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Abstract This paper focuses on enabling the use of negotiation for complex sys-
tem optimisation, which main challenge nowadays is scalability. Our hypothesis is
that analysing the underlying network structure of these systems can help divide the
problems in subproblems which facilitate distributed decision making through nego-
tiation in these domains. In this paper, we verify this hypothesis with an extensive set
of scenarios for a proof-of-concept problem. After selecting a set of network metrics
for analysis, we cluster the scenarios according to these metrics and evaluate a set
of mediation mechanisms in each cluster. The validation experiments show that the
relative performance of the different mediation mechanisms change for each cluster,
which confirms that network-based metrics may be useful for mechanism selection
in complex networks.

1 Introduction

A wide range of real world systems can be modelled as dynamic sets of intercon-
nected nodes [13, 21]. The adequate management of complex networked systems
is becoming critical for industrialized countries, since they keep growing in size
and complexity. An important sub-class involves autonomous, self-interested enti-
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ties (e.g. drivers in a transportation network). The self-interested nature of the entities
in the network causes the network to deviate from socially-optimal behaviour. This
leads to problems related to unavailability and inefficient use of resources, such as
severe traffic jams or casualties in evacuations. New techniques are needed tomanage
these exponentially growing complex self-interested networks (CSIN) that form the
social infrastructures we rely on for progress and welfare. Different fields of research
are working on these challenges, but, so far, with only mixed success. Optimization
techniques are especially suited to address large-scale systems with an underlying
network structure, usually with a divide and conquer approach [27, 32]. However,
their performance severely decreases as the complexity of the system increases [23],
and with the presence of autonomous entities which deviate from the globally opti-
mal solution, thus harming the social goal. Negotiation techniques are known to be
useful to handle self-interested behaviour, but scale poorly with problem size and
the intricacies of interdependencies [14]. We focus on distributed, mediated solu-
tions, where a mediator first divides the problem into interconnected subproblems,
and then the agents interact (by means of negotiation techniques) to evolve into a
solution by themselves. However, given the wide variety of CSIN domains and the
inherent variability of CSIN scenarios even within a single domain, intending to
find a one-size-fits-all mechanism is unrealistic. Instead, our hypothesis is that the
underlying network structure may be used to characterize CSIN scenarios, and to
select the most adequate mechanism for each scenario. In this paper, we contribute
to test this hypothesis in the following way:

• We propose a proof-of-concept domain for CSINs (“chessboard-evacuation”), and
generate a number of scenarios in different categories for it (Sect. 3).

• Weselect a set ofmetrics based on graph theory to analyze these scenarios (Sect. 4).
• We cluster the scenarios according to the aforementioned metrics, and then apply
a collection of distributed, mediated division approaches to each cluster. Experi-
ments show how the relative performance of the different mediation mechanisms
change for each cluster (Sect. 5).

2 Complex Self-interested Networks (CSIN)

Network models are a suitable way to represent many real-world systems [22, 24].
This paper focuses on a particular set of networked systems, where network struc-
ture and element behaviour may change dynamically, where there is a social goal or
desired behaviour for the network as a whole, and where there are autonomous ele-
ments (agents) with individual objectives (also called preferences or utility spaces),
usually in conflict with the social goal or among themselves. There are a great number
of real-world problems fitting into this category, like electricity grids, transportation
infrastructures or cellular communication systems. We call these systems Complex
Self-Interested Networks (CSIN). The problem of achieving efficient behaviours in
these systems in terms of both social and individual goals is what we call CSIN
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behaviour optimization. Techniques potentially suited for CSIN include auctions,
optimization techniques, and negotiation protocols. Combinatorial auctions [26, 35]
can enable large-scale collective decision-making in nonlinear domains, but only
of limited type (i.e., negotiations consisting solely of resource/item allocation deci-
sions). Multi-attribute auctions [1, 4, 12] are also aimed only at purchase negoti-
ations and require full revelation of preference information. Constraint-based and
other optimization tools [3, 18, 33] offer good solutions with interdependent issues,
but are not equipped to deal with self-interested parties. The distributed, adaptive,
and self-interested nature of CSIN suggests the use of negotiation techniques. The
negotiation research literature offers solutions for problems with one issue (typi-
cally price) or a few independent issues [1, 7, 9, 25]. However, these solutions are
demonstrably sub-optimal for negotiations with multiple interdependent issues [14].
Attempts to address this challenge [11, 16, 36] face serious limitations in terms of
outcome optimality, strategic stability and scalability. These three criteria are key
performance indicators for the success of optimization systems in real-world CSIN
infrastructures, due to their continuous increase in network size, structural complexity
and dynamics [28]. Promising results in overcoming the aforementioned limitations
were achieved by developing negotiation mechanisms suited for complex system
optimization. These negotiation mechanisms build on techniques from computer
science (e.g. nonlinear optimization, complexity analysis), which enable a clever
search of the agent utility spaces. This allows to reduce the combinatorial size of the
problem and to increase the optimality of the negotiation outcomes (agreements).
However, due to the high diversity of complex negotiation scenarios, the different
approaches are specifically tailored for particular domains, and it is very unlikely
to find an approach which can be used to tackle any arbitrary complex system [17].
However, real world CSIN problems are not arbitrary; they have an underlying net-
work structure. Our hypothesis is that this structure can be exploited to select the
most adequate mediation mechanisms from a library of available approaches.

