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Preface

Complex automated negotiations are a widely studied, emerging area in the field of
autonomous agents and multi-agent systems. In general, automated negotiations can
be complex, since there are many factors that characterize such negotiations. These
factors include the number of issues, dependency between issues, representation
of the utility, negotiation protocol, negotiation form (bilateral or multi-party), and
time constraints. Software agents can support automation or simulation of such
complex negotiations on behalf of their owners and can provide them with adequate
bargaining strategies. In many multi-issue bargaining settings, negotiation becomes
more than a zero-sum game, so bargaining agents have an incentive to cooperate in
order to achieve efficient win-win agreements. Also, in a complex negotiation, there
could be multiple issues that are interdependent. Thus, an agent's utility will
become more complex than simple utility functions. Further, negotiation forms and
protocols could be different between bilateral situations and multi-party situations.
To realize such a complex automated negotiation, we have to incorporate advanced
artificial intelligence technologies including search, CSP, graphical utility models,
Bayesian nets, auctions, utility graphs, and predicting and learning methods.
Applications could include e-commerce tools, decision-making support tools,
negotiation support tools, collaboration tools, and others. For this book, we soli-
cited papers on all aspects of such complex automated negotiations that are studied
in the field of autonomous agents and multi-agent systems.

This book includes Part I: Agent-Based Complex Automated Negotiations, and
Part II: Automated Negotiation Agents Competition. Each chapter in Part I is an
extended version of an International Workshop on Agent-based Complex
Automated Negotiations (ACAN’15) paper after peer reviews by three PC mem-
bers. Part II includes Automated Negotiating Agents Competition (ANAC’15), in
which automated agents who have different negotiation strategies and are imple-
mented by different developers automatically negotiate in several negotiation
domains. ANAC is an international competition in which automated negotiation
strategies, submitted by several universities across the world, are evaluated in a
tournament style. The purpose of the competition is to steer the research in the area
of bilateral multi-issue, closed negotiation. Closed negotiation, when opponents do
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not reveal their preferences to each other, is an important class of real-life nego-
tiations. Negotiating agents designed using a heuristic approach need extensive
evaluation, typically through simulations and empirical analysis, since it is usually
impossible to predict precisely how the system and the constituent agents will
behave in a wide variety of circumstances, using purely theoretical tools. This book
includes rules, results, agents, and domain descriptions for ANAC2015 submitted
by organizers and finalists. The reports from the ANAC2015 competition highlight
the important aspects that should be considered in future works on automated
negotiation.

Finally, we would like to extend our sincere thanks to all authors. This book
would not have been possible without the valuable support and contributions of
those who cooperated with us.

Tokyo, Japan Katsuhide Fujita
Auckland, New Zealand Quan Bai
Nagoya, Japan Takayuki Ito
Wollongong, Australia Minjie Zhang
Wollongong, Australia Fenghui Ren
Istanbul, Turkey Reyhan Aydoğan
Nagoya, Japan Rafik Hadfi
May 2016
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BiTrust: A Comprehensive Trust
Management Model for Multi-agent Systems

Tung Doan Nguyen and Quan Bai

Abstract Existing trust and reputation management mechanisms for Multi-agent
Systems have been focusing heavily onmodels that can produce accurate evaluations
of the trustworthiness of trustee agents while trustees are passive in the evaluation
process. To achieve a comprehensive trust management in complex multi-agent sys-
tems with subjective opinions, it is important for trustee agents to have mechanisms
to learn, gain and protect their reputation actively. From thismotivation, we introduce
the BiTrust model, where both truster and trustee agents can reason about each other
before making interaction. The experimental results show that the mechanism can
overall improve the satisfaction of interaction and the stability of trustees’ reputation
by filtering out non-beneficial partners.

1 Introduction

Nowadays, Multi-Agent Systems (MASs) have been perceived as a core technol-
ogy for building diverse, heterogeneous, and distributed complex systems such as
pervasive computing and peer-to-peer systems. However, the dynamism of MASs
requires agents to have a mechanism to evaluate the trustworthiness other agents
before each transaction. Trust was introduced to MASs as the expectation of an
agent about the future performance of another agent. Thus, it is also considered as
an effective tool to initiate interactions between agents. However, Sen [7] stated that
there are not enough research on the establishment, engagement, and use of trust.
The establishment of trust can be seen as the “flip side of the evaluation”, which
focuses on how trustees can gain trust from truster agents actively especially when
the subjective opinions are ubiquitous. However, in many real-world circumstances,
not only consumers concern about service providers’ reputation, but providers also

T.D. Nguyen · Q. Bai (B)
Auckland University of Technology, Auckland, New Zealand
e-mail: quan.bai@aut.ac.nz

T.D. Nguyen
e-mail: tung.nguyen@aut.ac.nz
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4 T.D. Nguyen and Q. Bai

care about who are making requests. For example, online auctions may fail due to
the bad behaviours of bidders who refuse to pay after winning.

Obviously, since trust and reputation are crucial in the open and distributed
environments, the classic single-sided trust evaluations are inadequate. It implies
that truster agents also need to be evaluated for their credibility, i.e., identify-
ing consumers’ behaviours. To address this, we introduce the BiTrust (Bijective
Trust) model, which enables trustee agents (providers) to reason about truster agents
(consumers) to improve the interaction satisfaction with a 2-layer evaluation filter.
Specifically, in the first layer, providers evaluate the rating behaviour of the con-
sumers. In the second layer, providers evaluate the utility gain of the transaction
respected to their current expectation. The approach not only helps trustee agents
to choose a suitable strategy for gaining trust from truster agents but also to protect
their reputation actively. This paper steps toward comprehensive trust management
in terms of establishing and using trust stated in [7]. The experimental results show
several benefits from this model.

The remainder of this paper is structured as follows. Section2 reviews the most
recent updates for trust management. In Sect. 3, we propose and discuss in detail
BiTrust model including the trust reasoning of both consumers and providers. An
empirical analysis of our method is presented in Sect. 4, it discusses the obtained
experimental results. Finally, we conclude the paper in Sect. 5 by summarizing and
highlighting the future work.

2 Related Work

In [7], Sen summarised three major aspects in MAS trust management mechanisms,
i.e., trust establishment, trust engagement, and trust use. Trust establishment deter-
mines the actions and the resources to be invested to establish an agent to be trustwor-
thy to another agent. Trust engagement highlights the intention of rational agents to
be active in trust evaluation process and decision making. The use of trust determines
how to combine trust and decision to benefit short and long term. Some shortages
of existing MAS trust management mechanisms are addressed in [13]. The authors
pointed out that the common assumptions of “unlimited process capacity” adopted
in MASs may cause the self-damaging reputation problem, no matter how good the
trust mechanism is. To address this issue, [12] models reputation as a congestion
game and develop a strategy for decision making of trustee agents in resource con-
straint environment. The paper proposes a trust management model called DRAFT,
which can reduce reputation self-damaging problem actively by investigating the
capability of trustee itself to decide whether to accept or deny incoming requests.
However, it is still weak against requests from truster agents who have biased rating
intention after their requests are accepted.

The FIRE [4] model is primarily a trust evaluation model that assumes all agents
are honest or unbiased when they report rating and are willing to share the informa-
tion. These assumptions are not applicable in systems where agents have subjective
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opinions. The TRAVOS model [9] includes takes lying agents into consideration,
but it does not include any strategic reasoning about whether an agent’s report is true
or false. It has learning ability to filter out inaccurate reputation values, which are
better than the pure Bayesian-based method proposed in [10]. However, the opinion
filter approaches perform poorly when the percentage of the unfair raters increase.
In this situation, without a strategic establishment of trust, trustee agents may fail to
interact with potential trusters.

SRAC [1] and DiffTrust [2] performs trust evaluation based on subjective opin-
ions of trusters and advisers. These studies can evaluate trustee based on truster’s
predefined preferences, but again, trustee agents are independent of truster evaluation
process. Some other studies, trusters are also evaluated for their honesty behaviour,
but it is from another trusters or the system rather than from trustee agents [6, 9, 11].

Single-sided evaluations could bring the incentives for trustee agents to behave
honestly, but not for truster agents, e.g., giving fair ratings. With the BiTrust model
introduced in this paper, trustee agents can gain reputation in the protective manner
through analysing truster behaviour, estimating the interaction utility, and filtering
out non-beneficial transactions.

3 BiTrust: Bijection Trust Management Model

In the BiTrust model, “trust each other” is considered as the key to make interaction.
It means both the truster and trustee agents need to trust their interacting partners
because any damaging reputation will result in the reducing of future interaction. In
the BiTrust model, agents have their own preference utility over potential partners.
The truster agents’ utility function is controlled by parameters related to agent’s
preferences. The system is assumed to have no centralized database for trust man-
agement. Trustee agents evaluate request makers based on their previous behaviours
to decide whether to interact with them or not. Thus, BiTrust does not follow pre-
vailing accept-when-request assumption, and can be distinguished from the DRAFT
approach [12] in that trustee agents accept an interaction based on trust-aware utility
gain rather than assessment of their own capability limitation. Below we will give
detail definitions used in the model.

3.1 Definitions

For the rest of this paper, we omit the terms trusters and trustees because there is
no clear border between them since they both need to be trusted by one another in
order to continue the transaction in our model. Instead, the terms “consumer” and
“provider” will be used accordingly. Figure1 shows the conceptual architecture of an
agent in the BiTrust model. Each agent (e.g., ai) has the following five components:
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Fig. 1 The architecture of an individual agent in BiTrust

1. The public profile is a database contain reputation information (as a provider) and
transaction records (Hi) of agent ai that can be shared with other agents.

2. The private knowledge base is a database of each individual agent containing
private information or learned experiences.

3. The trust reasoning and learning module collects information from databases
and communication module to evaluate or learn about the trust of the interacting
partner.

4. The decision module combines the information from three modules above to
decide on which strategies and actions will be applied.

5. The communication module helps agent to interact with other agents and sur-
rounding environment.

In this paper, an agent can act as either a consumer or a provider. In addition, an
agent can also act as an advisor who gives opinions about other agents. However, we
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consider an adviser as a type of providers offering reference services which are also
rated by consumers. Two advantages of this assumption are: (1) it helps diminish
irresponsible advisers; and (2) it brings incentives to advisers to be honest as they
are now providers associated with reputation values.

Definition 1 A provider (pi) is an agent who receives requests from service con-
sumers (See Definition 2), responses and delivers expected service to the consumers.

Providers can be categorized into two main types: reputation sensitive providers
(RSP) and benefit sensitive providers (BSP). The RSPs are providers who place their
reputation as the highest priority and may sacrifice their benefit in a transaction. For
this type of provider, consumer ratings are more important. By contrast, BSPs are
the ones who consider the benefit as the first priority, they can be considered as ones
who are making use of their reputation to maximize their benefit.

Definition 2 A consumer (cj) is an agent who makes requests and consumes the
services provided by providers.

Consumers are categorized into different types, depending on the attributes of
service (see Definition 3) they request for. For example, the consumer of delivery
service can be assumed to be either a time sensitive, price sensitive or neutral. In other
words, consumer types are context-dependent, and there is no public information
about consumers’ types.

Definition 3 Service reference, SDesi is the description of service si provided by
provider pn. It is a 3-tuple, i.e., SDesi = (STypei, SAtt, SRep), contains information
about service type (SType), service attribute set (SAtt) and reputation values (SRepi)
of provider pn.

Service type STypei identifies the type of a service provided by a provider; SAtt is
a set of attributes, i.e., SAtt = (a1, a2, . . . , ak); and SRep is a set of reputation value
associated to these attributes, i.e., SRep = (rep1, rep2, . . . , repk). repi is a real value
in [0, 1], 0 means worst reputation and 1 means best reputation of attribute ai.

The reputation information is stored in agent public profile and wrapped into
provider’s response (see Definition 4). Consumers can query for this information via
the communication module. The public reference is partly adapted from CR model
[3], which is more suitable to the distributed environments.

Definition 4 Response Respjci is a message of provider pj to consumer ci, consists of
service reference (i.e., SDesj) and cost (i.e.,Opjci ), responding to request of consumer
ci. Its format is Respjci = (SDesj, Opjci).

If provider pj accepts the request, the offered price Opjci will be a positive real
number. Otherwise, Opjci will be negative.

Definition 5 Consumer rating (cr) represents the assessment of performance of a
provider on a service, which is a k-tuple, cr = (r1, r2, . . . , rk), where ri(1 ≤ i ≤ k)

indicates the rating of the ith attribute of the service.



8 T.D. Nguyen and Q. Bai

As a service contains k attributes, the rating of the consumer also contains k rating
values. The rating ri is a real value ranging from 0 to 1, where 0 and 1 represent the
worst and the best performance of ith attribute. For example, a rating can be presented
as (0.9, 0.8, 0.75) for attributes (description, quality, delivery). It is advantageous to
represent the ratings and reputations with multiple values, because it can help reduce
the reputation damage problem mentioned in [12]. For example, when there is a
delay in the delivery, only the rating of the delivery attribute will be affected.

Definition 6 Provider feedback on consumer rating is defined as a 2-tuple fbpjci =
(cr, SDes), where cr is the rating of consumer (refer to Definition 5) and SDes is the
current reputation value of provider (refer to Definition 3).

The feedback from the provider to the consumer will be kept in the consumer’s
public profile. Those feedback forms the transaction records Hci . The idea that
providers give feedback about the consumers is not new, we can find it in many
e-markets, such as eBay. However, the use of providers feedback is unclear in many
existing systems.Moreover, the subjectivity of those feedbackmay double the biased
rating problem. For example, if a consumer gives a bad rating for a provider, in
turn, the provider can give a consumer a bad rating as revenge. The BiTrust model,
however, addresses these issues by not using subjective opinions of providers over
consumers’ ratings. Instead, rating of a consumer and current status of the provider
are combined to construct the feedback about the consumer’s rating behaviour and
store it in consumers’ public database. By doing so, the model leaves evidence for
future providers to evaluate the consumer.

3.2 The BiTrust Protocol

Figure2 illustrates the basic procedures to enable BiTrust inwhich both the consumer
and provider need to evaluate each other before the transaction. The providers and
consumers must comply the transaction protocol described as the following steps:

1. The consumer ci evaluates available providers for a specific service, then queries
all qualified providers for a specific service. Provider selection is described in
Sect. 3.4.

Fig. 2 The BiTrust protocol
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2. After receiving a request, the provider pj evaluates the consumer ci based on ci’s
profile. The provider can then makes a possible offer to consumer ci or denies the
request. The reasoning is described in Sect. 3.3.1.

3. After receiving all offers, the consumer ci decides whose offer to accept and then
carry on the transaction.

4. When the transaction is completed, the consumer ci evaluates and give the rating
of service of provider pj and pj stores the rating in the public database.

5. After receiving consumer’s rating, the provider pj generates feedback fbpjci (refer
to Definition 6) and give it to consumer ci to store in the public database.

BiTrust model assumes that providers have a clear understanding of their services.
It means providers always know exactly the marginal benefit gained from an offer
to a consumer with a specific price and quality. This assumption is important for
providers to label the customer types accurately. The mechanism prevents providers
from giving subjective rating over consumers thus the model can avoid the doubling
biased rating problem. The future providers can investigate the previous feedback to
predict whether a consumer is a potential or not.

3.3 Consumer Behaviour Reasoning

This subsection will discuss how a provider reasons about a consumer’s potential
behaviour after receiving a request. The trust reasoning and learning modules (refer
to Fig. 1) uses data in the public profile of interacting consumer to reason about
the consumer’s preference by a behaviour evaluation layer. After that, providers
can maximize the utility by choosing suitable offer to satisfy the consumer. Proper
offers can help providers get not only the targeted benefit but also trust of consumers.
Unlike priority-based trust (PBTrust) [8] where providers do not need to reason about
consumers’ preference because consumers include attribute weight distribution (or
priority) in their requests. However, it is not enough for providers to get the desired
ratings from the consumer by solely knowing the consumer’s preference because it
still depends on rating behaviour of the consumer.

3.3.1 Consumer Behaviour Evaluation Layer

Consumer behaviour in this paper focuses on predicting the ratings of consumers. A
provider can discover a consumer’s preference through analysing feedback records
of the consumer. As introduced in Sect. 3.2, consumers have different weights (pri-
orities) in different attributes of a service. BiTrust model does not treat biased ratings
of consumers separately. Instead, it considers the biased ratings as the consequence
of the interest weights distribution. With the assumption, the provider reasons about
consumers’ interest through comparing its rating with the average rating of other
consumers on the same provider. If an agent rates the attribute am lower than the
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majority ratings, it has a higher expectation for that attribute. Their interest weight
is measured as the ratio between ratings of attribute am of consumer ci with the ratio
of the reputation of providers in transaction records of similar service.

ωam
ci,pj

= repm

rm
(1)

Equation1 indicates the weight ω that a consumer ci places in an attribute am of
provider pj. For example, if the weight for attribute a1 and a2 is 0.55 and 0.8 respec-
tively, the consumer is more likely to be a a1 interested. When ωam

ci,pj
≥ 1, the rating

of ci is smaller than the reputation value of attribute am or consumer ci has a higher
expectation for this attribute compared to the average. If the consumer has no trans-
action record, ωam

ci,pj
is set to 1. We perform the analysis over the transaction records

of the consumer to get the mean weight ωam
ci

of consumer ci for each attribute am.

ωam
ci

=
∑

pj∈Hci
ωam

ci,pj

k
(2)

In Eq.2, k is the number of recent transactions of similar service type. ωam
ci

≥ 1
means consumer ci has positive bias trend to attribute am and normally give rating
of am higher than average, and the provider can benefit from this type of consumer.
Likewise, when ci has a negative bias toward the attribute, provider’s reputation of
the attribute will take the risk. The value of ω can be normalized to (0, 1) by Eq.3.

ω̂am
ci

= ωam
ci

max{ωam
ci

|am ∈ SAtt} (3)

The larger value of ω̂am
ci

indicates the consumer concerns more about the attribute
am for this service type. By using Eq.3, providers can obtain some information
about consumers’ interested attribute but they do not know exactly the weights that
a consumer places on their service attributes. However, one important signal is that
when the consumer accepts the offer, the current reputations of the service of the
providers have passed consumer’s trust evaluation. The strategy am of provider is to
apply to the am interested consumer.

The provider’s expected rating from a consumer is the subjective expectation of
the provider about consumer’s future rating to its service based on previous rating
behaviour of the consumer to similar service. The expected rating of a consumer to
attribute ai under am strategy (service that is delivered for am interested consumers)
is calculated by using Eq.4.

crai
e = ω̂

aj
ci · repaj |am

, (4)

where repaj |am
is the reputation of attribute aj calculated through the transaction

using strategy for am interested consumers. The provider owns the information for
calculating repaj |am

. The rating prediction should be carried on over all possible
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strategies of provider, because in real-world situation, providers sometimes cannot
guarantee the consumer’s satisfaction by giving their services that have the highest
rating for attribute am.

3.3.2 Provider’s Utility Evaluation Layer

After predicting the consumer’s rating, the provider can then estimate the utility of
the transaction with the consumer. The BiTrust model assumes that providers have
a clear understanding of their own services. It means provider knows exactly the
marginal benefit gained from the offer. This assumption is important for providers
to correctly learn and label the consumer. The BiTrust approach constructs utility
function from two components, namely, rating reward and price reward. So provider
pi’s utility function is calculated by Eq.5.

U
cj
pi = α · Ucr

pi
+ β · b

Opjci

(5)

In Eq.5, α and β are predefined weights of rating reward and price reward. They
are positive real numbers satisfied (α + β = 1). If a provider is reputation sensitive,
the value α will be larger than β and likewise. Ucr

pi
is the rating reward which is

calculated by Eq.6. The rating reward is an estimated rating of the consumer to the
current provider. If the estimated rating cre of the consumer is higher than pre-defined
rating R of the provider, the rating reward is 1 otherwise the reward is −1.

Ucr
pi

=
{
1 if cre ≥ R

−1 otherwise.
(6)

In Eq.6, cre = {min
(
repm · ωam

ci
, 1

)}. The predefined-rating R is the threshold for
expected rating of the service provider. The provider usesEq.3 to confirm the attribute
am is interested by the consumer and provide the service with the highest quality of
attribute am with the belief to maximize possible rating. However, the provider can
only confirm accuracy of the strategy after receiving actual consumer rating.

The price reward is calculated by the ratio between benefit b and the offered price
(Opjci ). The benefit b is calculated by the difference between the actual value of the
service and the offered price (Opjci ). The utility function may have negative value if
the benefit b is negative.

As mentioned in Sect. 3.2, the learning module will relabel the consumer to train-
ing data for better future predictions. In this case, a reinforcement learning approach
can be applied as shown in Algorithm 1.
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Algorithm 1 Provider learning
Require: predefined utility value Upi , a set of strategies Spi containing offer for each consumer.
1: for each RQci ← request of consumer ci do
2: if ci exists in Spi then
3: offer ci service suggested by Spi .
4: else
5: categorize ci using Eq.3
6: calculate Ucr

pii
using Eq.5

7: if Ucr
pii

≥ Upi then
8: offer service and save ci to Spi

9: else
10: Reject unaccepted RQci

11: end if
12: end if
13: cri ← rating from ci
14: if cri is as expected then return
15: else
16: update strategy Spi for ci
17: end if
18: end for

3.4 Service Provider Selection

The consumer preference is important in many contexts involving quality and price
because consumers may be indifferent between a provider with a high reputation
level and high cost, and a seller with a low reputation level and a low cost if only
reputation and price are involved in utility function [10]. Consumer preference also
defines a space of acceptance where all belonged providers can be accepted. As
shown in Fig. 3, the shaded area is the space of acceptance, the consumer only needs
to evaluate utilities of providers in this area.

Fig. 3 Trust acceptance
space
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γ is a consumer defined parameter over the service attributes, which is a vector of
attribute weights of a service.Oci is the expected cost of the predefined attributes. The
utility function of the consumer is proportional to provider’s reputation suitability
(how close the offer Opi and Oci are), but inversely proportional to the service price.
Equation7 shows utility function consumer ci consisting of the suitability indicator
with cost.

U
pj
ci = Oci

Opj

·
k∑

i=1

γi · repi (7)

4 Experimental Results and Discussion

To evaluate the effectiveness of the BiTrust model, we have conducted several exper-
iments using simulated data. The hypothesis of the experiment is that the BiTrust
model can help providers maintain their reputation better in different circumstances.
We assume that there are only two types of provider, i.e., BSP and RSP, which are
managed by two parameters α and β. Providers deliver only one type of service,
which consists of three attributes a1, a2, and a3. Each service quality and price can
be either: high (H), normal (N), low (L). It means there are 27 different settings
for these services. Accordingly, there are three main types of consumers for each
attribute ai interested that influence their rating behaviour with different degrees,
namely, high expectation (HE), normal expectation (NE) and low expectation (LE).
The higher expectation for an attribute, the lower rating will be given if the consumer
is not satisfied. Negative bias consumers are not considered separately. Instead, their
expectation are set to high.

The system contains 50 providers and 500 consumers are created with differ-
ent profiles. Providers and consumers communicate with the protocol defined in
Sect. 3.2. To avoid the problem that only some providers are selected by consumers,
the experiments prevent providers from accepting requests when they are process-
ing other tasks. The request of consumers can only be done with other providers
who are not currently occupied. Each agent assesses its interacting partners sepa-
rately and individually, no advisor is involved. The obtained results are compared to
accept-when-requested (AWR) approach to test the hypothesis.

The first experiment tests how profiles influence their success rate of transactions.
The system starts and stops when reaches 3000 transactions and repeats 3 times.
Table1 illustrates which consumers is likely to be selected by providers after making
requests. Consumers with high expectation for the interested attribute are more likely
to be rejected by reputation sensitive providers compared with normal, and low
expectation ones. However, they are all likely to be accepted at the similar rate for
benefit sensitive providers.

Figure4a shows the success rate of 2 types of providers, i.e., reputation sensitive
(RS) and benefit sensitive (BSPs) providers at the system bootstrap. The result shows
that generally, consumers prefer providers who are reputation sensitive. The figures
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Table 1 Consumer type acceptance rate

HE (%) NE (%) LE (%)

RS 38.2 68.8 71.4

BS 91.8 95.2 96.6

RSP VS. BSP at system bootstrap BiTrust VS. AWR (50% HE consumers, BSPs)

BiTrust VS. AWR (50% HE consumers, BSPs)

BiTrust reputation different detection error rates BiTrust in the dynamic environment

iTrust VS. AWR (50% HE consumers, RSP)

(a) (b)

(d)(c)

(e) (f)

Fig. 4 Experimental results

show that provider with high quality and low price (HL) have the most success
rate (73.4%) while there is no significant different when both providers provide low
quality, low price (LL) with 50.3 and 49.7%.
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The following experiment investigates the reputation values of providers when
the number of HE consumers increases to 50 and 75% then compare with the accept-
when-requested model which provider agents do not filter out consumer requests.
Figure4b, c show the experiment result of benefit sensitive providers in environment
with 50 and 75% HE consumers. The rejection rates of these two cases are: 38.2
and 21.09% with the rejection accuracy is 96.7 and 98.4% respectively. In these
settings, providers are benefit sensitive (i.e., β > α) and that is one reason why the
reputation difference between AW R and BiTrust is not very much, however, the
marginal reputation gain can be observed in both cases. The rejection rate seems to
increase when the number of HE consumers decreases. It can be explained as the
providers have better choices when the number of NE and LE consumers increases.
It is obvious that when the number of unfair consumers increases, the reputation drop
significantly in these two cases, which is around 0.55 and 0.485 in steady state.

Figure4d illustrates the reputation in case providers are reputation sensitive. The
reputation difference between BiTrust and AWR is larger compared to the case of
benefit sensitive providers. In the next experiment, we compare the reputation of
providers when there are errors in detecting consumers’ interested attribute, i.e.,
the consumers are interested in different attribute compared to the offered service.
Figure4e shows reputation value in two cases: 40 and 70% detection error NE con-
sumers. The reputation values converge to reputation predefined value (threshold)
when detection error rate increases. The similar result can be obtained in the case
of highly dynamic environment (Fig. 4f) when consumers, who do not have enough
transaction records, join and leave system randomly.

Under the AW R setting, the agents’ reputation fluctuates significantly. Especially
when the number of high expectation consumer increases, the reputation value of
those providers are reduced considerably. BiTrust, however, remains stable which
can confirm the defined hypothesis. It is also worth to note that, AW R is prone
to reputation lag problem [5] more seriously, which is reflected by the scattering
plateaus in the figures.

In some circumstances, consumers can be rejected constantly by some providers
until those consumers can have better profiles for those providers to accept. It means
if a consumer wants to transact with a specific provider, who rejected him earlier, he
must carry on the transactions with other providers to update their records.

5 Conclusion and Future Work

In this paper, we have proposed the BiTrust model to enable providers to manage
their own reputation through analysing profiles of request makers. With BiTrust,
providers can benefit from less fluctuation in their reputation values by denying
incoming requests that are not beneficial for the transactions. The model makes use
of providers’ feedback in consumer profiles, which are likely to be ignored in many
existing e-markets. The consumers with bias tendency are more likely rejected in the
future interactions unless they consider changing their behaviour to provide more
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fair ratings. Thus, the model can improve the incentive for providing honest ratings
in the system.

The BiTrust model has added a mechanism for providers to select valuable con-
sumers. It is simple to integrate themechanism to existing trust models which already
have single-side trust evaluation. The BiTrust model is one step toward a compre-
hensive trust management proposed by Sen about how trustee agents can actively
gain and protect their reputation. In the future, we will optimize the reasoning algo-
rithm of predicting consumers’ behaviour, adjust α and β value dynamically, and
investigate deeper the effect on social welfare since the number of transactions may
be reduced when both sides concern too much about their interaction partners.
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Using Reference Points for Competitive
Negotiations in Service Composition

Claudia Di Napoli, Dario Di Nocera and Silvia Rossi

Abstract In a market of services, it is likely that the number of service implemen-
tations that exhibit similar functionalities with varying Quality of Service (QoS) will
significantly increase. In this context, the provision of a QoS-aware SBA becomes a
decision problem on how to select the appropriate services. The approach adopted in
the present work is tomodel both service providers and customers as software agents,
and to use automated agent negotiation to dynamically select a set of provider agents
whose services QoSs satisfy the customer’s requirements. The main features that an
automated agent negotiation process should satisfy in order to be applied in service
composition are discussed concluding that a multi-issue one-to-many negotiation
should be used. In such a setting, we show that using reference points for trading off
when different provider agents compete to provide the same service, allows to find
(near) Pareto optimal agreements if they exist.

1 Introduction

A Service-Based Application (SBA) is a complex business application composed
of a number of possibly independent, self-contained, loosely-coupled services, each
one performing a specific functionality, and communicating with each other through
standard protocols [7]. Such services could be provided by third parties, so the owner
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of the SBA does not control its execution. A service can be characterized also by
quality aspects, i.e., by non-functional features referred to asQuality of Service (QoS)
attributes [22].

In a market of services, customers require SBAs with specific QoS requirements,
usually expressed as end-to-end requirements, and several service implementations
providing the same functionality are available. So, the selection of services providing
the required functionalities with QoS attribute values such that the QoS of the result-
ing application satisfies the customer’s end-to-end QoS requirements is a decision
problem. It constitutes an NP-hard problem, complicated and difficult to solve, hence
several heuristics approaches have been proposed in the literature.

One of the adopted approaches is to model both service providers and customers
as software agents, and to use automated agent negotiation to dynamically select a
set of provider agents whose services have QoS values that satisfy the customer’s
requirements. In an e-commerce based competitive market of services, QoS values
are generally bargainable issues, and their adaptive provision can incentivize the
selection of a specific service. Moreover, trading off among issue values allows to
search for win–win cooperative solutions for the composition in multi-issue negoti-
ation (e.g., paying higher price for a service delivered sooner).

In this work, we discuss the use of software agents and automated negotiation
as a means to dynamically select the set of service providers (Sect. 2) competing
to provide a service. The main requirements that an automated agent negotiation
process should satisfy in order to be applied in service composition are presented
(Sect. 3). Such characteristics differ from standard negotiation approaches, somaking
it difficult to derive optimality properties of the obtained negotiation results.We show
that the negotiation process adopted for selecting services for an SBA, has strong
similarity with the automated multi-agent multi-issue negotiation solution adopted
in [21] to solve a resource allocation problem (Sect. 4). As such, we show that also
when more provider agents compete to provide the same service, it is still possible
to obtain negotiation outcomes that are (near) Pareto-optimal for the selected set of
providers.

2 Composing QoS-Based Services

The service composition process usually starts from an abstract representation of a
composition request, we refer to as an Abstract Workflow (AW ). A simple represen-
tation of an AW, also known as the workflow structure, is a directed acyclic graph
AW = (AS,P) where AS = AS1, . . . ,ASn is a set of nodes, and P is a set of directed
arcs. Each node represents an Abstract Service (ASi), i.e., a service description that
specifies a required functionality. Each directed arc that connects two nodes rep-
resents a precedence relation among the corresponding ASs. In order to provide a
required SBA, each ASi has to be bounded to a concrete service (we will refer to
just as service), i.e., a Web service implementing the functionality specified by the
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corresponding ASi. Services are provided by different agents, and they may be char-
acterized by quality attributes referring to the service non-functional characteristics.

Typical QoS attributes are: cost - the amount that a service requester needs to pay
to execute the service; time - the execution time between the requests sent and results
received; reliability - the ability of a service to function correctly and consistently;
availability - the probability that the service is ready to be invoked; performance -
related to the service response time and latency; security - related to confidentiality
and access control aspects. It is becoming of vital importance to take into account the
value of these attributes when selecting services to provide an executable workflow,
since different customers requiring an SBA may have different expectations and
requirements on its end-to-end QoS values. In fact, when requiring SBAs users
specify their QoS preferences at the workflow level rather than at service level, since
they are usually not involved in the service composition process, so they are not
aware of how to split a global preference at the level of single services.

2.1 Service Selection

One step of the service composition process is to identify the optimal service selection
tomeet the user’sQoS requirements [22]. In general, service selection can bemodeled
as aMulti-dimension Multi-choice Knapsack Problem (MMKP), which is known to
be an NP-hard problem. Exact solutions require long-time computations for large
problems, so heuristics approaches are necessary.

By the way, optimization-based approaches consider that the provider’s offered
values for service QoS attributes are pre-determined and not customizable, but this is
unlikely in the context of a dynamic market of services. In fact, the dynamic nature
of Web services, and their provision in the Internet-based market of services, require
to make the following assumptions:

• the user’s QoS requirements may change according to dynamic market demand-
supply conditions,

• the set of services available may change in time,
• the QoS values of services may change according to market demand-supply mech-
anisms, and so they cannot be fixed at the application design-time.

These assumptions make global optimization-based approaches, as the ones pro-
posed in [4] unfeasible in our scenario. For this reason in this work a negotiation-
based approach allowing to consider flexible and negotiable QoS attribute values, is
adopted. In our approach, it is assumed that service providers aremodeled as software
agents, we refer to as Service Providers (SPs), negotiating with a Service Compositor
agent (SC) acting on behalf of a user. Negotiation is used for the dynamic selection
of the SPs able to provide services whose QoS values, once aggregated, fulfill the
user’s QoS preferences.



20 C. Di Napoli et al.

3 Negotiation Requirements for Service Composition

Software agents are a natural way to represent service providers and consumers,
and their defining characteristics are essential to realize the full potential of service-
oriented systems. Software agents are autonomous problem solving entities, situated
in an environment, able to reach their own objectives and to respond to the uncer-
tainty of the environment they operate in, due to flexible decisionmaking capabilities
[12]. These characteristics make software agents a useful computational paradigm to
model respectively providers that offer services at given conditions, and consumers
that require services at other, sometimes conflicting, conditions. Providers and con-
sumers, interacting according to specified protocols and interfaces, have to establish
their agreed conditions to respectively provide and consume services. Software agent
automated negotiation is one of the approaches adopted for reaching agreements, so
it can be used to select services in a service composition. Nevertheless, when negotia-
tion occurs in a realisticmarket of services, themarket characteristics impose specific
requirements on the negotiation process, as described in the following subsections.

3.1 One-to-Many

Negotiation usually takes place between two agents willing to come to an agreement
on conflicting interests. Most approaches in service composition, that use negoti-
ation mechanisms to select services according to their QoS values, usually apply
negotiation for each required service independently from the others relying on bilat-
eral one-to-one negotiation mechanisms [17, 19]. They apply classical negotiation
approaches consisting in bilateral interactions of an alternate succession of offers
and counteroffers.

In our approach negotiation is used to dynamically select theSPs that offer services
with suitable QoS attribute values, but it is assumed that all the agents offering
services are involved in the negotiation process. Hence, given an AW composed of n
ASs (with n ≥ 2), and k SPs (with k ≥ 1) for each of the n ASs in the composition,
the number of potential negotiating agents may vary from n + 1 to n ∗ k + 1 agents,
where 1 SC agent is in charge of finding the optimal selection of SPs, according to the
QoS user’s constraints, to instantiate each AS. Hence, the negotiation is necessarily
one-to-many.

3.2 Incomplete Information

In order to prepare an offer xti at negotiation round t, a service provider agent i uses a
set of negotiation strategies to generate values for each negotiated issue. Of course,
agentsmust be equippedwith algorithms to evaluate the received and proposed offers.
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The value of a specific offer is represented in terms of agent utility. Hence, the utility
Ui for an agent i is a function that depends on the specific agent i, and on an offer xtj
such as Ui(xtj) → [0, 1].

Usually in SBA negotiation the strategies and utility functions adopted by the
provider agents are private information. In fact, when SBAs are provided in an
open, dynamic and competitive market of services, it is not realistic to assume that
their strategies are shared. Furthermore, these strategies may change depending on
the market demand-supply trends, so making their shared knowledge unfeasible
without causing communication overheads. For these cases, negotiation mechanisms
have to be designed so that negotiators can come to an agreement even though
they have no prior knowledge (complete or partial) of the utility functions of the
other agents involved in the negotiation. Hence, negotiation occurs in an incomplete
information setting where agents utility functions, reserve values in terms of utilities,
and concession strategies are private information.

The communication occurs only between the SPs and the SC. In addition, also
SC constraints on the QoS of the composition may be private. However, even in the
case of public constrains, SPs are not able to directly evaluate such constraints since
they are not aware of the other offers.

3.3 Multi-issue

Negotiation on non-functional parameters of the services composing an SBA is
clearly a multi-issue one. In fact, when a service is a component of an SBA, even
in the case of a single issue, its value has to be composed with the values of the
other services in the composition provided in an independent way, so the negotiation
becomes a multi-issue one. More specifically, in the single issue case, the SPs formu-
late offers containing single issues, but the SC has to evaluate them in an aggregated
manner, dealing with a multi-issue evaluation.

In this work, we consider multi-issue SPs offers, hence, an offer made by an
SP i at round t is a n-tuple xti = (xti,1, . . . , x

t
i,m), where xti,j is a specific value in

the domain � of the QoS attribute j ∈ M. Multi-issue negotiation is more complex
and challenging than single-issue one as the solution space is multi-dimensional,
and it is often difficult to reach a Pareto-efficient solution especially in the case of
self-interested agents that do not know each other’s preferences [14]. Finally, for
a single value of utility, different compositions of issues may be available, making
the counteroffer process intractable. Typically the strategy of selecting a different
configuration of issues values with the same utility value is called trade-off.

Typical approaches to multi-issue negotiation are package deal and issue-by-
issue [10]. In a package deal negotiation, an offer includes a value for each issue
under negotiation, so allowing trade-off to be made among issues. Approaches that
adopt issue-by-issue negotiation are based on the assumption that the issues under
negotiation are independent. If not, the inter-dependency is addressed by negotiating
one issue at a time according to a chosen topology [10]. A general approach to
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composition should include the case of dependency among issues (e.g., price and
time). In this case package deal is the only solution and trade-off is possible among
issues. When issues values are interdependent, linear and non-linear utility functions
can be used (e.g., Cobb–Douglas, widely used in the economics field [15]).

3.4 Coordinated Interaction

The negotiation mechanism allows to establish a sort of Service Level Agreement
(SLA) for QoS-aware SBAs between the SC and the selected SPs. As already said,
in a composition of services, also when a single issue is negotiated, its global value is
given by the aggregation of the QoS values, each one provided by a service for each
AS. That means that the offers received by the SC for a single AS cannot be evaluated
independently from the ones received for the other ASs, so a coordination among
negotiations for the single abstract services is necessary.Anegotiationmechanism for
service composition should allow both to negotiate with the SPs providing services
for each required functionality in the AW, and also to evaluate the aggregated QoS
value of the received offers [5]. So a coordination step is necessary. This type of
negotiation can be very time-consuming, so the possibility for the SC to concurrently
negotiate with the SPs of each AS at the same time is advisable. Generally, a buyer
obtains more desirable negotiation outcomes when it negotiates concurrently with
all the sellers in competitive situations in which there is information uncertainty and
there is a deadline for the negotiation to complete [3]. The coordination step occurs,
at the end of each negotiation iteration, when the SC evaluates the aggregation of the
received offers in order to allow SPs to adjust their successive offers if an agreement
is not reached.

4 The Negotiation Formalization

Let us consider an AW with n ASs (with n ≥ 2) and m QoS issues (with m ≥ 1) for
each of them, and k SPs (with k ≥ 1) for each of the n ASs. For each issue j the SC
agent has a constraint Cj on the whole AW. The SPs formulate new offers, and the
SC evaluates the aggregated value of all considered issues. In this way, it is possible
to simulate what happens in a real market of services where a user requesting an
SBA does not have information on the SPs strategies. This means that the SC is not
able to make single counter-proposals with respect to each received offer, because
the change of a value of a particular QoS can impact the constraints to be fulfilled
by the QoS of the other services. SC accepts an offer xti = (xti,1, . . . , x

t
i,m) ∈ �m of

the i-th SP if the aggregated value of the offer with the values of the offers for the
remaining ASs, satisfies the global constraints, so leading to an agreement.
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Definition 1 In case of additive issues, a set of exactly n offers (xt1, . . . , x
t
n) is an

agreement (A) at round t ⇐⇒ ∑n
i=1 x

t
i,j ≤ Cj, ∀j ∈ m.

If an agreement is reached with the offers sent at round t, the negotiation ends
successfully at that round, otherwise all the offers are rejected and, if t + 1 < tMAX ,
the SC engages all SPs in another negotiation round until the deadline tMAX is reached.
Generally, offers are evaluated in terms of agent utility. In a multi-issue negotiation
round an agent can either generate a new offer conceding in its utility (i.e., using
a concession strategy), or it can select a new offer with the same utility (i.e., using
a trading-off strategy in case of dependent issues). In this latter case, these offers
belong to the same agent utility curve known as an indifference curve.

The i-th SP utility is evaluated in terms of its own offer xi. In this work we con-
sider evaluation functions that are non-linear. Moreover, the considered evaluation
functions are continuous, strictly convex and strictly monotonically increasing in
each of the issues.

In general, the utility of an offer xi at round t is evaluated as follows:

ui(xi, t) =
{
0 if t = tMAX and not (A)

vi(xi) if t < tMAX and (A)
(1)

where, vi(xi) is the evaluation function, A is an agreement and tMAX is the deadline.
Here, we explicitly model a collaborative approach among different providers of

different services to obtain awin–win opportunity. To enhance the possibility to reach
an agreement, each agent may choose the issue values corresponding to a benefit for
the other agents on its indifference curve. Indeed, while keeping the same value of
utility, the agent chooses to collaborate in order to find an alternative that is better
for the others, by trading-off among values. Competition remains among providers
of the same service, and it occurs at the concession step.

4.1 The Agents Bidding Strategy

In this work, we focus on the collaborative part of the negotiation, i.e., when agents
make trade-off, without considering any concession strategy. In particular, we started
from the trading-off strategy proposed in [21] for multi-agent multi-issue negotia-
tion, called the orthogonal bidding strategy that was adopted when multiple agents
negotiate to distribute units of resources among them. The strategy relies on the pos-
sibility of each agent involved in the negotiation to evaluate a so called reference
point introduced in [20], taking into account the bids of all the other agents involved
in the negotiation. Of course, in multi-agent negotiation a reference point cannot be
directly computed by applying a one-to-one agent interaction, as in [14]. The same
happens in service composition since a single agent offer cannot be used to determine
another agent offer because issues are partitioned among more than two agents.
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A reference point of an agent, calculated according to the offers of the other agents,
as in [21], allows the agent to select, step by step, a new offer on its indifference
curve as the point that minimizes the Euclidean distance between the curve and the
reference point. Practically, the reference point of an agent represents the desired
bid in order to reach an agreement, keeping fixed all the other agents bids. Note that
at each step only one agent can send an offer, while the other offers should be kept
fixed, so reference points have to be computed one at a time.

In our referencemarket-based scenario, it is likely that for eachAS in theAWmore
than one SPmay issue offers. For this reason, we adopt the heuristicmethod proposed
in [1] to select at each round a set of agents providing a set of promising offers at
that round, by assuming that the issues that are negotiated upon are additive (so
the workflow structure is not relevant for their composition). The method consists
in evaluating the utility of each offer, and in selecting the most promising set of
offers, one for each AS, with respect to the global constraints, by considering global
constraints as upper bounds for each issue of the composition. So, a promising
combination of offers B = (bt1, . . . ,b

t
n), one for each AS, is obtained.

Definition 2 A selected offer btk at round t for the ASk is the one that maximizes the
following equation:

m∑

j=1

max
∀xti,j∈ASk

(xti,j) − xti,j
∑n

k=1 max
∀xti,j∈ASk

(xti,j) − ∑n
k=1 min

∀xti,j∈ASk
(xti,j)

(2)

where, max(xti,j) is the maximum xti,j issue value offered by the agent i for the issue
j of all the available offers for the ASk at time t (i.e., ∀xti,j ∈ ASk), while min(xti,j) is
the corresponding minimum xti,j issue value. Equation2 estimates how good an offer
is, by evaluating the QoS values w.r.t. both the ones offered by the other SPs of the
same service, by taking as a reference the maximum offered value for that issue,
and the QoS values of a possible combination of offers. In fact, the numerator gives
an indication of how good the value of each QoS parameter is with respect to the
QoS value offered by other SPs of the same AS, and it is then related to the possible
aggregated values of the same issue for all the ASs.

Differently from the work of [21], the offers and the SC constraints are private
information, so it is not feasible for each SP to compute its own reference point. For
these reasons, in our approach, reference points for each AS are calculated by the
SC, as a sort of counteroffer, at the coordination step relying on the offers selected
for the most promising combination at a given round. In addition, reference points
are sent to all SPs providing the same AS, so involving them again in the negotiation
even though not selected. So, the SC plays the role of a sort of mediator, since it is
the only one that has the necessary information to compute reference points.

A reference point is defined as follows:

Definition 3 The reference point for the SPs corresponding to anASi and tom issues
at round t is:
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rti =
⎛

⎝C1 −
∑

k∈N−{i}
btk,1, . . . ,Cm −

∑

k∈N−{i}
btk,m

⎞

⎠ (3)

where, btk is the last bid of agent k ∈ N − {i} selected for the considered combination
at that round.

In [21], the authors proved that a set of offers (xt1, . . . , x
t
n) is an agreement at

round t iff each reference point ri for each agent i Pareto dominates the bid of the
agent it is calculated for, i.e., rti,j ≥ xti,j. Starting from this, the authors proved that,
when trading-off among possible offers with the same utility, the orthogonal bidding
strategy they propose leads to an agreement that is Pareto optimal and that, if it
exists, it is unique. The corresponding theorems were proved for the case of k = 3
and m = 2. The Definition 3 of reference point is the same as the one defined in
[21] with the difference that the constraints Cj (with j ∈ M) are not normalized in
the set [0, 1]. So the same theorems apply also in our case provided that reference
points are calculated with respect to the set of selected offers at each round, so the
Pareto optimality and the uniqueness of the Pareto optimal agreement is referred to
the agents providing the set of selected offers B at the considered round. In fact,
different sets of selected offers may lead to different Pareto optimal agreements.

In our approach a reference point, calculated according to Definition 3, is assumed
to be the reference point for the entire set of available SPs for each AS at a given
round. In this way, all SPs available for eachAS are able to negotiate at the successive
round by formulating offers based on the value of the reference point, so to avoid
discharging offers that may become more promising at successive rounds.

4.2 Weighted Reference Points

When the number of ASs increases, it is undesirable that an SP for a given AS
waits for the offers of the others SPs of the remaining ASs to get its reference point,
since reference points are computed one at a time. This is even more crucial in an
open market of services, since the time spent in negotiation may prevent its use in
this scenario. To avoid this, reference points referred to a given round t should be
computed relying only on the offers available at the previous round as follows:

Definition 4 The timed reference point for the SPi corresponding to an ASi at round
t + 1 is:

r̄t+1
i =

⎛

⎝C1 −
∑

k∈N−{i}
xtk,1, . . . ,Cm −

∑

k∈N−{i}
xtk,m

⎞

⎠ (4)

where, for simplicity there is one SP agent for each AS.



26 C. Di Napoli et al.

Unfortunately, with this definition of reference point, the convergence of the
orthogonal bidding strategy is not guaranteed, but it can diverge and lead to an
oscillatory behavior. This is due to the fact that reference points are concurrently
computed at round t, and used by the SPs to formulate bids at round t + 1. This
prevents the adjustment of bids for each AS, step by step, within the same round that
is a prerequisite for the convergence to the agreement. On the other hand, considering
the offers at the previous round when computing reference points, is the only way
to concurrently negotiate with the SPs for all ASs, so avoiding that the deadlines for
each round depend on the number of ASs. To keep the convergence of the bidding
strategy, while keeping the possibility to concurrently compute reference points, it is
necessary to provide SPs with reference points that allow for different adjustments
of bids, in terms of different “weights” that depend on the issue values of the offers
with respect to their aggregated values. For this reason, in [6] we introduced a new
reference point, named the weighted reference point (r̂ti) as follows:

Definition 5 The weighted reference point for the SPi corresponding to an ASi at
round t + 1 is r̂t+1

i = (r̂t+1
i,1 , . . . , r̂t+1

i,m ), with r̂t+1
i,j defined as follows:

r̂t+1
i,j = xti,j

∑n
k=1 x

t
k,j

· r̄t+1
i,j = ωt

i,j · r̄t+1
i,j (5)

Fig. 1 r̂ti and r̄
t
i for 2 negotiation rounds
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where ωt
i,j is the weight of the issue value at time t compared to the aggregated value

of all the bids for that issue, and r̄t+1
i,j is the timed reference point of Definition 4.

In Fig. 1, the behavior of a negotiation in the first two rounds is reported showing
reference points and offers in the case of weighted and timed reference points with
the same initial configuration. As shown, for SP1 the r̂t1 value corresponds to a
scaled version towards the origin of r̄t1, since the relative weights of the two issues
are comparable in the overall agreement. Instead, for SP2 and SP3 the weighted
reference points lead to different new bids (number 2) with respect to the case of
timed reference points.

According to [6], when trading-off among possible offers with the same utility,
the weighted orthogonal bidding strategy leads to an agreement. An investigation of
different definitions ofweighted reference points for service composition is necessary
to verify if Pareto optimality properties can be applied to agreements found when
concurrent negotiation is allowed.

