
Chapter 4
Model Detection

In this chapter, we first formulate the basic model detection task to discover among
N given LTI models, that particular model which best matches the current plant
behaviour. Then, the concept of model detectability is introduced and characterized.
The exact and approximate model detection problems are formulated. These prob-
lems target the synthesis of a bank of N LTI model detection filters which generate
a structured set of residuals allowing the discrimination of models in the case of
absence or presence of noise inputs, respectively. The discussion of specific perfor-
mance requirements for model detection and the selection of thresholds to be used
for decision-making conclude the chapter.

4.1 Basic Model Detection Task

Multiple models which describe various fault situations have been frequently used
for fault detection purposes. In such applications, the detection of the occurrence
of a fault comes down to identifying, using the available measurements from the
measurable outputs and control inputs, that model (from a collection of models)
which best matches the dynamical behaviour of the faulty plant. Another typical
application is the multiple-model-based adaptive control, where the adaptation of
the control law (for example, by switching from one controller to another) is based
on the recognition of that model which best approximates the current dynamical
behaviour of the plant. In this book, we will use the (not yet standard) term model
detection to describe the model identification task consisting of the selection of a
model from a collection of N models, which best matches the current dynamical
behaviour of a plant.

A related term used in the literature ismodel validation, which covers an arsenal of
statistical methods to assess the adequacy of a model to a set of measurements. Often
model validation also includes the identification of suitable uncertainty boundswhich
account for the unmodelled dynamics, initial condition uncertainty, andmeasurement
noise. Strictly speaking, model validation is generally impossible (or at least very
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Fig. 4.1 Basic model
detection setup
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challenging), because it would involve to checking that the model can describe any
input–output behaviour of the physical plant. Therefore, a closer related term to
model detection is model invalidation, which relies on the trivial fact that a model
can be invalidated (i.e., it does not fit with the input and output data) on the basis of
a single input–output data set. In this sense, the invalidation of N − 1 models can be
seen as part of the model detection task.

A typical model detection setting is shown in Fig. 4.1. A bank of N residual
generation filters (or residual generators) is used, with r (i)(t) being the output of
the i-th residual generator. The i-th component θi of the N -dimensional evaluation
vector θ usually represents an approximation of ‖r (i)‖2, the L2- or �2-norm of r (i).
The i-th component of the N -dimensional decision vector ι is set to 0 if θi ≤ τi and 1
otherwise, where τi is a suitable threshold. The j-th model is “detected” if ι j = 0 and
ιi = 1 for all i �= j . It follows that model detection can be interpreted as a particular
type of week fault isolation with N signature vectors, where the N -dimensional j-th
signature vector has all elements set to one, excepting the j-th entry which is set to
zero. An alternative decision scheme can also be devised if θi can be associated with
a distance function from the current model to the i-th model. In this case, ι is a scalar,
set to ι = j , where j is the index for which θ j = mini=1:N θi . Thus, the decision
scheme selects that model j which best fits with the current model characterized by
the measured input and output data.

The underlying synthesis techniques of model detection systems rely onmultiple-
model descriptions of physical fault cases of the form (2.22). Since different degrees
of performance degradations can be easily described via multiple models, model
detection techniques have potentially the capability to address certain fault identifi-
cation aspects too.

http://dx.doi.org/10.1007/978-3-319-51559-5_2
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4.2 Residual Generation

Assume we have N LTI models of the form (2.22), where for j = 1, ..., N , the j-th
model is specified in the input–output form

y( j)(λ) = G( j)
u (λ)u( j)(λ) + G( j)

d (λ)d( j)(λ) + G( j)
w (λ)w( j)(λ) . (4.1)

We further assume that the N models originate from a common underlying system
with y(t) ∈ Rp, the measurable output vector, and u(t) ∈ Rmu , the known control
input. Therefore, y( j)(t) ∈ Rp is the output vector of the j-th system with the
control input u( j)(t) ∈ Rmu , disturbance input d( j)(t) ∈ Rm( j)

d , and noise input
w( j)(t) ∈ Rm( j)

w , respectively, and G( j)
u (λ), G( j)

d (λ), and G( j)
w (λ) are the TFMs from

the corresponding plant inputs to outputs. We assume that all models are controlled
with the same control inputs u( j)(t) := u(t), but the disturbance and noise inputs
d( j)(t) andw( j)(t), respectively, may differ for each component model. For complete
generality of our problem formulations, we will allow that these TFMs are general
rational matrices (proper or improper) for which we will not a priori assume any
further properties.

