
Chapter 5
Synthesis of Fault Detection and Isolation
Filters

This chapter presents general synthesis procedures of fault detection filters which
solve the fault detection problems formulated in Chap. 3. The synthesis procedures
are described in terms of input–output models, which allow simpler conceptual
presentations. Numerically reliable state-space representation based synthesis algo-
rithms, well-suited for robust software implementations, are described in Chap. 7.

In the recently developed computational procedures for the synthesis of fault
detection filters, two important computational paradigms emerged, which are instru-
mental in developing generally applicable, numerically reliable and computationally
efficient synthesis methods. The first paradigm is the use of factorization-based syn-
thesis methods. Accordingly, for all presented synthesis procedures, it is possible to
express the TFM of the final filter Q(λ) in a factored form as

Q(λ) = QK(λ) · · ·Q2(λ)Q1(λ) , (5.1)

whereQ1(λ),Q2(λ)Q1(λ), . . ., can be interpreted as partial syntheses addressing spe-
cific requirements. Since each partial synthesis may represent a valid fault detection
filter, this approach has a high flexibility in using or combining different synthesis
techniques. The factorization-based synthesis approach naturally leads to the so-
called integrated computational algorithms, with strongly coupled successive com-
putational steps. For a K-step synthesis procedure to determine Q(λ) in the factored
form (5.1), K updating operations of the form Q(λ) ← Qi(λ)Q(λ) are performed
for i = 1, . . . ,K , where Qi(λ) is the factor computed at the i-th synthesis step. The
state-space description based filter updating formulas are described in Chap. 7 for
specific synthesis steps.

The second paradigm is the use of the nullspace method as a first synthesis step
to reduce all synthesis problems to simpler problems, which allow to easily check
the solvability conditions and address least-order synthesis problems. The nullspace-
based synthesis approach is described in Sect. 5.1. In Sects. 5.2–5.7 specific synthesis
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72 5 Synthesis of Fault Detection and Isolation Filters

procedures, relying on the nullspace method, are presented for each of the fault
detection and isolation problems formulated in Chap. 3.

5.1 Nullspace-Based Synthesis

A useful parametrization of all fault detection filters can be obtained on the basis of
conditions Ru(λ) = 0 and Rd(λ) = 0 in (3.23). For any fault detection filter Q(λ)

the condition [Ru(λ) Rd(λ) ] = 0 is equivalent to

Q(λ)

[
Gu(λ) Gd(λ)

Imu 0

]
= 0 .

Thus, any fault detection filter Q(λ) must be a left annihilator of the TFM

G(λ) :=
[
Gu(λ) Gd(λ)

Imu 0

]
. (5.2)

Let rd be the normal rank of Gd(λ) (i.e., maximal rank over all λ). Using standard
linear algebra results (see Sect. 9.1.3), there exists a maximal full row rank left
annihilator Nl(λ) of size (p − rd) × (p + mu) such that Nl(λ)G(λ) = 0. Any such
an Nl(λ) represents a basis ofNL(G(λ)), the left nullspace of G(λ). Using this fact,
we have the following straightforward parametrization of all fault detection filters:

Theorem 5.1 Let Nl(λ) be a basis of NL(G(λ)), with G(λ) defined in (5.2). Then,
any fault detection filter Q(λ) satisfying (3.23) can be expressed in the form

Q(λ) = V (λ)Nl(λ), (5.3)

where V (λ) is a suitable TFM.

Proof Let q(i)(λ) be the i-th row of Q(λ). Since q(i)(λ)G(λ) = 0, it follows that
q(i)(λ) ∈ NL(G(λ)) and therefore there exists a vector v(i)(λ) such that q(i)(λ) =
v(i)(λ)Nl(λ), representing a linear combination of the nullspace basis vectors. Thus,
we build V (λ) in (5.3) as a TFM whose i-th row is v(i)(λ). �

Remark 5.1 For any non-singular polynomial or rational matrixM(λ) of appropriate
dimension, Ñl(λ) := M(λ)Nl(λ) is also a nullspace basis. Frequently, M(λ) is the
denominator matrix of a left coprime factorization (LCF) of an original basis Nl(λ)

in the form
Nl(λ) = M(λ)−1Ñl(λ), (5.4)

where the factors M(λ) and Ñl(λ) are determined to satisfy special requirements,
such as properness, or to have only poles in a certain “good” region of the complex
plane (e.g., in the stability region), or both. In this case, if Nl(λ) is a basis, then
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5.1 Nullspace-Based Synthesis 73

Ñl(λ) = M(λ)Nl(λ) is a basis as well. Moreover, M(λ) has as zeros all poles of
Nl(λ) lying outside of the “good” region. For more details on coprime factorizations
see Sect. 9.1.6. �

An interesting property of nullspace bases is the following elementary fact. Con-
sider a column partitioning of G(λ) as G(λ) = [

G1(λ) G2(λ)
]
and let Nl,1(λ) be a

basis ofNL(G1(λ)) andNl,2(λ) be a basis ofNL(Nl,1(λ)G2(λ)). Then,Nl,2(λ)Nl,1(λ)

is a basis of NL(G(λ)). Using this fact with the following partitioning

G(λ) = [
G1(λ) G2(λ)

] :=
[
Gu(λ) Gd(λ)

Imu 0

]
,

we immediately obtain the left nullspace basis Nl(λ) in the factorized form

Nl(λ) = Nl,d(λ)
[
Ip −Gu(λ)

]
, (5.5)

where Nl,d(λ) is a (p − rd) × p TFM representing a basis of NL(Gd(λ)). This form
leads to simple expressions ofNl(λ) for particular cases asNl(λ) = Nl,d(λ) ifmu = 0,
or Nl(λ) = [

Ip −Gu(λ)
]
if md = 0, or Nl(λ) = Ip if mu + md = 0.

A proper and stable representation of Nl(λ) for arbitrary rational or polynomial
matrices Gu(λ), Gd(λ), Gw(λ) and Gf (λ) can be obtained from the LCF

[
Gu(λ) Gd(λ) Gw(λ) Gf (λ)

] = M̂−1(λ)
[
Ĝu(λ) Ĝd(λ) Ĝw(λ) Ĝf (λ)

]
, (5.6)

where M̂(λ) and
[
Ĝu(λ) Ĝd(λ) Ĝw(λ) Ĝf (λ)

]
are proper and stable factors. With

obvious replacements, the left nullspace basis Nl(λ) can be chosen as

Nl(λ) = N̂l,d(λ)
[
M̂(λ) −Ĝu(λ)

]
, (5.7)

where N̂l,d(λ) is a (p − rd) × p proper and stable TFM representing a basis of
NL(Ĝd(λ)). If mu = md = 0, then we can formally set Nl(λ) := M̂(λ).

For the particular form of the nullspace basis in (5.7), we have the following
straightforward corollary of Theorem 5.1:

Corollary 5.1 Let Ĝd(λ) and Ĝu(λ) be the TFMs defined in (5.6) and let N̂l,d(λ) be
a basis of NL(Ĝd(λ)). Then, any fault detection filter Q(λ) satisfying (3.23) can be
expressed in the form

Q(λ) = W (λ)N̂l,d(λ)
[
M̂(λ) −Ĝu(λ)

]
, (5.8)

where W (λ) is a suitable TFM.

The parametrization result of Theorem 5.1 underlies the nullspace method based
synthesis procedures of fault detection filters, which form themain focus of this book.
All synthesis procedures of the fault detection filters rely on the initial factored form
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Q(λ) = Q1(λ)Q1(λ), (5.9)

where Q1(λ) = Nl(λ) is a basis of NL(G(λ)), while Q1(λ) is a factor to be sub-
sequently determined. The nullspace-based first step allows to reduce all synthesis
problems formulated for the system (3.2) to simpler problems, which make straight-
forward to check the solvability conditions.

Using the factored form (5.9), the fault detection filter in (3.3) can be rewritten in
the alternative form

r(λ) = Q1(λ)Q1(λ)

[
y(λ)

u(λ)

]
= Q1(λ)y(λ) , (5.10)

where

y(λ) := Q1(λ)

[
y(λ)

u(λ)

]
= Gf (λ)f(λ) + Gw(λ)w(λ) , (5.11)

with

[Gf (λ) Gw(λ) ] := Q1(λ)

[
Gf (λ) Gw(λ)

0 0

]
. (5.12)

With this first preprocessing step, we reduced the original problems formulated
for the system (3.2) to simpler ones, which can be formulated for the reduced system
(5.11) (without control and disturbance inputs), for which we have to determine the
TFM Q1(λ) of the simpler fault detection filter (5.10).

Remark 5.2 At this stage, we can assume that both Q1(λ) and the TFMs of the
reduced system (5.11) are proper and even stable. This can be always achieved
by replacing any basis Nl(λ), with a stable basis Q1(λ) = M(λ)Nl(λ), where
M(λ) is an invertible, stable and proper TFM, of least McMillan degree, such
that M(λ)[Nl(λ) Gf (λ) Gw(λ) ] is stable and proper. Such an M(λ) can be
determined as the minimum-degree denominator of a stable and proper LCF of
[Nl(λ) Gf (λ) Gw(λ) ] (see Sect. 9.1.6). Even if Nl(λ) is a minimal basis, the result-
ing stable basis Q1(λ) is, in general, not a minimal basis. �

We conclude this section with the derivation of simpler conditions for checking
the fault detectability conditions studied in the Sect. 3.3. The following result char-
acterizes the complete fault detectability of the system (3.2) as the complete fault
input observability property of the reduced system (5.11).

Proposition 5.1 For the system (3.2) with w ≡ 0, let Q1(λ) = Nl(λ) be a rational
basis ofNL(G(λ)), where G(λ) is defined in (5.2), and let (5.11) be the corresponding
reduced system with w ≡ 0. Then, the system (3.2) is completely fault detectable if
and only if

Gfj (λ) �= 0, j = 1, . . .mf . (5.13)

Proof To prove necessity we show that if the original system is completely fault
detectable, then the reduced system (5.11) is also completely fault detectable (i.e.,
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conditions (5.13) are fulfilled). For the completely fault detectable system (3.2), let
Q(λ) be a filter such that Rfj (λ) �= 0 for j = 1, . . . ,mf . According to Theorem
5.1, for a given nullspace basis Nl(λ), any filter Q(λ) can be expressed in the form
Q(λ) = W (λ)Nl(λ), whereW (λ) is a suitable rationalmatrix. It follows thatRfj (λ) =
W (λ)Gfj (λ) and therefore, Rfj (λ) �= 0 only if Gfj (λ) �= 0.

The proof of sufficiency is trivial, since with Q(λ) := Nl(λ) the corresponding
Rf (λ) = Gf (λ), and thus satisfies Rfj (λ) �= 0 for j = 1, . . . ,mf . �

The following result is a general characterization of the complete strong fault
detectability of the system (3.2) in terms of a particular reduced system (5.11) and
can serve as an easy check of this property.

Proposition 5.2 Let Ω be the set of frequencies which characterize the persistent
fault signals. For the system (3.2) with w ≡ 0 and for G(λ) defined in (5.2), let Q1(λ)

be a least-order rational basis of NL(G(λ)), such that Q1(λ) and Gf (λ) in (5.12)
have no poles in Ω . Then, the system (3.2) is completely strong fault detectable with
respect to Ω if and only if

Gfj (λz) �= 0, j = 1, . . .mf , ∀λz ∈ Ω . (5.14)

Proof Toprove necessity,we note that complete strong fault detectability implies that
there exists a stable filterQ(λ) such that the correspondingRf (λ) is stable, andRfj (λ),
the j-th columnofRf (λ), has no zeros inΩ . According toTheorem5.1, anyfilterQ(λ)

satisfying Q(λ)G(λ) = 0, can be expressed in the form Q(λ) = W (λ)Q1(λ), where
W (λ) is a suitable rational matrix. It follows that Rfj (λ) = W (λ)Gfj (λ). Assume λz ∈
Ω is a zero of Gfj (λ), such that Gfj (λz) = 0. However, this implies that Rfj (λz) = 0,
which contradicts the assumption of complete strong detectability. Therefore, Gfj (λ)

can not have zeros in Ω . This requirement is expressed, for j = 1, . . . ,mf , by the
conditions (5.14).

To prove sufficiency, we show that for any given basis Q1(λ) without poles in
Ω and for Gfj (λ) without poles and zeros in Ω we can build a stable filter Q(λ)

such that, Rfj (λ) has no zeros in Ω as well. For this we take Q(λ) = M(λ)Q1(λ),
where [Q1(λ) Gf (λ) ] = M−1(λ)[Q(λ) Rf (λ) ] is a stable left coprime factorization.
The zeros of M(λ) are the unstable poles of [Q1(λ) Gf (λ) ]. Since by assumption,
this TFM has no poles in Ω , it follows that M(λ) has no zeros in Ω . Therefore,
for any λz ∈ Ω , detM(λz) �= 0. It follows, for each fj that if Gfj (λz) �= 0, then
Rfj (λz) = M(λz)Gfj (λz) �= 0. This proves the complete strong fault detectability
with respect to Ω . �
Remark 5.3 The conditions on the poles of Q1(λ) and Gf (λ) imposed in Proposi-
tion 5.2 are essential to check the complete strong fault detectability. In Example 3.3
with Gu(s) = 0, Gd(s) = 0 and Gf (s) = [ 1 1/s ], we can chooseQ1(s) = s/(s+1)
to obtain Gf (s) = Q1(s)Gf (s) = [ s/(s + 1) 1/(s + 1) ]. This system is not com-
pletely strong fault detectable with respect to constant faults because Gf1(0) = 0.
The following example shows, that the check of strong fault detectability may lead
to an erroneous result if the condition on the poles of Q1(λ) is not fulfilled. �
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Example 5.1 Consider the continuous-time system (3.2) from Example 3.1 with

Gu(s) =

⎡
⎢⎢⎣

1

s
1

s

⎤
⎥⎥⎦ , Gd(s) =

⎡
⎣ 0

s

s + 3

⎤
⎦ , Gf (s) =

⎡
⎢⎢⎣

s + 1

s + 2
1

s + 2

⎤
⎥⎥⎦

and Ω = {0}. This system is not strongly fault detectable. To see this, we employ the check based
on Proposition 5.2.

A stable rational (minimal) basis is

Q1(s) =
[

s

s + 1
0 − 1

s + 1

]
,

which leads to
Gf (s) = s

s + 2
.

Since Gf (s) has a zero in 0, the system is not strongly fault detectable for constant faults.
However, if we use, instead, the rational (minimal) basis with a pole in the origin

Q1(s) =
[
1 0 −1

s

]
,

we obtain

Gf (s) = s + 1

s + 2
,

for which, the zeros based check indicates, erroneously, strong fault detectability. ♦

5.2 Solving the Exact Fault Detection Problem

Using Proposition 5.1, the solvability conditions of the exact fault detection problem
(EFDP) formulated in Sect. 3.5.1 for the system (3.2) with w ≡ 0 can be expressed
as fault input observability conditions for the reduced system (5.11) with w ≡ 0
according to the following corollary to Theorem 3.7:

Corollary 5.2 For the system (3.2) with w ≡ 0 the EFDP is solvable if and only if
the reduced system (5.11) with w ≡ 0 is completely fault detectable, or equivalently,
the following input observability conditions hold

Gfj (λ) �= 0, j = 1, . . .mf . (5.15)

Using Proposition 5.2, the solvability conditions of the EFDP with the strong
detection condition (3.25) can be equivalently expressed as conditions on the lack of
zeros in Ω for all columns of the TFM Gf (λ) of reduced system (5.11) according to
the following corollary to Theorem 3.8:

Corollary 5.3 Let Ω ⊂ ∂Cs be a given set of frequencies, and assume that the
reduced system (5.11) has been obtained by choosing Q1(λ) without poles in Ω and
such that also Gf (λ) in (5.12) has no poles inΩ . Then, for w ≡ 0, the EFDPwith the
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strong detection condition (3.25) is solvable if and only if the reduced system (5.11)
with w ≡ 0 is completely strong fault detectable with respect to Ω , or equivalently,
the following conditions hold

Gfj (λz) �= 0, j = 1, . . .mf , ∀λz ∈ Ω . (5.16)

When solving the EFDP, it is obvious that any stable and proper rational nullspace
basis Q1(λ) already represents a solution, provided the complete fault detectability
conditions (5.15) or the complete strong fault detectability conditions (5.16) are
fulfilled and Gf (λ) is stable. According to Remark 5.2, the dynamics of both Q1(λ)

and Gf (λ) (i.e., their poles) can be arbitrarily assigned. Moreover, fault detection
filters with an arbitrary number of outputs q ≤ p − rd can be easily obtained, by
building linear combinations of the rows of Q1(λ).

Example 5.2 Consider a continuous-time system with the transfer function matrices

Gu(s) =

⎡
⎢⎢⎣

s + 1

s + 2
s + 2

s + 3

⎤
⎥⎥⎦ , Gd(s) =

⎡
⎣

1

s + 2

0

⎤
⎦ , Gw(s) = 0, Gf (s) =

⎡
⎣

s + 1

s + 2
0

0 1

⎤
⎦ .

A minimal left nullspace basis of G(λ) defined in (5.2) for λ = s can be obtained in the form (5.5)
as Nl(s) = Nl,d(s)

[
I2 −Gu(s)

]
, with Nl,d(s) = [

0 1
]
. We obtain Q1(s) = Nl(s) as

Q1(s) =
[
0 1 − s + 2

s + 3

]

and the TFMs of the reduced system (5.11) are

Gw(s) = 0, Gf (s) = [ 0 1 ] .

The presence of a zero column in Gf (s) indicates that the EFDP has no solution, because the fault
f1 and the disturbance d share the same signal space. By appropriately redefining d and w, we will
address this problem in Example 5.5 and show that an approximate solution of this problem is still
possible. Note that the filter with Q(λ) = Nl(s) can be still used for the detection of f2. ♦

We can exploit in various ways the existing freedom in determining fault detection
filters which solve the EFDP. For practical use, it is sometimes advantageous to
impose for the number of residual signals q a certain low value, as for example,
q = 1, which leads to scalar output fault detection filters. Of both theoretical and
practical interest are fault detection filters which have the least possible order (i.e.,
least McMillan degree). For example, least-order scalar output fault detection filters
can be employed to build banks of scalar output filters with global least-orders to
solve the more involved FDIPs.

For the computation of a least-order solution we can choose the factor Q1(λ) in
(5.9) in the factored form

Q1(λ) = Q3(λ)Q2(λ),

whereQ2(λ) is a q×(p−rd) proper TFMdetermined such thatQ2(λ)Q1(λ) has least-
order, while Q3(λ) is a q× q proper, stable and invertible TFM determined such that
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both the overall filter Q(λ) = Q3(λ)Q2(λ)Q1(λ) and Rf (λ) = Q3(λ)Q2(λ)Gf (λ)

are stable. The least possible order of the fault detection filter Q(λ) is uniquely
determined by the fulfillment of a certain admissibility condition. When solving the
EFDP, we say that the filterQ(λ) is admissible, if the fault detection conditions (3.24)
are fulfilled by the corresponding Rf (λ). Thus, an admissible choice of Q2(λ) must
guarantee the admissibility ofQ(λ). SinceQ3(λ) is invertible, its choice plays no role
in ensuring admissibility. Interestingly, a least-order filter synthesis can be always
achieved by a scalar output fault detection filter.

The Procedure EFD given below summarizes the main computational steps of
the synthesis of least-order fault detection filters. In view of potential applications of
Procedure EFD, we devised this procedure to be applicable to the complete faulty
system (2.1), including also the noise inputs.

Procedure EFD: Exact synthesis of fault detection filters
Inputs : {Gu(λ),Gd(λ),Gf (λ),Gw(λ)}, q
Outputs: Q(λ), Rf (λ), Rw(λ)

1) Compute a (p − rd) × (p + mu) minimal basis matrix Q1(λ) for the left
nullspace of G(λ) defined in (5.2), where rd := rankGd(λ);

set Q(λ) = Q1(λ) and compute
[
Rf (λ) Rw(λ)

] = Q1(λ)

[
Gf (λ) Gw(λ)

0 0

]
.

