be found,
e.g. in [23–25, 42]. The additive perturbation is replaced by a multiplicative one and
the dynamical localization behavior is known to be quite similar to its self-adjoint
analogue.

Singular Integral Operators

Singular integrals is a classical and actively studied field in Harmonic Analysis,
and rank one perturbations serves as a source of very interesting problems. Many
results for rank one perturbations are obtained by investigating fine properties
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of singular integrals. For example, investigation of the boundary behavior of the
Cauchy transform of measures lead via the so-called Aronszajn–Krein formula,
see (4), to the famous Aronszajn–Donoghue theorem stating that singular parts of
the spectral measures of the family of rank one perturbation by a cyclic vector are
mutually singular.

As for a different example, basic facts about Cauchy transform of a measure
coupled with the Aronszajn–Krein formula (4) give a proof of the famous Kato–
Rosenblum theorem about preservation of the absolutely continuous spectrum for
rank one (and automatically for finite rank) perturbations. While the proof for the
trace class perturbations using the technique of wave operator is probably more
elegant, the approach of singular integrals gives some helpful insights.

A deep relation between singular integral operators and rank one perturbations
is based on the fact that a unitary operator realizing the spectral representation of
a rank one perturbation is given by a singular integral operator acting L2.�/ !
L2.�˛/, where �˛ is the spectral measure of the perturbed operator, see [32]; we
explain this connection in the present notes. We should mention here that the spectral
measures � and �˛ can be extremely bad, without any reasonable smoothness, so
the above operator gives a natural example of a two weight estimates for Cauchy
type operators with extremely “pathological” measures.

Clark Measures and Clark Model

In the paper [12] that started what is now called the “Clark theory” D. Clark
considered all unitary rank one perturbations of a special contractive operator
(the so-called model operator with scalar inner characteristic function). He also
described the spectral measures and the spectral representations of the perturbed
unitary operators.

The spectral measures of these unitary rank one perturbations were later called
the Clark measures. Note, that if we fix one such rank one unitary perturbation,
then the other unitary rank one perturbations are the rank one perturbations of the
fixed one. In the original paper [12] all the spectral measures were purely singular,
but very often the term Clark measures (or Clark family of measures) was used for
spectral measures of unitary rank one perturbations of a unitary operator, or for the
spectral measures of self-adjoint rank one perturbations of a self-adjoint operator.

Later many deep function-theoretic results about Clark measures were proved by
A. Aleksandrov, (see [3–7], or see [37] for a survey), so sometimes people refer to
Aleksandrov–Clark theory, or Aleksandrov–Clark measures. Extremely significant
contributions to the theory were made then by A. Poltoratskii, who, in particular,
proved the a.e. existence with respect to the singular part of the measure of the non-
tangential boundary values of the so-called normalized Cauchy transform, see [38].

We also mention an important book [39] by D. Sarason where many aspects
of Clark theory were treated from the point of view of function space theory. In
particular, a description of the Clark operator was obtained in the case when the
characteristic function � is an extreme point of the unit ball in the Hardy space H1.
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Within classical analysis many fruitful connections of Clark measures with
holomorphic composition operators, rigid functions and the Nehari interpolation
problem have been discovered and studied, see for example, [37]. Some problems
in the theory of Hardy spaces, and more generally of other spaces of analytic
functions are closely related to Clark theory. Thus, recently M. Jury [26] computed
the asymptotic symbols of a certain class of weakly asymptotic Toeplitz operators
in terms of the Aleksandrov–Clark measures which occur in the context of rank one
perturbations.

Plan of the Notes

These lecture notes give an account of the mini-course delivered by the authors,
which was centered around [31–33]. Unpublished results are restricted to the last
part of this manuscript.

Self-Adjoint and Unitary Rank One Perturbations

We begin section “Self-Adjoint and Unitary Rank One Perturbations” with an
introduction of self-adjoint rank one perturbations. We then find a unitary operator
V˛ giving the spectral representation of the perturbed operator, see Theorem 2.1
below; this operator looks like a singular integral operator with Cauchy type kernel
.s�t/�1, although the formula of the operator looks quite different from the classical
singular integral operators of Cauchy type.

In particular, the so-called Rigidity Theorem, see Theorem 2.2 below, holds
for such operators: it essentially says that if the formula from Theorem 2.1 gives
a bounded operator with trivial kernel, then, after probably a renormalization
(multiplication by a non-vanishing weight) of the measure in the target space, we
get exactly the unitary operator from the perturbation theory, given by Theorem 2.1.

We then give a different representation of the operator V˛ that looks more in
line with the traditional formulas for singular integral operators. Regularizations
of singular kernels, treated later in section “Singular Integral Operators”, play an
important role in getting this alternative representation.

We then present similar results for the unitary rank one perturbations of unitary
operators. Everything works out similarly to the self-adjoint case; some formulas for
the unitary case might not look as transparent as the ones in the self-adjoint case, but
in the unitary case we avoid technical difficulties related to dealing with unbounded
operators.

Regularizations of Singular Integral Operators

Section “Singular Integral Operators” is devoted to the theory of regularization of
singular kernels, which we believe have applications far beyond the perturbation



Singular Integrals, Rank One Perturbations and Clark Model 89

theory. We show that under very general assumptions about a singular kernel, its so-
called restricted boundedness implies the uniform boundedness of all “reasonable”
regularizations of the corresponding formal singular integral operator.

The restricted boundedness of the kernel is the weakest boundedness property
of the corresponding singular integral operator. Usually, it is assumed in the theory
of singular integral operators that a singular kernel K blows up on the diagonal
x D y, so the formal integral representation Tf .x/ D

R
K.x; y/f .y/d�.y/ is not well

defined.
However, even if we only start out with a kernel K (without assuming the we are

given an operator) for bounded functions f and g with separated compact supports
the expression

hTf ; gi D
Z

K.x; y/f .y/g.x/d�.y/d�.x/

is well defined, and if the “correct” estimate jhTf ; gij � CkfkLp.�/
kgk

Lp0

.�/
, 1=pC

1=p0 D 1 holds for all such pairs, we say that K is Lp.�/ ! Lp.�/ restrictedly
bounded. And we show in section “Singular Integral Operators” that if the measures
� and � do not have common atoms and the kernel K is restrictedly bounded, then
for any “reasonable” regularization K" of the kernel the corresponding regularized
operators T" are uniformly (in ") bounded. This result gives us a way to define for
each restrictedly bounded kernel a corresponding singular integral operator.

Clark Model for Contractive Perturbations of Unitary Operators

Section “Clark Theory for Rank One Perturbations of Unitary Operators” is devoted
to the Clark theory in full generality. We start with unitary rank one perturbations of
a unitary operator U by a �-cyclic vector. All such perturbations can be parametrized
by a scalar parameter � 2 T; if one takes � 2 D the resulting operator will
be a completely non-unitary (c.n.u.) contraction with defect indices 1-1. For such
a contraction a so-called functional model, cf. [43] can be constructed; in fact
functional models are the canonical way of investigating non-normal contractions.

Thus, the perturbed operator U� , � 2 D has two unitarily equivalent representa-
tions: one in the spectral representation of U and the other one in the model space
for the functional model. The Clark operator is a unitary operator intertwining these
representations. In Clark’s original paper [12] this operator was constructed for the
case of the operator U having purely singular spectrum. In [12] the starting point was
a c.n.u. contraction with inner characteristic function, which — after translation to
our language — means that the unitary operator U (and thus all its rank one unitary
perturbations U� ) has a purely singular spectral measure.

In the general case (general spectral measure, or equivalently, a general scalar
characteristic function) our approach of starting with perturbations of unitary
operators looks more natural; in particular, it allowed us to describe the Clark
operator. Of course, now when we know all the formulas, it is possible to go in the



90 C. Liaw and S. Treil

opposite direction and start with a c.n.u. contraction; but using this approach without
knowing the formulas in advance we would have a hard time getting the results. It
could well be just our personal preference, but deducing the formulas in our setup
starting from a unitary operator was a natural and a straightforward process.

The main problem with the general case of Clark theory is that for general scalar
characteristic function the model is vector-valued, i.e. the model space consists of
vector-valued functions (with values in C

2). Earlier approaches based on function
spaces theory, see for example [39], dealt with spaces of scalar-valued functions.
Some parts of the Clark operator were obtained using such methods, but for the
full operator one had to honestly write down a complete model space and do all the
computations.

The adjoint of the Clark operator is described using singular integral operators of
Cauchy type. The so-called normalized Cauchy transform investigated by A. Poltor-
atskii, see [38], plays a prominent role there. The Clark operator itself then can be
represented via boundary values of the analytic functions.

In the model theory we adapt the point of view of coordinate-free model by
N. Nikolski and V. Vasyunin, cf. [35, 36], where by picking different spectral
representations of the minimal unitary dilation one gets different transcriptions
of the model. We present a “universal” representation formula, valid in any
transcription, as well as formulas adapted to two popular transcriptions, the Sz.-
Nagy–Foiaş transcription and the de Branges–Rovnyak one.

Clark Model for Dissipative Perturbations of Self-Adjoint Operators

The last part, section “Few Remarks About Clark Theory for the Dissipative Case”
is devoted to the Clark model for the dissipative perturbations of a self-adjoint
operator. We adapt a common approach that the model space for a dissipative
operator is the model space of its Cayley transform (which is a contraction), with one
detail: since the original operator lives in L2.R; �/, we, using the standard conformal
map between the upper half-plane CC and the unit disc D, move the model space to
the real line (half-plane). The results in this section were not presented before.

Note, that the formulas in this section do not look as elegant as in the case of
perturbations of unitary operators. Probably, a different approach to the model of
dissipative operators would be more appropriate, but we do not know a serious
contender yet. As a pure speculation, the de Branges spaces L.'/ could serve
as appropriate model spaces for the dissipative perturbations. These spaces were
introduced in the first chapter of [13], but were not much investigated, unlike the
spaces H.E/which were investigated in details in [13] and were subject of extensive
research by many authors.
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Self-Adjoint and Unitary Rank One Perturbations

Self-Adjoint Rank One Perturbations

For a self-adjoint (possibly unbounded) operator A on a separable Hilbert space H
let us consider the family of rank-one perturbations A˛ , ˛ 2 R, given by

A˛ WD AC ˛. � ; '/H' on H: (1)

Here, if the operator A is bounded, then ' is a vector in H. For unbounded A, we
can consider the wider class of “singular form-bounded” perturbations where we
assume ' 2 H�1.A/ 	 H, where H�r.A/, r 2 N, is the completion of H with
respect to the norm k � kH

�r.A/
, kfkH

�r.A/
D k.I C jAj/�r=2fkH . In particular, the

perturbation ˛. � ; '/' can be unbounded (see [29, 32] and the references within
for further details). If H D L2.R; �/ and A D Mt is the multiplication by the
independent variable,

Mtf .t/ D tf .t/; 8t 2 R;

then H�1.A/ is exactly the collection of measurable functions such that

Z
R

jf .t/j2

1C jtj
d�.t/ <1:

For r � 2 the formal expression (1) does not uniquely determine a self-adjoint
operator: For fixed ˛ there is a family of self-adjoint operators corresponding to (1).
For this reason we do not consider this case, but rather assume that r < 2.

Without loss of generality we can assume that ' is cyclic for A, that is,

H D clos spanf.A � �I/�1' W � 2 C n Rg:

Otherwise, i.e. if eH D clos spanf.A��I/�1' W � 2 CnRg � H, then we restrict our
attention to the action on eH as the perturbation is trivial (does nothing) on H� eH.

Then according to the Spectral Theorem the operator A is unitarily equivalent
to the multiplication Mt by the independent variable in a space L2.�/ where � is
a spectral measure of the operator A. Spectral measure is of course not unique,
multiplying a spectral measure by a non-vanishing weight (i.e. by a function w 2
L1loc.�/, w > 0 �-a.e.) we get a different spectral measure.

It is customary in the operator theory and mathematical physics to consider the
canonical spectral measure to be the spectral measure associated with the “vector”
', i.e. the unique measure � such that

F.�/ WD ..A � �I/�1'; '/ D
Z
R

d�.x/

x � �
:
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In this case ' is represented by the function 1, and the assumption that ' 2 H�1.A/
means simply that

R
R
.1C jxj/�1d�.x/ < 1.

Knowing function F one can say a lot about the spectral measure �: since
the imaginary part of F is (up to the factor 	) the Poisson integral of � we can
immediately conclude that the density of the absolutely continuous part of� is given
by the non-tangential boundary values of 	�1 Im F.z/ (such values exist a.e. by
classical results). It is also not hard to show that the singular part of � is supported
on a set where the (non-tangential) boundary values of Im F are infinite.

In the heart of the theory of rank one perturbations lies the simple fact that there
is a simple relation between the function F and the corresponding functions F˛ for
the perturbed operators.

Namely, the following simple formula for the inverse of the rank one perturbation
of the identity is well known

�
I � . � ; b/a

	�1

D IC
1

d
. � ; b/aI (2)

here d D 1 � .b; a/ is the so-called perturbation determinant, and the operator is
invertible if and only if d ¤ 0. The proof of this formula is an easy exercise, we
leave it to the reader.

Using the above formula (2) one can easily compute the resolvent of the
perturbed operator A˛ ,

.A˛ � �I/�1f D .A � �I/�1f �
˛
�
.A � �I/�1f ; '

�
1C ˛ ..A � �I/�1'; '/

.A � �I/�1' (3)

which immediately implies the relation between the function F and the corre-
sponding functions F˛ , F˛.�/ WD ..A˛ � �I/�1'; '/, commonly known as the
Aronszajn–Krein formula:

F˛ D
F

1C ˛F
: (4)

If �˛ denotes the spectral measure of the perturbed operator A˛ associated with ',
then

F˛.�/ D
Z
R

d�˛.x/

x � �
:

(Note that it is not hard to show that if ' is cyclic for A, then ' is also cyclic for A˛
and therefore A˛ is unitarily equivalent to the multiplication operator Mt in L2.�˛/).

Many classical results in perturbation theory can be obtained from the
Aronszajn–Krein formula (4) and classical results about boundary values of the
Cauchy transform.

For example, it is not hard to show that all the absolutely continuous parts of
the measures �˛ are equivalent (i.e. mutually absolutely continuous), which is just
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the Kato–Rosenblum theorem for rank one perturbations. Also, the analysis of the
singular parts of the measures �˛ yields the famous Aronszajn–Donoghue theorem,
stating that the singular parts of �˛ are mutually singular.

Rank One Perturbations and Singular Integral Operators

We find a sufficient condition on the absence of singular spectrum by studying the
spectral representation, which comes in the form of a two weight Hilbert transform.
Part of this material can be understood as a first example for section “Singular
Integral Operators”.

Consider a family of rank one perturbations given by A˛ WD AC˛.�; '/', see (1),
where ' 2 H�1.A/ is cyclic for A. Let � denote the spectral measure of operator
A with respect to ', so A is unitarily equivalent to the multiplication operator Mt

in L2.�/. Let us consider the operator A in its spectral representation, i.e. let us
assume that A is the multiplication operator Mt in L2.�/. As we discussed before,
the assumption that ' 2 H�1.A/ means simply that

R
R
.1C jxj/�1d�.x/ <1,

Then the operator A˛ is defined by

A˛ D AC ˛.�; '/' D Mt C ˛. � ; 1/L2.�/1

on L2.�/. On the other hand, the operator A˛ is unitarily equivalent to the
multiplication Ms by the independent variable s in L2.�˛/ (we use a different letter
for the independent variable here to distinguish between the multiplication operators
in L2.�/ and L2.�˛/).

We want to find a unitary operator giving the spectral representation of the
operator A˛ , i.e. a unitary operator

V˛ W L
2.�/! L2.�˛/

such that

V˛A˛ D MsV˛:

We also want ' to be represented by 1 in both representations, which translates to
additional condition V˛' D 1.

Theorem 2.1 of [32] gives the representation of V˛ as the Hilbert transform type
singular integral.

Theorem 2.1 (Representation Theorem) Under the above assumptions the spec-
tral representation V˛ W L2.�/! L2.�˛/ of A˛ is given by

V˛f .s/ D f .s/ � ˛
Z

f .s/ � f .t/

s � t
d�.t/ (5)

for all compactly supported C1 functions f .
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Without going into the details of the proof, we indicate the proof strategy for
bounded operators A. The intertwining condition

MsV˛ D V˛A˛ D V˛.Mt C ˛. � ; '/'/ (6)

can be rewritten as

V˛Mt D MsV˛ � ˛. � ; '/V˛':

Using induction we get

V˛Mn
t D Mn

s V˛ � ˛
n�1X
kD0

. � ;Mk
t '/M

n�k�1
s V˛':

Recalling that ' � 1, V˛' � 1, we get by applying the above identity to ' and
denoting fn.t/ WD tn we get

V˛fn.s/ D sn � ˛

Z
R

 
n�1X
kD0

tksn�k�1

!
d�.t/:

Summing the geometric progression under the integral we get the representation
formula (5) for f D fn, fn.t/ D tn. Linearity of (5) implies that it holds for all
polynomials, and rather standard approximation reasoning allows to extend this
formula to the case of compactly supported C1 functions.

This reasoning, of course, works only for bounded operators A (i.e. when
the measure � is compactly supported). In the case of unbounded operators the
resolvent identity (3) is used instead of (6), see [32] for the details.

Aside we mention that integral operators represented by formula (5) are very
interesting objects, probably deserving more careful investigation. Without proof
we mention one property (see Theorem 2.2 of [32]), which can be understood as a
converse to the last Representation Theorem.

Theorem 2.2 (Rigidity Theorem) Let measure � on R be supported on at least
two distinct points and satisfy

R
.1 C jtj/�1 d�.t/ < 1. Let V be defined on

compactly supported C1 functions f by formula (5).
Assume V extends to a bounded operator from L2.�/ to L2.�/. Assume

Ker V D f0g.
Then there exists a function h such that 1=h 2 L1.�/, and MhV is a unitary

operator from L2.�/ ! L2.�/ (equivalently, that V W L2.d�/ ! L2.jhj2 d�/ is
unitary).

Moreover, the unitary operator U WD MhV gives the spectral representation of
the operator A˛ WD Mt C ˛. � ; '/', ' � 1, in L2.�/, namely UA˛ D MsU, where
Ms is the multiplication by the independent variable s in L2.�/.
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The integral in the representation formula looks like a singular integral operator,
but not exactly in the traditional sense. The attempt to understand the precise con-
nection with the theory of classical singular integral operators lead us to the theory
of regularizations. We describe these results in more detail in section “Singular
Integral Operators” on general abstract singular integral operators.

But now, let us first notice that

.V˛f ; g/
L2.�˛/

D �˛

“
f .t/g.s/

s � t
d�.t/ d�˛.s/

for all f 2 L2.�/ and g 2 L2.�˛/ with separated compact supports. This equality
is trivial for compactly supported C1 function f and g (with separated compact
supports) and can be extended to the general case by a standard approximation
argument.

Since V˛ W L2.�/ ! L2.�˛/ is further unitary, the kernel K.s; t/ D 1=.s � t/ is
what we call restrictedly bounded kernel, see Definition 3.1 below.

An application of Theorem 3.2 and Remark 3.3 shows the following result.

Theorem 2.3 For the measures �, �˛ as above, the operators T" W L2.�/ !
L2.�˛/,

T"f .s/ WD
Z
R

f .t/

s � tC i"
d�.t/;

are uniformly (in ") bounded.

Uniform boundedness of the operators T" implies that there exists a w.o.t. limit
point of T", as "! 0. In fact, it can be shown that this limit point is unique if "! 0C

or "! 0�, so we can say that there exist a w.o.t.-limits T˙ D w.o.t.- lim"!0˙

T".
The existence of w.o.t. limits follows, for example, from the lemma below the

fact that for Im z > 0 and for Im z < 0 the non-tangential boundary values of
Rf�.z/ WD

R
R

fd�.t/
t�z exist �˛-a.e.

Lemma 2.4 For any f 2 L2.�/ the non-tangential boundary values of Rf�.z/ DR
R

fd�.t/
t�z , z 2 CC or z 2 C� exist �˛-a.e.

Proof The a.e. convergence with respect to Lebesgue measure (and so with respect
to the absolutely continuous part of �˛) follows from classical facts about boundary
values of functions from Hardy spaces: for f � 0 the function Rf�.z/ has non-
positive imaginary part, so composing it with a conformal mapping from the lower
half-plane C� we get a bounded analytic function, which has non-tangential limits
on R a.e. with respect to Lebesgue measure. Representing arbitrary complex-valued
function as linear combination of 4 non-negative ones we get the a.e. existence (with
respect to Lebesgue measure) in general case.

To prove the convergence with respect to the singular part .�˛/s of �˛ we get by
applying functional ' to the resolvent formula (3) and denoting f˛ D V˛f that
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Rf˛�˛ D
Rf�

1C ˛R�
:

By Poltoratkii’s theorem, see [38, Theorem 2.7], the non-tangential boundary values
of Rf˛�˛=R�˛ exist (and coincide with f˛) .�˛/s-a.e. Combining the above identity
with the Aronszajn–Krein formula (4) we get

Rf˛�˛
R�˛

D
Rf�

R�
: (7)

But it follows from the Aronszajn–Krein formula (4) that the non-tangential
boundary values of F D R� exist (and equal to �1=˛) .�˛/s-a.e. Indeed

Im F˛ D
Im F

j1C ˛Fj2

and Im F˛ function is the Poisson extension (up to the factor 	) of the measure �˛ .
Therefore, since the singular part of the measure �˛ is supported on the subset of
R where non-tangential boundary values of Im F˛ equalC1, we can conclude that
the non-tangential boundary values of F equal �1=˛ .�˛/s-a.e.

Since the non-tangential boundary values in (7) exist .�˛/s-a.e., we conclude that
same for Rf�. ut

The above Lemma 2.4 implies the w.o.t. convergence of T" as " ! 0C or " !
0�. Indeed, Lemma 2.4 implies the �˛-a.e. convergence, which, in turn implies
that any weakly convergent subsequence of T"f converges to the same function (the
a.e. limit). And this, as one can easily see, means that T"f has a weak limit as "! 0C

or "! 0�.
So, we can define the operators T˙ either as w.o.t. limits of T" as " ! 0˙ or

define T˙f as the non-tangential boundary values of Rf�.z/, z 2 C˙.
Using the operators T˙ we obtain an alternative representation formula, see

Theorem 3.2 of [32]:

Theorem 2.5 Let � and �˛ be the spectral measures of A and A˛ , and let T˙ be as
defined above.

Then V˛ can be written as

V˛f .s/ D f .s/.1 � ˛ T˙1/C ˛ T˙f ; 8f 2 L2.�/: (8)

Proof Consider operators V"
˛ W L

2.�/! L2.�˛/,

V"
˛f .s/ D f .s/ � ˛

Z
f .s/ � f .t/

s � tC i"
d�.t/ D f .s/.1 � ˛T"1.s//C ˛T"f .s/
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and notice that for compactly supported C1 function f the functions V"
˛ f .s/ converge

uniformly and in L2.�˛/ to Vf as " ! 0. Together with uniform bounds on T" this
immediately implies that V"

˛ converges in the strong operator topology to V˛ .
Taking w.o.t. limits we arrive to the representations (8). ut

Remark Note that for the existence of the w.o.t. limits of T" it is sufficient to have
�˛-a.e. convergence on a dense set. As we just discussed above, for compactly
supported f 2 C1 the functions V"

˛f converge uniformly to V˛f . It was also
shown in the proof of Lemma 2.4 that T"1.s/ D �F.s C i"/ converges �˛-a.e.,
which immediately implies �˛-a.e. convergence of T"f for compactly supported C1

functions.
This approach was used in [32].

Unitary Rank One Perturbations

In this section we present the analogues of the Representation Theorem 2.1 and
the Rigidity Theorem 2.2 for the case of unitary rank one perturbations of unitary
operators, that were proved in [31, Section 8].

We should mention, that these results cannot be obtained just by taking the
Cayley transform of the self-adjoint case, we will explain this in section “Few
Remarks About Clark Theory for the Dissipative Case”.

In the contrast with the self-adjoint case the description of all unitary rank one
perturbations of a unitary operator is not immediately self-evident, but with a little
effort one could see that all unitary rank one perturbations of a unitary operator U
can be parametrized as

Ub;˛ D U C .˛ � 1/. � ;U�b/b b 2 H; kbk D 1; ˛ 2 T: (9)

The fact that this formula indeed gives us the parametrization of the unitary rank one
perturbations can be easily seen in the case U D I; the general case then is obtained
by right multiplying the formula for the perturbation of I by U.

In what follows we assume that the vector b is fixed and use the notation U˛ for
Ub;˛ , so our perturbations will be parametrized by the scalar parameter ˛ 2 T WD

fz 2 C W jzj D 1g.
Since the action of perturbation . � ;U�b/b is trivial (zero) on .spanfUnb W n 2

Zg/?, we can ignore what is going on there and assume without loss of generality
that b is �-cyclic vector for U, meaning that spanfUnb W n 2 Zg D H.

Then by the Spectral Theorem U is unitarily equivalent to the multiplication by
the independent variable � in L2.�/ D L2.T; �/, where� is a spectral measure of U.
As in the self-adjoint case we fix a spectral measure � to be the spectral measure
corresponding to the vector b, so � is a probability measure and the vector b in the
spectral representation is given by the function 1.
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So, as before let us assume that U is not just unitarily equivalent, but is a
multiplication operator M� by the independent variable � in L2.�/ D L2.T; �/,
�.T/ D 1 and the rank unitary perturbations U˛ are given by (9) with b D 1.

It is not hard to show that if b is �-cyclic for U then it is also �-cyclic for
U˛ D Ub;˛ , so U˛ is unitarily equivalent to the multiplication Mz by the independent
variable z in L2.�˛/. We take for �˛ the spectral measure corresponding to the
vector b, so b D 1 in the spectral representation of U˛ in L2.�˛/.

Under these assumptions we want to describe the unitary operator giving the
unitary equivalence between U˛ and its spectral representation of, i.e. the unitary
operator V˛ W L2.�/! L2.�˛/ such that V˛1 D 1 and

V˛U˛ D MzV˛: (10)

In Theorem 8.1 of [31] we proved:

Theorem 2.6 (Representation Theorem) Let V˛ W L2.�/ ! L2.�˛/ be a unitary
operator satisfying (10) and such that V˛1 D 1 (which means that �˛ is the spectral
measure of U˛ corresponding to the cyclic vector b, b.�/ � 1). Then

V˛f .z/ D f .z/C .1 � ˛/
Z
T

f .�/ � f .z/

1 � N�z
d�.�/ for all f 2 C1.T/: (11)

Proof The proof goes similarly to the proof of the self-adjoint case (Theorem 2.1
above) for the bounded perturbations sketched above. Namely, using “linear alge-
bra” notation, i.e. identifying b 2 H with the operator b W C ! H, b.˛/ D ˛b and
denoting by b� its adjoint b� W H! C, b�.x/ D .x; b/H we can write

U˛ D U C .˛ � 1/bb�
1 D M� C .˛ � 1/bb�

1 ;

where b1 WD U�b. Then the intertwining relationship (10) gives us

V˛U D MzV˛ C .1 � ˛/.V˛b/b�
1 : (12)

Inductively one can show that for n � 0

V˛Un D Mn
zV˛ C .1 � ˛/

nX
kD1

Mk�1
z .V˛b/

�
.U�/n�kb1

��
:

Applying this formula to the function b � 1 2 L2.�/ and recalling that .Unb/.�/ D
�n, V˛b D 1, b1.�/ � � , .U�

1 /
n�kb1 � �n�kC1 we obtain summing the geometric

series

.V˛�n/.z/ D zn C .1 � ˛/

Z
T

�n � zn

1 � N�z
d�.�/: (13)
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The action of V˛ on N�n, n � 0 is proved similarly. Namely, taking the adjoint of the
intertwining formula V˛U˛ D MzV˛ and right and left multiplying by V˛ we get
that V˛U�

˛ D MNzV˛ , so

V˛U� D MzV˛ C .1 � ˛/.V˛b1/b
�:

But that is exactly the intertwining relationship (12) with U� D U�1 instead of U
and Mz D Mz�1 instead of Mz. So applying the same reasoning as above we get
that (13) holds also for n � 0, and therefore for all trigonometric polynomials.

A standard approximation argument concludes the proof. ut

A converse of the Representation Theorem is also true in the unitary setting.
Under mild conditions bounded injective operators V W L2.�/ ! L2.�/ that are
given by (11) induce a Clark family. More precisely, we quote Theorem 8.4 of [31].

Theorem 2.7 (Rigidity Theorem) Let a probability measure � on T be supported
on at least two distinct points. Let ˛ 2 Tnf1g, and let Vf be defined for C1 functions
f by the right hand side of (5).

Assume V extends to a bounded operator from L2.�/ to L2.�/ and assume
KerV D f0g.

Then there exists a function h such that 1=h 2 L1.�/, and MhV is a unitary
operator from L2.�/ ! L2.�/ (equivalently, that V W L2.d�/ ! L2.jhj2 d�/ is
unitary).

Moreover, the measure jhj2� is exactly the Clark measure �˛ defined as above,
and V treated as the operator L2.�/ ! L2.�˛/ is exactly the operator V˛ from
Theorem 2.6.

As in the self-adjoint setting, the Representation Theorem reminds us of singular
integral operators. Acting as in the self-adjoint case we show that the kernel
K.z; �/ D 1=.1 � �z/ is restrictedly bounded (see Definition 3.1 below). Again,
Theorem 3.2 and Remark 3.3 show the uniform boundedness of the regularization
of the singular integral operator.

Theorem 2.8 For the Clark measures � and �˛ , the operators Tr W L2.�/ !
L2.�˛/ given by

Trf .z/ WD
Z
T

f .�/d�.�/

1 � r�z

are uniformly (in r 2 RC n f1g) bounded.

An analog of Lemma 2.4 holds for the unit circle with essentially the same proof
(for a different proof, see [31, Proposition 8.2]), so the limits limr!1�

Trf .z/ exist
�˛-a.e. on T. So we can define operators T˙ as the �˛-a.e. limits

T˙f .z/ WD lim
r!1�

Trf .z/; z 2 T;
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or, equivalently, as w.o.t. limits

T˙f WD w.o.t.- lim
r!1�

Trf :

Replacing the kernel in (11) by 1=.1 � r�z/ and taking the limit as r ! 1	, we
get an alternative formula for V˛ .

Theorem 2.9 Let � and �˛ be the spectral measures of U and U˛ respectively, and
let T˙ D w.o.t.- limr!1�

Tr (the existence of the limit was just discussed). Then V˛
has the alternative representation

V˛f D Œ1 � .1 � ˛/T˙1�f C .1 � ˛/T˙f 8f 2 L2.�/:

How Unstable Can the Singular Spectrum Become?

By the Kato-Rosenblum theorem we know that the absolutely continuous spectrum
remains invariant under rank one perturbations. But under a rank one perturbation
by a cyclic vector, the singular perturbation can change type, as was shown by an
example by Donoghue. So the question becomes: To which extent may the spectral
properties of the measures �˛ vary as we change ˛? Much work has been done and
many interesting examples were discovered, several are included in [40].

First of all notice that in the context of rank one perturbations for pure point
and the singular continuous spectrum can behave quite different. For example, it is
possible for A˛ to have purely singular continuous spectrum on the interval Œ0; 1�
for all ˛. But the same behavior is not possible for pure point spectrum. In fact, the
perturbations A˛ have pure point spectrum for all ˛ if and only if the spectrum is
countable without accumulation points.

Another question concerns the type of parameter sets that allow dense singular
embedded (in absolutely continuous) spectrum. For several years, all examples
exhibited dense singular embedded spectrum only for a Lebesgue measure zero set
of parameters ˛. It came as a surprise when Del Rio, Fuentes and Poltoratskii [15]
proved the existence of a family of rank one perturbations with dense absolutely
continuous spectrum and dense singular spectrum for almost every parameter ˛ in
an arbitrary (previously given) set B � R and with purely absolutely continuous
spectrum for almost every ˛ 2 RnB. Their proof uses Clark theory. Via a
complicated construction they show the existence of a characteristic function for
which the corresponding family of rank one unitary perturbations has the desired
properties. In fact, it is possible to produce most any type of singular spectrum in
this setting, see [16]. In the last reference, it was remarked that replacing the words
‘almost every’ by ‘every’ in their statement would be a non-trivial improvement,
requiring a rather different approach. Namely, they suggested the following open
problem: Fix an interval I � R and a measurable subset B � R. Can one find a
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family of measures �ˇ so that dense singular spectrum on I occurs precisely when
ˇ 2 B (and the corresponding operator has purely absolutely continuous spectrum
on I for all ˇ 2 RnB)?

A class of examples is concerned with the question of how unstable the spectral
type may be, if we do not have absolutely continuous part. A result of Del Rio,
Makarov and Simon [17] which was independently proved by Gordon [22] states
the following. Consider I � supp� closed and not a singleton. If �˛jI is singular,
then the set of ˛’s for which �˛jI is purely singular continuous is a dense Gı set.

A converse to this result was presented by C. Sundberg [44]: For any closed
subinterval I which is not a singleton and any Gı subset of R, there exists a family of
measures (corresponding to a family of rank one perturbations) such that supp� �
I, �˛ is purely singular continuous for ˛ 2 G and �˛ is pure point for ˛ 2 RnG. In
the proof, Sundberg applies Clark theory. He constructs the characteristic function
by defining a function on a Riemann surface R over the disk D, and then applies the
projection from R to D.

Behavior of the Singular Continuous Spectrum

To this day, a characterization of the singular continuous part of the perturbed
operator’s spectral measure in terms of the unperturbed operator remains an open
problem. Several sufficient conditions for the absence of singular continuous
spectrum are known (see, for example, [11, 40]). Within the realm of our methods,
an application of Theorem 2.3 empowers us with control over singular spectrum of
the perturbed operator.

Lemma 2.10 (Lemma 4.4 of [32]) Operators A˛ , ˛ 2 R n f0g, have a pure
absolutely continuous spectrum on a closed interval I, if

Z "

0

x�2w�
I dx D1:

Here d� D wdxCd�s (w 2 L1.dx/) is the Lebesgue decomposition, and w�
I denotes

the increasing rearrangement of w on I.

This result allows a construction of unperturbed operators A with arbitrary embed-
ded singular spectrum and for which all of the perturbed operators A˛ , ˛ ¤ 0 have
no embedded singular spectrum.
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Singular Integral Operators

Preliminaries

The Hilbert transform T

Tf .x/ D
Z
R

f .y/dy

x � y

is an example of what is usually called a singular integral operator. “Singular” here
means that the kernel K.x; y/ of the operator is not integrable in y near the diagonal,
so in the formal expression Tf .x/ D

R
K.x; y/f .y/dy the integral is not well defined.

In the case of Hilbert transform it is very easy to show that the integral in the
sense of principal value is well defined for C1 compactly supported functions, so
the operator is defined on a dense set in L2 (and Lp, 1 < p < 1). It also can be
shown that it can be extended to a bounded operator there.

Moreover, it can be shown that the integral in the sense of principal value exists
a.e. for all f 2 Lp, 1 � p <1; the proof is not as easy as for the C1 functions, and
is, in fact, quite involved.

A part of the operator V˛ from Theorem 2.1 looks like the Hilbert transform, with
the difference that the integration there is with respect to a general Radon measure
�. And what makes things even more complicated, is that the target space is L2.�˛/
with �˛ being a new measure.

In the theory of singular integral operators, there are several ways to define
such an operator rigorously. One of the accepted ways, is what one would call the
axiomatic approach. Namely, to define a singular integer operator T W Lp.�/ !

Lp.�/ with kernel K we assume that we are given its bilinear form, defined on a
dense subset of Lp.�/ ! Lp0

.�/, 1=p C 1=p0 D 1. The fact that T is an integral
operator with kernel K means simply that

hTf ; gi� D
Z

K.x; y/f .y/g.x/d�.y/d�.x/ (14)

for all (say bounded) f and g with separated compact supports. Since the kernel K
blows up only on the diagonal x D y, the integral above is well defined. Note, that
according to this definition the multiplication operator M' , M' f D 'f is an operator
with kernel K.x; y/ � 0.

Moreover, it can be shown that any bounded singular integral operator with
kernel K � 0, where kernel is understood in the sense of (14), is a multiplication
operator. So, according to the axiomatic approach, any two bounded singular
integral operators that differ by a multiplication operator are identified as equal.

Another way to define the singular integral operator with kernel K is to consider
the truncated operators T",
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T"f .x/ D
Z

jx�yj>"

K.x; y/f .y/dy

which under usual assumptions about kernel K are well defined for bounded
functions f with compact support. And we say that the integral operator with kernel
K is bounded if all operators T" are uniformly bounded. If the operators T" are
uniformly bounded, we can take w.o.t. limit of T" as " ! 0C, so in this case K is
indeed a kernel of a bounded singular integral operator in the sense of the axiomatic
approach.

Moreover, in all known examples if an axiomatically defined operator T is
uniformly bounded then the operators T" are uniformly bounded. And as it turns
out, this is not a coincidence, but a corollary of a very general fact.

Setup

In this paper we assume that � and � are Radon measures on R
d and that K belongs

to L2loc.� � �/ off the diagonal x D y, meaning that for any x0 ¤ y0 there exists a
neighborhood G of .x0; y0/ 2 R

d � R
d such that K1G 2 L2.� � �/. Note, that these

assumptions are weaker than what is usually assumed about the kernels of singular
integral operators.

The main results are also true for (at least some) locally compact abelian groups,
in particular for tori Td. Also, since everything is local, the results can be modified
to hold on smooth manifolds.

Definition 3.1 Let K 2 L2loc.� � �/ off the diagonal x D y. We say that K is
Lp.�/ ! Lp.�/ restrictedly bounded if for all f 2 L1.�/, g 2 L1.�/ with
separated compact supports

ˇ̌
ˇ̌
Z

K.x; y/f .y/g.x/d�.y/d�.x/

ˇ̌
ˇ̌ � CkfkLp.�/

kgk
Lp0

.�/
: (15)

The best constant C in (15) is called the Lp.�/! Lp.�/ restricted bound of K, and
denoted by ŒK�r

Lp.�/!Lp.�/
.

If the exponent p and the measures �, � are fixed, we will skip Lp.�/ ! Lp.�/

and simply say restrictedly bounded.

Going back, we can see that the operator V˛ from Theorem 2.1 is a singular
integral operator (in the sense of axiomatic approach) with kernel K.s; t/ D
˛=.s � t/. Since V˛ is a unitary operator L2.�/! L2.�˛/ its norm is 1 and therefore
the kernel ˛=.s�t/ is restrictedly bounded with the L2.�/! L2.�˛/ restricted norm
at most 1. Equivalently, one can say that the L2.�/! L2.�˛/ restricted norm of the
kernel 1=.s � t/ is at most 1=j˛j.
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Similarly, the operator V˛ from Theorem 2.6 is a singular integral operator with
kernel K.z; �/ D .1 � ˛/=.1 � �z/, z; � 2 T, and the L2.�/ ! L2.�˛/ restricted
norm of the kernel 1=.1 � �z/ is at most 1=j1 � ˛j.

Regularizations of Singular Kernels

Let m W R
d ! R be a regularizer, i.e. a bounded function which is 0 in a

neighborhood of 0 and 1 in a neighborhood of 1. Define the regularized kernel
K" by K".x; y/ D K.x; y/m..x� y/="/. The regularized kernels K" are in L2loc.�� �/

so the regularized integral operators T",

T"f .x/ WD
Z

K".x; y/f .y/d�.y/

are well defined for bounded compactly supported f . In particular, if m.x/ D
1
.1;1/

.jxj/ then we get the classical truncation

T"f .x/ D
Z

jx�yj>"

K.x; y/f .y/d�.y/: (16)

If for 1 < p < 1 operators T" W Lp.�/ ! Lp.�/ are uniformly bounded, then
by taking w.o.t. limit point as " ! 0C we conclude that K is a kernel of a singular
integral operator (in the sense of the axiomatic approach) with kernel K, acting
Lp.�/! Lp.�/.

It turns out that the converse statement is true, even in a stronger sense, if
we assume that the measures � and � do not have common atoms. Namely, the
following theorem holds, see [33, Proposition 2.12].

Theorem 3.2 Let a kernel K be Lp.�/! Lp.�/ restrictedly bounded, and assume
that � and � do not have common atoms. Then for any regularizer m 2 C1

the regularized operators T" are uniformly (in ") bounded, kT"kLp.�/!Lp.�/
�

C.m/ <1.

Moreover, for all “interesting” kernels the Lp.�/ ! Lp.�/ restricted bounded-
ness implies the uniform boundedness of the classical truncations (16).

Without going into details, we just mention that the “interesting” kernels include
kernel 1=.x � y/, x; y 2 R of the Hilbert transform, the kernel .x � y/=jx � yj˛C1,
˛ > 0, x; y 2 R

d of the generalized Riesz transform R˛ in R
d, the kernel 1=.z � w/,

z;w 2 C of the Cauchy transform, the kernel 1=.z � w/2, z;w 2 C of the Beurling–
Ahlfors transform and many others. For more information please refer to [33].

Regularizations with smooth functions m seem to be a more logical and
convenient choice, than the classical one; for example if one starts with a Calderón–
Zygmund kernel then after smooth regularizations the resulting kernel will still be
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a Calderón–Zygmund one with uniform estimates of the constants. However, the
classical truncations are used most.

Remark To define truncation of a kernel on the unit circle T we take the function m
on the line, m � 0 in a neighborhood of 0 and m � 1 in a neighborhood of1, and
define functions em" on T by

em".e
it/ D m.t="/; �	 < t � 	:

Then the regularized kernel K" is defined as

K".z; �/ D K.z; �/m".z=�/; z; � 2 T:

The regularized kernels on T
d are defined similarly, and the same results as in R

d

holds in T
d.

Remark 3.3 For singular integrals related to complex analysis there is another type
of natural regularization. Namely for the kernel K.x; y/ D 1=.x � y/ on R one can
consider kernels

K˙".x; y/ D 1=.x � y˙ i"/: (17)

Similarly, for the kernel K.z; �/ D 1=.1 � �z/ on T define the regularized kernel

Kr.z; �/ D 1=.1 � r�z/; 0 � r <1 r ¤ 1: (18)

For these kernels Theorem 3.2 holds as well.

Now let us discuss the main ideas of the proofs.

First Step: Schur Multipliers

The first idea is very simple: we want to multiply a restrictedly bounded kernel by a
function M such that the resulting kernel is still restrictedly bounded.

Definition 3.4 We call a function M. � ; � / an Lp.�/! Lp.�/ Schur multiplier if for
any Lp.�/ ! Lp.�/ restrictedly bounded kernel K the kernel KM is also Lp.�/ !

Lp.�/ restrictedly bounded and

ŒKM�r
Lp.�/!Lp.�/

� CŒK�r
Lp.�/!Lp.�/

:

The best constant C in the above inequality is called the Schur norm of M.

Traditionally, Schur multipliers are defined with respect to the operator norm of
the corresponding integral operators, or with respect to the Schatten–von-Neumann
norm, but our definition is very close in spirit, so we use the same term.
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Formally, our definition depends on �, � and p, but we will construct “universal”
multipliers, that work for all �, � and p with the same estimate on the Schur norm.
They also are Schur multipliers with respect to the operator norm, as well as with
respect to the Schatten–von-Neumann norms.

Thus, in what follows we will omit Lp.�/ ! Lp.�/ and simply say Schur
multiplier.

Constructing Schur Multipliers via Fourier Transform

We start with an elementary observation: the function Ma, Ma.x; y/ WD e�ia�xeia�y,
a; x; y 2 R

d is a Schur multiplier with the Schur norm 1 (as a product of two
unimodular functions of one variable).

Averaging in a we get that if � is a complex-valued measure of bounded variation
and m Db� is its Fourier transform,

b�.s/ WD
Z
Rd

e�is�td�.t/

then the function M.x; y/ D m.x � y/ is a Schur multiplier with the Schur norm at
most var � .

Note also that for m".s/ D m.s="/ and the measure �" defined by �".E/ D �."E/
we have m" Db�". Since var �" D var � we get that all the functions M"

M".x; y/ D m".x � y/ D m..x � y/="/

are Schur multipliers with the Schur norm estimated by var � .
Since a compactly supported C1 function is a Fourier transform of an L1

function (it is a Fourier transform of a Schwartz class function), and 1 is trivially a
Schur multiplier, we can conclude that functions M", M".x; y/ D m..x�y/="/where
m is the C1 regularizer defined in section “Regularizations of Singular Kernels” are
Schur multipliers.

So we see that the regularized kernels K" obtained using smooth regularizers m
are restrictedly bounded with the uniform (in ") estimate on the restricted norm.

To get the corresponding result for the torus T
d we just need to restrict the

regularizers m" to the cube .�	; 	�d and then map the cube to the torus via the
standard map.

Cauchy Type Regularizations

Let us now discuss the Cauchy type regularizations (17) and (18). For �.x/ D
1
Œ0;1/

e�x define
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m.s/ D 1 �b�.s/ D s

s � i
:

Then m".s/ D m.s=e/ D s=.s � i"/, and the functions M".x; y/ D m".x � y/ are
Schur multipliers with Schur norm at most 2. Computing the regularized kernel we
get

K".x; y/ D
1

x � y

x � y

x � y � i"
D

1

x � .yC i"/
;

so the kernels KC" from (17) are uniformly restrictedly bounded.
Repeating the same reasoning with �.x/ D 1

.�1;0�
ex we get the conclusion

for K�".
For the kernel (18) on T we use the Fourier transform on Z. Namely, it is easy to

show that if a 2 `1.Z/ and m.z/ WD
P

k2Z akzk, z 2 T, then the function M

M.z; �/ D m.z=�/ z; � 2 T

is a Schur multiplier with Schur bound at most kak
`1

.

Then for 0 � r < 1 multiplying K.z; �/ D 1=.1 � �z/ by

m.z=�/ D 1C
1X

nD1

.rn � rn�1/.�z/n D
1 � �z

1 � r�z

we at most double the restricted norm (because 1C
P1

nD1 jr
n � rn�1j D 1C r � 2).

So, for the kernel

K.z; �/ �
1 � �z

1 � r�z
D

1

1 � r�z
D Kr.z; �/; r < 1

we get for r < 1

ŒKr�Lp.�/!Lp.�/
� 2ŒK�Lp.�/!Lp.�/

: (19)

For r > 1 we can write

m.z=�/ D
1 � �z

1 � r�z
D 1 �

1X
nD1

.r�n � r�.nC1//.�z/�n:

Noticing that 1 C
P1

nD1 jr
�n � r�.nC1/j D 1 C r�1 � 2 we see that in the case

r > 1 (19) holds as well.
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Final Step: Boundedness of the Regularized Operators

Theorem 3.5 Let � and � be Radon measures in R
d without common atoms.

Assume that a kernel K 2 L2loc.� � �/ is Lp.�/ ! Lp.�/ restrictedly bounded,
with the restricted norm C. Then the integral operator with T kernel K is a bounded
operator Lp.�/! Lp.�/ with the norm at most 2C.

Restricting the kernels to compact subsets exhausting R
d � R

d one can easily
reduce the proof to the case K 2 L2.� � �/ (globally, not locally). Then the idea of
the proof is very simple. Taking bounded compactly supported functions f and g we
can write

hTf ; gi� D
Z

K.x; y/f .y/g.x/d�.y/d�.x/:

The main idea of the proof is to construct bounded functions fn, gn with separated
compact supports such that fn *

1
2
f weakly in L2.�/, gn *

1
2
g weakly in L2.�/ and

such that

lim sup
n!1

kfnkLp.�/
� 2�1=pkfkLp.�/

; lim sup
n!1

kgnk
Lp0

.�/
� 2�1=p0

kgk
Lp0

.�/
: (20)

Since the operator T is Hilbert–Schmidt, and so compact (as an operator L2.�/ !
L2.�/) the weak convergence implies that

hTfn; gni� !
1

4
hTf ; gi�:

Therefore, using (20) we get

jhTf ; gij � lim sup
n!1

4jhTfn; gnij � 2CkfkLp.�/
kgk

Lp0

.�/
:

The main idea of the construction of the functions fn and gn is quite simple, at
least for the absolutely continuous piece: we define fn WD 1En

, gn WD 1Fn
where

En and Fn are separated “mesh like” subsets, that are well mixed, meaning that for
all dyadic cubes Q of size at least 2�n the Lebesgue measure of the sets Q \ En

and Q \ Fn is almost half (with relative error of say 2�n) of the measure of Q.
Construction of such sets in for the Lebesgue measure is rather trivial and can be
left as an exercise for the reader.

For the measures � and � without atoms the construction is almost the same,
only the “well mixed” property is with respect to the measure � D �C �, meaning
that for any dyadic cube Q of size at least 2�n the measures �.Q \ En/, �.Q \
Fn/ are almost half of �.Q/ with relative error 2�n. It might not be immediately
obvious how to construct such sets En, Fn, but the construction is relatively simple
and straightforward, see [33] for details.
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The construction in the general case is just a bit more complicated. Namely, we
first construct the sets En and Fn with respect to the continuous parts �c, �c of the
measures (making sure that the sets do not contain any atoms). Then we define fn
and gn by adding to f 1En

and g1Fn
the functions

1

2

nX
kD1

f .ak/ıak ;
1

2

nX
kD1

g.bk/ıbk

respectively, where ak, bk are atoms of � and � respectively. To make sure that the
functions fn and gn have separated supports, we then just need to “shrink” the sets
En Fn by removing small discs around atoms. Again, the reader is referred to [33]
for the details.

This idea of using “well mixed” set was exploited in [34] in the case of Lebesgue
measure. It was later used in [32], where some of the result in this section were
proved under the assumption that the singular parts of � and � are mutually singular.

The results in full generality were proved in [33], the reader should look there
for full details.

Clark Theory for Rank One Perturbations of Unitary
Operators

Plan of the Game

As we discussed above in section “Unitary Rank One Perturbations”, rank one
unitary perturbations of a unitary operator U are parametrized by the formula (9).
If in (9) we take j˛j < 1 (instead of j˛j D 1) the resulting operator U˛ will be not a
unitary, but only a contractive (kU˛k � 1) operator.

If, as in section “Unitary Rank One Perturbations” we assume by ignoring the
trivial part that b is �-cyclic vector for U, then for j� j < 1 the operator U� D

U C .� � 1/bb�
1 , b1 D U�b is a completely non-unitary (c.n.u.) contraction. The

term completely non-unitary means that there is no reducing (i.e. invariant for U�

and U�
� ) subspace on which U� acts unitarily.

A completely non-unitary contraction T is up to unitary equivalence determined
by its so-called characteristic function � D �T , see the definition below. Namely, T
is unitarily equivalent to its model M D M� , where M� is a compression of the
multiplication operator Mz,

M� D P�Mz

ˇ̌
K�
I
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here K� is a subspace of a generally vector-valued, and possibly weighted L2 space
on the unit circle, P� D PK�

is the orthogonal projection onto K� , and Mz is the
multiplication by the independent variable z, Mzf .z/ D zf .z/, z 2 T.

So, we have two unitarily equivalent representations of the operator U� , j� j < 1:
the representation

U� D M� C .� � 1/bb�
1 ; b D 1; b1 D M�

� 1

in the spectral representation of U in L2.�/, where � is the spectral measure of U
corresponding to the vector b, and the representation as the model operator M�� in
the model subspace K�� .

The Clark theory describes the unitary operator providing this unitary equiva-
lence, i.e. a unitary operator ˆ� W K�� ! L2.�/ such that

ˆ�M�� D U�ˆ� :

D. Clark in his original paper [12] described such operators for the particular
case when �� is an inner function. He started with the model operator (unitarily
equivalent to U� , j� j < 1 in our notation) in a particular case of inner characteristic
function, described all its unitary rank one perturbations (U˛ , j˛j D 1 in our
notation) and described the unitary operator between the model operator M� and
the spectral representation of U˛ , j˛j D 1.

Translated to our language the fact that the characteristic function � is inner
means that the operator U (and so all U˛ , j˛j D 1) have purely singular spectrum.

A Functional Model for a c.n.u. Contraction

Let us recall the definition related to the functional model. For a c.n.u. contraction
T acting in a separable Hilbert space we define the defect operators

DT WD .I � T�T/1=2; D
T�

WD .I � TT�/1=2;

and the defect subspaces

D D DT WD clos Ran DT ; D� D DT� WD clos Ran DT� :

The characteristic function � D �T of the operator T is an analytic function � D
�T 2 H1

D!D
�

whose values are bounded operators (in fact, contractions) acting from
D to D� defined by the equation

�T.z/ D
�
�T C zDT�.I � zT�/�1DT

� ˇ̌ˇ
D
; z 2 D: (21)
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Note that TD � D�, so for z 2 D the above expression indeed can be interpreted as
an operator from D to D�.

It is customary to assume that the characteristic function is defined up to constant
unitary factors on the right and on the left, i.e. one considers the whole equivalence
class consisting of functions U�V , where U W D� ! E� and V W E! D are unitary
operators and E�, E are Hilbert spaces of appropriate dimensions. The advantage of
this point of view is that we are not restricted to using the defect spaces of T , but
can work with arbitrary Hilbert spaces of appropriate dimensions.

Note, that the characteristic function (defined up to constant unitary factors) is a
unitary invariant of a completely non-unitary contraction: any two such contractions
with the same characteristic function are unitarily equivalent.

Note also, that given a characteristic function, any representative gives us a
model, and there is a standard unitary equivalence between the model for different
representatives.

Remark Another way to look at a choice of a representative of a characteristic
function is to pick orthonormal bases in the defect spaces and treat the characteristic
function as a matrix-valued function (possibly of infinite size). The choice of the
orthonormal bases is equivalent to the choice of the constant unitary factors.

In this paper by a functional model associated to an operator-valued function
� 2 H1

E!E
�

we understand the following: a model space K� is an appropriately
constructed subspace of a (possibly) weighted space L2.E�˚E;W/ on the unit circle
T with the operator-valued weight W. The model operator M� is a compression of
the multiplication operator Mz onto K� ,

M� D P�Mz

ˇ̌
K�
I (22)

where P� D PK�
is the orthogonal projection onto K� .

All the functional models for the same � are unitarily equivalent, so sometimes
people interpret them as different transcriptions of one object.

As we already mentioned above, a completely non-unitary contraction with
characteristic function � is unitarily equivalent to its model M� .

On the other hand, for any purely contractive � 2 H1
E!E

�

, k�k1 � 1 the model
operator M� is a completely non-unitary contraction, with � being its characteristic
function. Thus, any such � is a characteristic function of a completely non-unitary
contraction.

Sz.-Nagy–Foiaş Transcription

The Sz.-Nagy–Foiaş model (transcription) is probably the most used.
The model space K� is defined as a subspace of L2.E� ˚ E/ (non-weighted,

W.z/ � I),
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K� D

�
H2

E
�

clos
L2E


�

�
�





H2

E (23)

where the defect 
 is given by


.z/ WD .1 � �.z/��.z//1=2; z 2 T: (24)

If the characteristic function � is inner, meaning that its boundary values are
isometries a.e. on T, then 
 � 0, so the lower “floor” of K� collapses and we
get a simpler, “one-story” model subspace,

K� D H2.E�/� �H2.E/:

This subspace is probably much more familiar to analysts, especially when � is a
scalar-valued function.

The model operator M� is defined by (22) as the compression of the multi-
plication operator Mz (also known as forward shift operator) onto K� , and the
multiplication operator Mz is understood as the entry-wise multiplication by the
independent variable z,

Mz

�
g
h


D

�
zg
zh


:

As we discussed above, the characteristic function � is defined up to constant
unitary factors on the right and on the left. But one has to be a bit careful here,
because if e�.z/ D U�.z/V , where U and V are constant unitary operators, then the
spaces K� and Ke� are different.

However, the map U

U
�

g
h


D

�
Ug
V�h



is the canonical unitary map transferring the model from one space to the other.
Namely, it is easy to see that U is a unitary map from H2.E�/ ˚ clos
L2.E/

onto H2.UE�/ ˚ close
L2.V�E/, where e
 D 
e� D V�
V . Moreover, it is not
difficult to see that UK� D Ke� and that U commutes with the multiplication by z,
so U� WD U

ˇ̌
K�

intertwines the model operators,

U�M� DMe�U� :
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de Branges–Rovnyak Transcription

Let us present this transcription as it is described in [35]. Since the ambient space in
this transcription is a weighted L2 space with an operator-valued weight, let us recall
that if W is an operator-valued weight on the circle, i.e. a function whose values are
self-adjoint non-negative operators in a Hilbert space E, then the norm in the space
L2.W/ is defined as

kfkL2.W/ D

Z
T

.W.z/f .z/; f .z//
E

jdzj

2	
:

There are some delicate details here in defining the above integral if we allow the
values W.z/ to be unbounded operators, but we will not discuss it here. In our case
when the characteristic function is scalar-valued the values W.z/ are bounded self-
adjoint operators on C

2, and the definition of the integral is straightforward.
Let

W� .z/ D

�
I �.z/

�.z/� I


:

The weight in the ambient space will be given by W D W Œ�1�
� , W Œ�1�

� .z/ D
.W� .z//Œ�1� where AŒ�1� stands for the Moore–Penrose inverse of the operator A.
If A D A� then AŒ�1� is O on Ker A and is equal to the left inverse of A on Ran A.
The model space K� is defined as

K� D

��
gC

g�


W gC 2 H2.E�/; g� 2 H2

�.E/; g� � �
�gC 2 
L2.E/

�
: (25)

Remark 4.1 The original de Branges–Rovnyak model was initially described in
[14] using completely different terms. To give the definition from [14] we need
to recall the notion of a Toeplitz operator. For ' 2 L1

E!E
�

the Toeplitz operator
T' W H2.E/! H2.E�/ with symbol ' is defined by

T' f WD PC.'f /; f 2 H2.E/:

The (preliminary) space H.�/ � H2.E�/ is defined as a range .I �
T�T��/1=2H2.E/ endowed with the range norm (the minimal norm of the preimage).

Let the involution operator J on L2.T/ be defined as

Jf .z/ D zf .z/:

Following de Branges–Rovnyak [14] define the model space D.�/ as the set of
vectors
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�
g1
g2


W g1 2 H.�/; g2 2 H2.E/; such that zng1 � �PC.z

nJg2/ 2 H.�/ 8n � 0;

and such that

����
�

g1
g2

����
2

D.�/
WD lim

n!1

�
kzng1 � �PC.z

nJg2/k
2

H.�/ C kPC.z
nJg2/k

2
2

	
<1:

It might look surprising, but it was proved in [36] that the operator

�
gC

g�


7!

�
gC

Jg�


is a unitary operator between the described above model space K� in the de

Branges–Rovnyak transcription and the model space D.�/.

Model for the Operator U�

For the perturbations U� , j� j < 1 the functional model can be computed explicitly.
The defect operators are computed to be

DU� D
�
I � U�

�U�

�1=2
D
�
1 � j� j2

�1=2
b1b

�
1 ;

DU�� D
�
I � U�U�

�
�1=2
D
�
1 � j� j2

�1=2
bb�

and the defect spaces are

D D DU�
D spanfb1g and D� D D

U��

D spanfbg:

Note that the defect spaces are one-dimensional, so the characteristic function � D
�� is a scalar-valued function. We already mentioned above that � 2 H1, k�k1 �
1. Note also that the defect spaces do not depend on � .

The characteristic function �� of U� can be computed in terms of Cauchy type
transforms. For a (possibly complex-valued) measure � on T and � … T define the
Cauchy type transforms R, R1 and R2 by

R�.�/ WD
Z
T

d�.�/

1 � ��
; R1�.�/ WD

Z
T

��d�.�/

1 � ��
; R2�.�/ WD

Z
T

1C ��

1 � ��
d�.�/:

(26)

If we pick b1 and b to be the basis vectors in the corresponding defect spaces, then
the characteristic function �� of the operator U� , j� j < 1 is given by
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�� .�/ D �� C
.1 � j� j2/R1�.�/

1C .1 � �/R1�.�/
D
.1 � �/R2�.�/ � .1C �/

.1 � �/R2�.�/C .1C �/
; � 2 D:

(27)

Note that the formulas for �0 (� D 0) are especially simple. And �0 is related to ��
by a fractional transformation:

�� D
�0 � �

1 � ��0
or equivalently �0 D

�� C �

1C ���
: (28)

To compute the characteristic function one can use the definition (21) of the
characteristic function with U� instead of T and the inversion formula (2). Namely,
writing

I � zU�
� D .I � zU�/

�
I � z.� � 1/.I � zU�/�1b1b

�
�

and applying the inversion formula (2) we get denoting ˇ D � � 1

.I � zU�
� /

�1 D

0
B@IC

1�
zˇ.I � zU�/�1b1; b

	
H

zˇ.I � zU�/�1b1b
�

1
CA .I � zU�/�1:

In the spectral representation of U in L2.�/ the operator .I � zU�/�1 is the
multiplication by the function 1=.1 � �z/, b � 1, b1.�/ � � , so the above inverse
can be explicitly computed. Then standard algebraic manipulations lead to the
formulas (27) for the resolvent.

A different way of computing the characteristic function for finite rank perturba-
tions can be found in [18].

We point out that if the measure� is purely singular (with respect to the Lebesgue
measure), then the functions �� are inner (j�� j D 1 a.e. on T). In this case the model
is especially simple, the model space consists of scalar functions, and that is the case
treated by the original Clark theory.

However, in our case, � is an arbitrary probability measure, so the characteristic
functions can be non inner, and the model is more complicated: the model space
consists of vector-valued functions (with values in C

2).

Preliminaries About Clark Operator

Recall that our goal is to describe a Clark operator, i.e. a unitary operator (non-
uniqueness is discussed in the next paragraph) that realizes unitary equivalence
between U� and M�� . Namely, we want to find a unitary operator ˆ� W K�� !

L2.�/ such that

ˆ�M�� D U�ˆ� : (29)
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Let us discuss what freedom do we have in choosing such an operator. Clearly,
ˆ� maps defect spaces of M�� to the corresponding defect spaces of U� . Therefore,
ˆ�
�b and ˆ�

�b1 must be unit vectors in DM�

��
and DM��

respectively.

We say that the unit vectors c 2 DM�

��
and c1 2 DM��

agree if there exists a

unitary map ˆ� W K�� ! L2.�/ satisfying (29) such that

ˆ�
�b D c; ˆ�

�b1 D c1:

If � D 0 and � is the Lebesgue measure, then it is not hard to see that �� � 0. It
is also easy to see that in this case, any two unit vectors c 2 DM�

��
and c1 2 DM��

agree.
Otherwise, if either � ¤ 0 or � differs from the Lebesgue measure, then for any

unit vector c 2 DM�

��
there exist a unique vector c1 2 DM��

which agrees with

c; for details see Proposition 2.9 of [31]. That means the operator ˆ� is unique up
to a multiplicative unimodular constant ˛ 2 T; in particular, if we fix a unit vector
c 2 DM�

��
then the condition ˆ�c D b uniquely determines the Clark operator ˆ� .

In the trivial case when � is the normalized Lebesgue measure and � D 0

the Clark operator ˆ� can be easily constructed via elementary means, so in what
follows we will ignore this case.

A “Universal” Representation Formula for the Adjoint
of the Clark Operator

An explicit computation of the defect spaces of the compressed shift operator M�

yields that in the Sz.-Nagy–Foiaş transcription

DM�

�
D spanfcg; DM�

D spanfc1g;

where

c.z/ WD
�
1 � j�.0/j2

��1=2 �1 � �.0/�.z/
��.0/
.z/


; (30)

c1.z/ WD
�
1 � j�.0/j2

��1=2 � z�1 .�.z/ � �.0//
z�1
.z/


; (31)

where 
 WD .1 � j� j2/1=2.
Moreover, the vectors c and c1 are of unit length and agree. Note also that it

follows from (27) that �� .0/ D �� , so the above formulas can be further simplified.
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The following theorem describes the adjoint ˆ�
� of the Clark operator. Note that

the intertwining relation (29) can be rewritten as

ˆ�
�U� DM��ˆ

�
� :

Theorem 4.2 (A “universal” representation formula; Theorem 3.1 of [31]) Let
�� be a characteristic function (one representative) of U� , j� j < 1, and let K�� and
M� D M�� be the model subspace and the model operator respectively. Assume
that the unit vectors c D c� 2 DM�

��
, c1 D c�1 2 DM��

agree. Let ˆ�
� W L2.�/ !

K�� be the unitary operator satisfying

ˆ�
�U� DM��ˆ

�
� ;

and such that ˆ�
�b D c� , ˆ�

�b1 D c�1 .
Then for all f 2 C1.T/

ˆ�
� f .z/ D A� .z/f .z/C B� .z/

Z
f .�/ � f .z/

1 � �z
d�.�/ (32)

where A� .z/ D c� .z/, B� .z/ D c� .z/ � zc�1 .z/.

Idea of the proof To some extent we mirror the proof of Theorem 2.6. However,
several miracles occur (beyond the fact that we are now dealing with the vector-
valued setting of the model space makes the computations are more cumbersome):

Again, we begin with the intertwining relation ˆ�
�U� D M��ˆ

�
� and evaluate

the projection of the model operator

M�� D Mz � zc�1 .c
�
1 /

� � �� .0/c
� .c�1 /

� D Mz C .�c� � zc�1 /.c
�
1 /

�: (33)

We notice that the model operator M�� on K� is a rank one perturbation of the
unitary Mz, and the operator U� on L2.�/ is a rank one perturbation of the unitary
U1 (multiplication by the independent variable). So we expect that the commutator
ˆ�
�U1 �Mzˆ

�
� is at most of rank 2. But in fact, it turns out to be of rank one!

Indeed, the intertwining relation ˆ�
�U� DM��ˆ

�
� can be rewritten as

ˆ�
�U1 C .� � 1/c

�b�
1 D Mzˆ

�
� C .�c� � c�2 /b

�
1

(here we used that ˆ�
�b D c� and .c�1 /

�ˆ�
� D .ˆ�c�1 /

� D b�
1 ), and therefore

ˆ�
�U1 D Mzˆ

�
� C .c

� � zc�1 /b
�
1 : (34)



118 C. Liaw and S. Treil

From here, we proceed in analogy to the proof of Theorem 2.6 to obtain a formula
for ˆ�

� �
n.

The formula for ˆ�
�
N�n cannot be computed by simply taking the formal adjoint

of the commutation relation (34). This is due to the fact that in general zc�1 … K� .
Instead we compute the adjoint of the model operator in analogy to (33)

M�
��
D Mz �Mzc

� .c� /� � �.0/c�1 .c
� /� D Mz C .�c�1 �Mzc

� /.c� /�:

We find ourselves in the lucky situation that the formulas forˆ�
� �

n andˆ�
�
N�n turn

out to be the same. ut

In the Sz.-Nagy–Foiaş transcription we derive concrete formulas. For � D 0 we
have �0.0/ D 0 and by (28) we obtain �� .0/ D �� . With this, the vector-valued
functions A� .z/ and B� .z/ in the universal representation formula (32) evaluate to

A� .z/ D c� .z/ D .1 � j� j2/�1=2
�
1C ��� .z/
�
�.z/


D

 
.1�j� j2/1=2

1���0.z/
�
0.z/

j1���0.z/j

!
; (35)

B� .z/ D c� .z/ � zc�1 .z/ D .1 � j� j
2/�1=2

�
1C .� � 1/�� .z/ � �

.� � 1/
�.z/


(36)

D

�
.1 � j� j2/1=2.1 � �0.z//=.1 � ��0.z//

.� � 1/
0.z/=j1 � ��0.z/j


;

where 
� D .1 � j�� j
2/1=2.

Singular Integral Operators and a Representation
for ˆ�

� in the Sz.-Nagy–Foiaş Transcription

In this section we get a representation of ˆ�
� adapted to the Sz.-Nagy–Foiaş

transcription, similar to the representations given in Theorem 2.5.
We first note that for v.�/ D jB� .�/j2 the kernel K.z; �/ D 1=.1 � �z/ is an

L2.�/ ! L2.v/ restrictedly bounded kernel, see Definition 3.1. Indeed, taking C1

functions f and g with separated compact supports we get that

.V� f ; g/ D
Z
T

�
B.z/f .�/; g.z/

�
H

1 � �z
d�.�/

jdzj

2	
;
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and standard approximation reasoning extend this formula to all bounded functions
with separated supports. But that means that the vector-valued kernel1 B� .z/=.1��z/
is a kernel of a singular integral operator L2.�/ ! L2 with norm 1, and so it is
L2.�/! L2 restrictedly bounded (with restricted norm at most 1).

A standard renormalization argument then implies the L2.�/! L2.v/ restricted
boundedness of the scalar kernel 1=.1 � �z/.

Therefore, as we discussed in section “Singular Integral Operators”, see The-
orem 3.2 and Remark 3.3, the regularized operators Tr with kernel Kr.z; �/ D
1=.1 � r�z/ are uniformly bounded operators L2.�/ ! L2.v/, so the operators
B�Tr are uniformly bounded L2.�/! L2.

On the other hand, the boundary values of the Cauchy transform R (defined
in (26)) exist a.e. with respect to Lebesgue measure by the classical theory of Hardy
spaces; it is easier than for the operators V˛ , since we do not need a.e. convergence
with respect to a singular measure here.

In combination with the uniform bounds we can see the existence of weak
operator topology limit

T˙ WD w.o.t.- lim
r!1�

Tr:

Note also that T˙ can be defined as a.e. limits, T˙f D limr!1�
Trf .

Theorem 4.3 Operator ˆ�
� can be represented in the Sz.-Nagy–Foiaş transcrip-

tion as

.1 � j� j2/1=2ˆ�
� f D

�
0

.� � .� � 1/TC1/
�


f C

�
.1C ��� /=TC1
.� � 1/
�


TCf

D

 
0

1���0
j1���0j

TC1 �
0

!
f C

 
1�j� j2

1���0
� 1

T
C

1

.� � 1/ .1�j� j2/1=2

j1���0j

0

!
TCf

for f 2 L2.�/.

As expected this formula reduces to the normalized Cauchy transform for � D 0
and inner functions � . To see this, we notice that the second component collapses as

.z/ D .1 � j�.z/j2/1=2 D 0 Lebesgue a.e. on T, and that TCf=TC1 is equal to the
normalized Cauchy transform.

Idea of the proof For smooth functions f we replace the term 1 � N�z in the
denominator of (32) by 1 � r N�z and take the limit as r ! 1�. We obtain the same
formula (32). Since we also have weak convergence of the operators we have

1We did not discuss singular integral operators with vector-valued kernels, but the extension of the
theory presented in section “Singular Integral Operators” to the case of kernels with values in R

d

or Cd is trivial and we omit it.
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.TCf /.z/ � f .z/.TC1/.z/ D
Z
T

f .�/ � f .z/

1 � �z
d�.�/; z 2 T:

We extend the operator by continuity to all of L2.�/ and derive

TC1 D 1=.1 � �0/ (37)

from (26) through (28). Technical computations then yield the desired formula. ut

Interestingly, similar arguments show that

T�1 D � N�0=.1 � N�0/: (38)

Representing ˆ� in the de Branges–Rovnyak Transcription

We translate the formula in the last Theorem 4.3 from the Sz.-Nagy–Foiaş transcrip-
tion to the de Branges–Rovnyak transcription, rather than starting from the universal
representation formula in Theorem 4.2. This strategy seemed less cumbersome as
we circumvent having to re-do much of the subtle work of regularizing singular
integral operators. Also, we found it refreshing to understand the connection
between the transcriptions.

By virtue of the definition of the Sz.-Nagy–Foiaş model space K� , see (23), a
function

g D

�
g1
g2


2

�
H2

clos
L2



is in K� if and only if

g� WD �g1 C
g2 2 H2
� WD L2.T/� H2: (39)

Note, that knowing g1 and g� one can restore g2 on T:

g2
 D g� � g1�:

The equality (39) means that the pair gC D g1 and g� belongs to the de Branges–
Rovnyak space, see (25). It is also not hard to check that the norm of the pair .g1; g�/

in the Branges–Rovnyak space (i.e. in the weighted space L2.W/, W D W Œ�1�
� , see

subsection “de Branges–Rovnyak Transcription”) coincides with the norm of the
pair .g1; g2/ in the Sz.-Nagy–Foiaş space (i.e. in non-weighted L2). Indeed, we have

�
g1
g�


D

�
1 0

� 


�
g1
g2


:
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Let B be a “Borel support” of 
, i.e. the set where one of the representative from
the equivalence class of 
 is different from 0. A direct computation shows that for

W� D

�
1 �

� 1



we have a.e. on T

�
1 �

0 



W Œ�1�
�

�
1 0

� 



D

�
1 0

0 1B


;

which gives the desired equality of the norms. (Here 1B denotes the characteristic
function of B.)

Note that functions in H2
� admit analytic continuation to the exterior of the unit

disc, so a function in K� is determined by the boundary values of two functions g1
and g� analytic in D and ext.D/ respectively.

Since the first component of a function in the Branges–Rovnyak space is the
same as in the Sz.-Nagy–Foiaş space and by virtue of Theorem 4.3 we immediately
know

gC.z/ D g1.z/ D
.1 � j� j2/1=2

1 � ��0

TCf

TC1
; (40)

where TC was defined in the paragraph prior to Theorem 4.3.
The second component g� D g�� is analytic on ext.D/. Therefore, we do need to

return to the universal representation formula. After some reformulation we observe.

Theorem 4.4 (Theorem 5.5 of [31]) Let � be not the Lebesgue measure. Then the
function g� D g�� is given by

g�� D .1 � j� j
2/�1=2

�
�� C �

	 T�f

T�1
D
.1 � j� j2/1=2�0

1 � ��0
�

T�f

T�1
: (41)

Formulas for ˆ�

A representation of the Clark operator ˆ� is given in terms of the components
gC and g� of a vector in the de Branges–Rovnyak transcription. This formula is
given piecewise. For a function f 2 L2.�/ we denote by fa and fs its “absolutely
continuous” and “singular” parts, respectively. Formally, fs and fa can be defined as
Radon–Nikodym derivatives fs D d.f�/s=d�s, fa D d.f�/a=d�a.

Let w denote the density of the absolutely continuous part of d�, i.e. w D
d�=dx 2 L1.
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Theorem 4.5 Let g D

�
gC

g�


2 K�� (in the de Branges–Rovnyak transcription)

and let f 2 L2.�/, f D ˆ�g. Then

(1) the non-tangential boundary values of the function

z 7!
1 � �

.1 � j� j2/1=2
gC.z/; z 2 D

exist and coincide with fs �s-a.e. on T.
(2) for the “absolutely continuous” part fa of f

.1 � j� j2/1=2wfa D
1 � ��0

1 � �0
gC C

1 � ��0

1 � �0
g�

a.e. on T.

We provide the idea of the proof. First consider statement .2/. By taking the limit
as r! 1 in Trf � T1=rf we prove the Fatou type result [31, Lemma 5.6]:

TCf � T�f D wf a.e. on T

(with respect to the Lebesgue measure) for all f 2 L2.�/. Together with (38)
and (37) we can use the representations (40) and (41) for gC and g� to see the
desired result for the absolutely continuous part.

Statement .1/ uses Poltoratskii’s theorem [38, Theorem 2.7].

Clark Operator for Other ˛, j˛j D 1

Consider the Clark operator ˆ˛;� W K�� ! L2.�˛/, where �˛ , j˛j D 1 is the
spectral measure corresponding to the cyclic vector b of the unitary operator U˛ .
Operator ˆ˛;� is a unitary operator, which intertwines the model operator M�� and
the c.n.u. contraction .U� /˛ which is the operator U� in the spectral representation
of the operator U˛ .

We deduce everything from the results we already obtained. First, let us write the
c.n.u. contraction U� , j� j < 1 as a rank one perturbation of the unitary operator U˛ ,
j˛j D 1:

U� D U C .� � 1/bb�
1 D U C .˛ � 1/bb�

1 C .� � ˛/bb�
1 D U˛ C .�=˛ � 1/beb�

1 ;

whereeb1 D ˛b1.
From this we can just read off the results for ˛ 2 T from the results we already

proved (for ˛ D 1).
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But to be consistent, we need the operators ˆ�
˛;� to agree. First we need them to

the same model spaces, so let us fix the model spaces to be the ones we got for the
case ˛ D 1. Second, we want them to be consistent with respect to the operators V˛
from section “Unitary Rank One Perturbations”:

ˆ�
˛;� D ˆ

�
�V�

˛ : (42)

Then an appropriately interpreted “universal” representation formula (Theorem 4.2)
gives us a formula for ˆ�

˛;� .
Namely, in the spectral representation of U˛ the c.n.u. contraction U� is given by

M� C .�=˛ � 1/b
˛.b˛1 /

�; (43)

where b˛ D V˛b, b˛1 D V˛eb1 D ˛V˛b1, which yields b˛ D 1, b˛1 .�/ � � , � 2 T.
Notice that

c˛;� D ˆ�
˛;�b˛ D ˆ�

�V�
˛ b˛ D ˆ�

�b D c� ;

and that

c˛;�1 D ˆ
�
˛;�b˛1 D ˆ

�
�V�

˛ b˛1 D ˛ˆ
�
�b1 D ˛c�1 :

Therefore, to get the formula for ˆ�
˛;� with ˆ�

˛;�b˛ D c� (i.e. such that ˆ�
˛;�1 D

c� ) one just has to replace in (32) � by �˛ , and c�1 by ˛c�1 (c� remains the same).
Note, that as long as c� and c�1 are computed, the parameter � does not appear
in (32).

Now let us get the representations in the Sz.-Nagy–Foiaş and de Branges–
Rovnyak transcriptions. One of the ways to get the formula for ˆ�

˛;� would be to
take the “universal formula” above and then repeat the proofs of Theorem 4.3 and
of Theorem 4.4.

But the there is a simpler (in our opinion) way, that allows us to get the result
with almost no computations: one just have to “translate” Theorems 4.3, 4.4 to the
spectral representation of U˛ .

In both these theorems the characteristic function and the parameter � are
included explicitly, so we need to see how they change when we move to the spectral
representation of U˛ .

If we want to apply know formulas (27), they give us the characteristic function
�˛�=˛ of the operator (43) with b˛1 and b˛ taken for the basis vectors in the
corresponding defect subspaces.

So, by replacing � with �˛ and � with �=˛ in (27) and (24) we get the
characteristic function and the defect given by

�˛�=˛ D ˛�� ; and 
�;˛ D 
� :
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Substituting these functions to (35) and replacing � there by �=˛ we get a
representation formula for the adjoint of the Clark operator mapping L2.�˛/ !
K N̨�� in Sz.-Nagy–Foiaş transcription,

.1 � j� j2/1=2ê�
˛;� f D

�
0

.�=˛ � .�=˛ � 1/T˛C1/
�


f C

�
.1C ��� /=T˛C1
.�=˛ � 1/
�


T˛Cf

(44)

D

 
0

1���0
j1���0j

T˛C1 �
0

!
f C

0
@

1�j� j2

1���0
� 1

T˛
C

1

.�=˛ � 1/ .1�j� j2/1=2

j1���0j

0

1
A T˛Cf ;

where we let T˛Cf denote the non-tangential boundary values of Rf�˛.z/, z 2 D.
But the above formula is not yet the formula we are looking for! To get it we

applied Theorem 4.3 with �˛ instead of � and �˛�=˛ D ˛�� instead of �� . But that
means that the result in the right hand side there belongs to K˛� . So the above
expression is an absolutely correct formula giving the representation of the operator
ˆ�
˛;� in the model space K˛�� ; that is why we used ê�

˛;� and not ˆ�
˛;� there.

To get the representation with the model space K�� we notice that the map

�
g1
g2


7!

�
g1
˛g2



is a unitary map from K˛�� onto K�� . Moreover, it maps the defect vector c given by
equation (30) for the space K˛�� to the corresponding defect vector c for the space
K�� . Therefore, to obtain the representation formula for ˆ�

˛;� we need to multiply
the bottom entries in (44) by ˛, which gives us the following representation.

Theorem 4.6 Operator ˆ�
˛;� can be represented in the Sz.-Nagy–Foiaş transcrip-

tion as

.1 � j� j2/1=2ˆ�
˛;� f D

�
0

.� � .� � ˛/T˛C1/
�


f C

�
.1C ��� /=T˛C1
.� � ˛/
�


T˛Cf

D

 
0

˛
1���0

j1���0j
T˛C1 �
0

!
f C

0
@

1�j� j2

1���0
� 1

T˛
C

1

.� � ˛/ .1�j� j2/1=2

j1���0j

0

1
AT˛Cf :

Few Remarks About Clark Theory for the Dissipative Case

Consider a family of rank one perturbations similar to section “Self-Adjoint and
Unitary Rank One Perturbations”, but with perturbation parameter ˛ 2 CC WD fz 2
C W Im z > 0g. In other words, in the spectral representation of A (with respect to the
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cyclic vector ' and spectral measure � D �') we study the family of perturbations
given by

A˛ D Mt C ˛. � ; 1/L2.�/1 on L2.�/ with ˛ 2 CC:

Recall that we consider the extended class of form bounded rank one perturbations.
In the spectral representation this condition is equivalent to

Z
R

d�.t/

1C jtj
<1:

Without going into details on the definition of the perturbation in this case, we
just say that one of the ways is to use the resolvent formula (3).

While there is no “canonical” model for the dissipative operator, a widely
accepted way is to construct the model for the Cayley transform eT˛ D .A˛ � iI/
.A˛ C iI/�1.

So, let us computeeT˛ , introducing some notation along the way.
Denote by eU the Cayley transform of A D A0, eU D .A � iI/.A C iI/�1. Using

the resolvent formula (3) and denoting

eb WD k.AC iI/�1'k�1.AC iI/�1'; eb1 WD k.A � iI/�1'k�1.A � iI/�1'

we can write

T˛ D eU� D eU C .� � 1/eb.eb1/�;
where

� D �.˛/ D
1C ˛Q

1C ˛Q
; Q D ..AC iI/�1'; '/ D

Z
R

d�.s/

sC i
: (45)

If we denote

F.z/ WD
Z
R

d�.s/

s � z
;

we get that Q D F.�i/ D F.i/.
Note also that kebk D keb1k D 1 andeb1 D eU�eb. It is obvious that �.˛/ 2 T for

˛ 2 R. Since Im Q < 0, we conclude that �.˛/ 2 D for Im˛ > 0. Thus T˛ is a
contractive rank one perturbation of the unitary operator eU. Under our assumptions
about cyclicity of ', one can easily see thateb is a �-cyclic vector for eU, so eU is
unitarily equivalent to the multiplication U D M� by the independent variable � in
L2.�

T
/, where �

T
is the spectral measure of eU corresponding to the vectoreb.

Let us fix some notation: for � D �.˛/ given by (45) we denote eU� D eT˛ , and
by U� D T˛ we denote the representation of the same operator in L2.�

T
/. In other
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words, we use T in conjunction with the parameter ˛ 2 CC and U in conjunction
with the parameter � D �.˛/ 2 D; also we use e for the operators in L2.�/, and T
and U act in L2.�

T
/.

The spectral measure �
T

of eU is easily computed. Namely, if ! denotes the
standard conformal map from CC to D (and from R to T),

!.z/ WD
z � i

zC i
; !�1.�/ D i

1C �

1 � �
;

then one can easily see that

�
T
WD e� ı !�1; where de�.x/ D 1

P
�

d�.x/

1C x2
I

here bye�ı!�1 we mean that e�ı!�1.E/ D e�.!�1.E//, E � T, and P WD
R
R

d�.t/
1Ct2

.

What Is the Model for the Dissipative Case?

As we mentioned above, it is customary for dissipative operator to consider the
model for its Cayley transform. Using formulas (27) with �

T
for �, and the above

description of �
T

we can write the characteristic function �� , � D �.˛/.
However, since our original objects live on the real line (in L2.�/), it is natural

to consider the model also to be a space of functions on the real line. The standard
unitary mapping � W L2.T/! L2.R/,

�f .x/ WD
1

p
	.xC i/

f ı !.x/

maps H2.D/ onto H2.CC/ and so H2
�.D/ onto H2

�.CC/. So if we use��1 to transfer
the model space K� to the space of functions on R, the model space on the real line in
Sz.-Nagy–Foiaş and the de Branges–Rovnyak transcriptions will be defined exactly
the same way as the model space on the circle.

The multiplication M! by the function ! on R corresponds to the multiplication
by � on T.

Note also that .	=P/1=2� is a unitary operator L2.�
T
/ ! L2.�/ and that the

map f 7! f ı ! maps L2.�
T
/! L2.e�/ unitarily.

Characteristic Function in the Half-Plane

Let us now compute the characteristic function for A˛ . For � D �.˛/ defined by (45)
let �� be the characteristic function of T˛ computed with respect to the vectorseb1
andeb. Let
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‚˛ D e�� WD �� ı !
be the transfer of �� from the disc to the half-plane; note that we use capital ‚ in
conjunction with the parameter ˛ 2 CC.