5 Simulation Results

Let us consider anAWconsisting of 2 ASs and 2 SPs for eachAS. Negotiation occurs
on two issues (e.g., issue1 can be the service execution time, and issue2 its cost). SPs
utility functions are modeled using the well known Cobb–Douglas functions given
by:

ui(xi, t) = γ (xti,1)
α(xti,2)

β (6)

where, α, β and γ are constant factors, with α ≥ 0, β ≥ 0, and γ > 0, that are
randomly assigned to each agent (and different for each of them), and xi,j ≥ 0.

In Fig. 2, the evolution of a negotiation execution for the considered experimental
setting is shown. In particular, we plotted, for each AS, all SPs issue offers (crosses
in the figure) that approach the reference point computed according Definition 3
(empty circles in the figure) for that AS. The best offers selected at each round (filled
circles), one for each AS, are used to compute the reference points for the successive
round. The negotiation ends successfully with the set of offers respectively sent by
SP1 and SP3 converging to the Pareto optimal agreement.

In Fig. 3, a different negotiation execution is reported for two provider agents of
AS3, indicating the reference points computed at each round, the corresponding offers
respectively sent by the two agents, and the selected offers at each round. As shown,
from round 1 to round 4, the offers sent by SP2 are selected as the most promising
ones, while from round 5 to round 10, the offers selected as the most promising ones
are those sent by SP1. The negotiation ends with an agreement including the offer
sent by SP1 at round 10. The possibility to negotiate at each round with all available
providers for a givenAS, allowed to achieve a Pareto optimal agreementwith an agent
that would have been discarded since it was not promising at the beginning of the
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Fig. 2 Negotiation evolution for an AW with 2 ASs, and 4 SPs

Fig. 3 Offers evolution of the SPs for AS3
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Fig. 4 r̄ti (top) and r̂ti (bottom) convergence

negotiation. Hence, a reference point computed considering a set of single selected
offers at a given round, allows to select a different set of offers at a successive round.

It could happen that an offer for an AS included in a Pareto optimal agreement
may be provided by two different SPs, if the indifference curves intersect: in such a
case just one of the SPs is randomly selected since the selected agent is not relevant
for the Pareto optimality of the agreement.
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Finally, in Fig. 4, a complete negotiation execution is shownwhen reference points
are computed respectively according to Definition 4 (see Fig. 4 top) and Definition 5
(see Fig. 4 bottom), starting from the same configuration of SPs and ASs. In the first
case, the negotiation does not converge to an agreement in 100 rounds, while in the
second case such agreement is reached very quickly. These experiments suggest that
when considering weighted reference points they converge to an agreement and, if
it exists, it can be found through a weighted orthogonal bidding strategy. Hence,
reference points can be concurrently computed.

6 Related Work

As discussed in Sect. 3, negotiation for service composition is a package-deal multi-
issue one. While single-issue negotiation is widely studied in literature, multi-issue
negotiation is less mature [14]. Typically, multi issue-negotiation approaches can be
classified as mediated or not mediated ones. Most of the not mediated approaches
rely on bilateral interactions [2]. A variety of searching methods are proposed in
literature, as for example, similarity criteria based search [9], or decentralized search
[14]. In this paper, we deal with the problem of multi-issue negotiations where the
component issue values are provided by multiple agents, and thus a requester agent
is negotiating with multiple trading partners. In multi-issue, multi-agent negotiation
literature, it is often assumed that there is an unbiased mediator who collects the
agents preferences and proposes offers to the trading agents [8, 11, 14, 18]. In this
work, the SC agent plays a sort of mediator role. In [14], the authors propose a Pareto
optimal mediating protocol where, at each step, the mediator provides a negotiation
baseline and the agents propose base offers on this line. In [18], the authors use one-
to-many multiple negotiations with a coordinator able to change the strategies of a
specific negotiation thread. In [11], the authors proposed a protocol for multi-issue
negotiation with not linear utility functions and complex preference spaces. They
propose a simulated annealing-based approach as a way to regulate agent decision
making, along with the use of a mediator.

In this work, we only focus on trading-off. Trading-off to find optimal solution
in bilateral multi-issue negotiation was addressed in [9, 14]. In particular, in [14]
an alternating projection strategy was proposed, with reference points evaluated
with respect to the last offer of the other agent. In [23] such strategy was extended
to the multi-agent case, by evaluating reference points as a mean sum of all the
offers at each step. Differently from our case, in [23] an agreement corresponds to a
single point in the negotiation space, and weights are the same for all the agents. In
[9], the authors used the notion of fuzzy similarity to approximate the preference
weights of the negotiation opponent in order to select the most similar offer to
the last received offer in a pool of randomly generated trade-off offers. In [8], the
authors present a constraint proposal method to generate Pareto-frontier of a multi-
issue negotiation corresponding to a given reference point. In practice, the mediator
adjusts a hyperplane according to predetermined reference points, until the agents
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most preferred alternatives on the hyperplane coincide. By choosing reference points
on the line connecting the agent global optima, Pareto optimal points are produced,
and the mediator’s problem has a solution when the number of issues is either two
or any odd number greater than two [13]. In [21], the authors present an automated
multi-agent multi-issue negotiation for allocation of unit resources, similar to our
case. The proposed bidding strategy requires that at each round the agents make bids
in a sequential order in order to compute a reference point for each agent involved
in the negotiation. In our approach, reference points are calculated for each set of
provider agents providing a specific functionality required in a service composition.

Generally, a buyer gets more desirable negotiation outcomes when it negotiates
concurrently with all the sellers in competitive situations in which there are informa-
tion uncertainty and deadlines [16]. Amodel of concurrent negotiationwas addressed
in [2], where agents are allowed to make counter-proposal without having received
proposals from all other trading partners. In [16], the multiple negotiation threads
still happen in the same negotiation round, as in our case, but the heuristic methods
used by the negotiation coordinator strongly depend on history information about
trading partners and negotiation environment. In our dynamicmarket based scenario,
past information is not always relevant to drive negotiation.

7 Conclusions

In this work, we discussed the main features that make software agent negotia-
tion a suitable approach to select services depending on their QoS attribute values.
As described, when service provision occurs in a competitive market of service
providers, the adopted negotiation model has to meet specific requirements to be
applied in a service composition problem. Since negotiation occurs among a user
requesting an SBA and the providers available to deliver the appropriate service com-
ponents, usually characterizedbymultipleQoSattributes, negotiation is amulti-agent
and multi-issue one. For this type of negotiation it is more difficult to derive theo-
retical understanding of its behavior, and more crucially to define when agreements
that are Pareto optimal can be found. In this work, we refer to a scenario where
a composition of services have to be delivered with QoS value satisfying a user’s
request, assuming that for each component service more providers are available on
the market, and they may provide the same service with different QoS additive val-
ues. In this scenario, we proposed a variation of the orthogonal bidding strategy
based on the approach presented in [21], and showed how it allows to find an agree-
ment, if it exists, that is Pareto optimal. Furthermore, the possibility to negotiate at
each round with all available providers for each abstract service in the composition,
allows to achieve a Pareto optimal agreement with a provider agent that would have
been discarded according to the adopted heuristics, since it was not promising at
the beginning of the negotiation. Hence, a reference point computed considering a
set of selected offers at a given round, allows to select a different set of offers at a
successive round.
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In addition, by introducing a weighted reference point, we show that it is still
possible to find an agreement also in the case the Service Compositor concurrently
computes all the reference points for each Abstract Service. This allows to avoid
making the length of negotiation depending on the number of the Abstract Services
composing the Abstract Workflow, that is the case when computing reference points
one at a time. This aspect is important when adopting negotiation for service compo-
sition. This is even more crucial when the considered reference scenario for service
composition is an open market of services, since the time spent in negotiation may
prevent its use in these settings.
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A Cooperative Framework for Mediated
Group Decision Making

Miguel A. Lopez-Carmona, Ivan Marsa-Maestre and Enrique de la Hoz

Abstract In this work we consider a group decision making problem where a
number of agents try to reach an agreement through a mediated automated nego-
tiation process. Each participating agent provides her preferences over the sets of
contracts proposed by the mediator in successive mediation steps. Then, individual
preferences are aggregated to obtain a group preference function for choosing the
most preferred contract. The negotiation process involves a set of mediation rules
to explore efficiently the alternatives space, which is derived from the Generalized
Pattern Search non-linear optimization algorithm. A particularly notable feature of
our approach is the inclusion of mechanisms rewarding the agents for being open to
alternatives other than simply their most preferred. The proposed negotiation frame-
work avoids selfish behavior and improves social welfare. We show empirically that
our approach obtains satisfactory results under smooth non-linear utility spaces.

1 Introduction

Group decision making is among the most important decision processes in technical,
social and economic contexts, and cooperation is at the heart of fair and optimal
group decisions. A typical framework for group decision making support consists
on a mediator, a set of alternatives, a set of preference functions stating the support
that an agent gives to each alternative, and a set of payoffs stating the reward that an
agent will get if certain alternative is finally selected [16]. The role of the mediator
is to privately aggregate these preference functions and select the most supported
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alternative. The strategies used by the agents when revealing their preferences will
strongly influence on the final agreement [17].

Existing research recognizes the critical role played by aggregation functions to
enforce cooperation in mediated group decision making [1, 20]. In order to avoid
strategic manipulation, Yager [19] develops a one-shot automated negotiation mech-
anism that privileges agents who are not totally self-interested by using a weighted
aggregation operator. Several studies have reported mechanisms to define complex
forms of social welfare by means of Ordered Weighted Average (OWA) operators
[2–4]. For instance, in [19] a set of mediation rules are defined which allow for a
linguistic description of social welfare using fuzzy logic.

A number of researchers have built iterative mechanisms to reach agreements
among multiple participants [7–9, 13, 14, 18]. They define bargaining mechanisms
to obtain agreements by using fair direction improvements in the joint exploration
of the negotiation space [5, 6, 12]. The mediator proposes a set of alternatives
and agents provide their utility gradients. Then, the mediator proposes a new set
of alternatives in the bisector or in an arbitrary direction which is considered fair
enough. Unfortunately, these mechanisms are prone to untruthful revelation to bias
the direction generated by the mediator.

To avoid strategic manipulation, in [10] agents are restricted to express their
preferences using a minimum number of positive votes for the different alternatives.
Then, the mediator looks for Pareto improvements using a mediated negotiation
protocol based on a distributed non-linear optimization mechanism.

To the best of our knowledge there are no results in the literature regarding how
more complex aggregation operators impacts strategic manipulation, social welfare
and optimality in mediated group decision making.

The aim of our paper is to propose a multi-party negotiation framework that
rewards those agents who are not totally self-interested. It relies on a distributed
exploration protocol based on the Generalized Pattern Search optimization algo-
rithm (GPS) [11], and a set of mediation rules that rewards truthful revelation of
preferences. Our proposal considers the iterative improvement of potential solutions
to the problem.

The structure of the paper is as follows. In Sect. 2 we describe the problem. Then,
in Sect. 3 we present the adapted GPS algorithm to look for Pareto improvements.
We present the negotiation protocol, the aggregation operator and the alternatives
search process. In Sect. 4 we present the experiments and the results obtained. Finally
conclusions and further work are presented in Sect. 5.

2 Problem Description

Weconsider an iterativemediation protocol performed concurrently by a set of agents
a1, a2, . . . , an and a mediator. The aim of the agents is to reach an agreement on a
contract which is defined by a set of issues in the real domain. The mediator proposes
a set of contracts, and the agents express privately their preferences. We assume
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non-linear preferences which may take values from the real or integer domain. Then,
the mediator aggregates the preferences for each contract and selects a winner. Based
on the winner contract a new set of contracts is proposed to the agents in order to
improve the search process. This iterative process ends with a globally accepted
contract.

2.1 Negotiation Domain and Agents’ Preferences

Each contract c ∈ C is a vector defined by a finite set of issues {xi |i = 1, . . . , k} in
the real domain. Thus, the negotiation domain can be denoted C ∈ R

k . We denote
by Vap (c) the payoff obtained by agent ap if the output of the negotiation process
is c. Additionally, Aap (c) defines the degree to which ap supports c. Without loss of
generality, we consider Aap (c) ∈ [0, 1]∀ap, c, being 1 the highest support. Note that
V () is a private function stating the reward achieved by the agent, while A() reflects
the information revealed to the mediator.

To model non-linear preferences we use Bell functions [15]. Bell functions cap-
ture the intuition that agents’ preference for a contract usually decline gradually
with distance from their ideal contract. In addition, they provide the capability of
configuring different negotiation scenarios with different complexity degrees.

A Bell function is defined by a center c, height h, and a radius r . Let ‖ s − c ‖ be
the euclidean distance from the center c to a contract s, a Bell function is defined as

f bell(s, c, h, r) =

⎧
⎪⎨

⎪⎩

h − 2h ‖s−c‖2
r2 i f ‖ s − c ‖< r/2,

2h
r2 (‖ s − c ‖ −r)2 i f r >‖ s − c ‖≥ r/2 ,

0 ‖ s − c ‖≥ r

where the reward function is an aggregation of Bell functions

Vap (s) =
nb∑

i

f bell(s, ci , hi , ri ) .

The variable nb represents the number of bells used to define each reward function.
The complexity of the reward functions can be modulated by varying ci , hi , ri and
nb.

Figure1 shows a proof of concept scenario with reward functions in a bidimen-
sional contract space [0, 100]2. TheSocialwelfare plot presents the sumof the agents’
rewards, and theAgents 3 and 4 plot the sum ofAgents’ 3 and 4 rewards. Each reward
function has a global optimum and two local optima in different quadrants of the
contract space. The maximum social welfare is around 1.8 for the contract [50, 50],
but the highest reward for an agent is close to one of the corners in the contract space
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(i.e. [0, 100], [100, 100], [0, 0], [100, 0]). We used this proof of concept scenario in
our tests in order to demonstrate the general properties of our approach.

2.2 Negotiation Protocol

Wepropose a distributed adaptation of the GPS optimization algorithm, which serves
to perform a distributed search through the contract space. For simplicity andwithout
losing generality, we will assume a negotiation domain with contracts formed by two
issues (i.e. C ∈ R

2) in the description of the protocol. The extension to more issues
is straightforward.

At any given round t , the mediator builds a set of five contracts Ct = {ct0, ct0 +
�t × e j | j = {1, . . . , 4)}, where e j is the basis vector and �t ∈ R is a step-length
parameter. Thus, Ct = {ct0, ct1, ct2, ct3, ct4} is formed by a contract ct0 and a set of four
contracts which are centered around ct0. For two issues, a commonly used basis is:
e1 = {1, 0}, e2 = {0, 1}, e3 = {−1, 0} and e4 = {0,−1}. For a number of issues n
we would need at least a basis of length 2n.

In the first round, the mediator selects a random contract c00 and builds the other
four contracts using an initial �0. This set of contracts C0 is sent to the agents and
then negotiation starts:

1. Each agent ap provides the mediator a set of supports Aap (C
t ) for the different

contracts in Ct (C0 in the first round). We recall that the support information is
private to the agents and only known to the mediator, and that Aap (C

t ) may not
reflect the real reward Vap (C

t ) achieved by the agent.
2. The individual preferences for each contract cti are aggregated by the mediator

using the aggregation operator D

Dt
i (A1(c

t
i ), . . . , An(c

t
i ))

to obtain the set of group preferences Gpt = {Dt
i |i = 0 . . . 4}. We shall refer to

this as the aggregation of preferences step.
3. The mediator selects the most supported contract depending on the values in

Gpt . For instance, it can be selected the most supported contract, or we could
consider the uncertainty of the selection process, and use a probabilistic function
to select the winner contract. We shall refer to this as the contract selection step.
Negotiation ends at this stage if a maximum number of rounds has been reached.
Otherwise, the negotiation protocol goes to step 4.

4. If the selected contract in step 3 is ct0, then �t is reduced by half; otherwise, the
step-length parameter is increased by two. In both cases, the selected contractwill
be the new central contract ct+1

o in the next round. If �t+1 is deemed sufficiently
small then negotiation ends with the winner contract as the final agreement.
Otherwise, the process goes to step 5.
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5. Based on the group preferred contract ct+1
0 and�t+1, the mediator obtains a new

set of contracts Ct+1 which is sent to the agents, and then the process goes to
step 1 again.

We assume that the negotiation process always ends with an agreement. Negotiation
ends when�t is below a predefined threshold, either when group preference is above
a threshold or when the number of rounds expires.

At each stage an agent provides her support for the different contracts, which
comes determined by her underlying payoff function and any information available
about the previous stages of the negotiation. The process of choosing the specific
support for the different alternatives at each round of the negotiation then constitutes a
participating agent’s strategy.An important consideration in an agent’s determination
of their strategy are the rules and procedures used in the negotiation process.

Figure2 shows an example of negotiation processwith 2 agents and 35 rounds. The
first plot illustrates the movement, expansion and contraction of the set of contracts.
Each point is a contract such that its diameter is proportional to the step-length used
by the mediator. We can see how the points get smaller as we get closer to the
final agreement. In the example, the maximum social welfare is around the central
point. The second plot shows the evolution of the agents’ rewards. The third plot
presents the evolution of the group preferences. Each column comprises five points
representing the group preferences for each contract in Ct .

In the following we shall describe the implementation of the negotiation protocol
steps outlined above.

2.3 Aggregation Operator for Adapted GPS (GPSao)

Our aim was to define an aggregation mechanism such that agents were prone to
truthfully reveal their preferences and mitigate strategic manipulation. We needed an
operator that considered the score distribution within the set of contracts in Ct . We
called this operator the GPS aggregation operator or GPSao, which is a based on a
weighted sum of the individual preferences:

Dt
i = wa1 Aa1(ci ) + wa2 Aa2(ci ) + . . . + wan Aan (ci )

where the weights for each agent ap are computed as follows:

mp = max{Aap (c
t
0), Aap (c

t
1), ..., Aap (c

t
4)}, (1)

Sp = 1 −

4∑

i=0

(mp − Aap (c
t
i ))

4mp
, (2)
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Fig. 2 Example of
negotiation process:
expansion and contraction of
alternatives, evolution of
rewards and evolution of
social welfare
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Table 1 Example of aggregation of preferences: GPSao operator

A1 A2 A3 A4 D(cti ) = w1A1(ci ) + w2A2(ci ) + . . . + wn An (ci )

xt0 0, 2 0.7 1 0 0.69

xt1 0, 3 0.7 0.8 0 0.64

xt2 0, 2 1 0.8 0 0.73∗

xt3 0, 1 1 0.7 0, 1 0.67

xt4 0, 01 0, 4 0.6 1 0.40

w1 w2 w3 w4

0.23 0.37 0.39 0.01

wap = Sp
∑n

j=1 Sj
. (3)

In (1) the mediator obtains the maximum support an agent gives to a contract.
In 38 Sp represents how an agent shares her support among the different contracts.
This sum is normalized by 4mp such that if an agent only votes for one contract, then
Sp = 0. If an agents gives the same support to all the contracts then Sp = 1. Sp does
not depend on the support magnitude but on the distribution of scores. Finally, wap

extracts multi-agent level information by comparing the different Sp values. Table1
shows the different results obtained at a given step t using GPSao.

Agent A4 gets the lowest weight because she only votes for x3 and x4. The sum
of scores of A1 is lower than for A4, but w1 is much higher than w4. It can be
seen how those agents that are more opened to alternatives are privileged. GPSao
considers the openness to alternatives, the magnitude of the agents’ preferences and
the relationship between those preferences from a global perspective.

Once the mediator has applied the aggregation function, next step is to decide
if negotiation ends or if a new set of alternatives Ct+1 needs to be provided to the
agents. This is the contract selection step.

2.4 Contract Selection

The starting point is the set Gpt of group preferences and the set of contracts Ct . We
associate with each contract cti a probability

P(cti ) = (Dt
i )

σ

∑4
i=0(D

t
i )

σ
.

The contract selection process selects the winner contract withinCt using a biased
random experiment with these probabilities. The parameter σ > 0 works as an indi-
cation of the significance we give to the group preferences. If σ → ∞ we select
the contract with the maximum support. If σ = 1 then the probability of selecting
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cti would be proportional to its group support. The rationale behind using this prob-
abilistic process is to introduce randomness and avoid local optima. However, this
selection process it is not considering how good is the selection made.

Themediator must consider both the support values and their relationship to make
the decision of expansion and contraction. Thus, we make σ vary as a function of
D and the number of rounds t . If D is high, σ must be high, favouring a determin-
istic selection, i.e. with a high probability the contract with a higher D is selected.
Otherwise, if D is low, σ must be low to induce randomness and avoid local optima.
More specifically, for σ = 0 the selection of alternatives is equiprobable, making
such selection independent of D. For σ = 1 the selection probability is proportional
to D. Higher values for σ increases the probability of choosing the contract with a
higher D.

To control σ we define the function:

σ(t, D) = σmin + (σmax − σmin) · D(1− t
tmax

)·α ,

where σ depends on the negotiation round t , themaximumnumber of rounds tmax and
D. The function is bounded by σmax and σmin given D = 0 and D = 1 respectively.
The parameter α > 0 determines the curvature of σ(t, D). As the number of rounds
t increases, the function increases its concaveness, which means that D induces
higher values for σ , favouring convergence. Figure3 shows the evolution of σ(t, D)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

D

σ(t=t
max

−1,D)

σ(t=0,D)=σ
min

+(σ
max

−σ
min

)D(1−t/t
max

)⋅6

σ(t=t
max

,D)
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for tmax =50, α = 6, σmax = 200 and σmin = 1. The principle of this approach is
analogous to the simulated annealing technique without reannealing. We can also
introduce reannealing for tr < tmax such that t/tmax converts into

t−tr
tmax−tr

.

3 Experimental Evaluation

3.1 Proof of Concept Scenario

We evaluated a proof of concept scenario with four agents, contracts with two issues
in the real domain, and reward functions which were built using an aggregation of
Bell functions.

The configuration of parameters in the mediator was: tmax = 50 rounds, step-
length threshold 1e − 6, and (α = 6,σmin = 0,σmax = 200) for the selection process.
We tested the performance of three different aggregation operators: the normalized
sum operator (NSao), the Yager’s operator (YAo) and GPSao. NSao sums up the
agents’ preferences. YAo applies the following formulas to aggregate preferences:

Sp =
n∑

i=1

Aap (ci )

wap = Sp
∑n

j=1 Sj
.

YAo is similar to GPSao in that it uses weights to modulate the importance of an
agent in the selection process. However, these formulas consider only the distribution
of the agents’ sum of preferences, not how an agent distributes her preferences.

We considered a selfish and a cooperative strategy. A selfish agent S votes only
for her preferred contract. A cooperative agent C truthfully reveals her preferences
for the different contracts. Hence, we consider the following five scenarios: Sc1 =
[C,C,C,C], Sc2 = [S,C,C,C], Sc3 = [S, S,C,C], Sc4 = [S, S, S,C] and Sc5 =
[S, S, S, S]. For each scenario and aggregation operator we conducted 100 negotia-
tion instances and captured the reward achieved by each agent.

3.1.1 Results

Figure4 shows the three-dimensional histograms of agents’ rewards. Each column
shows the set of histograms for a given aggregation operator. Each row represents
one of the five behavior scenarios.

When all the agents are cooperative, independently of the aggregation operator,
the group support is maximized (see first row). With NSao, selfish agents are clearly
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Fig. 4 Three-dimensional histograms of agents’ rewards for the proof of concept scenario

privileged. However, if all the agents are selfish, the agents’ rewards decrease drasti-
cally. NSao operator therefore does not provide a dominant strategy that maximizes
social welfare. On the other hand, YAo operator performs even worse. The overall
results when one or more selfish agents appear are very poor and negotiations exhibit
a random behavior.

With GPSao, agents have an incentive to act cooperatively and truthfully reveal
their preferences. We can see how selfish agents are expelled from the negotiation



46 M.A. Lopez-Carmona et al.

and that when all the agents are cooperative then negotiation ends with the maximum
social welfare.

3.2 Highly Non-linear Utility Functions

We evaluated a scenario with highly non-linear reward functions. We tested the
same scenarios, with the same configuration of parameters in the mediator. We con-
ducted 100 negotiation instances for each scenario and aggregation operator. Every
20 instances a new set of random reward functions was generated. Figure5 shows
one of these reward function sets.
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Fig. 6 Three-dimensional histograms of agents’ rewards for highly complex utility functions

To generate the reward functions we varied randomly the center, height and radius
parameters of the Bell reward function. The number of bells was fixed to 30.

3.2.1 Results

Figure6 shows the 3D histograms of agents’ rewards. As in the proof of concept
scenario, with the GPSao operator agents have an incentive to act cooperatively
and truthfully reveal their preferences. However, YAo operator exhibits a random
behavior in all the scenarios, while NSao clearly privilege selfish agents.
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We conducted more experiments increasing the complexity of the Bell reward
functions. To increase the complexity we simply lowered the variation range of the
radius parameter. The experiments confirmed that as it was expected, as we increase
the complexity of the reward functions, the performance of GPSao decreases.

Overall, GPSao and adapted GPS together perform efficiently and mitigate strate-
gicmanipulation. Inmoderately complex negotiation scenarios the results are always
close to the maximum social welfare.

4 Discussion

To search efficiently the contract space with the adapted GPS protocol, the aggrega-
tion function needs to capture both the magnitude and relative support to contracts
in Ct . Magnitude informs about the quality of the exploration area. Relative support
is focused on the extraction of gradient information.

Let us assume that we use YAo operator, and that the mediator proposes a set Ct

that provides a very low reward to agent A1 and a much higher reward to the other
agents. A1 may follow two strategies: truthfully reveal her private preferences, or to
exaggerate her support for the different contracts. In thefirst case, A1 is penalizedwith
a low weight w1. Hence, A1 will have a low probability to influence the negotiation
process because gradient information is lost. On the other hand, if A1 exaggerates, she
will conduct GPS to low utility contracts. Magnitude and gradient are not compatible
concepts, and truthful revelation is penalized when the preferences for the different
contracts are lower than the other agents’ preferences.

NSao operator is the simplest form of aggregation we may think of. It simply
sums the agents’ support for a contract. The aggregation captures both magnitude
and gradient information. An agent can support a set of contracts with a low score and
gradient information is not penalized. However, the strategy to distribute the support
among the different contracts is not controlled by the mediator. It means that there is
no penalization when an agent only votes for one of the contracts exaggerating her
support.

The main drawback of NSao is consequently that it does not provide a mechanism
to control the distribution of scores. YAo controls the distribution at multi-agent level
(i.e., it makes a relative comparison between the scores of the different agents), but
it does not provide a mechanism to control how an agent distributes her support to
the different contracts in Ct .

5 Conclusions

In this work we considered a mediated multiagent decision making problem. We
proposed a multiagent negotiation framework where a mediator iteratively proposes
a set of alternatives to a group of agents. Agents provide their support to the differ-
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ent alternatives, and then the mediator evaluates the group support to the different
alternatives. We proposed the GPSao aggregation operator that considers both the
magnitude and distribution of the support to the alternatives in order to make a fair
aggregation of preferences. The mediator applies an adapted optimization algorithm
(GPS) to generate the different sets of alternatives, being an objective to obtain solu-
tions close to the maximum social welfare. We have evaluated GPSao against the
Normalized Sum and the Yager’s aggregation operators [19]. Yager’s operator avoids
strategic manipulation in scenarios of one-shot group decision making but fails in
multi-shot scenarios. The experimental evaluation shows that our negotiation frame-
work and GPSao mitigates strategic manipulation both in one-shot and multi-shot
group decision making and find solutions close to the maximum social welfare.

The proposed framework is limited to alternatives in the real domain, with pref-
erence functions that exhibit a medium correlation distance, i.e., they can be non-
monotonic but must have smooth shapes. Agents with very restrictive preference
functions may be truthfully revealing their preferences but be expelled from the
negotiation. Also, if we change to domains where alternatives are defined in terms of
categories or discrete domains, adapted GPS and the GPSao may not work. In these
cases we will need to reformulate both GPS and GPSao, or use other optimization
mechanisms better adapted to these domains. We need to explore how to cope with
more complex reward function types. Finally, we have assumed that agents do not
know the preferences of the other agents. In our opinion, we need to explore the
situations where agents may have partial knowledge. Basically, we need to assess if
such knowledge may cause strategic manipulation.

Acknowledgements This work has been supported by the Spanish Ministry of Economy and
Competitiveness grant: TEC2013-45183-R CIVTRAff.

References

1. T. Calvo, G. Mayor, R. Mesiar, Aggregation Operators: New Trends and Applications, vol. 97
(Springer, New York, 2002)

2. E. de la Hoz, M.A. López-Carmona, M. Klein, I. Marsá-Maestre, Consensus policy based
multi-agent negotiation, in Proceedings of the Agents in Principle, Agents in Practice - 14th
International Conference, PRIMA 2011, Wollongong, Australia, 16–18 November 2011, pp.
159–173

3. E. de la Hoz, M.A. López-Carmona, M. Klein, I. Marsá-Maestre, Hierarchical clustering
and linguistic mediation rules for multiagent negotiation, in International Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2012, Valencia, Spain, 4–8 June 2012 (3
Volumes), pp. 1259–1260 http://dl.acm.org/citation.cfm?id=2343952

4. E. de la Hoz, M.A. López-Carmona, M. Klein, I. Marsá-Maestre, Consortium formation using
a consensus policy based negotiation framework, Complex Automated Negotiations: Theories,
Models, and Software Competitions (Springer, Berlin, 2013), pp. 3–22

5. H. Ehtamo, R.P. Hamalainen, P. Heiskanen, J. Teich, M. Verkama, S. Zionts, Generating pareto
solutions in a two-party setting: constraint proposal methods. Manag. Sci. 45(12), 1697–1709
(1999)

http://dl.acm.org/citation.cfm?id=2343952


50 M.A. Lopez-Carmona et al.

6. P. Heiskanen, H. Ehtamo, R.P. Hamalainen, Constraint proposal method for computing Pareto
solutions in multi-party negotiations. Eur. J. Oper. Res. 133(1), 44–61 (2001)

7. T. Ito, M. Klein, H. Hattori, A multi-issue negotiation protocol among agents with nonlinear
utility functions. J. Multiagent Grid Syst. 4(1), 67–83 (2008)

8. M. Klein, P. Faratin, H. Sayama, Y. Bar-Yam, Protocols for negotiating complex contracts.
IEEE Intell. Syst. 18(6), 32–38 (2003)

9. G. Lai, K. Sycara,A generic framework for automatedmulti-attribute negotiation.GroupDecis.
Negot. 18, 169–187 (2009)

10. F. Lang, A. Fink, Learning from the metaheuristics: protocols for automated negotiations.
Group Decis. Negot. 24(2), 299–332 (2015). doi:10.1007/s10726-014-9390-x

11. R.M. Lewis, V. Torczon, M.W. Trosset, Direct search methods: then and now. J. Comput. Appl.
Math. 124, 191–207 (2000)

12. M. Li, Q.B. Vo, R. Kowalczyk, Searching for fair joint gains in agent-based negotiation, in Pro-
ceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2009), ed. By S. Decker, C. Sierra, Budapest, Hungary (2009), pp. 1049–1056

13. M.A. Lopez-Carmona, I. Marsa-Maestre, E. de la Hoz, J.R. Velasco, A region-based multi-
issue negotiation protocol for non-monotonic utility spaces, in Computational Intelligence (In
press), pp. 1–48 (2011), doi:10.1007/s10458-010-9159-9

14. M.A. Lopez-Carmona, I. Marsa-Maestre, M. Klein, T. Ito, Addressing stability issues in medi-
ated complex contract negotiations for constraint-based, non-monotonic utility spaces. J.Auton.
Agents Multiagent Syst. 1–51 (2010) (Published online)

15. I. Marsa-Maestre, M.A. Lopez-Carmona, J.R. Velasco, T. Ito, M. Klein, K. Fujita, Balancing
utility and deal probability for auction-based negotiations in highly nonlinear utility spaces, in
21st International Joint Conference on Artificial Intelligence (IJCAI 2009), Pasadena, Califor-
nia, USA (2009), pp. 214–219

16. D. Pelta, R. Yager, Analyzing the robustness of decision strategies in multiagent decision
making. Group Decis. Negot. 23(6), 1403–1416 (2014). doi:10.1007/s10726-013-9376-0

17. D.A.Pelta,R.R.Yager,Decision strategies inmediatedmultiagent negotiations: anoptimization
approach. IEEETrans. Syst.ManCybern. Part A 40(3), 635–640 (2010). doi:10.1109/TSMCA.
2009.2036932

18. Q.B. Vo, L. Padgham, L. Cavedon, Negotiating flexible agreements by combining distributive
and integrative negotiation. Intell. Decis. Technol. 1(1–2), 33–47 (2007)

19. R. Yager, Multi-agent negotiation using linguistically expressed mediation rules. Group Decis.
Negot. 16(1), 1–23 (2007)

20. R. Yager, J. Kacprzyk, The Ordered Weighted Averaging Operators: Theory and Applications
(Kluwer, Boston, 1997)

http://dx.doi.org/10.1007/s10726-014-9390-x
http://dx.doi.org/10.1007/s10458-010-9159-9
http://dx.doi.org/10.1007/s10726-013-9376-0
http://dx.doi.org/10.1109/TSMCA.2009.2036932
http://dx.doi.org/10.1109/TSMCA.2009.2036932


A Dependency-Based Mediation Mechanism
for Complex Negotiations

Akiyuki Mori, Shota Morii and Takayuki Ito

Abstract There has been an increasing interest in automated negotiation and
particularly negotiations that involves multiple interdependent issues, which yield
complex nonlinear utility spaces. However, none of the proposed models were able
to find a high-quality solution within a realistic time. In this paper we presents a
dependency-based mediation mechanism for complex negotiations. In the complex
negotiation field, there have been works on issue-by-issue negotiation models. When
considering a real world negotiation with a mediator, a mediator proposes issues, and
players negotiate on those issues.Then if there is no agreement, the other issues are
proposed by themediator so that players can find a possible agreement. The sequence
of proposing issues should be based on the dependency of those issues. In this paper,
we adopt a dependency-based complex utility model (Hadfi and Ito, Modeling deci-
sions for artificial intelligence (2014) [12]), which allow a modular decomposition
of the issues and the constraints by mapping the utility space into an issue-constraint
hypergraph. Based on this model, we propose a new mediation model that can effi-
ciently mediate an issue-by-issue negotiation while keeping privacy on the utility
values. Our experimental results show our new mediation model can find agreement
points that are close to Pareto front in efficient time periods.
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1 Introduction

Negotiation is an important process in making alliances and represents a principal
topic in the field of multi-agent system research. There has been extensive research
in the area of automated negotiating agents [5, 17, 21, 22, 24, 25]. Automated agents
can be used side-by-sidewith a human negotiator embarking on an important negotia-
tion task. They can alleviate some of the effort required of people during negotiations
and also assist people who are less qualified in the negotiation process. There may
even be situations in which automated negotiators can replace the human negotia-
tors. Thus, success in developing an automated agent with negotiation capabilities
has great advantages and implications.

In particular, for automated negotiation agents in bilateral multi-issue closed
negotiations, attention has focused on forming agreements with negotiation strate-
gies [1, 2, 4]. Many existing studies postulate the utility of the issues independence,
as a result the utility of the agent could be expressed as a linear utility function.
However, when considering negotiation problems in the real world, it is not often
that each issue is independent. In the other words, the issues are dependent on each
other. Furthermore, Klein et al. show that the technique which can find good agree-
ment point in the utility space of the independence issues does not work effectively
if the issues are interdependent [20]. Therefore, this paper discusses the complex
negotiation problems in an interdependent relationship, which a more realistic and
the amount of computation is enormous.

Motivated by the challenges of bilateral negotiations between people and
automated agents, the Automated Negotiating Agents Competition (ANAC) was
organized [10, 15, 16, 18, 31]. The purpose of the competition is to facilitate
research in the area of bilateral multi-issue closed negotiation, and especially the
setup at ANAC2014 adopted complex negotiation problems in multiple interdepen-
dence issues using nonlinear utility function.

In complex nonlinear utility spaces, One of the main challenges is scalability
problem; they cannot find a adequate solutions when there are a lot of issues, due
to computational intractability. Our reasonable approach to reducing computational
cost, whilemaintaining good quality outcomes, is to negotiate the issues sequentially,
which is a representative game theoretic models called issue-by-issue negotiation
[3, 7, 13]. Although issue-by-issue negotiation reduces the computational cost, such
approaches do not consider the negotiation order inmany issues. For Instance, if there
are two issues, X and Y, an important question that arises is how to determine the first
negotiation issue. In other words, the two order XY and YX can result two different
outcomes. Therefore, they need to determine the order of issues, but exploring the
optimal issue is a difficult task, especially given that real world negotiations involve
multiple issues. For these reason, in the complex multiple issues, it is desirable
considering dependency among the issues.

Hadfi et al. proposed a modular representation for nonlinear utility spaces by
decomposing the constraints and issues into an utility hypergraph [12]. Exploration
and searching for optimal contracts are performed based on a message-passing
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mechanism in the hypergraph. This mechanism can handle a large family of complex
utility spaces by finding the optimal contracts, outperforming previous sampling-
based approaches. However, this model which finds for the solutions in complex
interdependent spaces are confined to explore for the own maximum solutions in the
utility space. Hence, this model do not discuss a methods that search and negotiate
the best agreement points in the whole of negotiation participants.

In this paper, we propose a new negotiationmodel based on the dependency-based
mediation mechanism in complex nonlinear utility spaces. Specifically, we proposed
method for reaches an optimal consensus each other by means of representing the
preference information of the agents as a hypergraph. In addition to, we adopt a
mediator to be fair and facilitate negotiation. We propose a mediator strategy that
expands sequentially the negotiation issues at an optimal time so that agents allow for
smooth negotiation.Note that this approach thatmediator expand the issues gradually
is well-known in the real world negotiations.We experimentally evaluated our model
using several nonlinear utility spaces, showing that it can handle large and complex
spaces by finding the good solutions in the minimum time.

The remainder of this paper is organized as follows. In the next section,we propose
the basics of nonlinear utility space representation. In Sect. 3, we describe our new
model based on a dependency-based mediation mechanism for optimal contracts
search. In Sect. 4, we provide our experimental results, and in Sect. 5, we describe
related works. In Sect. 6, we conclude and outline future work.

2 Negotiation Environments

2.1 Multi-issue Automated Negotiations

In the field of multi-issue automated negotiation, the bilateral negotiation protocol
is one of the most popular protocols while mediator-based negotiation protocols
have been proposed as well. In a bilateral negotiation protocol, two agents directly
exchange their offers to make an agreement. One well-known bilateral negotiation
protocol is the alternating-offers protocol proposed by Rubinstein [27–29]. This
protocol has been adopted as the standard protocol in the Automated Negotiating
Agent Competitions (ANAC). The purpose of this competition is to steer research
in the area of bilateral multi-issue closed negotiation. In closed negotiations, when
opponents do not reveal their preferences to each other, which is an important class of
real-life negotiation. Negotiating agents designed using a heuristic approach require
extensive evaluation, typically through simulations and empirical analysis, since it
is usually impossible to predict precisely how the system and constituent agents will
behave in a wide variety of circumstances [19, 30].

The following shows an example of the alternative-offers protocol in ANAC. Let
us think about agent A and agent B. First, agent A proposes an offer (a bid) to agent
B. Then, agent B can choose the following three actions based on the offer proposed
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by agent A: Accept embraces the offer by the opponent, and the offer becomes the
agreement. Agents get utilities based on the agreement. Offer rejects the offer and
then proposes a new offer to the opponent. Negotiation continues. EndNegotiation
gives up the entire negotiation. If one of agents chooses this option, the negotiation
ends without agreement. Thus, the utilities that agents can get is the minimum or 0.

In amediator-based negotiation, a mediator (or mediators) is supposed to exist
between the negotiating agents. The mediator is usually assumed to be fair and
facilitate negotiation so that agents can reach agreements and obtain higher utili-
ties. Mediator-based negotiation can also be used with bilateral negotiation while a
mediator is used for managing multi-party negotiations.

2.2 Nonlinear Utility Models

In the field of complex negotiations, nonlinear utility is assumed in the sense that the
shape of the utility function is not monotonic, rather bumpy. One common nonlinear
utility model is the multi-issue interdependent utility model, where we assumemulti-
ple issues are depended on each other. Such interdependency causes non-monotonic
and bumpy shapes. Actually, it would be possible to assume that the real human
utility function is more non-monotonic.

Constraint-Based Utility Model:

The classical and widely used multiple interdependent issue utility model is the
constraint-based utility model [8, 14], which is defined by the accumulation of con-
straint blocks. A constraint is constrained with several issues, and if these issues are
satisfied, an agent can obtain utility from this constraint. For example, let us assume
there are issues, “color”, “type”, “engine”, “power”, etc., for buying a car. One con-
straint could represent that if “color” is “red” or “blue” and “type” is “sports”, then
the agent has utility 50 for this car. We assume an agent has a lot of these constraint
blocks. Accumulation of these constraint blocks make nonlinear utility space.

Formally, assume M issues and each issue i j ∈ I (I is the set of issues) has issue
value s j ∈ [0, X ], where [0, X ] is the domain of issue i j . A possible contract is
represented as vector s = (s1, s2, . . . , sM). Let us represent a constraint as ϕk ∈ Φ

(Φ is the set of constraints). ϕk has a range of values for some of the issues, which
satisfy ϕk . For example, the following representation is possible that c1 is satisfied
and has utility 300 if i1 is in [3, 5] and i2 is in [4, 8]. Constraint ϕk has a utility
w(ϕk, s) when s satisfies ϕk .

Agent n ∈ [0, 1]’s utility for possible contract s can be defined as the following
Eq. (1).

un(s) =
∑

ϕk∈Φ,s∈x(ϕk )

wn(ϕk, s), (1)

where x(ϕk) is a set of possible contracts that can satisfy ϕk .
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This constraint-based utility function representation allows us to capture the issue
interdependencies common in real world negotiations. A negotiation protocol for
complex contracts can, therefore, handle linear contract negotiations. The objective
function for our protocol can be described by the following Eq. (2).

argmax
s

∑

n∈[0,1]
un(s). (2)

Our protocol, in other words, tries to find contracts that maximize the social wel-
fare (i.e., the total utilities for all agents) within a realistic time. Such contracts, by
definition, will also be Pareto-optimal.

Figure1 shows an example of a utility space generated via a collection of binary
constraints involving issues i1 and i2. The utility function is highly nonlinear with
many hills and valleys. Having a large number of constraints produces a bumpy
nonlinear utility space with high points whenever many constraints are satisfied and
lower points where few or no constraints are satisfied. This representation is intuitive
and simple to implement. Thus there have been a lot of studies based on this model.
However, because this model utilizes a multi-dimensional numerical graph, it is not

Fig. 1 2-dimensional nonlinear utility space
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natural to think about discrete and uncomparable values of issues. On the other
hand, there have been several approaches to use graph-structures to represent the
nonlinearity of utility space. The following dependency-based hypergraphical utility
model is one recent nonlinear utility space model.

2.3 Dependency-Based Hypergraphical Utility Model

To represent complex utilities, there have been several approaches that utilize graph
structures [9, 26]. In this paper we focus on the dependency-based hypergraphical
utility model [12] because this model can represent the other graph based structures
and also the above constraint-based utility model.

Let us define utility hypergraph Γ = (I, Φ), with sets of issues I and constraints
Φ. Φ = {ϕk}lk=1, where ϕk is the k-th constraint and l is the total number of con-
straints.

To each constraint ϕk ∈ Φ, this model assigns neighbors set N (ϕk) ⊂ I that
contains issues connected to ϕk with |N (ϕk)| = δk

Each constraint ϕk corresponds to a δ j -dimensional matrix, Mϕk . The utility of
constraint ϕk is defined as function φk in the following Eq. (3).

φk :N (ϕk)
δk → R

φk(i1, i2, . . . , iδk ) �→ w(ϕk, s). (3)

Figure2 shows an example of utility hypergraph Γ10, where the number of issues
is ten and the number of constraints is seven, that is Γ10 = (I, Φ), I = {i j }9j=0 and
Φ = {ϕk}7k=1. Here, N (ϕ3) = δ2 = 2 because ϕ3 has two connected issues, i1 and

Fig. 2 Hypergraph Γ10 consists of issues set I and constraints set Φ
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i4, where ϕ3 is satisfied if the value of i1 is in [3, 4] and the value of i4 is in [2, 7].
That is, if s = (3, 2, 2, 4, 5, 4, 3, 1, 2, 3), ϕ3 is satisfied, and then the agent obtains
utility w(ϕ3, s).

3 A Dependency-Based Mediation Mechanism

3.1 Negotiation Protocol

This paper proposes a 2-agent mediated negotiation protocol based on the hyper-
graph utility model. In this protocol, agents do not need to open their utility-value
information (called preference profiles) while revealing only its hypergraph structure
information. The mediator can efficiently facilitate negotiations using the shared
hypergraph structure information. The following show our proposed negotiation
model and show the negotiation steps in Fig. 3.

Step1: Submission and generation of hypergraphs

LetD be our set of domains. For every domain D ∈ D two preference profiles exist,
PD = {PD

1 , PD
2 }. Suppose agent A negotiates with B in domain D ∈ D , where

A has the first preferences profile PD
1 and B uses PD

2 . Agents A and B generate
two hypergraphs, ΓA = (IA, ΦA) and ΓB = (IB, ΦB) based on their own preference
profile. Note that a set of issues is IA = IB (namely, IA ⊂ IB and IB ⊂ IA), but a set

Fig. 3 Process of dependency-based mediation mechanism
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of constraints is not always ΦA = ΦB , generally ΦA �= ΦB in many utility spaces.
Similarly, the number of a set of constraints n(Φ) is n(ΦA) �= n(ΦB) in general.

Each agent submits the generated hypergraph to the mediator, and the mediator
obtain the information of hypergraph of each agent. Note that in the information of
hypergraph submitted, agent’s preference profile, that is, the value of the utility in
constraintsw(ϕk, s), are not included. Therefore, information the mediator can know
is a graph structure in issues set I and constraint set Φ only.

Step2: Deciding negotiation issues by mediator

Based on the submitted hypergraph A and B by Step1, the mediator decides n(>0)
as the number of the current negotiation issues. In addition to, let us define a set of
negotiation issues that is presented by the mediator as Im ⊂ IA(= IB). Negotiation
issues are determined from the dependency of the graph structure, and the mediator
presents the issues where both agents are expected to be able to proceed negotiation
smoothly.

Step3: Negotiating issues by agents

Agents negotiate on the negotiation issues that are presented by themediator in Step2.
Each agent negotiate in the set of issues Im , and compromise at one’s discretion. For
the set of issues except the set Im , the agent select the values to maximize own utility.
As a result, it is possible to negotiate high priority issues for each other by the agents
who negotiate in the utility space of the set of issues Im .

However, since the number of negotiation issues is small as well as utility space is
narrow, negotiation is not performed well, and it is often the case that can not reach
an agreement. Therefore, the mediator it is necessary to add the negotiation issues
at the appropriate timing.

Step4: Negotiation issues added by the mediator

The mediator while observing the course of the negotiation, and if cannot proceed
to negotiation well, the mediator add the issues n + 1, n + 2, . . . , n(IA) (= n(IB))

according to the Step2. Thus, the agents negotiates gradually while expanding the
own utility space, and it is possible to negotiate without using a concession function
such a essential for an existing negotiation model [19].

3.2 Dependency-Based Mediation Strategy

In the process that the mediator determines the set of negotiation issues, the most
important is how to decide and search the appropriate negotiation issues. Since medi-
ator cannot know the preference information of each agent (namely, the utility value
in the constraints w(ϕk, s)), the mediator need to evaluate and determine the suitable
issues for each other from a set of the issues I and a set of the constraints Φ. In this
paper, we focus on the relationships of the dependency of graph structure, and solve
these problems by exploring the issues that both agents has common dependencies.
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Algorithm 1 Setting Negotiation Issues Im
Require: k > 0 {k is the number of current negotiation issues} irandom {irandom ∈ I is a random

issue}
Ensure: Im
1: if Im = ∅ then
2: Im ← Im ∪ {ψ(irandom)}
3: Ie ← Ie ∪ irandom
4: end if
5: while n(Im) < k do
6: ie ← maxik ({n(νAB(i j , ik)) | i j ∈ Im ∧ i j ∈/Ie ∧ ik ∈ ψ(i j )})
7: if ie = ∅ then
8: ie ← irandom ∈/Im
9: end if
10: Im ← Im ∪ ie
11: Ie ← Ie ∪ ie
12: end while

We describe the search strategy of themediator based on the dependency of the graph
structure as follows, and we show the algorithm (see Algorithm1)

First, we define ν(i j ), which the issue i j have the set of the constrains, that
is, ν(i j ) = {ϕ ∈ Φ | i j ∈ ϕ}. Thereby, the relationships of the dependencies are
represented as a set of the issues that including every issues (excluding i j ) connected
by ν(i j ). In other words, when we define the set of issuesN (ϕk) that connected by
ϕk , the dependencies are represented in the following Eq. (4).

ψ(i j ) = {i ∈ I | i ∈ N (ν(i j )) ∩ i �= i j }. (4)

The decisions of negotiation issues Im are based on dependenciesψA(i j ) andψB(i j ),
and themediator defines the set ofmutual dependency issues in the following Eq. (5):

ψAB(i j ) = ψA(i j ) ∩ ψB(i j )

= {i ∈ I | i ∈ ψA(i j ) ∧ i ∈ ψB(i j )}. (5)

The mediator selects the set of issues from ψAB(i j ) (lines 1–4 in Algorithm1).
Note that it chooses the first issue randomly since prevent the agents from reaching
localized solutions. The determined set of issues has the same dependency in both
agents A and B, moreover, the graph structure for the issues is identical. As a result, it
is possible to extract an important issues from each other, and the agents can conduct
smooth negotiations.

