
Chapter 6
Synthesis of Model Detection Filters

This chapter presents general synthesis procedures of residual generatorswhich solve
themodel detection problems formulated in Chap.4. Similarly to Chap. 3, the synthe-
sis procedures are described in terms of input–output models. The numerical aspects
of equivalent state-space representation based synthesis algorithms are essentially
the same as for the synthesis algorithms of fault detection and isolation filters, and
the discussion of related computational techniques is also covered in Chap. 7.

6.1 Nullspace-Based Synthesis

We assume the overall residual generator filter Q(λ) has the TFM of the form (4.3),
which corresponds to a bank of N individual filters as in (4.2). Furthermore, for
i = 1, . . . , N , the i-th filter driven by the j-th model has the internal form in
(4.4). Let R(i, j)

u (λ) and R(i, j)
d (λ) be the TFMs defined in (4.4) and (4.5). A useful

parametrization of all individual filters can be obtained on the basis of the conditions
R(i,i)
u (λ) = 0 and R(i,i)

d (λ) = 0 for i = 1, . . . , N in (4.11). For each filter with the
TFM Q(i)(λ), these conditions are equivalent to

Q(i)(λ)

[
G(i)

u (λ) G(i)
d (λ)

Imu 0

]
= 0 . (6.1)

Therefore, Q(i)(λ) must be a left annihilator of the TFM

G(i)(λ) :=
[
G(i)

u (λ) G(i)
d (λ)

Imu 0

]
. (6.2)

Let r (i)
d be the normal rank of G(i)

d (λ). It follows that there exists a maximal full row
rank left annihilator N (i)

l (λ)of size
(
p−r (i)

d

)×(p+mu) such that N
(i)
l (λ)G(i)(λ) = 0.

Any such N (i)
l (λ) is a rational basis of NL(G(i)(λ)), the left (rational) nullspace of
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128 6 Synthesis of Model Detection Filters

G(i)(λ). Using this fact and Theorem 5.1, we have the following straightforward
parametrization of all component filters:

Theorem 6.1 For i = 1, . . . , N, let N (i)
l (λ) be a basis ofNL(G(i)(λ)), with G(i)(λ)

defined in (6.2). Then, each filter Q(i)(λ) satisfying condition (i) of (4.11) can be
expressed in the form

Q(i)(λ) = V (i)(λ)N (i)
l (λ), i = 1, . . . , N , (6.3)

where V (i)(λ) is a suitable TFM.

The parametrization result of Theorem 6.1 underlies the nullspace method based
synthesis procedures ofmodel detection filters. All synthesis procedures of themodel
detection filters, presented in this book, rely on the initial factored forms

Q(i)(λ) = Q
(i)
1 (λ)Q(i)

1 (λ), i = 1, . . . , N , (6.4)

where each Q(i)
1 (λ) = N (i)

l (λ) is a basis of NL(G(i)(λ)), while each factor Q
(i)
1 (λ)

has to be subsequently determined. The nullspace-based first step allows to reduce
the synthesis problems of model detection filters formulated for the multiple models
(4.1) to simpler problems, which allow to easily check the solvability conditions.

Using the factored form (6.4), the model detection filters in (4.2) can be rewritten
in the alternative forms

r(i)(λ) = Q
(i)
1 (λ)Q(i)

1 (λ)

[
y(λ)

u(λ)

]
= Q

(i)
1 (λ)y(i)(λ), i = 1, . . . , N , (6.5)

where

y(i)(λ) := Q(i)
1 (λ)

[
y(λ)

u(λ)

]
. (6.6)

For y(t) = y( j)(t), both the residual signal r (i)(t) in (6.5) and y(i)(t) in (6.6) depend
on all system inputs u( j)(t), d( j)(t) and w( j)(t) via the system output y( j)(t). The
internal form (4.4) of the i-th filter for the j-th model can be expressed as

r̃(i, j)(λ) = Q
(i)
1 (λ)̃y(i, j)(λ) ,

where

ỹ(i, j)(λ) := Q(i)
1 (λ)

[
y( j)(λ)

u( j)(λ)

]
.

Using the expression of y( j)(λ) from (4.1), we obtain

ỹ(i, j)(λ) = G
(i, j)
u (λ)u( j)(λ) + G

(i, j)
d (λ)d( j)(λ) + G

(i, j)
w (λ)w( j)(λ) , (6.7)

with
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[
G

(i, j)
u (λ) G

(i, j)
d (λ) G

(i, j)
w (λ)

]
:= Q(i)

1 (λ)

[
G( j)

u (λ) G( j)
d (λ) G( j)

w (λ)

Imu 0 0

]
. (6.8)

The system (6.7) can be interpreted as the internal form of the i-th filter driven by the
j-th model, corresponding to the partial synthesis Q(i)

1 (λ). For j = i , the particular

choice of Q(i)
1 (λ) as a left nullspace basis ofG(i)(λ) in (6.2) ensures thatG

(i,i)
u (λ) = 0

and G
(i,i)
d (λ) = 0.

At this stage we can assume that both Q(i)
1 (λ) and the TFMs (6.8) are proper

and stable. This can be always achieved using Q(i)
1 (λ) = M (i)(λ)N (i)

l (λ) (instead
Q(i)

1 (λ) = N (i)
l (λ)), where M (i)(λ) is a stable and proper TFM such that

M (i)(λ)
[
N (i)
l (λ) | G(1)

u (λ) G
(1)
d (λ) G

(1)
w (λ) | · · · | G(N )

u (λ) G
(N )

d (λ) G
(N )

w (λ)
]

is stable and proper. Such an M (i)(λ) can be determined as the denominator matrix
of a stable and proper LCF (see Sect. 9.1.6).

Relying on the parametrization result of Theorem 6.1, we have the following
straightforward characterization of the model detectability of the multiple model
(4.1) in terms of the N multiple models (6.7):

Proposition 6.1 For the multiple model (4.1), let Q(i)
1 (λ) = N (i)

l (λ), i = 1, . . . , N,
be rational bases of NL(G(i)(λ)), with G(i)(λ) defined in (6.2), and let (6.7) be the
multiple model associated to the i-th residual. Then, the multiple model (4.1) with
w( j) ≡ 0 for j = 1, . . . , N, is model detectable if and only if, for i = 1, . . . , N

[
G

(i, j)
u (λ) G

(i, j)
d (λ)

]
�= 0 ∀ j �= i . (6.9)

6.2 Solving the Exact Model Detection Problem

Using Proposition 6.1, the solvability conditions of the exact model detection prob-
lem (EMDP) formulated in Sect. 4.4.1 for the multiple model (4.1), can be also
expressed in terms of the multiple models (6.7), according to the following corollary
to Theorem 4.2:

Corollary 6.1 For the multiple model (4.1) with w( j) ≡ 0 for j = 1, . . . , N, the
EMDP is solvable if and only if for the multiple model (6.7), with w( j) ≡ 0 for
j = 1, . . . , N, the following conditions hold for i = 1, . . . , N

[
G

(i, j)
u (λ) G

(i, j)
d (λ)

]
�= 0 ∀ j �= i . (6.10)