3 Proof-of-Concept Domain: Chessboard Evacuation

To test our hypothesis, we have devised a proof-of-concept domain for a prelimi-
nary validation experiment. This is what we have called the chessboard evacuation
problem, which has some resemblances with the coordinating pebble motion on
graphs problem [5, 15], and with cooperative robot path finding [29]. An example
chessboard evacuation scenario is shown in Fig. 1.

Let us assume that pawns want to evacuate the chessboard as quickly as possible
through the exit represented with an arrow. Pawns can move one square per time unit
in the vertical or horizontal axis, and they lose time when they collide. This problem
has the main characteristics of CSIN:

• The coordinated pebble motion and the cooperative robot path finding problems
are known to be NP-hard [10, 29].
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Fig. 1 Chessboard
evacuation scenario

• Once a solution has been found, some pawns may disagree on having to wait or to
take longer than optimal paths to avoid conflicts, which may make them deviate
from the solution, causing collisions and inefficient behaviours.

3.1 Formalisation of the Problem

An instance of the chessboard evacuation problem can be seen as a tuple 〈B, P, g〉,
where:

• B = 〈N , E〉 is a graph representing the board, where each node n ∈ N is a space
in the board, and each edge e ∈ E connects two adjacent spaces. Furthermore, for
any two nodes n, m ∈ N , e(n, m) denotes an edge between n and m.

• P is the set of pawns. Each pawn p is characterized by its initial position n p,0 ∈ N ,
which refers to a node in the graph B.

• g ∈ N is the goal, representing the square from which pawns will evacuate the
board.

A potential solution to the problem would be a set of routes R = {rp|p ∈ P},
where each route rp = {n p,t ∈ N |t = 0, . . . , τp} represents the sequence of positions
occupied by pawn p at each time t . The evacuation time for pawn p is denoted by
τp. For a solution R to be valid, all pawns need to travel a continuous path from their
initial position to the goal and no pawns can be allowed to be at the same position at
the same time, that is:

• n p,τp = g∀p
• Consecutive positions in a route correspond either to the same node or to connected
nodes in the graph, that is, nodes which are connected by an edge:

∀t, p : e(n p,t , n p,t+1) ∈ E or n p,t = n p,t+1 (1)

• ∀t,∀p, p′ ∈ P : rp,t �= rp′,t

For any solutionR, the time τ(R) = maxp∈P |τp| is called evacuation time.A solution
Ri is assumed to be better than another solution R j if τ(Ri ) < τ(R j ).
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3.2 Modeling Agent Self-interests

Of course, in complex self-interested networks, solutions are not implemented either
in a centralized or in a one-shot manner. Even if solutions are computed in a cen-
tralized way, agents are self-interested and autonomous, and can deviate at any point
from any externally imposed plan. To represent this in the chessboard problem, we
model agent decision making as follows:

• Pawns give a value v to each node n ∈ N , equal to the shortest path length from
this node to the goal g. Therefore, pawns self-interest is normally to move to the
lowest value adjacent node.

• Pawns are considered to be in conflict if the values of the nodes corresponding to
their current positions are equal, since that means those pawns would necessarily
collide in their way to the goal if they take their optimal paths and do not wait.

• At any time t , pawns which are asked (by imposition or negotiation) to make a
move which is suboptimal (i.e., does not minimize value of the next node), will
follow their optimal path (i.e., they will deviate from the proposed solution) with
probability

π = 1 − 1

nc
, (2)

where nc is the expected number of conflicts the pawn would be in in the next
time unit if it followed the suggested route. This models pawn risk aversion, in the
sense that being in a high number of conflicts increases the expected evacuation
time. Note that, if the proposed route does not involve conflicts for the pawn, it
will follow it without any problem.