Exit if exists j ∈ {1, . . . ,mf } such that Rfj (λ) = 0 (no solution exists).
2) Choose a min(q, p − rd) × (p − rd) rational matrix Q2(λ) such that

Q2(λ)Q(λ) has least McMillan degree and Q2(λ)Rfj (λ) �= 0, j = 1, . . . ,mf ;
compute Q(λ) ← Q2(λ)Q(λ), Rf (λ) ← Q2(λ)Rf (λ) and Rw(λ) ← Q2(λ)Rw(λ).

3) Choose a proper and stable invertible rational matrix Q3(λ) such that Q3(λ)Q(λ),
Q3(λ)Rf (λ) and Q3(λ)Rw(λ) have desired stable dynamics; compute
Q(λ)←Q3(λ)Q(λ), Rf (λ)←Q3(λ)Rf (λ), Rw(λ)←Q3(λ)Rw(λ).

This procedure illustrates several computational paradigms common to all syn-
thesis algorithms presented in this book, such as: the use of product form represen-
tations of the filter and the use of the associated filter updating techniques, the use of
nullspace method as the first computational step, the determination of least-order of
the resulting filter on the basis of suitable admissibility conditions, or the arbitrary
assignment of filter dynamics using coprime factorization techniques.

The computational details of the above procedure differ according to the type of
the employed nullspace basis at Step 1). We consider first the case when at Step 1) of
ProcedureEFD,Q(λ) = Q1(λ) is aminimal polynomial basis and the corresponding
Rf (λ) satisfies Rfj (λ) �= 0 for j = 1, . . . ,mf . For simplicity, we determine a least-
order fault detection filter with scalar output (i.e., for q = 1). At Step 2) we have to
determine Q2(λ) = φ(λ), where φ(λ) is a polynomial vector, such that φ(λ)Q1(λ)

has least degree and φ(λ)Rfj (λ) �= 0 for j = 1, . . . ,mf . Assume Q1(λ) is formed of
p − rd row vectors vi(λ), where vi(λ) is a polynomial basis vector of degree ni. We
assume that the basis vectors vi(λ) are ordered such that n1 ≤ n2 ≤ . . . ≤ np−rd .
We can easily construct linear combinations of basis vectors of final degree ni, for
i = 1, . . . , p − rd , by choosing φ(λ) = φ(i)(λ), with
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φ(i)(λ) = [φ(i)
1 (λ) . . . φ

(i)
i (λ) 0 . . . 0 ], (5.17)

where φ
(i)
j (λ) is a polynomial of maximum degree ni − nj and φ

(i)
i (λ) is a nonzero

constant value. The achievable least-order can be determined by successively con-
structing linear combinations of polynomials with increasing degrees n1, n2, . . .,
np−rd (e.g., with randomly generated coefficients). For each trial degree ni, the con-
dition φ(i)(λ)Rfj (λ) �= 0 for j = 1, . . . ,mf is checked. The search stops for the
first value of i for which this condition is fulfilled. At Step 3) we can often choose
Q3(λ) = 1/d(λ), with d(λ) a polynomial of degree ni with only stable roots. How-
ever, if the resulting Q3(λ)Rf (λ) is not stable or not proper, then Q3(λ) must be
computed to also enforce the stability of Q3(λ)Rf (λ) as well as of Q3(λ)Rw(λ). This
can be achieved by replacing Q(λ), Rf (λ) and Rw(λ) resulted at Step 2) with the
proper and stable factors Q̃(λ), R̃f (λ) and R̃w(λ), respectively, resulting from a LCF
with proper and stable factors

[Q(λ) Rf (λ) Rw(λ) ] = Q−1
3 (λ)[ Q̃(λ) R̃f (λ) R̃w(λ) ] , (5.18)

where the poles of the scalar transfer function Q3(λ) can be freely assigned.
The polynomial nullspace approach allows to easily solve the least-order synthesis

problemof fault detectionfilterswith scalar outputs. The least-order is boundedbelow
by ni, the degree of the i-th basis vector, where i is the first index for which there
exists a φ(i)(λ) of the form (5.17) such that φ(i)(λ)Rfj (λ) �= 0 for j = 1, . . . ,mf

(with Rf (λ) computed at Step 1) of Procedure EFD). The value ni for the McMillan
degree of the final filterQ(λ) can be often achieved, as for example, when Gf (λ) and
Gw(λ) are already stable and proper.

Remark 5.4 The Step 2) of this synthesis procedure can be significantly simplified
by determining directly the least degree of candidate polynomial vectors suited to
solve the EFDP, instead of iterating with candidate vectors of increasing orders. For
this purpose, we can use the (p − rd) × mf structure matrix SRf associated to the
resulting Rf (λ) at Step 1) of Procedure EFD. Let SRf be the binary matrix (see
Sect. 3.4), whose the (i, j)-th element is set to 1 if the (i, j)-th element of Rf (λ) is
nonzero, and otherwise is set to 0. Let i be the least row index such that the leading
i rows of SRf contain at least one nonzero element in all columns. It follows, that we
can build, using a polynomial vector φ(i)(λ) of the form (5.17), a linear combination
of the first i basis vectors of least degree ni, such that all faults can be detected. A
straightforward simplification is to use, instead of the polynomial vector φ(i)(λ) in
(5.17), a constant vector (with the same structure)

h(i) = [ h1, . . . , hi, 0, . . . , 0 ] , (5.19)

with hj �= 0, j = 1, . . . , i, to build a linear combination of basis vectors up to degree
ni (e.g., using randomly generated values). The nonzero components of h(i) can be
interpreted as weighting factors of the individual basis vectors. Therefore, an optimal

http://dx.doi.org/10.1007/978-3-319-51559-5_3


80 5 Synthesis of Fault Detection and Isolation Filters

choice of these weights can maximize the overall sensitivity of residual to faults.
Suitable fault sensitivity measures for this purpose are discussed in Remark 5.6. �

Remark 5.5 Although the EFDP can be always solved using a scalar output fault
detection filter of least dynamical order, theremay exist advantageswhen using filters
withmore than one output. First, it may be possiblewith a residual vectorwith several
components to enforce a more uniform sensitivity of the residual vector to individual
fault components. This aspect is related to an increased number of free parameters
which can be thus optimally chosen (see Remark 5.6). A second potential advantage
is that with several residual outputs, it may be possible to also achieve a certain block
isolation of group of faults. For example, suitable combinations of individual basis
vectors in Q1(λ) can be easily constructed using the binary information coded in the
structure matrix SRf associated to the resulting Rf (λ) at Step 1) of the Procedure
EFD. This can be advantageous especially in the case when the expected magnitudes
of the residual signals may significantly vary for different groups of faults. A more
involved synthesis procedure to achieve block isolation can be performed using
several scalar output filters, where each filter is designed to be sensitive to a group
of faults and insensitive to the rest of faults (see Procedure EFDI in Sect. 5.4). �

When using a proper rational basis instead a polynomial one at Step 1) of the
Procedure EFD, a synthesis approach leading directly to a proper filter can be
devised. Assume Q1(λ) is a simple minimal proper rational basis (see Sect. 9.1.3 for
the definition of simple bases) formedofp−rd rational rowvectors vi(λ)/di(λ),where
vi(λ) is a polynomial vector of degree ni and di(λ) is a stable polynomial of degree
ni. We assume that the vectors vi(λ) are the basis vectors of a minimal polynomial
basis, ordered such that n1 ≤ n2 ≤ . . . ≤ np−rd , and each denominator di(λ) divides
dj(λ) for i < j. It follows immediately, that a linear combination h(i)Q1(λ) of the first
i rows with h(i) of the form (5.19) has a McMillan degree ni. At Step 2), choosing the
least index i such that h(i)Rfj (λ) �= 0 for j = 1, . . . ,mf , allows to take Q2(λ) := h(i).
Often the choice Q3(λ) = 1 at Step 3) solves the synthesis problem. However, if
Rf (λ) is unstable or not proper, then the same computational approach, based on the
LCF in (5.18), can be used as in the case of a polynomial basis.

The Procedure EFD employing polynomial or simple proper nullspace bases
involves polynomial manipulations and therefore is not a reliable computational
approach for large order systems due to the intrinsic high sensitivity of polynomial-
based representations. A numerically reliable alternative algorithm employsminimal
(non-simple) proper bases and is based on state-space computations described in
details in Sect. 7.4 (see also Sect. 10.3.2). The importance of Procedure EFD, and
especially of the synthesis with least-order scalar fault detection filters, lies in being
the basic computational procedure which allows to solve the more involved fault
detection and isolation problem formulated in Sect. 3.5.3.

Remark 5.6 Steps 2) and 3) of Procedure EFD can be easily embedded into an
optimization-based tuning procedure to determine an optimalQ2(λ)which ensures a
more uniform sensitivity of the detector to individual faults. The free parameters to be
tuned are the polynomial coefficients of φ(i)(λ) in (5.17) or the nonzero components

http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_7
http://dx.doi.org/10.1007/978-3-319-51559-5_10
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5.2 Solving the Exact Fault Detection Problem 81

of the real vector h(i) in (5.19). It is assumed that for given values of these parameters
at Step 2), the computations at Step 3) follow automatically to produce a stable
candidate solution Q(λ). For optimal tuning of parameters, the sensitivity condition
can be used as a criterion to be minimized. For a given Rf (λ), this criterion is defined
as

ξ := max
j

‖Rfj (λ)‖∞/min
j

‖Rfj (λ)‖∞ . (5.20)

For tuning based on strong fault detectability, a similar sensitivity condition can be
defined in terms of the gains at a selected frequency λs as

ξ s := max
j

‖Rfj (λs)‖2/min
j

‖Rfj (λs)‖2 . (5.21)

A large value of the sensitivity condition ξ (or ξ s) indicates potential difficulties in
detecting faults due to a substantial gap between the maximum and minimum gains.
In such cases, employing fault detection filters with several outputs (q > 1) could
be advantageous. �
Example 5.3 Consider a continuous-time system with the TFMs

Gu(s) =

⎡
⎢⎢⎣

s + 1

s + 2
s + 2

s + 3

⎤
⎥⎥⎦ , Gd(s) =

⎡
⎣

s − 1

s + 2

0

⎤
⎦ , Gw(s) = 0, Gf (s) =

⎡
⎢⎢⎣

s + 1

s + 2
0

s + 2

s + 3
1

⎤
⎥⎥⎦ .

The fault f1 corresponds to an additive actuator fault, while f2 describes an additive sensor fault in
the second output y2. The TFM Gd(s) is non-minimum phase, having an unstable zero at 1.

At Step 1) of the Procedure EFD, a proper minimal left nullspace basis can be determined,
consisting of a single row vector, which we can choose, for example,

Q1(s) =
[
0 1 − s + 2

s + 3

]
.

For the reduced system (5.11) computed at Step 1) we obtain

Rf (s) = Gf (s) =
[
s + 2

s + 3
1

]
,

which shows that according to Corollary 5.2 the EFDP has a solution. Since this basis is already
stable, Q(s) = Q1(s) is a least-order solution of the EFDP. ♦
Example 5.4 Consider an unstable continuous-time system with the TFMs

Gu(s) =

⎡
⎢⎢⎣

s + 1

s − 2
s + 2

s − 3

⎤
⎥⎥⎦ , Gd(s) =

⎡
⎣

s − 1

s + 2

0

⎤
⎦ , Gw(s) = 0, Gf (s) =

⎡
⎢⎢⎣

s + 1

s − 2
0

s + 2

s − 3
1

⎤
⎥⎥⎦ ,

where as before, the fault f1 corresponds to an additive actuator fault, while f2 describes an additive
sensor fault in the second output y2, with the difference that the underlying system is unstable. The
TFM Gd(s) is non-minimum phase, having an unstable zero at 1.

At Step 1) of the Procedure EFD, a proper minimal left nullspace basis can be determined,
consisting of a single row vector, which we can choose, for example,
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Q1(s) =
[
0 1 − s + 2

s − 3

]
.

For the reduced system (5.11) computed at Step 1) we obtain

Rf (s) = Gf (s) =
[
s + 2

s − 3
1

]
,

which shows that according to Corollary 5.2 the EFDP has a solution. Since Q(s) = Q1(s) is
unstable, it must be suitably updated. With Q2(s) = 1 at Step 2) and Q3(s) = s−3

s+3 at Step 3) we
finally obtain

Q(s) =
[
0

s − 3

s + 3
− s + 2

s + 3

]
, Rf (s) =

[
s + 2

s + 3

s − 3

s + 3

]
.

The script Ex5_4 in Listing 5.1 solves the considered EFDP, by computing intermediary results
which differ from those of this example. The script Ex5_4c (not listed) is a compact version of
this script, which calls the function efdsyn, a prototype implementation of Procedure EFD. ♦

Listing 5.1 Script Ex5 4 to solve the EFDP of Example 5.4 using Procedure EFD
% Uses the Control Toolbox and the Descriptor System Tools

% define s as an improper transfer function
s = tf('s');
% define Gu(s), Gd (s), Gf (s)
Gu = [(s+1)/(s-2); (s+2)/(s -3)]; % enter Gu(s)
Gd = [(s -1)/(s+2); 0]; % enter Gd (s)
Gf = [(s+1)/(s-2) 0; (s+2)/(s-3) 1]; % enter Gf (s)
p = 2; mu = 1; md = 1; mf = 2; % set dimensions

% compute a left nullspace basis Q1 of [Gu Gd ; I 0 ] and Rf ,1 = Q1[Gf ; 0 ]
Q1 = glnull(ss([Gu Gd;eye(mu ,mu+md )]));
Rf1 = gir(Q1*[Gf;zeros(mu ,mf)]);

% check solvability using a random frequency
if min(abs(evalfr(Rf1 ,rand ))) > 0.01

% compute a stable left coprime factorization [Q1 Rf ,1 ] = Q−1
3 [Q Rf ]

% enforce stability degree -3
[Q_Rf ,Q3] = glcf([Q1 ,Rf1],struct('sdeg ',-3));
% extract Q and Rf

Q = Q_Rf (:,1:p+mu); Rf = Q_Rf(:,p+mu+1: end);
% normalize Q and Rf to match example
sc = evalfr(Rf(1,1),inf); Q = tf(Q/sc); Rf = tf(Rf/sc);

else
disp('No solution exists ')

end

5.3 Solving the Approximate Fault Detection Problem

Using the factorized representation Q(λ) = Q1(λ)Q1(λ) in (5.9) with Q1(λ) chosen
proper and stable, it follows thatQ(λ) solves the approximate fault detection problem
(AFDP) formulated in Sect. 3.5.2 for the system (3.2) if and only if Q1(λ) solves
the AFDP for the reduced system (5.11). By a suitable choice of Q1(λ) we can

http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
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always additionally enforce that both Gw(λ) and Gf (λ) in (5.11) are proper, which
will be assumed throughout this section. The solvability conditions of the AFDP for
the system (3.2) can be replaced by similar conditions for the reduced system (3.2)
according to the following corollary to Theorem 3.9:

Corollary 5.4 For the system (3.2) the AFDP is solvable if and only if the system
(5.11) is completely fault detectable, or equivalently, the following input observability
conditions hold

Gfj (λ) �= 0, j = 1, . . . ,mf .

We have seen in the proof of Theorem 3.9, that a solution of the AFDP can be
determined by solving the related EFDP with w ≡ 0, using, for example, Procedure
EFD. The usefulness of such a solution can be assessed in terms of the magnitudes
of the minimum size detectable fault inputs in the presence of noise inputs. While
for small noise levels such a solution may often be satisfactory, for large noise levels
a purposely designed fault detection filter, which maximizes the magnitudes of the
minimum size detectable fault inputs for the given class of noise inputs, usually
represents a better solution. Such a solution, which aims to maximize the sensitivity
of residual to faults and, simultaneously, to minimize the effects of noise on the
residual, can be targeted by solving a suitably formulated optimization problem.

Consider a fault detection filter Q(λ), in the general parameterized form (5.9),
which has the internal form

r(λ) := Rf (λ)f(λ) + Rw(λ)w(λ) .

Let γ > 0 be an admissible level for the effect of the noise signalw(t) on the residual
r(t), which can be imposed, for example, as

‖Rw(λ)‖2/∞ ≤ γ , (5.22)

where ‖ · ‖2/∞ denotes either the H2- or H∞-norm. The H2-norm corresponds to
the case when w(t) is a white noise signal, while theH∞-norm is better suited when
w(t) is an unknown signal with bounded energy (or power). The choice of γ usually
reflects the desired robustness of the fault detection filter to reject the noise. The
value γ = 0 can be used to formulate the EFDP as a particular AFDP. For γ > 0
it is always possible, via a suitable scaling of the filter, to use the normalized value
γ = 1.

As measures of the sensitivity of residuals to faults, several “indices” have been
proposed in the literature to characterize the least sensitivity in terms of Rf (λ). Such
an index, commonly denoted by ‖Rf (λ)‖−, has been defined in terms of the least
singular value (denoted by σ(·)) of the frequency response of Rf (λ) as

‖Rf (λ)‖− := inf
ω∈Ω

σ
(
Rf (ω)

)
, (5.23)

http://dx.doi.org/10.1007/978-3-319-51559-5_3
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where Ω ⊂ ∂Cs is a finite or infinite set of frequency values on the boundary of the
appropriate stability domain. In viewofDefinition 3.4 (see Sect. 3.3), the requirement
‖Rf (λ)‖− > 0 can be interpreted as a complete strong fault detectability condition. In
some works, the formulation of the AFDP involves the determination of a filterQ(λ)

which maximizes the index (5.23) such that the noise attenuation constraint (5.22)
is simultaneously fulfilled. This binding of the formulation of the AFDP to a partic-
ular optimization-based solution method is generally not desirable, since it imposes
additional constraints, usually of purely technical character, on the solvability of
the AFDP.While the satisfaction of such constraints guarantees the solvability of the
underlyingmathematical optimization problem, these conditions are usually not nec-
essary for the solvability of the AFDP (according to the formulation in Sect. 3.5.2).
Two inherent weaknesses in the definition of the index ‖Rf (λ)‖− worsen additionally
the solvability of the optimization-based formulation of the AFDP.

A first issue is that the index (5.23) is meaningful only when mf ≤ p, because
if mf > p, only the detectability of p out of mf faults can be assessed by this
index, mf − p singular values being null. It was argued that the case mf > p can
be addressed using a bank of filters, where each filter must be sensitive only to a
subset of maximal p faults. However, this leads to an unnecessary increase of the
global order of the resulting fault detection filter and therefore represents a strong
technical limitation for practical use. The second issue is rather of conceptual nature.
The definition (5.23) targets primarily the complete strong fault detectability aspect
(see Definition 3.4), and therefore appears to be less adequate to characterize the
weaker property of complete fault detectability (see Definition 3.2), which merely
requires that each column of Rf (λ) must be nonzero. While this property can be still
indirectly targeted, for example, by a suitable choice of Ω (e.g., Ω = {λ0} with λ0 a
representative frequency value at which Rfj (λ0) must be nonzero for j = 1, . . . ,mf ),
an alternative index, discussed in what follows, is better suited to address directly
the complete fault detectability aspect.