The synthesis procedure of the N component filters Q(i)(λ), i = 1, . . . , N ,
employs a common computational approach. Accordingly, the i-th filter Q(i)(λ)

is determined in the factored form
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Q(i)(λ) = Q(i)
3 (λ)Q(i)

2 (λ)Q(i)
1 (λ) ,

where: Q(i)
1 (λ) is a rational basis ofNL

(
G(i)(λ)

)
, the left nullspace ofG(i)(λ) defined

in (6.2); Q(i)
2 (λ) ensures that Q(i)

2 (λ)Q(i)
1 (λ) has least McMillan degree; and, Q(i)

3 (λ)

is chosen such that Q(i)(λ) is stable and the corresponding R(i, j)(λ) defined in (4.6),
for j = 1, . . . , N , j �= i , are stable and nonzero. Using Proposition 6.1, the existence
condition of the i-th filter is satisfied if Q(i)

1 (λ)G( j)(λ) �= 0, ∀ j �= i .
There exists some freedom in determining model detection filters which solve

the EMDP. For example, the number of outputs of the i-th filter Q(i)(λ) can be
chosen arbitrarily between 1 and p − r (i)

d , where r (i)
d := rankG(i)

d (λ), provided the
model detectability conditions are fulfilled. Also, least-order scalar output model
detection filters can be employed to ensure that the overall bank of filters has the
least achievable global order. However, filters with more outputs can occasionally
provide a better sensitivity condition (see later) for model detection.

The Procedure EMD, given below, determines the N filters Q(i)(λ), i =
1, . . . , N , and the corresponding internal forms R(i, j)(λ) := [

R(i, j)
u (λ) R(i, j)

d (λ)
]
,

for i, j = 1, . . . , N , with the i-th filter having a maximal row dimension qmax .

Procedure EMD: Exact synthesis of model detection filters

Inputs : {G( j)
u (λ),G( j)

d (λ)}, for j = 1, . . . , N ; qmax

Outputs: Q(i)(λ), for i = 1, . . . , N ; R(i, j)(λ) for i, j = 1, . . . , N

For i = 1, ..., N

1) Compute a (p − r (i)
d ) × (p + mu) minimal basis matrix Q(i)

1 (λ) for the left
nullspace of G(i)(λ) defined in (6.2), where r (i)

d := rankG(i)
d (λ); set

Q(i)(λ) = Q(i)
1 (λ) and compute R(i, j)(λ)=Q(i)(λ)G( j)(λ) for j =1, ..., N .

Exit if R(i, j)(λ) = 0 for any j ∈ {1, . . . , N }, j �= i (no solution exists).
2) Choose a min

(
qmax , p−r (i)

d

) × (p+mu) rational matrix Q(i)
2 (λ), such that

Q(i)
2 (λ)Q(i)(λ) has least McMillan degree and Q(i)

2 (λ)R(i, j)(λ) �= 0 for
j = 1, . . . , N , j �= i ; compute Q(i)(λ)←Q(i)

2 (λ)Q(i)(λ) and
R(i, j)(λ) ← Q(i)

2 (λ)R(i, j)(λ) for j = 1, . . . , N , j �= i .
3) Choose a proper and stable invertible rational matrix Q(i)

3 (λ) such that
Q(i)

3 (λ)Q(i)(λ) has a desired stable dynamics and Q(i)
3 (λ)R(i, j)(λ) for

j = 1, . . . , N , j �= i are stable; compute Q(i)(λ) ← Q(i)
3 (λ)Q(i)(λ) and

R(i, j)(λ) ← Q(i)
3 (λ)R(i, j)(λ) for j = 1, . . . , N , j �= i .

The computational algorithms underlying Procedure EMD are essentially the
same as those used for the synthesis of fault detection filters (see Procedure EFD)
and rely on state-space representations as in (2.19) of the component models. These
algorithms are amply described in Sects. 7.4–7.6, and therefore, we restrict our
discussion on specific aspects of Steps 2) and 3). To determine filters with least
dynamical orders at Step 2), a straightforward systematic approach is to build suc-
cessive candidate filters Q(i)

2 (λ)Q(i)
1 (λ)with increasingMcMillan degrees and check
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the specific admissibility condition Q2(i)(λ)Q(i)
1 (λ)G( j)(λ) �= 0 (or equivalently

Q(i)
2 (λ)

[
G

(i, j)
u (λ) G

(i, j)
d (λ)

] �= 0) for all j �= i . The least possible order of the fault
detection filter Q(i)(λ) is uniquely determined by the fulfilment of the above admis-
sibility condition. Since Q(i)

3 (λ) is invertible, its choice plays no role in ensuring
admissibility. However, the final orders of the individual filters can occasionally fur-
ther increase at Step 3), if the cancellation of unstable poles in the component models
is necessary, in accordance with the formulated requirements for the EMDP. As in
the case of solving the EFDP, a least-order filter synthesis can be always achieved
by a scalar output filter. Since the choice of Q(i)

2 (λ) is not unique, an appropriate
parametrization of Q(i)

2 (λ) allows to make an optimal choice of free parameters (e.g.,
to achieve other desirable features; see Remark 6.1). Further aspects of selecting suit-
able Q(i)

2 (λ), in accordance with the employed type of nullspace basis, are discussed
in Sect. 5.2, in the context of solving the EFDP.

Remark 6.1 Assume that all component models in (4.1) are stable and all vectors
d(i)(t), i = 1, . . . , N , have dimension md . In this case, the norm of R(i, j)(λ) has a
simple interpretation as a weighted distance between the i-th and j-th models. In
accordancewithTheorem6.1, Q(i)(λ) can be expressed as Q(i)(λ) = V (i)(λ)N (i)

l (λ),
with the nullspace basis N (i)

l (λ) chosen in a form similar to (5.5), as

N (i)
l (λ) = N (i)

l,d (λ)
[
Ip −G(i)

u (λ)
]

,

where N (i)
l,d (λ) is a (p − r (i)

d ) × p TFM representing a basis of NL
(
G(i)

d (λ)
)
. This

choice leads to

R(i, j)(λ) = Q(i)(λ)G( j)(λ)

= V (i)(λ)N (i)
l,d (λ)

[
G( j)

u (λ) − G(i)
u (λ) G( j)

d (λ) − G(i)
d (λ)

]
.

(6.11)

If we define the distance between the i-th and j-th models as

dist (G(i)(λ),G( j)(λ)) := ∥∥[
G( j)

u (λ) − G(i)
u (λ) G( j)

d (λ) − G(i)
d (λ)

]∥∥ ,

then, the norm of R(i, j)(λ) can be interpreted as a weighted distance between the
TFMs of the i-th and j-th models. An ideal model detection filter Q(λ) of the form
(4.3) wouldmonotonically map the distances between twomodels to the correspond-
ing norms of R(i, j)(λ), that is, if the distances of the j-th and k-th models to the i-th
model satisfy

dist (G(i)(λ),G( j)(λ)) < dist (G(i)(λ),G(k)(λ)) ,

then the weighted distances satisfy

‖R(i, j)(λ)‖ < ‖R(i,k)(λ)‖ .

http://dx.doi.org/10.1007/978-3-319-51559-5_5
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Moreover, the fulfilment of the symmetry conditions

‖R(i, j)(λ)‖ = ‖R( j,i)(λ)‖, ∀i �= j ,

is also highly desirable. A model detection filter having these properties, can be
employed to reliably identify the nearest model from a given set of models to the
actual plant model.