Let us now transfer the Cauchy type integrals (26) to CC. For w 2 CC let � D
!.w/. Then

Lemma 5.1 We have

R�
T
.�/ D

Z
T

d�
T
.�/

1 � ��
D

1

2iP

Z
R

�
1

x � w
�

1

xC i

�
d�

R
.x/ DWeR�.w/;

(46)

R1�T
.�/ D

Z
T

��d�
T
.�/

1 � ��
D

1

2iP

Z
R

�
1

x � w
�

1

x � i

�
d�

R
.x/ DWeR1�.w/;

(47)

R2�T
.�/ D

Z
T

1C ��

1 � ��
d�

T
.�/ D

1

iP

Z
R

�
1

x � w
�

x

x2 C 1

�
d�

R
.x/ DWeR2�.w/:

(48)

Using formulas (27) for the disc we can write the characteristic functions as

e�� .w/ D �� C .1 � j� j2/eR1�.w/
1C .1 � �/eR1�.w/ D

.1 � �/eR2�.w/ � .1C �/

.1 � �/eR2�.w/C .1C �/ ; w 2 CC:

(49)

Note that the formulas for e�0 (� D 0, equivalently ˛ D �1=Q D �1=F.i/) are
especially simple. And e�0 is related to e�� by a fractional transformation:

e�� D e�0 � �
1 � �e�0 or equivalently e�0 D

e�� C �
1C �e�� :

Model and Defect Vectors in the Half-Plane

Recall that the model operator Me�� is the compression of the multiplication
operator M! by the function !,

Me�� f WD PKe��
M! f ; f 2 Ke�� :

Let us compute defect subspaces of Me�� .

Considering vectors c D c� and c1 D c�1 defined by (30), (31) with �
T

instead
of �, defineec WD c ı !,ec1 WD c1 ı !, e
 WD 
 ı ! D 1 � je�0j2. Computing we get
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in the Sz.-Nagy–Foiaş transcription

ec.z/ WD �1 � je�� .i/j2
	�1=2

 
1 �e�� .i/e�� .z/
�e�� .i/e
.z/

!
;

ec1.z/ WD
�
1 � je�� .i/j2

	�1=2
 
!.z/�1

�e�� .z/ �e�� .i/
	

!.z/�1e
.z/
!
:

Then the defect subspaces DM�e��
and DMe��

of Me�� are spanned by the vectors

ec.z/
p
	.zC i/

;
ec1.z/
p
	.zC i/

and these vectors agree.

Representations of the Adjoint Clark Operator in the Half-Plane

Using these formulas we can transfer the universal representation formula given by
Theorem 4.2 from the unit circle T to the real line R. For a function f on the real
line R defineef by

ef .x/ WD .xC i/ � f .x/:

and let f
T
WDef ı !�1. Then we can easily transfer Theorem 4.2 from the disc D to

the half-plane CC.
To simplify the notation let us assume that the measure � is Poisson normalized,

i.e. that

P WD
Z
R

d�.x/

x2 C 1
D 1:

Formulas for the general case P ¤ 1 can be then obtained if one notice that the map
f 7! P1=2f is a unitary map L2.�/! L2.�=P/.

A Universal Representation Formula

Theorem 5.2 (A “universal” representation formula for dissipative pertur-
bations) Let the measure � be Poisson normalized (P D 1). Let e�� be the
characteristic function of T˛ D eU� , j� j < 1, computed with respect to the vectorseb1
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andeb (note thate�� is given by (49)). Let Ke�� and M� DMe�� be the model subspace

and the model operator respectively. Let ê�
� W L

2.�/! Ke�� be the unitary operator
satisfying

ê�
�
eU� DMe�� ê�

� ;

and such that ê�
�
eb.z/ Dec� .z/=.p	.zC i//, ê�

�
eb1.z/ Dec�1 .z/=.p	.zC i//.

Then for all compactly supported f 2 C1.R/

p
	.zC i/ê�

� f .z/ D

DeA� .z/ef .z/CeB� .z/
Z �ef .s/ �ef .z/� 1

2i

�
1

s � z
�

1

sC i

�
d�.s/

whereeA� .z/ Dec� .z/,eB� .z/ Dec� .z/ � !.z/ec�1 .z/.

A Representation Formula in the Sz.-Nagy–Foiaş Transcription

For a measure� on the real line define TCf to be the non-tangential boundary values
of the function

eRf�.z/ D
1

2iP

Z
R

f .s/

�
1

s � z
�

1

sC i

�
d�.s/; Im z > 0;

and let T1Cf be the non-tangential boundary values of

eR1f�.z/ WD 1

2iP

Z
R

f .s/d�.s/

s � z
; Im z > 0I

the non-tangential boundary values exist a.e. with respect to the Lebesgue measure
by classical result about boundary values of the functions in the Hardy spaces Hp.

Theorem 5.3 Let � be Poisson normalized, P D 1. The operator ê�
� can be

represented in the Sz.-Nagy–Foiaş transcription as

p
	.1 � j� j2/1=2ê�

� f D

�
0

.� � .� � 1/TC1/e
�


f C

�
.1C �e�� /=TC1
.� � 1/e
�


T1Cf

D

 
0

1��e�0
j1��e�0j TC1 � e
0

!
f C

0
@

1�j� j2

1��e�0 �
1

T
C

1

.� � 1/ .1�j� j2/1=2

j1��e�0j
e
0

1
AT1Cf

for f 2 L2.�/.

The same recipe as above gives the representation in the de Branges–Rovnyak
transcription, and a formula for the Clark operator ˆ� .
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.u; v/ is in joint Ad
2 and u�1 2 RHd

1 , this is sharp in the sense that when u D v the
conditions reduce to u 2 Ad

2 and the estimate is the known linear mixed estimate.

2010 Mathematics Subject Classification. Primary 42B20, 42B25; Secondary
47B38

Introduction

We study quantitative two weight inequalities for some dyadic operators. More
precisely, we study conditions on pairs of locally integrable a.e. positive functions
.u; v/ so that a linear or sublinear dyadic operator T is bounded from L2.u/ into
L2.v/, that is there exists a constant CT;u;v > 0 such that for all f 2 L2.u/,

kTfkL2.v/ � CT;u;vkfkL2.u/;

with estimates on CT;u;v involving the constants that appear in the conditions
imposed on the weights and/or the operator.

There are two current schools of thought regarding the two weight problem.
First, given one operator find necessary and sufficient conditions on the weights
to ensure boundedness of the operator on the appropriate spaces. Second, given a
family of operators find necessary and sufficient conditions on the weights to ensure
boundedness of the family of operators. In the first case, the conditions are usually
“testing conditions” obtained from checking boundedness of the given operator on a
collection of test functions. In the second case, the conditions are more “geometric”,
meaning to only involve the weights and not the operators, such as Carleson
conditions or bilinear embedding conditions, Muckenhoupt A2 type conditions or
bumped conditions. Operators of interest are the maximal function [43, 54, 55, 59],
fractional and Poisson integrals [11, 56], the Hilbert transform [9, 10, 30, 32, 33,
36, 49, 50] and general Calderón–Zygmund singular integral operators and their
commutators [12–14, 47], the square functions [7, 26, 34, 35], paraproducts and
their dyadic counterparts [3, 20, 21, 28, 44]. Necessary and sufficient conditions are
only known for the maximal function, fractional and Poisson integrals [55], square
functions [34] and the Hilbert transform [33, 36], and among the dyadic operators
for the martingale transform, the dyadic square functions, positive and well localized
dyadic operators [17, 18, 25, 37, 38, 49, 51, 57, 58, 60–62]. If the weights u and v
are assumed to be in Ad

2, then necessary and sufficient conditions for boundedness
of dyadic paraproducts and commutators in terms of Bloom’s BMO are known
[20, 21]. The assumption that a weight is in dyadic Ad

p is a strong assumption,
it implies, for example, that the weight is dyadic doubling. On the other hand if
the paraproduct is adapted to the weights u and v, then necessary and sufficient
conditions for its boundedness from Lp.u/ into Lp.v/ are known [39] even in the
non-homogeneous case, interestingly enough the conditions are different depending
on whether 1 � p < 2 or p > 2.
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In this paper we obtain a quantitative two weight estimate for 	b, the dyadic
paraproduct associated to b, where b 2 Carlu;v a new class of functions that we
show coincides with BMOd when u D v 2 Ad

2. The sufficient conditions on the
pair of weights .u; v/ required in our theorem are half of the conditions required for
the boundedness of the martingale transform, namely (i) .u; v/ 2 Ad

2 (joint dyadic
A2 condition) and (ii) a Carleson condition on the weights, or equivalently, the
conditions required for the boundedness of the dyadic square function from L2.v�1/

into L2.u�1/.
In what follows D denotes the dyadic intervals, D.J/ denotes the dyadic

subintervals of an interval J, jJj denotes the length of the interval J, fhIgI2D denotes
the Haar functions, mIf WD

1
jIj

R
I f denotes the integral average of f over the interval

I with respect to Lebesgue measure, and hf ; gi WD
R

f g denotes the inner product on
L2.R/. We prove the following theorem.

Theorem 1.1 Let .u; v/ be a pair of measurable functions on R such that v and
u�1, the reciprocal of u, are weights on R, and such that

(i) .u; v/ 2 Ad
2, that is Œu; v�Ad

2
WD supI2D mI.u�1/mIv <1.

(ii) there is a constant Du;v > 0 such that

X
I2D.J/

j
Ivj
2jIjmI.u

�1/ � Du;vv.J/ for all J 2 D;

where 
Iv WD mI
C

v � mI
�

v, and I˙ are the right and left children of I.

Assume that b 2 Carlu;v , that is b 2 L1loc.R/ and there is a constant Bu;v > 0

such that

X
I2D.J/

jhb; hIij
2

mIv
� Bu;vu

�1.J/ for all J 2 D:

Then 	b, the dyadic paraproduct associated to b, is bounded from L2.u/ into
L2.v/. Moreover, there exists a constant C > 0 such that for all f 2 L2.u/

k	bfkL2.v/ � C
q
Œu; v�Ad

2
Bu;v

�q
Œu; v�Ad

2
C
p
Du;v

	
kfkL2.u/ ;

where 	bf WD
P

I2D mIf hb; hIi hI.

When u D v D w the conditions in Theorem 1.1 reduce to w 2 Ad
2 and

b 2 BMOd, but we do not recover the first author’s linear bound for the dyadic
paraproduct [1], we are off by a factor of Œw�1=2

RHd
1

. In [44, 45] similar methods yield

the linear bound in the one weight case, but there is a step in that argument that
can not be taken in the two weight setting. More precisely, in the one weight case,
u D v D w, we have ww�1 D 1 a.e. and 1 � mIw mI.w�1/; in the two weight case
we can no longer bound vu�1 nor can we bound mIvmI.u�1/ positively away from
zero.



138 O. Beznosova et al.

We compare the known two weight results for the martingale transform, the
dyadic square function, and the dyadic maximal function. Assuming the maximal
operator is bounded from L2.u/ into L2.v/, and under the additional condition
that v is in the RHd

1 class, we conclude the other operators are bounded with
quantitative estimates involving the operator norm of the maximal function and
the RHd

1 constant. Notice that the boundedness of the maximal function implies
that the weights .u; v/ obey the joint Ad

2 condition, but this is not sufficient for
boundedness neither of the martingale transform nor the dyadic square function.
Finally we obtain quantitative two weight estimates for the dyadic square function
when .u; v/ 2 Ad

2 and u�1 is in RHd
1 . This extends work of the first author [2] where

similar quantitative two weight bounds were obtained under the stronger assumption
that u�1 2 Ad

q for some q > 1 (in other words, u�1 2 Ad
1).

Theorem 1.2 Let .u; v/ be a pair of measurable functions such that .u; v/ 2 Ad
2

and u�1 2 RHd
1 : Then there is a constant such that

kSdkL2.u/!L2.v/ � CŒu; v�1=2Ad
2

�
1C Œu�1�

1=2

RHd
1

�
:

When the two weights equal w the conditions in Theorem 1.2 reduce to w 2
Ad
2 and we improve the sharp linear estimates of Hukovic et al. [22] to a mixed

linear estimate. Compare to one weight mixed type estimates of Lerner [41], and two
weight strong and weak estimates in [7, 26, 34] where similar estimates are obtained
for the g-function and Wilson’s intrinsic square function [63]. In the aformentioned
papers, both weights are assumed to be in A1.

The one weight problem, corresponding to u D v D w is well understood. In
1960, Helson and Szegö [19] presented the first necessary and sufficient conditions
on w for the boundedness of the Hilbert transform on L2.w/ in the context of
prediction theory. They used methods involving analytic functions and operator
theory. The two weight characterization for the Hilbert transform in this direction
was completely solved by Cotlar and Sadosky in [9] and [10]. The class of Ap

weights was introduced in 1972 by Muckenhoupt [46], these are the weights w
for which the Hardy-Littlewood maximal function maps Lp.w/ into itself. We say
the positive almost everywhere and locally integrable function w satisfies the Ap

condition if and only if

Œw�Ap WD sup
I

�
1

jIj

Z
I
w.x/dx

�
1

jIj

Z
I
w� 1

p�1 .x/dx

p�1

<1;

where Œw�Ap denotes the Ap characteristic (often called Ap constant or norm) of the
weight. In 1973, Hunt, Muckenhoupt, and Wheeden [23] showed that the Hilbert
transform is bounded on Lp.w/ if and only if w 2 Ap: Also, in 1973, Coiffman and
Fefferman [8] extended this result to the classical Calderón-Zygmund operators.
When u D v D w the joint A2 condition coincides with A2. The joint A2

condition is necessary and sufficient for the two weight weak (1,1) boundedness
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of the maximal function but is not enough for the strong boundedness [55]. In
1982 Sawyer found necessary and sufficient conditions on pairs of weights for the
boundedness of the maximal function, namely joint A2 and the testing conditions
[55]. In the 1990s the interest shifted toward the study, in the one weight case, of
the sharp dependence of Ap characteristic for a general Calderón-Zygmund operator
on weighted Lebesgue spaces Lp.w/. In 2012 Hytönen proved the A2-conjecture
(now theorem), see [24, 31]: Let T be a Calderón-Zgmund operator and w be an A2
weight then

kTfkL2.w/ � C Œw�A2kfkL2.w/ ;

where the constant C depends only on the dimension d, the growth and smoothness
of the kernel of T , and its norm in the non-weighted L2. From sharp extrapolation
[15] one deduces that for 1 < p <1 ; and w 2 Ap,

kTfkLp.w/ � Cd;T;p Œw�
maxf1;1=.p�1/g
Ap

kfkLp.w/:

After these groundbreaking results, improvements were found in the form of mixed
type estimates such as the following L2.w/ estimate

kTfkL2.w/ � C Œw�1=2A2
.Œw�1=2

Ad
1

C Œw�1�
1=2

Ad
1

/kfkL2.w/;

where Ad
1 D [p>1Ad

p , and Œw�Ad
1

is the Hruščev constant or is replaced by the
smaller Œw�RHd

1
as we do in this paper, see [25, 27] and [42, 54] for other variations.

Currently a lot of effort has been put into finding two weight analogues of these
estimates as described at the beginning of this introduction. In this paper we present
two weight quantitative and mixed type estimates for the dyadic paraproduct,
martingale transform, and the dyadic square function.

In this paper we work in R but the results should hold in R
d and in spaces of

homogeneous type.
Preliminary definitions and results are collected in section “Definitions and Fre-

quently Used Theorems”, including joint Ad
2, regular and weighted Haar functions,

w-Carleson sequences, the class Carlu;v , the class RHd
1 and its quantitative relation

to Ad
1, weighted Carleson’s and Buckley’s Lemmas. The main dyadic operators

are introduced in section “Dyadic Operators and Known Two Weight Results”:
dyadic maximal function, dyadic square function, martingale transform and the
dyadic paraproduct, we record the known two weight results for these operators.
In section “The Dyadic Paraproduct, Bump Conditions, and BMO vs Carlu;v” we
prove our quantitative two weight result for the dyadic paraproduct, we also show
that when u D v 2 Ad

2 then Carlu;u D BMOd. We compare our conditions to
bumped conditions and argue that neither result implies the other, we also compare
Carlu;v to the Bloom BMO and related conditions. In section “The Maximal and
the Square Functions” we obtain some quantitative two weight estimates for the
dyadic square function and the martingale transforms under the assumptions that
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the maximal function is bounded and the additional assumption v is a weight in
RHd

1 . In section “The Sharp Quantitative Estimate for the Dyadic Square Function”
we obtain a sharp two weight estimate for the dyadic square function under the
assumptions that .u; v/ 2 A2 and u�1 2 RHd

1 .
The authors would like to thank the referee for thoughtful comments, and for

enticing us to explore in more depth the Bloom BMO condition and compare it to
Carlu;v . The authors would also like to thank Jethro van Ekeren, a friend of the third
author and a native English speaker, who proofread the article.

Definitions and Frequently Used Theorems

Throughout the proofs a constant C will be a numerical constant that may change
from line to line. The symbol An � Bn means there is a constant c > 0 independent
of n such that An � cBn, and An  Bn means that An � Bn and Bn � An.
Given a measurable set E in R, jEj will denote its Lebesgue measure. We say that
a function v W R ! R is a weight if v is an almost everywhere positive locally
integrable function. For a given weight v, the v-measure of a measurable set E,
denoted by v.E/, is v.E/ D

R
E v.x/dx. We say that a weight v is a regular weight

if v..�1; 0// D v..0;1// D 1. Let us denote D the collection of all dyadic
intervals, and let us denote D.J/ the collection of all dyadic subintervals of J:

We say that a pair of weights .u; v/ satisfies the joint Ad
2 condition if and only if

both v and u�1, the reciprocal of u, are weights, and

Œu; v�Ad
2
WD sup

I2D
mI.u

�1/mIv <1; (1)

where mIv stands for the integral average of a weight v over the interval I: Note that
.u; v/ 2 Ad

2 is equivalent to .v�1; u�1/ 2 Ad
2 and the corresponding constants are

equal. Similarly a pair of weights .u; v/ satisfies the joint Ad
p condition iff

Œu; v�Ad
p
WD sup

I2D
mI.u

�1
p�1 /p�1mIv <1:

Note also that .v; v/ 2 Ad
p coincides with the usual one weight definition of v 2 Ad

p.

Haar Bases

For any interval I 2 D, there is a Haar function defined by

hI.x/ D
1p
jIj

�
1I

C

.x/ � 1I
�

.x/
	
;
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where 1I denotes the characteristic function of the interval I , and IC, I� denote the
right and left child of I respectively. For a given weight v and an interval I define
the weighted Haar function as

hvI .x/ D
1p
v.I/

 s
v.I�/

v.IC/
1I

C

.x/ �

s
v.IC/

v.I�/
1I

�

.x/

!
:

The space L2.v/ is the collection of square integrable complex valued functions
with respect to the measure d� D vdx, it is a Hilbert space with the weighted inner
product defined by hf ; giv D

R
f gvdx. It is a well known fact that the Haar systems

fhIgI2D and fhvI gI2D are orthonormal systems in L2.R/ and L2.v/ respectively.
Therefore, for any weight v, by Bessel’s inequality we have the following:

X
I2D
jhf ; hvI ivj

2 � kfk2L2.v/:

Furthermore, if v is a regular weight, then every function f 2 L2.v/ can be
written as

f D
X
I2D
hf ; hvI ivh

v
I ;

where the sum converges a.e. in L2.v/; hence the family fhvI gI2D is a complete
orthonormal system. Note that if v is not a regular weight so that v..�1; 0//,
v..0;1//, or both are finite, then either 1.�1;0/, 1.0;1/, or both are in L2.v/ and
are orthogonal to hvI for every dyadic interval I.

The weighted and unweighted Haar functions are related linearly as follows:

Proposition 2.1 ([49]) For any weight v and every I 2 D, there are numbers ˛vI ,
ˇvI such that

hI.x/ D ˛
v
I hvI .x/C ˇ

v
I

1I.x/p
jIj

where (i) j˛vI j �
p

mIv; (ii) jˇvI j �
j
Ivj
mIv

; and 
Iv WD mI
C

v � mI
�

v:

Dyadic BMO

A locally integrable function b is in the space of dyadic bounded mean oscillation
(BMOd) if and only if there is a constant C > 0 such that for all I 2 D one has

Z
I
jb.x/ � mIbj dx � CjIj:
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The smallest constant C is the BMOd-norm of b. The celebrated John-Nirenberg
Theorem (see [53]) implies that for each 1 � p <1, b 2 BMOd iff

kbkp
BMOd

p
WD sup

I2D

1

jIj

Z
I
jb.x/ � mIbj

pdx <1:

Furthermore kbkBMOd
p

is comparable to the BMO-norm of b.
In this paper we will mostly be concerned with p D 2 and we will declare

kbkBMOd WD kbkBMOd
2
D sup

I2D

� 1
jIj

Z
I
jb.x/ � mIbj

2dx
	1=2

:

Lemma 2.2 If b 2 BMOd then

kbk2BMOd D sup
I2D

1

jIj

X
J2D.I/

jhb; hJij
2:

Proof The family fhJgJ2D.I/ is an orthonormal basis of the space L20.I/ WD ff 2
L2.I/ W

R
I f D 0g: The function .b � mIb/1I 2 L20.I/, hence by Plancherel

Z
I
jb.x/ � mIbj

2dx D
X

J2D.I/
jhb; hJij

2:

This proves the lemma. ut

In other words, b 2 BMOd if and only if there is a constant C > 0 such that for
all I 2 D

X
J2D.I/

jhb; hJij
2 � CjIj:

Carleson Sequences

A positive sequence f�IgI2D is a v-Carleson sequence if there is a constant C > 0

such that for all dyadic intervals J

X
I2D.J/

�I � Cv.J/: (2)

When v D 1 almost everywhere we say that the sequence is a Carleson sequence or
a dx-Carleson sequence. The infimum among all C’s that satisfy the inequality (2)
is called the intensity of the v-Carleson sequence f�IgI2D: For instance, b 2 BMOd
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if and only if fjhb; hIij
2gI2D is a Carleson sequence with intensity kbk2

BMOd . The
following lemma gives a relationship between unweighted and weighted Carleson
sequences.

Lemma 2.3 (Little Lemma, [1]) Let v be a weight, such that v�1 is also a weight,
and let f˛IgI2D be a Carleson sequence with intensity B then f˛I=mI.v

�1/gI2D is a
v-Carleson sequence with intensity at most 4B, that is for all J 2 D,

1

jJj

X
I2D.J/

˛I

mI.v�1/
� 4BmJv:

We also need to define a class of objects that will take the place of the BMOd

class in the two weighted case, we will call this class the two weight Carleson class.

Definition 2.4 Given a pair of functions .u; v/ such that v and u�1 are weights, we
say that a locally integrable function b belongs to the two weight Carleson class,
Carlu;v , if

˚
jbIj

2=mIvgI2D is a u�1- Carleson sequence where bI D hb; hIi:

Note that if u D v, then we have that b 2 Carlv;v iff fjbI j
2=mIvgI2D is a v�1-

Carleson sequence. The later statement is true if fjbIj
2gI2D is a Carleson sequence

(by Lemma 2.3), which in turn is equivalent to saying that b 2 BMOd. Therefore for
any weight v ; such that v�1 is also a weight, we have that

BMOd � Carlv;v:

Moreover, if Bv;v is the intensity of the v�1-Carleson sequence fjbIj
2=mIvgI2D

then Bv;v � 4kbk2
BMOd . In section “The Dyadic Paraproduct, Bump Conditions,

and BMO vs Carlu;v” we will show that if v 2 Ad
2 then BMOd D Carlv;v \ L2loc.R/

(see Corollary 4.6).
We now introduce some useful lemmas which will be used frequently throughout

this paper. You can find proofs in [45]. The following lemma was stated first in [49].

Lemma 2.5 (Weighted Carleson Lemma) Let v be a weight, then f˛IgI2D
is a v-Carleson sequence with intensity B if and only if for all non-negative
v-measurable functions F on the line,

X
I2D
.inf

x2I
F.x//˛I � B

Z
R

F.x/ v.x/ dx: (3)

In relation to Carleson sequences we consider another class of weights which is
called the Reverse Hölder class with index 1 and is defined as follows.

Definition 2.6 A weight v belongs to the dyadic Reverse Hölder class RHd
1

whenever its characteristic Œv�RHd
1

is finite, where

Œv�RHd
1
WD sup

I2D
mI

�
v

mIv
log

v

mIv


<1:
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It is well known that v 2 A1 if and only if v 2 RH1. In the dyadic case, v 2 RHd
1

does not imply that v is dyadic doubling, however v 2 Ad
1 does. See [53] for

more details. Recently, the first author and Reznikov obtained, in [4], the sharp
comparability of the Ad

1 and RHd
1 characteristics. The RHd

1 characteristic is also
known as the Fujii-Wilson Ad

1 characteristic, see for example [54, Equation (2.5)]
and references therein.

Theorem 2.7 ([4]) If a weight v belongs to the Ad
1 class, then v 2 RHd

1 . Moreover,

Œv�RHd
1
� log.16/Œv�Ad

1

:

The constant log.16/ is the best possible.

We would also like to note here that results of Iwaniek and Verde [29] show that
Œw�RHd

1
 supI2D

kwkL log L;I

kwkL;I
, where k�kˆ.L/;I stands for theˆ.L/-Luxemburg norm (for

more details see [4]). In the same paper you can find the following characterization
of the L log L-norm (Part (a)) and a sharp version of Buckley’s theorem (Part (b)).

Theorem 2.8 (a) [4, Theorem II.6(2)] There exist real positive constants c and C,
independent of the weight v, such that for every weight v and every interval J
we have

c mJ

�
v log

�
v

mJv


� 1

jJj

X
I2D.J/

j
Ivj
2

mIv
jIj � C mJ

�
v log

�
v

mJv


(4)

and as a consequence kvkL log L;J 
1

jJj

P
I2D.J/

j
Ivj2

mIv
jIj.

(b) Let v be a weight such that v 2 RHd
1 : Then fj
Ivj

2jIj=mIvgI2D is a v-Carleson
sequence with intensity comparable to Œv�RHd

1
: That is, there is a constant C > 0

such that for any J 2 D,

1

jJj

X
I2D.J/

j
Ivj
2

mIv
jIj � CŒv�RHd

1
mJv:

Dyadic Operators and Known Two Weight Results

We now introduce several dyadic operators which will be considered in this paper,
and record known two weight results for them.

Dyadic Weighted Maximal Function

First we recall the dyadic weighted maximal function.
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Definition 3.1 We define the dyadic weighted maximal function Md
v as follows

Md
v f .x/ WD sup

I3x
I2D

1

v.I/

Z
I
jf .y/j v.y/dy

The weighted maximal function Mv is defined analogously by taking the
supremum over all intervals not just dyadic intervals. A very important fact about
the weighted maximal function is that the Lp.v/ norm of Md

v only depends on
p0 D p=.p � 1/ not on the weight v:

Theorem 3.2 Let v be a locally integrable function such that v > 0 a.e. Then for
all 1 < p <1, Md

v is bounded in Lp.v/. Moreover, for all f 2 Lp.v/

kMd
vgkLp.v/ � CpkfkLp.v/:

This result follows by the Marcinkiewicz interpolation theorem, with constant

Cp D 2.p
0/
1
p , using the facts that Md

v is bounded on L1.v/ with constant 1 and
it is weak-type .1; 1/ also with constant 1. Note that as p ! 1, Cp=p0 ! 2 and
C2 D 2

p
2:

When v D 1, M1 is the maximal function that we will denote M. In [6], Buckley

showed that the Lp.w/ norm of M behaves like Œw�
1

p�1

Ap
, in particular the L2.w/ norm

of M depends linearly on the A2 charateristic of the weight. The next theorem is
Sawyer’s celebrated two weight result for the maximal function M in the case p D 2.

Theorem 3.3 ([55]) The maximal function M is bounded from L2.u/ into L2.v/ if
and only if there is a constant Cu;v > 0 such that

Z
I

�
M.1Iu

�1/.x/
�2
v.x/ dx � Cu;vu

�1.I/; for all intervals I: (5)

A quantitative version of this result was given by Moen, he showed in [43] that
the operator norm of M from L2.u/ into L2.v/ is comparable to 2Cu;v . Note that
Sawyer’s test condition (5) implies .u; v/ 2 A2, moreover Œu; v�A2 � Cu;v .

A quantitative two weight result for the maximal function not involving Sawyer’s
test conditions, instead involving joint A2 and RH1 constant of u�1, has been
recently found by Hyönen and Përez [27], see also Pérez and Rela [54].

Theorem 3.4 ([54, Corollary 1.4])1 Let u and v be weights such that .u; v/ 2 A2

and u�1 2 RH1 then

1Note that in [54, Corollary 1.4] the statement is not exactly this one. The authors are using a well-
known change of variables that we are not using in this paper: their w is our v, their � is our u�1,
their Œw; ��Ad

2
corresponds to our Œ��1;w�Ad

2
and hence equals to our Œu; v�Ad

2
. Finally in their case

M.��/ acts on g 2 L2.�/, in our case M acts on f 2 L2.u/, and clearly g 2 L2.�/ D L2.u�1/ if
and only if f D g� D gu�1 2 L2.u/ with equal norms.
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kMkL2.u/!L2.v/ � C.Œu; v�A2 Œu
�1�RH1 /

1=2:

This result is valid in certain spaces of homogeneous type, see [54]. In fact they
prove a result valid in Lp replacing joint A2 by joint Ap and the power 1=2 by 1=p.
More precisely they show

kMkLp.u/!Lp.v/ � Cp0.Œu; v�Ap Œu
�1�RH1 /

1=p;

where p0 D p=.p � 1/ is the dual exponent to p.

Dyadic Square Function

Second, we introduce the dyadic square function.

Definition 3.5 We define the dyadic square function as follows

Sdf .x/ WD

�X
I2D
jmIf � mOI f j

21I.x/

1=2
;

where OI denotes the dyadic parent of I.

In [22], Hukovic, Treil and Volberg showed that the L2.v/ norm of Sd depends
linearly on the A2 characteristic of the weight. Cruz-Uribe, Martell, and Pérez
[13] showed that the L3.v/ norm of Sd depends on Œv�

1=2
A3

. One concludes that

kSdfkLp.v/ � CŒv�
maxf 12 ;

1
p�1 g

Ap
kfkLp.v/ by sharp extrapolation [15], this bound is

optimal. Lerner [40] has shown that this holds for Wilson’s intrinsic square
function [63].

The following two weight characterization was introduced by Wilson, see
also [49]

Theorem 3.6 ([62]) The dyadic square function Sd is bounded from L2.u/ into
L2.v/ if and only if

(i) .u; v/ 2 Ad
2

(ii) fjIj j
Iu�1j2mIvgI2D is a u�1-Carleson sequence with intensity Cu;v .

Condition (ii) can be viewed as a localized testing condition on the test functions
u�11J for J 2 D. Thus, Cu;v � kSdk2

L2.u/!L2.v/
.

Recently Lacey and Li [34] showed a continuous quantitative analogue of this
theorem and they claim the dyadic version is “a direct analog of their theorem”,
their estimate would read

kSdkL2.u/!L2.v/ � .Œu; v�Ad
2
C Cu;v/

1=2: (6)
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We will present a proof of this estimate in section “The Sharp Quantitative
Estimate for the Dyadic Square Function”. We will get quantitative two weight
estimates for the dyadic square function involving either the two weight norm of the
maximal operator and Œv�1=2

RHd
1

, or Œu; v�1=2Ad
2

, Œu�1�
1=2

RHd
1

, and Œv�1=2
RHd

1

, under appropriate

assumptions in each case.
Theorem 2.8(b) implies that if u�1 2 RHd

1 and .u; v/ 2 Ad
2 then condition (ii) in

Theorem 3.6 holds with Cu;v � Œu; v�Ad
2
Œu�1�RHd

1
. As a corollary of (6) we get that if

u�1 2 RHd
1 and .u; v/ 2 Ad

2 then

kSdkL2.u/!L2.v/ � C.Œu; v�Ad
2
C Œu; v�Ad

2
Œu�1�RHd

1
/1=2: (7)

This improves [2, Theorem 4.1] where the stronger assumption u�1 2 Ad
q for

some q > 1 was made and a similar quantitative two weight estimate was obtained
with Œu�1�Ad

q
replacing Œu�1�RHd

1
and the constant C depending on q. Her results

are proved in a setting where the underlying Lebesgue measure is replaced by a
doubling measure � on R (a space of homogeneous type), introducing a dependence
on the doubling constant of � which is tracked in the aformentioned theorem. We
will prove (7) without relying on (6) in section “The Sharp Quantitative Estimate
for the Dyadic Square Function”. A closer look shows that the same argument will
allow us to recover (6). When u D v D w 2 Ad

2 this improves Hukovic’s linear
bound to a mixed bound:

kSdkL2.w/ � C.Œw�Ad
2
Œw�1�RHd

1
/1=2:

Martingale Transform

Third, we introduce the martingale transforms.

Definition 3.7 Let r be a function from D into f�1; 1g so that r.I/ D rI , then we
define the martingale transform Tr associated to r, acting on functions f 2 L2.R/, by

Trf .x/ WD
X
I2D

rIhf ; hIihI.x/:

In [64], Wittwer showed that the L2.w/ norm of Tr depends linearly on the A2
characteristic of the weight w. The next theorem is from [49] and it gives necessary
and sufficient conditions for the martingale transforms Tr to be uniformly bounded
from L2.u/ into L2.v/. Before we state the theorem, let us define the positive
operator

T0f .x/ WD
X
I2D

˛I

jIj
mIf 1I.x/ ;

where ˛I D
j
Ivj
mIv

j
I.u�1/j

mI.u�1/
jIj:
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Theorem 3.8 ([49]) The martingale transforms Tr are uniformly bounded from
L2.u/ to L2.v/ if and only if the following four assertions hold simultaneously:

(i) .u; v/ 2 A2

(ii) fjIj j
Iu�1j2mIvgI2D is a u�1-Carleson sequence.
(iii) fjIj j
Ivj

2mI.u�1/gI2D is a v-Carleson sequence.
(iv) The positive operator T0 is bounded from L2.u/ into L2.v/.

As a corollary of the previous results in this section we can rewrite Theorem 3.8
as follows,

Corollary 3.9 The martingale transforms Tr are uniformly bounded from L2.u/ to
L2.v/ if and only if the following three assertions hold simultaneously:

(i) Sd is bounded from L2.u/ into L2.v/.
(ii) Sd is bounded from L2.v�1/ into L2.u�1/.

(iii) The positive operator T0 is bounded from L2.u/ into L2.v/.

Dyadic Paraproduct

Finally we recall the definition of the dyadic paraproduct.

Definition 3.10 We formally define the dyadic paraproduct 	b associated to b 2
L1loc.R/ as follows for functions f which are at least locally integrable:

	bf .x/ WD
X
I2D

mIf hb; hIihI.x/:

It is a well know fact that the dyadic paraproduct is bounded not only on Lp.dx/
but also on Lp.v/ when b 2 BMOd and v 2 Ad

p. Beznosova proved in [1] that the
L2.v/ norm of the dyadic paraproduct depends linearly on both Œv�Ad

2
and kbkBMOd :

Sharp extrapolation [15] then shows

k	bfkLp.w/ � CkbkBMOd Œw�
maxf1; 1

p�1 g

Ad
p

kfkLp.w/:

When both weights u; v 2 Ad
p then it is known that the boundedness of the dyadic

paraproduct 	b W Lp.u/ ! Lp.v/ is equivalent to b being in a weighted BMOd.�/

where � D u1=pv�1=p, that is,

kbkBMOd.�/ WD sup
I2D

1

�.I/

Z
I
jb.x/ � mIbj dx <1: (8)

This space is known as Bloom’s BMO [5]. In fact there are a number of conditions
equivalent to (8) (see [20]) one of them being the boundedness of the adjoint of the
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dyadic paraproduct 	�
b W Lp.u/ ! Lp.v/. By duality the last result is equivalent to

the boundedness of the dyadic paraproduct 	b W Lp0

.v0/ ! Lp0

.u0/, where p; p0 are

dual exponents, 1pC
1
p0

D 1, and u0; v0 are dual weights, namely u0 D u
�1

p�1 D u�p0=p.

Not surprisingly �0 D .v0/1=p0

.u0/�1=p0

D �, so that BMO.�0/ D BMO.�/. The
assumption that both weights are in Ad

p is very symmetric and forces boundedness
of the paraproduct and its adjoint to occur simultaneously. This is the appropriate
setting when dealing with two-weight inequalities for commutators which very
naturally can be separated into commutators with a paraproduct, its adjoint, and
other terms which will all be bounded from L2.u/ into L2.v/ provided u; v 2 Ad

p and
b is in Bloom’s BMO.�/. Assuming both u; v 2 Ad

p allows one to use Littlewood-
Paley theory for the dyadic square function Sd, specifically, the Lp.w/ norm of Sdg
is comparable to the Lp.w/ norm of g whenever w 2 Ad

p. In particular k	bfk2
L2.v/

is

comparable to kSd.	bf /k2
L2.v/
D
P

I2D jmIf j2b2I mI.v/, and from here boundedness

from L2.u/ into L2.v/ of the dyadic paraproduct is reduced to verifying the following
estimate

X
I2D
jmIf j

2b2I mI.v/ � Cu;v;bkfk
2
L2.u/:

This inequality holds by the weighted Carleson lemma (Lemma 2.5) and the
boundedness of the maximal function in L2.u/ when u 2 Ad

2, provided the sequence
fb2I mI.v/gI2D is a u-Carleson sequence, namely

X
I2D.J/

b2I mI.v/ � Cu.J/: (9)

Another use of the Littlewood-Paley theory (v 2 A2) allows us to compare the
left-hand-side to

R
J jb.x/ � mJbj2v.x/ dx yielding what turns out is an equivalent

condition for the boundedness of the paraproduct from L2.u/! L2.v/ when u; v 2
Ad
2 (see [20])

sup
J2D

1

u.J/

Z
J
jb.x/ � mIbj

2v.x/ dx <1: (10)

In [21, Theorem 3.1] the authors present an equivalent condition for the bounded-
ness of the paraproduct from L2.u/! L2.v/ when only v 2 Ad

2, namely

B2.u; v/ WD sup
J2D

1

u�1.J/

X
I2D.J/

b2I .mIu
�1/2mI.v/ <1: (11)

Conditions (10) and (11) are testing conditions for the test functions u�11J .
It should be noted that the dyadic paraproduct is a well-localized operator (and

for trivial reasons) in the sense of Nazarov, Treil and Volberg [51]. Therefore the
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known necessary and sufficient testing conditions for well-localized operators apply
in this case, these testing conditions involve the two weights and the function b
(B. Wick, Personal communication. April 2016).

In section “The Dyadic Paraproduct, Bump Conditions, and BMO vs Carlu;v”
we provide sufficient conditions on a pair of weights .u; v/ for the two weight
boundedness of the dyadic paraproduct operator from L2.u/ into L2.v/ when
b 2 Carlu;v , together with a quantitative estimate. The conditions we consider
are less symmetric, we assume a priori that .u; v/ 2 Ad

2 (which is equivalent to
.v�1; u�1/ 2 Ad

2), and an assymetric weighted Carleson condition, or equivalently
we assume the dyadic square Sd function is bounded from L2.v�1/ ! L2.u�1/.
Under these conditions we show that if b 2 Carlu;v then 	b is bounded from
L2.u/ into L2.v/. We would have liked to show that b 2 Carlu;v is not only a
sufficient condition but also a necessary condition for the boundedness of the dyadic
paraproduct under the a priori assumptions on the pair of weights, but we have not
been able to identify the appropriate testing functions that will yield this result.
If we wish to show that both the paraproduct and its adjoint are bounded from
L2.u/ into L2.v/ then we need to assume a priori joint A2 and two mixed Carleson
conditions on the weights, and we need to assume b 2 Carlu;v \ Carlv�1;u�1 . It
will be interesting to compare these conditions, for example can one show that if
u; v 2 Ad

2 then Bloom’s BMO coincides with b 2 Carlu;v \ Carlv�1;u�1? Can we
conclude that when .u; v/ 2 Ad

2 then Carlu;v is equivalent to B2.u; v/ <1? or that
when v 2 Ad

2 then Carlv;v is equivalent to B2.v; v/ < 1? We record some results
comparing these conditions in section “Carlu;v vs Bloom’s BMO”.

The Dyadic Paraproduct, Bump Conditions,
and BMO vs Carlu;v

In this section we will state and prove our main two weight result about the dyadic
paraproduct (Theorem 1.1 in the introduction, called Theorem 4.1 in this section).
We will also compare our result to known two weight bump conditions, compare the
class Carlv;v with BMOd when v 2 Ad

2, and compare the class Carlu;v \ Carlv�1;u�1

with Bloom’s BMO when both u; v 2 Ad
2.

Two Weight Estimate for the Dyadic Paraproduct

In this section we obtain quantitative two-weight estimates for the dyadic paraprod-
uct 	b when b 2 Carlu;v and .u; v/ are two weights with some additional conditions.
Note that by definition b is a locally integrable function, thus bI D hb; hIi is well
defined. The next theorem is a literal restatement of Theorem 1.1 which we provide
for ease of the reader.
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Theorem 4.1 Let .u; v/ be a pair of functions such that v and u�1 are weights,
.u; v/ 2 Ad

2, and fj
Ivj
2jIjmI.u�1/gI2D is a v-Carleson sequence with intensity

Du;v . Then 	b is bounded from L2.u/ into L2.v/ if b 2 Carlu;v . Moreover, if Bu;v is
the intensity of the u�1-Carleson sequence fjbI j

2=mIvgI2D then there exists C > 0

such that for all f 2 L2.u/

k	bfkL2.v/ � C
q
Œu; v�Ad

2
Bu;v

�q
Œu; v�Ad

2
C
p
Du;v

	
kfkL2.u/:

Proof Fix f 2 L2.u�1/ and g 2 L2.v/ ; then fu�1 2 L2.u/, kfu�1kL2.u/ D kfkL2.u�1/,
gv 2 L2.v�1/ and kgvkL2.v�1/ D kgkL2.v/, 	b.fu�1/ is expected to be in L2.v/ ; then
gv 2 L2.v�1/ is in the right space for the pairing. Thus, by duality, suffices to prove:

jh	b.fu
�1/; gvij � C

q
Œu; v�Ad

2
Bu;v

�q
Œu; v�Ad

2
C
p
Du;v

	
kfkL2.u�1/kgkL2.v/: (12)

Replace hI by ˛IhvI C ˇI
1Ip
jIj

where ˛I D ˛vI and ˇI D ˇvI as described in
Proposition 2.1, to get

jh	b.fu
�1/; gvij �

X
I2D
jbIjmI.jf ju

�1/

ˇ̌
ˇ̌
�
gv; ˛Ih

v
I C ˇI

1Ip
jIj

�ˇ̌
ˇ̌: (13)

Use the triangle inequality to separate the sum in (13) into two summands

jh	b.fu
�1/; gvij �

X
I2D
jbI jj˛I jmI.jf ju

�1/jhgv; hvI ij C
X
I2D
jbI j
jˇI jp
jIj

mI.jf ju
�1/jhgv;1Iij:

Using the estimates j˛Ij �
p

mIv and jˇIj �
j
Ivj
mIv

in Proposition 2.1, we have that,

jh	b.fu
�1/; gvij � †1 C†2;

where

†1 WD
X
I2D
jbIjmI.jf ju

�1/jhgv; hvI ij
p

mIv

†2 WD
X
I2D
jbIjmI.jf ju

�1/jhgv;1Iij
j
Ivj

mIv

1p
jIj
:

Estimating †1: We have

†1 �
X
I2D

jbIj
p

mIv
mu�1

I .jf j/jhg; hvI ivjmI.u
�1/mIv
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� Œu; v�Ad
2

X
I2D

jbIj
p

mIv
inf
x2I

Mu�1 f .x/jhg; hvI ivj

� Œu; v�Ad
2

�X
I2D

jbIj
2

mIv
inf
x2I

M2
u�1 f .x/

1=2�X
I2D
jhg; hvivj

2

1=2
:

Here in the first line we use that hgv; f i D hg; f iv , in the second line we use that

mu�1

I jf j WD
mI .jf ju�1/

mI.u�1/
� Mu�1 f .x/ for all x 2 I ; and that mI.u�1/mIv � Œu; v�Ad

2
and

in the third line we use the Cauchy-Schwarz inequality.
Using the fact that fhvI gI2D is an orthonormal system in L2.v/ and the Weighted

Carleson Lemma 2.5, with F.x/ D M2
u�1 f .x/ ; and ˛I D jbIj

2=mIv, which is a u�1-
Carleson sequence with intensity Bu;v , by assumption, we get

†1 � Œu; v�Ad
2

p
Bu;v

�Z
R

M2
u�1 f .x/u

�1.x/dx

1=2
kgkL2.v/

� 2
p
2Œu; v�Ad

2

p
Bu;vkfkL2.u�1/kgkL2.v/: (14)

In the second inequality we used Theorem 3.2.
Estimating †2: Using similar arguments as the ones used for †1 ; we conclude

that,

†2 �
X
I2D
jbIjm

u�1

I .jf j/mv
I .jgj/

j
Ivj

mIv

p
jIjmI.u

�1/mIv

D
X
I2D

jbIj
p

mIv
mu�1

I .jf j/mv
I .jgj/j
Ivj

p
jIjmI.u

�1/
p

mIv

� Œu; v�1=2Ad
2

X
I2D

jbIj
p

mIv
j
Ivj

p
jIj
p

mIu�1 inf
x2I

Mu�1 f .x/ inf
x2I

Mvg.x/

� Œu; v�1=2Ad
2

�X
I2D

jbIj
2

mIv
inf
x2I

M2
u�1 f .x/

1=2�X
I2D
j
Ivj

2mI.u
�1/jIj inf

x2I
M2
vg.x/

1=2
:

By hypothesis fjbIj
2=mIvgI2D is a u�1-Carleson sequence and fj
Ivj jIjmI.u�1/gI2D

is a v-Carleson sequence with intensities Bu;v and Du;v respectively. By
Lemma (2.5),

†2 �
q
Œu; v�Ad

2
Bu;vDu;v

�Z
R

M2
u�1 f .x/u

�1.x/dx

1=2�Z
R

M2
vg.x/v.x/dx

1=2

�
q
Œu; v�Ad

2
Bu;vDu;vkMu�1 fkL2.u�1/kMvgkL2.v/

� 8
q
Œu; v�Ad

2
Bu;vDu;vkfkL2.u�1/kgkL2.v/:
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This estimate, together with estimate (14), gives (12). ut

We can replace the conditions on the pair .u; v/ by boundedness of the dyadic
square function to deduce boundedness of the dyadic paraproduct when b 2 Carlu;v .

Corollary 4.2 Let b 2 L1loc.R/ and .u; v/ be a pair of functions such that v and
u�1 are weights and fjbIj

2=mIvgI2D is a u�1-Carleson sequence .b 2 Carlu;v/ with
intensity Bu;v . If the dyadic square function Sd is bounded from L2.v�1/ into L2.u�1/

then the paraproduct 	b is bounded from L2.u/ into L2.v/: Moreover

k	bfkL2.v/ � C
q
Œu; v�Ad

2
Bu;v

�q
Œu; v�Ad

2
C kSdkL2.v�1/!L2.u�1/

	
kfkL2.u/:

Proof Assume Sd is bounded from L2.v�1/ into L2.u�1/. Theorem 3.6 implies
that .u; v/ 2 A2 and fj
Ivj

2jIjmI.u�1/gI2D is v-Carleson sequence with intensity
Cv�1;u�1 . Moreover, Cv�1;u�1 � kSdk2

L2.v�1/!L2.u�1/
. These two facts together

with the hypothesis that fjbI j
2=mIvgI2D is a u�1-Carleson sequence imply, by

Theorem 1.1, that 	b is bounded from L2.u/ to L2.v/: The claimed estimate holds.
ut

If we especialize to the one weight case u D v D w 2 Ad
2 then kSdkL2.w�1/ �

CŒw�1�Ad
2
D CŒw�Ad

2
. Moreover, b 2 Carlw;w \ L2loc is equivalent to b 2 BMOd and

Bw;w � Ckbk2
BMOd , we show this in Corollary 4.6. The previous Corollary would

give us that

k	bkL2.w/!L2.w/ � CkbkBMOd Œw�
3
2

Ad
2

:

Thus, we do not recover Beznosova’s linear bound, we are off by Œw�
1
2

Ad
2

.

Comparison to One-Sided Bump Theorems

The dyadic paraproduct is especially interesting because it allows us to estimate
Calderón-Zygmund singular integral operators (CZSIO). The general approach to
the two weight estimates for the CZSIO as a class is a bump-approach. We refer the
reader to [48] for the precise definitions and statements, the interested reader can
also consult [59] in this volume.

Theorem 4.3 ([48, Theorem 3.2]) Suppose ˆ satisfies several conditions.2 Sup-
pose that there exists a constant C such that for all I 2 D

ku�1kL;Ikvkˆ.L/;I � C: (15)

2The conditions on the function ˆ are satisfied by the functions ˆ.L/ D L log1C� L and
L log L log log1C� L (for sufficiently large � > 0), but not by ˆ.L/ D L log L.
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Then any Calderón-Zygmund singular integral operator T is weakly bounded from
L2.u/ into L2;1.v/, i.e.,

vfx 2 R W jTf .x/j � �g �
�

CkfkL2.u/

�

2
: (16)

Let us assume that u and v are such that

ku�1kL;JkvkL log L;J � C;

which is a weaker condition than the condition in Theorem 4.3. Then by Theo-
rem 2.8 we have that, for every J 2 D,

kvkL log L;J 
1

jJj

X
I2D.J/

j
Ivj
2

mIv
jIj � C

mJ.u�1/
: (17)

The condition we have for the paraproduct is

1

jJj

X
I2D.J/

j
Ivj
2mI.u

�1/jIj � CmJ.v/ (18)

Note that if .u; v/ 2 Ad
2 we have that

1

jJj

X
I2D.J/

j
Ivj
2mI.u

�1/jIj � Œu; v�Ad
2

1

jJj

X
I2D.J/

j
Ivj
2

mIv
jIj

while mJv �
Œu;v�

Ad
2

mJ.u�1/
. Therefore we cannot compare bump conditions to the

conditions in our results without the additional assumption that there is a constant
q > 0 such that mJ.u�1/mJv � q for all J 2 D. If q � mJ.u�1/mJv � Q for all
J 2 D; the two conditions (17) and (18) become equivalent, but this assumption
essentially reduces the problem to the one weight case [44, Proposition 7.4].

BMO vs Cv;v

Formally the dyadic paraproduct is a bilinear operator for the locally integrable
functions b and f :After we fix b in BMOd, we consider 	b as a linear operator acting
on f : In the following proposition, we try to answer the question: if 	b is bounded on
(weighted) Lebesgue spaces, then in which space does the locally square integrable
function b lie?
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Proposition 4.4 (A necessary condition for boundedness of  b) Let u and v be
weights and, for 1 < p <1, b 2 L2loc.R/. Assume 	b W Lp.u/! Lp.v/ is a bounded
operator then there is a constant Cp > 0 such that for any I 2 D ;

Z
I
jb.x/ � mIbj

pv.x/dx � Cpu.OI/ ; (19)

where OI is the dyadic parent of I. The constant C1=p
p is the operator norm

k	bkLp.u/!Lp.v/.

Proof Let us choose f D hJ for some dyadic interval J. Then, by assumption, there
exists a constant Cp D k	bk

p
Lp.u/!Lp.v/ such that

Z
R

j	b.hJ/.x/j
pv.x/dx � Cp

Z
R

jhJ.x/j
pu.x/dx D Cp

u.J/

jJjp=2
: (20)

On the other hand,

	b.hJ/.x/ D
X
I2D

mI.hJ/hb; hIihI.x/

D
X

I2D.J
C

/

1p
jJj
hb; hIihI.x/ �

X
I2D.J

�

/

1p
jJj
hb; hIihI.x/

D
1p
jJj

h
.b.x/ � mJ

C

b/1J
C

.x/ � .b.x/ � mJ
�

b/1J
�

.x/
i
;

where the last equality is due to the fact that .b � mJb/1J D
P

I2D.J/hb; hIihI .
Therefore we can write

Z
R

j	b.hJ/.x/j
pu.x/dx D

1

jJjp=2

Z
R

ˇ̌
.b.x/� mJ

C

b/1J
C

.x/� .b.x/� mJ
�

b/1J
�

.x/
ˇ̌p
v.x/dx

D
1

jJjp=2

 Z
J
C

ˇ̌
b.x/� mJ

C

bjpv.x/dx C

Z
J
�

jb.x/� mJ
�

bjpv.x/dx

!
:

Thus we can conclude that there is a constant Cp such that for all I 2 D
Z

I
jb.x/ � mIbj

pv.x/dx � Cpu.OI/:
ut

The condition (19) can be considered as a testing condition for the bound-
edness of the dyadic paraproduct from Lp.u/ into Lp.v/. When u; v 2 Ad

p both

weights are doubling weights, in particular u.OI/ � D.u/ u.I/ (where D.u/ WD
supI2D u.OI/=u.I/ < 1 is the dyadic doubling constant of u). In this case, (19)
becomes
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Z
I
jb.x/ � mIbj

pv.x/ dx � Cpu.I/

which is equivalent to the boundedness of the paraproduct and its adjoint [20,
Theorem 4.1] from Lp.u/ into Lp.v/ when u; v 2 Ad

p. When u D v this necessary
condition was known in the more general matrix Ap context [28].

One can immediately conclude that the inequality (19) implies that b is in BMOd

for u D v D 1 (Lebesgue space). Thus, one can view the condition b 2 BMOd as
a testing condition for the boundedness of the paraproduct on L2.R/, in the same
way that the conditions T1;T�1 2 BMO in the celebrated T1 Theorem are testing
conditions.

For the weighted Lebesgue space, we have the following corollary.

Corollary 4.5 For 1 < p < 1 ; b 2 L2loc.R/, if 	b is bounded from Lp.v/ into
itself and v is an Ad

p weight, then b belongs to BMOd. Moreover, kbkBMOd �

2k	bkLp.v/!Lp.v/Œv�
1=p
Ad

p
.

Proof For any I 2 D; we have

Z
I
jb.x/ � mIbj dx D

Z
I
jb.x/ � mIbjv

1
p .x/v� 1

p .x/ dx

�

�Z
I
jb.x/ � mIbj

pv.x/ dx

 1
p
�Z

I
v

�
p0

p .x/ dx

 1
p0

� C1=p
p

�Z
OI
v.x/ dx

 1
p
�Z

OI
v

�
p0

p .x/ dx

 1
p0

(21)

D C
1
p
p jOIj

�
1

jOIj

Z
OI
v.x/ dx

 1
p
�
1

jOIj

Z
OI
v

� 1
p�1 .x/ dx

 p�1
p

(22)

� 2k	bkLp.v/!Lp.v/Œv�
1
p

Ad
p
jIj:

Here the inequality (21) holds due to (19) with v D u: ut

Notice that b 2 BMO implies that b 2 Lp
loc.R/ for all 1 � p < 1 by the John-

Nirenberg inequality.
For the two weight case, in order to show that (22) is bounded, we need .v; u/ 2

Ap which is totally different from .u; v/ 2 Ap. Thus, we cannot conclude anything
more than (19) for the two weight situation.

To finish this section, we give a relation between BMOd and Carlv;v .

Corollary 4.6 If v 2 Ad
2 then

BMOd D Carlv;v \ L2loc.R/:
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Proof In section “Carleson Sequences”, we observed that BMOd � Carlv;v for any
weight v such that v�1 is also a weight. Also recall that by the John-Nirenberg
theorem if b 2 BMO then b 2 L2loc.R/. Thus, to complete the proof, we need to
show that if v 2 Ad

2 and b 2 Carlv;v \ L2loc.R/ then b 2 BMOd: If v 2 Ad
2 then in

particular v 2 RHd
1 . By Theorem 2.8, it follows that, for every dyadic interval J, we

have

1

jJj

X
I2D.J/

j
Ivj
2mI.v

�1/jIj � Œv�Ad
2

1

jJj

X
I2D.J/

j
Ivj
2

mIv
jIj � CŒv�Ad

2
Œv�RHd

1
mJv : (23)

Since v 2 Ad
2 and b 2 Carlv;v , all conditions of Theorem 1.1 are satisfied, and we

know that the dyadic paraproduct, 	b, is bounded from L2.v/ into L2.v/. Thus, by
Corollary 4.5, b must belong to BMOd: ut

Similar one weight results are shown by Isralowitz, Kwon, and Pott [28] in the much
more general matrix Ap context.

Carlu;v vs Bloom’s BMO

There are other weighted bounded mean oscillation spaces in the literature. The
dyadic weighted BMO space for a weight � in R

d, denoted BMOd.�/ in [20,
Section 2.6], consists of all locally integrable functions b such that

kbkBMOd.�/ WD sup
Q

1

�.Q/

Z
Q
jb.x/ � mQbj dx <1;

where the supremum is taken over all dyadic cubes with sides parallel to the axes.
In that paper, it is pointed out that when the weight is in A1 (hence, in particular,
is a doubling weight), one can replace the L1 with Lp norm provided the integration

with respect to the Lebesgue measure is replaced by � dx where � D �
�1
p�1 is the

conjugate weight.
When u; v 2 Ad

2, let � WD u1=2v�1=2, the corresponding weighted BMOd.�/ is
Bloom’s BMO [5]. In [20, Theorem 4.1] it is shown that the following are equivalent
conditions.

(i) b 2 BMOd.�/.

(ii) b 2 BMOd
2.�/ meaning sup

I2D

1

�.I/

Z
I
jb.x/ � mIbj

2��1.x/ dx <1.

(iii) sup
I2D

1

u.I/

Z
I
jb.x/ � mIbj

2v.x/ dx <1.

(iv) sup
I2D

1

v�1.I/

Z
I
jb.x/ � mIbj

2u�1.x/ dx <1.

(v) 	b is bounded from L2.u/ into L2.v/.
(vi) 	�

b from L2.u/ into L2.v/.
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Theorem 4.7 Assume u; v 2 Ad
2 and let � D u1=2v�1=2. Then b 2 Carlu;v if and

only if b 2 Carlv�1;u�1 if and only if b 2 BMOd.��1/.

Proof First we will show that Carlu;v [ Carlv�1;u�1 � BMOd.��1/. Assume b 2
Carlu;v [ Carlv�1;u�1 . By assumption there is C > 0 such that for all J 2 D

.a/
X

I2D.J/

b2I
mIv
� Cu�1.J/; or .b/

X
I2D.J/

b2I
mIu�1

� Cv.J/:

When w 2 Ad
2 the dyadic square function Sd obeys an inverse estimate kfkL2.w/ �

CŒw�1=2
Ad
2

kSdfkL2.w/. In case (a), since v�1 2 Ad
2 we can use the inverse estimate for

Sd in L2.v�1/ and get, for all J 2 D, the estimate

k.b � mJb/1Jk
2
L2.v�1/

� CŒv�Ad
2
kSd

�
.b � mJb/1J

�
k2L2.v�1/

D CŒv�Ad
2

X
I2D.J/

b2I mIv
�1

� CŒv�2
Ad
2

X
I2D.J/

b2I
mIv

� CŒv�2
Ad
2

u�1.J/

Hence we conclude that sup
I2D

1

u�1.I/

Z
I
jb.x/ � mIbj

2v�1.x/ dx <1.

Similarly if we assume (b), we will conclude sup
I2D

1

v.I/

Z
I
jb.x/ � mIbj

2u.x/

dx <1, using this time that u 2 Ad
2. These integral conditions are each separately

equivalent to b 2 BMO.��1/ when u; v 2 Ad
2 by the results in [20, Theorem 4.1].

Assume now that b 2 BMO.��1/ and u; v 2 Ad
2. We will show that b 2 Carlu;v\

Carlv�1;u�1 . The assumption implies that

k.b � mJb/1Jk
2
L2.v�1/

� Cu�1.J/ and k.b � mJb/1Jk
2
L2.u/ � Cv.J/:

Both u; v 2 Ad
2 so are u�1; v�1 2 Ad

2, also 1 � mIvmIv
�1, and the dyadic square

function is bounded in L2.w/ for w 2 Ad
2, moreover kSd

�
.b � bJ/1J

�
k2

L2.w/
DP

I2D.J/ jbIj
2mIw. We therefore conclude that

X
I2D.J/

jbIj
2

mIv
�

X
I2D.J/

jbIj
2mIv

�1 � CŒv�2
Ad
2

k.b � mJb/1Jk
2
L2.v�1/

� Cu�1.J/;

X
I2D.J/

jbIj
2

mIu�1
�

X
I2D.J/

jbIj
2mIu � CŒu�2

Ad
2

k.b � mJb/1Jk
2
L2.u/ � Cv.J/:
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Hence b 2 Carlu;v \ Carlv�1;u�1 .
All together we have shown Carlu;v [ Carlv�1;u�1 � BMO.��1/ � Carlu;v \

Carlv�1;u�1 which implies that Carlu;v D BMO.��1/ D Carlv�1;u�1 when
u; v 2 Ad

2. ut

We just showed that when u; v 2 Ad
2 and the dyadic paraproduct 	b is bounded

from L2.u/ into L2.v/ then b 2 Carlv;u. Compare to Corollary 4.9 where only v 2 Ad
2

and the pair .u; v/ is in joint A2, but we assume b 2 Carlu;v (note that the roles of u
and v have been interchanged, and in general Carlu;v ¤ Carlv;u).

When we assume only v 2 Ad
2 then 	b is bounded from L2.u/ into L2.v/ iff (11),

that is

B2.u; v/ WD sup
I2D

1

u�1.I/

X
J2D.I/

b2JmJ.u
�1/2mJv <1:

Lemma 4.8 If .u; v/ 2 Ad
2 and b 2 Carlu;v with intensity Bu;v then B2.u; v/ < 1.

Moreover

B2.u; v/ � Œu; v�
2

Ad
2

Bu;v:

Proof The result follows immediately using first the joint A2 condition and then the
Carlu;v condition,

X
J2D.I/

b2JmJ.u
�1/2mJv � Œu; v�

2

Ad
2

X
J2D.I/

b2J
mJv
� Œu; v�2Ad

2

Bu;vu
�1.I/:

This implies B2.u; v/ � Œu; v�2Ad
2

Bu;v <1 as required. ut

Using the results in [21] we will conclude that

Corollary 4.9 If .u; v/ 2 Ad
2, v 2 Ad

2, and b 2 Carlu;v then 	b is bounded from
L2.u/ into L2.v/.

As observed in [44] if .u; v/ 2 Ad
2, v 2 Ad

2 (or u 2 Ad
2), and b 2 BMOd

then the boundedness of the paraproduct reduces to one weight boundedness
on L2.v/ (or on L2.u/). The observation being that joint A2 implies, by the
Lebesgue Differentiation Theorem, that v.x/ � Œu; v�Ad

2
u.x/ for a.e. x, and therefore

kgkL2.v/ � Œu; v�
1=2

Ad
2

kgkL2.u/. If v 2 Ad
2 then by Beznosova’s one weight linear bound

for the paraproduct in L2.v/ [1] one has

k	bfkL2.v/ � CŒb�BMOd Œv�Ad
2
kfkL2.v/ � CŒb�BMOd Œv�Ad

2
Œu; v�1=2Ad

2

kfkL2.u/:
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Likewise if u 2 Ad
2, then

k	bfkL2.v/ � Œu; v�
1=2

Ad
2

k	bfkL2.u/ � CŒb�BMOd Œu�Ad
2
Œu; v�1=2Ad

2

kfkL2.u/;

where we used Beznosova’s result in the last inequality. Using this observation we
can deduce Corollary 4.9 without using the machinery of [21] if we can prove that
.u; v/ 2 Ad

2, v 2 Ad
2, and b 2 Carlu;v imply b 2 BMOd.

Lemma 4.10 If .u; v/ 2 Ad
2, v 2 Ad

2, and b 2 Carlu;v \ L2loc.R/ then b 2 BMOd.

Proof Suffices to show that b 2 Carlv;v . Notice that the Cauchy-Schwarz inequality

and the joint A2 condition imply 1
v�1.J/

� v.J/ �
Œu;v�Ad

2

u�1.J/
, therefore

1

v�1.J/

X
I2D.J/

b2I
mIv
�
Œu; v�Ad

2

u�1.J/

X
I2D.J/

b2I
mIv
� Œu; v�Ad

2
Bu;v:

We conclude that b 2 Carlv;v \ L2loc.R/ D BMOd by Corollary 4.6. ut

It may be worth to point out that when u D v 2 A2, the condition B2.v; v/ <1
coincides with b 2 Carlv;v . The reason being that now we do have the lower bound
as well as the upper bound 1 � mIvmI.v

�1/ � Œv�A2 .

Lemma 4.11 if w 2 A2 then b 2 Carlw;w if and only if B2.w/ <1, where

B2.w/ WD B2.w;w/ D sup
J2D

1

w�1.J/

X
I2D.J/

m2
I .w

�1/jbIj
2mIw:

The Maximal and the Square Functions

In this section we relate the boundedness of the square function with the bounded-
ness of the Maximal function from L2.u/ into L2.v/. The main result of this section
states that if the weight v is in RHd

1 and the Maximal function is bounded then the
square function is also bounded. This result is an adaptation of Buckley’s proof [6],
for the fact that if w 2 Ad

2 then Sd is bounded on L2.w/. The last author proved a
similar result, in [52], for the weighted maximal function and the weighted square
function in Lq.R/ and 1 < q <1.

Theorem 5.1 Let .u; v/ be a pair of weights such that v 2 RHd
1 and the Maximal

function M is bounded from L2.u/ into L2.v/with bound Mu;v then there exist C > 0

such that

kSdfkL2.v/ � CMu;v.1C Œv�
1=2

RHd
1

/kfkL2.u/:
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As an immediate Corollary of Theorem 5.1 and Theorem 3.4 we get,

Corollary 5.2 Assume .u; v/ 2 Ad
2, u�1 2 RHd

1 , and v 2 RHd
1 , then

kSdfkL2.v/ � C
�
Œu; v�Ad

2
Œu�1�RHd

1

�1=2
.1C Œv�

1=2

RHd
1

/kfkL2.u/:

Note that this estimate does not recover the linear estimate in the one weight
case u D v 2 A2, it is off by a factor of the form Œv�

1=2
RH1

, unlike the estimate we will
present in Theorem 6.1.

Proof (Proof of Theorem 5.1)
Given real-valued f 2 L2.u/ we have

kSdfk2L2.v/ D
X
I2D
jhf ; hIij

2mIv D
1

2

X
I2D
jmIf � mOI f j

2v.OI/

D
1

2

X
I2D

�
m2

I f � m2
OI
f
�
v.OI/ WD †1:

Adding and subtracting 2v.I/m2
I f in the sum and rearranging

†1 D
X
I2D

�
2v.I/m2

I f � v.OI/m2
OI
f
�
C
X
I2D

�
v.OI/ � 2v.I/

�
m2

I f DW †2 C†3:

Therefore, it is enough to check that for all f 2 L2.u/:

j†ij � CM2
u;v.1C Œv�

1=2

RHd
1

/2kfk2L2.u/ for i D 2 ; 3:

Estimating †2: First, let am WD
P

I2Dm
2v.I/m2

I f D 2
R
.Emf .x//2v.x/dx where

Emf .x/ WD mIf for x 2 I 2 Dm and Dm is the collection of all dyadic intervals with
length 2�m. Then

†2 WD
X
I2D

�
2v.I/m2

I f � v.OI/m2
OI
f
�
D

1X
mD�1

.am � am�1/:

Using the fact that Emf .x/ � Mf .x/ for all x 2 R we can bound each am by

jamj � 2

Z
R

jMf .x/j2v.x/dx D 2kMfk2L2.v/ � CM2
u;vkfk

2
L2.u/:

The last inequality follows since M is assumed to be bounded from L2.u/
to L2.v/. Let sn WD

P
jmj�n.am � am�1/, the partial sum sequence of †2. Since

this is a telescoping sum we have sn D .an � a�n�1/ for all n 2 N. Therefore
jsnj � 2CM2

u;vkfk
2
L2.u/

for all n 2 N which leads us to the better than desired
estimate

j†2j � CM2
u;vkfk

2
L2.u/:
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Estimating †3: Since every interval has two children, switching the sum over I to
a sum over the parents J D OI we have the following cancellation,

X
I2D

�
v.OI/ � 2v.I/

�
m2

OI
f D

X
J2D

�
v.J/ � 2v.JC/C v.J/ � 2v.J�/

�
m2

J f D 0:

Hence we can write

†3 D
X
I2D

�
v.OI/ � 2v.I/

��
m2

I f � m2
OI
f
�
:

Applying the Cauchy-Schwarz inequality,

j†3j �

�X
I2D

�
v.OI/ � 2v.I/

�2
v.OI/

.mIf C mOI f /
2

1=2�X
I2D

v.OI/.mIf � mOI f /
2

1=2

D 21=2
p
†4†1 � 2

�1=2.†4 C†1/ ;

where †4 WD
P

I2D

�
v.OI/�2v.I/

�2
v.OI/

.mIf C mOI f /
2. Thus,

†1 � j†2j C j†3j � CM2
u;vkfk

2
L2.u/ C 2

�1=2.†4 C†1/:

Subtracting 2�1=2†1 from both sides of this inequality and multiplying by .2C
p
2/

give us

†1 � M2
u;vkfk

2
L2.u/ C†4: (24)

Estimating†4: Note that mIjf j � 2mOI jf j, hence .mIf CmOI f /
2 � .3mOI jf j/

2, and also
note that jv.OI/ � 2v.I/j D 2jOIj�1j
OIvj. Switching the sum over I to a sum over the
parents J D OI gives

†4 �
X
J2D

j
Jvj
2

mJv
jJjm2

J jf j:

Thus

†4 �
X
I2D

j
Ivj
2

mIv
jIjm2

I jf j �
X
I2D

j
Ivj
2

mIv
jIj inf

x2I
M2f .x/

� Œv�RHd
1

Z
R

M2f .x/v.x/dx D Œv�RHd
1
kMfk2L2.v/ � Œv�RHd

1
M2

u;vkfk
2
L2.u/:
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Note that in the third inequality we use the fact that if v 2 RHd
1 then, by

Theorem 2.8, fj
Ivj
2jIj=mIvgI2D is a v-Carleson sequence with intensity Œv�RHd

1
.

This estimate together with (24) give us the desired estimate for real-valued
functions. Using this estimate for the real and complex parts of f 2 L2.v/ we will
conclude that

kSdfkL2.v/ � CMu;v.1C Œv�
1=2

RHd
1

/kfkL2.u/: ut

Even though not explicitly we are still assuming that .u; v/ 2 Ad
2, since we

assumed that M W L2.u/! L2.v/ which implies .u; v/ 2 A2
d, see [16].

Remark 5.3 In the last theorem we are providing a connection between the
boundedness of the square function and the boundedness of the Maximal function.
Another novelty of this result is that we have an estimate on how the norm of the
square function depends on Œv�RHd

1
and the norm of the Maximal function.

As a consequence of Theorems 5.1 and 3.6, we can show that the boundeness
of the Maximal function from L2.u/ into L2.v/ together with the assumption that
v 2 RHd

1 will imply the boundedness of the martingale transform.

Theorem 5.4 Let .u; v/ be a pair of weights such that v 2 RHd
1 and the Maximal

function M is bounded from L2.u/ into L2.v/ then the martingale transforms Tr are
uniformly bounded from L2.u/ into L2.v/:

Proof Let us consider a pair of weights .u; v/ satisfying the assumptions. By
Theorem 5.1 the dyadic square function is bounded, and by Theorem 3.8 the pair of
weights .u; v/ satisfies

(i) .u; v/ 2 Ad
2

(ii) fj
Iu�1j2mIvjIjgI2D is a u�1-Carleson sequence.

Let us denote the intensity of the u�1-Carleson sequence in (ii) by Du;v . To prove
the boundedness of the martingale transform Tr, we need to show that .u; v/ also
satisfies the last two conditions in Theorem 3.6

(iii) fj
Ivj
2mI.u�1/jIjgI2D is a v-Carleson sequence.

(iv) The operator T0 is bounded from L2.u/ into L2.v/.

For condition (iii), we use the assumption v 2 RHd
1 , Theorem 2.8(b), and

.u; v/ 2 Ad
2. More precisely, for any J 2 D,

X
I2D
j
Ivj

2mI.u
�1/jIj D

X
I2D.J/

j
Ivj
2

mIv
mIvmI.u

�1/jIj

� Œu; v�Ad
2

X
I2D.J/

j
Ivj
2

mIv
jIj � CŒu; v�Ad

2
Œv�RHd

1
v.J/:
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We now need to check condition (iv), which for any positive f 2 L2.u�1/ and
g 2 L2.v/ is equivalent to

jhT0.fu
�1/; gvij � CkfkL2.u�1/kgkL2.v/ :

Thus, it suffices to verify the estimate

X
I2D

mI.jf ju
�1/mI.jgjv/

j
Ivj

mIv

j
Iu�1j

mI.u�1/
jIj � CkfkL2.u�1/kgkL2.v/: (25)

To see that (25) holds, we use the Cauchy-Schwarz inequality:

X
I2D

mI.jf ju
�1/mI.jgjv/

j
Ivj

mIv

j
Iu�1j

mI.u�1/
jIj

�

�X
I2D

�
mI.jf ju�1/

mI.u�1/

2
j
Iu

�1j2mIvjIj

1=2�X
I2D

�
mI.jgjv/

mIv

2
j
Ivj

2

mIv
jIj

1=2

�

�X
I2D
j
Iu

�1j2mIvjIj inf
x2I

M2
u�1 f .x/

1=2�X
I2D

j
Ivj
2

mIv
jIj inf

x2I
M2
vg.x/

1=2
:

Since j
Iu�1j2mIvjIj is a u�1-Carleson sequence with intensity Du;v and j
Ivj2

mIv
jIj

is a v-Carleson sequence with intensity Œv�RHd
1
, by condition (ii) and Theorem 2.8(b)

respectively, we have that

X
I2D

mI.jf ju
�1/mI.jgjv/

j
Ivj

mIv

j
Iu�1j

mI.u�1/
jIj �

q
Du;vŒv�RHd

1
kMu�1 fkL2.u�1/kMvgkL2.v/

� 8
q
Du;vŒv�RHd

1
kfkL2.u�1/kgkL2.v/ ;

the last inequality by Theorem 3.2. ut

As an immediate consequence of the proof of Theorem 5.4 and Corollary 5.2 we
get the following corollary.

Corollary 5.5 If .u; v/ 2 Ad
2, u�1 2 RHd

1 and v 2 RHd
1 then the martingale

transforms Tr are uniformly bounded L2.u/ into L2.v/.

The Sharp Quantitative Estimate for the Dyadic Square
Function

Our last theorem provides the dependence of the operator norm kSdkL2.u/!L2.v/

on the joint A2 characteristic of the weights and Œu�1�RHd
1
. This extends results of
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Beznosova [2], and we follow the template of her original proof. We could have
used instead Proposition 2.1 as remarked by our careful referee, we leave to the
interested reader to verify that this can indeed be done.

Theorem 6.1 Let .u; v/ be a pair of weights such that .u; v/ 2 Ad
2 and u�1 2 RHd

1 :

Then there is a constant such that

kSdkL2.u/!L2.v/ � CŒu; v�1=2Ad
2

�
1C Œu�1�

1=2

RHd
1

�
:

Proof We can write the square of the norm kSdfkL2.v/ as:

kSdfk2L2.v/ D
Z X

I2D
jhf ; hIij

21I.x/

jIj
v.x/dx D

X
I2D
jhf ; hIij

2mIv:

We decompose hI in a slightly different way. For any weight u�1, we can write
hI as

hI.x/ D
1p
jIj

�
Hu�1

I .x/C Au�1

I 1I.x/
	

where Au�1

I D

Iu�1

2mI.u�1/
:

The family fu�1=2Hu�1

I gI2D is orthogonal in L2.dx/ with norms satisfying the
inequality

ku�1=2Hu�1

I kL2.R/ �
p
jIjmI.u�1/:

Hence by Bessel’s inequality we have that for all f 2 L2.u/ (recall that f 2 L2.u/ if
and only if fu1=2 2 L2.R/),

X
I2D

jhf ;Hu�1

I ij
2

jIjmI.u�1/
� kfu1=2k2L2.R/ D kfk

2
L2.u/:

Since mIv � Œu; v�Ad
2
=mI.u�1/ we conclude that for all f 2 L2.u/,

X
I2D

ˇ̌
ˇ̌
�
f ;

Hu�1

Ip
jIj

�ˇ̌
ˇ̌2mIv � Œu; v�Ad

2
kfk2L2.u/ : (26)

We claim that

X
I2D

ˇ̌
ˇ̌
�
f ;

Au�1

I 1Ip
jIj

�ˇ̌
ˇ̌2mIv � CŒu; v�Ad

2
Œu�1�RH1

d
kfk2L2.u/: (27)
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Using estimates (26) and (27) and the Cauchy-Schwarz inequality we con-
clude that

X
I2D
jhf ; hIij

2 mIv � C
�
Œu; v�Ad

2
C 2Œu; v�A2d Œu

�1�
1=2

RHd
1

C Œu; v�A2
d
Œu�1�RHd

1

�
kfk2L2.u/ ;

which completes the proof.
Let us return to our claim. The left hand side of (27) can be written as

X
I2D

ˇ̌
ˇ̌
�
f ;

Au�1

I 1Ip
jIj

�ˇ̌
ˇ̌2mIv D

1

4

X
I2D
jmIf j

2

�

Iu�1

mI.u�1/

2
jIjmIv:

By our assumptions: .u; v/ 2 Ad
2 and u�1 2 RHd

1 , for any J 2 D, we have

1

jJj

X
I2D.J/

�

Iu�1

mI.u�1/

2
jIjm2

I .u
�1/mIv �

Œu; v�Ad
2

jJj

X
I2D.J/

�

Iu�1

mI.u�1/

2
jIjmI.u

�1/

� Œu; v�Ad
2
Œu�1�RHd

1
mJ.u

�1/ ; (28)

The last inequality (28) is an application of Lemma 2.8(b). Therefore the
sequence f˛I WD

�

Iu�1

mI.u�1/

�2
jIjm2

I .u
�1/mIvgI2D is a u�1-Carleson sequence with

intensity Œu; v�Ad
2
Œu�1�RHd

1
:

We now can prove the claimed estimate (27),

X
I2D
jmIf j

2

�

Iu�1

mI.u�1/

2
jIjmIv D

X
I2D

�
jmIf j

mI.u�1/

2�

Iu�1

mI.u�1/

2
jIjm2

I .u
�1/mIv

�
X
I2D

�
mu�1

I .jf ju/
	2� 
Iu�1

mI.u�1/

2
jIjm2

I .u
�1/mIv

�
X
I2D

inf
x2I

M2
u�1 .fu/.x/

�

Iu�1

mI.u�1/

2
jIjm2

I .u
�1/mIv:

Finally using Lemma 2.5 with F.x/ D M2
u�1 .fu/.x/ and the u�1-Carleson sequence

f˛IgI2D with intensity Œu; v�Ad
2
Œu�1�RHd

1
; will give us that

X
I2D
jmIf j

2

�

Iu�1

mI.u�1/

2
jIjmIv � CŒu; v�Ad

2
Œu�1�RHd

1
kMu�1 .fu/k2L2.u�1/

� CŒu; v�Ad
2
Œu�1�RHd

1
kfuk2L2.u�1/

D CŒu; v�Ad
2
Œu�1�RHd

1
kfk2L2.u/:

ut
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Analyzing carefully the proof above we realize that if instead of assuming u�1 2

RHd
1 we assume that fj
Iu�1j2mIvgI2D is a u�1-Carleson sequence with intensity

Cu;v the argument will go through and we will recover the Lacey-Li estimate.

Theorem 6.2 Let .u; v/ be a pair of weights such that .u; v/ 2 Ad
2 and

fj
Iu�1j2mIvgI2D is a u�1-Carleson sequence with intensity Cu;v . Then there is
a constant C > 0 such that

kSdkL2.u/!L2.v/ � C
�
Œu; v�Ad

2
C Cu;v

�1=2
:

We leave the details of the proof to the reader.
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Potential Operators with Mixed Homogeneity

Calixto P. Calderón and Wilfredo Urbina

Dedicated to the memory of Cora Sadosky

Abstract In 1966 Cora Sadosky introduced a number of results in a remarkable
paper “A note on Parabolic Fractional and Singular Integrals”, see Sadosky (Studia
Math 26:295–302, 1966), in particular, a quasi homogeneous version of Sobolev’s
immersion theorem was discussed in the paper. Later, C. P. Calderón and T.
Kwembe, following those ideas and incorporating the context of Fabes-Riviere
homogeneity (Fabes and Riviere, Studia Math 27:19–38, 1966), proved a similar
results for potential operators with kernels having mixed homogeneity. Calderón-
Kwembe’s (Dispersal models. X Latin American School of Mathematics (Tanti,
1991). Rev Un Mat Argent 37(3–4):212–229, 1991/1992) basic theorem was very
much in the spirit of Sadosky’s result. The natural extension of Sadosky’s paper is
nevertheless the joint paper by C. Sadosky and M. Cotlar (On quasi-homogeneous
Bessel potential operators. In: Singular integrals. Proceedings of symposia in pure
mathematics, Chicago, 1966. American Mathematical Society, Providence, 1967,
pp 275–287) which constitutes a true tour de force through, what is now considered,
local properties of solutions of parabolic partial differential equations. The tools are
the introduction of “Parabolic Bessel Potentials” combined with mixed homogeneity
local smoothness estimates.

The aim of this paper is to extend Calderón-Kwembe’s theorem in two directions:
(a) establish a corresponding result in terms of mixed norms in the Benedek-
Panzone’s sense, see Benedek and Panzone (Duke Math J 28:3–21, 1961). (b)
establish results for the case of unbounded characteristics (integrable to the power
r on the unit sphere). Calderón-Kwembe’s theorem can also be estated in the frame

C.P. Calderón (�)
Department of Mathematics, University of Illinois at Chicago, Chicago, IL 60607, USA
e-mail: cpc@uic.edu

W. Urbina
Department of Mathematical and Actuarial Sciences, Roosevelt University Chicago, Chicago,
IL 60605, USA
e-mail: wurbinaromero@roosevelt.edu

M.C. Pereyra et al. (eds.), Harmonic Analysis, Partial Differential Equations, Banach
Spaces, and Operator Theory (Volume 2), Association for Women in Mathematics
Series 5, DOI 10.1007/978-3-319-51593-9_6

171© The Author(s) and the Association for Women in Mathematics 2017

mailto:cpc@uic.edu
mailto:wurbinaromero@roosevelt.edu


172 C.P. Calderón and W. Urbina

of generalized homogeneity but that case will not be consider here, see N. Riviere
(Arkiv för Math 9(2):243–278, 1971) and A. P. Calderón and A. Torchinsky (Adv
Math 16:1–64, 1975).

2010 Mathematics Subject Classification. Primary 47G05; Secondary 45P05.

Introduction

In 1966 Cora Sadosky introduced a number of results in a remarkable paper “A
note on Parabolic Fractional and Singular Integrals”, see [8], in particular, a quasi
homogeneous version of Sobolev’s immersion theorem was discussed in the paper.
Later C. P. Calderón and T. Kwembe, following those ideas and incorporating the
context of Fabes-Riviere homogeneity [5], proved a similar results for potential
operators with kernels having mixed homogeneity. Calderón-Kwembe’s basic
theorem was very much in the spirit of Sadosky’s result. The natural extension
of Sadosky’s paper is nevertheless the joint paper by C. Sadosky and M. Cotlar
[9] which constitutes a true tour de force through, what is now considered, local
properties of solutions of parabolic partial differential equations. The tools are the
introduction of “Parabolic Bessel Potentials” combined with mixed homogeneity
local smoothness estimates.

The aim of this paper is to extend Calderón-Kwembe’s theorem in two directions:
(a) establish a corresponding result in terms of mixed norms in the Benedek-
Panzone’s sense, see [1]. (b) establish results for the case of unbounded charac-
teristics (integrable to the power r on the unit sphere). Calderón-Kwembe’s theorem
can also be estated in the frame of generalized homogeneity but that case will not
be consider here, see N. Riviere [7] and A.P. Calderón and A. Torchinsky [2].

In what follows C is a positive real constant that may change from line to line.