To overcome both these deficiencies, an alternative index will be used to charac-
terize fault sensitivity. This index is defined as

‖Rf (λ)‖2/∞− := min
1≤j≤mf

‖Rfj (λ)‖2/∞, (5.24)

where ‖ · ‖2/∞ stays for either ‖ · ‖2 or ‖ · ‖∞, while ‖ · ‖2/∞− stays for either ‖ · ‖2−
or ‖ · ‖∞− indices defined in terms of H2 or H∞ norms in (5.24), respectively. The
requirement ‖Rf (λ)‖2/∞− > 0 merely asks that all columns of Rfj (λ) are nonzero,
and therefore, the index ‖Rf (λ)‖2/∞− characterizes the complete fault detectability
(of an arbitrary number of faults) as defined in Definition 3.2. To characterize the
complete strong fault detectability with respect to Ω , the modified index ‖ · ‖Ω− can
be used, defined as

‖Rf (λ)‖Ω− := min
1≤j≤mf

{
inf
ω∈Ω

∥∥Rfj (ω)
∥∥
2

}
. (5.25)
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For a particular problem, a combination of the two indices (5.24) and (5.25) can
also be meaningful, by selecting for the j-th column of Rf (λ) either ‖Rfj (λ)‖2/∞− or
‖Rfj (λ)‖Ω− as a problem specific fault sensitivity measure.

Using the above definitions of the‖·‖2/∞− and‖·‖Ω− indices, several optimization
problems can be formulated to address the computation of a satisfactory solution of
the AFDP for the reduced system (5.11) with Gw(λ) and Gf (λ) proper, using the
parametrization (5.9) of the fault detection filter with stable Q1(λ). In what follows,
we only discuss one of the most popular formulations, the H∞−/H∞ synthesis,
for which we give a detailed computational procedure. The synthesis goal is to
determine Q1(λ) which maximizes the fault sensitivity for a given level of noise:
Given γ ≥ 0, determine the stable and proper optimal fault detection filter Q1(λ)

and the corresponding optimal fault sensitivity level β > 0 such that

β = max
Q1(λ)

{ ∥∥Q1(λ)Gf (λ)
∥∥∞−

∣∣ ∥∥Q1(λ)Gw(λ)
∥∥∞ ≤ γ

}
. (5.26)

An alternative formulation of an optimization-based solution, called the H∞/H∞−
synthesis, minimizes the effects of noise by imposing a certain fault sensitivity level:
Given β > 0, determine γ ≥ 0 and a stable and proper fault detection filter Q1(λ)

such that

γ = min
Q1(λ)

{ ∥∥Q1(λ)Gw(λ)
∥∥∞

∣∣ ∥∥Q1(λ)Gf (λ)
∥∥∞− ≥ β

}
. (5.27)

The two approaches may lead to different solutions, depending on the properties of
the underlying transfer function matrices and problem dimensions. For both cases,
the gap β/γ can be interpreted as a measure of the quality of fault detection. For
γ = 0, both formulations include the exact solution (i.e., of the EFDP for w ≡ 0)
and the corresponding gap is infinite.

Before we discuss the computational issues, we consider a simple example which
highlights the roles of fault and noise input signals when solving an AFDP.

Example 5.5 This is the same as Example 5.2, where we redefined the noise input w as d and thus
we have

Gu(s) =
⎡
⎢⎣

s + 1

s + 2
s + 2

s + 3

⎤
⎥⎦ , Gd(s) = 0, Gw(s) =

⎡
⎣ 1

s + 2
0

⎤
⎦ , Gf (s) =

⎡
⎣ s + 1

s + 2
0

0 1

⎤
⎦ .

A minimal basis is simply Nl(s) = [ I2 − Gu(s) ], which leads to Gw(s) = Gw(s) and Gf (s) =
Gf (s). This basis is in fact a solution of an EFDP in the case w ≡ 0. Thus, this solution can
be also employed to solve the AFDP, as pointed out in the proof of Theorem 3.9. To be useful
for practical purposes, a fault detection filter must provide reliable detection of all faults in the
presence of noise. This condition is evidently fulfilled by the fault input f2, since withQ(s) = Nl(s),
the second component of the residual r2 is simply r2 = f2, because there is no any interaction
between the noise input w and fault input f2. However, because f1 and w share the same input
space, the minimal detectable size of f1 will depend on the possible maximum size of noise input
w. Assume ‖w‖2 ≤ δw, thus for all w we have ‖Gw(s)w(s)‖2 ≤ ‖Gw(s)‖∞‖w(s)‖2 ≤ δw/2. Thus,

http://dx.doi.org/10.1007/978-3-319-51559-5_3
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the minimum size of detectable faults f1,min satisfies ‖Gf1 (s)f1,min(s)‖2 > δw/2. The solution of
this problem depends on the classes of faults considered. Assuming f1,min(s) = η/s (thus a step
input fault of amplitude η), the resulting asymptotic value of Gf1 (s)f1,min(s) is Gf1 (0)η = η/2. It
follows that we can reliably detect constant faults, provided their amplitude satisfies η > δw. More
generally, for step inputs in f1, the condition η > ‖Gw(s)‖∞δw/Gf1 (0)most be fulfilled for reliable
detection. Similar conditions can be established in the case of sinusoidal fault inputs. ♦

To solve the H∞−/H∞ optimization problem (5.26), we devise a synthesis pro-
cedure based on successive simplifications of the original problem by reducing it to
simpler problems with the help of a factorized representation of the fault detection
filter. We start with the factorized representation (5.9) of the fault detection filter
Q(λ), where Q1(λ) is a left nullspace basis of G(λ) in (5.2) and Q1(λ) has to be
determined. Let Gf (λ) and Gw(λ) be the TFMs of the reduced system (5.11) deter-
mined according to (5.12). We can immediately check the solvability conditions of
the AFDP of Corollary 5.2 as ‖Gf (λ)‖∞− > 0. Assume that this test indicates the
solvability of the AFDP. In this context, we introduce a useful concept to simplify the
presentation. A fault detection filter Q(λ) is called admissible if the corresponding
Rf (λ) satisfies ‖Rf (λ)‖∞− > 0 (i.e., it has all its columns nonzero).

Let q be the desired number of residual components. As in the case of an EFDP, if
a solution of the AFDP exists, then generally we can always use a scalar output fault
detection filter (thus choose q = 1). However, larger values of q can be advantageous,
because generally involve more free parameters which can be appropriately tuned. In
the proposed synthesis procedure (see Procedure AFD), the choice of q is restricted
to q ≤ rw ≤ p − rd , where rw := rankGw(λ) and rd := rankGd(λ). This choice
is, however, only for convenience, because it leads to a simpler synthesis procedure.
As shown in Remark 5.10, in practical applications q must only satisfy q ≤ p − rd ,
which limits q to the maximum number of left nullspace basis vectors of G(λ) in
(5.2) (i.e., the number of rows of Q1(λ)). This bound on q is the same as in the case
of solving the EFDP.

At the next step, we use a factorized representation ofQ1(λ) in the formQ1(λ) =
Q2(λ)Q2(λ), where the rw×(p−rd) factorQ2(λ) is determined such thatQ2(λ)Gw(λ)

has full row rank rw, and the productQ2(λ)Q1(λ) is admissible andhas leastMcMillan
degree. If this latter requirement is not imposed, then a simple choice is Q2(λ) = H,
whereH is a rw × (p− rd) full row rank constant matrix which ensures admissibility
(e.g., chosen as a randomly generatedmatrixwith orthonormal columns). This choice
corresponds to building Q2(λ)Q1(λ) as rw linear combinations of the left nullspace
basis vectors contained in the rows of Q1(λ).

At this stage, the optimization problem to be solved falls in one of two categories.
The standard case is whenQ2(λ)Gw(λ) has no zeros on the boundary of the stability
domain ∂Cs (i.e., on the extended imaginary axis in the continuous-time case, or
on the unit circle centred in the origin in the discrete-time case). The nonstandard
case corresponds to the presence of such zeros. This categorization can be easily
revealed at the next step, which also involves the computation of the respective
zeros. For the full row rank TFM Q2(λ)Gw(λ) we compute the quasi-co-outer–co-
inner factorization

Q2(λ)Gw(λ) = Gwo(λ)Gwi(λ), (5.28)
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where the quasi-co-outer factorGwo(λ) is invertible, having only stable zeros except-
ing possible zeros on the boundary of the stability domain, and Gwi(λ) is co-inner
(i.e., Gwi(λ)G∼

wi(λ) = I with G∼
wi(s) = GT

wi(−s) in the continuous-time case, and
G∼

wi(z) = GT
wi(1/z) in the discrete-time case).

We choose Q2(λ) = Q3(λ)Q3(λ), with Q3(λ) = G−1
wo (λ) and Q3(λ) to be deter-

mined. Using (5.10)–(5.12), the fault detection filter in (3.3) can be rewritten as

r(λ) = Q3(λ)Q3(λ)Q2(λ)y(λ) = Q3(λ)̃y(λ) , (5.29)

where
ỹ(λ) := Q3(λ)Q2(λ)y(λ) = G̃f (λ)f(λ) + Gwi(λ)w(λ) , (5.30)

with
G̃f (λ) := Q3(λ)Q2(λ)Gf (λ) . (5.31)

It follows, that Q3(λ) can be determined as the solution of

β = max
Q3(λ)

{ ∥∥Q3(λ)G̃f (λ)
∥∥∞−

∣∣ ∥∥Q3(λ)
∥∥∞ ≤ γ

}
, (5.32)

where we used that
∥∥Q3(λ)Gwi(λ)

∥∥∞ = ∥∥Q3(λ)
∥∥∞.

In the standard case, we can always ensure that both the partial filter defined by
the product of stable factors Q3(λ)Q2(λ)Q1(λ) and G̃f (λ) are stable. Thus, Q3(λ) is
determined as Q3(λ) = Q4, where Q4 is a constant matrix representing the optimal
solution of the reduced problem

β = max
Q4

{ ∥∥Q4G̃f (λ)
∥∥∞−

∣∣ ‖Q4‖∞ ≤ γ
}
,

such that the resulting detector Q(λ) = Q4Q3(λ)Q2(λ)Q1(λ) is admissible. For
square Q4(λ), Q4 = γ I is the simplest H∞−/H∞ optimal solution.

We give the following result without proof. For proofs in continuous- and discrete-
time, see [77, 78], respectively.

Theorem 5.2 For the reduced system (5.11) and with a suitable choice of Q2(λ)

assume that we have ‖Q2(λ)Gf (λ)‖∞− > 0, Q2(λ)Gw(λ) has full row rank and
Q2(λ)Gw(λ) has no zeros on the boundary of the stability domain. Then, for γ > 0
theH∞−/H∞ optimal solution of the optimization problem (5.26) is

Q1,opt(λ) := γG−1
wo (λ)Q2(λ) ,

where Gwo(λ) is the co-outer factor of the co-outer–co-inner factorization (5.28).

In the nonstandard case, both the partial detector Q̃(λ) := Q3(λ)Q2(λ)Q1(λ) and
G̃f (λ) can result unstable or improper due to the presence of poles on the boundary
of the stability domain in the factor Q3(λ) = G−1

wo (λ). In this case, we choose
Q3(λ) = Q5Q4(λ), where Q4(λ) results from a LCF with stable and proper factors

http://dx.doi.org/10.1007/978-3-319-51559-5_3
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[ Q̃(λ) G̃f (λ) ] = Q−1
4 (λ)[ Q̂(λ) Ĝf (λ) ] ,

while Q5 is a constant matrix which solves

β = max
Q5

{ ∥∥Q5Ĝf (λ)
∥∥∞−

∣∣ ‖Q5Q4(λ)‖∞ ≤ γ
}
.

SinceQ4(λ) can be always chosen diagonal and such that its diagonal elements have
H∞-norms equal to 1, this choice will significantly simplify the solution of the above
problem. For example, the choice Q5 = γ I is always a possibility to obtain a fault
detection filter.

Remark 5.7 The presence of unstable zeros of Gwo(λ) on the boundary of the sta-
bility domain prevents the computation of an “optimal” solution of the H∞−/H∞-
optimization problem. When solving practical applications, this apparent limitation
is superfluous, because the presence of these zeros represents in fact an advantage
rather than a disadvantage. For example, in the case of a continuous-time system, a
zero at infinity (e.g., in the case when the original Gw(s) is strictly proper) confers to
Gwo(s) a low-pass character as well, such that high-frequency noise will be attenu-
ated in the noise input channel. Similarly, a zero in the origin will cancel all constant
variations in the noise, thus will also attenuate slowly varying noise inputs. Finally,
a pair of conjugated zeros on the imaginary axis will attenuate all sinusoidal noise
signals of nearby frequencies. This behaviour is thus very similar to that of notch
filters, which are purposely included in the feedback loops to address disturbance
attenuation or rejection problems in control systems design. The above approach for
the nonstandard case simply copes with the presence of zeros on the boundary of the
stability domain. �

Remark 5.8 In the nonstandard case, we can alternatively regularize the problem
by replacing Gwo(λ) in (5.28) by Gwo,ε(λ), which, for ε > 0, is a minimum-phase
spectral factor satisfying

Gwo,ε(λ)G∼
wo,ε(λ) = ε2I + Gwo(λ)G∼

wo(λ) .

By choosing Q2(λ) = Q3(λ)Q3(λ) with Q3(λ) = G−1
wo,ε(λ), we arrive to the same

optimization problem (5.32) for Q3(λ) as for the standard case. The solution of the
AFDP along this line has been discussed in [52]. �

The dynamical order of the resulting residual generator in the standard case, is
the order of Q3(λ) if we choose Q4(λ) a constant matrix. This order results from
the conditions that Q2(λ)Gw(λ) has full row rank and Q2(λ)Q1(λ) has least-order
and is admissible (i.e., ‖Q2(λ)Gf (λ)‖∞− > 0). For each candidate Q2(λ), the corre-
sponding optimal Q3(λ) results automatically, but the different “optimal” detectors
for the same level γ of noise attenuation performance can have significantly differing
fault detection performance levels (measured via the optimal cost β). Finding the
best compromise between achieved order and the achieved performance (measured
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via the gap β/γ ), should take into account that larger orders and larger number of
detector outputs q potentially lead to better performance.

The Procedure AFD, given in what follows, allows the synthesis of least-order
fault detection filters to solve the AFDP employing anH∞−/H∞ optimization-based
approach. This procedure includes also theProcedureEFD in the casewhen an exact
solution exists. Similar synthesis procedures relying on alternative optimization-
based formulations (e.g., H∞−/H2, H2−/H∞, H2−/H2, HΩ−/H∞, HΩ−/H2 as
well as their finite frequency range counterparts) can be devised by only adapting
appropriately the last computational step of the Procedure AFD.

Procedure AFD: Approximate synthesis of fault detection filters
Inputs : {Gu(λ),Gd(λ),Gf (λ),Gw(λ)}, q, γ
Outputs: Q(λ), Rf (λ), Rw(λ), β

1) Compute a (p − rd) × (p + mu) minimal proper stable basis Q1(λ) for the left
nullspace of G(λ) defined in (5.2), where rd = rankGd(λ); set Q(λ) = Q1(λ)

and compute

[Rf (λ) Rw(λ) ] = Q1(λ)

[
Gf (λ) Gw(λ)

0 0

]
.

Exit if exists j ∈ {1, . . . ,mf } such that Rfj (λ) = 0 (no solution).
2) Compute rw = rankRw(λ); if rw = 0, set q1 = min(p−rd, q); else, set

q1 = rw; choose a q1 × (p−rd) rational matrix Q2(λ) such that Q2(λ)Q(λ)

is admissible, has least McMillan degree and, if rw > 0 then Q2(λ)Rw(λ)

has full row rank rw; compute Q(λ) ← Q2(λ)Q(λ), Rf (λ) ← Q2(λ)Rf (λ)

and Rw(λ) ← Q2(λ)Rw(λ).
3) If rw > 0, compute the quasi-co-outer–co-inner factorization

Rw(λ) = Rwo(λ)Rwi(λ), where the quasi-co-outer factor Rwo(λ) is
invertible and has only stable zeros, excepting possible zeros on the
boundary of the tability domain, and Rwi(λ) is co-inner; with Q3(λ) =
R−1
wo (λ) compute Q(λ) ← Q3(λ)Q(λ), Rf (λ) ← Q3(λ)Rf (λ) and

Rw(λ) ← Rwi(λ).
4) Compute Q4(λ) such that Q4(λ)Q(λ) and Q4(λ)Rf (λ) are proper and

stable; compute Q(λ) ← Q4(λ)Q(λ), Rf (λ) ← Q4(λ)Rf (λ), and
Rw(λ) ← Q4(λ)Rw(λ).

5) If rw > 0, choose Q5 ∈ Rmin(q,rw)×q1 such that ‖Q5Q4(λ)‖∞ = γ and
β = ‖Q5Rf (λ)‖∞− > 0; update Q(λ) ← Q5Q(λ), Rf (λ) ← Q5Rf (λ),
and Rw(λ) ← Q5Rw(λ); else, set β = ∞.

Remark 5.9 The threshold selection approach of Sect. 3.6 can be applied to deter-
mine a threshold value τ which guarantees the lack of false alarms. For any selected
value of the threshold τ , we can estimate for j = 1, . . . ,mf the magnitude δfj , of the
minimum size detectable fault fj �= 0, provided fk = 0 ∀k �= j. Consider the internal
representation of the resulting fault detection filter in the form

http://dx.doi.org/10.1007/978-3-319-51559-5_3
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r(λ) =
mf∑
j=1

Rfj (λ)fj(λ) + Rw(λ)w(λ) .

By using (3.39) in the frequency domain (via Plancherel’s theorem), δfj can be com-
puted from

2τ = inf
‖fj‖=δfj

‖Rfj (λ)fj(λ)‖2 = δfj‖Rfj (λ)‖Ω− ,

where we used the properties of the index defined in (5.25). Forw(t) having bounded
energy and satisfying ‖w‖2 ≤ δw, we obtain

δfj = 2‖Rw(λ)‖∞δw

‖Rfj (λ)‖Ω−
. (5.33)

The resulting value of δfj can be used to assess the “practical usefulness” of any
solution. A small value of ‖Rfj (λ)‖Ω− may indicate a large size of the minimal
detectable faults for a particular choice of Ω . Therefore, various alternative choices
ofΩ may be used to arrive tomore realistic estimates. For example,Ω can be defined
as a relevant interval of frequency values, or only a finite set of relevant frequencies
(e.g., the DC-gain frequency λs). �

Example 5.6 If we applyProcedureAFD to solve theH∞−/H∞ synthesis problem for the system
in Example 5.5, the resulting optimization problem is nonstandard, because Gw(s) has a zero at
infinity. Let choose γ = 1. At Step 1) we set Q1(s) = Nl(s), with Nl(s) determined in Example
5.5. We have that Rw(s) = Gw(s) and Rf (s) = Gf (s). Since each column of Rf (s) is nonzero, the
AFDP is solvable. Since rw = 1, at Step 2), we can employ a constant vector Q2(λ) = [ 1 1 ] to
obtain the updated quantities

Q(s) =
[
1 1 − 2s2 + 8s + 7

(s + 2)(s + 3)

]
, Rw(s) = 1

s + 2
, Rf (s) =

[
s + 1

s + 2
1

]
. (5.34)

At Step 3), the quasi-outer factor Gwo(s) is simply Rw(s) and, being strictly proper, has thus a zero
at infinity. With Q3(s) = R−1

w (s), the resulting Q(s) and Rf (s) are therefore improper. At Step 4),
we choose Q4(s) of unity H∞-norm of the form Q4(s) = a/(s + a) with a ≥ 2. For γ = 1 we
obtain at Step 5) with Q5 = 1 the final Q(s), Rf (s), and Rw(s)

Q(s) =
[
a
s + 2

s + a
a
s + 2

s + a
−a

2s2 + 8s + 7

(s + a)(s + 3)

]
, Rf (s) =

[
a
s + 1

s + a
a
s + 2

s + a

]
, Rw(s) = a

s + a
.