Ensuring the monotonic distance mapping and symmetry properties can be seen
as a global synthesis goal of model detection filters, and can be targeted in various
ways, as—for example, by an optimal choice of the free parameters of the weighting
functions V (i)(λ)N (i)

l,d (λ), or by choosing each filter Q(i)(λ) to enforce a certain

isometry (i.e., distance preserving) property (e.g., by choosing V (i)(λ)N (i)
l,d (λ) a co-

inner matrix). �

Remark 6.2 A properly designed model detection system as in Fig. 4.1 (e.g., with
the model detection filter determined using Procedure EMD), is always able to
identify the exact matching of the current model with one (and only one) of the N
component models. However, in practice, we often encounter the situation that the
actual (or true) model will never match exactly any of the N component models,
and therefore, the best we can aim is to correctly figure out the nearest model to
the actual one. Assume that the actual model has G̃u(λ) and G̃d(λ), the TFMs from
the control-input-to-output and disturbance-input-to-output, respectively. Therefore,
G̃u(λ) and G̃d(λ) can be expressed in terms of their deviations to the N component
models for j = 1, . . . , N as

G̃u(λ) = G( j)
u (λ) + ΔG( j)

u (λ), G̃d(λ) = G( j)
d (λ) + ΔG( j)

d (λ) .

Assuming the N component models are mutually distinct, there exists for each i =
1, . . . , N , a largest δ(i) > 0 such that the following conditions simultaneously hold

∥∥[
ΔG(i)

u (λ) ΔG(i)
d (λ)

]∥∥∞ ≤ δ(i),
∥∥[

ΔG( j)
u (λ) ΔG( j)

d (λ)
]∥∥∞ > δ(i),∀ j �= i .

The size of δ(i) defines the family of all sufficiently nearby models to the i-th model
which are distinguishable (using the H∞-norm based distance) from the rest of
models. In the case when the nearest model to the actual model is the i-th model
(i.e., the above inequalities are fulfilled), it is highly desirable that themodel detection
filter ensures that the i-th evaluation signal, θi ≈ ‖r (i)‖2, has the least value among the
N components of θ , and thus, allow to identify the i-thmodel as the nearest one to the
current model. The attainability of this goal usually depends on the concrete problem
to be solved. With the interpretation of the norm of R(i, j)(λ) in Remark 6.1 as a
weighted distance between the i-th and j-th models, a prerequisite to fulfill the above
goal is the use of a model detection filter able to monotonically map the distances
between the models to the corresponding norms of the internal representations (i.e.,
to R(i, j)(λ)). �

http://dx.doi.org/10.1007/978-3-319-51559-5_4
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Example 6.1 To illustrate the effectiveness of the proposed nullspace-based synthesis approach of
model detection filters, we consider the detection and identification of loss of efficiency of flight
actuators using a model detection based approach. The fault-free state-space model describes the
continuous-time lateral dynamics of an F-16 aircraft with the matrices

A(1) =

⎡
⎢⎢⎣

−0.4492 0.046 0.0053 −0.9926
0 0 1.0000 0.0067

−50.8436 0 −5.2184 0.7220
16.4148 0 0.0026 −0.6627

⎤
⎥⎥⎦ , B(1)

u =

⎡
⎢⎢⎣

0.0004 0.0011
0 0

−1.4161 0.2621
−0.0633 −0.1205

⎤
⎥⎥⎦ ,

C (1) = I4, D(1)
u = 04×2 .

The four state variables are the sideslip angle, roll angle, roll rate and yaw rate, and the two input
variables are the aileron deflection and rudder deflection. The individual failure models correspond
to different levels of surface efficiency degradation. For simplicity, we build a multiple model with
N = 9 componentmodels on a coarse two-dimensional parameter grid for N values of the parameter
vector ρ := [ρ1, ρ2]T . For each component of ρ, the chosen three grid points are {0, 0.5, 1}. The
component system matrices in (2.19) are defined for i = 1, 2, . . . , N as: E (i) = I4, A(i) = A(1),
C (i) = C (1), and B(i)

u = B(1)
u Γ (i), where Γ (i) = diag

(
1 − ρ

(i)
1 , 1 − ρ

(i)
2

)
and

(
ρ

(i)
1 , ρ

(i)
2

)
are the

values of parameters (ρ1, ρ2) on the chosen grid

ρ1 : 0 0 0 0.5 0.5 0.5 1 1 1
ρ2 : 0 0.5 1 0 0.5 1 0 0.5 1

For example,
(
ρ

(1)
1 , ρ

(1)
2

) = (0, 0) corresponds to the fault-free situation, while
(
ρ

(9)
1 , ρ

(9)
2

) = (1, 1)

corresponds to complete failure of both control surfaces. It follows, that the TFM G(i)
u (s) of the i-th

system can be expressed as
G(i)

u (s) = G(1)
u (s)Γ (i), (6.12)

where
G(1)

u (s) = C (1)(s I − A(1))−1
B(1)
u

is the TFM of the fault-free system. Note that G(N )
u (s) = 0 describes the case of complete failure.

We applied the Procedure EMD to design N = 9 model detection filters of least dynamical
order with scalar outputs. At Step 1), nullspace bases of the form

Q(i)
1 (s) =

[
I4 −G(i)

u (s)
]

=
[
I4 −G(1)

u (s)Γ (i)
]

have been chosen as initial designs. The internal forms corresponding to these designs are

R(i, j)
1 (s) := Q(i)

1 (s)

[
G( j)

u (s)
I2

]
= G( j)

u (s) − G(i)
u (s) = G(1)

u (s)
(
Γ ( j) − Γ (i)) .

At this stage, the norms
∥∥R(i, j)

1 (s)
∥∥∞ monotonically map the distances between the i-th and j-th

component models, as can be also seen in Fig. 6.1.
At Step 2) we target to preserve the monotonic mapping of norms (as in Fig. 6.1) after updating

Q(i)
1 (s), by choosing the updating filter Q(i)

2 (s) such that Q(i)
2 (s)Q(i)

1 (s) has least-order. For this pur-
pose, with a suitably chosen row vector h, a linear combination of the basis vectors has been formed
as X (i)(s) = hQ(i)

1 (s), and then a proper rational row vector Y (i)(s) has been determined such that

Q(i)
2 (s)Q(i)

1 (s) := X (i)(s) + Y (i)(s)Q(i)
1 (s) has least McMillan degree and Q(i)

2 (s)R(i, j)
1 (s) �= 0

for all j �= i . The resulting Q(i)
2 (s) is simply Q(i)

2 (s) = h + Y (i)(s). For this computation, minimal
dynamic cover techniques described in Sect. 7.5 have been used. After some trials with randomly
generated h, the value

h = [ 0.7645 0.8848 0.5778 0.9026 ]

http://dx.doi.org/10.1007/978-3-319-51559-5_2
http://dx.doi.org/10.1007/978-3-319-51559-5_7
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Fig. 6.1 Norms of residual
models for the initial full
order synthesis
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led to a satisfactory dynamics of a first-order updated filter, without the need of further stabilization.
Due to the particular forms of G(i)

u (s) in (6.12), the same Q(i)
2 (s) := Q(1)

2 (s), i = 1, . . . , N , can
be used for all models. The resulting final filters are given by

Q(i)(s) = Q(i)
2 (s)Q(i)

1 (s) =
[
Q(1)

2 (s) −Q(1)
2 (s)G(1)

u (s)Γ (i)
]

, (6.13)

where, for convenience, we set Q(N )(s) as

Q(N )(s) =
[
Q(1)

2 (s) 0
]

,

with a first-order state-space realization, although Q(N )(s) = [
h 0

]
was also possible.