A Change of Variable of Polar Type

Let a1; � � � ; an (fixed) real numbers, aj � 1 and let x D .x1; � � � ; xn/ 2 R
n, consider

the function

F.x; �/ D
nX

jD1

x2j
�2aj

; (1)

for a fixed x. F.x; �/ is a continuous decreasing function of � (� > 0) and therefore
there is a unique solution of F.x; �/ D 1 that will be denoted as �.x/. It defines a
distance in R

n, see [9] which is called parabolic distance,

�.x; y/ D �.x � y/:
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Then, we have,

.
x1

�a1 .x/
; � � � ;

xn

�an.x/
/ 2 †n D fy 2 R

n W jyj D 1g:

The point x can be written (change of variables of polar type) as

x1 D �
a1 cos�1 cos�2 � � � cos�n�1 D �

a1
n�1Y
iD1

cos�i D �
a1‰1.�/

x2 D �
a2 sin�1 cos�2 � � � cos�n�1 D �

a2 sin�1

n�1Y
iD2

cos�i D �
a2‰2.�/

x3 D �
a3 sin�2 cos�3 � � � cos�n�1 D �

a3 sin�2

n�1Y
iD3

cos�i D �
a3‰3.�/

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

xn�1 D �
an�1 sin�n�2 cos�n�1 D �

an�1‰n�1.�/

xn D �
an sin�n�1 D �

an‰n.�/:

From the construction, it follows

nX
iD1

‰2
i .�/ D 1:

Then, the element of volume is

dx D �jaj�1J.�1; � � � ; �n�1/d�d�; (2)

where a D .a1; � � � ; an/ and jaj D a1 C � � � C an; see [5].
Notice that jxij � �

ai and therefore � � jxij
1=ai : On the other hand, since ai � 1;

we have

jxij
1=ai D �j sin�i�1 cos�i � � � cos�n�1j

1=ai

� �j sin�i�1 cos�i � � � cos�n�1j:

This will be used below.
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We shall use in this paper the following distance,

�.x/ D
nX

iD1

jxij
1=ai :

The fact that � is actually a distance, follows immediately. The triangle inequality
is obtained since ai � 1 and hence 1

ai
� 1; consequently,

�.xC y/ D
nX

iD1

jxi C yij
1=ai �

nX
iD1

jxij
1=ai C

nX
iD1

jyij
1=ai D �.x/C �.y/:

From the fact that Rn is a finite dimensional vector space, we know, that � and
� are equivalent. For the sake of completeness, the equivalence will be given here
explicitly,

jxij

�ai
� 1; i.e. �ai � jxij;

then � � jxij
1=ai ; and therefore, � � 1

n

Pn
iD1 jxij

1=ai :

On the other hand,

jxij
1=ai D �j‰i.�/j

1=ai � �j‰i.�/j;

hence,

nX
iD1

jxij
2=ai � �2;

and therefore,

� �

nX
iD1

jxij
1=ai :

An equivalent metric was also considered in C. Sadosky [8] and C. Sadosky &
M. Cotlar [9] , when a1; � � � ; an are rational numbers,

r.x/ D .
nX

iD1

jxij
m=ai/1=m;

where m is the smallest integer that is divisible by 2ai; i D 1; 2; � � � ; n.
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Additionally, P. Krée [6] considered another equivalent distance,

r.x/ D max
1�i�n

jxij
1=ai :

Main Results

Given an operator

Tf .x/ D
Z
Rn

K.x � y/f .y/dy; (3)

We want to study the conditions on the kernel K such that it makes the operator T
to be Lp � Lq bounded for suitable values of p and q.

Potential Operators of Mixed Homogeneity

Given kernel K, we say it is a potential kernel with mixed homogeneity if

K.�a1x1; �
a2x2; � � � ; �

an xn/ D �
ˇ�jajK.x/; (4)

for 0 < ˇ < jaj D
Pn

iD1 ai; ai � 1:

If x is expressed in polar type coordinates, x D �a‰.�/; as above, then

K.x1; x2; � � � ; xn/ D �
ˇ�jajK.�/: (5)

For the case when K can be written as

K.x1; x2; � � � ; xn/ D
�.�/

�jaj�ˇ
; with k�kL1.�n/ < M; (6)

C. P. Calderón and T. Kwembe [3], proved that

kTfkq � Ckfkp; for
1

q
D
1

p
�
ˇ

jaj
: (7)

As we have already said, the aim of this paper is to extend Calderón-Kwembe’s
theorem in two directions:

(i) Establish a corresponding result in terms of mixed norms in the Benedek-
Panzone’s sense, [1].
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(ii) Establish results for the case of unbounded characteristics (integrable to the
power r on the unit sphere).

As it was mentioned in the introduction, Calderón-Kwembe’s theorem can also be
extended to potential operators with generalized homogeneity, but that case will not
be consider here, see N. Riviere [7] and A.P. Calderón and A. Torchinsky [2].

Estimates of Benedek-Panzone [1], Du Plessis [4]

If the kernel K satisfies kK.�/k1 < M, then

jK.x1; x2; � � � ; xn/j � C��jajCˇkK.�/k1; (8)

for
Pn

jD1 ˇj D ˇ; ˇj D �jaj; 0 < �j < 1. Then, one has the estimate,

1

.
Pn

iD1 jxij1=ai/jaj�ˇ
D

1Qn
jD1.

Pn
iD1 jxij1=ai/aj�ˇj

�

nY
jD1

1

jxjj
1=aj.aj�ˇj/

D

nY
jD1

1

jxjj
.1��j/

:

For each j we have a regular (one) dimensional potential operator, that maps Lpj into
Lqj with 1

qj
D 1

pj
� �j.

We will denote Lp1;p2;��� ;pn the space of measurable functions in R
n; such that

kf kp1;p2;��� ;pn D .

Z
1

�1

.

Z
1

�1

� � � .

Z
1

�1

jf .x1; x2; � � � ; xn/j
p1dx1/

p2=p1dx2/
p3=p2 � � � /pn=pn�1dxn/

1=pn < 1;

see Benedek-Panzone [1], page 301.

Theorem 2.1 The operator defined as Tf D K � f ; where K satisfies (4); maps
continuously Lp1;p2;��� ;pn into Lq1;q2;��� ;qn ; with qi given by 1

qi
D 1

pi
� �i and ˇ DPn

jD1 �jaj:

Proof It will suffice to show it for the case n D 2, the general case follows by
induction. Let f 2 Lp1;p2 and g 2 Lq�

1 ;q
�

2
; q�

i being the dual exponents of qi. By the
potential theorem in dimension one applied twice,

Z 1

�1

Z 1

�1

1

jx1 � y1j1��1
1

jx2 � y2j1��2
f .x1; x2/g.y1; y2/dx1dx2dy1dy2
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D

Z 1

�1

1

jx2 � y2j1��2

� Z 1

�1

1

jx1 � y1j1��1
f .x1; x2/g.y1; y2/dx1dy1

	
dx2dy2

D

Z 1

�1

1

jx2 � y2j1��2
kf .�; x2/kp1kg.�; y2/kq�

1
dx2dy2

� kfkp1;p2kgkq�

1 ;q
�

2
;

using the duality in space with mixed Lp-norms, we get the thesis, see Benedek-
Panzone [1], page 303. ut

It should be noted that the above proof follows closely the corresponding one in
Benedek-Panzone [1], pages 321–322.

Potential Operators with Not Bounded Characteristic

Consider kernels of the form

K.x1; x2; � � � ; xn/ D �
�jajCˇK.�/; (9)

with jaj D a1 C � � � C anI ai � 1I 0 < ˇ < jaj: K.�/ is considered no longer
bounded on † D fx W �.x/ D 1g but instead we will assume that on † we have

Z
†

jK.�/jrd� <1; (10)

for some r; 1 < r < 1: Here d� stands for the element of “surface” on the unit
sphere of Rn:

Theorem 2.2 Let the kernel K be such that (10) holds with 0 < 1
r C

ˇ

jaj
� 1: If

f 2 Lp.Rn/ and 1
r D

1
p �

ˇ

jaj
, then calling T.f / D .K � f / we have

(i)

jfx W jTf .x/j > �gj <
C

�r

Z
†

j‰.˛/jrd�kfkr
p; (11)

here ‰.˛/ D K.˛/:
(ii) For values of p � 1 such that 1p �

ˇ

jaj
> 1

r0
we have

kK � fkr � Ckfkp;

for 1
r D

1
p �

ˇ

jaj
; whenever

R
†
jK.�/jr0d� <1:

Proof (ii) follows from (i) by application of Marcinkiewicz interpolation theorem.
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The part (i) of the thesis will follow after few steps. We decompose the kernel
K D K1 C K2; where K2 D K if x 2 A where,

A D fx D .�; �/ W �.x/ > .
‰.�/

�
/ıg;

(for an appropriated value of ı to be determine later) and K2 D 0 otherwise; and
K1 D K � K2: For this selection ı D p

jaj�ˇp :

Estimates for K � f . Let p > 1 and q its conjugate exponent; 1p C
1
q D 1: We will

use the point estimate,

jK2 � f j � .
Z
jK2j

qdx/1=q � kfkp (12)

We will consider kfkp D 1 and move to the evaluation of .
R
jK2jqdx/1=q. Using

Fubini’s theorem, we set

� Z
†

j‰.˛/jqd�
Z

f�.x/>. ‰.�/� /ı

1

�.jaj�ˇ/q
�jaj�1d�

	1=q
: (13)

By using the value of ı from above we have

ıŒ�.jaj � ˇ/qC jaj� D �q:

Thus the inner integral above is

Z 1

‰.�/
�

1

�.jaj�ˇ/q
�jaj�1d� D C�q‰.�/�q (14)

then, (13) is immediately seen to be equal to

C�q
Z
†

j‰jqj‰j�qd�; (15)

taking now the q root, we get

jK2 � f j � C�:

We pass now to the estimate of jK1 � f j: Using Young’s inequality for the
convolution, we obtain

jfx W jK1 � f j.x/ > �gj �
C

�p
kK1k

p
1kfk

p
p: (16)
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Using “polar” coordinates and Fubini’s theorem, we get for (16)

C
Z
†

j
‰.˛/

�
j.j
‰.˛/

�
j/ı.jaj�.jaj�ˇ/ d� (17)

Recall that for this case ı D p
jaj�ˇp ; so the exponent for the integrand above is

1C
pˇ

jaj � pˇ
D

jaj

jaj � pˇ

Thus, the above integral is dominated by

C
1

�pjaj=.jaj�pˇ/
.

Z
†

j‰.˛/jjaj=.jaj�pˇ/d�/p: (18)

Using Jensen’s inequality for the integral above and remembering that

1

r
D
1

p
�
ˇ

jaj
D
jaj � pˇ

pjaj
;

we get

C
1

�r
.

Z
†

j‰.˛/jrd�/p D C
1

�r
k‰kr

r: (19)

From the constructions above and keeping in mind that kfkp D 1; we have for a
large but fixed C,

fx W jK � f j.x/ > C�g � fx W jK1 � f j.x/ > C�=2g [ fx W jK2 � f j.x/ > C�=2g

With the appropriate selection of C we get

fx W K2 � f .x/ > C�=2g D ;:

On the other hand,

jfx W jK1 � f j.x/ > �gj �
C

�r
k‰kr

r: (20)

An homogeneity argument gives (i) for the case p > 1.

The limit case p D 1. Consider as above the decomposition K D K1 C K2. In this
case,

1

r
D 1 �

ˇ

jaj
;
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the choice of ı is

ı D
1

jaj � ˇ
:

Consider now f .x � y/ D f .y/: A pointwise estimate gives,

jK2 � f j �
Z
†

j .˛/jd�
Z

f�.y/>. ‰.˛/� /ıg

1

�jaj�ˇ
f .�; �/�jaj�1d�:

The above expression does not exceed

Z
†

j .˛/jd�.
‰.˛/

�
/ı.jaj�ˇ/

Z 1

0

f .�; �/�jaj�1d� � C�:

Evaluation of jK1 � f j. Remember that kfk1 D 1, using Young’s Theorem

jfx W .K1 � f /.x/ > �gj �
C

�
kK1k1kfk1 D

C

�
kK1k1: (21)

The evaluation of 1
�
kK1k1 is obtained using Fubini’s theorem

C

�

Z
†

‰.˛/d�
Z .

‰.˛/
� /ı

0

1

�jaj�ˇ
�jaj�1d� D

1

�1Cˇı

Z
†

‰.˛/1Cˇıd�

D
C

�r

Z
†

j‰.˛/jrd�:

The proof now follows from the pattern from the previous case. ut
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Inequalities for Fractional Integral Operators
and Commutators

David Cruz-Uribe, OFS

Dedicated to the memory of Professor Cora Sadosky

Abstract We give new and elementary proofs of one weight norm inequalities
for fractional integral operators and commutators. Our proofs are based on the
machinery of dyadic grids and sparse operators used in the proof of the A2
conjecture.
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Introduction

The fractional integral operators, also called the Riesz potentials, are the convolution
operators

I˛f .x/ D
Z
Rn

f .y/

jx � yjn�˛
dy; 0 < ˛ < n:

These operators are classical and for 1 < p < n
˛

and q defined by 1
p �

1
q D

˛
n ,

satisfy I˛ W Lp ! Lq. When p D 1 they satisfy the endpoint estimate I˛ W L1 !
Lq;1. (Cf. Stein [24].) One weight norm inequalities for these operators were first
considered by Muckenhoupt and Wheeden [19], who introduced the governing class
of weights, Ap;q. For 1 < p < n

˛
and q such that 1

p �
1
q D

˛
n , a weight (i.e., a non-

negative, locally integrable function) w is in Ap;q if
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Œw�Ap;q D sup
Q

�
�

Z
Q

wq dx

 1
q
�
�

Z
Q

w�p0

dx

 1
p0

<1;

where the supremum is taken over all cubes Q in R
n. When p D 1, q D n

n�˛
, we say

w 2 A1;q if

Œw�A1;q D sup
Q

ess sup
x2Q

�
�

Z
Q

wq dx

 1
q

w.x/�1 <1:

Muckenhoupt and Wheeden showed that when p > 1, I˛ W Lp.wp/! Lq.wq/ if and
only if w 2 Ap;q, and when p D 1, I˛ W L1.w/ ! Lq;1.wq/ when w 2 A1;q. Their
proof used a good-� inequality relating I˛ and the fractional maximal operator,

M˛f .x/ D sup
Q
jQj

˛
n�

Z
Q
jf .y/j dy � �Q.x/:

Weighted norm inequalities for M˛ were proved by generalizing the earlier results
for the Hardy-Littlewood maximal operator. A different proof of the strong type
inequality was given in [7]: there they used Rubio de Francia extrapolation to prove
a norm inequality relating I˛ and M˛ .

Given b 2 BMO we define the commutator of a fractional integral by

Œb; I˛�f .x/ D b.x/I˛f .x/ � I˛.bf /.x/ D
Z
Rn

�
b.x/ � b.y/

� f .y/

jx � yjn�˛
dy:

These commutators were introduced by Chanillo [2], who proved that with p and q
defined as above, Œb; I˛� W Lp ! Lq. He also proved that when p is an even integer,
b 2 BMO is a necessary condition. (The necessity for the full range of p was recently
shown by Chaffee [1].) Commutators are more singular than the fractional integral
operator: this can be seen by the fact that when p D 1, the do not map L1 into
Lq;1. For a counter-example and substitute endpoint estimate, see [6]. In this paper
it was also shown that the strong type inequality is governed by Ap;q weights: if
1 < p < n

˛
and w 2 Ap;q, then Œb; I˛� W Lp.wp/ ! Lq.wq/. This proof relied on a

sharp maximal function estimate relating the commutator, I˛ , and M˛ . A different
proof using extrapolation to relate the commutator to an Orlicz fractional maximal
operator was given in [7]. Yet another proof, one that gave the sharp constant in
terms of the Œw�Ap;q characteristic, was given in [9]. This proof used a Cauchy integral
formula argument due to Chung et al. [4].

In this paper we give new and elementary proofs of the one weight inequalities
for fractional integral operators and commutators. More precisely, we prove the
following three theorems.
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Theorem 1.1 Given 0 < ˛ < n, let q D n
n�˛

. If w 2 A1;q, then for all f 2 L1.w/,

sup
t>0

t wq.fx 2 R
n W jI˛f .x/j > tg/

1
q � C.n; ˛/Œw�A1;q

Z
Rn
jf .x/jw.x/ dx:

Theorem 1.2 Given 0 < ˛ < n, 1 < p < n
˛

, let q be such that 1
p �

1
q D

˛
n . If

w 2 Ap;q, then for all f 2 Lp.wp/,

�Z
Rn
jI˛f .x/jqw.x/q dx

 1
q

� C.n; p; ˛/Œw�
1C

q
p0

C
p0

p

Ap;q

�Z
Rn
jf .x/jpw.x/p dx

 1
p

:

Theorem 1.3 Given 0 < ˛ < n, 1 < p < n
˛

, let q be such that 1
p �

1
q D

˛
n . If

w 2 Ap;q, then for all f 2 Lp.wp/ and b 2 BMO,

�Z
Rn
jŒb; I˛�f .x/j

qw.x/q dx

 1
q

� C.n; p; ˛/Œw�
max.p0;q/C1C q

p0

C
p0

p

Ap;q
kbkBMO

�Z
Rn
jf .x/jpw.x/p dx

 1
p

:

We prove Theorems 1.1, 1.2, and 1.3 using the machinery of dyadic grids
and sparse operators. Dyadic fractional integral operators date back to the work
of Sawyer and Wheeden [23]. More recently, using the machinery developed as
part of the proof of the A2 conjecture for singular integral operators (see [15, 18]
and the references they contain) dyadic fractional integral operators were further
developed and applied to commutators in [9–11]. The advantage of this approach
is its simplicity: it avoids extrapolation, good-� inequalities and comparisons to the
fractional maximal operator. One weakness of our proofs is that they do not give
sharp dependence on the Ap;q characteristic of the weights in Theorems 1.2 and 1.3:
this is to be expected since we freely use their properties to simplify the proofs,
whereas any sharp constant proof must be arranged to use their properties as few
times as possible. We record the precise constant we obtain to highlight where we
use their properties. Sharp constants for the fractional integral operator are given
in [17], and for commutators in [9].

The remainder of this paper is organized as follows. In section “Preliminary
Results” we give some preliminary results about dyadic grids, sparse operators,
weighted fractional maximal operators, and weights. In section “Proof of Theo-
rem 1.1” we prove Theorem 1.1. Our proof adapts an argument that seems to have
been part of the folklore of harmonic analysis. We want to thank the anonymous
referee for suggesting this approach; it is much simpler than our original proof,
which adapted Sawyer’s proof of two weight weak .p; q/ inequalities for fractional
integrals [22]. In section “Proof of Theorem 1.2” we prove Theorem 1.2. Our proof
uses ideas of Pérez [20] from his proof of two weight inequalities for fractional
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integrals, and from the elementary proof of one weight inequalities for the Hardy-
Littlewood maximal operator due to Christ and Fefferman [3]. In section “Proof of
Theorem 1.3” we prove Theorem 1.3. Our proof uses some ideas from the proof of
two weight results in [9] to reduce the problem to an estimate essentially the same
as the one for the fractional integral in the previous section. Finally, in section “Tres
Recuerdos de Cora Sadosky” we give some personal recollections about the late
Cora Sadosky.

Throughout this paper notation is standard or will be defined as needed. The
constant n will always denote the dimension. We will denote constants by C; c,
etc. and their value may change at each appearance. Unless otherwise specified, we
will assume that constants can depend on p, ˛ and n but we will keep track of the
dependence on the Ap;q characteristic explicitly.

Preliminary Results

Dyadic Grids and Operators

We begin by defining dyadic grids and the dyadic fractional integral operators.
Unless otherwise noted, the results given here are taken from [5, 9–11].

Definition 2.1 A collection of cubes D in R
n is a dyadic grid if provided that:

(1) If Q 2 D, then `.Q/ D 2k for some k 2 Z.
(2) If P; Q 2 D, then P \ Q 2 fP;Q;;g.
(3) For every k 2 Z, the cubes Dk D fQ 2 D W `.Q/ D 2kg form a partition of Rn.

Definition 2.2 Given a dyadic grid D, a set S � D is sparse if for every Q 2 S,

ˇ̌
ˇ̌ [

P2S
P�Q

P

ˇ̌
ˇ̌ � 1

2
jQj:

Equivalently, if we define

E.Q/ D Q n
[
P2S
P�Q

P;

then the sets E.Q/ are pairwise disjoint and jE.Q/j � 1
2
jQj.

The classic example of a dyadic grid and sparse families are the standard dyadic
grid on R

n and the Calderón-Zygmund cubes associated with an L1 function. See [8,
Appendix A].
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We now define a dyadic version of the fractional integral operator and show that
it can be used to bound I˛ pointwise. For f 2 L1loc and a cube Q, let

hf iQ D �
Z

Q
f .x/ dx D

1

jQj

Z
Q

f .x/ dx:

Given 0 < ˛ < n and a dyadic grid D, define

ID˛ f .x/ D
X
Q2D
jQj

˛
n hf iQ � �Q.x/:

Similarly, given a sparse subset S � D, define

IS˛ f .x/ D
X
Q2S
jQj

˛
n hf iQ � �Q.x/:

Lemma 2.3 There exists a collection fDig
N
iD1 of dyadic grids such that for 0 < ˛ <

n and every non-negative function f ,

I˛f .x/ � C sup
i

IDi
˛ f .x/:

Moreover, given any dyadic grid D and a non-negative function f 2 L1
c , there exists

a sparse set S � D such that

IDf .x/ � CIS f .x/:

Given b 2 BMO and 0 < ˛ < n, for any dyadic grid D, define the dyadic
commutator

CD
b f .x/ D

X
Q2D
jQj

˛
n�

Z
Q
jb.x/ � b.y/jf .y/ dy � �Q.x/:

Lemma 2.4 There exists a collection fDig
N
iD1 of dyadic grids such that for 0 < ˛ <

n, every non-negative function f , and every b 2 BMO,

jŒb; I˛�f .x/j � C sup
i

CDi

b f .x/:

Remark 2.5 It follows at once from Lemmas 2.3 and 2.4 that to prove norm inequal-
ities for I˛ and Œb; I˛� it will suffice to prove them for their dyadic counterparts.
Moreover, since these dyadic integral operators are positive, we may assume that f
is non-negative in our proofs. Finally, by Fatou’s lemma it will suffice to prove our
results for functions f 2 L1

c . In particular, this will let us pass to sparse operators.
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Weighted Fractional Maximal Operators

We begin with some basic facts about Orlicz spaces. Some of these will also be
needed in section “Proof of Theorem 1.3” below. For further information on these
spaces, see [21]; for their use in weighted norm inequalities, see [8]. Given a weight
� , let d� D � dx. We define averages with respect to the measure d� :

hf iQ;� D �
Z

Q
f .x/ d� D

1

�.Q/

Z
Q

f .x/ d�:

Given a Young function ˆ and a cube Q, define the normalized Luxemburg norm
with respect to ˆ and d� by

kfkˆ;Q;� D inf

�
� > 0 W �

Z
Q
ˆ

�
jf .x/j

�


d� � 1

�
:

If we let ˆ.t/ D tp, 1 � p <1, then

kfkˆ;Q;� D

�
�

Z
Q
jf .x/jp d�

 1
p

D kfkp;Q;� :

Associated to any Young function is its associate function N̂ . We have the
generalized Hölder’s inequality: for any cube Q,

�

Z
Q
jf .x/g.x/j d� � Ckfkˆ;Q;�kgk N̂ ;Q;� I

the constant depends only on ˆ.
Hereafter, we will letˆ.t/ D t log.eC t/; then it can be shown that N̂ .t/  et�1.

It follows for this choice of ˆ that for 1 < p <1,

kfk1;Q;� � kfkˆ;Q;� � C.p/kfkp;Q;� :

We now define a weighted dyadic fractional maximal operator. Given a dyadic
grid D and a weight � , for 0 � ˛ < n define

MD
ˆ;�;˛f .x/ D sup

Q2D
�.Q/

˛
n kfkˆ;Q;� :

If ˆ.t/ D t we write MD
�;˛ . If ˛ D 0, then we simply write MD

ˆ;� or MD
� if ˆ.t/ D t.

Lemma 2.6 Let ˆ.t/ D t log.eC t/. Given 1 < p <1 and 0 � ˛ < n, define q by
1
p �

1
q D

˛
n . Given a weight � and a dyadic grid D, MD

ˆ;�;˛ W Lp.�/ ! Lq.�/. The

same inequality holds for MD
�;˛ .
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Proof This result is well-known when ˆ.t/ D t; the proof is essentially the same
for ˆ.t/ D t log.e C t/ and we sketch the details. By off-diagonal Marcinkiewicz
interpolation (see [25]) it will suffice to prove the corresponding weak .p; q/
inequality:

�.fx 2 R
n W MD

ˆ;�;˛f .x/ > tg/
1
q �

C

t

�Z
Rn
jf .x/jp d�

 1
p

:

Fix t > 0; then we can decompose the level set as the union of disjoint cubes
Q 2 Qt � D that satisfy

�.Q/
˛
n kfkˆ;Q;� > t:

Therefore, since the cubes in Qt are disjoint and q=p � 1, we have that

�.fx 2 R
n W MD

ˆ;�;˛f .x/ > tg/ D
X

Q2Qt

�.Q/

� t�q
X

Q2Qt

�.Q/1Cq ˛n kfkq
ˆ;Q;�

�
C

tq

X
Q2Qt

�.Q/1Cq ˛n

�
�

Z
Q
jf jp d�

 q
p

�
C

tq

X
Q2Qt

�Z
Q
jf jp d�

 q
p

�
C

tq

0
@X

Q2Qt

Z
Q
jf jp d�

1
A

q
p

�
C

tq

�Z
Rn
jf .x/jp d�

 q
p

:

ut

Properties of Ap;q Weights

In this section we gather a few basic facts about the Ap;q weights and the closely
related Muckenhoupt Ap weights; for further information see [12]. For 1 < p <1,
w 2 Ap if
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Œw�Ap D sup
Q

�

Z
Q

w.x/ dx

�
�

Z
Q

w.x/1�p0

dx

p�1

<1:

For p D 1, w 2 A1 if

Œw�A1 D sup
Q

ess sup
x2Q

�
�

Z
Q

w.x/ dx


w.x/�1 <1:

It follows at once from the definition that for all p and q such that 1p �
1
q D

˛
n , then

w 2 Ap;q if and only if wq 2 Ar, r D 1C q
p0

and Œwq�Ar D Œw�
q
Ap;q

. (When p D 1, we

interpret q
p0

as 0.) By the duality of Ap weights, w�p0

2 Ar0 and Œw�p0

�Ar0
D Œw�p

0

Ap;q
.

As a consequence, we have that both wq and w�p0

are in A1. Below we will need
to use two properties of A1 weights; for both we give the sharp constant version.
There are multiple definitions of the A1 characteristic (cf. [13]) but for our purposes
we will simply use the fact that Œw�A

1

� C.n/Œw�Ap .

Lemma 2.7 Given a weight � 2 Ap � A1, then for any cube Q and set E � Q:

(1)

�
jEj

jQj

p

� Œ��Ap

�.E/

�.Q/
;

(2)
�.E/

�.Q/
� 2

�
jEj

jQj

 1
s0

, where s0 D c.n/Œ��A
1

.

Proof The first inequality follows from the definition of Ap: see [12]. The second
follows from the sharp form of the reverse Hölder inequality due to Hytönen and
Pérez [16]: for every cube Q,

�
�

Z
Q
�.x/s dx

 1
s

� 2�

Z
Q
�.x/ dx;

where s D 1 C 1
c.n/Œ��A

1

. The desired inequality follows if we apply Hölder’s

inequality with exponent s to �
R

Q �.x/�E.x/ dx. ut

Proof of Theorem 1.1

By Remark 2.5 it will suffice to prove the weak .1; q/ inequality for the dyadic
operator ID˛ , where D is an arbitrary dyadic grid, and for f a non-negative function
in L1

c .
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Since q > 1, k � kLq;1.wq/ is a norm, so by Minkowski’s inequality,

kID˛ fkLq;1.wq/ D

����
X
Q2D
jQj

˛
n �1

Z
Rn

f .y/�Q.y/ dy �Q.�/

����
Lq;1.wq/

�

Z
Rn

f .y/

����
X
Q2D
jQj�

1
q�Q.y/�Q.�/

����
Lq;1.wq/

dy:

To complete the proof we need to show that for almost every y,

����
X
Q2D
jQj�

1
q�Q.y/�Q.�/

����
Lq;1.wq/

� CM.wq/.y/
1
q � CŒwq�A1;q w.y/:

The second inequality is just the fact that w 2 A1;q, so it remains to prove the first.
Let K D 1

1�2
�

n
q

. Fix y 2 R
n and t > 0, and let Qt be the largest cube in D

containing y such that KjQtj
� 1

q > t. Now fix x ¤ y such that

X
Q2D
jQj�

1
q�Q.y/�Q.x/ > t;

and let Qx be the smallest cube in D containing x and y. Then

X
Q2D
jQj�

1
q�Q.y/�Q.x/ D

1X
kD0

j2kQxj
� 1

q D KjQxj
� 1

q ;

and so by maximality, x 2 Qt. Since this is true for all t > 0, we have that

����
X
Q2D
jQj�

1
q�Q.y/�Q.�/

����
Lq;1.wq/

D sup
t>0

twq.fx 2 R
n W KjQxj

� 1
q > tg/

1
q

� K sup
t>0
jQtj

� 1
q wq.Qt/

1
q � KM.wq/.y/

1
q :

Proof of Theorem 1.2

By Remark 2.5, it will suffice to prove the strong .p; q/ inequality for f non-negative
and in L1

c . We may also replace I˛ by the sparse operator IS˛ , where S is any sparse
subset of a dyadic grid D.
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Let v D wq and � D w�p0

and estimate as follows: there exists g 2 Lq0

.w�q0

/,
kgw�1kq0 D 1, such that

k.IS˛ f /wkq D

Z
Rn

I˛f .x/g.x/ dx D
X
Q2S
jQj

˛
n hf iQ

Z
Q

g.x/ dx

D
X
Q2S
jQj

˛
n �1�.Q/v.Q/1�

˛
n hf��1iQ;� v.Q/

˛
n hgv�1iQ;v:

Since 1� ˛
n D

1
p0

C 1
q , by the definition of the Ap;q condition and Lemma 2.7 (applied

to both v and � ) we have that

jQj
˛
n �1�.Q/v.Q/1�

˛
n � Œw�Ap;q�.Q/

1
p v.Q/

1
p0 � Œw�

1C
q
p0

C
p0

p

Ap;q
�.E.Q//

1
p v.E.Q//

1
p0 :

(1)
If we combine these two estimates, then by Hölder’s inequality and Lemma 2.6 we
get that

k.IS˛ f /wkq

� CŒw�
1C

q
p0

C
p0

p

Ap;q

X
Q2S
hf��1iQ;� �.E.Q//

1
p v.Q/

˛
n hgv�1iQ;vv.E.Q//

1
p0

� CŒw�
1C

q
p0

C
p0

p

Ap;q

�X
Q2S
hf��1i

p
Q;� �.E.Q//

 1
p
�X

Q2S
Œv.Q/

˛
n hgv�1iQ;v�

p0

v.E.Q//

 1
p0

� CŒw�
1C

q
p0

C
p0

p

Ap;q

�X
Q2S

Z
E.Q/

MD
� .f�

�1/.x/p d�

 1
p
�X

Q2S

Z
E.Q/

MD
v;˛.gv

�1/.x/p
0

dv

 1
p0

� CŒw�
1C

q
p0

C
p0

p

Ap;q

�Z
Rn

MD
� .f�

�1/.x/p d�

 1
p
�Z

Rn
MD
v;˛.gv

�1/.x/p
0

dv

 1
p0

� CŒw�
1C

q
p0

C
p0

p

Ap;q

�Z
Rn
.f .x/�.x/�1/p d�

 1
p
�Z

Rn
.g.x/v.x/�1/q

0

dv

 1
q0

D CŒw�
1C

q
p0

C
p0

p

Ap;q
kfwkpkgw�1kq0

D CŒw�
1C

q
p0

C
p0

p

Ap;q
kfwkp:
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Proof of Theorem 1.3

For our proof we need two lemmas. The first is a weighted estimate for functions in
BMO; our proof adapts ideas from Ho [14].

Lemma 5.1 Letˆ.t/ D t log.eCt/. Given a weight � 2 A1, then for any b 2 BMO
and any cube Q,

kb � hbiQk N̂ ;Q;� � CŒ��A
1

kbkBMO:

Proof By the John-Nirenberg inequality, there exist constants C1; C2 such that for
every cube Q and �; t > 0,

jfx 2 Q W jb.x/ � hbiQj > �tgj � C1jQj exp

�
�

C2�t

kbkBMO


:

Since � 2 A1, by Lemma 2.7 we have that

�.fx 2 Q W jb.x/ � hbiQj > �tg/ � 2C
1
s0

1 �.Q/ exp

�
�

C2�t

kbkBMOs0


;

where s0 D c.n/Œ��A
1

. Let

� D
.1C 2kC

1
s0

1 /kbkBMOs0

C2
D CŒ��A

1

kbkBMO;

where N̂ .t/ � ket. Then we have that

�

Z
Q

N̂
�
jb.x/ � hbiQj

�


d� � k�.Q/�1

Z 1

0

et�.fx 2 Q W jb.x/ � hbiQj > �tg/ dt

� 2kC
1
s0

1

Z 1

0

et exp

�
�

C2�t

kbkBMOs0


dt

� 2kC
1
s0

1

Z 1

0

e�2kC
1
s0
1 t dt

D 1:

Therefore, by the definition of the Luxemburg norm, we get the desired inequality.
ut

The second lemma is a weighted variant of an estimate from [7]; when ˆ.t/ D t
the unweighted estimate is originally due to Sawyer and Wheeden [23].
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Lemma 5.2 Fix 0 < ˛ < n, a dyadic grid D, a weight � and a Young function ˆ.
Then for any P 2 D and any function f ,

X
Q2D
Q�P

jQj
˛
n �.Q/jkfkˆ;Q;� � C.˛/jPj

˛
n �.P/jkfkˆ;P;� :

Proof To prove this we need to replace the Luxemburg norm with the equivalent
Amemiya norm [21, Section 3.3]:

kfkˆ;P;� � inf
�>0

�
��

Z
P
1Cˆ

�
jf .x/j

�


d�

�
� 2kfkˆ;P;� :

By the second inequality, we can fix �0 > 0 such that the middle quantity is less
than 3kfkˆ;P;� . Then by the first inequality,

X
Q2D
Q�P

jQj
˛
n jQjkfkˆ;Q;� D

1X
kD0

X
Q�P

`.Q/D2�k`.P/

jQj
˛
n jQjkfkˆ;Q;�

� jPj
˛
n

1X
kD0

2�k˛
X
Q�P

`.Q/D2�k`.P/

�0

Z
Q
1Cˆ

�
jf .x/j

�0


d�

D CjPj
˛
n �0

Z
P
1Cˆ

�
jf .x/j

�0


d�

� CjPj
˛
n �.P/kfkˆ;P;� :

ut

Proof of Theorem 1.3 Again by Remark 2.5, it will suffice to prove that given any
dyadic grid D,

kCD
b fkLq.wq/ � CkfkLp.wp/;

where f is non-negative and in L1
c . By duality there exists a non-negative function

g 2 Lq0

.w�q/, kgkLq0

.w�q/ D 1, such that

kCD
b fkLq.wq/ D

Z
Rn

CD
b f .x/g.x/ dx

D
X
Q2D
jQj

˛
n

Z
Q

�

Z
Q
jb.x/ � b.y/jf .y/g.x/ dy dx
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�
X
Q2D
jQj

˛
n�

Z
Q
jb.y/ � hbiQjf .y/ dy

Z
Q

g.x/ dx

C
X
Q2D
jQj

˛
n�

Z
Q
jb.x/ � hbiQjg.x/ dx

Z
Q

f .y/ dy

D I1 C I2:

We will first estimate I1. Let v D wq and � D w�p0

, and let ˆ.t/ D t log.eC t/.
Then by Lemma 5.1, since Œ��A

1

� Œw�p
0

Ap;q
,

I1 D
X
Q2D
jQj

˛
n �.Q/�

Z
Q
jb.y/ � hbiQjf .y/�.y/

�1 d��
Z

Q
g.x/ dx

� C
X
Q2D
jQj

˛
n �.Q/kf��1kˆ;Q;�kb � hbiQk N̂ ;Q;��

Z
Q

g.x/ dx

� CŒw�p
0

Ap;q
kbkBMO

X
Q2D
jQj

˛
n �.Q/kf��1kˆ;Q;��

Z
Q

g.x/ dx:

We now want to show that we can replace the summation over cubes in D by a
summation over a sparse subset S of D. We do this using an argument from [7]; see
also [9]. Fix a D 2nC1 and define the sets

�k D fx 2 R
n W MDg.x/ > akg:

Then arguing exactly as in the construction of the Calderón-Zygmund cubes (see [8,
Appendix A]), each set�k is the union of a collection Sk of maximal, disjoint cubes
in D that have the property that ak < hgiQ � 2nak. Moreover, the set S D

S
k Sk is

sparse.
Now let

Ck D fQ 2 D W ak < hgiQ � akC1g:

Then by the maximality of the cubes in Sk, every cube P 2 Ck is contained in
a unique cube in Sk. Therefore, we can continue the above estimate and apply
Lemma 5.2 to get

I1 � CŒw�p
0

Ap;q
kbkBMO

X
k

X
Q2Ck

jQj
˛
n �.Q/kf��1kˆ;Q;��

Z
Q

g.x/ dx

� CŒw�p
0

Ap;q
kbkBMO

X
k

ak
X
P2Sk

X
Q�P

jQj
˛
n �.Q/kf��1kˆ;Q;�
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� CŒw�p
0

Ap;q
kbkBMO

X
k

X
P2Sk

jPj
˛
n �.P/kf��1kˆ;P;��

Z
P

g.x/ dx

D CŒw�p
0

Ap;q
kbkBMO

X
P2S
jPj

˛
n �1�.P/v.P/1�

˛
n kf��1kˆ;Q;� v.P/

˛
n�

Z
Q

gv�1 dv:

We can now argue exactly as in the proof of Theorem 1.2, beginning with the
estimate (1) and applying Lemma 2.6 to complete the estimate of I1 with a constant

Œw�
p0C1C

q
p0

C
p0

p

Ap;q
.

The estimate for I2 is essentially the same, exchanging the roles of f and g and �

and v. This yields the above estimate except that the constant is now Œw�
qC1C

q
p0

C
p0

p

Ap;q
.

This completes the proof. ut

Tres Recuerdos de Cora Sadosky

I first met Cora at an AMS sectional meeting in Burlington, Vermont, in 1995. It
began inauspiciously: at the reception on the first night a determined looking woman
came up to me, waved her finger under my nose and said, “I have a bone to pick with
you. We will talk later,” and then marched off. She found me again about 30 min later
and proceeded to explain. The year before she had been asked by an NSF reviewer
for her opinion of my proposal which mentioned the two weight problem for the
Hilbert transform. She had told the reviewer to refer me to a paper by her and Mischa
Cotlar where they gave the first (and for a long time the only) characterization
of these pairs of weights. He did not, however, share this reference, and when I
published the paper based on this work I did not cite it. Cora assumed that I had
simply disregarded this advice and was understandably annoyed. However, once I
explained that I had never received this information she immediately became much
friendlier and invited me to visit her in Washington, D.C.

For the next few years she took an interest in my career. Her first major
intervention on my behalf came in 1996, when she applied her forceful personality,
first to convince me that I must attend the El Escorial conference in 1996 (despite
moving, changing jobs, and having two small children and a pregnant wife), and
then to strong-arm funding from a colleague to pay for my trip. It was at this meeting
that I met, among others, Carlos Pérez, and began a collaboration that has continued
to the present day.

Two years later, in 1998, we met again at an AMS sectional meeting in
Albuquerque. At this meeting she picked up on a point that my Spanish colleagues
were also making: given my name and my ancestry, I really ought to be able to
speak Spanish. Her solution was that I should “read a good math book in Spanish.”
She strongly recommended that I read Javier Duoandikoetxea’s book, Análisis de
Fourier, telling me that I would see some good mathematics as well as “learn



Elementary Proofs of One Weight Inequalities 197

Spanish.” For the next year I worked through the text line by line, in the process
writing a complete translation. I approached Javi with an offer to complete the
translation and update the notes, and together we produced an English edition. In the
process I did in fact learn a great deal of harmonic analysis, but unfortunately, Cora’s
original goal was not achieved: my spoken Spanish did not improve appreciably.
Moreover, this translation had the unintended consequence of convincing large
numbers of mathematicians from Spain, Argentina and elsewhere that I did in fact
speak Spanish.

Cora and I never collaborated on a paper. She suggested several projects, but my
interests were moving away from hers and nothing came to fruition. At the time I
never really quite understood or appreciated the support she provided at these points
in my career, and it is only in looking back that I realize how much I owe her. So
belatedly I say, muchísimas gracias, Cora.
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Finding Cycles in Nonlinear Autonomous
Discrete Dynamical Systems

Dmitriy Dmitrishin, Anna Khamitova, Alexander M. Stokolos, and
Mihai Tohaneanu

Dedicated to Alexey Solyanik on his 55th birthday

Abstract The goal of this paper is to provide an exposition of recent results of
the authors concerning cycle localization and stabilization in nonlinear dynamical
systems. Both the general theory and numerical applications to well-known dynam-
ical systems are presented. This paper is a continuation of Dmitrishin et al. (Fejér
polynomials and chaos. Springer proceedings in mathematics and statistics, vol 108,
pp. 49–75, 2014).

Introduction

The problem of cycle detection is fundamental in mathematics. In this paper we
will be mainly concerned with the problem of detecting cycles of large length in
an autonomous discrete system xnC1 D f .xn/: The standard approach is to consider
the composition map fT.x/ WD f .: : :f .x/ : : :/ and then solve the equation fT.x/ D x.
However, this approach does not work well even in some basic cases. For example,
in the model case of the logistic map f .x/ D 4x.1 � x/ it leads to a polynomial
equation of degree 2T , and thus a relatively small cycle length T can give rise to
very serious computational difficulties.

The goal of this article is to suggest an alternative approach to the problem of
cycle localization. In full generality the problem is very difficult and it is hard to
believe that a universal technique could be developed. We thus start with a model
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case of non-linear autonomous discrete dynamical systems. The simplicity of the
setting allows us to make some progress and to develop a feasible plan for further
developments of the method. Since one fundamental tool of dynamics, often used
for analyzing continuous time systems, is the reduction of continuous time flow to
its Poincaré section, which is a discrete system, understanding the case of discrete
systems is of great help in studying continuous systems also.

The core of the suggested method is the stabilization of the solutions by delayed
feedback control (DFC) of a special type. We will briefly discuss a way to linearly
stabilize the system in section“Linear Control”; however, it turns out that the linear
DFC method has some obvious limitations regardless of the number of prehistory
terms involved. In contrast, in the subsequent sections we will show that a certain
nonlinear DFC schedule allows one to robustly stabilize chaotic solutions for any
admissible range of parameters.

The methods we developed can be considered as chaos stabilization, and we
believe they are of interest in other disciplines. Chaos theory is a part of modern
Physics and the majority of the publications on chaos are in Physics literature;
for instance, problems of stability have been discussed in [1–5, 12, 14–18, 21–27].
There are many specialists in chaos theory who are physicists, among whom we
mention P. Cvetanovć, C. Grebogi, E. Ott, K. Pyragas, J.A. Yorke etc. On the other
hand, many biological systems exhibit chaotic behavior as well. A fundamental
monograph of I.D. Murray [20] contains deep and advanced discussions and
applications of the non-linear dynamical systems to models of population growth.

Settings

Consider the discrete dynamical system

xnC1 D f .xn/; f W A! A; A � R
m: (1)

where A is a convex set that is invariant under f . Let us assume that the system has
an unstable T-cycle .x�

1 ; : : : ; x
�
T/. We define the cycle multipliers �1; : : : ; �m as the

zeros of the characteristic polynomial

det

0
@�I �

TY
jD1

Df .x�
j /

1
A D 0: (2)

We will assume that the multipliers are located in a region M � C:
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Stability Analysis

A standard approach (cf. [19]) to investigate stability with no delays is to construct
a new map that has points of the cycle as equilibriums and then linearize about the
equilibriums. Let us consider a system with time delay in a general form

xnC1 D F.xn; xn�1; : : : ; xn�� /; F W Rm ! R
m; � 2 ZC: (3)

We will study the local stability of a cycle f�1; : : : ; �Tg where �j 2 R
m: In other

words for all n � � C 1 the following equations are valid

�.nC1/ mod T D F.�n mod T ; �.n�1/ mod T ; : : : ; �.n��/ mod T/:

where, slightly abusing notation, we assume that T mod T D T:
We can now consider an auxiliary system with respect to the vector

zn D

0
BBBB@

z.1/n

z.2/n
:::

z.�C1/
n

1
CCCCA D

0
BBB@

xn��

xn��C1

:::

xn

1
CCCA :

of size m.� C 1/:

znC1 D

0
BBBB@

z.1/nC1

z.2/nC1
:::

z.�C1/
nC1

1
CCCCA D

0
BBBB@

z.2/n

z.3/n
:::

f .z.�C1/
n ; z.�/n ; : : : ; z.1/n /

1
CCCCA :

We can now rewrite (3) in the form

znC1 D F.zn/

with F W Rm.�C1/ ! R
m.�C1/.

Let �.z/ WD F.: : :F.z/ : : :/ be F composed with itself T-times. We can now
analyze the system

ynC1 D �.yn/: (4)

Let us periodically repeat the elements of the cycle:
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f�1; �2; : : : :; �T ; �1; �2; : : : :; �T ; : : :g: The first � C 1 elements of this sequence
form a vector

y�
1 D

0
B@
�1
�2
:::

1
CA :

In the same way we define the vectors

y�
2 D

0
B@
�2
�3
:::

1
CA ; : : : ; y�

T D

0
B@
�T

�1
:::

1
CA :

It is clear that the vectors y�
1 ; : : : ; y

�
T are equilibria of the system (4).

The cycle f�1; : : : ; �Tg of the system (3) is asymptotically locally stable if and
only if all equilibriums y�

1 ; : : : ; y
�
T of the system (4) are asymptotically locally stable.

For the equilibrium point y�
1 of the system (4) the Jacobi matrix is defined by the

formula

D�.y�
1 / D

TY
jD1

DF.y�
j / (5)

where the matrix DF.y�
j / has size m.� C 1/ � m.� C 1/ and equals

DF.y�
j / D

0
BBBBB@

O I O : : : O
O O I : : : O
: : : :

O O O : : : I

Q.j/
1 Q.j/

2 Q.j/
3 : : : Q.j/

�C1

1
CCCCCA
: (6)

Here the matrices O and I are the m � m zero and identity matrices. Further,

Q.j/
r D

@f

@z.r/

ˇ̌
ˇ̌
y�

j

; r D 1; : : : ; � C 1I j D 1; : : : ;T;

i.e. the value of the derivative evaluated at the point y�
j :

For all other equilibria y�
j the Jacobi matrices DF.y�

j / can be computed in the
same manner, and

D�.y�
j / D DF.y�

.TCj/ mod T/ � � �DF.y�
j /;
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which can be obtained from (5) by a cyclic permutation of the factors. The eigen-
values of D�.y�

j / thus coincide for all j D 1; : : : ;T (see for example [13] for more
details.)

If all eigenvalues of the matrix D�.y�
j /, which are the roots of the polynomial

det
�
�I � D�.y�

j /
�

are less than one in absolute values then the cycle of the system (3) is locally
asymptotically stable.

Note that in the scalar case m D 1 the matrices DF.yj/ are in Frobenius form,
and the matrix (6) is a generalized form of the companion matrix. If the system has
the special form (10) below, then the characteristic equation can be found explicitly
by means of induction, see [6].

Linear Control

There is a common belief that a generalized linear control

u D �
N�1X
jD1

"j
�
xn�j � xn�jC1

�
(7)

can stabilize the equilibrium for the whole range of the admissible multipliers of the
system (1). In this case F.xn; xn�1; : : : ; xn�.N�1/T/ D f .xn/Cu and the characteristic

equation for the system closed by the control (7) is ��.�/ D
mY

jD1

��j.�/; where

��.�/ WD �
N � ��N�1 C p.�/ and

p.�/ D a1�
N�1 C a2�

N�2 C � � � C aN : (8)

Here �j are cycle multipliers, i.e. the roots of the characteristic equation (2) of the
open loop system, while the coefficients ai and the gain "j are related by the bijection

"j D

NX
kDjC1

ak; j D 1; : : : ;N � 1: (9)

The proof can be done by the methods considered in the section “Stability Analysis”
above. It is not trivial but similar to a non-linear scalar case [6].

In the case of real multipliers � a careful application of Vieta’s theorem implies
that a necessary condition for the polynomials ��.�/ to be Schur stable is 1� 2N <

� < 1. It turns out [25] that for any fixed � in this range there are coefficients that
guarantee the stability of the polynomial ��.�/ for this given �.
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At this point, a natural question to ask is how robust the selected control can be,
i.e. assuming that we are given the Schur-stable polynomials ��.�/, how much can
we perturb the multipliers � so that ��.�/ remain Schur-stable? More rigorously,
the inquiry is the following:

What is the maximum length of a connected component of M?
In [10] we discovered a remarkable fact - the answer to the above question is 4

regardless of how large N is. Below is an idea of the proof.

Solyanik Visualisation

The polynomial �m.�/ is quite complicated and difficult to study directly. Alexey
Solyanik (Personal communication) suggested a remarkable way to visualize the
situation. Namely, ��.�/ is a stable polynomial if and only if ��.�/ D �N �

��N�1 C p.�/ 6D 0 for j�j � 1 or

1

�
6D

1
�

1C p.�/
�N

)
1

�
6D

z

1C q.z/
DW ˚.z/; jzj � 1:

where z D 1
�

and q.z/ D p.�/
�N . Therefore �� is Schur stable if and only if 1=� 62

˚. ND/; where D D fz W jzj < 1g: This can be rewritten as � 2 . NCn˚. ND/�; where
z� WD 1=Nz is an inversion. The above formula reduces the problem of stability to
the problem of verifying whether � is in the above set, which is still difficult, but
more manageable.

Köbe Quarter Theorem Application

Now, let us expand ˚.z/ in a power series ˚.z/ D zC a2z2 C a3z3 C : : : in D: If ˚
is univalent, then by the Köbe Quarter Theorem 1

4
D � ˚.D/ and therefore

ˇ̌
ˇ̌ 1
�

ˇ̌
ˇ̌ > 1

4
) j�j < 4:

We were able to get in [10] a generalization of the Köbe Quarter Theorem which
allowed us to obtain the result mentioned above. We also remark that the inequality
above explains the value 4 mentioned in the previous section.

Finally, it was proved in [10] that if the diameter of the set of multipliers is larger
than 16, or the diameter of any of its connected component is larger than 4, then
for any N there is no control (7) that stabilizes equilibria of the system (1) for all
admissible parameters of the system.
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Fig. 1 Logistic close-loop
system

The other obvious problem with the linear control is that the close-loop system
can have solutions that are outside the domain of the map, i.e. the convex invariant
set for the open-loop system is not necessarily an invariant set for the closed-loop
system. In Fig. 1 above the solution to the logistic system closed by the control
u D �0:01.xn � xnC1/ with x0 D 0:7501 is displayed. Note that x0 D 0:75 is an
equilibrium for a logistic map while a little perturbation produces a solution that
blows up after 30 iterations.

These two basic obstacles - the range for of the close-loop system and the limited
rage for the connected component for the multiplier - justify the introduction of the
non-linear controls.

Average Non-linear Control

Typically, an arbitrarily chosen initial value x0 produces a chaotic solution, i.e. we
observe strong oscillations. An efficient way to kill oscillations is averaging, as can
be readily seen in the summability of many trigonometric series. So, we decided to
consider a new system

xnC1 D

NX
kD1

akf .xn�kTCT/;

NX
kD1

ak D 1: (10)

It is useful to rewrite the system as xnC1 D f .xn/C un; where

un D �

N�1X
jD1

"j
�
f
�
xn�jTCT

�
� f

�
xn�jT

��
; (11)
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where ak and "k are in one-to-one correspondence as in (9).
We can now see that (10) in fact is the system (1) closed by the control (11). In

this case the convex invariant set for the open-loop system is also invariant for the
closed-loop system. We also remark that un D 0 for cycle points of period T , which
implies that the closed-loop system xnC1 D f .xn/C un preserves the T-cycles of the
initial one, which is very important for us.

Stability Analysis

The characteristic equation for the system (10) can be written in a remarkably useful
form

mY
jD1

2
4�T.N�1/C1 � �j

 
NX

kD1

ak�
N�k

!T
3
5 D 0; �j 2 M; j D 1; : : : ;m:

Here �j are the multipliers of the open loop system (1). The proof for the scalar case
m D 1 can be found in [6], and the vector case can be done in a similar way. Denote

�.�/ WD �T.N�1/C1 � �

 
NX

kD1

ak�
N�k

!T

;

q.z/ D
NX

jD1

ajz
j�1 and z D

1

�
:

Then �.�/ D 0 is equivalent to ��1 D z .q.z//T : So, if

FT.z/ WD z .q.z//T (12)

then the inclusion

M � . NCnFT. ND/
� (13)

guarantees the local asymptotic stability of the cycle with multipliers in the set M:
The inclusion (13) is the Solyanik visualization in this setting.

We are thus left with the following problem in geometric complex function
theory: given a set M containing all the multipliers, find a properly normalized
polynomial map z! FT.z/ such that M �

�
NCnFT. ND/

��
:

Since in the simplest case xnC1 D �xn the solution xn D C�n is exponentially
blowing up for � > 1 there is no way to stabilize the case when one of the
multipliers satisfies � > 1 by only using the small gain (11). Therefore we will
consider only negative real multipliers, and in the complex case we will assume
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that M is disjoint from Œ1;1/. We also remark that the cycle is already stable if
the multipliers are in .�1; 1/ or more generally in the unit disc D of the complex
plane C:

It is natural to expect that the stability will be getting worse if the set M is close
to the half axis Œ1;1/: Below we will see several examples supporting this thesis.

Since ..0;1/n.0; 1�/� D .0; 1/, and (0,1) is the largest admissible range for
real positive multipliers, the best case scenario for us is a polynomial whose
image of the unit disc looks like a narrow neighborhood of .0; 1�: Solyanik
(Personal communication) suggested as an example of such an object a famous
Alexander polynomial - the polynomial with the coefficients ak D 1=k; properly
normalized [1]. The corresponding set . NCnFT. ND/

� has a cardioid type shape and for
a large N can cover any given point except for the real numbers z � 1: We refer the
reader to Fig. 2, where the image of the unit disc under the Alexander polynomial
map is the interior of the inner (orange) curve, and the set . NCnFT. ND/

� is the interior
of the outer (green) curve.

We thus know that theoretically there is a way to stabilize equilibria with
any multipliers outside Œ1;1/ by the control (11). However, the length of the
prehistory is growing exponentially with the magnitude of the multiplier. In Fig. 2
the largest multiplier which can be covered has a magnitude of 15, while the length
of the prehistory is 20,000. We are thus led to the problem of finding the optimal
coefficients aj so that for a given set of multipliers M the prehistory N is as small as
possible.

It turns out that in the case of multipliers with negative real part the number N
can be shown to be much smaller, of only polynomial growth with respect to the size
of the multipliers, which is of practical use. This will be explored in the subsequent
sections.

Fig. 2 Image of F.D/ with
the Alexander polynomial
F.z/, N D 20;000
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Optimization Problem

Let us look first at the case when the multipliers lie on the half-axis .�1; 1/. In
this case the problem of stabilization can be reduced to the following optimization
problem: find

I.T/N D supPN
jD1 ajD1

min
t2Œ0;	�

˚
<
�
FT.e

it/
�
W =
�
FT.e

it/
�
D 0

�
:

Technically speaking, this leads to a disconnected set of multipliers, as the
boundary of . NCnFT. ND/

� will be tangent to the real axis (see, for example, Fig. 4
below). However, there is an easy trick to get rid of the tangent points: given � > 0
the polynomial F�T.z/ D .1C �/

�1.FT.z/C �z/ satisfies

min
t2Œ0;	�

˚
<
�
F�T.e

it/
�
W =
�
F�T.e

it/
�
D 0

�
> I.T/N � �:

and does not intersect the real axis except for t D 0 and t D 	 . Since
lim�!0 F�T.z/ D FT.z/, one can use the coefficients of the polynomials FT.z/ instead
of F�T.z/ in computer simulations. In particular, it is done below.

It can be shown that for the closed-loop system a robust stabilization (i.e. by the
same control for all � 2 .���; 1/) of any T-cycle is possible if

.��/ � jI.T/N j � 1: (14)

By duality, for any �� � 1 a robust stabilization of T-cycle in the closed-loop
system is possible if N � N�; where N� is the minimal integer N such that (14)
holds. Formula (14) provides a practical criterion for the choice of N given�� and T:

Real Multipliers, Optimal Polynomials for T = 1

It was proved in [7] (see also [8]) that given N the largest � such that

.��; 1/ � . NCnF1. ND/
�

can be achieved if the coefficients of q.z/ in (12) are the coefficients of a polynomial
related to the well-known Fejér polynomial, namely

aj D 2 tan
	

2.N C 1/

�
1 �

j

N C 1


sin

	 j

N C 1
; j D 1; : : : ;N: (15)

Moreover, any N such that

� � tan2
	

2.N C 1/
� 1

allows stabilization and this inequality is sharp.
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Fig. 3 F1.D/; N=12

Fig. 4 M D . NCnF1. ND/�

For the choice N D 12 we display the image F1.D/ and the maximal multiplier
set M that allows for stability in Figs. 3 and 4.

Note that for N D 12 the boundary for the multiplier is

� � tan2 .	=26/ � 1:

That implies that � � 68 which is easy to see in Fig. 4.
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Real Multipliers, Optimal Polynomials for T = 2

It was proved in [9] (see also [8]) that given N the largest � such that

.��; 1/ � . NCnF2. ND/
�

can be achieved if the coefficients of q.z/ in (12) are coefficients related to the Fejér
kernel of order 2N

aj D
2

N

�
1 �

2j � 1

2N


; j D 1; : : : ;N: (16)

Moreover, any N such that

� �
1

N2
� 1

allows stabilization of a 2-cycle and this inequality is sharp.
For the choice N D 12 we display the image F1.D/ and the maximal multiplier

set M that allows for stability in Figs. 5 and 6.

Fig. 5 F2.D/, N D 12
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Fig. 6 M D . NCnF2. ND/�

Note that for N D 12 the boundary for the multiplier is � � 1
122
� 1: That implies

that � � 144 which is easy to see in Fig. 6.

Real Multipliers, Quasi-optimal Polynomials, T � 3

The case T � 3 is much more difficult compare to the cases T D 1; 2: We were
unable to employ harmonic analysis technique and had to use complex analysis
methods. Remarkably enough, we were able to construct a family of polynomials
that are optimal for T D 1; 2 and that produce the expected estimate for the
multiplier range if T � 3:

Define the set of points

tj D
	.� C T.2j � 1//

� C .N � 1/T
; j D 1; ::;

N

2
(N-even);

�
N � 1

2
(N-odd)



and the generating polynomials

�N.z/ D z.zC 1/

N�2
2Y

jD1

.z � eitj/.z � e�itj/; N-evenI

�N.z/ D z

N�1
2Y

jD1

.z � eitj/.z � e�itj/; N-odd:
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Writing �N.z/ in a standard form

�N.z/ D z
NX

jD1

cjz
j�1

we can define the following three-parameter family of polynomials

q.z;T; �; �/ D K
NX

jD1

�
1 �

1C .j � 1/T

2C .N � 1/T


cjz

j�1; (17)

where K is a normalization factor that makes q.1;T; �; �/ D 1: In the particular case
� D � D 2 K is given by

1

K
D 2

N�2
2

N�2
2Y

jD1

.1 � cos tj/; N even;

and

1

K
D 2

N�3
2

N�1
2Y

jD1

.1 � cos tj/; N odd:

The polynomials (17) are substitutes for q.z/ in (12) and play the same role in
the T � 3 scenario as Fejér polynomials do in the cases T D 1; 2: Because of that
we call them quasi-optimal.

For any T and N, by choosing � D � D 2 the relation (13) is valid for

�

0
@ T

2C .N � 1/T

N�2
2Y

jD1

cot2
tj
2

1
A

T

< 1; N-even,

and

�

0
@

N�1
2Y

jD1

cot2
tj
2

1
A

T

< 1; N-odd:

Moreover, for large N the left hand side in the above inequalities is approximately

�

N2

 
	

2�T
T

�
�

�
T C 2

2T

2!T

� 	2
�

N2
; T !1:

The proof is work in preparation by the authors [11].
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We conjecture that the coefficients we have found are actually optimal.

Conjecture A Assume that N and T are given. Then the largest � such that

.��; 1/ � . NCnFT. ND/
�

has a magnitude proportional to N2 and is achieved by picking q.z/ in (12) to be
q.z;T; 2; 2/:

In favor of this conjecture are numeric simulations and the fact that for T D 1; 2
the new family coincides with the polynomials that are optimal. Moreover, Figs. 7, 9
and 8, 10 are remarkably similar to Figs. 3, 5 and 4, 6 which correspond to the cases
T D 1; 2.

Examples

Example of a Quasi-optimal Polynomial for T D 3; N D 5

Let us consider a numeric example T D 3;N D 5: In this case t1 D 5	=14 and
t2 D 11	=14: The generating polynomial is

�.z/ D zC2.cos
3	

14
�sin

	

7
/z2C2.1�cos

	

7
Csin

	

14
/z3C2.cos

3	

14
�sin

	

7
/z4Cz5:

The normalized factor is

K D
1

2

�
1 � cos

5	

14

�1 �
1 � cos

11	

14

�1

D 0:496 : : :

To get the region for the locations of� one needs first to build a covering polynomial

F3.z/ D z.q.z; 3; 2; 2//3 D K3z

�
13

14
C
10

7
.cos

3	

14
� sin

	

7
/zC

.1 � cos
	

7
C sin

	

14
/z2 C

4

7
.cos

3	

14
� sin

	

7
/z3 C

1

14
z4
3
:

See Fig. 7. Then take the inverse and get the region displayed in Fig. 8, where the
range for the multiplier is � 2 .�33; 1/. Using the above polynomials one can get
the estimates I.3/5 � �0:03: We conjecture that these values are optimal.
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Fig. 7 F3.D/; N=5

Fig. 8 . NCnF3. ND/�

Example of 8-Cycle in Logistic Equation

As an example of an application of the above method let us consider the logistic
equation

xnC1 D 4xn.1 � xn/: (18)

It is well known that it has cycles of any length and that the cycles are unstable.
Consider the problem of finding cycles of length 8. Figure 9 displays the

polynomial images of the unit disc F8.D/ with the quasi-optimal polynomial of
degree 12. Figure 10 displays the inverse image . NCnF8. ND/�.
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Fig. 9 F8.D/; N=12

Fig. 10 . NCnF8. ND/�

To do that let us consider the system (18) and close it by the control

un D �

N�1X
jD1

"j.f .xn�8jC8/ � f .xn�8j//:

We provide numeric simulation with the 8-cycle control above applied to the
standard logistic equation. Figure 11 below reveals the existence of two 8-cycles.
Moreover, the size of the control un goes to 0 as n ! 1, so it provides an
increasingly better approximation to the initial system. For n � 9000, for example,



216 D. Dmitrishin et al.

Fig. 11 Two 8-cycles in logistic equation on .xn�1; xn/ plane

Fig. 12 Dynamics of logistic
equation with x0 D 0:2518

the control junj � 0:00002, so we can obtain the value of the points of the two
8-cycles from Fig. 11 up to the fifth decimal:

{0.2518;0.7535;0.7429;0.7640; 0.7213;0.8042;0.6299;0.9325}, and
{0.3408;0.8987;0.3642;0.9262;0.2733;0.7944;0.6533;0.9059}.

By increasing the number of iterations n one can get more digits in the cycle.
The subtlety of the situation is well illustrated by the fact that knowledge of a

point on a cycle does not guarantee that the whole cycle can be found numerically
by the iterative procedure (18) because of chaotic behavior of the solutions to (18).
Figure 12 demonstrates what happens when we plug in x0 D 0:2518 in (18). Since
the system is chaotic, the numerical simulations do not reveal the existence of the
8-cycle. On the other hand, after adding an 8-cycle control the solutions exhibit
8-periodicity, see Fig. 13.



Finding Cycles in Nonlinear Autonomous Discrete Dynamical Systems 217

Fig. 13 Dynamics of the
solution in the closed-loop
system with x0 D 0:2518

Let us note that the standard approach would be to search for equilibria of the
8-folded composition of the logistic map. However this new map is a polynomial
of degree 28 and therefore one should consider 512 roots on the interval [0,1].
Identifying those roots is a serious practical problem.

Complex Multipliers, <.�/ < 0:

Complex Multipliers, Case of Equilibrium

Let us assume that � 2 f<.z/ < 0g [ fjzj < 1g. Note the we consider the unit disk
because if eigenvalues are in the unit disk, we have stability without any control
added.

This domain may be considered as a union of the domains MR WD fjz C Rj <
Rg [ fjzj < 1g: If R D N=2 then choosing the polynomial map

F.z/ D
2

N

NX
jD1

.1 �
j

N C 1
/zj

we can guarantee that the image of the unit disc will be to the right of the line
<.z/ D �1=N: Therefore, MN=2 will be included in

�
NCnF. ND/

��
: We illustrate this

in Figs. 14 and 15.
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Fig. 14 F.D/; N=12

Fig. 15
�

NCnF. ND/
�

�

Burgers Map

As an example of an application let us consider the well-known Burgers map
(

xnC1 D 0:75xn � y2n;

ynC1 D 1:75yn � xnyn:

Here different colors correspond to different initial values. The plot in Fig. 16 as
well as several plots below are in the .xn; xnC1/ coordinate plane. We can see that
after adding the nonlinear control an equilibrium point is clearly revealed in Fig. 17.
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Fig. 16 Chaos

Fig. 17 Equilibrium,
N D 55

Arnold’s Cat Map

As another example, let us consider the famous Arnold’s Cat map, Fig. 18

(
xnC1 D .xn C yn/ mod 1;

ynC1 D .xn C 2yn/ mod 1:
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Fig. 18 Chaos

Fig. 19 T D 1, N D 3

Its multipliers are real numbers, one greater than 1 so it is unlikely that our method
will stabilize the equilibrium, see Fig. 19. However, it still has a regularizing effect
on the dynamics, as can be seen in the pictures below. It would be interesting to
understand why different orbits, corresponding to different colors, end up being
separated by the nonlinear control, see Fig. 20.
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Fig. 20 T D 1, N D 50

Fig. 21 Chaos

2.5

1.5

0.5

2

-2

-1
-1
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0

1

1

2

1

Ikeda 3D Map

Let us also look at the 3D Ikeda map, Fig. 21
8̂
<̂
ˆ̂:

xnC1 D 1C 0:9
�

xn cos
�
0:4 � 6

1Cz2n

	
� yn sin

�
0:4 � 6

1Cz2n

		
;

ynC1 D 0:9
�

xn sin
�
0:4 � 6

1Cz2n

	
C yn cos

�
0:4 � 6

1Cz2n

		
;

znC1 D
p
.xn � 1/2 C y2n:



222 D. Dmitrishin et al.

0.2938908990.293890899

0.2938909000.293890900

0.2938909010.293890901

0.2938909020.293890902

0.53544161100.53544161100.53544161000.53544161000.53544160900.5354416090
0.54971479860.5497147986
0.54971479840.5497147984
0.54971479820.5497147982
0.54971479800.5497147980
0.54971479780.5497147978
0.54971479760.5497147976
0.54971479740.5497147974
0.54971479720.5497147972
0.54971479700.5497147970

Fig. 22 Equilibrium, N D 3

One again notices an equilibrium, whose first few digits in the decimal expansion
are .0:5354416; 0:5497147; 0:2938909/, see Fig. 22.

Complex Multipliers, <.z/ < 0; T � 2

We illustrate the case of cycles of length 8, i.e. N D 12, T D 8, in Figs. 23 and 24.
Here we use FT.z/ D z .q.z;T; 1; 1//T .

In the following few subsections we illustrate how 4-cycles become visible after
adding the nonlinear control.
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Fig. 23 F8.D/, N D 12

Fig. 24 . NCnF8. ND/�

Hennon Map, T = 4

Let us consider the Hennon map, Fig. 25
(

xnC1 D 1 � 1:4x2n C yn;

ynC1 D 0:3xn:

Note the appearance of 4-cycles after adding a nonlinear control in Fig. 26.
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Fig. 25 Chaos

Fig. 26 4-cycle, N D 10

Ikeda Map, T = 4

The 2D Ikeda map is given by the system below and is displayed in Fig. 27 and the
4 cycle in Fig. 28

8<
:

xnC1 D 1C 0:9
�

xn cos
�
0:4 � 6

1Cx2nCy2n

	
� yn sin

�
0:4 � 6

1Cx2nCy2n

		
;

ynC1 D 0:9
�

xn sin
�
0:4 � 6

1Cx2nCy2n

	
C yn cos

�
0:4 � 6

1Cx2nCy2n

		
;
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Fig. 27 Chaos

Fig. 28 4-cycle, N D 6

Lozi Map, T = 4

The Lozi map is defined by the system below and is displayed in Fig. 29 and the
4 cycle is in Fig. 30.

(
xnC1 D 1 � 1:7jxj C 0:5y;

ynC1 D xn:
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Fig. 29 Chaos

Fig. 30 4-cycle, N D 40

Holmes Cubic Map, T = 4

The Holmes cubic map is defined by the system below and is displayed in Fig. 31,
the 4 cycle in Fig. 32.

(
xnC1 D yn

ynC1 D �0:2xC 2:77y � y3:
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Fig. 31 Chaos

Fig. 32 Two 4-cycles,
N D 18

Chirikov Map, T = 1 and T = 2

The map that describes the dynamics of the kicked rotor is given by the system
below and is displayed in Fig. 33. Figures 34 and 35 display the dynamics of the
systems closed by 1-cycle and 2-cycle controls correspondingly.

(
xnC1 D 2	b

xnCynC1:4 sin xn
2	

c;

ynC1 D 2	b
ynC1:4 sin xn

2	
c:
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Fig. 33 Chaos

Fig. 34 T D 1, N D 9
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Fig. 35 T D 2, N D 24

Fig. 36 Chaos

Baker’s Map, T = 2

Baker’s map is defined by the system below and is displayed in Fig. 36. The systems
closed by 2-cycle control is displayed in Fig. 37.

(
xnC1 D 2xn � b2xnc;

ynC1 D
1
2
.yC b2xnc/:
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Fig. 37 T D 2, N D 20

It is yet another example of globally non-smooth map in addition to Arnold’s Cat
map and Chirikov map considered above. It is remarkable that in each case one can
observe separation of initial values, thus a regularization of chaotic behavior.

Complex Multipliers, <.�/ > 0

In this case the worst possible scenario consists of having real multipliers. Recall
that even in the simplest system xnC1 D �xn the solution xn D C�n blows up
exponentially and our control cannot stabilize it, since there are no oscillations
present. Therefore, it is natural to expect that the required N will grow very fast
as the set of multipliers M gets close to the real line. The Alexander polynomials
illustrate this hypothesis very well.

One piece of good news is that now we can use q.z;T; �; �/ instead of Alexander
polynomials. There is a choice of the parameters that allows the set (13) to cover any
part of the region CnŒ1;1/ right to the imaginary axis as N ! 1. The sets look
like the angel wings in Fig. 39 below, or like the dragonfly wings in Fig. 41. The
images of the unit discs are displayed on Figs. 38 and 40. The value of N D 503

is, of course, huge, but it is much better compare to N D 20; 000 for Alexander
polynomials. The values for N are selected to highlight the difference between the
case of negative real part multipliers, where N D 12 suffices for very negative values
of the real part, and the positive real part multipliers, where even for a relatively
small multipliers a very large value of N is required.
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Fig. 38 F1. ND/, � D 1:2,
� D 0:5, N D 503

Fig. 39 . NCnF1. ND/�
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Fig. 40 F1. ND/, � D 1:9,
� D 0:75, N D 503

Fig. 41 . NCnF1. ND/�

Generalized Fejér Kernels

In analysis there are two types of extremal non-negative polynomials introduced by
Fejér. In a closed form they can be written as

˚
.1/
N�1.t/ D

 
cos NC1

2
t

cos t � cos 	
NC1

!2
and ˚

.2/
N�1.t/ D

 
sin N

2
t

sin t
2

!2
: (19)
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Graphically these two polynomials look similar; however, there is no explanation
of that fact and no relation between these two families polynomials has been
established.

Surprisingly, both polynomials turned out to be involved in the problem of
optimal stability. It was showed in [8] that the polynomials ˚.1/

N�1.t/ play a central

role in the problem of 1-cycle (equilibrium) stability, while ˚.2/
N�1.t/ are central to

the 2-cycle stability.
The family of complex polynomials q.z;T; 2; 2/ that we introduced above

generates a new family of trigonometric polynomials which contains both Fejér
polynomials as particular cases. Denote q.z;T; 2; 2/ by q.T/N .z/ in this section, and

their coefficients by a.T/j : Let

G.T/
N�1.t/ D =

(
ei t�	

T q.T/N .eit/

sin t�	
T

)
; 0 < t < 	:

One can check that

1

G.T/
N�1.0C/

� G.T/
N�1.t/ D

1

˚
.T/
N�1.0/

� ˚
.T/
N�1.t/; T D 1; 2:

Letting � D .t � 	/=T we obtain the normalized version

QG.T/
N�1.�/ D

1

sin �

NX
jD1

.�1/j�1a.T/j sin.1C .j � 1/T/�: (20)

Some Properties of QG.T/

N�1

Note that

a.T/j D .1C .j � 1/T/a
.T/
N�jC1;

and that

�j D
	.N � 2j/

2C .N � 1/T

are double roots of QG.T/
N�1.�/.

In Fig. 42 we display the plots of a few generalized Fejér polynomials (20). T D 1
coral, T D 2 blue, T D 3 green, T D 4 red.
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Fig. 42 Graphs of polynomials QG.T/
N�1.�/; T=1,2,3,4

The classic Fejér polynomials are plotted for T D 1 and T D 2, however they
are shifted by 	 and 	=2 correspondently because of the � substitution. These plots
support the following

Conjecture B The generalized Fejér polynomials

NX
jD1

.�1/j�1a.T/j sin.1C .j � 1/T/�

are non-negative on Œ0; 	�.

Conclusion

We list below what we were able to prove, and what we conjecture to be true.

(i) We were able to find the optimal coefficients for real multipliers in the case of
an equilibrium and 2-cycle T D 1; 2.
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(ii) We were able to find the optimal coefficients for complex multipliers with
<.�/ < 0 in the case of an equilibrium T D 1.

(iii) We have found coefficients for real multipliers in the case of T-cycles, T � 3,
which vastly improve the results obtained by using Alexander polynomials. We
conjecture that the discovered coefficients are optimal.

(iv) We have suggested improved coefficients for the complex multipliers with
<.�/ > 0: We don’t know whether they are optimal.

(v) We have found a family of trigonometric polynomials that contains Fejér
polynomials as a particular case which we conjecture to be non-negative.

We believe that the developed techniques can also be useful in the attempts
to solve the second part of Hilbert’s 16th problem, which deals with the number
and location of limit cycles of a planar polynomial vector field of degree n: The
development of computational sciences made it possible to employ computers in
this matter, thus discretizing the problem and reducing it to the problem of detecting
of cycles of high periods in discrete settings, which is the topic of this article.

Remembrance by Alex Stokolos

I first met Cora in 1992 at the Miraflores Conference, Spain. That was just half
a year after the collapse of the Soviet Union, a very difficult time in Ukraine. To
participate in the meeting I got help from my friend Alexey Solyanik who was at
the time a visitor at UAM and who has been a great influence on my whole career
and life. At the banquet, Alexey and I sat at the same table as Cora and Carlos
Segovia. I have been to many conferences and met many people since then, but I
remember that night in Miraflores very well. Cora was just adorable, Carlos was
great. They made fun of each other, it was an unforgettable play by two brilliant
actors.

Cora told me that in her junior years, American mathematicians tried to help
young talents abroad, and she gave the example of Zygmund lecturing in Argentina.
She tried to follow this idea, helping many Argentinian, Venezuelan, and Ukrainian
mathematicians.

In 1997, Cora took part in Krein’s 90th birthday anniversary conference on
operator theory and its applications that took place in Odessa, Ukraine. There she
met her future collaborator Dmitry Kaliuzhnyi-Verbovetskyi. The article of Dmitry
et al is in this volume. The article of another Odessiter, Nikolai Vasilevski, is
included in this volume as well.

The next time I met Cora was in Williams College in 2001 while participating
at a Special Session on “Harmonic Analysis since the Williamstown Conference
of 1978”. It was a remarkable idea of David Cruz-Uribe and Janine Wittwer to
celebrate that milestone symposium. The two Williamstown’s volumes conference
proceedings have identified the development of harmonic analysis for many years.
Some problems have been solved, many are waiting for a solution.
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At that meeting Cora invited me to give a talk at Howard University. I went to
Howard, gave a presentation for the seminar, met Cora’s colleagues and her husband
Daniel. Everything was wonderful. Then more meetings, more impressions, more
memorial moments. Last time I saw Cora was at the 10th New Mexico Analysis
Seminar in 2007. As always, she was surrounded by people; one had to find a path
through the crowd even to say hello.

In 2010, news as a thunderbolt struck me - Cora passed away. I was shocked and
depressed. Trying to pay our last tribute, my colleagues and I organized a session at
the AMS meeting in Albuquerque in 2014; there was also an evening in memory of
Cora during the 13th New Mexico Analysis seminar meeting. For this event I gave
a lecture on stability of dynamical systems. I chose this topic because quite exciting
and very subtle results in non-linear dynamics were obtained by means of classical
harmonic and complex analysis - the subjects so close to Cora’s heart.

Initially, the content of the talk in the preprint version was a gift to Alexey
Solyanik. To mention the connection of Alexey to this volume allows me to point
out that Paul Hagelstein’s article in the volume is about Solyanik’s estimates in
harmonic analysis, the subject of Paul’s talk at SEOUL ICM 2014. Since I indirectly
met Cora thanks to Alexey, we decided to also dedicate this article to him.
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(Riesz–Nevanlinna) factorization in various classes of analytic functions on the
disk that are smooth up to its boundary, and (b) model subspaces (i.e., invariant
subspaces of the backward shift) in the Hardy spaces Hp and in BMOA. It is the
interrelationship and a peculiar cross-fertilization between the two topics that we
wish to highlight.
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Our functions will live on the disk D WD fz 2 C W jzj < 1g. Putting the
smoothness issue aside (but only for a short while), let us now recall a bit of function
theory on the disk. Suppose that f is analytic on D and not too large near the unit
circle T WD @D. Specifically, assume that f lies in some Hardy space Hp with
0 < p � 1. By definition, this means – in addition to analyticity – that

kfkHp WD sup
0<r<1

�Z
T

jf .r/jpdm./

1=p

<1

if 0 < p < 1, or kfkH1 WD sup
D
jf j < 1 if p D 1. Here and below, m denotes

the normalized arclength measure on T. It is well known that Hp functions have
boundary values (nontangential limits) m-almost everywhere on T. We may then
identify Hp with a subspace of Lp D Lp.T;m/ bearing in mind that the above norm,
k � kHp , agrees on Hp with the standard Lp-norm k � kp over T (see [16, Chapter II]).
When 0 < p < 1, the two quantities should actually be called quasinorms rather
than norms.

For f as above, the function ' WD jf j
ˇ̌
T

will satisfy ' 2 Lp and log' 2 L1.
Moreover, these last two conditions characterize the moduli of Hp functions on T.
Now, letting u WD log' and writing Pu for the harmonic extension (via the Poisson
integral) of u from T into D, we define the outer function O' as the (essentially
unique) analytic function on D satisfying log jO'.z/j D Pu.z/. This done, we have
O' 2 Hp and jO' j D ' a. e. on T. The ratio f=O' DW � will then be an inner
function; that is, � 2 H1 and j� j D 1 a. e. on T. Thus we arrive at the Canonical
Factorization Theorem: the general form of an f 2 Hp is given by f D �F, where �
is inner and F outer (so that F D O' for some ' as above). A further factorization
formula for inner functions allows us to express � canonically in terms of its zeros
fang (these are only required to satisfy

P
n.1 � janj/ < 1) and a certain singular

measure � on T; see [16, Chapter II]. In summary, the original function f 2 Hp

is fully described by the parameters ', fang and � that emerge; and any choice of
parameters gives rise to an f 2 Hp via factorization.

The terms “inner function” and “outer function” were coined by Beurling.
Why did he call them that? An amusing, but rather controversial, explanation I
have heard is that the identity f D �F, when written in this specific form, has
� (the “inner factor”) inside and F (the “outer factor”) outside. Observe that in
some noncommutative generalizations, which we do not touch upon, the order may
become crucial; and yes, it should be �F rather than F� .

While quite a bit of modern 1-D complex analysis has evolved in an attempt
to extend the Hp theory to larger analytic spaces, one also feels tempted to look
at smaller (nicer) classes, in particular, at those populated by smooth analytic
functions. Here, the good news is that the canonical factorization theorem applies.
The bad news is, however, that the parameters cannot be chosen freely. Indeed, most
inner functions – actually, all the “interesting” (i.e., nonrational) ones – are highly
oscillatory, hence discontinuous, at some points of T. Consequently, the product
�F may only be smooth on T if the outer factor, F, is good enough and kills the
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singularities of the (bad) inner factor, � . To find an explicit quantitative expression
of this interplay, for a given “smooth analytic space”, is therefore one problem to be
dealt with.

Our second topic is the model subspaces, alias star-invariant subspaces, in Hp

and in BMOA WD BMO\H1, where BMO D BMO.T/ is the space of functions of
bounded mean oscillation on T (see [16, Chapter VI]). In H2, the model subspace
K� generated by an inner function � is, by definition, the orthogonal complement of
the shift-invariant subspace �H2. Thus,

K�
�
D K2

�

�
WD H2 � �H2: (1)

It is a reproducing kernel Hilbert space, whose kernel function kz associated with a
point z 2 D is given by

kz./ D
1 � �.z/�./

1 � z
:

This last function is therefore in K� for every z, and every f 2 K� satisfies

f .z/ D
Z
T

f ./kz./ dm./; z 2 D:

It is straightforward to verify that K� D H2 \ � H2
0 , and we further define Kp

� (the
Hp-analogue of K� ) by putting

Kp
� WD Hp \ � Hp

0 ; 1 � p � 1;

where Hp
0 WD ff 2 Hp W f .0/ D 0g and the bar denotes complex conjugation. For

smaller p’s, a more reasonable definition appears to be

Kp
� WD closHp K� ; 0 < p < 1:

These subspaces play a crucial role in the Sz.-Nagy–Foiaş operator model (see [20]),
which accounts for the terminology. Now, the term “star-invariant” means invariant
under the backward shift operator f 7! .f � f .0//=z, and it follows from Beurling’s
theorem (see [16, Chapter II]) that the general form of a closed and nontrivial star-
invariant subspace in H2 is indeed given by (1), with � inner. A similar fact is true
for Hp when 1 � p <1.

Finally, we put

K�� WD K� \ BMOA:

When equipped with the BMO-norm k � k�, K�� becomes a star-invariant subspace
of BMOA; in fact, it is the annihilator in BMOA of the shift-invariant subspace �H1

in H1. Of course, K�� contains K1
� and is contained in every Kp

� with 0 < p <1.
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While each of the two topics just mentioned has received quite a bit of attention
in its own right, the intimate interconnection between them does not seem to have
been noticed (until recently) or explored in any detail. It is precisely the systematic
exploitation of this interrelationship, perhaps a kind of duality, between the two
subjects that is characteristic of our approach. In fact, the three stories told in the
next three sections are intended to show that results and methods pertaining to one
of our themes cast new light on the other, and vice versa.

Before moving any further, we need to recall the notions of Toeplitz and Hankel
operators, since these will be crucial in what follows. We let PC and P� denote the
orthogonal projections from L2 onto H2 and onto H2

0 , respectively. Thus,

.PCF/.z/ WD
X
n�0

bF.n/zn and .P�F/.z/ WD
X
n<0

bF.n/zn;

where bF.n/ WD R
T

F./
n
dm./ is the nth Fourier coefficient of F. These operators

are then extended to Lp with 1 < p < 1 (in which case they become bounded
projections onto Hp and Hp

0 , the classical M. Riesz theorem tells us) and furthermore
to L1 (even though P˙.L1/ 6� L1). Next, given a measurable function  on T, we
write

T f WD PC. f / and H f WD P�. f /;

whenever f 2 H1 and  f 2 L1. The mapping T (resp., H ) is called the Toeplitz
(resp., Hankel) operator with symbol  .

In the special case where  is analytic (i.e.,  2 H1), T reduces to the
multiplication map f 7! f , defined at least on H1. The Toeplitz operators with
symbols in H1 are said to be coanalytic. It is also worth mentioning that the model
subspace Kp

� (where p � 1) or K�� , with � an inner function, is precisely the kernel
of the coanalytic Toeplitz operator T� acting on Hp or BMOA.

Because Toeplitz and Hankel operators were among Cora Sadosky’s best beloved
mathematical creatures, their appearance in this survey seems to be appropriate (and
is, anyway, far from incidental to the subject matter).

We conclude this introduction with a brief outline of the rest of the paper.
In sections “Factorization in Lipschitz–Zygmund Spaces” and “Factorization in
Dirichlet-Type Spaces”, we look at certain smooth analytic spaces X and seek to
characterize the pairs .f ; �/, with f 2 X and � inner, which satisfy

f � 2 X: (2)

Sometimes it is more natural to replace (2) by

f � k 2 X for all k 2 N; (3)
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and we are led to consider some other related conditions as well. In section “Fac-
torization in Lipschitz–Zygmund Spaces”, the role of X is played by the analytic
Lipschitz–Zygmund spaces A˛ (see the beginning of that section for definitions),
and the pairs .f ; �/ with property (3) are then explicitly described by a certain
smallness condition, to be imposed on jf j near the singularities of � . Furthermore,
the same smallness condition ensures that the multiplication operator g 7! fg acts
nicely on the model space Kp

� , or perhaps on Kp
�n with n suitably large, by improving

integrability properties of the functions therein. For instance, given 1 < p < q <1
and ˛ D p�1 � q�1, we prove that multiplication by a function f 2 A˛ maps Kp

�

into Hq if and only if it maps � into A˛ (so that (2) holds with X D A˛). The case
of smaller p’s and larger ˛’s leads to a minor complication involving (3) in place
of (2), and Kp

�n in place of Kp
� .