Since β = ‖Rf (s)‖∞− = a, it follows that β can be arbitrarily large, and thus the H∞−/H∞
problem (5.26) has no optimal solution. Although not optimal, the resulting fault detection filter can
be reliably employed for detecting faults, whose minimum amplitude is above a certain threshold.
The value of this threshold can be easily determined using information on the size and waveform
of the noise input.

http://dx.doi.org/10.1007/978-3-319-51559-5_3
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The script Ex5_6 in Listing 5.2 solves the AFDP considered in this example. ♦

Listing 5.2 Script Ex5 6 to solve the AFDP of Example 5.6 using Procedure AFD
% Uses the Control Toolbox and the Descriptor System Tools

% define s as an improper transfer function
s = tf('s');
% define Gu(s), Gw(s), Gf (s)
Gu = [(s+1)/(s+2); (s+2)/(s+3)]; % enter Gu(s)
Gw = [1/(s+2); 0]; % enter Gw(s)
Gf = [(s+1)/(s+2) 0; 0 1]; % enter Gf (s)
p = 2; mu = 1; mw = 1; mf = 2; % enter dimensions

tol = 1.e-7; % set tolerance for rank tests

% choose the left nullspace as Q = [ I − Gu ] and
% intialize Rf = Q[Gf ; 0 ] = Gf and Rw = Q[Gw; 0 ] = Gw

Q = ss([eye(p) -Gu]); Rf = ss(Gf); Rw = ss(Gw);

% compress Rw to a full row rank matrix
rw = rank(evalfr(Rw,rand )); nb = size(Q,1);
if rw < nb

h = ones(rw ,nb);
% may use alternatively h = rand(rw,nb);
Q = h*Q; Rf = h*Rf; Rw = h*Rw;

end

% compute the quasi-co-outer-co-inner factorization Rw = RwoRwi

[Rwi ,Rwo] = goifac(Rw ,tol);

% compute optimal filter (for standard case)
Q = gir(Rwo\Q,tol); % update Q ← R−1

woQ
Rf = gir(Rwo\Rf ,tol); Rw = Rwi; % update Rf ← R−1

woRf and Rw ← Rwi

% check for poles on the extended imaginary axis
poles = gpole ([Q Rf]);
if max(real(poles )) == inf || min(abs(real(poles ))) < 0.0001

% compute a stable and proper left coprime factorization
% of [Q Rf Rw ]; enforce stability degree -3
opts = struct('sdeg ',-3,'smarg ',-3);
[Q_Rf_Rw ,M] = glcf(gir([Q,Rf ,Rw],tol),opts);
% adjust denominator to unit infinity norm to match example
scale = -norm(M,inf);
Q = minreal(tf(Q_Rf_Rw (:,1:p+mu)/ scale ));
Rf = minreal(tf(Q_Rf_Rw (:,p+mu+1:p+mu+mf)/ scale ));
Rw = minreal(tf(Q_Rf_Rw (:,p+mu+mf+1: end)/ scale ));

end

Example 5.7 We solve the problem in Example 5.6 using the alternative approach suggested in
Remark 5.8. At Steps 1) and 2) we determine the same Q(s), Rw(s) and Rf (s) as in (5.34). The
quasi-outer factor is as before Gwo(s) = Rw(s) and is strictly proper, having thus a zero at infinity.
For ε > 0, we determineGwo,ε(s) such that Gwo,ε(s)G∼

wo,ε(s) = ε2 +Gwo(s)G∼
wo(s) and we obtain

Gwo,ε(s) = εs + √
1 + 2ε2

s + 2
.

With Q3(s) = G−1
wo,ε(s), the optimal solution of the problem (5.32) is Q3(s) = 1 for which the final

Q(s), Rf (s) and Rw(s) are
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Q(s) =
[

s + 2

εs + √
1 + 2ε2

s + 2

εs + √
1 + 2ε2

− 2s2 + 8s + 7

(εs + √
1 + 2ε2)(s + 3)

]
,

Rf (s) =
[

s + 1

εs + √
1 + 2ε2

s + 2

εs + √
1 + 2ε2

]
, Rw(s) = 1

εs + √
1 + 2ε2

.

Since β = ‖Rf (s)‖∞− = 1/ε, it follows that β becomes arbitrarily large as ε → 0. Although the
H∞−/H∞ problem (5.26) has no optimal solution, the resulting filter Q(s) can be acceptable for a
large range of values of ε. ♦

Example 5.8 If we solve the H∞/H∞− synthesis problem for Example 5.5, the optimal solution
Q(s) and the corresponding Rf (s) are simply

Q(s) = G−1
f (s)Nl(s) =

[ s+2
s+1 0 −1
0 1 − s+2

s+3

]
, Rf (s) =

[
1 0
0 1

]
,

which lead to the optimal values β = 1 and γ = 1. In contrast to the filter in Example 5.7, this filter
is optimal (in a certain sense) and able to perform fault isolation as well, by exactly reconstructing
fault f2 and approximately fault f1. ♦

Remark 5.10 The solution of the AFDP can be refined in the case when rw < p −
rd . In this case, it follows that there exists a left nullspace basis Nl,w(λ) such that
Nl,w(λ)Gw(λ) = 0, thus the noise input can be exactly decoupled. Also, there exists
a maximal subvector f (1) of fault inputs which are completely fault detectable (i.e.,
the columns of the corresponding Nl,w(λ)Gf (1) (λ) are nonzero), while none of the
components of its complementary part f (2) of f is fault detectable (i.e., all columns
of the corresponding Nl,w(λ)Gf (2) (λ) are zero), and thus are completely decoupled.
Here, we denoted with Gf (1) (λ) and Gf (2) (λ) the columns of Gf (λ) corresponding to
f (1) and f (2), respectively. This allows the partitioning of the reduced system (5.11)
as

y(λ) := Gf (1) (λ)f (1)(λ) + Gf (2) (λ)f (2)(λ) + Gw(λ)w(λ) . (5.35)

In general, we can construct Q1(λ) and Q(λ) in the forms

Q1(λ) =
[
Q

(1)
1 (λ)

Q
(2)
1 (λ)

]
, Q(λ) =

[
Q(1)(λ)

Q(2)(λ)

]
:=

[
Q

(1)
1 (λ)

Q
(2)
1 (λ)

]
Q1(λ), (5.36)

where Q
(1)
1 (λ) solves the EFDP for the reduced system (5.35) with respect to fault

components f (1) and decouples f (2) and w in the leading components r(1) of the

residual r, while Q
(2)
1 (λ) solves the AFDP for the reduced system (5.35) for the

fault components f (2) and generates the trailing components r(2) of the residual r.
The maximum number of components of r(1) is p − rd − rw, while r(2) will have
maximum rw components. Thus, the number of components of r is limited to p− rd .
The case f = f (1) corresponds to the solution of an EFDP for which Procedure EFD
can be used, while the case f = f (2) corresponds to the solution of an AFDP, for
which Procedure AFD can be used. �
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Example 5.9 Consider once again the solution of the H∞−/H∞ synthesis problem for Example
5.5. With Nl(s) chosen as in Example 5.5, we have that the rank of Gw(s) (or Rw(s) at Step
1) of Procedure AFD) is rw = 1. With Nl,w(s) = [

0 1
]
, we obtain Nl,w(s)Gw(s) = 0 and

Nl,w(s)Gf (s) = [
0 1

]
. Thus, with f (1) = f2, f (2) = f1 and

Gf (1) (s) :=
[
0
1

]
, Gf (2) (s) :=

⎡
⎣

s + 1

s + 2

0

⎤
⎦ ,

we arrive to the partitioned subsystem (5.35). We determine Q(s) in the partitioned form (5.36),
where the solution of the EFDP with the above Gf (2) (s) is simply

Q(1)(s) = Nl,w(s)Nl(s) =
[
0 1 − s + 2

s + 3

]
.

We determine Q(2)(s) by solving the AFDP formulated with Gf (1) (s) and Gw(s) using Procedure
AFD. With Q1(s) = Nl(s) chosen in Example 5.5 and Q2(s) = [

1 0
]
we obtain at Step 2)

Q(2)(s) =
[
1 0 − s + 1

s + 2

]
, Rw(s) = 1

s + 2
, Rf (2) (s) = s + 1

s + 2
.

With Q3(s) = R−1
w (s) at Step 3), Q4(s) = Q−1

3 (s) = Rw(s) at Step 4), and Q5 = 2 we obtain at
Step 5) for γ = 1 the final Q(2)(s) and corresponding Rf (2) (s)

Q(2)(s) =
[
2 0 −2

s + 1

s + 2

]
, Rf (2) (s) = 2

s + 1

s + 2
,

for which β = ‖Rf (2) (s)‖∞− = 2. The combined solutions according to (5.36) give

Q(s) =
[
Q(1)(s)
Q(2)(s)

]
=

⎡
⎢⎢⎣
0 1 − s + 2

s + 3

2 0 −2
s + 1

s + 2

⎤
⎥⎥⎦ , Rf (s) =

⎡
⎣ 0 1

2
s + 1

s + 2
0

⎤
⎦ .

The resulting filter is able to perform fault isolation as well, and even the exact reconstruction of the
fault f2. The optimal value β = 1 for γ = 1 is the same as for the “optimal” solution of Example 5.7.
However, since the exact solution Q(1)(s) can be arbitrarily scaled, the effective value of β is 2,
which is larger than for the “optimal” solution of Example 5.8. ♦

5.4 Solving the Exact Fault Detection
and Isolation Problem

Let S be a given nb × mf structure matrix to be achieved by the fault detection filter
Q(λ). Using the factorized representation Q(λ) = Q1(λ)Q1(λ) in (5.9), it follows
that, to solve the exact fault detection and isolation problem (EFDIP) formulated in
Sect. 3.5.3 for the system (3.2) with w ≡ 0, the same S must be achieved by Q1(λ)

for the reduced system (5.11) for w ≡ 0. For this, we consider Q1(λ) partitioned
with nb block rows, in the form

http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
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Q1(λ) =

⎡
⎢⎢⎢⎢⎣

Q
(1)
1 (λ)

Q
(2)
1 (λ)
...

Q
(nb)
1 (λ)

⎤
⎥⎥⎥⎥⎦ , (5.37)

where the i-th block row Q
(i)
1 (λ) generates the i-th component of the residual vector

r(i)(λ) := Q
(i)
1 (λ)y(λ) (5.38)

and achieves the i-th specification contained in the i-th row of S.
The solvability conditions of the EFDIP given in Theorem 3.10 (also explicitly

given in Theorem 3.5) can be replaced by simpler conditions for the reduced system
(5.11). This comes down to checking for i = 1, . . . , nb, the solvability conditions
for the i-th specification contained in the i-th row of S. For this purpose, we rewrite
for each i, i = 1, . . . , nb, the reduced system (5.11) for w ≡ 0 as

y(λ) = G
(i)
d (λ)d(i)(λ) + G

(i)
f (λ)f (i)(λ), (5.39)

where d(i) contains those components fj of f for which Sij = 0, f (i) contains those

components fj of f for which Sij �= 0, while G
(i)
d (λ) and G

(i)
f (λ) are formed from the

corresponding sets of columns of Gf (λ), respectively. Thus, d(i) contains all fault
components to be decoupled in the i-th component r(i) of the residual by the i-th

filter Q
(i)
1 (λ), while f (i) contains those faults which need to be detected in the i-th

component r(i) of the residual.
The following corollary to Theorem 3.10 provides the solvability conditions of

the EFDIP in terms of the nb reduced systems formed in (5.39):

Corollary 5.5 For the system (3.2) with w ≡ 0 and a given structure matrix S, the
EFDIP is solvable if and only if the system (5.11) with w ≡ 0 is S-fault isolable, or
equivalently, for i = 1, . . . , nb

rank [G(i)
d (λ) Gfj (λ) ] > rank G

(i)
d (λ), ∀j, Sij �= 0 ,

where G
(i)
d (λ) is formed from the columns Gfj (λ) of Gf (λ) for which Sij = 0.

In other words, to check the fault isolability for the i-th specification, we have simply
to check the complete fault detectability of the corresponding reduced system (5.39)
with permuted inputs.

A similar corollary to Theorem 3.11 provides the solvability condition for the
solution of the EFDIP with strong isolability.

http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
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Corollary 5.6 For the system (3.2) with w ≡ 0 and S = Imf , the EFDIP is solvable
if and only if the system (5.11) with w ≡ 0 is strongly fault isolable, or equivalently

rank Gf (λ) = mf .

To determine the i-th block row Q
(i)
1 (λ) of Q1(λ) in (5.37), we have to solve an

EFDP for the corresponding reduced system (5.39). For this purpose, the Procedure
EFD can be applied, which also checks the solvability conditions for the correspond-
ing specification. The resulting overall detector Q(λ) and the corresponding Rf (λ)

are

Q(λ) =

⎡
⎢⎢⎢⎣

Q(1)(λ)

Q(2)(λ)
...

Q(nb)(λ)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

Q
(1)
1 (λ)

Q
(2)
1 (λ)
...

Q
(nb)
1 (λ)

⎤
⎥⎥⎥⎥⎦Q1(λ), Rf (λ) =

⎡
⎢⎢⎢⎢⎣

R(1)
f (λ)

R(2)
f (λ)

...

R(nb)
f (λ)

⎤
⎥⎥⎥⎥⎦ , (5.40)

where the i-th block row R(i)
f (λ) achieves the i-th specification contained in the i-th

row of S.
The Procedure EFDI, given below, determines the nb row blocks Q(i)(λ) and

R(i)
f (λ), i = 1, . . . , nb, of Q(λ) and Rf (λ), respectively, with the i-th blocks having

the desired row dimension qi.

Procedure EFDI: Exact synthesis of fault detection and isolation filters

Inputs : {Gu(λ),Gd(λ),Gf (λ)}, S ∈ Rnb×mf , {q1, . . . , qnb}
Outputs: Q(i)(λ), R(i)

f (λ), i = 1, . . . , nb

1) Compute a (p − rd) × (p + mu) minimal basis matrix Q1(λ) for the
left nullspace of G(λ) defined in (5.2), where rd := rankGd(λ);

set Q(λ) = Q1(λ) and compute Rf (λ) = Q1(λ)

[
Gf (λ)

0

]
.

2) For i = 1, ..., nb

2.1) Define G
(i)
d (λ) as those columns Rfj (λ) of Rf (λ) for which Sij = 0 and

G
(i)
f (λ) as those columns Rfj (λ) for which Sij �= 0.

2.2) Apply the Procedure EFD to the system described by the quadruple

{0,G(i)
d (λ),G

(i)
f (λ), 0} to obtain the qi × (p − rd) least-order filter

Q
(i)
1 (λ). Exit if no solution exists.

2.3) Compute Q(i)(λ) = Q
(i)
1 (λ)Q(λ) and R(i)

f (λ) = Q
(i)
1 (λ)Rf (λ).

This synthesis procedure ensures that each block Q
(i)
1 (λ) and the corresponding

R(i)
f (λ) are stable. Thus the overall Rf (λ) in (5.40) is also stable. The stability of

overall Q(λ) in (5.40) can be always ensured, by choosing a stable left nullspace

http://dx.doi.org/10.1007/978-3-319-51559-5_3
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basisQ1(λ) at Step 1). As it will be shown in Sect. 7.4, this is not necessary, because

the computation of both Q(i)(λ) = Q
(i)
1 (λ)Q(λ) and R(i)

f (λ) = Q
(i)
1 (λ)Rf (λ) at Step

2.3) can be done by using state-space representation based updating techniques,
which always guarantee that Q(i)(λ) and R(i)

f (λ) have the state-space representations
with the same state and descriptor matrices, and result simultaneously stable.

The applicability of Procedure EFDI for a given system relies on the assump-
tion that the structure matrix S is achievable. Therefore, to select a minimal set of
specifications which cover all expected fault combinations, it is important to know
all achievable specifications for a given system. For a system with mf faults, the
complete set of possible distinct specifications contains 2mf − 1 elements. Thus, a
brute force approach is based on an exhaustive search, by trying to solve the EFDIP
for each of these specifications to find out which specifications are feasible (i.e., the
corresponding design was successful). The main problem with this approach is its
lack of efficiency, as explained in what follows.

Each synthesis problem of a fault detection filter for a given specification can
be reformulated as a standard EFDP, where all faults with zero signatures in the
checked specification are redefined as disturbances.With this reformulation, themain
computation is the determination of the nullspace basis of a TFM with p + mu rows
andmu +md + k columns, where k denotes the number of null elements in the tested
specification (i.e., 0 ≤ k < mf ) and represents the number of additional disturbance
inputs which results by recasting the fault inputs to be decoupled as disturbances.
The nullspace computation must be performed for all 2mf −1 possible specifications,
although this may not be necessary ifmf > p− rd , where we recall that rd is the rank
of Gd(λ). In what follows, we describe a more efficient approach, where the product
representation of nullspace, mentioned in Sect. 5.1, is systematically exploited. The
expected efficiency gain arises by replacing the above nullspace computations on
matrices with p + mu rows and at least mu + md columns, with a succession of
nullspace determinations on single columnmatrices with decreasing number of rows.
This leads to a significant reduction of the total computational burden.

We now describe a recursive procedure to generate in a systematic and computa-
tionally efficient way suitable nullspace bases to serve for the determination of all
achievable specifications.We illustrate the core computation with two generic pe×m
and pe×mf TFMsG(λ) andF(λ), respectively. The basic computational step consists
of successively determining left nullspace basesNl(λ) ofG(λ) (i.e.,Nl(λ)G(λ) = 0)
such that the structurematrix ofNl(λ)F(λ)has up tomin(mf , pe−r)−1 zero columns,
where r = rankG(λ). To initialize the procedure for the system (2.1), we initialize
these TFMs as

G(λ) =
[
Gu(λ) Gd(λ)

Imu 0

]
, F(λ) =

[
Gf (λ)

0

]
, (5.41)

with pe = p + mu and m = mu + md .

http://dx.doi.org/10.1007/978-3-319-51559-5_7
http://dx.doi.org/10.1007/978-3-319-51559-5_2
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Fig. 5.1 Tree of performed
computations of fault
specifications

To describe the nullspace generation process in more details, let N0
l (λ) be the

(pe − r)× pe proper minimal left nullspace basis of G(λ) and let SF0 be the structure
matrix of F0(λ) := N0

l (λ)F(λ). This structure matrix is a 1 × mf row vector corre-
sponding to F0(λ) seen as an 1×mf block row (see the definition of structure matrix
in (3.17) based on (3.16)), with the (1, j)-th block row element formed of the j-th
column of F0(λ). If min(mf , pe − r) > 1, then for each i = 1, . . . ,mf , determine
the left nullspace basis Ni

l (λ) of the i-th column of F0(λ) and let SFi be the structure
matrix corresponding to Fi(λ) := Ni

l (λ)F0(λ). Each SFi is a 1×mf row vector with
the i-th column element equal to zero. If the i-th column is zeroed with Ni

l (λ), then
Ni
l (λ) is a (pe − r − 1)× (pe − r) TFM. If now pe − r − 1 > 1, we continue by com-

puting for each j-th column of Fi(λ), j > i, the corresponding left nullspace Nj,i
l (λ)

and the corresponding structure matrix SFj,i ofFj,i(λ) := Nj,i
l (λ)Fi(λ). Each SFj,i will

have zeros in its i-th and j-th columns. This process continues in a similar way until
all nonzero SFk,...,j,i have been generated. The resulting S is formed by concatenating
row-wise the determined SF0 , SF1 , . . ., SFmf , SF2,1 , . . ., SFmf ,1 , . . ., SFmf ,mf −1 , . . .. The
tree in Fig. 5.1 illustrates the performed computations for a system with mf = 3 and
pe − r = 3.

If we denote with S the matrix formed of all achievable specifications, then, for
the considered example, we have S = [ STF0 STF1 STF2,1 STF3,1 STF2 STF3,2 STF3 ]T , where
each SFi has the i-th column zero, while each SFj,i has the i-th and j-th columns zero.
Note that in nongeneric cases, other elements may also be zero. It can be observed
that the computation of F1,2(λ) is not necessary because the same information is
provided by F2,1(λ). Similarly, the computation of both F1,3(λ) and F2,3(λ) is not
necessary, because the corresponding information is provided byF3,1(λ) andF3,2(λ),
respectively.