The final internal filters R(i, j)(s) result as

R(i, j)(s) = Q(1)
2 (s)G(1)

u (s)
(
Γ ( j) − Γ (i)), i, j = 1, . . . , N

and preserve the monotonic mapping of distances, as in Fig. 6.1.
For practical use, the N filters Q(i)(s) have been scaled such that the corresponding row blocks

R(i, j)(s) fulfill the condition min j=1:N ,i �= j
∥∥R(i, j)(s)

∥∥∞ = 1. This amounts to replace Q(i)(s) by
Q(i)(s)/γi and R(i, j)(s)by R(i, j)(s)/γi , for j = 1, . . . , N , whereγi = min j=1:N ,i �= j

∥∥R(i, j)(s)
∥∥∞.

This scaling also enforces the symmetry conditions
∥∥R(i, j)(s)

∥∥∞ = ∥∥R( j,i)(s)
∥∥∞ for all i �= j .

In Fig. 6.2 the step responses from u1 (aileron) and u2 (rudder) are presented for the 9×9 block
array, whose entries are the rescaled TFMs R(i, j)(s). Each column corresponds to a specific model
for which the step responses of the N residuals are computed. The achieved typical structure matrix
for model detection (with zeros down the diagonal) can easily be read out from this signal-based
assessment.

The script Ex6_1 in Listing 6.1 solves the EMDP considered in this example. The script
Ex6_1figs (not listed) generates the plots in Figs. 6.1 and 6.2. ♦
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Listing 6.1 Script Ex6 1 to solve the EMDP of Example 6.1 using Procedure EMD
% Uses the Control Toolbox and the Descriptor System Tools

% define lateral aircraft model without faults Gu
A = [ -.4492 0.046 .0053 -.9926;

0 0 1 0.0067;
-50.8436 0 -5.2184 .722;
16.4148 0 .0026 -.6627];

Bu = [0.0004 0.0011; 0 0; -1.4161 .2621; -0.0633 -0.1205];
C = eye (4); p = size(C,1); mu = size(Bu ,2);

% define the LOE faults Γ (i)

Gamma = 1 - [ 0 0 0 .5 .5 .5 1 1 1;
0 .5 1 0 .5 1 0 .5 1 ]';

N = size(Gamma ,1);

% define multiple physical fault model G(i)
u = GuΓ (i)

sysu = ss(zeros(p,mu,N,1));
for i=1:N

sysu(:,:,i,1) = ss(A,Bu*diag(Gamma(i,:)),C,0);
end

% setup initial full order model detector Q(i)
1 = [ I − G(i)

u ]
Q1 = [eye(p) -sysu];

% form a linear combination of hQ(i)
1 with the rows of Q(i)

1
% to obtain a minimum order synthesis, by solving a minimum
% dynamic cover problem; the result is a least-order Q(i) = Q(i)

2 Q(i)
1

h = [ 0.7645 0.8848 0.5778 0.9026];
tol = 1.e-7; % set tolerance
Q = ss(zeros(1,p+mu ,N,1));
for i = 1:N-1

Q(:,:,i,1) = glmcover1 ([h;eye(p)]*Q1(:,:,i,1),1,tol);
end

Q(1,1:p,N,1) = Q(1,1:p,1,1); % set Q(N ) = [ Q(1)
2 0 ]

% compute internal forms R(i, j) and their norms
R = ss(zeros(1,mu ,N,N));
for i = 1:N

for j = 1:N
temp = Q(:,:,i ,1)*[ sysu(:,:,j,1); eye(mu)];
R(:,:,i,j) = gir(temp ,tol);

end
end

% scale Q(i) and R(i, j)

distinf = norm(R,inf);
for i=1:N

gammai = 1/min(distinf(i,[1:i-1 i+1:N]));
Q(:,:,i,1) = gammai*Q(:,:,i,1);
for j = 1:N

R(:,:,i,j) = gammai*R(:,:,i,j);
end

end
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Fig. 6.2 Step responses of R(i, j)(s) from u1 (blue) and u2 (red) for least-order syntheses

6.3 Solving the Approximate Model Detection Problem

Using Proposition 6.1, the solvability conditions of the approximate fault detection
problem (AMDP) formulated in Sect. 4.4.2 for the multiple model (4.1), can be also
expressed in terms of the multiple models (6.7), according to the following corollary
to Theorem 4.3:

Corollary 6.2 For the multiple model (4.1) the AMDP is solvable if and only if for
the multiple models (6.7) the following conditions hold for i = 1, . . . , N

[
G

(i, j)
u (λ) G

(i, j)
d (λ)

]
�= 0 ∀ j �= i . (6.14)

We have seen in the proof of Theorem 4.3, that a solution of the AMDP can be
determined by solving the related EMDP with w( j) ≡ 0 for j = 1, . . . , N , using, for
example, theProcedure EMD. However, potentially better solutions can be obtained
by trying to maximize the gap between the requirements for high sensitivity to non-
current models and strong attenuation of noise signals for the current model. An
optimization-based approach, similar to that used for the solution of the AFDP, can
be used to achieve this goal.

http://dx.doi.org/10.1007/978-3-319-51559-5_4
http://dx.doi.org/10.1007/978-3-319-51559-5_4
http://dx.doi.org/10.1007/978-3-319-51559-5_4
http://dx.doi.org/10.1007/978-3-319-51559-5_4
http://dx.doi.org/10.1007/978-3-319-51559-5_4
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Consider the parametrization (6.4) of the i-th filter as Q(i)(λ) = Q
(i)
1 (λ)Q(i)

1 (λ).
With the notation used in (6.8), we obtain from (4.5)

R(i, j)(λ) = Q
(i)
1 (λ)R

(i, j)
(λ) , (6.15)

where
R

(i, j)
(λ) :=

[
G

(i, j)
u (λ) G

(i, j)
d (λ) G

(i, j)
w (λ)

]
. (6.16)

The above choice of Q(i)(λ) ensures that

R
(i,i)

(λ) =
[
0 0 G

(i,i)
w (λ)

]
. (6.17)

Let γi > 0 be an admissible level for the effect of the noise signal w(i)(t) on the
residual r (i)(t) in the case when the i-th model is the current model. In the light of
(6.17), such a limitation can be imposed, for example, as a constraint of the form

‖R(i,i)
w (λ)‖2/∞ ≤ γi , (6.18)

where R(i, j)
w (λ) is defined in (4.5). Using (6.15)–(6.17), R(i,i)

w (λ) can expressed as

R(i,i)
w (λ) = Q

(i)
1 (λ)G

(i,i)
w (λ), and therefore, (6.18) becomes

∥∥Q(i)
1 (λ)G

(i,i)
w (λ)

∥∥
2/∞ ≤ γi . (6.19)

For γi > 0 it is always possible, via a suitable scaling of the i-th filter, to use the
normalized value γi = 1.