In section “Factorization in Dirichlet-Type Spaces”, our space X is chosen
from among the so-called Dirichlet-type spaces. Each of these is formed by the
functions f 2 H2 whose coefficient sequence, fbf .n/g, lies in a certain weighted `2.
An important special case is the classical Dirichlet space D, the set of analytic
functions f on D whose derivative, f 0, is square integrable over D with respect
to the normalized area measure A; the (semi)norm kfkD is then defined to be�R

D
jf 0j2dA

�1=2
. Among other things we recover, for f 2 D and � inner, the identity

kf �k2D D kfk
2
D C

Z
T

jf j2j� 0jdm; (4)

which forms part of Carleson’s celebrated formula from [4]. Moreover, we obtain
similar – but more sophisticated – formulas for general Dirichlet-type spaces; these
yield the smallness conditions on f (in relation to � ) that are responsible for the
interplay between the two factors in (2), for the current choices of X. When X D D,
the corresponding smallness condition reads

R
T
jf j2j� 0jdm < 1, as readily seen

from (4). Our approach to (4) is based on the fact that the quantity kf �kD coincides
with the Hilbert–Schmidt norm of the Hankel operator Hf � acting from H2 to H2

0

(and similarly for f in place of f � ). Now let fgng be an orthonormal basis in the
model subspace K� . Since H2 D �H2 ˚ K� , the family f�zkgk�0 [ fgng is an
orthonormal basis in H2, and we may use it to compute the Hilbert–Schmidt norm
of Hf � . This gives

kf �k2D D
X
k�0

���Hf � .�zk/
���2
2
C
X

n

���Hf �gn

���2
2
;

and a further calculation shows that the two sums above reduce to the two terms on
the right-hand side of (4). A modification of the same technique allows us to handle
the case of a generic Dirichlet-type space.

In section “Model Subspaces in BMOA”, we consider coanalytic Toeplitz
operators on the model subspace K�� , and we obtain a criterion for such an operator
to act boundedly from K�� to a given analytic space X, under certain assumptions
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on the latter. Precisely speaking, the spaces X that arise here naturally are those
which enjoy the K-property of Havin. In other words, it will be assumed that every
Toeplitz operator Th with h 2 H1 maps X boundedly into itself and satisfies
kThkX!X � const � khk1. This property was introduced by Havin in [17], where
he also verified it for a number of smooth analytic spaces. (It was further observed
in [17] that every space X with the K-property admits division by inner factors:
whenever f 2 X and I is an inner function such that f=I 2 H1, it follows
that f=I 2 X.) Now, the appearance of the K-property in connection with model
subspaces of BMOA seems to reveal yet another link between the two topics of
concern.

The content of section “Factorization in Lipschitz–Zygmund Spaces” is essen-
tially borrowed from the author’s papers [7, 8], while sections “Factorization in
Dirichlet-Type Spaces” and “Model Subspaces in BMOA” are based on [10] and
[12], respectively. It seems that a bit of self-plagiarism is unavoidable – and
hopefully pardonable – under the circumstances.

Factorization in Lipschitz–Zygmund Spaces

This section deals with the Lipschitz–Zygmund spaces ƒ˛ D ƒ˛.T/ and their
analytic subspaces A˛ . For 0 < ˛ < 1, the space ƒ˛ is defined as the set of
all (complex-valued) functions f 2 C.T/ that satisfy

k
n
hfk1 D O.jhj˛/; h 2 R; (5)

where k � k1 is the sup-norm on T, n is an integer with n > ˛, and 
n
h denotes the

nth order difference operator with step h. (As usual, the difference operators 
k
h are

defined by induction: one puts .
1
hf /./ WD f .eih/ � f ./ and 
k

hf WD 
1
h


k�1
h f .)

It is well known that property (5) does not depend on the choice of n, as long as
n > ˛, except possibly for the constant in the O-condition.

The corresponding analytic subspaces are

A˛ WD ƒ˛ \ H1; 0 < ˛ <1:

Equivalently, by a theorem essentially due to Hardy and Littlewood, A˛ is formed
by those holomorphic functions f on D which obey the condition

jf .n/.z/j D O ..1 � jzj/˛�n/ ; z 2 D;

for some (and then every) integer n with n > ˛; here f .n/ is the nth order derivative
of f . The spaces ƒ˛ and A˛ are then normed in a natural way.

The main result of this section is Theorem 2.1 below, which characterizes the
pairs .f ; �/, with f 2 A˛ and � inner, such that f admits multiplication and/or
division by every power of � in ƒ˛ . The characterization involves an explicit
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quantitative condition saying that jf .z/j must decay at a certain rate as z approaches
the boundary along the sublevel set

�.�; "/ WD fz 2 D W j�.z/j < "g (6)

with 0 < " < 1. Moreover, it turns out that the same decay condition provides a
criterion for the multiplication operator Tf W g 7! fg to map the model subspace Kp

�n

continuously into Hq, once the exponents are related appropriately.

Theorem 2.1 Suppose that 0 < p <1, max.1; p/ < q <1, ˛ D p�1 � q�1, and
n is an integer with np > 1. Assume also that f 2 A˛ and � is an inner function. The
following conditions are equivalent:

(i) f �
k
2 ƒ˛ for all k 2 N.

(ii) f �
n
2 ƒ˛ .

(iii) The multiplication operator Tf maps Kp
�n boundedly into Hq.

(iv) For some (or every) " 2 .0; 1/, one has

jf .z/j D O..1 � jzj/˛/ for z 2 �.�; "/: (7)

(v) f � k 2 A˛ for all k 2 N.
(vi) f �n 2 A˛ .

It should be noted that the set �.�; "/ hits T precisely at those points which are
singular for � . Thus, (7) tells us how strongly the good factor f must vanish on
the bad set of the problematic (nonsmooth) factor � in order that the products in
question be appropriately smooth.

Postponing the proof for a while, we first establish a few preliminary facts to lean
upon. To begin with, we recall the Duren–Romberg–Shields theorem (see [6]) which
allows us to identify A˛ with the dual of the Hardy space Hr, where r D .1C ˛/�1,
under the pairing

h'; i D

Z
T

' dm:

For a given  2 A˛ , the integral above is well defined at least when ' 2 H1, and
we have

jh'; ij � c˛k'krk kƒ˛

with some constant c˛ > 0. Moreover, the norm of the functional induced by  on
Hr is actually comparable to k kƒ˛ .

The next three lemmas exploit this duality relation. The first of these was
established by Havin in [17]; we also cite Shamoyan [24] in connection with part
(b) below.
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Lemma 2.2 Let 0 < ˛ <1.

(a) If h 2 H1, then the Toeplitz operator Th maps the space A˛ boundedly into
itself, with norm at most const � khk1.

(b) If f 2 H1 and � is an inner function such that f � 2 A˛ , then f 2 A˛ and
kfkƒ˛ � const � kf �kƒ˛ .

The constants are allowed to depend only on ˛.

In Havin’s terminology, statements (a) and (b) can be rephrased by saying that
A˛ has the K-property and the (weaker) f -property, respectively. To prove (a), one
notes that Th is the adjoint of the multiplication operator Th W g 7! gh, which is
obviously bounded on Hr with norm at most khk1. To deduce (b) from (a), observe
that f D T� .f �/.

Lemma 2.3 Suppose that 0 < p <1, max.1; p/ < q <1, and ˛ D p�1 � q�1. If
f 2 A˛ , then the Hankel operator Hf , defined by

Hf g D P�.f g/; g 2 H1;

can be extended to a bounded linear operator mapping Hp into H
q
0.

Proof Put r D .1C ˛/�1 and q0 D q=.q� 1/. Given g 2 H1 and h 2 Hq0

0 , we have

ˇ̌
ˇ̌
Z
T

�
Hf g

�
h dm

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
Z
T

P�.f g/ � h dm

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
Z
T

f gh dm

ˇ̌
ˇ̌

� c˛kfkƒ˛kghkr � c˛kfkƒ˛kgkpkhkq0 :

Here, the last two inequalities rely on the Duren–Romberg–Shields duality theorem
and on Hölder’s inequality. Taking the supremum over the unit-norm functions h in
Hq0

0 , we obtain

kHf gkq � c˛kfkƒ˛kgkp;

which proves the required result. ut

Lemma 2.4 Suppose that 0 < p < 1, max.1; p/ < q < 1, and ˛ D p�1 � q�1.
Further, let f 2 H2 and let � be an inner function. If P�.f �/ 2 ƒ˛ , then the operator
Tf

ˇ̌
K1

�
can be extended to a bounded linear operator acting from Kp

� to Hq.

Proof Given g 2 K1
� , put h WD NzNg� (so that h 2 H1) and  WD P�.f �/. The

elementary identity

PCF D zP�.zF/; F 2 L2;

shows that Tf g D zH h. Using Lemma 2.3, we get

kTf gkq D kH hkq � const � k kƒ˛khkp D const � k kƒ˛kgkp;

which completes the proof. ut
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As a final preliminary result, we list some facts about the so-called Carleson
curves associated with an inner function; see [16, Chapter VIII] for a proof.

Lemma 2.5 Given an inner function � and a number " 2 .0; 1/, there exists a
countable (possibly finite) system �" D �".�/ of simple closed rectifiable curves in
D [ T with the following properties.

(a) The interiors of the curves in �" are pairwise disjoint; the intersection of each
of these curves with the circle T has zero length.

(b) One has � < j� j < " on �" \ D for some positive � D �."/.
(c) The arclength jdzj on �" \ D is a Carleson measure, i.e., H1 � L1.�"; jdzj/;

moreover, the norm of the corresponding embedding operator is bounded by a
constant N."/ depending only on ".

(d) For every F 2 H1, the equality

Z
T

F

�
dz D

Z
�"

F

�
dz

holds true, provided that the curves in the family �" are oriented appropriately.

Now we are in a position to prove our main result in this section.

Proof of Theorem 2.1 The implications (i) H) (ii) and (v) H) (vi) being obvious,
our plan is to show that (ii) H) (iii) H) (iv) H) (i) H) (v) and also that
(vi) H) (iii).

(ii) H) (iii). Write u WD �n and let g 2 K1
u . Note that

f g D Tf gC Hf g: (8)

Since f 2 A˛ , Lemma 2.3 tells us that

kHf gkq � c˛kfkƒ˛kgkp:

Now, since f u 2 ƒ˛ by (ii), it follows that P�.f u/ 2 ƒ˛ (indeed, the operators PC

and P� are known to map ƒ˛ into itself), and Lemma 2.4 gives

kTf gkq � c˛kP�.f u/kƒ˛kgkp:

The last two inequalities, together with (8), imply

kf gkq � const � kgkp;

where the constant does not depend on g. Obviously,

kTf gkq D kfgkq D kf gkq;

and since K1
u is dense in Kp

u , we conclude that Tf is a bounded operator from Kp
u

to Hq.
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(iii) H) (iv). Fix z 2 D and consider the reproducing kernel kz (for K2
� ), given by

kz./ D
1 � �.z/�./

1 � z
:

Since kz 2 K1
� , it follows that kn

z 2 K1
�n .� Kp

�n/; indeed,

kn
z �

n D
�

kz�
	n
2 H1

0 :

Therefore, by (iii),

kfkn
zkq � const � kkn

zkp: (9)

In order to derive further information from this inequality, we now estimate its right-
hand side from above, and the left-hand side from below. The elementary estimate

Z
T

dm./

j � zj�
�

C�
.1 � jzj/��1

.� > 1/

shows that

kkn
zkp D

 Z
T

ˇ̌
ˇ̌
ˇ
1 � �.z/�./

1 � z

ˇ̌
ˇ̌
ˇ
np

dm./

!1=p

� 2n

�Z
T

dm./

j � zjnp

1=p

�
const

.1 � jzj/n�1=p
;

(10)

since np > 1.
Now let F stand for the outer factor of f . Using the Cauchy integral formula,

we get

kfkn
zkq D

 Z
T

jF./jq
ˇ̌
ˇ̌
ˇ
1 � �.z/�./

1 � z

ˇ̌
ˇ̌
ˇ
nq

dm./

!1=q

�

ˇ̌
ˇ̌
ˇ
Z
T

Fq./
.1 � �.z/�.//nq

.1 � z/nq�1

dm./

1 � z

ˇ̌
ˇ̌
ˇ
1=q

D

�
jF.z/jq

.1 � j�.z/j2/nq

.1 � jzj2/nq�1

1=q

D jF.z/j
.1 � j�.z/j2/n

.1 � jzj2/n�1=q

� const � jf .z/j
.1 � j�.z/j/n

.1 � jzj/n�1=q
:

(11)
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In view of (10) and (11), inequality (9) now yields

jf .z/j � .1 � j�.z/j/n � const � .1 � jzj/1=p�1=q D const � .1 � jzj/˛;

the constant being independent of z. Hence, for 0 < " < 1, we have

jf .z/j � const � .1 � "/�n.1 � jzj/˛

whenever z 2 �.�; "/, so that (iv) holds true.
(iv) H) (i). We begin by showing that if (iv) is fulfilled with some " 2 .0; 1/,

then f � 2 ƒ˛ . Since

f � D T� f C H� f

and T� f 2 A˛ (recall Lemma 2.2), it suffices to check that H� f 2 ƒ˛ . To this end, we
take an arbitrary function g 2 H1

0 with kgkr D 1, where r D .1C ˛/�1, and verify
that the integrals

R
T
.H� f /g dm are bounded in modulus by a constant independent

of g. This will mean that the function zH� f generates a continuous linear functional
on Hr, and hence lies in A˛ . Writing g1 WD g=z and using the Carleson curves
�" D �".�/ as described in Lemma 2.5, we obtain

ˇ̌
ˇ̌
Z
T

.H� f /g dm

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
Z
T

f �g dm

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ 1
2	 i

Z
T

fg1
�

dz

ˇ̌
ˇ̌

D

ˇ̌
ˇ̌ 1
2	 i

Z
�"

fg1
�

dz

ˇ̌
ˇ̌ � 1

2	

Z
�"

jf jjg1j1�rjg1jr

j� j
jdzj:

Because g1 is a unit-norm function in Hr, it follows easily that jg1.z/jr � .1�jzj/�1,
whence

jg1.z/j
1�r � .1 � jzj/�.1�r/=r D .1 � jzj/�˛; z 2 D:

Plugging this into the preceding estimate and recalling that j� j � �."/ on �" \ D,
we find that

ˇ̌
ˇ̌
Z
T

.H� f /g dm

ˇ̌
ˇ̌ � 1

2	�."/
�

 
sup

z2�"\D

jf .z/j

.1 � jzj/˛

!
�

Z
�"

jg1j
r jdzj: (12)

Since �"\D is contained in�.�; "/, the supremum in (12) is finite by virtue of (iv).
Also,

Z
�"

jg1j
r jdzj � N."/ �

Z
T

jg1j
r dm D N."/:
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Taking this into account, we deduce from (12) that

sup

� ˇ̌
ˇ̌Z

T

.H� f /g dm

ˇ̌
ˇ̌ W g 2 H1

0 ; kgkr D 1

�
�

CN."/

2	�."/
;

where C is the constant coming from the O-condition in (iv). This means that H� f 2
ƒ˛ , and hence f � 2 ƒ˛ .

Replacing � by � k and " by "k in the above argument, we similarly verify that
f � k 2 ƒ˛ for every k 2 N.

(i) H) (v). Assuming (i), we prove first that f � 2 A˛ , or equivalently, that

.f �/.n/.z/ D O..1 � jzj/˛�n/ as jzj ! 1�: (13)

For z 2 D and almost all  2 T, we have the elementary identity

�nC1./ D .�./ � �.z//nC1 C

nX
kD0

'k.z/�
k./;

where

'k.z/ WD .�1/
n�k

 
nC 1

k

!
�nC1�k.z/:

Therefore,

.f �/.n/.z/ D
nŠ

2	 i

Z
T

f ./�./

. � z/nC1
d D

nŠ

2	 i

Z
T

f ./�n./�nC1./

. � z/nC1
d

D
nŠ

2	 i

Z
T

.f �
n
/./

�
�./ � �.z/

 � z

nC1

d C
nŠ

2	 i

nX
kD0

'k.z/
Z
T

f ./�
n�k

./

. � z/nC1
d

D
nŠ

2	 i

Z
T

.f �
n
/./ �ˆz./d C

nX
kD0

'k.z/ �
�

T
�

n�k f
	.n/

.z/;

where

ˆz./ WD

�
�./ � �.z/

 � z

nC1

:

In view of (i), f �
n�k
2 ƒ˛ for k D 0; : : : ; n, so that T

�
n�k f 2 A˛ , which implies

that

�
T
�

n�k f
	.n/

.z/ D O..1 � jzj/˛�n/ as jzj ! 1�:
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The functions 'k.z/ are bounded in D, and to prove (13) it remains to verify that

Z
T

.f �
n
/./ �ˆz./

d

2	 i
D O..1 � jzj/˛�n/ as jzj ! 1�: (14)

Denote the integral on the left-hand side by In.z/. Since ˆz 2 H1, it follows that

jIn.z/j D

ˇ̌
ˇ̌
Z
T

.f �
n
/./ � ˆz./ dm./

ˇ̌
ˇ̌ � c˛kP�.f �

n
/kƒ˛kˆzkrI

here, as before, r D .1C ˛/�1. Because n > ˛, we have .nC 1/r > 1 and

kˆzkr � 2
nC1

�Z
T

dm./

j � zj.nC1/r

1=r

�
const

.1 � jzj/nC1�1=r
D

const

.1 � jzj/n�˛
;

where the constant does not depend on z. Consequently,

jIn.z/j � const � kP�.f �
n
/kƒ˛ .1 � jzj/

˛�n:

Since

kP�.f �
n
/kƒ˛ � C˛kf �

n
kƒ˛ <1

by virtue of (i), the estimate (14) is thereby established.
Thus, we have proved the implication

.f 2 A˛/ & (i) H) f � 2 A˛:

Applying this inductively to f � , f �2, etc., in place of f , we eventually deduce from
(i) that f � k 2 A˛ for each k 2 N.

(vi) H) (iii). Write u WD �n and suppose that g 2 K1
u . Then gu 2 H1

0 , and
hence

f ug D P�.f ug/ D Hf ug:

Therefore,

kfgkq D kf ugkq D kHf ugkq � c˛kfukƒ˛kgkp; (15)

where the last inequality is due to Lemma 2.3. The quantity kfukƒ˛ is finite in view
of (vi), and (15) tells us that

kfgkq � const � kgkp

with a constant independent of g. Thus, the multiplication operator Tf W g 7! fg
maps Kp

u boundedly into Hq, as required. ut
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If we wish to restrict ourselves to the issue of multiplying or dividing a function
f 2 A˛ by an inner function � (and its powers), leaving out the model subspace part,
we may state the result in a more concise form as follows.

Proposition 2.6 Suppose that 0 < ˛ < 1, n 2 N, and n > ˛. Given f 2 A˛ and
an inner function � , the four statements below are equivalent.

(i) f �n 2 A˛ .
(ii) f �

n
2 ƒ˛ .

(iii) f � k 2 ƒ˛ for all k 2 Z.
(iv) Condition (7) holds for some (or every) " 2 .0; 1/.

To prove this, it suffices to choose exponents p and q (once ˛ and n are given) so
as to make the hypotheses of Theorem 2.1 true, and then invoke the theorem.

Remarks 1. An alternative route to Proposition 2.6 (but not to Theorem 2.1 in
its entirety) via the pseudoanalytic extension method was found by Dyn’kin
[15]. A similar technique was later used by the author in [11] to completely
characterize the functions in A˛ , 0 < ˛ < 1, and in more general Lipschitz-
type spaces, in terms of their moduli. (In particular, some equivalent forms of the
crucial condition (7) came out as a corollary.) Subsequently, Pavlović [21] gave
a more elementary proof of that result from [11].

2. Some of the conditions in Theorem 2.1 and Proposition 2.6 would become
simpler if we could take n D 1. This can be done if 1 < p <1 in Theorem 2.1,
or if 0 < ˛ < 1 in Proposition 2.6, but not in the general case. Indeed, it follows
from Shirokov’s work (see [28, 29]) that for each ˛ > 1, one can find f 2 A˛

and a Blaschke product � such that f=� 2 A˛ , but f � 62 A˛ . This means, in
particular, that conditions (i) and (ii) in Proposition 2.6 are no longer equivalent
when ˛ > 1 and n D 1. The equivalence does hold under certain additional
assumptions, though; these are likewise discussed in [28, 29]. See also [9, 13] for
an alternative study of this phenomenon.

3. Given ˛ 2 .0;1/nZ, suppose that f 2 A˛ and � is an inner function. Comparing
our Proposition 2.6 with Shirokov’s earlier results (see [27–29]), one infers that
condition (7) holds if and only if

m.�.�// D 0 & jf ./j D O

�
1

j� 0./j˛


for  2 T n �.�/; (16)

where �.�/ is the set of boundary singularities for � . The equivalence
between (7) and (16) was also verified directly in [7, Section 2].

4. Theorem 2.1 and Proposition 2.6 remain valid in the case ˛ D 0 (with n D 1 and
1 < p D q < 1), provided that the spaces ƒ0 and A0 are taken to be BMO and
BMOA, respectively. This convention might be justified by the duality relations
A˛ D .H1=.1C˛//� and BMOA D .H1/�. The BMO versions of the above results
are discussed in more detail in [7, Section 5].

5. In [13], we also considered the algebra H1
n WD ff W f .n/ 2 H1g, n 2 N, in place

of A˛ , and we came up with an analogue of Proposition 2.6 in that context.
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Factorization in Dirichlet-Type Spaces

For a sequence w D fwkg
1
kD1 of nonnegative numbers, the corresponding Dirichlet-

type space Dw is formed by those functions f 2 H2 for which the quantity

kfkw WD

 
1X

kD1

wkjbf .k/j2
!1=2

(17)

is finite. The case wk D k corresponds to the classical Dirichlet space D.D Dfkg/,
the set of all functions f 2 H2 with

kfkD WD

�Z
D

jf 0.z/j2dA.z/

1=2
<1

(here A is the normalized area measure on D), and we have k � kD D k � kfkg.
We begin by establishing a certain orthogonality relation involving Toeplitz

operators on Dirichlet-type spaces.

Theorem 3.1 Given numbers 0 � w1 � w2 � : : : , let w D fwkg
1
kD1 and let

� D f�kg
1
kD1 be the sequence defined by

�1 D w1; �k D wk � wk�1 .k D 2; 3; : : : /: (18)

Suppose that F 2 H2, � is an inner function, and fgng is an orthonormal basis in K� .
If ˆ WD zTz�F and hn WD zT� .Fgn/, then

kFk2w D kˆk
2
w C

X
n

khnk
2
� (19)

(the definition of k � k� being similar to (17) above).

To keep on the safe side, we remark that sequences with unspecified index sets,
which we occasionally employ, are allowed to be finite (and sometimes empty). In
particular, the orthonormal basis fgng in Theorem 3.1 will be finite if and only if �
is a finite Blaschke product.

The proof will make use of the notion of a Hilbert–Schmidt operator. Recall that,
given two separable Hilbert spaces H1 and H2, a linear operator T W H1 ! H2 is
said to be Hilbert–Schmidt if the quantity

kTkS2 WD

 X
n

kTenk
2
H2

!1=2

is finite for some (or each) orthonormal basis feng of H1. It is well known – and
easily shown – that this quantity does not actually depend on the choice of feng and
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is therefore well defined. The set of all Hilbert–Schmidt operators from H1 to H2 is
denoted by S2.H1;H2/.

Also, we need a lemma that relates Hilbert–Schmidt operators to Dirichlet-type
spaces. We state and prove it now, before proceeding with the proof of Theorem 3.1.

Lemma 3.2 Let F 2 H2. Suppose that w D fwkg
1
kD1 and � D f�kg

1
kD1 are two

sequences of nonnegative numbers related by

wn D

nX
kD1

�k .n D 1; 2; : : : /: (20)

Finally, consider the multiplier map M� acting by the rule

M�

 
1X

kD1

akzk

!
WD

1X
kD1

p
�kakzk; z 2 T (21)

(defined initially on the set of antianalytic trigonometric polynomials
P

k akzk).

Then the operator M�HF belongs (or has an extension belonging) to S2.H2;H2
0/

if and only if F 2 Dw. Moreover,

kM�HFkS2 D kFkw: (22)

Proof Since fzng1nD0 is an orthonormal basis in H2, we have

kM�HFk
2
S2
D

1X
nD0

kM�HFznk22; (23)

where k � k2 is the usual L2-norm. Letting an WD bF.n/, we find that

HFzn D

1X
kD1

anCkzk;

whence

M�HFzn D

1X
kD1

p
�kanCkzk;

and, by the Parseval identity,

kM�HFznk22 D

1X
kD1

�kjanCkj
2:
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Plugging this into (23) and recalling (20), we obtain

kM�HFk
2
S2
D

1X
nD0

1X
kD1

�kjanCkj
2 D

1X
jD1

jajj
2

jX
kD1

�k

D

1X
jD1

wjjajj
2 D kFk2w;

which proves (22) and the lemma. ut

Proof of Theorem 3.1 Let M� be the multiplier map defined by (21). From
Lemma 3.2 we know that

kFk2w D kM�HFk
2
S2
: (24)

Consider the functions Gn defined (a.e. on T) by Gn WD NzNgn� . Since fgng is an
orthonormal basis in K� , the same is true for fGng (indeed, the map f 7! NzNf � is
an antilinear isometry of K� onto itself). Furthermore, since H2 D �H2 ˚ K� , the
family f�zng1nD0 [ fGng forms an orthonormal basis in H2, and we may use it to
compute the Hilbert–Schmidt norm in (24). In this way we obtain

kM�HFk
2
S2
D

1X
nD0

kM�HF.�zn/k22 C
X

n

kM�HFGnk
2
2 D S1 C S2; (25)

where S1 and S2 denote the two preceding sums, in the same order. The elementary
identity

P�' D NzPC.Nz N'/; ' 2 L2; (26)

yields

P�.F�/ D NzPC.NzF N�/ D ˆ;

whence

HF.�zn/ D P�.F�zn/ D P�.P�.F�/ � z
n/

D P�.ˆzn/ D Hˆzn:

Thus,

S1 D
1X

nD0

kM�Hˆznk22 D kM�Hˆk
2
S2
D kˆk2w; (27)

where the last equality relies on Lemma 3.2.
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Another application of (26) gives

HFGn D P�.FNzNgn�/ D NzPC.Fgn
N�/ D hn;

and so

kM�HFGnk
2
2 D

1X
kD1

�k

ˇ̌
ˇ ̂.HFGn/.�k/

ˇ̌
ˇ2 D

1X
kD1

�kjbhn.k/j
2 D khnk

2
� :

Summing over n, we get

S2 D
X

n

kM�HFGnk
2
2 D

X
n

khnk
2
� : (28)

Finally, we plug the identities coming from (27) and (28) into (25). Together
with (24), this yields the required formula (19). ut

As a consequence of Theorem 3.1, we now deduce a result of Korenblum and
Faı̆vyshevskiı̆ concerning the action of certain Toeplitz operators on Dirichlet-type
spaces. (In all fairness, their original theorem in [19] gives a bit more than our
Corollary 3.3 below. Alternative routes to that result can be found in [18] and [22].)
To state it, we need a minor modification of the k�kw norm. Namely, given a sequence
v D fvng

1
nD0 of positive numbers and a holomorphic function f .z/ D

P1
nD0

bf .n/zn

on D, we put

kfkv;0 WD

 
1X

nD0

vnjbf .n/j2
!1=2

(note that the value n D 0 is now included).

Corollary 3.3 Let v D fvng
1
nD0 be a nondecreasing sequence of positive numbers,

and let � be an inner function. Then, for every f ; g 2 H2, we have

kT� fkv;0 � kfkv;0 (29)

and

kgkv;0 � kg�kv;0: (30)

Proof Put F WD zf and define ˆ as in Theorem 3.1, so that

ˆ D zTz�F D zT� f :

For n D 1; 2; : : : , let wn D vn�1 and w D fwng
1
nD1. Theorem 3.1 implies that

kˆkw � kFkw. Observing that kˆkw D kT� fkv;0 and kFkw D kfkv;0, we arrive
at (29). To prove (30), it suffices to apply (29) with f D g� . ut
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The next fact is likewise a straightforward consequence of Theorem 3.1.

Theorem 3.4 Let w D fwkg
1
kD1 be a nondecreasing sequence with w1 � 0, and let

� D f�kg
1
kD1 be defined by (18). If f 2 H2, � is an inner function, and fgng is an

orthonormal basis in K� , then

kf �k2w D kfk
2
w C

X
n

kzfgnk
2
� : (31)

Proof Put F WD f � , and define ˆ and hn as in Theorem 3.1. We have then

ˆ D zTz� .f �/ D zTzf D f � f .0/;

whence kˆkw D kfkw. Also,

hn D zT� .f �gn/ D zfgn:

The formula (19) therefore reduces to (31), and the proof is complete. ut

In some special cases, Theorem 3.4 can be used to derive a more explicit form of
the (nonnegative) “discrepancy term”

Rw.f ; �/ WD kf �k
2
w � kfk

2
w: (32)

One such case is pointed out in Theorem 3.5 below. Before stating the result, we
need to recall some basic facts about angular derivatives.

Given a function ' 2 H1 with k'k1 D 1, we say that ' has an angular
derivative (in the sense of Carathéodory) at a point  2 T if both ' and '0 have
nontangential limits at , the former of these being of modulus 1. (The two limits
are then denoted by './ and '0./, respectively.) The classical Julia–Carathéodory
theorem (see [2, Chapter VI], [3, Chapter I] or [23, Chapter VI]) asserts that this
happens if and only if

lim inf
z!

1 � j'.z/j2

1 � jzj2
<1: (33)

And if (33) holds, the theorem tells us also that '0./ coincides with the limit of the
difference quotient

'.z/ � './

z � 

as z !  nontangentially. Moreover, j'0./j will then agree with the value of the
(unrestricted) lim inf in (33), and this remains true if lim inf is replaced by the
corresponding nontangential limit.
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Finally, if � D BS is an inner function (with B a Blaschke product and S singular),
then

j� 0./j D
X

j

1 � jajj
2

j � ajj2
C 2

Z
T

d�.�/

j � �j2
;  2 T; (34)

where fajg is the zero sequence of B and � is the singular measure associated with S.
This formula can be found in [1]; it holds for every point  of T, with the convention
that j� 0./j D 1 whenever � fails to possess an angular derivative at .

Theorem 3.5 Let � be a positive Borel measure on Œ0; 1� with
R
Œ0;1�

x2d�.x/ < 1.
Put

�k WD

Z
Œ0;1�

x2kd�.x/; k D 1; 2; : : : ;

and define the sequence w D fwng
1
nD1 by (20). If f 2 H2 and � is an inner function,

then

kf �k2w D kfk
2
w C

Z
T

dm./
Z
Œ0;1�

r2jf .r/j2
1 � j�.r/j2

1 � r2
d�.r/: (35)

Here the value of .1 � j�.r/j2/=.1 � r2/ at r D 1 is interpreted as j� 0./j, the
modulus of the angular derivative of � at .

The proof will rely on Theorem 3.4 and on the following lemma.

Lemma 3.6 Let � be an inner function, and let fgng be an orthonormal basis in K� .
Then

X
n

jgn.z/j
2 D

1 � j�.z/j2

1 � jzj2
; z 2 D: (36)

Furthermore, if  2 T is a point at which the limits limr!1� gn.r/ DW gn./ exist
for all n, then

X
n

jgn./j
2 D j� 0./j: (37)

To prove the lemma, consider the reproducing kernel

kz.w/ D
1 � �.z/�.w/

1 � zw

of K� and use Parseval’s identity to get

X
n

jgn.z/j
2 D

X
n

jhgn; kzij
2 D kkzk

2
2 D kz.z/ D

1 � j�.z/j2

1 � jzj2
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for z 2 D. This yields (36), which in turn implies (37) upon putting z D r and
passing to the limit as r! 1�.

Proof of Theorem 3.5 We may assume that f 2 Dw, since otherwise both sides
of (35) equal1. By Theorem 3.4, the “discrepancy term” (32) is given by

Rw.f ; �/ D
X

n

kzfgnk
2
� ; (38)

where � D f�kg
1
kD1 and fgng is some (no matter which) orthonormal basis in K� .

This said, we proceed by considering two special cases.

Case 1: � has no atom at 1. We may think of the disk

D D fr W r 2 Œ0; 1/;  2 Tg

as of a measure space endowed with the product measure � � m DW �. The
monomials zk (k D 1; 2; : : : ) are then mutually orthogonal in L2.D/ and have
norms

p
�k. Therefore, for a function h.z/ D

P1
kD1

bh.k/zk in zH1, we have

khk2L2.D;�/ D
1X

kD1

�kjbh.k/j2 D khk2� :

Applying this to hn WD zfgn gives

khnk
2
� D khnk

2
L2.D;�/ D

Z
T

dm./
Z
Œ0;1�

r2jf .r/j2jgn.r/j
2d�.r/:

Consequently, in view of (38),

Rw.f ; �/ D
X

n

khnk
2
� D

Z
T

dm./
Z
Œ0;1�

r2jf .r/j2
X

n

jgn.r/j
2d�.r/: (39)

By Lemma 3.6,

X
n

jgn.r/j
2 D

1 � j�.r/j2

1 � r2
;

and so (39) reduces to

Rw.f ; �/ D
Z
T

dm./
Z
Œ0;1�

r2jf .r/j2
1 � j�.r/j2

1 � r2
d�.r/;

which proves (35).
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Case 2: � is the unit point mass at 1. In this case, we have �k D 1 and wk D k,
so that k � k� D k � k2 on zH2, and k � kw D k � kD. Therefore, we can rewrite (38)
in the form

kf �k2D � kfk
2
D D

X
n

kzfgnk
2
2 D

Z
T

jf ./j2
X

n

jgn./j
2dm./:

Combining this with (37), we finally obtain

kf �k2D � kfk
2
D D

Z
T

jf ./j2j� 0./jdm./; (40)

which coincides with (35) under the current hypothesis on � .

The general case being a combination of Cases 1 and 2, the required result
follows. ut

Remark Recalling the identity (34) and plugging it into (40), we find that

kf �k2D D kfk
2
D C

Z
T

jf ./j2

0
@X

j

1 � jajj
2

j � ajj2
C 2

Z
T

d�.�/

j � �j2

1
A dm./ (41)

(here, as before, fajg is the zero sequence of � , and � is the associated singular
measure). This was established by Carleson in [4]. In fact, the formula given there
is a combination of (41) and an explicit expression for the Dirichlet integral kfk2D
of an outer function f .

Model Subspaces in BMOA

It has been noticed that various smoothness properties of an inner function � , if
available, tend to be inherited (typically, in a weaker form) by functions in Kp

� . This
phenomenon becomes especially pronounced when passing from � to

K�� WD K2
� \ BMOA;

the star-invariant subspace of BMOA, in which case no loss of smoothness usually
occurs. (Of course, the smoothness property in question should not be too strong
– it should not even imply continuity – if we want a nontrivial inner function to
have it.) A result to that effect will appear as Corollary 4.4 below; we shall deduce it
from a more general theorem concerning the action of a coanalytic Toeplitz operator
TNg, with g 2 H1, on K�� . However, the very meaning of the expression TNgf (with
f 2 K�� ) is not immediately clear, since the product f Ng need not be integrable. The
following proposition will clarify the situation.
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Proposition 4.1 Given f 2 K�� and g 2 H1, there exists a function ˆ 2 \0<p<1Hp

such that

kTgn
f �ˆkp ! 0

for every p 2 .0; 1/ and every sequence fgng � H2 with kgn � gk1 ! 0.

This (obviously unique) function ˆ is then taken to be TNgf , the image of f under
the Toeplitz operator TNg.

The proof relies on the following lemma due to Cohn (see Lemma 3.2 in [5,
p. 731]), which in turn results from an application of the .H1;BMOA/ duality.

Lemma 4.2 Let � be inner, and let f 2 K�� . Then f D PC.Nz N �/ for a function
 2 H1. Furthermore,  may be chosen so that kfk� D k k1.

Here and below, k � k� is the dual space norm on BMOA induced by H1.

Proof of Proposition 4.1 Let f 2 K�� , g 2 H1, and suppose fgng is a sequence of
H2-functions with kgn � gk1 ! 0. We have then

Tgn
f D PC

�
gnPC.Nz N �/

�
D PC

�
NgnNz N �

�
;

where  is related to f as in Lemma 4.2. Now put

ˆ WD PC

�
NgNz N �

�
:

This definition makes sense, since PC is applied to an L1-function; besides, it does
not depend on the choice of  . (Indeed, if  1 and  2 are both eligible in the sense
of Lemma 4.2, then  1 � 2 2 �H1.) And since PC is a continuous mapping from
L1 to every Hp with 0 < p < 1 (cf. [16, p. 128]), we conclude that ˆ 2 Hp and
kTgn

f �ˆkp ! 0 for any such p. ut

Now suppose X is a Banach space of analytic functions on the disk, with X � H1.
We say that X is a K-space if, for each  2 H1, the Toeplitz operator T N acts
boundedly from X to itself, with norm at most const � k k1. (This is essentially
equivalent to saying that X enjoys the so-called K-property of Havin. The latter was
defined in [17] by the formally weaker condition that T N .X/ � X, for all  2 H1,
but the norm estimate is usually automatic.)

Following [17], we remark that X will be a K-space provided it is (isomorphic
to) the dual of some Banach space Y , consisting of analytic functions on D and
satisfying the conditions

(a) H1 \ Y is dense in Y , and
(b) for each  2 H1, the multiplication operator f 7! f acts boundedly from Y

to itself, with norm at most const � k k1.

(It is understood that the pairing between X and Y is given by hf ; gi WD
R
T

f Ng dm,
which is meaningful at least for f 2 H1 \ Y and g 2 X.) The Toeplitz operator
T N W X ! X is then the adjoint of the multiplication map in (b), which justifies our
claim.
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As examples of K-spaces, we list the following:

• Hp with 1 < p <1,
• the Hardy–Sobolev spaces Hp;n WD ff 2 Hp W f .n/ 2 Hpg with 1 � p < 1 and

n � 1,
• BMOA, and more generally, BMOA.n/ WD ff 2 H1 W f .n/ 2 BMOAg with n � 0,
• the Dirichlet-type spaces Dw WD ff 2 H2 W

P
n�1 wnjbf .n/j2 < 1g associated

with nondecreasing sequences w D fwng of positive numbers,
• the analytic Besov spaces Bs

p;q with s > 0, p � 1, q � 1, and in particular
• the classical Lipschitz–Zygmund spaces A˛ WD B˛1;1 with 0 < ˛ <1.

We recall that Bs
p;q is defined as the set of those analytic f on D for which the

function

r 7! .1 � r/n�s
��f .n/r

��
p (42)

is in Lq over the interval .0; 1/ with respect to the measure dr=.1�r/; here n is some
(any) fixed integer with n > s and f .n/r ./ WD f .n/.r/.

For most of the spaces considered, the K-property has been established by means
of a duality argument, as outlined above. We refer to [17], where this is done for A˛

and some special cases of Hardy–Sobolev and Besov spaces; to [25, 26] for general
Hp;n and Bs

p;q classes, as well as for BMOA.n/; and finally to any of [18, 19, 22] in
connection with Dw spaces.

As further examples of K-spaces, we mention Kp
� (1 < p <1) and K�� . Indeed,

for g 2 H1, one verifies the inclusion TNg.K
p
� / � Kp

� by noting that Kp
� is the kernel

of the Toeplitz operator T N� W H
p ! Hp, which commutes with TNg. Then one deduces

that TNg.K�� / � K�� , recalling that K�� D K2
� \ BMOA and BMOA is a K-space.

And, of course, the two inclusions are accompanied by the natural norm estimates:
the norm of TNg is in both cases O.kgk1/, just as it happens for the containing spaces
Hp (1 < p <1) and BMOA.

The main result of this section is as follows.

Theorem 4.3 Let � be an inner function, g 2 H1, and let X be a K-space. The
following are equivalent.

(i) TNg acts boundedly from K�� to X.
(ii) TNg acts boundedly from K1

� to X.
(iii) The function

k.z/ WD
�.z/ � �.0/

z

satisfies TNgk 2 X.

Moreover, the operator norms kTNgkK
��!X and kTNgkK1

� !X are comparable to each
other and to kTNgkkX.
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In most – perhaps all – cases of interest, condition (iii) above can be further
rephrased by saying that TNg� 2 X. In fact, since k D TNz� and TNzTNg D TNgTNz, the
implication

TNg� 2 X H) TNgk 2 X

holds whenever X is a K-space. The converse is true provided that 1 2 X and zX �
X; indeed,

TNg� D constC zTNgk:

In particular, we certainly have TNgk 2 X () TNg� 2 X when X is one of our
smoothness classes, such as Hp;n, Bs

p;q, A˛ or BMOA.n/, let alone Hp and BMOA.
The theorem then states that the inclusion TNgf 2 X holds for all f 2 K�� if and only
if it holds for f D � .

The next fact is obtained by applying Theorem 4.3 with g � 1, in which case TNg

reduces to the identity map.

Corollary 4.4 Given an inner function � and a K-space X, one has

K�� � X () K1
� � X () k 2 X: (43)

And since the latter condition, k 2 X, is implied by (and is usually equivalent to)
saying that � 2 X, the nontrivial part of (43) amounts to the implication

� 2 X H) K�� � X: (44)

Proof of Theorem 4.3 The part (i) H) (ii) is trivially true, as is the inequality

kTNgkK1

� !X � kTNgkK
��!X:

The part (ii) H) (iii), along with the estimate

kTNgkK1

� !X �
1

2
kTNgkkX;

is also obvious, since k 2 K1
� and kkk1 � 2.

What remains to be proved is the implication (iii) H) (i) and its quantitative
version

kTNgkK
��!X � const � kTNgkkX: (45)

To this end, we fix f 2 K�� and then invoke Lemma 4.2 to find a function  2 H1

such that

f D TNz N �; kfk� D k k1:



264 K.M. Dyakonov

Using the fact that coanalytic Toeplitz operators commute (and moreover, TNaTNb D

TNaNb whenever a, b and ab are H1-functions such that the operators involved are all
well-defined), we obtain

TNgf D TNgTNz N � D T N TNgTNz� D T N TNgk: (46)

Finally, we recall that X is a K-space to get

kTNgfkX � kT N kX!XkTNgkkX

� const � k k1kTNgkkX

D const � kfk�kTNgkkX;

which readily implies (45). ut

Finally, we supplement Theorem 4.3 with the following result.

Proposition 4.5 Let � , g and k be as above. The operator TNg acts boundedly from
K�� to itself if and only if TNgk 2 BMOA. In this case we also have

kTNgfkp � CpkTNgkk�kfkp; 1 < p <1;

for all f 2 K1
� , so that TNg extends to a bounded operator on Kp

� .

This might be compared to the “T.1/-” and/or “T.b/-theorem” of David, Journé
and Semmes (cf. [14, Chapter 5] or [30, Chapter VII]), results that provide bounded-
ness criteria for certain singular integral operators on Lp. Just as in those theorems,
we only have to test the operator on a single function. We also remark that the
assumption TNgk 2 BMOA can be rewritten as TNg� 2 BMOA, and a sufficient
condition for this to happen is that

supfjg.z/j W z 2 �.�; "/g <1

for some " 2 .0; 1/, where �.�; "/ is the sublevel set defined by (6). A proof of this
last assertion can be found in [8].

Proof of Proposition 4.5 The first statement, concerning the action of TNg on K�� , is
obtained by applying Theorem 4.3 with X D BMOA (or X D K�� ).

Now suppose TNgk 2 BMOA, and let 1 < p < 1. Given a function f 2 K1
� , put

 WD NzNf �.Def / and note that  2 H1. We have then

f D Nz N � D PC

�
Nz N �

�
D TNz N �;

and so (46) remains in force. Setting h WD TNgk and making use of the elementary
identity

PCF D zP�.Nz NF/; F 2 L1;
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we can rewrite the resulting equality from (46) as

TNgf D T N h D NzHNzNh :

In view of Nehari’s theorem (see, e.g., [20, Part B, Chapter 1]), the assumption that
h, and hence zh, is in BMOA implies that the Hankel operator HNzNh acts boundedly

from Hp to Hp
0 , with norm not exceeding Cpkhk�. Consequently,

kTNgfkp D
��HNzNh 

��
p � Cpkhk�k kp D Cpkhk�kfkp; f 2 K1

� :

Finally, since K1
� is dense in Kp

� (indeed, K1
� contains the family of reproducing

kernels for K2
� ), we conclude that TNg extends to a bounded operator on Kp

� , with the
same norm. The proof is complete. �

References

1. P.R. Ahern, D.N. Clark, On inner functions with Hp-derivative. Michigan Math. J. 21, 115–127
(1974)

2. R.B. Burckel, An Introduction to Classical Complex Analysis, vol. I (Academic Press, New
York, 1979)

3. C. Carathéodory, Theory of Functions of a Complex Variable, vol. II (Chelsea Publishing
Company, New York, 1954)

4. L. Carleson, A representation formula for the Dirichlet integral. Math. Z. 73, 190–196 (1960)
5. W.S. Cohn, Radial limits and star invariant subspaces of bounded mean oscillation. Am. J.

Math. 108, 719–749 (1986)
6. P.L. Duren, B.W. Romberg, A.L. Shields, Linear functionals on Hp spaces with 0 < p < 1. J.

Reine Angew. Math. 238, 32–60 (1969)
7. K.M. Dyakonov, Smooth functions and coinvariant subspaces of the shift operator. Algebra i

Analiz 4(5), 117–147 (1992); translation in St. Petersburg Math. J. 4, 933–959 (1993)
8. K.M. Dyakonov, Division and multiplication by inner functions and embedding theorems for

star-invariant subspaces. Am. J. Math. 115, 881–902 (1993)
9. K.M. Dyakonov, Multiplication by Blaschke products and stability of ideals in Lipschitz

algebras. Math. Scand. 73, 246–258 (1993)
10. K.M. Dyakonov, Factorization of smooth analytic functions via Hilbert–Schmidt operators.

Algebra i Analiz 8(4), 1–42 (1996); translation in St. Petersburg Math. J. 8, 543–569 (1997)
11. K.M. Dyakonov, Equivalent norms on Lipschitz-type spaces of holomorphic functions. Acta

Math. 178, 143–167 (1997)
12. K.M. Dyakonov, Two theorems on star-invariant subspaces of BMOA. Indiana Univ. Math. J.

56, 643–658 (2007)
13. K.M. Dyakonov, Blaschke products and nonideal ideals in higher order Lipschitz algebras.

Algebra i Analiz 21(6), 182–201 (2009); translation in St. Petersburg Math. J. 21, 979–993
(2010)

14. E.M. Dyn’kin, Methods of the theory of singular integrals: Littlewood-Paley theory and its
applications, in Commutative Harmonic Analysis, IV, ed. by V.P. Khavin, N.K. Nikol’skii.
Encyclopaedia of Mathematical Sciences, vol. 42, pp. 97–194 (Springer, Berlin, 1992)

15. E.M. Dyn’kin, The pseudoanalytic extension. J. Anal. Math. 60, 45–70 (1993)
16. J.B. Garnett, Bounded Analytic Functions, Revised 1st edn. (Springer, New York, 2007)



266 K.M. Dyakonov

17. V.P. Havin, The factorization of analytic functions that are smooth up to the boundary. Zap.
Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 22, 202–205 (1971)

18. V.E. Katsnel’son, Remark on canonical factorization in certain analytic function spaces. Zap.
Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 30, 163–164 (1972); English
transl. in J. Soviet Math. 4, 444–445 (1975)

19. B.I. Korenblum, V.M. Faı̆vyshevskiı̆, A certain class of compression operators that are
connected with the divisibility of analytic functions. Ukrain. Mat. Zh. 24, 692–695 (1972);
English transl. in Ukrainian Math. J. 24, 559–561 (1973)

20. N.K. Nikolski, Operators, Functions, and Systems: An Easy Reading, Volume 1: Hardy, Han-
kel, and Toeplitz. Mathematical Surveys and Monographs, vol. 92 (American Mathematical
Society, Providence, 2002)
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Abstract We establish the existence of a finite-dimensional unitary realization for
every matrix-valued rational inner function from the Schur–Agler class on a unit
square-matrix polyball. In the scalar-valued case, we characterize the denominators
of these functions. We also show that a multiple of every polynomial with no zeros
in the closed domain is such a denominator. One of our tools is the Korányi–Vagi
theorem generalizing Rudin’s description of rational inner functions to the case of
bounded symmetric domains; we provide a short elementary proof of this theorem
suitable in our setting.
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B D B
`1�`1 � � � � � B

`k�`k

D
n
Z D .Z.1/; : : : ;Z.k// 2 C

`1�`1 � � � � � C
`k�`k W kZ.r/k < 1; r D 1; : : : ; k

o
:

We can interpret points of B as block-diagonal matrices Z D
Lk

rD1 Z.r/ with kZk <
1. Then B is a special case of a domain DP defined by means of a matrix polynomial
P as the set of z D .z1; : : : ; zd/ 2 C

d satisfying kP.z/k < 1 (see [2, 4, 11]); in
this case, P D Z viewed as a polynomial in matrix entries z.r/ij , i; j D 1; : : : ; `r,

r D 1; : : : ; k; and d D
Pk

rD1 `
2
r . In particular, B is a special case of a Cartesian

product of (not necessarily square) matrix Cartan domains of type I (see [10, 14]).
The distinguished (or Shilov) boundary of B consists of k-tuples of unitary matrices,

@SB D
n
Z D .Z.1/; : : : ;Z.k// 2 C

`1�`1 � � � � �C`k�`k W Z.r/�Z.r/ D I; r D 1; : : : ; k
o
;

which can also be interpreted as a set of block-diagonal unitary matrices. Notice that
the unit polydisk D

d is a special case of a unit square-matrix polyball where k D d,
and `r D 1 for r D 1; : : : ; k.

We consider matrix functions in variables z.r/ij . We denote the corresponding d-
tuple of variables by z and, for a function F, we identify F.z/ D F.Z/. An s � s
matrix-valued function F is rational inner if each matrix entry F˛ˇ is a rational

function in d variables z.r/ij which is regular in B, and F takes unitary matrix values
at each of its regular points on the distinguished boundary @SB. Notice that the zero
variety of the least common multiple of the denominators of the rational functions
F˛ˇ in their coprime fraction representation has an intersection with @SB of relative
Lebesgue measure zero, which can be proved using an argument analogous to that
of [6, Lemma 6.3]; thus almost all points of @SB are regular points of F.

Define

TZ D
n
T D

kM
rD1

T.r/ W T.r/ D ŒT.r/ij �
`r
i;jD1; r D 1; : : : ; k;

.T.r/ij / is a d�tuple of commuting operators on a Hilbert space and kTk < 1
o
:

For T 2 TZ , the Taylor joint spectrum [19] of T viewed as a multioperator

.T.r/ij /rD1;:::;kI i;jD1;:::;`r

lies in the domain B, and for a matrix-valued function F analytic on B one can
define F.T/ by means of Taylor’s functional calculus [20]; see [2] and a further
discussion in [4]. We say that an s�s matrix-valued function F analytic on B belongs
to the Schur–Agler class SAZ.C

s/ associated with B, or rather with its defining
polynomial P D Z, if its associated Agler norm,
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kFkA;Z D sup
T2TZ

kF.T/k

is at most 1. In the scalar case, s D 1, we simply write SAZ . In the case of the unit
polydisk D

d, this class coincides with the classical Schur–Agler class SAd studied in
the seminal paper of Agler [1]. Notice that SAZ.C

s/ is a subclass of the Schur class
SZ.C

s/ of s � s matrix-valued contractive analytic functions on B. It follows from
[21] and [3] that these classes do not coincide, i.e., the analog of von Neumann’s
inequality fails when d � 2, unless B D D

2. Moreover, rational inner functions,
which obviously belong to the Schur class, do not necessarily belong to the Schur–
Agler class: an example of a rational inner function on D

3 which is not Schur–Agler
was given in [12, Example 5.1].

In section “Scalar-Valued Rational Inner Functions”, we give a characterization
of scalar-valued rational inner functions on B in terms of their coprime fraction rep-
resentation. In section “Matrix-Valued Rational Inner Functions from the Schur–A-
gler Class”, we describe matrix-valued rational inner functions on B that belong
to the associated Schur–Agler class as the functions that have a finite-dimensional
unitary realization. In section “Eventual Agler Denominators”, we characterize
eventual Agler denominators, i.e., those multivariable polynomials which can be
represented as the denominators of scalar rational inner functions in the Schur–
Agler class SAZ , in terms of certain contractive determinantal representations. We
also show that a multiple of every polynomial with no zeros on the closed domain,
B, is an eventual Agler denominator, and we end with several open questions.

Scalar-Valued Rational Inner Functions

For a polynomial p in d variables z.r/ij , i; j D 1; : : : ; `r, r D 1; : : : ; k; where d DPk
rD1 `

2
r , we define its reverse with respect to B as

 �p .Z/ D
kY

rD1

.det Z.r//tr p.Z��1/;

where tr is the total degree of p in the variables z.r/ij , i; j D 1; : : : ; `r. We say that
a polynomial p is B-stable (resp., strongly B-stable) if p does not have zeros in B
(resp., in B).

The following result is a generalization of Rudin’s characterization of rational
inner functions on the polydisk [18] to the case of a square-matrix polyball B. It
appears in more generality in [17, Theorem 3.3], where Rudin’s theorem is extended
to all bounded symmetric domains. We provide a proof that applies to the specific
setting of B, and therefore requires less machinery.



270 A. Grinshpan et al.

Theorem 2.1 A scalar-valued function f on B is rational inner if and only if there
exist a B-stable polynomial p and nonnegative integers m1, . . . , mk such that

f .Z/ D
kY

rD1

.det Z.r//mr

 �p .Z/

p.Z/
: (1)

One can choose p to be coprime with �p .

For the proof of Theorem 2.1, we will need the following proposition.

Proposition 2.2 Let p be a B-stable polynomial, and suppose that jp.Z/j D 1 for
all Z 2 @SB. Then there exist nonnegative integers m1, . . . , mk such that

p.Z/ D
kY

rD1

.det Z.r//mr :

Proof Notice that if Z.r/ is unitary for each r, then

 �p .Z/p.Z/ D
kY

rD1

.det Z.r//tr : (2)

Since @SB is a uniqueness set for analytic functions (see, e.g., [14]), we have that (2)
holds for all Z D .Z.1/; : : : ;Z.k// 2 C

`1�`1 � � � � � C
`k�`k . Since det Z.r/ is an

irreducible polynomial in matrix entries z.r/ij (see, e.g., [7, Section 61]) we obtain

that p.Z/ D
Qk

rD1.det Z.r//mr for some mr � tr, r D 1; : : : ; k. ut

Proof of Theorem 2.1 The sufficiency of the representation (1) for f to be rational
inner is clear. To prove the necessity, we first write f D q=p, with p and q coprime.
Since f is analytic in B, we have that p is B-stable. Next, for Z 2 @SB we have that
q.Z/q.Z�1�/ D p.Z/p.Z�1�/. Hence the equality

kY
rD1

.det Z.r//�r q.Z/q.Z�1�/ D

kY
rD1

.det Z.r//�r p.Z/p.Z�1�/

holds for every Z 2 @SB, where �r is the maximum of the total degrees in z.r/ij ,
i; j D 1; : : : ; `r, in q and p. Then it also holds for all Z. Since q and p are coprime, p
is a divisor of

Qk
rD1.det Z.r//�r q.Z�1�/. Hence

u.Z/q.Z/ D
kY

rD1

.det Z.r//�r p.Z�1�/;
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for some polynomial u. Observe that ju.Z/j D 1 on @SB. Then by Proposition 2.2
we obtain that u.Z/ D

Qk
rD1.det Z.r//�r , with some �r � �r, and

q.Z/ D
kY

rD1

.det Z.r//�r��r p.Z�1�/:

The latter equality implies that mr WD �r � �r � tr � 0, where tr is the total degree
of p in variables z.r/ij , i; j D 1; : : : ; `r. It follows that

q.Z/ D
kY

rD1

.det Z.r//mr �p .Z/;

and (1) holds. ut

Remark 2.3 Proposition 2.2 and Theorem 2.1 also hold when B is replaced by a
Cartesian product of square-matrix Cartan domains of type II [14],

Bsym D
n
Z D .Z.1/; : : : ;Z.k// 2 B W Z.r/ D Z.r/>; r D 1; : : : ; k

o
;

or by a Cartesian product of mixed type involving Cartan domains of types I and
II. The proofs are similar after noticing that det Z.r/ as a polynomial in z.r/ij , i; j D

1; : : : ; `r: i � j, is also irreducible when Z.r/ D Z.r/>; see, e.g., [7, Section 61].

Matrix-Valued Rational Inner Functions
from the Schur–Agler Class

We now characterize matrix-valued rational inner functions on the unit square-
matrix polyball B, which belong to the associated Schur–Agler class, in terms of
their unitary realizations. This is a generalization of the result [5, Theorem 2.1] for
the unit polydisk D

d which, in turn, is a matrix-valued extension of the result from
[16] in the scalar-valued setting (see also an earlier paper [9] for the bidisk case).

Theorem 3.1 An s� s matrix-valued function F on B is rational inner and belongs
to the class SAZ.C

s/ if and only if F has a finite-dimensional unitary realization,
i.e., there exist nonnegative integers n1, . . . , nk and a unitary matrix

�
A B
C D

�
2 C

.
Pk

rD1 `rnrCs/�.
Pk

rD1 `rnrCs/

such that

F.Z/ D DC CZn.I � AZn/
�1B;
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where Zn D
Lk

rD1.Z
.r/ ˝ Inr /: If we write F D QP�1, where P and Q are matrix

polynomials of total degree at most g such that P�P D Q�Q on @SB, then n1; : : : ; nk

can be chosen so that nr � lrs
�gCd�1

d

�
, r D 1; : : : ; k.

For the proof of Theorem 3.1, we will need the following proposition. Recall that
a linear mappingˆ W Ca�a ! C

b�b is said to be completely positive if, for every m 2
N, the mapping ˆ.m/ W .Ca�a/m�m ! .Cb�b/m�m defined by .ˆ.m/.A//ij D ˆ.Aij/,
i; j D 1; : : : ;m, is positive, that is, it maps every positive semidefinite matrix A to a
positive semidefinite matrix ˆ.m/.A/.

Proposition 3.2 ([8, Theorem 1]) Let ˆ W Ca�a ! C
b�b be a completely positive

linear mapping. Then there exists Y 2 C
a2b�b so that ˆ.X/ D Y�.X ˝ Iab/Y.

Proof of Theorem 3.1 The sufficiency part is analogous to that of [6, Theorem 6.1].
To prove the necessity, let F D QP�1, where P and Q are matrix polynomials of
total degree at most g, P�P D Q�Q on @SB, and assume that F 2 SAZ.C

s/. Then
by [4, Theorem 1.5] there exist separable Hilbert spaces Kr and analytic functions
Hr on B with values linear operators from C

s to C
`r ˝Kr such that

P.W/�P.Z/�Q.W/�Q.Z/ D
kX

rD1

Hr.W/
�
�
.I�W.r/�Z.r//˝IKr

	
Hr.Z/; Z;W 2 B:

Letting Z D W D tU where jtj < 1 and U 2 @SB, we obtain

P.tU/�P.tU/ � Q.tU/�Q.tU/

1 � jtj2
D

kX
rD1

H�
r .tU/Hr.tU/: (3)

Since P.tU/�P.tU/ D Q.tU/�Q.tU/ for all U D .U.1/; : : : ;U.r// 2 @SB and jtj D
1, the numerator of the left-hand side of (3) is a polynomial in t and t which vanishes
on the variety 1�tt D 0. Therefore the left-hand side of (3) is a polynomial in t and t
and a trigonometric polynomial in matrix entries u.r/ij , i; j D 1; : : : ; `r, r D 1; : : : ; k.
Let P˛ and Q˛ be the coefficients of z˛ in the polynomials P and Q, respectively,
and let Hr;˛ be the coefficient of z˛ in the Maclaurin series for Hr, where for z D
.z1; : : : ; zd/ and ˛ D .˛1; : : : ; ˛d/ we set z˛ D z˛11 � � � z

˛d
d . Then the zeroth Fourier

coefficient of the left-hand side of (3) as a trigonometric polynomial in variables
u.r/ij is

1

1 � jtj2
X
j˛j�g

.P�
˛P˛ � Q�

˛Q˛/jtj
2j˛j;

where j˛j D ˛1 C � � � C ˛d. Note that the preceding expression is a polynomial in
jtj2 of degree at most g � 1. The zeroth Fourier coefficient of the right-hand side
of (3) (for sufficiently small t),

kX
rD1

X
˛

H�
r;˛Hr;˛jtj

2j˛j;

is therefore a polynomial in jtj2 as well, and H�
r;˛Hr;˛ D 0 for j˛j � g.
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Consider now the completely positive map ˆr W C
`r�`r ! C

s.gCd�1
d /�s.gCd�1

d /

defined via

ˆ.X/ D colj˛j�g�1.H
�
r;˛/.X ˝ IKr /rowj˛j�g�1.Hr;˛/:

Then by Proposition 3.2 we can find matrices Yr 2 C
a2b�b such that ˆr.X/ D

Y�
r .X ˝ Iab/Yr, where a D `r and b D s

�gCd�1
d

�
. Writing Yr D rowj˛j�g�1.Yr;˛/, we

can form a polynomial

Gr.Z/ D
X

j˛j�g�1

Yr;˛z˛

with the coefficients in C
`rnr�s, where nr D `rs

�gCd�1
d

�
, so that

Hr.W/
�

�
.I � W.r/�Z.r//˝ IKr

	
Hr.Z/ D Gr.W/

�

�
.I � W.r/�Z.r//˝ Inr

	
Gr.Z/; r D 1; : : : ; k;

and

P.W/�P.Z/ � Q.W/�Q.Z/ D
kX

rD1

Gr.W/
�
�
.I �W.r/�Z.r//˝ Inr

	
Gr.Z/: (4)

Rearranging the terms in (4), we obtain

P.W/�P.Z/C
kX

rD1

Gr.W/
�
�

W.r/�Z.r/ ˝ Inr

	
Gr.Z/ D Q.W/�Q.Z/C

kX
rD1

Gr.W/
�Gr.Z/:

Therefore

2
6664

.Z.1/ ˝ In1 /G1.Z/
:::

.Z.k/ ˝ Ink/Gk.Z/
P.Z/

3
7775 h 7!

2
6664

G1.Z/
:::

Gk.Z/
Q.Z/

3
7775 h

is a linear and isometric map from the span of the elements on the left to the span
of the elements on the right. It may be extended (if necessary) to a unitary matrix�

A B
C D

�
so that

AZnG.Z/C BP.Z/ D G.Z/

CZnG.Z/C DP.Z/ D Q.Z/;
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for every Z; here Zn D
Lk

rD1.Z
.r/ ˝ Inr /. Solving the first equation above for G.Z/

and then plugging the result into the second equation yield

F.Z/ D Q.Z/P�1.Z/ D DC CZn.I � AZn/
�1B:

ut

Remark 3.3 An analog of Theorem 3.1, with a similar proof, is also valid for
Cartesian products of Cartan domains of type II or III [14] or for Cartesian products
of mixed type involving Cartan domains of types I, II, and III. We recall here that a
Cartan domain of type II (resp., III) is a (lower-dimensional) subset of a square-
matrix Cartan domain of type I consisting of symmetric (resp., antisymmetric)
matrices.

Eventual Agler Denominators

We will say that a polynomial v in z.r/ij , i; j D 1; : : : ; `r, r D 1; : : : ; k, is almost self-

reversive with respect to the square-matrix polyball B if �v D �v, for some scalar
� with j� j D 1.

We have the following generalization of a result that was announced in [13] for
the case of a unit polydisk.

Theorem 4.1 Let p be a B-stable polynomial which is coprime with �p . Then the
following are equivalent:

(i) p is an eventual Agler denominator, that is, there exist nonnegative integers
s1; : : : ; sk such that the rational inner function

Qk
rD1.det Z.r//sr �p .Z/=p.Z/ is

in the Schur–Agler class SAZ.
(ii) There exists an almost self-reversive polynomial v of multidegree .s1; : : : ; sk/

such that p.Z/v.Z/ D det.I � KZn/ for some nonnegative integers nr, r D
1; : : : ; k, and a contractive matrix K, where Zn D

Lk
rD1.Z

.r/ ˝ Inr /.

Proof (i))(ii) Let f .Z/ D
Qk

rD1.det Z.r//sr �p .Z/=p.Z/ be in SAZ . By Theorem 3.1
there exists a k-tuple n D .n1; : : : ; nk/ of nonnegative integers and a unitary matrix


A B
C D

�
such that

f .Z/ D DC CZn.I � AZn/
�1B:

Using the factorization

�
I � AZn B
�CZn D

�
D

�
I 0

�CZn.I � AZn/
�1 I

� �
I � AZn 0

0 f .Z/

� �
I .I � AZn/

�1B
0 I

�
;
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we observe that

f .Z/ D

det

�
I � AZn B
�CZn D

�

det.I � AZn/

and

det

�
I � AZn B
�CZn D

�
D det

�
A B
C D

�
det

��
A� 0

B� 0

�
�

�
Zn 0

0 �1

�
D � det.A� � Zn/;

where � D det



A B
C D

�
. Hence

kY
rD1

.det Z.r//sr �p .Z/ det.I � AZn/ D �p.Z/ det.A� � Zn/: (5)

Since p is B-stable and coprime with �p , the polynomials p and
Qk

rD1.det Z.r//sr �p
do not have common factors. Therefore p divides det.I � AZn/, i.e., there exists a
polynomial v so that

p.Z/v.Z/ D det.I � AZn/: (6)

Taking the polynomial reverse on both sides, we obtain

det Znp.Z��1/v.Z��1/ D det.Zn � A�/:

Using (5) and (6), we obtain

kY
rD1

.det Z.r//sr �p .Z/p.Z/v.Z/ D �
kY

rD1

.det Z.r//nr�degrpp.Z/ �p .Z/v.Z��1/.�1/
Pk

rD1 `rnr ;

where degrp is the total degree of p in the variables z.r/ij . After dividing out we see
that v is almost self-reversive and sr D nr � degr p � degr v. Clearly, K D A is a
contractive matrix.

(ii))(i) Suppose there exists an almost self-reversive polynomial v such that
p.Z/v.Z/ D det.I � KZn/ with a contractive matrix K and a k-tuple n D
.n1; : : : ; nk/ of nonnegative integers. Then by a straightforward modification of [12,
Theorem 5.2] the rational inner function

Qk
rD1.det Z.r//nr p.Z��1/v.Z��1/

p.Z/v.Z/
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is Schur–Agler. Since v is almost self-reversive, the rational inner function

Qk
rD1.det Z.r//nr�degrvp.Z��1/

p.Z/

is Schur–Agler, i.e., p is an eventual Agler denominator. ut

Remark 4.2 An analog of Theorem 4.1 is valid for a Cartesian product of Cartan
domains of type II, i.e., for a domain Bsym, or for a Cartesian product of mixed type
involving Cartan domains of types I and II; see Remarks 2.3 and 3.3.

The following result is a consequence of [11, Theorem 4.1] formulated for the
case of the square-matrix polyball B.

Theorem 4.3 Some strongly B-stable multiple of every strongly B-stable polyno-
mial is an eventual Agler denominator.

Proof By [11, Theorem 4.1] there exist a strongly B-stable polynomial q, a
k-tuple of integers n D .n1; : : : ; nk/, and a strictly contractive matrix K 2

C
.
Pk

rD1 `rnr/�.
Pk

rD1 `rnr/ such that p.Z/q.Z/ D det.I�KZn/, where Zn D
Lk

rD1.Z
.r/˝

Inr /. Then, similarly to the last paragraph in the proof of Theorem 4.1 (with v D 1),
one shows that pq is an eventual Agler denominator.

Corollary 4.4 Let f be a rational inner function on B which is regular on @SB. Then
there exists a rational inner function g which is regular on @SB such that fg 2 SAZ.

Proof By Theorem 2.1 there exists a stable polynomial p which is coprime with
 �p and such that (1) holds with some nonnegative integers m1; : : : ;mr. Since f is
regular on @SB, the polynomial p is strongly B-stable. By Theorem 4.3, pq is an
eventual Agler denominator for some strongly B-stable polynomial q. ThereforeQk

rD1.det Z.r//sr f �q =q 2 SAZ for some nonnegative integers 1; : : : ; sk. ut

The question as to whether the assumption of regularity of f on @SB in
Corollary 4.4 can be removed is open. Another open question is whether Corol-
lary 4.4 holds for matrix-valued rational inner functions. Finally, it is interesting
to investigate the analogues of the results in this paper for the unbounded version
of the domain B, i.e., the Cartesian product of matrix half-planes. The Cayley
transform over the matrix variables Z.r/, r D 1; : : : ; k, would allow one to obtain a
finite-dimensional realization formula for rational inner functions on the product of
matrix half-planes; if, in addition, the Cayley transform over the values of a function
is applied, then one can obtain the corresponding realization formula for rational
Cayley inner functions over the product of matrix half-planes (see [5] for the case
of a poly-half-plane, i.e., the product of scalar half-planes). We would also like to
mention [15] where a subclass of Cayley inner functions on the product of matrix
half-planes, the Bessmertnyi class, was studied.
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A Note on Local Hölder Continuity of Weighted
Tauberian Functions

Paul Hagelstein and Ioannis Parissis

Abstract Let M and MS respectively denote the Hardy-Littlewood maximal
operator with respect to cubes and the strong maximal operator on R

n, and let
w be a nonnegative locally integrable function on R

n. We define the associated
Tauberian functions CHL;w.˛/ and CS;w.˛/ on .0; 1/ by

CHL;w.˛/ � sup
E�R

n

0<w.E/<1

1

w.E/
w.fx 2 R

n W M�E.x/ > ˛g/

and

CS;w.˛/ � sup
E�R

n

0<w.E/<1

1

w.E/
w.fx 2 R

n W MS�E.x/ > ˛g/:

Utilizing weighted Solyanik estimates for M and MS, we show that the function
CHL;w lies in the local Hölder class C.cnŒw�A

1

/�1 .0; 1/ and CS;w lies in the local

Hölder class C.cnŒw�A�

1

/�1
.0; 1/, where the constant cn > 1 depends only on the

dimension n.
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Introduction

This note concerns how Solyanik estimates may be used to establish local Hölder
continuity estimates for the Tauberian functions associated to the Hardy-Littlewood
and strong maximal operators in the context of Muckenhoupt weights. In [4],
Hagelstein and Parissis used Solyanik estimates to prove that the Tauberian func-
tions CHL.˛/ and CS.˛/ associated to the Hardy-Littlewood and strong maximal
operators in R

n both lie in the local Hölder class C1=n.1;1/. The techniques of that
paper are surprisingly robust, and we here will show how the weighted Solyanik
estimates for the Hardy-Littlewood and strong maximal operators obtained in [5, 6]
may be used to establish local Hölder smoothness estimates for the Tauberian
functions of the Hardy-Littlewood and strong maximal operators in the weighted
scenario.

We now briefly review what Solyanik estimates are and how they may be
used to establish local smoothness estimates for Tauberian functions associated
to geometric maximal operators in the setting of Lebesgue measure. Let B be a
collection of sets of positive measure in R

n, and define the associated geometric
maximal operator MB by

MBf .x/ � sup
x2R2B

1

jRj

Z
R
jf j:

For 0 < ˛ < 1, the associated Tauberian function CB.˛/ is given by

CB.˛/ � sup
E�R

n

0<jEj<1

1

jEj
jfx 2 R

n W MB�E.x/ > ˛gj:

Our ordinary expectation is that, provided B is a basis with reasonable differ-
entiation properties, for 0 < ˛ < 1 and ˛ very close to 1, we should have
jfx 2 R

n W MB�E.x/ > ˛gj is very close to jEj itself, and accordingly that
CB.˛/ is very close to 1. Solyanik estimates provide a quantitative validation of
this expectation. In particular, we have the following theorem due to Solyanik [9];
see also [3].

Theorem 1.1 (Solyanik [9]) We have the following Solyanik estimates for the
Hardy-Littlewood and the strong maximal operator:

(a) Let M denote the uncentered Hardy-Littlewood maximal operator on R
n with

respect to cubes, and define the associated Tauberian function CHL.˛/ by

CHL.˛/ D sup
E�R

n

0<jEj<1

1

jEj
jfx 2 R

n W M�E.x/ > ˛gj:
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Then for ˛ 2 .0; 1/ sufficiently close to 1 we have

CHL.˛/ � 1 �n .1 � ˛/
1=n:

(b) Let MS denote the strong maximal operator on R
n, and define the associated

Tauberian function CS.˛/ by

CS.˛/ � sup
E�R

n

0<jEj<1

1

jEj
jfx 2 R

n W MS�E.x/ > ˛gj:

Then for ˛ 2 .0; 1/ sufficiently close to 1 we have

CS.˛/ � 1 �n .1 � ˛/
1=n:

The following theorem associated to the embedding of so-called halo sets enables
us to relate Solyanik estimates to Hölder smoothness estimates.

Theorem 1.2 (Hagelstein and Parissis [4]) Let B be a homothecy invariant
collection of rectangular parallelepipeds in R

n. Given a set E � R
n of finite measure

and 0 < ˛ < 1, define the associated halo set H˛.E/ by

HB;˛.E/ � fx 2 R
n W MB�E.x/ > ˛g :

Then for all ˛; ı 2 .0; 1/ with ˛ < 1 � ı, we have

HB;˛.E/ � HB;˛.1C2�.nC1/ı/.HB;1�ı.E//:

An immediate corollary of this theorem is the following.

Corollary 1.3 (Hagelstein and Parissis [4]) Let B be a homothecy invariant
collection of rectangular parallelepipeds in R

n and let ˛; ı 2 .0; 1/. Then for
˛ < 1 � ı we have

CB.˛/ � CB
�
˛.1C 2�.nC1/ı/

�
CB.1 � ı/:

Now, we of course have that CB.˛/ is nonincreasing on .0; 1/. If B is the
collection of rectangular parallelepipeds in R

n whose sides are parallel to the axes
(so that MB D MS), we can accordingly combine the above corollary with the
Solyanik estimates for MS provided by Theorem 1.1 to relatively easily obtain the
following.

Corollary 1.4 (Hagelstein and Parissis [4]) Let CHL.˛/ and CS.˛/ respectively
denote the Tauberian functions associated to the Hardy-Littlewood maximal opera-
tor with respect to cubes and the strong maximal operator in R

n with respect to ˛.
Then

CHL 2 C1=n.0; 1/ and CS 2 C1=n.0; 1/:
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The purpose of this note is to establish weighted analogues of Corollary 1.4.
To make this precise let us consider a non-negative, locally integrable function
w on R

n. The relevant Tauberian functions CHL;w.˛/ and CS;w.˛/ are defined on
.0; 1/ by

CHL;w.˛/ � sup
E�R

n

0<w.E/<1

1

w.E/
w.fx 2 R

n W M�E.x/ > ˛g/

and

CS;w.˛/ � sup
E�R

n

0<w.E/<1

1

w.E/
w.fx 2 R

n W MS�E.x/ > ˛g/:

It was shown in [7] that the condition CHL;w.˛/ < C1 for some ˛ 2 .0; 1/ already
implies that M W Lp.w/ ! Lp.w/ for some 1 < p < 1 and, similarly if CS;w.˛/ <

C1 for some ˛ 2 .0; 1/ then MS W Lp.w/ ! Lp.w/ for some 1 < p < 1. These
results pose an important restriction on the kind of functions w we can consider
in proving Hölder regularity estimates for CHL;w and CS;w. In particular, it is well
known that the class of functions w such that M W Lp.w/ ! Lp.w/ for some p 2
.1;1/ is the Muchkenhoupt class of weights A1; see for example [2]. Here we use
the Fujii-Wilson definition of the Muckenhoupt class A1. Namely, the weight w
belongs to the class A1 if and only if

Œw�A
1

� sup
Q

1

w.Q/

Z
Q

M.w�Q/ < C1;

where the supremum is taken with respect to all cubes in R
n whose sides are parallel

to the axes. This description of the class A1 goes back to Fujii [8], and Wilson,
[10, 11]; see also [1]. Thus w 2 A1 is a necessary condition for the continuity of
CHL;w on .0; 1/. It turns out that w 2 A1 is also a sufficient condition for the Hölder
regularity of CHL;w.

Theorem 1.5 Let w 2 A1 be a Muckenhoupt weight on R
n. Then

CHL;w 2 C.cnŒw�A
1

/�1 .0; 1/;

where the constant cn depends only on the dimension n.

Moving to the multiparameter case, the condition that MS W Lp.w/ ! Lp.w/
for some p 2 .1;1/ is equivalent to the condition w 2 A�

1, where A�
1 denotes

the class of multiparameter or strong Muckenhoupt weights. A few words about
how the multiparameter Muckenhoupt class A�

1 is defined are in order here. For
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x D .x1; : : : ; xn/ 2 R
n and 1 � j � n we may associate the point Nxj WD

.x1; : : : ; xj�1; xjC1; : : : ; xn/ 2 R
n�1. Associated to a non-negative locally integrable

function w on R
n and Nxj is the one-dimensional weight

wNxj.t/ � w.x1; : : : ; xj�1; t; xjC1; : : : ; xn/; t 2 R:

Then Œw�A�

1

is defined by

Œw�A�

1

� sup
1�j�n

ess sup
Nxj2Rn�1

ŒwNxj �A
1

:

Here Œ��A
1

denotes the standard Fujii-Wilson A1 constant of a weight � on R
1,

given by

Œ��A
1

� sup
I

1

w.I/

Z
I
M1.��I/;

where the supremum is taken over all intervals I � R and M1 denotes the
Hardy-Littlewood maximal operator on R

1. Thus a weight w is a multiparameter
Muckenhoupt weight if and only if Œw�A�

1

< C1:We refer the reader to [6] and the
references therein for more details on the definition and properties of multiparameter
Muckenhoupt weights.

With the definition of multiparameter Muckenhoupt weights in hand, the previ-
ous discussion shows that a necessary condition for the continuity of CS;w on .0; 1/
is that w 2 A�

1. As in the one parameter case, we show that w 2 A�
1 is also sufficient

for the Hölder continuity of CS;w on .0; 1/.

Theorem 1.6 Let w 2 A�
1 be a multiparameter Muckenhoupt weight on R

n. Then

CS;w 2 C.cnŒw�A�

1

/�1
.0; 1/;

where the constant cn depends only on the dimension n.

Notation

We use the letters C; c to denote positive numerical constants whose value might
change even in the same line of text. We express the dependence of a constant C on
some parameter n by writing Cn. We write A � B if A � CB for some numerical
constant C > 0. If A � CnB we then write A �n B. In this note, w will always denote
a non-negative, locally integrable function on R

n. Finally, we say that a function f
lies in the Hölder class Cp.I/ for some interval I � R if for every compact set K � I
we have jf .x/ � f .y/j �K jx � yjp for all x; y 2 K. In this case we will say that f is
locally Hölder continuous with exponent p in I.
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Weighed Solyanik Estimates and Hölder Regularity

In this section we show that the strategy for establishing Hölder smoothness
estimates for CHL.˛/ and CS.˛/ may be adapted to the weighted context. To imple-
ment the above strategy, we need Solyanik estimates that provide us quantitative
information as to how close CHL;w.˛/ and CS.˛/ are to 1 for ˛ near 1. Of course,
the related estimates are expected to depend on w. Suitable Solyanik estimates in
this regard were found in [5, 6] when w is a Muckenhoupt weight. In particular, we
have the following:

Theorem 3.1 (Hagelstein and Parissis [5, 6]) Let w 2 A1. We have the Solyanik
estimate

CHL;w.˛/ � 1 �n 

2
w.1 � ˛/

.cnŒw�A
1

/�1 whenever 1 > ˛ > 1 � e�cnŒw�A
1 :

Here
w is the doubling constant of w, and cn and the implied constant depend only
upon the dimension n.

A multiparameter analogue of Theorem 3.1 the following.

Theorem 3.2 (Hagelstein and Parissis [6]) Let w be a non-negative, locally
integrable function in R

n. If w 2 A�
1 we have

CS;w.˛/ � 1 �n .1 � ˛/
.cnŒw�A�

1

/�1 for all 1 > ˛ > 1 � e�cnŒw�A�

1 ;

where c > 0 is a numerical constant.

With these weighted Solyanik estimates at our disposal we can now give the proof
of the Hölder continuity estimates for CHL;w and CS;w.

Proof of Theorem 1.5 Let K be a compact subset in .0; 1/ and let mK ;MK 2 .0; 1/

be such that mK � x � Mk for all x 2 K. Since w 2 A1 there exists some q 2 .0; 1/
such that M W Lq.w/ ! Lq;1.w/ and thus sup˛2K CHL;w.˛/ �w;n;K 1. Furthermore,
by Theorem 3.1 we have that

CHL;w.˛/ � 1 �w;n .1 � ˛/
.cnŒw�A

1

/�1 for all 1 > ˛ > 1 � e�cnŒw�A
1 � ˛o: (1)

We first consider x; y 2 K with 0 < y� x < min. 1�MK
2nC1 mK ;

1�˛o
2nC1 mK/ � �. We can

then write

CHL;w.x/ � CHL;w.y/ D CHL;w.x/ � CHL;w

�
x
�
1C 2nC1 y � x

2nC1x

�	
:

Now observe that by our choice of x; y we have

2nC1 y � x

x
< 2nC1 1 �MK

2nC1
mK

1

mK
� 1 �MK � 1 � x:
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We can thus apply Theorem 1.2 with x in the role of ˛ � x and ı � 2nC1 y�x
x to get

HB;x.E/ � HB;y.HB;.1�ı/.E//

for all measurable E where here B denotes the collection of all cubes in R
n whose

sides are parallel to the axes. This immediately implies

CHL;w.x/ � CHL;w.y/CHL;w
�
1 � 2nC1 y � x

x

�
:

Thus we can estimate

CHL;w.x/ � CHL;w.y/ � CHL;w.y/
h
CHL;w

�
1 � 2nC1 y � x

x

�
� 1

i

�w;n;K CHL;w
�
1 � 2nC1 y � x

x

�
� 1

since sup˛2K CHL;w.˛/ �w;n;K 1. Noting that

1 > 1 � 2nC1 y � x

x
> 1 � 2nC1 1 � ˛o

2nC1x
mK � ˛o;

an appeal to (1) gives

CHL;w.x/ � CHL;w.y/ �w;n;K
�y � x

x

�.cnŒw�A
1

/�1 �K .y � x/.cnŒw�A
1

/�1 :

We have shown that

sup
x;y2K

jy�xj<�

jCHL;w.y/ � CHL;w.x/j

jy � xj.cnŒw�A
1

/�1
�w;n;K 1:

On the other hand, if x; y 2 K with y � x � � then the Hölder estimate follows
trivially since supx;y2K jCHL;w.x/ � CHL;w.y/j �w;n;K 1 so we are done. ut

The proof of Theorem 1.6 is virtually identical to that of Theorem 1.5.
One may naturally wonder how sharp the above smoothness estimates are for

CHL;w.˛/ and CS;w.˛/. In particular we may ask the questions: Are CHL;w.˛/ and
CS;w.˛/ differentiable on .0; 1/? Are they in fact smooth on .0; 1/? To the best of
our knowledge, even the question of whether or not the sharp Tauberian constant
CHL.˛/ of the Hardy-Littlewood maximal operator on R in the Lebesgue setting is
differentiable constitutes an unsolved problem. All of these topics remain a subject
of continuing research.
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Three Observations on Commutators
of Singular Integral Operators with BMO
Functions

Carlos Pérez and Israel P. Rivera-Ríos

Abstract Three observations on commutators of Singular Integral Operators with
BMO functions are exposed, namely

1. The already known subgaussian local decay for the commutator, namely

1

jQj

ˇ̌˚
x 2 Q W jŒb;T�.f�Q/.x/j > M2f .x/t

�ˇ̌
� ce�

p
ctkbkBMO

is sharp, since it cannot be better than subgaussian.
2. It is not possible to obtain a pointwise control of the commutator by a finite sum

of sparse operators defined by L log L averages.
3. Motivated by the conjugation method for commutators, it is shown the failure of

the following endpoint estimate, if w 2 Ap n A1 then����wM

�
f

w

����
L1.Rn/!L1;1.Rn/

D1:
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Introduction

The purpose of this paper is to present some observations concerning commutators
of singular integral operators with BMO functions. These operators were introduced
by Coifman, Rochberg and Weiss in [6] as a tool to extend the classical factorization
theorem for Hardy spaces in the unit circle to R

n. These operators are defined by the
expression

Tbf .x/ D
Z
Rn
.b.x/ � b.y//K.x; y/f .y/ dy; (1)

where K is a kernel satisfying the standard Calderón-Zygmund estimates and where
b, the “symbol” of the operator, is a locally integrable function. Of course, these are
special cases of the more general commutators given by the expression

Tb D Œb;T� D Mb ı T � T ıMb

where T is any operator and Mb is the multiplication operator Mbf D b � f .
The classical well known result from [6] establishes that Œb;T� is a bounded

operator on Lp.Rn/, 1 < p < 1, when the symbol b is a BMO function. We state
this result.

