
Chapter 10
Computational Algorithms and Software

This chapter presents, in details, the main algorithms for descriptor systems, which
underlie the computational methods used in the synthesis procedures considered in
this book. The core computations in these algorithms involve several matrix decom-
positions and condensed forms, which are obtainable using orthogonal transforma-
tions and, therefore, are provably numerical stable. Important applications of the
condensed form are in developing numerically stable computational algorithms for
the solution of several generalized matrix equations (Lyapunov, Stein, Sylvester,
Riccati), which are frequently encountered in addressing the solution of synthesis
problems in the fields of control and fault detection. The use of condensed forms,
obtainable using orthogonal transformations (instead of using the potentially highly
sensitive Weierstrass, Kronecker, or Brunovsky canonical forms), is also instrumen-
tal in developing numerically reliable procedures for the solution of several basic
computational problems for descriptor systems as well as in some, rather specialized,
algorithms for proper descriptor systems. Although this chapter is primarily intended
for numerical experts having interests in control-related numerical techniques, it also
serves to highlight the complexity of the underlying computations, which are nec-
essary to address the synthesis problems of fault detection and isolation filters in a
numerically sound way. A collection of software tools implements the algorithms
presented in this chapter and can be employed to reproduce all computational results
presented in this book.

10.1 Matrix Decompositions and Condensed Forms

The condensed forms of matrices play an important role in solving many control-
related computational problems. A widely used computational paradigm in solving
many computational problems consists of threemain steps: (1) transform the original
problem into a simpler one by reducing the problem data to condensed forms; (2)
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solve the transformed problem using specially devised methods for the respective
condensed forms; and (3) recover the solution of the original problem using back
transformation to the original form. In this section we present several basic matrix
decompositions, obtainable using orthogonal transformations, which involve several
condensed forms of matrices, pairs of matrices, or even triples of matrices.

The use of orthogonal transformations is a widely accepted approach to promote
numerical reliability of computations with finite precision. These transformations
are perfectly conditioned with respect to inversion and, therefore, have the very
desirable property that they do not amplify the existing uncertainties in the data.
This feature is very important, since uncertainties in problem data are ubiquitous,
representing inherent inaccuracies in data (e.g., truncation or discretization errors),
or roundoff errors occurred in previous computational steps, or both. When using
orthogonal transformations to transform problem data, it is often possible to bound
the roundoff errors resulted as an effect of performed transformations on the data
and even to show that the computed results are the exact solution of a problem with
slightly perturbed data. Numerical algorithms exhibiting such a property are called
(backward) numerically stable and underlie many algorithms for basic linear algebra
computations. The use of numerically stable algorithms guarantees that the computed
solution is accurate, provided the computational problem is well conditioned.

In what follows, we present several matrix decompositions involving particular
condensed forms, which can be obtained using exclusively orthogonal transforma-
tions. These decompositions are the basis for many numerically stable algorithms
employed by the synthesis procedures presented in this book. We will not address
detailed algorithms for the computation of these forms, because they are described
in details in several numerical linear algebra textbooks. However, we will indicate
the associated computational complexity, by giving an estimation of the number
of performed floating-point computations (flops) by a typical algorithm. For each
decomposition we mention several straightforward applications, which often repre-
sent the building blocks of more complex numerical algorithms.

10.1.1 Singular Value Decomposition

The singular value decomposition (SVD) is a fundamental matrix factorization,
which plays an important conceptual and computational role in linear algebra. The
computation of the SVD can be interpreted as the reduction of a given rectangu-
lar matrix to a “diagonal” form using pre- and post-multiplications with orthogonal
matrices. The main theoretical result regarding the SVD is the following theorem.

Theorem 10.1 For any matrix A ∈ Rm×n, there exist orthogonal matrices U ∈
Rm×m and V ∈ Rn×n such that

A = UΣV T ,

whereΣ = diag(Σr, 0)withΣr = diag(σ1, σ2, . . . , σr)and σ1 ≥ σ2 ≥ · · · ≥ σr > 0.
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The value of r defines obviously the rank of A. If we partition U = [
U1 U2

]
and

V = [
V1 V2

]
column-wise compatible with the row and column partitions of Σ ,

respectively, then

A = [
U1 U2

] [
Σr 0
0 0

] [
V T
1

V T
2

]
= U1ΣrV

T
1 , (10.1)

which can be interpreted as a full rank factorization of A. We denote with σi(A),
i = 1, . . . , p, the p := min(m, n) singular values of A, which are formed of the r
nonzero singular values σ1, . . . , σr together with p − r zero singular values. The
largest singular value σ(A) := σ1 is equal to ‖A‖2, the 2-norm of matrix A. For a
square invertible matrix of order n, the 2-norm condition number with respect to
inversion can be computed as κ2(A) := ‖A‖2‖A−1‖2 = σ1/σn. The Moore–Penrose
pseudo-inverse of A can be computed as A† = V1Σ

−1
r UT

1 . The minimum norm solu-
tion of the linear least-squares problem minx∈Rn ‖Ax − b‖2 is simply x = A†b =
V1Σ

−1
r UT

1 b.