In the absence of noise, the influence of the j-th model on the i-th residual can
be characterized by the associated gain

∥∥[
R(i, j)
u (λ) R(i, j)

d (λ)
]∥∥

2/∞. Therefore, as
a measure of the global sensitivity of the i-th residual to the rest of N − 1 models
different from the i-th model, the minimum values of these gains can be employed.
Using the parametrization (6.4) of the i-th filter, the following sensitivity measure
can be defined

ζ
(i)
1

(
Q

(i)
1 (λ)

) := min
1≤ j≤N , j �=i

∥∥Q(i)
1 (λ)

[
G

(i, j)
u (λ) G

(i, j)
d (λ)

]∥∥
2/∞, (6.20)

where the dependence of ζ
(i)
1 of the choice of the filter Q

(i)
1 (λ) is explicitly empha-

sized. The requirement ζ (i)
1 > 0 for i = 1, . . . , N can be interpreted as an alternative

characterization of the model detectability of the N component models.
We can formulate several optimization problems (for different combinations of

employed norms) to address the computation of a satisfactory (or even optimal)
solution of the AMDP, having the goal of maximizing the model sensitivities (6.20)
under the noise attenuation constraints (6.19). In what follows, we only discuss the
H∞-norm based synthesis, for which we give a detailed computational procedure.

http://dx.doi.org/10.1007/978-3-319-51559-5_4
http://dx.doi.org/10.1007/978-3-319-51559-5_4
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The synthesis of the i-th filter, can be individually addressed, by solving for each i =
1, . . . , N the following constrained optimization problem: Given γi ≥ 0, determine

βi > 0 and a stable and proper filter Q
(i)
1 (λ) such that

βi = max
Q

(i)
1 (λ)

{
ζ

(i)
1

(
Q

(i)
1 (λ)

) ∣∣∣ ∥∥Q(i)
1 (λ)G

(i,i)
w (λ)

∥∥∞ ≤ γi

}
. (6.21)

The gap ηi := βi/γi can be interpreted as a measure of the quality of i-th filter in
differentiating between the i-th model and the rest of models in the presence of noise.
For γi = 0, the above formulation includes the exact solution (i.e., of the EMDP)
and the corresponding gap is infinite.

To solve the formulated N optimization problems (6.21), we devise a synthesis
procedure based on successive simplifications of the original problem by reducing
it to simpler problems with the help of the factorized representations of the filters
(6.4). The existence conditions of Corollary 6.2 can be immediately checked. In this
context, we introduce a useful concept to simplify the presentation. A filter Q(i)(λ) is
called admissible if the corresponding

[
R(i, j)
u (λ) R(i, j)

d (λ)
]
in (4.5) are all nonzero

for j �= i . Tests as those of Corollary 6.2 can be used to check admissibility. Assume
that the test indicates the solvability of the AMDP.

Let qi be the desired number of residual components for the i-th filter with output
r (i)(t). As in the case of an EMDP, if a solution of the AMDP exists, then, in general,
the use of a scalar output fault detection filter (thus, qi = 1) is always possible.
However, larger values of qi can be advantageous, because may provide more free
parameters which can be appropriately tuned. In general, the choice of qi must
satisfy qi ≤ p − r (i)

d , where r (i)
d := rankG(i)

d (λ). In the Procedure AMD to solve
the AMDP, given in what follows, the choice qi ≤ r (i)

w is enforced, in the case when

r (i)
w := rankG

(i,i)
w (λ) > 0. This choice is only for convenience and leads to a simpler

synthesis procedure.

As next step, the factor Q
(i)
1 (λ) is determined in the product form Q

(i)
1 (λ) =

Q
(i)
2 (λ)Q(i)

2 (λ), where the r (i)
w × (p − r (i)

d ) factor Q(i)
2 (λ) is determined such that

Q(i)
2 (λ)G

(i,i)
w (λ) has full row rank r (i)

w , the product Q(i)
2 (λ)Q(i)

1 (λ) is admissible, and,
has the least possible McMillan degree. If this latter requirement is not imposed,
then a simple choice is Q(i)

2 (λ) = H (i), where H (i) is an r (i)
w × (

p − r (i)
d

)
full row

rank constant matrix (e.g., chosen as a randomly generated matrix with orthonormal
rows). This corresponds to building Q(i)

2 (λ)Q(i)
1 (λ) as r (i)

w linear combinations of the
left nullspace basis vectors contained in the rows of Q(i)

1 (λ).
At this stage, the optimization problem to be solved falls in one of two categories.

The standard case is when Q(i)
2 (λ)G

(i,i)
w (λ) has no unstable zeros on the boundary

of the stability domain ∂Cs (i.e., the extended imaginary axis in the continuous-
time case, or the unit circle centered in the origin in the discrete-time case). The
nonstandard case corresponds to the presence of such zeros. This categorization is
revealed at the next step, which also involves the computation of the respective zeros.

http://dx.doi.org/10.1007/978-3-319-51559-5_4
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The quasi-co-outer–co-inner factorization of the full row rank Q(i)
2 (λ)G

(i,i)
w (λ) is

Q(i)
2 (λ)G

(i,i)
w (λ) = G(i)

wo(λ)G(i)
wi (λ), (6.22)

where the quasi-co-outer factor G(i)
wo(λ) is invertible, having only zeros in Cs , and

G(i)
wi (λ) is co-inner. The factor Q

(i)
2 (λ) is chosen in the product form Q

(i)
2 (λ) =

Q
(i)
3 (λ)Q(i)

3 (λ), with Q(i)
3 (λ) = (

G(i)
wo(λ)

)−1
and Q

(i)
3 (λ) to be determined. Using

(6.16), we define
R̃(i, j)(λ) := Q(i)

3 (λ)Q(i)
2 (λ)R

(i, j)
(λ) , (6.23)

with the component blocks defined as

[
R̃(i, j)
u (λ) | R̃(i, j)

d (λ) | R̃(i, j)
w (λ)

] := Q(i)
3 (λ)Q(i)

2 (λ)
[
R

(i, j)
u (λ) | R(i, j)

d (λ) | R(i, j)
w (λ)

]
.

This allows to express ζ
(i)
1 in (6.20) as ζ

(i)
1

(
Q

(i)
1 (λ)

) = ζ
(i)
3

(
Q

(i)
3 (λ)

)
, where

ζ
(i)
3

(
Q

(i)
3 (λ)

) := min
1≤ j≤N , j �=i

∥∥Q(i)
3 (λ)

[
R̃(i, j)
u (λ) | R̃(i, j)

d (λ)
]∥∥∞ . (6.24)

It follows, that Q
(i)
3 (λ) can be determined as the solution of

βi = max
Q

(i)
3 (λ)

{
ζ

(i)
3

(
Q

(i)
3 (λ)

) ∣∣∣ ∥∥Q(i)
3 (λ)

∥∥∞ ≤ γi

}
,

where we used that

∥∥Q(i)
3 (λ)Q(i)

3 (λ)Q(i)
2 (λ)G

(i,i)
w (λ)

∥∥∞ = ∥∥Q(i)
3 (λ)G(i,i)

wi (λ)
∥∥∞ = ∥∥Q(i)

3 (λ)
∥∥∞ .