Residual generation for model detection is performed using N linear residual
generators which process the measurable system outputs y(t) and known control
inputs u(t) and generate N residual signals r (i)(t), i = 1, . . . , N , which serve for
decision-making on which one of the models best matches the current input–output
measurement data. As already mentioned, model detection can be interpreted as
a week fault isolation problem with an N × N structure matrix S having all its
elements equal to one, excepting those on its diagonal which are zero. The task of
model detection is thus to find out the model which best matches the measurements
of outputs and inputs, by comparing the resulting decision vector ι with the set of
signatures associated to each model and coded in the columns of S. The residual
generation filters in their implementation form are described by the input–output
relations

r(i)(λ) = Q(i)(λ)

[
y(λ)

u(λ)

]
, i = 1, . . . , N , (4.2)

where y is the actual measured system output, being one of the system outputs
generated by the multiple model (4.1). The TFMs Q(i)(λ), for i = 1, . . . , N , must
be proper and stable. The overall model detection filter has the form

Q(λ) =
⎡
⎢⎣

Q(1)(λ)
...

Q(N )(λ)

⎤
⎥⎦ . (4.3)

The dimension qi of the residual vector component r (i)(t) can be chosen always one,
but occasionally values qi > 1 may provide better sensitivity to model mismatches.

http://dx.doi.org/10.1007/978-3-319-51559-5_2
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Assuming y(t) = y( j)(t), the residual signal component r (i)(t) in (4.2) generally
depends on all system inputs u( j)(t), d( j)(t), andw( j)(t) via the systemoutput y( j)(t).
The internal form of the i-th filter driven by the j-th model is obtained by replacing
in (4.2) y(λ) with y( j)(λ) from (4.1) and u(λ) with u( j)(λ). To make explicit the
dependence of r (i) on the j-th model, we will use r̃ (i, j), to denote the i-th residual
output for the j-th model. After replacing in (4.2), y(λ) with y( j)(λ) from (4.1), and
u(λ) with u( j)(λ), we obtain

r̃(i, j)(λ) := R(i, j)(λ)

⎡
⎣ u( j)(λ)

d( j)(λ)

w( j)(λ)

⎤
⎦

= R(i, j)
u (λ)u( j)(λ) + R(i, j)

d (λ)d( j)(λ) + R(i, j)
w (λ)w( j)(λ) ,

(4.4)

with R(i, j)(λ) :=
[
R(i, j)
u (λ) R(i, j)

d (λ) R(i, j)
w (λ)

]
defined as

[
R(i, j)
u (λ) R(i, j)

d (λ) R(i, j)
w (λ)

]
:= Q(i)(λ)

[
G( j)

u (λ) G( j)
d (λ) G( j)

w (λ)

Imu 0 0

]
. (4.5)

For a successfully designed set of filters Q(i)(λ), i = 1, . . . , N , the corresponding
internal representations R(i, j)(λ) in (4.4) are also a proper and stable.

4.3 Model Detectability

The concept of model detectability concerns with the sensitivity of the components
of the residual vector to individualmodels from a given collection ofmodels. Assume
that we have N models, with the j-th model specified in the input–output form (4.1).
For the discussion of the model detectability concept, we will assume that no noise
inputs are present in the models (4.1) (i.e., w( j) ≡ 0 for j = 1, . . . , N ). For model
detection purposes, N filters of the form (4.2) are employed. It follows from (4.4)
that the i-th component r (i) of the residual r is sensitive to the j-th model provided

R(i, j)(λ) :=
[
R(i, j)
u (λ) R(i, j)

d (λ)

]
�= 0 . (4.6)