Remark 10.1 The SVD is considered the primary tool to reliably determine the rank
of a matrix. However, by applying any of the available numerically stable algorithms
to compute the SVD, there will be almost always p nonzero singular values because
of the incurred roundoff errors. If the original matrix A has the “mathematical rank”
equal to r, then we can expect that p − r of the numerically computed singular
values to be “small.” Thus, to determine the rank of A correctly, we need to choose
a tolerance ε > 0 and define the “numerical rank” of A as r if the r-th and r + 1-th
computed singular values satisfy

σr > ε ≥ σr+1 . (10.2)

Such a rank decision can be seen “reliable” if the gap σr − σr−1 is “large.” It is
important to note that the significance of the terms “small” and “large” is always in
direct relation with the actual magnitudes of the matrix elements. The choice of the
tolerance ε should be consistent with both the machine precision (i.e., ε ≥ uσ(A),
where u = 2−52 ≈ 2.22 · 10−16 is the unit roundoff for the IEEE double precision
floating-point representation), but also with the relative errors in the data (i.e., ε ≥
10−kσ(A), where k is the number of correct decimal digits in the entries of A). We
call the rank r determined such as (10.2) holds the ε-rank of A. �

A typical numerical algorithm for the computation of the full SVD (i.e.,Σ ,U and
V ) requires, for m ≥ n, about 4m2n + 8mn2 + 9m3 flops, but only 4mn2 − 4n3/4
flops for rank determination (i.e., computation of only Σ). For a properly imple-
mented SVD algorithm, it can be shown that the computed diagonal matrix Σ is
exact for a slightly perturbed A, in the following sense:

UT (A + E)V = Σ,
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whereUTU = I ,V TV = I ,‖E‖2 = O(u‖A‖2) and the computedU andV are almost
orthogonal satisfying

∥∥U − U
∥∥
2 = O(u) and

∥∥V − V
∥∥
2 = O(u).

In the rest of this sectionwe discuss some straightforward applications of the SVD.
We assume the SVD of A has the partitioned form in (10.1), where r represents the
ε-rank for a given tolerance ε satisfying (10.2) (i.e., all singular values of A satisfying
σi(A) ≤ ε are considered equal to zero). The partitioned SVD (10.1) can be used to
define orthogonal bases for the range and kernel of the matrix A as

R(A) = R(U1), N (A) = R(V2) ,

as well as for its transpose AT as

R(AT ) = R(V1), N (AT ) = R(U2) .

The orthogonal projections on the respective subspaces can be computed as

PR(A) = U1UT
1 , PN (A) = V2V T

2 ,

PR(AT ) = V1V T
1 , PN (AT ) = U2UT

2 ,

where PX denotes the orthogonal projection on a subspace X .
Several row and column compressions can be easily obtained in terms of the

elements of the SVD (10.1). Let Πc and Πr be permutation matrices defined as

Πc =
[

0 Ir
In−r 0

]
, Πr =

[
0 Im−r

Ir 0

]
. (10.3)

Then

UTA =
[

ΣrV T
1

0

]
, ΠrU

TA =
[

0
ΣrV T

1

]
,

represent two widely used row compressions of A to full row rank matrices via
orthogonal transformations. Similarly,

AV = [
U1Σr 0

]
, AVΠc = [

0 U1Σr
]

are column compressions of A to full column rank matrices via orthogonal transfor-
mations.

10.1.2 QR Decomposition

The QR decomposition of a rectangular matrix in a product of an orthogonal matrix
and an upper triangular matrix has many applications, which are similar to those of
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the SVD. Since the associated computational burden for the determination of the
QR decomposition is significantly smaller than for the computation of the SVD, it
is almost always advantageous to employ the QR decomposition instead the SVD,
whenever this is possible.We cautiously remark that this gain of efficiencymay some-
time involve a certain loss of reliability in problems involving rank determinations.
Fortunately, this may only occur for some rather “exotic” matrices and, therefore,
QR factorization-based techniques are generally preferred to SVD-based methods in
many control-oriented algorithms.

The main result on the QR decomposition is the following one.

Theorem 10.2 For any matrix A ∈ Rm×n, there exists an orthogonal matrix Q ∈
Rm×m and an upper triangular matrix R ∈ Rm×n such that

A = QR .

Specifically, if m > n, then R has the form R =
[
R11

0

]
with m − n trailing zero rows,

while if n ≥ m then R = [
R11 R12

]
. In both cases, R11 is a p × p upper triangular

matrix, with p = min(m, n).

TheQRdecomposition (someauthors prefer the termQRfactorization) is the basic
tool to solve the linear least-squares problemminx∈Rn ‖Ax − b‖2, in the case when A
is a full column rank matrix. The least-squares solution is simply x = [

R−1
11 0

]
QTb.

Furthermore, if R11 is chosen with positive diagonal elements, then R11 is the upper
triangular factor of the Cholesky factorization of ATA as ATA = RT

11R11. Another
application in the casem > n is the computation of the SVD using bidiagonalization-
based methods. These techniques can exploit the upper triangular shape of R11 to
improve the overall computational efficiency.

We have a similar result for the so-called RQ decomposition, which is mainly
relevant for the case m ≤ n.

Theorem 10.3 For any matrix A ∈ Rm×n, with m ≤ n, there exists an orthogonal
matrix Q ∈ Rn×n and an upper triangular matrix R ∈ Rm×m such that

A = [
0 R

]
Q .