Although the mediator can derive the set of issues Im by the process above, it
is necessary to further search when increasing the negotiation issues. For example,
assume issue i1 is obtained dependency ψAB(i1) = {i2, i3}. At this time, set of issues
Im is Im = {i1, i2, i3}, when presenting four or more of the negotiation issues, the
mediator needs to further carry out the search. However, there is a one problem
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that the mediator must choose the next searching issue from i2 and i3, and in order
to extract an important issue for each other, these issues {i2, i3} need to evaluate.
Therefore, we define the number of dependency in the hypergraph, and the mediator
search an issues based on the number of dependency.

The number of dependency is defined as the number of dependencies n(ψ(i j )).
The mediator calculate the sum of n(ψA(i j )) and n(ψB(i j )) (namely, n(ψAB(i j )) =
n(ψA(i j )) + n(ψB(i j ))) which the number of dependencies from each agent, and the
mediator set the next search issue having more larger dependencies (line 6, 10–11
in Algorithm1). Therefore, from set of current negotiation issues Im , calculate the
following Eq. (6).

max
ik

({n(νAB(i j , ik)) | i j ∈ Im ∧ i j ∈/Ie ∧ ik ∈ ψ(i j )}
)
, (6)

where Ie is a set of issues which have been searched already.
In the case of the number of dependencies is large, we can expect this issue to

have many constraints. In the other words, we consider the more important issue. In
addition to, the issue that the number of dependencies is largely connected to many
other issues. Hence, it can be said to be an issue that need to search preferentially.

The mediator also defines the k parameter from the maximum dependencies and
adds an extra issue without independence if she cannot find a new issue (lines 7–9
in Algorithm1). This algorithm involves issues that are not shared by all the agents,
but they can conduct smooth negotiations since at the beginning the mediator offers
a set of issues with identical dependency.

4 Experimental Results

4.1 Settings

Next we examined whether our proposed model, that is, a mediated negotiation pro-
tocol based on the hypergraph utility model effectively working. In this experiment,
we investigated by the comparison simulation between the existing model and the
proposed model, and we show the usefulness of our model.

In each experiment, we ran 100 negotiations. The following parameters were
used. The negotiation time was 180s in the real time, but the time line is normalized,
i.e.: time t ∈ [0, 1], where t = 0 represents the start of the negotiation and t = 1
represents the deadline. The domain for the issue value was [0,9]. The number of
issues was 10, 30, and 50 issues (These domain was used in the final of ANAC2014).
Therefore, the number of bids was 10Numbero f I ssues (for instance, 10 issues domain
produces a space of 1010 (=10 billion) possible contracts). Constraints that sat-
isfy many issues have, on average, larger utility, which seems reasonable for many
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domains. The number of agents is 4 (Our Agent, Gangster, WhaleAgent, E2Agent)
in these experiments, which we choose agents for comparison from advance to the
finals in ANAC2014. We show the evaluation indexes in the comparative experiment
below.

• Social Welfare: An average of the total of acquired utility for each other.
• Number of Bid: An average the number of Bids
• Accept Time: An average of the time that reach the Accept.

4.2 Discussion

Figures4, 5, and 6 show the average of social welfare, the average of bids, and the
average of accept time among the agents at each negotiation. The horizontal axis
shows the acquired utilities (Fig. 4), the number of bids (Fig. 5), and the accept time
(Fig. 6). The vertical axis indicates the kind of domains (namely, 10, 30, and 50
issues). Note that the accept time t is normalized to 0 ≤ t ≤ 1.

Firstly, the result in Figs. 5 and 6 indicates that the proposed model can reach
an agreement by the short negotiation time and the small number of bids. In the
existing models, it was difficult to reach an agreement at short time or little bid, and

Fig. 4 Average of social welfare
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Fig. 5 Average number of bids

typically the main of strategies were negotiating repeatedly up to the deadline of the
negotiation. The result in Fig. 4 indicates that our proposed model is superior to the
other models for the social welfare value. In particular, our proposed model obtained
high performance in the domain of 30 or 50 issues. Since the mediator preferentially
selects the important issues for the agents, they can avoid agreement on points with
low social welfare values.

Secondly, when analyzing the results of each domain, the more number of the
issues is large, the more our model can acquire high utility. This is because, if the
issue increase, the number of dependencies increase similarly, that is, enable to search
the dependent issue easily. On the other hands, the small number of issues domain
(e.g. 10issues) has little dependency, and therefore, reduced the acquired utilities
averagely. Hence, in order to obtain a higher utility, we need not only the mediators
search strategy but also the agents compromise strategies.

Finally, the proposed model confirmed it can handle large and complex spaces by
finding the good solutions in the minimum time. In addition to, if further improve the
concession and the search strategy of the agent, it is possible to reach a consensus
close to Pareto-optimal solution.
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Fig. 6 Average of accept time

5 Related Work

Even though negotiation seems to involve a straightforward distributed constraint
optimization problem [11, 23], we have been unable to exploit existing work on
high efficiency constraint optimizers. Such solvers attempt to find the solutions that
maximize the weights of the satisfied constraints, but do not account for the fact that
the final solution must satisfy at least one constraint from every agent.

Fatima et al. proposed an agenda-based model for multi-issue negotiation under
time constraints in an incomplete information setting [6]. This paper indicated game
theoretic models for issue-by-issue negotiation have two main shortcomings. Firstly,
they study the strategic behavior of agents by considering the information they have as
common knowledge. However, the information that a player has about its opponent is
mostly acquired through learning from previous negotiation in fact. Secondly, these
models do not consider agent deadlines. Therefore, they need to overcome these
problems by considering each agent to have its own deadline and by examining each
agent’s information state as its private knowledge. In this paper proposed agenda-
basedmodel, the order inwhich issues are bargained over and agreements are reached
is determined endogenously, as part of the bargaining equilibrium, and each agent’s
information is its private knowledge. As a result, this paper conducted the properties
of the equilibrium solution under which it is unique, symmetric, and Pareto-optimal.
However, this paper do not consider about nonlinear utility space which having
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interdependence. Our approach’s purpose is reaching the optimal solution at close
to Pareto-optimal in the interdependency nonlinear utility space.

Robu et al. presented a utility graph for the issue interdependencies of binary-
valued issues [26]. Utility graphs are inspired by graph theory and probabilistic
influence networks to derive efficient heuristics for nonmediated bilateral negotia-
tions about multiple issues. The idea is to decompose highly nonlinear utility func-
tions in the subutilities of the clusters of interrelated items. They show how utility
graphs can be used tomodel an opponent’s preferences. In this approach, agents need
prior information about the maximal structure of the utility space to be explored. In
our approach based on constraints, we have an advantage that need not to submit
the agent’s preference information to the mediator. In other words, each agent it is
possible to negotiate while retaining its own private information.

Fujita et al. proposed a mediator-based method for decomposing a utility space
based on every agent’s utility space [9]. In this paper, the mediator finds the contracts
in each group based on votes from all agents and combines them in each issue-group.
This method allows good outcomes with greater scalability than a method without
issue-groups. However, this paper does not discuss the negotiation time that reach
until an agreement. Our approach can find good solutions in minimum time and
handle large and complex spaces.

6 Conclusions

This paper focuses on research in the area of bilateral multi-issue closed negotia-
tions, which is an important class of real-life negotiations. This paper proposed a
novel mediator-based negotiation model that can efficiently mediate issue-by-issue
negotiation. Our model adopted a dependency-based hypergraphical utility model,
and we could perform the negotiations while keeping privacy on the utility values.
We demonstrated that the proposed model results in good outcomes for the Pareto-
optimal solution and reducing negotiation time.

In our possible future works, efficiency of the mediator-base model in complex
utility spaces which has a lot of issues, also needs to be discussed in more detail.
Furthermore, we will improve a strategic model that agent compromise strategies.
It is necessary to examine the way of effective negotiation based on existing agent
strategies.
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Using Graph Properties and Clustering
Techniques to Select Division Mechanisms
for Scalable Negotiations

Ivan Marsa-Maestre, Catholijn M. Jonker, Mark Klein
and Enrique de la Hoz

Abstract This paper focuses on enabling the use of negotiation for complex sys-
tem optimisation, which main challenge nowadays is scalability. Our hypothesis is
that analysing the underlying network structure of these systems can help divide the
problems in subproblems which facilitate distributed decision making through nego-
tiation in these domains. In this paper, we verify this hypothesis with an extensive set
of scenarios for a proof-of-concept problem. After selecting a set of network metrics
for analysis, we cluster the scenarios according to these metrics and evaluate a set
of mediation mechanisms in each cluster. The validation experiments show that the
relative performance of the different mediation mechanisms change for each cluster,
which confirms that network-based metrics may be useful for mechanism selection
in complex networks.

1 Introduction

A wide range of real world systems can be modelled as dynamic sets of intercon-
nected nodes [13, 21]. The adequate management of complex networked systems
is becoming critical for industrialized countries, since they keep growing in size
and complexity. An important sub-class involves autonomous, self-interested enti-
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ties (e.g. drivers in a transportation network). The self-interested nature of the entities
in the network causes the network to deviate from socially-optimal behaviour. This
leads to problems related to unavailability and inefficient use of resources, such as
severe traffic jams or casualties in evacuations. New techniques are needed tomanage
these exponentially growing complex self-interested networks (CSIN) that form the
social infrastructures we rely on for progress and welfare. Different fields of research
are working on these challenges, but, so far, with only mixed success. Optimization
techniques are especially suited to address large-scale systems with an underlying
network structure, usually with a divide and conquer approach [27, 32]. However,
their performance severely decreases as the complexity of the system increases [23],
and with the presence of autonomous entities which deviate from the globally opti-
mal solution, thus harming the social goal. Negotiation techniques are known to be
useful to handle self-interested behaviour, but scale poorly with problem size and
the intricacies of interdependencies [14]. We focus on distributed, mediated solu-
tions, where a mediator first divides the problem into interconnected subproblems,
and then the agents interact (by means of negotiation techniques) to evolve into a
solution by themselves. However, given the wide variety of CSIN domains and the
inherent variability of CSIN scenarios even within a single domain, intending to
find a one-size-fits-all mechanism is unrealistic. Instead, our hypothesis is that the
underlying network structure may be used to characterize CSIN scenarios, and to
select the most adequate mechanism for each scenario. In this paper, we contribute
to test this hypothesis in the following way:

• We propose a proof-of-concept domain for CSINs (“chessboard-evacuation”), and
generate a number of scenarios in different categories for it (Sect. 3).

• Weselect a set ofmetrics based on graph theory to analyze these scenarios (Sect. 4).
• We cluster the scenarios according to the aforementioned metrics, and then apply
a collection of distributed, mediated division approaches to each cluster. Experi-
ments show how the relative performance of the different mediation mechanisms
change for each cluster (Sect. 5).

2 Complex Self-interested Networks (CSIN)

Network models are a suitable way to represent many real-world systems [22, 24].
This paper focuses on a particular set of networked systems, where network struc-
ture and element behaviour may change dynamically, where there is a social goal or
desired behaviour for the network as a whole, and where there are autonomous ele-
ments (agents) with individual objectives (also called preferences or utility spaces),
usually in conflict with the social goal or among themselves. There are a great number
of real-world problems fitting into this category, like electricity grids, transportation
infrastructures or cellular communication systems. We call these systems Complex
Self-Interested Networks (CSIN). The problem of achieving efficient behaviours in
these systems in terms of both social and individual goals is what we call CSIN
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behaviour optimization. Techniques potentially suited for CSIN include auctions,
optimization techniques, and negotiation protocols. Combinatorial auctions [26, 35]
can enable large-scale collective decision-making in nonlinear domains, but only
of limited type (i.e., negotiations consisting solely of resource/item allocation deci-
sions). Multi-attribute auctions [1, 4, 12] are also aimed only at purchase negoti-
ations and require full revelation of preference information. Constraint-based and
other optimization tools [3, 18, 33] offer good solutions with interdependent issues,
but are not equipped to deal with self-interested parties. The distributed, adaptive,
and self-interested nature of CSIN suggests the use of negotiation techniques. The
negotiation research literature offers solutions for problems with one issue (typi-
cally price) or a few independent issues [1, 7, 9, 25]. However, these solutions are
demonstrably sub-optimal for negotiations with multiple interdependent issues [14].
Attempts to address this challenge [11, 16, 36] face serious limitations in terms of
outcome optimality, strategic stability and scalability. These three criteria are key
performance indicators for the success of optimization systems in real-world CSIN
infrastructures, due to their continuous increase in network size, structural complexity
and dynamics [28]. Promising results in overcoming the aforementioned limitations
were achieved by developing negotiation mechanisms suited for complex system
optimization. These negotiation mechanisms build on techniques from computer
science (e.g. nonlinear optimization, complexity analysis), which enable a clever
search of the agent utility spaces. This allows to reduce the combinatorial size of the
problem and to increase the optimality of the negotiation outcomes (agreements).
However, due to the high diversity of complex negotiation scenarios, the different
approaches are specifically tailored for particular domains, and it is very unlikely
to find an approach which can be used to tackle any arbitrary complex system [17].
However, real world CSIN problems are not arbitrary; they have an underlying net-
work structure. Our hypothesis is that this structure can be exploited to select the
most adequate mediation mechanisms from a library of available approaches.

3 Proof-of-Concept Domain: Chessboard Evacuation

To test our hypothesis, we have devised a proof-of-concept domain for a prelimi-
nary validation experiment. This is what we have called the chessboard evacuation
problem, which has some resemblances with the coordinating pebble motion on
graphs problem [5, 15], and with cooperative robot path finding [29]. An example
chessboard evacuation scenario is shown in Fig. 1.

Let us assume that pawns want to evacuate the chessboard as quickly as possible
through the exit represented with an arrow. Pawns can move one square per time unit
in the vertical or horizontal axis, and they lose time when they collide. This problem
has the main characteristics of CSIN:

• The coordinated pebble motion and the cooperative robot path finding problems
are known to be NP-hard [10, 29].
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Fig. 1 Chessboard
evacuation scenario

• Once a solution has been found, some pawns may disagree on having to wait or to
take longer than optimal paths to avoid conflicts, which may make them deviate
from the solution, causing collisions and inefficient behaviours.

3.1 Formalisation of the Problem

An instance of the chessboard evacuation problem can be seen as a tuple 〈B, P, g〉,
where:

• B = 〈N , E〉 is a graph representing the board, where each node n ∈ N is a space
in the board, and each edge e ∈ E connects two adjacent spaces. Furthermore, for
any two nodes n, m ∈ N , e(n, m) denotes an edge between n and m.

• P is the set of pawns. Each pawn p is characterized by its initial position n p,0 ∈ N ,
which refers to a node in the graph B.

• g ∈ N is the goal, representing the square from which pawns will evacuate the
board.

A potential solution to the problem would be a set of routes R = {rp|p ∈ P},
where each route rp = {n p,t ∈ N |t = 0, . . . , τp} represents the sequence of positions
occupied by pawn p at each time t . The evacuation time for pawn p is denoted by
τp. For a solution R to be valid, all pawns need to travel a continuous path from their
initial position to the goal and no pawns can be allowed to be at the same position at
the same time, that is:

• n p,τp = g∀p
• Consecutive positions in a route correspond either to the same node or to connected
nodes in the graph, that is, nodes which are connected by an edge:

∀t, p : e(n p,t , n p,t+1) ∈ E or n p,t = n p,t+1 (1)

• ∀t,∀p, p′ ∈ P : rp,t �= rp′,t

For any solutionR, the time τ(R) = maxp∈P |τp| is called evacuation time.A solution
Ri is assumed to be better than another solution R j if τ(Ri ) < τ(R j ).
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3.2 Modeling Agent Self-interests

Of course, in complex self-interested networks, solutions are not implemented either
in a centralized or in a one-shot manner. Even if solutions are computed in a cen-
tralized way, agents are self-interested and autonomous, and can deviate at any point
from any externally imposed plan. To represent this in the chessboard problem, we
model agent decision making as follows:

• Pawns give a value v to each node n ∈ N , equal to the shortest path length from
this node to the goal g. Therefore, pawns self-interest is normally to move to the
lowest value adjacent node.

• Pawns are considered to be in conflict if the values of the nodes corresponding to
their current positions are equal, since that means those pawns would necessarily
collide in their way to the goal if they take their optimal paths and do not wait.

• At any time t , pawns which are asked (by imposition or negotiation) to make a
move which is suboptimal (i.e., does not minimize value of the next node), will
follow their optimal path (i.e., they will deviate from the proposed solution) with
probability

π = 1 − 1

nc
, (2)

where nc is the expected number of conflicts the pawn would be in in the next
time unit if it followed the suggested route. This models pawn risk aversion, in the
sense that being in a high number of conflicts increases the expected evacuation
time. Note that, if the proposed route does not involve conflicts for the pawn, it
will follow it without any problem.

Since pawns are still self-interested as defined above, they may produce collisions.
If two or more pawns collide in the same node, they are all sent back to the node
they came from. Collisions propagate backwards, so any pawns trying to enter a
node where another pawn has been sent back due to a collision would also suffer a
collision.

3.3 Categories of Scenarios

For the verification of the hypothesis to be significant enough, it has to be evaluated
in a wide variety of scenarios. In order to achieve this variety, we have considered
three different categories of scenarios, according to the properties of the underlying
graph B:

• Chessboards (CB): in this category, the graph is a 8-by-8 square lattice (resembling
a chessboard), where we randomly add a number of obstacles (non-transitable
nodes) for diversity.
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Fig. 2 Examples of each generated graph category: a chessboard with 8 obstacles; b corresponding
lattice graph; c ER graph with p = 0.2; d BA graph with α = 4

• Erdös–Renyi graphs (ER): in this category, graphs are generated randomly using
the Erdös–Renyi model [20]. In the ERmodel, every pair of nodes {m, n ∈ N } has
a finite probability p of being connected.

• Barabasi–Albert graphs (BA): in this category, graphs are generated randomly
using the Barabasi–Albert model [20]. In the BA model, after an initial number
of nodes |N |0 has been placed, subsequent nodes are added one-by-one to the
graph, with each new node being connected to exactly α of the existing nodes. The
probability of a new node connecting to an existing node i is pi = ki∑

j k j
, where ki

is the degree of existing node i . This is called preferential attachment.

For each category of scenarios, different sub-categories were created by varying the
number of obstacles, the probability of connection p, and the attachment parameter
α. In each scenario, a node is randomly chosen as the goal (in the case of chessboards,
one of the peripheral nodes). Figure2 shows an example for each category of graphs.
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4 Graph Metrics for Scenario Characterization

With the model for self-interested agents described above, we run a number of sim-
ulations in the aforementioned scenario categories. The details of these experiments
are beyond the scope of this paper, and can be found in [31]. The experiments allowed
us to select a number of graph metrics from the literature which were significantly
correlated to the evacuation times of the simulations. The selected metrics are the
following:

• Graph order: the number of nodes in the graph.
• Graph diameter: the longest distance between any pair of nodes in the graph [19].
• Wiener index: gives ameasure of graph complexity from the distances in the graph.

It is computed as W (G) = 1
2

∑|N |
i=0

∑|N |
j=0 d(ni , n j ), where d(ni , n j ) is the shortest

distance between nodes ni and n j [34].
• Graph density: the ratio between the number of edges in the graph and the maxi-
mum number of edges (that is, if it were a fully-connected graph). For undirected

graphs, this density is computed as D = 2|E |
|N |(|N |−1) .• Clustering coefficient: a measure of the degree to which nodes in a graph tend to

cluster together. The cluster coefficient of a graph is computed as the average of
the local clustering coefficient of its nodes, which is computed for each node as
the ratio between the number of links between its neighbors and the maximum
number of links between them (that is, if they were fully connected).

• Assortativity: the correlation between the degree (number of neighbors) of adjacent
nodes [30].

• Entropy of betweenness centrality: Centrality metrics measure the importance of
a node within a graph. In particular, betweenness centrality of a node is the ratio
of shortest paths in the graph which traverse the node. It is computed as CB(n) =∑

s,t∈V
σ(s,t |n)

σ (s,t) , where σ(s, t) is the number of shortest paths between nodes s and t ,
and σ(s, t |n) is the number of such pathswhere n acts as a bridge. From thismetric,
we can assess the complexity of a graph using Shannon information theory, by
transforming the betweenness centralitymetric into a probability function p(ni ) =

CB (ni )∑|N |
j=0 CB (ni )

, and computing the entropy as H(G) = −∑|N |
i=1 p(ni ) log(p(ni )).

These metrics have been used to divide the scenarios in clusters for the experi-
ments, as described in the following section.

5 Using Graph Metrics for Mechanism Selection

Our hypothesis is that the selected set ofmetricsmay be used as a basis formechanism
selection in CSIN problems, and in particular in the evacuation problem considered
in this paper. To verify this, we have devised a number of distributed mediation
mechanisms, and we have performed an extensive set of experiments with them
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in the generated scenarios. We have also clustered the scenarios according to the
aforementioned metrics, so that we can see the influence of these metrics in the
performance of the different mechanisms.

5.1 Distributed, Mediated Division Approaches

Asmentioned above, our interest regardingmechanisms focuses on distributed,medi-
ated solutions, where a mediator first divides the problem into interconnected sub-
problems, and then the agents are let to evolve into a solution by themselves. The two
key factors here are, first, how to divide the problem, and then, how to interconnect
the different subproblems so that the self-interested agents can autonomously evolve
to an emergent, efficient solution. In the particular case of the chessboard evacuation
problem, we have chosen to dynamically divide the chessboard graph into subgraphs
(lets call them worlds), and let the pawns in each world negotiate the paths they will
take. In addition, we make pawns within a world negotiate about where to place the
entrance arrows to their world, as seen in Fig. 3a. This entrance arrow placement is
the negotiation technique (very simple, in this case) which interconnects the sub-
problems and guarantees emergence and incentive for cooperation. Since pawns can
govern how other pawns enter their worlds, they can ensure that the pawns conceding
in a negotiation (i.e., sacrificing their own utility to solve a conflict) are not exposing
themselves to further conflicts. In this way, the number of conflicts in a world never
increases. This invariant guarantees the progress of the approach, in contrast with the
situation we had with the exponential increase due to collisions. An example of this
is depicted in Fig. 3b, where pawns within the lower-right world (LR) are in conflict.
Any pawn which concedes to the other would be then in conflict with the pawn in
the lower-left world (LL). However, they have placed the entrance from LL to LR
ensuring that this conflict is no longer possible, since any pawn coming from LL
would be further from the goal than any pawn in LR. Therefore, a pawn in LR can
agree to wait with the guarantee that its utility loss is bounded (one time unit). This
provides an incentive both to accept the proposed problem division and to cooperate
within it.

Fig. 3 Distributed, mediated division example
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Fig. 4 Example of symmetric division. a Chessboard to divide. bMinimum square containing all
the pawns and the exit. c Worlds generated

5.1.1 Symmetric Division

The symmetric division (Fig. 4) is based on dividing the system into four symmetric
subsystems. To apply this divisionmethod to the chessboard scenarios, first the graph
is reduced by getting the minimum square that contains all the pawns and the exit
of the system. By using this graph reduction, the evacuation plan is adapted to the
congestion state at any given moment. Once the graph has been reduced, the reduced
graph is symmetrically divided into four symmetric subgraphs, creating four worlds.

The position of the random graphs’ nodes is not fixed, so there can be many
different representations of a network. Thus, to apply the symmetric division to
random graphs, we need to assign a position on the plane for each node. For that
purpose, the Fruchterman–Reingold algorithm is used [8].
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5.1.2 Distance Division

Distance division is based on grouping close nodes with similar distances to the exit.
Again, we first reduce the graph, in this case by removing those nodes that are further
away from the exit than the furthest away pawn (Fig. 5).

Then, the reduced graph is divided into three sections according to the distance
of the nodes to the exit. The first section leads to one world. Second and third
sections can be too big or even disconnected, so they may have to be divided. To
this end, the disconnected components of the sections’ graphs are found. Small
components are directly mapped to worlds, while big components with more than
one node connecting the component to the previous section are split up into two
halves. The two halves are created by starting at the two furthest nodes connecting
the component to the previous section and then expanding the graph from them (that
is, taking adjacent nodes further apart, then adjacent nodes to the new graph, and so
on) until all the nodes within the component have been reached by one of the halves.

5.1.3 Pawns Distribution Division

The pawns distribution division (Fig. 6) is based on creating worlds so they have a
similar number of pawns. With this division method, there is no need to reduce the
system’s graph, as the method is adapted to the congestion state by itself.

The method begins by dividing the system into three sections. The first section
is created by starting at the exit and expanding the graph from it until 1/5 of the
pawns are reached. The second section is generated starting at the nodes connecting
the section to the previous section and expanding the graph from them until 2/5 of
the pawns are reached. The third section contains the remaining nodes. Once the
sections have been generated, the first section is mapped to a world, while the second
and third sections are divided. As in the previous method, first the disconnected
components of the sections are found. Those components with less than half the
number of pawns of the corresponding section are directly mapped to worlds, while
components with more pawns and more than one node connecting the component to
the previous section are divided into two worlds, each one containing half the pawns
of the component.

5.1.4 Community Division

In graph theory, a community is a set of nodes such that there are many connections
between nodes of the same community and few connections with nodes outside the
community [19]. The community division consist on reducing the graph by removing
those nodes further from the exit than the furthest pawns, and, afterwards, using the
Louvain algorithm [2] to find the graph communities, map each of these communities
to a world (Fig. 7).
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Fig. 5 Example of distance division.aChessboard to divide.bReducedgraph. cSections generated.
d Worlds created from small components. e Wolds created from components with just one node
connecting the component with the previous section. f Division of big components with more than
one node connection the component with the previous section. g Worlds generated
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Fig. 6 Example of pawn-based division. aChessboard to divide. bGeneration of the three sections.
cWorlds generated from components with few pawns. dDivision of components with many pawns.
e Worlds generated
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Fig. 7 Example of community division. a Chessboard to divide. b Reduced graph. c Worlds gen-
erated

5.2 Negotiation Between Agents

Once the division has been made, agents need to negotiate about where to place the
doors between worlds. Since each possible door-placing schema is a binary vector
(with one bit per boundary square, which can be set to 1 or 0 depending on whether
there should be a door or not in it, respectively), we have used the approach in [14],
which is a negotiation mechanism specifically designed for negotiation of complex
contracts with binary issues.

5.3 Experimental Setting

We have generated a total of 1600 scenarios for the categories described in Sect. 3.
In particular, we generated 50 scenarios for each combination of the following para-
meters per category:
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Table 1 Comparison of the evacuation times (in minutes) of the different mediation approaches in
the three detected clusters

Scenario
cluster

Reference Sym. Dist. Pawn Com.

C1 48.56 29.98 36.63 42.56 27.44

C2 240.51 163.94 129.75 144.92 156.20

C3 264.91 206.42 288.62 180.60 220.66

• Chessboards with number of obstacles in |O| = {8, 12, 16, 20}.
• ER graphs with |N | ∈ {52, 56} (same number of nodes as the chessboards with 8
and 12 obstacles) and p ∈ {0.6, 0.8, 0.10, 0.12}.

• BA graphs with α ∈ {1, 2, 3, 4}.
For each scenario, we ran 50 simulations of the evacuation problem for each of
the considered approaches, along with a reference approach (where no mediation
mechanism is used), for a total 80,000 runs per approach (400,000 total simulations).
At each simulation, we recorded the evacuation time τ . Finally, we clustered all
scenarios according to the metrics described in Sect. 4, using an implementation of
DBSCAN [6].

5.4 Experimental Results

The DBSCAN algorithm yielded three scenario clusters (C1 to C3). Table1 shows
the evacuation times for the different mediation approaches, averaged for each of
the scenario clusters. We have also represented the average times for the refer-
ence approach. In general, we can see that all mediation approaches outperform
the reference unmediated approach (except for a slight disadvantage in using the
distance-based approach in the C3 cluster). However, we can see there are signif-
icant differences in the relative performance of the approaches for each cluster.
In the C1 cluster, symmetric and community based divisions work better than the
other approaches (above 20% difference). In the C2 cluster, distance-based division
improves over 11% with respect to the next top approach, and in the C3 cluster,
pawn-based division outperforms the other approaches by 12.6%. We can conclude
that graph metrics can help to select the appropriate mechanism to use when facing
a given scenario, providing a significant advantage on average evacuation times than
choosing a different strategy or no strategy at all.
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6 Discussion and Conclusions

The main hypothesis of our work is that underlying structural properties in Complex
Self-Interested Networks (CSIN) can be used to decide which mechanisms to use to
enhance the performance of such networks. To validate this hypothesis, in this paper
we present a chessboard evacuation problem as a proof of concept domain for CSINs.
For this domain, we systematically generate a wide variety of scenarios in three cate-
gories of graph structures (lattices, Erdös–Renyi graphs andBarabasi–Albert graphs),
and characterize them according to a set of metrics selected from graph theory. Then
we consider a number of mediated, distributed approaches to facilitate reaching effi-
cient solutions to the evaluation problems, and run an extensive set of simulations
with all of them. We analyse the simulation data by clustering the scenarios using
the aforementioned metrics. Experiments show that the relative performance of the

Fig. 8 Traffic management scenario
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different mediation approaches significantly change in each cluster, which backs up
the idea that analysing the graph properties of a problem can help choosing a suitable
mechanism to address it. Though our experiments yield promising results, there is
still plenty of work to be done in this area. We are in the process to validate the suit-
ability of the metrics to perform a priori mechanism selection, by training classifiers
(e.g. random trees) in large sets of scenarios and using them to predict which would
be the best approach to use when confronted with new scenarios. We also want to get
more diverse scenario sets, since in this case the clusters detected byDBSCANwhere
populated in their majority (about 90%) by scenarios in a single generation category
(either chessboards, Erdös–Renyi or Barabasi–Albert graphs), which demonstrates
a significant generation bias in the experiment set. Finally, we are interested in gen-
eralizing the approach to other domains out of the chessboard proof-of-concept. For
instance, we are working on a transportation management scenario (Fig. 8), where
GPS navigator agents within a given area automatically negotiate about the state of
the traffic lights allowing entrance to their area, so that congestion is mitigated.
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Compromising Strategy Considering
Interdependencies of Issues for Multi-issue
Closed Nonlinear Negotiations

Shinji Kakimoto and Katsuhide Fujita

Abstract Bilateral multi-issue closed negotiation is an important class of real-life
negotiations. In this chapter, we propose an estimating method for the pareto frontier
based on the opponent’s bids. In the proposed method, the opponent’s bid is divided
into small elements considering the combinations between issues, and the number
of the opponent’s proposals is counted to estimate the opponent’s utility function. In
addition, SPEA2 is employed in the proposed method to search the pareto optimal
bids based on the opponent’s estimated utility and the agent’s own utility. After that,
we propose a compromising strategy for nonlinear utility functions based on the
estimating method of the opponent’s utility functions. Experimental results demon-
strate that our proposed method considering the interdependency between issues can
search the pareto optimal bids. In addition, we compare the negotiation efficiency
of our proposed agent with ten state-of-the-art negotiation agents that entered the
final round of ANAC-2014. Our agent has won by a big margin in the negotiation
tournaments because of the estimated opponent’s utility and SPEA2.

1 Introduction

Negotiation is an important process in forming alliances and reaching trade agree-
ments. Research in the field of negotiation originates in various disciplines includ-
ing economics, social science, game theory and artificial intelligence (e.g. [6] etc.).

This chapter is based on one of the paper in the proceedings of 7th IEEE International Conference
on Service-Oriented Computing and Applications (SOCA 2014) written by Kakimoto and Fujita
[11].
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Automated agents can be used side-by-sidewith a human negotiator embarking on an
important negotiation task. They can alleviate some of the effort required of people
during negotiations and also assist people that are less qualified in the negotiation
process. Theremay even be situations inwhich automated negotiators can replace the
human negotiators. Another possibility is for people to use these agents as a training
tool, prior to actually performing the task. Thus, success in developing an automated
agent with negotiation capabilities has great advantages and implications.

Motivated by the challenges of bilateral negotiations between automated agents,
the automated negotiating agents competition (ANAC) was organized [9]. The pur-
pose of the competition is to facilitate research in the area of bilateral multi-issue
closed negotiation. The setup at ANAC is a realistic model including time discount-
ing, closed negotiations, alternative offering protocol, and so on. By analyzing the
results of ANAC, the stream of strategies of automated negotiations and important
factors for developing the competition have been shown [2]. Also, some effective
automated negotiating agents have been proposed through the competitions [3, 5].

A key point in achieving automated negotiation in real life is the non-linearity
of the utility functions. Many real-world negotiation problems assume the multiple
nonlinear utility function. When an automated negotiation strategy covers the linear
function effectively, it is not always possible or desirable in nonlinear situations
[14]. In other words, it is still an open and interesting problem to design more
efficient automated negotiation strategies against a variety of negotiating opponents
in different “nonlinear” negotiation domains.

In this chapter, we propose an estimating method for finding the pareto frontier
based on the opponent’s bids. In the proposed method, the opponent’s bid is divided
into small ones considering the combinations between issues, and the number of
the opponent’s proposals is counted to estimate the opponent’s utility function. In
addition, SPEA2 [19], which is based on the genetic algorithm for multiple objective
optimization, is employed in our proposed method to search the pareto optimal
bids based on the opponent’s estimated utility and the agent’s own utility. In the
experiments, we evaluated the quality of the pareto frontier in our approachmeasured
by the size of the dominant area [18]. The experimental results demonstrate that our
proposed method considering the interdependency between issues can search the
pareto optimal bids.

We also propose a compromising strategy for nonlinear utility functions based on
the estimating method of the opponent’s utility functions. The proposed agent has
two steps: information-gathering and compromising steps. The agent doesn’t accept
the opponent’s offers and proposes selfish bids to gather the opponent’s informa-
tion for estimating the opponent’s utility in the information-gathering step. In the
compromising step, the agent proposes the pareto optimal bids estimated by SPEA2
using the opponent’s bids collected by the previous step in order to make agree-
ments. Experimental results demonstrate that our proposed method considering the
interdependency between issues can search the pareto optimal bids. In addition, we
compare the negotiation efficiency of our proposed agent with ten state-of-the-art
negotiation agents that entered the final round of ANAC-2014. Our agent has won
by a big margin in the negotiation tournaments because of the estimated opponent’s



Compromising Strategy Considering Interdependencies of Issues … 87

utility and SPEA2. In addition, this strategy was implemented as Random Dance
agent in ANAC-2015 [12].

The remainder of the chapter is organized as follows. First, we describe related
works. Second,we show the negotiation environments andnonlinear utility functions.
Third, we describe SPEA2, which can search the pareto optimal bids effectively, and
propose a novel method for estimating the opponent’s utility function. Then, we
demonstrate the experimental analysis of finding the pareto optimal bids. Finally, we
present our conclusions.

2 Related Works

This chapter focuses on research in the area of bilateralmulti-issue closednegotiation,
which is an important class of real-life negotiations. Closed negotiation means that
opponents do not reveal their preferences to each other. Negotiating agents designed
using a heuristic approach require extensive evaluation, typically through simulations
and empirical analysis, since it is usually impossible to predict precisely how the
system and the constituent agents will behave in a wide variety of circumstances.
Motivated by the challenges of bilateral negotiations between people and automated
agents, the automated negotiating agents competition (ANAC)was organized in 2010
[1]. The purpose of the competition is to facilitate research in the area of bilateral
multi-issue closed negotiation.

The declared goals of the competition are (1) to encourage the design of prac-
tical negotiation agents that can proficiently negotiate against unknown opponents
in a variety of circumstances, (2) to provide a benchmark for objectively evaluat-
ing different negotiation strategies, (3) to explore different learning and adaptation
strategies and opponent models, (4) to collect state-of-the-art negotiating agents and
negotiation scenarios, and make them available to the wider research community.
The competition was based on the Genius environment, which is a General Envi-
ronment for Negotiation with Intelligent multi-purpose Usage Simulation [15]. By
analyzing the results of ANAC, the stream of strategies of ANAC and important
factors for developing the competition have been shown. Baarslag et al. presented
an in-depth analysis and the key insights gained from ANAC 2011 [2]. This paper
mainly analyzes the different strategies using classifications of agents with respect to
their concession behavior against a set of standard benchmark strategies and empir-
ical game theory (EGT) to investigate the robustness of the strategies. It also shows
that themost adaptive negotiation strategies, while robust across different opponents,
are not necessarily the ones that win the competition. Furthermore, our EGT analysis
highlights the importance of considering metrics.

Chen and Weiss proposed a negotiation approach called OMAC, which learns
an opponent’s strategy in order to predict future utilities of counter-offers by means
of discrete wavelet decomposition and cubic smoothing splines [4]. They also pre-
sented a negotiation strategy called EMAR for this kind of environment that relies
on a combination of Empirical Mode Decomposition (EMD) and Autoregressive
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Moving Average (ARMA) [5]. EMAR enables a negotiating agent to acquire an
opponent model and to use this model for adjusting its target utility in real time on
the basis of an adaptive concession-making mechanism. Hao and Leung proposed a
negotiation strategy named ABiNeS, which was introduced for negotiations in com-
plex environments [10]. ABiNeS adjusts the time to stop exploiting the negotiating
partner and also employs a reinforcement-learning approach to improve the accep-
tance probability of its proposals. Williams et al. proposed a novel negotiating agent
based on Gaussian processes in multi-issue automated negotiation against unknown
opponents [17].

Kawaguchi et al. proposed a strategy for compromising the estimated maximum
value based on estimated maximum utility [13]. These papers have been important
contributions for bilateral multi-issue closed negotiation; however, they don’t deal
with multi-times negotiation with learning and reusing the past negotiation sessions.
After that, Fujita proposed a compromising strategy with adjusting the speed of mak-
ing agreements using the Conflict Mode, and focused on multi-times negotiations.
However, these strategies focused on the linear utility function only. In real life, most
utility functions are nonlinear because of the complexity of the preference structures.
Most existing negotiation protocols, though well suited for linear utility functions,
work poorly when applied to nonlinear problems because of the complexity of utility
domain, multiple optima, and interdependency between issues. However, the nego-
tiation strategy based on the compromising strategy by Fujita [7, 8] can adapt to a
nonlinear situation. In this chapter, we demonstrate that the novel negotiation strat-
egy based on the compromising strategy is effective in nonlinear domains, not only
the linear domain.

3 Negotiation Environments

The interaction between negotiating parties is regulated by a negotiation protocol
that defines the rules of how and when proposals can be exchanged. The competition
used the alternating-offers protocol for bilateral negotiation as proposed in [16], in
which the negotiating parties exchange offers in turns. The alternating-offers protocol
conforms with our criterion to have simple rules. It is widely studied in the literature,
both in game-theoretic and heuristic settings of negotiation. For example, Agents A
and B take turns in the negotiation. One of the two agents is picked at random to
start. When it is the turn of agent X (X being A or B), that agent is informed about
the action taken by the opponent. In negotiation, the two parties take turns selecting
the next negotiation action. The possible actions are:

• Accept: It indicates that the agent accepts the opponent’s last bid, and the utility
of that bid is determined in the utility spaces of agents A and B.

• Offer: It indicates that the agent proposes a new bid.
• EndNegotiation: It indicates that the agent terminates the entire negotiation, result-
ing in the lowest possible score for both agents.
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If the action was an Offer, agent X is subsequently asked to determine its next
action, and the turn-taking goes to the next round. If it is not anOffer, the negotiation
has finished. The turn-taking stops and the final score (utility of the last bid) is
determined for each of the agents as follows. The action of agent X is an Accept.
This action is possible only if the opponent actually made a bid. The last bid of the
opponent is taken, and the utility of that bid is determined in the utility spaces of
agents A and B. When the action is returned as EndNegotiation, the score of both
agents is set to the lowest score.

The parties negotiate over issues, and every issue has an associated range of
alternatives or values. A negotiation outcome consists of a mapping of every issue
to a value, and the set Ω of all possible outcomes is called the negotiation domain.
The domain is common knowledge to the negotiating parties and stays fixed during
a single negotiation session. Both parties have certain preferences prescribed by a
preference profile over Ω . These preferences can be modeled by means of a utility
function U that maps a possible outcome ω ∈ Ω to a real-valued number in the
range [0, 1]. In contrast to the domain, the preference profile of the players is private
information.

An agent’s utility function in the formulation is described in terms of constraints.
There are l constraints, ck ∈ C . Each constraint represents a region in the contract
space with one or more dimensions and an associated utility value. In addition, ck
has value va(ck, s) if and only if it is satisfied by contract s. Every agent has its
own, typically unique, set of constraints. An agent’s utility for contract s is defined
as the weighted sum of the utility for all the constraints it satisfies, i.e. as ua(s) =∑

ck∈C,s∈x(ck ) va(ck, s), where x(ck) is a set of possible contracts (solutions) of ck .
This expression produces a “bumpy” nonlinear utility function with high points
where many constraints are satisfied and lower regions where few or no constraints
are satisfied. This represents a crucial departure from previous efforts on multi-issue
negotiation, where contract utility is calculated as the weighted sum of the utilities

Fig. 1 Example of nonlinear utility space
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for individual issues, producing utility functions shaped like flat hyperplanes with a
single optimum.

Figure1 shows an example of a utility space generated via a collection of binary
constraints involving Issues 1 and 2. In addition, the number of terms is two. The
example, which has a value of 55, holds if the value for Issue 1 is in the range [3, 7]
and the value for Issue 2 is in the range [4, 6]. The utility function is highly nonlinear
with many hills and valleys. This constraint-based utility function representation
allows us to capture the issue interdependencies common in real-world negotiations.
The constraint in Fig. 1, for example, captures the fact that a value of 4 is desirable for
issue 1 if issue 2 has the value 4, 5 or 6. Note, however, that this representation is also
capable of capturing linear utility functions as a special case (they can be captured
as a series of unary constraints). A negotiation protocol for complex contracts can,
therefore, handle linear contract negotiations.

A negotiation lasts a predefined time in seconds (deadline). The timeline is nor-
malized, i.e. time t ∈ [0, 1], where t = 0 represents the start of the negotiation and
t = 1 represents the deadline. Apart from a deadline, a scenario may also feature dis-
count factors, which decrease the utility of the bids under negotiation as time passes.
Let d in [0, 1] be the discount factor. Let t in [0, 1] be the current normalized time,
as defined by the timeline. We compute the discounted utility Ut

D of an outcome ω

from the undiscounted utility function U as follows: Ut
D(ω) = U (ω) · dt . At t = 1,

the original utility is multiplied by the discount factor. Furthermore, if d = 1, the
utility is not affected by time, and such a scenario is considered to be undiscounted.

4 SPEA2 for Finding Pareto Frontier

SPEA2 (Strength Pareto Evolutionary Algorithm 2) is the genetic algorithm for find-
ing the pareto frontier in multi-objective optimization proposed by Zitzler [19]. The
main advantages of SPEA2 are an improved fitness assignment scheme that takes into
account for each individual how many individuals it dominates and it is dominated
by. The algorithm of SPEA2 is as follows:

Input: N (population size), N (archive size), T (maximum number of generations)
Output: A (nondominated set)
Step 1 Initialization:Generate an initial population P0 and create the empty archive

(external set) P0. Set t = 0.
Step 2 Fitness assignment: Calculate fitness values of individuals in Pt and Pt .
Step 3 Environmental selection: Copy all nondominated individuals in Pt and Pt

to Pt+1. If size of Pt+1 exceeds N then reduce Pt+1 by means of the
truncation operator; otherwise if size of Pt+1 is less than N then fill Pt+1

with dominated individuals in Pt and Pt .
Step 4 Termination: If t ≥ T or another stopping criterion is satisfied then set A

to the set of decision vectors represented by the nondominated individuals
in Pt+1. Stop.
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Step 5 Mating selection: Perform binary tournament selection with replacement
on Pt+1 in order to fill the mating pool.

The fitness assignment of SPEA2 is as follows. First, the number of individuals
S(i) dominated the individual i is calculated. R(i)(raw fitness of the individual i)
is the sum of the S( j) with the individual j dominates the individual i . R(i) = 0
corresponds to a non-dominated individual, while a high R(i) value means that i is

dominated by many individuals. The
√
N + N -th element gives the distance sought,

denoted as σi . The density D(i) is defined by D(i) = 1
σi+2 . The fitness assignment

F(i) is defined by F(i) = R(i) + D(i).
In SPEA2, the individual means the proposed bid, and the genetic locus means the

issue. The values of each issue mean the genes. The crossover is used as the uniform
crossover.

5 Strategy Considering Interdependency Between Issues

5.1 Estimating Opponent’s Utility Considering
Interdependency Between Issues

The proposed method estimates the opponent’s utility based on its statistical infor-
mation by dividing the opponent’s bids into some small elements. In the alternative
offering protocol, the bids proposed by the opponent many times should be consid-
ered as the important and highly valued ones. However, it is hard to get statistical
information by counting all the bids simply because the proposed bids are limited in
one-shot negotiation. In addition, we can’t estimate effectively in the nonlinear utility
functions if the issue interdependencies are ignored. Therefore, we propose a novel
method in which the opponent’s bid is divided into small elements considering the
combinations between issues, and the number of the opponent’s proposals is counted
to estimate the opponent’s utility function.

We assume that the alternative with M issues s is divided into small parts of the
alternative with D elements. C(D, s) is defined as a function of outputting the set of
combining D elements from the alternative with M elements (|C(D, s)| = MCD).
count (e) returns the number of the element e outputted by C(D, s) in the previous
proposals. The estimating function of the opponent’s utility of s is defined as follows:

U (s) =
∑

e∈C(D,s)

count (e). (1)

Figure2 shows an example of dividing the proposed bids, when s′ = (2, 4, 1)
is proposed by the opponent and some small parts of alternatives in (the num-
ber of divided elements) = 2, C(2, s′) = {[i1 = 2, i2 = 4], [i1 = 2, i3 = 1], [i2 =
4, i3 = 1]} are divided. We assume that the previous situation was count ([i1 =
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Fig. 2 Division of bid and counting method

2, i3 = 1]) = 1, count ([i2 = 4, i3 = 1]) = 4 before the opponent proposes. In this
situation, count ([i1 = 2, i2 = 4]) = 1, count ([i1 = 2, i3 = 1]) = 2, count ([i2 =
4, i3 = 1]) = 5 after this proposal is reflected.

After estimating the opponent’s utility, our agent can calculate the pareto frontier
using our utility function and the opponent’s estimated utilities by SPEA2.

5.2 Automated Negotiating Agent Considering Issue
Interdependency

We propose a novel strategy by estimating the opponent’s utility function and SPEA2
proposed in the previous section. The proposed agent has two steps: information-
gathering and compromising.
Information-gathering step Early on, the agent initiates the information-gathering
step. In this step, the agent doesn’t accept the opponent’s offers and proposes self-
ish bids to gather the opponent’s information for estimating the opponent’s utility.
Concretely speaking, the agent proposes the highest 50 bids by searching the genetic
algorithm.
Compromising step In the compromising step, the agent proposes the pareto optimal
bids estimated by SPEA2 using the opponent’s bids collected by the previous step in
order to make agreements. The details are as follows.

First, the agent estimates the pareto frontier using SPEA2 by considering its
own and the opponent’s estimated utility function. In moving from the information-
gathering step to the compromising step, the agent searches by SPEA2, whose gen-
eration number is 50. After that, the agent updates a generation from the previous
search result using the estimated utility function using the proposed bids by the oppo-
nent. The computational time becomes short by considering the differences of the
previous proposal.

The agent decides the next actions based on the estimated pareto frontier. The
equations for deciding the actions are as follows:

ua(t) = (1 − td)(1 − pa(t)) + pa(t) (1)

targeta(t) = min
t ′≤t

ua(t
′). (2)
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Fig. 3 Example of threshold of offer and accept (p(t) = 0.5)

pa(t) is defined as the lowest utility of the agent in the estimated pareto frontier
when the timeline is t . In other words, pa(t) means the bids with the highest utility
in the estimated pareto frontier. When the agent is A and the opponent is B, pA(t) =
u(s′){s′|maxs uB(s) ∩ s satis f ies the pareto f rontier}. Next, the agent proposes
a bid that satisfies the pareto frontier, and utility is more than targeta(t).

Figure3 shows the changes of targeta(t)when pa(t) = 0.5.As the discount factor
d is small, the agent compromises with the opponent in the earlier stage. By decid-
ing the proposal and acceptance strategies using pa(t), the agent can compromise
considering the rate of conflict.

When the utility of the opponent’s proposal in our utility function is higher than
targeta(t), the offer is accepted. In addition, our agent terminates this negotiation
when it can’t gain more than the reservation value; in other words, targeta(t) is less
than the reservation value.