We can associate to the N × N blocks R(i, j)(λ) defined in (4.6), the N × N structure
matrix SR with the (i, j)-th element set to 1 if R(i, j)(λ) �= 0 and set to 0 if R(i, j)(λ) =
0. As already mentioned, model detection can be interpreted as a week fault isolation
problem with an N × N structure matrix S having all its elements equal to one,
excepting those on its diagonal which are zero. Having this analogy in mind, we
introduce the following concept of model detectability.
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Definition 4.1 The multiple model defined by the N component systems (4.1) with
w( j) ≡ 0 for j = 1, . . . , N , is model detectable if there exist N filters of the form
(4.2), such that R(i, j)(λ) defined in (4.6) fulfills R(i,i)(λ) = 0 for i = 1, . . . , N and
R(i, j)(λ) �= 0 for all i, j = 1, . . . , N such that i �= j .

The following result characterizes the model detectability property.

Theorem 4.1 The multiple model defined by the N component systems (4.1) with
w( j) ≡ 0 for j = 1, . . . , N, is model detectable if and only if for i = 1, . . . , N

rank [G(i)
d (λ) G( j)

d (λ) G(i)
u (λ)−G( j)

u (λ) ] > rank G(i)
d (λ) ∀ j �= i . (4.7)

Proof For the proof of necessity, assume the model detectability of the multiple
model (4.1) and, for i = 1, . . . , N , let Q(i)(λ) be a corresponding set of filters for
model detection. Let us partition the columns of each Q(i)(λ) as

Q(i)(λ) = [
Q(i)

y (λ) Q(i)
u (λ)

]
,

to correspond to the two filter inputs y(t) and u(t) in (4.2). The conditions to achieve
the i-th specification are R(i,i)(λ) = 0 and R(i, j)(λ) �= 0 for all j �= i . With the
above partitioning of Q(i)(λ), this comes down to

Q(i)
y (λ)G(i)

u (λ) + Q(i)
u (λ) = 0 ,

Q(i)
y (λ)G(i)

d (λ) = 0

and [
Q(i)

y (λ)G( j)
u (λ) + Q(i)

u (λ) Q(i)
y (λ)G( j)

d (λ)

]
�= 0, ∀ j �= i .

Since Q(i)
u (λ) = −Q(i)

y (λ)G(i)
u (λ), after some manipulations, we obtain the condi-

tions to be satisfied by Q(i)
y (λ)

Q(i)
y (λ)G(i)

d (λ) = 0 ,

Q(i)
y (λ)

[
G( j)

u (λ)−G(i)
u (λ) G( j)

d (λ)

]
�= 0, ∀ j �= i .

For each j �= i , the second condition requires that there exists at least one column in[
G( j)

u (λ)−G(i)
u (λ) G( j)

d (λ)

]
, say g(λ), for which Q(i)

y (λ)g(λ) �= 0. This condition

together with Q(i)
y (λ)G(i)

d (λ) = 0 is equivalent with the fault detectability condition
(see Theorem 3.1)

rank [G(i)
d (λ) g(λ) ] > rank G(i)

d (λ) .

It is easy to observe that this condition implies (4.7).

http://dx.doi.org/10.1007/978-3-319-51559-5_3
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To prove the sufficiency of (4.7), we determine a bank of N filters Q(i)(λ), i =
1, . . . , N to solve the model detection problem. For this, we construct the i-th filter
Q(i)(λ) such that the corresponding

R(i, j)(λ) := Q(i)(λ)

[
G( j)

u (λ) G( j)
d (λ)

Imu 0

]

satisfies R(i,i)(λ) = 0 and R(i, j)(λ) �= 0 ∀ j �= i . We show that we can determine
Q(i)(λ) in the stacked form

Q(i)(λ) =
⎡
⎢⎣
Q(i)

1 (λ)
...

Q(i)
N (λ)

⎤
⎥⎦ , (4.8)

where each row Q(i)
j (λ) is a stable scalar output filter which satisfies

Q(i)
j (λ)

[
G(i)

u (λ) G(i)
d (λ)

Imu 0

]
= 0 (4.9)

and, additionally for j �= i

Q(i)
j (λ)

[
G( j)

u (λ) G( j)
d (λ)

Imu 0

]
�= 0 . (4.10)

For convenience, we set Q(i)
i (λ) = 0 (a null row vector). This construction of

Q(i)(λ) in (4.8), ensures with the help of the condition (4.10) that the corresponding
R(i, j)(λ) �= 0 ∀ j �= i .