Theorem 1.1 Let T be a singular integral operator and b a BMO function. The
commutator Tb is bounded on Lp.Rn/ for every 1 < p <1.

In the same paper it is shown that b 2 BMO is also a necessary condition namely,
if the commutators Œb;Rj�, j D 1; � � � ; n of b with the Riesz transforms Rj are
bounded on Lp.Rn/ for some p 2 .1;1/ and every j 2 f1; 2; : : : ; ng then b 2 BMO.

None of the different proofs of this result follows the usual scheme of the
classical Calderón-Zygmund theory for proving the Lp.Rn/ boundedness of singular
integral operators T . Two proofs of Theorem 1.1 can be found in [6]. The first
and main one in that paper is based on methods involving techniques similar to
those used in [5] to understand the Calderón commutator. As far as we know this
approach has not been so influential. However, the second proof, based on the so
called conjugation method from operator theory, has been widely used. In fact, it
is quite surprising that this proof was postponed to the end of the paper since it
turns out to be highly interesting. Indeed, the method shows the intimate connection
between these commutators and the Ap theory of weights. Furthermore, this proof
can be applied to general linear operators, not only for Singular Integral Operators.
As a sample we will point out the following particular L2 case:

Theorem 1.2 Suppose that T is a linear operator such that

T W L2.w/ �! L2.w/
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for every w 2 A2. Then for every b 2 BMO,

Œb;T� W L2.Rn/ �! L2.Rn/:

The method of proof can be carried out in more generality as shown in [1]. The
key initial argument of the proof is that we can write Œb;T� as a complex integral
operator using the Cauchy integral theorem as follows

Œb;T�f D
d

dz
ezbT.fe�zb/

ˇ̌
ˇ̌
zD0

D
1

2	 i

Z
jzjD"

Tz.f /

z2
dz ; " > 0

where

z! Tz.f / WD ezbT

�
f

ezb


z 2 C:

This is called the “conjugation” of T by ezb and the terminology comes most
probably from group theory. Now, if k � k is a norm we can apply Minkowski
inequality:

kŒb;T�fk �
1

2	 "
sup
jzjD"
kTz.f /k " > 0:

The effectiveness of the method can be checked in the modern context of weighted
Lp estimates. Indeed, the method produces very optimal bounds of the operator norm
as shown in [4] (see also [15]).

This method reveals the role played by the following operation:

f ! Tw.f / WD w T

�
f

w



where w is a weight which, in this context, is an Ap weight. Indeed, this is the case
by the well known key property of the BMO class, if p > 1 and b 2 BMO then
there is a small "0, such that etb 2 Ap, for any real number t such that jtj < "0. These
operators were already studied by B. Muckenhoupt and R. Wheeden in the 1970s
and by E. Sawyer in the 1980s. Some of the problems they left open were solved
in [8]. A consequence of the main result of [8] is that if w 2 A1 then Tw is of weak
type .1; 1/, namely

kTwkL1.Rn/!L1;1.Rn/ <1

with bound depending upon the A1 constant of w. However, we will exhibit examples
of weights w 2 Ap n A1 in section “Third Observation: The Failure of an Endpoint
Estimate Motivated by the Conjugation Method” for which Tw is not of weak type
.1; 1/, namely

kTwkL1.Rn/!L1;1.Rn/ D1:
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This shows that the case w 2 A1 is specially relevant. Perhaps, this phenomenon can
be explained by the fact that the conjugation method is closely attached to commu-
tators with BMO functions which are not of weak type .1; 1/ as observed in [25].
Indeed, the conjugation method works due to the property, already mentioned, that
if p > 1 and b 2 BMO then etb 2 Ap for small values of t. However, this property
turns out to be false in the case p D 1. The lack of the weak type .1; 1/ property for
commutators is replaced by a L log L inequality like (5) below and not better.

There is another proof of Theorem 1.1 based on the use of the sharp maximal
function of C. Fefferman and E. Stein which has also been very influential. It seems
that it was first discovered by J. O. Strömberg as mentioned by S. Janson in [17] (see
also [28] pp. 417–419) The proof relies on combining the following key pointwise
estimate

M].Œb;T�f / � ckbkBMO .Mr .Tf /CMs .f // (2)

where 1 < r; s <1 and Mr.f / D M.jf jr/1=r together with the classical Fefferman-
Stein inequality:

kM.f /kLp � ckM].f /kLp :

Here we use standard notation, M is the Hardy-Littlewood maximal function and M]

is the sharp maximal function. The Lp boundedness of M and T yields the alternative
proof of Theorem 1.1. Proceeding in the same way we obtain the corresponding
estimates for Ap weights.

This approach was considered by S. Bloom in [2] extending in an interesting way
Theorem 1.1 but only on the real line.

Theorem 1.3 Let �; � 2 Ap and let H be the Hilbert transform:

Œb;H� W Lp.�/ �! Lp.�/

where � D �
1
p�

� 1
p if and only if

kbkBMO.�/ D sup
Q

1

�.Q/

Z
Q
jb � bQj <1: (3)

The power of the pointwise estimate (2) is reflected in many situations, for
instance in [12], where similar results were derived for commutators of strongly
singular integral with symbol in the new BMO class (3) (see also [13, 14] for an
alternative approach based on dyadic shifts).

However, estimate (2) is not sharp enough for many purposes and much better
results can be obtained with the following variation:

M]

ı.Œb;T�f / � ckbkBMO
�
M" .Tf /CM2 .f /

�
0 < ı < " < 1 (4)
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where M2 stands for MıM (see [25]). Here, the key difference is that we are consid-
ering small parameters ı and ". The estimate is sharp since M2 cannot be replaced
by the (pointwise) smaller operator M. Indeed, otherwise these commutators would
be of weak type .1; 1/ but, as we mentioned above, this is not the case [25] where it
is shown that commutators satisfy the following “L log L” type estimate,

w .fx 2 R
n W jŒb;T� f .x/j > �g/ � c

Z
Rn
ˆ

�
jf j

�
kbkBMO


wdx � > 0; (5)

where w 2 A1, ˆ.t/ D t log .eC t/ and where c > 0 depends upon the A1
constant. This shows that these commutators are “more singular” than Calderón-
Zygmund operators. The original proof of (5) follows from the key pointwise (4)
combined with a good-� type argument, but an alternative proof was obtained by
the first author and G. Pradolini in [26] with the bonus that non A1 weights can be
considered. This argument is based on a variation of the classical scheme used to
prove the weak type .1; 1/ for Calderón-Zygmund operators. The statement of the
result is the following.

Theorem 1.4 Let T be a Calderón-Zygmund operator and b 2 BMO. If w is an
arbitrary weight the following inequality holds

w .fx 2 R
n W jŒb;T�f .x/j > �g/ � C";T

Z
Rn
ˆ

�
kbkBMO

jf .x/j

�


ML.log L/1C"w.x/dx

for every " > 0.

Very recently (cf. [27]) the authors have obtained a quantitative version of
the endpoint estimate for arbitrary weights, namely Theorem 1.4. This result is
analogous to the one obtained by the first author and T. Hytönen for singular
integrals in [15].

Theorem 1.5 Let T be a Calderón-Zygmund operator and b 2 BMO. If w � 0 is a
weight then, for every " > 0

w .fx 2 R
n W jŒb;T�f .x/j > �g/ �

c

"2

Z
Rn
ˆ

�
kbkBMO

jf j

�


ML.log L/1C"wdx:

The main novelty here is the appearance of the sharp factor 1
"2

reflecting again
the higher singularity of the operator. As a corollary of this result we can derive the
following result obtained previously by C. Ortiz-Caraballo in [23],

w .fx 2 R
n W jŒb;T�f .x/j > �g/ � Cˆ.Œw�A1 /

2

Z
Rn
ˆ

�
kbkBMO

jf j

�


wdx:

We remark that it seems that the conjugation method cannot be applied to prove
this estimate. Therefore, estimate (5) or Theorem 1.4 works, so far, for Calderón-
Zygmund operators not for general linear operators assuming a minimal appropriate
weighted weak type estimate.
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Another interesting difference between Calderón-Zygmund operators and com-
mutators concerns their local behavior. A very nice way of expressing this is by
means of the following estimate due to Karagulyan [18]: there exists a constant
c > 0 such that for each cube Q and for each function f supported on the cube Q

1

jQj
jfx 2 Q W jTf .x/j > tMf .x/gj � c e�c t t > 0: (6)

This result can be seen as an improvement of Buckley’s exponential decay theorem
[3] which is a very useful result. For instance, it allows to improve in a quantitative
way the classical good-� inequality between T and M: if p 2 .0;1/ and w 2 A1

kTfkLp.w/ � cT p Œw�A
1

kM.f /kLp.w/:

Motivated by this result of Karagulyan, Ortiz-Caraballo, Rela and the first author
developed a new method for proving (6) in [24]. This method is flexible enough
to deal with other operators including the commutators. In particular, we have the
following sub-gaussian estimate.

Theorem 1.6 Let T be a Calderón-Zygmund operator and b 2 BMO, then there
exists a constant c > 0 such that for each f

sup
Q

1

jQj
jfx 2 Q W jŒb;T�.f�Q/.x/j > tM2f .x/gj � c e�

p
c tkbkBMO t > 0: (7)

We will show in section “First Observation: Sharpness of the Subexponential
Local Decay” that this subexponential decay is fully sharp. In section “Second
Observation: A “natural” but False Sparse Domination Result for Commutators”,
we will provide a new proof of (6) based on the pointwise domination: if T is
a Calderón-Zygmund operator, then it is possible to find a finite set of �-sparse
families

˚
Sj
�3n

jD1 (see section “Second Observation: A “natural” but False Sparse
Domination Result for Commutators” for the definitions) contained in the same or
in different dyadic lattices Dj and depending on f such that

jTf .x/j � cT

3nX
jD1

ASj f .x/ (8)

where

ASj f .x/ D
X
Q2Sj

1

jQj

Z
Q
jf j�Q.x/:

See section “Second Observation: A “natural” but False Sparse Domination Result
for Commutators” for details, in particular Theorem 3.6.
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In view of the interest of an estimate like (8) it would be relevant to produce a
counterpart for commutators. The “natural” sparse operator for these commutators
would be

BS f .x/ D
X
Q2S
kfk

L log L;Q
�Q.x/:

The reason that leads to consider this sparse operator in terms of the average
k � k

L log L;Q
is due to the intimate relationship of commutators and M2 which is

an operator pointwise equivalent to ML log L. In section “Second Observation: A
“natural” but False Sparse Domination Result for Commutators” we prove the
impossibility of having a domination theorem for commutators by these “sparse”
operators.

First Observation: Sharpness of the Subexponential
Local Decay

We prove in this section that Theorem 1.6 is sharp, i.e., we can find a Calderón-
Zygmund operator T , a symbol b 2 BMO a function f and a cube Q such that

1

jQj
jfx 2 Q W jŒb;T�f .x/j > tM2f .x/gj � c e�

p
c tkbkBMO

for some constant c > 0. More precisely we have the following.

Observation 1 Let b.x/ D log jxj, then we can find a constant c > 0 such that

jfx 2 .0; 1/ W jŒb;H�.�.0;1//.x/j > tgj � e�
p

ct

where H stands for the Hilbert transform.

Proof Let f .x/ D �.0;1/.x/: We are going to show that

jfx 2 .0; 1/ W jŒb;H�f .x/j > tM2f .x/gj D jfx 2 .0; 1/ W jŒb;H�f .x/j > tgj � c e�

p

˛ t t > 0:

For x 2 .0; 1/ we have that

Œb;H�f .x/ D
Z 1

0

log.x/ � log.y/

x � y
dy D

Z 1

0

log. x
y /

x � y
dy D

Z 1=x

0

log. 1t /

1 � t
dt:

Now we observe that

Z 1=x

0

log. 1t /

1 � t
dt D

Z 1

0

log. 1t /

1 � t
dtC

Z 1=x

1

log. 1t /

1 � t
dt
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and since
log. 1t /
1�t is positive for .0; 1/ [ .1;1/ we have for 0 < x < 1 that

jŒb;H�f .x/j >
Z 1=x

1

log. 1t /

1 � t
dt:

Finally, a computation shows that

Z 1=x

1

log. 1t /

1 � t
dt 

�
log

1

x

2
x! 0:

Consequently, we have that for some x0 < 1

jŒb;H�f .x/j > c

�
log

1

x

2
0 < x < x0:

and then for some t0 > 0,

jfx 2 .0; 1/ W jŒb;H�f .x/j > tgj �

ˇ̌
ˇ̌
ˇ
(

x 2 .0; x0/ W c

�
log

1

x

2
> t

) ˇ̌
ˇ̌
ˇ D e�

p

t=c t > t0 (9)

as we wanted to prove. ut

Second Observation: A “natural” but False Sparse
Domination Result for Commutators

Before stating the result we are going to prove in this section we need some notation.
We borrow it from [21].

Definition 3.1 (Dyadic child) Let Q be a cube (with sides parallel to the axis).
We call dyadic child any of the 2n cubes obtained by partitioning Q by n “median
hyperplanes” (planes parallel to the faces of Q and dividing each edge into 2 equal
parts).

If we iterate the partition process of the preceding definition we obtain a standard
dyadic grid D.Q/ of subcubes of Q which has the usual properties:

1. For each k D 0; 1; 2; : : : cubes in the k-th generation have sidelength 2�k and tile
Q in a regular way.

2. Each Q0 in the k-th generation has 2n children in the in the .kC 1/-th generation
contained in it and one and only one parent in the .k�1/-th generation containing
it (unless it is Q itself).

3. If Q0;Q00 2 D.Q/, then Q0 \ Q00 D ; or Q0 � Q00 or Q00 � Q0.
4. If Q0 2 D.Q/, then D.Q0/ � D.Q/.
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Definition 3.2 (Dyadic lattice) A dyadic lattice D in R
n is any collection of cubes

such that

(DL-1) If Q 2 D then each dyadic child of Q is in D as well.
(DL-2) If Q0;Q00 2 D there exists Q 2 D such that Q0;Q00 2 D.Q/.
(DL-3) If K is a compact set of Rn there exists Q 2 D such that K � Q.

There is an easy way to build a dyadic lattice by considering a increasing
sequence of dyadic cubes Qj such that [1

jD1Qj D R
n. Then

D D
1[

jD1

D.Qj/

is a dyadic lattice.

Definition 3.3 Let � 2 .0; 1/. We say that a family of cubes S � D is �-sparse if
for each Q 2 S we can find a measurable subset E.Q/ � Q such that:

1. E.Q/’s are pairwise disjoint.
2. �jQj � jE.Q/j

Definition 3.4 Let ƒ > 1. We say a family of cubes S is ƒ-Carleson if for every
cube Q 2 D we have

X
P2S;P�Q

jPj � ƒjQj:

There is an interesting relation between Carleson and sparse families that we
summarize in the following lemma that we borrow from [21]

Lemma 3.5 If S is a ƒ-Carleson family of cubes then it is 1
ƒ

-sparse. Conversely if
S is a �-sparse family of cubes then it is a 1

�
-Carleson family of cubes.

Armed with all these definitions we can state the following pointwise domination
theorem.

Theorem 3.6 Let T be a Calderón-Zygmund operator. There is a finite set of

�-sparse families
˚
Sj
�3n

jD1 contained in the same or in different dyadic lattices Dj

and depending on f such that

T�f .x/ � cT;n

3nX
jD1

ASj f .x/ (10)

where ASj f .x/ D
P

Q2Sj

1
jQj

R
Q jf j�Q.x/.

The proof of this result can be found in [21] and [7]. In [19] M. Lacey obtains
the same estimate for Calderón-Zygmund operators that satisfy a Dini condition.
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Recently a fully quantitative version of Lacey’s result was obtained in [16] and even
more recently this quantitative version has been simplified in [20].

As a sample of the interest of this result we give a different proof of the
exponential estimate (6): there exists a constant c > 0 such that for each cube Q
and for each f supported on the cube Q

1

jQj
jfx 2 Q W T�f .x/ > tMf .x/gj � c e�c t t > 0; (11)

To prove this result we will use the classical vector-valued extension of the
maximal function introduced by Fefferman and Stein in [11] that can be written
as follows:

Mqf .x/ D
� 1X

jD1

.Mfj.x//
q
	1=q
D jMf .x/jq;

where f D ffjg1jD1 is a vector–valued function.
Taking into account that T� is controlled by a finite sum of sparse operators it

suffices to establish (11) for those operators. Assume that supp f � Q for a certain
cube. It is clear that we can find cn pairwise disjoint cubes Qj 2 D which union
covers Q and such that jQjj ' jQj We can assume those cubes to belong to any
sparse family S � D, since it’s easy to check, taking into account Lemma 3.5, that
adding a finite number of pairwise disjoints cubes to a sparse family the resulting
family is again a sparse family. First we are going to prove that if S is and Qj 2 S
with jQjj ' jQj, as we have just showed that we can assume, then

1

jQj

ˇ̌
ˇ̌
ˇ̌
8<
:x 2 Q W

X
P2S;P
Qj

�P.x/ > t

9=
;
ˇ̌
ˇ̌
ˇ̌ � ce�ct: (12)

We begin observing that

1

jQj

ˇ̌
ˇ̌
ˇ̌
8<
:x 2 Q W

X
P2S;P
Qj

�P.x/ > t

9=
;
ˇ̌
ˇ̌
ˇ̌

D
1

jQj

ˇ̌
ˇ̌
ˇ̌
8<
:x 2 Q \ Qj W

X
P2S;P
Qj

�P.x/ > t

9=
;
ˇ̌
ˇ̌
ˇ̌

� c
1

jQjj

ˇ̌
ˇ̌
ˇ̌
8<
:x 2 Qj W

X
P2S;P
Qj

�P.x/ > t

9=
;
ˇ̌
ˇ̌
ˇ̌ D CQ:
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We use now one of the key estimates from [24]. Indeed, let fE.P/gP2S;P
Qj be the
family of sets from Definition 3.3. We have then for some c > 0 that

X
P2S

�P.x/ D
X
Q2S

�
1

jPj
jPj

q

�P.x/

� c
X

P2S;P
Qj

�
1

jPj
jE.P/j

q

�P.x/

� c
X

P2S;P
Qj

�
1

jPj

Z
P
�E.P/.y/ dy

q

�P.x/

� c
�

Mq

�˚
�E.P/

�
P2S;P
Qj

	
.x/
	q

� c
�
Mqgj.x/

�q
;

where gj D
˚
�E.P/

�
P2S;P
Qj

is supported in Qj. Now, since fE.Q/gP2S;P
Qj is a
pairwise disjoint family of subsets, we have that for any j

kgj.x/k`q D

0
@ X

P2S;P
Qj

�
�E.Q/.x/

�q

1
A
1=q

� 1: (13)

We finish the proof of (12) recalling that if jgjj`q 2 L1, then
�
Mqgj.x/

�q
2 ExpL

(see [11]) from which we conclude that:

CQ � ce�ct; t > 0:

Now we go back to the proof of the estimate. We first observe that

1

jQj
jfx 2 Q W AS f .x/ > tMf .x/gj

�

cnX
jD1

1

jQj

ˇ̌
ˇ̌
�

x 2 Q W AS
�
f�Qj

�
.x/ >

t

cn
M.f�Qj/.x/

� ˇ̌
ˇ̌ :

Hence it suffices to obtain an estimate for each term of the sum. First we may assume
that jQj \ Qj ¤ 0 since otherwise,

R
E f�Qj D 0 for every measurable set and the

corresponding term in the sum equals zero. Now we split AS.f�Qj/ as follows

AS.f�Qj/.x/ D
X

P2S;P�Qj

1

jPj

Z
P

f�Qj�P.x/C
X

P2S;P�Qj

1

jPj

Z
P

f�Qj�P.x/: (14)
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We observe that for the first term

P
P2S;P�Qj

1
jPj

R
P f�Qj�P.x/

M
�
f�Qj

�
.x/

�
X

P2S;P
Qj

�P.x/:

For the second term, we have that that since Qj \ Q ¤ ; and jQj ' jQjj then
Q � 5Qj. Consequently,

P
P2S;P�Qj

1
jPj

R
P f�Qj�P.x/

M.f�Qj /.x/
�

P
P2S;P�Qj

1
jPj

R
Qj

f�P.x/
1

j5Qjj

R
Qj

f

� cn

X
P2S;P�Qj

jQjj

jPj
�P.x/

� cn

1X
kD0

1

2nk
:

Then, combining the estimates obtained for each of the terms of (14), we have that

1

jQj

ˇ̌
ˇ̌
�

x 2 Q W AS
�
f�Qj

�
.x/ >

t

cn
M.f�Qj/.x/

� ˇ̌
ˇ̌

�
1

jQj

ˇ̌
ˇ̌
ˇ̌
8<
:x 2 Q W

X
P2S;P
Qj

�P.x/ >
t

cn
� cn

1X
kD0

1

2nk

9=
;
ˇ̌
ˇ̌
ˇ̌

and the desired conclusion, namely (11), follows from (12).

Observation 2 Let T be a Calderón-Zygmund operator and b 2 BMO. It is
not possible to find a finite set of �-sparse families

˚
Sj
�N

jD1, with N dimensional,
contained in the same or in different dyadic lattices Dj and depending on f such
that

jŒb;T�f .x/j � cb;T

NX
jD1

BSj f .x/ a:e: x 2 R
n (15)

where BSj f .x/ D
P

Q2Sj
kfkL log L;Q �Q.x/.

We are going to give two proofs of this result. The first one is based on the Rubio
de Francia algorithm.

Proof 1 Suppose that (15) holds, then we can prove the following L1 inequality

kŒb;T�fkL1.w/ � cŒw�A1kM
2fkL1.w/: (16)
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Indeed,

kŒb;T�fkL1.w/ � cb;T

NX
jD1

kBSj fkL1.w/

� cb;T

NX
jD1

X
Q2Sj

kfk
L log L;Q

w.Q/

jQj
jQj

�
cb;T

�

NX
jD1

X
Q2Sj

kfk
L log L;Q

w.Q/

jQj
jE.Q/j

�
cb;T

�

NX
jD1

X
Q2Sj

Z
E.Q/

M
L log L

f .x/Mw.x/dx

� N
cb;T

�
Œw�A1kM

2fkL1.w/;

since M2  ML log L. We claim now the Lp version,

kŒb;T�fkLp.Rn/ � cnpkM2fkLp.Rn/ p > 1: (17)

Indeed, by duality we can find g � 0 in Lp0

.Rn/ with unit norm such that

kŒb;T�fkLp.Rn/ D

Z
Rn
jŒb;T�f .x/jg.x/dx:

We consider the Rubio de Francia algorithm

Rg D
1X

kD0

Mk.g/

kMkk
Lp0

.Rn/

:

It’s a straightforward computation that R.g/ is an A1 weight with constant

ŒRg�A1 � 2kMkLp0 � cnp

and also that g � Rg and kRgkLp0 � 2kgkLp0

.Rn/ D 2. Then have that
Z
Rn
jŒb;T�f .x/jg.x/dx �

Z
Rn
jŒb;T�f .x/jRg.x/dx

and using (16) and Hölder inequality
Z
Rn
jŒb;T�f .x/jRg.x/dx � c ŒRg�A1

Z
Rn

M2f .x/Rg.x/dx

� cp
Z
Rn

M2f .x/Rg.x/dx � cpkM2fkLp.Rn/kRgkLp0

.Rn/

� cpkM2fkLp.Rn/:
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Hence (17) is established. Now since

kM2kLp.Rn/ � cn
�
p0
�2

p > 1

we have that

kŒb;T�kLp.Rn/ � cp
�
p0
�2

p > 1 (18)

Now let us observe that if we take Œb;H�f with b.x/ D log jxj and f .x/ D �.0;1/.x/
then

kŒb;H�fkLp.R/ � cp2 p > 1;

and this leads to a contradiction when p!1. To prove this lower estimate we use
estimate (9) from Theorem 1. Indeed, for some t0 > 0

kŒb;H�fkLp.R/ � k Œb;H� fkLp;1.R/ D sup
t>0

tjfx 2 R W jŒb;H�f .x/j > tgj
1
p

� sup
t>t0

t

ˇ̌
ˇ̌
ˇ
(

x 2 .0; x0/ W c

�
log

1

x

2
> t

) ˇ̌
ˇ̌
ˇ
1
p

� sup
t>t0

tce
�

p

t
p � c p2 t0e

�
p

t0

and this concludes the first proof. ut

For the second proof we will rely on the sharpness result that was settled in the
previous section.

Proof 2 Assume again that (15) holds. Then, for some c > 1

ˇ̌
ˇ
n
x 2 Q W jŒb;T�f .x/j > tM2f .x/

oˇ̌
ˇ �

ˇ̌
ˇ̌
ˇ̌
8<
:x 2 Q W

NX
jD1

X
P2Sj

kfkL log L;P�P.x/ >
t

c
M2f .x/

9=
; :
ˇ̌
ˇ̌
ˇ̌

It will be enough for our purposes to work on each term of the inner sum, namely to
control

ˇ̌
ˇ̌
ˇ̌
8<
:x 2 Q W

X
P2Sj

kfk
L log L;P

�P.x/ > tM2f .x/

9=
; :
ˇ̌
ˇ̌
ˇ̌

Now, recalling that M2f ' M
L log L

f , is not hard to see that essentially the same
argument we used to prove (11) yields that

1

jQj

ˇ̌
ˇ̌
ˇ̌
8<
:x 2 Q W

X
P2Sj

kfk
L log L;P

�P.x/ > tM2f .x/

9=
;
ˇ̌
ˇ̌
ˇ̌ � ce�˛t:
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Combining the preceding estimates we arrive to

1

jQj

ˇ̌˚
x 2 Q W jŒb;T�f .x/j > tM2f .x/

�ˇ̌
� ce�˛t t > 0

which is a contradiction by Observation 1. ut

The correct pointwise control for the commutator seems to be the following one

Conjecture 1 Let T be a Calderón-Zygmund operator and b 2 BMO. Then

jŒb;T�f .x/j � C.n;T/kbkBMO

NX
i;jD1

ASi

�
ASj f

�
.x/

where ASj f .x/ D
P

Q2Sj

1
jQj

R
Q jf .y/j dy�Q.x/ and the sparse families Sj are not

necessarily subfamilies of the same dyadic lattice.

If this conjecture holds it would be very easy to recover the main theorem from
[4] since it suffices to iterate the following estimate:

��ASj f
��

Lp.w/
� Cn;pŒw�

max
n
1; 1

p�1

o
Ap

kfkLp :

which was studied in [9, 10] (see also [21]).

Third Observation: The Failure of an Endpoint Estimate
Motivated by the Conjugation Method

In this section we consider the following family of operators:

f ! Tw.f / WD w T

�
f

w


(19)

where w is a weight and T is a Calderón-Zygmund operator. We already mentioned
in the introduction that these operators are of interest since they are very much
related to commutators due to the conjugation method. We emphasized that the case
w 2 A1 is special since Tw is of weak type .1; 1/ as a consequence of the main
results from [8]. Understanding the case w 2 Ap would be more interesting due to
its connection with the conjugation method. However, Tw is not of weak type .1; 1/
in general since there are weights w 2 Ap n A1 for which

kTwkL1.Rn/!L1;1.Rn/ D1;
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being the purpose of this section to show the existence of such weights. In fact we
are going to show something worst replacing T by the less singular operator M.

Observation 3 Let 1 < p <1, then there is w 2 Ap n A1 such that

kMwkL1.Rn/!L1;1.Rn/ D1:

Proof In dimension 1 we choose the Ap weight w.x/ D jxj�ı.1�p/ with ı 2�
0;min

n
1; 1

p�1

o	
and f D �Œ0;1� so that f 2 L1.w/. We prove that

����wM

�
f

w

����
L1;1.R/

D1:

Indeed, a computation shows that for x > 1

M
��.0;1/

w

	
.x/ �

1

x

1

ˇ

with ˇ D 1C ı.1 � p/ and then

����wM

�
f

w

����
L1;1.R/

�
1

ˇ
sup
t>0

t
ˇ̌˚

x > 1 W x�ı.1�p/�1 > t
�ˇ̌

D
1

ˇ
sup
1>t>0

t

 �
1

t

 1
ˇ

� 1

!
D 1

since ˇ 2 .0; 1/. ut

An interesting question is to find a necessary and sufficient condition for the
boundedness of this operator, namely, characterize the weights w for which

kMwkL1.Rn/!L1;1.Rn/ <1:

In [22] Muckenhoupt and Wheeden proved that this inequality holds for w 2 A1 in
the real line and also obtained a necessary condition on the weights, namely

���� w�Q

j � �xjn

����
L1;1.Rn/

� cw.x/ a.e. x 2 R
n

but we don’t know whether is sufficient or not.
To end this section we show that can go further and prove a negative result for

possible L log L type estimates.

Observation 4 Let 1 < p <1, and let ˆ.t/ D t log.eC t/˛ , ˛ > 0. Then we can
find w 2 Ap n A1 and f such that there’s no c > 0 for which

ˇ̌
ˇ̌
�

x 2 R
n W wM

�
f

w


> t

� ˇ̌
ˇ̌ � c

Z
Rn
ˆ

�
jf .x/j

t


dx: (20)
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Proof As above we do it for the case n D 1. We assume the contrary, namely there
is a finite constant c > 0 such that (20) holds for any nonnegative f . Let f D �.0;1/.
For this choice of f the right hand side of (20) equals ˆ

�
1
t

�
and we have that

sup
t>0

1

ˆ
�
1
t

�
ˇ̌
ˇ
n
x 2 R W wM

��.0;1/
w

	
> t
oˇ̌
ˇ <1:

Choose again the Ap weight w.x/ D jxj�ı.1�p/ with ı 2
�
0;min

n
1; 1

p�1

o	
.

Proceeding and using the same notation as in the proof of Observation 3 we have
that

sup
t>0

1

ˆ
�
1
t

	 ˇ̌ˇ
n
x 2 R W wM

��.0;1/
w

	
> t
oˇ̌
ˇ � c sup

0<t<1

1

ˆ
�
1
t

	
"�

1

t

 1
ˇ

� 1

#

D c sup
0<t<1

t

log
�

eC 1
t

	˛
"�

1

t

 1
ˇ

� 1

#
D1:

since ˇ 2 .0; 1/. ut
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Abstract This paper is a sequel to our paper Sawyer et al. (Revista Mat Iberoam
32(1):79–174, 2016). Let � and ! be locally finite positive Borel measures on
R

n (possibly having common point masses), and let T˛ be a standard ˛-fractional
Calderón-Zygmund operator on R

n with 0 � ˛ < n. Suppose that � W Rn ! R
n is

a globally biLipschitz map, and refer to the images �Q of cubes Q as quasicubes.
Furthermore, assume as side conditions the A˛

2 conditions, punctured A˛2 conditions,
and certain ˛-energy conditions taken over quasicubes. Then we show that T˛ is
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Our quasienergy conditions are not in general necessary for elliptic operators,
but are known to hold for certain situations in which one of the measures is one-
dimensional (Lacey et al., Two weight inequalities for the Cauchy transform from R

to CC, arXiv:1310.4820v4; Sawyer et al., The two weight T1 theorem for fractional
Riesz transforms when one measure is supported on a curve, arXiv:1505.07822v4),
and for certain side conditions placed on the measures such as doubling and k-
energy dispersed, which when k D n�1 is similar to the condition of uniformly full
dimension in Lacey and Wick (Two weight inequalities for the Cauchy transform
from R to CC, arXiv:1310.4820v1, versions 2 and 3).

Introduction

The boundedness of the Hilbert transform Hf .x/ D
R
R

f .y/
y�x dy on the real line R in

the Hilbert space L2 .R/ has been known for at least a century (perhaps dating back
to A & E1):

kHfkL2.R/ � kfkL2.R/ ; f 2 L2 .R/ : (1)

This inequality has been the subject of much generalization, to which we now turn.

A Brief History of the T1 Theorem

The celebrated T1 theorem of David and Journé [3] extends (1) to more general
kernels by characterizing those singular integral operators T on R

n that are bounded
on L2 .Rn/, and does so in terms of a weak boundedness property, and the
membership of the two functions T1 and T�1 in the space of bounded mean
oscillation,

kT1kBMO.Rn/ � k1kL1.Rn/ D 1;

kT�1kBMO.Rn/ � k1kL1.Rn/ D 1:

These latter conditions are actually the following testing conditions in disguise,

kT1QkL2.Rn/ � k1QkL2.Rn/ D
p
jQj;

kT�1QkL2.Rn/ � k1QkL2.Rn/ D
p
jQj;

1Peter Jones used A&E to stand for Adam and Eve.
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tested uniformly over all indicators of cubes Q in R
n for both T and its dual

operator T�. This theorem was the culmination of decades of investigation into the
nature of cancellation conditions required for boundedness of singular integrals.2

A parallel thread of investigation had begun even earlier with the equally
celebrated theorem of Hunt, Muckenhoupt and Wheeden [4] that extended (1)
to measures more general than Lebesgue’s by characterizing boundedness of the
Hilbert transform on weighted spaces L2 .RIw/. This thread culminated in the
theorem of Coifman and Fefferman3 [2] that characterizes those nonnegative
weights w on R

n for which all of the ‘nicest’ of the L2 .Rn/ bounded singular
integrals T above are bounded on weighted spaces L2 .RnIw/, and does so in terms
of the A2 condition of Muckenhoupt,

�
1

jQj

Z
Q

w .x/ dx

�
1

jQj

Z
Q

1

w .x/
dx


� 1;

taken uniformly over all cubes Q in R
n. This condition is also a testing condition in

disguise, in particular it follows from

����T

�
sQ
1

w

����
L2.RnIw/

�
����sQ

1

w

����
L2.RnIw/

;

tested over all ‘indicators with tails’ sQ .x/ D
`.Q/

`.Q/Cjx�cQj
of cubes Q in R

n.

A natural synthesis of these two threads leads to the ‘two weight’ question
of characterizing those pairs of weights .�; !/ having the property that nice
singular integrals are bounded from L2 .RnI �/ to L2 .RnI!/. Returning to the
simplest (nontrivial) singular integral of all, namely the Hilbert transform Hf .x/ DR
R

f .y/
y�x dy on the real line, Cotlar and Sadosky gave a beautiful function theoretic

characterization of the weight pairs .�; !/ for which H is bounded from L2 .RI �/
to L2 .RI!/, namely a two-weight extension of the Helson-Szegö theorem. This
characterization illuminated a deep connection between two quite different function
theoretic conditions, but failed to shed much light on when either of them held.
On the other hand, the two weight inequality for positive fractional integrals,
Poisson integrals and maximal functions were characterized using testing conditions
by one of us in [24] (see also [6]) and [23], but relying in a very strong way on
the positivity of the kernel, something the Hilbert kernel lacks. In light of these
considerations, Nazarov, Treil and Volberg formulated the two weight question for
the Hilbert transform [35], that in turn led to the following NTV conjecture:

2See e.g. chapter VII of Stein [34] and the references given there for a historical background.
3See e.g. chapter V of [34] and the references given there for the long history of this investigation.
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Conjecture 1 [35] The Hilbert transform is bounded from L2 .RnI �/ to
L2 .RnI!/, i.e.

kH .f�/kL2.RnI!/ � kfkL2.RnI�/ ; f 2 L2 .RnI �/ ; (2)

if and only if the two weight A2 condition with two tails holds,

�
1

jQj

Z
Q

s2Qd! .x/

�
1

jQj

Z
Q

s2Qd� .x/


� 1;

uniformly over all cubes Q, and the two testing conditions hold,

kH1Q�kL2.RnI!/ � k1QkL2.RnI�/ D
p
jQj� ;

kH�1Q!kL2.RnI�/ � k1QkL2.RnI!/ D
p
jQj!;

uniformly over all cubes Q.

In a groundbreaking series of papers including [19, 20] and [21], Nazarov, Treil
and Volberg used weighted Haar decompositions with random grids, introduced
their ‘pivotal’ condition, and proved the above conjecture under the side assumption
that the pivotal condition held. Subsequently, in joint work of two of us, Sawyer
and Uriarte-Tuero, with Lacey [16], it was shown that the pivotal condition was not
necessary in general, a necessary ‘energy’ condition was introduced as a substitute,
and a hybrid merging of these two conditions was shown to be sufficient for use
as a side condition. Eventually, these three authors with Shen established the NTV
conjecture in a two part paper; Lacey, Sawyer, Shen and Uriarte-Tuero [13] and
Lacey [8]. A key ingredient in the proof was an ‘energy reversal’ phenomenon
enabled by the Hilbert transform kernel equality

1

y � x
�

1

y � x0
D

x � x0

.y � x/ .y � x0/
;

having the remarkable property that the denominator on the right hand side remains
positive for all y outside the smallest interval containing both x and x0. This proof of
the NTV conjecture was given in the special case that the weights � and ! had no
point masses in common, largely to avoid what were then thought to be technical
issues. However, these issues turned out to be considerably more interesting, and
this final assumption of no common point masses was removed shortly after by
Hytönen [6], who also simplified some aspects of the proof.

At this juncture, attention naturally turned to the analogous two weight inequal-
ities for higher dimensional singular integrals, as well as ˛-fractional singular
integrals such as the Cauchy transform in the plane. In a long paper begun in [28]
on the arXiv in 2013, and subsequently appearing in [30], the authors introduced the
appropriate notions of Poisson kernel to deal with the A˛2 condition on the one hand,
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and the ˛-energy condition on the other hand (unlike for the Hilbert transform, these
two Poisson kernels differ in general). The main result of that paper established the
T1 theorem for ‘elliptic’ vectors of singular integrals under the side assumption
that an energy condition and its dual held, thus identifying the culprit in higher
dimensions as the energy conditions. A general T1 conjecture is this (see below for
definitions).

Conjecture 2 Let T˛;n denote an elliptic vector of standard ˛-fractional singular
integrals in R

n. Then T˛;n is bounded from L2 .RnI �/ to L2 .RnI!/, i.e.

kT˛;n .f�/kL2.RnI!/ � kfkL2.RnI�/ ; f 2 L2 .RnI �/ ; (3)

if and only if the two one-tailed A˛
2 conditions with holes hold, the punctured A˛;punct

2

conditions hold, and the two testing conditions hold,

kT˛;n1Q�kL2.RnI!/ � k1QkL2.RnI�/ D
p
jQj� ;��T˛;n;dual1Q!

��
L2.RnI�/

� k1QkL2.RnI!/ D
p
jQj!;

for all cubes Q in R
n (whose sides need not be parallel to the coordinate axes).

In [32], the authors have recently shown that the energy conditions are not
necessary for boundedness of elliptic vectors of singular integrals in general, but
have left open the following conjecture, which in view of the aforementioned main
result in [30], would yield the T1 theorem for gradient elliptic operators. An elliptic
˛-fractional singular integral vector T˛;n in R

n is said to be gradient elliptic if both
jrxK˛ .x; y/j � jx � yj˛�n�1 and

ˇ̌
ryK˛ .x; y/

ˇ̌
� jx � yj˛�n�1.

Conjecture 3 Let T˛;n denote a gradient elliptic vector of standard ˛-fractional
singular integrals in R

n. If T˛;n is bounded from L2 .RnI �/ to L2 .RnI!/, then the
energy conditions hold as defined in Definition 2.6 below.

While the energy conditions are not necessary for elliptic operators in general
[32], there are some cases in which they have been proved to hold. Of course, they
hold for the Hilbert transform on the line [16], and in recent joint work with M.
Lacey and B. Wick, the five of us have established that the energy conditions hold
for the Cauchy transform in the plane in the special case where one of the measures
is supported on either a straight line or a circle, thus proving the T1 theorem in this
case. The key to this result was an extension of the energy reversal phenomenon
for the Hilbert transform to the setting of the Cauchy transform, and here the
one-dimensional nature of the line and circle played a critical role. In particular,
a special decomposition of a 2-dimensional measure into ‘end’ and ‘side’ pieces
played a crucial role, and was in fact discovered independently in both [26] and
[17]. A further instance of energy reversal occurs in our T1 theorem [31] when one
measure is compactly supported on a C1;ı curve in R

n.
The paper [18, v3] by Lacey and Wick overlaps both our paper [30] and this

paper to some extent, and we refer the reader to [30] for a more detailed discussion.
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Finally, we mention an entirely different approach to investigating the two weight
problem that has attracted even more attention than the T1 approach we just
described. Nazarov has shown that the two-tailed A˛

2 condition of Muckenhoupt
(see below) is insufficient for (3), and this begs the question of strengthening the
Muckenhoupt condition enough to make it sufficient for (3). The great advantage
of this approach is that strengthened Muckenhoupt conditions are generally ‘easy’
to check as compared to the highly unstable testing conditions. The disadvantage
of course is that such conditions have never been shown to characterize (3). The
literature devoted to these issues, beginning with that of Pérez [22], and continuing
more recently with work of many groups involving, among others, D. Cruz-Uribe,
M. Lacey, A. K. Lerner, J. M. Martell, F. Nazarov, C. Pérez, A. Reznikov and A.
Volberg, is both too vast and too tangential to this paper to record here, and we
encourage the reader to search the web for more on ‘bumped-up’ Muckenhoupt
conditions.4

This paper is concerned with the T1 approach and is a sequel to our first paper
[30]. We prove here a two weight inequality for standard ˛-fractional Calderón-
Zygmund operators T˛ in Euclidean space R

n, where we assume n-dimensional
A˛
2 conditions (with holes), punctured A˛:punct

2 conditions, and certain ˛-energy
conditions as side conditions on the weights (in higher dimensions the Poisson
kernels used in these two conditions differ). The two main differences in this
theorem here are that we state and prove5 our theorem in the more general setting
of quasicubes (as in [28]), and more notably, we now permit the weights, or
measures, to have common point masses, something not permitted in [30] (and
only obtained for a partial range of ˛ in [18, version 3]). As a consequence, we
use A˛

2 conditions with holes as in the one-dimensional setting of Hytönen [6],
together with punctured A˛;punct

2 conditions, as the usual A˛2 ‘without punctures’ fails
whenever the measures have a common point mass. The extension to permitting
common point masses uses the two weight Poisson inequality in [24] to derive
functional energy, together with a delicate adaptation of arguments in [28]. The
key point here is the use of the (typically necessary) ‘punctured’ Muckenhoupt
A˛;punct
2 conditions below. They turn out to be crucial in estimating the backward

Poisson testing condition later in the paper. We remark that Hytönen’s bilinear
dyadic Poisson operator and shifted dyadic grids [6] in dimension n D 1 can be
extended to derive functional energy in higher dimensions, but at a significant cost
of increased complexity. See the previous version of this paper on the arXiv for
this approach,6 and also [18] where Lacey and Wick use this approach. Finally,
we point out that our use of punctured Muckenhoupt conditions provides a simpler
alternative to Hytönen’s method of extending to common point masses the NTV

4Starting e.g. with the recent articles [1] and [10].
5Very detailed proofs of all of the results here can be found on the arXiv [29].
6Additional small arguments are needed to complete the shifted dyadic proof given there, but we
omit them in favour of the simpler approach here resting on punctured Muckenhoupt conditions
instead of holes. The authors can be contacted regarding completion of the shifted dyadic proof.
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conjecture for the Hilbert transform [6]. The Muckenhoupt A˛
2 conditions (with

holes) are also typically necessary for the norm inequality, but the proofs require
extensive modification when quasicubes and common point masses are included.

On the other hand, the extension to quasicubes in the setting of no common point
masses turns out to be, after checking all the details, mostly a cosmetic modification
of the proof in [30], as demonstrated in [28]. The use of quasicubes is however
crucial in our T1 theorem when one of the measures is compactly supported on a
C1;ı curve [31], and this accounts for their inclusion here.

We also introduce a new side condition on a measure, that we call k-energy
dispersed, which captures the notion that a measure is not supported too near a
k-dimensional plane at any scale. When 0 � ˛ < n is appropriately related to k,
we are able to obtain the necessity of the energy conditions for k-energy dispersed
measures, and hence a T1 theorem for strongly elliptic operators T˛ . The case
k D n � 1 is similar to the condition of uniformly full dimension introduced in
[18, versions 2 and 3].

We begin by recalling the notion of quasicube used in [28] - a special case of the
classical notion used in quasiconformal theory.

Definition 1.1 We say that a homeomorphism � W R
n ! R

n is a globally
biLipschitz map if

k�kLip � sup
x;y2Rn

k�.x/ ��.y/k

kx � yk
<1; (4)

and
����1

��
Lip <1.

Note that a globally biLipschitz map � is differentiable almost everywhere, and
that there are constants c;C > 0 such that

c � J� .x/ � jdet D�.x/j � C; x 2 R
n:

Example 1.2 Quasicubes can be wildly shaped, as illustrated by the standard
example of a logarithmic spiral in the plane f" .z/ D z jzj2"i D zei" ln.zz/. Indeed,
f" W C! C is a globally biLipschitz map with Lipschitz constant 1 C C" since
f �1
" .w/ D w jwj�2"i and

rf" D

�
@f"
@z
;
@f"
@z


D

�
jzj2"i C i" jzj2"i ; i"

z

z
jzj2"i


:

On the other hand, f" behaves wildly at the origin since the image of the closed unit
interval on the real line under f" is an infinite logarithmic spiral.

Notation 1 We define Pn to be the collection of half open, half closed cubes in
R

n with sides parallel to the coordinate axes. A half open, half closed cube Q
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in R
n has the form Q D Q .c; `/ �

nY
kD1



ck �

`
2
; ck C

`
2

�
for some ` > 0 and

c D .c1; : : : ; cn/ 2 R
n. The cube Q .c; `/ is described as having center c and

sidelength `.

We repeat the natural quasi definitions from [28].

Definition 1.3 Suppose that � W Rn ! R
n is a globally biLipschitz map.

1. If E is a measurable subset of Rn, we define �E � f�.x/ W x 2 Eg to be the
image of E under the homeomorphism �.

(a) In the special case that E D Q is a cube in R
n, we will refer to �Q as a

quasicube (or �-quasicube if � is not clear from the context).
(b) We define the center c�Q D c .�Q/ of the quasicube�Q to be the point�cQ

where cQ D c .Q/ is the center of Q.
(c) We define the side length ` .�Q/ of the quasicube �Q to be the sidelength

` .Q/ of the cube Q.
(d) For r > 0 we define the ‘dilation’ r�Q of a quasicube �Q to be �rQ where

rQ is the usual ‘dilation’ of a cube in R
n that is concentric with Q and having

side length r` .Q/.

2. If K is a collection of cubes in R
n, we define �K � f�Q W Q 2 Kg to be the

collection of quasicubes �Q as Q ranges over K.
3. If F is a grid of cubes in R

n, we define the inherited quasigrid structure on �F
by declaring that �Q is a child of �Q0 in �F if Q is a child of Q0 in the grid F.

Note that if �Q is a quasicube, then j�Qj
1
n  jQj

1
n D ` .Q/ D ` .�Q/.

For a quasicube J D �Q, we will generally use the expression jJj
1
n in the

various estimates arising in the proofs below, but will often use ` .J/ when defining
collections of quasicubes. Moreover, there are constants Rbig and Rsmall such that we
have the comparability containments

QC�xQ � Rbig�Q and Rsmall�Q � QC�xQ:

Given a fixed globally biLipschitz map � on R
n, we will define below the

n-dimensional A˛
2 conditions (with holes), punctured Muckenhoupt conditions

A˛;punct
2 , testing conditions, and energy conditions using �-quasicubes in place of

cubes, and we will refer to these new conditions as quasiA˛
2 , quasitesting and

quasienergy conditions. We will then prove a T1 theorem with quasitesting and
with quasiA˛

2 and quasienergy side conditions on the weights. Since quasiA˛
2 \

quasiA˛;punct
2 D A˛

2 \ A˛;punct
2 (see [31]), we usually drop the prefix quasi from the

various Muckenhoupt conditions (warning: quasiA˛
2 ¤ A˛

2 ).
Since the A˛

2 and punctured Muckenhoupt conditions typically hold, this identi-
fies the culprit in higher dimensions as the pair of quasienergy conditions. We point
out that these quasienergy conditions are implied by higher dimensional analogues
of essentially all the other side conditions used previously in two weight theory, in



Two Weight Boundedness 313

particular doubling conditions and the Energy Hypothesis (1.16) in [16], as well as
the condition of k-energy dispersed measures that is introduced below. This leads to
our second theorem, which establishes the T1 theorem for strongly elliptic operators
T˛ when both measures are k-energy dispered with k and ˛ appropriately related.

It turns out that in higher dimensions, there are two natural ‘Poisson integrals’
P˛ and P˛ that arise, the usual Poisson integral P˛ that emerges in connection
with energy considerations, and a different Poisson integral P˛ that emerges in
connection with size considerations. The standard Poisson integral P˛ appears in
the energy conditions, and the reproducing Poisson integral P˛ appears in the A˛

2

condition. These two kernels coincide in dimension n D 1 for the case ˛ D 0

corresponding to the Hilbert transform.

Statements of Results

Now we turn to a precise description of our main two weight theorem.

Assumption: We fix once and for all a globally biLipschitz map � W Rn ! R
n

for use in all of our quasi-notions.

We will prove a two weight inequality for standard ˛-fractional Calderón-
Zygmund operators T˛ in Euclidean space R

n, where we assume the n-dimensional
A˛
2 conditions, new punctured A˛2 conditions, and certain ˛-quasienergy conditions

as side conditions on the weights. In particular, we show that for positive locally
finite Borel measures � and ! in R

n, and assuming that both the quasienergy
condition and its dual hold, a strongly elliptic vector of standard ˛-fractional
Calderón-Zygmund operators T˛ is bounded from L2 .�/ to L2 .!/ if and only if
the A˛

2 condition and its dual hold (we assume a mild additional condition on the
quasicubes for this), the punctured Muckenhoupt condition A˛;punct

2 and its dual
hold, the quasicube testing condition for T˛ and its dual hold, and the quasiweak
boundedness property holds. In order to state our theorem precisely, we define these
terms in the following subsections.

Remark 2.1 It is possible to collect our various Muckenhoupt and quasienergy
assumptions on the weight pair .�; !/ into just two compact side conditions of
Muckenhoupt and quasienergy type. We prefer however, to keep the individual
conditions separate so that the interested reader can track their use below.

Standard Fractional Singular Integrals and the Norm Inequality

Let 0 � ˛ < n. We define a standard ˛-fractional CZ kernel K˛.x; y/ to be a
function defined on R

n�Rn satisfying the following fractional size and smoothness
conditions of order 1C ı for some ı > 0,
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jK˛ .x; y/j � CCZ jx � yj˛�n and jrK˛ .x; y/j � CCZ jx � yj˛�n�1 ; (5)

ˇ̌
rK˛ .x; y/ � rK˛

�
x0; y

�ˇ̌
� CCZ

 ˇ̌
x � x0

ˇ̌
jx � yj

!ı
jx � yj˛�n�1 ;

ˇ̌
x � x0

ˇ̌
jx � yj

�
1

2
;

and the last inequality also holds for the adjoint kernel in which x and y are
interchanged. We note that a more general definition of kernel has only order
of smoothness ı > 0, rather than 1 C ı, but the use of the Monotonicity and
Energy Lemmas below, which involve first order Taylor approximations to the
kernel functions K˛ .�; y/, requires order of smoothness more than 1.

Defining the Norm Inequality

We now turn to a precise definition of the weighted norm inequality

kT˛� fkL2.!/ � NT˛� kfkL2.�/ ; f 2 L2 .�/ : (6)

For this we introduce a family
n
�˛ı;R

o
0<ı<R<1

of nonnegative functions on Œ0;1/

so that the truncated kernels K˛
ı;R .x; y/ D �˛ı;R .jx � yj/K˛ .x; y/ are bounded with

compact support for fixed x or y. Then the truncated operators

T˛�;ı;Rf .x/ �
Z
Rn

K˛
ı;R .x; y/ f .y/ d� .y/ ; x 2 R

n;

are pointwise well-defined, and we will refer to the pair
�

K˛;
n
�˛ı;R

o
0<ı<R<1

	
as an ˛-fractional singular integral operator, which we typically denote by T˛ ,
suppressing the dependence on the truncations.

Definition 2.2 We say that an ˛-fractional singular integral operator

T˛ D
�

K˛;
n
�˛ı;R

o
0<ı<R<1

	
satisfies the norm inequality (6) provided

��T˛�;ı;Rf
��

L2.!/
� NT˛� kfkL2.�/ ; f 2 L2 .�/ ; 0 < ı < R <1:

It turns out that, in the presence of Muckenhoupt conditions, the norm
inequality (6) is essentially independent of the choice of truncations used, and
we now explain this in some detail. A smooth truncation of T˛ has kernel
�ı;R .jx � yj/K˛ .x; y/ for a smooth function �ı;R compactly supported in .ı;R/,
0 < ı < R < 1, and satisfying standard CZ estimates. A typical example of an
˛-fractional transform is the ˛-fractional Riesz vector of operators

R˛;n D
˚
R˛;n` W 1 � ` � n

�
; 0 � ˛ < n:
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The Riesz transforms Rn;˛
` are convolution fractional singular integrals Rn;˛

` f �
Kn;˛
` � f with odd kernel defined by

K˛;n
` .w/ �

w`

jwjnC1�˛
�
�` .w/

jwjn�˛ ; w D
�
w1; : : : ;wn

�
:

However, in dealing with energy considerations, and in particular in the Mono-
tonicity Lemma below where first order Taylor approximations are made on the
truncated kernels, it is necessary to use the tangent line truncation of the Riesz
transform R˛;n` whose kernel is defined to be �` .w/  ˛

ı;R .jwj/ where  ˛
ı;R is

continuously differentiable on an interval .0; S/ with 0 < ı < R < S, and where
 ˛
ı;R .r/ D r˛�n if ı � r � R, and has constant derivative on both .0; ı/ and .R; S/

where  ˛
ı;R .S/ D 0. Here S is uniquely determined by R and ˛. Finally we set

 ˛
ı;R .0/ D 0 as well, so that the kernel vanishes on the diagonal and common point

masses do not ‘see’ each other. Note also that the tangent line extension of a C1;ı

function on the line is again C1;ı with no increase in the C1;ı norm.
It was shown in the one dimensional case with no common point masses in [13],

that boundedness of the Hilbert transform H with one set of appropriate truncations
together with the A˛2 condition without holes, is equivalent to boundedness of
H with any other set of appropriate truncations. We need to extend this to R˛;n

and more general operators in higher dimensions and to permit common point
masses, so that we are free to use the tangent line truncations throughout the
proof of our theorem. For this purpose, we note that the difference between the
tangent line truncated kernel �` .w/  ˛

ı;R .jwj/ and the corresponding cutoff kernel
�` .w/ 1Œı;R� .jwj/ jwj

˛�n satisfies (since both kernels vanish at the origin)

ˇ̌
�` .w/  

˛
ı;R .jwj/��` .w/ 1Œı;R� .jwj/ jwj

˛�n
ˇ̌

�
1X

kD0

2�k.n�˛/
˚�
2�kı

�˛�n
1Œ2�k�1ı;2�kı� .jwj/

�
C

1X
kD1

2�k.n�˛/
˚�
2kR

�˛�n
1Œ2k�1R;2kR� .jwj/

�

�

1X
kD0

2�k.n�˛/K2�kı .w/C

1X
kD1

2�k.n�˛/K2kR .w/ ;

where the kernels K� .w/ �
1

�n�˛ 1Œ�;2�� .jwj/ are easily seen to satisfy, uniformly in
�, the norm inequality (12) with constant controlled by the offset A˛2 condition (7)
below. The equivalence of the norm inequality for these two families of truncations
now follows from the summability of the series

P1
kD0 2

�k.n�˛/ for 0 � ˛ < n. The
case of more general families of truncations and operators is similar.

Quasicube Testing Conditions

The following ‘dual’ quasicube testing conditions are necessary for the boundedness
of T˛ from L2 .�/ to L2 .!/,
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T2T˛ � sup
Q2�Pn

1

jQj�

Z
Q

ˇ̌
T˛
�
1Q�

�ˇ̌2
! <1;

�
T�

T˛
�2
� sup

Q2�Pn

1

jQj!

Z
Q

ˇ̌
.T˛/�

�
1Q!

�ˇ̌2
� <1;

and where we interpret the right sides as holding uniformly over all tangent line
truncations of T˛ .

Remark 2.3 We alert the reader that the symbols Q; I; J;K will all be used to denote
either cubes or quasicubes, and the context will make clear which is the case.
Throughout most of the proof of the main theorem only quasicubes are considered.

Quasiweak Boundedness Property

The quasiweak boundedness property for T˛ with constant C is given by

ˇ̌
ˇ̌
Z

Q
T˛
�
1Q0�

�
d!

ˇ̌
ˇ̌ �WBPT˛

p
jQj! jQ0j� ;

for all quasicubes Q;Q0 with
1

C
�
jQj

1
n

jQ0j
1
n

� C;

and either Q � 3Q0 n Q0 or Q0 � 3Q n Q;

and where we interpret the left side above as holding uniformly over all tangent line
trucations of T˛ . Note that the quasiweak boundedness property is implied by either
the tripled quasicube testing condition,

��13QT˛
�
1Q�

���
L2.!/ � T

triple
T˛ k1QkL2.�/ ; for all quasicubes Q in R

n;

or its dual defined with � and ! interchanged and the dual operator T˛;� in place
of T˛ . In turn, the tripled quasicube testing condition can be obtained from the
quasicube testing condition for the truncated weight pairs

�
!; 1Q�

�
.

Poisson Integrals and A˛
2

Let � be a locally finite positive Borel measure on R
n, and suppose Q is an �-

quasicube in R
n. Recall that jQj

1
n  ` .Q/ for a quasicube Q. The two ˛-fractional

Poisson integrals of � on a quasicube Q are given by:
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P˛ .Q; �/ �
Z
Rn

jQj
1
n�

jQj
1
n C jx � xQj

	nC1�˛
d� .x/ ;

P˛ .Q; �/ �
Z
Rn

0
B@ jQj

1
n�

jQj
1
n C jx � xQj

	2
1
CA

n�˛

d� .x/ ;

where we emphasize that jx � xQj denotes Euclidean distance between x and xQ and
jQj denotes the Lebesgue measure of the quasicube Q. We refer to P˛ as the standard
Poisson integral and to P˛ as the reproducing Poisson integral.

We say that the pair K;K0 in Pn are neighbours if K and K0 live in a common
dyadic grid and both K � 3K0 n K0 and K0 � 3K n K, and we denote by Nn the set
of pairs .K;K0/ in Pn � Pn that are neighbours. Let

�Nn D
˚�
�K; �K0

�
W
�
K;K0

�
2 Nn

�

be the corresponding collection of quasineighbour pairs of quasicubes. Let � and
! be locally finite positive Borel measures on R

n, possibly having common point
masses, and suppose 0 � ˛ < n. Then we define the classical offset A˛2 constants by

A˛2 .�; !/ � sup
.Q;Q0/2�Nn

jQj�
jQj1�

˛
n

jQ0j!

jQ0j1�
˛
n
: (7)

Since the cubes in Pn are products of half open, half closed intervals Œa; b/, the
neighbouring quasicubes .Q;Q0/ 2 �Nn are disjoint, and the common point masses
of � and ! do not simultaneously appear in each factor.

We now define the one-tailed A˛
2 constant using P˛ . The energy constants Estrong

˛

introduced in the next subsection will use the standard Poisson integral P˛ .

Definition 2.4 The one-tailed constants A˛
2 and A˛;�

2 for the weight pair .�; !/ are
given by

A˛
2 � sup

Q2�Pn
P˛
�
Q; 1Qc�

� jQj!
jQj1�

˛
n
<1;

A˛;�
2 � sup

Q2�Pn
P˛
�
Q; 1Qc!

� jQj�
jQj1�

˛
n
<1:

Note that these definitions are the analogues of the corresponding conditions
with ‘holes’ introduced by Hytönen [5] in dimension n D 1 – the supports of the
measures 1Qc� and 1Q! in the definition of A˛

2 are disjoint, and so the common
point masses of � and ! do not appear simultaneously in each factor. Note also that,
unlike in [28], where common point masses were not permitted, we can no longer
assert the equivalence of A˛

2 with holes taken over quasicubes with A˛
2 with holes

taken over cubes.



318 E.T. Sawyer et al.

Punctured A’
2

Conditions

As mentioned earlier, the classical A˛2 characteristic supQ2�Qn
jQj!

jQj1�
˛
n

jQj�

jQj1�
˛
n

fails to

be finite when the measures � and ! have a common point mass - simply let Q
in the sup above shrink to a common mass point. But there is a substitute that is
quite similar in character that is motivated by the fact that for large quasicubes Q,
the sup above is problematic only if just one of the measures is mostly a point mass
when restricted to Q. The one-dimensional version of the condition we are about to
describe arose in Conjecture 1.12 of Lacey [9], and it was pointed out in [6] that
its necessity on the line follows from the proof of Proposition 2.1 in [16]. We now
extend this condition to higher dimensions, where its necessity is more subtle.

Given an at most countable set P D fpkg
1
kD1 in R

n, a quasicube Q 2 �Pn, and a
positive locally finite Borel measure �, define

� .Q;P/ � jQj� � sup f� .pk/ W pk 2 Q \Pg ;

where the supremum is actually achieved since
P

pk2Q\P � .pk/ <1 as� is locally
finite. The quantity � .Q;P/ is simply thee�measure of Q wheree� is the measure �
with its largest point mass from P in Q removed. Given a locally finite measure pair
.�; !/, let P.�;!/ D fpkg

1
kD1 be the at most countable set of common point masses

of � and !. Then the weighted norm inequality (6) typically implies finiteness of
the following punctured Muckenhoupt conditions:

A˛;punct
2 .�; !/ � sup

Q2�Pn

!
�
Q;P.�;!/

�
jQj1�

˛
n

jQj�
jQj1�

˛
n
;

A˛;�;punct
2 .�; !/ � sup

Q2�Pn

jQj!
jQj1�

˛
n

�
�
Q;P.�;!/

�
jQj1�

˛
n

:

Lemma 2.5 Let T˛ be an ˛-fractional singular integral operator as above, and
suppose that there is a positive constant C0 such that

A˛2 .�; !/ � C0N
2
T˛ .�; !/ ;

for all pairs .�; !/ of positive locally finite measures having no common point
masses. Now let � and ! be positive locally finite Borel measures on R

n and let
P.�;!/ be the possibly nonempty set of common point masses. Then we have

A˛;punct
2 .�; !/C A˛;�;punct

2 .�; !/ � 4C0N
2
T˛ .�; !/ :

Proof Fix a quasicube Q 2 �Pn. Suppose first that P.�;!/ \ Q D fpkg
2N
kD1 is finite

with an even number of points. Choose k1 2 N2N D f1; 2; : : : ; 2Ng so that

� .pk1 / D max
k2N2N

� .pk/ :
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Then choose k2 2 N2N n fk1g such that

! .pk2 / D max
k2N2Nnfk1g

! .pk/ :

Repeat this procedure so that

�
�
pk2mC1

�
D max

k2N2Nnfk1;:::k2mg
� .pk/ ; k2mC1 2 N2N n fk1; : : : k2mg ;

!
�
pk2mC2

�
D max

k2N2Nnfk1;:::k2mC1g
! .pk/ ; k2mC2 2 N2N n fk1; : : : k2mC1g ;

for each m � N � 1. It is now clear that both

N�1X
iD0

�
�
pk2iC1

�
�
1

2
�
�
Q \P.�;!/

�
and

N�1X
iD0

!
�
pk2iC2

�
�
1

2



!
�
Q \P.�;!/

�
� ! .p1/

�
:

In the case of an odd number 2N�1 of common point masses, the second inequality
will have N � 1 replaced with N � 2.

Now, returning to the case of 2N common point masses, define new measurese�
and e! by

e� � 1Q� �

N�1X
iD0

�
�
pk2iC2

�
ıpk2iC2

and e! D 1Q! �

N�1X
iD0

!
�
pk2iC1

�
ıpk2iC1

so that

jQje� �
1

2
jQj� and jQje! �

1

2
!
�
Q;P.�;!/

�

Now e� and e! have no common point masses and NT˛ .�; !/ is monotone in each
measure separately, so we have

!
�
Q;P.�;!/

�
jQj1�

˛
n

jQj�
jQj1�

˛
n
� 4A˛2 .e�;e!/ � 4C0N

2
T˛ .e�;e!/ � 4C0N

2
T˛ .�; !/ :

Thus A˛;punct
2 .�; !/ � 4C0N2

T˛ .�; !/ if the number of common point masses
in Q is finite. A limiting argument proves the general case. The dual inequality
A˛;�;punct
2 .�; !/ � 4C0N2

T˛ .�; !/ now follows upon interchanging the measures �
and !. ut

Now we turn to the definition of a quasiHaar basis of L2 .�/.
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A Weighted QuasiHaar Basis

We will use a construction of a quasiHaar basis in R
n that is adapted to a measure �

(cf. [20] for the nonquasi case and [7] for the geometrically doubling quasi-metric
space case). Given a dyadic quasicube Q 2 �D, where D is a dyadic grid of cubes
from Pn, let 4�Q denote orthogonal projection onto the finite dimensional subspace
L2Q .�/ of L2 .�/ that consists of linear combinations of the indicators of the children
C .Q/ of Q that have �-mean zero over Q:

L2Q .�/ �

8<
:f D

X
Q02C.Q/

aQ0 1Q0 W aQ0 2 R;

Z
Q

fd� D 0

9=
; :

Then we have the important telescoping property for dyadic quasicubes Q1 � Q2

(where ŒQ1;Q2/ �
˚
Q dyadic W Q1 � Q � Q2

�
):

1Q0 .x/

0
@ X

Q2ŒQ1;Q2/

4
�
Qf .x/

1
A D 1Q0 .x/

�
E
�
Q0

f � E
�
Q2

f
�
; Q0 2 C .Q1/ ; f 2 L2 .�/ :

(8)
We will at times find it convenient to use a fixed orthonormal basis

˚
h�;aQ

�
a2�n

of

L2Q .�/ where �n � f0; 1g
n n f1g is a convenient index set with 1 D .1; 1; : : : ; 1/.

Then
˚
h�;aQ

�
a2�n and Q2�D is an orthonormal basis for L2 .�/, with the understanding

that we add the constant function 1 if � is a finite measure. In particular we have

kfk2L2.�/ D
X

Q2�D

��4�Qf
��2

L2.�/
D

X
Q2�D

ˇ̌b̌f .Q/
ˇ̌
ˇ2 ;

ˇ̌b̌f .Q/
ˇ̌
ˇ2 �X

a2�n

ˇ̌
ˇ˝f ; h�;aQ

˛
�

ˇ̌
ˇ2 ;

where the measure is suppressed in the notationbf . Indeed, this follows from (8) and
Lebesgue’s differentiation theorem for quasicubes. We also record the following
useful estimate. If I0 is any of the 2n �D-children of I, and a 2 �n, then

ˇ̌
E
�

I0

h�;aI

ˇ̌
�

q
E
�

I0

�
h�;aI

�2
�

1q
jI0j�

: (9)

The Strong Quasienergy Conditions

Given a dyadic quasicube K 2 �D and a positive measure � we define the
quasiHaar projection P�K �

P
J2�DW J�K

4
�
J on K by
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P�Kf D
X

J2�DW J�K

X
a2�n

˝
f ; h�;aJ

˛
�

h�;aJ and
��P�Kf

��2
L2.�/ D

X
J2�DW J�K

X
a2�n

ˇ̌
ˇ˝f ; h�;aJ

˛
�

ˇ̌
ˇ2 ;

and where a quasiHaar basis
˚
h�;aJ

�
a2�n and J2�D� adapted to the measure � was

defined in the subsubsection on a weighted quasiHaar basis above.
Now we define various notions for quasicubes which are inherited from the same

notions for cubes. The main objective here is to use the familiar notation that one
uses for cubes, but now extended to �-quasicubes. We have already introduced
the notions of quasigrids �D, and center, sidelength and dyadic associated to
quasicubes Q 2 �D, as well as quasiHaar functions, and we will continue to extend
to quasicubes the additional familiar notions related to cubes as we come across
them. We begin with the notion of deeply embedded. Fix a quasigrid �D. We say
that a dyadic quasicube J is .r; "/-deeply embedded in a (not necessarily dyadic)
quasicube K, which we write as J �r;" K, when J � K and both

` .J/ � 2�r` .K/ ; (10)

qdist .J; @K/ �
1

2
` .J/" ` .K/1�" ;

where we define the quasidistance qdist .E;F/ between two sets E and F to be the
Euclidean distance dist

�
��1E; ��1F

�
between the preimages ��1E and ��1F of

E and F under the map �, and where we recall that ` .J/  jJj
1
n . For the most part

we will consider J �r;" K when J and K belong to a common quasigrid �D, but an
exception is made when defining the strong energy constants below.

Recall that in dimension n D 1, and for ˛ D 0, the energy condition constant
was defined by

E2 � sup
ID P[Ir

1

jIj�

1X
rD1

�
P˛ .Ir; 1I�/

jIrj

2 ��P!Ir
x
��2

L2.!/
;

where I and Ir are intervals in the real line, and P[ denotes a pairwise disjoint union.
The extension to higher dimensions we use here is that of ‘strong quasienergy
condition’ below. Later on, in the proof of the theorem, we will break down this
strong quasienergy condition into various smaller quasienergy conditions, which
are then used in different ways in the proof.

We define a quasicube K (not necessarily in �D) to be an alternate �D-
quasicube if it is a union of 2n �D-quasicubes K0 with side length ` .K0/ D 1

2
` .K/

(such quasicubes were called shifted in [28], but that terminology conflicts with
the more familiar notion of shifted quasigrid). Thus for any �D-quasicube L there
are exactly 2n alternate �D-quasicubes of twice the side length that contain L, and
one of them is of course the �D-parent of L. We denote the collection of alternate
�D-quasicubes by A�D.
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The extension of the energy conditions to higher dimensions in [28] used the
collection

Mr;"�deep .K/ � fmaximal J �r;" Kg

of maximal .r; "/-deeply embedded dyadic subquasicubes of a quasicube K (a
subquasicube J of K is a dyadic subquasicube of K if J 2 �D when �D is a
dyadic quasigrid containing K). This collection of dyadic subquasicubes of K is of
course a pairwise disjoint decomposition of K.We also defined there a refinement
and extension of the collection M.r;"/�deep .K/ for certain K and each ` � 1. For an
alternate quasicube K 2 A�D, define M.r;"/�deep;�D .K/ to consist of the maximal
r-deeply embedded �D-dyadic subquasicubes J of K. (In the special case that K
itself belongs to �D, then M.r;"/�deep;�D .K/ DM.r;"/�deep .K/.) Then in [28] for
` � 1 we defined the refinement (where 	`K0 denotes the `th ancestor of K0 in the
grid):

M`
.r;"/�deep;�D .K/ �

˚
J 2M.r;"/�deep;�D

�
	`K0

�
for some K0 2 C�D .K/ W

J � L for some L 2M.r;"/�deep .K/
�
;

where C�D .K/ is the obvious extension to alternate quasicubes of the set of �D-
dyadic children. Thus M`

.r;"/�deep;�D .K/ is the union, over all quasichildren K0 of

K, of those quasicubes in M.r;"/�deep
�
	`K0

�
that happen to be contained in some

L 2M.r;"/�deep;�D .K/. We then define the strong quasienergy condition as follows.

Definition 2.6 Let 0 � ˛ < n and fix parameters .r; "/. Suppose � and ! are
positive Borel measures on R

n possibly with common point masses. Then the strong
quasienergy constant Estrong

˛ is defined by7

�
Estrong
˛

�2
� sup

�D
sup

ID P[Ir
I;Ir2�D

1

jIj�

1X
rD1

X
J2Mr;"�deep.Ir/

 
P˛ .J; 1I�/

jJj
1
n

!2 ��P!J x
��2

L2.!/

C sup
�D

sup
I2A�D

sup
`�0

1

jIj�

X
J2M`

.r;"/�deep;�D.I/

 
P˛ .J; 1I�/

jJj
1
n

!2 ��P!J x
��2

L2.!/ :

Similarly we have a dual version of Estrong
˛ denoted Estrong;�

˛ , and both depend
on r and " as well as on n and ˛. An important point in this definition is that the
quasicube I in the second line is permitted to lie outside the quasigrid �D, but only
as an alternate dyadic quasicube I 2 A�D. In the setting of quasicubes we continue
to use the linear function x in the final factor

��P!J x
��2

L2.!/ of each line, and not the

7The first line in the display in Definition 5 in [29] is missing notation that is corrected here.
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pushforward of x by�. The reason of course is that this condition is used to capture
the first order information in the Taylor expansion of a singular kernel. There is a
logically weaker form of the quasienergy conditions that we discuss after stating
our main theorem, but these refined quasienergy conditions are more complicated
to state, and have as yet found no application - the strong energy conditions above
suffice for use when one measure is compactly supported on a C1;ı curve as in [31].

Statement of the Theorems

We can now state our main quasicube two weight theorem for general measures
allowing common point masses, as well as our application to energy dispersed
measures. Recall that � W Rn ! R

n is a globally biLipschitz map, and that �Pn

denotes the collection of all quasicubes in R
n whose preimages under � are usual

cubes with sides parallel to the coordinate axes. Denote by �D � �Pn a dyadic
quasigrid in R

n. For the purpose of obtaining necessity of A˛
2 for n

2
� ˛ < n, we

adapt the notion of strong ellipticity from [30].

Definition 2.7 Fix a globally biLipschitz map �. Let T˛ D
n
T˛j

oJ

jD1
be a vector of

singular integral operators with standard kernels
n
K˛

j

oJ

jD1
. We say that T˛ is strongly

elliptic with respect to� if for each m 2 f1;�1gn, there is a sequence of coefficientsn
�m

j

oJ

jD1
such that

ˇ̌
ˇ̌
ˇ̌

JX
jD1

�m
j K˛

j .x; xC tu/

ˇ̌
ˇ̌
ˇ̌ � ct˛�n; t 2 R; (11)

holds for all unit vectors u in the quasi-n-ant �Vm (i.e. an n-dimensional quasi-
quadrant) where

Vm D fx 2 R
n W mixi > 0 for 1 � i � ng ; m 2 f1;�1gn :

Theorem 2.8 Suppose that T˛ is a standard ˛-fractional singular integral operator
on R

n, and that ! and � are positive Borel measures on R
n (possibly having

common point masses). Set T˛� f D T˛ .f�/ for any smooth truncation of T˛� . Let
� W Rn ! R

n be a globally biLipschitz map.

1. Suppose 0 � ˛ < n. Then the operator T˛� is bounded from L2 .�/ to L2 .!/, i.e.

kT˛� fkL2.!/ � NT˛� kfkL2.�/ ; (12)

uniformly in smooth truncations of T˛ , and moreover
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NT˛� � C˛

�q
A˛
2 C A˛;�

2 C A˛;punct
2 C A˛;�;punct

2 C TT˛ C T�

T˛ C Estrong
˛ C Estrong;�

˛ C WBPT˛


;

provided that the two dual A˛
2 conditions and the two dual punctured Mucken-

houpt conditions all hold, and the two dual quasitesting conditions for T˛ hold,
the quasiweak boundedness property for T˛ holds for a sufficiently large constant
C depending on the goodness parameter r, and provided that the two dual strong
quasienergy conditions hold uniformly over all dyadic quasigrids �D � �Pn,
i.e. Estrong

˛ C Estrong;�
˛ < 1, and where the goodness parameters r and " in the

definition of the collections M.r;"/�deep .K/ and M`
.r;"/�deep;�D .K/ appearing in

the strong energy conditions, are fixed sufficiently large and small respectively
depending only on n and ˛.

2. Conversely, suppose 0 � ˛ < n and that T˛ D
n
T˛j

oJ

jD1
is a vector of Calderón-

Zygmund operators with standard kernels
n
K˛

j

oJ

jD1
. In the range 0 � ˛ < n

2
, we

assume the ellipticity condition from ([30]): there is c > 0 such that for each unit
vector u there is j satisfying

ˇ̌
K˛

j .x; xC tu/
ˇ̌
� ct˛�n; t 2 R: (13)

For the range n
2
� ˛ < n, we assume the strong ellipticity condition in

Definition 2.7 above. Furthermore, assume that each operator T˛j is bounded
from L2 .�/ to L2 .!/,

����T˛j �� f
���

L2.!/
� NT˛j kfkL2.�/ :

Then the fractional A˛
2 conditions (with ‘holes’) hold as well as the punctured

Muckenhoupt conditions, and moreover,

q
A˛
2 CA˛;�

2 C A˛;punct
2 C A˛;�;punct

2 � CNT˛ :

Problem 1 Given any strongly elliptic vector T˛ of classical ˛-fractional
Calderón-Zygmund operators, it is an open question whether or not the usual
(quasi or not) energy conditions are necessary for boundedness of T˛ . See [27] for
a failure of energy reversal in higher dimensions – such an energy reversal was
used in dimension n D 1 to prove the necessity of the energy condition for the
Hilbert transform, and also in [26] and [14] for the Riesz transforms and Cauchy
transforms respectively when one of the measures is supported on a line, and in
[31] when one of the measures is supported on a C1;ı curve.

Remark 2.9 If Definition 2.7 holds for some T˛ and�, then�must be fairly tame,
in particular the logarithmic spirals in Example 1.2 are ruled out! On the other hand,
the vector of Riesz transforms R˛;n is easily seen to be strongly elliptic with respect
to � if � satisfies the following sector separation property. Given a hyperplane H
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and a perpendicular line L intersecting at point P, there exist spherical cones SH

and SL intersecting only at the point P0 D �.P/, such that H0 � �H � SH and
L0 � �L � SL and

dist .x; @SH/  jxj ; x 2 H and dist .x; @SL/  jxj ; x 2 L:

Examples of globally biLipshcitz maps� that satisfy the sector separation property
include finite compositions of maps of the form

�
�
x1; x

0
�
D
�
x1; x

0 C  .x1/
�
;

�
x1; x

0
�
2 R

n;

where  W R! R
n�1 is a Lipschitz map with sufficiently small Lipschitz constant.

In order to state our application to energy dispersed measures, we introduce some
notation and a definition. Fix a globally biLipschitz map� W Rn ! R

n. For 0 � k �
n� 1, denote by Ln

k the collection of all k-dimensional planes in R
n. If in addition J

is an �-quasicube in R
n, denote by Mn

k .J; �/ the ‘moments’

Mn
k .J; �/

2 � inf
L2Ln

k

Z
J

dist .x;L/2 d� .x/ ;

and note that Mn
0 .J; �/ is related to the energy E .J; �/ �

s
E
�
J

ˇ̌
ˇ̌ x�E

�
J x

jJj
1
n

ˇ̌
ˇ̌2; E�J x D

1
jJj�

R
J xd� .x/:

Mn
0 .J; �/

2 D

Z
J

ˇ̌
x � E

�
J x
ˇ̌2

d� .x/ D jJj� jJj
2
n E .J; �/2 :

Clearly the moments decrease in k and we now give a name to various reversals of
this decrease.

Definition 2.10 Suppose � is a locally finite Borel measure on R
n, and let k be an

integer satisfying 0 � k � n � 1. We say that � is k-energy dispersed if there is a
positive constant C D Ck;n such that for all �-quasicubes J,

Mn
0 .J; �/ � CMn

k .J; �/ :

If both � and ! are appropriately energy dispersed relative to the order
0 � ˛ < n, then the T1 theorem holds for the ˛-fractional Riesz vector transform
R˛;n.

Theorem 2.11 Let 0 � ˛ < n and 0 � k � n � 1 sastisfy

�
n � k < ˛ < n; ˛ ¤ n � 1 if 1 � k � n � 2
0 � ˛ < n; ˛ ¤ 1; n � 1 if k D n � 1

:
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Suppose that R˛;n is the ˛-fractional Riesz vector transform on R
n, and that ! and �

are k-energy dispersed locally finite positive Borel measures on R
n (possibly having

common point masses). Set R˛;n
� f D R˛;n .f�/ for any smooth truncation of R˛;n.

Let � W Rn ! R
n be a globally biLipschitz map. Then the operator R˛;n

� is bounded
from L2 .�/ to L2 .!/, i.e.

kR˛
� fkL2.!/ � NR˛� kfkL2.�/ ;

uniformly in smooth truncations of R˛;n, if and only if the Muckenhoupt conditions
hold, the testing conditions hold and the weak boundedness property holds.
Moreover, we have the equivalence

NR˛;n� 

q
A˛
2 CA˛;�

2 C A˛;punct
2 C A˛;�;punct

2 C TR˛;n C T�
R˛;n CWBPR˛;n :

The case k D n � 1 of k-energy dispersed is similar to the notion of uniformly
full dimension introduced by Lacey and Wick in [18, versions 2 and 3]. The proof of
Theorem 2.11 shows that we can also take ! and � to be k1 and k2 energy dispersed
respectively, provided ˛ satisfies the hypotheses with respect to both k1 and k2.

Proof of Theorem 2.8

We now give the proof of Theorem 2.8 in the following sections. Sections “Mono-
tonicity Lemma and Energy Lemma”, “Corona Decompositions and Splittings” and
“Energy Dispersed Measures” are largely taken verbatim from the corresponding
sections of [28], but are included here since their omission here would hinder the
readability of an already complicated argument.

Good Quasicubes and Energy Muckenhoupt Conditions

First we extend the notion of goodness to quasicubes.

Definition 3.1 Let r 2 N and 0 < " < 1. Fix a quasigrid�D. A dyadic quasicube J
is .r; "/-good, or simply good, if for every dyadic superquasicube I, it is the case that
either J has side length greater than 2�r times that of I, or J �r;" I is .r; "/-deeply
embedded in I.

Note that this definition simply asserts that a dyadic quasicube J D �J0 is .r; "/-
good if and only if the cube J0 is .r; "/-good in the usual sense. Finally, we say that
J is r-nearby in K when J � K and

` .J/ > 2�r` .K/ :
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The parameters r; " will be fixed sufficiently large and small respectively later in
the proof, and we denote the set of such good dyadic quasicubes by �D.r;"/�good,
or simply �Dgood when the goodness parameters .r; "/ are understood. Note that
if J0 2 �D.r;"/�good and if J0 � K 2 �D, then either J0 is r-nearby in K or
J0 � J �r;" K.

Throughout the proof, it will be convenient to also consider pairs of quasicubes
J;K where J is .�; "/-deeply embedded in K, written J ��;" K and meaning (10)
holds with the same " > 0 but with � in place of r; as well as pairs of quasicubes
J;K where J is �-nearby in K, ` .J/ > 2��` .K/, for a parameter �� r that will be
fixed later.

Notation 2 We will typically use the side length ` .J/ of a �-quasicube when we
are describing collections of quasicubes, and when we want ` .J/ to be a dyadic or

related number; while we will typically use jJj
1
n in estimates, and when we want to

compare powers of volumes of quasicubes. We will continue to use the prefix ‘quasi’
when discussing quasicubes, quasiHaar, quasienergy and quasidistance in the text,
but will not use the prefix ‘quasi’ when discussing other notions. In particular,
since quasiA˛

2 C quasiA˛;punct
2  A˛

2 C A˛;punct
2 (see e.g. [31] for a proof) we do

not use quasi as a prefix for the Muckenhoupt conditions, even though quasiA˛
2

alone is not comparable to A˛
2 . Finally, we will not modify any mathematical

symbols to reflect quasinotions, except for using �D to denote a quasigrid, and
qdist .E;F/ � dist

�
��1E; ��1F

�
to denote quasidistance between sets E and F,

and using jx � yjqdist �
ˇ̌
��1x ���1y

ˇ̌
to denote quasidistance between points x

and y. This limited use of quasi in the text serves mainly to remind the reader we are
working entirely in the ‘quasiworld’.

Energy Muckenhoupt Conditions

We now show that the punctured Muckenhoupt conditions A˛;punct
2 and A˛;�;punct

2

control respectively the ‘energy A˛2 conditions’, denoted A˛;energy
2 and A˛;�;energy

2

where

A˛;energy
2 .�; !/ � sup

Q2�Pn

���P!Q
x

`.Q/

���2
L2.!/

jQj1�
˛
n

jQj�
jQj1�

˛
n
; (14)

A˛;�;energy
2 .�; !/ � sup

Q2�Pn

jQj!
jQj1�

˛
n

���P�Q
x

`.Q/

���2
L2.�/

jQj1�
˛
n

:

These energy A˛2 conditions play a critical role in controlling local parts of functional
energy later in the paper, and it is a crucial requirement that they are necessary
conditions, as shown by the next lemma.
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Lemma 3.2 For any positive locally finite Borel measures �; ! we have

A˛;energy
2 .�; !/ � max fn; 3gA˛;punct

2 .�; !/ ;

A˛;�;energy
2 .�; !/ � max fn; 3gA˛;�;punct

2 .�; !/ :

Proof Fix a quasicube Q 2 �D. If !
�
Q;P.�;!/

�
� 1

2
jQj! , then we trivially have

���P!Q
x

`.Q/

���2
L2.!/

jQj1�
˛
n

jQj�
jQj1�

˛
n
� n

jQj!
jQj1�

˛
n

jQj�
jQj1�

˛
n

� 2n
!
�
Q;P.�;!/

�
jQj1�

˛
n

jQj�
jQj1�

˛
n
� 2nA˛;punct

2 .�; !/ :

On the other hand, if !
�
Q;P.�;!/

�
< 1

2
jQj! then there is a point p 2 Q \ P.�;!/

such that

! .fpg/ >
1

2
jQj! ;

and consequently, p is the largest !-point mass in Q. Thus if we define e! D ! �

! .fpg/ ıp, then we have

!
�
Q;P.�;!/

�
D jQje! :

Now we observe from the construction of Haar projections that

4e!
J D 4

!
J ; for all J 2 �D with p … J:

So for each s � 0 there is a unique quasicube Js 2 �D with ` .Js/ D 2�s` .Q/ that
contains the point p. For this quasicube we have, if

˚
h!;aJ

�
J2�D; a2�n

is a basis for

L2 .!/,

���4!
Js

x
���2

L2.!/
D

X
a2�n

ˇ̌
ˇ˝h!;aJs

; x
˛
!