6 Experimental Results

6.1 Finding the Pareto Optimal Bids

We conducted several experiments to evaluate our approach. The following parame-
ters were used. The domain for the issue values was [0, 9]. The number of issues
is from 10 to 30 at 5-issue intervals, and all experiments are conducted in five dif-
ferent domains. The number of constraints was (the number of issues) × 10, and
these constraints are related to 3.5 issues on average. The value for a constraint was
decided randomly from 0 to 1.0. The following constraints would all be valid: Issue
1 = [2, 6], Issue 3 = [2, 9]. The utility functions of each agent are decided randomly.
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Fig. 4 Example of opponent
bids

The opponent proposes in order from the highest utility bid to the lower ones.
Figure4 shows the opponent’s proposals in the experiments when the number of the
opponent’s bids increases. As Fig. 4 shows, the opponent proposes a bid as a gradual
compromise by selecting bids with lower utilities. In the initial phase, most of the
negotiating agents wait and see their opponent’s bids before judging their opponent’s
strategy and utilities in the previous ANAC [1]. Negotiating agents usually propose
selfish bids to avoid such mistakes as lower utility for their side in the initial phase.
After that they propose a bid as a gradual compromise by selecting bids with lower
utilities for themselves. Therefore, the opponent’s strategy in these experiments is
created as in Fig. 4 to evaluate in the previous virtual ANAC.

In the experiments, we evaluated the quality of the pareto frontier in our approach
measured by the size of the dominant area [18]. The dominant area increases when
the solution set is close to the pareto frontier and exists without any spaces between
solutions. This evaluation measure uses the size of the dominant area in the exper-
iments because it is effective for our approach to finding the pareto frontier. The
numbers of combinations D are 1, 2 or 3 in the experiments. In SPEA2, the number
of individuals is 250, the archive size is 250, the mutational rate is 1/(the number of
issues), and 500,000 function evaluations.

The optimal pareto frontier was found by searching its own and the ‘opened’
opponent’s utility spaces with SPEA2. Optimality Rate is defined as (dominant area
achieved by each protocol)/(optimal dominant area calculated by SPEA2).

Figure5 shows the average of the optimality rate in all utility spaceswhen the num-
ber of the opponent’s bids changes. As the number of the opponent’s bids increases,
our approach can find better solutions that are close to the pareto frontier. However,
the average of the dominant area is almost the same when the number of opponent’s
bids exceeds 10,000. The reason for this is that the opponent proposes the low-
valued bids in the final phase; therefore, these bids don’t have relations with finding
the pareto frontier.

Figure6 shows the average of the optimality rate in all utility spaces when the
number of combinations (D) changes. Our approach of D = 2 and D = 3 can search
the better bids that are closer to the pareto frontier than that of D = 1. Estimated
values of our approach of D = 1 are calculated by dividing bids with each issue
without considering the interdependency between issues. On the other hand, the
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Fig. 5 Dominant area with
number of opponent’s bids

Fig. 6 Dominant area with
combination number

approach needs to have a power of expressions to the nonlinear utility functions
because some issues have interdependency between issues in the nonlinear utility
functions. Therefore, our approach of D = 2 and D = 3 can have better results than
that of D = 1. Moreover, our approach of D = 3 was better than that of D = 2
in this experiment. In other words, our approach can improve the performance as
the number of issues considering the interdependency increases. On the other hand,
the computation time of our approach increases exponentially as the number of
combinations (D) increases. When the number of issues M is enough larger than
the number of combinations D, the time complexity is O(MD). In other words,
the number of combinations (D) is important for our approach to controlling the
computational complexity.

Figure7 shows the results of our proposed approach when the number of issues is
6. The horizontal axis is the utility of our agent, and the vertical axis is the utility of
the opponent. “Perfect” means the pareto frontier when the utility spaces of our side
and the opponent’s side are opened. “Estimate” means the pareto frontier estimated
by our proposed approach after the negotiation. As Fig. 7 shows, our approach can
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Fig. 7 Searching pareto
fronts by our proposed
method

almost find the pareto optimal bids.When the number of issues is larger, our approach
can estimate the pareto optimal bids accurately.

6.2 Tournament Results with ANAC-2014 Finalists

The performance of our proposed agent is evaluated with Genius (General
Environment for Negotiation with Intelligent multipurpose Usage Simulation [15]),
which is also used as a competition platform for ANAC. Ten agents were selected
from the qualifying round of ANAC-2014 competition: AgentM, Gangster,
WhaleAgent, E2Agent,AgentYK,BraveCat v0.3,GROUP2Agent, kGAgent,DoNA,
ANAC2014Agent.1

The domains were selected from archives of ANAC-2014. The sizes of the
domains are 1010, 1030, and 1050. Each constraint in these domains is related to
1 to 5 issues. The horizontal axis means agent A’s utility and the vertical axis means
agent B’s utility in each figure. The scenarios contained broadly similar charac-
teristics such as the shapes of the pareto frontier and so on. In all domains, the
discount factors are set to 1.0 and 0.5, and the reservation values are set to 0 and
0.75, respectively. For each pair of agents, under each utility function, we ran a total
of 12 negotiations (including the exchange of preference profiles). The maximum
negotiation time of each negotiation session is set to 3min and normalized into the
range of [0, 1]. Figures8 and 9 show the mean scores over all the individual welfares
and social welfares achieved by the round-robin tournament among 11 agents (our
agent and 10 state-of-the-art agents in ANAC-2014).

1All agents and domains participating in the final round of ANAC-2014 are available in the newest
Genius.
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Fig. 8 Average of individual utilities among ANAC-2014 finalists (The lines show standard errors)

Fig. 9 Average of social welfares among ANAC-2014 finalists (The lines show standard errors)
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Note that these means are taken over all negotiations, excluding those in which
both agents use the same strategy (i.e. excluding self-play). Therefore, the mean
score UΩ(p) of agent p in scenario Ω is given formally by:

UΩ(p) =
∑

p′∈P,p �=p′ UΩ(p, p′)
(|P| − 1)

, (3)

where P is the set of players andUΩ(p, p′) is the utility achieved by player p against
player p′ in scenario Ω . For every domain, due to the normalization of the scores,
the lowest possible score is 0 and the highest is 1. The fact that the maximum and
minimum scores are not always achieved can be explained by the non-deterministic
behavior of the agents: the top-ranking agent in one domain does not always obtain
the maximum score on every trial.

Regarding our agent, its settings are the same as in previous experiments except
for the number of generations. The number of combinations in dividing the issues
in estimating the opponent’s utility (D) is set to 2. These changes are due to the
computational powers of our agent in the larger-sized domains (such as 50 issues).
In the larger-sized domains, our agent can’t make enough proposals by the time limit
because of the large computational power required.

Figures8 and 9 show the averages of the individual and social welfare of every
agent in the tournament. The error bar means the standard error of the mean. Our
agent has won by a big margin in the individual and social welfares considering the
variance among the domains; therefore, our agent had advantages compared with
other agents. Table1 shows the average of the pareto distance, the Nash distance,
and the Kalai distance. Their scores are the minimum distances compared with other
agents. This means that our strategy has advantages of finding the pareto frontier in
the domains with 50 issues compared with other state-of-the art agents. In our agent,

Table 1 Quality measures of tournaments

Agent name Average pareto distance Average Nash distance Average Kalai
distance

Our Agent 0.0724 0.1557 0.1465

AgentM 0.0942 0.1682 0.1623

Gangster 0.0962 0.1856 0.1765

WhaleAgent 0.1095 0.1768 0.1665

E2Agent 0.1149 0.1987 0.1874

AgentYK 0.1281 0.2094 0.1963

BraveCat v0.3 0.1415 0.2119 0.1994

GROUP2Agent 0.1701 0.2580 0.2520

kGAgent 0.1791 0.2574 0.2498

DoNA 0.2072 0.2831 0.2720

ANAC2014Agent 0.2990 0.3670 0.3596
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the combinations of the estimating method of the opponent’s preferences by dividing
the issues and SPEA2 have a good effect in finding the pareto frontier effectively,
despite that our acceptance and proposal strategies are simple compared with other
agents.

7 Conclusions

In this chapter, we proposed an estimating method for the pareto frontier based on
an opponent’s bids. In the proposed method, the opponent’s bid was divided into
small elements considering the combinations between issues, and the number of
the opponent’s proposals was counted to estimate the opponent’s utility function. In
addition, SPEA2, which was based on the genetic algorithm for multiple objective
optimization,was employed in our proposedmethod to search the pareto optimal bids.
In the experiments, we evaluated the quality of the pareto frontier in our approach
measured by the size of the dominant area. The experimental results demonstrated
that our proposedmethod considering the interdependency between issues can search
the pareto optimal bids. In addition, we compared the negotiation efficiency of our
proposed agent with ten state-of-the-art negotiation agents that entered the final
round of ANAC-2014. Our agent won by a big margin in the negotiation tournaments
because of the estimated opponent’s utility and SPEA2.

Futureworkswill address improvements in estimating the opponent’s utility in our
proposed approach. To solve this problem, our approach needs to consider the order
of an opponent’s proposals in estimating the opponent’s utility. Another important
task is to judge the opponent’s strategy based on modeling or machine learning
technique to further enhance our proposed method.
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Abstract In traditional policy generation models, the preferences over polices are
often represented by qualitative orderings due to the difficulty of acquisition of accu-
rate utility. Thus, it is difficult to evaluate agreements in such models so that players
cannot adjust their strategies during a policy generation process. To this end, this
paper introduces a negotiation-based model for policy generation, which contains
two evaluation methods, both from the perspectives of concessional utilities and
consistency, to guide players to make decisions flexibly. The first method is used to
model humans’ reasoning about how to calculate concessional utilities from uncer-
tain preference information of policies based on fuzzy reasoning, while the second
method is used to measure similarity between an ideal agreement and an offer based
on a prioritised consistency degree. The experimental results show the difference
between the evaluation methods and confirm that the proposed model and evaluation
methods can help players achieve better agreements than an existing model.
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1 Introduction

Apolicy is a statement of intent or a principle of action to guide decisions and achieve
certain goals, and policy generation is about how to aggregate voters’ opinions or
preferences to reach acceptable policies. Policy generation is an important behaviour
in our political life and business, which has been studied in different areas, such as
political science, management science and economics [1]. People often use qual-
itative orderings rather than utility functions to represent preferences of different
policies [12]. For example, when voters are voting some candidates, it is easy for
them to make a preference ordering among candidates rather than measuring the
preference difference in a numeric scale [2]. However, there are three disadvantages
in most of the studies of policy generation based on social choice theory [1]. (i) In
real life, policy generation is so complex that a single preference ordering cannot
represent players’ personalities well. (ii) There is a lack of interaction in traditional
methods such as voting [4]. Policy generation is an interactive process, so players
should be able to change their opinions with the reveal of information. (iii) There
are few effective methods for evaluating agreements due to qualitative preference
orderings [11]. To address the above problems, researchers have been discovering
othermodels to represent policy generation in real life situations. Negotiationmodels
are one of the most suitable models since a negotiation is a process in which a group
of parties exchange information to obtain a mutually acceptable outcome [3].

The first two problems have been solved by some existing negotiation models
[11, 12]. However, so far the third problem of evaluation of agreements has not
been solved well yet. It is significant to give suitable evaluation methods because
players cannot make decision well without an evaluation. The above models are all
ordinal models, where the utilities of negotiators are not measured by values, but
represented by preference orderings over policies. This is the main reason resulting
in the evaluation problem. The ordinal model depicts the preference relation between
policies intuitively, but it is difficult to evaluate an agreement due to the lack of a
qualitative assessment. Therefore, an agreement in an ordinal model is often accord
with some certain axioms [5, 11, 12], but may not always be an optimal outcome.
Humans can estimate which agreement is better than others but it is hard to say why,
because of the complex reasoning rather than uncertain utilities of policies. Thus, an
approach is required to model humans’ reasoning of how to evaluate an agreement
from uncertain preference information about policies. To this end, we construct a new
negotiation model for policy generation, in which we propose two kinds of methods
for the outcome evaluations to guide players to make good decisions.

The proposed research advances the state of art in the field of negotiation-based
policy generation models in the following aspects. (i) An agent model is proposed,
which describes a negotiation scenario intuitively. (ii) Based on the agent model, a
fuzzy reasoning based method is proposed to calculate agents’ concessional utilities,
which is used to help agents to evaluate their outcomes or offers in the case where
the utilities of policies are not represented by precise numbers. (iii) A prioritised
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consistency method is introduced to evaluate the similarity between a player’s ideal
state and an agreement (or an offer).

The rest of this paper is organised as follows. Section2 introduces our negotiation-
based model. Section3 presents the fuzzy reasoning, which is used to calculate
the concessional utility in the utility-based evaluation method. Section4 proposes
a priority operator to calculate the prioritised consistency of an agreement in the
consistency-based evaluation method. Section5 illustrates our model by an example.
Section6 demonstrates the experimental results and the analysis. Section7 discusses
the related work. Finally, Sect. 8 concludes the paper with future work.

2 A Negotiation-Based Model

This section presents a negotiation-based policy generation model. Our model
focuses on the negotiation environment where negotiators have different attitudes
to some policies but need to find out an acceptable agreement, and they have no
accurate utilities of policies. Firstly, we specify a policy structure. Secondly, we pro-
pose two evaluationmethods of offers. Thirdly, we introduce the negotiation protocol
for generating policies. Finally, we define two kinds of agreement concepts.

2.1 A Policy Structure

In our model, agents can propose policies they are interested in and express their
opinions on these policies (support or opposition). Policies can be represented by
propositions. For example, disarmament is a policy and joining a military alliance
is also a policy. We describe a policy through two dimensions: one is about agent’s
attitude to the policy, while the other is about how important the policy is to the
agent, which denoted as a preference degree in this paper. Formally, we have:

Definition 1 A policy structureS is a tuple of (X, Att, Pre), where:

• X is a finite set of propositions in a propositional languageL and ∀x ∈ X , x is a
policy represented by a propositional variable;

• Att is an attitude function defined as Att : X → {0, 1} and ∀x ∈ X , Att (x) is
called the agent’s attitude of policy x . Att (x) = 1 means that the agent supports
the policy and Att (x) = 0 means that the agent opposes the policy; and

• Pre is a preference function defined as Pre : X → (0, 1] and ∀x ∈ X , Pre(x) is
called the preference degree of x in set X , which represents how important every
policy is to the agent.

For a certain policy, an agent shouldonlyhave an attitude in thebeginning, support-
ing or opposing the policy, and does not have an attitude to any irrelevant policy since
those policies do not affect his utility in an agreement. For example, agent i supports
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the policy disarmament, then his attitude to this issue is Atti (disarmament) = 1. In
fact, opposing a policy can also be represented by a sentence [5, 11, 12], such as
oppose disarmament, but we differentiate attitudes and policies in this paper because
we aim to deal both policies in continuous domains and discrete domains. In discrete
domains, the policy should be totally accepted or rejected by an agent. Take the
policy joining a military alliance as an example. In the final agreement, such policy
is either supported or opposed. However, in continuous domains, a policy can be
partially accepted in a final agreement, that is, the acceptance domain is divisible. If
the policy is disarmament, supporting such a policymaymean to reduce ten thousand
soldiers and opposing it may mean to totally maintain the existing size of the army,
then in agreement, disarmament can be partly accepted and opposed. A successful
negotiation can lead to an acceptable level, such as reducing five thousand soldiers.
The preference degree is used to represent the importance of a policy to an agent.
Instead of giving a numeric utility to value an issue, we use linguistic terms, for
instance, important, not important, to depict the preference of a policy. For a state-
ment “policy A is important”, there is a degree of truth, and the fuzzy set theory is
used to quantify this degree. In our model, humans need to offer a preference degree
between 0 and 1. With membership functions of linguistic terms, we can depict the
importance of policies. Although this kind of information about preference is more
specific than preference ordering through pairwise comparisons, it is easier to be
obtained than numeric utilities.

2.2 Evaluation Methods of an Offer

Our model uses an extension of alternating-offers protocol, so in every round one of
the agents gives an offer to the others. Formally, we define an offer as follows:

Definition 2 Oi,λ is an offer function of agent i defined asOi,λ : Xi
⋃

X−i → [0, 1],
where X−i denotes the policy sets of all i’s opponents, and ∀x ∈ Xi

⋃
X−i , Oi,λ(x)

is called agent i’s acceptance degree of policy x in the λ-th round.

This part proposes two evaluation methods of an offer to guide agents to make
decisions. These two evaluation methods are based on different perspectives, one is
utility-based method and the other is consistency-based method.

2.2.1 A Utility-Based Method

Giving an offer, fuzzy reasoning is used to evaluate concessional utility for agents.
Suppose that if all of the acceptance degrees of an agent’s policies in an offer are the
same with its attitudes to its policies, then the utility of the agent is the highest and
there is no concessional utility. Intuitively, the more concessions an agent makes on
a policy, the more utility declines. If the policy is more important to the agent, then
the utility will decreases more. We model the concessional utilities as follows:
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Definition 3 A concessional utility function of agent i , denoted as �ui , is given by:

�ui =
∑

x∈Xi
F R(Prei (x),Coni,λ(x))

|Xi | , x ∈ {x |Coni,λ(x) �= 0}, (1)

where |Xi | is the number of policies in policy set Xi and Coni,λ is a concession
degree function to represent a degree to which a negotiator makes a concession on a
policy, which is defined as

Coni,λ(x) = ∣
∣Atti (x) − Oi,λ(x)

∣
∣ , (2)

where x ∈ Xi and FR is a kind of fuzzy reasoning based on intuitive fuzzy rules for
calculating concessional utility of every policy.

We take the time cost into consideration in this model. The same offer in different
rounds has different concessional utilities for an agent. The utility an agent obtains
in an offer is lower than the same one in a previous round. The concessional utility
becomes larger and larger as time goes on. So, the following concept is introduced:

Definition 4 A concessional utility function with time constrains of agent i , denoted
as �uti , is given by:

�uti (�ui , σ, λ) = �uσλ−1

i , (3)

where σ ∈ [0, 1] is a discount factor, which is used to decrease the utility of the
offers as time passes and λ refers to the λth round of the negotiation.

When giving an offer, agents determine whether to accept it or not, so an agent
should have an acceptable threshold of concessional utility in every round. That is, if
one of the opponents’ offer makes a concession utility larger than the threshold, the
agent should reject it and vice versa. If the agent rejects an offer, it should generate
an offer not larger than the threshold. Formally, we have:

Definition 5 The acceptable threshold of concessional utility of agent i , denoted as
�ûi , is given by:

�ûi = f (λ) � �ui,max, (4)

where

�ui,max =
∑

x∈Xi
F R (Prei (x), 1)

|Xi | ,

�ui,max means the highest concessional utility of agent i in a negotiation. It hap-
pens only when it makes the largest concessions of all policies in its policy set.
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2.2.2 A Consistency-Based Method

In our model, a policy in an offer is presented by a proposition with partial truth.
So, we can evaluate an offer in the perspective of logical consistency, that is, how
similar two policy sets are. Because policies are of varying significance to an agent,
we take the preference into consideration when evaluating the similarity of consis-
tency between the original policy set and an offer. The idea is when a policy is less
important, the inconsistency of its truth value between the original policy set and the
offer does less harm to the consistency between two sets. Formally, we have:

Definition 6 For an offer function O , a prioritised consistency degree ρ of the offer
for agent i is given by:

ρi =
√∑

x∈Xi
(Prei (x) � γi (x))2

∑
x∈Xi

(Prei (x) � 1)2
, x ∈ Xi , (5)

where γi (x) = 1 − |O(x) − Atti (x)| is the consistency degree of x for agent i , and
operator �: [0, 1] × [0, 1] → [0, 1] is a priority operator that satisfies the following
properties:

(i) ∀ a1, a2, a
′
2 ∈ [0, 1], a2 � a

′
2 ⇒ a1 � a2 � a1 � a

′
2,

(ii) ∀ a1, a
′
1, a2 ∈ [0, 1], a1 � a

′
1 ⇒ a1 � a2 � a

′
1 � a2,

(iii) ∀a ∈ [0, 1], 1 � a = a, and
(iv) ∀a ∈ [0, 1], 0 � a = 1

Similarly to the concept of acceptable threshold of concessional utility, we define
the acceptable threshold of prioritised consistency as follows:

Definition 7 The acceptable threshold of prioritised consistency degree of agent i ,
denoted as ρ̂i , is given by:

ρ̂i = g(λ) � ρi,min, (6)

where

ρi,min =
√∑

x∈Xi
(Prei (x) � (1 − |1|))2

∑
x∈Xi

(Prei (x) � 1)2
, (7)

�ui,max denotes the smallest similarity of consistency between the original policy
set and an offer of agent i in a negotiation. It happens only when all relevant policies
in an offer diametrically opposed to an agent’s original attitudes to policies.

A negotiator agent can be formally defined as follows:

Definition 8 An agent i is a tuple of (S , (�ut ,�û), (ρ, ρ̂))i , where �ut ,�û, ρ

and ρ̂ are defined in the above definitions.
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Policy set S describes agent i’s polities and respective attitudes and preference
levels. Two-tuples (�ut ,�û) and (ρ, ρ̂) give two ways to evaluate an offer.

2.3 Negotiation Protocol

The agents communicate with each other based on an extension of alternating-offers
protocol [9]. That is, the negotiators exchange offers in turn until the negotiation is
finished. We extend the bilateral negotiation model to multilateral model for policy
generation in real life. More specifically, one of the agents starts the negotiation
randomly and the others reply to it. The first offer of every agent should indicate
its attitude of the policies it concerns. Formally, the first offer of agent i , denoted
as Oi,1, should satisfy the following property: ∀xi ∈ Xi , Oi,1(xi ) = Atti (xi ). This
means that the agent should reveal his attitude at the beginning, because this kind of
offer can maximise its utility. An agent can choose three actions as a reply, including
accepting the offer; rejecting the offer with generating a new one to the opponents;
and ending the negotiation that resulting in the lowest utilities for all agents. If every
negotiator has proposed an offer in turn, then a complete negotiation round is finished
and if there is no offer supported by all negotiators, a new round will begin. Agents
just know each other’s policies and attitudes, but for preventing the exploration of
opponents, they do not reveal their preference of policies. Some policies proposed
by one agent i may be irrelevant to agent j and different outcomes of this kind of
policies do not influence j’s utility. We call such policies as irrelevant policies for
party j , but an agreement of negotiation should also include such kind of policies.

2.4 Agreement Generation

An agreement appears if and only if an offer proposed by one of the agents is
supported by all the other agents. According to different evaluation methods, we
distinguish two agreement concepts. The first one is a utility-based agreement. That
is, the agents obtain an agreement in the utility scale and evaluate the agreement by
concessional utility. The latter one is a consistency-based agreement. That is, the
agents find an agreement consistent enough for all of them. Formally, we have:

Definition 9 An offer function O proposed in λth round in a N -agent negotiation
is a utility-based agreement if it satisfies: ∀i ∈ N , �uti (�ui , σ, λ) � �ûi (λ),

Definition 10 An offer function O proposed in λth round in a N -agent negotiation
is a consistency-based agreement if it satisfies: ∀i ∈ N , ρi (λ) � ρ̂i (λ).
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3 Fuzzy Reasoning

In this section, a fuzzy reasoning was proposed to evaluate concessional utilities.

3.1 Fuzzy Linguistic Terms of Fuzzy Variables

We define fuzzy set as follows:

Definition 11 Let U be a set (domain). A fuzzy set A on U is characterised by its
membership function

μA : U → [0, 1]

and ∀u ∈ U , μA(u) is called the membership degree of u in fuzzy set A.

The concessional utility of policies mainly depends on two factors: the preference
degree and the concession degree. So we use fuzzy sets based on the domains of
preference and concession.Wedistinguish various levels of both domains by different
linguistic terms. We use four terms, very important, important, fairly important and
less important to depict different levels of preference of a policy. Similarly, we use
five terms, very high, high, medium, low and very low to represent different levels of
concession an agent makes on a policy and indicate different levels of the output of
fuzzy reasoning, that is the concessional utility of a policy.

In this paper, we employ the trapezoidal-type fuzzy membership function [8]:

μ(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if x ≤ a,
x−a
b−a if a ≤ x ≤ b,
1 if b ≤ x ≤ c,
d−x
d−c if c ≤ x ≤ d,
0 if x ≥ d.

(8)

We draw the membership functions of linguistic terms of preference degree, con-
cession degree and concessional utility in Figs. 1, 2 and 3.

3.2 Fuzzy Rules

A fuzzy reasoning is based on fuzzy rules (i.e., IF-THEN rules). We show the fuzzy
rules in Table1. Rule 1 denotes that if the preference degree of a policy is less
important and the concession degree of the policy is very low, the concessional utility
of the policy is very low. Such rule models the intuitive reasoning that if a person
makes a little concession on a less important policy, then compared to his original
offers, his concessional utility is very low. Similarly, we can understand other rules.
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Fig. 2 Membership function of concession degree
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Fig. 3 Membership function of concessional utility

These rules and the linguistic terms of inputs and output may vary among different
persons. For example, some persons use more terms to depict the different levels
of preference degrees, while the others may consider that two terms, important and
less important, are enough. In our model, the linguistic terms, membership functions
and fuzzy rules depend on particular persons, thus humans can adjust them in fuzzy
reasoning in their agents to model their reasoning. In this paper, we adopt the above
setting to interpret our model.
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Table 1 Fuzzy rules

Preference degree Concession degree Concessional utility

1 Less important Very low Very low

2 Less important Low Very low

3 Less important Medium Low

4 Less important High Low

5 Less important Very high Medium

6 Fairly important Very low Very low

7 Fairly important Low Low

8 Fairly important Medium Low

9 Fairly important High Medium

10 Fairly important Very high High

11 Important Very low Low

12 Important Low Medium

13 Important Medium Medium

14 Important High High

15 Important Very high Very high

16 Very important Very low Medium

17 Very important Low High

18 Very important Medium High

19 Very important High Very high

20 Very important Very high Very high

3.3 Fuzzy Inference Method

The following definition is about the implication of the Mamdani method [7].

Definition 12 Let Ai be a Boolean combination of fuzzy sets Ai,1, . . . , Ai,m , where
Ai, j is a fuzzy set defined on Ui, j (i = 1, . . . , n; j = 1, . . . ,m), and Bi be a fuzzy
set on U ′ (i = 1, . . . , n). Then when the inputs are μAi,1(ui,1), . . . , μAi,m (ui,m), the
output of such fuzzy rule Ai → Bi is fuzzy set B ′

i defined as follows: ∀u′ ∈U ′,

μi (u
′)=min{f (μAi,1(ui,1), . . . , μAi,m (ui,m)), μBi (u

′)}, (9)

where f is obtained through replacing Ai, j in Ai by μi, j (ui, j ) and replacing “and”,
“or”, “not” in Ai by “min”, “max”, “1 − μ”, respectively. And the output of all
rules A1 → B1, . . . , An → Bn , is fuzzy set M , which is defined as:

∀u′ ∈ U ′, μM(u′) = max{μ1(u
′), . . . , μn(u

′)}. (10)
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Fig. 4 The relation between preference degrees, concession degrees and concessional utilities. It
shows that when a negotiator makes more concessions on a more important issue, compared with
the ideal state, his descends more utilities. On the contrary, less concessions on a less important
issue result in less concessional utilities

The result is still a fuzzy set and we should transform the fuzzy output into
crisp one. Such process is called defuzzification. We apply the well-known centroid
method [7] in this paper:

Definition 13 The centroid point ucen of fuzzy set M given by formula (10) is:

ucen =
∫
U ′ u′μM(u′)du′
∫
U ′ μM(u′)du′ . (11)

Using this fuzzy inferencemethod,wecanobtain the relationbetween inputs (pref-
erence degrees, concession degrees) and output (concessional utilities), as shown in
Fig. 4. After aggregating the above 20 fuzzy rules, our models can reflect humans’
intuitive reasoning well.

4 A Priority Operator

In our model, when calculating the prioritised consistency degree of an offer, we
need a priority operator, which should satisfy some properties shown in Definition 6.
Here we apply a specific priority operator [6].

Theorem 1 Operator �: [0, 1] × [0, 1] → [0, 1], which is defined as follows, is a
priority operator:

a1 � a2 = a1 × (a2 − 1) + 1 (12)
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Proof We proof that the operator � satisfies the property of priority operator listed
in Definition 6.

(1) If a2 � a
′
2, then a1 × (a2 − 1)+1 � a1 × (a

′
2 − 1)+1, hence a1 � a2 � a1 � a

′
2,

(2) Ifa1 � a
′
1, thena1 × (a2 − 1) + 1 � a

′
1 × (a2 − 1)+1, hencea1 � a2 � a1 � a

′
2,

(3) ∀a ∈ [0, 1], 1 � a = 1 × (a − 1) + 1 = a, and
(4) ∀a ∈ [0, 1], 0 � a = 0 × (a − 1) + 1 = 1 �

5 Illustration

In this section, we illustrate our model through an example. In this example, two
parties, represented by Parties 1 and 2, have four issues to negotiate. These policies
are in continuous domains, i.e., the parties can give an offer representing they partly
supported or opposed the policies. Moreover, we assume that the acceptance degree
can be accurate to 0.2 in this example, i.e., the acceptance domains can be divided
into six levels from 0 to 1. The policy structures of both agents are summarised
in Table2. We use A, B, C , D to represent the following policies: five percent tax
increase, ten percent disarmament, ten percent increase of educational investment,
and ten thousand economical housings investment. Party 1 supports policies A and
C , opposes policy D, and does not care about policy B (we call it irrelevant issue
of Party 1, i.e., the outcome of policy B does not affect its utility), while Party 2
supports policy B, opposes policies A and C , and policy D is irrelevant for it.

In this example, we assume that two agents (i.e., acting on Parties 1 and 2) use
a simple and friendly strategy in negotiation. It should be noted that an agent in a
negotiation can use different negotiation strategies to achieve its goals. In this paper,
our main work is to build an agent model that can represent well how concessions
and preferences influence an outcome in real negotiation and find suitable evaluation
methods of agreement. In order to illustrate how the evaluationmethodswork, we use
a simple strategy, rather than complex ones. The strategy an agent uses in this example
is as follows: (i) an agent gives the first offer showing friendliness, that is, using
the opponent’s attitude degree to calculate acceptance degree of irrelevant issues.
For example, the first offer of Agent 1 is: Oi,1(A) = 1, Oi,1(B) = 1, Oi,1(C) = 1,
and Oi,1(D) = 0. We denote this offer as Oi,1 = {1, 1, 1, 0} for short. Similarly,
Oi,2 = {0, 1, 0, 0}. (ii) An agent generates an offer according to concessional utility.

Table 2 Policy structure of agents

A B C D

Attitude of party 1 1 N/A 1 0

Preference of party 1 0.9 N/A 0.3 0.2

Attitude of party 2 0 1 0 N/A

Preference of party 2 0.2 0.5 0.7 N/A
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The agent gives an offer with the least concessional utility first. If the opponent
rejects this offer and the agent also rejects its opponent’s counter-offer, the agent
gives another offer with second least concessional utility in a new round. (iii) An
agent accepts an opponent’s offer if the concessional utility of the offer is not larger
than that of its offer in the next step. That is,�ûi (λ) � �uti (λ + 1) for the agent that
starts the negotiation and �ûi (λ) � �uti (λ) for the other one. We suppose Agent 1’s
discount factor is σ1 = 0.9 and Agent 2’s discount factor is σ2 = 0.8. They use fuzzy
reasoning method shown in Sect. 3 to calculate their concessional utilities.

The process of negotiation is shown in Table3. In the first round, Agent 1 proposes
an offer (1, 1, 1, 0), then Agent 2 evaluates the offer through fuzzy reasoning and
finds that it is higher than its acceptable threshold of concessional utility in this round
(�ut2 = 0.5251 > �û2 = 0). Then Agent 2 gives an offer (0, 1, 0, 0). Agent 1 also
evaluates the offer and rejects it, and then it generates a new offer in the next round.
After several rounds, Agent 2 accepts Agent 1’s offer (1, 1, 0, 0) finally. According
to Definition 9, (1, 1, 0, 0) is a utility-based agreement.

Similarly, we find a consistency-based agreement through consistency-based eval-
uation method. The strategy is based on prioritised consistency degree. More specif-
ically, (i) an agent gives its first offer by using the opponent’s attitude degree to
calculate acceptance degree of irrelevant issues. (ii) An agent generates an offer
according to prioritised consistency degree. The agent gives an offer with the highest
prioritised consistency degree first. If there is no agreement in the first round, an
offer with the second highest prioritised consistency degree will be proposed in a
new round. (iii) An agent accepts an opponent’s offer if the prioritised consistency
degree of the offer is not smaller than that of its offer in the next step. This process
of negotiation is shown in Table4.

6 Experiment

This section demonstrates two experiments. The first experiment is proposed to
reveal how the utility-based and consistency-based strategies influence the outcome
of negotiations with different divisions of the acceptance intervals. The more divi-
sions means that an agent can give an more accurate offer. The second experiment
is proposed to analyse how the qualities of agreements can be improved with our
utility-based method by comparing with an existing model [12].

6.1 Experimental Setting

In the first experiment, we set a negotiation scenario as follows: (i) two agents have
two policies to negotiate and they have opposed attitudes to the policies; (ii) both
agents have discount factor σ = 0.9; (iii) both agents use the same strategies shown
in Sect. 5, including the utility-based and the consistency-based strategies; (iv) the
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acceptance intervals are divided into different levels to present howaccurately anoffer
can be generated; (v) a policy’s preference degree of each agent is randomly selected;
and (vi) the experiments were repeated for one thousand times in each setting. In
the second experiment, we compare our model with an axiomatic negotiation based
model without an evaluationmethod of an offer. In that traditional model [12], agents
negotiate through a minimal simultaneous concession, i.e., agents give up the least
important policies in every round simultaneously until the remaining policies are not
conflictive.We set a negotiation scenario as follows: (i) two agents have 10 indivisible
policies (i.e., a policy should be totally supported or opposed) to negotiate, and the
agents have different attitudes to n of them,where nwill change from1 to 10; (ii) both
agents have discount factor σ = 1; (iii) a policy’s preference degree of each agent
is randomly selected; (iv) both agents use the utility-based strategy shown in the
example and the minimal simultaneous concession solution; and (v) the experiments
were repeated for one thousand times in each setting.

6.2 Results and Analysis

The first experimental results are showed in Figs. 5 and 6. In Fig. 5, the ‘dot’ line
is used to show how the average concessional utilities of both agents in an agree-
ment change when the number of division of acceptance interval increases, while
the ‘cross’ line represents the best situation where both agents obtain the lowest
average concessional utilities in the situation where they collaborate with each other.
Comparing these two lines, we can see clearly that the average concessional utility
of both agents increases when the number of division increases, while the minimum
values are similar. Figure6 shows how the prioritised consistency degree in agree-
ment changes through consistency-based strategy when the number of division of
acceptance interval increases. The ‘dot’ line presents an average prioritised consis-
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Fig. 5 Relation between number of division and concessional utilities
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tency degree of both agents, while the ‘cross’ line represents the best situation where
both agents obtain the highest average prioritised consistency degree. Comparing
these two lines, we can see that the average prioritised consistency degree does not
change too much (just between 0.7 and 0.9), and is not far away from the highest
prioritised consistency degree.

The results in the second experiment are showed in Fig. 7. The figure reveals that
under the guide of evaluation method based on concessional utility, our model could
avoid more losses than the one of [12]. Comparing the line marked by squares and
the line marked by circles, we can see that using an evaluation method, both agent
can save almost a half loss together, even when the number of policies with different
attitudes increases.
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7 Related Work

This section discusses the work related to negotiation methods for policy generation
and application of fuzzy logic in negotiation models.

Zhang et al. [13] proposed a logic-based axiomatic model to handle bargain-
ing situations in political bargaining and other relevant bargaining. In their model,
bargainers’ physical demands are described by logical statements and bargainers’
preferences are represented in total pre-orders. A solution concept is also proposed
in their work. Zhang [12] later proved the solution is uniquely characterised by five
logical axioms. A bargainer’s attitude towards risk is reflected by a bargainer’s pref-
erences over conflicting demands. However, the agents cannot change their offers
during bargaining process. This feature limits their approach to be used in dynamic
and complex domains. Ourmodel used an alternating-offers protocol, so agents could
adjust their offers dynamically. Moreover, we also introduced evaluation methods
for agreements to guide agents to make good decisions, while their work lacks of
evaluation methods, which might result in serious problems.

Zhan et al. [10, 11] proposed a multi-demand bargaining model based on fuzzy
rules, which can also be applied in polity generation. In their model, fuzzy reason-
ing are employed to calculate how much bargainers should change their preferences
during a bargaining process and to model how bargainers’ personalities influence
agreements. In our model, fuzzy reasoning is used as a part of a utility-based eval-
uation method, which is used to calculate concessional utility. Compared with their
model, ours is more flexible to allow an agent to adjust its acceptable level of offers
during negotiation process without employing a mediator. In addition, we also pro-
vided methods to evaluate agreements so as to ensure better outcomes.

Luo et al. [6] proposed a fuzzy constraint-based model for bilateral, multi-issue
negotiations in semi-competitive environments. In their model, offers of buyer agent
are represented by prioritised fuzzy constraints and the evaluation of an offer is
regards as a prioritised fuzzy constraint satisfaction problem. During a negotiation, a
buyer agent sends its fuzzy constraints according to priority. If the seller agent cannot
give an offer under the constraints given by the buyer, the buyer should relax some
of its constraints. However, in each round of their negotiation a buyer agent can only
submit one new constraint or relax a submitted one. This feature might limit their
approach to be used in complex domains. In our model, agents can change its offer
flexibly and dynamically under the guide of two evaluation methods of offers.

8 Conclusions and Future Work

In this paper, a negotiation-based policy generation model was proposed to solve
the problem of lacking of agreement evaluation methods in existing work and guide
agents to make appropriate decisions to achieve better outcomes. The first one is
a utility-based evaluation method. It handles reasoning about how concessions and
preferences of policies affect an agent’s utility. In this method, a fuzzy reasoning was
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used to calculate concessional utility of an offer for an agent based on intuitive fuzzy
rules. The second one is a consistency-based evaluation method. It calculates the
similarity between an agent’s ideal state and an offer. The similarity is represented
by a prioritised consistency degree, and a specific priority operator is used to express
the influence of preferences of policies contributing to consistency. The experimental
results showed that different evaluation methods of offers can result in different
outcomes and the proposed policy generation model can efficiently handle situations
where utilities of policies are hard to obtain, and successfully lead the political
negotiation to an agreement. With the help of evaluation methods, an agent can
make less utility concessions than a traditional one.

The future work will pay attention to negotiation strategies. An extended nego-
tiation protocol will also be developed by adding an information transfer module
between agents or in a coalition to model the cooperation between the parties in
policy generation scenarios.
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Fixed-Price Tariff Generation
Using Reinforcement Learning

Jonathan Serrano Cuevas, Ansel Y. Rodriguez-Gonzalez
and Enrique Munoz de Cote

Abstract Tariff design is one of the fundamental building blocks behind distributed
energy grids. Designing tariffs involve considering customer preferences, supply and
demand volumes and other competing tariffs. This paper proposes a broker capable of
understanding the market supply and demand constraints to issue time-independent
tariffs that can be offered to customers (energy producers and consumers) on smart
grid tariff markets. The focus of this work is laid on determining the most profitable
price on time-independent tariffs. While this type of tariffs are the most simple of
all, it allows us to study the fundamental underpinnings behind determining tariff
prices considering imperfect and semi-rational customers and competing tariffs. Our
proposed broker agent—COLDEnergy— learns its opponents strategy dynamics by
reinforcement learning. However, as opposed to similar methods, its advantage lies
in its ability to learn fast and adapt to changing circumstances by using a sufficient
and compact representation of its environment. We validate the proposed broker in
Power TAC, an annual international trading agent competition that gathers experts
from different fields and latitudes. Our results show that the proposed representation
is capable of coding the important characteristics of tariff energy markets for fixing
energy prices when the competing brokers are non-stationary (learning), irrational,
fixed, rational or greedy.

1 Introduction

Together with the adoption of smarter energy grids comes the idea of deregulating the
energy supply and demand through energy markets, where producers are able to sell
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energy to consumers by using a broker as an intermediary. One of the most dominant
energy markets is the tariff market, where small consumers can buy energy from
broker agents1 via tariffs. Tariffs are contracts agreed between either a producer or a
consumer, and a broker, which entitle both parts the right to trade a certain amount
under certain conditions [1]. These conditionsmight include the payment per amount
of energy traded, minimum signup time, signup or early withdraw payments, among
others [2]. It is through an open energy market of this kind, which uses tariffs to buy
and sell energy that the grossmajority of the traded energy takes place. For this reason,
this work is focused on proposing a tariff-expert broker agent for the tariff energy
markets. We use Power TAC [3], an annual international trading agent competition
that gathers experts fromdifferent fields and latitudes to validate our proposed broker.
PowerTAC is a complex simulator of an entire energy gridwith producers, consumers
and brokers buying and supplying energy. It considers transmission and distribution
costs, models many different types of energy generation and storage capacities and
uses real climate conditions and user preferences to simulate the environment where
brokers should take autonomous decisions.

Several aspects, including the customers’ preferences and the competitions’ offers,
were taken into account to design our tariff-expert broker [4], which uses reinforce-
ment learning to generate electric energy tariffs while striving to maximize its utility
on the long term. To test our proposed tariff design, we embedded our solution in
COLD Energy, a broker agent that considers many other aspects of the smart-grid
(like a wholesale day-ahead and spot markets, balancing issues and portfolio man-
agement). However, this paper will focus solely on the tariff maker part of COLD
Energy.

The paper is structured as follows, in Sect. 2 we present a general background
on Power TAC and the electricity tariff markets. Then we present the most relevant
work related to ours. In Sect. 3 we present our tariff-expert contribution embedded
in COLD Energy. We present our experimental results in Sect. 4 and close our work
with some relevant conclusions.

2 Power TAC and Tariff Markets

Power TAC [3] is a smart grid [5] simulation platformwhere a set of brokers compete
against each other in an energymarket. Power TACuses amulti-agent approach [6] to
simulate a smart grid market, where brokers can buy or sell energy to their customers
in two different markets: the wholesale market and the tariff market, however, this
paper is focused solely on the tariff market. In the tariff market, the brokers trade
energywith their clients by using contracts called tariffs, which include specifications
such as price-per-kwh, subscription or early withdrawal fees, periodic payments and,
the most important one: price. The experiments on this paper used a particular type
of tariff called flat tariff [7]. A flat tariff is a time independent tariff, which offers

1Note that we refer to brokers and agents indistinctly.
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Fig. 1 PowerTAC timeslot cycle including the tariff market operations

a fixed price per energy unit disregarding the time, i.e. the time of the day of the
day of the week; therefore its only specification is price-per-kwh. Figure1 shows the
Power TAC cycle, including the tariff market period. During this period each broker
publishes tariffs, and customers evaluate them and decide if they should subscribe
to them. Later on this period the consumption and production operations related to
tariffs are executed, and the transaction proceedings are charged either to the brokers
or to the customers at the end of each time unit. The time unit used on Power TAC is
a timeslot, which represent one simulated hour. The brokers can publish tariffs at any
given timeslot. After publishing a tariff, the customers can evaluate the offers and
decide if they are to stay with the same tariff or change to any available tariff, which
may belong to the same broker or to another one. The objective of every single broker
is to publish attractive tariffs, so that the producing-customers want to sell energy
to it and the consuming-customers want to buy energy from it. At the end, every
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broker will receive a utility that depends on the incomes, expenses and unbalance
fees charged by the transmission line owner.

3 COLD Energy Tariff-Expert

The strategy proposed on this paper is based on the work done by Reddy and Veloso
[8]. In this work a simulation approach was used to investigate a heavily simplified
competitive tariff market, where the amount of energy consumed and produced by
customerswas discretized in blocks, and the daily consumptionwas a fixed parameter
that remained the same through the entire simulation. The paper used five agents
(each equipped with a different decision making mechanism), each of them using
different actions to alter tariff prices. One of these agents used a Markov Decision
Process (MDP) to learn a policy using Q-learning. The states of the Q-learning
algorithm consisted of two heuristic elements. One of them captured the broker’s
energy balance, determining if more energy was bought than sold or it was the other
way around. The second element captured the state of the market by comparing
the minimum consumption price and the maximum production price. The paper
demonstrated that agents which used the learning strategy overperformed those using
a fixed strategy in terms of overall profit, when tested in a simplified scenario.

We tested their proposed learning algorithm on a more complex fixed-tariff mar-
ket scenario, and developed a learning broker BL which used an improved market
representation based on the one proposed by Reddy, and a new set of actions, which
publish a consumption and production price each. In more detail, our learning broker
evaluates how did the last production and consumption prices behaved in terms of
utility and then picks another action. Each action publishes a new consumption and
production tariff with prices PBk

t,C and PBk
t,P respectively. At the end the evaluation

period, Ψt,C and Ψt,P represent the amount of energy sold or acquired by the broker
respectively. In general terms the literal P will be used to refer to an energy price
and Ψ to refer to an energy amount. For each evaluation period, the utility function
for broker k (Bk) is the one shown in Eq.1. The first term represents the income total
proceedings due to electric energy sale, the second terms corresponds to the amount
paid to producers, and the third term represents an inbalance fee.

uBk
t = PBk

t,CΨt,C − PBk
t,PΨt,P − θt|Ψt,C − Ψt,P| (1)

Each term in Eq.1 represents either a monetary income or outcome. So the whole
utility represents a monetary amount. All three terms multiply a price per energy unit
by an energy amount, yielding a monetary unit. If the difference Ψt,C − Ψt,P equals
zero, then the broker sold exactly the same amount of energy it bought, so the energy
inbalance is zero; and for this reason the inbalance fee is zero as well. The variable
θt is the amount the broker has to pay to the transmission line owner per each unit
of energy inbalance it generated on the evaluation period.



Fixed-Price Tariff Generation Using Reinforcement Learning 125

The utility function from Eq.1 was used as the MDP’s reward after executing a
certain action at a given state while in time t. Our brokers state representation will
be described on Sect. 3.3 and its actions on Sect. 3.4.

3.1 Market Model

It is important to mention in first place that the market model was designed with
the purpose of being used to maximize the utility in the long term. The environment
description, encoded as discrete states depend on some key elements belonging to
the tariffs published by other brokers; namely: maximum and minimum consump-
tion prices, and maximum and minimum production prices. These parameters are
described in the following way.

Minimum consumption price:

Pmin
t,C = minBk∈B\{BL}P

Bk
t,C (2)

Maximum consumption price:

Pmax
t,C = maxBk∈B\{BL}P

Bk
t,C (3)

Minimum production price:

Pmin
t,P = minBk∈B\{BL}P

Bk
t,P, (4)

Maximum production price:

Pmax
t,P = maxBk∈B\{BL}P

Bk
t,P, (5)

where BL represents the learning broker evaluating these parameters and the mini-
mum and maximum prices are taken from a list conformed by the prices of all the
other brokers, but not the prices of the learning broker BL. Now we will proceed to
explain the MDP we used.

3.2 MDP Description

The MDP used by COLD Energy is shown in Eq.6.

MBL = 〈S,A,P,R〉 (6)

where:
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• S = {si : i = 1, . . . , I} is a set of I states,
• A = {

aj : j = 1, . . . , J
}
is a set of J actions,

• P(s, a) → s′ is a transition function and
• R(s, a) equals uBk=L

t and represents the reward obtained for execution action awhile
in state s.

3.3 States

A series of states were designed so as to provide our learning broker of a discretized
version of the market, which considers as well the effect of the actions executed by
the other brokers. Specifically the state space S is the set defined by the following
tuple:

S = 〈PRSt,PSt,CPSt,PPSt〉 (7)

where:

• PRSt = {rational, inverted} is the price range status at time t and
• PSt = {shortsupply, balanced, oversupply} is the portfolio status at time t.
• CPSt = {out, near, far, veryfar} is the consumers price status,
• PPSt = {out, near, far, veryfar} is the producers price status,

The values PRSt and PSt capture the relationship between the highest production
price and the lowest consumption price, and the balance of the brokerBL , respectively.
This two parameters were proposed by Reddy and are defined as follows:

PRSt =
{
rational if Pmin

t,C > Pmax
t,P

inverted if Pmin
t,C ≤ Pmax

t,P
(8)

PSt =
⎧
⎨

⎩

balanced if Ψt,C = Ψt,P

shortsupply if Ψt,C > Ψt,P

oversupply if Ψt,C < Ψt,P

(9)

where:

• Pmin
t,C = minBk∈B\{BL}P

Bk
t,C is the minimum consumption price,

• Pmax
t,C = maxBk∈B\{BL}P

Bk
t,C is the maximum consumption price,

• Pmin
t,P = minBk∈B\{BL}P

Bk
t,P is the minimum production price and

• Pmax
t,P = maxBk∈B\{BL}P

Bk
t,P is the maximum production price

On these equations BL represents the learning broker evaluating these parameters.
So the minimum and maximum prices consider the list conformed by the prices of
all the other brokes but not the prices of the learning broker BL.

These two elements of S encode the price actions of the broker related to the prices
of the other brokers. These parameters, as coarse as they can be, create a compact
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representation of amarket that might include several brokers publishingmany tariffs.
This representation’s sizewill remain unchanged disregarding the latter factors, but at
the same time the representation will capture the tariff market price states as a whole,
considering the other competing brokers’ tariff publications. The tuple parameters
CPSt and PPSt can take any of these values: out, close, far, very far and are defined
as follows.