To determine Q(i)
j (λ) for j �= i , we observe that the condition (4.7) can be

interpreted as an extended fault detectability condition for (fictive) fault inputs cor-
responding to an input–output faulty system defined by the triple of TFMs

{
G(i)

u (λ),G(i)
d (λ),

[
G( j)

d (λ) G(i)
u (λ) − G( j)

u (λ)
]}

from suitably defined control, disturbance and fault inputs, respectively. It follows,
that there exists Q(i)

j (λ) such that (4.9) is fulfilled and

Q(i)
j (λ)

[
G( j)

d (λ) G(i)
u (λ) − G( j)

u (λ)

0 0

]
�= 0 .

Taking into account (4.9), this condition can be rewritten in the equivalent form
(4.10), which in turn implies that R(i, j)(λ) �= 0 for j �= i . �
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4.4 Model Detection Problems

In this section we formulate the exact and approximate synthesis problems of model
detection filters for the collection of N LTI systems (4.1). As in the case of the EFDIP
or AFDIP, we seek N linear residual generators (or model detection filters) of the
form (4.2), which process the measurable system outputs y(t) and known control
inputs u(t) and generate the N residual signals r (i)(t) for i = 1, . . . , N . These signals
serve for decision-making by comparing the pattern of fired and not fired residuals
with the signatures coded in the columns of the associated standard N × N structure
matrix S with zeros on the diagonal and ones elsewhere. The standard requirements
for the TFM of the overall filter Q(λ) in (4.3) are properness and stability. For
practical purposes, the order of the overall filter Q(λ) must be as small as possible.
A least-order Q(λ) can be usually achieved by employing N scalar output least-order
filters (see Sect. 6.2).

In analogy to the formulations of theEFDIPandAFDIP,weuse the internal formof
the i-th residual generator (4.4) to formulate the basic model detection requirements.
Independently of the presence of the noise inputs w( j), we will target that the i-th
residual is exactly decoupled from the i-th model if w(i) ≡ 0 and sensitive to the
j-th model, for all j �= i . These requirements can be easily translated into algebraic
conditions using the internal form (4.4) of the i-th residual generator:

(i) [ R(i,i)
u (λ) R(i,i)

d (λ) ] = 0, i = 1, . . . , N ,

(i i) [ R(i, j)
u (λ) R(i, j)

d (λ) ] �= 0, ∀ j �= i, with [ R(i, j)
u (λ) R(i, j)

d (λ) ] stable. (4.11)

Here, (i) is the model decoupling condition for the i-th model in the i-th residual
component, while (i i) is the model sensitivity condition of the i-th residual compo-
nent to all models, excepting the i-th model. In the case when condition (i) cannot be
fulfilled (e.g., due to lack of sufficient measurements), some (or even all) components
of d(i)(t) can be redefined as noise inputs and included in w(i)(t).

In what follows, we formulate twomodel detection problems which are addressed
in this book.

4.4.1 Exact Model Detection Problem

The standard requirement for solving the exact model detection problem (EMDP)
is to determine for the multiple model (4.1), in the absence of noise input (i.e.,
w( j) ≡ 0 for j = 1, . . . , N ), a set of N proper and stable filters Q(i)(λ) such that,
for i = 1, . . . , N , the conditions (4.11) are fulfilled. These conditions are similar to
the model detectability requirement and lead to the following solvability condition:

Theorem 4.2 For the multiple model (4.1) with w( j) ≡ 0 for j = 1, . . . , N, the
EMDP is solvable if and only if the multiple model (4.1) is model detectable.