ˇ̌
ˇ2 D

X
a2�n

ˇ̌
ˇ˝h!;aJs

; x � p
˛
!

ˇ̌
ˇ2

D
X
a2�n

ˇ̌
ˇ̌Z

Js

h!;aJs
.x/ .x � p/ d! .x/

ˇ̌
ˇ̌2 D

X
a2�n

ˇ̌
ˇ̌Z

Js

h!;aJs
.x/ .x � p/ de! .x/

ˇ̌
ˇ̌2

�
X
a2�n

��h!;aJs

��2
L2.e!/

��1Js .x/ .x � p/
��2

L2.e!/ �
X
a2�n

��h!;aJs

��2
L2.!/

��1Js .x/ .x � p/
��2

L2.e!/

� n2n` .Js/
2 jJsje! � 2�2s` .Q/2 jQje! :

Thus we can estimate
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����P!Q
x

` .Q/

����
2

L2.!/
D

1

` .Q/2
X

J2�DW J�Q

��4!J x
��2

L2.!/

D
1

` .Q/2

0
@ X

J2�DW p…J�Q

��4e!
J x
��2

L2.e!/ C
1X

sD0

��4!Js
x
��2

L2.!/

1
A

�
1

` .Q/2

 ��Pe!
Qx
��2

L2.e!/ C
1X

sD0

2�2s` .Q/2 jQje!

!

�
1

` .Q/2

 
` .Q/2 jQje! C

1X
sD0

2�2s` .Q/2 jQje!

!

� 3 jQje! � 3!
�
Q;P.�;!/

�
;

and so

���P!Q
x

`.Q/

���2
L2.!/

jQj1�
˛
n

jQj�
jQj1�

˛
n
�
3!
�
Q;P.�;!/

�
jQj1�

˛
n

jQj�
jQj1�

˛
n
� 3A˛;punct

2 .�; !/ :

Now take the supremum over Q 2 �D to obtain A˛;energy
2 .�; !/ � max fn; 3gA˛;punct

2

.�; !/. The dual inequality follows upon interchanging the measures � and !. ut

Plugged A’;energyplug
2

Conditions

Using Lemma 3.2 we can control the ‘plugged’ energy A˛
2 conditions:

A˛;energyplug
2 .�; !/ � sup

Q2�Pn

���P!Q
x

`.Q/

���2
L2.!/

jQj1�
˛
n

P˛ .Q; �/ ;

A˛;�;energyplug
2 .�; !/ � sup

Q2�Pn
P˛ .Q; !/

���P�Q
x

`.Q/

���2
L2.�/

jQj1�
˛
n

:

Lemma 3.3 We have

A˛;energyplug
2 .�; !/ � A˛

2 .�; !/C A˛;energy
2 .�; !/ ;

A˛;�;energyplug
2 .�; !/ � A˛;�

2 .�; !/C A˛;�;energy
2 .�; !/ :
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Proof We have

���P!Q
x

`.Q/

���2
L2.!/

jQj1�
˛
n

P˛ .Q; �/ D

���P!Q
x

`.Q/

���2
L2.!/

jQj1�
˛
n

P˛
�
Q; 1Qc�

�
C

���P!Q
x

`.Q/

���2
L2.!/

jQj1�
˛
n

P˛
�
Q; 1Q�

�

� jQj!
jQj1�

˛
n
P˛
�
Q; 1Qc�

�
C

���P!Q
x

`.Q/

���2
L2.!/

jQj1�
˛
n

jQj�
jQj1�

˛
n

� A˛
2 .�; !/C A˛;energy

2 .�; !/ :

ut

Random Grids and Shifted Grids

Using the analogue for dyadic quasigrids of the good random grids of Nazarov, Treil
and Volberg, a standard argument of NTV, see e.g. [35], reduces the two weight
inequality (12) for T˛ to proving boundedness of a bilinear form T˛ .f ; g/ with
uniform constants over dyadic quasigrids, and where the quasiHaar supports suppbf
and suppbg of the functions f and g are contained in the collection �Dgood of good
quasicubes, whose children are all good as well, with goodness parameters r <1
and " > 0 chosen sufficiently large and small respectively depending only on n and
˛. Here the quasiHaar support of f is suppbf � ˚

I 2 �D W 4�I f ¤ 0
�
, and similarly

for g. In fact we can assume even more, namely that the quasiHaar supports suppbf
and suppbg of f and g are contained in the collection of �-good quasicubes

�D�
.r;"/�good �

˚
K 2 �D W CK � �D.r;"/�good and 	`�DK 2 �D.r;"/�good for all 0 � ` � �

�
;

(15)

that are .r; "/-good and whose children are also .r; "/-good, and whose `-parents
up to level � are also .r; "/-good. Here � > r is a parameter to be fixed later. We
may assume this restriction on the quasiHaar supports of f and g by the following
lemma. See [29] for a proof.8

Lemma 3.4 Given r � 3, � � 1 and 1
r < " < 1 �

1
r , we have

�D.r�1;ı/�good � �D�
.r;"/�good;

provided

0 < ı �
r" � 1
rC �

: (16)

8This lemma is misstated in [30].
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For convenience in notation we will sometimes suppress the dependence on ˛
in our nonlinear forms, but will retain it in the operators, Poisson integrals and
constants. More precisely, let �D� D �D! be an .r; "/-good quasigrid on R

n,

and let
˚
h�;aI

�
I2�D� ; a2�n

and
n
h!;bJ

o
J2�D!; b2�n

be corresponding quasiHaar bases

as described above, so that

f D
X

I2�D�

4�I f D
X

I2�D� ; a2�n

˝
f ; h�;aI

˛
h�;aI D

X
I2�D� ; a2�n

bf .II a/ h�;aI ;

g D
X

J2�D!

4!J g D
X

J2�D!; b2�n

D
g; h!;bJ

E
h!;bJ D

X
J2�D!; b2�n

bg .JI b/ h!;bJ ;

where the appropriate measure is understood in the notationbf .II a/ andbg .JI b/, and
where these quasiHaar coefficientsbf .II a/ andbg .JI b/ vanish if the quasicubes I and
J are not good. Inequality (12) is equivalent to boundedness of the bilinear form

T˛ .f ; g/ � hT˛� .f / ; gi! D
X

I2�D� and J2�D!

˝
T˛�
�
4�I f

�
;4!J g

˛
!

on L2 .�/ � L2 .!/, i.e.

jT˛ .f ; g/j � NT˛ kfkL2.�/ kgkL2.!/ ; (17)

uniformly over all quasigrids and appropriate truncations. We may assume the two
quasigrids �D� and �D! are equal here, and this we will do throughout the paper,
although we sometimes continue to use the measure as a superscript on �D for
clarity of exposition. Roughly speaking, we analyze the form T˛ .f ; g/ by splitting
it in a nonlinear way into three main pieces, following in part the approach in [12]
and [13]. The first piece consists of quasicubes I and J that are either disjoint or of
comparable side length, and this piece is handled using the section on preliminaries
of NTV type. The second piece consists of quasicubes I and J that overlap, but are
‘far apart’ in a nonlinear way, and this piece is handled using the sections on the
Intertwining Proposition and the control of the functional quasienergy condition by
the quasienergy condition. Finally, the remaining local piece where the overlapping
quasicubes are ‘close’ is handled by generalizing methods of NTV as in [11], and
then splitting the stopping form into two sublinear stopping forms, one of which
is handled using techniques of [16], and the other using the stopping time and
recursion of M. Lacey [8]. See the schematic diagram in section “Doubly Iterated
Coronas and the NTV Quasicube Size Splitting” below.

We summarize our assumptions on the Haar supports of f and g, and on the
dyadic quasigrids �D.
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Condition 1 (on Haar supports and quasigrids) We suppose the quasiHaar
supports of the functions f and g satisfy suppbf ; suppbg � �D�

.r;"/�good. We also
assume that j@Qj�C! D 0 for all dyadic quasicubes Q in the grids �D (since this
property holds with probability 1 for random grids �D).

Necessity of the A’
2 Conditions

Here we consider in particular the necessity of the fractional A˛
2 condition (with

holes) when 0 � ˛ < n, for the boundedness from L2 .�/ to L2 .!/ (where � and
! may have common point masses) of the ˛-fractional Riesz vector transform R˛

defined by

R˛ .f�/ .x/ D
Z
Rn

K˛
j .x; y/f .y/ d� .y/ ; K˛

j .x; y/ D
xj � yj

jx � yjnC1�˛
;

whose kernel K˛
j .x; y/ satisfies (5) for 0 � ˛ < n. More generally, necessity holds

for elliptic operators as in the next lemma. See [30] for the easier proof in the case
without holes.

Lemma 4.1 Suppose 0 � ˛ < n. Let T˛ be any collection of operators with ˛-
standard fractional kernel satisfying the ellipticity condition (13), and in the case
n
2
� ˛ < n, we also assume the more restrictive condition (11). Then for 0 � ˛ < n

we have

q
A˛
2 � N˛ .T

˛/ :

Proof First we give the proof for the case when T˛ is the ˛-fractional Riesz
transform R˛ , whose kernel is K˛ .x; y/ D x�y

jx�yjnC1�˛ . Define the 2n generalized

n-ants Qm for m 2 f�1; 1gn, and their translates Qm .w/ for w 2 R
n by

Qm D f.x1; : : : ; xn/ W mkxk > 0g ; Qm .w/ D fz W z � w 2 Qmg ; w 2 R
n:

Fix m 2 f�1; 1gn and a quasicube I. For a 2 R
n and r > 0 let

sI .x/ D
` .I/

` .I/C jx � Ij
; fa;r .y/ D 1Q

�m.a/\B.0;r/ .y/ sI .y/
n�˛ ;

where I is the center of the cube I. Now

` .I/ jx � yj � ` .I/ jx � Ij C ` .I/ jI � yj � Œ` .I/C jx � Ij� Œ` .I/C jI � yj�



Two Weight Boundedness 333

implies

1

jx � yj
�

1

` .I/
sI .x/ sI .y/ ; x; y 2 R

n:

Now the key observation is that with L � m � , we have

L .x � y/ D m � .x � y/ � jx � yj ; x 2 Qm .y/ ;

which yields

L .K˛ .x; y// D
L .x � y/

jx � yjnC1�˛
�

1

jx � yjn�˛ � ` .I/
˛�n sI .x/

n�˛ sI .y/
n�˛ ; (18)

provided x 2 Qm .y/. Now we note that x 2 Qm .y/ when x 2 Qm .a/ and y 2
Q�m .a/ to obtain that for x 2 Qm .a/,

L .T˛ .fa;r�/ .x// D
Z
Q

�m.a/\B.0;r/

L .x � y/

jx � yjnC1�˛
sI .y/ d� .y/

� ` .I/˛�n sI .x/
n�˛

Z
Q

�m.a/\B.0;r/
sI .y/

2n�2˛ d� .y/ :

Applying jLj �
p

n jj and our assumed two weight inequality for the fractional
Riesz transform, we see that for r > 0 large,

` .I/2˛�2n
Z
Qm.a/

sI .x/
2n�2˛

�Z
Q

�m.a/\B.0;r/
sI .y/

2n�2˛ d� .y/

2
d! .x/

� kLT.� fa;r/k
2
L2.!/ � N˛ .R˛/

2
kfa;rk

2
L2.�/ D N˛ .R˛/

2
Z
Q

�m.a/\B.0;r/
sI .y/

2n�2˛ d� .y/ :

Rearranging the last inequality, and upon letting r!1, we obtain

Z
Qm.a/

` .I/n�˛

.` .I/C jx � I j/
2n�2˛

d! .x/
Z
Q

�m.a/

` .I/n�˛

.` .I/C jy � I j/
2n�2˛

d� .y/ � N˛ .R˛/
2
:

Note that the ranges of integration above are pairs of opposing n-ants.
Fix a quasicube Q, which without loss of generality can be taken to be centered

at the origin, Q D 0. Then choose a D .2` .Q/ ; 2` .Q// and I D Q so that we have

 Z
Qm.a/

` .Q/n�˛

.` .Q/C jxj/2n�2˛
d! .x/

!�
` .Q/˛�n

Z
Q

d�



� C˛

Z
Qm.a/

` .Q/n�˛

.` .Q/C jxj/2n�2˛
d! .x/

Z
Q

�m.a/

` .Q/n�˛

.` .Q/C jyj/2n�2˛
d� .y/ � N˛ .R˛/

2
:
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Now fix m D .1; 1; : : : ; 1/ and note that there is a fixed N (independent of ` .Q/) and
a fixed collection of rotations f�kg

N
kD1, such that the rotates �kQm .a/, 1 � k � N,

of the n-ant Qm .a/ cover the complement of the ball B
�
0; 4
p

n` .Q/
�
:

B
�
0; 4
p

n` .Q/
�c
�

N[
kD1

�kQm .a/ :

Then we obtain, upon applying the same argument to these rotated pairs of n-ants,

 Z
B.0;4

p
n`.Q//

c

` .Q/n�˛

.` .Q/C jxj/2n�2˛
d! .x/

!�
` .Q/˛�n

Z
Q

d�


� N˛ .R˛/2 : (19)

Now we assume for the moment the offset A˛2 condition

` .Q/2.˛�n/
�Z

Q0

d!

�Z
Q

d�


� A˛2 ;

where Q0 and Q are neighbouring quasicubes, i.e. .Q0;Q/ 2 �Nn. If we use this
offset inequality with Q0 ranging over 3Q n Q, and then use the separation of
B
�
0; 4
p

n` .Q/
�
n 3Q and Q to obtain the inequality

` .Q/2.˛�n/

 Z
B.0;4

p
n`.Q//n3Q

d!

!�Z
Q

d�


� A˛2 ;

together with (19), we obtain

�Z
RnnQ

` .Q/n�˛

.` .Q/C jxj/2n�2˛
d! .x/

 1
2
�
` .Q/˛�n

Z
Q

d�

 1
2

� N˛ .R˛/C
p

A˛2 :

Clearly we can reverse the roles of the measures ! and � and obtain

q
A˛;�
2 � N˛ .R˛/C

p
A˛2

for the kernels K˛ , 0 � ˛ < n.
More generally, to obtain the case when T˛ is elliptic and the offset A˛2 condition

holds, we note that the key estimate (18) above extends to the kernel
PJ

jD1 �
m
j K˛

j

of
PJ

jD1 �
m
j T˛j in (11) if the n-ants above are replaced by thin cones of sufficently

small aperture, and there is in addition sufficient separation between opposing cones,
which in turn may require a larger constant than 4

p
n in the choice of Q0 above.
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Finally, we turn to showing that the offset A˛2 condition is implied by the norm
inequality, i.e.

p
A˛2 � sup

.Q0;Q/2�Nn
` .Q/˛

�
1

jQ0j

Z
Q0

d!

 1
2
�
1

jQj

Z
Q

d�

 1
2

� N˛ .R˛/ I

i.e.

�Z
Q0

d!

�Z
Q

d�


� N˛ .R˛/2 jQj2�

2˛
n ;

�
Q0;Q

�
2 �Nn:

In the range 0 � ˛ < n
2

where we only assume (13), we adapt a corresponding
argument from [15].

The ‘one weight’ argument on page 211 of Stein [34] yields the asymmetric two
weight A˛2 condition

ˇ̌
Q0
ˇ̌
!
jQj� � CN˛ .R˛/ jQj2.1�

˛
n / ; (20)

where Q and Q0 are quasicubes of equal side length r and distance C0r apart for
some (fixed large) positive constant C0 (for this argument we choose the unit vector
u in (13) to point in the direction from Q to Q0). In the one weight case treated in [34]
it is easy to obtain from this (even for a single direction u) the usual (symmetric) A2
condition. Here we will have to employ a different approach.

Now recall (see Sec 2 of [24] for the case of usual cubes, and the case of half
open, half closed quasicubes here is no different) that given an open subset ˆ of
R

n, we can choose R � 3 sufficiently large, depending only on the dimension, such

that if
n
Qk

j

o
j

are the dyadic quasicubes maximal among those dyadic quasicubes Q

satisfying RQ � ˆ, then the following properties hold:

8̂
<
:̂

(disjoint cover) ˆ D
S

j Qj and Qj \ Qi D ; if i ¤ j
(Whitney condition) RQj � ˆ and 3RQj \ˆ

c ¤ ; for all j
(finite overlap)

P
j �3Qj � C�ˆ

: (21)

So fix a pair of neighbouring quasicubes
�
Q0
0;Q0

�
2 �Nn, and let fQigi be a

Whitney decomposition into quasicubes of the set ˆ �
�
Q0
0 � Q0

�
n D relative to

the diagonal D in R
n�Rn. Of course, there are no common point masses of ! in Q0

0

and � in Q0 since the quasicubes Q0
0 and Q0 are disjoint. Note that if Qi D Q0

i �Qi,
then (20) can be written

jQij!�� � CN˛ .R˛/ jQij
1� ˛

n ; (22)

where !�� denotes product measure on R
n�Rn. We choose R sufficiently large in

the Whitney decomposition (21), depending on C0, such that (22) holds for all the
Whitney quasicubes Qi. We have

P
i jQij D jQ0 � Qj D jQj2.
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Moreover, if R D Q0 � Q is a rectangle in R
n � R

n (i.e. Q0;Q are quasicubes in

R
n), and if R D

�
[iRi is a finite disjoint union of rectangles R˛ , then by additivity

of the product measure ! � � ,

jRj!�� D
X

i

jRij!�� :

Let Q0 D Q0
0 � Q0 and set

ƒ �
˚
Q D Q0 � Q W Q � Q0; ` .Q/ D `

�
Q0
�
 C�1

0 qdist
�
Q;Q0

�
and (20) holds

�
:

Divide Q0 into 2n � 2n D 4n2 congruent subquasicubes Q1
0; : : : ;Q

4n

0 of side length
1
2
, and set aside those Qj

0 2 ƒ (those for which (20) holds) into a collection of

stopping cubes � . Continue to divide the remaining Qj
0 2 ƒ of side length 1

4
, and

again, set aside those Qj;i
0 2 ˆ into � , and continue subdividing those that remain.

We continue with such subdivisions for N generations so that all the cubes not set
aside into � have side length 2�N . The important property these latter cubes have is
that they all lie within distance r2�N of the diagonal D D

˚
.x; x/ W .x; x/ 2 Q0

0 � Q0

�
in Q0 D Q0

0 � Q0 since (20) holds for all pairs of cubes Q0 and Q of equal side
length r having distance at least C0r apart. Enumerate the cubes in � as fQigi
and those remaining that are not in � as

˚
Pj
�

j. Thus we have the pairwise disjoint
decomposition

Q0 D

 [
i

Qi

![0
@[

j

Pj

1
A :

The countable additivity of the product measure ! � � shows that

jQ0j!�� D
X

i

jQij!�� C
X

j

ˇ̌
Pj

ˇ̌
!��

:

Now we have

X
i

jQij!�� �
X

i

N˛ .R˛/2 jQij
1� ˛

n ;

and

X
i

jQij
1� ˛

n
D

X
k2ZW 2k

�`.Q0/

X
iW `.Qi/D2k

�
22nk

�1� ˛
n

	

X
k2ZW 2k

�`.Q0/

�
2k

` .Q0/


�n �

22nk
�1� ˛

n (Whitney)

D ` .Q0/
n

X
k2ZW 2k

�`.Q0/

2nk.�1C2� 2˛
n /

� C˛` .Q0/
n
` .Q0/

n.1� 2˛
n /

D C˛ jQ0 
 Q0j
2� 2˛

n
D C˛ jQ0j

1� ˛
n ;
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provided 0 � ˛ < n
2
. Using that the side length of Pj D Pj � P0

j is 2�N and
dist

�
Pj;D

�
� Cr2

�N , we have the following limit,

X
j

ˇ̌
Pj

ˇ̌
!��
D

ˇ̌
ˇ̌
ˇ̌
[

j

Pj

ˇ̌
ˇ̌
ˇ̌
!��

! 0 as N !1;

since
[

j

Pj shrinks to the empty set as N ! 1, and since locally finite measures

such as ! � � are regular in Euclidean space. This completes the proof that
p

A˛2 �
N˛ .R˛/ for the range 0 � ˛ < n

2
.

Now we turn to proving
p

A˛2 � N˛ .R˛/ for the range n
2
� ˛ < n, where

we assume the stronger ellipticity condition (11). So fix a pair of neighbouring
quasicubes .K0;K/ 2 �Nn, and assume that � C ! doesn’t charge the intersection
K0 \ K of the closures of K0 and K. It will be convenient to replace n by nC 1, i.e
to introduce an additional dimension, and work with the preimages Q0 D ��1K0

and Q D ��1K that are usual cubes, and with the corresponding pullbacks
e! D m1 ��

�! ande� D m1 ��
�� of the measures ! and � where m1 is Lebesgue

measure on the line. We may also assume that

Q0 D Œ�1; 0/ �

nY
iD1

Qi; Q D Œ0; 1/ �
nY

iD1

Qi:

where Qi D Œai; bi� for 1 � i � n (since the other cases are handled in similar
fashion). It is important to note that we are considering the intervals Qi here to be
closed, and we will track this difference as we proceed.

Choose �1 2 Œa1; b1� so that both

ˇ̌
ˇ̌
ˇŒ�1; 0/ � Œa1; �1� �

nY
iD2

Qi

ˇ̌
ˇ̌
ˇe!
;

ˇ̌
ˇ̌
ˇŒ�1; 0/ � Œ�1; b1� �

nY
iD2

Qi

ˇ̌
ˇ̌
ˇe!
�
1

2

ˇ̌
Q0
ˇ̌
e! :

Now denote the two intervals Œa1; �1� and Œ�1; b1� by


a�
1 ; b

�
1

�
and



a��
1 ; b

��
1

�
where

the order is chosen so that
ˇ̌
ˇ̌
ˇŒ0; 1/ �



a�
1 ; b

�
1

�
�

nY
iD2

Qi

ˇ̌
ˇ̌
ˇe�
�

ˇ̌
ˇ̌
ˇŒ0; 1/ �



a��
1 ; b

��
1

�
�

nY
iD2

Qi

ˇ̌
ˇ̌
ˇe�
:

Then we have both
ˇ̌
ˇ̌
ˇŒ�1; 0/ �



a�
1 ; b

�
1

�
�

nY
iD2

Qi

ˇ̌
ˇ̌
ˇe!
�
1

2
jQje! and

ˇ̌
ˇ̌
ˇŒ0; 1/ �



a��
1 ; b��

1

�
�

nY
iD2

Qi

ˇ̌
ˇ̌
ˇe�
�
1

2
jQje� :
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Now choose �2 2 Œa2; b2� so that both

ˇ̌
ˇ̌
ˇŒ�1; 0/�



a�

1 ; b
�

1

�
� Œa2; �2��

nY
iD3

Qi

ˇ̌
ˇ̌
ˇe!
;

ˇ̌
ˇ̌
ˇŒ�1; 0/�



a�

1 ; b
�

1

�
� Œ�2; b2��

nY
iD3

Qi

ˇ̌
ˇ̌
ˇe!

�
1

4
jQje! ;

and denote the two intervals Œa2; �2� and Œ�2; b2� by


a�
2 ; b

�
2

�
and



a��
2 ; b

��
2

�
where

the order is chosen so that

Œ0; 1/ �

ˇ̌
ˇ̌
ˇ


a��
1 ; b��

1

�
�


a�
2 ; b

�
2

�
�

nY
iD2

Qi

ˇ̌
ˇ̌
ˇe�
�

ˇ̌
ˇ̌
ˇŒ0; 1/ �



a��
1 ; b��

1

�
�


a��
2 ; b��

2

�
�

nY
iD2

Qi

ˇ̌
ˇ̌
ˇe�
:

Then we have both
ˇ̌
ˇ̌
ˇŒ�1; 0/ �



a�
1 ; b

�
1

�
�


a�
2 ; b

�
2

�
�

nY
iD3

Qi

ˇ̌
ˇ̌
ˇe!
�
1

4
jQje! ;

ˇ̌
ˇ̌
ˇŒ0; 1/ �



a��
1 ; b

��
1

�
�


a��
2 ; b

��
2

�
�

nY
iD3

Qi

ˇ̌
ˇ̌
ˇe�
�
1

4
jQje� ;

and continuing in this way we end up with two rectangles,

G � Œ�1; 0/ �


a�
1 ; b

�
1

�
�


a�
2 ; b

�
2

�
� : : : �



a�

n ; b
�
n

�
;

H � Œ0; 1/ �


a��
1 ; b

��
1

�
�


a��
2 ; b

��
2

�
� : : : �



a��

n ; b��
n

�
;

that satisfy

jGje! D
ˇ̌
Œ�1; 0/ �



a�
1 ; b

�
1

�
�


a�
2 ; b

�
2

�
� : : : �



a�

n ; b
�
n

�ˇ̌
e! �

1

2n
jQje! ;

jHje� D
ˇ̌
Œ0; 1/ �



a��
1 ; b

��
1

�
�


a��
2 ; b

��
2

�
� : : : �



a��

n ; b��
n

�ˇ̌
e� �

1

2n
jQje� :

However, the quasirectangles �G and �H lie in opposing quasi-n-ants at the
vertex�� D �.�1; �2; : : : ; �n/, and so we can apply (11) to obtain that for x 2 �G,

ˇ̌
ˇ̌
ˇ̌

JX
jD1

�m
j T˛j .1�H�/ .x/

ˇ̌
ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
ˇ̌
Z
�H

JX
jD1

�m
j K˛

j .x; y/ d� .y/

ˇ̌
ˇ̌
ˇ̌ �

Z
�H

jx � yj˛�n d� .y/ � j�Qj
˛
n �1 j�Hj� :

For the inequality above, we need to know that the distinguished point �� is not a
common point mass of � and !, but this follows from our assumption that � C !
doesn’t charge the intersection K0 \ K of the closures of K0 and K. Then from the
norm inequality we get
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j�Gj!
�
j�Qj

˛
n �1 j�Hj�

	2
�
Z

G

ˇ̌
ˇ̌
ˇ̌

JX
jD1

�m
j T˛j .1�H�/

ˇ̌
ˇ̌
ˇ̌
2

d!

� N2PJ
jD1 �

m
j T˛j

Z
12�Hd� D N2PJ

jD1 �
m
j T˛j
j�Hj� ;

from which we deduce that

j�Qj2.
˛
n �1/ ˇ̌�Q0

ˇ̌
!
j�Qj� � 22n j�Qj2.

˛
n �1/ j�Gj! j�Hj� � 22nN2PJ

jD1 �
m
j T˛j
I

jKj2.
˛
n �1/ ˇ̌K0

ˇ̌
!
jKj� � 22nN2PJ

jD1 �
m
j T˛j
;

and hence

A˛2 � 22nN2PJ
jD1 �

m
j T˛j
:

Thus we have obtained the offset A˛2 condition for pairs .K0;K/ 2 �Nn such
that � C ! doesn’t charge the intersection K0 \ K of the closures of K0 and K.
From this and the argument at the beginning of this proof, we obtain the one-tailed
A˛
2 conditions. Indeed, we note that j@ .rQ/j�C! > 0 for only a countable number

of dilates r > 1, and so a limiting argument applies. This completes the proof of
Lemma 4.1. ut

Monotonicity Lemma and Energy Lemma

The Monotonicity Lemma below will be used to prove the Energy Lemma, which
is then used in several places in the proof of Theorem 2.8. The formulation of the
Monotonicity Lemma with m D 2 for cubes is due to M. Lacey and B. Wick [18],
and corrects that used in early versions of our paper [28].

The Monotonicity Lemma

For 0 � ˛ < n and m 2 RC, we recall the m-weighted fractional Poisson integral

P˛m .J; �/ �
Z
Rn

jJj
m
n�

jJj
1
n C jy � cJj

	nCm�˛
d� .y/ ;

where P˛1 .J; �/ D P˛ .J; �/ is the standard Poisson integral. The next lemma holds
for quasicubes and common point masses with the same proof as in [30].
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Lemma 5.1 (Monotonicity) Suppose that I and J are quasicubes in R
n such that

J � 2J � I, and that � is a signed measure on R
n supported outside I. Finally

suppose that T˛ is a standard ˛-fractional singular integral on R
n with 0 < ˛ < n.

Then we have the estimate

��4!J T˛�
��

L2.!/ � ˆ˛ .J; j�j/ ; (23)

where for a positive measure �,

ˆ˛ .J; �/2 �

 
P˛ .J; �/

jJj
1
n

!2 ��4!J x
��2

L2.!/ C

 
P˛1Cı .J; �/

jJj
1
n

!2
kx �mJk

2
L2.1J!/

;

mJ � E
!
J x D

1

jJj!

Z
J

xd!:

The Energy Lemma

Suppose now we are given a subset H of the dyadic quasigrid �D! . Let
P!H D

P
J2H4

!
J be the corresponding !-quasiHaar projection. We define

H� �
[
J2H
fJ0 2 �D! W J0 � Jg. The next lemma also holds for quasicubes and

common point masses with the same proof as in [30].

Lemma 5.2 (Energy Lemma) Let J be a quasicube in �D! . Let ‰J be an L2 .!/
function supported in J and with !-integral zero, and denote its quasiHaar support

by H D suppc‰J �
n
K 2 �D! Wc‰J .K/ ¤ 0

o
. Let � be a positive measure

supported in R
n n�J with � � 2, and for each J0 2 H, let �J0 D 'J0� with j'J0 j � 1.

Let T˛ be a standard ˛-fractional singular integral operator with 0 � ˛ < n. Then
with ı0 D ı

2
we have

ˇ̌
ˇ̌
ˇ
X
J02H

˝
T˛ .�J0/ ;4!J0

‰J
˛
!

ˇ̌
ˇ̌
ˇ � k‰JkL2.!/

 
P˛ .J; �/

jJj
1
n

!
kP!HxkL2.!/

Ck‰JkL2.!/
1

�ı
0

 
P˛
1Cı0

.J; �/

jJj
1
n

!��P!H�

x
��

L2.!/

� k‰JkL2.!/

 
P˛ .J; �/

jJj
1
n

!��P!H�

x
��

L2.!/ ;
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and in particular the ‘pivotal’ bound

jhT˛ .�/ ;‰Ji! j � C k‰JkL2.!/ P˛ .J; j�j/
p
jJj!:

Remark 5.3 The first term on the right side of the energy inequality above is the
‘big’ Poisson integral P˛ times the ‘small’ energy term

��P!Hx
��2

L2.!/ that is additive
in H, while the second term on the right is the ‘small’ Poisson integral P˛

1Cı0

times
the ‘big’ energy term

��P!H�

x
��

L2.!/
that is no longer additive in H. The first term

presents no problems in subsequent analysis due solely to the additivity of the
‘small’ energy term. It is the second term that must be handled by special methods.
For example, in the Intertwining Proposition below, the interaction of the singular
integral occurs with a pair of quasicubes J � I at highly separated levels, where the
goodness of J can exploit the decay ı0 in the kernel of the ‘small’ Poisson integral
P˛
1Cı0

relative to the ‘big’ Poisson integral P˛ , and results in a bound directly by the
quasienergy condition. On the other hand, in the local recursion of M. Lacey at the
end of the paper, the separation of levels in the pairs J � I can be as little as a fixed
parameter �, and here we must first separate the stopping form into two sublinear
forms that involve the two estimates respectively. The form corresponding to the
smaller Poisson integral P˛

1Cı0

is again handled using goodness and the decay ı0 in
the kernel, while the form corresponding to the larger Poisson integral P˛ requires
the stopping time and recursion argument of M. Lacey.

Preliminaries of NTV Type

An important reduction of our theorem is delivered by the following two lemmas,
the first of which is due to Nazarov, Treil and Volberg in the case of one dimension
(see [21] and [35]), and the second of which is a bilinear Carleson embedding.
The proofs given there do not extend in standard ways to higher dimensions with
common point masses, and we use the quasiweak boundedness property to handle
the case of touching quasicubes, and an application of Schur’s Lemma to handle
the case of separated quasicubes. The first lemma below is Lemmas 8.1 and 8.7 in
[18] but with the larger constant A˛

2 there in place of the smaller constant A˛2 here.
We emphasize that only the offset A˛2 condition is needed with testing and weak
boundedness in these preliminary estimates.

Lemma 6.1 Suppose T˛ is a standard fractional singular integral with 0 � ˛ < n,
and that all of the quasicubes I 2 �D� ; J 2 �D! below are good with goodness
parameters " and r. Fix a positive integer � > r. For f 2 L2 .�/ and g 2 L2 .!/ we
have

X
.I;J/2�D�


�D!

2��`.I/�`.J/�2�`.I/

ˇ̌˝
T˛�
�
4�

I f
�
;4!

J g
˛
!

ˇ̌
�
�
T˛ C T�

˛ C WBPT˛ C
p

A˛2

	
kf kL2.�/ kgkL2.!/

(24)
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and

X
.I;J/2�D���D!

I\JD; and `.J/
`.I/ …Œ2��;2��

ˇ̌˝
T˛�
�
4�I f

�
;4!J g

˛
!

ˇ̌
�
p

A˛2 kfkL2.�/ kgkL2.!/ ; (25)

where the implied constants depend only on n, ˛ and T˛ .

Lemma 6.2 Suppose T˛ is a standard fractional singular integral with 0 � ˛ < n,
that all of the quasicubes I 2 �D� ; J 2 �D! below are good, that � > r, that
f 2 L2 .�/ and g 2 L2 .!/, that F � �D� and G � �D! are � -Carleson and
!-Carleson collections respectively, i.e.,

X
F02FW F0�F

ˇ̌
F0
ˇ̌
�
� jFj� ; F 2 F; and

X
G02GW G0�G

ˇ̌
G0
ˇ̌
!
� jGj! ; G 2 G;

that there are numerical sequences f˛F .F/gF2F and fˇG .G/gG2G such that

X
F2F

˛F .F/
2 jFj� � kfk

2
L2.�/ and

X
G2G

ˇG .G/
2 jGj� � kgk

2
L2.�/ ; (26)

and finally that for each pair of quasicubes .I; J/ 2 �D� ��D! , there are bounded
functions ˇI;J and �I;J supported in I n 2J and J n 2I respectively, satisfying

kˇI;Jk1 ; k�I;Jk1 � 1:

Then

X
.F;J/2F
�D!

F\JD; and `.J/�2��`.F/

ˇ̌˝
T˛�
�
ˇF;J1F˛F .F/

�
;4!

J g
˛
!

ˇ̌
C

X
.I;G/2�D�


G
I\GD; and `.I/�2��`.G/

ˇ̌˝
T˛�
�
4�

I f
�
; �I;G1GˇG .G/

˛
!

ˇ̌

�
p

A˛2 kf kL2.�/ kgkL2.!/ : (27)

See [29] for complete details of the proofs when common point masses are
permitted.

Remark 6.3 If F and G are � -Carleson and !-Carleson collections respectively,
and if ˛F .F/ D E

�
F jf j and ˇG .G/ D E

!
G jgj, then the ‘quasi’ orthogonality

condition (26) holds (here ‘quasi’ has a different meaning than quasi), and this
special case of Lemma 6.2 serves as a basic example.

Remark 6.4 Lemmas 6.1 and 6.2 differ mainly in that an orthogonal collection of
quasiHaar projections is replaced by a ‘quasi’ orthogonal collection of indicators
f1F˛F .F/gF2F. More precisely, the main difference between (25) and (27) is that a
quasiHaar projection4�I f or4!J g has been replaced with a constant multiple of an
indicator 1F˛F .F/ or 1GˇG .G/, and in addition, a bounded function is permitted to
multiply the indicator of the quasicube having larger sidelength.
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Corona Decompositions and Splittings

We will use two different corona constructions, namely a Calderón-Zygmund
decomposition and an energy decomposition of NTV type, to reduce matters to the
stopping form, the main part of which is handled by Lacey’s recursion argument.
We will then iterate these coronas into a double corona. We first recall our basic
setup. For convenience in notation we will sometimes suppress the dependence on
˛ in our nonlinear forms, but will retain it in the operators, Poisson integrals and
constants. We will assume that the good/bad quasicube machinery of Nazarov, Treil
and Volberg [35] is in force here as in [30]. Let �D� D �D! be an .r; "/-good

quasigrid on R
n, and let

˚
h�;aI

�
I2�D� ; a2�n

and
n
h!;bJ

o
J2�D!; b2�n

be corresponding

quasiHaar bases as described above, so that

f D
X

I2�D�

4�I f and g D
X

J2�D!

4!J g;

where the quasiHaar projections4�I f and4!J g vanish if the quasicubes I and J are
not good. Recall that we must show the bilinear inequality (17), i.e. jT˛ .f ; g/j �
NT˛ kfkL2.�/ kgkL2.!/.

We now proceed for the remainder of this section to follow the development
in [30], pointing out just the highlights, and referring to [30] for proofs, when no
changes are required by the inclusion of quasicubes and common point masses.

The Calderón-Zygmund Corona

We now introduce a stopping tree F for the function f 2 L2 .�/. Let F be a collection
of Calderón-Zygmund stopping quasicubes for f , and let �D� D

[
F2F

CF be the

associated corona decomposition of the dyadic quasigrid �D� . See below and also
[30] for the standard definitions of corona, etc.

For a quasicube I 2 �D� let 	�D� I be the �D� -parent of I in the quasigrid
�D� , and let 	FI be the smallest member of F that contains I. For F;F0 2 F, we
say that F0 is an F-child of F if 	F .	�D�F0/ D F (it could be that F D 	�D�F0),
and we denote by CF .F/ the set of F-children of F. For F 2 F, define the projection
P�CF

onto the linear span of the quasiHaar functions
˚
h�;aI

�
I2CF ; a2�n

by

P�CF
f D

X
I2CF

4�I f D
X

I2CF ; a2�n

˝
f ; h�;aI

˛
�

h�;aI :
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The standard properties of these projections are

f D
X
F2F

P�CF
f ;

Z �
P�CF

f
�
� D 0; kfk2L2.�/ D

X
F2F

��P�CF
f
��2

L2.�/
:

The Energy Corona

We also impose a quasienergy corona decomposition as in [21] and [16].

Definition 7.1 Given a quasicube S0, define S .S0/ to be the maximal subqua-
sicubes I � S0 such that

X
J2M��deep.I/

 
P˛
�
J; 1S0n�J�

�
jJj

1
n

!2 ���Psubgood;!
J x

���2
L2.!/

� Cenergy

��
Estrong
˛

	2
C A˛2 C A

˛;punct
2

�
jIj� ;

(28)

where Estrong
˛ is the constant in the strong quasienergy condition defined in Defi-

nition 2.6, and Cenergy is a sufficiently large positive constant depending only on
� � r; n and ˛. Then define the � -energy stopping quasicubes of S0 to be the
collection

S D fS0g [
1[

nD0

Sn

where S0 D S .S0/ and SnC1 D
[

S2Sn

S .S/ for n � 0.

From the quasienergy condition in Definition 2.6 we obtain the � -Carleson
estimate

X
S2SW S�I

jSj� � 2 jIj� ; I 2 �D� : (29)

Finally, we record the reason for introducing quasienergy stopping times. If

X˛ .CS/
2 � sup

I2CS

1

jIj�

X
J2M��deep.I/

 
P˛
�
J; 1Sn�J�

�
jJj

1
n

!2 ���Psubgood;!
J x

���2
L2.!/

(30)

is (the square of) the ˛-stopping quasienergy of the weight pair .�; !/ with respect
to the corona CS, then we have the stopping quasienergy bounds

X˛ .CS/ �
p

Cenergy

q�
Estrong
˛

�2
C A˛2 C A˛;punct

2 ; S 2 S; (31)

where A˛2 C A˛;punct
2 and the strong quasienergy constant Estrong

˛ are controlled by
assumption.
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General Stopping Data

It is useful to extend our notion of corona decomposition to more general stopping
data. Our general definition of stopping data will use a positive constant C0 � 4.

Definition 7.2 Suppose we are given a positive constant C0 � 4, a subset F of the
dyadic quasigrid �D� (called the stopping times), and a corresponding sequence
˛F � f˛F .F/gF2F of nonnegative numbers ˛F .F/ � 0 (called the stopping data).
Let .F;�; 	F/ be the tree structure on F inherited from �D� , and for each F 2 F
denote by CF D fI 2 �D� W 	FI D Fg the corona associated with F:

CF D
˚
I 2 �D� W I � F and I 6� F0 for any F0 � F

�
:

We say the triple .C0;F; ˛F/ constitutes stopping data for a function f 2 L1loc .�/

if

1. E
�
I jf j � ˛F .F/ for all I 2 CF and F 2 F,

2.
P

F0F jF
0j� � C0 jFj� for all F 2 F,

3.
P

F2F ˛F .F/
2 jFj� � C2

0 kfk
2
L2.�/,

4. ˛F .F/ � ˛F .F0/ whenever F0;F 2 F with F0 � F.

Definition 7.3 If .C0;F; ˛F/ constitutes (general) stopping data for a function f 2
L1loc .�/, we refer to the orthogonal decomposition

f D
X
F2F

P�CF
f I P�CF

f �
X
I2CF

4�I f ;

as the (general) corona decomposition of f associated with the stopping times F.

Property (1) says that ˛F .F/ bounds the quasiaverages of f in the corona CF, and
property (2) says that the quasicubes at the tops of the coronas satisfy a Carleson
condition relative to the weight � . Note that a standard ‘maximal quasicube’
argument extends the Carleson condition in property (2) to the inequality

X
F02FW F0�A

ˇ̌
F0
ˇ̌
�
� C0 jAj� for all open sets A � R

n: (32)

Property (3) is the ‘quasi’ orthogonality condition that says the sequence of
functions f˛F .F/ 1FgF2F is in the vector-valued space L2

�
`2I �

�
, and property (4)

says that the control on stopping data is nondecreasing on the stopping tree F. We
emphasize that we are not assuming in this definition the stronger property that there
is C > 1 such that ˛F .F0/ > C˛F .F/whenever F0;F 2 F with F0

� F. Instead, the
properties (2) and (3) substitute for this lack. Of course the stronger property does
hold for the familiar Calderón-Zygmund stopping data determined by the following
requirements for C > 1,
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E
�
F0

jf j > CE
�
F jf j whenever F0;F 2 F with F0

� F; E
�
I jf j � CE

�
F jf j for I 2 CF;

which are themselves sufficiently strong to automatically force properties (2) and
(3) with ˛F .F/ D E

�
F jf j.

We have the following useful consequence of (2) and (3) that says the sequence
f˛F .F/ 1FgF2F has a ‘quasi’ orthogonal property relative to f with a constant C0

0

depending only on C0:

�����
X
F2F

˛F .F/ 1F

�����
2

L2.�/

� C0
0 kfk

2
L2.�/ : (33)

We will use a construction that permits iteration of general corona decomposi-
tions.

Lemma 7.4 Suppose that .C0;F; ˛F/ constitutes stopping data for a function f 2
L1loc .�/, and that for each F 2 F,

�
C0;K .F/ ; ˛K.F/

�
constitutes stopping data

for the corona projection P�CF
f , where in addition F 2 K .F/. There is a positive

constant C1, depending only on C0, such that if

K� .F/ �
˚
K 2 K .F/ \ CF W ˛K.F/ .K/ � ˛F .F/

�

K �
[
F2F

K� .F/ [ fFg ;

˛K .K/ �
˛K.F/ .K/ for K 2 K� .F/ n fFg

max
˚
˛F .F/ ; ˛K.F/ .F/

�
for K D F

; for F 2 F;

the triple .C1;K; ˛K/ constitutes stopping data for f . We refer to the collection of
quasicubes K as the iterated stopping times, and to the orthogonal decomposition
f D

P
K2K PCK

K
f as the iterated corona decomposition of f , where

CKK �
˚
I 2 �D W I � K and I 6� K0 for K0 �K K

�
:

Note that in our definition of .C1;K; ˛K/ we have ‘discarded’ from K .F/ all of
those K 2 K .F/ that are not in the corona CF, and also all of those K 2 K .F/
for which ˛K.F/ .K/ is strictly less than ˛F .F/. Then the union over F of what
remains is our new collection of stopping times. We then define stopping data
˛K .K/ according to whether or not K 2 F: if K … F but K 2 CF then ˛K .K/
equals ˛K.F/ .K/, while if K 2 F, then ˛K .K/ is the larger of ˛K.F/ .F/ and ˛F .K/.
See [30] for a proof.
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Doubly Iterated Coronas and the NTV Quasicube Size Splitting

Let

NTV˛ �
q
A˛
2 CA˛;�

2 C A˛;punct
2 C A˛;�;punct

2 C TT˛ C T�
T˛ :

Here is a brief schematic diagram of the decompositions, with bounds in :

hT˛� f ; gi!
#

B��
.f ; g/ C B

�� .f ; g/ C B\ .f ; g/ C B� .f ; g/

# dual NTV˛ NTV˛
#

Tdiagonal .f ; g/ C Tfarbelow .f ; g/ C Tfarabove .f ; g/ C Tdisjoint .f ; g/

# # ; ;

# #

BA
��
.f ; g/ T1farbelow .f ; g/ C T2farbelow .f ; g/

# NTV˛ C Estrong
˛ NTV˛

#

BA
stop .f ; g/ C BA

paraproduct .f ; g/ C BA
neighbour .f ; g/

Estrong
˛ C

p
A˛2 TT˛

p
A˛2

We begin with the NTV quasicube size splitting of the inner product hT˛� f ; gi!
– and later apply the iterated corona construction to the Calderón–Zygmund corona
and the energy corona in order to bound the below form B��

.f ; g/ – that splits the
pairs of quasicubes .I; J/ in a simultaneous quasiHaar decomposition of f and g into
four groups, namely those pairs that:

1. are below the size diagonal and �-deeply embedded,
2. are above the size diagonal and �-deeply embedded,
3. are disjoint, and
4. are of �-comparable size.

More precisely we have

˝
T˛� f ; g

˛
! D

X
I2�D� ; J2�D!

˝
T˛�
�
4�

I f
�
;
�
4!

I g
�˛
!

D
X

I2�D� ; J2�D!

J��I

˝
T˛�
�
4�

I f
�
;
�
4!

J g
�˛
! C

X
I2�D� ; J2�D!

J��I

˝
T˛�
�
4�

I f
�
;
�
4!

J g
�˛
!

C
X

I2�D� ; J2�D!

J\ID;

˝
T˛�
�
4�

I f
�
;
�
4!

J g
�˛
! C

X
I2�D� ; J2�D!

2��
�`.J/�`.I/�2�

˝
T˛�
�
4�

I f
�
;
�
4!

J g
�˛
!

D B��
.f ; g/C B�� .f ; g/C B

\

.f ; g/C B� .f ; g/ :
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Lemma 6.1 in the section on NTV preliminaries show that the disjoint and
comparable forms B\ .f ; g/ and B� .f ; g/ are both bounded by the A˛

2 C A˛;punct
2 ,

quasitesting and quasiweak boundedness property constants. The below and above
forms are clearly symmetric, so we need only consider the form B��

.f ; g/, to which
we turn for the remainder of the proof. For this we need functional energy.

Definition 7.5 Let F˛ be the smallest constant in the ‘functional quasienergy’
inequality below, holding for all h 2 L2 .�/ and all � -Carleson collections F with
Carleson norm CF bounded by a fixed constant C:

X
F2F

X
J2M.r;"/�deep.F/

 
P˛ .J; h�/

jJj
1
n

!2 ����P!
Cgood;��shift

F IJ
x

����
2

L2.!/
� F˛khkL2.�/ : (34)

Several ingredients now come into play in order to reduce control of the
below form B��

.f ; g/ to the functional energy constant F˛ and the stopping form
BA

stop .f ; g/;

1. starting with the doubly iterated corona of Calderón-Zygmund and energy in
Lemma 7.4 in order to obtain the decomposition into Tdiagonal, Tfarbelow, Tfarabove

and Tdisjoint,
2. continuing with an adaptation of the Intertwining Proposition from [30] to

include quasicubes and common point masses so as to bound the forms T1farbelow
and T2farbelow .f ; g/ using the functional energy constant F˛ ,

3. and followed by the NTV decomposition into paraproduct, neighbour and
stopping forms.

The adaptation of the Intertwining Proposition to include quasicubes and com-
mon point masses is easy because the measures ! and � only ‘see each other’ in the
proof through the energy Muckenhoupt conditions A˛;energy

2 and A˛;�;energy
2 , and the

straightforward details can be found in [29]. Thus we now turn to the difficult task
of controlling the functional energy constant F˛ by the Muckenhoupt and energy
side conditions.

Control of Functional Energy by Energy Modulo A’
2

and A’;punct
2

Now we arrive at one of our main propositions in the proof of our theorem. We show
that the functional quasienergy constants F˛ as in (34) are controlled by A˛

2 , A˛;punct
2

and both the strong quasienergy constant Estrong
˛ defined in Definition 2.6. The

proof of this fact is further complicated when common point masses are permitted,
accounting for the inclusion of the punctured Muckenhoupt condition A˛;punct

2 . But
apart from this difference, the proof here is essentially the same as that in [30],
where common point masses were prohibited. As a consequence we will refer to
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[30] in many of the places where the arguments are unchanged. A complete and
detailed proof can of course be found in [29].

Proposition 8.1 We have

F˛ � Estrong
˛ C

q
A˛
2 C

q
A˛;�
2 C

q
A
˛;punct
2 and F�

˛ � Estrong;�
˛ C

q
A˛
2 C

q
A˛;�
2 C

q
A
˛;�;punct
2 :

To prove this proposition, we fix F as in (34), and set

� �
X
F2F

X
J2M.r;"/�deep.F/

��P!F;Jx
��2

L2.!/
� ı.cJ ;`.J// and d� .x; t/ �

1

t2
d� .x; t/; (35)

where M.r;"/�deep .F/ consists of the maximal r-deeply embedded subquasicubes of
F, and where ı.cJ ;`.J// denotes the Dirac unit mass at the point .cJ; ` .J// in the upper
half-space R

nC1
C . Here J is a dyadic quasicube with center cJ and side length ` .J/.

For convenience in notation, we denote for any dyadic quasicube J the localized
projection P!

Cgood;��shift
F IJ

given by

P!F;J � P!
Cgood;��shift

F IJ
D

X
J0�JW J02Cgood;��shift

F

4!J0

:

We emphasize that the quasicubes J 2 M.r;"/�deep .F/ are not necessarily good,
but that the subquasicubes J0 � J arising in the projection P!F;J are good. We can
replace x by x � c inside the projection for any choice of c we wish; the projection
is unchanged. More generally, ıq denotes a Dirac unit mass at a point q in the upper
half-space R

nC1
C .

We prove the two-weight inequality

kP˛ .f�/kL2.RnC1
C

;�/
�
�
Estrong
˛ C

q
A˛
2 C

q
A˛;�
2 C

q
A˛;punct
2


kfkL2.�/ ; (36)

for all nonnegative f in L2 .�/, noting that F and f are not related here. Above, P˛.�/
denotes the ˛-fractional Poisson extension to the upper half-space R

nC1
C ,

P
˛� .x; t/ �

Z
Rn

t
�

t2 C jx � yj2
	 nC1�˛

2

d� .y/ ;

so that in particular

kP˛.f�/k2
L2.RnC1

C

;�/
D
X
F2F

X
J2Mr�deep.F/

P
˛ .f�/ .c.J/; ` .J//2

�����P!F;J
x

jJj
1
n

�����
2

L2.!/

;
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and so (36) proves the first line in Proposition 8.1 upon inspecting (34). Note also
that we can equivalently write kP˛ .f�/kL2.RnC1

C

;�/
D

��eP˛ .f�/��L2.RnC1
C

;�/
where

eP˛� .x; t/ � 1
t P

˛� .x; t/ is the renormalized Poisson operator. Here we have simply

shifted the factor 1
t2

in � to
ˇ̌eP˛ .f�/ˇ̌2 instead, and we will do this shifting often

throughout the proof when it is convenient to do so.
The characterization of the two-weight inequality for fractional and Poisson

integrals in [24] was stated in terms of the collection Pn of cubes in R
n with

sides parallel to the coordinate axes. It is a routine matter to pullback the Poisson
inequality under a globally biLipschitz map � W Rn ! R

n, then apply the theorem
in [24] (as a black box), and then to pushforward the conclusions of the theorems so
as to extend these characterizations of fractional and Poisson integral inequalities to
the setting of quasicubes Q 2 �Pn and quasitents Q � Œ0; ` .Q/� � R

nC1
C with

Q 2 �Pn. Using this extended theorem for the two-weight Poisson inequality,
we see that inequality (36) requires checking these two inequalities for dyadic
quasicubes I 2 �D and quasiboxesbI D I � Œ0; ` .I// in the upper half-space R

nC1
C :

Z
R

nC1
C

P
˛ .1I�/ .x; t/

2 d� .x; t/ � kP˛ .1I�/k
2

L2.bI;�/ �
��

Estrong
˛

�2
C A˛

2 C A˛;�
2 C A˛;punct

2

	
�.I/;

(37)Z
Rn
ŒQ˛.t1bI�/�2d�.x/ �

��
Estrong
˛

�2
CA˛

2 CA˛;�
2 C A˛;punct

2

	 Z
bI

t2d�.x; t/; (38)

for all dyadic quasicubes I 2 �D, and where the dual Poisson operator Q
˛ is

given by

Q
˛.t1bI�/ .x/ D

Z
bI

t2

.t2 C jx � yj2/
nC1�˛

2

d� .y; t/ :

It is important to note that we can choose for �D any fixed dyadic quasigrid, the
compensating point being that the integrations on the left sides of (37) and (38) are
taken over the entire spaces RnC1

C and R
n respectively.

Remark 8.2 There is a gap in the proof of the Poisson inequality at the top of
page 542 in [24]. However, this gap can be fixed as in [33, p. 861].

Poisson Testing

We now turn to proving the Poisson testing conditions (37) and (38). The same
testing conditions have been considered in [28] but in the setting of no common
point masses, and the proofs there carry over to the situation here, but careful
attention must now be paid to the possibility of common point masses. In [6]
Hytönen circumvented this difficulty by introducing a Poisson operator ‘with holes’,
which was then analyzed using shifted dyadic grids, but part of his argument was
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heavily dependent on the dimension being n D 1, and the extension of this argument
to higher dimensions is feasible (see earlier versions of this paper on the arXiv),
but technically very involved. We circumvent the difficulty of permitting common
point masses here instead by using the energy Muckenhoupt constants A˛;energy

2 and
A˛;�;energy
2 , which require control by the punctured Muckenhoupt constants A˛;punct

2

and A˛;�;punct
2 . The following elementary Poisson inequalities (see e.g. [35]) will be

used extensively.

Lemma 8.3 Suppose that J;K; I are quasicubes in R
n, and that � is a positive

measure supported in R
n n I. If J � K � 2K � I, then

P˛ .J; �/

jJj
1
n

� P˛ .K; �/

jKj
1
n

� P˛ .J; �/

jJj
1
n

;

while if 2J � K � I, then

P˛ .K; �/

jKj
1
n

� P˛ .J; �/

jJj
1
n

:

Now we record the bounded overlap of the projections P!F;J .

Lemma 8.4 Suppose P!F;J is as above and fix any I0 2 �D, so that I0, F and J all
lie in a common quasigrid. If J 2M.r;"/�deep .F/ for some F 2 F with F � I0 	 J
and P!F;J ¤ 0, then

F D 	.`/F I0 for some 0 � ` � �:

As a consequence we have the bounded overlap,

#
˚
F 2 F W J � I0 � F for some J 2M.r;"/�deep .F/ with P!F;J ¤ 0

�
� �:

Finally we record the only places in the proof where the refined quasienergy
conditions are used. This lemma will be used in bounding both of the local Poisson
testing conditions. Recall that A�D consists of all alternate�D-dyadic quasicubes
where K is alternate dyadic if it is a union of 2n �D-dyadic quasicubes K0 with
` .K0/ D 1

2
` .K/. See [30] for a proof when common point masses are prohibited,

and the presence of common point masses here requires no change.

Remark 8.5 The following lemma is another of the key results on the way to the
proof of our theorem, and is an analogue of the corresponding lemma from [28], but
with the right hand side involving only the plugged energy constants and the energy
Muckenhoupt constants.
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Lemma 8.6 Let �D;F � �D be quasigrids and
˚
P!F;J

�
F2F

J2M.r;"/�deep.F/
be as above

with J;F in the dyadic quasigrid�D. For any alternate quasicube I 2 A�D define

B .I/ �
X

F2FW F�I0 for some I02C.I/

X
J2M.r;"/�deep.F/W J�I

 
P˛ .J; 1I�/

jJj
1
n

!2 ��P!F;Jx
��2

L2.!/
:

(39)
Then

B .I/ � �
��
Estrong
˛

�2
C A˛;energy

2

	
jIj� : (40)

The Forward Poisson Testing Inequality

Fix I 2 �D. We split the integration on the left side of (37) into a local and global
piece:

Z
R

nC1
C

P
˛ .1I�/

2 d� D
Z
bI
P
˛ .1I�/

2 d�C
Z
R

nC1
C

nbI
P
˛ .1I�/

2 d� � Local .I/CGlobal .I/ ;

where more explicitly,

Local .I/ �
Z
bI
ŒP˛ .1I�/ .x; t/�

2 d� .x; t/ I � �
1

t2
�; (41)

i.e. � �
X

J2�D

1

` .J/2
X
F2F

X
J2M.r;"/�deep.F/

��P!F;Jx
��2

L2.!/
� ı.cJ ;`.J//:

Here is a brief schematic diagram of the decompositions, with bounds in , used in
this subsection:

Local .I/
#

Localplug .I/ C Localhole .I/

#
�
Estrong
˛

�2
#

A C B�
Estrong
˛

�2 �
Estrong
˛

�2
C A˛;energy

2
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and

Global .I/
#

A C B C C C D

A˛2 A˛2 C A˛;energy
2 A˛;�

2 A˛;�
2 C A˛;energy

2 C A˛;punct
2

:

An important consequence of the fact that I and J lie in the same quasigrid
�D D �D! , is that

.c .J/ ; ` .J// 2bI if and only if J � I: (42)

We thus have

Local .I/ D
Z
bI
P
˛ .1I�/ .x; t/

2 d� .x; t/

D
X
F2F

X
J2Mr�deep.F/W J�I

P
˛ .1I�/

�
cJ; jJj

1
n

	2 �����P!F;J
x

jJj
1
n

�����
2

L2.!/


X
F2F

X
J2Mr�deep.F/W J�I

P˛ .J; 1I�/
2 kP!F;J

x

jJj
1
n

k2L2.!/

� Localplug .I/C Localhole .I/ ;

where the ‘plugged’ local sum Localplug .I/ is given by

Localplug .I/ �
X
F2F

X
J2Mr�deep.F/W J�I

 
P˛ .J; 1F\I�/

jJj
1
n

!2 ��P!F;Jx
��2

L2.!/

D

8<
:

X
F2FW F�I

C
X

F2FW F�I

9=
;

X
J2Mr�deep.F/W J�I

 
P˛ .J; 1F\I�/

jJj
1
n

!2 ��P!F;Jx
��2

L2.!/

D AC B:

Then a trivial application of the deep quasienergy condition (where ‘trivial’ means
that the outer decomposition is just a single quasicube) gives

A �
X

F2FW F�I

X
J2Mr�deep.F/

 
P˛ .J; 1F�/

jJj
1
n

!2 ��P!F;Jx
��2

L2.!/

�
X

F2FW F�I

�
Estrong
˛

�2
jFj� �

�
Estrong
˛

�2
jIj� ;
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since
��P!F;Jx

��2
L2.!/
�
���Pgood;!

J x
���2

L2.!/
, where we recall that the quasienergy constant

Estrong
˛ is defined in Definition 2.6. We also used that the stopping quasicubes F

satisfy a � -Carleson measure estimate,

X
F2FW F�F0

jFj� � jF0j� :

Lemma 8.6 applies to the remaining term B to obtain the bound

B � �
��
Estrong
˛

�2
C A˛;energy

2

	
jIj� :

It remains then to show the inequality with ‘holes’, where the support of � is
restricted to the complement of the quasicube F. Thus for J 2 M.r;"/�deep .F/ we
may use I n F in the argument of the Poisson integral. We consider

Localhole .I/ D
X
F2F

X
J2M.r;"/�deep.F/W J�I

 
P˛
�
J; 1InF�

�
jJj

1
n

!2 ��P!F;Jx
��2

L2.!/
:

Lemma 8.7 We have

Localhole .I/ �
�
Estrong
˛

�2
jIj� : (43)

Details are left to the reader,or see [30] or [29] for a proof. This completes the
proof of

(44)

Local .L/ 
X
F2F

X
J2M.r;"/�deep.F/W J�L

 
P˛ .J; 1L�/

jJj
1
n

!2 ��P!F;Jx
��2

L2.!/

�
��
Estrong
˛

�2
C A˛;energy

2

	
jLj� ; L 2 �D:

The Alternate Local Estimate

For future use, we prove a strengthening of the local estimate Local .L/ to alternate
quasicubes M 2 A�D.



Two Weight Boundedness 355

Lemma 8.8 With notation as above and M 2 A�D an alternate quasicube, we
have

(45)

Local .M/ �
X
F2F

X
J2M.r;"/�deep.F/W J�M

 
P˛ .J; 1M�/

jJj
1
n

!2 ��P!F;Jx
��2

L2.!/

�
��
Estrong
˛

�2
C A˛;energy

2

	
jMj� ; M 2 A�D:

Again details are left to the reader, or see [30] or [29] for a proof.

The Global Estimate

Now we turn to proving the following estimate for the global part of the first testing
condition (37):

Global .I/ D
Z
R

nC1
C

nbI
P
˛ .1I�/

2 d� � A˛;�
2 jIj� :

We begin by decomposing the integral on the right into four pieces. As a particular
consequence of Lemma 8.4, we note that given J, there are at most a fixed number
� of F 2 F such that J 2Mr�deep .F/. We have:

Z
R

nC1
C

n

bI
P
˛ .1I�/

2 d� �
X

JW
.cJ ;`.J//2R

nC1
C

n

bI
P
˛ .1I�/ .cJ ; ` .J//

2
X
F2F

J2M.r;"/�deep.F/

�����P!F;J
x

jJj
1
n

�����
2

L2.!/

D

8̂
<̂
ˆ̂:

X
J\3ID;

`.J/�`.I/

C
X

J�3InI

C
X

J\ID;

`.J/>`.I/

C
X
J�I

9>>=
>>;
P
˛ .1I�/ .cJ ; ` .J//

2
X

F2FW

J2M.r;"/�deep.F/

�����P!F;J
x

jJj
1
n

�����
2

L2.!/

D A C B C C C D:

Terms A, B and C are handled almost the same as in [30], and we leave them for
the reader. As always complete details are in [29].

Finally, we turn to term D which is significantly different due to the presence of
common point masses, more precisely a new ‘preparation to puncture’ argument
arises which is explained in detail below. The quasicubes J occurring here are
included in the set of ancestors Ak � 	

.k/
�DI of I, 1 � k <1.
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D D

1X
kD1

P
˛ .1I�/

�
c .Ak/ ; jAkj

1
n

	2 X
F2FW

Ak2M.r;"/�deep.F/

�����P!F;Ak

x

jAkj
1
n

�����
2

L2.!/

D

1X
kD1

P
˛ .1I�/

�
c .Ak/ ; jAkj

1
n

	2 X
F2FW

Ak2M.r;"/�deep.F/

X
J0

2Cgood;��shift
F W J0

�AknI

�����4!
J0

x

jAkj
1
n

�����
2

L2.!/

C

1X
kD1

P
˛ .1I�/

�
c .Ak/ ; jAkj

1
n

	2 X
F2FW

Ak2M.r;"/�deep.F/

X
J0

2Cgood;��shift
F W J0

�I

�����4!
J0

x

jAkj
1
n

�����
2

L2.!/

C

1X
kD1

P
˛ .1I�/

�
c .Ak/ ; jAkj

1
n

	2 X
F2FW

Ak2M.r;"/�deep.F/

X
J0

2Cgood;��shift
F W I�J0

�Ak

�����4!
J0

x

jAkj
1
n

�����
2

L2.!/

� Ddisjoint C Ddescendent C Dancestor:

We thus have from Lemma 8.4 again,

Ddisjoint D

1X
kD1

P
˛ .1I�/

�
c .Ak/ ; jAkj

1
n

	2

�
X

F2FW
Ak2M.r;"/�deep.F/

X
J02Cgood;��shift

F W J0�AknI

�����4!J0

x

jAkj
1
n

�����
2

L2.!/

�
1X

kD1

 
jIj� jAkj

1
n

jAkj
1C 1�˛

n

!2
� jAk n Ij! D �

(
jIj�

jIj1�
˛
n

1X
kD1

jIj1�
˛
n

jAkj
2.1� ˛

n /
jAk n Ij!

)
jIj�

� �

(
jIj�

jIj1�
˛
n
P˛ .I; 1Ic!/

)
jIj� � �A˛;�

2 jIj� ;

since

1X
kD1

jIj1�
˛
n

jAkj
2.1� ˛

n /
jAk n Ij! D

Z 1X
kD1

jIj1�
˛
n

jAkj
2.1� ˛

n /
1AknI .x/ d! .x/

D

Z 1X
kD1

1

22.1�
˛
n /k

jIj1�
˛
n

jIj2.1�
˛
n /

1AknI .x/ d! .x/

�
Z

Ic

0
B@ jIj

1
nh

jIj
1
n C quasidist .x; I/

i2
1
CA

n�˛

d! .x/ D P˛ .I; 1Ic!/ :

The next term Ddescendent satisfies
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Ddescendent �
1X

kD1

 
jIj� jAkj

1
n

jAkj
1C 1�˛

n

!2
�

�����Pgood;!
I

x

2kjIj
1
n

�����
2

L2.!/

D �

1X
kD1

2�2k.n�˛C1/

 
jIj�
jIj1�

˛
n

!2 �����Pgood;!
I

x

jIj
1
n

�����
2

L2.!/

� �

8̂
ˆ̂<
ˆ̂̂:

jIj�

����Pgood;!
I

x

jIj
1
n

����
2

L2.!/

jIj2.1�
˛
n /

9>>>=
>>>;
jIj� � �A˛;energy

2 jIj� :

Finally for Dancestor we note that each J0 is of the form J0 D A` � 	
.`/
�DI for

some ` � 1, and that there are at most C� pairs .F;Ak/ with k � ` such that
Ak 2M.r;"/�deep .F/ and J0 D A` 2 Cgood;��shift

F . Now we write

Dancestor D

1X
kD1

P
˛ .1I�/

�
c .Ak/ ; jAkj

1
n

	2 X
F2FW

Ak2M.r;"/�deep.F/

X
J0

2Cgood;��shift
F W I�J0

�Ak

�����4!
J0

x

jAkj
1
n

�����
2

L2.!/

� �

1X
kD1

 
jIj� jAkj

1
n

jAkj
1C 1�˛

n

!2 kX
`D1

�����4!
A`

x

jAkj
1
n

�����
2

L2.!/

� �

1X
kD1

 
jIj� jAkj

1
n

jAkj
1C 1�˛

n

!2 �����Pgood;!
Ak

x

jAkj
1
n

�����
2

L2.!/

:

It is at this point that we must invoke a new ‘prepare to puncture’ argument. Now
define e! D ! � ! .fpg/ ıp where p is an atomic point in I for which

! .fpg/ D sup
q2P.�;!/W q2I

! .fqg/ :

(If ! has no atomic point in common with � in I set e! D !.) Then we have jIje! D
!
�
I;P.�;!/

�
and

jIje!
jIj.1�

˛
n /

jIj�

jIj.1�
˛
n /
D
!
�
I;P.�;!/

�
jIj.1�

˛
n /

jIj�

jIj.1�
˛
n /
� A˛;punct

2 :

A key observation, already noted in the proof of Lemma 3.2 above, is that

k4!Kxk2L2.!/ D

( ��4!K .x � p/
��2

L2.!/ if p 2 K��4!Kx
��2

L2.e!/ if p … K
� ` .K/2 jKje! ; for all K 2 �D;

(46)
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and so, as in the proof of Lemma 3.2,

�����Pgood;!
Ak

x

jAkj
1
n

�����
2

L2.!/

� 3 jAkje! :

Then we continue with

�

1X
kD1

 
jIj� jAkj

1
n

jAkj
1C 1�˛

n

!2 �����Pgood;!
Ak

x

jAkj
1
n

�����
2

L2.!/

� �

1X
kD1

 
jIj� jAkj

1
n

jAkj
1C 1�˛

n

!2
jAkje!

D �

1X
kD1

 
jIj�
jAkj

1� ˛
n

!2
jAk n Ij! C �

1X
kD1

 
jIj�

2k.n�˛/ jIj1�
˛
n

!2
jIje!

� �
�
A˛;�
2 C A˛;punct

2

�
jIj� ;

where the inequality
P1

kD1

�
jIj�

jAkj1�
˛
n

	2
jAk n Ij! � A˛;�

2 jIj� is already proved above

in the estimate for Ddisjoint.

The Backward Poisson Testing Inequality

Fix I 2 �D. It suffices to prove

Back
�bI
	

�

Z
Rn



Q
˛
�
t1bI�

�
.y/
�2

d�.y/ �
�
A˛
2 C

�
Eplug
˛ C

q
A˛;energy
2

q
A˛;punct
2

� Z
bI

t2d�.x; t/: (47)

Note that in dimension n D 1, Hytönen obtained in [6] the simpler bound A˛2 for the
term analogous to (47). Here is a brief schematic diagram of the decompositions,
with bounds in , used in this subsection:

Back
�bI�

#

Us

#

T
proximal
s C V remote

s

A˛
2C�

Eplug
˛ C

q
A
˛;energy
2

q
A
˛;punct
2

#

#

Tdifference
s C T intersection

s

A˛
2C�

Eplug
˛ C

q
A
˛;energy
2

q
A
˛;punct
2

�
Eplug
˛ C

q
A
˛;energy
2

q
A
˛;punct
2

:
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Using (42) we see that the integral on the right hand side of (47) is

Z
bI

t2d� D
X
F2F

X
J2M.r;"/�deep.F/W J�I

kP!F;Jxk2L2.!/ : (48)

where P!F;J was defined earlier.
We now compute using (42) again that

Q
˛
�
t1bI�

�
.y/ D

Z
bI

t2

�
t2 C jx � yj2

	 nC1�˛
2

d� .x; t/ (49)


X
F2F

X
J2M.r;"/�deep.F/

J�I

��P!F;Jx
��2

L2.!/�
jJj

1
n C jy � cJj

	nC1�˛
;

and then expand the square and integrate to obtain that the term Back
�bI	 is

X
F2F

J2M.r;"/�deep.F/
J�I

X
F0

2FW

J0

2M.r;"/�deep.F
0/

J0

�I

Z
Rn

��P!F;Jx
��2

L2.!/�
jJj

1
n C jy � cJj

	nC1�˛

���P!F0;J0

x
���2

L2.!/�
jJ0j

1
n C jy � cJ0 j

	nC1�˛
d� .y/ :

By symmetry we may assume that ` .J0/ � ` .J/. We fix an integer s, and consider
those quasicubes J and J0 with ` .J0/ D 2�s` .J/. For fixed s we will control the
expression

Us �
X

F;F02F

X
J2M.r;"/�deep.F/; J02M.r;"/�deep.F

0/

J;J0�I; `.J0/D2�s`.J/

�

Z
Rn

��P!F;Jx
��2

L2.!/�
jJj

1
n C jy � cJj

	nC1�˛

���P!F0;J0

x
���2

L2.!/�
jJ0j

1
n C jy � cJ0 j

	nC1�˛
d� .y/ ;

by proving that

Us � 2�ıs

�
A˛
2 C

�
Estrong
˛ C

q
A˛;energy
2

q
A˛;punct
2

� Z
bI

t2d�; where ı D
1

2n
:

(50)

With this accomplished, we can sum in s � 0 to control the term Back
�bI	. The

remaining details of the proof are very similar to the corresponding arguments in
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[30], with the only exception being the repeated use of the ‘prepare to puncture’
argument above whenever the measures � and ! can ‘see each other’ in an estimate.
We refer the reader to [29] for complete details.9

The Stopping Form

This section is virtually unchanged from the corresponding section in [30], so we
content ourselves with a brief recollection. In the one-dimensional setting of the
Hilbert transform, Hytönen [6] observed that “. . . the innovative verification of the
local estimate by Lacey [8] is already set up in such a way that it is ready for us to
borrow as a black box.” The same observation carried over in spirit regarding the
adaptation of Lacey’s recursion and stopping time to proving the local estimate in
[30]. However, that adaptation involved the splitting of the stopping form into two
sublinear forms, the first handled by methods in [16], and the second by the methods
in [8]. The arguments are little changed when including common point masses, and
we leave them for the reader (or see [29] for the proofs written out in detail).

Energy Dispersed Measures

In this final section we prove that the energy side conditions in our main theorem
hold if both measures are appropriately energy dispersed. We begin with the
definitions of energy dispersed and reversal of energy.

Energy Dispersed Measures and Reversal of Energy

Let � be a locally finite positive Borel measure on R
n. Recall that for 0 � k � n, we

denote by Ln
k the collection of all k-dimensional planes in R

n, and for a quasicube
J, we define the k-dimensional second moment Mn

k .J; �/ of � on J by

Mn
k .J; �/

2 � inf
L2Ln

k

Z
J

dist .x;L/2 d� .x/ :

Finally we defined � to be k-energy dispersed if there is c > 0 such that

Mn
k .J; �/ � cMn

0 .J; �/ ; for all quasicubes J in R
n:

9In [28] and [30] the bound for term B in the global estimate was mistakenly claimed without proof

to be simply A˛
2 instead of the correct bound A˛

2 C

�
Eplug
˛ C

q
A˛;energy
2

q
A˛;punct
2 given in [29].
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In order to introduce a useful reformulation of the k-dimensional second moment,
we will use the observation that minimizing k-planes L pass through the center
of mass. More precisely, for any k-plane L 2 Ln

k such that
R

A dist .x;L/2 d� .x/
is minimized, where A is a set of positive �-measure, we claim that

E
�
Ax 2 L:

Indeed, if we rotate coordinates so that L D
˚�

x1; : : : ; xk; akC1; : : : ; an
�
W
�
x1; : : : ; xk

�
2 R

k
�
, then

Z
A

dist .x; L/2 d� .x/ D
Z

A

nX
jDkC1

�
xj � aj

	2
d� .x/

D

nX
jDkC1

�Z
A

�
xj
	2

d� .x/ � 2aj
Z

A
xjd� .x/C

�
aj
	2 Z

A
d� .x/

�

D

nX
jDkC1

"Z
A

�
xj
	2

d� .x/C

�Z
A

d� .x/

(�
aj
	2
� 2

R
A xjd� .x/R
A d� .x/

aj

)#

is minimized over akC1; : : : ; an when

aj D

R
A xjd� .x/R
A d� .x/

D
�
E
�
Ax
�j
; kC 1 � j � n:

This shows that the point E�Ax belongs to the k-plane L.
Now we can obtain our reformulation of the k-dimensional second moment. Let

Sn
k denote the collection of k-dimenional subspaces in R

n. If PS denotes orthogonal
projection onto the subspace S 2 Sn

n�k where S D L?
0 and L0 2 Sn

k is the subspace
parallel to L, then we have the variance identity,

Mn
k .J; �/

2 D inf
L2Ln

k

Z
J

dist .x;L/2 d� .x/ D inf
S2Sn

n�k

Z
J

ˇ̌
PSx � PS

�
E
�
J x
�ˇ̌2

d� .x/ (51)

D
1

2
inf

S2Sn
n�k

1

jJj�

Z
J

Z
J
jPSx � PSyj2 d� .x/ d� .y/

D
1

2
inf

L02Sn
k

1

jJj�

Z
J

Z
J

dist .x;L0 C y/2 d� .x/ d� .y/ ;

since PS
�
E
�
J x
�
D E

�
J .PSx/. Here we have used in the first line the fact that the

minimizing k-planes L pass through the center of mass E�J x of x in J.
Note that if � is supported on a k-dimensional plane L in R

n, then Mn
k .J; �/

vanishes for all quasicubes J. On the other hand, Mn
0 .J; �/ is positive for any

quasicube J on which the restriction of � is not a point mass, and we conclude
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that measures � supported on a k-plane. and whose restriction to J is not a point
mass, are not k-energy dispersed. Thus Mn

k .J; �/ measures the extent to which a
certain ‘energy’ of � is not localized to a k-plane. In this final section we will prove
the necessity of the energy conditions for boundedness of the vector Riesz transform
R˛;n when the locally finite Borel measures � and ! on R

n are k-energy dispersed
with

�
n � k < ˛ < n; ˛ ¤ n � 1 if 1 � k � n � 2
0 � ˛ < n; ˛ ¤ 1; n � 1 if k D n � 1

: (52)

Now we recall the definition of strong energy reversal from [25]. We say that a
vector T˛ D

˚
T˛`
�2
`D1

of ˛-fractional transforms in the plane has strong reversal of
!-energy on a cube J if there is a positive constant C0 such that for all 2 � � �
2r.1�"/ and for all positive measures � supported outside �J, we have the inequality

E
!
J

h�
x � E

!
J x
�2i

 
P˛ .J; �/

jJj
1
n

!2
D E .J; !/2 P˛ .J; �/2 � C0 E

!
J

ˇ̌
T˛� � E

d!
J T˛�

ˇ̌2
;

(53)
Now note that if ! is k-energy dispersed, then we have

E .J; !/2 D
1

jJj! jJj
2
n

Mn
0 .J; !/

2 � 1

jJj! jJj
2
n

Mn
k .J; !/

2 � Ek .J; !/
2 ;

and where we have defined on the right hand side the analogous notion of energy
Ek .J; !/ in terms of Mk .J; !/, and which is smaller than E .J; !/. We now state the
main result of this first subsection.

Lemma 10.1 Let 0 � ˛ < n. Suppose that ! is k-energy dispersed and that k
and ˛ satisfy (52). Then the ˛-fractional Riesz transform R˛;n D

˚
Rn;˛
`

�n

`D1
has

strong reversal (53) of !-energy on all cubes J provided � is chosen large enough
depending only on n and ˛.

In [27] we showed that energy reversal can fail spectacularly for measures in
general, but left open the possibility of reversing at least one direction in the energy
for R˛;n when ˛ ¤ 1 in the plane n D 2, and we will show in the next subsection that
this is indeed possible, with even more directions included in higher dimensions.

Fractional Riesz Transforms and Semi-harmonicity

Now we fix 1 � ` � n and write x D .x0; x00/ with x0 D .x1; : : : ; x`/ 2 R
` and

x00 D .x`C1; : : : ; xn/ 2 R
n�` (when ` D n we have x D x0). Then we compute for ˇ

real that
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4x0 jxjˇ D 4x0

�ˇ̌
x0
ˇ̌2
C
ˇ̌
x00
ˇ̌2	 ˇ2

D rx0 � rx0

�ˇ̌
x0
ˇ̌2
C
ˇ̌
x00
ˇ̌2	 ˇ2

D rx0 �

(
ˇ

2

�ˇ̌
x0
ˇ̌2
C
ˇ̌
x00
ˇ̌2	 ˇ2 �1

2x0

)
D ˇrx0 �

(
x0
�ˇ̌

x0
ˇ̌2
C
ˇ̌
x00
ˇ̌2	 ˇ2 �1

)

D ˇ

( �
rx0 � x0

� �ˇ̌
x0
ˇ̌2
C
ˇ̌
x00
ˇ̌2	 ˇ�2

2
C x0 � rx0

�ˇ̌
x0
ˇ̌2
C
ˇ̌
x00
ˇ̌2	 ˇ�2

2

)

D ˇ

(
`
�ˇ̌

x0
ˇ̌2
C
ˇ̌
x00
ˇ̌2	 ˇ�2

2
C x0 �

ˇ � 2

2

�ˇ̌
x0
ˇ̌2
C
ˇ̌
x00
ˇ̌2	 ˇ�2

2 �1
2x0

)

D ˇ

(
`
�ˇ̌

x0
ˇ̌2
C
ˇ̌
x00
ˇ̌2	 ˇ�2

2
C .ˇ � 2/

ˇ̌
x0
ˇ̌2 �ˇ̌

x0
ˇ̌2
C
ˇ̌
x00
ˇ̌2	 ˇ�4

2

)

D ˇ

(
`
�ˇ̌

x0
ˇ̌2
C
ˇ̌
x00
ˇ̌2	 �ˇ̌

x0
ˇ̌2
C
ˇ̌
x00
ˇ̌2	 ˇ�4

2
C .ˇ � 2/

ˇ̌
x0
ˇ̌2 �ˇ̌

x0
ˇ̌2
C
ˇ̌
x00
ˇ̌2	 ˇ�4

2

)

D ˇ
n
.`C ˇ � 2/

ˇ̌
x0
ˇ̌2
C `

ˇ̌
x00
ˇ̌2o �ˇ̌

x0
ˇ̌2
C
ˇ̌
x00
ˇ̌2	 ˇ�4

2
:

The case of interest for us is when ˇ D ˛ � nC 1, since then

4x0 jxjˇ D rx0 � rx0 jxj˛�nC1 D rx0 � r jxj˛�nC1 D c˛;nrx0 �K˛;n .x/ ; (54)

where K˛;n is the vector convolution kernel of the ˛-fractional Riesz transform R˛;n.
Now if ` D 1 in this case, then the factor

F`;ˇ .x/ � .`C ˇ � 2/
ˇ̌
x0
ˇ̌2
C `

ˇ̌
x00
ˇ̌2

is .ˇ � 1/ jx0j
2
C jx00j

2, and thus in dimension n � 2, the factor F1;ˇ .x/ will be of
one sign for all x if and only if ˛ � nC 1 D ˇ > 1, i.e. ˛ > n, which is of no use
since the Riesz transform R˛;n is defined only for 0 � ˛ < n.

Thus we must assume ` � 2 and ˇ D ˛ � n C 1 when n � 2. Under these
assumptions, we then note that F`;ˇ .x/ will be of one sign for all x if `Cˇ� 2 > 0,
i.e. ˛ > nC 1 � `, in which case we conclude that

ˇ̌
ˇ4x0 jxj˛�nC1

ˇ̌
ˇ D j˛ � nC 1j

n
.`C ˛ � n � 1/

ˇ̌
x0
ˇ̌2
C `

ˇ̌
x00
ˇ̌2o �ˇ̌

x0
ˇ̌2
C
ˇ̌
x00
ˇ̌2	 ˛�n�3

2
(55)


�ˇ̌

x0
ˇ̌2
C
ˇ̌
x00
ˇ̌2	 ˛�n�1

2
D jxj˛�n�1 ; for ˛ ¤ n � 1:

When ` D n, this shows that
ˇ̌
ˇ4x jxj

˛�nC1
ˇ̌
ˇ  jxj˛�n�1 for ˛ > 1 with ˛ ¤ n � 1.

But in the case ` D n we can obtain more. Indeed, since x00 is no longer present, we
have for 0 � ˛ < 1 that
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4x jxj
˛�nC1  jxj˛�n�1 :

(This includes dimension n D 1 but only for 0 < ˛ < 1).
We summarize these results as follows. For dimension n � 2 and x D .x0; x00/

with x0 2 R
` and x00 2 R

n�`, we have

ˇ̌
ˇ4x0 jxj˛�nC1

ˇ̌
ˇ  jxj˛�n�1 ;

provided

either 2 � ` � n � 1 and nC 1 � ` < ˛ < n with ˛ ¤ n � 1; (56)

or ` D n and 0 � ˛ < n with ˛ ¤ 1; n � 1:

Thus the two cases not included are ˛ D 1 and ˛ D n � 1. The case ˛ D 1 is not
included since jxj˛�nC1 D jxj2�n is the fundamental solution of the Laplacian for
n > 2 and constant for n D 2. The case ˛ D n�1 is not included since jxj˛�nC1 D 1

is constant.
So we now suppose that ˛ and ` are as in (56), and we consider `-planes L

intersecting the cube J. Recall that the trace of a matrix is invariant under rotations.
Thus for each such `-plane L, and for z 2 J\L, we have from (54) and (55), and with
I˛C1;n� .z/ �

R
Rn jz � yj˛C1�n d� .y/ denoting the convolution of jxj˛C1�n with �,

that

jrLR˛;n� .z/j � jtracerLR˛;n� .z/j D
ˇ̌
4LI˛C1;n� .z/

ˇ̌
�

Z
jy � zj˛�n�1 d� .y/ �

P˛ .J; �/

jJj
1
n

;

(57)

where rL denotes the gradient in the `-plane L, i.e. rL D PSr where S is the
subspace parallel to L and PS is orthogonal projection onto S, and where we assume
that the positive measure � is supported outside the expanded cube �J.