CPSt =

⎧
⎪⎪⎨

⎪⎪⎩

out if Topref ≤P
BL
t−1,C

near if Thresref <P
BL
t−1,C≤Topref

far if Middleref <P
BL
t−1,C≤Thresref

veryfar if P
BL
t−1,C≤Middleref

(10)

where:

• Topref = Pmin
t,C

• Middleref = Pmin
t,C +Pmin

t,P

2

• Thresref = Topref +Middleref
2

PPSt =

⎧
⎪⎪⎨

⎪⎪⎩

out if Bottomref ≥P
BL
t−1,P

near if Thresref ≥P
BL
t−1,P>Bottomref

far if Middleref ≥P
BL
t−1,P>Thresref

veryfar if P
BL
t−1,P≥Middleref

(11)

where:

• Bottomref = Pmin
t,P ,

• Middleref = Pmin
t,C +Pmin

t,P

2

• Thresref = Bottomref +Middleref
2

3.4 Actions

The set of actions is defined as:

A = {maintain,lower,raise,inline,revert,minmax,wide,bottom} (12)

Each one of these actions define how the learning agent BL determines the prices
PBL
t+1,C and PBL

t+1,P for the next timeslot t+1. These actions were designed so as to
provide the broker with several ways to react fast to market changes. It is important
to recall that every single action impacts both the production and consumption price
features of the next tariffs to be published. These are the specific details of each
action:

• maintain publishes the same price as in timeslot t−1.
• lower decreases both consumer and producer prices by a fixed amount.
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• raise increases both the consumer and producer prices by a fixed amount.
• inline sets the consumption and production prices as PBL

t+1,C = ⌈
mp + μ

2

⌉
and

PBL
t+1,P = ⌊

mp − μ

2

⌋
.

• revert moves the consumption and production prices towards the midpoint mp =⌊
1
2 (P

min
t,C + Pmin

t,P )
⌋
.

• minmax sets the consumption and production prices as PBL
t+1,C = Dcoeff Pmax

t,C and

PBL
t+1,P = Pmin

t,P , where Dcoeff is a number on the interval [0.70, 1.00] which damps
the effect of the minmax action over the consumption price.

• wide increases the consumption price by a fixed amount ε and decreases the
production price by a fixed amount ε.

• bottom sets the consumption price as PBL
t+1,C = Pmin

t,C Ṁargin, where the production

price PBL
t+1,P = Pmin

t,P . The Bottom action is market-bounded.

3.5 State/Action Flow Example

To illustrate an action’s effect over the consumption and production prices, Fig. 2
shows a simple simulated flow on a series of actions. The actions appear above
the graph. On this hand-made simple scenario COLD Energy competes against two
brokers, who publish one consumption and one production tariff each. The horizontal
axis represents the time measured in decision steps, the vertical axis corresponds to
the energy price. The dashed lines are fixed references, while the continuous lines
are the published prices as described below:

• maxCons: corresponds toPmax
t,C and is equal to 0.5. It can be assumed that competing

broker A published a consumption tariff with this price.

Fig. 2 Overall average and standard deviation for each broker
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• minCons: corresponds toPmin
t,C and is equal to 0.4. It can be assumed that competing

broker B published a consumption tariff with this price.
• minProd: corresponds to Pmin

t,P and Pmax
t,P ; which means that the maximum and

minimum production prices are the same and is equal to 0.015. It can be assumed
that both brokers A and B published a production tariff with this price.

• Cons: corresponds to the consumption price published by COLD Energy.
• Prod: corresponds to the production price published by COLD Energy.

COLD Energy will bound the price range of its tariffs in the range [Pmax
t,P , Pmin

t,C ].
For this reason, none of the actions will lead to a price position outside this range.
This feature ensures that any consumption price published by Cold Energy will be
more attractive to energy buyers, and any production price published will be more
attractive to energy sellers.

The learning algorithm used was the Watkins-Dayan [9] Q-Learning update rule
with an ε − Greedy exploration strategy. This strategy either selects a random action
with ε probability or selects an action with 1 − ε probability that gives maximum
reward in a given state.

Q̂t(s, a) ← (1 − αt)Q̂t−1(s, a) + αt

[

rt + γ Q̂t−1
a’

(s′, a′)
]

, (13)

4 Experimental Results

This section will describe the results obtained by using the market representation and
the actions described on the previous section. Six different brokers participated on the
series of experiments, including COLD Energy and ReddyLearning. The different
brokers are described on Table1.

Table 1 Competing brokers
general description

COLD Energy The learning broker developed on this
thesis work

ReddyLearning The learning broker proposed by Reddy

Fixed Publishes a initial production and
consumption tariff and never updates
them again

Balanced A fixed-strategy broker which uses the
Balanced strategy proposed by Reddy

Greedy A fixed-strategy broker which uses the
Greedy strategy proposed by Reddy

Random A broker that uses COLD Energy’s
market representation and actions. This
broker chooses randomly among the
available actions at each evaluation period
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Since COLDEnergy deals with flat tariffs, it is necessary to test our broker against
similar ones. For this reason the broker ReddyLearning was chosen. The same logic
applies for the selection of the remaining brokers. It is not possible to tell the result
of the pricing strategy apart if the tariff creation mechanisms of the competing and if
the competing brokers are not publishing only flat tariffs. These two considerations
are really important since Power TAC provides the capability of publishing time-
dependent tariffs and also supplies wholesale market abilities to every broker.

4.1 General Setup

Prior to the experiments, bothCOLDEnergy andReddyLearningwere trained against
a fixed broker for 2,000 timeslots and against the random broker for 8,000 timeslots.
During the training sessions the brokers were adjusted to explore at every decision
step, updating their Q-table with the obtained reward. The trained Q-table was stored
and transferred to the brokers to be exploited on the experiments. The experimental
general setup includes a game length of 3000 timeslots and a tariff publication interval
of 50 ± 5 timeslots when a consumption and a production tariffs are published.
Lastly, since the training process took place already before the experimental session,
the learning brokers did not explore at all during the test sessions.

4.2 Experiments Description

The experiments were designed to test COLD Energy against specific sets of the
competing brokers and itself. We conducted the following set of experiments.

• COLD Energy versus All: our learning broker versus Random, Balanced, Greedy
and the learning broker proposed by Reddy, named as ReddyLearning.

• COLD Energy versus ReddyLearning: our learning broker versus the learning
broker proposed by Reddy.

4.3 COLD Energy Versus All

This series of experiments included all the brokers. Figure3 plots the average and
standard deviation per publication interval for each broker, while Fig. 4 is an example
of how the accumulated utility behaved on one of the experiments.

Several observations can be drawn from these results. First, Fig. 3 clearly show that
COLD Energy has the highest utility compared to the rest of the competing brokers.
The second position is for the Random broker and the third one for ReddyLearning.
The latter broker uses themarket representation and set of actions proposed byReddy
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Fig. 3 Overall average and standard deviation for each broker
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[8], which is different from those used by COLD Energy and Random. On the other
hand, Random shares the same set of actions and the same market representation
with COLD Energy, for this reason Random gets a better utility that COLD Energy
sometimes, when it reacts after COLD Energy has published its tariffs. This fact
highlights the importance of the proposed representation. It is important to mention
that COLD Energy’s actions are market-bounded, which means that the resulting
prices will be competitive, thus customers have a higher probability of deciding to
subscribe to them.

Finally Table2 provides more insight on the brokers’ behavior. The first column
shows each one of the states as described by Eq.7. The description of each abbre-
viation is explained in Appendix. The next columns show the average utility and
standard deviation obtained by each one of the states described in column one. If we
observe Table2 we can notice first of all that, for COLD Energy, even if the overall
standard deviation is high compared to the overall average (showed in the last row),
there are states with higher averages and lower standard deviations compared to the
other brokers. The states with larger average rewards are those when PSt equals to
Rational and when CPSt equals Far or Very Far. This two values for CPSt are asso-
ciated with the inline and bottom actions, which safely place the consumption price
away from the competitors, making the published tariff attractive to the customers.
These states have as well some of the lowest standard deviations, which tells us that
this is a consistent desirable state.

4.4 COLD Energy Versus ReddyLearning

This section shows evidence of the performance of COLD Energy when it was tested
against its direct competitor ReddyLearning alone. Figure5 shows a plot with the
average utility and standard deviation for this experiment.

By looking at Fig. 5, which shows the average and standard deviation per publi-
cation interval for both ReddyLearning and COLD Energy, it is evident that COLD
Energy achieves better results than ReddyLearning with a very short standard devi-
ation. The average utility on this experiment compared to Fig. 3 is higher, because
there are less brokers, and for this reason, there are more customers available for
each one.

5 Conclusions

The experiments showed that COLD Energy, with its proposed set of actions and
its market representation was able to obtain the highest profits 70% of the evaluated
timeslots when tested against all the competing brokers, including ReddyLearning.
When tested only against the latter, COLDEnergywas able to obtain the highest profit
100% of the evaluated timeslots. This proved that both the market representation and
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Fig. 5 Overall average and
standard deviation for COLD
Energy and ReddyLearning

the proposed actions achieved a better average utility compared to that delivered by
the other competing brokers against whom it was tested, namely ReddyLearning,
Balanced, Greedy and Random.

It is important tomention aswell that themarket representation size is not bounded
to the number of competing brokers; the number of possible value combinations of
state space S will remain the same if there are 1, 2 or more competing brokers. This
is very useful because it makes easier the learning process. On the other hand, the
market-bounded actions proposed were the most used by COLD Energy, and these
actions conducted it to lead the utility rank most of the time on the experiments
executed. Even as there were some non-market-bounded actions available, such as
Minmax for instance, COLD Energy learned that those actions did not yield good
results, and for this reason decided not to use them.

Appendix

In order to keep clean and reduced tables, some abbreviations were used to designate
the names of the values each state can take.

Table 3 States values and
abbreviations

PRSt Rational(Ra), Inverted(In)

PSt Shortsupply(sh), Balanced(ba),
Oversupply(ov),

CPSt Very Far(Ve), Far(Fa), Near(Ne), Out(Ou)

PPSt Very Far (Ve), Far(Fa), Near(ne), Out(ou)
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The abbreviation consisted on using the first two letters of the value’s name, as
stated on Table3. So, for instance, state representation RaShFaOu stands for state
S = 〈Rational, Shortsupply,Far,Out〉.
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Abstract In May 2015, we organized the Sixth International Automated Negotiat-
ing Agents Competition (ANAC 2015) in conjunction with AAMAS 2015. ANAC
is an international competition that challenges researchers to develop a successful
automated negotiator for scenarios where there is incomplete information about the
opponent. One of the goals of this competition is to help steer the research in the
area of multi-issue negotiations, and to encourage the design of generic negotiating
agents that are able to operate in a variety of scenarios. 24 teams from 9 different
institutes competed in ANAC 2015. This chapter describes the participating agents
and the setup of the tournament, including the different negotiation scenarios that
were used in the competition. We report on the results of the qualifying and final
round of the tournament.
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1 Introduction

Success in developing an automated agent with negotiation capabilities has great
advantages and implications. In order to help focus research on proficiently negoti-
ating automated agents, we have organized the automated negotiating agents compe-
tition (ANAC). The results of the different implementations are difficult to compare,
as various setups are used for experiments in ad hoc negotiation environments [6].
An additional goal of ANAC is to build a community in which work on negotiating
agents can be compared by standardized negotiation benchmarks to evaluate the per-
formance of both new and existing agents. Recently, the analysis of ANAC becomes
important fields of automated negotiations in multi-agent systems [1].

In designing proficient negotiating agents, standard game-theoretic approaches
cannot be directly applied. Game theory models assume complete information set-
tings and perfect rationality [8, 9]. However, human behavior is diverse and cannot
be captured by a monolithic model. Humans tend to make mistakes, and they are
affected by cognitive, social and cultural factors [7]. A means of overcoming these
limitations is to use heuristic approaches to design negotiating agents. When negoti-
ating agents are designed using a heuristic method, we need an extensive evaluation,
typically through simulations and empirical analysis.

We employ an environment that allows us to evaluate agents in a negotiation
competition: Genius [6], a General Environment for Negotiation with Intelligent
multi-purposeUsage Simulation. Genius helps facilitating the design and evaluation
of automated negotiators’ strategies. It allows easy development and integration
of existing negotiating agents, and can be used to simulate individual negotiation
sessions, as well as tournaments between negotiating agents in various negotiation
scenarios. The design of general automated agents that can negotiate proficiently is a
challenging task, as the designer must consider different possible environments and
constraints. Genius can assist in this task, by allowing the specification of different
negotiation domains and preference profiles by means of a graphical user interface.
It can be used to train human negotiators by means of negotiations against automated
agents or other people. Furthermore, it can be used to teach the design of generic
automated negotiating agents.

The First Automated Negotiating Agents Competition (ANAC 2010) was held
in May 2010, with the finals being run during the AAMAS 2010 conference. Seven
teamshadparticipated and three domainswere used.AgentKgenerated by theNagoya
Institute of Technology team won the ANAC 2010 [2]. The Second Automated
Negotiating Agents Competition (ANAC 2011) was held in May 2011, with the
AAMAS 2011 conference. 18 teams had participated and eight domains were used.
The new feature of ANAC 2011 was the discount factor. HardHeaded generated by
the Delft University of Technology won the ANAC 2011 [3]. The Third Automated
Negotiating Agents Competition (ANAC 2012) was held in May 2012, with the
AAMAS 2012 conference. 17 teams had participated and 24 domains were used.
The new feature of ANAC 2012 was the reservation value. CUHKAgent generated
by the Chinese University of Hong Kong won the ANAC 2012 [10]. The Forth
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Automated Negotiating Agents Competition (ANAC 2013) was held in May 2013,
with the AAMAS 2013 conference. 19 teams had participated and 24 domains were
used. The new feature of ANAC 2013 was that agents can use the bidding history.
The Fawkes generated by the Delft University of Technology won the ANAC 2013
[5]. The Fifth Automated Negotiating Agents Competition (ANAC 2014) was held
in May 2014, with the AAMAS 2014 conference. 21 teams had participated and 12
domains were used. The new feature of ANAC 2014 was nonlinear utility functions.
AgentM generated by Nagoya Institute of Technology won the ANAC 2014 [4].

ANAC organizers have been employing some of the new feature every year to
develop the ANAC competition and the automated negotiations communities. The
challenge of ANAC 2015 is to reach an agreement while negotiating with two oppo-
nents at the same time. In addition,the utility functions are linear again, as they were
in ANAC 2010–2013. The multi-player protocol is a simple extension of the bilat-
eral alternating offers protocol, called the Stacked Alternating Offers Protocol for
Multi-Lateral Negotiation (SAOP).

The timeline of ANAC 2015 is mainly consisted by two parts: Qualifying Round
and Final Round. First, the qualifying round was played in order to select the finalists
from 24 agents by considering the individual utility and the nash product. In the
qualifying round, 24 agents was divided into four groups (pools) randomly, and the
best two agents of those pools proceed to the final in each category. After that, the
final round was played among 8 agents in two categories, which won the qualifying
round. The domains and preference profiles in the qualifying and final rounds were
10 domains generated by the organizers. The entire matches played among 8 agents
in each category, and the ranking of ANAC 2015 is decided.

The remainder of this chapter is organized as follows. Section2 provides an
overview over the design choices for ANAC, including the model of negotiation,
tournament platform and evaluation criteria. In Sect. 3, we present the setup ofANAC
2015 followed by Sect. 4 that layouts the results of competition. Finally, Sect. 5 out-
lines our conclusions and our plans for future competitions.

2 Setup of ANAC 2015

2.1 Negotiation Model

Given the goals outlined in the introduction, in this section we introduce the set-
up and negotiation protocol used in ANAC. The interaction between negotiating
parties is regulated by a negotiation protocol that defines the rules of how and when
proposals can be exchanged. The parties negotiate over a set of issues, and every issue
has an associated range of alternatives or values. A negotiation outcome consists of
a mapping of every issue to a value, and the set, Ω of all possible outcomes is called
the negotiation domain. The domain is common knowledge to the negotiating parties
and stays fixed during a single negotiation session. In addition to the domain, both
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parties also have privately-known preferences described by their preference profiles
overΩ . These preferences aremodeled using a utility functionU thatmaps a possible
outcomes ω ∈ Ω to a real-valued number in the range [0, 1]. In ANAC 2015, the
utilities are linearly additive. That is, the overall utility consists of a weighted sum
of the utility for each individual issue. While the domain (i.e. the set of outcomes)
is common knowledge, the preference profile of each player is private information.
This means that each player has only access to its own utility function, and does not
know the preferences of its opponent.1 Moreover, we use the term scenario to refer
to the domain and the pair of preference profiles (for each agent) combined.

Finally, we supplement it with a deadline, reservation value and discount factors.
The reasons for doing so are both pragmatic and to make the competition more
interesting from a theoretical perspective. In addition, as opposed to having a fixed
number of rounds, both the discount factor are measured in real time. In particular,
it introduces yet another factor of uncertainty since it is now unclear how many
negotiation rounds therewill be, and howmuch time an opponent requires to compute
a counter offer. In ANAC 2015, the discount factors and reservation value depend on
the scenario, but the deadline is set to three minutes. The implementation of discount
factors in ANAC 2015 is as follows:

A negotiation lasts a predefined time in seconds(deadline). The timeline is nor-
malized, i.e.: time t ∈ [0, 1], where t = 0 represents the start of the negotiation and
t = 1 represents the deadline. When agents can make agreements in the deadline,
the individual utilities of each agent are the reservation value. Apart from a deadline,
a scenario may also feature discount factors. Discount factors decrease the utility of
the bids under negotiation as time passes. Let d in [0, 1] be the discount factor. Let t
in [0, 1] be the current normalized time, as defined by the timeline. We compute the
discounted utility Ut

D of an outcome ω from the undiscounted utility function U as
follows:

Ut
D(ω) = U (ω) · dt (1)

At t = 1, the original utility is multiplied by the discount factor. Furthermore, if
d = 1, the utility is not affected by time, and such a scenario is considered to be
undiscounted.

In the competition, we use the Stacked Alternating Offers Protocol for Multi-
Lateral Negotiation (SAOP) as the new feature, in which the negotiating parties
exchange offers in turns. All of the participants around the table get a turn per round;
turns are taken clock-wise around the table. The first party starts the negotiation with
an offer that is observed by all others immediately. Whenever an offer is made the
next party in line can take the following actions:

1We note that, in the competition each agent plays all preference profiles, and therefore it would
be possible in theory to learn the opponent’s preferences. However, the rules explicitly disallow
learning between negotiation sessions, and only within a negotiation session. This is done so that
agents need to be designed to deal with unknown opponents.
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• Make a counter offer (thus rejecting and overriding the previous offer)
• Accept the offer
• Walk away (e.g. ending the negotiation without any agreement)

This process is repeated in a turn taking clock-wise fashion until reaching an
agreement or reaching the deadline. To reach an agreement, all parties should accept
the offer. If at the deadline no agreement has been reached, the negotiation fails. The
details of SAOP is written in the next chapter.

2.2 Running the Tournament

As a tournament platform to run and analyze the negotiations, we use the Genius
environment (General Environment for Negotiation with Intelligent multi-purpose
Usage Simulation) [6]. Genius is a research tool for automated multi-issue negoti-
ation, that facilitates the design and evaluation of automated negotiators’ strategies.
It also provides an easily accessible framework to develop negotiating agents via a
public API. This setup makes it straightforward to implement an agent and to focus
on the development of strategies that work in a general environment.

Genius incorporates several mechanisms that aim to support the design of a
general automated negotiator. The first mechanism is an analytical toolbox, which
provides a variety of tools to analyse the performance of agents, the outcome of the
negotiation and its dynamics. The second mechanism is a repository of domains and
utility functions. Lastly, it also comprises repositories of automated negotiators. In
addition, Genius enables the evaluation of different strategies used by automated
agents that were designed using the tool. This is an important contribution as it
allows researchers to empirically and objectively compare their agents with others
in different domains and settings.

The timeline of ANAC 2015 consists of two phases: the qualifying round and the
final round. The domains and preference profiles used during the competition are
not known in advance and were designed by the organizers. An agent’s success is
measured using the evaluation metric in all negotiations of the tournament for which
it is scheduled.

First, a qualifying round was played in order to select the finalists from the 24
agents that were submitted by the participating teams. Since there were too many
agents, in the different domains, a whole tournament in the qualifying round is
impossible. Therefore, 24 agents was divided to four groups (pools) randomly, and
the best two agents in nash product and individual utility in each pool proceed to
the final round. It took two weeks to finish the all pools of the qualifying round. In
ANAC-2015, we didn’t allow the updating agents between the qualifying round and
the final round.

The final round was played among the the agents that achieved the best scores
(individual utility and nash product) in each pool during qualifying. We prepared
two categories in the final round of ANAC 2015: Individual utility category and nash
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product categories. The domains and preference profiles are same as the qualifying
round. The entire matches played among agents, and the final ranking of ANAC 2015
was decided. To reduce the effect of variation in the results, the final score calculates
the average of the five trials.

3 Competition Domains and Agents

3.1 Scenario Descriptions

The ANAC is aimed towards modeling multi-issue negotiations in uncertain, open
environments, in which agents do not know what the preference profile of the oppo-
nent is. The various characteristics of a negotiation scenario such as size, number of
issues, opposition, discount factor and reservation value can have a great influence on
the negotiation outcome. Therefore, we generated ten types of domains and profiles
in the competition. Especially, in the qualifying round and final round, we used all
10 scenarios with different discount factors and reservation values and profiles. In
other words, they have vary in terms of the number of issues, the number of possible
proposals, the opposition of the preference profiles (see Table1). The 3d negotiation
space plotting in each domain are represented graphically in Fig. 1.

Table 1 The domains used in ANAC 2015

ID Number of issues Size Discount factor Reservation value Cooperativeness

1 1 5 None 0.5 Very competitive

2 1 5 None 0.5 A bit
collaborative

3 2 25 0.2 None Very competitive

4 2 25 None 0.5 Quite
collaborative

5 4 320 0.5 None Competitive

6 4 320 0.5 None Collaborative

7 8 38 None None Competitive

8 8 38 None None Collaborative

9 16 216 0.4 0.7 Very collaborative

10 16 216 0.4 0.7 Very competitive
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Fig. 1 3D negotiation space plotting in each domain
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3.2 Agent Descriptions

ANAC2015 had 24 agents, registered from9 institutes from7 countries: TheChinese
University of Hong Kong, Hong Kong; Nanyang Technological University, Singa-
pore; University of Isfahan, Iran; Nagoya Institute of Technology, Japan; Tokyo
University of Agriculture and Technology, Japan; Delft University of Technology,
Netherlands; Maastricht University, Netherlands; Norwegian University of Science
and Technology, Norway; University of Tulsa, US. Table2 shows the all participants
in ANAC 2015.

Finalists are the winners of the qualifying round. In the rest of this book, we
provide chapters of the individual strategies of the ANAC2015 finalists.

4 Competition Results

We describe the results of the qualifying and final rounds.

4.1 Qualifying Round

First, a qualifying round was played in order to select the finalists from the 24 agents
that were submitted by the participating teams. 24 agents was divided to four groups
(pools) randomly, and the best two agents in nash product and individual utility in
each pool proceeded to the final round in each category. Each tournament wasn’t
repeated to prohibit the learning from the previous tournaments.

In order to complete such an extensive set of tournaments within a limited time
frame, we used five high-spec computers, made available by Nagoya Institute of
Technology and Tokyo University of Agriculture and Technology. Specifically, each
of these machines contained an Intel Core i7 CPU, at least 16GB of DDR3 memory,
and a hard drive with at least 2TB of capacity.

Figures2, 3, 4 and 5 show the results of each agent in the qualifying round (pool1,
pool2, pool3 and pool4). The finalists are selected from all pools by considering the
individual utilities and nash products. The individual utility means the average of
utility of the individual agent in the tournaments. The nash products means the aver-
age of the product of utilities of three agents in the tournaments. As figures showing,
the best two agents in each pool are selected by considering the individual utility and
nash product. As a results, agentBuyog and PokerFace are selected as finalists from
the pool1; Atlas3 and XianFaAgent are selected as finalists from pool2; ParsAgent
and kawaii are selected as finalists from pool3; RandomDance and PhonexParty are
selected as finalists from pool4 in the individual category. Also, agentBuyog and
Mercury are selected as finalists from the pool1; Atlas3 and AgentX are selected
as finalists from pool2; CUHKAgent and Jonny Black are selected as finalists from
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Table 2 Team members and agent names in ANAC 2015

No. Team members Affliction Agent name

1 Jeroen Peperkamp
Vikko Smit

Delft University of
Technology

Pokerface

2 Joao Almeida
Hugo Zwaan
Xiaoran Liu

Delft University of
Technology

TUDMixedStrategyAgent

3 Dirk Schut
Nikol Guljelmovic
Jelle Munk

Delft University of
Technology

Ai Caramba!

4 Shuang Zhou Maastricht University Mercury

5 Siqi Chen
Jianye Hao
Gerhard Weiss
HF-Leung

Maastricht University AresParty

6 Shinji Kakimoto Tokyo University of
Agriculture and Technology

RandomDance

7 Hiroyuki Shinohara Tokyo University of
Agriculture and Technology

AgentHP

8 Bhargav Sosale
Swarup Satish
Suyog Shivakumar
Bo An

Nanyang Technological
University

Agent Buyog

9 Neo Jun Nanyang Technological
University

AgentNeo

10 Chen Xian Fa Kelvin Nanyang Technological
University

XianFaAgent

11 Sengoku Akihisa Nagoya Institute of
Technology

SENGOKU

12 Ishida Kenta Nagoya Institute of
Technology

AgentW

13 Masayuki Hayashi Nagoya Institute of
Technology

Agent H - Hayashi

14 Bun Koku Nagoya Institute of
Technology

AgentX

15 Akiyuki Mori Nagoya Institute of
Technology

Atlas3

16 Takuma Inamoto Nagoya Institute of
Technology

Kawaii

17 Kazumasa Takahashi Nagoya Institute of
Technology

DragKnight

18 Zenefa Rahaman
Kendall Hyatt
Chad Crawford
Sandip Sen

University of Tulsa PNegotiator

(continued)
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Table 2 (continued)

No. Team members Affliction Agent name

19 Nathaniel Beckemeyer
Samuel Beckmann
Abigail Sislo

University of Tulsa MeanBot

20 Osman Yucel
Jon Hoffman

University of Tulsa Jonny Black

21 Lam Wing The Chinese University of
Hong Kong

PhoenixParty

22 Leung Hoi Tang
Ng Chi Wing
Ho-fung Leung

The Chinese University of
Hong Kong

CUHKAgent2015

23 Zahra Khosravimehr
Faria Nasiri Mofakham

University of Isfahan ParsAgent

24 Lars Liahagen
Haakon H. Rod

Norwegian University of
Science and Technology
(NTNU)

Forseti

Fig. 2 Average scores of each agent in the qualifying round (pool1)

Fig. 3 Average scores of each agent in the qualifying round (pool2)

pool3; RandomDance and AgentH are selected as finalists from pool4 in the nash
product category.
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Fig. 4 Average scores of each agent in the qualifying round (pool3)

Fig. 5 Average scores of each agent in the qualifying round (pool4)

4.2 Final Round

It is notable thatAtlas3was the clearwinner of the both categories (seeTables3 and4).
However, the differences in utilities between many of the ranked strategies are small,
so several of the agents were decided the ranking by a small margin. Finally, the first
places in the individual utility and nash product categories were awarded to Atlas3
($450); The second place in the individual category was awarded to the ParsAgent
($150); The second place in the nash product was awarded awarded to Mercury
($175); The third place in the individual category was awarded to RandomDance

Table 3 Tournament results in the final round (Individual utility)

Rank Agent Score Standard deviation

1 Atlas3 0.481042722 0.00156024

2 ParsAgent 0.470693979 0.003128712

3 RandomDance 0.46062548 0.003038258

4 kawaii 0.460129481 0.002715924

5 agentBuyog 0.458823101 0.003842303

6 PhoenixParty 0.442975836 0.005032221

7 XianFaAgent 0.353133027 0.001918821

8 PokerFace 0.344003999 0.001433044
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Table 4 Tournament results in the final round (Nash product)

Rank Agent Score Standard deviation

1 Atlas3 0.323992201 0.000405256

2 Mercury 0.321600864 0.001620108

3 JonnyBlack 0.313749314 0.001026152

4 AgentX 0.312427823 0.001393852

5 CUHKAgent 0.309464847 0.001726555

6 RandomDance 0.294950885 0.001088483

7 AgentH 0.292136808 0.001547118

8 agentBuyog 0.282378625 0.00236416

($100); The third place in the nash product was awarded awarded to JonnyBlack
($125).

5 Conclusion

This chapter describes the Sixth automated negotiating agents competition
(ANAC2015). Based on the process, the submissions and the closing session of
the competition we believe that our aim has been accomplished. Recall that we set
out for this competition in order to steer the research in the area multi-issue closed
negotiation. 24 teams have participated in the competition and we hope that many
more will participate in the following competitions.

ANAC also has an impact on the development of Genius.We have released a new,
public build of Genius2 containing all relevant aspects of ANAC. In particular, this
includes all domains, preference profiles and agents thatwere used in the competition.
This will make the complete setup of ANAC available to the negotiation research
community. Not only havewe learnt from the strategy concepts introduced inANAC,
we have also gained understanding in the correct setup of a negotiation competition.
The joint discussion with the teams gives great insights into the organizing side of
the competition.

To summarize, the agents developed for ANACwill proceed the next step towards
creating autonomous bargaining agents for real negotiation problems. We plan to
organize the next ANAC in conjunction with the next AAMAS conference.

Acknowledgements The authors would like to thank the team of masters students at Nagoya Insti-
tute of Technology, Japan for their valuable help in the organization of the ANAC 2015 competition.

2http://ii.tudelft.nl/genius.
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Abstract This paper presents a general framework for multilateral turn-taking pro-
tocols and two fully specified protocols namely Stacked Alternating Offers Protocol
(SAOP) and Alternating Multiple Offers Protocol (AMOP). In SAOP, agents can
make a bid, accept the most recent bid or walk way (i.e., end the negotiation without
an agreement) when it is their turn. AMOP has two different phases: bidding and
voting. The agents make their bid in the bidding phase and vote the underlying bids
in the voting phase. Unlike SAOP, AMOP does not support walking away option. In
both protocols, negotiation ends when the negotiating agents reach a joint agreement
or some deadline criterion applies. The protocols have been evaluated empirically,
showing that SAOP outperforms AMOP with the same type of conceder agents in
a time-based deadline setting. SAOP was used in the ANAC 2015 competition for
automated negotiating agents.
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1 Introduction

Multilateral negotiation is an important form of group decision making [2, 6]. In
many aspects of life, whether in a personal or a professional context, consensus deci-
sions have to be made (e.g., setting the agenda in a business meeting, and the time,
and location of the meeting). The complexity of multilateral negotiation increases
with the number of negotiating parties [16], and with the complexity of the negoti-
ation domain (see, e.g., [13]). The more complex the negotiations, the more human
negotiators may have difficulty in finding joint agreements and the more they might
benefit from the computational power of automated negotiation agents and/or nego-
tiation support tools.

For bilateral negotiation the main challenges are opponent modeling, bidding
and acceptance strategies have been extensively studied in the multi-agent commu-
nity [7]. The brunt of the work is based on the alternating offers protocol to govern
the interaction between negotiating agents. According to this protocol, one of the
negotiating parties starts the negotiation with an offer. The other party can either
accept or reject the given offer. By accepting the offer, the negotiation ends with an
agreement. When rejecting the offer the other party can either end the negotiation
(walk away), or make a counter offer. This process continues in a turn-taking fashion.

This paper presents a general framework for multilateral turn-taking negotiation
protocols, in which fundamental definitions and rules are described formally. Based
on this formal framework,we define twonegotiation protocols, namely StackedAlter-
nating Offers Protocol (SAOP) and Alternating Multiple Offers Protocol (AMOP).
In both protocols, negotiating agents can only take their action when it is their turn,
the turn taking sequences are defined before the negotiation starts. SAOP allows
negotiating agents to evaluate only the most recent bid in their turn and accordingly
they can either accept that bid or make a counter offer or walk away. By contrast,
in AMOP all agents bid sequentially and then, they vote on all bids iteratively (i.e.,
either accept or reject). Consequently, agents can see each agent’s opinion on their
bid. As a result, in AMOP the agents have a better overview of the outcome space
(e.g., which bids are acceptable or not acceptable for their opponents). On the other
hand, the communication cost is higher in contrast to the stacked alternating offers
protocol. SAOP was used in the ANAC 2015 competition for automated negotiat-
ing agents that was organized to facilitate the research on multilateral negotiation.
AMOP was developed as an alternative in which agents can get more information
from their opponents by getting votes from all agents on all bids made.

To see how well the agents perform in each protocol and to judge the fairness
of the outcomes, we implemented both protocols in Genius and compared them
empirically. The current results show that SAOP outperforms AMOC on the given
negotiation scenarios with respect to the social welfare criterion.

The rest of this paper is organized as follows. Section2 presents the general frame-
work for multilateral turn-taking protocols. The stacked alternating offers protocol
and alternating multiple offers protocol are explained in Sects. 3 and 4 respectively.
Section5 explains our experimental setup,metrics and results. Section6 discusses the
related work. Finally, we conclude the paper with directions to future work in Sect. 7.
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2 Formal Framework for Multilateral
Turn-Taking Protocols

Before presenting two variants of turn-taking protocols for multilateral negotiation,
we first introduce a general formal framework for specifying these protocols. The
framework consists of a number of general definitions regarding alternating offers
protocols for multilateral negotiations. In later sections where we present two turn-
taking protocols for multilateral negotiation, those concepts that are protocol depen-
dent will be revisited.

2.1 Basic Notation

The basic notions of a negotiation are the agents that negotiate, the bids that they
exchange, and the other actions that they can take during the negotiation.We use Agt
to denote a finite set of agent names, Bid to denote a set of bids over the negotiation
domain, and Act ⊆ Bid ∪{accept, reject, end} to denote a set of possible actions
that can be taken during the negotiation where end denotes that the agent walks
away. In this document tuples and sequences are used frequently. For any tuple or
sequence t and any index i ∈ N, let ti denote the i th element of tuple t , and similarly,
for any tuple, sequence or set t , let |t | denote the number of elements in t .

Definition 1 Round and Phase.
Rounds and phases within rounds are used to structure the negotiation process.
Although the structure of the phases differs over protocols, the concepts are defined
generally as follows:

• Round ⊆ N
+ is the set of round numbers. Rounds are numbered from 1 onwards,

if i is the current round, then the next round is numbered i + 1.
• Phase ⊆ N is the set of phase identifiers. Phases are numbered from 0 onwards,
if i is the current phase, then the next phase is numbered i + 1. The set Phase can
be a singleton. Let � denote the last phase, which is equal to |Phase| − 1.

• RPhase = Round × Phase, the first argument denotes the round number
whereas the second argument denotes the specific phase of that round.This depends
on the protocol at hand. In case Phase is { 0 }, then, for convenience, RPhase is
collapsed to Round only.

Definition 2 Turn taking.
Alternating offer protocols assign turns to the negotiating agents. Turns are taken
according to a turn-taking sequence.

• TurnSeq = Agt |Agt | is a sequence of agents, such that

– ∀ s ∈ TurnSeq ∀ a ∈ Agt, ∃i ∈ N
+, i ≤ |s| such that si = a and

– ∀ s ∈ TurnSeq ∀ i, j ≤ |s|: si=s j → i= j .
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• The function rpSeq : RPhase → TurnSeq assigns a turn-taking sequence per
round and phase. Its specification depends on the protocol.

• The function prev : RPhase × N
+ → RPhase × N

+ defines the previous turn in
the negotiation, that can be in this round-phase or a previous round-phase, specified
by:

prev(r, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈r, t − 1〉, 1 < t ≤ |Agt |
〈〈r1, r2 − 1〉, |Agt |〉, t = 1 ∧ r2 > 0

〈〈r1 − 1, �〉, |Agt |〉, t = 1 ∧ r2 = 0 ∧ r1 > 1

undefined, otherwise

(1)

To be able to specify what happened k ∈ N turns ago, we recursively define prevk :
RPhase × N

+ → RPhase × N
+ as follows:

∀x ∈ RPhase × N
+ :

prev0(x) = x

prev1(x) = prev(x)

prevn+1(x) = prevn(prev(x))

The conditions ensure fairness in protocols in the sense that every agent gets a turn
and no agent gets more than one turn in a sequence. In case the same turn-taking
sequence is used in all rounds and phases, this sequence is denoted by s. This is
true for the protocols SAOP and AMOP of the later sections. However, Definition2
allows more freedom.

Although the actions might differ over protocols, we introduce notions that are
general to all negotiation protocols.

Definition 3 Actions and allowed actions.
The functions action and allowedAction specify what actions agents take and what
actions they are allowed to take.

• action: Agt × RPhase → Act . The term action(a, r) denotes what action agent
a ∈ Agt took in round-phase r ∈ RPhase.

• allowedAct: RPhase × N
+ → P(Act). The function determines the allowed

actions per turn t at a given round-phase r . The function specification varies over
protocols.

Although protocols do not specify what actions agents take during the negotiation,
the function action is defined here, as the type action taken by the agents do have
an effect on the procedure as specified in Definitions5, and 6.

Definition 4 Deadline.
d : RPhase × N

+ is a predicate that denotes whether or not the negotiation deadline
has been reached. Its value is determined at the endof the current turn. Its specification
depends on the protocol.
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Examples of such criteria are round-based (r > Rdeadline), and time-based (t ime >

Tdeadline).

Definition 5 Agent ending the negotiation.
The predicate endP : RPhase × N

+ denotes whether or not an agent has ended the
negotiation. Its value is determined at the end of the current turn.

∀r ∈ RPhase ,∀t ∈ N
+ : endP(r, t) ↔ action(rpSeq(r)t , r) = end (2)

Note that, in typical protocols, the negotiation terminates as soon as one of the
negotiators walks away, i.e., takes the action end. However, there might be protocols
inwhich the other negotiatorsmight continue. In that caseDefinition7 that determines
whether a negotiation continues will have to be adapted.

Definition 6 Agreement.
For use in the next predicates and functions two predicates are introduced to identify
when an agreement has been reached and what that agreement is.

• The predicate agr: RPhase ×N
+ denotes whether or not an agreement is reached.

Its value is determined at the end of the current turn. The exact specification varies
over protocols.

• The predicate agrB : Bid × RPhase ×N
+ denotes the bid that was agreed on.

Definition 7 Continuation.
The predicate cont: RPhase ×N

+ denotes whether the negotiation continues after
the current turn. Its value is determined at the end of the current turn.

∀r ∈ RPhase ∀t ∈ N
+ : cont(r, t) ↔ ¬d(r, t) ∧ ¬endP(r, t) ∧ ¬agr(r, t) (3)

Definition 8 Outcome of the negotiation.
The function outcome: Round × N

+ → Bid ∪ {fail} that determines the negotiation
outcome at the end of the current turn.

outcome(r, t) =

⎧
⎪⎨

⎪⎩

undefined, cont(r, t)

fail, ¬cont(r, t) ∧ ¬agr(r, t)

b, t > 0 ∧ ¬cont(r, t) ∧ agrB(b, r, t)

(4)

Definition 9 Turn-taking Negotiation protocol.
A turn-taking negotiation protocol P is a tuple 〈 Agt , Act , Rules 〉 where Agt
denotes the set of agents participating in the negotiation, Act is the set of possible
actions the agents can take, and Rules is the set of rules that specify the particulars
of the protocol. It contains the following rules, or specializations thereof.

1. Turn-taking Rule 1: Each agent gets turns according to the turn taking sequences
of the protocol as specified by the definitions for rounds, phases, and turn-taking.

2. Turn-taking Rule 2: There is no turn after the negotiation has terminated, accord-
ing to the Termination Rule.
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3. Actions Rule 1: The agents can only act in their turn, as specified by the Turn-
taking Rules.

4. Actions Rule 2: The agents can only perform actions that are allowed at that
moment, as specified by the definitions for allowed actions.

5. Termination Rule: The negotiation is terminated after round-phase r and turn t
if ¬cont(r, t), as defined by the definitions for continuation, agreement, deadline
and agent ending the negotiation.

6. Outcome Rule: The outcome of a negotiation is determined by the definitions for
outcome and agreement.

The above definitions form the core of a formal framework for multilateral turn-
taking negotiation protocols. There are different ways to extend the bilateral alternat-
ing offers protocol to the multilateral case. The next sections introduce two variants
of this protocol: Stacked Alternating Offers Protocol (Sect. 3) and Alternating Mul-
tiple Offers Protocol (Sect. 4). Both protocols are specified by providing the detailed
descriptions of those predicates and functions that are protocol dependent.

3 Stacked Alternating Offers Protocol (SAOP)

According to this protocol, all of the participants around the table get a turn per
round; turns are taken clock-wise around the table, also known as a Round Robin
schedule [14]. One of the negotiating parties starts the negotiation with an offer that
is observed by all others immediately. Whenever an offer is made, the next party in
line can take the following actions:

• Accept the offer
• Make a counter offer (thus rejecting and overriding the previous offer)
• Walk away (thereby ending the negotiation without any agreement)

This process is repeated in a turn-taking clock-wise fashion until reaching a termi-
nation condition is met. The termination condition is met, if a unanimous agreement
or a deadline is reached, or if one of the negotiating parties ends the negotiation.
Formally, the Stacked Alternating Offer Protocol is defined by the following defini-
tions. We only provide an instantiated version of those definitions that are protocol
dependent, i.e., phases of the negotiation, turn taking, actions and allowed actions,
agreement, and the rules of encounter. Note that we only specify what changed in
those definitions with respect to Sect. 2. SAOP can work with any deadline, or no
deadline at all.

Definition 10 Round and Phase (Definition1 for SAOP).
The concept of Round is not changed, there is only one phase per round in SAOP,
i.e., Phase = {0}.
Definition 11 Turn taking (Definition2 for SAOP).
In SAOP the same turn taking sequence is used in all rounds. Let s denote that
sequence, thus for SAOP the set of turn-taking sequences is TurnSeq = {s}.
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The rules for turn taking are those specified in Definition2, i.e., each agent gets
exactly one turn per round, as specified by s. Note that, since there is only one
phase per round, instead of mentioning phases per round, in SAOP only rounds are
mentioned.

Definition 12 Actions and allowed actions (Definition3 for SAOP).
The function action is unchanged. The detailed specification of allowed Action:
RPhase × N

+ → Act is as follows:

allowed Act (r, t) =

⎧
⎪⎨

⎪⎩

Bid ∪ {end}, if cont(r, t) ∧ t = 1 ∧ r1 = 1

Bid ∪ {accept, end}, if cont(r, t) ∧ (t = 1 ∨ r1 = 1)

∅, otherwise

Definition 13 Deadline (Definition4 for SAOP).
Predicate d : RPhase × N

+ denotes whether or not the negotiation deadline has
been reached. Its value is determined at the end of the current turn according to the
following.

∀r ∈ RPhase ∀t ∈ N
+ : d(r, t) ↔ currenttime − negostarttime ≥ maxnegotime

(5)

The variables negostarttime andmaxnegotime are set per negotiation. For example in
the ANAC 2015 competition, the variables currenttime and negostarttimewere taken
from the system time of the computer running the tournament, andmaxnegotimewas
set at 3min.

Definition 14 Agreement (Definition6 for SAOP).
The predicate agr: RPhase ×N

+ denotes whether or not an agreement is reached.
The predicate agrB : Bid × RPhase ×N

+ denotes the bid that was agreed on. Their
values are determined at the end of turn. Their specifications are as follows.

∀r ∈ RPhase, ∀t ∈ N
+ : agr(r, t) ↔

action(sprev|Agt |−1
2 (r,t), prev

|Agt |−1
1 (r, t)) ∈ Bid ∧

∀0 ≤ i ≤ |Agt | − 2 : action(sprevi2(r,t), previ1(r, t)) = accept

∀r ∈RPhase, ∀t ∈ N
+ :

agrB(action(sprev|Agt |−1
2 (r,t), prev

|Agt |−1
1 (r, t)), r, t) ↔ cont(r, t) ∧ agr(r, t)

Informally, we have an agreement iff |Agt | − 1 turns previously, an agent made a bid
that was subsequently accepted by all the other agents. The agent that made the bid,
in the SAOP protocol, is assumed to find its own bid acceptable. In agr B that bid that
was made |Agt | − 1 turns ago, is set to be the agreed bid in the current round-phase
and turn.
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3.1 Example

Assume that there are three negotiating negotiation parties, a1, a2 and a3. Agent a1
starts the negotiation with an bid b1. Agent a2 can accept this bid, make a counter
offer or walk way. Let assume that she decides to make a counter bid (b2). Assume
that agents a3 and a1 accept this offer. As they all agree on this bid (i.e. b2 made by
a2 in the previous round), the negotiation ends, and the outcome is bid b2.

4 Alternating Multiple Offers Protocol (AMOP)

The AMOP protocol is an alternating offers protocol in which the emphasis is that
all players will get the same opportunities with respect to bidding. That is, all agents
have a bid from all agents available to them, before they vote on these bids. This
implemented in the followingway: TheAMOPprotocol has a bidding phase followed
by voting phases. In the bidding phase all negotiators put their offer on the table.
In the voting phases all participants vote on all of the bids on the negotiation table.
If one of the bids on the negotiation table is accepted by all of the parties, then the
negotiation endswith this bid. This is an iterative process continuing until reaching an
agreement or reaching the deadline. The essential differencewith the SAOP protocol,
is that the players do not override each others offers and the agents can take all offers
into account before they vote on the proposals. From an information theoretical
point of view, this is a major difference. The specification of this protocol asks for
detailed specifications of the protocol dependent definitions, i.e., on round-phases,
turn taking, actions and allowed actions, agreement, and the rules of encounter. Only
the changes are specified.

Definition 15 Round and Phase (Definition1 for AMOP).
The concept of Round is not changed. Protocol AMOP has one bidding phase, fol-
lowed by |Agt | voting phases, i.e., Phase = {0, 1, . . . , |Agt |} where 0 denotes the
bidding phase while for each i ∈ [1, |Agt |], i denotes the voting phase on the bid
made in the i th turn.

Definition 16 Turn taking (Definition2 for AMOP).
In AMOP the same turn taking sequence is used at each phase of all rounds. Let s
denote that sequence, i.e., TurnSeq = {s}.
Definition 17 Actions and allowed actions (Definition3 for AMOP).
We define the set of possible actions as Act=Bid ∪ {accept, reject}. The func-
tion action is unchanged. The detailed specification of allowed Action: RPhase ×
N

+ → Act is as follows:

allowed Act (r, t) =

⎧
⎪⎨

⎪⎩

Bid, if cont(r, t) ∧ r2 = 0

{accept, reject}, if cont(r, t) ∧ r2 > 0

∅, otherwise.
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All rounds starts with a bidding phase during which all agents make a bid in turn
specified by the turn sequence. The bidding phase is followed by a voting phase for
each bid on the table. This means that all agents first vote on the first bid that was
put on the table in this round, then all votes for the second bid and so on. During
each voting phase, agents take their turn according to turn taking sequence as defined
by the turn taking rules. During the voting phases, agents can only accept or reject
bids. That the votes in phase i , refer to the i th bid in the bidding phase is specified
indirectly by Definition18.

Definition 18 Agreement (Definition6 for AMOP).
The predicate agr: RPhase × N

+ denotes whether or not an agreement is reached.
The predicate agrB : Bid × RPhase × N

+ denotes the bid that was agreed on. Their
values are determined at the end of turn in voting phases. Their specifications are as
follows.

∀r ∈ RPhase ∀t ∈ N
+ : agr(r, t) ↔

r2 > 0 ∧ t = |Agt | ∧ action(sr2 , 〈r1, 0〉) ∈ Bid ∧ ∀1 ≤ i ≤ t : action(si , r) = accept

∀r ∈ RPhase ∀t ∈ N
+ : agrB(action(sr2 , 〈r1, 0〉), r, t) ↔ cont(r, t) ∧ agr(r, t)

In other words, we have an agreement at the i th phase of a given round-phase r ,
iff all agents in that round voted to accept the bid made by the i th agent in the turn
taking sequence s.

Definition 19 Continuation (Definition7 for AMOP).
The predicate cont: RPhase ×N

+ denotes whether the negotiation continues after
the current turn. Its value is determined at the end of the current turn.

∀r ∈ RPhase ∀t ∈ N
+ : cont(r, t) ↔ ¬d(r, t) ∧ ¬agr(r, t) (6)

4.1 Illustration

In Phase = 0, all players put an offer on the table (b1 by a1, b2 by a2 etc.). Note
that there is no restriction on the bids; agents are allowed to make the same bid as
others, or the same bid they made before. In the Phase = 1, all agents vote for the
bid made by a1, in Phase = 2, they all vote for the bid made by a2 and so on. When
all agents accept a bid during a voting phase, negotiation ends with this bid. Suppose
that all agents, for example, vote to accept bid b2, then the negotiation terminates at
the end of phase 2 of round 1. If there were more than 2 agents, then this implies that
the agents don’t vote anymore for bid b3.
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5 Experimental Evaluation

In order to compare the performance of SAOP and AMOP empirically, we incor-
porated these two protocols into the Genius [15] negotiation platform, that was
developed to enable researchers to test and compare their agents in various settings.
Genius serves as a platform for the annual Automated Negotiating Agents Compe-
tition (ANAC) [3]. Our extension enables Genius to run multilateral negotiations;
subsequently, the challenge of the ANAC 2015 competition was chosen to be mul-
tilateral negotiation.