Since pawns are still self-interested as defined above, they may produce collisions.
If two or more pawns collide in the same node, they are all sent back to the node
they came from. Collisions propagate backwards, so any pawns trying to enter a
node where another pawn has been sent back due to a collision would also suffer a
collision.

3.3 Categories of Scenarios

For the verification of the hypothesis to be significant enough, it has to be evaluated
in a wide variety of scenarios. In order to achieve this variety, we have considered
three different categories of scenarios, according to the properties of the underlying
graph B:

• Chessboards (CB): in this category, the graph is a 8-by-8 square lattice (resembling
a chessboard), where we randomly add a number of obstacles (non-transitable
nodes) for diversity.
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Fig. 2 Examples of each generated graph category: a chessboard with 8 obstacles; b corresponding
lattice graph; c ER graph with p = 0.2; d BA graph with α = 4

• Erdös–Renyi graphs (ER): in this category, graphs are generated randomly using
the Erdös–Renyi model [20]. In the ERmodel, every pair of nodes {m, n ∈ N } has
a finite probability p of being connected.

• Barabasi–Albert graphs (BA): in this category, graphs are generated randomly
using the Barabasi–Albert model [20]. In the BA model, after an initial number
of nodes |N |0 has been placed, subsequent nodes are added one-by-one to the
graph, with each new node being connected to exactly α of the existing nodes. The
probability of a new node connecting to an existing node i is pi = ki∑

j k j
, where ki

is the degree of existing node i . This is called preferential attachment.

For each category of scenarios, different sub-categories were created by varying the
number of obstacles, the probability of connection p, and the attachment parameter
α. In each scenario, a node is randomly chosen as the goal (in the case of chessboards,
one of the peripheral nodes). Figure2 shows an example for each category of graphs.
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4 Graph Metrics for Scenario Characterization

With the model for self-interested agents described above, we run a number of sim-
ulations in the aforementioned scenario categories. The details of these experiments
are beyond the scope of this paper, and can be found in [31]. The experiments allowed
us to select a number of graph metrics from the literature which were significantly
correlated to the evacuation times of the simulations. The selected metrics are the
following:

• Graph order: the number of nodes in the graph.
• Graph diameter: the longest distance between any pair of nodes in the graph [19].
• Wiener index: gives ameasure of graph complexity from the distances in the graph.

It is computed as W (G) = 1
2

∑|N |
i=0

∑|N |
j=0 d(ni , n j ), where d(ni , n j ) is the shortest

distance between nodes ni and n j [34].
• Graph density: the ratio between the number of edges in the graph and the maxi-
mum number of edges (that is, if it were a fully-connected graph). For undirected

graphs, this density is computed as D = 2|E |
|N |(|N |−1) .• Clustering coefficient: a measure of the degree to which nodes in a graph tend to

cluster together. The cluster coefficient of a graph is computed as the average of
the local clustering coefficient of its nodes, which is computed for each node as
the ratio between the number of links between its neighbors and the maximum
number of links between them (that is, if they were fully connected).

• Assortativity: the correlation between the degree (number of neighbors) of adjacent
nodes [30].

• Entropy of betweenness centrality: Centrality metrics measure the importance of
a node within a graph. In particular, betweenness centrality of a node is the ratio
of shortest paths in the graph which traverse the node. It is computed as CB(n) =∑

s,t∈V
σ(s,t |n)

σ (s,t) , where σ(s, t) is the number of shortest paths between nodes s and t ,
and σ(s, t |n) is the number of such pathswhere n acts as a bridge. From thismetric,
we can assess the complexity of a graph using Shannon information theory, by
transforming the betweenness centralitymetric into a probability function p(ni ) =

CB (ni )∑|N |
j=0 CB (ni )

, and computing the entropy as H(G) = −∑|N |
i=1 p(ni ) log(p(ni )).

These metrics have been used to divide the scenarios in clusters for the experi-
ments, as described in the following section.

5 Using Graph Metrics for Mechanism Selection

Our hypothesis is that the selected set ofmetricsmay be used as a basis formechanism
selection in CSIN problems, and in particular in the evacuation problem considered
in this paper. To verify this, we have devised a number of distributed mediation
mechanisms, and we have performed an extensive set of experiments with them
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in the generated scenarios. We have also clustered the scenarios according to the
aforementioned metrics, so that we can see the influence of these metrics in the
performance of the different mechanisms.