http://dx.doi.org/10.1007/978-3-319-51559-5_6
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Proof For each i , the conditions (4.11) can be fulfilled provided the multiple model
(4.1) is model detectable. To ensure the stability of Q(i)(λ), R(i, j)

u (λ) and R(i, j)
d (λ),

the filter with TFM Q(i)(λ) can be replaced by M (i)(λ)Q(i)(λ), where

(M (i)(λ))−1N (i)(λ) = [ Q(i)(λ) R(i,1)
u (λ) R(i,1)

d (λ) · · · R(i,N )
u (λ) R(i,N )

d (λ) ]

is a stable left coprime factorization. �

4.4.2 Approximate Model Detection Problem

The effects of the noise input w(i)(t) can usually not be fully decoupled from the
residual r (i)(t). In this case, the basic requirements for the choice of Q(i)(λ) can
be expressed as achieving that the residual r (i)(t) is influenced by all models in
the multiple model (4.1), while the influence of the i-th model is only due to the
noise signal w(i)(t) and is negligible. For the approximate model detection problem
(AMDP) the following additional conditions to (4.11) have to be fulfilled:

(i i i) R(i,i)
w (λ) ≈ 0, with R(i,i)

w (λ) stable;
(iv) R(i, j)

w (λ) stable ∀ j �= i.
(4.12)

Here, (i i i) is the attenuation condition of the noise input.
The solvability conditions of the formulated AMDP can be easily established:

Theorem 4.3 For the multiple model (4.1) the AMDP is solvable if and only the
EMDP is solvable.

Proof We can always determine a solution of the EMDP with Q(λ) in the form
(4.3), such that additionally the resulting R(i, j)

w (λ) are stable for i, j = 1, . . . , N .
Moreover, by rescaling Q(i)(λ) with a constant factor γi , the norm of R(i,i)

w (λ)/γi
can be made arbitrarily small. The necessity is trivial, because any solution of the
AMDP is also a solution of the EMDP. �

4.5 Threshold Selection

Similar to the performance requirements for FDD systems, a well-designed model
detection system as that in Fig. 4.1, must fulfill standard performance requirements
as timely and unequivocal identification of a singlemodel out of N candidate models
which best fits with the input–output measurements. Assume that we use N residual
evaluation signals θi (t), i = 1, . . . , N , where θi (t) is an approximation of ‖r (i)‖2 (see
Sect. 3.6), and for each i let τi be the corresponding threshold. For the unequivocal
identification of the i-th model, we must have θi (t) ≤ τi and θ j (t) > τ j for all
j �= i ,which corresponds to a binary signature with N − 1 ones and single zero

http://dx.doi.org/10.1007/978-3-319-51559-5_3
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in the i-th element. A false alarm occurs when, due to the effects of noise inputs,
the j-th model (a “false” one) is identified as the best matching one instead the i-th
model (the “true” one). A missed detection occurs, for example, when θi (t) > τi
for all i = 1, . . . , N , or when the resulting binary signature contains several zero
entries. In both of these cases, no unequivocal model identification can take place.

In what follows, we discuss the choice of the decision thresholds τi , i = 1, . . . , N
to be used in the model detection schemes, such that false alarms and missed detec-
tions can be avoided. For j = 1, . . . , N , let U ( j), D( j) and W ( j) be the classes
of control inputs u( j), disturbance inputs d( j) and noise inputs w( j), respectively,
which are relevant for a model detection application. For example, U ( j) is the class
of nonzero control inputs with bounded variations, D( j) may be the class of distur-
bance signals with bounded variations for the j-th model, while W ( j) may be the
class of white noise signals of given maximal amplitude and covariance for the j-th
model. We consider the selection of the threshold τi , which is instrumental for the
discrimination of the i-th model from the rest of models.