In the standard case, we can always ensure that the partial filter defined by the
product of stable factors Q(i)

3 (λ)Q(i)
2 (λ)Q(i)

1 (λ) is stable. However, R̃(i, j)(λ) is gen-
erally not stable, unless all component systems of the multiple model (4.1) are stable.

In such a case, Q
(i)
3 (λ) can be simply determined as Q

(i)
3 (λ) = Q(i)

4 , where Q(i)
4 is a

constant matrix representing the optimal solution of the simpler problem

βi = max
Q(i)

4

{
ζ

(i)
3

(
Q(i)

4

) ∣∣∣ ∥∥Q(i)
4

∥∥∞ ≤ γi

}
,

such that the resulting filter Q(i)(λ) = Q(i)
4 Q(i)

3 (λ)Q(i)
2 (λ)Q(i)

1 (λ) is admissible. For
square Q(i)

4 , the choice Q(i)
4 = γi I is the simplest optimal solution. If R̃(i, j)(λ)

is unstable or improper, the solution approach for the nonstandard case, discussed
below, can be used.

http://dx.doi.org/10.1007/978-3-319-51559-5_4
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The following result, given without proof, is similar to Theorem 5.2. The proof is
similar to the proofs in the case of solving AFDPs in continuous- and discrete-time,
see [77] and [78], respectively.

Theorem 6.2 Using the parametrization (6.4) of the i-th filter and the notation in

(6.16), let Q(i)
2 (λ) be such that

∥∥Q(i)
2 (λ)

[
G

(i, j)
u (λ) G

(i, j)
d (λ)

]∥∥∞ > 0 for all j �= i ,

and, additionally, Q(i)
2 (λ)G

(i,i)
w (λ) has full row rank and has no zeros on the boundary

of the stability domain. Then, for γi > 0, the optimal solution of the optimization
problem (6.21) is

Q
(i)
1,opt (λ) := γi

(
G(i)

wo(λ)
)−1

Q(i)
2 (λ) ,

where G(i)
wo(λ) is the co-outer factor of the co-outer–co-inner factorization (6.22).

In the nonstandard case, both the partial filter Q̃(i)(λ) := Q(i)
3 (λ)Q(i)

2 (λ)Q(i)
1 (λ)

and the corresponding R̃(i, j)(λ) in (6.23) for j = 1, . . . , N , can result unstable or
improper due the presence of poles of Q(i)

3 (λ) = (
G(i)

wo(λ)
)−1

in ∂Cs (i.e., G(i)
wo(λ)

has zeros in ∂Cs). In this case, Q
(i)
3 (λ) is chosen in the form Q

(i)
3 (λ) = Q(i)

5 Q(i)
4 (λ),

where Q(i)
4 (λ) results form a LCF with stable and proper factors

[
Q̃(i)(λ) R̃(i,1)(λ) . . . R̃(i,N )(λ)

] = (
Q(i)

4 (λ)
)−1[

Q̂(i)(λ) R̂(i,1)(λ) . . . R̂(i,N )(λ)
]
,

while Q(i)
5 is a constant matrix which solves

βi = maxQ(i)
5

{
ζ

(i)
5

(
Q(i)

5

) ∣∣∣ ∥∥Q(i)
5 Q(i)

4 (λ)
∥∥∞ ≤ γi

}
,

where

ζ
(i)
5

(
Q(i)

5

) := min
1≤ j≤N , j �=i

∥∥Q(i)
5 Q(i)

4 (λ)
[
R̃(i, j)
u (λ) | R̃(i, j)

d (λ)
]∥∥∞ .

The choice of a diagonal Q(i)
4 (λ), with all its diagonal elements having H∞-norms

equal to 1, significantly simplifies the solution of the above problem. In this case,
the choice Q(i)

5 = γi I is always possible.
In the standard case, the dynamical order of the resulting filter Q(i)(λ) is the

McMillan degree of Q(i)
3 (λ), provided Q(i)

4 (λ) is chosen a constant matrix. This order

results from the conditions that Q(i)
2 (λ)G

(i,i)
w (λ) has full row rank and Q(i)

2 (λ)Q(i)
1 (λ)

has least-order and is admissible. For each candidate Q(i)
2 (λ), the corresponding

optimal Q(i)
3 (λ) results automatically, but the different “optimal” filters for the same

level γi of noise attenuation performance can have significantly differing optimal
performance levels βi . Finding the best compromise between the achieved order and
the achieved performance (measured via the gap βi/γi ), should take into account
that larger orders and larger number of detector outputs qi may potentially lead to
better performance.

http://dx.doi.org/10.1007/978-3-319-51559-5_5
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The Procedure AMD, given in what follows, allows the synthesis of least-order
model detection filters, by solving the AMDP employing an H∞ optimization-
based approach. This procedure includes also the Procedure EMD, in the case
when, an exact solution exists. Similar synthesis procedures, relying on alternative
optimization-based formulations, can be devised by only adapting appropriately the
last computational step of Procedure AMD.

Procedure AMD: Approximate synthesis of model detection filters

Inputs : {G( j)
u (λ),G( j)

d (λ),G( j)
w (λ)}, for j = 1, . . . , N ; qmax

Outputs: Q(i)(λ), for i = 1, . . . , N ; R(i, j)(λ) for i, j = 1, . . . , N

For i = 1, ..., N

1) Compute a (p − r (i)
d ) × (p + mu) minimal proper stable basis Q(i)

1 (λ) for

the left nullspace of G(i)(λ) defined in (6.2), where r (i)
d := rankG(i)

d (λ);

set Q(i)(λ) = Q(i)
1 (λ), compute G

(i,i)
w (λ) = Q(i)

1 (λ)

[
G(i)

w (λ)

0

]
, and

R(i, j)(λ) = [ R(i, j)
u (λ) | R(i, j)

d (λ) | R(i, j)
w (λ) ]

= Q(i)
1 (λ)

[
G( j)

u (λ) G( j)
d (λ) G( j)

w (λ)

Imu 0 0

]
, j = 1, . . . , N

Exit if [ R(i, j)
u (λ) R(i, j)

d (λ) ] = 0 for any j ∈ {1, . . . , N }, j �= i
(no solution)

2) Compute r (i)
w = rankG

(i,i)
w (λ); if r (i)

w = 0, set q(i)
1 = min(p−r (i)

d , qmax );

else, set q(i)
1 = r (i)

w ; choose a q(i)
1 × (p−r (i)

d ) rational matrix Q(i)
2 (λ) such that

Q(i)
2 (λ)[ R(i, j)

u (λ) R(i, j)
d (λ) ] �= 0 for j = 1, . . . , N , j �= i , Q(i)

2 (λ)Q(i)(λ) has

least McMillan degree, and, if r (i)
w > 0, then rank Q(i)

2 (λ)G
(i,i)
w (λ)=r (i)

w ;

compute Q(i)(λ) ← Q(i)
2 (λ)Q(i)(λ) and R(i, j)(λ) ← Q(i)

2 (λ)R(i, j)(λ) for
j = 1, . . . , N , j �= i .