The computational process can be easily formulated as a recursive procedure,
which for the given matrices G(λ) and F(λ), computes the maximally achievable
structure matrix S. This procedure can be formally called as S = GENSPEC(G,F).

http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
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For example, the maximally achievable structure matrix for the system (2.1) can be
computed with G(λ) and F(λ) defined in (5.41).

Procedure GENSPEC: Generation of achievable fault specifications

Inputs : G(λ) ∈ R(λ)pe×m, F(λ) ∈ R(λ)pe×mf

Output: S ∈ Rq×mf

Function S = GENSPEC(G,F)

1) Compute a left nullspace basis Nl(λ) of G(λ).
Exit with S = ∅ if Nl(λ) is empty.

2) Compute Nf (λ) = Nl(λ)F(λ).
3) Compute the structure matrix S of Nf (λ). Exit if Nf (λ) is a row vector.
4) For i = 1, . . . ,mf

4.1) Form G̃i(λ) as column i of Nf (λ).
4.2) Form F̃i(λ) from columns 1, . . . , i − 1, i + 1, . . . ,mf of Nf (λ).
4.3) Call S̃ = GENSPEC

(
G̃i, F̃i

)
.

4.4) Partition S̃ = [ S̃1 S̃2 ] such that S̃1 has i − 1 columns.

4.5) Define Ŝ = [ S̃1 0 S̃2 ] and update S ←
[
S
Ŝ

]
.

The Procedure GENSPEC performs the minimum number of nullspace com-
putations and updating. This number is given by kS = ∑imax

i=0

(mf

i

)
, where imax =

min(mf , pe − r) − 1 and r is the rank of the initial G(λ). As it can be observed, kS
depends on the number of initial basis vectors pe−r and the number of faultsmf , and,
although the number of distinct specifications can be relatively low, still kS can be a
large number. For the example considered above, mf = 3 and pe − r = 3, thus the
maximum number kS = 7(= 2mf − 1) nullspace computations are necessary. How-
ever, in contrast to the brute force approach, all but one of nullspace computations
are performed for rational matrices with a single column (and varying number of
rows), and therefore a substantial saving in the computation effort can be expected.

Example 5.10 Consider a continuous-time system with triplex sensor redundancy on one of its
measured output components, which we denote by y1, y2 and y3. Each output is related to the
control and disturbance inputs by the input–output relation

yi(s) = Gu(s)u(s) + Gd(s)d(s), i = 1, 2, 3,

where Gu(s) and Gd(s) are 1 × mu and 1 × md TFMs, respectively. We assume all three outputs
are susceptible to additive sensor faults. Thus, the input–output model of the system has the form

y(s) :=
⎡
⎣ y1(s)
y2(s)
y3(s)

⎤
⎦ =

⎡
⎣Gu(s)
Gu(s)
Gu(s)

⎤
⎦ u(s) +

⎡
⎣Gd(s)
Gd(s)
Gd(s)

⎤
⎦ d(s) +

⎡
⎣ f1(s)
f2(s)
f3(s)

⎤
⎦ .

The maximal achievable structure matrix obtained by applying the Procedure GENSPEC is

http://dx.doi.org/10.1007/978-3-319-51559-5_2
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Smax =

⎡
⎢⎢⎣
1 1 1
0 1 1
1 0 1
1 1 0

⎤
⎥⎥⎦ .

If we can assume that no simultaneous sensor failures occur, then we can target to solve a EFDIP
for the structure matrix

S =
⎡
⎣ 0 1 1
1 0 1
1 1 0

⎤
⎦ ,

where the columns of S codify the desired fault signatures.
By using the Procedure EFDI, we compute first a left nullspace basis Nl(s) of

G(s) =

⎡
⎢⎢⎣
Gu(s) Gd(s)
Gu(s) Gd(s)
Gu(s) Gd(s)
1 0

⎤
⎥⎥⎦ ,

in a product form similar to (5.5). We obtain

Nl(s) =
[
1 −1 0
0 1 −1

] ⎡
⎣ 1 0 0 −Gu(s)
0 1 0 −Gu(s)
0 0 1 −Gu(s)

⎤
⎦ =

[
1 −1 0 0 · · · 0
0 1 −1 0 · · · 0

]
. (5.42)

We set Q1(s) = Nl(s) and

Rf (s) =
[
1 −1 0
0 1 −1

]
. (5.43)

For example, to achieve the first specification
[
0 1 1

]
, we redefine f1 as a disturbance d(1) := f1

to be decoupled, f (1) := [ f2 f3 ]T , G(1)
d (s) as the first column of Rf (s) and G

(1)
f (s) as the last two

columns of Rf (s). With Procedure EFD we obtain Q
(1)
1 (s) = [ 0 1 ] (as a constant basis of the left

nullspace of G
(1)
d (s)). Thus, the first row of the overall filter Q(s) is given by

Q(1)(s) = Q
(1)
1 (s)Q1(s) = [

0 1 −1 0 · · · 0 ]
.

The corresponding residual component is simply

r1 = y2 − y3 = f2 − f3 ,

which is fully decoupled from f1. Similarly, with Q
(2)
1 (s) = [−1 − 1 ] and Q

(3)
1 (s) = [ 1 0 ] we

obtain
Q(2)(s) = Q

(2)
1 (s)Q1(s) = [ −1 0 1 0 · · · 0 ]

and
Q(3)(s) = Q

(3)
1 (s)Q1(s) = [

1 −1 0 0 · · · 0 ]
.

The TFM of the overall FDI filter is

Q(s) =
⎡
⎣Q(1)(s)
Q(2)(s)
Q(3)(s)

⎤
⎦ =

⎡
⎣ 0 1 −1 0 · · · 0

−1 0 1 0 · · · 0
1 −1 0 0 · · · 0

⎤
⎦ (5.44)

and the overall residual vector is
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r =
⎡
⎣ r1
r2
r3

⎤
⎦ :=

⎡
⎣ y2 − y3
y3 − y1
y1 − y2

⎤
⎦ =

⎡
⎣ 0 1 −1

−1 0 1
1 −1 0

⎤
⎦

⎡
⎣ f1
f2
f3

⎤
⎦ .

This fault detection filter implements the widely employed voting-based fault isolation scheme for
the case when the assumption of a single sensor fault at a time is fulfilled. Its main appeal is its
independence of the system dynamics. Thus the constant filter (5.44) can be applied even in the case
of a system with nonlinear dynamics. Since parametric variations have no effects on the residuals, a
perfect robustness of this scheme is guaranteed. However, for applications to safety critical systems,
the voting scheme is potentially unreliable, in the (improbable) case of two simultaneous failures
with a common value of faults (e.g., f2 = f3 �= 0). In such a case, the faults remain undetected, and
often the common fault value is wrongly used as the “valid” measurement.

The script Ex5_10 in Listing 5.3 solves the EFDIP considered in this example. The script
Ex5_10c (not listed) is a compact version of this script, which calls the function efdisyn, a
prototype implementation of Procedure EFDI. ♦

Listing 5.3 Script Ex5 10 to solve the EFDIP of Example 5.10 using Procedure EFDI
% Uses the Control Toolbox and the Descriptor System Tools

% enter output and fault vector dimensions
p = 3; mf = 3;
% generate random dimensions for system order and input vectors
nu = floor (1+4* rand); mu = floor (1+4* rand);
nd = floor (1+4* rand); md = floor (1+4* rand);
% define random Gu(s) and Gd (s) with triplex sensor redundancy
% and Gf (s) for triplex sensor faults
Gu = ones (3 ,1)* rss(nu ,1,mu); % enter Gu(s) in state-space form
Gd = ones (3 ,1)* rss(nd ,1,md); % enter Gd (s) in state-space form
Gf = eye (3); % enter Gf (s) for sensor faults
tol = 1.e-7; % tolerance for rank tests

% build model with faults
sysf = [Gu Gd Gf];

% set input groups
sysf.InputGroup.controls = 1:mu; % controls
sysf.InputGroup.disturbances = mu+(1:md); % disturbances
sysf.InputGroup.faults = mu+md+(1:mf); % faults

S = [ 0 1 1; 1 0 1; 1 1 0]; % enter structure matrix

% Procedure EFDI

% Step 1): compute Q1, the left nullspace of [ Gu Gd ; I 0 ]
% Rf ,1 = Q1[ Gf ; 0 ]; the resulting QRf contains [Q1 Rf ,1 ]
options_glnull=struct('tol ',tol ,'m2 ',mf);
QRf = glnull ([sysf; eye(mu ,mu+md+mf)], options_glnull );

% Step 2): determine the filters Q(i) and corresponding R(i)
f

% initialization
nb = size(S,1); % number of necessary filters nb
Qt = cell(nb ,1); Rft = cell(nb ,1);
% options for EFDSYN for the synthesis of scalar output filters
options = struct('tol ',tol ,'rdim ',1);
QRf.InputGroup.aux = 1:p+mu+mf ; % indices of [Q1 Rf ,1 ]
for i = 1:nb

% Step 2.1): Define Gd(i) as Rf ,1(:, indd) and Gf (i) as Rf ,1(:, indf )
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indd = find(S(i,:) == 0); indf = find(S(i,:) ~= 0);
QRf.InputGroup.disturbances = p+mu+indd; % indices of Gd(i)

QRf.InputGroup.faults = p+mu+indf; % indices of Gf (i)

% Step 2.2): Apply Procedure EFD to {0,Gd(i) ,Gf (i) , [Q1 Rf ,1 ]}
% to determine a least-order Q(i)

1 such that Q(i)
1 Gd(i) = 0

% and the DC-gain of Q(i)
1 Gf (i) has all columns nonzero;

% the resulting QRfauxi contains: [Q(i)
1 Gf (i) Q(i)

1 Q1 Q(i)
1 Rf ,1 ]

[~,QRfauxi] = efdsyn( QRf , options );

QRfi = QRfauxi(:,'aux '); % extract [Q(i)
1 Q1 Q(i)

1 Rf ,1 ]
QRfi.InputGroup.aux = []; % clear auxiliary input group

% Step 2.3): extract Q(i) = Q(i)
1 Q1 and R(i)

f = Q(i)
1 Rf ,1

Qt{i} = QRfi (:,1:p+mu);
Rft{i} = QRfi(:,p+mu+(1:mf));

end

% normalize Q(i) and R(i)
f to match example

scale = sign([ Rft {1}.d(1,2) Rft {2}.d(1,3) Rft {3}.d(1 ,1)]);
for i = 1:3, Qt{i} = scale(i)*Qt{i}; Rft{i} = scale(i)*Rft{i}; end
Q = [Qt{1};Qt{2};Qt{3}], Rf = [Rft {1}; Rft {2}; Rft {3}]

5.5 Solving the Approximate Fault Detection
and Isolation Problem

Let S be a given nb×mf structurematrix targeted to be achieved by the fault detection
filter Q(λ). Using the factorized representation Q(λ) = Q1(λ)Q1(λ) in (5.9), it
follows that, to solve the approximate fault detection and isolation problem (AFDIP)
formulated in Sect. 3.5.4, the same S has to be targeted by any Q1(λ), which solves
the AFDIP for the reduced system (5.11). For this, we consider Q1(λ) partitioned

with nb block rows, in the form (5.37), where the i-th block rowQ
(i)
1 (λ) generates the

i-th component r(i) of the residual vector r according to (5.38) and targets to achieve
the i-th specification contained in the i-th row of S.

The solvability conditions of the AFDIP given in Theorems 3.12 and 3.13 can
be replaced by simpler conditions for the reduced system (5.11). This comes down
to checking for i = 1, . . . , nb, the solvability conditions for the i-th specification

contained in the i-th row of S. To determine the filter Q
(i)
1 (λ), an AFDP can be

formulated for each i, by suitably redefining the disturbance, fault and noise inputs
of the reduced system (5.11).

The reduced system (5.11) can be rewritten for each i = 1, . . . , nb, in the form

y(λ) = G
(i)
d (λ)d(i)(λ) + G

(i)
f (λ)f (i)(λ) + Gw(λ)w(λ) , (5.45)

where d(i) contains those components fj of f for which Sij = 0, f (i) contains those

components fj of f for which Sij �= 0, while G
(i)
d (λ) and G

(i)
f (λ) are formed from

http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
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the corresponding sets of columns of Gf (λ), respectively. The vector f (i) contains all
faults which need to be detected in the i-th component r(i) of the residual.

In the case when the AFDIP is formulated to fulfill the weaker conditions (3.28),
d(i) contains all fault components which have to be approximately decoupled in the

i-th component r(i) of the residual by the i-th filter Q
(i)
1 (λ), and therefore, d(i) have

to be treated as additional noise inputs. The following corollary to Theorem 3.12
provides the solvability conditions of the AFDIP in terms of the reduced system
(5.11) for an arbitrary structure matrix S (see also Remark 3.10):

Corollary 5.7 For the system (3.2) and a given nb × mf structure matrix S with
columns Sj, j = 1, . . . ,mf , the AFDIP is solvable with conditions (3.28) if and only
if the reduced system (5.11) is fault input observable for all faults fj corresponding
to nonzero columns of S, or equivalently,

Gfj (λ) �= 0 ∀j, Sj �= 0 .

In the case when the AFDIP is formulated to fulfill the stronger conditions (3.29),
d(i) contains all fault components to be exactly decoupled in the i-th component r(i)

of the residual by the i-th filter Q
(i)
1 (λ). The following corollary to Theorem 3.13

provides the solvability conditions of the AFDIP in terms of the reduced system
(5.11):

Corollary 5.8 For the system (3.2) and a given structure matrix S, the AFDIP is
solvable with conditions (3.29) if and only if the reduced system (5.11) is S-fault
isolable, or equivalently, for i = 1, . . . , nb

rank [G(i)
d (λ) Gfj (λ) ] > rank G

(i)
d (λ), ∀j, Sij �= 0 ,

where G
(i)
d (λ) is formed from the columns Gfj (λ) of Gf (λ) for which Sij = 0.

To determine Q
(i)

(λ) we can always try first to achieve the i-th specification
exactly, by applying the Procedure AFD (see Sect. 5.3) to solve the AFDP for the

reduced system (5.45), and determine a least-order fault detection filter Q
(i)

(λ) in
(5.38) which fully decouples d(i)(t). If the AFDP for the reduced system (5.45) is not
solvable, then the Procedure AFD can be applied to solve the AFDP for the same
reduced system (5.45), but with the disturbance inputs d(i)(t) redefined as additional
noise inputs.

The Procedure AFDI, given below, determines for a given nb × mf structure
matrix S, a bank of nb least-order fault detection filters Q(i)(λ), i = 1, . . . , nb, which
solve the AFDIP. Additionally, the block rows of Rf (λ) and Rw(λ) corresponding to
Q(i)(λ) are determined as

R(i)
f (λ) := Q(i)(λ)

[
Gf (λ)

0

]
, R(i)

w (λ) := Q(i)(λ)

[
Gw(λ)

0

]
.

http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
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The existence conditions for the solvability of the AFDIP are implicitly tested when
applying the Procedure AFD to solve the appropriate AFDP for the system (5.45),
with specified number of components qi of r(i) and noise signal gain level γ . For
each filter Q(i)(λ), the achieved fault sensitivity level βi is also computed by the
Procedure AFD.

Procedure AFDI: Approximate synthesis of FDI filters

Inputs : {Gu(λ),Gd(λ),Gw(λ),Gf (λ)}, S ∈ Rnb×mf , {q1, . . . , qnb}, γ
Outputs: Q(i)(λ), R(i)

f (λ), R(i)
w (λ), βi, i = 1, . . . , nb

1) Compute a (p − rd) × (p + mu) minimal basis matrix Q1(λ) for the left
nullspace of G(λ) defined in (5.2), where rd := rank Gd(λ);

set Q(λ) = Q1(λ) and compute [Rf (λ) Rw(λ) ] = Q1(λ)

[
Gf (λ) Gw(λ)

0 0

]
.

2) For i = 1, ..., nb

2.1) Form G
(i)
d (λ) from the columns Rfj (λ) for which Sij = 0 and G

(i)
f (λ)

from the columns Rfj (λ) for which Sij �= 0.
2.2) Apply Procedure AFD to the system described by the quadruple

{0,G(i)
d (λ),G

(i)
f (λ),Rw(λ)} to obtain the qi×(p−rd) least-order filter

Q
(i)
1 (λ) and βi. Go to Step 2.4) if successful.

2.3) Apply Procedure AFD to the system described by the quadruple

{0, 0,G(i)
f (λ),

[
Rw(λ) G

(i)
d (λ)

]} to obtain the qi × (p− rd) least-order

filter Q
(i)
1 (λ) and βi. Exit if no solution exists.

2.4) Compute Q(i)(λ) = Q
(i)
1 (λ)Q(λ), R(i)

f (λ) = Q
(i)
1 (λ)Rf (λ) and

R(i)
w (λ) = Q

(i)
1 (λ)Rw(λ).

Remark 5.11 For the selection of the threshold τi for the component r(i)(t) of the
residual vector we can use a similar approach to that described in Remark 5.9. To
determine the false alarm boundwe can use the corresponding internal representation
of the resulting i-th fault detection filter in the form

r(i)(λ) = R(i)
f (λ)f(λ) + R(i)

w (λ)w(λ) . (5.46)

If we assume, for example, a bounded energy noise input w(t) such that ‖w‖2 ≤ δw,
then the false alarm bound τ

(i)
f for the i-th residual vector component r(i)(t) can be

computed as
τ

(i)
f = sup

‖w‖2≤δw

‖R(i)
w (λ)w(λ)‖2 = ‖R(i)

w (λ)‖∞δw . (5.47)

However, by simply setting τi = τ
(i)
f , we can only detect the presence of a fault

in any of the components of f , but we ignore the additional structural information
needed for fault isolation. Therefore, we need to take into account the partition of
the components of f into two distinct vectors, namely f (i), which contains those
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components fj of f for which Sij = 1 (i.e., the faults to be detected in r(i)) and
f̄ (i), which contains those components fj of f for which Sij = 0 (i.e., the faults to
be decoupled from r(i)). By denoting R(i)

f (i) (λ) and R(i)
f̄ (i) (λ) the columns of R(i)

f (λ)

corresponding to f (i) and f̄ (i), respectively, we can rewrite (5.46) in the form

r(i)(λ) = R(i)
f (i) (λ)f (i)(λ) + R(i)

f̄ (i) (λ)f̄ (i)(λ) + R(i)
w (λ)w(λ) . (5.48)

If we assume, for example, a bounded energy noise input w(t) such that ‖w‖2 ≤ δw
and, similarly, a bounded energy fault input f̄ (i)(t) such that ‖f̄ (i)‖2 ≤ δf̄ (i) , then the

false alarm bound for isolation τ
(i)
fi for the i-th residual vector component r(i)(t) can

be bounded as follows:

τ
(i)
fi = sup

‖w‖2≤δw

‖f̄ (i)‖2≤δf̄ (i)

‖R(i)
f̄ (i) (λ)f̄ (i)(λ) + R(i)

w (λ)w(λ)‖2

≤ ‖R(i)
f̄ (i) (λ)‖∞δf̄ (i) + ‖R(i)

w (λ)‖∞δw := τ̃
(i)
fi . (5.49)

The setting of the threshold τi = τ̃
(i)
fi ensures no false isolation alarms due to faults

occurring in f̄ (i). A somewhat smaller (i.e., less conservative) threshold can be used if
additionally the information on themaximumnumber of faults which simultaneously
may occur is included in bounding ‖R(i)

f̄ (i) (λ)f̄ (i)(λ)‖2. Note that if the i-th specification
(coded in the i-th row of the structure matrix S) has been exactly achieved at Step
2.2) of the Procedure AFDI, then R(i)

f̄ (i) (λ) = 0 and therefore τ
(i)
f = τ

(i)
fi = τ̃

(i)
fi . In

this case we can set the threshold to the lowest value τi = τ
(i)
f (i.e., the false alarm

bound).
The least size δ

(i)
fj

of the fault fj which can be detected in r(i) for Sij = 1, can be
estimated similarly as done in Remark 5.9 (see (5.33))

δ
(i)
fj

= 2‖R(i)
w (λ)‖∞δw

‖R(i)
fj

(λ)‖Ω−
, (5.50)

where Ω is a given set of relevant frequency values. Overall, δfj , the least size of the
isolable fault fj, can be defined as

δfj := min
i∈Ij

δ
(i)
fj

,

where Ij := {i : i ∈ {1, . . . , nb} ∧ Sij = 1}. �

Example 5.11 Consider the solution of the AFDIP for the system

Gu(s) =

⎡
⎢⎢⎣

s + 1

s + 2
s + 2

s + 3

⎤
⎥⎥⎦ , Gd(s) = 0, Gw(s) =

⎡
⎣

1

s + 2

0

⎤
⎦ , Gf (s) =

⎡
⎣

s + 1

s + 2
0

0 1

⎤
⎦
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used also in Examples 5.5 and 5.8. At Step 1) of the Procedure AFDI, we compute a minimal left
nullspace basis of G(λ) defined in (5.2) as Q1(s) = [ I2 −Gu(s) ], which leads to Rw(s) = Gw(s)
and Rf (s) = Gf (s). By inspecting Rf (s) it follows that the strong isolability condition is fulfilled
(i.e., rankRf (s) = 2), thus we can target to solve an AFDIP with S = I2.