If r = rank A < min(m, p), the rank information cannot be usually read out from
the resulting upper triangular factor R of the QR decomposition. An alternative rank-
revealing factorization can be used which allows the determination of rank. The QR
factorization with column pivoting has the form

A = Q

[
R11 R12

0 0

]
Π =: Q

[
R1

0

]
Π, (10.4)

where Q is orthogonal, R11 ∈ Rr×r is upper triangular and invertible and Π is a
permutation matrix. Obviously r = rank A. The role of the column permutations
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is to enforce the invertibility of the leading block R11. The term column pivoting
indicates a specific column permutation strategy which tries to additionally enforce
that R11 is well conditioned (with respect to inversion).

Remark 10.2 The rank determination using the QR factorization with column pivot-
ing can be performed during the computation of this factorization. The factorization
procedure iteratively constructs the upper triangular matrix R11 in the leading posi-
tion. After r = rank A iterations, we have the partial decomposition

A = Q̂

[
R̂11 R̂12

0 R̂22

]
Π̂,

where we expect that R̂22 has a suitably small norm. A typical termination criterion
might be

‖R̂22‖2 ≤ ε, (10.5)

where ε = ε1‖A‖2 for some small parameter ε1 depending on the machine roundoff
unit u and the relative errors in the elements of A. If the above condition is ful-
filled, then the matrix has “numerical rank” r (also called ε-rank). Surprisingly, there
exist some artificially constructed examples (e.g., the Kahan matrices), for which
the nearly rank deficiency cannot be detected in this way. Nevertheless, in prac-
tice, the QR factorization with column pivoting is almost as reliable as the SVD in
determining matrix ranks. Therefore, it is widely used in many algorithms which
involve repeated rank determinations (see, for example, the staircase algorithms in
Sect. 10.3.1). Here, the repeated use of the full SVD would increase tremendously
the computational complexity, due to the need to explicitly compute the involved
orthogonal transformation matrices at each reduction step. �

A typical numerical algorithm for the computation of the QR factorization with
column pivoting is based on the Householder QR factorization technique combined
with column permutations, and requires about 4mnr − 2r2(m + n) + 4r3/3 flops.
Therefore, this algorithm is much more efficient than the algorithms for the com-
putation of the SVD. Using the Householder reduction, the orthogonal transfor-
mation matrix Q is determined in a factored form Q = H1H2 · · ·Hr , where Hi for
i = 1, . . . , r, are elementary orthogonal Householder transformation matrices (also
known as Householder reflectors). Therefore, it is possible to avoid the explicit build-
ing ofQwhen computing products asQTB orCQ, where B andC are arbitrary matri-
ces of compatible dimensions. For the Householder QR algorithm without pivoting,
it can be shown that the computed R is exact for a nearby A in the sense

QT (A + E) = R,

where QTQ = I and ‖E‖2 = O(u‖A‖2). The computed Q is almost orthogonal in
the sense that

∥∥Q − Q
∥∥
2 = O(u). A similar statement is obviously valid for the QR

factorization with column pivoting.
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In the rest of this section we discuss some straightforward applications of the QR
decomposition, which parallel those of the SVD. We assume the QR decomposition
with column pivoting ofA has the partitioned form in (10.4), where r represents the ε-
rank for a given tolerance ε satisfying (10.5) (i.e., the trailingm − r rows ofQTA are
considered equal to zero). Assume the orthogonal matrixQ in (10.4) is partitioned as
Q = [

Q1 Q2
]
, whereQ1 ∈ Rm×r andQ2 ∈ Rm×(m−r). We can determine orthogonal

bases for the range of matrix A and the kernel of the matrix AT (which is also its
orthogonal complement) as

R(A) = R(Q1), N (AT ) = R(A)⊥ = R(Q2) .

The orthogonal projections on these subspaces can be computed as PR(A) = Q1QT
1

and PN (AT ) = Q2QT
2 , respectively. Obviously, orthogonal bases forR(AT ) andN (A)

can be determined in terms of the QR decomposition with column pivoting of the
transposed matrix AT .

The row and column compressions can be obtained similarly as for the SVD. Let
Πr be the permutation matrix defined in (10.3). The row compressions of A to full
row rank matrices, via orthogonal transformations, can be obtained in one of the
following forms:

QTA =
[
R1Π

0

]
, ΠrQ

TA =
[

0
R1Π

]
.

Column compressions can be computed from the row compressions of the trans-
posed matrix AT , or, in the case of full row rank matrices, using directly the RQ
decomposition (see Theorem 10.3).

10.1.3 Real Schur Decomposition

The real Schur decomposition (RSD) of a square real matrix A is a basic matrix
decompositionwhich reveals the eigenvalues ofA, by determining its real Schur form
(RSF) (an upper quasi-triangular form) using orthogonal similarity transformations.
The following theorem is the main theoretical result regarding the RSD.

Theorem 10.4 For any A ∈ Rn×n there exists an orthogonal Q ∈ Rn×n such that
S = QTAQ is upper quasi-triangular of the form

S = QTAQ =

⎡

⎢⎢⎢
⎣

S11 S12 · · · S1k
0 S22 · · · S2k
...