We now claim that for every z 2 J \ L, the full matrix gradient rR˛;n� .z/ is
‘missing’ at most ` � 1 ‘large’ directions, i.e. has at least n � ` C 1 eigenvalues
each of size at least c P˛.J;�/

jJj
1
n

. Indeed, to see this, suppose instead that the matrix

rR˛;n� .z/ has at most n � ` eigenvalues of size at least c P˛.J;�/

jJj
1
n

. Then there is an

`-dimensional subspace S such that

jrSR˛;n� .z/j D j.PSr/R˛;n� .z/j D jPS .rR˛;n� .z//j � c
P˛ .J; �/

jJj
1
n

;

which contradicts (57) if c is chosen small enough. This proves our claim, and
moreover, it satisfies the quantitative quadratic estimate

j� � rR˛;n� .z/ �j � c
P˛ .J; �/

jJj
1
n

j�j2 ;
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for all vectors � in some .n � `C 1/-dimensional subspace

Sn�`C1
z � Span

˚
v1z ; : : : ; v

n�`C1
z

�
2 Sn

n�`C1;

with vj
z 2 S

n�1 for 1 � j � n � `C 1.
It is convenient at this point to let

k D ` � 1;

so that 1 � k � n � 1 and the assumptions (56) become

either 1 � k � n � 2 and n � k < ˛ < n with ˛ ¤ n � 1; (58)

or k D n � 1 and 0 � ˛ < n with ˛ ¤ 1; n � 1;

and our conclusion becomes

j� � rR˛;n� .z/ �j � c
P˛ .J; �/

jJj
1
n

j�j2 ; � 2 Sn�k
z ; z 2 J: (59)

Proof of Strong Reversal of Energy

We are now in a position to prove the strong reversal of energy for Riesz transforms
in Lemma 10.1.

Proof (of Lemma 10.1) Recall that Ek .J; !/
2 D infL2Ln

k

1
jJj!

R
J

�
dist.x;L/

jJj
1
n

2
d! .x/

and

1

jJj!

Z
J

 
dist .x;L/

jJj
1
n

!2
d! .x/ D

1

2

1

jJj!

Z
J

1

jJj!

Z
J

 
dist .x; zC L0/

jJj
1
n

!2
d! .x/ d! .z/ ;

(60)
where we recall that L0 2 Sn

k is parallel to L. The real matrix

M .x/ � rR˛;n� .x/ ; x 2 J; (61)

is a scalar multiple of the Hessian of jxj˛C1, hence is symmetric, and so we can
rotate coordinates to diagonalize the matrix,

M .x/ D

2
66664

�1 .x/ 0 � � � 0

0 �2 .x/
:::

:::
: : : 0

0 � � � 0 �n .x/

3
77775 ;
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where j�1 .x/j � j�2 .x/j � : : : � j�n .x/j. We now fix x D cJ to be the center of J
in the matrix M .cJ/ and fix the eigenvalues corresponding to M .cJ/:

j�1j � j�2j � : : : � j�nj ; �j � �j .cJ/ ;

and define also the subspaces Sn�i to be Sn�i
cJ

for 1 � i � k. Note that we then have
Sn�i D Span feiC1; : : : ; eng. Let Li

z be the i-plane

Li
z � zC

�
Sn�i

�?
D
˚�

u1; : : : ; ui; ziC1; : : : ; zn
�
W
�
u1; : : : ; ui

�
2 R

i
�
: (62)

By (59) we have

j�kC1j � c
P˛ .J; �/

jJj
1
n

:

For convenience define j�0j � 0 and then define 0 � m � k be the unique integer
such that

j�mj < c
P˛ .J; �/

jJj
1
n

� j�mC1j : (63)

Now consider the largest 0 � ` � m that satisfies

j�`j � �
� 1
2n j�`C1j : (64)

Note that this use of ` is quite different than that used in (56).
So suppose first that ` satisfies 1 � ` � m and is the largest index satisfying (64).

Then if ` < m we have j�ij > �
� 1
2n j�iC1j for `C 1 � i � m, and so both

j�`C1j > �
� 1
2n j�`C2j > : : : > �

� m�`
2n j�mC1j � �

� m�`
2n c

P˛ .J; �/

jJj
1
n

; (65)

j�1j � : : : � j�`j � �
� 1
2n j�`C1j :

Both inequalities in the display above also hold for ` D m by (63) and (64). Roughly
speaking, in this case where 1 � ` � m, the gradient of R˛;n� has modulus at least
j�`C1j in the directions of e`C1; : : : ; en, while the gradient of R˛;n� has modulus at
most �� 1

2n j�`C1j in the directions of e1; : : : ; e`.
Recall that Sn�` D Sn�`

cJ
is the subspace on which the symmetric matrix

M .cJ/ D r .R˛;n�/ .cJ/ has energy � trM .cJ/ � bounded below by j�`C1j. Now
we proceed to show that

j�`C1j
2 jJj

2
n E .J; !/2 � 1

jJj2!

Z
J

Z
J
jR˛;n� .x/ � R˛;n� .z/j2 d! .x/ d! .z/ : (66)
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We will use our hypothesis that ! is k-energy dispersed to obtain

E .J; !/ � Ek .J; !/ � Em .J; !/ � E` .J; !/

since ` � m � k. To prove (66), we take Lz � L`z as in (62) and begin with

dist .x;Lz/
2 D dist

�
x; zC

�
Sn�`

�?	2
(67)

D .x`C1 � z`C1/
2 C : : :C .xn � zn/

2 D
ˇ̌
x00 � z00

ˇ̌2
;

where x D .x0; x00/ with x0 2 R
` and x00 2 R

n�`, and Lz D
˚
.u0; z00/ W u0 2 R

`
�
. Now

for x; z 2 J we take � �
�
0; x00�z00

jx00�z00j

	
2 Sn�` (where 0

0
D 0). We use the estimate

jJj
1
n
��r2R˛;n�

��
L1.J/ � jJj

1
n

Z
Rn

n�J

d� .y/

jy � cJ jn�˛C2
� 1

�

Z
Rn

n�J

d� .y/

jy � cJ jn�˛C1
�
1

�

P˛ .J; �/

jJj
1
n

;

(68)
to obtain

1

jJj2!

Z
J

Z
J

���r2R˛;n�
��

L1.J/ jx � zj jJj
1
n

	2
d! .x/ d! .z/ (69)

� 1

�2
P˛ .J; �/2

1

jJj2!

Z
J

Z
J

 
jx � zj

jJj
1
n

!2
d! .x/ d! .z/ D

1

�2
P˛ .J; �/2 E .J; !/2 :

We then start with a decomposition into big B and small S pieces,

1

jJj2!

Z
J

Z
J
jR˛;n� .x/ � R˛;n� .z/j2 d! .x/ d! .z/

� 1

jJj2!

Z
J

Z
J

ˇ̌
R˛;n�

�
z0; x00

�
� R˛;n�

�
z0; z00

�ˇ̌2
d! .x/ d! .z/

�
1

jJj2!

Z
J

Z
J

ˇ̌
R˛;n�

�
x0; x00

�
� R˛;n�

�
z0; x00

�ˇ̌2
d! .x/ d! .z/

� B � S:

For w 2 J we have

jrR˛;n� .w/ �M .cJ/j D jrR˛;n� .w/ � rR˛;n� .cJ/j (70)

� jw � cJj
��r2R˛;n�

��
L1.J/ �

1

�

P˛ .J; �/

jJj
1
n

;
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from (68), and this inequality will allow us to replace x or z by cJ at appropriate
places in the estimates below, introducing a harmless error. We now use the second
inequality in (65) with the diagonal form of M .cJ/ D rR˛;n� .cJ/, along with the
error estimates (69) and (70), to control S by

S �
1

jJj2!

Z
J

Z
J

ˇ̌�
x0 � z0

�
� r 0R˛;n� .x/

ˇ̌2
d! .x/ d! .z/

C
1

jJj2!

Z
J

Z
J

n��r2R˛;n�
��

L1.J/

ˇ̌
x0 � z0

ˇ̌2o2
d! .x/ d! .z/

� 1

jJj2!

Z
J

Z
J

ˇ̌�
x0 � z0

�
� r 0R˛;n� .cJ/

ˇ̌2
d! .x/ d! .z/

C
1

jJj2!

Z
J

Z
J

n��r2R˛;n�
��

L1.J/

ˇ̌
x0 � z0

ˇ̌
jJj

1
n

o2
d! .x/ d! .z/ ;

and then continuing with

S � 1

jJj2!

Z
J

Z
J

˚ˇ̌
x0 � z0

ˇ̌
j�`j

�2
d! .x/ d! .z/C

1

�2
P˛ .J; �/2 E .J; !/2

� 1

�
j�`C1j

2 1

jJj2!

Z
J

Z
J
jx � zj2 d! .x/ d! .z/C

1

�2
P˛ .J; �/2 E .J; !/2

D
1

�
jJj

2
n j�`C1j

2 E .J; !/2 C
1

�2
P˛ .J; �/2 E .J; !/2 ;

which is small enough to be absorbed later on in the proof. To bound term B from
below we use (70) in

R˛;n�
�
z0; x00

�
� R˛;n�

�
z0; z00

�
D
�
x00 � z00

�
� r00R˛;n� .z/C O

���r2R˛;n�
��

L1.J/ jx � zj2
	

D
�
x00 � z00

�
� r00R˛;n� .cJ/C O

���r2R˛;n�
��

L1.J/ jx � zj jJj
1
n

	
;

and then (59) with the choice � �
�
0; x00�z00

jx00�z00j

	
2 Sn�`, to obtain

ˇ̌
x00 � z00

ˇ̌
j�`C1j �

ˇ̌
x00 � z00

ˇ̌ ˇ̌�
� � r 00

�
R˛;n� .cJ/ � �

ˇ̌
D
ˇ̌�

x00 � z00
�
� r 00R˛;n� .cJ/ � �

ˇ̌
�
ˇ̌�

x00 � z00
�
� r 00R˛;n� .cJ/

ˇ̌

�
ˇ̌
R˛;n�

�
z0; x00

�
� R˛;n�

�
z0; z00

�ˇ̌
C O

����r2R˛;n�
���

L1.J/
jx � zj jJj

1
n


:
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Then using (69) and (70) we continue with

1

jJj2!

Z
J

Z
J

ˇ̌
R˛;n�

�
z0; x00

�
� R˛;n�

�
z0; z00

�ˇ̌2
d! .x/ d! .z/

� j�`C1j2
1

jJj2!

Z
J

Z
J

ˇ̌
x00 � z00

ˇ̌2
d! .x/ d! .z/ �

1

�2
P˛ .J; �/2 E .J; !/2 ;

and then

j�`C1j
2

jJj
2
n E .J; !/2 � C j�`C1j

2
jJj

2
n E` .J; !/

2 (71)

D j�`C1j
2 1

jJj
2
!

Z
J

Z
J

dist .x;Lz/
2 d! .x/ d! .z/ D j�`C1j

2 1

jJj
2
!

Z
J

Z
J

jx00 � z00j
2 d! .x/ d! .z/

� 1

jJj
2
!

Z
J

Z
J

jR˛;n� .z0; x00/� R˛;n� .z0; z00/j
2 d! .x/ d! .z/C

1

�2
P˛ .J; �/2 E .J; !/2

� 1

jJj
2
!

Z
J

Z
J

jR˛;n� .x/� R˛;n� .z/j2 d! .x/ d! .z/C S C
1

�2
P˛ .J; �/2 E .J; !/2

� 1

jJj
2
!

Z
J

Z
J

jR˛;n� .x/� R˛;n� .z/j2 d! .x/ d! .z/C
1

�
j�`C1j

2
jJj

2
n E .J; !/2 ;

since 1
�2

P˛ .J; �/2 E .J; !/2 � 1
�
jJj

2
n j�`C1j

2 E .J; !/2 for � large enough depend-
ing only on n and ˛. Finally then, for � large enough depending only on n and ˛
we can absorb the last term on the right hand side of (71) into the left hand side to
obtain (66):

j�`C1j
2 jJj

2
n E .J; !/2 � 1

jJj2!

Z
J

Z
J
jR˛;n� .x/ � R˛;n� .z/j2 d! .x/ d! .z/ :

But since �� m�`
2n c P˛.J;�/

jJj
1
n
� j�`C1j by (65), we have obtained

P˛ .J; �/2 E .J; !/2 �
1

c2
� j�`C1j

2 jJj
2
n E .J; !/2

� 1

jJj2!

Z
J

Z
J
jR˛;n� .x/ � R˛;n� .z/j2 d! .x/ d! .z/ ;

which is the strong reverse energy inequality for J since

1

2 jJj2!

Z
J

Z
J
jR˛;n� .x/ � R˛;n� .z/j2 d! .x/ d! .z/ D E

!
J

ˇ̌
R˛;n� � E

d!
J R˛;n�

ˇ̌2
:

This completes the proof of strong reversal of energy under the assumption that
1 � ` � m.
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If instead ` D 0, then j�ij > �� 1
2n j�iC1j for all 1 � i � m, and so the smallest

eigenvalue satisfies

j�1j > �
� 1
2n j�2j > �

� 2
2n j�3j > : : : > �

� k
2n j�mC1j > �

� 1
2 c

P˛ .J; �/

jJj
1
n

:

In this case the arguments above show that

 
�� 1

2 c
P˛ .J; �/

jJj
1
n

!2
E .J; !/2 � 1

jJj2!

Z
J

Z
J
jR˛;n� .x/ � R˛;n� .z/j2 d! .x/ d! .z/

C
1

�2
P˛ .J; �/2 E .J; !/2 ;

which again yields the strong reverse energy inequality for J since the second term
on the right hand side can then be absorbed into the left hand side for � sufficiently
large depending only on n and ˛. ut

Necessity of the Energy Conditions

Now we demonstrate in a standard way the necessity of the energy conditions for the
vector Riesz transform R˛;n when the measures � and ! are appropriately energy
dispersed. Indeed, we can then establish the inequality

Estrong
˛ �

q
A˛
2 C TR˛;n :

So assume that (58) holds. We use Lemma 10.1 to obtain that the ˛-fractional Riesz
transform R˛;n has strong reversal of !-energy on all quasicubes J. Then we use the
next lemma to obtain the energy condition Estrong

˛ � TRn;˛ C
p

A˛2 .

Lemma 10.2 Let 0 � ˛ < n and suppose that R˛;n has strong reversal of !-energy
on all quasicubes J. Then we have the energy condition inequality,

Estrong
˛ � TTn;˛ C

q
A˛;punct
2 :

Proof Fix � � 2 large enough depending only on n and ˛, and fix goodness
parameters r and " so that � � 2r.1�"/. Then Lemma 10.1 holds. From the strong
reversal of !-energy with d� � 1Irn�Jd� , we have

E .J; !/2 P˛
�
J; 1Irn�Jd�

�2
� C E

!
J

ˇ̌
T˛
�
1Irn�Jd�

�
� E

d!
J T˛

�
1Irn�Jd�

�ˇ̌2
� E

!
J

ˇ̌
T˛
�
1Irn�Jd�

�ˇ̌2 � E
!
J jT

˛ .1Ir d�/j
2 C E

!
J

ˇ̌
T˛
�
1�Jd�

�ˇ̌2
;
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and so

X
J2M.r;"/�deep.Ir /

jJj! E .J; !/2 P˛ .J; �/2 �
X

J

Z
J

ˇ̌
T˛
�
1Ir d�

�
.x/
ˇ̌2

d! .x/C
X

J

Z
J

ˇ̌
T˛
�
1�Jd�

�
.x/
ˇ̌2

d! .x/

�
Z

Ir

ˇ̌
T˛
�
1Ir d�

�
.x/
ˇ̌2

d! .x/C
X

J

Z
�J

ˇ̌
T˛
�
1�Jd�

�
.x/
ˇ̌2

d! .x/

� TTn;˛ jIrj� C
X

J

TTn;˛ j�Jj� � TTn;˛ jIrj�

since �J � Ir for � � 2r.1�"/, and since the quasicubes �J have bounded overlap
(see [29, Lemma 2 in v3]). We also have

X
J2M.r;"/�deep.Ir/

jJj! E .J; !/2 P˛
�
J; 1�Jd�

�2 � X
J2M.r;"/�deep.Ir/

A˛;energy
2 j�Jj� � A˛;energy

2 jIrj�

by the bounded overlap of the quasicubes �J in Ir once more. We can now easily

complete the proof of Estrong
˛ � TTn;˛ C

q
A˛;punct
2 . ut
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A Partition Function Connected
with the Göllnitz–Gordon Identities

Nicolas Allen Smoot

Abstract We use the celebrated circle method of Hardy and Ramanujan to develop
convergent formulæ for counting a restricted class of partitions that arise from the
Göllnitz–Gordon identities.

Introduction

The purpose of this article is to illustrate a beautiful application of the tools of
complex analysis to a discrete subject: the theory of addition over the integers, also
known as partition theory.

A partition of a positive integer n is simply an expression of n as a sum of other
positive integers. For example, taking the number 5, we find 7 different partitions:
5, 4C 1, 3C 2, 3C 1C 1, 2C 2C 1, 2C 1C 1C 1, and 1C 1C 1C 1C 1.

The number of partitions of n is denoted by p.n/, and is often called the partition
function. In our example, we have p.5/ D 7.

While partitions have been studied since the time of Euler [6], very little was
known about the partition function itself before the twentieth century. Indeed, at the
end of the nineteenth century, attempts to study the behavior of the prime counting
function [14] had led to a general sense of pessimism in number theory [5]; it was
expected that any careful analysis of p.n/would produce an asymptotic formula that
was approximate at best, and certainly not useful for direct computation.

It was not until 1918 that Hardy and Ramanujan developed the techniques to
conduct a detailed study of p.n/ [5]. The results of their work were astonishing: not
only were they capable of achieving a formula that could give the exact value of
p.n/ with relative efficiency, but the formula itself is an utterly bizarre object, as an
infinite series containing Bessel functions, coprime sums over roots of unity, and
	—analytic entities that seem wholly irrelevant to the question of simple addition
over the natural numbers.
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The techniques that Hardy and Ramanujan had developed are embodied in what
is now known as the circle method. This method has since become one of the most
basic tools in analytic number theory [11, 15].

Notably, the circle method has continued to contribute to the theory of partitions
and q-series. Hardy and Ramanujan’s formula was carefully refined by Rademacher,
first in 1936 [9] to make their formula for p.n/ convergent, and again in 1943
[10] as an adjustment of the method itself. Soon thereafter, it was realized that the
techniques embodying the circle method could be used to develop formulæ for a
variety of more restricted partition functions (two notable examples are [8] and [7]).

We are interested here in one such partition function, associated with the
Göllnitz–Gordon identities [3, 4], which we provide here for reference:

Theorem 1.1 (Göllnitz–Gordon Identities) Fix a to be either 1 or 3. Given an
integer n, the number of partitions of n in which parts are congruent to 4;˙a
.mod 8/, is equal to the number of partitions of n in which parts are non-repeating
and non-consecutive, with any two even parts differing by at least 4, and with all
parts � a.

Each identity—one for either value of a—equates the sizes of two different
classes of partitions of n, while not actually indicating the class size itself. We will
use Hardy and Ramanujan’s method, together with Rademacher’s refinements, to
formulate a convergent expression for the number of partitions associated with these
identities.

Definition 1.2 Fix a at either 1 or 3. A Göllnitz–Gordon partition of type a is
composed of parts of the form 4;˙a .mod 8/. The generating function for such
partitions is expressed as Fa.q/, and the actual number of such partitions of n is
given as ga.n/.

We seek a formula for ga.n/. The author wishes to note his deep appreciation for
the guidance and encouragement of Professor Andrew Sills, who first suggested this
problem.

In keeping with the theory of q-series [1, Chapter 2], we have

Fa.q/ D
1X

kD0

ga.k/q
k (1)

D

1Y
mD0

.1 � q8mCa/�1.1 � q8mC4/�1.1 � q8mC8�a/�1 (2)

D
1

.qaI q8/1.q4I q8/1.q8�aI q8/1
; (3)

with

.aI q/1 D
1Y

jD0

�
1 � aqj

�
: (4)
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Cauchy’s residue theorem [14, Chapter 3] gives us a means of calculating—at
least in principle—the value of ga.n/. Dividing Fa.q/ by qnC1, we find that ga.n/ is
the coefficient of q�1, and is therefore the residue of Fa.q/=qnC1.

Theorem 1.3

ga.n/ D
1

2	 i

I

C

Fa.q/

qnC1
dq; (5)

for C some curve inside the unit circle of the q-plane, encompassing q D 0.

We must choose an appropriate contour for C. We then study Fa.q/ itself,
including some of its useful transformation properties. Next, we will employ the
circle method in reducing our integral (5) to something far more accessible to
integration. We finish our integration using the theory of Bessel functions.

Rademacher’s Contour

Casual inspection of (3) suggests that Fa.q/ has important structure near the roots
of unity of the unit circle. We will construct a contour that remains inside the unit
circle, but approaches the roots of unity e2	 ih=k in a controlled way. This contour
was first used by Rademacher [10]. We use the contour in a form slightly modified
by Sills [13].

Definition 2.1 For a given h=k 2 FN , define the Ford circle C.h; k/ as the curve
given by

ˇ̌
ˇ̌� �

�
h

k
C

i

2k2

ˇ̌
ˇ̌ D 1

2k2
: (6)

Given the set of Ford circles corresponding to the Farey sequence of degree N,
let �.h; k/ be defined as the upper arc of C.h; k/ from

�I.h; k/ D
h

k
�

kp

k.k2 C k2p/
C

1

k2 C k2p
i

to

�T.h; k/ D
h

k
C

ks

k.k2 C k2s /
C

1

k2 C k2s
i;

with hp=kp and hs=ks the immediate predecessor and successor (respectively) of
h=k 2 FN (let 0p=1p D .N � 1/=N; similarly, let .N � 1/s=Ns D 0=1).
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�(τ)

�(τ) �(τ) = 1

0 1/2 11/3 2/3

Fig. 1 Ford circles C.h; k/ for h=k 2 F3, with P.3/ highlighted

Definition 2.2 The Rademacher path of order N, P.N/, is the union of all upper
arcs �.h; k/ from � D i to � D iC 1:

P.N/ D
[

h=k2FN

�.h; k/: (7)

We give an illustration of P.3/ in Fig. 1.
It may be easily demonstrated that consecutive Ford circles corresponding to FN

are tangent to one another, so that P.N/ is a connected curve. Moreover, for � in the
upper arc �.h; k/, =.�/ > 0; therefore, �.h; k/ lies entirely in H for every h=k 2 FN .
Therefore, P.N/ is a connected curve that lies entirely in H.

So if we define q D e2	 i� , then we may define our curve C from (5) as the
preimage of P.N/. We will make one more helpful change of variables:

� D
h

k
C

iz

k
; (8)
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with <.z/ > 0. This change maps C.h; k/ (with �.h; k/) to the circle

K.�/
k W

ˇ̌
ˇ̌z � 1

2k

ˇ̌
ˇ̌ D 1

2k
: (9)

Notice that the initial and terminal points of �.h; k/ are mapped to zI.h; k/ and
zT.h; k/ by the following:

�I.h; k/ 7! zI.h; k/ D
k

k2 C k2p
C

kp

k2 C k2p
i; (10)

�T.h; k/ 7! zT.h; k/ D
k

k2 C k2s
�

ks

k2 C k2s
i: (11)

We finish this section by referencing an important lemma, which can be proved
quickly from the properties of the Farey fractions [6].

Lemma 2.3 Let N 2 N be given, with h=k 2 FN. Let zI.h; k/, zT.h; k/ be the images
of �I.h; k/, �T.h; k/; respectively, from C.h; k/ to K.�/

k . Then for any z on the chord
connecting zI.h; k/ to zT.h; k/, we have

jzj D O
�
N�1

�
: (12)

Transformation Equations

We begin by expressing Fa.q/ in terms of automorphic forms—in particular, as
a quotient of eta functions by a theta function. Let q D e2	 i� , with � a complex
variable, =.�/ > 0.

Recall that Ramanujan’s theta function [2, Chapter 1] has the following product
expansion:

f .�q˛;�qˇ/ D .q˛I q˛Cˇ/1.q
ˇI q˛Cˇ/1.q

˛CˇI q˛Cˇ/1: (13)

Moreover, Ramanujan’s theta function is related to the standard theta function
#1 by the following, which can be verified by the series representations of both
functions [11, Chapter 10]:

f .�q˛;�qˇ/ D �ie	 i�.3˛�ˇ/=4#1.˛� j.˛ C ˇ/�/: (14)

We then have

Fa.q/ D
.q8I q8/21

.q4I q4/1f .�qa;�q8�a/
(15)

Di exp.	 i�.2 � a//
.q8I q8/21

.q4I q4/1#1.a� j8�/
: (16)
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Since .q˛I q˛/1 D e�˛	 i�=12�.˛�/, we can rewrite the remaining q-Pochhammer
symbols in terms of eta functions in the following way:

Fa.q/ D i exp.	 i�.1 � a//
�.8�/2

�.4�/#1.a� j8�/
: (17)

We will now study the behavior of Fa.q/ near the arbitrary singularity e2	 ih=k,
with 0 � h < k, and .h; k/ D 1. To do this, we will divide our work into four
cases, depending on the divisibility properties of k with respect to 8, and then take
advantage of the modular symmetries of the � and #1 functions.

GCD.k; 8/ D 8

The simplest transformation formula relevant to our problem occurs for .k; 8/ D 8.
Let H8 be defined as the negative inverse of h modulo 16k:

hH8 � �1 .mod 16k/: (18)

Notice that since 8jk by hypothesis, and .h; k/ D 1, therefore .h; 16k/ D
.h; k/ D 1, so that H8 exists. Then the following are elements of SL.2;Z/:

�
h � 8k .hH8 C 1/
k
8

�H8


; (19)

�
h � 4k .hH8 C 1/
k
4

�H8


; (20)

We will allow

� 0 D
H8

k
C

iz�1

k
: (21)

Applying (19) as a modular transformation to 8� 0, we have

8h� 0 � 8
k .hH8 C 1/

8 k
8
� 0 � H8

D 8�:

Similarly, applying (20) to 4� 0, we get 4� .
Therefore, we will transform �.8�/ to �.8� 0/, using (19). Similarly, we transform

�.4�/ to �.4� 0/ using (20).
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Invoking these transformations, we must contend with the roots of unity associ-
ated with the � and #1 functions. As a shorthand, we will refer to the roots of unity
as the following:

�.8; 8/ D �

�
h;�

8

k
.hH8 C 1/;

k

8
;�H8


; (22)

�.8; 4/ D �

�
h;�

4

k
.hH8 C 1/;

k

4
;�H8


; (23)

where �.a; b; c; d/ is the root of unity given by

�.a; b; c; d/ D

( �
d
c

�
i.1�c/=2 exp

�
	 i
12
.bd.1 � c2/C c.aC d//

�
; 2 � c�

c
d

�
exp

�
	 id
4
C 	 i

12
.ac.1 � d2/C d.b � c//

�
; 2 � d

; (24)

and
�

m
n

�
is the Legendre–Jacobi character. See [11, Chapter 9].

Invoking the functional equation for � [11, Chapter 9], it follows that

�.8�/2

�.4�/
D

1

z1=2
�.8; 8/2

�.8; 4/

�.8� 0/2

�.4� 0/
: (25)

Handling #1 turns out to be more difficult, due to the presence of a second
complex variable. We will mimic our work with �.8�/, using (19), and setting

v D a� iz�1 D
a.hiz�1 � 1/

k
: (26)

The functional equation for #1 [11, Chapter 10] gives us

#1.a� j8�/ D #1

�
v

iz�1

ˇ̌
ˇ̌8�

D �i�.8; 8/3

1

z1=2
ez	a2.hiz�1�1/2=8k#1

�
vj8� 0

�
: (27)

Recall that hH8 � �1 .mod 16k/. We can therefore write

�1 D hH8 C 16kM; (28)

with M 2 Z. We then have

v D ah� 0 C 16aM: (29)

If we also take advantage of the fact that #1.vC 1j�/ D �#1.vj�/ [11, Chapter 10],
then we have

#1
�
vj8� 0

�
D #1

�
ah� 0 C 16aMj8� 0

�
D #1

�
ah� 0j8� 0

�
: (30)
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Again considering that .k; 8/ D 8 and .h; k/ D 1, and a D 1; 3, we also have
ah � 1; 3; 5; 7 .mod 8/. We therefore write

#1.ah� 0j8� 0/ D #1.b�
0 C 8N� 0j8� 0/; (31)

with b the least positive residue of ah modulo 8.
We now make use of the fact that for N 2 N,

#1.v C N� j�/ D .�1/N exp .�	 iN.2v C N�// #1.vj�/ (32)

[11, Chapter 10], so that

#1.ah� 0j8� 0/ D .�1/N exp.�	 iN.2b� 0 C 8N� 0//#1.b�
0j8� 0/: (33)

Combining (27), (30), (33), and inverting, we have the following:

1

#1.a� j8�/
D i

.�1/N

�.8; 8/3
z1=2e�z	a2.hiz�1�1/2=8k exp.	 iN.2b� 0 C 8N� 0//

#1.b� 0j8� 0/
: (34)

We now have sufficient information, in (25) and (34), to reassemble the trans-
formed generating function.

Fa.q/ Di exp.	 i�.1 � a//
1

z1=2
�.8; 8/2

�.8; 4/

�.8� 0/2

�.4� 0/

1

#1.a� j8�/
(35)

� exp.	 iN.2b� 0 C 8N� 0//
�.8� 0/2

�.4� 0/#1.b� 0j8� 0/
: (36)

Here b D 1; 3; 5; 7. However, noting from (13) that

f .�q˛;�qˇ/ D f .�qˇ;�q˛/; (37)

we may define F5.q/ D F3.q/; F7.q/ D F1.q/. We therefore have

Fa.q/ D
i.�1/N

�.8; 8/�.8; 4/
� exp

�
	 i�.1 � a/ � z	a2.hiz�1 � 1/2=8k

C 	 iN.2b� 0 C 8N� 0/C 	 i� 0.a � 1/


Fb.y/; (38)

with y D exp.2	 i� 0/.
Remembering that

N D

�
ah

8

�
D

ah � b

8
; (39)



A Partition Function Connected with the Göllnitz–Gordon Identities 381

and that

a2 � 4aC 3 D .a � 1/.a � 3/ D 0; (40)

we may collect and reorganize the coefficients of 1, z, and 1=z in the exponential
of (38). Doing so gives the following transformation formula:

Fa.q/ D !a;8.h; k/ exp

�
	

8k

�
.b � 4/2 � 8

z
C z.4a � 5/


Fb.y/; (41)

where

!a;8.h; k/ D
i.�1/b

ah
8 c

�.8; 8/�.8; 4/
exp

�
	 i

8k
.h.5 � 4a/ � H8..b � 4/

2 � 8//


: (42)

We note that we can extend this result to prove the modularity of Fa.q/ relative
to a certain subgroup of SL.2;Z/. We do not give the proof here.

GCD.k; 8/ < 8

The result of the section “GCD.k; 8/ D 8” suggests that Fa.q/ is modular, at least
with respect to a subgroup of the modular group. While such a property does not
carry over exactly to the remaining three cases, it is only necessary to show that
Fa.q/ D f .z/‰.y/, with ‰.q/ a suitable quotient of q-series.

For each case .k; 8/ D d, we will define

� 0 D
Hd

k
C

diz�1

8k
; (43)

where

8hHd

d
� �1 .mod k=d/; (44)

and

y D e2	 i� 0

: (45)

We consider the following matrices, which can easily be shown to be in SL.2;Z/:

�
8h=d � d

k .8hHd=dC 1/
k=d �Hd


; (46)

�
4h=d � d

k .8hHd=dC 1/
k=d �2Hd


: (47)
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We also define

�.d; 8/ D �

�
8h=d;�

d

k
.8hHd=dC 1/;

k

d
;�Hd


; (48)

�.d; 4/ D �

�
4h=d;�

d

k
.8hHd=dC 1/;

k

d
;�2Hd


; (49)

with �.a; b; c; d/ defined by (24). Remembering (44), we also let

v D
da.hiz�1 � 1/

8k
D ah� 0 C

aM

8
; (50)

with M 2 Z. Finally, we write

�a;d D exp

�
	 iad

4k

�
8hHd

d
C 1


: (51)

GCD.k; 8/ D 4

With d D 4, we apply (46) to 4� 0, and (47) to 8� 0, so that we have

�.8�/2

�.4�/
D

1

2z1=2
�.4; 8/2

�.4; 4/

�.4� 0/2

�.8� 0/
: (52)

As with the case of d D 8, #1 requires the most work by far. The initial
transformation through (46) gives us

#1.a� j8�/ D �i�.4; 8/3
1

.2z/1=2
ez	a2.hiz�1�1/2=8k#1

�
vj4� 0

�
: (53)

And

#1
�
vj4� 0

�
D #1

�
ah� 0 C

aM

8

ˇ̌
ˇ̌4� 0


: (54)

We may now allow b � ah .mod 4/, letting ah D 4N C b, so that (54), together
with (32), gives

#1
�
vj4� 0

�
D .�1/N exp.�	 iN.2� 0.2N C b/C aM=4//

� #1

�
b� 0 C

aM

8

ˇ̌
ˇ̌4� 0


: (55)
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We now shift from #1 to #4 [11, Chapter 10]:

#1.vj�/ D i exp.�	 i�=4 � 	 iv/#4.vj�/:

Write

#1

�
b� 0 C

aM

8

ˇ̌
ˇ̌4� 0


D#1

�
.b � 2/� 0 C

aM

8
C 2� 0

ˇ̌
ˇ̌4� 0


(56)

Di exp.�	 i..b � 1/� 0 C aM=8// (57)

� #4

�
.b � 2/� 0 C

aM

8

ˇ̌
ˇ̌4� 0


: (58)

We now express #4 as an infinite product [11, Chapter 10]:

#4

�
.b � 2/� 0 C

aM

8

ˇ̌
ˇ̌4� 0


D

1Y
mD1

.1 � y4m/.1 � �a;4y
4m�4Cb/.1 � ��1

a;4y
4m�b/

D .y4I y4/1.�a;4y
bI y4/1.�

�1
a;4y

4�bI y4/1: (59)

Combining (52), (53), (55), (58), (59), and simplifying, we have

Fa.q/ D
1
p
2
!a;4.h; k/ exp

�
	

8k

�
1

z
C z.4a � 5/


‰a;4.y/; (60)

with

‰a;4.q/ D
.q4I q4/21

.q8I q8/1f .��a;4qbI ���1
a;4q

4�b/
; (61)

and

!a;4.h; k/ D
i.�1/b

ah
4 c

�.4; 8/�.4; 4/

� exp

�
	 i

4k
.h � H4 � h.4a � 3/.hH4 C 1/C a.2hH4 C 1/.b � 2/


: (62)

GCD.k; 8/ D 2

With d D 4, we apply (46) to 2� 0, and (47) to 4� 0, so that we have

�.8�/2

�.4�/
D

1

2
p
2z1=2

�.2; 8/2

�.2; 4/

�.2� 0/2

�.4� 0/
: (63)
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Once again, #1 requires the most work by far. The initial transformation
through (46) gives us

#1.a� j8�/ D �i�.2; 8/3
1

2z1=2
ez	a2.hiz�1�1/2=8k#1

�
vj2� 0

�
: (64)

And

#1
�
vj2� 0

�
D #1

�
ah� 0 C

aM

8

ˇ̌
ˇ̌2� 0


: (65)

Notice that both a and h are odd. We may therefore write ah D 2N C 1, so that

#1
�
vj2� 0

�
D .�1/N exp.�	 iN.2� 0 C aM=4C 2� 0N//#1

�
� 0 C

aM

4

ˇ̌
ˇ̌2� 0


: (66)

We now shift from #1 to #4. Write

#1

�
� 0 C

aM

8

ˇ̌
ˇ̌2� 0


D i exp

�
�	 i

8
.12� 0 C aM=8/


#4

�
aM

8

ˇ̌
ˇ̌2� 0


: (67)

We express #4 as an infinite product:

#4

�
aM

8

ˇ̌
ˇ̌2� 0


D .y2I y2/1.�a;2yI y

2/1.�
�1
a;2yI y

2/1: (68)

Combining (63), (64), (66), (67), (68), and simplifying, we have

Fa.q/ D
1
p
2
!a;2.h; k/ exp

� 	
8k
.z.4a � 5//

	
‰a;2.y/; (69)

where

‰a;2.q/ D
.q2I q2/21

.q4I q4/1f .��a;2qI ���1
a;2q/

; (70)

and

!a;2.h; k/ D
i.�1/b

ah
2 c

�.2; 8/�.2; 4/
exp

�
	 i

4k
.1 � .4a � 3/.2hH2 C 1//


: (71)
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GCD.k; 8/ D 1

With d D 4, we apply (46) to 2� 0, and (47) to 4� 0, so that we have

�.8�/2

�.4�/
D

1

4z1=2
�.1; 8/2

�.1; 4/

�.� 0/2

�.2� 0/
: (72)

Returning to #1,

#1.a� j8�/ D �i�.1; 8/3
1

2
p
2z1=2

e8	kzv2#1
�
vj� 0

�
: (73)

And

#1
�
vj� 0

�
D #1

�
ah� 0 C

aM

8

ˇ̌
ˇ̌� 0


: (74)

Recognizing that we may extract ah� 0 altogether from our first variable, and
recognizing that .�1/ah D .�1/h, we have

#1
�
vj� 0

�
D .�1/h exp.�	 iah.ah� 0 C aM=4//#1

�
aM

8

ˇ̌
ˇ̌� 0


: (75)

We may now write #1

�
aM
8

ˇ̌
ˇ̌� 0


in its classic product form [11, Chapter 10]:

#1

�
aM

8

ˇ̌
ˇ̌� 0


D 2e	 i� 0=4 sin.	aM=8/

�

1Y
mD1

.1 � e2	 im� 0

/.1 � e2	 im� 0C2	 iaM=8/.1 � e2	 im� 0�2	 iaM=8/ (76)

D 2e	 i� 0=4 sin.	aM=8/.yI y/1.�a;1yI y/1.�
�1
a;1yI y/1: (77)

Examining the sine function, let aM D 8N C c, with c the least positive residue
of aM .mod 8/. Then

sin

�
	aM

8


D .�1/N sin

�	c

8

	
: (78)

Notice that sin
�
	c
8

�
> 0. We know that since

M D �
1

k
.8hH1 C 1/; (79)
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and since .k; 8/ D 1, therefore

c � �ak�1 .mod 8/: (80)

Moreover, k is odd, so k�1 � k .mod 8/. So

sin
�	c

8

	
D

ˇ̌
ˇ̌sin

�
	ak

8

ˇ̌
ˇ̌ : (81)

Combining (72), (73), (74), (75), (76), (77), (78), and simplifying, we have:

Fa.q/ D
1

2
p
2
!a;1.h; k/

ˇ̌
ˇ̌csc

�
	ak

8

ˇ̌
ˇ̌ exp

�
	

8k

�
1

4z
C z.4a � 5/


‰a;1.y/; (82)

where

‰a;1.y/ D
.yI y/1

.y2I y2/1.�a;1yI y/1.��1
a;1yI y/1

; (83)

and

!a;1.h; k/ D
.�1/b

�a.8hH1C1/
8k cCh�1

�.1; 8/�.1; 4/

� exp

�
	 i

4k
.4h.1 � aC hH1.3 � 4a// � H1/


: (84)

Integration

Recall from section “Introduction” that

ga.n/ D
1

2	 i

I

C

Fa.q/

qnC1
dq;

while in section “Rademacher’s Contour” we described a contour for C that will
prove useful for integration. We will now begin the integration proper.

Let N be some large positive integer, and let the corresponding Rademacher curve
P.N/ be given. Then we have the following:

ga.n/ D
1

2	 i

I

C

Fa.q/

qnC1
dq D

NX
kD1

X
0�h<k;
.h;k/D1

1

2	 i

Z

�.h;k/

Fa.q/

qnC1
dq: (85)
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In section “Transformation Equations”, we gave transformation equations for
Fa.q/ depending on the divisibility properties of k. We now separate our integral
into the corresponding cases:

ga.n/ D g.8/a .n/C g.4/a .n/C g.2/a .n/C g.1/a .n/; (86)

with

g.d/a .n/ D
X

.k;8/Dd;
k�N

X
0�h<k;
.h;k/D1

1

2	 i

Z

�.h;k/

Fa.q/

qnC1
dq: (87)

In each case, we will tranform Fa.q/ by the following:

g.d/a .n/ D
X
.k;8/Dd

k�N

i

k

X
0�h<k;
.h;k/D1

e�2	 inh=k

�

zT .h;k/Z

zI .h;k/

Fa

�
exp

�
2	 i

�
h

k
C

iz

k


e2	nz=kdz (88)

D2.˛�3/=2
X
.k;8/Dd

k�N

i

k
Ta;d.k/

X
0�h<k;
.h;k/D1

!a;d.h; k/e
�2	 inh=k

�

zT .h;k/Z

zI .h;k/

exp

�
	

8k

�
ƒ.a; d/

z
C z.16nC 4a � 5/


‰a;d.y/dz; (89)

with !a;d.h; k/ defined by (42), (62), (71), (84), ‰a;d.y/ D
P1

jD0  a;d.j/yj defined
as Fb.y/ for d D 8, and (61), (70), (83), otherwise (note that  a;d.0/ D 1);

ƒ.a; d/ D

8̂
ˆ̂̂<
ˆ̂̂̂
:

.b � 4/2 � 8 if d D 8

1 if d D 4

0 if d D 2

1=4 if d D 1:

˛ D log2.d/; (90)

and

Ta;d.k/ D

(
j csc.	ak=8/j if d D 1

1 otherwise:
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Thereafter,

g.d/a .n/ D 2.˛�3/=2
X
.k;8/Dd

k�N

i

k
Ta;d.k/

X
0�h<k;
.h;k/D1

!a;d.h; k/e
�2	 inh=k

�
�

I.1/a;d.h; k/C I.0/a;d.h; k/
	
; (91)

where

I.1/a;d.h; k/ D

zT .h;k/Z

zI .h;k/

exp

�
	

8k

�
ƒ.a; d/

z
C z.16nC 4a � 5/


dz; (92)

and

I.0/a;d.h; k/ D

zT .h;k/Z

zI .h;k/

exp

�
	

8k

�
ƒ.a; d/

z
C z.16nC 4a � 5/

 1X
jD1

 a;d.j/y
jdz: (93)

In each of our cases, we will show that I.0/a;d.h; k/ will contribute nothing to our
final formula.

Lemma 4.1 For d D 8; 4; 2; 1,

ˇ̌
ˇ̌
ˇ̌
ˇ̌
X
0�h<k;
.h;k/D1

!a;d.h; k/e
�2	nh=k

ˇ̌
ˇ̌
ˇ̌
ˇ̌ D O

�
k2=3C�n1=3

�
: (94)

This result can be shown through Kloosterman sum estimation, using the
techniques of Salié [12].

Lemma 4.2
ˇ̌
ˇI.0/a;d.h; k/

ˇ̌
ˇ D O

�
exp.3n	/N�1

�
: (95)

Proof We may interchange the summation with the integration. Also, remembering

that y D exp
�
2	 i

�
Hd
k C

diz�1

8k

		
,

I.0/a;d.h; k/

D

1X
jD1

 a;d.j/e
2	 iHdj=k
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�

zT .h;k/Z

zI .h;k/

exp

�
	

8k

�
ƒ.a; d/

z
C z.16nC 4a � 5/


e�2dj	z�1=8kdz (96)

D

1X
jD1

 a;d.j/e
2	 iHdj=k

�

zT .h;k/Z

zI .h;k/

exp

�
	

8k

�
ƒ.a; d/ � 2dj

z
C z.16nC 4a � 5/


dz: (97)

Notice that no matter the permitted value of d, the coefficient of 1=z in the
exponent of the integrand is now always negative.

Taking advantage of the fact that on and within K.�/
k , <.1=z/ � k and <.z/ �

1=k, we now examine the magnitude of the integrand:

ˇ̌
ˇ̌exp

�
	

8k

�
ƒ.a; d/ � 2dj

z
C z.16nC 4a � 5/

ˇ̌
ˇ̌ (98)

D exp
� 	
8k
.ƒ.a; d/ � 2dj/<.1=z/C

	

8k
.16nC 4a � 5/<.z/

	
(99)

� exp

�
	.1 � 2dj/

8
C
	.16nC 4a � 5/

8k2


(100)

� exp.�	 j=8C 3n	/: (101)

We therefore have

jI.0/a;d.h; k/j

�

1X
jD1

j a;d.j/jje
2	 iHdj=kj

�

zT .h;k/Z

zI.h;k/

ˇ̌
ˇ̌exp

�
	

8k

�
ƒ.a; d/ � 2dj

z
C z.16nC 4a � 5/

ˇ̌
ˇ̌ dz (102)

�

1X
jD1

j a;d.j/j exp.�	 j=8C 3n	/

zT .h;k/Z

zI .h;k/

dz: (103)

Recall that we are integrating along the circle K.�/
k in the z-plane. We will now

deform our contour so that it is a chord connecting zI and zT along K.�/
k (Fig. 2).
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�{z}

�{z}

1/2k

K
(−)
k :

∣
∣z − 1

2k

∣
∣ = 1

2k

zI(h, k)

zT (h, k)

Fig. 2 K.�/
k with the chord connecting zI.h; k/ to zT .h; k/

Recognizing from Lemma 2.3 that the length of such a chord is bounded above
by a constant multiple of N�1, we have

jI.0/a;d.h; k/j D O

0
@ 1X

jD1

j a;d.j/j exp.�	 j=8C 3n	/N�1

1
A (104)

D O

0
@exp.3n	/N�1

1X
jD1

j a;d.j/j exp.�	 j/

1
A (105)

D O.exp.3n	/N�1/: (106)

ut

Lemma 4.3 Let � > 0. Then

ˇ̌
ˇ̌
ˇ̌
ˇ̌2
.˛�3/=2

X
.k;8/Dd

k�N

i

k
Ta;d.k/

X
0�h<k;
.h;k/D1

!a;d.h; k/e
�2	 inh=kI.0/a;d.h; k/

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D O
�
e3n	n1=3N�1=3C�

�
: (107)
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Proof We note that since 2.˛�3/=2 and Ta;d.k/ are bounded, we may disregard both
in our estimation. We now take the previous result into account:

ˇ̌
ˇ̌
ˇ̌
ˇ̌
X
.k;8/Dd

k�N

i

k

X
0�h<k;
.h;k/D1

!a;d.h; k/e
�2	 inh=kI.0/a;d.h; k/

ˇ̌
ˇ̌
ˇ̌
ˇ̌

�
X
.k;8/Dd

k�N

1

kN
e3n	

ˇ̌
ˇ̌
ˇ̌
ˇ̌
X
0�h<k;
.h;k/D1

!a;d.h; k/e
�2	 inh=k

ˇ̌
ˇ̌
ˇ̌
ˇ̌ : (108)

With Lemma 4.2, we know that

ˇ̌
ˇ̌
ˇ̌
ˇ̌
X
0�h<k;
.h;k/D1

!a;d.h; k/e
�2	 inh=k

ˇ̌
ˇ̌
ˇ̌
ˇ̌ D O

�
k2=3C�n1=3

�
: (109)

This gives us

ˇ̌
ˇ̌
ˇ̌
ˇ̌
X
.k;8/Dd

k�N

i

k

X
0�h<k;
.h;k/D1

!a;d.h; k/e
�2	 inh=kI.0/a;d.h; k/

ˇ̌
ˇ̌
ˇ̌
ˇ̌

DO

0
BB@

ˇ̌
ˇ̌
ˇ̌
ˇ̌
X
.k;8/Dd

k�N

1

kN
e3n	k2=3C�n1=3

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1
CCA D O

 ˇ̌
ˇ̌
ˇe3n	n1=3N�1

NX
kD1

k2=3C�

k

ˇ̌
ˇ̌
ˇ
!
: (110)

Recognizing that

NX
kD1

k2=3C�

k
D

NX
kD1

k2=3C2�

k1C�
�

NX
kD1

N2=3C2�

k1C�
D N2=3C2�

NX
kD1

1

k1C�
; (111)

that
PN

kD1
1

k1C� is bounded above as N gets large, and finally noting that we may
replace 2� with �, we now have

O

 ˇ̌
ˇ̌
ˇe3n	n1=3N�1

NX
kD1

k2=3C�

k

ˇ̌
ˇ̌
ˇ
!
D O.e3n	n1=3N�1=3C�/; (112)

and the proof is completed. ut
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We now have

g.d/a .n/ D 2.˛�3/=2
X
.k;8/Dd

k�N

i

k
Ta;d.k/

X
0�h<k;
.h;k/D1

!a;d.h; k/e
�2	 inh=kI.1/a;d.h; k/

C O
�
e3n	n1=3N�1=3C�

�
: (113)

Our object now will be to put I.1/a;d.h; k/ into a form approachable from the theory
of Bessel functions.

We now return to the original Rademacher contour of I.1/a;d.h; k/, along a portion of

K.�/
k . The brilliance of the contour becomes clear once it is realized that<.1=z/ D k,

i.e. is a constant, provided we remain along K.�/
k (and avoid z D 0, of course). We

wish to make use of the whole of K.�/
k , so we will make adjustments to the contour

as follows:

I.1/a;d.h; k/ D

0
B@
I

K
.�/
k

�

zI .h;k/Z

0

�

0Z

zT .h;k/

1
CA

exp

�
	

8k

�
ƒ.a; d/

z
C z.16nC 4a � 5/


dz: (114)

Notice that
zI .h;k/R
0

and
0R

zT .h;k/

are improper: the integrand is not defined at z D 0.

We interpret these integrals as limits in which a variable approaches 0. We will now

show that
zI.h;k/R
0

and
0R

zT .h;k/

will not contribute anything of importance:

Lemma 4.4

ˇ̌
ˇ̌
ˇ̌
ˇ

0Z

zT .h;k/

exp

�
	

8k

�
1

z
C z.16nC 4a � 5/


dz

ˇ̌
ˇ̌
ˇ̌
ˇ
;

ˇ̌
ˇ̌
ˇ̌

zI .h;k/Z

0

exp

�
	

8k

�
ƒ.a; d/

z
C z.16nC 4a � 5/


dz

ˇ̌
ˇ̌
ˇ̌

D O
�

exp.3n	/N�1
�
: (115)
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Proof We will keep on K.�/
k for these estimations. Since the estimation is almost

identical in either case, we will work with the integral
0R

zT .h;k/

. We begin by estimating

the integrand of the integral:

ˇ̌
ˇ̌exp

�
	

8k

�
ƒ.a; d/

z
C z.16nC 4a � 5/

ˇ̌
ˇ̌

D exp
� 	
8k
.<.1=z/C<.z/.16nC 4a � 5//

	
(116)

� exp

�
	

8k

�
kC

16nC 4a � 5

k


(117)

� exp

�
	

8
C
	.16nC 4a � 5/

8k2


(118)

� exp.3n	/: (119)

We now estimate the path of integration:
The chord connecting 0 with zT.h; k/ can be no longer than the diameter of K.�/,

so the length along the arc from 0 to zT.h; k/ can be no longer than jzT.h; k/j
	
2

. Since
jzT.h; k/j <

p
2=N, we have a path length that is O.N�1/. This gives us

ˇ̌
ˇ̌
ˇ̌
ˇ

0Z

zT .h;k/

exp

�
	

8k

�
ƒ.a; d/

z
C z.16nC 4a � 5/


dz

ˇ̌
ˇ̌
ˇ̌
ˇ

�

0Z

zT .h;k/

ˇ̌
ˇ̌exp

�
	

8k

�
ƒ.a; d/

z
C z.16nC 4a � 5/

ˇ̌
ˇ̌ dz (120)

� exp.3n	/

0Z

zT .h;k/

dz (121)

D O
�
exp.3n	/N�1

�
: (122)

The case for
zI .h;k/R
0

is virtually identical. ut

As a consequence of the previous Lemmas 4.1, 4.2, 4.3, and 4.4, we have
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Theorem 4.5

g.d/a .n/ D 2.˛�3/=2
X

.k;8/Dd;
k�N

i

k
Ta;d.k/

X
0�h<k;
.h;k/D1

!a;d.h; k/e
�2	 inh=k

�

I
K
.�/
k

exp

�
	

8k

�
ƒ.a; d/

z
C z.16nC 4a � 5/


dz

C O
�
e3n	n1=3N�1=3C�

�
: (123)

Estimating g.8/
a .n/

In the case of d D 8 we can discard a large portion of what remains. Notice that

I.1/a;8.h; k/ D

zT .h;k/Z

zI .h;k/

exp

�
	

8k

�
.b � 4/2 � 8

z
C z.16nC 4a � 5/


dz; (124)

with b � ah .mod 8/. If b D 1; 7, then the coefficient of 1=z in the exponent is 1.
However, if b D 3; 5, then the coefficient is �7, and by almost identical reasoning
of Lemmas 4.1, 4.2, and 4.3, applied to I.1/a;8.h; k/, we have

ˇ̌
ˇI.1/a;8.h; k/

ˇ̌
ˇ D O

�
exp.3n	/N�1

�
: (125)

Now ˛ D 3 and Ta;d.k/ D 1. Since b D 1; 7 implies h � ˙a .mod 8/, we have

g.8/a .n/ D
X
.k;8/D8

k�N

i

k

X
0�h<k;
.h;k/D1

h�˙a .mod 8/

!a;8.h; k/e
�2	 inh=k

�

I
K
.�/
k

exp

�
	

8k

�
1

z
C z.16nC 4a � 5/


dzC O

�
e3n	n1=3N�1=3C�

�
: (126)

Estimating g.4/
a .n/

Lemmas 4.1, 4.2, 4.3, and 4.4 are sufficient to complete the estimation of g.4/a .n/.
With ˛ D 2 and Ta;d.k/ D 1, we have
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Theorem 4.6

g.4/a .n/ D
1
p
2

X
.k;8/D4;

k�N

i

k

X
0�h<k;
.h;k/D1

!a;4.h; k/e
�2	 inh=k

�

I
K
.�/
k

exp

�
	

8k

�
1

z
C z.16nC 4a � 5/


dz

C O
�
e3n	n1=3N�1=3C�

�
: (127)

Estimating g.2/
a .n/

In the case of d D 2, the coefficient of 1=z in the exponential of the integrand is never
positive. Therefore, we may immediately apply the reasoning of Lemmas 4.1, 4.2,
and 4.3 to both I.0/a;2.h; k/ and I.1/a;2.h; k/:

jI.0/a;2.h; k/j D jI
.1/
a;2.h; k/j D O

�
exp.3n	/N�1

�
: (128)

Therefore,

Theorem 4.7

g.2/a .n/ D O
�
e3n	n1=3N�1=3C�

�
: (129)

Estimating g.1/
a .n/

Lemmas 4.1, 4.2, 4.3, and 4.4 are sufficient to complete the estimation of g.1/a .n/.
Noting that ˛ D 0 and Ta;d.k/ D j csc.	ak=8/j, we have

Theorem 4.8

g.1/a .n/ D
1

2
p
2

X
.k;8/D1

k�N

i

k

ˇ̌
ˇ̌csc

�
	ak

8

ˇ̌
ˇ̌ X
0�h<k;
.h;k/D1

!a;1.h; k/e
�2	 inh=k

�

I
K
.�/
k

exp

�
	

8k

�
1

4z
C z.16nC 4a � 5/


dz

C O
�
e3n	n1=3N�1=3C�

�
: (130)
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Complete Formula

Combining (126), (127), (129), (130), and collecting the error terms, we have:

ga.n/ D
1

2
p
2

X
.k;8/D1

k�N

i

k

ˇ̌
ˇ̌csc

�
	ak

8

ˇ̌
ˇ̌Aa;1.n; k/

�

I
K
.�/
k

exp

�
	

8k

�
1

4z
C z.16nC 4a � 5/


dz

C
1
p
2

X
.k;8/D4

k�N

i

k
Aa;4.n; k/

I
K
.�/
k

exp

�
	

8k

�
1

z
C z.16nC 4a � 5/


dz

C
X
.k;8/D8

k�N

i

k
Aa;8.n; k/

I
K
.�/
k

exp

�
	

8k

�
1

z
C z.16nC 4a � 5/


dz

C O
�
e3n	n1=3N�1=3C�

�
; (131)

with

Aa;d.n; k/ D
X
0�h<k;
.h;k/D1;

h�˙a .mod d/

!a;d.h; k/e
�2	 inh=k: (132)

We represent the remaining integrals with modified Bessel functions [16]:

Lemma 5.1

I
K
.�/
k

exp

�
	

8k

�
1

z
C z.16nC 4a � 5/


dz

D
�2	 i

p
16nC 4a � 5

I1

 
	
p
16nC 4a � 5

4k

!
; (133)

I
K
.�/
k

exp

�
	

8k

�
1

4z
C z.16nC 4a � 5/


dz

D
�	 i

p
16nC 4a � 5

I1

 
	
p
16nC 4a � 5

8k

!
: (134)
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The first equality may be proved by changing variables, first by z D 1=w, and
then by w D 8kt=	 . We may then represent the integral with the modified Bessel
function I1 [16]: The second equality may be similarly proved by changing variables
by z D 1=w, and then by w D 32kt=	 .

Finishing the Limit Process

We now take (131), with Aa;d.n; k/ defined by (132), substitute and simplify through
Lemma 5.1, and let N !1. We now have our final formula.

Theorem 5.2 Let ga.n/ be the number of type-a Göllnitz–Gordon partitions of n,
with a D 1 or 3. Then

ga.n/ D
	
p
2

4
p
16nC 4a � 5

X
.k;8/D1

ˇ̌
ˇ̌csc

�
	ak

8

ˇ̌
ˇ̌ Aa;1.n; k/

k
I1

 
	
p
16nC 4a � 5

8k

!

C
	
p
2

p
16nC 4a � 5

X
.k;8/D4

Aa;4.n; k/

k
I1

 
	
p
16nC 4a � 5

4k

!

C
2	

p
16nC 4a � 5

X
.k;8/D8

Aa;8.n; k/

k
I1

 
	
p
16nC 4a � 5

4k

!
: (135)

Numerical Tests

Mathematica was used to test (135), for k truncated. See the tables below (Tables 1
and 2). For the first 200 positive integers, our formula with k � 3

p
n gives the

correct value with an absolute error less than 0:33. Since ga.n/ 2 Z, we need only
round our formulaic value to the nearest integer to achieve the correct answer.
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Table 1 g1.n/ compared to (135) truncated for k, with a D 1

n g1.n/ Eq. (135), a D 1, 1 � k � 3
p

n Absolute error of (135)

1 1 0.7784305652 0.2215694348

2 1 0.7196351376 0.2803648624

3 1 1.114485490 0.114485490

4 2 1.890769460 0.109230540

5 2 2.146945231 0.146945231

6 2 2.174897898 0.174897898

7 3 2.917027886 0.082972114

8 4 3.994864237 0.005135763

9 5 4.903833678 0.096166322

10 5 5.108441112 0.108441112

20 26 26.07125673 0.07125673

40 288 287.9388309 0.0611691

60 1989 1988.942843 0.057157

80 10,570 10,569.99993 0.00007

100 47,091 47,090.99132 0.00868

150 1,191,854 1,191,853.996 0.004

200 18,900,623 18,900,622.99 0.001

Table 2 g3.n/ compared to (135) truncated for k, with a D 3

n g3.n/ Eq. (135), a D 3, 1 � k � 3
p

n Absolute error of (135)

1 0 0.2908871603 0.2908871603

2 0 0.1385488254 0.1385488254

3 1 0.8129880460 0.1870119540

4 1 0.9584818018 0.0415181982

5 1 0.8666320258 0.1333679742

6 1 0.9177374697 0.0822625303

7 1 1.323340028 0.323340028

8 2 2.095679009 0.095679009

9 2 2.042654099 0.042654099

10 2 1.953812941 0.046187059

20 12 12.01649403 0.01649403

40 127 126.9760443 0.0239557

60 865 865.0090307 0.0090307

80 4560 4560.002784 0.002784

100 20,223 20,223.00416 0.00416

150 508,454 508,454.0481 0.0481

200 8,034,534 8,034,534.006 0.006
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Quite recently [5], for the case of two-dimensional ball B
2, the much more

wide class of quasi-homogeneous like symbols was described. These symbols also
generate via corresponding Toeplitz operators commutative Banach algebras on
each weighted Bergman space, and their existence was hidden just by the use of
the spherical coordinates in the approach of [9].

This paper extends the results of [5] for the case of the unit ball B
n with

n > 2, and explores a new wide class of symbols that generate commutative Banach
algebras on each weighted Bergman space on these balls. We call these new symbols
pseudo-homogeneous, they include the previous quasi-homogeneous symbols as a
very special particular case. Roughly speaking, instead of a fixed specific bounded
continuous functions we admit now any L1-functions.

Section “Preliminaries” collects notation used throughout the paper. In
section “Quasi-radial and Pseudo-homogeneous Symbols” we introduce pseudo-
homogeneous symbols and describe the action of Toeplitz operators with
quasi-radial and pseudo-homogeneous symbols. Section “Commutative Algebras”
devoted to the description of commutative Banach algebras generated by Toeplitz
operators with above symbols and of some their common properties. Yet another
option to build commutative Banach Toeplitz operator algebras is presented in the
last section “Yet Another Option”.

Preliminaries

Let Bn be the unit ball in C
n,

B
n D fz D .z1; : : : ; zn/ 2 C

n W jzj2 D jz1j
2 C : : :C jznj

2 < 1g;

and let S2n�1 be the corresponding (real) unit sphere, the boundary of the unit ball
B

n.
In what follows we will use the notation �.Bm/ for the base of the unit ball Bm,

considered as a Reinhard domain, i.e.,

�.Bm/ D f.r1; : : : ; rm/ D .jz1j; : : : ; jzmj/ W r2 D r21 C : : :C r2m 2 Œ0; 1/g:

We denote as well by Bm the real m-dimensional unit ball,

Bm D fx D .x1; : : : ; xm/ 2 R
m W x2 D x21 C : : :C x2m < 1g:

Then, of course, �.Bm/ D Bm \ R
m
C DW B

m
C.
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Given a multi-index ˛ D .˛1; ˛2; : : : ; ˛n/ 2 Z
n
C we will use the standard

notation,

˛Š D ˛1Š ˛2Š � � � ˛nŠ;

z˛ D z˛11 z˛22 � � � z
˛n
n ;

for p D .p1; p2; : : : ; pn/ 2 Z
n we set

jpj D p1 C p2 C : : :C pn and kpk D jp1j C jp2j C : : :C jpnj:

Denote by dV D dx1dy1 : : : dxndyn, where zl D xl C iyl, l D 1; 2; : : : ; n, the
standard Lebesgue measure in C

n; and let dS be the corresponding surface measure
on S2n�1. We introduce the standard one-parameter family of weighted measures,

dv�.z/ D
�.nC �C 1/

	n �.�C 1/
.1 � jzj2/� dV.z/; � > �1;

which are probability ones in B
n; and recall (see, for example, [10, Section 1.3]) that

Z
Bn

z˛zˇdv�.z/ D ı˛;ˇ
˛Š �.nC �C 1/

�.nC j˛j C �C 1/
: (1)

We introduce the weighted space L2.Bn; dv�/ and its subspace, the weighted
Bergman space A2

� D A2
�.B

n/, which consists of all functions analytic in B
n. The

(orthogonal) Bergman projection B� of L2.Bn; dv�/ onto A2
�.B

n/ is given by

.B�'/.z/ D
Z
Bn

'./ dv�./

.1 � z � /nC�C1
:

Finally, given a function a.z/ 2 L1.B
n/, the Toeplitz operator Ta with symbol a

acts on A2
�.B

n/ as follows

Ta W ' 2 A2
�.B

n/ 7�! B�.a'/ 2 A2
�.B

n/:

Quasi-radial and Pseudo-homogeneous Symbols

Let k D .k1; : : : ; km/ be a tuple of positive integers whose sum is equal to n: k1 C
: : :C km D n. The length of such a tuple may obviously vary from 1, for k D .n/,
to n, for k D .1; : : : ; 1/.
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Throughout the paper we fix a tuple k D .k1; : : : ; km/, with k1 � k2 � : : : � km,
and rearrange the n coordinates of z 2 B

n in m groups, each one of which has kj,
j D 1; : : : ;m, entries. We will use the notation

z.1/ D .z1;1; : : : ; z1;k1 /; z.2/ D .z2;1; : : : ; z2;k2 /; : : : ; z.m/ D .zm;1; : : : ; zm;km/

with

z1;1 D z1; z1;2 D z2; : : : ; z1;k1 D zk1 ;

z2;1 D zk1C1; : : : ; z2;k2 D zk1Ck2 : : : (2)

Note that the above ordering condition on the tuple k can be easily fulfilled for an
arbitrary (non ordered tuple) by making the biholomorphism of the unit ball that
interchanges the coordinates of z.

We will also use an alternative representation of a point z D .z1; : : : ; zn/ 2 B
n:

z D .z.1/; : : : ; z.m//; where z.j/ 2 B
kj ; j D 1; : : : ;m:

In general, given any n-tuple u, we will also use two its alternative representations

u D .u1; : : : ; un/ D .u.1/; : : : ; u.m//;

where

u1;1 D u1; u1;2 D u2; : : : ; u1;k1 D uk1 ;

u2;1 D uk1C1; : : : ; u2;k2 D uk1Ck2 ; : : : ; um;km D un: (3)

We represent then each coordinate of z 2 B
n (which is the same as each

coordinate of z.j/, j D 1; : : : ;m) in the form

zi D jzijti or zj;` D jzj;`jtj;`;

where ti and tj;` belong to T D S1. For each portion z.j/, j D 1; : : : ;m, of a point z
we introduce its “common” radius

rj D
q
jzj;1j2 C : : : jzj;kj j

2;

and represent the coordinates of z.j/ in the form

zj;` D rj sj;` tj;`; where ` D 1; : : : ; kj; s.j/ D .sj;1; : : : ; sj;kj/ 2 S
kj�1

C WD Skj�1 \R
kj

C:

Recall [9] that a bounded measurable function a D a.z/, z 2 B
n, is called k-quasi-

radial if it depends only on r1, . . . , rm.
The following result is Lemma 3.1 of [9].



Toeplitz Operators with Quasi-radial and Pseudo-homogeneous Symbols 405

Lemma 3.1 Given a bounded measurable k-quasi-radial function a D

a.r1; : : : ; rm/, we have

Ta z˛ D �a;k;�.˛/ z˛; ˛ 2 Z
n
C;

with

�a;k;�.˛/ D �a;k;�.j˛.1/j; : : : ; j˛.m/j/

D
2m �.nC j˛j C �C 1/

�.�C 1/
Qm

jD1.kj � 1C j˛.j/j/Š

Z
�.Bm/

a.r1; : : : ; rm/.1 � jrj
2/�

�

mY
jD1

r
2j˛.j/jC2kj�1

j drj

D
�.nC j˛j C �C 1/

�.�C 1/
Qm

jD1 �.kj C j˛.j/j/

Z

m

a.
p

r1; : : : ;
p

rm/

�

mY
jD1

r
j˛.j/jCkj�1

j .1 � .r1 C : : :C rm//
�dr1 � � � rm;

where 
m D f.r1; : : : ; rm/ 2 R
m
C W r1 C : : :C rm 2 Œ0; 1/g.

We introduce now an extension of the class of quasi-homogeneous functions
defined in [9]. Note that here we use a slightly different notation for multi-indices,
instead of a pair of the orthogonal multi-indices p and q of [9], we will consider just
one multi-index p D .p1; : : : ; pn/ that satisfies the condition jpj D 0.

A function  is called pseudo-homogeneous (or k-pseudo-homogeneous) if it has
the form

 .z/ D b.s.1/; : : : ; s.m// tp D b.s.1/; : : : ; s.m//
mY

jD1

t
p.j/
.j/ ;

where b.s.1/; : : : ; s.m// 2 L1.S
k1�1
C � : : : � Skm�1

C / and p D .p1; : : : ; pn/ D

.p.1/; : : : ; p.m// 2 Z
n.

Most frequently we will consider the case when b.s.1/; : : : ; s.m// D
Qm

jD1 bj.s.j//

with bj 2 L1.S
kj�1

C /, for all j D 1; : : : ;m.
Note that quasi-homogeneous functions, introduced in [9], correspond to the case

when each bj D bj.s.j// has the form

bj.s.j// D s
jpj;1j

j;1 � � � s
jpj;kj j

j;kj
;

so that

 .z/ D
mY

jD1

s
jpj;1j

j;1 t
pj;1

j;1 � � � s
jpj;kj j

j;kj
t
pj;kj

j;kj
: (4)
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Consider now the following k-quasi-radial pseudo-homogeneous symbol

'.z/ D a.r1; : : : ; rm/

mY
jD1

bj.s.j// tp D a.r1; : : : ; rm/

mY
jD1

bj.s.j// t
p.j/
.j/ ;

where a D a.r1; : : : ; rm/ 2 L1.�.B
m//, bj D bj.s.j// 2 L1.S

kj�1

C /, j D 1; : : : ;m,
and t D .t1; : : : ; tn/ D .t.1/; : : : ; t.m// 2 T

n, p D .p1; : : : ; pn/ D .p.1/; : : : ; p.m// 2
Z

n.
In what follows we will use the parametrization of each S

kj�1

C by its first

kj � 1 coordinates sj1 ; : : : ; sj;kj�1, so that sj;kj D
q
1 � .s2j1 C : : :C s2j;kj�1

/, and

bj D bj.s.j// D bj.sj1 ; : : : ; sj;kj�1/ 2 L1.B
kj�1

C /. In this parametrization the standard

Euclidean volume element dSj on S
kj�1

C , used in the next lemma, is given by

dSj D
dsj1 � � � dsj;kj�1q

1 � .s2j1 C : : :C s2j;kj�1
/
:

Lemma 3.2 The Toeplitz operator T' with the above symbol '.z/ acts on monomi-
als z˛ , ˛ 2 Z

n
C, as follows

T' z˛ D

(
0; if 9 i such that ˛i C pi < 0

e�';k;p;�.˛/ z˛Cp; if 8 i ˛i C pi � 0
;

with

e�';k;p;�.˛/ D �.nC j˛ C pj C �C 1

�.�C 1/
Qm

jD1 �.j˛.j/j C
1
2
jp.j/j C kj/

�

Z

m

a.
p

r1; : : : ;
p

rm/ r
j˛.j/jC

1
2 jp.j/jCkj�1

j .1 � .r1 C : : :C rm//
� dr1 � � � drm

�

mY
jD1

�.j˛.j/j C
1
2
jp.j/j C kj/Qkj

`D1 �.˛j;` C pj;` C 1/

Z

kj�1

b.s1=2.j/ /

kj�1Y
`D1

s
˛j;`C

1
2 pj;`

j;`

� .1 � .sj;1 C : : :C sj;kj�1//
˛j;kj C

1
2 pj;kj dsj;1 � � � dsj;kj�1;

where b.s1=2.j/ / D b.
p

sj;1; : : : ;
psj;kj�1/.

Proof Given two multi-indices ˛; ˇ 2 Z
n
C, we calculate

hT'z˛; zˇi D ha
mY

jD1

bj tp z˛; zˇi

D
�.nC �C 1/

	n�.�C 1/

Z
Bn

a
mY

jD1

bj

nY
lD1

jzlj
˛lCˇl.1 � jrj2/� t˛�ˇCp dV.z/
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D
�.nC �C 1/

	n�.�C 1/

Z
�.Bn/

a
mY

jD1

bj

nY
lD1

jzlj
˛lCˇlC1.1 � jrj2/� djzj1 � � � djzjn

�

nY
lD1

Z
T

t˛l�ˇlCpl
l

dtl
itl
:

The last n integrals are different from zero if and only if ˇ D ˛C p, in the last case
each of them is equal to 2	 . Thus, setting ˇ D ˛ C p, we have

hT'z˛; z˛Cpi D ha
mY

jD1

bj tp z˛; z˛Cpi

D 2n�.nC �C 1/

�.�C 1/

Z
�.Bn/

a
mY

jD1

bj

nY
lD1

jzlj
2˛lCplC1.1 � jrj2/� djzj1 � � � djzjn:

Changing the variables rj;` D rjsj;` (with djzjj;1 � � � djzjj;kj D r
kj�1

j drjdSj), we obtain

hT'z˛; zˇi D 2n�.nC �C 1/

�.�C 1/

Z
�.Bm/�

Qm
jD1 S

kj�1

C

a.r1; : : : ; rm/

�

mY
jD1

r
2j˛.j/jCjp.j/jC2kj�1

j .1 � jrj2/�
mY

jD1

bj.s.j//

kjY
`D1

s
2˛j;`Cpj;`C1

j;` drj dSj

D 2n�m�.nC �C 1/

�.�C 1/

Z

m

a.
p

r1; : : : ;
p

rm/

mY
jD1

r
j˛.j/jC

1
2 jp.j/jCkj�1

j

� .1 � .r1 C : : :C rm//
� dr1 � � � drm

mY
jD1

Z
S

kj�1

C

bj.s.j//

kjY
`D1

s
2˛j;`Cpj;`C1

j;` dSj

D
�.nC �C 1/

�.�C 1/

Z

m

a.
p

r1; : : : ;
p

rm/

mY
jD1

r
j˛.j/jC

1
2 jp.j/jCkj�1

j

� .1 � .r1 C : : :C rm//
� dr1 � � � drm

mY
jD1

2kj�1

Z
S

kj�1

C

bj.s.j//

kjY
`D1

s
2˛j;`Cpj;`C1

j;` dSj

D
�.nC �C 1/

�.�C 1/

Z

m

a.
p

r1; : : : ;
p

rm/

mY
jD1

r
j˛.j/jC

1
2 jp.j/jCkj�1

j

� .1 � .r1 C : : :C rm//
� dr1 � � � drm
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�

mY
jD1

2kj�1

Z
B

kj�1

C

b.s.j//

kj�1Y
`D1

s
2˛j;`Cpj;`C1

j;`

� .1 � .s2j;1 C : : :C s2j;kj�1
//
˛j;kj C

1
2 pj;kj dsj;1 � � � dsj;kj�1

D
�.nC �C 1/

�.�C 1/

Z

m

a.
p

r1; : : : ;
p

rm/

mY
jD1

r
j˛.j/jC

1
2 jp.j/jCkj�1

j

� .1 � .r1 C : : :C rm//
� dr1 � � � drm

�

mY
jD1

Z

kj�1

b.s1=2.j/ /

kj�1Y
`D1

s
˛j;`C

1
2 pj;`

j;`

� .1 � .sj;1 C : : :C sj;kj�1//
˛j;kj C

1
2 pj;kj dsj;1 � � � dsj;kj�1;

where b.s1=2.j/ / D b.
p

sj;1; : : : ;
psj;kj�1/.

For ˇ D ˛ C p, by (1), we have

hz˛Cp; z˛Cpi D
.˛ C p/Š�.nC �C 1/

�.nC j˛ C pj C �C 1/

D

nY
lD1

�.˛l C pl C 1/
�.nC �C 1/

�.nC j˛ C pj C �C 1/
:

That is

T' z˛ D

(
0; if 9 i such that ˛i C pi < 0

e�';k;p;�.˛/ z˛Cp; if 8 i ˛i C pi � 0
;

where

e�';k;p;�.˛/ D �.nC j˛ C pj C �C 1

�.�C 1/
Qm

jD1 �.j˛.j/j C
1
2
jp.j/j C kj/

Z

m

a.
p

r1; : : : ;
p

rm/

�

mY
jD1

r
j˛.j/jC

1
2 jp.j/jCkj�1

j .1 � .r1 C : : :C rm//
� dr1 � � � drm

�

mY
jD1

�.j˛.j/j C
1
2
jp.j/j C kj/Qkj

`D1 �.˛j;` C pj;` C 1/

Z

kj�1

b.s1=2.j/ /

kj�1Y
`D1

s
˛j;`C

1
2 pj;`

j;`

� .1 � .sj;1 C : : :C sj;kj�1//
˛j;kj C

1
2 pj;kj dsj;1 � � � dsj;kj�1:

ut

For the case when jp.j/j D 0, for each j D 1; : : : ;m, Lemma 3.2 yields
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Corollary 3.3 The Toeplitz operator T' with symbol

'.z/ D a.r1; : : : ; rm/

mY
jD1

bj.s.j// t
p.j/
.j/ ;

where jp.j/j D 0 for each j D 1; : : : ;m, acts on monomials z˛ , ˛ 2 Z
n
C, as follows

T' z˛ D

(
0; if 9 ` such that ˛` C p` < 0

e�';k;p;�.˛/ z˛Cp; if 8 ` ˛` C p` � 0
;

with

e�';k;p;�.˛/ D �.nC j˛j C �C 1/

�.�C 1/
Qm

jD1 �.j˛.j/j C kj/

�

Z

m

a.
p

r1; : : : ;
p

rm/

mY
jD1

r
j˛.j/jCkj�1

j .1 � .r1 C : : :C rm//
� dr1 � � � drm

�

mY
jD1

�.j˛.j/j C kj/Qkj

`D1 �.˛j;` C pj;` C 1/

Z

kj�1

bj.s
1=2

.j/ /

kj�1Y
`D1

s
˛j;`C

1
2 pj;`

j;`

� .1 � .sj;1 C : : :C sj;kj�1//
˛j;kj C

1
2 pj;kj dsj;1 � � � dsj;kj�1;

where b.s1=2.j/ / D b.
p

sj;1; : : : ;
psj;kj�1/.

Observe now that for '.z/ D a.r1; : : : ; rm/ we have that e�a;k;p;�.˛/ D �a;k;p;�.˛/

(see Lemma 3.1); and for '.z/ D bj.s.j// t
p.j/
.j/ , jp.j/j D 0 and p.l/ D 0 for all l ¤ j, we

have that

T
bj.s.j// t

p.j/
.j/

z˛ D e�bj;k;pj.˛/z
˛Cp;

where

e�bj;k;p.j/ .˛/ D
�.j˛.j/j C kj/Qkj

`D1 �.˛j;` C pj;` C 1/

Z

kj�1

bj.s
1=2

.j/ /

kj�1Y
`D1

s
˛j;`C

1
2 pj;`

j;`

� .1 � .sj;1 C : : :C sj;kj�1//
˛j;kj C

1
2 pj;kj dsj;1 � � � dsj;kj�1:

The last formula implies, in particular, that the action of the operator T
bj.s.j// t

p.j/
.j/

does

not depend on the weight parameter �.
We mention as well that if kj D 1, then jp.j/j D 0 implies that p.j/ D .0/ and that

bj.s.j// D const . That is, the corresponding part in a pseudo-homogeneous symbol
can be just omitted.
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Corollary 3.4 The Toeplitz operator T' with symbol

'.z/ D a.r1; : : : ; rm/

mY
jD1

bj.s.j// t
p.j/
.j/ ;

where jp.j/j D 0 for each j D 1; : : : ;m, acts on monomials z˛ , ˛ 2 Z
n
C, as follows

T' z˛ D

(
0; if 9 ` such that ˛` C p` < 0

e�';k;p;�.˛/ z˛Cp; if 8 ` ˛` C p` � 0
;

with

e�';k;p;�.˛/ D �a;k;p;�.˛/

mY
jD1

e�bj;k;p.j/ .˛/:

Thus the Toeplitz operators Ta, T
bj.s.j// t

p.j/
.j/

, j D 1; : : : ;m, pairwise commute and

T
a
Qm

jD1 bj t
p.j/
.j/
D Ta

mY
jD1

T
bj t

p.j/
.j/
:

Note that for the quasi-homogeneous symbol (4), considered in [9], with jp.j/j D
0, for each j D 1; : : : ;m, we have

e� ;k;p;�.˛/ D
mY

jD1

�.j˛.j/j C kj/Qkj

`D1 �.˛j;` C pj;` C 1/

Z

kj�1

kj�1Y
`D1

s
˛j;`C

1
2 .pj;`Cjpj;`j/

j;`

� .1 � .sj;1 C : : :C sj;kj�1//
˛j;kj C

1
2 .pj;kj Cjpj;kj j/ dsj;1 � � � dsj;kj�1

D

mY
jD1

�.j˛.j/j C kj/

�.j˛.j/j C
1
2
kp.j/k C kj/

kj�1Y
`D1

�.˛j;` C
1
2
.pj;` C jpj;`j/C 1/

�.˛j;` C pj;` C 1/
;

which, after returning to the notation of [9], recovers formula (4.1) of [9] with a � 1.

Commutative Algebras

The results of the previous section, and especially Corollary 3.4, permit us to
describe many new commutative Banach algebras generated by Toeplitz operators.
To characterize them we proceed as follows.
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We start again with a tuple k D .k1; k2; : : : ; km/ of positive integers with k1 C
k2 C : : :C km D n and k1 � k2 � : : : � km. Consider then the set L1.�.B

m// of all
k-quasi-radial symbols a D a.r1; : : : ; rm/, and denote by T�.k-qr/ the C�-algebra
generated by all Toeplitz operators Ta with k-quasi-radial symbols a 2 L1.�.B

m//.
We fix then a tuple b D .b1; b2; ::; bm/ of functions bj D bj.s.j// 2 L1.S

kj�1

C /

(or bj D bj.sj1 ; : : : ; sj;kj�1/ 2 L1.B
kj�1

C /, after the parametrization of S
kj�1

C ) and a
tuple p D .p1; p2; : : : ; pn/ 2 Z

n with the property jp.j/j D 0, for all j D 1; : : : ;m,
and denote by T .k; b; p/ the unital Banach algebra generated by Toeplitz operators
T

bj t
p.j/
.j/

, for j D 1; : : : ;m.

Note that, contrary to the case of the algebra T�.k-qr/, the action of generators
T

bj t
p.j/
.j/

and thus the properties of the algebra T .k; b; p/ do not depend on the weight

parameter �.
Then, by Corollary 3.4, the Banach algebra generated by elements of T�.k-qr/

and elements of T .k; b; p/ is commutative. We group all the ingredients that define
this commutative algebra into one set d D fk;L1.�.B

m//; b; pg and denote this
algebra by T�.d/. That is the Banach algebra T�.d/ is generated by the elements of
the algebras T�.k-qr/ and T .k; b; p/.

In the rest of the section we will list some common properties of the algebras
T�.d/; for the specific case of [9], see [3].

For each � D .�1; : : : ; �m/ 2 Z
m
C we introduce the finite dimensional subspace

H� of the Bergman space A2
�.B

n/:

H� WD span
˚
e˛ W j˛.j/j D �j; j D 1; : : : ;m

�
:

We have that

A2
�.B

n/ D

1M
j�jD0

H�;

and that the orthogonal projections P� of A2
�.B

n/ onto H� belong [3, Corollary 3.3]
to the algebra T�.k-qr/.

Observe that each space H� is invariant for all operators from T�.d/, but the
action of the generators of T�.d/ on the space H� is quite different. The Toeplitz
operator Ta with k-quasi-radial symbol a acts on H� as the multiplication operator
�a;k;�.�1; : : : ; �m/I, while each Toeplitz operator T

bj t
p.j/
.j/

, j D 1; : : : ;m, acts on H� as

a certain weighted shift operator. Moreover each operator T
bj t

p.j/
.j/

, restricted to H� , is

nilpotent

�
T

bj t
p.j/
.j/

ˇ̌
H�

� 2�j
kp.j/k

�
C1

D 0; (5)

where Œx� denotes the integer part of x > 0.
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We remark next that the algebra T�.d/ is not semi-simple, it has a sufficiently
large radical. The next lemma describes some of its elements.

Lemma 4.1 The radical Rad T�.d/ of the algebra T�.d/ contains the following
operators

– D�T
bj t

p.j/
.j/

, where the eigenvalue sequence � D f�.�/g�2Zm
C

of the diagonal

operator D� 2 T�.k-qr/ depends only on the component �j of �, i.e., �.�/ D
�.�j/ and f�.�j/g�2Z

C

2 c0;

– D�

Qm
jD1

�
T

bj t
p.j/
.j/

hj

, where hj 2 ZC and the eigenvalue sequence � D

f�.�/g�2Zm
C

of the diagonal operator D� 2 T�.k-qr/ is such that �.�/! 0 when
j�j ! 1 under the condition that �j0 ! 1 for at list one j0 2 f1; 2; : : : ;mg
with hj0 � 1;

– D�

Qm
jD1

�
T

bj t
p.j/
.j/

hj

, hj 2 ZC with at list one j0 2 f1; 2; : : : ;mg with hj0 > 0 and

� 2 c0.

Proof For a special case of quasi-homogeneous symbols of [9] the result has been
proved in [4, Lemma 6.7], and that proof almost literally extends to the above
general case of pseudo-homogeneous symbols. ut

We note that the linear span of the operators considered in the last two items of
Lemma 4.1, i.e., the set of all operators of the form

gX
`D1

D�`

mY
jD1

�
T

bj;` t
p.j/
.j/

hj;`

(6)

where D�` 2 T�.k-qr/ and hj;` 2 ZC, for ` D 1; : : : ; g and j D 1; : : : ;m, forms
a dense subalgebra D�.d/ in the algebra T�.d/. At the same time, as in [4], the
representation of operators from D�.d/ in the form (6) is not unique. The next
lemma explains the source of such an ambiguity.

Lemma 4.2 Let

A D
gX
`D1

D�`

mY
jD1

�
T

bj;` t
p.j/
.j/

hj;`

;

where all tuples h` D .h1;`; : : : ; hm;`/ are different, then the following statements
are equivalent.

(i) A D 0.

(ii) For each ` D 1; : : : ; g we have that D�`

Qm
jD1

�
T

bj;` t
p.j/
.j/

hj;`

D 0.