5.1 Distributed, Mediated Division Approaches

Asmentioned above, our interest regardingmechanisms focuses on distributed,medi-
ated solutions, where a mediator first divides the problem into interconnected sub-
problems, and then the agents are let to evolve into a solution by themselves. The two
key factors here are, first, how to divide the problem, and then, how to interconnect
the different subproblems so that the self-interested agents can autonomously evolve
to an emergent, efficient solution. In the particular case of the chessboard evacuation
problem, we have chosen to dynamically divide the chessboard graph into subgraphs
(lets call them worlds), and let the pawns in each world negotiate the paths they will
take. In addition, we make pawns within a world negotiate about where to place the
entrance arrows to their world, as seen in Fig. 3a. This entrance arrow placement is
the negotiation technique (very simple, in this case) which interconnects the sub-
problems and guarantees emergence and incentive for cooperation. Since pawns can
govern how other pawns enter their worlds, they can ensure that the pawns conceding
in a negotiation (i.e., sacrificing their own utility to solve a conflict) are not exposing
themselves to further conflicts. In this way, the number of conflicts in a world never
increases. This invariant guarantees the progress of the approach, in contrast with the
situation we had with the exponential increase due to collisions. An example of this
is depicted in Fig. 3b, where pawns within the lower-right world (LR) are in conflict.
Any pawn which concedes to the other would be then in conflict with the pawn in
the lower-left world (LL). However, they have placed the entrance from LL to LR
ensuring that this conflict is no longer possible, since any pawn coming from LL
would be further from the goal than any pawn in LR. Therefore, a pawn in LR can
agree to wait with the guarantee that its utility loss is bounded (one time unit). This
provides an incentive both to accept the proposed problem division and to cooperate
within it.

Fig. 3 Distributed, mediated division example
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Fig. 4 Example of symmetric division. a Chessboard to divide. bMinimum square containing all
the pawns and the exit. c Worlds generated

5.1.1 Symmetric Division

The symmetric division (Fig. 4) is based on dividing the system into four symmetric
subsystems. To apply this divisionmethod to the chessboard scenarios, first the graph
is reduced by getting the minimum square that contains all the pawns and the exit
of the system. By using this graph reduction, the evacuation plan is adapted to the
congestion state at any given moment. Once the graph has been reduced, the reduced
graph is symmetrically divided into four symmetric subgraphs, creating four worlds.

The position of the random graphs’ nodes is not fixed, so there can be many
different representations of a network. Thus, to apply the symmetric division to
random graphs, we need to assign a position on the plane for each node. For that
purpose, the Fruchterman–Reingold algorithm is used [8].
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5.1.2 Distance Division

Distance division is based on grouping close nodes with similar distances to the exit.
Again, we first reduce the graph, in this case by removing those nodes that are further
away from the exit than the furthest away pawn (Fig. 5).

Then, the reduced graph is divided into three sections according to the distance
of the nodes to the exit. The first section leads to one world. Second and third
sections can be too big or even disconnected, so they may have to be divided. To
this end, the disconnected components of the sections’ graphs are found. Small
components are directly mapped to worlds, while big components with more than
one node connecting the component to the previous section are split up into two
halves. The two halves are created by starting at the two furthest nodes connecting
the component to the previous section and then expanding the graph from them (that
is, taking adjacent nodes further apart, then adjacent nodes to the new graph, and so
on) until all the nodes within the component have been reached by one of the halves.

5.1.3 Pawns Distribution Division

The pawns distribution division (Fig. 6) is based on creating worlds so they have a
similar number of pawns. With this division method, there is no need to reduce the
system’s graph, as the method is adapted to the congestion state by itself.

The method begins by dividing the system into three sections. The first section
is created by starting at the exit and expanding the graph from it until 1/5 of the
pawns are reached. The second section is generated starting at the nodes connecting
the section to the previous section and expanding the graph from them until 2/5 of
the pawns are reached. The third section contains the remaining nodes. Once the
sections have been generated, the first section is mapped to a world, while the second
and third sections are divided. As in the previous method, first the disconnected
components of the sections are found. Those components with less than half the
number of pawns of the corresponding section are directly mapped to worlds, while
components with more pawns and more than one node connecting the component to
the previous section are divided into two worlds, each one containing half the pawns
of the component.

5.1.4 Community Division

In graph theory, a community is a set of nodes such that there are many connections
between nodes of the same community and few connections with nodes outside the
community [19]. The community division consist on reducing the graph by removing
those nodes further from the exit than the furthest pawns, and, afterwards, using the
Louvain algorithm [2] to find the graph communities, map each of these communities
to a world (Fig. 7).
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Fig. 5 Example of distance division.aChessboard to divide.bReducedgraph. cSections generated.
d Worlds created from small components. e Wolds created from components with just one node
connecting the component with the previous section. f Division of big components with more than
one node connection the component with the previous section. g Worlds generated
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Fig. 6 Example of pawn-based division. aChessboard to divide. bGeneration of the three sections.
cWorlds generated from components with few pawns. dDivision of components with many pawns.
e Worlds generated
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Fig. 7 Example of community division. a Chessboard to divide. b Reduced graph. c Worlds gen-
erated

5.2 Negotiation Between Agents

Once the division has been made, agents need to negotiate about where to place the
doors between worlds. Since each possible door-placing schema is a binary vector
(with one bit per boundary square, which can be set to 1 or 0 depending on whether
there should be a door or not in it, respectively), we have used the approach in [14],
which is a negotiation mechanism specifically designed for negotiation of complex
contracts with binary issues.