...
. . .

...

0 0 · · · Skk

⎤

⎥⎥⎥
⎦

, (10.6)

where each Sii for i = 1, . . . , k is either a 1 × 1 or a 2 × 2 matrix having complex
conjugate eigenvalues.
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From the RSF (10.6), the eigenvalues of A result simply as

Λ(A) =
k⋃

i=1

Λ(Sii) .

The RSF also plays an important role in solving various linear matrix equations
(Lyapunov, Stein, Sylvester), while the associated transformation matrix Q can be
used to compute orthogonal bases of invariant subspaces (see below), which are
useful in solving quadratic matrix Riccati equations.

An important property of the RSF is that the order of eigenvalues (and thus of
the associated diagonal blocks) is arbitrary. The reordering of diagonal blocks (thus
also of corresponding eigenvalues) can be simply done by interchanging two adjacent
diagonal blocks of theRSF. For the swappingof such twoblocks orthogonal similarity
transformations can be used. Thus, any arbitrary reordering of blocks (and thus of the
corresponding eigenvalues) can be achieved in this way. An important application
of this fact is the computation of orthogonal bases for the invariant subspaces of A
corresponding to a particular eigenvalue or a particular set of eigenvalues.

Consider a disjunct partition of the complex plane asC = Cg ∪ Cb,Cg ∩ Cb = ∅,
whereCg andCb denote the “good” and “bad” regions ofC for the location of eigen-
values of A, respectively. The ordered RSF is frequently employed in computational
algorithms to exhibit a separation of eigenvalues into two sets, namely, all eigenvalues
located in Cg gathered in the leading diagonal block of the RSF and all eigenvalues
located in Cb gathered in the trailing diagonal block of the RSF. Overall we can
achieve the orthogonal reduction of A to an ordered RSF matrix S in the form

S = QTAQ =
[
Ag Agb

0 Ab

]
,

whereΛ(Ag) ⊂ Cg andΛ(Ab) ⊂ Cb. If we partitionQ asQ = [
Q1 Q2

]
compatibly

with the structure of the above S, then we can write

AQ1 = Q1Ag .

It follows that
AR(Q1) ⊂ R(Q1)

and thusR(Q1) is an invariant subspace corresponding to the eigenvalues of A lying
in Cg .

For the computation of the RSD the so-called Francis QR algorithm (or one of
its modern variants) is usually used. This algorithm requires about 25n3 flops if
both Q and S are computed. If the eigenvalue reordering is necessary, for example,
to move p eigenvalues in the leading diagonal block of the RSF, then additionally
at most 12n(n − p)p flops are necessary (e.g., 3n3 flops if p = n/2). If only the
eigenvalues are desired, then 10n3 flops are necessary. The roundoff properties of the
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QR algorithm are what one would expect of any orthogonal matrix technique. The
computed RSF S is orthogonally similar to a matrix near to A, that is,

QT (A + E)Q = S,

where QTQ = I and ‖E‖2 = O(u‖A‖2). The computed Q is almost orthogonal, in

the sense that
∥∥I − Q

T
Q

∥∥
2 = O(u). These relations are valid also in the case of

employing eigenvalue reordering.
If A is a symmetric real matrix, then all eigenvalues of A are real and the sym-

metric real Schur form S is the diagonal form formed from the (real) eigenvalues.
If additionally A is positive semi-definite, then all eigenvalues of A are non-negative
and we have the following simple formula for the square root of A:

A
1
2 = QS

1
2QT ,

where S
1
2 is the diagonal matrix formed from the square roots of the eigenvalues. We

can even compute the factor R of a Cholesky-like decomposition A = RTR as

R = S
1
2QT .

Such a factor is sometimes (improperly) called the square root of A.

10.1.4 Generalized Real Schur Decomposition

The eigenvalue structure of a regular pencil A − λE is completely described by
the Weierstrass canonical form (see Lemma 9.8). However, the computation of this
canonical form involves the use of (potentially ill-conditioned) general invertible
transformations, and therefore numerical reliability cannot be guaranteed. Fortu-
nately, the computation of Weierstrass canonical form can be avoided in almost
all computations, and alternative “less”-condensed forms can be employed instead,
which can be computed by employing exclusively orthogonal similarity transforma-
tions. The generalized real Schur decomposition (GRSD) of a matrix pair (A,E)

reveals the eigenvalues of the regular pencil A − λE, by determining the generalized
real Schur form (GRSF) of the pair (A,E) (a quasi-triangular–triangular form) using
orthogonal similarity transformations on the pencil A − λE. The main theoretical
result regarding the GRSD is the following theorem.

Theorem 10.5 Let A − λE be an n × n regular pencil, with A and E real matrices.
Then, there exist orthogonal transformation matrices Q and Z such that

S − λT := QT (A − λE)Z =
⎡

⎢
⎣

S11 · · · S1k
. . .

...

0 Skk

⎤

⎥
⎦ − λ

⎡

⎢
⎣

T11 · · · T1k
. . .

...

0 Tkk

⎤

⎥
⎦ , (10.7)

http://dx.doi.org/10.1007/978-3-319-51559-5_9
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where each diagonal subpencil Sii − λTii, for i = 1, . . . , k, is either of dimension
1 × 1 in the case of a finite real or infinite eigenvalue of the pencil A − λE or of
dimension 2 × 2, with Tii upper triangular, in the case of a pair of finite complex
conjugate eigenvalues of A − λE.