(iii) For each ` D 1; : : : ; g we have that �`.j˛.1/j; : : : ; j˛.m/j/ D 0 if j˛.j/j �
hj;`kp.j/k

2

for all j D 1; : : : ;m.
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Proof Follows the same arguments as the proof of Lemma 2.8 in [4].
The part (ii)) (i) is trivial.
The part (iii)) (ii) follows from (5) and the conditions posed in (iii).
To prove (i)) (iii), for a fixed ˛ 2 Z

n
C, we introduce the set of polynomials

F˛ D

8<
:f`;˛ D

mY
jD1

�
T

bj;` t
p.j/
.j/

hj;`

e˛ W ` D 1; ::; g; f`;˛ ¤ 0

9=
; :

This set is either empty or consists of orthogonal elements of the space A2
�.B

n/.

Observe now that among multi-indices ˛ 2 Z
n
C, with j˛.j/j �

hj;`kp.j/k
2

for all j D
1; : : : ;m, there exists such ˛ that the set F˛ is not empty. Then the orthogonality of
elements of F˛ for that ˛ together with Ae˛ D 0 imply

D�` f`;˛ D �.j˛.1/j; : : : ; j˛.m/j/f`;˛ D 0; for all ` D 1; : : : ; g;

or �.j˛.1/j; : : : ; j˛.m/j/ D 0 for all ` D 1; : : : ; g. ut

Yet Another Option

We start again with a fixed tuple on natural numbers k D .k1; : : : ; km/ with
k1 C : : : C km D n, and again rearrange the n coordinates of z 2 B

n in m groups,
each one of which has kj, j D 1; : : : ;m, entries. We keep using the notation

z.1/ D .z1;1; : : : ; z1;k1 /; z.2/ D .z2;1; : : : ; z2;k2 /; : : : ; z.m/ D .zm;1; : : : ; zm;km/;

so that we have two different representations of z 2 B
n:

z D .z1; : : : ; zn/ and z D .z.1/; : : : ; z.m//:

In general, having any n-tuple x D .x1; : : : ; xn/ and the above fixed tuple k, we write
x D .x.1/; : : : ; x.m//.

Introduce now the indicator sets

�j D f` 2 f1; 2; : : : ; ng W z` 2 z.j/g; j D 1; : : : ;m;

which specify the places of elements of z.j/ in the n-tuple z D .z1; : : : ; zn/.
As in the previous section we consider a tuple p D .p1; : : : ; pn/ 2 Z

n such that
each its portion p.j/, j D 1; : : : ;m satisfies the condition jp.j/j D 0. We introduce as
well n-tuplesep.j/, j D 1; : : : ;m, by

ep.j/;` D
(

p`; if ` 2 �j

0; otherwise
:
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We represent now each coordinate of z 2 B
n in the form

z` D r`t`; where r` D jz`j and t` 2 TI

then we represent each r` as r` D rs`, where r D
q

r21 C : : :C r2n and s D

.s1; : : : ; sn/ 2 Sn�1
C .

Recall that n-tuples t D .t1; : : : ; tn/ 2 T
n and s D .s1; : : : ; sn/ 2 Sn�1

C admit the
alternative representations

t D .t.1/; : : : ; t.m// and s D .s.1/; : : : ; s.m//:

Remark 5.1 The principal difference of this section compared with the previous one
is that, contrary to the previous case of s D .s.1/; : : : ; s.m// 2 Sk1�1

C � : : : � Skm�1
C ,

we have now “just one big sphere” s D .s1; : : : ; sn/ 2 Sn�1
C .

Introduce the symbol �j D bj.s.j// t
p.j/
.j/ , where bj D bj.s.j// is bounded and

measurable, and the portion p.j/ of a tuple p D .p1; : : : ; pn/ 2 Z
n
C satisfies the

condition jp.j/j D 0. Given two multi-indices ˛; ˇ 2 Z
n
C, we calculate

hT j z
˛; zˇi D h j z˛; zˇi

D
�.nC �C 1/

	n�.�C 1/

Z
Bn

bj

nY
`D1

jz`j
˛`Cˇ`.1 � jrj2/� t˛�ˇCep.j/ dV.z/

D
�.nC �C 1/

	n�.�C 1/

Z
�.Bn/

bj

nY
`D1

r˛`Cˇ`C1` .1 � jrj2/� dr1 � � � drn

nY
`D1

Z
T

t
˛l�ˇ`Cep.j/;`
`

dt`
it`
:

The last n integrals are different from zero if and only if ˇ D ˛ Cep.j/, in the last
case each of them is equal to 2	 . Thus, setting ˇ D ˛ Cep.j/, we have

hT j z
˛; z˛Cep.j/i D h j z˛; z˛Cep.j/i

D
�.nC �C 1/

�.�C 1/

Z
�Bn

bj

nY
`D1

r
2˛`Cep.j/;`C1
` .1 � jrj2/� dr1 � � � drn

D 2n�.nC �C 1/

�.�C 1/

Z 1

0

r2j˛jC2n�1.1 � jrj2/� dr
Z

Sn�1
C

bj

nY
`D1

s
2˛`Cep.j/;`C1
` dS

D 2n�1 �.nC �C 1/

�.�C 1/

Z 1

0

rj˛jCn�1.1 � r/� dr
Z

Sn�1
C

bj

nY
`D1

s
2˛`Cep.j/;`C1
` dS

D 2n�1 �.nC �C 1/�.j˛j C n/

�.nC j˛j C �C 1/

Z
Sn�1

C

bj

nY
`D1

s
2˛`Cep.j/;`C1
` dS:
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We parametrize then Sn�1
C by n � 1 elements of s D .s1; : : : ; sn/ selecting them so

that the remaining one does not belong to s.j/. To simplify the notation in further
calculations we assume that sn … s.j/ (ep.j/;n D 0 in this case), and we parametrize
thus Sn�1

C by s1; : : : ; sn�1. That is,

hT j z
˛; z˛Cep.j/i D 2n�1 �.nC �C 1/�.j˛j C n/

�.nC j˛j C �C 1/

Z
Bn�1

C

bj.s.j//
n�1Y
`D1

s
2˛`Cep.j/;`C1
`

�
�
1 � .s21 C : : :C s2n�1/

�2˛n ds1 � � � dsn�1

D
�.nC �C 1/�.j˛j C n/

�.nC j˛j C �C 1/

Z

n�1

bj.s
1=2

.j/ /

n�1Y
`D1

s
˛`C

1
2ep.j/;`

`

� .1 � .s1 C : : :C sn�1//
˛n ds1 � � � dsn�1

Changing the variables: s` D u`, for ` 2 �j, and sq D
�
1 � .u.j/;1 C : : :C u.j/;kj/

�
uq,

for q … �j [ fng, we have

hT j z
˛; z˛Cep.j/i D �.nC �C 1/�.j˛j C n/

�.nC j˛j C �C 1/

Z

kj

bj.u
1=2

.j/ /
Y
`2�j

u
˛`C

1
2 p`

`

�
�
1 � .u.j/;1 C : : :C u.j/;kj/

�j˛j�j˛.j/jCn�kj�1
Y
`2�j

du`

�

Z

n�kj�1

Y
q…�j[fng

u
˛q
q

0
@1 � X

q…�j[fng

uq

1
A
˛n Y

q…�j[fng

duq

D
�.nC �C 1/�.j˛j C n/

�.nC j˛j C �C 1/

Q
q…�j

�.˛q C 1/

�.j˛j � j˛.j/j C n � kj/

�

Z

kj

bj.u
1=2

.j/ /
Y
`2�j

u
˛`C

1
2 p`

`

�
1 � .u.j/;1 C : : :C u.j/;kj/

�j˛j�j˛.j/jCn�kj�1
Y
`2�j

du`:

Taking into account that

hz˛Cep.j/ ; z˛Cep.j/i D
�.nC �C 1/

Q
`2�j

�.˛` C p` C 1/
Q

q…�j
�.˛q C 1/

�.nC j˛j C �C 1/

we come to he following lemma (where we change u` for s`).

Lemma 5.2 Let bj D bj.s.j// 2 L1.B
kj

C/ and let the portion p.j/ of a tuple p D
.p1; : : : ; pn/ 2 Z

n
C satisfies the condition jp.j/j D 0. Then the Toeplitz operator

T
bjt

p.j/
.j/

acts on monomials z˛ as follows
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T
bjt

p.j/
.j/

z˛ D

8<
:
0; if 9 ` 2 �j such that ˛` C p` < 0

e�
bjt

p.j/
.j/ ;k;p;�

.˛/ z˛Cep.j/ ; if 8 ` 2 �j ˛` C p` � 0
;

where

e�
bjt

p.j/
.j/ ;k;p;�

.˛/ D
�.j˛j C n/Q

`2�j
�.˛` C p` C 1/�.j˛j � j˛.j/j C n � kj/

�

Z

kj

bj.s
1=2

.j/ /
Y
`2�j

s
˛`C

1
2 p`

`

�
1 � .s.j/;1 C : : :C s.j/;kj/

�j˛j�j˛.j/jCn�kj�1
Y
`2�j

ds`

and b.s1=2.j/ / D b.
p

sj;1; : : : ;
psj;kj/.

Corollary 5.3 The action of the operator T
bjt

p.j/
.j/

does not depend on the weight

parameter �.

Corollary 5.4 Let a be a bounded measurable k-quasi-radial function, let bj D

bj.s.j// 2 L1.B
kj

C/ for each j D 1; : : : ;m, and let the tuple p D .p1; : : : ; pn/ 2 Z
n
C

satisfy the condition jp.j/j D 0 for each j D 1; : : : ;m. Then the Toeplitz operators
Ta, T

bjt
p.j/
.j/

, for j D 1; : : : ;m, pairwise commute.

Remark 5.5 It is straightforward to check that, contrary to the case of Corollary 3.4,
we have that neither TaT

bjt
p.j/
.j/
D T

abjt
p.j/
.j/

, nor T
bjt

p.j/
.j/

T
b`T

p.`/
.`/

D T
bjt

p.j/
.j/ b`T

p.`/
.`/

, for all

j ¤ ` both from 1; : : : ;m.

Now we can introduce new commutative Banach algebras which, in the setting of
this section, are defined by the following data. We start with a tuple k D .k1; : : : ; km/

of positive integers with k1 C : : : C km D n. Consider the set L1.�.B
m// of

all k-quasi-radial symbols a, then fix a tuple b D .b1; : : : ; bm/ of functions
bj D bj.s.j// 2 L1.B

kj

C/, j D 1; : : : ;m, and a tuple p D .p1; : : : ; pn/ 2 Z
n with

jp.j/j D 0 for all j D 1; : : : ;m. We group all the above ingredients into a single set
d D fk;L1.�.B

m//; b; pg and denote by T�.d/ the unital Banach algebra generated
by all Toeplitz operators

Ta; with a 2 L1.�.B
m//; and T

bjt
p.j/
.j/
; for all j D 1; : : : ;m;

acting on the weighted Bergman space A2
�.B

n/. By Corollary 5.4 each algebra of
this type is commutative.

Not entering into details, we mention just that the algebras T�.d/ possess the
same properties as the algebras T�.d/ of section “Commutative Algebras”. All of
them have the same invariant subspaces H� , with � 2 ZC, they are not semi-
simple, and have the same type on an ambiguity of representations of elements from
corresponding dense subalgebras.
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Remark 5.6 Two different procedures of the construction of commutative Banach
algebras T�.d/ and T�.d/ can be even combined into a mixed single one. That
is, given a tuple k D .k1; : : : ; km/ with k1 C : : : C km D n, we start as in
section “Quasi-radial and Pseudo-homogeneous Symbols” by representing z 2 B

n

in the form z D .z.1/; : : : ; z.m//, and then we represent each coordinate zj;` of z.j/ in
the form zj;` D rjsj;`tj;`, where

rj D
q
jzj;1j2 C : : :C jzj;kj j

2; tj;` 2 T; s.j/ D .sj;1; : : : ; sj;kj/ 2 S
kj�1

C :

After that we proceed with the recipe of section “Yet Another Option” on each
“small sphere” S

kj�1

C , j D 1; : : : ;m (see Remark 5.1), i.e., we separate each portion
p.j/ of a p D .p1; : : : ; pn/ 2 Z

n onto smaller sub-portions p.j;h/ with jp.j;h/j D 0 and
use, as generators, the Toeplitz operators with symbols �j;h D bj;h.s.j;h// t

p.j;h/
.j;h/ (and

the Toeplitz operators with corresponding quasi-radial symbols).
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Approach
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Abstract We give here an “automatic” proof of a weighted embedding theorem
with a bumping of the weight. It implies a well-known weighted theorem of C.
Pérez.
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Introduction

Preliminaries

In this note we give a simple Bellman function proof of Carlos Pérez’s “bump
theorem” for the two weight estimates of maximal operators.

The original question about two weight estimates for the singular integral
operators is to find a necessary and sufficient condition on the weights v and u such
that a Calderón–Zygmund operator T W Lp.v/ ! Lp.u/; 1 < p < 1; is bounded,
i.e. the inequality Z

jTf jpudx � C
Z
jf jpvdx 8f 2 Lp.u/ (1)

holds. By weight we understand here non-negative locally integrable function.
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There is a famous solution of this problem when T is the Hilbert transform that
belongs to Misha Cotlar and Cora Sadosky [1]. This characterization is in the spirit
of Helson–Szegö characterization of the one weight boundedness of the Hilbert
transform. Helson–Szegö characterization can be expressed e.g. as the existence
of an H1-function (here H1 is a Hardy class of analytic functions in the disc) that
“closely follows” the weight u D v. When two weights are present Cotlar–Sadosky
[1] found the condition equivalent to (1) (with T being the Hilbert transform) in
terms of the existence of an H1-function that “closely follows” the right combi-
nation of two weights. Parallel to Helson–Szegö’s characterization, the equivalent
condition of Hunt–Muckenhoupt–Wheeden was quite important for the one weight
theory. And then Sawyer’s characterization for the two weight problem for maximal
operator appeared. All this asked for the parallel Muckenhoupt–Hunt–Wheeden
or Sawyer’s language for two weight problems for general Calderón–Zygmund
operators. However, it is worthwhile to mention that even in the one weight situation
one has two different characterization of the boundedness of the Hilbert transform:
(1) the Helson–Szegö’s characterization and (2) the Hunt–Muckenhoupt–Wheeden
characterization. They are equivalent of course, but the direct analytic proof of their
equivalence is still unknown. In the two weight situation we consider here this is
even more so that one can express the answer in several different languages. Cotlar–
Sadosky characterization is the extension of Helson–Szegö’s one.

The problem of finding the two weight characterization for the boundedness of
the Calderón–Zygmund operators T in Sawyer’s language has been recently solved
for p D 2 when T is the Hilbert transform by M. Lacey, thus culminating a long
search for the two weight T1 theorem by the group that included I. Uriarto-Tuero,
E. Sawyer, C.-Y. Shen and earlier efforts of F. Nazarov, S. Treil, A. Volberg. For
short range dyadic singular operators it has been solved by F. Nazarov, S. Treil, A.
Volberg in 2008, [12], see also [14]. Of course the story of two weight estimates
for positive operators can be traced to works of E. Sawyer [19, 20], the latter paper
is devoted to the characterization of the two weight boundedness of the maximal
operator.

We are working here with the maximal operator again. But we are interested in
simple and sharp sufficient conditions rather than in necessary and sufficient ones.
As Pérez has shown this can be done by the use of Hunt–Muckenhoupt–Wheeden
language by modifying it with the introduction of Orlicz type norms. We wish to
mention here that the Pérez “bumping” by Orlicz norms [15–17] has been replaced
recently by the entropy norms “bumping”, see [21]. We describe below the Orlicz
bumping that we will be using in this paper.

For the interesting operators acting on functions defined on R
n the following two

weight analogue of the Ap condition is necessary for the boundedness of the operator
Mu1=p TM�1=p0 . Below Q denotes any cube in R

n.

sup
Q

�
jQj�1

Z
Q

udx

�
jQj�1

Z
Q
�dx

p=p0

<1 (2)
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or in the symmetric form

sup
Q

�
jQj�1

Z
Q

udx

1=p �
jQj�1

Z
Q
�dx

1=p0

<1 (3)

Simple counterexamples show that this condition is not sufficient for the
boundedness. This holds even for the simplest “singular” operator: the Hardy–
Littlewood maximal operator, and even for its dyadic counterpart. So a natural way
to get a sufficient condition is to replace the L1 norms of u and � in (3) (or the
Lp and Lp0

norms of u1=p and �1=p0

) by some stronger Orlicz norms (this is called
“bumping” the Lp norms).

This ideology of bumping can be traced to the work of C. Fefferman [9]. It has
been widely used by D. Cruz-Uribe, C. Pérez, J. M. Martell, [2–8, 15–18].

Namely, given a Young function ˆ (convex increasing function) and a cube Q
one can consider the normalized on Q Orlicz space Lˆ.Q/ with the norm given by

kfk
Lˆ.Q/

WD inf

�
� > 0 W

Z
Q
ˆ

�
f .x/

�


dx

jQj
� 1

�
:

And it was conjectured (for p D 2) that if the Young functions ˆ1 and ˆ2 satisfy
the condition Z 1 dx

ˆ.x/
<1; (4)

then the condition

sup
Q
kuk

Lˆ1 .Q/
k�k

Lˆ2 .Q/
<1 (5)

implies that for any bounded Calderón–Zygmund operator T the operator
Mu1=2TM�1=2 is bounded in L2.

This conjecture (belonging to C. Pérez and D. Cruz-Uribe) was, in fact, proved
by different methods in the paper of Lerner [10, 11] and in the paper [13]. The
first paper has the advantage of giving the result for all p’s. The second paper deals
only with p D 2 (which is still quite an interesting case) and it demonstrates an
“automatic” proof of the bump conjecture. Namely, a function is constructed (on
a certain infinite dimensional space) such, that after feeding into this function the
distribution functions of the weights and several other data, we obtain the desired
estimate just by applying Green’s formula to this function (we call it a Bellman
function of the problem).

But the paper [13] did not deal with the simplest “singular” operator: the maximal
operator. This was just because for maximal operator the right bump conjecture
has been already proved by Carlos Pérez, see [15–17]. But it seems to us that to
give an “automatic” proof of Pérez’s result can be interesting too. Moreover, the
main Theorem 2.1 formally proves a seemingly slightly more general result, which
implies the maximal estimate with a bumping proved by Pérez.
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So in the present note we are concerned with the simplest case, namely we deal
with a new “automatic” proof of the sharp bump result proved by Pérez [15–17] for
maximal operators (and a slight generalization of this result). The bump condition
here is slightly different, it is a one-sided bump condition.

Our result differs in a way from Pérez’ theorem in that it has stronger regularity
assumptions on the bump. We assume that ˆ is convex, and Pérez assumed that
ˆ.t2/ is convex. The comparison between (4) and Pérez assumption

R
t

B.t/dt < 1

plus a simple change of variables show that ˆ.s/ D B.
p

s/. This relationship
between our “bump” functionˆ (applied directly to our weight) and Pérez’ “bump”
function B (applied to the square of the weight) shows that our assumption is
stronger, but one should remember that the main assumption is (4), and thus the
interesting case is ˆ.t/ D td.t/, where d is a sort of logarithmic correction. If d is
regular enough there is no difference between these two convexities. This is the case,
for example, if s d0.s/

d.s/ tends monotonically to zero when s tends to infinity. There is
one more regularity assumption that we choose to impose on ˆ. It is formulated
in (28) in terms of‰ that will be defined byˆ. It is again satisfied for all sufficiently
regular d.

The proof has some value because of the above mentioned slight generalization
(Theorem 2.1) and because it illustrates how one can give an “automatic” proof by
presenting a formula for a certain function, which, in its turn, “automatically stops
the time” (so no stopping time argument should be invented). On the other hand, the
accent in difficulty is moved now to building such a function. And the main thrust
is to ensure its specific concavity properties.

Sharp Bump Conditions for the Maximal Operators
and Weighted Embedding

Let us consider the maximal operator acting on function on R
n; n D 1: This is just

for the sake of simplicity (the argument can be carried on for all n). In what follows
J denotes an interval of the real line R. We prove here Pérez’ theorem [15–17]:

Z
M.'�/2u dt � C

Z
'2� dt; (6)

under the condition

sup
J
huiJ � k�kLˆ.J/ < C ; (7)

which ports the name one-sided bump condition.
Notice that we made here a change of variable in comparison with (1) and (5).

In fact, for p D 2 inequality (1) can be rewritten as the boundedness of the
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operator u1=2Tv�1=2 in unweighted L2. So when one writes that one is interested
in two weight boundedness of u1=2T�1=2, one should identify v�1 in (1) with � : this
identification has been done while writing down (5).

In this section again we use a convenient change of variable, transforming the
two weighted inequality in the form (1)

Z
M.f /2u dt � C

Z
f 2v dt;

into
Z
ŒM.fv

1

v
�/2u dt � C

Z
.fv/2

1

v
dt :

Now we change the variable � D v�1; ' D fv and we obtain the form (6) of two
weight inequality with which we will be working now.

The reader should keep this change of variables in mind because the two weight
problems used to be formulated in different forms: in the form (1), or in the form of
the boundedness of u1=2T�1=2 in unweighted L2, or, at last, in the form of (6), where
the integration is with respect to the same measure �dx in the right hand side and
inside the operator. Notice that all forms are basically equivalent, but the latter has
the advantage that measure �dx can be easily made a general measure (and not just
Lebesgue measure density).

Condition (7) above is a strengthening of the classical A2 condition. Some
strengthening is unavoidable as we are dealing here with a two-weight problem.
The sharp condition on ˆ (called B2 condition) will be quoted below, in essence it
means

R1 1
ˆ.t/dt <1.

We prove this result of Carlos Pérez by a new method, actually by a formula.
What follows is a sort of automatic proof of the result.

It is well known that the problem for the classical maximal operator can be
reduced to dyadic maximal operator (in this setting it is easy and follows by a simple
trick with averaging over random dyadic lattices).

Let us denote by D a standard dyadic lattice. Then it is also quite known that
we can reduce our problem to the following: If faI jIjgI2D is a u-Carleson sequence,
then

1

jJj

X
I2D;I�J

aIh�i
2

I
jIj � Ch�iJ : (8)

The requirement that aI jIj is a u-Carleson sequence means that

1

jJj

X
I2D;I�J

aI jIj � ChuiJ : (9)
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Since we bump v, we should care about

NJ.t/ D
1

jJj
jfx 2 J W �.x/ � tgj:

Also we denote

AJ D
1

jJj

X
I2D;I�J

aIjIj:

The u-Carleson property of faI � jIjgI2D means AJ � ChuiJ for all dyadic J.
The combination of (7) and the u-Carleson property of faI � jIjgI2D means that

8J 2 D we have AJ � k�kLˆ.J/ � C <1 : (10)

We want to deduce (8) from (10) under the sharp assumptions on the gauge
function ˆ. These assumptions are as follows: ˆ is increasing convex function
satisfying (4).

So here is our theorem.

Theorem 2.1 Let the sequence of nonnegative numbers faIgI2D satisfy (10) for
every dyadic interval J, where AJ D

1
jJj

P
I2D;I�J aIjIj. Then if ˆ is increasing

convex function satisfying

Z 1 1

ˆ.t/
dt <1

and satisfying a mild regularity condition then for every dyadic interval J the
following inequality holds

1

jJj

X
I2D;I�J

aIh�i
2

I
jIj � Ch�iJ :

Notice that in the theorem there is no second weight u, there is no assumption of
the type (9) whatsoever. In the standard deduction of two weight maximal theorem
from Theorem 2.1 of course the second weight u will be present and the standard
linearization of maximal operator will bring the sequence of nonnegative numbers
faIgI2D that will satisfy (9). Then the application of Theorem 2.1 will prove the
maximal estimate (in its form (8), but we know by the Sawyer’s result [19] that this
is enough).

However, it is not clear how to get Theorem 2.1 from the corresponding maximal
result. It seems like for that one would need to build some special weight u, which
is not present in Theorem 2.1. This is why this theorem seems to be a slight
generalization of the result of Pérez.



Bumps for Maximal Operators 425

The mild regularity condition onˆ is formulated in terms of its transform ‰ that
we are introducing in the next section “Orlicz Norms and Distribution Functions”.
In terms of ‰ this mild regularity condition is formulated at the very end of the
paper in (28). In fact we believe that for every increasing convex ˆ satisfying the
integrability condition in the theorem, there is a smaller function also satisfying the
integrability condition and such that the new‰ will satisfy this mild regularity (28).

Notice that the mild regularity condition (28) is satisfied for all examples of ˆ
presented at the end of the next section “Orlicz Norms and Distribution Functions”.

We explained that this result gives the bump result of Carlos Pérez. The latter is
the sharp result and the integrability of 1=ˆ cannot be weakened. On the other hand,
notice that the statement of the theorem requires only (10) and does not require (9).
So it is more the statement of “Carleson embedding theorem”, than the statement
about maximal operator. After all, it might be important to have simple conditions
on the sequence of nonnegative numbers faIgI2D and a weights � that would imply
inequality (8). Notice that by Sawyer’s arguments we know that (8) then implies a
general embedding theorem localized to interval J:

1

jJj

X
I2D;I�J

aIh'�i
2

I
jIj � Ch'2�iJ : (11)

Orlicz Norms and Distribution Functions

Here we repeat verbatim some results from [13]. Orlicz norm is not very convenient
to work with, so we would like to replace it, and to work with something more
tractable.

A Lower Bound for the Orlicz Norm

Let ˆ be a continuous non-negative increasing convex function such that ˆ.0/ D 0
and

R C1 dt
ˆ.t/ < C1. Define ‰.s/ parametrically by ‰.s/ D ˆ0.t/ when s D

1
ˆ.t/ˆ0.t/ (t > 0). Then ‰.s/ is positive and decreasing for s > 0 and s‰.s/ is

increasing. Moreover
R
0

ds
s‰.s/ < C1. Indeed, using our parameterization we can

rewrite the last integral as

Z C1 �
1

ˆ.t/
C
ˆ00.t/

ˆ0.t/2


dt :

The first integral converges by our assumption and the second integrand has a
bounded near C1 antiderivative �1

ˆ0.t/ .
Let w � 0 on J � R

n. Define the normalized distribution function N of w by
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N.t/ D Nw
J .t/ D

1

jJj
jfx 2 I W w.x/ > tgj (12)

Lemma 2.2 Let ‰ W .0; 1� ! RC be a decreasing function such that the function
s 7! s‰.s/ is increasing. Let ˆ be a Young function and let

‰.s/ � Cˆ0.t/ where s D
1

ˆ.t/ˆ0.t/

for all sufficiently large t. Then for N D Nw
J

n
‰
.N/ WD

Z 1

0

N.t/‰.N.t// dt � Ckwk
Lˆ.J/

: (13)

Proof The left hand side scales like a norm under multiplication by constants, so it
is enough to show that if kwkLˆ.J/ � 1, i.e.,

1

jJj

Z
J
ˆ.w/ D

Z 1

0

N.t/ˆ0.t/ dt � 1

then n
‰
.N/ is bounded by a constant. Since s‰.s/ increases, we may have trouble

only at C1 It is cleat that it suffices to estimate the integral over the set where
‰.N.t// > ˆ0.t/ but since ‰ is decreasing this means that N.t/ � C=.ˆ.t/ˆ0.t//,
so we get at most

R C1
ˆ.t/�1dt and we are done. ut

Remark In the above Lemma 2.2 we do not need the assumption that

Z
0

1

s‰.s/
ds <1: (14)

But in what follows this assumption will be needed, and the reasoning in the begin-
ning of this section shows that for any Young functionˆ satisfying

R1
.ˆ.t//�1dt <

1 we can find ‰ from Lemma 2.2 satisfying (14).

Examples

In the above section only the behavior of ˆ at C1 and the behavior of ‰ near 0
were important, so we will concentrate our attention there.

Let ˆ.t/ D t.ln t/˛ , ˛ > 1 near1. Then

ˆ0.t/ � .ln t/˛; ˆ.t/ˆ0.t/ � t.ln t/2˛;

so‰.s/ WD .ln.1=s//˛ satisfies the assumptions of Lemma 2.2: to see that we notice

ln.ˆ.t/ˆ0.t// � ln t:
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If ˆ.t/ D t ln t.ln ln t/˛ , ˛ > 1, then

ˆ0.t/ � ln t.ln ln t/˛; ˆ.t/ˆ0.t/ � t.ln t/2.ln ln t/2˛

and ‰.s/ D ln.1=s/.ln ln.1=s//˛ works because again ln.ˆ.t/ˆ0.t// � ln t.
Note that in both examples

R
0
.s‰.s//�1ds <1.

The examples of Young functions with higher order logarithms are treated
similarly.

Bellman Function of a Problem

Let us consider a function D.A; t;N/ of three variables, where the last variable N is
in fact any decreasing function on Œ0;1/ taking values in Œ0; 1�) and such that

D.A; t;N/ � C � N (15)

d2A;ND � 0 (16)
Z 1

0

@D

@A
.A; t;N.t//dt � K

�Z
N.t/dt

2
; (17)

where what is K will be determined later. The middle inequality means that for every
t the function of A;N is concave.

We will be looking for D of the following form D.A; t;N/ D B.At;N/ (scaling
in (8) hints us to do that) , and we put for an arbitrary dyadic interval I 2 D

B.I/ D
Z

B.AI � t;NI.t//dt:

What is a Priori Bounded?

In this section we are going to discuss the following question. If (10) is satisfied,
that is (after normalization) k�kLˆ.I/AI � 1, then what quantities, involving ˆ and
‰ from section “Orlicz Norms and Distribution Functions”, are bounded?

First of all, we know that

Z
NI.t/‰.NI.t//dt � ck�kLˆ.I/
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and so our first inequality is

AI

Z
NI.t/‰.NI.t//dt � c: (18)

What else? Well, to calculate the norm of � , we should integrate something like
NI.t/ˆ0.t/, but not exactly! Let us be careful, and it will be the thing that we (at
least I) was missing all this time.

We know that k�kLˆ.I/ �
1
AI

. We also know that

k�kLˆ.I/ D inf
n
� W hˆ

��
�

	
iI � 1

o
:

Therefore (the average in the inf decreases when � increases), we get

hˆ.AI�/iI � 1:

We now write the last inequality as follows

Z 1

0

ˆ0.t/NI

�
t

AI


dt � 1;

or

AI

Z 1

0

NI.t/ˆ
0.AIt/dt � 1: (19)

This is the second inequality. Notice that we have ˆ0.AIt/ instead of ˆ0.t/, and
this will be crucial.

Next Step is Green’s Formula on the Tree
and the Use of Concavity

So,

B.I/ D
Z

B.AI � t;NI.t//dt;

and using that N.t/ D NIC.t/CNI�.t/
2

we can write
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B.I/ � B.IC/C B.I�/
2

D

Z �
B.AI � t;NI.t// � B

�
AIC C AI�

2
� t;NI.t/

�
dtC

Z �
B

�
AIC C AI�

2
� t;

NIC.t/C NI�.t/

2


�
1

2

�
B.AIC � t;NIC.t//C B.AI� � t;NI�.t//

�
:

In the second line we use concavity of B, thus, this term is nonnegative. In the
first line we use the mean value theorem and the fact that as @2B

@A2
� 0 (concavity in

variable A), we are ensured that @B
@A at the intermediate point is at least @B

@A .AIt;NI.t//.

Then we can continue (using that AI �
AICCAI�

2
D aI)

B.I/�B.IC/C B.I�/

2
� aI

Z
t
@B

@A
.AIt;NI.t//dt � aIh�i

2

I

 Z
NI.t/2

t @B
@A .AIt;NI.t//

dt

!�1

:

The last inequality is just Hölder inequality applied to

h�i2I D

�Z 1

0

NI.t/dt

2
D

0
B@
Z 1

0

N.t/q
t @B
@A .AIt;NI.t//

�

r
t
@B

@A
.AIt;NI.t//dt

1
CA
2

:

We want

Z
NI.t/2

t @B
@A .AIt;NI.t//

dt � C; (20)

which will be satisfied if we take (18), (19) in combination with

t
@B

@A
.AIt;NI.t// �

NI.t/

‰.NI.t//Cˆ0.AI � t/
�
1

AI
; (21)

After dividing by t becomes

@B

@A
.AIt;NI.t// �

NI.t/

‰.NI.t//Cˆ0.AI � t/
�
1

AI � t
:

So it is tempting to put

@B

@A
.A;N/ D

N

‰.N/Cˆ0.A/
�
1

A
:

In fact this formula cannot give us the desired B. But in section “Here is B” we will
modify the formula.
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Here is B

Recall the notations: we start with convex ˆ, whose reciprocal is integrable at1,
and we build ‰.s/; �.s/ D s‰.s/; s  0; in such a way that

s‰.s/ D
1

ˆ.t/
; if s D

1

ˆ0.t/ˆ.t/
; (22)

which implies that

‰.s/ D ˆ0.t/ ; if s D
1

ˆ0.t/ˆ.t/
: (23)

We want to combine that with

ˆ0.t/ � ˆ0

�
1

s


; if s D

1

ˆ0.t/ˆ.t/
; (24)

Together (23) and (24) give that

‰.s/ � ˆ0

�
1

s


; if s  0 : (25)

which we will use in what follows.
But we need to check first (24), which is the same (as ˆ0 is increasing) as to

verify that

t �
1

s
; if s D

1

ˆ0.t/ˆ.t/
: (26)

This is immediate: 1
s D ˆ0.t/ˆ.t/ � t just because ˆ.t/ � t; ˆ0.t/ � 1 if t is

sufficiently large (this is a simple consequence of convexity ofˆ and condition (4)).
Let us introduce now

‰new.s/ WD

(
‰.s/; s 2 .0; 1�;

‰
�
1
s

�
; s � 1 :

Recall that we are looking for D.A; t;N/ D B.At;N/ with properties listed at the
beginning of the Section. Here is B that will give us the function D we need:

B.�;N/ WD N
Z �

N

0

1

‰new.s/
�

ds

s
:
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Obviously

0 � B � CN

because 1
‰.s/ is ds

s integrable on .0; 1�, and 1
‰new.s/

D 1

‰. 1s /
is ds

s integrable on Œ1;1/.

The determinant of Hessian matrix is zero, so concavity is equivalent to B�� � 0.
But

B�� D �
N

�2‰. �N /

�
1C

�

N

‰0. �N /

‰. �N /


� 0

when �=N � 1 because s‰.s/ is increasing on Œ0; 1�. In the other case N=� < 1 we
have B.�;N/ WD N

R1
N
�

1
‰.s/ �

ds
s

B�� D �
N

�2‰.N
�
/

�
1 �

N

�

‰0.N
�
/

‰.N
�
/


� 0

because ‰.s/ is decreasing on .0; 1�.
We are left to prove that (20) holds, namely, that

Z 1

0

N2.t/

tB0
� .At;N.t//

dt � C0 : (27)

This is the same as

S WD A
Z 1

0

N.t/‰new

�
At

N.t/


dt � C0 :

We split integral S to three parts. Integral S1, where At
N.t/ � 1, so At � N.t/ � 1 (we

use that ‰ is decreasing on .0; 1�):

S1 � A
Z 1

A

0

N.t/‰

�
At

N.t/


dt � A

Z 1
A

0

‰.At/ dt D
Z 1

0

‰.s/ds D C1 <1 :

In fact, using, for example, (24) we see that
R
0
‰.s/ ds � C

R1 ˆ0.t/
t2

dt 
R1 ˆ.t/

t3
dt.

The latter integral is finite because in all interesting cases we can assume ˆ.t/ �
t3=2. In fact, for power bump functions ˆ the result we are proving can be proved in
a much easier way, see for example [9], (and, in fact, it follows of course from the
result for more complicated bumps).

Integral S2 is where At
N.t/ > 1;At � 1. We use that ‰ is decreasing on .0; 1�.

S2 D A
Z 1

0

N.t/‰

�
N.t/

At


dt � A

Z 1

0

N.t/‰.N.t// dt � C2 ;

which we know from section “What is a Priori Bounded?”.
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Finally we are left with integral S3, where At > 1.

S3 � A
Z 1

0

N.t/‰

�
N.t/

At


dt :

Here we use the following property of ‰, which is satisfied for all reasonable
‰ obtained from ˆ (it is a small restriction on regularity of ˆ, but notice that all
interesting ‰’s are (sub)-logarithmic and so have this property):

8s2; s2 2 .0; 1�; ‰.s1s2/ � C.‰.s1/C‰.s2// : (28)

Using (28) we continue

I3 � CA
Z 1

0

N.t/‰.N.t// dtC CA
Z 1

0

N.t/‰

�
1

At


dt :

The first integral is � CC3 by (18) of section “What is a Priori Bounded?”.
For the second integral we use (25) and (19):

A
Z 1

0

N.t/‰

�
1

At


dt � A

Z 1

0

N.t/ˆ0.At/ dt ;

which is again bounded by C4 by (19) of section “What is a Priori Bounded?”.
We are done.
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The Necessity of A1 for Translation and Scale
Invariant Almost-Orthogonality

Michael Wilson

Abstract If � is a measure, we say a set f kgk � L2.�/ is almost-orthogonal in
L2.�/ if there is an R <1 such that, for all finite linear sums

P
�k k,

Z ˇ̌
ˇX�k k

ˇ̌
ˇ2 d� � R

X
j�kj

2:

If z D .t; y/ 2 RdC1
C � Rd � .0;1/ and f W Rd ! C, define fz.x/ � f ..x � t/=y/.

If Q � Rd is a cube with sidelength `.Q/, define T.Q/ � Q � Œ`.Q/=2; `.Q//.
We say that f�kg

n
1, a finite set of bounded, complex-valued functions with supports

contained in B.0I 1/, satisfies the collective non-degeneracy condition (CNDC) if
there is no ray emanating from the origin on which the Fourier transform of every �k

vanishes identically. We prove: If � is a doubling measure on Rd with the property
that, for some family f�kg

n
1 satisfying CNDC, it is the case that, for every 1 � k � n

and every choice of points .Q/ 2 T.Q/, Q 2 D (where D is the family of dyadic
cubes), the set

(
.�k/.Q/p
�.Q/

)

Q2D

is almost-orthogonal in L2.�/, then � is a Muckenhoupt A1 measure.
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Introduction

We recall that a non-trivial Radon measure � on Rd is said to be A1 (in symbols:
� 2 A1) if, for every � > 0, there is a ı > 0 such that, for every cube Q � Rd

and every measurable E � Q, having jEj=jQj < ı implies �.E/ � ��.Q/; where,
here and in the future, we use j � j to denote a set’s Lebesgue measure. A non-trivial
Radon measure � on Rd is said to be doubling if there is a finite C so that, for all
cubes Q � Rd, �.2Q/ � C�.Q/, where 2Q denotes Q’s concentric double. It is easy
to see that � 2 A1 implies that � is doubling; it is not so easy (but classical) that
the converse fails. If � 2 A1 then d� D v dx for some non-negative v 2 L1loc.R

d/.
In such a case we say that v 2 A1. It is well known that v 2 A1 if and only if there
is a p > 1 and a finite Kp such that, for all cubes Q,

�
1

jQj

Z
Q
vp dx

1=p

�
Kp

jQj

Z
Q
v dx; (1)

which is the so-called “reverse-Hölder inequality”.
In a recent paper [9] the author proved that, if � 2 A1, then, in a precise sense

to be explained shortly, L2.�/ and ordinary, Lebesgue-measure L2 have the same
almost-orthogonal systems; where we say that a collection of functions f kgk is
almost-orthogonal in L2.�/ if there is a finite R so that, for all finite linear sumsP
�k k,

Z ˇ̌
ˇX�k k

ˇ̌
ˇ2 d� � R

X
j�kj

2: (2)

He also proved that if � is a doubling measure and L2 and L2.�/ have (in a precise
sense) the same almost-orthogonal systems, then � must be A1.

Let us explain what this “precise sense” is.
If z D .t; y/ 2 RdC1

C � Rd � .0;1/ and f W Rd ! C, we define fz.x/ to
be f ..x � t/=y/. This is the function f dilated and translated relative to the ball
B.tI y/, but without any measure-based normalization. If 0 < ˛ � 1 we say that
� 2 C˛ if � W Rd ! C has support contained in B.0I 1/ and, for all x and x0 in Rd,
j�.x/��.x0/j � jx�x0j˛ . We write C˛;0 to mean the subspace of �’s in C˛ satisfyingR
� dx D 0. We call a cube Q dyadic if Q D Œj12k; .j1C1/2k/�� � ��Œjd2k; .jdC1/2k/

for some integers j1, . . . , jd, and k, and we write `.Q/ for Q’s sidelength (which is
2k). We call the set of all dyadic cubes D. If Q 2 D we put zQ � .xQ; `.Q// 2 RdC1

C ,
where xQ is Q’s center. If f�.Q/gD � C˛ , then

(
�
.Q/
zQp
jQj

)

Q2D

(3)
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is a family of Hölder-smooth functions, indexed over D, with each one dilated,
translated, and (Lebesgue) measure-normalized to “fit” a dyadic cube Q. If each
�.Q/ 2 C˛;0 then it is easy to see that (3) is almost-orthogonal in L2, with an R (as
in (2)) that only depends on ˛ and d. If each �.Q/ equals a fixed � 2 C˛;0 (a “mother
wavelet”) then (3) is sometimes called a wavelet system [2].

We could also consider the collection(
�
.Q/
zQp
�.Q/

)

Q2D

: (4)

In [9] the author showed that, if � 2 A1 then, for every family f�.Q/gD � C˛ , the
set (3) is almost-orthogonal in L2 if and only if (4) is almost-orthogonal in L2.�/.
He showed that this result has a partial converse: if � is a doubling measure and it
is the case that, for every f�.Q/gD � C˛ , the L2 almost-orthogonality of (3) implies
the L2.�/ almost-orthogonality of (4), then � 2 A1.

In a later paper [10] the author strengthened the converse. We define a T-sequence
to be a function  mapping from D into RdC1

C such that .Q/ 2 T.Q/ for all Q 2 D.
In [10] the author proved that if � is doubling, and � is any non-trivial, real, radial
function in C˛;0 such that, for all T-sequences , the family

(
�.Q/p
�.Q/

)

Q2D

(5)

is almost-orthogonal in L2.�/, then � 2 A1.
The hypotheses that � be real and radial are unnecessary. The “real” assumption

is a computational convenience. The “radial” hypothesis (combined with non-
triviality) simply ensures that b� (the Fourier transform of �) does not vanish
identically on any ray emanating from the origin. It turns out that smoothness and
cancelation are also red herrings, at least for showing necessity of � 2 A1. In the
current work we replace these hypotheses with a non-degeneracy condition that can
be applied to subsets of L1.B.0I 1// (bounded functions with supports contained
in B.0I 1/). This condition allows individual functions in the set to have Fourier
transforms with bad directions. It only requires that no direction be bad for all
of them. Precisely, we say that f�kg

n
1 � L1.B.0I 1// satisfies the collective non-

degeneracy condition (CNDC) if there is no ray from the origin on which every b�k

is identically 0.
Our main result is:

Theorem 1.1 Let � be a doubling measure on Rd and let f�kg
n
1 � L1.B.0I 1//

satisfy CNDC. If, for every 1 � k � n and every T-sequence , the set

(
.�k/.Q/p
�.Q/

)

Q2D

(6)

is almost-orthogonal in L2.�/, then � 2 A1.
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The meaning of the theorem seems to be: If � is doubling and L2.�/ has a
reasonable wavelet basis (one given by normalized translates/dilates of a finite set
of mother wavelets), then � must be A1.

The proof uses a slightly non-standard characterization of A1; or, to be more
precise, dyadic A1. We recall that a measure � belongs to dyadic A1 (in symbols:
� 2 Ad

1) if, for every � > 0, there is a ı > 0 so that, for all dyadic cubes Q and
all measurable E � Q, jEj=jQj < ı implies �.E/ � ��.Q/. Obviously A1 � Ad

1.
It is not hard to show that if � 2 Ad

1 and � is doubling then � 2 A1. To prove
Theorem 1.1, it suffices to show that its hypotheses imply � 2 Ad

1.
We will call fcQgD, a sequence of non-negative numbers indexed over D, a

Carleson sequence if, for all Q0 2 D,

X
Q2D
Q�Q0

cQjQj � jQ
0j: (7)

This is the same as saying that, for every Q0 2 D,

Z
Q0

0
B@X

Q2D
Q�Q0

cQ�Q

1
CA dx � jQ0j:

In section “The One-Dimensional, Dyadic Case” we show that � 2 Ad
1 if and only

if there is a finite R so that, for all Carleson sequences fcQgD and all Q0 2 D,

X
Q2D
Q�Q0

cQ�.Q/ � R�.Q0/I (8)

which, the reader will note, is the same as

Z
Q0

0
B@X

Q2D
Q�Q0

cQ�Q

1
CA d� � R�.Q0/:

We prove Theorem 1.1 by showing that, given its hypotheses, � must satisfy (8),
for some fixed R, for all Q0 2 D and all Carleson sequences.

Aside from some technical lemmas, the proof turns on a simple observation.
Suppose that .�;M; �/ is a measure space, and f W �! C satisfies

Z
�

jf j2 d� � R
Z
�

jf j d� <1 (9)

for some finite R. Then the Cauchy-Schwarz inequality implies

Z
�

jf j d� � R�.�/: (10)
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(We need the ‘<1’ in (9): consider f .x/ D 1=x on .0; 1/ with Lebesgue measure.)
In the proof of Theorem 1.1, � will be a certain “nearly optimal” Q0 2 D and f will
essentially be a function of the form

X
Q2D
Q�Q0

cQ�Q;

with fcQgD a “nearly optimal” Carleson sequence, carefully defined to have the
second inequality in (9). After some work, Theorem 1.1’s almost-orthogonality
hypothesis will yield the first inequality in (9), giving us (10) (and (8)).

What seems to be going on here is a sneaky version of the self-improving (“John-
Nirenberg”) property of BMO. Recall that f 2 L1loc.R

d/ is said to belong to BMO if

sup
Q�Rd
Q a cube

1

jQj

Z
Q
jf � fQj dx � kfk� <1; (11)

where fQ denotes 1
jQj

R
Q f dx, f ’s average over Q. The John-Nirenberg theorem ([4],

p. 144) states that there are postive constants c1.d/ and c2.d/ such that, if f 2 BMO,
then for all cubes Q and all numbers � > 0,

jfx 2 Q W jf .x/ � fQj > �gj � c1.d/ exp.�c2.d/�=kfk�/jQj:

This implies that if (11) holds then

sup
Q�Rd
Q a cube

1

jQj

Z
Q
jf � fQj

2 dx � Ckfk2�

for some C depending only on d. In other words,

sup
Q�Rd
Q a cube

1

jQj

Z
Q
jf � fQj

2 dx � C

0
@ sup

Q�Rd
Q a cube

1

jQj

Z
Q
jf � fQj dx

1
A
2

W

“the L1 norm controls the L2 norm.”
Because we will need it later, we recall that f 2 L1loc.R

d/ is said to belong to
dyadic BMO (“f 2 BMOd”) if the inequalty (11) holds when the supremum is
taken over all dyadic cubes. We write the resulting (finite) supremum as kfk�;d.
The analogous John-Nirenberg properties also hold for f 2 BMOd, with the cubes
now required to belong to D.

In section “The One-Dimensional, Dyadic Case” we state and prove a dyadic
version of our main result, hoping it will illuminate the main ideas in the proof of
Theorem 1.1.

In section “Technical Lemmas” we prove some technical lemmas.
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In section “Proof of Theorem 1.1” we prove Theorem 1.1 and give, as a corollary,
an application to wavelet representations of linear operators.

Notations. If A and B are positive quantities depending on some parameters, we
write ‘A � B’ (“A and B are comparable”) to mean that there are positive numbers
c1 and c2 (“comparability constants”) so that

c1A � B � c2AI (12)

and, if c1 and c2 depend on parameters, they do not do so in a way that makes (12)
trivial. We often use ‘C’ to denote a constant that might change from occurrence to
occurrence; we will not always say how C changes or what it depends on. If E and
F are sets, we write E � F to express E � F.

We will refer to “finite linear sums” of the form
P

�2� ��g� .x/, where f��g� is
a set of numbers and fg�g� is a set of functions, both indexed over an infinite set �
(typically D). “Finite linear sum” will mean a sum in which all but finitely many of
the �� ’s are 0. Similarly, a “finite sequence” f��g� indexed over � will be one in
which all but finitely many �� ’s are 0.

We indicate the end of a proof with the symbol |.

The One-Dimensional, Dyadic Case

First we prove our characterization of Ad
1 (8) (see [7] and [11] for its original form).

Lemma 2.1 A Radon measure � belongs to Ad
1 if and only if there is a finite R so

that (8) holds for all Carleson sequences fcQgD and all Q0 2 D.

Proof of Lemma 2.1 Suppose that � 2 Ad
1. Then � is absolutely continuous, and

we can write d� D v dx, with v 2 Ad
1. Classical arguments (see [1]) show that

v satisfies (1) with respect to dyadic cubes, for some p > 1. Let Md.�/ denote the
dyadic Hardy-Littlewood maximal operator:

Md.g/.x/ � sup
x2Q2D

1

jQj

Z
Q
jg.t/j dt:

The Lp-boundedness of Md.�/ and Hölder’s inequality imply, for any Q0 2 D,

1

jQ0j

Z
Q0

Md.�Q0v/ dx �

�
1

jQ0j

Z
Q0

.Md.�Q0v//p dx

1=p

� Cp

�
1

jQ0j

Z
Q0

.v.x//p dx

1=p

�
CpKp

jQ0j

Z
Q0

v.x/ dxI
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i.e.,

Z
Q0

Md.�Q0v/ dx � Cv.Q0/

for all Q0 2 D. Now let fcQgD be a Carleson sequence. If Q0 2 D then

X
Q�Q0

cQv.Q/ D
X

Q�Q0

cQjQj

�
1

jQj
v.Q/


�

Z
Q0

Md.�Q0v/ dx;

by standard tent-space arguments (see, e.g., Theorem 2 on page 59 of [4]). Therefore
� 2 Ad

1 implies (8).

Suppose (8) holds. First we will show that� is absolutely continuous with respect
to Lebesgue measure. Then we will finish the lemma’s proof.

Suppose E is measurable, jEj D 0 and, without loss of generality, E � Q0 2 D.
Cover E with countably many disjoint cubes Qj

1 � Q0 such that

X
j

jQj
1j � .1=2/jQ0j:

Now, having chosen the cubes fQj
kgj, let fQj0

kC1gj0 be a family of disjoint dyadic

cubes such that: a) E � [j0Q
j0

kC1; b) each Qj0

kC1 is a subset of some Qj
k; c) for all Qj

k,

X
Q

j0

kC1
�Q

j
k

jQj0

kC1j � .1=2/jQ
j
kj: (13)

We can do this for all k because jEj D 0. Inequality (13) implies that, for any Q 2 D,

X
Q

j
k�Q

jQj
kj � 2jQj: (14)

We give the quick (and well known) proof of (14). By induction, for any Qj
k and any

n � 0,

X
Q

j0

kCn�Q
j
k

jQj0

kCnj � 2
�njQj

kj;

which implies that

X
Q

j0

k0

�Q
j
k

jQj0

k0

j � 2jQj
kj
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for every Qj
k. If Q is arbitrary let fQj�

k�

gj�;k� the maximal Qj
k’s contained in Q. The

cubes Qj�

k�

are disjoint. Therefore

X
Q

j
k�Q

jQj
kj D

X
j�;k�

X
Qk

j �Q
j�

k�

jQk
j j � 2

X
j�;k�

jQj�

k�

j � 2jQj;

proving (14).
Define:

cQ D

(
1=2 if Q 2 fQj

kgj;kI

0 otherwise:

Inequalities (13) and (14) imply that fcQgD is Carleson. Therefore there is a finite R
such that

X
j;k

.1=2/�.Qj
k/ � R�.Q0/ <1:

But, because of a), for all N,

N�.E/ �
NX

kD1

X
j

�.Qj
k/ � 2R�.Q0/;

forcing �.E/ D 0.
The rest of the proof that � 2 Ad

1 is like what we just saw, only more careful.
Let Q0 2 D, E � Q0, and jEj=jQ0j < � << 1. For k � 1, let fQj

kgj be the maximal
dyadic subcubes of Q0 such that

jE \ Qj
kj

jQj
kj

> 2.dC1/k�:

These are the Calderón-Zygmund cubes, taken at “height” 2.dC1/k�, of �E relative
to Q0. Because of their maximality, for each Qj

k,

jE \ Qj
kj

jQj
kj
� 2d2.dC1/k� D .1=2/2.dC1/.kC1/�;

which implies that every cube Qj0

kC1 is contained in some Qj
k, and that, for every Qj

k,

X
Q

j0

kC1
�Q

j
k

jQj0

kC1j � .1=2/jQ
j
kj;
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which is the condition (13) we saw earlier. The same reasoning as before implies
that, for all Q 2 D,

X
Qk

j �Q

jQk
j j � 2jQj:

Almost every point of E is a point of density. Therefore we will keep getting
cubes Qj

k as long as 2.dC1/k� is less than 1: there is a K0 � log.1=�/ such that, for
all 1 � k � K0, jE n [jQ

j
kj D 0, and hence �.E n [jQ

j
k/ D 0. (The union [jQ

j
k

“almost contains” E.) Define:

cQ D

(
1=2 if Q 2 fQk

j gj;kI

0 otherwise:

The sequence fcQgD is Carleson; therefore

X
Q�Q0

cQ�.Q/ � R�.Q0/:

But

X
Q�Q0

cQ�.Q/ D .1=2/
X

j;k

�.Qk
j / � .1=2/

K0X
kD1

X
j

�.Qj
k/ � .1=2/K0�.E/;

because, for each k � K0, the part of E outside [jQ
j
k has �-measure 0. Thus,

�.E/ �
2R

K0
�.Q0/;

and 2R=K0 ! 0 as �! 0C: � 2 Ad
1. |

If I D Œj2k; .jC1/2k/ � R is a dyadic interval, define IC � Œ2j2k�1; .2jC1/2k�1/

(I’s left half) and I� � Œ.2jC 1/2k�1; .2jC 2/2k�1/ (I’s right half), and set

h.I/ � �IC
� �I� :

The functions fh.I/=jIj1=2gI2D are known as the Haar functions, which comprise an
orthonormal basis for L2.R/.
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The dyadic analogue of Theorem 1.1 is

Theorem 2.2 Let � be a non-trivial Radon measure on R. If

(
h.I/p
�.I/

)

I2D

(15)

is almost-orthogonal in L2.�/ then � 2 Ad
1.

Proof of Theorem 2.2. The reader might want to look back at (9) and (10).
Fix I0 2 D and 0 < � << `.I0/. Let F.I0; �/ be the familiy of Carleson

sequences fcIgD such that cI D 0 if I 6� I0 or `.I/ < �. By compactness, there
is a Carleson sequence fQcIgD 2 F.I0; �/ such that

X
D
QcI�.I/ D sup

(X
D

cI�.I/ W fcIgD 2 F.I0; �/
)
<1:

Call the supremum L. Define

f .x/ �
X
D
QcI�I.x/ �

 X
D
QcIjIj

!
�I0 .x/

jI0j
:

Notice that, because fQcIgD is Carleson,

1

jI0j

 X
D
QcI jIj

!
� 1:

The function f is supported on I0 and satisfies
R

f dx D 0. Also, f belongs to BMOd,
with kfk�;d � 2. Let us prove this fact. Take J 2 D. If J \ I0 D ; we have nothing
to prove. If I0 � J then fJ D 0 and

Z
J
jf � fJj dx � 2

X
D
QcI jIj � 2jI0j � 2jJj:

If J � I0 then

Z
J
jf � fJj dx � 2

X
I2DWI�J

QcI jIj � 2jJj:

By the John-Nirenberg theorem, there exists an absolute constant—which we call
C—so that, for all J 2 D,
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Z
J
jf � fJj

2 dx D
X

I2DW I�J

jhf ; h.I/ij2

jIj
� CjJj; (16)

where h�; �i denotes the usual (Lebesgue) L2 inner product. Because of how we
defined f , the inner products hf ; h.I/i D 0 if I 6� I0 or `.I/ < �. Therefore the
sequence defined by

˛I �
jhf ; h.I/ij2

jIj2

is a bounded multiple of a sequence from F.I0; �/, implying

X
D

jhf ; h.I/ij2

jIj2
�.I/ � CL;

with C an absolute constant.
We can write

f D
X
D

hf ; h.I/i

jIj
h.I/;

and this is an exact, finite sum, because of f ’s special form. We rewrite it as

f D
X
D
�I

h.I/p
�.I/

;

where

�I D hf ; h.I/i

p
�.I/

jIj
:

The L2.�/ almost-orthogonality of (15) implies that

Z
jf j2 d� � R

X
D
j�Ij

2 D R
X
jhf ; h.I/ij

2 �.I/

jIj2

D R
X
D

jhf ; h.I/ij2

jIj2
�.I/

� RCL:
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But

L D
X
D
QcI�.I/ D

Z
I0

.f C c0/ d�;

where

c0 D
1

jI0j

X
D
QcIjIj � 1:

Therefore
Z
jf j2 d� � RC

�Z
jf j d�C �.I0/


;

which implies

Z
jf j d� � C0�.I0/;

and

X
D
QcI�.I/ � C00

�Z
jf j d�C �.I0/


� QC�.I0/: (17)

The sequence fQcIgD is optimal for sequences from F.I0; �/. Therefore (17) holds for
every sequence in F.I0; �/. But the bound holds independent of I0 and �; therefore,
by an obvious limiting argument, it holds for all Carleson sequences fcIgD. By
Lemma 2.1, the measure � belongs to Ad

1. |

Remark We ask the reader to note how, in the interaction between (16) and (17),
the John-Nirenberg theorem lets us bound an L2 norm by an L1 norm—which is the
heart of the proof.

Technical Lemmas

The first lemma in this section says that, if every family of the form (6) is almost-
orthogonal in L2.�/, then these families must be, in an obvious sense, uniformly
almost-orthogonal.

Lemma 3.1 Let  2 L1.B.0I 1//. Suppose that, for every T-sequence , there is a
finite R D R.; �;  / such that, for all finite linear sums

X
D
�Q

 .Q/p
�.Q/

;
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we have

Z ˇ̌
ˇ̌
ˇ
X
D
�Q

 .Q/p
�.Q/

ˇ̌
ˇ̌
ˇ
2

d� � R
X
D
j�Qj

2: (18)

Then there is a finite QR D QR.�; / such that (18) holds for all T-sequences .

Proof of Lemma 3.1 For every T-sequence , we can define a linear map L W
`2.D/! L2.�/ by

L.f�QgD/ �
X
D
�Q

 .Q/p
�.Q/

: (19)

Inequality (18) shows that the series in (19) converges unconditionally to an
f 2 L2.�/, and that

R
jf j2 d� � R

P
D j�Qj

2. By the Uniform Boundedness
Principle, if no universal QR exists, then there is a sequence f�QgD 2 `

2.D/ such
that

P
D j�Qj

2 � 1, and there is a sequence of T-sequences k, such that

Z ˇ̌
ˇ̌
ˇ
X
D
�Q

 k.Q/p
�.Q/

ˇ̌
ˇ̌
ˇ
2

d�!1: (20)

We will patch together a T-sequence Q such that f
 

Q.Q/p
�.Q/
gD is not almost-orthogonal.

Fix the sequence f�QgD. If F � D is finite, there is an N D N.F/ such that

Z ˇ̌
ˇ̌
ˇ̌
X
Q2F

�Q
 .Q/p
�.Q/

ˇ̌
ˇ̌
ˇ̌
2

d� � N

for all T-sequences . Thus, because of (20), we know that, if F0 � D is finite and
R is any large number, there is a finite subset F1 � D, disjoint from F0, and there
is a T-sequence 1, such that

Z ˇ̌
ˇ̌
ˇ̌
X

Q2F1

�Q
 1.Q/p
�.Q/

ˇ̌
ˇ̌
ˇ̌
2

d� > R:

Let Rk !1. Let F1 � D be a finite subset and 1 a T-sequence such that

Z ˇ̌
ˇ̌
ˇ̌
X

Q2F1

�Q
 1.Q/p
�.Q/

ˇ̌
ˇ̌
ˇ̌
2

d� > R1:
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Having defined F1, F2, . . . , Fn, let FnC1 � D be a finite subset disjoint from [n
1Fk,

and nC1 a T-sequence such that

Z ˇ̌
ˇ̌
ˇ̌
X

Q2FnC1

�Q
 nC1.Q/p
�.Q/

ˇ̌
ˇ̌
ˇ̌
2

d� > RnC1:

Define Q W D! RdC1
C by

Q.Q/ D

(
k.Q/ if Q 2 FkI

zQ if Q … [kFk:

Then Q is a T-sequence for which (18) fails. |

The proof of Theorem 1.1 uses a general form of the Calderón reproducing
formula. Our approach is based on ideas and methods of Frazier, Jawerth, and
Weiss [3]. We gratefully acknowledge their influence and inspiration.

Recall that if  2 C˛;0 is real, radial, non-trivial, and normalized so that

Z 1

0

jb .y�/j2 dy

y
D 1

for all � 6D 0, then, if f 2 [1<p<1Lp.Rd/, we have

f .x/ D
Z

RdC1
C

.f � y�d .0;y/.t// y�d .0;y/.x � t/
dt dy

y

in various senses [8, 11]. To be consistent with the notation in the introduction, we
have written “y�d .0;y/” in place of the more traditional “ y”. We will continue to
follow this convention.

We define ˆ.x/ to be the inverse Fourier transform of exp.�j�j2 � j�j�2/.
We notice that ˆ belongs to the Schwartz class S , and that b̂.�/ and all of b̂’s
derivatives vanish to infinite order at the origin.

It is important that b̂.�/ > 0 on all of Rd n f0g.

Lemma 3.2 Suppose that f�kg
n
1 � L1.B.0I 1// satisfies CNDC. For � 2 Rd n f0g

define

G.�/ �
Z 1

0

b̂.y�/
 

nX
1

jb�k.y�/j
2

!
dy

y
: (21)

The function G.�/ is infinitely differentiable on Rd nf0g and homogeneous of degree
0: G.t�/ D G.�/ for all t > 0. There are positive numbers c1 and c2 such that
c1 � G.�/ � c2 for all � 6D 0.
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Proof of lemma. The homogeneity is obvious. Every b�k is infinitely differentiable,
and D˛b�k 2 L1 for every k and multi-index ˛. The function b̂ is also infinitely
differentiable, and, for all ˛, D˛b̂ vanishes rapidly at 0 and infinity. These imply
that G is infinitely differentiable. The CNDC implies that G.�/ never vanishes on
Sd�1 � f� W j�j D 1g. The smoothness of G and the compactness of Sd�1 imply
that G lies between two positive constants there, hence on all of Rd n f0g. |

Now, given f�kg
n
1 � L1.B.0I 1// satisfying CNDC, and G as defined by (21),

we set

m.�/ �
1

G.�/
(22)

for � 6D 0, and undefined at the origin. By standard arguments ([4], p. 26), the
Fourier multiplier operators given by

dTGf .�/ � G.�/bf .�/
and

dTmf .�/ � m.�/bf .�/;
initially defined for f 2 C1

0 .R
d/, extend to bounded operators on Lp.Rd/ for every

1 < p <1. On these domains they are inverses of each other: TGTm D TmTG D I,
the identity.

For each �k, define Q�k.x/ � �k.�x/, and recall that bQ�k.�/ D b�k.�/. If f 2 L2.Rd/

then

TGf D
nX
1

Z
RdC1

C

.f � y�dˆ.0;y/ � .y
�d Q�k/.0;y/.t// .y

�d�k/.0;y/.x � t/
dt dy

y
;

where we interpret each integral as

lim
�&0

R%1

Z R

�

�Z
Rd
.f � y�dˆ.0;y/ � .y

�d Q�k/.0;y/.t// .y
�d�k/.0;y/.x � t/ dt


dy

y
;

with the limit existing in L2. As we shall see, if f 2 C1
0 .R

d/, the limit also exists
pointwise in x, with the integral being, in a natural sense, absolutely convergent.

Because Tm and TG are inverses of each other, if f 2 C1
0 .R

d/,

f D
nX
1

Z
RdC1

C

.f � Tm.y
�dˆ.0;y// � .y

�d Q�k/.0;y/.t// .y
�d�k/.0;y/.x � t/

dt dy

y
;
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where the integrals converge (in the above sense) in L2. Let us define

‰.x/ � Tm.ˆ/.x/:

With this notation, we can rewrite the preceding integral formula as

f D
nX
1

Z
RdC1

C

.f � y�d‰.0;y/ � .y
�d Q�k/.0;y/.t// .y

�d�k/.0;y/.x � t/
dt dy

y
:

(We have used the dilation-invariance of Tm.)
A look at ‰’s Fourier transform shows that ‰ 2 S and

R
‰ dx D 0. The same

are true of ‰k, which we define as

‰k.x/ � ‰ � Q�k.x/:

With this convention we can compress our integral formula to

f D
nX
1

Z
RdC1

C

.f � y�d.‰k/.0;y/.t// .y
�d�k/.0;y/.x � t/

dt dy

y
: (23)

We now prove two lemmas relating to (23).

Lemma 3.3 Suppose that � 2 S ,
R
� dx D 0, and � 2 L1.B.0I 1//. There is a

C D C.�; �/ such that, if f 2 C1
0 .R

d/ satisfies jrf j � A pointwise and B is any
positive number, then

Z B

0

�Z
Rd

ˇ̌
.f � y�d�.0;y/.t// .y

�d�/.0;y/.x � t/
ˇ̌

dt


dy

y
� CAB:

Remark In our applications of Lemma 3.3, � D ‰k, � D �k, and AB � 1.

Proof of Lemma 3.3 The function � satisfies

j�.x/j � C.1C jxj/�d�2

jr�.x/j � C.1C jxj/�d�3

Z
�.x/ dx D 0;

for a fixed constant C. A lemma of Uchiyama [6] says that we can decompose �
into a rapidly converging sum of dilates of smooth, compactly supported functions,
with integrals equal to 0. Precisely:

�.x/ D C
1X

jD0

2�j.dC2/.Fj/.0;2j/.x/;
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for an appropriate C, where each Fj has support contained in B.0I 1/ and satisfies

kFjk1 � CZ
Fj dx D 0:

(Uchiyama’s lemma actually yields krFjk1 � C, but we don’t need that.) The
function .Fj/.0;2j/ has support contained in B.0I 2j/ and the function ..Fj/.0;2j//.0;y/
has support contained in B.0I 2jy/. The smoothness of f and the cancelation in Fj

imply that

jf � y�d..Fj/.0;2j//.0;y/.t/j � CA2jyky�d..Fj/.0;2j//.0;y/k1

� CA2jy2jd D CA2j.dC1/y

for any t, and therefore

jf � y�d�.0;y/.t/j � CA
1X

jD0

2�j.dC2/2j.dC1/y

D CAy:

Since k�k1 � C.�/,

Z
Rd

ˇ̌
.f � y�d�.0;y/.t// y�d�.0;y/.x � t/

ˇ̌
dt � CAy;

implying

Z B

0

�Z
Rd

ˇ̌
.f � y�d�.0;y/.t// y�d�.0;y/.x � t/

ˇ̌
dt


dy

y
�

Z B

0

.CAy/
dy

y

D CAB;

proving the lemma. |

The next lemma uses a standard definition and one derived from it.

Definition 3.4 If Q � Rd is a cube then we set bQ � Q � .0; `.Q// � RdC1
C

(sometimes called the “Carleson box” above Q) and R.Q/ � f.t; y/ 2 RdC1
C W

d..t; y/;bQ/ � `.Q/g, where d.�; �/ denotes the usual Euclidean distance to a set
in RdC1

C .

Lemma 3.5 Let � 2 S and � 2 L1.B.0I 1//. There is constant C D C.�; �/ such
that if f 2 L1.Rd/ and the support of f is contained in a cube Q then
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Z
R.Q/

ˇ̌
.f � y�d�.0;y/.t// y�d�.0;y/.x � t/

ˇ̌ dt dy

y
�

C

jQj

Z
jf j dt

for all x 2 Q.

Proof of Lemma 3.5. For j D 0; 1; 2 : : : , define Rj.Q/ � f.t; y/ 2 R.Q/ W
2j`.Q/ � d..t; y/;bQ/ < 2jC1`.Q/g, and observe that R.Q/ D [1

0 Rj.Q/. Since �
has its support contained in B.0I 1/, �.0;y/.x � t/ D �. x�t

y / can be non-zero only
if jx � tj < y. Therefore there is a positive c D c.d/ such that, if x 2 Q and
.t; y/ 2 Rj.Q/, �.0;y/.x� t/ will be zero unless y > c2j`.Q/. If y > c2j`.Q/, Hölder’s
inequality implies

jf � y�d�.0;y/.t/j � C.2j`.Q//�dkfk1

and
Z

Rd

ˇ̌
.f � y�d�.0;y/.t// y�d�.0;y/.x � t/

ˇ̌
dt � C.2j`.Q//�dkfk1:

If .t; y/ 2 Rj.Q/ then y < 2jC2`.Q/. Therefore:

R
Rj.Q/

ˇ̌
.f � y�d�.0;y/.t// y�d�.0;y/.x � t/

ˇ̌
dt dy

y

� C
R 2jC2`.Q/

c2j`.Q/

�R
Rd

ˇ̌
.f � y�d�.0;y/.t// y�d�.0;y/.x � t/

ˇ̌
dt
� dy

y

� C.2j`.Q//�dkfk1:

Summing over j finishes the proof. |

Proof of Theorem 1.1.

For the rest of this section, � will be a fixed doubling measure.
The proof of Theorem 1.1 works by rewriting each of the n summands in (23) as

an average of sums of the form

X
D
�Q
.�k/.Q/p
�.Q/

where  is a T-sequence. We now describe how this rewriting will go. If Q D
Œj12k; .j1 C 1/2k/ � � � � � Œjd2k; .jd C 1/2k/ 2 D we set tQ � .j12k; j22k; : : : ; jd2k/,
the “left-most corner” of Q. Define V0 � Œ0; 1/d, the “unit” dyadic cube. If Q 2 D,
we define a bijective mapping �.Q; �; �/ W T.V0/! T.Q/ by
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�.Q; �; �/ � .tQ C `.Q/�; `.Q/�/:

We point out some properties of this mapping. If g W T.Q/ ! C is measurable we
can define h W T.V0/ ! C by h.�; �/ � g.�.Q; �; �//. By the change-of-variables
formula,

Z
T.Q/

g.t; y/
dt dy

y
D jQj

Z
T.V0/

h.�; �/
d� d�

�
: (24)

We can write Z
T.Q/

.f � y�d.‰k/.0;y/.t// y�d.�k/.0;y/.x � t/
dt dy

y

as Z
T.Q/

y�2dhf ; .‰k/.t;y/i .�k/.t;y/.x/
dt dy

y
;

where h�; �i is the ordinary L2 inner product. Because of (24), this is equal to

jQj
R

T.V0/
.`.Q/�/�2dhf ; .‰k/�.Q;�;�/i .�k/�.Q;�;�/.x/

d� d�
�

D jQj�1
R

T.V0/
��2dhf ; .‰k/�.Q;�;�/i .�k/�.Q;�;�/.x/

d� d�
�
:

Therefore, we can formally rewrite the integral in (23) as:

P
D
R

T.Q/ y�2dhf ; .‰k/.t;y/i .�k/.t;y/.x/
dt dy

y

D
R

T.V0/

�P
D jQj

�1hf ; .‰k/�.Q;�;�/i .�k/�.Q;�;�/.x/
	
��2d d� d�

�
: (25)

Of course, if the summation only runs over a finite set of Q’s (as it will for us), the
equality is literal.

In proving Theorem 1.1, it will be more convenient to write (25) as

Z
T.V0/

X
D

"�
jQj�1hf ; .‰k/�.Q;�;�/i

p
�.Q/

	 .�k/�.Q;�;�/.x/p
�.Q/

#
��2d d� d�

�
:

Proof of Theorem 1.1 We fix, once and for all, a function b 2 C1
0 .R

d/ that is non-
negative, has support contained in B.0I 1=2/, and satisfies

R
b dx D 1. Recall our

definition of zQ � .xQ; `.Q//, where xQ is Q’s center and `.Q/ is Q’s sidelength. If
Q � Rd is any cube then bzQ is supported in Q and satisfies

R
bzQ dx D jQj. If � is

any doubling measure then

Z
bzQ d� � �.Q/; (26)
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with comparability constants depending on b and �. If Q0 2 D and 2j << 1, we
define F.Q0; 2

j/ to be the family of Carleson sequences fcQgD such that cQ D 0 if
Q 6� Q0 or `.Q/ < 2j`.Q0/. It is clear that the set of numbers

(
�.Q0/

�1
X
D

cQ�.Q/ W Q0 2 D; fcQgD 2 F.Q0; 2
j/

)
(27)

is bounded above by 1Cjjj. Call the actual supremum L.j/. Theorem 1.1 will follow
once we show that supj L.j/ <1.

Fix j. There exist a Q0 2 D and a Carleson sequence fQcQgD 2 F.Q0; 2
j/ such

that

�.Q0/
�1
X
D
QcQ�.Q/ � .1=2/L.j/:

Fix Q0 and fQcQg. Theorem 1.1 will follow if we show that �.Q0/
�1
P

D QcQ�.Q/ is
bounded by a number independent of Q0 and j.

Define

f .x/ �
X
D
QcQbzQ.x/:

Because of (26),

Z
f d� �

X
D
QcQ�.Q/ � L.j/�.Q0/: (28)

As with Theorem 2.2, the “game” now is to show that

Z
jf j2 d� � C

Z
jf j d�; (29)

for some C < 1 independent of Q0 and j; because, as we have seen, the Cauchy-
Schwarz inequality will imply

Z
jf j d� � C�.Q0/I

which, with (28), will yield

L.j/ � C;

for some absolute C independent of Q0 and j.
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Because of (28), (29) will follow from
Z
jf j2 d� � CL.j/�.Q0/:

It is obvious that f is supported inside Q0 and satisfies
R
jf j dx � jQ0j. It will be

important to us that f 2 BMO, with a BMO norm bounded by a constant depending
only on b and d; so let us prove this. Write f D

P
k fk, where

fk.x/ D
X

QW `.Q/D2k

QcQbzQ.x/:

Each fk is infinitely differentiable and satisfies: (i) kfkk1 � 1; and (ii) krfkk1 �
C2�k. We note that inequality (ii) implies jrf j � C.2j`.Q0//

�1 pointwise.
Let Q0 be a cube and write

f D
X

kW 2k�`.Q0/

fk C
X

kW 2k<`.Q0/

fk � F1 C F2:

We can cover Q0 with C.d/ congruent dyadic cubes fQ�
j g

C.d/
1 such that .1=2/`.Q0/ �

`.Q�
j / < `.Q

0/, which implies that, if Q 2 D and `.Q/ < `.Q0/, then `.Q/ � `.Q�
j /

for every j; hence, if Q \ Q0 6D ; then Q � Q�
j for some j. Then:

Z
Q0

jF2.x/j dx D
Z

Q0

0
@ X

QW`.Q/<`.Q0/

QcQbzQ.x/

1
A dx

�

C.d/X
jD1

Z
Q�

j

0
B@ X

QWQ�Q�

j

QcQbzQ.x/

1
CA dx

�

C.d/X
jD1

X
QWQ�Q�

j

QcQjQj

�

C.d/X
1

jQ�
j j

� CjQ0j:

On the other hand, jrF1.x/j � C=`.Q0/, implying that

Z
Q0

jF1.x/ � .F1/Q0 j dx � CjQ0j:

Therefore f belongs to BMO, with a norm � C.
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We invoke a standard fact about BMO ([4], p. 159): If h 2 BMO, � 2 S , andR
� dx D 0, then, for all cubes Q � Rd,

1

jQj

Z
bQ
jh � y�d�.0;y/.t/j

2 dt dy

y
� Ckhk2�;

where the constant C only depends on � . This implies that, for h 2 BMO, the
sequence of numbers fcQgD defined by

cQ �
1

jQj

Z
T.Q/
jh � y�d�.0;y/.t/j

2 dt dy

y

is a bounded multiple of a Carleson sequence.
We can write f D g1 C g2 C g3 C g4, where

g1.x/ �
nX
1

Z
f.t;y/W y<2j�1`.Q0/g

.f � y�d.‰k/.0;y/.t// y�d.�k/.0;y/.x � t/
dt dy

y

g2.x/ �
nX
1

Z
f.t;y/W 2j�1`.Q0/�y<`.Q0/g

.f � y�d.‰k/.0;y/.t// y�d.�k/.0;y/.x � t/
dt dy

y

g3.x/ �
nX
1

Z
f.t;y/W `.Q0/�y�3`.Q0/g

.f � y�d.‰k/.0;y/.t// y�d.�k/.0;y/.x � t/
dt dy

y

g4.x/ �
nX
1

Z
f.t;y/W y>3`.Q0/g

.f � y�d.‰k/.0;y/.t// y�d.�k/.0;y/.x � t/
dt dy

y
:

Lemmas 3.3 and 3.5 imply that the integrals on the right-hand sides all converge
absolutely. By Lemma 3.5, g4 is pointwise bounded by CjQ0j

�1
R
jf j dx � C for

x 2 Q0, and it is easy to see that the same bound holds for g3. Since f 2 C1
0 .R

d/

and jrf j � C.2j`.Q0//
�1 pointwise, Lemma 3.3 implies that jg1j is bounded by

an absolute constant in Q0. Thus, for x 2 Q0, we may write f D g2 C G, where
jGj � C, and C does not depend on Q0 or j.

By Lemma 3.1, there is an R such that, for every 1 � k � n, every T-sequence ,
and every finite sequence f�QgD � C,

Z ˇ̌
ˇ̌
ˇ
X
D
�Q
.�k/.Q/p
�.Q/

ˇ̌
ˇ̌
ˇ
2

d� � R
X
D
j�Qj

2:

We claim that Z
Q0

jg2j
2 d� � CRL.j/�.Q0/ (30)

for a constant C depending on � and d, but not on Q0 or j. Since
R

Q0
jGj2 d� �

C�.Q0/, proving (30) will finish the proof.
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There exist N D N.d/ dyadic cubes fQig
N
1 , congruent to Q0, such that

Qi \ Q0 6D ;. If x 2 Q0 then the support restriction on the �k’s implies that

g2.x/ D
nX

kD1

Z
f.t;y/W t2[

N
0 Qi; 2j�1`.Q0/�y<`.Q0/g

.f �y�d.‰k/.0;y/.t// y�d.�k/.0;y/.x�t/
dt dy

y
:

For each 0 � i � N and 1 � k � n, define

�i;k.x/ �
Z

f.t;y/W t2Qi; 2j�1`.Q0/�y<`.Q0/g
.f � y�d.‰k/.0;y/.t// y�d.�k/.0;y/.x � t/

dt dy

y
:

Inequality (30) will follow once we show

Z
j�i;kj

2 d� � CRL.j/�.Qi/; (31)

because �’s doubling property implies �.Qi/ � C�.Q0/.
For 0 � i � N, we define Fi to be the (finite!) family of dyadic subcubes Q of Qi

such that 2j`.Qi/ � `.Q/ � `.Qi/. We can then write:

�i;k.x/ D
X
Q2Fi

Z
T.Q/

.f � y�d.‰k/.0;y/.t// y�d.�k/.0;y/.x � t/
dt dy

y
:

We rewrite the last equation as

�i;k.x/ D
Z

T.V0/

X
Q2Fi

"�
jQj�1hf ; .‰k/�.Q;�;�/i

p
�.Q/

	 .�k/�.Q;�;�/.x/p
�.Q/

#
��2d d� d�

�
:

For each .�; �/ 2 T.V0/,

Z ˇ̌
ˇ̌
ˇ̌
X
Q2Fi

h
jQj�1hf ; .‰k/�.Q;�;�/i

p
�.Q/

i .�k/�.Q;�;�/.x/p
�.Q/

ˇ̌
ˇ̌
ˇ̌
2

d�

is less than or equal to R times

X
Q2Fi

ˇ̌
ˇjQj�1hf ; .‰k/�.Q;�;�/i

p
�.Q/

ˇ̌
ˇ2 D X

Q2Fi

�
jhf ; .‰k/�.Q;�;�/ij

2

jQj2


�.Q/:

Thus, by the generalized Minkowski inequality,

�Z
j�i;kj

2 d�

1=2
� R1=2

Z
T.V0/

0
@X

Q2Fi

 
jhf ; .‰k/�.Q;�;�/ij

2

jQj2

!
�.Q/

1
A
1=2

��2d d� d�

�
:
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But .T.V0/; ��2d d� d�
�
/ is a finite measure space (with a total measure only

depending on d); therefore,

Z
T.V0/

0
@X

Q2Fi

 
jhf ; .‰k/�.Q;�;�/ij

2

jQj2

!
�.Q/

1
A
1=2

��2d d� d�

�

is less than or equal to a dimensional constant times

0
@X

Q2Fi

Z
T.V0/

" 
jhf ; .‰k/�.Q;�;�/ij

2

jQj2

!
�.Q/

#
��2d d� d�

�

1
A
1=2

I

which implies that

Z
j�i;kj

2 d� � CR
X
Q2Fi

Z
T.V0/

" 
jhf ; .‰k/�.Q;�;�/ij

2

jQj2

!
�.Q/

#
��2d d� d�

�

D CR
X
Q2Fi

 Z
T.V0/

 
jhf ; .‰k/�.Q;�;�/ij

2

jQj2

!
��2d d� d�

�

!
�.Q/:

But, for each Q 2 Fi, by the change of variables formula (24),

Z
T.V0/

 
jhf ; .‰k/�.Q;�;�/ij

2

jQj2

!
��2d d� d�

�
D jQj�1

Z
T.Q/
jf � y�d.‰k/.0;y/.t/j

2 dt dy

y
I

and, because f 2 BMO, with kfk� � C, the sequence defined by

cQ;i � jQj
�1

Z
T.Q/
jf � y�d.‰k/.0;y/.t/j

2 dt dy

y

is a bounded multiple of a Carleson sequence. By our definition of L.j/,

X
Q2Fi

cQ;i�.Q/ � CL.j/�.Qi/

(because all of the Q’s occurring in the sum satisfy `.Q/ � 2j`.Qi/ and are contained
in Qi). Therefore
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Z
j�i;kj

2 d� � CR
X
Q2Fi

�
jQj�1

Z
T.Q/
jf � y�d.‰k/.0;y/.t/j

2 dt dy

y


�.Q/

D CR
X
Q2Fi

cQ;i�.Q/

� CRL.j/�.Qi/;

finishing the proof of Theorem 1.1. |

We present an easy corollary of Theorem 1.1. We first note that, by duality, if
f kgk � L2.�/ satisfies (2), then, for all f 2 L2.�/,

X
k

jhf ;  ki� j
2 � R

Z
jf j2 d� (32)

(where we use h�; �i� to denote the inner product in L2.�/); and, conversely, if
f kgk � L2.�/ satisfies (32), it satisfies (2).

In [9] the author looked at linear operators of the form

X
D

hf ;  .Q/
.Q/i�

�.Q/
�
.Q/
0.Q/.x/; (33)

for a doubling measure �, sequences of functions f .Q/gD and f�.Q/gD in C˛ , and
T-sequences  and 0. One can think of (33) as a simple model for a wavelet
representation of a Calderón-Zygmund singular integral operator (see [5] and
references cited there). By Littlewood-Paley theory, if the  .Q/’s and �.Q/’s lie
in C˛;0 and � 2 A1 then (33) defines a bounded linear operator on L2.�/ in the
following sense: If F1 � F2 � F3 � � � � is any increasing sequence of finite
subsets of D such that D D [iFi then, for all f 2 L2.�/,

T.f /.x/ � lim
i!1

X
Q2Fi

hf ;  .Q/
.Q/i�

�.Q/
�
.Q/
0.Q/.x/ (34)

exists in L2.�/ and kT.f /kL2.�/ � C.�; ˛/kfkL2.�/.
1 We present a partial converse:

Corollary 4.1 Suppose that � is doubling. Let f�kg
n
1 � L1.B.0I 1// satisfy CNDC

and suppose that, for each 1 � k � n and each T-sequence , the series

X
D

hf ; .�k/.Q/i�

�.Q/
.�k/.Q/.x/; (35)

defined as in (34), yields an L2.�/ bounded linear operator. Then � 2 A1.

1This also holds in Lp.�/, 1 < p < 1, and the cancelation hypotheses can be weakened [9].
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Proof Call the operator defined by (35) T . If T is L2.�/ bounded then
j
R

T.f / f d�j � C
R
jf j2 d� for all f 2 L2.�/. But

Z
T.f / f d� D

X
D

jhf ; .�k/.Q/i�j
2

�.Q/
:

Therefore, by the converse to (32), (6) is almost-orthogonal in L2.�/. QED. |

Remark We believe the most natural application of Corollary 4.1 is this. Let
 2 C˛;0 be real, radial, and non-trivial. If � is doubling and the series

X
D

hf ;  .Q/i�
�.Q/

 .Q/.x/

(with the sum defined as above) gives an L2.�/ bounded operator for every
T-sequence , then � 2 A1.

Acknowledgements We are grateful to the referee for spotting a gap in the proof of Lemma 2.1
and for valuable suggestions on improving the paper’s exposition.
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