A state-of-the-art agent, Conceder agent has been adapted for both multilateral
protocols. This agent calculates a target utility and makes an arbitrary bid within a
margin of 0.05 of this target utility. The target utility is calculated as targetUtil(t) =
1 − t0.5 where 0 ≥ t ≥ 1, t is the remaining time. This formula is derived from the
general form proposed in [8]. In this paper, we adopted the ANAC 2015 setup,
where three negotiating agents negotiate to come to an agreement within a three-
minute deadline. We generated 10 different negotiation scenarios for three parties.
Agent preferences are represented by means of additive utility functions. The size of
the negotiation domains ranges from 216 to 2304.

To investigate the impact of the degree of conflict on the performance of the
negotiation protocols, the scenarios tested in our experiment are chosen in such
a way that half of those scenarios are collaborative and the rest are competitive.
In competitive scenarios, there are relatively less outcomes which make everyone
happy. We ran each negotiation ten times. Each agent negotiates for each preference
profile in different order; that results 600 negotiations in total per each protocol (6
ordering permutations of 3 agents × 10 scenarios × 10 times).

We evaluated the protocols in term of the fairness of their negotiation outcome
and social welfare. For social welfare, we picked the well known utilitarian social
welfare metric [6], which is the sum of the utilities gained by each agent at the
end of a negotiation. For fairness, we adopt the product of the utilities gained by
each agents [12]. Recall that the Nash solution is the negotiation outcome with the
maximum product of the agent utilities. Table1 shows the average sum and product
of the agent utilities with their standard deviation over 60 negotiations per each
negotiation scenario. It is worth noting that the first five negotiation scenarios are
cooperative and the last five scenarios are competitive. As expected, the negotiations
resulted in higher sum and product of utilities when the negotiation scenarios are
cooperative.

When we compare the performance of two protocols with time-based conceder
agents in terms of social welfare, it is obviously seen that on average SAOP out-
performed AMOP in all scenarios. However, the average social welfare difference
between two protocols is higher in cooperative negotiation scenarios compared to
the competitive scenarios. We have similar results when we look at the average prod-
uct of agent utilities. The distinction between cooperative and competitive scenarios
became more visible for the product of agent utilities since there are a few outcomes
that can make everyone happy. The agents gained higher product of utilities when



Alternating Offers Protocols for Multilateral Negotiation 163

Ta
bl
e
1

So
ci
al
w
el
fa
re

an
d
N
as
h
pr
od
uc
tf
or

co
op
er
at
iv
e
do
m
ai
ns

(S
ce
na
ri
o
1–
5)

an
d
co
m
pe
tit
iv
e
do
m
ai
ns

(S
ce
na
ri
o
6–
10
).
A
ll
in
te
rv
al
s
ar
e
95
%

co
nfi

de
nc
e

in
te
rv
al
s.
Sa

m
pl
e
si
ze
:
N

=
60

So
ci
al
w
el
fa
re

N
as
h
pr
od
uc
t

D
is
ta
nc
e
to

na
sh

SA
O
P

A
M
O
P

Δ
SA

O
P

A
M
O
P

Δ
SA

O
P

A
M
O
P

Sc
en
ar
io

1
2.
74

±
0.
01

2.
44

±
0.
06

0.
30

0.
76

±
0.
01

0.
54

±
0.
04

0.
22

0.
00

±
0.
04

0.
23

±
0.
31

Sc
en
ar
io

2
2.
36

±
0.
00

2.
01

±
0.
06

0.
35

0.
48

±
0.
00

0.
30

±
0.
03

0.
18

0.
11

±
0.
05

0.
33

±
0.
26

Sc
en
ar
io

3
2.
60

±
0.
00

2.
38

±
0.
05

0.
22

0.
65

±
0.
00

0.
50

±
0.
03

0.
15

0.
00

±
0.
00

0.
18

±
0.
29

Sc
en
ar
io

4
2.
74

±
0.
00

2.
53

±
0.
06

0.
21

0.
76

±
0.
00

0.
60

±
0.
04

0.
16

0.
00

±
0.
01

0.
17

±
0.
34

Sc
en
ar
io

5
2.
89

±
0.
00

2.
80

±
0.
03

0.
09

0.
90

±
0.
00

0.
81

±
0.
02

0.
09

0.
07

±
0.
00

0.
12

±
0.
15

Sc
en
ar
io

6
2.
20

±
0.
01

1.
90

±
0.
05

0.
30

0.
39

±
0.
01

0.
25

±
0.
02

0.
14

0.
00

±
0.
22

0.
27

±
0.
23

Sc
en
ar
io

7
1.
73

±
0.
01

1.
59

±
0.
04

0.
14

0.
19

±
0.
00

0.
14

±
0.
01

0.
05

0.
25

±
0.
06

0.
38

±
0.
29

Sc
en
ar
io

8
2.
19

±
0.
00

2.
11

±
0.
02

0.
08

0.
39

±
0.
00

0.
35

±
0.
01

0.
04

0.
06

±
0.
03

0.
17

±
0.
17

Sc
en
ar
io

9
2.
03

±
0.
00

1.
96

±
0.
03

0.
07

0.
31

±
0.
00

0.
26

±
0.
02

0.
05

0.
14

±
0.
01

0.
25

±
0.
33

Sc
en
ar
io

10
2.
06

±
0.
01

2.
00

±
0.
03

0.
03

0.
32

±
0.
00

0.
29

±
0.
01

0.
06

0.
14

±
0.
03

0.
26

±
0.
24



164 R. Aydoğan et al.

they followed SAOP. Similarly, the negotiation outcomes in SAOP are closer to the
Nash solution compared to the outcomes in AMOP. Based on the statistical t-test on
both the average sum and product of agent utilities, it can be concluded that the results
for SAOP with Conceder agent are statistically significantly better than the results
for AMOP with Conceder agent on the given negotiation scenarios (p � 0.001).

The potential reasons why the social welfare of the agents are higher in SAOP
compared toAMOP although they employ the sameConceder strategy stem from the
main differences between SAOP and AMOP. One of these is that according to SAOP,
the agents evaluate only the most recent bid in their turn whereas in AMOP, they
evaluate all bids made by all agents in the current round. Although it sounds more
fair to evaluate all bids made by all, the agents do not obtain a more fair outcome
in AMOP. This may stem from the fact that AMOP protocol is less time-efficient
protocol as it has the extensive voting phases in a round. Because they spend extra
time in the voting phase, the estimated target utility in each bidding phase may be
relatively lower than those in SAOP. That may be the reason the agents miss out on
some good solutions for all parties. That also implies that there are less rounds within
the same time period in AMOP compared to SAOP (3000 rounds Vs. 15000 rounds);
therefore, there is less time to explore the outcome space. That is, 9000 offers were
made during a negotiation in AMOP while agents made around between 22500 and
45000 offers in total in SAOP. As a future work, we would like test the protocols
in a round-based deadline setting to see how their performance would be when they
have the same number of rounds.

6 Discussion

The terms of multiparty and multilateral are used interchangeably in the commu-
nity. In this work, we distinguish them as follows. If there are more than two par-
ticipants engaged in the negotiation, it is considered a multiparty negotiation. This
engagement can be in different forms such as one-to-many, many-to-many or many-
to-one negotiations. For instance, William et al. propose a many-to-many concurrent
negotiation protocol that allows agents to commit and to decommit their agree-
ment [17]. Wong and Fang introduce the Extended Contract-Net-like multilateral
Protocol (ECNPro) [1] for multiparty negotiations between a buyer and multiple
sellers, which can be considered as multiple bilateral negotiations. In this work, we
define multilateral negotiations as negotiations in which more than two agents nego-
tiate in order to reach a joint agreement; in other words, all the negotiating parties
have the same role during the negotiation process (e.g., a group of friends negotiat-
ing on their holiday), and these negotiations might or might not be mediated by an
independent party that has no personal stake in the outcome of the negotiation.

The protocols proposed for multilateral negotiations in the multiagent community
mostly use a mediator [2, 5, 9–11, 13]. In contrast, this paper proposes protocols
for non-mediated multilateral negotiations. Endriss presents a monotonic concession
protocol for non-mediated multilateral negotiations and discusses what a concession
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means in the context of multilateral negotiation, see [6]. The monotonic concession
protocol enforces the agents to make a concession or to stick to their previous offer,
while our protocols donot interferewithwhat to bid, onlywhen tobid.The concession
steps suggested in that work require to know the other agent’s preferences except for
the egocentric concession step in which the agent is expected to make a bid that is
worse for itself.

A generalization of the alternating offers protocol, namely, a sequential-offer
protocol was used in [18]. Similar to SAOP, the agents make sequential offers in
predefined turns or accept the underlying offer according to this protocol. A minor
difference is that it does not provide a walk-away option for the agents as SAOP does.
The core of the work is a negotiation strategy that applies a sequential projection
method for multilateral negotiations. In that sense it cannot be compared to the work
presented in this paper, in which two multilateral negotiation protocols are proposed
and evaluated.

De Jonge and Sierra recently introduced a newmultilateral protocol inspired from
human negotiations, called the Unstructured Communication Protocol (UCP) [4].
Unlike the negotiation protocols discussed above, this protocol does not structure the
negotiation process. That is, any agent may propose an offer at any time and offers
can be retracted at any time. Agents can accept a given offer by repeating the same
offer. When all agents propose the same offer, this offer is considered an agreement.
There are some similarities between their protocol and AMOP such as the agents
can see multiple offers on the negotiation table and evaluate them. Compared to
AMOP, their protocol is more flexible. For example, in AMOP agents have to bid
in the bidding phase and have to vote in the voting phase, whereas agents in UCP
can remain silent and wait for the other agents. However, flexibility comes with a
price. Designing an agent having the intelligence to deal with the uncertainties in
UCP is quite a challenge: how do you decide whether the agent should bid or remain
silent? How do you know if another agent is still participating or whether it walked
away? What does it mean if some of the agents are silent? Although the protocol is
more natural from a human point of view, the situation is different: the agents lack
information that humans that are physically present in the same negotiation room
would have, such as body language, tone of voice, eye contact. Our point of view is
that if we would like to develop a multilateral negotiation protocol in which humans
and agents are to engage each other, then we should get the protocol as close as
possible to the human way of negotiating, like UCP, while realizing that developing
agents that can fully understand and act in such a heterogeneous setting is still a
Grand Challenge. If, on the other hand, we are aiming for agents-only negotiations,
then deviating from protocols that humans would use is quite alright, which opens
the door for mechanism design, game theory and, of course, strategy development for
the participating agents. The alternating multilateral negotiation protocols presented
in this paper, are motivated by the search for protocols for agents-only negotiations.
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7 Conclusion

In this paper, we introduce two extensions of alternating offers protocol for mul-
tilateral negotiations, namely Stacked Alternating Offers Protocol and Alternating
Multiple Offers Protocol. We provide formal definitions of these protocols based on a
general formalization for turn-takingmultilateral negotiation protocols. Furthermore,
we compare the performance of these protocols with time-based Conceder agents
empirically. Our results show that SAOP performed better than AMOP in terms of
social welfare and fairness of the negotiation outcome on the chosen negotiation
scenarios. Therefore, we make SAOP public to facilitate the research in multilat-
eral negotiation. In ANAC 2015 the participants developed negotiating agents for
three-party negotiation governed by SAOP.

As future work, we are planning to characterize negotiation protocols using prop-
erties and show to which extent these are satisfied by SAOP, UCP, AMOP, and other
(new) protocols. For instance, it would be interesting to investigate the effect of the
agents’ ordering in a given turn sequence on the negotiation outcome (e.g., whether
or not the first agent starting the negotiation has an advantage over the others). In this
work we used one type of agents in our evaluation of both protocols to ensure that we
are not, at the same time, comparing negotiation strategies. However, it is still an open
question what makes a protocol a good protocol. In future, we plan to perform more
systematic evaluations for properties that characterize negotiation protocols, such as
the speedwithwhich agreements are reached,more fairness aspects (beyond distance
to Nash Product, and ordering effects), scalability, robustness against manipulative
agents (e.g., truth-revealing), and communication overhead.

Acknowledgements This work was supported by the ITEA M2MGrids Project, grant number
ITEA141011.

References

1. A multi-agent protocol for multilateral negotiations in supply chain management. Int. J. Prod-
uct. Res. 48 (2010)
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Atlas3: A Negotiating Agent Based
on Expecting Lower Limit of Concession
Function
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Abstract The sixth international Automated Negotiating Agents Competition
(ANAC) was held in conjunction with the ninth international joint conference on
Autonomous Agents and Multi-Agent Systems (AAMAS). We developed Atlas3
that is an automated negotiating agent for ANAC2015. In this paper, we explain
about the searching methods and compromising strategy that is used by our agent.
Our agent uses appropriate searching method based on relative utility for linear util-
ity spaces. Moreover, our agent applies replacement method based on frequency of
opponent’s bidding history. Our agent decides concession value according to the con-
cession function presented by us in Mori and Ito (A compromising strategy based on
expected utility of evolutionary stable strategy in bilateral closed bargaining prob-
lem, 2015, [2]). In Mori and Ito (A compromising strategy based on expected utility
of evolutionary stable strategy in bilateral closed bargaining problem, 2015, [2]),
we derived an estimated expected utility to estimate an appropriate lower limits
of concession function. However, Mori and Ito (A compromising strategy based on
expected utility of evolutionary stable strategy in bilateral closed bargaining problem,
2015, [2]) proposes a concession function for bilateral multi-issue closed bargaining
games. Therefore, we extend the concession function for multi-lateral multi-issue
closed bargaining games.

Keywords Automated multi-issue negotiation · Compromising strategy · Auto-
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1 Introduction

The sixth international Automated Negotiating Agents Competition (ANAC) was
held in conjunction with the ninth international joint conference on Autonomous
Agents and Multi-Agent Systems (AAMAS) on May 2015. Researchers from the
worldwide negotiation community participate in ANAC [1].

We propose an automated negotiating agent Atlas3 that is developed for
ANAC2015. Our agent uses an relative utility search for linear utility spaces. In
this paper, relative utility is based on the maximum utility as a standard. Agent can
get a bid (an agreement candidate) that satisfy conditions. Moreover, our agent apply
replacement method based on frequency of opponent’s bidding history. Our agent
uses compromising strategy presented by us in [2]. The method is a compromising
strategy of bilateral multi-issue closed bargaining games. Therefore, we extend the
method for multi-lateral multi-issue closed bargaining games. In [2], we analyze a
final phase of bargaining game as strategic form games. Then, we derive estimated
expected utility in a equilibrium point of evolutionarily stable strategies [3]. Finally,
we set the estimated expected utility as a lower limit of concession function.

2 Searching Methods

Our agent uses the relative utility search and the replacement method based on
frequency of opponent’s bidding history. First, we explain about the relative utility
search. Our agent derives a relative utility matrix according to our agent’s utility
space. Figure1 shows an example of relative utility matrix. In Fig. 1, there are three
issues i1, i2, and i3 and in has three values vn1, vn2, and vn3. Value which is enclosed
in parentheses means relative utility of vnk in Fig. 1. For example, relative utility
of v12 is −0.2. Our agent derives relative utility based on the maximum utility. In
Fig. 1, when a bid has three values v11, v12, and v31, utility of the bid is 1.0 which is
maximum utility. Therefore, relative utility of a bid which has three values v11, v21
is −0.1 in linear utility spaces because utility of the bid is 0.9 (0.9 − 1.0 = −0.1).
The relative utility search searches bids that satisfy a concession function based on
maximum utility bid. For example, When a bid has two values v12, v21 and threshold

Fig. 1 Relative utility matrix threshold value = 0.7
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Fig. 2 Frequency matrix

value based on concession function is 0.7, our agent can offer bids which has utility
more than threshold value 0.7. Consequently, our agent can selects v31 or v32 in i3.

We adopt the relative utility search based on a maximum utility bid. Our agent
randomly sorts issues and replaces value of each issue in order. If a bid which is
replaced values satisfy conditions, our agent adopts the bid. Bymeans of thismethod,
computational complexity of the method is O(n), where n means the number of
issues.

Next, we explain about the replacement method based on frequency of opponent’s
bidding history. Our agent updates a frequency matrix that has the number of occur-
rences of values each round. Figure2 shows an example of frequency matrix. Value
which is enclosed in parentheses means the number of occurrences of vnk in Fig. 2.
For example, the number of occurrences of bids which include vnk is 10. Our agent
replaces a bid that is searched by the relative utility search based on a frequency
matrix.

A value frequently appearing on each issue is the subject of replacement. In Fig. 2,
v13(30t imes), v21(35times) and v33(55times) are appropriate. Our agent adopts the
replaced bid if the replaced bid has utility more than threshold value.

3 Expecting Lower Limit of Concession Function

In [2], we proposed a compromising strategy for bilateral multi-issue closed bar-
gaining games. We extend the compromising strategy for multi-lateral multi-issue
closed bargaining games. To determine the appropriate concession value in bar-
gaining games, we divide the negotiating flow into two phases. Figure3 shows the
negotiating flow and the divided phases. We define an alternating offers phase (AOP)
and a final offer phase (FOP). Our agent decides AOP’s concession value by FOP’s
expected utility. We explain about changes of [2]. We regarded FOP as strategic form
games in [2]. Moreover, we derived estimated expected utility of equilibrium point
of evolutionarily stable strategies. In this paper, we derive the estimated expected
utility for multi-lateral multi-issue closed bargaining games.

The number of opponent is only one in bilateral multi-issue closed bargaining
games. On the other hand, the number of opponents is more than one in multi-
lateral multi-issue closed bargaining games. Therefore, our agent regards a bid that
has the maximum utility in bids are accepted by opponents as a compromise bid.
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Fig. 3 Phases of negotiation flow

In addition, the utility of compromise bid is reservation value if any bids are not
accepted by opponents.

Our agent regards the estimated expected utility in consideration of discounted
utility as a lower limit of concession function L(t), where t means normalized time
(0.0 ≤ t ≤ 1.0). Our agent’s concession function T (t) is designed as formula (1).

T (t) =
⎧
⎨

⎩

L(t) + (1.0 − L(t)) · (1.0 − t) (d fA = 1.0)
1.0 − t/α (d fA < 1.0 ∧ 1.0 − t/α ≥ L(t))
L(t) (d fA < 1.0 ∧ 1.0 − t/α < L(t))

(1)

d f means a discount factor in the formula (1) and Atlas3 sets α = d f based on
heuristics. Figure4 shows T (t) in cases 1, 2, 3, and 4.

case 1: d f = 1.0CRV = 0.00CC = 0.5
case 2: d f = 0.5CRV = 0.00CC = 0.5
case 3: d f = 1.0CRV = 0.75CC = 0.5
case 4: d f = 0.5CRV = 0.75CC = 0.5
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Fig. 4 T (t) for cases 1–4

4 Conclusion

In this paper, we have proposed the Atlas3 that is an automated negotiating agent
for ANAC2015. We have explained about the relative utility search and the replace-
ment method based on frequency of opponent’s bidding history. Moreover, we have
mentioned a negotiation strategy of Atlas3 that is based on the estimated expected
utility.
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Pars Agent: Hybrid Time-Dependent,
Random and Frequency-Based Bidding
and Acceptance Strategies in Multilateral
Negotiations

Zahra Khosravimehr and Faria Nassiri-Mofakham

Abstract We propose our Pars agent, one of the ANAC 2015 winners in multi-
lateral negotiation tournaments. In this challenge, any agreement is made through
acceptances issued by all parties involved in a trilateral negotiation. Pars agent uses
a hybrid bidding strategy that combines behaviors of time-dependent, random and
frequency-based strategies to propose a high utility offer close to the opponents bids
and to increase the possibility of early agreement.

1 Introduction

In this study, we propose Pars agent and its strategy which was designed to partic-
ipate in Automated Negotiating Agents Competition [1–6] and could finish at 2nd
rank in the individual utility category in the sixth ANAC [6]. In ANAC2015, a set
of automated negotiating agents with linear utility functions compete against each
other through several rounds of multilateral alternating offers using SAOP (Stacked
Alternating Offers Protocol), a simple extension to bilateral alternating offers proto-
col [7], in GENIUS environment [8]. According to SAOP, all participants in session
get a turn per round. The first party starts with an offer that is immediately observed
by all others. After observing the offer, the next party can make a counter-offer (i.e.,
rejecting the proposal), accept the offer, or quit without any agreement. This alter-
nating offers is repeated until an agreement or the deadline is reached. To reach an
agreement, all parties should accept the offer before the deadline. Otherwise, the
negotiation fails [7].

In accordance to BOA (bidding strategy, opponent model, and acceptance strat-
egy) architecture [9], Pars agent employs a simple opponent modeling by just
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considering the previous offers proposed by the other two parties. However, for bid-
ding and accepting offers follows a hybrid time-dependent, random and frequency-
based method.

The rest of the paper is organized as follows. In Sects. 2 and 3, bidding and
acceptance strategies of Pars agent on how to bid and when to accept are proposed,
in which opponent modeling is embedded as keeping a copy of the bids previously
offered by the other parties. Section 4 shows the results and Sect. 5 concludes the
paper.

2 Acceptance Strategy

Pars agent uses time-dependent strategy for both accepting a bid or making a new
offer. In time-dependent strategy [10], a real number GT , called target utility, is
computed as Eq. 1,

GT = uT (t) = 1 − t
1
β (1)

in which, uT is a time dependent utility function to compute the target utility, t and β

are time and the value to control the concession speed of the agent, respectively [11].
β equals to, greater than, and less than 1 means Fixed Concession, Conceder, and
Boulware behavior, respectively [12]. Pars agent behavior is Boulware. It considers
β = 0.2 for discounted domains and β = 0.15 for the domains without any discount
factors. Based on several experiments achieved in Genius, we set these values as
such aiming the agent faces less number of failed negotiations and gains appropriate
utilities against different opponents. In discounted domains, the utility of an offer is
decreased as the negotiation time passes, and so the faster the agent compromises,
the less benefit it will lose. Whenever a new offer is received, Pars agent computes
its target utility. If GT is greater than 0.7, Pars agent behaves Hardheaded and does
not accept any offer with the utility1 below GT . However, when GT is less than
0.7, the agent considers GT as constant value 0.7, behaves constant, and accepts any
offer with the utility above 0.7. Figure 1 shows the utility diagram of Pars agent in a
domain without discount factor.

3 Bidding Strategy

With regard to bidding, Pars agent adds randomness to its behavior. In the first round
of a negotiation, if Pars agent be the first mover, it chooses its best bid, that is
(i.e., the bid which has the highest utility2 for Pars agent). But, due to its random

1The utility can be a weighted sum of the utilities associated with the values of each issue [13, 14].
2The utility can be a weighted sum of the utilities associated with the values of each issue [11, 13,
14, 16]
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Fig. 1 The Target utility of
Pars agent for discounted
domains

Table 1 A sample bid

Food Drinks Location Invitations Music Cleanup

Chips and nuts Beer only Party room Photo DJ Specialized materials

behavior and avoiding being exploited by other parties, Pars Agent changes this bid
and then proposes this offer. So, it exactly doesn’t start with its best bid, which is the
dominant approach in the literature [17]. Algorithm 1 shows this strategy. However,
if the other parties move first or after the first round, Pars agent also considers the
offers proposed by the other parties in previous rounds and follows random and
frequency-based methods as shown in Algorithms 2 and 3.

3.1 Bidding Strategy 1: Pars Agent Moves First

Each bid comprises a set of values of the issues representing features of a negotiation
domain. For example, Table1 shows the bid for the agent with values Chips andNuts,
Beer Only, Party Room, Photo, DJ, and Specialized Materials respectively for issues
Food, Drinks, Location, Invitations, Music, and Cleanup in a domain.

Inspired by some idea behind WALKSAT algorithm [15] and adapting it to the
problem, Pars agent chooses one of the issues in its best bid at random. The higher
the issue weight, the less it is chosen. It then changes the value of this issue to one
of the issue values at random. If the utility of the new bid is greater than the current
target utility GT of the agent, it is proposed. Otherwise, Pars agent repeats changing
the issue value until observing the new bid yields a suitable benefit or passing 3 s.3

In the later case, the agent proposes the last generated bid. Since the initial bid has
the highest utility, could bring the highest utility for the agent, it is high probable
that the proposed bid brings the agent a utility above its current target utility GT .

3Each negotiation lasts 3minutes [8].
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Algorithm 1 Pars Agent Bidding Strategy as a First Mover
1: Input: all issues, values, and my issue weights in the domain, and my current target utility GT .
2: Output: my best bid with some changes.
3: Begin
4: myBestBid ← the bid with utility 1.
5: i ← index of a less important issue at random.
6: while time ≤ 3 seconds do
7: newBid ← update issue i of myBestBid with a random value;
8: if utility of newBid > GT then return newBid;

return newBid;
9: End

3.2 Bidding Strategy 2: The Other Party Moves First

When Pars agent is not a first mover, then its bid depends on the bids the other parties
proposed before. If the benefits of the latest proposal is higher than its current target
utility, it accepts the proposal and does not bid a new offer. Otherwise, Pars follows
two steps.

For proposing a bid, it first takes into account the list of proposals mutually
accepted by both opponent agents. Per each such a bid, Pars agent chooses one of the
issues at random. The higher the issue weight for Pars agent, the more it is chosen. It
then assigns a value to this issue at random. If the utility of the new bid is greater than
the current target utilityGT of the agent, it is proposed. Otherwise, Pars agent repeats
this step for all other proposals in the list to see a bid whose utility is above GT . This
step of the second bidding strategy of Pars agent is illustrated in Algorithm 2.

Algorithm 2 Pars Agent Bidding Strategy in Next Rounds – Step 1
1: Input: all issues, values, and my issue weights in the domain, my current target utility GT , and

list L of proposals mutually accepted by opponent agents.
2: Output: my adapted best bid among mutually accepted proposals of the opponents.
3: Begin
4: maxBid ← null.
5: for s 1 to number of issues in the domain do
6: while any proposal P exists in the list L do
7: i ← index of a more important issue of P at random;
8: newBid ← update issue i of P with a random value;
9: if utility of newBid > max{GT , utility of maxBid } then
10: maxbid ← newBid;
11: return maxBid;
12: End

If no bid generated from the first step, Pars agent uses a frequency-based strategy
to look for overlaps in proposals made by other agents. It considers the frequency of
the values each opponent proposed for any issue and in descending order. Tables2
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Table 2 Frequency of the values proposed by opponent A

Attribute 1: Food Attribute 3: Drinks Attribute 3: Invitations · · ·
Frequency Value Frequency Value Frequency Value

3 Chips and nuts 4 Beer only 4 Party room

2 Catering 2 Non-alcoholic 2 Party tent

1 Finger-food 1 Ballroom

Table 3 Frequency of the values proposed by opponent B

Attribute 1: Food Attribute 3: Drinks Attribute 3: Invitations · · ·
Frequency Value Frequency Value Frequency Value

3 Chips and nuts 3 Non-alcoholic 3 Party room

2 Catering 2 Handmade
cocktails

2 Ballroom

1 Beer only

and 3 show sample list of the values proposed by opponents A and B along with their
frequencies each in descending order.

For each issue, if the values (corresponding the highest frequency) proposed by
each opponent are equal, Pars agent also uses this value for the issue in generating
its new bid. For example, it sets the value of issue Food as Chips and Nuts since it is
the high frequency value proposed by two agents A and B for this issue.

If the number of issues with no assigned values is greater than half of the total
number of the issues in the domain, Pars agent restarts this step for all issues but by
looking for the first and the second highest common value proposed by the opponents.
For example, agent A proposed values Beer Only and Non-Alcoholic for issue Drink
4 and 2 times, respectively. However, agent B offered values Non-Alcoholic and
Handmade Cocktails for the same issue 3 and 2 times, respectively. Then, Pars agent
assigns Non-Alcoholic to issue Drink in its new bid. By doing so, it tries to generate
bids which are more favorable and beneficial for its opponents. This decreases the
number of empty issues. For the issues which remained empty, Pars agent assigns its
ownmost favorite values. Algorithm 3 shows the second step Pars agent follows in its
second bidding strategy. Finally, if none of the described methods lead to a proposal
with enough utility, Pars agent propose its best bid with some changes similar to
what described in Algorithm 1. The result of employing the algorithm on Tables2
and 3 is shown in Table 4.
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Algorithm 3 Pars Agent Bidding Strategy in Next Rounds – Step 2
1: Input: all issues, values, and my issue weights in the domain, and lists L A and LB of proposals

by agents A and B, respectively.
2: Output: my best bid extracted from LA and LB .
3: Begin
4: cycle ← 2.
5: d ← number of issues in the domain
6: while cycle > 0 do
7: for i ← 1 to d do
8: vA ← max value of issue(i) in LA;
9: vB ← max value of issue(i) in LB ;
10: if cycle == 2 then
11: if vA == vB then
12: newBid.issue(i) ← vA;
13: else
14: newBid.issue(i) ← null.
15: else
16: if vA == vB then
17: newBid.issue(i) ← vA;
18: else
19: svB ← second max value of issue(i) in LB ;
20: if vA == svB then
21: newBid.issue(i) ← vA;
22: else
23: svA ← second max value of issue(i) in LA;
24: if svA == vB then
25: newBid.issue(i) ← vB ;
26: else
27: if svA == svB then
28: newBid.issue(i) ← svB ;
29: else
30: newBid.issue(i) ← null;
31: if cycle ! = 0 then
32: cycle ← cycle - 1;
33: n ← number of null issues in newBid;
34: if n / d ≥ 0.5 then
35: cycle ← cycle - 1;
36: else
37: cycle ← cycle - 1;
38: Forall null issues i;
39: newBid.issue(i) ← my most favorite value for issue i;
40: return newBid;
41: End
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Table 4 The issue values of newBid based on highest common values proposed by the opponents

Step Food Drinks Location Invitations Music Cleanup

1: Chips and
nuts

null Party room Null Null Null

1’: Chips and
nuts

Non-
alcoholic

Party room Null Null Null

· · ·
2: Chips and

nuts
Non-
alcoholic

Party room Custom Band Hired help

4 Results

GENIUS framework for ANAC2015 provides several sample opponents. Figure2
shows the results of experimenting Pars agent against these opponents in a multi-
party negotiation session where Party1, Party2, and Party3 are Pars, a Boulware,
and a Conceder agents, respectively. Table5 illustrates the results observed in Fig. 2
which yielded a trilateral agreement in 2.178s.

According to ANAC2015 experiments, Pars agent reached the final in Individual
Utility category and achieved individual utility 0.47 in average in the final tourna-
ments. Table6 summarizes the results [6].

Fig. 2 Result of competition
between Pars and Boulware
and Conceder agents (Party1
Pars agent, Party2 a
Boulware agent, and Party3
a Conceder agent)



182 Z. Khosravimehr and F. Nassiri-Mofakham

Table 5 Numerical result of competition between Pars and Boulware and Conceder agents (Party1:
Pars agent, Party2: a Boulware agent, and Party3: a Conceder agent)

Time (s) Rounds Agreement? Discounted? Approval Min. utility Max. utility

2.17845935 51 Yes No 3 0.29693 1.00000

Distance to
pareto

Distance to
Nash

Social
welfare

Agent
utility
(Party 1)

Agent
utility
(Party 2)

Agent
utility
(Party 3)

0.00000 0.67808 1.89378 1.00000 0.29693 0.59685

Table 6 ANAC15 final
results in individual utility
category [6]

Agent name Average Standard deviation

Atlas3 0.481042722 0.00156024

ParsAgent 0.470693979 0.003128712

RandomDance 0.46062548 0.003038258

kawaii 0.460129481 0.002715924

agentBuyog 0.458823101 0.003842303

PhoenixParty 0.442975836 0.005032221

XianFaAgent 0.353133027 0.001918821

PokerFace 0.344003999 0.001433044

5 Conclusion

This paper proposed Pars agent that was designed to participate in ANAC 2015. The
2015 tournament is multilateral in which each agent negotiates with three agents
in each session. They reach an agreement, if a bid is accepted by all three agents.
Pars agent follows a mixture of random and frequency-based bidding and acceptance
strategies. It also considers its current target utility and the utility of received bids in
generating or proposing offers. Pars agent finished at the second place in the category
of individual utility in the final ANAC2015 tournaments.
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RandomDance: Compromising Strategy
Considering Interdependencies of Issues
with Randomness

Shinji Kakimoto and Katsuhide Fujita

Abstract In multi-lateral negotiations, agents need to simultaneously estimate the
utility functions of more than two agents. In this chapter, we propose an estimating
method that uses simple weighted functions by counting the opponent’s evaluation
value for each issue. For multi-lateral negotiations, our agent considers some utility
functions as the ‘single’ utility function by weighted-summing them. Our agent
needs to judge which weighted function is effective and the types of the opponents.
However, they depend on the domains, agents’ strategies and so on. Our agent selects
the weighted function and opponent’s weighting, randomly.

1 Estimating Utility Functions by Counting Values

In SAOP [1], the opponent’s bids proposing many times are important. However, it
is hard to get the statistical information by simply counting all of them because the
proposed bids are limited in one-shot negotiations. Therefore, we propose a novel
strategy that estimates the utility functions by counting the value of the opponent’s
bids in multi-lateral negotiations.

In our definitions, A0 is our agent and a(a = {A1, A2}) are two opponents among
the three-lateral negotiations.Agenta’s previous bids are represented as Ba . The esti-
mated utility function of agent a is represented as eval ′a(), which is defined as Eq.1:

eval ′a(si) =
∑

s′∈Ba

boolean(si , s′) · w(s′). (1)
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The function boolean(si , s′) returns 1 when bid s ′ contains the si , and otherwise
it returns 0. Function w(s) is the weighting function that reflects the order of the
proposed bids. Therefore, estimated utility function U ′

a(s) of Alternative solutions:
s of opponent a is defined as Eq.2:

Ua(s) = ua(s)
max∀s′ ua(s ′)

(2)

ua(s) =
N∑

i=1

eval ′a(si ). (3)

Using Eq.2, our agent can obtain estimated utility that is normalized [0, 1] to each
opponent.

In addition, our agent selects a weighting function from the following ones ran-
domly:

• Constant Function: w(s) = 1
• Exponential Growth Function: w(s) = 1.05counta(s)

• Exponential Decay Function: w(s) = 0.95counta(s)

counta(s) is a function that returns the number of previous bid’s when agent a
proposes bid s.

Figure1 is the examples of three weighting functions. Three kinds of weighting
functions are introduced to our agent:Constant Function, Exponential Growth Func-
tion, Exponential Decay Function. Constant Function is the same weight when the
time passes. However, Exponential Growth Function and Exponential Decay Func-
tion change as the time passes. They are effective when the opponent’s strategy can
be estimated, however, it is often hard to judge the opponent’s types of strategy with
accuracy.

Fig. 1 Examples of three
weighting functions
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2 Weighted Sum of the Estimated Utility

We proposed an agent’s strategy using the estimated utility function in Sect. 1.
In multi-lateral negotiations, a novel strategy needs to determine how much our
agent can compromise to each agent using the estimated utility functions. Our pro-
posed agent employs hn(n = 1, 2), which is a function for compromising to each
agent(A1, A2), to judge subsequent bids. The evaluation function (Uop) of the bid
(s) that combines two opponents is defined as Eq.4:

Uop(s) =
2∑

n=1

hnUAn (s). (4)

Our agent can adopt a negotiation strategy for bilateral negotiations tomulti-lateral
negotiations by combining the utility functions of opponents.

In addition, our agent uses the following four weighting functions for compro-
mising to each agent:

• Same weighting: (h1, h2) = (0.5, 0.5)
• Consider only A1: (h1, h2) = (1, 0)
• Consider only A2: (h1, h2) = (0, 1)
• Cooperative weighting.

When our agent selects the same weighting, it decides theUop by considering the
both agents equally. When our agent selects the weighting considering only A1, it
decides the Uop by considering the A1, only. When our agent selects the weighting
considering only A2, it decides the Uop by considering the A2, only. Cooperative
weighting is defined as the ratio the opponent proposes the bids with high social
welfare. Agent a’s k-th previous bid are represented as sak . h1 and h2 is calculated
by Algorithm 5. ha is calculated as the count of bids which is the best estimated
social welfare in the recent N rounds. As the agent a offers the bid with high social
welfares, ha increases. In ANAC2015, N = 200 by tuning the parameters.

Algorithm 5 Calculate hn in the cooperative weighting
h1 ⇐ 0,h2 ⇐ 0
i ⇐ 0
while i < N do

if SocialWel f are(sn1i ) > SocialWel f are(sn2i ) then
h1 ⇐ h1 + 1

else
h2 ⇐ h2 + 1



188 S. Kakimoto and K. Fujita

3 Strategy of RandomDance

We propose an agent’s strategy using the estimated utility function in Sect. 1 and the
weighted sum of the estimated utility in Sect. 2. When a new negotiation starts, our
agent proposes three estimated utility functions to each opponent’s using weighting
functions in Sect. 1. In choosing the action, our agent selects the estimated utility
function to each opponent and the compromising function in Sect. 2, randomly. By
selecting the function from some of the weighting functions randomly, our agent can
judge to some types of opponent’s despite that the opponent has rare strategies. In
addition, the randomness has sometimes effective in the unconfirmed situations. Our
agent decides its next action based on Eqs. 5 and 6:

targetend = Umy(arg max EstimatedSocialWel f are) (5)

target (t) =
{
(1 − t3)(1 − targetend) + targetend (d = 1)

(1 − td)(1 − targetend) + targetend (otherwise)
(6)

Targetend is defined as our utility of bid with the best social welfare. Our agent
proposes a bid whose utility exceeds target (t) and the highest Uop (Eq. 4). Figure2
shows the changes of target (t) when targetend = 0.5.

When d = 1 the discount is none in the negotiation, our agent compromises
slowly. When the discount factor d is small, our agent compromises rapidly by
considering the conflicts among agents based on targetend . As the discount factor d
becomes smaller, the agent compromises in the earlier stage.Bydeciding the proposal
and acceptance strategies using Eq.5, the agent can compromise considering the rate
of conflicting. It accepts the opponent’s bids when they are more than target (t).
In addition, our agent terminates this negotiation when it can’t gain more than the
reservation value; in other words, target (t) is less than the reservation value.

Fig. 2 Example of threshold
of offer and accept
(targetend = 0.5)
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4 Conclusion

We proposed an estimating method that uses simple weighted functions by counting
the opponent’s evaluation value for each issue. For multi-lateral negotiations, our
agent considered some utility functions as the ‘single’ utility function by weighted-
summing them. Our agent needed to judge the effective weighted function and the
opponent. However, the weighted function depended on the situations. Our agent
selected the effective weighted function and opponent’s considering weights, ran-
domly.

Futureworkswill address improvements in estimating the opponent’s utility in our
proposed approach. To solve this problem, our approach needs to consider the order
of an opponent’s proposals in estimating the opponent’s utility. Another important
task is to judge the opponent’s strategy based on modeling or machine learning
technique to further enhance our proposed method.
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Agent Buyog: A Negotiation Strategy
for Tri-Party Multi Issue Negotiation

Bhargav Sosale, Swarup Satish and Bo An

Abstract The 2015 edition of the Automated Negotiation Agents Competition
(ANAC) was the first in its history to introduce multi-party negotiation. To this end,
we present the strategy of Agent Buyog, a finalist of the competition. The strategy is
based on determining which of the opponent agents is harder to strike a deal with and
conceding just enough to please that opponent. This paper aims at outlining various
aspects of the strategy such as opponent modeling, concession strategies, bidding
strategies and acceptance criteria. It further discusses the limitations of the strategy
and discusses possible improvements.

1 Introduction

Negotiation is defined as the procedure of reaching an agreement. Of all modes of
conflict management, negotiation has been shown to be the most effective, efficient
and flexible. As with many other fields today, there has been an increasing amount of
automation in the field by the utilization of intelligent agents. Hence, many research
efforts have been made in this regard. The Automated Negotiation Agents Compe-
tition (ANAC) [1–4] further fuels such interests.

While previous versions of the competition focused purely on bilateral negoti-
ation, the 2015 edition of the ANAC focused on multiparty negotiation with three
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agents competing per round. The SOAP protocol [5] was used throughout the com-
petition.

This chapter aims to describe the negotiation strategy used by Agent Buyog, a
finalist of the ANAC 2015 competition in both categories; greatest individual utility
and greatest social welfare.

2 Agent Buyog Strategy

2.1 Strategy Overview

The agent strategy is modelled on two macro elements; opponent learning, and
striking a balance between exploitation and concession.

There is an emphasis on learning the opponent to the best of the agent’s ability,
based on the ideology that a partially accurate estimate of any aspect of the opponent
is better than no estimate at all. By minimizing the unknown it is possible to predict
opponent behavior and also propose the most beneficial bid. The aspects of learning
include identifying the preference similarities among all parties involved and the
concession rate of both opponents. Using the two mentioned aspects the agent is
identified with which it is more difficult to strike a deal. One important aspect of
the strategy is that both opponents are treated separately at all times. The learning
is done separately for each opponent. Any dynamic changes in the behaviour of the
opponents are taken into account while proposing our bids.

The second macro element tries to effectively deal with the issue of obtaining
the highest utility possible but at the same time keeping negotiation agreement the
foremost priority. This is done with the use of a time dependent concession function
which decides the lowest acceptable utility for a given moment in time. This effec-
tively creates an expanding window of acceptable bids which expands just enough
to reach an agreement with the more difficult agent. The main components of our
strategy are as shown in Fig. 1.

Fig. 1 Strategy overview
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2.2 Learning Function

Two learning functions were implemented in Agent Buyog, one for the modeling of
preferences and the other for learning the opponents’ concession strategy.

The learning of the opponent’s concession is based on the strategy described in
IAMHaggler [6], where the opponent’s concession is modeled in terms of one’s own
utility. There are two assumptions made; an opponent’s utility is inversely propor-
tional to one’s own, and the concession curve of an opponent belongs to the family
of functions defined by:

f (t) = U0 + eatb

Based on the values of a and b, the curve can be used to model both boulware
and concessive tactics. f (t) is a function that maps a value of time t to the predicted
utility offered by the opponent at that time, with U0 being the utility of the first
bid offered (Fig. 2). The plotting of this curve is performed by statistical regression
usingweighted least squares, based on theNelder–Mead SimplexAlgorithm.Greater
weight is given to newer bids, with the weight of each bid reducing each round. The
training data used is a list containing the best bids proposed every round by the
opponent. The procedure waits for a predefined number of negotiation rounds before
modeling the curve, to avoid inaccuracies resulting from a small sample of training
data. Thereafter, the process is repeated every turn.

A simple frequency based model is used to learn the opponent’s preferences. It
is assumed that the earlier and more frequently certain issue values appear among
the opponent’s bids, the more the value weighs in its contribution to the opponent’s
utility.

Each issue is initially assigned an equal weight. The number of unchanged issue
values between bids is then measured, and a predefined constant is added to the
weights of the unchanged issues. The issue weights are then normalized. The prede-
fined constant is multiplied by the amount of time remaining so that it decreases with

Fig. 2 Curve fitting against a boulware agent
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time, ensuring that the earlier appearances translate to higher weights. The decrease
of this constant is governed by the equation:

εi × (1− tα+d)

In the above equation εi refers to the constant value added to each issue weight.
α refers to a controlling parameter that describes the nature of the curve and d refers
to the discount factor.

For learning the preference over issue values, a similar approach is used. All
possible issue values for a particular issue are initialized to 0 and a constant value, εv
is added to the evaluation of each issue value when they remain unchanged. However,
this does not require normalization. They are only normalized to ensure that the
evaluation of an issue value does not exceed the maximum permitted evaluation per
issue value.

Certain key variables involved in the learning function were parameterized to
support experimentation. These values were set after many experimental negotiation
sessions. These are:

• Initial estimates of a and b for the non-linear regression. These values were both
set to 0.

• The number of iterations of the Nelder–Mead algorithm. This value was set to
5000.

• The number of negotiation rounds to wait before beginning the regression. This
value was set to 50.

• The constants to be added to issue weights and issue value evaluations while
modeling the preference profile. These values were set to 0.2 and 1, respectively.

• α is set to 1.3.

2.3 Consensus Factor

The Consensus Factor, the value that indicates the ease in reaching an agreement
with a particular agent, is then computed for each opponent. The computation of this
value involves two components; the domain factor, and the opponent’s leniency.

The value of the domain factor is set to the higher value between our utility from
the Kalai Point1 (derived from the earlier learned preferences of the opponent), and
our utility of the best bid we’ve received so far from that opponent. The value of
leniency is calculated using the normalized slope of the earlier derived concession
curve, such that the leniency is directly proportional to the slope. The leniency is
computed using the formula:

leniency = min(2SN , 1)

1Upon empirical testing the learned Kalai Point was found to be roughly 0.1 lesser than the actual
Kalai Point. Hence, an offset was made to the learned Kalai Point.



Agent Buyog: A Negotiation Strategy for Tri-Party Multi Issue Negotiation 195

Here, SN refers to the normalized slope of the learned concession curve.
Using the two components, the Consensus Factor is then computed as:

Consensus Factor = wl × leniency + wd × domain f actor

Here, wl and wd are the weights given to each component and are decided based
on the two formulae:

wd = 1− leniencyγ

wl = 1− wd

The parameter γ represents a value that defines how the weight assigned to the
best agreeable bid changes with respect to the leniency. This value is set to 1.75.

The weights assigned are dynamic, so as to ensure that our agent neither under-
exploits nor gets exploited by the opponent agent. Assigning weights also helps
offset errors that may occur from our initial assumption that the opponent’s utility is
inversely proportional to our own.

The Consensus Factor is calculated for both opponents separately at every round
of the negotiation, ensuring that our agent responds immediately to any change in
opponent behaviour.

2.4 Concession Curve

The concession curve (Fig. 3) is derived using the lower of the twoConsensus Factors
using the formula:

f (t) = Consensus Factor + (1− Consensus Factor)× (1− tβ)

This allows our agent to concede just enough to satisfy the opponent with the
lower agreeability.

The concession curve follows a standard time dependent concession as explained
in [7]. This curve remainsflexible, being recalculated at every roundof the negotiation
process, due to the dynamic nature of the Consensus Factor. This allows our agent
to respond to changes in opponent behaviour immediately. To allow for discounted
domains, the agreeability value is multiplied by the discount factor. This ensures
faster concession in the case of a discounted domain.

The optimal value for β that influences the nature of the curve was determined by
empirical evaluation to be 1.8.
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Fig. 3 Time concession
curve

Fig. 4 Bidding strategy

2.5 Bidding

Thebidding strategyusedbyAgentBuyog is basedona system that uses an expanding
window of bids. This expanding window, as shown in the Fig. 4, is derived from the
agent’s time-dependent concession curve. The lower end of the bidding window is
set to f (t) from the time-dependent concession curve, while the upper end of the
bidding window is always set to 1. This gives the agent an increasing range of bids to
choose from at every round of the negotiation and the agent then aims to determine
the most optimal bid to propose. For each bid in the range, the agent then:
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1. Calculates the utility value the bid provides to each opponent, using the previously
learned preference profiles.

2. Calculates the weighted Euclidean distance between the utilities provided to the
opponent and the point (1, 1) in the opponents’ utility space.

3. The bid least farthest to (1, 1) in the opponents’ utility space is then proposed.

The weights provided in the calculation of the Euclidean distance favour the more
difficult agent by using the formula:

√

(1− Consensus FactorA)(UA − KalaiA)2 + (1− Consensus FactorB )(UB − KalaiB )2

Here UA,UB refer to utilities gained by opponents A and B for an arbitrary bid.
To increase chances of agreement, as well as save computational time, the agent

first checks any bids in the window previously agreed upon by both opponents before
checking the rest of the window.

2.6 Acceptance

Agent Buyog follows a simple acceptance mechanism. The criteria for accepting a
bid proposed by an opponent is as follows:

• The bid utility must lie in the acceptance window.
• It must not yield our agent a utility lesser than any bid previously agreed upon by
both opponents.

• The utility of the bid must be greater than or equal to the subsequent bid due to be
proposed by our agent.

2.7 Miscellaneous

2.7.1 Walk Away Strategy

The negotiation is terminated when the expanding window reaches the undiscounted
reservation value. At this point it is ascertained that the negotiation has reached
its saturation point and no beneficial agreement can be reached. Terminating the
negotiation is largely useful in scenarios where both opponents are unable to reach
an agreement with each other, despite our agent reaching a separate consensus with
both.
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2.7.2 Desperate Concession

When the negotiation reaches its final moments (number of rounds remaining <3)
the bottom end of the acceptance window is reduced by 50%. This concession factor
is derived empirically. This ensures that in the dying moments of the negotiation,
agreement is prioritized over exploiting the opponents.

3 Conclusion and Future Works

An effective negotiation agent for use in tri-party negotiations based on the SOAP
protocol was introduced. The agent described, works on the basis of an adaptive
concession curve aiming to strike a balance between exploitation and concession
based on the behaviour of the opponents. Learning the concession behaviours and
the preferences of both opponents, a Consensus Factor is computed and an optimal
bid is ascertained. This maximizes the probability that the bid will be accepted by
both opponents.

Despite displaying reasonable results in the competition there are certain aspects
of the strategy that require further research.

The Nelder–Mead iterative algorithm greatly depends on the initial estimates
provided. Worse initial estimates resulted in extremely inaccurate predictions. It also
has the tendency to get stuck in local optima. These drawbacks could make the
algorithm largely unreliable, and better approaches to curve fitting could be tested.
Alternative regression methods such as Gaussian Regression could be tested with
the agent to overcome these drawbacks.

Our strategy is predominantly based on treating the two opponents as separate
entities during the process of learning. An alternate strategy could involve treatment
of both opponents as a single entity, working with a representation of the average
behaviour exhibited by both opponents. This could greatly reduce the computational
time involved in learning.