3) If r (i)
w > 0, compute the quasi-co-outer–co-inner factorization (6.22) with G(i)

wo(λ)

invertible and having only zeros in Cs , and G(i)
wi (λ) co-inner;

with Q(i)
3 (λ) = (

G(i)
wo(λ)

)−1 compute Q(i)(λ) ← Q(i)
3 (λ)Q(i)(λ) and

R(i, j)(λ) ← Q(i)
3 (λ)R(i, j)(λ) for j = 1, . . . , N , j �= i .

4) Choose a square rational matrix Q(i)
4 (λ) such that Q(i)

4 (λ)Q(i)(λ) has a

desired stable dynamics and Q(i)
4 (λ)R(i, j)(λ) for j = 1, . . . , N , j �= i are stable;

compute Q(i)(λ) ← Q(i)
4 (λ)Q(i)(λ) and R(i, j)(λ) ← Q(i)

4 (λ)R(i, j)(λ) for
j = 1, . . . , N , j �= i .

5) If r (i)
w > 0, choose Q(i)

5 ∈ Rmin(qmax ,r
(i)
w )×q(i)

1 such that ‖Q(i)
5 Q(i)

4 (λ)‖∞ = γi

and βi = min1≤ j≤N , j �=i
∥∥Q(i)

5 [ R(i, j)
u (λ) R(i, j)

d (λ) ]∥∥∞>0; compute

Q(i)(λ)←Q(i)
5 Q(i)(λ) and R(i, j)(λ) ← Q(i)

5 R(i, j)(λ) for j = 1, . . . , N ,
j �= i ; else, set βi = ∞.
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Remark 6.3 For the selection of the threshold τi for the component r (i)(t) of the
residual vector, a similar approach to that described in Remark 5.11 can be used. The
i-th residual, which results when the j-th model is the current one, is

r(i)(λ) = R(i, j)
u (λ)u(λ) + R(i, j)

d (λ)d( j)(λ) + R(i, j)
w (λ)w( j)(λ), (6.25)

where R(i, j)
u (λ), R(i, j)

d (λ), and R(i, j)
w (λ) are formed from the columns of R(i, j)(λ)

corresponding to the inputs u, d( j) and w( j), respectively. To determine the false
alarm bound for the i-th residual, we can use the residual which results for the i-th
filter if the i-th model is the current one. Taking into account that R(i,i)

u (λ) = 0 and
R(i,i)
d (λ) = 0, we obtain

r(i)(λ) = R(i,i)
w (λ)w(i)(λ) . (6.26)

If we assume, for example, a bounded energy noise input w(i)(t) such that ‖w(i)‖2 ≤
δ(i)
w , then the false alarm bound τ

(i)
f for the i-th residual vector component r (i)(t) can

be computed as

τ
(i)
f = sup

‖w(i)‖2≤δ
(i)
w

‖R(i,i)
w (λ)w(i)(λ)‖2 = ‖R(i,i)

w (λ)‖∞δ(i)
w . (6.27)

The setting of the thresholds to τi = τ
(i)
f for i = 1, . . . , N ensures no false alarms

in detecting the i-th model, provided sufficient control, disturbance or noise activity
is present such that

‖r ( j)‖2 > τ
( j)
f , ∀ j �= i .

Therefore, to enhance the decision-making process it must be additionally checked
that the control input u has a certain minimum energy, i.e., ‖u‖2 > δu , where δu is
the least size of the acceptable control inputs. A conservative (worst-case) estimate
of δu can be determined by enforcing

∥∥R(i, j)
u (λ)u(λ)

∥∥
2 ≥ ∥∥R(i, j)

d (λ)d( j)(λ)
∥∥
2 + ∥∥R(i, j)

w (λ)w( j)(λ)
∥∥
2

for
∥∥d( j)

∥∥
2 ≤ δ

( j)
d and

∥∥w( j)
∥∥
2 ≤ δ

( j)
w , ∀ i, j with j �= i . A possible choice is

δu = max
i, j;i �= j

∥∥R(i, j)
d (λ)

∥∥∞δ
( j)
d + ∥∥R(i, j)

w (λ)
∥∥∞δ

( j)
w∥∥R(i, j)

u (λ)
∥∥∞

.

�

Example 6.2 This is basically the same multiple model as that used in Example 6.1, however with
only two measured outputs, namely, the sideslip angle and roll angle, and additional input noise
and output noise. The fault-free state-space model describes the continuous-time lateral dynamics
of a F-16 aircraft with the matrices

http://dx.doi.org/10.1007/978-3-319-51559-5_5
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A(1) =

⎡
⎢⎢⎣

−0.4492 0.046 0.0053 −0.9926
0 0 1.0000 0.0067

−50.8436 0 −5.2184 0.7220
16.4148 0 0.0026 −0.6627

⎤
⎥⎥⎦ , B(1)

u =

⎡
⎢⎢⎣

0.0004 0.0011
0 0

−1.4161 0.2621
−0.0633 −0.1205

⎤
⎥⎥⎦ ,

C (1) =
[
57.2958 0 0 0

0 57.2958 0 0

]
, D(1)

u = 02×2, D(1)
w = [ 02×4 I2 ] .

The component systemmatrices in (2.19) are defined for i = 1, 2, . . . , N as: E (i) = I4, A(i) = A(1),
C (i) = C (1), B(i)

w = B(1)
w , D(i)

w = D(1)
w , and B(i)

u = B(1)
u Γ (i), where Γ (i) = diag

(
1−ρ

(i)
1 , 1−ρ

(i)
2

)
and

(
ρ

(i)
1 , ρ

(i)
2

)
are the values of parameters (ρ1, ρ2) on the chosen grid points {0, 0.5, 1} for each

component ofρ := [ρ1, ρ2]T . The values
(
ρ

(1)
1 , ρ

(1)
2

) = (0, 0) correspond to the fault-free situation.

The TFMs G(i)
u (s) and G(i)

w (s) of the i-th system can be expressed as

G(i)
u (s) = G(1)

u (s)Γ (i), G(i)
w (s) = G(1)

w (s) , (6.28)

where

G(1)
u (s) = C (1)(s I − A(1))−1

B(1)
u , G(1)

w (s) = C (1)(s I − A(1))−1
B(1)
w + D(1)

w .

We applied the Procedure AMD to design N = 9 model detection filters of least dynamical
order with scalar outputs. At Step 1), nullspace bases of the form

Q(i)
1 (s) =

[
I2 −G(i)

u (s)
]

=
[
I2 −G(1)

u (s)Γ (i)
]

have been chosen as initial designs. The internal forms corresponding to these designs are

R(i, j)
u,1 (s) := Q(i)

1 (s)

[
G( j)

u (s)
I2

]
= G(1)

u (s)
(
Γ ( j) − Γ (i)), R(i, j)

w,1 (s) := Q(i)
1 (s)

[
G( j)

w (s)
0

]
= G(1)

w (s) .

At Step 2), the choice Q(i)
2 (s) = I ensures that Q(i)

2 (s)G(1)
w (s) has full row rank and no zeros.