5.3 Experimental Setting

We have generated a total of 1600 scenarios for the categories described in Sect. 3.
In particular, we generated 50 scenarios for each combination of the following para-
meters per category:
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Table 1 Comparison of the evacuation times (in minutes) of the different mediation approaches in
the three detected clusters

Scenario
cluster

Reference Sym. Dist. Pawn Com.

C1 48.56 29.98 36.63 42.56 27.44

C2 240.51 163.94 129.75 144.92 156.20

C3 264.91 206.42 288.62 180.60 220.66

• Chessboards with number of obstacles in |O| = {8, 12, 16, 20}.
• ER graphs with |N | ∈ {52, 56} (same number of nodes as the chessboards with 8
and 12 obstacles) and p ∈ {0.6, 0.8, 0.10, 0.12}.

• BA graphs with α ∈ {1, 2, 3, 4}.
For each scenario, we ran 50 simulations of the evacuation problem for each of
the considered approaches, along with a reference approach (where no mediation
mechanism is used), for a total 80,000 runs per approach (400,000 total simulations).
At each simulation, we recorded the evacuation time τ . Finally, we clustered all
scenarios according to the metrics described in Sect. 4, using an implementation of
DBSCAN [6].

5.4 Experimental Results

The DBSCAN algorithm yielded three scenario clusters (C1 to C3). Table1 shows
the evacuation times for the different mediation approaches, averaged for each of
the scenario clusters. We have also represented the average times for the refer-
ence approach. In general, we can see that all mediation approaches outperform
the reference unmediated approach (except for a slight disadvantage in using the
distance-based approach in the C3 cluster). However, we can see there are signif-
icant differences in the relative performance of the approaches for each cluster.
In the C1 cluster, symmetric and community based divisions work better than the
other approaches (above 20% difference). In the C2 cluster, distance-based division
improves over 11% with respect to the next top approach, and in the C3 cluster,
pawn-based division outperforms the other approaches by 12.6%. We can conclude
that graph metrics can help to select the appropriate mechanism to use when facing
a given scenario, providing a significant advantage on average evacuation times than
choosing a different strategy or no strategy at all.
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6 Discussion and Conclusions

The main hypothesis of our work is that underlying structural properties in Complex
Self-Interested Networks (CSIN) can be used to decide which mechanisms to use to
enhance the performance of such networks. To validate this hypothesis, in this paper
we present a chessboard evacuation problem as a proof of concept domain for CSINs.
For this domain, we systematically generate a wide variety of scenarios in three cate-
gories of graph structures (lattices, Erdös–Renyi graphs andBarabasi–Albert graphs),
and characterize them according to a set of metrics selected from graph theory. Then
we consider a number of mediated, distributed approaches to facilitate reaching effi-
cient solutions to the evaluation problems, and run an extensive set of simulations
with all of them. We analyse the simulation data by clustering the scenarios using
the aforementioned metrics. Experiments show that the relative performance of the

Fig. 8 Traffic management scenario
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different mediation approaches significantly change in each cluster, which backs up
the idea that analysing the graph properties of a problem can help choosing a suitable
mechanism to address it. Though our experiments yield promising results, there is
still plenty of work to be done in this area. We are in the process to validate the suit-
ability of the metrics to perform a priori mechanism selection, by training classifiers
(e.g. random trees) in large sets of scenarios and using them to predict which would
be the best approach to use when confronted with new scenarios. We also want to get
more diverse scenario sets, since in this case the clusters detected byDBSCANwhere
populated in their majority (about 90%) by scenarios in a single generation category
(either chessboards, Erdös–Renyi or Barabasi–Albert graphs), which demonstrates
a significant generation bias in the experiment set. Finally, we are interested in gen-
eralizing the approach to other domains out of the chessboard proof-of-concept. For
instance, we are working on a transportation management scenario (Fig. 8), where
GPS navigator agents within a given area automatically negotiate about the state of
the traffic lights allowing entrance to their area, so that congestion is mitigated.
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