Other worthwhile directions could includemore systematic and detailed testing of
the various parametric values used. These parameters could greatly affect the agent’s
performance.
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Phoenix: A Threshold Function Based
Negotiation Strategy Using Gaussian
Process Regression and Distance-Based
Pareto Frontier Approximation

Max W.Y. Lam and Ho-fung Leung

Abstract Automated negotiation is of great interest in artificial intelligence. An
effective automated negotiation strategy can facilitate human in reaching better nego-
tiation outcomes benefiting from the adoption of advanced computational methods.
This paper deals with multi-lateral multi-issue negotiation where opponents’ pref-
erences and strategies are unknown. A novel negotiation strategy called Phoenix
is proposed following the negotiation setting adopted in The Sixth International
Automated Negotiating Agents Competition (ANAC 2015) [13]. In attempt to max-
imize individual utility and social welfare, we propose two highlighted methods –
Gaussian Process Regression (GPR) and Distance-based Pareto Frontier Approxi-
mation (DPFA). Integrating the idea of these methods into a single function called
threshold function, we show that Phoenix is a fully adaptive, cooperative and ratio-
nally designed strategy.

1 Introduction

Negotiation is naturally a humanistic solution to conflicts between different parties.
It has long been studied in game theory and economics [12]. Owing tomany potential
applications in industrial and commercial domains, automated negotiation becomes
a blossoming research area in artificial intelligence. Benefiting from the adoption
of advanced computational methods, automated negotiation techniques can signif-
icantly alleviate human efforts, and are capable of tackling complex negotiations
which is difficult to be resolved by human beings.

Until now, a number of strategies have been proposed. Yet, many works are deal-
ing with bilateral negotiation [1, 2, 7], where, for instance, the consumer-provider or
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buyer-seller relationship is concerned [9]. On the contrary, multilateral negotiation
where more than two agents negotiate against each other has received far less atten-
tion, despite its generality. This is very much due to the complexity of analytically
evaluating a broad spectrum of negotiation strategies under multilateral negotiation.
However, one indeed can rely on simulations between different strategies. To this
end, the International AutomatedNegotiatingAgentsCompetition (ANAC)was orga-
nized annually starting from 2010 [13] providing a benchmark for evaluating various
negotiation strategies. In ANAC, negotiation is simulated under a well-developed
platform, GENIUS [8], where realistic negotiation setting is adopted and agents’
performances are extensively evaluated in assorted multi-issue negotiation.

In this paper, we are interested in multi-lateral multi-issue negotiation. A novel
negotiation strategy called Phoenix is proposed. The design of Phoenix follows
the negotiation setting adopted in The Sixth International Automated Negotiating
Agents Competition (ANAC 2015) [13]. There are two objectives in this competition
– maximizing individual utility, and enhancing social welfare (i.e. the largest sum of
scores achieved by two strategies). In the remainder of this paper, we will show how
Phoenix achieve these two goals by using the two highlighted methods – Gaussian
Process Regression (GPR) [10] and Distance-based Pareto Frontier Approximation
(DPFA). To facilitate the work of analysis and to make our strategy expressible, we
incorporate these two methods into a single continuous function, namely, thresh-
old function. As we will show, all informative factors that can be obtained in the
negotiation are considered to construct the threshold function optimally.

The remainder of this paper is organized as follows. In Sect. 2, we overview some
related work to Phoenix. In Sect. 3, we describe the formulation of Phoenix in
details. In Sect. 4, we analyze the performance of Phoenix with experimental set-
tings. Finally, in Sect. 5, we conclude our work and identify potential future research
directions.

2 Related Work

Recent research on developing negotiation strategies for automated negotiating
agents is of growing interest in the negotiation community. While the ANAC com-
petition successfully encourages a variety of designs of practical negotiation agents,
Baarslag et al. [2] generalize these negotiation strategies with the proposition of BOA
framework. As it literallymeans,BOA consists of three functional components – Bid-
ding Strategy, Opponent Model and Acceptance Strategy. With generic framework,
works can be simplified into three independent researches, while each exists many
approaches in the literature.

Although Phoenix is not structured following the BOA framework, its success
is very much due to the bidding strategy DPFA and the opponent model GPR. To
our knowledge, this paper is a pioneer work to formulate the DPFA mechanism. Yet,
GPR indeed gains much attention as an state-of-the-art modeling technique [10].
Related works to this opponent-modelling technique are described below.
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Back to earlier research on bargaining problem, Rubinstein [12] suggests that
modelling opponents is the key importance to achieve good performance. Such belief
remains till now. A board spectrum of opponent-modelling techniques is applied in
automated negotiation. Thielscher and Zhang [1] summarize those used in bilat-
eral automated negotiation, showing that many of them are indeed borrowed from
machine learning. In attempt to generalize the design of opponent models, Hindriks
and Tykhonov [7] propose a generic framework using Bayesian Learning.

Regarding our proposed modelling technique, GPR [10] is also a Bayesian Learn-
ing model being renowned in the field of machine learning as a principled method
to model functions by performing non-linear non-parametric regression. In partic-
ular, GPR is an extremely useful technique to model trends from time-series data
[3, 5, 11], which exactly fits the task of opponent modelling. In the light of this,
Williams et al. [14] formulate an opponent-modelling method making use of GPR.
What’s more, many ANAC participants [4, 15, 16] also employ GPR attaining excel-
lent results in the competition.

3 The Phoenix Strategy

In this section, we will explore our proposed strategy Phoenix, which is composed
of two functional components. The first component is the Threshold Function Con-
struction (TFC) component. It is responsible for determining our threshold function
fthre(t), which denotes the change of our agent’s attitude throughout the negotiation,
and is defined continuously by the time variable t ∈ [0, 1]. To be concise, the main
usage of the threshold function is to represent a bottom line of utilities of bids that
we can accept or offer. Being of utmost importance in Phoenix, we harness all infor-
mative factors that can be obtained in the negotiation, including opponent model
using GPR, to build this function optimally. Details are shown in Sect. 3.1. The sec-
ond component is the Decision Making (DM) component, which is responsible for
the decision of next move in each round. As mentioned, this decision process, to a
great extent, relies on the threshold function that we constructed in the first com-
ponent. A noteworthy point in this component is the use of DPFA in bids proposal.
This method is proposed to address the incentive of enhancing social welfare. The
scheme is detailed in Sect. 3.2.

3.1 Threshold Function Construction (TFC) Component

In Threshold Function Construction (TFC) component, our goal is to construct an
appropriate threshold function for later use. As we briefly discussed, fthre(t) indeed
implies agent’s attitude over time. Therefore, concession is nothing but a gradually
decreasing threshold function. To formulate rational concession-making behaviour,
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we define the concession rate r(t) at time t , and the lowest concession utility ulow,
that is, the lowest value that our threshold function can reach.

The question now resorts to what we should consider for making concession. In
fact, it really depends on what information our agent can obtained from the negotia-
tion environment. In Phoenix, we focus on 4 consideration factors:

1. Discounting factor δ. The effect of discounting factor on the final utility is given
by uag · δtag , where uag is the undiscounted utility of the offer that all parties
agreed, and tag is the agreement time. Therefore, we should reach an agreement
as soon as possible. In order words, when the discounting factor is small, we
should increase r(t) and decrease ulow.

2. Reservation value θ . The reservation value is the utility obtained when the nego-
tiation is terminated, or the deadline is reached. In such cases, we will gain θ · δtb ,
where tb is the time of breaking negotiation. From this fact, small reservation
value is a threat when the deadline is about to be reached. Therefore, intuitively,
we should increase r(t) when the t is getting close to 1.

3. The distribution of bids’ utilities. The distribution of bids’ utilities in fact is the
most reasonable guideline to justify how good a received offer is. For example, an
offer with utility greater than average should be considered as reasonably good.
Thus, this is an important argument of ulow. For later use, we denote μB as the
corresponding mean, and σB as the corresponding standard deviation.

4. Opponents’ attitudes. Since we concern about mutual benefits, it is preferable to
make our decisions in accordancewith opponents’ attitudes during the negotiation
process. Yet, opponents’ attitudes are somewhat abstract in this sense. Thus, we
measure opponents’ attitudes using the trend of opponents’ concession. Then, we
can adaptively make concessions following this trend.

In fact, the calculations of the first three factors are trivial given the negotiation
domain. However, the calculation of the forth factor is more difficult due to the
need for opponent modelling. Regarding this task, GPR is employed. One should be
careful that our formulation of modelling task is different from the previous works
of using GPR [4, 15, 16], since our objective is not to model opponents’ preferences
but to model the trend of their concession from our observation. For better reasoning,
we first have to make two fundamental assumptions about opponents:

Assumption 1 Opponents propose offers following some predefined function.

Assumption 2 Opponents’ offers are uniformly selected from the bids which have
utilities greater than their predefined function.

With these assumptions, it is now reasonable to employ GPR to model the trend
of concession as a composition of opponents’ predefined functions.

To train the GPR, we need to collect some data to build training data set. In
our case, the concession is of our main concern. Intuitively, this is computed by
analyzing the offers proposed by all opponents. Say P opponents proposing P offers
each round, we only pick the one with the minimum utility to be a conservative
estimator of opponents’ concession. This value indeed holds an important meaning.
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If the utility of our offer is below it, our opponents will be very likely to accept our
offer. It is very handful for us to control when an agreement should bemade, such that
our gain is optimized. Formally, we define this estimator as a ĉ(t) where t is the time
of computation. Note that the estimator collected each round is not yet suitable to be
the training data, since as mentioned in Assumption 2 opponent’s offer is proposed
with uniformly distributed noise. Fortunately, it is possible to denoise the data with
the following proposition:

Proposition 1 Among a set of computed estimator ĉ(t), the maximum one is of the
highest probability to be the closest one to the opponents’ least threshold.

We divide the time interval of whole negotiation into K equal sub-intervals and
denote the boundaries by K + 1 timestamps {t0, t1, t2, . . . , tK }, where

0 = t0 < t1 < t2 < · · · < tK = 1. (1)

Since only opponents’ least threshold can be used as a information of their attitudes,
we use Proposition 1 to obtain the denoised estimator for concession in k-th time
sub-interval. That is,

y(k) = max
tk−1<t≤tk

ĉ(t). (2)

When the negotiation reaches the k-th time sub-interval, we obtain a sequence of
selected scores, which yields our training data set for GPR

T (k) =
{ (

t0 + t1
2

, y(1)

)

,

(
t1 + t2

2
, y(2)

)

, . . . ,

(
tk−1 + tk

2
, y(k)

) }

. (3)

After the training of GPR, we will obtain a mean function denoting the expected
trend, and the 95% confidence interval around themean function, as showed in Fig. 1.
For later use, we denote fgp(t) as the mean function.

Now, we finally obtain all information needed to construct the threshold function
as discussed previously. Firstly, we derive the concession rate

r(t) =
(

t δ + (1 − θ)t4 − α
d

dt
fgp(t)

)

, (4)

where α ∈ [0, 1] is defined as the degree of sensitivity. The higher α we set, the more
sensitive to opponents’ offers. Secondly, we compute the lowest concession

ulow = max (θ, μB − 2(1.5 − δ)σB) . (5)

Note that the setup of ulow can prevent any irrational concessions induced by GPR, as
we may be misled by the offers from opponents, thus ulow do not depend on fgp(t).
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Fig. 1 An example of constructing threshold function using the results from GPR and variables
from the domain

Finally, we formulate our threshold function

fthre(t) = ulow + (1 − ulow)

[

max

(

0,
∫

−r(t)dt

)]

= ulow + (1 − ulow)

[

max

(

0, α fgp(t) − t1+δ

1 + δ
− (1 − θ)t5

5
+ β

)]

,

(6)

where β ∈ [0, 1] is the degree of exploitation controlling how conservative our agent
will be. Note that the threshold function is updated whenever we shift to a new time
sub-interval and get a new training data set for GPR.

An example showing how the output of GPR affecting threshold function is shown
in Fig. 1. Notice that the threshold function indeed always resorts to a U-shape curve
because opponents tend to concede more when the negotiation deadline is approach-
ing. Interestingly, this U-shape curve matches the strategy proposed by Hao et al. [6]
called ABiNes, which won ANAC 2012. As our formulation of threshold function
using GPR gives a logical explanation of their success, we conceive that Phoenix is
a generic strategy.
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3.2 Decision Making (DM) Component

Decision Making (DM) component is the second component of Phoenix, which is
responsible for choosing an optimalmove to proceed the negotiation. Normally, there
are in total three possible choices – (1) acceptance, (2) termination, and (3) new offer
proposal.

We divide the task of considering these three choices into three standalone func-
tions. In particular, the first two are Boolean functions. It checks whether the criteria
of executing such move have been met, where the criteria of acceptance and ter-
mination are discussed in Sects. 3.2.1 and 3.2.2 respectively. Note that only when
these two conditions are not met, we proceed to the third function, which rationally
searches bids to propose. The searching algorithm is explained in Sect. 3.2.3.

3.2.1 Acceptance Function

The mission of acceptance function is to decide whether our agent should accept the
received offer or not. In fact, the checking is very simple once we have determined
the threshold function, since the threshold function is exactly decision boundary of
acceptance. Therefore, if the utility of our received offer is greater than the value of
threshold function fthre(tc) at time tc, such an offer will be accepted.

3.2.2 Termination Function

Termination Function is obligated to determine whether our agent should terminate
the negotiation or not. To begin with, we first investigate the impact of termination.
As discussed previously, once our agent determined to terminate, the negotiation will
end immediately and each party will be given the final utility θ ∗ δtb . As a result, we
terminate the negotiation if or only if there exist t ∈ [tc, tc + τ ] such that fthre(t) ≤ θ .
Here, we consider not only the current time tc but also a period of time further using
the forewarning contant τ . It implies that later received offers is going to be worse
in the future, therefore the negotiation should soon be terminated.

3.2.3 Offer-Proposing Function

Offer-proposing Function is called when the above Boolean functions both are of
false results. In this case, we have to propose a new offer to our opponents such that
the chance of our offer being accepted is maximized, that is, a mutually beneficial
offer.

In Economics, such offers are defined as Pareto frontiers.1 Indeed, with no prior
information about opponents’ preferences, it is impossible to analytically find the

1Pareto frontiers is a set of Pareto optimal bids in terms of utility.
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exact Pareto frontiers. However, approximation methods do exist. In our work, an
approximation algorithm called DPFA is used to address this issue. The overall flow
of DPFA is shown on Algorithm 1. By looking at opponents’ offering patterns, rating
for each bid is calculated such that higher rating is more appealing to our opponents.
Details of DPFA are described below.

Algorithm 1 DPFA – an approximation algorithm to search for Pareto frontiers.
Input: Negotiation domain D , Threshold function fthre(t)
Output: Bid to propose b∗
1: procedure searchBestOffer
2: B ← getAvaliableBids(D , fthre(t));
3: R ← getReferenceBids(D);
4: for each bid b j in B do
5: x j ←computeRating(b j , R);
6: x ← (x1, x2, …, x|B|);
7: b∗ ← drawBidFollowRating(B, x);

Firstly, only the bids with utilities greater than fthre(t) will be considered below.
Such bids are defined as available bids,B. Besides, we assume that there are some
bids very probable to be one of the Pareto frontiers and can be easily obtained.
Such bids are defined as reference bids, R. In our work, reference bids are selected
from: (1) opponents’ first offers, (2) opponents’ best offers ever, and (3) opponent’s
previous offer. In total, with P opponents we have 3P reference bids.

Regarding (1), in practice, our opponent’s first offer is very likely to be his best
offer, which is one of Pareto frontiers. What’s more, (2) is also sensible. When our
opponents propose bids following some threshold, the best ones that we receive
should be the close to the Pareto frontiers. In addition, we assume that our opponents
also search for Pareto frontiers. Then, (3) is also an estimator of the Pareto frontier,
and this should become more accurate as negotiation processes. However, noticing
that our opponents propose bids with some randomness, (3) should not be weighted
equally as the other two.

Note that in the negotiation setting of ANAC [8], each bid is represented as a
vector of issue values. Therefore, we can approximate how close each bid b j ∈ B
to Pareto frontiers by measuring its Euclidean distance to all reference bids ri ∈ R.
This yields

rating(b j ) = −
3P∑

i=1

γi‖ω ◦ (b − ri )‖2 , (7)

where ◦ is theHadamard product (element-wise product),γi ∈ [0, 1] is the predefined
salience for the i-th reference bid, and ω is the issues-weighting vector to underline
the importance of each issue before calculating the Euclidean distance, as we know
that the issues are not equally weighted. However, as one should expect, ω is very
difficult to be derived analytically. Fortunately, showed with success in [4, 6], the
frequency-based method works effectively in issue-weighting problem. In Phoenix,



Phoenix: A Threshold Function Based Negotiation Strategy … 209

we initially set ω as a vector of ones. Then, in each round of the negotiation, we
update the i-th entry ωi by summing the number of received offers having equivalent
value in the i-th issue.

After the rating scores are calculated, we do not directly choose the bid with
highest rating score as our next offer. Instead, we choose it randomly following
some probability distribution, where bids with higher rating have higher probability
to be chosen. With this fuzzy logic, we can avoid proposing bids repeatedly; while
in practice some bids may have particularly high rating score due to stochasticity.

4 Performance Analysis

In order to evaluate Phoenix, we have implemented a negotiation agent called
PhoenixParty to compete in the ANAC competition [13]. While PhoenixParty is the
first work applying the Phoenix strategy in automated negotiation, we experimen-
tally hand tuned the parameters with our intuition described in Sect. 4.1. Following
this, in Sect. 4.2, the results corresponding to this parameters setting are analyzed.

4.1 Parameters Setting

In total, there are 4 essential parameters in Phoenix: degree of sensitivity α (Eq.4),
degree of exploitation β (Eq. 6), forewarning constant τ (Sect. 3.2.2), and salience of
reference bids γ (Eq. 7). Interestingly, these parameters are sufficient to determine
what type of agent we are, i.e., Conceder or Boulware. As a trial, in PhoenixParty,
we set α = 0.3, β = 0.9, τ = 0.1 and γ = [1 0.8 0.3]P , where the i-th entry in γ

correspond to 3P reference bids introduced in Sect. 3.2.3.

4.2 Results and Analysis

Following the rules of ANAC2015 [13], the evaluation process on participating agent
is separated into two phases. The first phase is the qualifying round, where 24 par-
ticipants are assigned to four pools randomly. In each pool, 6 agents are competing
against each other such that only the two agent with highest individual utilities are
able to proceed to the final round. As shown in Table1, PhoenixParty was assigned
to Pool 4, and achieved second highest individual utility in the pool.

Regarding the results in qualifying round, there actually is a thought-provoking
phenomenon – the resulted utility in Pool 4 is much lower than that in other 3 pools.
Note that the agents in all pools negotiate under identical negotiation domains with
equivalent bids’ utilities. Therefore, the trigger of resulting lower utility in Pool 4
should be late agreements in discounted domains. Surprisingly, this fact matches our
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Table 1 Agents’ average individual utilities in qualifying round [13]

Agent name Average utility Agent name Average utility

Pool 1 Pool 2

AgentBuyogV2 0.597955067 Atlas3 0.680664517

PokerFace 0.594266467 XianFaAgent 0.633863800

PNegotiator 0.591739600 MeanBot 0.584072250

DrageKnight 0.571351533 AgentX 0.571492517

Mercury 0.550937867 AgentHP 0.535089883

SENGOKU 0.547276433 TUDMixed 0.504430117

Pool 3 Pool 4

ParsAgent 0.582228250 RandomDance 0.408558450

Kawaii 0.575404450 PhoenixParty 0.380885900

Group2 0.567122400 AresParty 0.378801767

CUHKAgent2015 0.552638067 AgentNeo 0.356815667

AgentW 0.518159433 AgentH 0.339627333

JonnyBlack 0.491797117 Forseti 0.258990217

parameter setting of PhoenixParty, as β ∈ [0, 1] is set to be 0.9. Theoretically, this
should be the direct consequence of high degree of exploitation, since our agent tends
to exploit opponents and seldom makes concession. If this is the case, our agent will
delay the agreement time and thus the negotiating parties in the same pool are likely
to result very low individual utilities in discounted domains.

Indeed, the result of final round also gives evidences to our agent’s exploita-
tion behaviour. As shown in Table2, the individual utilities of the agents from
Pool 1, Pool 2 and Pool 3 are significantly deceased compared to their performances
in qualifying round. On the contrary, the performances of agents from Pool 4 –
RandomDance and PhoenixParty are significant improved in the final round. Again,
this interesting phenomenon can be explained by our agent’s exploitation behaviour.
Without surprise, agents without any exploitation behaviour are probable to reach
early agreement in discounted domain. Therefore, albeit our agent can exploit them
successfully, our individual utilities can still be very low after averaging.

Overall, the results of ANAC2015 show that setting high degree of exploitation
can result in severe exploitation behaviour, which is prone to delay the agreements
because of persistence in getting our favourable bids. In this case, despite our agent
can get better offers than opponents in each negotiation session, after considering the
late agreements from discounted domains, the average resulting utility may become
worse. From the experimental parameter settings in PhoenixParty, we expect the
degree of exploitation to be lowered in discounted domain. In fact, it is more proper
if we carefully tune its value by running more testing, noticing the crucial influence
of this parameter on the resulting utilities.
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Table 2 Agents’ average individual utilities in final round with comparison to their performances
in Qualifying Round [13]

Final round

Agent name Average utility Change from qualifying round

Atlas3 0.481042722 (−29.3274865%)

ParsAgent 0.470693979 (−19.1564517%)

RandomDance 0.46062548 (+12.7440834%)

Kawaii 0.460129481 (−20.0337294%)

AgentBuyogV2 0.458823101 (−23.2620426%)

PhoenixParty 0.442975836 (+ 16.3010073%)

XianFaAgent 0.353133027 (−44.2024544%)

PokerFace 0.344003999 (−42.1128369%)

5 Conclusions and Future Work

In this paper we describe a negotiation strategy called Phoenix for multi-lateral
automated negotiation. The entire strategy is based on a time-dependent continuous
function, namely, the threshold function. This function denotes our agent’s attitude
and is referred whenever our agent needs decides the next move. It cannot only
simplify the decision process, but also make agent’s decisions analytically tractable
by plotting graphs. To derive an appropriate threshold function,Phoenix harnesses all
possible information perceived in the negotiating environment as inputs to threshold
function. Being adaptive to various opponents’ strategies, opponents’ behaviours are
also considered using opponent-modeling technique.

Through success, our approach is greatly highlighted and detailed in this paper.
A well-designed modelling task is formulated taking opponents’ behaviours into
account. With our formulation, time-series data are collected throughout the nego-
tiation. We borrow a sophisticated modelling technique specializing in time-series
prediction called Gaussian Process Regression (GPR). Note that GPR is a flexible
modelling framework which fully specified by our prior setting. In fact, the output
of GPR is a distribution over function, where the functional properties are domi-
nated by the kernel function in prior setting. Therefore, the performance of various
kernel functions applying on our formulated modelling task still need to be inves-
tigated. Also, since the prediction of GPR is not guaranteed to capture opponents’
future attitude, analysis is required to determine its correctness. Utilizing the output
of GPR, all considerations putting on opponents are addressed. Together with other
considerations putting on negotiation domains, an all-round threshold function can
eventually be derived.

Once a proper threshold function is derived, the work remaining will be decid-
ing agent’s next move. Indeed, using the threshold function, the determination of
acceptance and termination is somewhat trivial. In fact, the noteworthy part of decid-
ing agent’s next move is how Phoenix propose the next offer for opponents. With
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the incentive for maximizing mutual benefits, the second highlight of our work –
the Distance-based Pareto Frontier Approximation (DPFA) method is introduced in
this paper. To our knowledge, this paper is a pioneer work to formulate the DPFA
mechanism, which uses distance in issue space to approximate the Pareto Frontier.
In practice, this method can achieve reasonably accurate results, though it has not
guarantee to be true in all cases. Indeed, the main difficulty of employing DPFA
is setting the parameters without loss of generality. This remains an active area for
future research.
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Pokerface: The Pokerface Strategy
for Multiparty Negotiation

J.B. Peperkamp and V.J. Smit

Abstract In this paper we will discuss a possible strategy to use in multiparty
negotiation.We showwhy this scenario differs frombilateral negotiation anddescribe
our strategy that dealswith these differences, itsmerits and shortcomings andpossible
future improvements.

1 Introduction

This paper describes the negotiation strategy of the agent Pokerface which took part
in the finals of the Sixth International Automated Negotiating Agents Competition
(ANAC2015). In this fifth edition of the competition, the challenge was to develop
strategies that can be used in negotiations with more than one opponent. Clearly it
is not possible to apply simple strategies for two-party negotiation to this multiparty
scenario without any modification. Take for instance the tit-for-tat approach [3]:
if two opponents act in opposite ways, an agent following this strategy would not
know which one to mimick. A new protocol is also used to facilitate the multiparty
negotiation; see [1]. As in previous editions (see e.g. [2, 4, 5, 7]), the strategy is
written as an agent that performs its negotiation via the Genius framework [6].

2 Strategy

A brief overview of the Pokerface strategy that the eponymous agent uses will now
be given. The basic idea is to throw off opponents by performing seemingly random
actions for the first part of the negotiation, hence the name of the strategy. After this
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a straightforward polynomial concession strategy is employed, with a twist at the
end. An opponent model is also specified, although this was not the main focus of
the work.

2.1 First Stage: Random Walk

Asmentioned, the first part of the negotiation is spent offering ostensibly randombids
to throw off analysis that opponents may be trying to perform on the agent’s actions.
Of course the bids cannot be entirely random, because then a large concession might
happen at some point that leads to an undesirable outcome for the agent. To prevent
this from happening, the agent does take into account its utilities for each issue value
when constructing the random bids. Only when the total utility of the issues in the
randomly selected bid is above a predefined threshold of desirability will the bid be
used, otherwise it is excluded.

2.2 Second Stage: Conceding

After the initial random walk, the agent switches to a conceding strategy. After all, it
can hardly make sense to expect something better to come from exclusively random
actions than could be achieved with a little more thought. The concession works in
a fairly mundane way.

First, all possible bids are enumerated. The bids are then ordered by how much
they would detract from the agent’s utility and how likely the opponents are inferred
to be to accept the bid. That is, at the top of the list come the most advantageous bids
that are also the most likely to be accepted, while at the bottom the bids are placed
that would be very detrimental to the agent’s utility and that would also be unlikely
to be accepted by the other agents.

Second, since the list thus constructed is usually going to be too long to concede
using every bid in it, tradeoffs will need to be made. The agent keeps track of
how long it has taken on average to complete its computation for a single round so
that it can estimate how many rounds it has left. (If the negotiation is performed
not with a fixed deadline in time but with a fixed number of rounds, that number
can be directly compared to the number of the current round.) Once the number
of remaining rounds has been determined, the list can be traversed in larger steps
so that the concession proceeds as slowly as can be afforded but it will eventually
condescend to the other agents, with the caveat that the agent will not concede more
than a predefined threshold.
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2.3 Opponent Model

To construct the list of bids to concede over, information is required about the utilities
that the opponents assign to them. This information is gathered according to the
agent’s opponent model. The model essentially simplifies the multiparty case to a
two-party case by aggregating all the bids it receives from all the opponents and
treating them all equally. This is done to avoid the problem of having to determine
which of the agents to favor, since this can vary over time and it is not knownwhether
it depends on what the agent itself decides to do (i.e. other agents may start acting
more or less favorably depending on what the agent does). The way the likelihood is
inferred that a bid will be accepted by the opponents, then, is by determining which
values for the issues in the domain occur the most frequently, under the assumption
that most agents will not want to change those issue values that they assign the most
utility to.

2.4 Final Round

As mentioned above, at the end the agent can perform a special action: if the agent
will be the one to make or break the negotiation in the final round, it offers the bid
that has the most utility. The reasoning behind this is that the opponents will have
to accept the bid since if they do not, the negotiation fails and they are guaranteed
to have no better utility than if they accept the agent’s unfavorable bid, since in that
case every agent’s utility will be zero.

3 Experiments and Evaluation

In order to test the proposed strategy, we have run a series of tournaments with
three negotiators, i.e. strategies. In this test we have used a single domain with three
predefined preference profiles. The way the test was performed was as follows. For
each negotiation, the three negotiating agents each get assigned one of the preference
profiles. A tournament is then defined as the full set of possible assignments of
preference profiles to strategies, so in our case, with three negotiators and as many
preference profiles, each tournament had 9 negotiating sessions. Thisway the success
of one strategy cannot be caused by a fortunate set of preferences. For consistency,
we have also run each tournament ten times. The average utilities of the agents
involved in the tournaments are shown in Table1. The average utility is calculated
as the average utility achieved for each strategy over all 90 sessions.

After running the tournaments, we made the following observations. The strategy
we developed was able to secure a reasonable utility most of the time, and when
a low utility was achieved, often the opponents did not do much better. The social
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Table 1 Average utilities for Pokerface and two other agents in various combinations

Agents Utility agent 1 Utility agent 2 Utility Pokerface

1,2,10 0.500638 0.666667 0.462303

1,3,10 0.836782 0.806024 0.875527

1,4,10 0.827411 0.792666 0.833574

1,5,10 0.832148 0.834867 0.896057

1,6,10 0.646843 0.744032 0.630657

1,7,10 0.590085 0.726235 0.61285

1,8,10 0.86718 0.833462 0.890016

1,9,10 0.85454 0.837195 0.881035

2,3,10 0.666667 0.500638 0.462303

2,4,10 0.833333 0.598477 0.576198

2,5,10 0.833333 0.598477 0.576198

2,6,10 0 0 0

2,7,10 0 0 0

2,8,10 0.833333 0.598477 0.576198

2,9,10 0.833333 0.598477 0.576198

3,4,10 0.819146 0.824691 0.874389

3,5,10 0.817558 0.832124 0.911351

3,6,10 0.623134 0.670556 0.623728

3,7,10 0.545499 0.663128 0.545698

3,8,10 0.829912 0.850828 0.895889

3,9,10 0.858612 0.815228 0.905506

4,5,10 0.814208 0.790749 0.872897

4,6,10 0.703732 0.895098 0.758256

4,7,10 0.710305 0.908972 0.719138

4,8,10 0.85014 0.739171 0.860858

4,9,10 0.849609 0.836095 0.875939

5,6,10 0.717296 0.862815 0.742641

5,7,10 0.677432 0.90866 0.701149

5,8,10 0.830288 0.773093 0.884417

5,9,10 0.832949 0.8449 0.857725

6,7,10 0.044834 0.048214 0.040297

6,8,10 0.869227 0.709545 0.737495

6,9,10 0.906101 0.770134 0.738663

7,8,10 0.938778 0.732944 0.749235

7,9,10 0.888307 0.701957 0.737068

8,9,10 0.825846 0.841614 0.83903
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welfare, however, was clearly a secondary concern. We argue that it is not sensible to
make it the primary objective of the agent to try to please everyone, since especially
in multiparty negotiation, it soon becomes impossible to find a solution that makes
everyone happy, at least in domains that give options that are directly opposed to
each other.

4 Conclusions and Future Work

We have described a possible strategy that may be followed in order to enable an
automated negotiation agent to negotiate with more than one opponent. The strategy
we proposed favors individual utility over social welfare under the (common sense)
assumption that it is increasingly difficult to please all opponents when their number
increases. The strategy consists of performing random bids for a portion of the
available time, then conceding for the remainder of the negotiation session. If at the
end no agreement has been reached and we can force the hands of the opponents, we
try to do so.

Some possible improvements can be formulated for future work as well. One
important feature that is missing at this point is a more detailed opponent model that
takes into account the individual opponents’ utilities. As outlined above, right now
their desires are only considered in aggregate, but it may be possible to improve social
welfare by still aligning our concession to the wishes some subset of opponents. It
may also be possible to improve the random walk by strategically modifying the
threshold according to a model of how likely the current bids are to be accepted by
all opponents: if this likelihood is low, it is not dangerous to make a disadvantageous
bid, so in that way the randomness may be improved somewhat.
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Negotiating with Unknown Opponents
Toward Multi-lateral Agreement
in Real-Time Domains

Siqi Chen, Jianye Hao, Shuang Zhou and Gerhard Weiss

Abstract Automatednegotiationhas beengained amass of attentionmainly because
of its broad application potential in many fields. This work studies a prominent class
of automated negotiations – multi-lateral multi-issue negotiations under real-time
constraints, where the negotiation agents are given no prior information about their
opponents’ preferences over the negotiation outcome space. A novel negotiation
approach is proposed that enables an agent to obtain efficient agreements in this
challenging multi-lateral negotiations. The proposed approach achieves that goal by,
(1) employing sparse pseudo-input Gaussian processes (SPGPs) tomodel opponents,
(2) learning fuzzy opponent preferences to increase the satisfaction of other parties,
and (3) adopting an adaptive decision-making mechanism to handle uncertainty in
negotiation.

1 Introduction

Negotiation is ubiquitous in our daily life and serves as an important approach
to facilitate conflict-resolving and reaching agreements between different parties.

This paper is a shortened version of our previous work [6].
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Development of automated negotiation techniques enables software agents to per-
form negotiations on behalf of human negotiators. This can not only significantly
alleviate the huge efforts of human negotiators, but also aid human in reaching bet-
ter negotiation outcomes by compensating for the limited computational abilities of
humans when they deal with complex negotiations [13].

During negotiations, an agent usually keeps its strategy and preference as private
information, in order to avoid possible exploitation. Thus one major research chal-
lenge is to effectively estimate the negotiation partner’s preference profile [2, 10, 14,
21] and predicate its decision function [15, 20]. On one hand, through getting a better
understanding of partners’ preferences, it would increase the possibility of reaching
mutually beneficial outcomes. On the other hand, with effective strategy prediction
it enables negotiation agents to maximally exploit their negotiating partners and thus
receive as much benefit as possible [9]. Until now, fruitful research efforts have
been devoted to developing automated negotiation strategies and mechanisms in a
variety of negotiation scenarios [4, 7, 13–15, 19]. However, most research efforts
have been devoted to bilateral negotiation scenarios, which only models the strategic
negotiation among two parties. However, in real life the more common and general
way of negotiations usually involve multiple parties. It is in common agreement
from the automated negotiation research community that more attention should be
given to multilateral negotiations and investigate effective negotiation techniques for
multilateral negotiation scenarios.

In this work, a novel negotiation approach is proposed for intelligent agents to
negotiate in multilateral multi-issue real-time negotiation. During negotiation, the
agents’ negotiation strategies and preference profiles are their private information,
and the available information about the negotiating partner is its past negotiation
moves [12]. Due to the huge strategy space that a negotiating partner can consider, it
is usually hard to predict which specific strategy the agent is employing based on the
very limited amount of information. Toward this end, instead of predicting the exact
negotiation strategies of the opponents, we adaptively adjust the non-exploitation
point λ to determine the perfect timing that we should stop further exploits the
opponents, and then determine the aspiration level (or the target utility) for proposing
offers to opponents before and after the non-exploitation point following different
rules. The value of λ is determined as the timing when the estimated expected future
utility we can obtain over all opponents is maximized. The future utility that each
opponent offers can be efficiently predicted using the Sparse Pesudo-inputs Gaussian
Process (SPGP) technique by dividing the negotiation history into a number of atomic
intervals.

Given the aspiration level for offering proposals, another important question is
how should we select an optimal proposal to reach efficient agreements with other
parties, which can also improve the possibility of accepting this offer by the negoti-
ating partners. In this work, we measure the efficient degree of an outcome from a
practical perspective – the social welfare of participants. We propose modeling the
preferences of each opponent using the least square error regression technique on
the basis of negotiation history. After that, the offer with the highest social welfare
is selected as the offer to be proposed with certain exploration.
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The remainder of the work is organized as follows. Section2 introduces the mul-
tilateral negotiation model given in this work. In Sect. 3, our negotiation approach is
then introduced in details. Finally, conclusion and future work are given in Sect. 4.

2 Multilateral Negotiation Model

To govern the complex process of a multilateral negotiation, we adopt an extension
of a basic bilateral negotiation protocol [17] which is widely used in the agents
field [5, 6, 8, 11, 19]. The participating agents try to establish a contract for a
product (service) or reach consensus on certain matter on behalf of their parties [6].
Precisely, let A = {a1, a2, . . . , ai , . . . , am} be the set of negotiating agents, J be the
set of issues under negotiation with j a particular issue ( j ∈ {1, . . . , n} where m is
the number of issues) [3, 5, 6, 8]. Following the alternating bargainingmodel of [17],
each agent, in turn, has a chance to express its opinion about the ongoing negotiation.
The opinion can be communicated in a form of a contract proposal (e.g., a new offer),
or an acceptance of the latest offer on the table (note that previous offers would not be
accepted once there exists a new proposal), or terminating the negotiation according
to its interpretation of the current negotiation situation. A simple illustration of the

Fig. 1 Multilateral negotiation protocol
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multilateral negotiation process is shown in Fig. 1. Due to space constraints we refer
the interested reader to the work [1] for further details [3, 5, 6, 8].

An offer is taken as a vector of values, with one value for each issue. The utility
of an offer for agent i is calculated by the utility function defined as follows:

U i (O) =
n∑

j=1

(wi
j · V i

j (O j,k)) (1)

where wi
j and O are as defined above and V i

j is the evaluation function of agent i for
issue j , mapping every possible value of issue j (i.e., O j,k) to a real number [3, 5, 6,
8]. The weight vector w denotes the weighting preference of an agent, in which wi

j
represents its preference for issue j . The issue weights of an agent are normalized
(i.e.,

∑n
j=1 wi

j = 1 for each agent i). In addition an agent has a lowest expectation
for the outcome of a negotiation – the reservation value ϑ [3, 5, 6, 8].

In this work we consider negotiation being conducted in a real-time way. Each
negotiator has a hard deadline by when it must have completed or withdraw the
negotiation [3, 5, 6, 8]. The negotiation deadline is simply denoted by tmax. For
domains where the value of agreements is discounted over time, the discounting
factor δ (δ ∈ [0, 1]) is defined to calculate the discounted utility as follows:

D(U, t) = U · δt (2)

whereU is the (original) utility and t is the standardized time. As an effect, the longer
it takes for agents to come to an agreement the lower is the utility they can obtain [3,
5, 6, 8].

3 Negotiation Approach

The proposed approach consists of three core components: deciding aspiration level,
generating new offers and respondingmechanism, all of which are described in detail
in this section. We first give an overview of our approach shown in Algorithm 1.
Following that, each step of Algorithm 1 is explained in details.

3.1 Deciding Aspiration Level

Aspiration level indicates the target utility of an agent in the negotiation process. In
order to respond to uncertainty in a negotiationwhere opponents’ private information
is unknown, the aspiration level is updated due to the environment (e.g., available
negotiation time anddiscounting effect) andopponent behaviors. The agent can there-
fore predict opponent future moves to assist its decision by analyzing past moves



Negotiating with Unknown Opponents Toward Multi-lateral Agreement … 223

Algorithm 1 The overview of the proposed negotiation approach. Let tc be the current time point,
δ the time discounting factor, and tmax the deadline of negotiation. Oopp is the latest opponent offer,
Ωi the previous offers of opponent i and Oown a new offer to be proposed by our agent. χ is the
time series including the average utilities over intervals. E denotes the expected utility of incoming
counter-offers. λ is the non-exploitation time point and u′ the target utility. W denotes the set of
learnt opponent weight vectors [3, 5, 6, 8].

1: Require: ϑ, δ, tmax
2: while tc <= tmax do
3: Oopp ⇐ receiveMessage;
4: Ωi ⇐ recordOfferSet(tc, Oopp, i);
5: if myTurn(tc) then
6: if updateModel(tc) then
7: χ ⇐ preprocessData(tc)
8: E ⇐ Predict(χ,Ω);
9: (λ, Umin) ⇐ updateParas(tc);
10: W = updatePrefreenceModels();
11: end if
12: end if
13: u′ = getTargetUtility(tc, E, λ);
14: Oown ⇐ constructOffer(u′, W) ;
15: if isAcceptable(u′

c, Oopp, tc, δ) then
16: accept(Oopp);
17: else
18: checkTermination();
19: proposeNewBid(Oown);
20: end if
21: end while

of the opponent. The prediction technique we use here is a computationally effi-
cient variant of standard Gaussian Processes (GPs) – Sparse Pseudo-inputs Gaussian
Processes (SPGPs), which proves effective in negotiation context [8]. Another advan-
tage of SPGPs over other type of regression techniques is that it not only provides
accurate prediction but also the measure of confidence in the prediction.

Following the notation of GPs in [16], given a data set D = {x(i), y(i)}n
i=1 where

x ∈ R
d is the input vector, y ∈ R the output vector and m the number of available

data points when a function is sampled according to a GP, so we write, f (x) ∼
GP(m(x), k(x, x′)), where m(x) is the mean function and k(x, x′) the covariance
function, fully specifying a GP. Learning in a GP setting involves maximizing the
marginal likelihood of Eq.3 [3, 5, 6, 8].

log p(y|X) = −1

2
yT

(
K + σ 2

n I
)−1

y − 1

2
log |K + σ 2

n I| − n

2
log 2π, (3)

where y ∈ R
m×1 is the vector of all collected outputs, X ∈ R

m×d is the matrix of
the data set inputs, and K ∈ R

m×m is the covariance matrix with |.| representing the
determinant.

The problem with GPs is that maximizing Eq.3 is computationally expensive due
to the inversion of the covariance matrix K ∈ R

n×n where n is the number of data
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points. For this specific reasonwe employ a fast andmore efficient learning technique
– SPGPs. The most interesting feature of SPGPs is that these approximators are
capable of attaining very close accuracy in both learning and prediction to normal
GPs with only a fraction of the computation cost. Using only a small amount of
pseudo-inputs, SPGPs are capable of attaining very similar fitting and prediction
results to normal GPs [3, 5, 6, 8].

When a counter-proposal from agent i arrives at time tc, our agent records the time
stamp tc and the utilityU (Oi ) that is evaluated in our agent’s utility space. To reduce
misinterpretation of the opponent’s behavior as much as possible that is caused by
the setting of multi-issue negotiations, the whole negotiation is divided into a fixed
number (denoted as ζ ) of equal intervals. The average utilities at each interval with
the corresponding time stamps, are then provided as inputs to the SPGPs. Results
in [18] show a complexity reduction in the training cost (i.e., the cost of finding the
parameters of the covariance matrix) to O(M2N ) and in the prediction cost (i.e.,
prediction on a new set of inputs) to O(M2) [3, 5, 6, 8].

After learning a suitablemodel, SPGPsmakes forecast about the future concession
of the opponent as shown in line 7 of Algorithm 1. Our agent keeps track of the
expected discounted utility based on the predictive distribution at a new input t
,
which is given by:

p(u∗|t
,D, X̄) =
∫

p(u
|t
, X̄, f̄)p(f̄|D, X̄)d f̄ = N (u
|μ
, σ
2
∗ ), (4)

where

μ
 = kT

 Q

−1
M (Λ + σ 2I)−1u

σ 2

 = K

 − kT


 (K−1
M − Q−1

M )k
 + σ 2

QM = KM + KM N (Λ + σ 2I)−1KN M

With given probability distribution over future received utilities and the effect of
the discounting factor, the expected utility Et
 is then formulated by

Et = 1

C

∫ 1

0
D(u · p(u;μt , σt ), t)du (5)

where μ
 and σ
 are the mean and standard deviation at time t
, and the normalizing
constant C is introduced to preserve a valid probability distribution [3, 5, 6, 8].

Our agent employs the target utility function as given in Eq.6 to determine the
aspiration level over time. The function adopts a tough manner (i.e., slowly con-
ceding) before the non-exploitation time point (λ) for seeking higher expected prof-
its, then it quickly goes to the expected minimal utility such that negotiation fail-
ure/disagreement could be avoided. λ is tweaked according to the behavior of the
negotiation participants. More precisely, the higher the average opponent concession
(measured in the our own utility space), the later our agent begins to compromise.
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u′ =
⎧
⎨

⎩

Umax − Δ
( tc

λ

)1+δ
when tc ≤ λ,

(Umax − Δ)
(
1 − tc−λ

tmax−λ

)1+δ

otherwise
(6)

whereUmax is the maximal utility,Umin is the minimal utility (Umin = max(ϑ, γ ) and
γ the received lowest opponent concession), constant Δ is the maximal concession
amount (i.e., Umax − Umin), with

λ = argmax
t∈T

1

|A| − 1

∑

i∈A\o

1

Ci

∫ 1

0
Dδ(u · p(u;μt , σt ), t)du (7)

with o representing our agent and T ∈ [tc, tmax].

3.2 Generating Offers

Given an aspiration utility level to achieve, our agent next needs to consider what
offer to send such that the likelihood of an offer being accepted could be maximized.
Performing this task would require certain knowledge about opponents’ preferences.
However, negotiation opponents unfortunately have nomotivation to reveal their true
likings over proposals (or their utility functions) to avoid exploitation. In order to
address this problem, we model the opponent concession tactics as time-dependent
tactics (originated in [11]) shown in Eq.8, which are classic tactic in the current
literature.

ũ = Umax − (Umax − ϑ)(tc/tmax)
α (8)

where α is the concession factor controlling the style of concessive behavior (for
example, boulware behavior (α < 1) or conceder behavior (α > 1)). Time-dependent
tactics are widely used in automated negotiation community to decide concession
toward opponents since an negotiator needs to make more or less compromise over
time so as to resolve conflicts of the parties. In more detail, boulware tactic maintains
the target utility level until the late stage of a negotiation process, whereupon it con-
cedes to the reservation utility. By contrast, conceder tactic makes quick compromise
to other parties once a negotiation session starts. For linear tactic, it simply reduces
the target utility from the maximal utility to the reservation utility in a linear way.

Learning opponent preferences, while useful, is indeed challenging because infor-
mation about opponent preferences over different issues (e.g., the weight vector w)
is severely lacking. To tackle this issue, researchers typically assume that opponent
concession tactic is fully known or preferences follow a certain distribution. In many
real-world applications, it is however difficult or costly to acquire the exact infor-
mation about opponent concession.1 Therefore we make a mild assumption that we

1Note that the opponent concession is the amount of concession measured in the utility space of
the opponent instead of ours.
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Fig. 2 A toy example of opponent concession ranges given by the pairs of concession factors (0.5,
2) at time 0.3, (0.5, 4) at 0.5 and (2, 0.25) 0.7, respectively

could enquire of domain experts about the approximate concession range of an oppo-
nent. This fuzzy knowledge is provided in form of a pair of concession factors that
indicate the upper and lower concession an opponent makes at each time point. This
idea is illustrated in Fig. 2. Thus, the agent can estimate opponent preferences with
the aid of the fuzzy information about opponent concession. Specifically, the pref-
erences are learnt through minimizing the loss function L , which gives the expected
loss associated with estimating opponent concession based on a weight vector. The
loss function is constructed as in Eq.10. The loss is calculated by the difference
between the mean of concession and the utility of an offer based on a weight vector
w; moreover an additional penalty is imposed by ϕ when an expected utility for w
excesses the upper and lower bounds of opponent concession. When calculating an
offer’s utility for opponent i , yet the valuation of each issue choice is needed.We here
simply assume that the importance order of issue choices is known, and approximate
the valuation like [14] as follow,

V i
j,k(O j,k) = 2r i

j,k

K (K + 1)
(9)

where K is the number of possible choices for issue j , while r i
j,k denotes the ranking

of the issue choice O j,k .
Let the opponent utility of an offer for a weight vectorw be ûw. With the opponent

concession tactic given in Eq.8 and the two concession factors (which denote the
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approximate concession range suggested by experts), our agent can estimate the
weight vector of opponent i by means of linear least squares. This can be achieved
by minimizing the following loss function,

Li (w) =

⎧
⎪⎪⎨

⎪⎪⎩

| (ui
upper+ui

lower)

2 − ûw| + ϕ(ui
lower, ûw), ûw ≤ ui

lower

| (ui
upper+ui

lower)

2 − ûw| + ϕ(ûw, ui
upper), ui

upper ≤ ûw

| (ui
upper+ui

lower)

2 − ûw|, otherwise

(10)

with ui
upper and ui

lower being the upper and lower bound of concession made by
opponent i at time t, and ϕ the penalty function as below,

ϕ(x, y) = β|x − y| 1
2 (11)

where β denotes the confidence of the expert, and the lower the value, the more
confidence the expert has about the perdition (to limit further complexness, we let β
be 1).