The pair (S,T) in (10.7) is in a GRSF and the eigenvalues of A − λE (or the gener-
alized eigenvalues of the pair (A,E)) are given by

Λ(A − λE) =
k⋃

i=1

Λ(Sii − λTii) .

If E = I , then we can always choose Q = Z , T = I and S is the RSF of A.
Similar to the RSF, the order of eigenvalues (and thus of the associated pairs of

diagonal blocks) of the reduced pencil S − λT is arbitrary. The reordering of the
pairs of diagonal blocks (thus also of corresponding eigenvalues) can be done by
interchanging two adjacent pairs of diagonal blocks of the GRSF. For the swapping
of such two pairs of blocks orthogonal similarity transformations can be used. Thus,
any arbitrary reordering of pairs of blocks (and thus of the corresponding eigenvalues)
can be achieved in this way. An important application of this fact is the computation
of orthogonal bases for the deflating subspaces of the pencil A − λE corresponding
to a particular eigenvalue or a particular set of eigenvalues.

For the computation of the GRSD the so-called QZ algorithm is usually used.
This algorithm requires about 66n3 flops if all matrices S, T , Q and Z are computed.
If the eigenvalue reordering is necessary, for example, to move p eigenvalues in the
leading diagonal blocks of the GRSF, then additionally at most 24n(n − p)p flops are
necessary (e.g., 6n3 flops if p = n/2). If only the eigenvalues are desired, then 30n3

flops are necessary. The roundoff properties of the QZ algorithm are what one would
expect of any orthogonal matrix technique. The computed pair (S,T), in GRSF, is
orthogonally similar to a matrix pair near to (A,E) and satisfies

QT (A + F)Z = S, QT (E + G)Z = T ,

where QTQ = I , ZTZ = I , ‖F‖2 = O(u‖A‖2) and ‖G‖2 = O(u‖E‖2). The com-
puted Q and Z are almost orthogonal, in the sense that

∥∥I − Q
T
Q

∥∥
2 = O(u) and

∥
∥I − Z

T
Z
∥
∥
2 = O(u). These relations are valid also in the case of employing eigen-

value reordering.
Consider a disjunct partition of the complex plane asC = Cg ∪ Cb,Cg ∩ Cb = ∅,

whereCg andCb denote the “good” and “bad” regions ofC, respectively.We assume
that Cg , and therefore also Cb, are symmetric with respect to the real axis. Then, it
is possible to determine the orthogonal transformation matrices Q and Z such that

QT (A − λE)Z =
[
Ag − λEg Agb − λEgb

0 Ab − λEb

]
(10.8)
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is in a GRSF, where Λ(Ag − λEg) ⊂ Cg and Λ(Ab − λEb) ⊂ Cb. Frequently used
eigenvalue splittings are the stable–unstable splitting (i.e., Cg = Cs and Cb =
C \ Cs) or the finite-infinite splitting (i.e., Cg = C \ {∞} and Cb = {∞}). More
complicated splittings are possible by combining two or more partitions (see below).

The eigenvalue splitting achieved in the ordered GRSF (10.8) is the main tool
for determining deflating subspaces corresponding to the eigenvalues of the pencil
A − λE. The subspacesX andY formadeflating pair for the eigenvalues ofA − λE if

dimX = dimY

and
AX ⊂ Y, EX ⊂ Y,

where dimS denotes the dimension of the subspace S. If we partition Q and Z com-
patibly with the structure of the GRSF (10.8) as Q = [

Q1 Q2
]
and, respectively,

Z = [
Z1 Z2

]
, then we can write

AZ1 = Q1Ag, EZ1 = Q1Eg .

It follows that dimR(Q1) = dimR(Z1) and

AR(Z1) ⊂ R(Q1), ER(Z1) ⊂ R(Q1) .

Thus, R(Q1) and R(Z1) form a pair of (left and right) deflating subspaces associ-
ated to the eigenvalues of Ag − λEg . Deflating subspaces generalize the notion of
invariant subspaces. If E is invertible, then the (right) deflating subspace R(Z1) is
an invariant subspace of E−1A corresponding to the eigenvalues of E−1A lying in
Cg . An important application of deflating subspaces is the solution of generalized
Riccati equations, which can be equivalently formulated as the problem of deter-
mining orthogonal bases of the right deflating subspace corresponding to the stable
eigenvalues of suitably defined regular pencils (see Sect. 10.2.2).