Therefore, the co-outer–co-inner factorization (6.22) of Q(i)
2 (s)G(1)

w (s) computed at Step 3) allows
to obtain the optimal solution for γi = 1 (see Theorem 6.2) as

Q(i)(s) = (
G(i)

wo(s)
)−1

Q(i)
1 (s) .

The final internal forms of the filters, R(i, j)(s) = [
R(i, j)
u (s) R(i, j)

w (s)
]
, result for i, j = 1, . . . , N

with
R(i, j)
u (s) = (

G(i)
wo(s)

)−1
G(1)

u (s)
(
Γ ( j) − Γ (i)), R(i, j)

w (s) = G(i)
wi (s) ,

and, therefore, R(i, j)
u (s) preserves the monotonic mapping of distances between the i-th and j-th

models. The performance of eachfilter Q(i)(s) is given by the resulting gapηi = βi/γi (= βi ), where
βi = min j=1:N ,i �= j

∥∥R(i, j)
u (s)

∥∥∞. For the resulting design, we have ηi = 0.0525, for i = 1, . . . , N .
Each of the filters Q(i)(s) has McMillan degree 4, and therefore, the overall filter Q(s) has the

same complexity as a filter based on a bank of Kalman filters. A Kalman-filter-based approach is
well suited in the case when the input and measurement noise are Gaussian white noise processes.
Assuming the input noise has a covariance of �x = 0.012 I4 and the measurement noise has a
covariance of �y = 0.22 I2, then N Kalman-filters-based residual generators Q̃(i)(s), with state-
space realizations of the form

ẋ (i)
e (t) = (A(i) − K (i)C (i))x (i)

e (t) + K (i)y(t) + B(i)u(t) ,

r (i)(t) = C (i)x (i)
e (t) − y(t)

http://dx.doi.org/10.1007/978-3-319-51559-5_2
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Fig. 6.3 Time responses of evaluation signals for optimal syntheses

can be determined, where the optimal gains K (i) result by solving suitable algebraic Riccati equa-
tions. The achieved gaps for these filters are η̃i = 0.0152, and therefore, below the values achieved in
the optimalH∞ synthesis. An optimal synthesis with second-order scalar output residual generators
achieves a gap of 0.0323.

In Fig. 6.3 the time responses of the residual evaluation signals θi (t) are presented, where θi (t)
are computed using a Narendra-type evaluation filter (3.40) with input ‖r (i)(t)‖22 and parameters
α = 0.9, β = 0.1, γ = 10 (see Sect. 3.6). The control inputs have been chosen as follows: u1(t) is a
step of amplitude 0.3 added to a square wave of period 2π , and u2(t) is a step of amplitude 1.5 added
to a sinus function of unity amplitude and period π . The noise inputs are zero mean white noise of
amplitude 0.01 for the input noise and 0.03 for the measurement noise. Each column corresponds
to a specific model for which the time responses of the N residual evaluation signals are computed.
The achieved typical structure matrix for model detection (with zeros down the diagonal) can easily
be read out from this signal based assessment, even in the presence of noise.

The script Ex6_2 in Listing 6.2 solves the AMDP considered in this example. The script
Ex6_2KF (not listed) generates the analysis results for the Kalman filter-based synthesis and the
least-order optimal synthesis. ♦

Listing 6.2 Script Ex6 2 to solve the AMDP of Example 6.2 using Procedure AMD
% Uses the Control Toolbox and the Descriptor System Tools

% define lateral aircraft model without faults Gu
A = [ -.4492 0.046 .0053 -.9926;

0 0 1 0.0067;
-50.8436 0 -5.2184 .722;
16.4148 0 .0026 -.6627];

Bu = [0.0004 0.0011; 0 0; -1.4161 .2621; -0.0633 -0.1205];

http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
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[n,mu] = size(Bu); p = 2; mw = n+p; m = mu+mw;
Bw = eye(n,mw);
C = 180/pi*eye(p,n); Du = zeros(p,mu); Dw = [zeros(p,n) eye(p)];

% define the LOE faults Γ (i)

Gamma = 1 - [ 0 0 0 .5 .5 .5 1 1 1;
0 .5 1 0 .5 1 0 .5 1 ]';

N = size(Gamma ,1);

% define multiple physical fault model G(i)
u = GuΓ (i)and G(i)

w = Gw
sysuw = ss(zeros(p,m,N,1));
for i=1:N

sysuw(:,:,i,1) = ss(A,[Bu*diag(Gamma(i,:)) Bw],C,[Du Dw]);
end

% optimal H-inf design
% setup initial full order model detector Q(i)

1 = [ I − G(i)
u ]

Q1 = [eye(p) -sysuw (:,1:mu)];

% perform optimal synthesis (standard case)
R = ss(zeros(p,mu+mw,N,N)); Q = ss(zeros(p,p+mu ,N,1));
tol = 1.e-7;
for i = 1:N

rwi = gir(Q1(:,1:p,i,1)* sysuw(:,mu+1:m,i,1),tol);
[gi ,go] = goifac(rwi ,1.e-7);
Q(:,:,i,1) = gminreal(go\Q1(:,:,i,1),tol);
for j = 1:N

R(:,:,i,j) = gir(Q(:,:,i ,1)*[ sysuw(:,:,j,1); eye(mu,m)],tol);
end

end

% scale Q(i) and R(i, j); determine gap
distinf = norm(R(:,1:mu),inf);
beta = zeros(N,1);
for i=1:N

scale = min(distinf(i,[1:i-1 i+1:N]));
distinf(i,:) = distinf(i,:)/ scale;
Q(:,:,i,1) = Q(:,:,i,1)/ scale;
for j = 1:N

R(:,:,i,j) = R(:,:,i,j)/ scale;
end
beta(i) = scale;

end
gap = beta

6.4 Notes and References

Section6.1. The nullspace-based computational paradigm, which underlies the syn-
thesis procedures presented in this chapter, has been discussed for the first time in
the author’s papers [144, 151] in the context of solving fault detection and isolation
problems. The resulting factorized form of the component filters is similar to that for
fault detection filters (see (5.1)) and is the basis of numerically reliable integrated
computational algorithms. Specific numerical aspects of these algorithms are pre-
sented in Chap.7. The parametrization of component filters given in Theorem 6.1

http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_7
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is similar to that used for solving FDI synthesis problems stated in Theorem 5.1.
The nullspace-based characterization of model detectability in Proposition 6.1 can
be interpreted as an extension of a special version of Theorem 3.5 for a particular
structure matrix S.

Section6.2. The nullspace-based synthesismethod to solve the EMDP using least-
order component filters has been proposed in [142]. The multiple model used in
Example 6.1 has been used in [70] to address a fault tolerant control problem using
interactingmultiple-model Kalman filters. A solution with N = 25models, allowing
a more accurate identification of the degree of loss of efficiency, has been presented
in [142].

Section6.3. The solution method of the AMDP using an optimization-based
method, summarized in Procedure AMD, represents a straightforward adaptation
of the synthesis method for solving the AFDIP given in Procedure AFDI. The
Kalman filter-based multiple-model approaches have been investigated by Wilsky
in [161], where the Baram’s proximity measure, introduced in [4], has been used to
define the distance between two stochastic models. This measure is also the basis
for discriminating among stochastic models in recently proposed methods for robust
multiple-model adaptive control [41].

http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_3
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