To achieve the specification in the first row of S, we define the reduced model (5.45) with

G
(1)
d (s) = Rf2 (s) and G

(1)
f (s) = Rf1 (s). We can apply the Procedure AFD to solve the AFDP for

the quadruple {0,G(1)
d (s),G

(1)
f (s),Rw(s)}. At Step 1) we compute a left nullspace basis of G

(1)
d (s)

as Q(1)
1 (s) = [

1 0
]
and determine

R(1)
w (s) := Q(1)

1 (s)Rw(s) = 1

s + 2
, R(1)

f (s) := Q(1)
1 (s)Rf1 (s) = s + 1

s + 2
.

Since R(1)
f (s) �= 0, it follows that the EFDP, and therefore also the AFDP has a solution according to

Theorem 3.9. At Step 2) we takeQ(1)
2 (s) = 1 and at Step 3), the quasi-co-outer factorGwo(s) is sim-

ply R(1)
w (s), which is strictly proper and, thus, has a zero at infinity. WithQ(1)

3 (s) = (
R(1)
w (s)

)−1, the

resulting Q̃(1)(s) := Q(1)
3 (s)Q(1)

2 (s)Q(1)
1 (s) and R̃(1)

f (s) := Q(1)
3 (s)Q(1)

2 (s)Q(1)
1 (s)Rf1 (s) are therefore

improper. At Step 4), we choose Q(1)
4 (s) of unity H∞-norm of the form Q(1)

4 (s) = a/(s + a) with

a ≥ 1, such that Q(1)
4 (s)[ Q̃(1)(s) R̃(1)

f (s) ] is stable and proper. For γ = 1 we obtain at Step 5) with

Q(1)
5 = 1 the final Q

(1)
(s) as

Q
(1)

(s) = Q(1)
5 (s)Q(1)

4 (s)Q(1)
3 (s)Q(1)

2 (s)Q(1)
1 (s) =

[
a(s + 2)

s + a
0

]
.

At Step 2.4) of Procedure AFDI we obtain

Q(1)(s) = Q
(1)

(s)Q1(s) =
[

a(s + 2)

s + a
0 −a(s + 1)

s + a

]
,

R(1)
f (s) = Q

(1)
1 (s)Rf (s) =

[
a(s + 1)

s + a
0

]
, R(1)

w (s) = Q
(1)
1 (s)Rw(s) = a

s + a
.

Since β1 = ‖R(1)
f1

(s)‖∞ = a can be arbitrarily large, the underlying H∞−/H∞ problem has no

optimal solution. Still, the resulting Q(1)(s) is completely satisfactory, by providing an arbitrary
large gap β1/γ = a.

To achieve the specification in the second row of S, we define G
(2)
d (s) = Rf1 (s) (the first column

of Rf (s)) and G
(2)
f (s) = Rf2 (s). Again, we apply Procedure AFD to solve the AFDP for the

quadruple {0,G(2)
d (s),G

(2)
f (s),Rw(s)}. At Step 1) we compute a left nullspace basis of G

(2)
d (s) as

Q(2)
1 (s) = [

0 −1
]
and determine

R(2)
w (s) := Q(2)

1 (s)Rw(s) = 0, R(2)
f (s) := Q(2)

1 (s)Rf2 (s) = −1 .

Observe that we actually solved the AFDP as an EFDP, by obtaining Q
(2)
1 (s) = Q(2)

1 (s). At Step
2.4) of Procedure AFDI we obtain

Q(2)(s) = Q
(2)

(s)Q1(s) =
[

0 −1
s + 2

s + 3

]
,

R(2)
f (s) = Q

(2)
1 (s)Rf (s) = [

0 −1
]
, R(2)

w (s) = Q
(2)
1 (s)Rw(s) = 0 .

http://dx.doi.org/10.1007/978-3-319-51559-5_3
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Although β2 = ‖R(2)
f2

(s)‖∞ = 1, but β2 can be arbitrary large by suitably rescaling Q(2)(s).
The script Ex5_11 in Listing 5.4 solves the AFDIP considered in this example. ♦

Listing 5.4 Script Ex5 11 to solve the AFDIP of Example 5.11 using Procedure AFDI
% Uses the Control Toolbox and the Descriptor System Tools

% define s as an improper transfer function
s = tf('s');
% define Gu(s), Gw(s), Gf (s)
Gu = [(s+1)/(s+2); (s+2)/(s+3)]; % enter Gu(s)
Gw = [1/(s+2); 0]; % enter Gw(s)
Gf = [(s+1)/(s+2) 0; 0 1]; % enter Gf (s)
p = 2; mu = 1; mw = 1; mf = 2; % enter dimensions
S = eye(mf); % enter structure matrix

% Step 1): choose the left nullspace as Q1 = [ I − Gu ] and
% form Rf ,1 = Q1[Gf ; 0 ] and Rw,1 = Q1[Gw; 0 ]
Q1 = [eye(p) -Gu]; Rf1 = Gf; Rw1 = Gw;

% Step 2): determine Q(i) and the corresponding R(i)
f and R(i)

w

% initialization
nb = size(S,1); % number of necessary filters nb
Q = cell(nb ,1); Rf = cell(nb ,1); Rw = cell(nb ,1);

% set options for coprime factorizations;
% enforce stability degree -3
opts = struct('sdeg ',-3,'smarg ',-3);
for i = 1:nb

% perform Procedure AFD to compute Q(i)

indd = (S(i,:) == 0);

Qi1 = glnull(ss(Rf1(:,indd ))); % compute Q(i)
1

% initialize Q(i), R(i)
f , and R(i)

w

Qi = Qi1*Q1; Rfi = Qi1*Rf1; Rwi = Qi1*Rw1;

% compute optimal solution if R(i)
w nonzero

if norm(evalfr(Rwi ,rand)) > 0.0001
% compute the quasi-co-outer-co-inner factorization
[Rwi ,Rwo]= goifac(Rwi ,1.e-7); % R(i)

w = R(i)
woR

(i)
wi; R(i)

w ← R(i)
wi

% update Q(i) ← (R(i)
wo)

−1Q(i) and R(i)
f ← (R(i)

wo)
−1R(i)

f
Qi = Rwo\Qi; Rfi = Rwo\Rfi;

end

% update the solution if [Q(i) R(i)
f R(i)

w ] is improper or unstable
[Qi_Rfi_Rwi ,M] = glcf([Qi Rfi Rwi],opts);
% adjust denominator to unit infinity norm to match example
scale = norm(M,inf);
Q{i} = tf(Qi_Rfi_Rwi (:,1:p+mu)/scale );
Rf{i} = tf(Qi_Rfi_Rwi(:,p+mu+1:p+mu+mf)/scale );
Rw{i} = tf(Qi_Rfi_Rwi(:,p+mu+mf+1:end)/ scale );

end
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5.6 Solving the Exact Model-Matching Problem

LetMr(λ) be a given q×mf TFM of a stable and proper reference model specifying
the desired input–output behaviour from the faults to residuals as r(λ) = Mr(λ)f(λ).
Using the factorized representation Q(λ) = Q1(λ)Q1(λ) in (5.9), it follows that the
exact model-matching problem (EMMP) formulated in Sect. 3.5.5 is solvable for the
system (3.2) with w ≡ 0 if it is solvable for the reduced system (5.11) with w ≡ 0.
The following corollary to Theorem 3.14 provides the solvability conditions of the
EMMP in terms of the reduced system (5.11):

Corollary 5.9 For the system (3.2) with w ≡ 0 and a given reference model Mr(λ),
the EMMP is solvable if and only if the EMMP is solvable for the reduced system
(5.11) with w ≡ 0, or equivalently, the following condition is fulfilled:

rank Gf (λ) = rank

[
Gf (λ)

Mr(λ)

]
. (5.51)

The case when Mr(λ) is diagonal and invertible corresponds to a strong FDI
requirement. The solvability condition for this case is the same as the solvability
condition resulting from (5.51) for the case when Mr(λ) has full column rank mf .

Corollary 5.10 For the system (3.2) with w ≡ 0 and a given reference model Mr(λ)

with rank Mr(λ) = mf , the EMMP is solvable if and only if the reduced system (5.11)
with w ≡ 0 is strongly isolable, or equivalently, the following condition is fulfilled:

rank Gf (λ) = mf . (5.52)

Remark 5.12 For a strongly isolable system (3.2) with w ≡ 0, the left invertibility
condition (5.52) is a necessary and sufficient condition for the solvability of the
EMMP for an arbitraryMr(λ). �

For the solution of the EMMP, we present a synthesis procedure which employs
the factorized representation Q(λ) = Q1(λ)Q1(λ) in (5.9), where Q1(λ) is a min-
imal proper left nullspace basis of G(λ) defined in (5.2). The factor Q1(λ) can be
determined in the product form

Q1(λ) = Q3(λ)Q2(λ),

where Q2(λ) is a solution, possibly of least McMillan degree, of the linear rational
matrix equation

Q2(λ)Gf (λ) = Mr(λ) , (5.53)

while the diagonal updating factor Q3(λ) := M(λ) is determined such that

Q(λ) = Q3(λ)Q2(λ)Q1(λ)

http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
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is stable and proper. The computation of Q3(λ) is necessary only if Q2(λ)Q1(λ) is
not proper or is unstable. The Procedure EMM, given below, summarizes the main
computational steps for solving the EMMP.

Procedure EMM: Exact model-matching synthesis of FDI filters
Inputs : {Gu(λ),Gd(λ),Gf (λ)}, Mr(λ)

Outputs: Q(λ), M(λ)

1) Compute a minimal proper basis Q1(λ) for the left nullspace of G(λ)

defined in (5.2); set Q(λ) = Q1(λ) and compute Rf (λ) = Q1(λ)

[
Gf (λ)

0

]
.

2) Solve, for the least McMillan degree solution Q2(λ), the linear rational
matrix equation Q2(λ)Rf (λ) = Mr(λ). Exit if no solution exists. Otherwise
update Q(λ) ← Q2(λ)Q(λ).

3) Determine a diagonal, stable, proper and invertible Q3(λ) := M(λ) such
thatM(λ)Q(λ) is stable and proper; update Q(λ) ← Q3(λ)Q(λ).

To perform the computation at Step 2), a state-space realization based algorithm
to compute least McMillan degree solutions of linear rational matrix equations is
described in Sect. 10.3.7. For the determination of the diagonal updating factorM(λ)

at Step 3), coprime factorization techniques can be used, as described in Sect. 9.1.6.
The underlying state-space realization based algorithms are presented in Sect. 10.3.5.

Remark 5.13 The solution of theEMMPcanbe alternatively performedbydetermin-
ing Q(λ) as Q(λ) = Q2(λ)Q1(λ), where Q1(λ) is a least McMillan degree solution
of the linear rational matrix equation

Q1(λ)

[
Gu(λ) Gd(λ) Gf (λ)

Imu 0 0

]
= [

0 0 Mr(λ)
]
. (5.54)

The diagonal updating factor Q2(λ) := M(λ) is determined to ensure that Q(λ) is
proper and stable. �
Example 5.12 In Example 5.10 we solved an EFDIP for a system with triplex sensor redundancy.
To solve an EMMP for the same system, we use the resulting Rf (s) to define the reference model

Mr(s) := Rf (s) =
⎡
⎣ 0 1 −1

−1 0 1
1 −1 0

⎤
⎦ .

Using Procedure EMM, we determine first a left nullspace basis Q1(s) = Nl(s), with Nl(s) given
in (5.42). The corresponding Rf (s) (given in (5.43)) is

Rf (s) =
[
1 −1 0
0 1 −1

]
.

The solvability condition can be easily checked

rankRf (s) = rank

[
Rf (s)
Mr(s)

]
= 2 .

http://dx.doi.org/10.1007/978-3-319-51559-5_10
http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_10
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We solve for Q2(s)
Q2(s)Rf (s) = Mr(s)

and obtain

Q2(s) =
⎡
⎣ 0 1

−1 −1
1 0

⎤
⎦ .

Finally, we have

Q(s) = Q2(s)Q1(s) =
⎡
⎣ 0 1 −1 0 · · · 0

−1 0 1 0 · · · 0
1 −1 0 0 · · · 0

⎤
⎦ .

We obtain the same result by solving directly (5.54) for Q(s) = Q1(s).
The script Ex5_12 in Listing 5.5 solves the EMMP considered in this example. ♦

Listing 5.5 Script Ex5 12 to solve the EMMP of Example 5.12 using Procedure EMM
% Uses the Control Toolbox and the Descriptor System Tools

% enter output and fault vector dimensions
p = 3; mf = 3;
% generate random dimensions for system order and input vectors
nu = floor (1+4* rand); mu = floor (1+4* rand);
nd = floor (1+4* rand); md = floor (1+4* rand);
% define random Gu(s) and Gd(s) with triplex sensor redundancy
% and Gf (s) for triplex sensor faults
Gu = ones (3,1)*rss(nu ,1,mu); % enter Gu(s) in state-space form
Gd = ones (3,1)*rss(nd ,1,md); % enter Gd (s) in state-space form
Gf = eye (3); % enter Gf (s) for sensor faults
% enter reference model Mr

Mr = ss([ 0 1 -1; -1 0 1; 1 -1 0]);

% two step solution using Procedure EMM
% 1. Compute left nullspace Q1 of [Gu Gd ; I 0 ] and
% the reduced system Rf = Q1[Gf ; 0 ].
Q_Rf = glnull ([Gu Gd Gf; eye(mu ,mu+md+mf)],struct('m2 ',mf));
Q1 = Q_Rf(:,1:p+mu); Rf = Q_Rf(:,p+mu+1:end);

% 2. Solve Q2Rf = Mr and form Q = Q2Q1.
Q2 = glsol(Rf ,Mr,struct('tol ',1.e -7));
Q = Q2*Q1;

% one step solution
% solve QGe = Me, where Ge = [Gu Gd Gf ; I 0 0 ] and Me = [ 0 0 Mr ].
Ge = [Gu Gd Gf; eye(mu,mu+md+mf)]; Me = [zeros(p,mu+md) Mr];
Qbar = glsol(Ge ,Me ,struct('tol ',1.e-7));

% compare solutions by computing ‖Q − Q‖∞
norm(Q-Qbar ,inf)

In what follows, we discuss the solution of the EMMP for strongly isolable sys-
tems. According to Remark 5.12, the solvability of the EMMP is automatically guar-
anteed in this case, regardless the choice of the reference modelMr(λ). An important
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particular case in practical applications is whenMr(λ) is diagonal, stable, proper and
invertible. In this case, the solution of the EMMP allows the detection and isolation
of up tomf simultaneous faults, and thus is also a solution of a strong EFDIP (i.e., for
an identity structure matrix). Fault reconstruction (or fault estimation) problems can
be addressed in this way by choosingMr(λ) = Imf . For the solution of the EMMP for
strongly isolable systems we develop a specialized synthesis procedure, which also
addresses the least-order synthesis aspect for a regularity-enforcing admissibility
condition.

Using the factorized representationQ(λ) = Q1(λ)Q1(λ) in (5.9), the factorQ1(λ)

can be determined in the product form

Q1(λ) = Q2(λ)Q2(λ),

where Q2(λ) is computed such that

G̃f (λ) := Q2(λ)Gf (λ)

is invertible. This regularization step is always possible, since, for a strongly isolable
system, Gf (λ) is left invertible (see Remark 5.12). The simplest choice of Q2(λ)

is a constant (e.g., orthogonal) projection matrix which simply selects mf linearly
independent rows of Gf (λ). A more involved choice is based on an admissibility
condition, which enforces the invertibility of G̃f (λ) simultaneously with the least
dynamical orders of Q2(λ)Q1(λ) and G̃f (λ). Such a choice of Q2(λ) is possible
using minimal dynamic cover techniques (see Sect. 7.5).

The factor Q2(λ) can be determined in the form

Q2(λ) = Q4(λ)Q3(λ) ,

where Q3(λ) = Mr(λ)G̃−1
f (λ) and Q4(λ) := M(λ) is chosen a diagonal, stable,

proper and invertible TFM, to ensure that the resulting final filter

Q(λ) = Q4(λ)Q3(λ)Q2(λ)Q1(λ)

is stable and proper. The updating factor M(λ) can be determined using stable and
proper coprime factorization techniques (see Sects. 9.1.6 and 10.3.5).

The above synthesis method is sometimes called in the literature the inversion-
based method. The Procedure EMMS, given in what follows, formalizes the com-
putational steps of the inversion-based synthesis method to solve the EMMP for
strongly isolable systems.

http://dx.doi.org/10.1007/978-3-319-51559-5_7
http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_10
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Procedure EMMS: Exact model-matching synthesis of strong FDI filters
Inputs : {Gu(λ),Gd(λ),Gf (λ)}, Mr(λ)

Outputs: Q(λ), M(λ)

1) Compute a proper minimal basis Q1(λ) for the left nullspace of G(λ)

defined

in (5.2); set Q(λ) = Q1(λ) and compute Rf (λ) = Q1(λ)

[
Gf (λ)

0

]
.

Exit if rank Rf (λ) < mf (no solution).
2) Choose Q2(λ) such that Q2(λ)Rf (λ) is invertible and Q2(λ)[Rf (λ) Q(λ)]

has least-order; update Q(λ) ← Q2(λ)Q(λ) and Rf (λ) ← Q2(λ)Rf (λ).
3) With Q3(λ) = Mr(λ)R−1

f (λ), update Q(λ) ← Q3(λ)Q(λ).
4) Determine diagonal, stable, proper and invertible Q4(λ) := M(λ) such that M(λ)

Q(λ) is stable and proper; update Q(λ) ← Q4(λ)Q(λ).

Example 5.13 Consider a continuous-time system with the transfer function matrices

Gu(s) =

⎡
⎢⎢⎢⎢⎢⎢⎣

s

s2 + 3 s + 2

1

s + 2
s

s + 1
0

0
1

s + 2

⎤
⎥⎥⎥⎥⎥⎥⎦

, Gd(s) = 0, Gf (s) =

⎡
⎢⎢⎢⎢⎢⎢⎣

s

s2 + 3 s + 2

1

s + 2
s

s + 1
0

0
1

s + 2

⎤
⎥⎥⎥⎥⎥⎥⎦

for which we want to solve the EMMP with the reference model

Mr(s) =
[

1 0
0 1

]
.