We describe now a special splitting of eigenvalues, which is instrumental for
the computation of the proper and stable coprime factorizations using the methods
described in Sect. 10.3.5. Assume Cg is finite region of C, symmetric with respect
to the real axis and Cb is its complement including also the point at infinity. The
eigenvalue splitting in question involves the reduction of A − λE to the form

Ã − λẼ = QT (A − λE)Z =
⎡

⎣
A∞ ∗ ∗
0 Ag − λEg ∗
0 0 Ab − λEb

⎤

⎦ , (10.9)

where A∞ is an (n − r) × (n − r) invertible (upper triangular) matrix, with r =
rank E, Λ(Ag − λEg) ⊂ Cg and Λ(Ab − λEb) ⊂ Cb. The leading pair (A∞, 0) con-
tains all infinite eigenvalues of A − λE corresponding to first-order eigenvectors,
while the rest of infinite eigenvalues are included in Ab − λEb.
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The Procedure GSORSF, presented in what follows, computes the specially
ordered GRSF in (10.9). The same procedure can be also used to obtain a reverse
ordering of the diagonal blocks of QT (A − λE)Z in (10.9). For this, we apply the
procedure to the transposed pencil AT − λET to obtainQ1 and Z1 such thatQT

1 (AT −
λET )Z1 is in a form, as in the right side of (10.9). Let P be the permutation matrix

P =
⎡

⎢
⎣

0 1
...

1 0

⎤

⎥
⎦ . (10.10)

Then, with Q = Z1P and Z = Q1P we obtain QT (A − λE)Z in the form

QT (A − λE)Z =
⎡

⎣
Ab − λEb ∗ ∗

0 Ag − λEg ∗
0 0 A∞

⎤

⎦ . (10.11)

Procedure GSORSF: Specially ordered generalized real Schur form
Inputs : A − λE regular, Cg and Cb such that C = Cg ∪ Cb, Cg ∩ Cb = ∅
Outputs: Q, Z , Ã − λẼ = QT (A − λE)Z in (10.9)

1) Compute an orthogonal Z1 such that EZ1 = [
0 E2

]
, with E2 full column rank

r = rank E; compute the conformably partitioned AZ1 = [
A1 A2

]
, with A1

having full column rank n − r.

2) Compute an orthogonal Q1 such that QT
1A1 =

[
A∞
0

]
, with A∞ an

(n − r) × (n − r) invertible upper triangular matrix; compute the
conformably partitioned matrices

QT
1A2 =

[
A12

A22

]
, QT

1E2 =
[
E12

E22

]
.

3) Compute orthogonal Q2 and Z2 such that

QT
2 (A22 − λE22)Z =

[
Ag − λEg Agb − λEgb

0 Ab − λEb

]

is in a GRSF, where Λ(Ag − λEg) ⊂ Cg and Λ(Ab − λEb) ⊂ Cb. Compute
A12Q2 = [

A∞,g A∞,b
]
and E12Q2 = [

E∞,g E∞,b
]
conformably partitioned

with QT
2 (A22 − λE22)Z .

4) Set Q = Q1 diag(In−r,Q2), Z = Z1 diag(In−r,Z2) and define Ã and Ẽ from
the pencil

Ã − λẼ =
⎡

⎣
A∞ A∞,g − λE∞,g A∞,b − λE∞,b

0 Ag − λEg Agb − λEgb

0 0 Ab − λEb

⎤

⎦ .
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10.1.5 Controllability and Observability Staircase Forms

Staircase forms represent a large family of block upper triangular condensed forms,
which arise from various algorithms which “compress” the numerical data available
in single matrices or matrix pairs. All forms already studied, such as the diagonal
form (originated from the SVD), upper triangular form (originated from the QR
decomposition), the RSF (originated from the Francis QR algorithm) or the GRSF
of a matrix pair (originated from the QZ algorithm), can be interpreted as particu-
lar staircase forms. For a general rectangular linear pencil, several Kronecker-like
staircase forms (see next section) are obtainable using strict pencil similarity transfor-
mations using orthogonal transformations. In this section, we discuss two particular
staircase forms, the controllability and observability staircase forms, which appear
as parts of this form. However, due to their special importance for the computation of
irreducible representation of descriptor systems, we dedicate a separate section for
the discussion of their properties and also give a numerically stable computational
procedure for their determination.

We have the following main result regarding the controllability staircase form.

Theorem 10.6 Consider the pair (A − λE,B), with A,E ∈ Rn×n and B ∈ Rn×m,
and assume the pencil A − λE is regular. Then, there exist orthogonal transformation
matrices Q and Z such that

[
B̂ Â − λÊ

] := [
QTB QTAZ − λQTEZ

] =
[
Bc Ac − λEc ∗
0 0 Ac̄ − λEc̄

]
, (10.12)

is in a generalized controllability staircase form with

[
Bc Ac

] =

⎡

⎢⎢⎢⎢
⎢
⎣

A1,0 A1,1 A12 · · · A1,k−1 A1,k

0 A2,1 A22 · · · A2,k−1 A2,k

0 0 A32 · · · A3,k−1 A3,k
...

...
...

. . .
...

...

0 0 0 · · · Ak,k−1 Ak,k

⎤

⎥⎥⎥⎥
⎥
⎦

, (10.13)

where Aj,j−1 ∈ Rνj×νj−1 , with ν0 = m, are full row rank matrices for j = 1, . . . , k,
and the resulting upper triangular matrix Ec has a similar block partitioned form

Ec =

⎡

⎢
⎢⎢⎢⎢
⎣

E1,1 E1,2 · · · E1,k−1 E1,k

0 E2,2 · · · E2,k−1 E2,k
...

...
. . .

...
...