To account for the dependence of the evaluation signal θ(t) of the input variables
u( j) ∈ U ( j), d( j) ∈ D( j), and w( j) ∈ W ( j) and of the corresponding time response
of the output signal y( j) of the j-th model up to the time moment t , we will indicate
this dependence explicitly as θ(t, u( j), d( j), w( j), y( j)). Assume that the i-th model
is the current model (to be detected) and y(i) is the corresponding time response of
the i-th model output. The requirement for no false alarms in recognizing the i-th
model leads to a lower bound for τi , representing the i-th false alarm bound

τ
(i)
f := sup

t∈[0,tm ]
u(i)∈U (i)

d(i)∈D(i)

w(i)∈W (i)

θi (t, u
(i), d(i), w(i), y(i)) , (4.13)

where tm is the maximum signal monitoring time. We can define the i-th detection
bound as the least of the N − 1 lower bounds of the evaluation signal for any other
current model different of the i-th model:

τ
(i)
d := min

j �=i
inf

t∈[0,tm ]
u( j)∈U ( j)

d( j)∈D( j)

w( j)∈W ( j)

θi (t, u
( j), d( j), w( j), y( j)) . (4.14)

It is usually assumed, that the choice of the i-th filter Q(i)(λ), can be done such
that τ (i)

f < τ
(i)
d , which ensures that the threshold τi can be chosen such that

τ
(i)
f < τi ≤ τ

(i)
d .
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With such a choice for all N threshold values τi , i = 1, . . . , N , it is possible to guar-
antee the lack of false alarms and missed detections, and thus ensure the unequivocal
identification of any of the N models. Note that, with a suitable rescaling of the N
component filters Q(i)(λ), i = 1, . . . , N , it is possible to arrange that all thresholds
can be taken equal to a common value τi = τ , for i = 1, . . . , N . If the condition
τ

(i)
f < τ

(i)
d cannot be enforced, then no unequivocal identification of the i-th model

is possible. A possible remedy in such cases is to redefine the set of models, by
including only models which are sufficiently “far” from each other.

Remark 4.1 In practical applications the chosen N models usually form a represen-
tative set of models, but frequently do not cover the entire set of possible models,
which can even be infinite due to continuous ranges of variation of fault parame-
ters (e.g., loss of efficiency degree). Thus, a typical operation mode for any model
detection setup is with the current model lying “in between” two candidate models.
To handle this situation and to avoid false alarms and missed detections, an alterna-
tive decision scheme can be employed, where the i-th model is selected, provided
the corresponding evaluation signal θi < θ j for all j �= i . Although this decision
scheme “always” works, still wrong identifications may result, because of the diffi-
culty to correctly map (via a set of N filters Q(i)(λ), i = 1, . . . , N ), the “nearness”
of two models, as for example, the i-th and j-th models, into the “nearness” of the
corresponding evaluations θi and θ j . �

4.6 Notes and References

The termmodel detection has been apparently used for the first time in [142]. Model
validation and also model invalidation have been discussed in [104, 111] in the con-
text of model identification for robust control. The definition of model detectability
appears to be new.

Two model selection problems have been formulated, in a stochastic setting, by
Baram in [4], which are very similar to the model detection problem considered in
this book. These problems consist of the selection of a model out of N given models,
which is the closest to or exactly matches the “true” model. Stochastic measures of
closeness are used to discriminate between two models. The use of Kalman filters
to perform model selection has been discussed by Willsky [161]. The selection of
adequate models for the purpose of multiple-model adaptive control (MMAC) is
discussed in [41].

The use of multiple model techniques for fault detection and isolation has been
considered in several publications, see—for example—[16, 158]. The exact model
detection problem has been formulated and solved in [142]. The formulation of
the approximate model detection problem is similar to several formulations based
on the use of Kalman filters as model detection filters, where all unknown inputs
(noise and disturbances) are assumed to be white noise signals [84, 90, 161]. The
model detection approach discussed in this book is a viable alternative to Kalman
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filter-based approaches used for switching or interpolating among different con-
trollers for MMAC (see—for example, [2]) or in interacting multiple model (IMM)
Kalman filters-based reconfiguration schemes [70]. The main advantages of using
model detection filters over various Kalman filter-based techniques are the ability
of formers to exactly decouple the influence of nonstochastic disturbances from the
residual signals and their significantly lower dynamical orders. The first of these
advantages has been noted in a related approach based on unknown-input observers
proposed in [158].

The decision scheme based on the choice of that model for which the corre-
sponding evaluation signal has the least value among all evaluation signals has been
advocated in [90], where the Narendra-type residual evaluation filter has also been
introduced.
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