Using Procedure EMMS, we choose at Step 1) the left nullspace basis Q1(s) = [
I −Gu(s)

]
and

initialize Q(s) = Q1(s) for which the corresponding Rf (s) is simply Rf (s) = Gf (s). Rf (s) has full
column rank (thus is left invertible) and therefore the EMMP has a solution. Since Rf (s) has zeros
in the origin and at infinity, the existence condition of Lemma 9.5 for a stable solution Q1(s) of
Q1(s)Rf (s) = Mr(s) is not fulfilled.

At Step 2), we chooseQ2(s) such thatQ2(s)[Rf (s) Q(s) ] has a least-order. This can be achieved
with the simple choice

Q2(s) =
[

0 1 0
0 0 1

]

and, after updating Q(s) ← Q2(s)Q(s) and Rf (s) ← Q2(s)Rf (s), we obtain

Q(s) =
⎡
⎢⎣

0 1 0 − s

s + 1
0

0 0 1 0 − 1

s + 2

⎤
⎥⎦ , Rf (s) =

⎡
⎢⎣

s

s + 1
0

0
1

s + 2

⎤
⎥⎦ .

At Step 3), the resulting

Q3(s) := Mr(s)R
−1
f (s) =

⎡
⎣

s + 1

s
0

0 s + 2

⎤
⎦

is improper and unstable, and, therefore, the updated Q(s) ← Q̃(s) := Q3(s)Q(s)

http://dx.doi.org/10.1007/978-3-319-51559-5_9
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Q̃(s) =
⎡
⎣ 0

s + 1

s
0 −1 0

0 0 s + 2 0 −1

⎤
⎦

is improper and unstable as well.
Finally, at Step 4) we determine a diagonal

Q4(s) = M(s) =
⎡
⎢⎣

s

s + 1
0

0
1

s + 1

⎤
⎥⎦ ,

which ensures the properness and stability of the solution. The final Q(s) = Q4(s)Q̃(s) is

Q(s) =
⎡
⎢⎣

0 1 0 − s

s + 1
0

0 0
s + 2

s + 1
0 − 1

s + 1

⎤
⎥⎦ .

TheMcMillan degree of this fault detection filter is 2 and is the least achievable one among all stable
and proper filters which solve the EMMP. Note that the presence of the zero s = 0 inM(s)Mr(s) is
unavoidable for the existence of a stable solution. It follows, that while a constant fault f2 is strongly
detectable, a constant fault f1 is only detectable during transients.

An alternative way, see Remark 5.13, to determine a least-order solution of the considered
EMMP is to directly solve, for the least-order solution Q1(s), the linear rational matrix equation

Q1(s)

[
Gu(s) Gf (s)
I 0

]
= [

0 Mr(s)
]

and then determine Q2(s) (as above Q4(s) at Step 4) of Procedure EMMS) to obtain a stable and
proper Q(s) := Q2(s)Q1(s).

The script Ex5_13 in Listing 5.6 solves the EMMP considered in this example. The alternative
direct approach is implemented in the script Ex5_13a (not listed). ♦

Listing 5.6 Script Ex5 13 to solve the EMMP of Example 5.13 using Procedure EMMS
% Uses the Control Toolbox and the Descriptor System Tools

% define s as an improper transfer function
s = tf('s');
% enter Gu(s), Gf (s) and Mr(s)
Gu = [s/(s^2+3*s+2) 1/(s+2);

s/(s+1) 0;
0 1/(s+2)];

Gf = [s/(s^2+3*s+2) 1/(s+2);
s/(s+1) 0;
0 1/(s+2)];

Mr = tf(eye (2));
[p,mf] = size(Gf); mu = size(Gu ,2);

% compute left nullspace basis as Q1(s) = [ I − Gu(s) ]; set Rf (s) = Gf (s).
Q1 = [eye(p) -Gu]; Rf = Gf;

% check solvability condition
if rank(evalfr(Rf,rand)) ~= mf

error('No solution ')
end
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% check for unstable or infinite zeros
gzero(ss(Rf)) % zeros at infinity and in the origin exist

tol = 1.e-7; % set tolerance
sdeg = -1; % set stability degree

% solve a minimum dynamic cover problem
% select rows [2 3] of [Rf Q1 ] to combine them with row 1
% Rf_Q contains [Rf Q ] ← Q2[Rf Q1 ] with Rf full row rank
cinp = [ 2 3 1];
Rf_Q = glmcover1(ss([Rf(cinp ,:) Q1(cinp ,:) ]),mf ,tol);

% compute irreducible realization of Q̃ = MrR
−1
f Q by first solving

% the linear rational matrix equation Rf X = Q
X = grsol(Rf_Q ,p+mu ,struct('tol ',tol));
Qtilde = gir(Mr*X,tol);

% compute stable and proper Q = Q4Q̃ with suitable diagonal Q4 = M
Q = ss(zeros(0,p+mu)); M = ss(zeros (0 ,0));
opt_glcf = struct('tol ',tol ,'sdeg ',sdeg);
for i=1:mf

[Qi ,Mi] = glcf(Qtilde(i,:), opt_glcf );
scale = get(zpk(Mi),'k'); % scale with gain to fit example
Q = [Q;Qi/scale]; M = append(M,Mi/scale);

end

% convert to standard state-space representation
Q = gss2ss(Q); M = gss2ss(M);
% display results
minreal(tf(Q)), tf(M)

% check solution
G = [Gu Gf;eye(mu,mu+mf)]; F = [zeros(mf,mu) M*Mr];
norm(Q*G-F,inf)

5.7 Solving the Approximate Model-Matching Problem

Using the factorized representation Q(λ) = Q1(λ)Q1(λ) in (5.9), with Q1(λ) sta-
ble and proper, allows to reformulate the approximate model-matching problem
(AMMP) formulated in Sect. 3.5.6 for the system (3.2) in terms of the reduced
system (5.11), with both Gf (λ) and Gw(λ) assumed to be stable and proper (this
can be always enforced by a suitable choice of Q1(λ)). The following corollary to
Proposition 3.1 gives a sufficient condition for the solvability of the AMMP in terms
of the reduced system (5.11):

Corollary 5.11 For the system (3.2) and a given Mr(λ), the AMMP is solvable if
the EMMP is solvable for the reduced system (5.11).

http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
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According to Remark 5.12, for a strongly isolable system (3.2), the left invertibility
condition (5.52) (i.e., rank Gf (λ) = mf ), is, therefore, a sufficient condition for the
solvability of the AMMP.

To solve the AMMP for the reduced system (5.11), a standard model-matching
problem can be formulated to determine the optimal stable and proper solutionQ1(λ)

of the norm-minimization problem

∥∥Q1(λ)
[
Gf (λ) Gw(λ)

] − [
Mr(λ) 0

] ∥∥ = minimum . (5.55)

With F(λ) := [Mr(λ) 0 ], G(λ) := [Gf (λ) Gw(λ) ], and the error function

E(λ) := F(λ) − X(λ)G(λ) , (5.56)

a solution of theAMMPcan be aimed by solving either aH∞- orH2-model-matching
problem (MMP) (see Sect. 9.1.10) to determine Q1(λ) as the stable and proper opti-
mal solution X(s) which minimizes ‖E(λ)‖∞ or ‖E(λ)‖2, respectively. Sufficient
conditions for the solvability of the H∞-MMP and H2-MMP are given in Lem-
mas 9.6 and 9.7, respectively. These sufficient conditions require that G(λ) has no
zeros in ∂Cs. However, these conditions are not necessary for the solvability of the
AMMP, and, therefore, we define the standard case, when G(λ) has no zeros in ∂Cs,
and the nonstandard case, when G(λ) has zeros in ∂Cs.

Solution procedures for the standard case are presented in Sect. 9.1.10 and deter-
mine optimal solutions which are stable and proper. The same procedures applied in
the nonstandard case, determine “optimal” solutions, which, in general, have poles in
∂Cs, and thus are unstable or improper. IfX(λ) is such a solution, then a diagonal, sta-
ble, proper and invertible updating factorM(λ) can be determined such that the filter
Q1(λ) := M(λ)X(λ) is stable and proper, and achieves the (suboptimal) performance
level γsub := ‖M(λ)E(λ)‖. Let X(λ) be an “optimal” solution (possibly unstable or
improper) which minimizes the weighted error norm ‖M(λ)E(λ)‖ and let γopt be the
corresponding optimal performance level. Since γopt ≤ γsub, the difference γsub−γopt
is an indicator of the achieved degree of suboptimality of the resulting filter Q1(λ)

for theweighted norm-minimization problem corresponding to the updated reference
model M(λ)Mr(λ). The choice of a diagonal M(λ) is instrumental to preserve the
zero–nonzero structure ofMr(λ).

Example 5.14 Consider the H∞-MMP in a continuous-time setting with

G(s) = [
Gf (s) Gw(s)

] :=
[

1

s + 1

1

s + 2

]
, F(s) = [

Mr(s) 0
] =

[
1

s + 3
0

]
.

This problem is nonstandard, because G(s) has a zero at infinity. Ignoring momentarily this aspect,
we can formally use the solution approach in Sect. 9.1.10 relying on the quasi-co-outer–inner
factorization of G(s) followed by the solution of a 2-block H∞-least distance problem. We obtain
the H∞-optimal solution

X∞(s) = 0.041587(s + 13.65)(s + 2)(s + 1)

(s + 3)(s + 1.581)
,

http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_9
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which is improper. The optimal error norm is γ∞,opt := ‖F(λ) − X∞(s)G(s)‖∞ = 0.1745, thus
finite. WithM(s) = 1

s+1 , we obtain a proper candidate filter

Q1(s) = M(s)X∞(s) = 0.041587(s + 13.65)(s + 2)

(s + 3)(s + 1.581)
,

for which γsub := ‖M(λ)F(λ) −Q1(s)G(s)‖∞ = 0.1522. The optimal solution X∞(s) of theH∞-
MMP,whichminimizes‖M(s)F(s)−X(s)G(s)‖∞, leads to anoptimal value ofγopt = ‖M(λ)F(λ)−
X∞(λ)G(λ)‖∞ = 0.1491.As expected, the optimal solutionX∞(s) is improper. Since γsub−γopt =
0.0031, the degree of suboptimality of the proper and stable filter M(s)X∞(s) with respect to the
optimal (but improper) solution X∞(s) appears to be acceptable. ♦

Example 5.15 We can also solve the H2-MMP for Example 5.14. Although this problem is non-
standard, still cancelations of infinite poles and zeros make that the resulting H2-optimal solution
is proper

X2(s) = 0.54572(s + 2)(s + 1)

(s + 3)(s + 1.581)
.

The corresponding optimal performance is γopt = ‖F(λ) − X2(λ)G(λ)‖2 = 0.2596. Interestingly,
the H∞ error norm of the H2-optimal solution is ‖F(λ) − X2(s)G(s)‖∞ = 0.1768, which is
only marginally worse than γ∞,opt , the optimal performance of the improperH∞-optimal solution
X∞(λ). Thus, X2(s) can be considered an acceptable H∞-suboptimal solution.

In what follows we develop a general synthesis procedure for solving AMMPs
relying on the solution ofH2/∞-MMPs. We assume that the reference modelMr(λ)

has been chosen to capture a fault estimation or, equivalently, a strong fault isolation
setup. Often, Mr(λ) is chosen diagonal, and even equal to the identity matrix, when
trying to solve a fault estimation problem. Therefore,Mr(λ) will be assumed to be a
stable and invertible TFM. In the case of an EMMP (when w ≡ 0), a necessary and
sufficient condition for the existence of a proper and stable solution (possibly with
an updated reference modelM(λ)Mr(λ), withM(λ) a diagonal, stable and invertible
factor) is that Gf (λ) has full column rank (i.e., left invertible) (see Corollary 5.10).
For simplicity, we will assume that this condition is fulfilled and provide a synthesis
procedure which computes an optimal solution in the standard case or a suboptimal
solution of a weighted problem in the nonstandard case. As it will be apparent,
the final fault detection filter intrinsically results in a factored form as in (5.1),
which automatically leads to a synthesis procedure relying on successive updating
of partially synthesized filters.

Let � ≥ mf be the rank of the (p − rd) × (mf + mw) TFM G(λ). We take
Q1(λ) = Q2(λ)Q2(λ), where Q2(λ) is an � × (p− rd) proper TFM chosen to ensure
thatQ2(λ)G(λ) has full row rank �. If � < p− rd (i.e., G(λ) has not a full row rank),
a possible choice of Q2(λ) is one which simultaneously minimizes the McMillan
degree of Q2(λ)Q1(λ) (see Sect. 7.5). A simpler choice with Q2(λ) a constant (e.g.,
orthogonal) matrix is also always possible. If � = p − rd , then Q2(λ) = I� can be
chosen.

The next step is standard in solvingH2/∞-MMPs and consists in compressing the
full row rank TFM G(λ) to a full column rank (thus invertible) TFM. For this, we
compute an extended quasi-co-outer–co-inner factorization in the form

http://dx.doi.org/10.1007/978-3-319-51559-5_7
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Q2(λ)G(λ) = [Go(λ) 0 ]
[
Gi,1(λ)

Gi,2(λ)

]
:= [Go(λ) 0 ]Gi(λ), (5.57)

where the quasi-co-outer part Go(λ) is invertible and has only zeros inCs, and Gi(λ)

is a square co-inner factor (i.e., Gi(λ)G∼(λ) = I). The factor Q2(λ) is determined
in the product form

Q2(λ) = Q5(λ)Q4(λ)Q3(λ),

with Q3(λ) = G−1
o (λ) and Q4(λ), the optimal solution which minimizes the error

norm ‖Ẽ(λ)‖2/∞, with Ẽ(λ) defined as

Ẽ(λ) := E(λ)G∼
i (λ) = [

F̃1(λ) − Q4(λ) F̃2(λ)
]

, (5.58)

where F̃1(λ) := F(λ)G∼
i,1(λ) and F̃2(λ) := F(λ)G∼

i,2(λ). The factor Q5(λ) := M(λ)

is chosen to enforce the stability and properness of the final filter

Q(λ) = Q5(λ)Q4(λ)Q3(λ)Q2(λ)Q1(λ) . (5.59)

The determination of a stable and proper Q4(λ) which minimizes ‖Ẽ(λ)‖2/∞ =
‖E(λ)‖2/∞ is aH2/∞-least distance problem (H2/∞-LDP), for which solution meth-
ods are given in Sect. 9.1.10.

The overall filterQ(λ) in (5.59) can be alternatively expressed in the formQ(λ) =
Q5(λ)Q4(λ)Q(λ), where Q(λ) := Q3(λ)Q2(λ)Q1(λ) can be interpreted as a partial
synthesis. The TFMs of the internal form corresponding to this filter are

[Rf (λ) Rw(λ) ] := Q3(λ)Q2(λ)[Gf (λ) Gw(λ) ]
= [ I� 0 ]

[
Gi,1(λ)

Gi,2(λ)

]
= Gi,1(λ) (5.60)

and thus, are parts of the (stable) co-inner TFM Gi,1(λ).
Generally, Q(λ) contains among its poles the zeros of Go(λ). This is also true for

the product Q4(λ)Q(λ), where Q4(λ) is the stable and proper solution of the H2/∞-
LDP. In the standard case (i.e., when G(λ) has no zeros in ∂Cs), Go(λ) has only
stable finite zeros and no infinite zeros, and therefore, Q(λ) results stable, provided
Q2(λ)Q1(λ) is stable. In this case, we take simplyQ5(λ) = I and the updating factor
M(λ) = I . In the nonstandard case (i.e., whenG(λ) has zeros in ∂Cs), the quasi-outer
factor Go(λ) will have these zeros in ∂Cs too. Therefore, Q(λ) results unstable or
improper, and we choose a diagonal, stable, proper and invertible M(λ) := Q5(λ),
such that, the final Q(λ) is proper and stable.

The computation of suitable M(λ) can be done using LCF-based techniques
as described in Sect. 9.1.6. The choice of M(λ) can be performed such that
‖M(λ)Ẽ(λ)‖2/∞ ≈ ‖Ẽ(λ)‖2/∞ and M(λ) has the least possible McMillan degree.
For example, to ensure properness or strict properness,M(λ) can be chosen diagonal
with the diagonal terms Mj(λ), j = 1, . . . ,mf having the form

http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_9
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Mj(s) = 1

(τ s + 1)kj
or Mj(z) = 1

zkj
,

for continuous- or discrete-time settings, respectively. Notice that both above factors
have unit H∞-norm.

The Procedure AMMS, given below, formalizes the computational steps of the
described synthesis method for a strongly isolable system and an invertible reference
modelMr(λ). This procedure can be also interpreted an enhanced version of Proce-
dure EMMS.

Procedure AMMS: Approximate model-matching synthesis of FDI filters
Inputs : {Gu(λ),Gd(λ),Gw(λ),Gf (λ)}, invertible Mr(λ)

Outputs: Q(λ), Rf (λ), Rw(λ),M(λ)

1) Compute a minimal proper basis Q1(λ) for the left nullspace of G(λ)

defined in (5.2); set Q(λ) = Q1(λ) and compute

[
Rf (λ) Rw(λ)

] = Q1(λ)

[
Gf (λ) Gw(λ)

0 0

]

Exit if rankRf (λ) < mf (no solution).
2) Choose Q2(λ) such that Q2(λ)

[
Rf (λ) Rw(λ)

]
has maximal full row rank

and Q2(λ)Q(λ) has least McMillan degree; update Q(λ) ← Q2(λ)Q(λ),
Rf (λ) ← Q2(λ)Rf (λ) and Rw(λ) ← Q2(λ)Rw(λ).

3) Compute the extended quasi-co-outer–co-inner factorization

[
Rf (λ) Rw(λ)

] = [Go(λ) 0 ]
[
Gi,1(λ)

Gi,2(λ)

]
.

With Q3(λ) = G−1
o (λ), update Q(λ) ← Q3(λ)Q(λ) and compute

F̃1(λ) = [
Mr(λ) 0

]
G∼

i,1(λ), F̃2(λ) = [
Mr(λ) 0

]
G∼

i,2(λ).
Set

[
Rf (λ) Rw(λ)

] = Gi,1(λ).
4) Compute the solution Q4(λ) of the H2/∞-LDP

min
Q4(λ)∈H∞

∥∥[
F̃1(λ) − Q4(λ) F̃2(λ)

]∥∥
2/∞ ;

update Q(λ) ← Q4(λ)Q(λ), Rf (λ) ← Q4(λ)Rf (λ) and
Rw(λ) ← Q4(λ)Rw(λ).

5) Determine diagonal, stable, proper and invertible Q5(λ) := M(λ) such that
M(λ)Q(λ) is stable and proper; update Q(λ) ← Q5(λ)Q(λ),
Rf (λ) ← Q5(λ)Rf (λ) and Rw(λ) ← Q5(λ)Rw(λ).

Remark 5.14 The main advantage of the Procedure AMMS over alternative meth-
ods, as—for example, solving H2/∞ filter synthesis problems using standard H2/∞
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optimization procedures, lies in the possibility to easily handle frequently encoun-
tered nonstandard cases (e.g., strictly proper systems). For such a case, the standard
procedureswould either failwithout providing any useful result, or determine unprac-
ticable solutions (e.g., with very fast dynamics or excessively large or small gains).
In contrast, the described method produces the weighting TFMM(λ), which allows
to easily obtain a suboptimal solution of a weighted problem. �

Remark 5.15 In the case when Mr(λ) is an mf × mf invertible diagonal TFM, the
solution of the AMMP targets the solution of an AFDIP with a structure matrix
S = Imf . It follows, that we can apply the threshold selection approach described in
Remark 5.11 with Rf (λ) and Rw(λ) beingmf ×mf and, respectively,mf ×mw TFMs.
An alternative approach can be devised for the case whenMr(λ) is a given reference
model (not assumed to be structured). To account for the achieved model-matching
performance, we employ instead of the residual r, the tracking error

e(λ) := r(λ) − M(λ)Mr(λ)f(λ) = (Rf (λ) − M(λ)Mr(λ))f(λ) + Rw(λ)w(λ)

and we set the threshold τi ≥ τ
(i)
f , where τ

(i)
f is the false alarm bound for the i-th

component ei of the tracking error defined as

τ
(i)
f := sup

‖w‖2≤δw

‖f ‖2≤δf

‖ei(λ)‖2 .