0 0 · · · Ek−1,k−1 Ek−1,k

0 0 · · · 0 Ek,k

⎤

⎥
⎥⎥⎥⎥
⎦

, (10.14)
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where Ej,j ∈ Rνj×νj . The resulting block dimensions νj, j = 0, 1, . . . , k, satisfy

m = ν0 ≥ ν1 ≥ · · · ≥ νk > 0 .

The nc × (m + nc) pencil
[
Bc Ac − λEc

]
, with nc := ∑k

j=1 νj, has full row rank
for any finite λ ∈ C, and therefore the pair (Ac − λEc,Bc) is finite controllable.
If nc < n, then the (n − nc) × (n − nc) regular pencil Ac̄ − λEc̄ contains the finite
uncontrollable eigenvalues of A − λE (and also possibly some infinite ones).

Ifm = 1, then all subdiagonal blocks Aj,j−1 of Ac are 1 × 1 and Ac is in aHessen-
berg form. The pair (Ac,Ec)with Ac in Hessenberg form and Ec upper triangular is in
a so-called generalized Hessenberg form (GHF). If m > 1, then Ac is in a so-called
block Hessenberg form. If E = I , then we can choose Q = Z such that Ê = I .

Remark 10.3 If we partition Q and Z compatibly with the structure of the stair-
case form (10.12) as Q = [

Q1 Q2
]
and, respectively, Z = [

Z1 Z2
]
, then we can

write AZ1 = Q1Ac and EZ1 = Q1Ec. It follows that dimR(Q1) = dimR(Z1) and
AR(Z1) ⊂ R(Q1), ER(Z1) ⊂ R(Q1). Thus, R(Q1) and R(Z1) form a pair of (left
and right) deflating subspaces associated to the eigenvalues ofAc − λEc. Additionally
we have

R(B) ⊂ AR(Z1) + ER(Z1) (10.15)

and Cf := R(Z1) is a deflating subspace with least possible dimension satisfying
(10.15). We call Cf the finite controllability subspace of the pair (A − λE,B). The
pair (A − λE,B) is finite controllable if the dimension of Cf is n. �

We also have the dual result to Theorem 10.6 for the observability staircase form.

Theorem 10.7 Consider the pair (A − λE,C), with A,E ∈ Rn×n and C ∈ Rp×n,
and assume the pencil A − λE is regular. Then, there exist orthogonal transformation
matrices Q and Z such that

[
Â − λÊ

Ĉ

]
:=

[
QTAZ − λQTEZ

CZ

]
=

⎡

⎣
Aō − λEō ∗

0 Ao − λEo

0 Co

⎤

⎦ , (10.16)

is in a generalized observability staircase form with

[
Ao

Co

]
=

⎡

⎢⎢⎢⎢⎢⎢
⎢
⎣

A
,
 A
,
−1 · · · A
,2 A
,1

A
−1,
 A
−1,
−1 · · · A
−1,2 A
−1,1

0 A
−2,
−1 · · · A
−2,2 A
−2,1
...

...
. . .

...
...

0 0 · · · A1,2 A1,1

0 0 · · · 0 A0,1

⎤

⎥⎥⎥⎥⎥⎥
⎥
⎦

, (10.17)
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where Aj−1,j ∈ Rμj−1×μj , withμ0 = p, are full column rankmatrices for j = 1, . . . , 
,
and the resulting upper triangular matrix Eo has a similar block partitioned form

Eo =

⎡

⎢⎢
⎢⎢⎢
⎣

E
,
 E
,
−1 · · · E
,2 E
,1

0 E
−1,
−1 · · · E
−1,2 E
−1,1
...

...
. . .

...
...

0 0 · · · E2,2 E2,1

0 0 · · · 0 E1,1

⎤

⎥⎥
⎥⎥⎥
⎦

, (10.18)

with Ej,j ∈ Rμj×μj . The resulting block dimensions μj, j = 0, 1, . . . , 
, satisfy

p = μ0 ≥ μ1 · · · ≥ μ
 > 0 .

The (no + p) × no pencil

[
Ao − λEo

Co

]
, with no := ∑


j=1 μj, has full column rank

for any finite λ ∈ C, and therefore the pair (Ao − λEo,Co) is finite observable. If
no < n, then the (n − no) × (n − no) regular pencil Aō − λEō contains the finite
unobservable eigenvalues of A − λE (and also possibly some infinite ones).

Remark 10.4 If we partition Q and Z compatibly with the structure of the stair-
case form (10.16) as Q = [

Q1 Q2
]
and, respectively, Z = [

Z1 Z2
]
, then we can

write AZ1 = Q1Aō and EZ1 = Q1Eō. It follows that dimR(Q1) = dimR(Z1) and
AR(Z1) ⊂ R(Q1), ER(Z1) ⊂ R(Q1). Thus, R(Q1) and R(Z1) form a pair of (left
and right) deflating subspaces associated to the eigenvalues of Aō − λEō. Addi-
tionally, Of := R(Z1) is a deflating subspace with the largest dimension satisfying
R(Z1) ⊂ N (C).We callOf thefinite unobservable subspaceof the pair (A − λE,C).
The pair (A − λE,C) is finite observable if the dimension of Of is zero. �

The following procedure to compute the staircase form (10.12) can be seen as a
constructive proof of Theorem 10.6. In view of themain application of this procedure
(see Sect. 10.3.1), we included a matrix C ∈ Rp×n on which all transformations to
the right are also applied.
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Procedure GCSF: Generalized controllability staircase form
Inputs : (A − λE,B,C)

Outputs: Q, Z , (A−λE,B,C) :=(QTAZ−λQTEZ,QTB,CZ); νj, j = 1, . . . , 


1) Compute an orthogonal matrix Z such that EZ is upper triangular;
compute A ← AZ , E ← EZ , C ← CZ .