After the estimation of weight vectors of other parties has been done, our agent
chooses an offer being capable of maximizing the social welfare (e.g., the sum of the
utility of all participants in the negotiation) given a aspiration level, shown as below:

argmax
O

1

|A| − 1

∑

i∈A\o

(ûi
w(O) − ϑ)2

subject to

U o(O) ≥ u′

(12)

Although opponent preferences could be learnt on the basis of the provided con-
cession tactics, it sometimes may be ineffective due to the fuzzy nature of the infor-
mation; therefore our agent needs an alternative approach to choosing new offers.
Fortunately, a real-time negotiation typically allows agents to exchange a large num-
ber of offers, thereby giving them many opportunities to explore the outcome space.
Therefore, the proposed approach generates a new offer for next round following an
ε-greedy strategy. The strategy selects either a greedy action (i.e., exploit) with 1-ε
probability (ε ∈ [0, 1]) or a random action with a probability of ε [3, 5, 6, 8]. It is
worth noting that random action means choosing one offer from the set whose utility
is above the given aspiration level by chance. The greedy action aims at choosing an
offer that are expected to satisfy other sides’ preferences most in order to improve
their utilities over the negotiation outcome and the chance of the offer being accepted
through fuzzy preference learning. With a probability 1 − ε, the approach randomly
picks one of those offer whose utility is equal or larger than the given aspiration
level. In the latter case, the agent just chooses a new offer that has an utility within
some range around u′.
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3.3 Responding Mechanism

This responding mechanism of the proposed approach corresponds to lines 15–20 of
Algorithm 1. After receiving a counter-proposal, the agent should decide whether to
accept the proposal by checking two conditions. Firstly the agent validates whether
the utility of the latest offer from opponents is higher than u′, while in the second,
the agent needs to determine whether it had already proposed this very offer (i.e., the
opponent’s counter-offer) earlier. If either one of these two conditions is satisfied, the
agent then accepts the offer as shown in line 16 and the negotiation will be completed
if the proposal is also supported by the remaining agents [3, 5, 6, 8].

Moreover, when the negotiation situation becomes hard and might offer our agent
a utility even lower than the reservation utility, the agent should consider whether
to leave the negotiation course to receive the predefined reservation utility or not.
Thus the reservation value is taken as an alternative offer from opponents with a
constant utility. Thus the agent needs to check if the aspiration utility is smaller than
the reservation utility. If positive, our agent is going to leave the negotiation table in
the next round. If our agent decides neither to accept the latest counter-proposal nor
to leave the negotiation, it proposes a new offer following the steps of lines 19 of
Algorithm 1.

4 Conclusion

This work introduced a novel approach for multilateral agent-based negotiation in
complex environments (i.e., multiple issues, real time-constrained, and unknown
opponents). Our proposed approach, based on the adaptive decision-making scheme
and the effective preference learning method, outclassed recent top ANAC agents.
Empirical evaluation (see [6]) shows that our agent ont only generates a higher mean
individual utility but also leads to better social welfare compared to the state-of-the-
art negotiation agents, and further game-theoretic analysis clearly manifests the high
robustness of the proposed approach.

Acknowledgements This work is supported by National Natural Science Foundation of China
(Program number: 61602391), and also by Southwest University and Fundamental Research Funds
for the Central Universities (Grant number: SWU115032, XDJK2016C042).
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2. T. Baarslag, K. Hindriks, C. Jonker, Acceptance conditions in automated negotiation, in
ACAN’11 (2011)



Negotiating with Unknown Opponents Toward Multi-lateral Agreement … 229

3. S. Chen, H.B. Ammar, K. Tuyls, G. Weiss, Optimizing complex automated negotiation using
sparse pseudo-input Gaussian processes, in Proceedings of the 12th International Joint Con-
ference on Automomous Agents and Multi-Agent Systems (Saint Paul, Minnesota, ACM, USA,
2013), pp. 707–714

4. S. Chen, H.B. Ammar, K. Tuyls, G.Weiss, Using conditional restricted boltzmann machine for
highly competitive negotiation tasks, in Proceedings of the 23th International Joint Conference
on Artificial Intelligence (AAAI Press, 2013), pp. 69–75

5. S. Chen, J. Hao, G. Weiss, K. Tuyls, H.-F. Leung, Evaluating practical automated negotiation
based on spatial evolutionary game theory, in KI 2014: Advances in Artificial Intelligence,
Lecture Notes in Computer Science, vol. 8736, ed. by C. Lutz, M. Thielscher (Springer, New
York, 2014), pp. 147–158

6. S. Chen, J. Hao, G.Weiss, S. Zhou, Z. Zhang, Toward efficient agreements in real-timemultilat-
eral agent-based negotiations, in Proceedings of the 2015 IEEE 27th International Conference
on Tools with Artificial Intelligence (ICTAI), ICTAI’15 (IEEE Computer Society, Washington,
DC, USA, 2015), pp. 896–903

7. S. Chen, G.Weiss, An efficient and adaptive approach to negotiation in complex environments,
in Proceedings of the 20th European Conference on Artificial Intelligence, vol. 242 (IOS Press,
Montpellier, France, 2012), pp. 228–233

8. S. Chen, G. Weiss, An intelligent agent for bilateral negotiation with unknown opponents in
continuous-time domains. ACM Trans. Auton. Adapt. Syst. 9(3), 16:1–16:24 (2014)

9. S. Chen, G. Weiss, An approach to complex agent-based negotiations via effectively modeling
unknown opponents. Expert Syst. Appl. 42(5), 2287–2304 (2015)

10. R.M. Coehoorn, N.R. Jennings, Learning an opponent’s preferences to make effective multi-
issue negotiation trade-offs, in ICEC’04 (2004), pp. 59–68

11. P. Faratin, C. Sierra, N.R. Jennings, Negotiation decision functions for autonomous agents.
Rob. Autom. Syst. 24(4), 159–182 (1998)

12. J. Hao, H.-F. Leung, ABiNeS: an adaptive bilateral negotiating strategy over multiple items,
in Proceedings of the 2012 IEEE/WIC/ACM International Conference on Intelligent Agent
Technology (IEEE Computer Society, Macau, China, 2012), pp. 95–102

13. J. Hao, S. Song, H.-F. Leung, Z. Ming, An efficient and robust negotiating strategy in bilateral
negotiations over multiple items. Eng. Appl. Artif. Intell. 34, 45–57 (2014)

14. K. Hindriks, D. Tykhonov, Opponent modeling in auomated multi-issue negotiation using
bayesian learning, in AAMAS’08 (2008), pp. 331–338

15. B. Jakub, K. Ryszard, Predicting partner’s behaviour in agent negotiation, in AAMAS ’06
(2006), pp. 355–361

16. C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning (The MIT Press,
Cambridge, 2006)

17. A. Rubinstein, Perfect equilibrium in a bargaining model. Econometrica 50(1), 97–109 (1982)
18. E. Snelson, Z.Ghahramani, Sparse gaussian processes using pseudo-inputs,Advances in Neural

Information Processing Systems (MIT press, Cambridge, 2006), pp. 1257–1264
19. C.R. Williams, V. Robu, E.H. Gerding, N.R. Jennings, Negotiating concurrently with unkown

opponents in complex, real-time domains, in ECAI’12, pp. 834–839 (2012)
20. D. Zeng, K. Sycara, Bayesian learning in negotiation, in AAAI Symposium on Adaptation,

Co-evolution and Learning in Multiagent Systems, pp. 99–104 (1996)
21. D. Zeng, K. Sycara, Bayesian learning in negotiation. Int. J. Hum. Comput. Syst. 48, 125–141

(1998)



Jonny Black: A Mediating Approach
to Multilateral Negotiations

Osman Yucel, Jon Hoffman and Sandip Sen

Abstract We describe the strategy of our negotiating agent, “Jonny Black”, which
received the 3rd place in ANAC 2015 competition in the “Nash Product” category.
The agent tries to act as a mediator to find the best outcome for all the agents,
including itself, in the negotiation scenario. The agent models other agents in the
negotiation, and attempts to find the set of outcomes which are likely to be accepted
by the other agents, and then picks the best offer from its own viewpoint. We give an
overview of how to implement such a strategy and discuss its merits in the context
of closed multilateral negotiation.

1 Introduction

This paper presents our agent called “Jonny Black” and its strategy, which we
developed and entered into the Fifth Automated Negotiating Agent Competition1

(ANAC2015). ANAC is a tournament between a set of negotiating agents which
perform closed multilateral negotiation using the alternating offers protocol. The
negotiation environment consists of multi-issue scenarios and includes uncertainty
about the opponents preferences.

Bazerman et al. showed that introducing a mediator agent significantly reduces
the probability of an impasse [2]. Based on this observation, we chose to design

1http://mmi.tudelft.nl/anac.
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our agent to act as a mediator between the other agents.2 In the process, it attempts
to offer the best outcome for itself from the set of solutions in the intersection of
acceptable set of outcomes for both opponents.

We treat the negotiation process as a search processwherewe try to find an existing
outcome within the acceptable region for both opponents. In order to be able to do
that we need to know what offers are acceptable for the opponents, which requires a
model of the opponent of the form studied in the literature [1, 3, 4].

2 Strategy

We present an outline of our agent’s strategy in four steps. First we explain the
parameters we used for our strategies. Then we explain how we model the opponent.
In the following subsection we explain how our agent decides to accept an offer or
not. Finally we explain the strategy out agent uses for choosing the bid to offer to
it’s opponents.

2.1 Parameters

The agent uses 5 parameters to make decisions: Minimum Offer Threshold (MoT),
Agreement Value (AV), Care (C), Number Of Bids to Consider From Opponent’s Best
Bids (N), and Reluctance (R). We will now explain what these parameters are used
for and how they are calculated.

2.1.1 Minimum Offer Threshold

Minimum Offer Threshold (MOT) is a constant value used to eliminate the bids
from consideration which give our agent less than a desirable outcome. We have
empirically set this value to 0.6. With this setting our agent will never offer a bid
which gives itself a utility which is less than 0.6.

2.1.2 Agreement Value

Agreement Value (AV) is a parameter that is recalculated with each offer, which
determines if our agent should accept an offer or not. The calculation of this variable
will be explained in Sect. 2.4.

2Every round of negotiation takes place between 3 agents.
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2.1.3 Care

Care (C) is a parameter that represents how much we care about our opponent’s
happiness. Our agent assumes that the opponent will accept a bid which gives the
opponent a utility greater than the care value. Care value starts with the value 0.4 and
increasedby0.4%every10 turns.Bothof these values are experimentally determined.
Even though the negotiations in the competition were multilateral, we only consider
one of the opponents at a time. We will explain how the multilateral negotiation
aspect is addressed in Sect. 2.5.

2.1.4 Number of Bids to Consider from Opponent’s Best Bids

Number Of Bids to Consider From Opponent’s Best Bids (N) is a parameter we use
for the calculation of the Agreement Value. This parameter determines how many
of the best bids we created will be considered for each opponent. As mentioned in
Sect. 1, we are trying to offer within the acceptable range of the opponents and this
parameter allows us to predict the range that we believe the opponent will accept.
Initially we keep this range wide, and narrow it down over time. We start this value
from 100 and decrease it by 5 every 10 turns until it gets down to 10, after which it
is held steady at 10. The use of this parameter will be explained in Sect. 2.4.

2.1.5 Reluctance

Reluctance (R) is the parameter we use for tracking time. It makes our agent less
willing to accept the bids offered during the early periods of the negotiation while
becoming more willing with the passage of time. We use this parameter while cal-
culating the Agreement Value. The value of Reluctance starts at 1.1 and is decreased
by 0.5% every 10 turns.

2.2 Initialization

During the initialization of the agent, we calculate every possible bid which gives us
a greater utility than M OT . We refer to this set of bids as BidsFeasible.

2.3 Opponent Modeling

In this section, we will explain the working of our opponent modeling algorithm.
Our modeling approach tries to find the opponent’s weights on the issues and their
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relative preferences of the options for every issue. We have two main assumptions
in the opponent modeling process:

• The more preferred option for the opponent appears more frequently in the bids
offered or accepted by that opponent.

• The opponent will be less likely to change from its best option for more important
issues.

2.3.1 Order of Options

To find the preference order and the value of options for an opponent, we calculate
the frequency of the options’ appearance in the bids accepted and proposed by the
opponent. When we order the options for an issue by their frequencies, we do so
using Vo, the value predicted for option o. It is calculated using no, the rank of the
option o, and k, the number of possible options for the issue:

Vo = k − no + 1

k
(1)

This calculation values the most frequent option as 1 and least frequent option as 1
k .

2.3.2 Weights of Issues

As mentioned above, we are assuming that the opponents will be less willing to
change the option for more important issues. We use Gini Index [5] as the impurity
measure, and the issues which have higher Gini-Impurity scores are weighted more
by the opponent. ŵi is the unnormalized weight of issue i , fo is the frequency of
option o, and t is the total number of prior bids as follows

ŵi =
∑

o∈Oi

fo
2

t2
,where Oi is the set of options for issue i (2)

Using ŵi , we calculate wi , the normalized weight of issue i as:

wi = ŵi
∑

j∈I ŵ j
,where I is the set of issues (3)

2.3.3 Example Model

We now provide an example scenario to illustrate our modeling approach. The fre-
quencies of offered or accepted options in the issues by the opponents for our example
is presented in Table1.
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Table 1 The frequencies of options for issues for one opponent

Option 1 Option 2 Option 3

Issue 1 9 1 0

Issue 2 3 5 2

Table 2 The calculated values for every option

Option 1 Option 2 Option 3

Issue 1 1 0.66 0.33

Issue 2 0.66 1 0.33

The order of the option preferences are the same as the order of the frequencies of
the options. So the relative order in the issues are I1(O1 > O2 > O3) and I2(O2 >

O1 > O3). From the formula given in Sect. 2.3.1 we calculate the values for the
options as V (I1, O1) = 3−1+1

3 = 1. We calculate the values for all the issue-option
pairs using the same approach. The results of the calculations are listed in Table2.

We then calculate the weight for the issues using the formula given in Sect. 2.3.2

ŵ1 = 9

10

2

+ 1

10

2

= 82

100

ŵ2 = 3

10

2

+ 5

10

2

+ 2

10

2

= 38

100

(4)

We proceed by normalizing the values we calculated

w1 =
82
100

82
100 + 38

100

= 82

120

w2 =
38
100

82
100 + 38

100

= 38

120

(5)

For an offer which has the option O1 for I1 and the option O3 for I2 we predict
the valuation for the modeled user to be

V (O1, O3) = 82

120
× 1 + 38

120
× 0.33 ≈ 0.789 (6)

2.4 Accepting Strategy

Every time the agent receives an offer, it checks if the utility of the offer is greater
than our parameter AV . The agent accepts only if that condition is met.
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Every 10 turns, the following steps are taken to recalculate AV :

• Evaluate every bid in BidsFeasible using the model of each user.
• Find Setu : the set which contains the N best bids for opponent u.
• Find Setcommon = ⋂

u∈Opp Setu , where Opp is the set of opponents.
• Find BidBest = argmax

b∈Setcommon

Utili t y(b).

• Finally AV = Utili t y(BidBest ) ∗ R.

This approach estimates AV is the best utility we can get by staying in the accept-
able region of both ourselves and our opponents. Multiplying it with R prevents the
agent from accepting too early in the negotiations or waiting too long.

2.5 Bidding Strategy

In this part we explain how out algorithm chooses which bid to make. During the
initialization of the agent we sort the bids in BidFeasible by their utility for our agent,
and set the variable last Bid to 1.

Beginning at the previous bid, search BidFeasible for the next bid that both our
agent and the agent we favorwill likely accept. If we find that bid, offer it, set last Bid
to that bid’s index, and switch the agent we favor. If we do not find an acceptable bid
in the set between lastBid and the end of BidFeasible, we simply bid the best bid for
us, set last Bid to 1 and switch the agent we favor.

Algorithm 8 pseudocode for selection of a bid
1: for i = last Bid + 1 to Bid Set.si ze() do
2: if Util(Bid Set[i]) ≥ AgreeV al and
3: Pred.Util(Bid Set[i], agentT oFavor) ≥ Care then
4: O f f er(Bid Set[i]);
5: last Bid = i ; agentT oFavor = otheragent
6: return;
7: O f f er(Bid Set[1]);
8: last Bid = 1;
9: agentT oFavor = otheragent

This algorithm goes down the list of bids until a suitable bid cannot be found and
then returns to the top of the list. Figure1 shows the utility of the offers on the table
for the participating agents. In this figure, Party 1 represents our agent while Party 2
and Party 3 are instances of Boulware and Conceder agents respectively, which were
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Fig. 1 Utility of the bids for 3 agents in the negotiation

provided by the organizers. The method we mentioned, going down the list as long
as the bids are suitable and then returning to top, can be seen from the offers made
by Party 1.

3 Conclusion and Future Work

In this paper, we have provided an overview of the strategy of the agent named
“Jonny Black”, which received the 3rd place in the ANAC 2015 competition in the
“Nash Product” category. We have designed our agent to act as a mediator between
all participating agents, including and favoring itself.We described the methods used
for modeling the opponents and the strategies for accepting and making offers.

The results of the tournament shows that our approachwas successful at increasing
the social welfare, which was our initial intent while deciding the strategy. However
the results also revealed that our agent may concede too much from its own payoff
while it is trying to increase the social welfare. For further improvements on this
agent, the method of conceding on its own utility for achieving higher social utility
should be revised to restrict the agent from conceding too much.

Acknowledgements Wewould like to thank Tandy School of Computer Science in The University
of Tulsa, for making Chapman Distinguished PhD-Student award, which made the focus on this
study possible.
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Agent X

Wen Gu and Takayuki Ito

Abstract Agent X is an agent which is designed for ANAC2015—The Sixth Inter-
national Automated Negotiating Agents Competition. In this paper, we will show
the two main strategies—Agreement Behaviour and Conceder Behaviour of Agent
X. Although a lot of agents pay more attention to the individual utility, Agent X is an
agent which thinks highly of the social welfare. As a result, Agent X tries its best to
come to an agreement with other agents before the negotiation ends. But it doesn’t
mean that Agent X doesn’t care the result of its individual utility, Agent X also tries
to get a relatively good individual utility at the same time.

1 Introduction

As we want to design an Agent which may be practically useful in real world in
the future, we make our Agent prioritize social welfare instead of individual utility.
Because we think that it will be much more meaningful to the society if the three
agents get respectively 0.6, 0.7, 0.7 as their individual utility, other than get respec-
tively 0.9, 0.5, 0.5. In the rules of ANAC2015 [1], there is a time limit and a discount
factor in about half of the domains,where the value of an agreement decreases over
time. As a result, we consider that it is very important to successfully come to an
agreement with other agents and also make it as soon as we can. Based on the those
understandings of ANAC2015 [1], we design the strategy of Agent X.
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2 Strategy of Agent X

There are twomain parts inAgentX’s strategy—AgreementBehaviour andConceder
Behaviour.

When acting the agreement behaviour, Agent X tries to make partial agreement
with one agent before trying to come to an agreement with both other agents. When
acting the conceder behaviour, Agent X tries to successfully come to an agreement
in the end and tries to make it as soon as possible.

2.1 Agreement Behaviour

In ANAC2015 [1], the focus of its competition is on multi-party negotiation. We
think that it will be difficult if we want to come to an agreement with both of other
agents at the same time. As a result, we make Agent X try to make partial agreement
first. Just as shown in Fig. 1, our agent tries to have a partial agreement with the agent
where we get bids from.

We estimate the number of the bids that Agent A may agree with by calculating
the average of Agent A’s recent 10 bids. But if Agent A is an agent which is very easy
to act a conceder behaviour, we can not have a satisfying social welfare. In order to
avoid this kind of situation happen, we import a restraining factor—if the average of
Agent A’s 10 bids is smaller than 0.618, we will offer the bid by ourself.

Fig. 1 Try to make partial agreement with the agent where Agent X get bids from
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Fig. 2 Using S.S.Fatima formula as a reference to design our conceder behaviour

2.2 Conceder Behaviour

In ANAC2015 [1], one of the noteworthy rules of encounter is that there is a time
limit during the negotiation, and there is a discount factor which makes the value
of the entire negotiation decrease over time. As an agent which thinks highly of the
social welfare, agent X tries to come to an agreement as soon as possible. That’s
why we make our agent easy to act conceder behaviour. Referring to the formula
by Faratin [2], we design our agent’s strategy. As shown in Fig. 2, we make some
modification to let our become more and more easy to act conceder behaviour as the
time goes by. We also try to be hard-headed at the beginning of the negotiation in
order to get an relatively good individual utility and avoid the situation I refer in the
Agreement Behaviour part.

3 Results of Simulation

We did a simulation by using all the agents we designed in our laboratory. Agent X
worked very well in achieving satisfying social welfare just as shown in Fig. 3. At the
same time, Agent X’s average individual utility is 0.75217 which is also relatively
satisfying. In addition, Agent X is also the agent which use least time to come to an
agreement with other agents.
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Fig. 3 The results of the social welfare in the simulation we did in our laboratory

4 Conclusion

Based on our understanding of ANAC2015 [1], we design Agent X as an agent which
thinks highly of social welfare. We focus on how to come to an agreement with other
agents before the negotiation ends and try to use time as less as possible. At the
same time, we do not ignore the individual utility. We also try to get an satisfying
individual utility in the condition of being able to have a good social welfare.
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CUHKAgent2015: An Adaptive Negotiation
Strategy in Multilateral Scenario

Chi Wing Ng, Hoi Tang Leung and Ho-fung Leung

Abstract Automated negotiation has been an active research topic. Many previ-
ous works try to model opponents’ behaviours using some mathematical functions.
However, this approach turns out not to be very effective due to inaccessibility of
information and dynamics of the negotiation environment. In this paper, we introduce
an adaptive strategy for automated negotiation. We propose that only the concession
degree of the opponent is estimated in the negotiation. We also use an adaptive non-
exploitation point on the timeline of negotiation for stopping making concession to
the opponent. Finally, we suggest that the bid that we propose should be as close to
the Pareto Frontier of the bids as possible. The agent CUHKAgent2015 that is based
on this strategy showed good performance in ANAC 2015.

Keywords CUHKAgent2015 · Adaption · Pareto Frontier

1 Introduction

Negotiation is an important element of human society, as conflicts are usually solved
by negotiation. Automated negotiation can help us to save time and efforts from
tiring negotiation as computers have much higher computational power.

Many diversified algorithms and strategies have been implemented in automated
negotiation. The main challenge for automated negotiation is the incompleteness
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of information. During negotiation, the preference profiles and decision algorithms
of the opponents are kept unknown, in order to protect the opponents from being
exploited. So the difficulty becomes how to model the opponents’ behaviour and
predict the opponent’s decision, so that we can make our decisions accordingly.

Previous work usually assumes that opponent’s behaviour can be accurately mod-
eled in the form of some mathematical functions, which turns out to be ineffective
due to the highly dynamic negotiation environment, thus we propose that only the
concession degree of the opponent is estimated in the negotiation. This can also
achieve the purpose of modeling opponent’s behaviour to a certain extent, while
saving much of computing time to make fast response to the opponent.

We also use the non-exploitation point λ on the timeline of negotiation to stop
making too much concession to the opponent [4]. λ can be changed during the
negotiation, so that we can make adaptive response to the opponent.

In terms of bid-proposing, we suggest that the bid that we propose should be as
close to the Pareto Frontier of the bids as possible. This ensures the highest utility
for the opponent while choosing bids from the same utility level of us. A scoring
algorithm is used in CUHKAgent2015 to achieve this purpose.

The remainder of this paper is structured as follows. In Sect. 2, we describe some
important issues on designing our negotiation strategy. The negotiation strategy of
CUHKAgent2015 is explained in detail in Sect. 3. Finally, we draw conclusions in
Sect. 4.

2 Design Issues

In this section, we discuss 3 key issues on designing an effective negotiation strategy
for CUHKAgent2015.

2.1 Reasons of Not Predicting Opponent’s Decision Function

Recent efforts have focused on how to learn and predict the opponent’s decision
function, in order to predict the opponent’s next offer [2, 3, 5]. In this approach,
the opponent’s strategy is estimated by various mathematical models based on dif-
ferent assumptions. For example, the concession curve of the opponent can be cal-
culated based on the assumption that the opponent will compromise more at a later
time [5]. Some studies [2, 3] attempt to use a standard statistical modeling, for
instance Gaussian processes (GPs), to predict the opponent’s decision function.

If the opponent’s decision function can be predicted accurately, this helps the
agent to identify the optimal exploitation so that the agent can maximise its own util-
ity obtained in the negotiation. However, due to the high uncertainty of opponent’s
behaviour, it is hard to predict the opponent’s decision function accurately. The dif-
ference between the predicted and actual opponent’s decision functions becomes
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large when the agent faces some unexpected and complicated behaviour of the oppo-
nent. Besides that, the approaches to predict the opponent’s decision function are
ineffective due to the limited negotiation time and computational power. Even there
exists a perfect model which takes into consideration all the relevant bidding his-
tory, the actual decision function used by the opponent may be changed during the
negotiation, thus the accuracy of long-term prediction cannot be guaranteed.

Hence, instead of studying how to estimate opponent’s decision function, we
decide to model the opponent’s response at a macroscopic level, i.e. the opponent’s
concession degree. Then, our agent can make decisions adaptively. Detailed discus-
sion will be made in Sect. 3.2.

2.2 Factors Determining Degree of Concession to Opponent

During the negotiation, the concession degree to the opponent is adjusted adaptively
basedon3 factors, namely thediscounting factor δ, the time left for further negotiation
t , and the concession degree of the opponent.

The first one is related to the urgency for our agent to achieve an agreement. In
a negotiation domain with small discounting factor, a low utility will result if the
negotiation time is too long. This also raises the importance of the second factor.
As the time left for negotiation gets shorter, the utility of a given bid is lower due
to the discounting factor. As a result, we cannot only focus on how to obtain the
highest possible utility by being tough, but also how to reduce the utility loss due to
the discounting factor. The third factor is about how much utility we should exploit
the opponent so that we can obtain the highest possible utility. If the opponent is
concessive, then our agent can also try to be more concessive, which hopefully can
lead to a win–win agreement.

2.3 Guessing Opponents’ Preferences - Approaching
the Pareto Frontier

In many cases, there are many bids on the same utility level with respect to our agent,
then it becomes important on how to propose a bid that is the most favourable to the
opponents. This can maximise the chance of the bid being accepted by the opponent.
As a result, we try to propose bids as close to the Pareto Frontier as possible.

As the exact preference profile of the opponent is hard to determine, we can
instead select a reference bid R according to the opponent’s previous bids. Then we
can calculate the Euclidean distance between any candidate bid B and R in the issue
space of the domain, which acts as an estimate for the value of B to the opponent.
Further discussion will be made in Sect. 3.4.
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3 Strategy Description

In this section, we describe how CUHKAgent2015 applies the negotiating principles
above to the actual negotiation process.

3.1 Overall Flow of Decision

CUHKAgent2015 divides the whole decision making process into several compo-
nents: Threshold-determining, Bid-proposing and Final Decision. When the agent
receives offers from opponents, the offers will be recorded in corresponding bidding
history of the proposing opponent. When it comes to CUHKAgent2015 to decide an
action to take, a threshold for acceptance and bidding is computed for each oppo-
nent by the Threshold-determining component. The Bid-proposing component will
then combine the different thresholds for all opponents into one and propose a bid
according to the combined threshold. The Final Decision component will compare
the bid with the last bid received and reservation value of the domain to reach an
action that benefits CUHKAgent2015 more.

3.2 Separated Acceptance and Bidding Thresholds
for Different Opponents

For CUHKAgent2015, two different thresholds will be determined by the threshold-
determining component: acceptance threshold uacc and bidding threshold ubid for
each of the opponents. Any bid with its utility higher than its acceptance threshold
uacc can be accepted. Similarly, our agent should only offer to the opponent any bid
with its utility higher than bidding threshold ubid . The reason why we use different
thresholds for different proposes is described later in this section.

We first describe how to analyse the characteristics of the negotiation domain to
set our minimum acceptance threshold umin . There are 4 factors in the domain which
affects umin , namely discounting factor δ, reservation value without discounting ures ,
the average utility of bids uavg and the corresponding standard deviation σ of utilities
of bids in the domain without discounting.

For discounting factor δ, the smaller δ is, the lower the utility of the bids become
when time goes by. To arrive at an agreement earlier, especially if δ is small, a lower
minimum acceptance threshold is needed so that we can accept less favourable bids.
Meanwhile, in a worst-case scenario, an agreement may never be reached, hence no
agent can get any utility at the end if ures = 0. As a result, other than δ, we still
need to compromise more to reduce the risk of reaching no agreement when ures is
smaller. In our strategy, we use uavg + σ as the targeted value for umin . However,
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this target can be lowered if δ and ures are small. In any case, this value should not
be lower than ures . Mathematically, umin is calculated as follows:

umin = max
(
ures, uavg + σ × δ × ures

)

In general, during the negotiation, we face with 2 basic types of opponent’s
responses: cooperative and competitive ones. Cooperative opponents seek to cre-
ate a win–win situation, while competitive ones tend to maximise their own utility
only, which might lead to a win–lose outcome. Our strategy is that we make conces-
sions first to offer utility gains to the opponent in order to get a friendly response. If
we get friendly responses from the opponents continuously, we expect that eventually
we can reach a win–win agreement with high utility for us. However, the more com-
petitive the opponent is, the more utility we need to give up to reach an agreement.
Making continuous concessions to the opponent causes a low utility result to us.
Hence, we use the adaptive non-exploitation point λ, which is a dynamic time dead-
line specifying the time when we should not continue making further concession.
At its core, the value of non-exploitation point depends on the negotiation environ-
ment, including the discounting factor and the concession degree of the opponent.
The value of the non-exploitation point is changed dynamically by the following two
criteria:

• A smaller discounting factor puts time pressure on us to reach an agreement more
quickly because the time that can be taken for reaching an agreement is shortened
if we want to obtain a utility as close to the original utility of the agreement as we
can. Thus, if the discounting factor is smaller, the non-exploitation point should
also be moved earlier.

• On the other hand, to figure out the opponent’s concession degree, our agent divides
the bids offered by the opponents into clusters of fixed number of consecutive bids.
For each cluster, the bid with the highest utility based on our own preference pro-
file is selected as a characteristic bid. We assume that the opponent who provides
a sequence of characteristic bids with increasing utility is willing to offer a win–
win outcome. The higher the utility of the characteristic bid in the latest cluster
compared with that of the characteristic bid in the previous cluster, the more con-
cessive the opponent we consider. Specifically, the opponent’s concession degree
γt is defined as follows,

γt = (ulatest − u previous)/Δt

where γt is the estimated concessive degree of the opponent at current time, ulatest

is the utility of the characteristic bid in the latest cluster, u previous is utility of the
characteristic bid in the previous cluster andΔt is the difference of time between the
latest cluster and the previous cluster.

In the early stage of negotiation, we cannot collect enough information to deter-
mine the opponent’s concession degree, so the value of non-exploitation point will
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be initialised to be a constant. Afterwards, the value of non-exploitation point begins
to change over time according to the concession degree of the opponent and the
discounting factor. It is determined as follows,

λ = eδ−1+γt/k

where k is the weighting factor used to enlarge γt if the negotiation domain size is
small. In the negotiation with small domain size, the variety of the bids the opponent
can offer is limited. The bidding of the opponentmay not reflect the actual concession
degree of the opponent. Thus, we use the weighting factor k to enlarge the concession
degree in this kind of negotiation domain.

After we get the adaptive non-exploitation point λ and the minimum acceptance
threshold umin , the remaining issue we focus on is how to apply them to our accep-
tance threshold and bidding threshold.

Since we attempt to search for higher chance of reaching an agreement, a further
compromise ismadewhen time t ≤ λ. Thus, the value of bidding threshold decreases
with an increase in time and approaches to umin until t > λ. If t > λ, we assume that
the opponent is likely to seek for a win–lose bid as an agreement, because we have
put much effort into compromising to reach a win–win situation before time λ. Thus
we should not make further compromise. In this respect, the way the agent should
behave is to raise the bidding threshold to put pressure on the opponent to offer better
bids for us. Hence, the value of our bidding threshold approaches to umax after time
λ. Specifically, the bidding threshold over time is described in detail as follows,

ubid = umin + (umax − umin)(1 − sin( π t
2λ )), if t ≤ λ

ubid = umin + (umax − umin)/((1 − λ)(t − λ)δ), if t > λ

where umax is the maximum utility in the negotiation domain without discounting.
Considering that the opponent may select the best bid we ever proposed as one

of the opponent’s offers [1], we separate the bidding threshold and the acceptance
threshold and select the lowest bidding threshold ubid as the acceptance threshold
uacc, in order to minimise the risk of reaching no agreement. The overview of accep-
tance threshold uacc during the negotiation is defined as follows,

uacc = ubid , if ubid < uacc.

3.3 Combining the Thresholds and Bid-Proposing

After computing the individual thresholds for the two opponents (ubid1 and ubid2 ),
the next step is to combine the thresholds into one (ubid ), so that the agent can
propose a bid according to this threshold. In CUHKAgent2015, the thresholds are
simply averaged between the two opponents to get a balance between the interests
of the opponents. In the bid-proposing process, the whole set of bids is divided into
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20–50 intervals according to the utility of the bids with respect to our agent. Bids are
proposed by choosing the best one within the interval that ubid is located in. In order
to have a higher probability that the opponents accept our bid, we add a normally
distributed probability centering at ubid for the agent to choose a utility threshold
higher than the previously determined ubid .

3.4 Approaching the Pareto Frontier

Within an interval, there are often many bids to choose from, which we call them
candidate bids. To maximise the benefit of our agent, the best approach is to get
as close as possible to the Pareto Frontier, which maximises the opponents’ utility
within a given interval of bid utility with respect to our agent. While maximising the
opponent’s utility, the chance of the proposed bid to be accepted by the opponent
is also maximised. This also gives, hopefully, the highest chance that the opponent
accepts a bid with high utility to us.

In CUHKAgent2015, this is done by building a reference bid R for each of the
opponents. The whole negotiation domain consists of a set of issues to be negotiated.
Each bid in the domain is formed by various values of all the issues in the domain. R is
built by choosing the most frequently proposed value of each issue by the opponent.
Then for any candidate bid B, a score S is calculated using the following formula:

S =
∑

i∈I (Ri − Bi )
2

where i is an issue in the negotiation domain, I is the set of all issues, Ri is the value
of issue i of the reference bid R, Bi is the value of issue i of the candidate bid B.

This is essentially the square of Euclidean distance of the two bids in the issue
space. After the above process, two scores are calculated for each candidate bid, the
two scores are then added up and compared with the scores of other candidate bids.
As the bid with the lowest score should have the smallest total distance to the two
reference bids for the two opponents, it should be the candidate with the highest
total utility for the two opponents, i.e. the closest to the Pareto Frontier, so this bid
is chosen to be proposed.

4 Conclusion

We propose in this paper an adaptive strategy for automated negotiation. In the
strategy, decisions are based on the estimated concession degree of the opponents and
an adaptively changing non-exploitation point. Bids to be offered are then selected
as close as possible to the Pareto frontier. The agent CUHKAgent2015, which made
use of the strategy, performed well in the ANAC 2015.
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AgentH

Masayuki Hayashi and Takayuki Ito

Abstract The Automated Negotiating Agents Competition (ANAC2015) was
organized. Automated agents negotiate with either other agents or people, trying
to make an agreement that maximizes the utility of all of the negotiators. This agent-
based negotiation will relieve some of the effort people have during negotiations.
Thereby, development in automated agents is an important issue. In the ANAC2015
competition, the fundamental rule is changed; from negotiations between two agents
to negotiations among multiple agents. In accordance to this change, we developed
AgentH, aiming at successful negotiations in the competition. In this paper, we
present the strategy of the agent and the way it searches for new bids to offer, based
on the opponents’ bids.

1 Introduction

The sixth international Automated Negotiating Agents Competition (ANAC2015)
was held [1]. A variety of agents with different strategies have been proposed in
ANAC. It is likely that those strategies are be applicable to the real-life negotiation
problems.

The negotiations had been done between two agents in the competition until
ANAC2014. In the ANAC2015, however, a new rule was introduced [2] and the
negotiations were done among more than three agents. In accordance to this change,
we needed to modify the existing strategies or construct new strategies so that the
agents can negotiate with more than two opponents at the same time. We developed
a negotiating agent, AgentH, that has a simple strategy and uses a simple way to
search for bids to offer during the negotiation.

M. Hayashi (B)
Department of Computer Science, Nagoya Institute of Technology, Nagoya, Japan
e-mail: hayashi.masayuki@itolab.nitech.ac.jp

T. Ito
Master of Techno-Business Administration, Nagoya Institute of Technology, Nagoya, Japan
e-mail: ito.takayuki@itolab.nitech.ac.jp

© Springer International Publishing AG 2017
K. Fujita et al. (eds.), Modern Approaches to Agent-based Complex
Automated Negotiation, Studies in Computational Intelligence 674,
DOI 10.1007/978-3-319-51563-2_21

251



252 M. Hayashi and T. Ito

2 Implementation of AgentH

In this section, we describe the strategy of AgentH and the way the agent searches
for new bids to offer.

2.1 Compromising Strategy

In real-life negotiations, negotiators first offer the bids that are beneficial for them,
whose utilities are relatively high for each of them, and gradually change theway they
offer their bids to compromised bids, whose utilities to be less and less, considering
the opponents’ behavior. Aiming at reproducing this behavior of negotiators in our
agent, we designed the agent to have two different behaviors; Hardheaded Behavior
and Compromising Behavior, and gradually change the behavior between them.

The Hardheaded Behavior represents the behavior where the agent is arrogant and
does not accept the opponents’ bids if they are not beneficial for him, but instead
offer another bid that are more beneficial for him. In other words, if the utility value
of the opponents’ bids are relatively low, the agent does not accept them, but instead
offers another bid whose utility value is higher than them.

On the other hand, the Compromising Behavior is the behavior where the agent
tend to accept non-beneficial bids as well. In this behavior, the agent accepts the
opponents’ bids even if their utility values are relatively low.

To gradually change the agent’s behavior depending on time, we used the follow-
ing compromising utility function.

cu(x, t) = u(x)× t (1)

where x is the bid, t is the normalized time ranging from 0 to 1, and u(x) is the utility
function. When a bid x is offered by one of the opponents, the agent determines
if he should accept it or not by the output of this compromising utility function;
the agent accepts the bid if its compromising utility value is higher than a certain
threshold, and the agent rejects the bid if its compromised utility value is lower than
the threshold. This threshold is set heuristically so that the agent behaves like a human
negotiator compromising as the time passes. This time, it is set to 0.45, through some
experimental negotiations that we made when making this agent.

2.2 Offering New Bids

When the agent does not accept the opponents’ bids, it searches for another bid to
offer and then offer it. AgentH uses a simple heuristic that the bids which are similar
to those offered or accepted by the opponents are likely to be accepted by them as
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Fig. 1 Example: an example state of the stored bid history. Each row represents a bid consisting
of values assigned as shown by each column

Fig. 2 Example: picking up a bid to modify. In this example, the forth bid is chosen as the bid to
modify since it has the highest utility value

well. Based on this idea, the agent can offer a bid that are likely to be accepted by
the opponents. At the same time, we want the agent to offer bids whose utility value
is relatively higher than the bids that are already offered. To achieve this goal, our
agent searches for the bid which is slightly different from the existing bids offered
or accepted by others, and whose utility value is higher than them. This can be done
by modifying one of the existing bids offered or accepted by opponents, so that its
utility value becomes higher. We will describe more detail about the methodology.

The whole methodology of searching for the bid is splitted into two procedures:
(1) to pick up a bid to modify and (2) to modify the bid so that its utility value
becomes higher.
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Fig. 3 Example: modifying the bid using the methodology described in Sect. 2.2.2.
Values for each issues in the modified bid is changed iteratively to a random value, and then its
utility value is calculated

Fig. 4 Example: choosing the bid to offer in the way described in Sect. 2.2.2.
The bid whose utility value is higher than the original bid is chosen as the next bid to offer. In this
example, the bid at the bottom of the table is chosen with its utility value, 0.6, higher than that of
the original bid, 0.5

2.2.1 Picking Up a Bid to Modify

Searching for a bid is done when the agent does not accept the existing bid (denied
bid) offered by one of the opponents. When picking up a bid to modify, our agent
chooses the bid that was offered or accepted by the opponent who offered the denied
bid, especially the one with the maximum utility value for our agent. For example,
suppose, for one of the opponents, our agent stores the history of the bids offered or
accepted by him as shown in Fig. 1. When our agent deny the last bid (the bid at the
bottom of the table in Fig. 1) offered by him, our agent consult the opponent’s bid
history, and then chooses the fourth bid (see Fig. 2) as the bid to modify because it
has the maximum utility value of all the bids offered or accepted by the opponent.
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2.2.2 Modifying the Bid

After picking up a bid to modify, our agent modifies the bid so that its utility value
becomes higher than the existing bids. As bids are composed of values for each
issues, we used a very simple method to modify the bid; iteratively change one of
the values for issues to a random value. See Figs. 3 and 4 for an example of this
modification. In this way, our agent can find a bid that is barely different but has
higher utility value.

3 Conclusion

In this paper, we showed the compromising strategy and the bidding methodology of
AgentH. AgentH is an automated negotiating agent that is applicable for negotiating
with multiple agents. We showed how its behavior changes by time, and how it
searches for new bids that are likely to be accepted by other agents as well as having
higher utility values.
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http://www.tuat.ac.jp/~katfuji/ANAC2015/
http://www.tuat.ac.jp/~katfuji/ANAC2015/

	Preface
	Contents
	Contributors
	Part I Agent-Based Complex Automated Negotiations
	BiTrust: A Comprehensive Trust Management Model for Multi-agent Systems
	1 Introduction
	2 Related Work
	3 BiTrust: Bijection Trust Management Model
	3.1 Definitions
	3.2 The BiTrust Protocol
	3.3 Consumer Behaviour Reasoning
	3.4 Service Provider Selection

	4 Experimental Results and Discussion
	5 Conclusion and Future Work
	References

	Using Reference Points for Competitive Negotiations in Service Composition
	1 Introduction
	2 Composing QoS-Based Services
	2.1 Service Selection

	3 Negotiation Requirements for Service Composition
	3.1 One-to-Many
	3.2 Incomplete Information
	3.3 Multi-issue
	3.4 Coordinated Interaction

	4 The Negotiation Formalization
	4.1 The Agents Bidding Strategy
	4.2 Weighted Reference Points

	5 Simulation Results
	6 Related Work
	7 Conclusions
	References

	A Cooperative Framework for Mediated Group Decision Making
	1 Introduction
	2 Problem Description
	2.1 Negotiation Domain and Agents' Preferences
	2.2 Negotiation Protocol
	2.3 Aggregation Operator for Adapted GPS (GPSao)
	2.4 Contract Selection

	3 Experimental Evaluation
	3.1 Proof of Concept Scenario
	3.2 Highly Non-linear Utility Functions

	4 Discussion
	5 Conclusions
	References

	A Dependency-Based Mediation Mechanism for Complex Negotiations
	1 Introduction
	2 Negotiation Environments
	2.1 Multi-issue Automated Negotiations
	2.2 Nonlinear Utility Models
	2.3 Dependency-Based Hypergraphical Utility Model

	3 A Dependency-Based Mediation Mechanism
	3.1 Negotiation Protocol
	3.2 Dependency-Based Mediation Strategy

	4 Experimental Results
	4.1 Settings
	4.2 Discussion

	5 Related Work
	6 Conclusions
	References

	Using Graph Properties and Clustering Techniques to Select Division Mechanisms  for Scalable Negotiations
	1 Introduction
	2 Complex Self-interested Networks (CSIN)
	3 Proof-of-Concept Domain: Chessboard Evacuation
	3.1 Formalisation of the Problem
	3.2 Modeling Agent Self-interests
	3.3 Categories of Scenarios

	4 Graph Metrics for Scenario Characterization
	5 Using Graph Metrics for Mechanism Selection
	5.1 Distributed, Mediated Division Approaches
	5.2 Negotiation Between Agents
	5.3 Experimental Setting
	5.4 Experimental Results

	6 Discussion and Conclusions
	References

	Compromising Strategy Considering Interdependencies of Issues for Multi-issue Closed Nonlinear Negotiations
	1 Introduction
	2 Related Works
	3 Negotiation Environments
	4 SPEA2 for Finding Pareto Frontier
	5 Strategy Considering Interdependency Between Issues
	5.1 Estimating Opponent's Utility Considering Interdependency Between Issues
	5.2 Automated Negotiating Agent Considering Issue Interdependency

	6 Experimental Results
	6.1 Finding the Pareto Optimal Bids
	6.2 Tournament Results with ANAC-2014 Finalists

	7 Conclusions
	References

	A Negotiation-Based Model for Policy Generation
	1 Introduction
	2 A Negotiation-Based Model
	2.1 A Policy Structure
	2.2 Evaluation Methods of an Offer
	2.3 Negotiation Protocol
	2.4 Agreement Generation

	3 Fuzzy Reasoning
	3.1 Fuzzy Linguistic Terms of Fuzzy Variables
	3.2 Fuzzy Rules
	3.3 Fuzzy Inference Method

	4 A Priority Operator
	5 Illustration
	6 Experiment
	6.1 Experimental Setting
	6.2 Results and Analysis

	7 Related Work
	8 Conclusions and Future Work
	References

	Fixed-Price Tariff Generation  Using Reinforcement Learning
	1 Introduction
	2 Power TAC and Tariff Markets
	3 COLD Energy Tariff-Expert
	3.1 Market Model
	3.2 MDP Description
	3.3 States
	3.4 Actions
	3.5 State/Action Flow Example

	4 Experimental Results
	4.1 General Setup
	4.2 Experiments Description
	4.3 COLD Energy Versus All
	4.4 COLD Energy Versus ReddyLearning

	5 Conclusions
	References

	Part II Automated Negotiating Agents Competition
	The Sixth Automated Negotiating Agents Competition (ANAC 2015)
	1 Introduction
	2 Setup of ANAC 2015
	2.1 Negotiation Model
	2.2 Running the Tournament

	3 Competition Domains and Agents
	3.1 Scenario Descriptions
	3.2 Agent Descriptions

	4 Competition Results
	4.1 Qualifying Round
	4.2 Final Round

	5 Conclusion
	References

	Alternating Offers Protocols  for Multilateral Negotiation
	1 Introduction
	2 Formal Framework for Multilateral  Turn-Taking Protocols
	2.1 Basic Notation

	3 Stacked Alternating Offers Protocol (SAOP)
	3.1 Example

	4 Alternating Multiple Offers Protocol (AMOP)
	4.1 Illustration

	5 Experimental Evaluation
	6 Discussion
	7 Conclusion
	References

	Atlas3: A Negotiating Agent Based  on Expecting Lower Limit of Concession Function
	1 Introduction
	2 Searching Methods
	3 Expecting Lower Limit of Concession Function
	4 Conclusion
	References

	Pars Agent: Hybrid Time-Dependent, Random and Frequency-Based Bidding  and Acceptance Strategies in Multilateral Negotiations
	1 Introduction
	2 Acceptance Strategy
	3 Bidding Strategy
	3.1 Bidding Strategy 1: Pars Agent Moves First
	3.2 Bidding Strategy 2: The Other Party Moves First

	4 Results
	5 Conclusion
	References

	RandomDance: Compromising Strategy Considering Interdependencies of Issues  with Randomness
	1 Estimating Utility Functions by Counting Values
	2 Weighted Sum of the Estimated Utility
	3 Strategy of RandomDance
	4 Conclusion
	Reference

	Agent Buyog: A Negotiation Strategy  for Tri-Party Multi Issue Negotiation
	1 Introduction
	2 Agent Buyog Strategy
	2.1 Strategy Overview
	2.2 Learning Function
	2.3 Consensus Factor
	2.4 Concession Curve
	2.5 Bidding
	2.6 Acceptance
	2.7 Miscellaneous

	3 Conclusion and Future Works
	References

	Phoenix: A Threshold Function Based Negotiation Strategy Using Gaussian  Process Regression and Distance-Based  Pareto Frontier Approximation
	1 Introduction
	2 Related Work
	3 The Phoenix Strategy
	3.1 Threshold Function Construction (TFC) Component
	3.2 Decision Making (DM) Component

	4 Performance Analysis
	4.1 Parameters Setting
	4.2 Results and Analysis

	5 Conclusions and Future Work
	References

	Pokerface: The Pokerface Strategy  for Multiparty Negotiation
	1 Introduction
	2 Strategy
	2.1 First Stage: Random Walk
	2.2 Second Stage: Conceding
	2.3 Opponent Model
	2.4 Final Round

	3 Experiments and Evaluation
	4 Conclusions and Future Work
	References

	Negotiating with Unknown Opponents Toward Multi-lateral Agreement  in Real-Time Domains
	1 Introduction
	2 Multilateral Negotiation Model
	3 Negotiation Approach
	3.1 Deciding Aspiration Level
	3.2 Generating Offers
	3.3 Responding Mechanism

	4 Conclusion
	References

	Jonny Black: A Mediating Approach  to Multilateral Negotiations
	1 Introduction
	2 Strategy
	2.1 Parameters
	2.2 Initialization
	2.3 Opponent Modeling
	2.4 Accepting Strategy
	2.5 Bidding Strategy

	3 Conclusion and Future Work
	References

	Agent X
	1 Introduction
	2 Strategy of Agent X
	2.1 Agreement Behaviour
	2.2 Conceder Behaviour

	3 Results of Simulation
	4 Conclusion
	References

	CUHKAgent2015: An Adaptive Negotiation Strategy in Multilateral Scenario
	1 Introduction
	2 Design Issues
	2.1 Reasons of Not Predicting Opponent's Decision Function
	2.2 Factors Determining Degree of Concession to Opponent
	2.3 Guessing Opponents' Preferences - Approaching  the Pareto Frontier

	3 Strategy Description
	3.1 Overall Flow of Decision
	3.2 Separated Acceptance and Bidding Thresholds  for Different Opponents
	3.3 Combining the Thresholds and Bid-Proposing
	3.4 Approaching the Pareto Frontier

	4 Conclusion
	References

	AgentH
	1 Introduction
	2 Implementation of AgentH
	2.1 Compromising Strategy
	2.2 Offering New Bids

	3 Conclusion
	References