As in Remark 5.11, δf and δw are the assumed bounds for the norms of the fault and
noise signals, respectively. For example, τi can be chosen as

τi = ‖R(i)
f (λ) − M(i)(λ)Mr(λ)‖∞δf + ‖R(i)

w (λ)‖∞δw ,

whereR(i)
f (λ),M(i)(λ) andR(i)

w (λ) are the i-th rows ofRf (λ),M(λ) andRw(λ), respec-
tively. The above bound can be refined along the approach used in Remark 5.11 in
the case when Mr(λ) is a structured matrix with the corresponding structure matrix
SMr . �

Example 5.16 We use the LTI system of Example 2.2 to solve a robust fault detection and isolation
problem for actuator faults by employing theH∞-norm based version of Procedure AMMS. The
fault system in state-space form (2.2) has a standard state-space realization with E = I and

A =
⎡
⎣ −0.8 0 0

0 −0.5 0.6
0 −0.6 −0.5

⎤
⎦ ,

Bu =
⎡
⎣ 1 1
1 0
0 1

⎤
⎦ , Bd = 0, Bw :=

⎡
⎣ 0 0

0 0.25
0.25 0

⎤
⎦ , Bf =

⎡
⎣ 1 1
1 0
0 1

⎤
⎦ ,

C =
[
0 1 1
1 1 0

]
, Du = 0, Dd = 0, Dw = 0, Df = 0 .

http://dx.doi.org/10.1007/978-3-319-51559-5_2
http://dx.doi.org/10.1007/978-3-319-51559-5_2
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The noise input matrix Bw accounts for the effect of parametric uncertainties in the complex conju-
gated eigenvalues of A and is a 0.25 times scaled version of Bw derived in Example 2.2. Let Gu(s),
Gd(s) = 0, Gw(s), and Gf (s) denote the TFMs defined according to (2.3). The FDI filter Q(s) is
aimed to provide robust fault detection and isolation of actuator faults in the presence of parametric
uncertainties.

At Step 1) of Procedure AMMS, we choose as nullspace basis

Q1(s) = [ I − Gu(s) ] =
[
sI − A 0 −Bu

C I −Du

]

and obtain Rf (s) = Gf (s) and Rw(s) = Gw(s). The solvability condition is: rank Rf (s) = 2, and
thus fulfilled. Note that Rf (s) is invertible and we can choose Q2(s) = I at Step 2).

At Step 3), the extended quasi-co-outer–co-inner factorization of G(s) = [Rf (s) Rw(s) ] in
(5.57) is computed. The state-space realization of the resulting Go(s) is obtained in the form (see
dual version of Theorem 9.3)

Go(s) =
[
A − sI Bo

C Do

]
,

with

Bo =
⎡
⎣ −1.313 −0.48

−0.9334 0.3602
−0.398 −0.9538

⎤
⎦ , Do = 0 .

Since G(s) has two zeros at infinity, Go(s) inherits these two zeros and has an additional stable zero
at −1.7772. This stable zero is also the only pole of the first-order inner factor Gi(s) ∈ H(s)4×4.
With Q3(s) = G−1

o (s), the descriptor realization of the current synthesis Q(s) = Q3(s)Q2(s)Q1(s)
can be explicitly computed as (see (7.80) in Sect. 7.9)

Q(s) = G−1
o (s)Q1(s) =

⎡
⎣A − sI Bo 0 −Bu

C Do I −Du

0 −I 0 0

⎤
⎦ .

While the current filter Q(s) is improper (having two infinite poles), the updated Rf (s) and Rw(s)
can also be expressed according to (5.60) as [Rf (s) Rw(s) ] ← Q3(s)[Rf (s) Rw(s) ] = Gi,1(s) and
are therefore, stable systems (as parts of the inner factor).

With Mr(s) = I2, we compute F̃1(s) and F̃2(s) as

[ F̃1(s) F̃2(s) ] = [ I 0 ][G∼
i,1(s) G∼

i,2(s) ] =
[
Ã − sI B̃1 B̃2

C̃ D̃1 D̃2

]
,

where

Ã = 1.7772, B̃1 = [ −0.01688 −1.129
]
, B̃2 = [

4.304 4.754
]
,

C̃ =
[
0.04136
−0.1661

]
, D̃1 =

[ −0.9090 0.3542
−0.4035 −0.7796

]
, D̃2 =

[
0.2190 −0.0136

−0.4273 −0.2165

] .

Both F̃1(s) and F̃2(s) are first order systems with an unstable eigenvalue at 1.7772.
At Step 4) we solve a H∞-LDP and determine the optimal solution

Q4(s) =
[ −1.017 0.3501

−0.448 −0.7868

]
,

which leads to the current optimal synthesis Q̃(s) = Q4(s)Q(s), which is still improper. To obtain
a proper and stable FDI filter Q(s) = Q5(s)Q̃(s), we take at Step 5) Q5(s) = M(s) = 10

s+10 I2. The

http://dx.doi.org/10.1007/978-3-319-51559-5_2
http://dx.doi.org/10.1007/978-3-319-51559-5_2
http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_7
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Fig. 5.2 Parametric step responses for H∞-synthesis

resulting overall filter Q(s) has order three. Note that the orders of the realizations of the individual
factorsQ1(s),Q2(s),Q3(s),Q4(s), andQ5(s) are respectively 2, 0, 5, 0, and 3, which sum together to
10. The corresponding (suboptimal) error norm is γsub := ‖M(s)Ẽ(s)‖∞ = 0.4521. The minimum
error norm γopt := ‖X(s)G(s)−M(s)F(s)‖∞ corresponding to the optimal improper solution X(s)
(of McMillan degree 4) is γopt = 0.4502. The relatively small difference γsub − γopt = 0.0019
indicates that the computed Q(s) is a satisfactory suboptimal proper and stable solution of the
weighted problem.

We can check the robustness of the resulting Q(s) by applying this FDI filter to the original
system in Example 2.2 with the parameter dependent state matrix

A(ρ1, ρ2) =
⎡
⎣ −0.8 0 0

0 −0.5(1 + ρ1) 0.6(1 + ρ2)

0 −0.6(1 + ρ2) −0.5(1 + ρ1)

⎤
⎦ ,

where ρ1 and ρ2 take values on uniform grids with five values in their definition ranges ρ1 ∈
[−0.25, 0.25 ] and ρ2 ∈ [−0.25, 0.25 ]. The simulations have been performed for all 5× 5 = 25
combinations of values of ρ1 and ρ2. For each combination, the step responses of the internal
form of the fault detection filter have been computed. As it can be observed from Fig. 5.2, with an
appropriate choice of the detection threshold, the detection and isolation of constant faults can be
reliably performed in the presence of parametric uncertainties.

The script Ex5_16 in Listing 5.7 solves the AMMP considered in this example. ♦

http://dx.doi.org/10.1007/978-3-319-51559-5_2
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Listing 5.7 Script Ex5 16 to solve the H∞ AMMP of Example 5.16 using Procedure AMMS
% Uses the Control Toolbox and the Descriptor System Tools

% define system with control, noise and actuator fault inputs
A = [-.8 0 0; 0 -.5 .6; 0 -.6 -.5];
Bu = [1 1;1 0;0 1]; Bw = 0.25*[0 0;0 1;1 0]; Bf = Bu;
C = [0 1 1; 1 1 0]; Du = zeros (2,2);
% define Gu, Gw, Gf and Mr
Gu = ss(A,Bu ,C,0); Gw = ss(A,Bw ,C,0); Gf = Gu;
Mr = ss(eye (2));
[p,mu] = size(Gu); mw = size(Gw ,2); mf = size(Gf ,2);

% compute left nullspace basis as Q1 = [ I − Gu ]
% initialize Rf = Q1[Gf ; 0] and Rw = Q1[Gw; 0]
Q1 = ss(A,[zeros(n,p) -Bu],C,[eye(p) -Du]); Rf = Gf; Rw = Gw;

% check solvability condition
if rank(evalfr(Rf ,rand)) ~= mf

error('No solution ')
end

% check for unstable or infinite zeros of [Rf Rw ]
Rf_Rw = ss(A,[Bu Bw],C,0);
gzero(Rf_Rw) % two infinite zeros

tol = 1.e-7; % set tolerance

% compute the quasi-co-outer-co-inner factorization of [Rf Rw ]
[Gi ,Go] = goifac(Rf_Rw ,tol);

% with Q3 = G−1
o form Q = Q3Q1 using explicit formulas

Qbar = dss([Go.a Go.b; Go.c Go.d],[Q1.b; Q1.d],...
[ zeros(mf,n) -eye(mf)], zeros(mf,p+mu),...
[eye(n,n+mf); zeros(mf,n+mf)]);

% compute [ F̃1 F̃2 ] = [Mr 0 ]G∼
i

F1_F2 = [Mr zeros(mf,mw)]*Gi ';

% solve the H∞ least distance problem min ‖[ F̃1 − Q4 F̃2 ]‖∞
options = struct('tol ',tol ,'reltol ',5.e-4);
Q4 = glinfldp(F1_F2 ,mw ,options );
Qtilde = Q4*Qbar; % form Q̃ = Q4Q

% compute stable and proper Q = Q5Q̃ with suitable diagonal Q5 = M
Q = ss(zeros(0,p+mu)); M = ss(zeros (0 ,0));
opt_glcf = struct('tol ',tol ,'sdeg ',-10,...

'mindeg ',true ,'mininf ',true);
for i=1:mf

[Qi ,Mi] = glcf(Qtilde(i,:), opt_glcf );
% normalize Mi to unit H-infinity norm to match example
scale = norm(Mi ,inf)*sign(dcgain(Mi));
Q = [Q;Qi/scale ]; M = append(M,Mi/scale );

end

% compare suboptimal and optimal (improper) solutions
% compute γsub = ‖Q[Gf Gw Gu; 0 0 I ] − MMr [ I 0 0 ]‖∞
G = [Gf Gw Gu; zeros(mu ,mf+mw) eye(mu)];
F = M*Mr*eye(mf ,mu+mw+mf);
gamma_sub = norm(Q*G-F,inf)
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% compute γopt = ‖Qopt [Gf Gw Gu; 0 0 I ] − MMr [ I 0 0 ]‖∞
Yopt = glinfldp(M*F1_F2 ,mw ,tol);
Qopt = Yopt*Qbar;
gamma_opt = norm(gir(Qopt*G-F,tol),inf)

Example 5.17 The model used is the same as in Example 5.16, but this time we employ the H2-
norm based version of Procedure AMMS. Therefore, we choose Mr(s) = 10

s+10 I2 which ensures

that ‖E(s)‖2, the H2-norm of the error function in (5.56), is finite. Steps 1)–3) are the same as in
Example 5.16. At Step 4) the solution Q4(s) of the H2-LDP is simply the stable part of F̃1(s)

Q4(s) =

⎡
⎢⎢⎣

−10 − s 0 −9.090 3.582
0 −10 − s −4.038 −7.955
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ .

At Step 5) we take Q5(s) = M(s) = I . The resulting FDI filter Q(s) has order three. Note that
the orders of the realizations of the individual factors Q1(s), Q2(s), Q3(s), Q4(s), and Q5(s) are
respectively 3, 0, 5, 2, and 0, which sum together to 10. The corresponding H2-norm of the error
is ‖Ẽ(s)‖2 = 1.1172, while the H∞-norm of the error is 0.4519. It follows, that Q(s) can be also
interpreted as a fully satisfactory suboptimal solution of the H∞-MMP. For the resulting filter,
simulation results similar to those in Fig. 5.2 have been obtained, which indicates a satisfactory
robustness of the FDI filter. ♦

5.8 Notes and References

Section 5.1. The two computational paradigms which underly the synthesis proce-
dures presented in this chapter have been discussed for the first time in the authors’
papers [144, 151]. The factorized form (5.1) of the resulting fault detection filters is
the basis of numerically reliable integrated computational algorithms. The numer-
ical aspects of these algorithms are presented in Chap. 7. The parametrization of
fault detection filters given in Theorem 5.1 extends the product form parametrization
proposed in [45] given in terms of a polynomial nullspace basis. An alternative less
general parametrization, without including the disturbance inputs, is presented in
[31, 44]. The nullspace-based characterization of strong fault detectability in Propo-
sition 5.2 generalizes the characterization proposed in [92] based on polynomial
bases.

Section 5.2. The nullspace method (without using this naming), in a state-space
based formulation, has been originally employed in [101] to solve the EFDIP using
structured residuals and extended in [62] to descriptor systems. The least-order syn-
thesis problem has been apparently addressed for the first time in [45], where a
minimal polynomial basis based solution has been proposed. The application of
the polynomial basis method to systems with improper TFMs is done in [93]. A
numerically reliable state-space approach to the least-order synthesis relying on
rational nullspace bases has been proposed in [132]. The computational details of
this approach, in a state-space based setting, are discussed in Sect. 7.4. The role of

http://dx.doi.org/10.1007/978-3-319-51559-5_7
http://dx.doi.org/10.1007/978-3-319-51559-5_7
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the nullspace method as a universal first computational step in all synthesis algo-
rithms has been recognized in [151] as an important computational paradigms to
address the synthesis of residual generators for a range of fault detection problems.
The sensitivity condition (5.20) has been introduced in [48, p. 353] as a criterion to
be minimized for an optimal design.

Section 5.3. To solve the AFDP,H∞/H∞ optimization-based methods have been
suggested by several authors, as [31, 44, 105] to cite a few of them. In this context, the
H∞-filter based solution, advocated in [37, 38], is one of several possible synthesis
methods. The H∞/H∞ optimization-based problem formulation as well as similar
ones (e.g.,H2/H∞,H2/H2, etc.) have a basic difficulty in enforcing the sensitivity
of residual to all fault inputs. To enhance the optimization-based formulations, the
‖ · ‖− index has been introduced in [64] as a sensitivity measure covering globally
all fault inputs. Based on this definition, synthesis methods to solve the AFDP have
been proposed in several papers [28, 66, 77, 78, 163]. The alternative fault sensitivity
measures ‖ · ‖∞− and ‖ · ‖2− have been introduced by the author in [141], where a
synthesis procedure similar to Procedure AFD has been also proposed. The solution
of several nonstandard problems has been considered in [52]. A solution approach for
the nonstandard case has been described in [28], based on a special factorization of
the quasi-outer factor as a product of an outer factor and a second factor containing
all zeros on the boundary of stability domain. This latter approach is implicitly
contained in Procedure AFD, where the respective zeros are dislocated as the poles
of the inverse of the quasi-outer factor using coprime factorization techniques. The
extended quasi-co-outer–co-inner factorization of an arbitrary rational matrix can be
computed using the dual of the algorithm of [97] for the continuous-time case and
the dual of the algorithm of [94] for the discrete-time case. Specialized versions of
these algorithms for proper and full column rank rational matrices are presented in
Sect. 10.3.6.

Section5.4. The solution of theEFDIPwas one of themost intensively investigated
problems in the fault detection literature.We onlymention some of the notable works
in this area, by pointing out the main achievements. Historically, of fundamental
importance for a range of subsequent developments was the geometric approach
introduced by Massoumnia [81], which was the starting point of observer-based
methods. The main limitation of this single filter approach is the assumed form
of the fault detection filter as a full-order Luenberger observer [80], with a suitably
determinedoutput gainmatrix targeting the achievement of a desired structurematrix.
The strong solvability conditions can frequently not be satisfied (no single stable filter
exists), even if the FDIP has a solution. The use of a bank of filters, as suggested
in [83], appears therefore as a natural approach to solve FDIPs for a given structure
matrix. Phatak and Viswanadham proposed the use of a bank of unknown-input
observers (UIOs) as fault detection and isolation filters [103]. Although the lack of
generality of this approach is well known and ways to eliminate them have been
proposed by Hou and Müler [63], the UIO-based approach preserved over the years
a certain popularity (e.g., being the preferred method in [20]). The extension of
the observer-based approach to the case of general proper systems has been done
by Patton and Hou [101] and later extended by Hou to descriptor systems in [62].

http://dx.doi.org/10.1007/978-3-319-51559-5_10
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The least-order synthesis aspect, in the most general setting, has been addressed by
the author in [140] and later improved in [149], where the nullspace method has
been used as a first preprocessing step to reduce the complexity of the FDIP and for
designing a bank of fault detection filters to provide a set of structured residuals. This
improved approach underlies the Procedure EFDI. Similar synthesis methods can
be devised using the parity-space approach proposed by Chow and Willsky [22],
where the least-order synthesis aspect has been discussed in [30]. The synthesis of
FDI schemes based on structured residuals, also including the selection of structure
matrices for suitable coding sets, has been discussed in several works of Gertler [48–
50]. The nullspace-based algorithm for the efficient determination of the maximally
achievable structure matrix has been proposed in [145]. This algorithm underlies the
Procedure GENSPEC.

Section 5.5. The Procedure AFDI represents a refined version of the approach
suggested in [151].

Section 5.6. The solution of the EMMP involves the solution of a linear rational
matrix equation (see Sect. 9.1.9 for existence conditions and parametrization of all
solutions). General computational algorithms, based on state-space representations,
have been proposed by the author in [134, 135] and are discussed in details in
Sect. 10.3.7. The inversion-based method to solve the EFDIP with the strong fault
isolability requirement goes back to Massoumnia and Vander Velde [82], where
only the case without disturbance inputs is addressed. For further extensions and
discussions of this method see [31, 49, 72]. A recent development, leading to the
general numerically reliable computational approach inProcedureEMMS, has been
proposed by the author in [151].

Section 5.7. The solution of the AMMP using a H∞ or H2 optimal controller
synthesis setup is the method of choice in some textbooks, see for example [14,
20]. Standard software tools for controller synthesis are available (e.g., the functions
hinfsyn or h2syn available in MATLAB), but their general applicability to solve
the (dual) filter synthesis problems may face difficulties. Typical bottlenecks are the
assumptions on stabilizability (not fulfilled for filter synthesis for unstable plants),
the lack of zeros on ∂Cs (typically not fulfilled if only actuator faults are considered)
or the need to formulate meaningful reference models for the TFM from faults to
residuals. The first two aspects can be overcome with the help of stable factorization
techniques and using more general computational frameworks (e.g., linear matrix
inequalities (LMIs) based formulations). However, in spite of some efforts (see for
example, [91]), there are no clear guidelines for choosing reference models able to
guarantee the existence of stable solutions. This is why, a new approach has been
proposed by the author in [137], where the choice of a suitable Mr(λ) is part of the
solution procedure. This procedure has been later refined in [146, 147, 150] and
Procedure AMMS represents its final form. The main computational ingredients of
this procedure are discussed in Chap. 7, in a state-space formulation based setting.

Final note: A common aspect worth to mention regarding the proposed synthesis
procedures to solve the approximate synthesis problems AFDP, AFDIP and AMMP
is that the main focus in developing these algorithms lies not on solving the associ-
ated optimization problems, but on obtaining “useful” solutions of these synthesis

http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_10
http://dx.doi.org/10.1007/978-3-319-51559-5_7
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problems, in the most general setting and using reliable numerical techniques.
Although the proposed solution approaches in [141, 146, 147, 150] follow the usual
solution processes to determine the optimal solutions, still the resulting filters are
usually not optimal in the nonstandard cases. The assessment of the “usefulness” of
the resulting filters involves the evaluation of the actual signal bounds on the contri-
bution of noise inputs in the residual signal and the determination of the minimum
detectable amplitudes of fault signals. A solution can be considered as “useful” if it
is possible to choose a suitable decision threshold which allows a robust fault mon-
itoring without false alarms and missed fault detections. For a pertinent discussion
of these aspects see [48].
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