2) Set j = 1, nc = 0, ν0 = m, A(0) = A, E(0) = E, B(0) = B, Q = In.
3) Compute orthogonal matrices W and U such that

WTB(j−1) :=
[
Aj,j−1

0

]
νj
ρ

νj−1

,

with Aj,j−1 full row rank and WTE(j−1)U upper triangular.
4) Compute and partition

WTA(j−1)U :=
[
Aj,j Aj,j+1

B(j) A(j)

]
νj
ρ

νj ρ

, WTE(j−1)U :=
[
Ej,j Ej,j+1

O E(j)

]
νj
ρ

νj ρ

5) For i = 1, . . . , j − 1 compute and partition

Ai,jU := [ Ai,j Ai,j+1 ]
νj ρ

, Ei,jU := [ Ei,j Ei,j+1 ]
νj ρ

6) Q ← Q diag(Inc ,W ), Z ← Z diag(Inc ,U), C ← C diag(Inc ,U).
7) nc ← nc + νj; if ρ = 0 then 
 = j and Exit.
8) If νj > 0, then j ← j + 1 and go to Step 3); else, 
 = j − 1, and Exit.

If theProcedureGCSF exits at Step 7), then the original pair (A − λE,B) is finite
controllable. However, if the Procedure GCSF exits at Step 8), then the original
pair (A − λE,B) is not finite controllable. In this case, the trailing ρ × ρ pencil
A(
+1) − λE(
+1) =: Ac̄ − λEc̄, with ρ = n − nc, contains all uncontrollable finite
eigenvalues of A − λE.

The Procedure GCSF can be implemented such that at Step 1) it exploits any
particular shape in the lower triangle of E (e.g., E lower banded). In particular, if E is
upper triangular, then the resulting Z is simply Z = I and no further computations are
performed at this step. The row compressions at Step 3) are usually performed using
rank-revealing QR factorizations with column pivoting (see Sect. 10.1.2). The reduc-
tions can be performed using sequences of Givens rotations (instead Householder
reflectors), which allow to simultaneously perform the column transformations accu-
mulated inU tomaintain the upper triangular formofE(j−1). This reduction technique
is described in detail in [125] and is similar to the reduction of a matrix pair to a
generalized Hessenberg form. Using this technique, the numerical complexity of
Procedure GCSF is O(n3) (for m, p � n), provided all transformations are imme-
diately applied without accumulating explicitly W and U. Note that the usage of
the more robust rank determinations based on singular values decompositions would
increase the overall complexity to O(n4) due to the need to accumulate explicitly
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each W and U. Regarding the numerical properties of Procedure GCSF, it is pos-
sible to show that the resulting system matrices Â, Ê, B̂, Ĉ are exact for slightly
perturbed original data A, E, B, C, while Q and Z are nearly orthogonal matrices. It
follows that the Procedure GCSF is numerically stable.

To compute the observability staircase form of a pair (A − λE,C), the Proce-
dure GCSF can be applied to the dual pair (AT − λET ,CT ) to obtain the trans-
formed pair (̂AT − λÊT , ĈT ) in a controllability staircase form. Then, the pair
(PÂP − PÊP, ĈP), where P is the permutation matrix (10.10), is in an observability
staircase form.

10.1.6 Kronecker-Like Forms

Consider the reduction of a general rectangular (or singular) pencil M − λN , with
M,N ∈ Rm×n using strict similarity transformations of the form

M̂ − λN̂ = U(M − λN)V,

where U and V are invertible matrices. From Lemma 9.9, recall that, using general
invertible transformations, we can determine the Kronecker-canonical form (9.44)
of the pencilM − λN , which basically characterizes the right and left singular struc-
ture and the eigenvalue structure of the pencil. The computation of the Kronecker-
canonical formmay involve the use of ill-conditioned transformations and, therefore,
is potentially numerically unstable. Fortunately, alternative staircase forms, called
Kronecker-like forms, allow to obtain basically the same (or only a part of) structural
information on the pencil M − λN by employing exclusively orthogonal transfor-
mations (i.e., UTU = I and V TV = I).

The following result concerns with one of the main Kronecker-like forms.

Theorem 10.8 LetM ∈ Rm×n andN ∈ Rm×n be arbitrary realmatrices. Then, there
exist orthogonal U ∈ Rm×m and V ∈ Rn×n, such that

U(M − λN)V =
⎡

⎣
Mr − λNr ∗ ∗

0 Mreg − λNreg ∗
0 0 Ml − λNl

⎤

⎦ , (10.19)

where

(1) The nr × (mr + nr) pencil Mr − λNr has full row rank, nr, for all λ ∈ C and is
in a controllability staircase form

Mr − λNr = [
Br Ar − λEr

]
, (10.20)

with Br ∈ Rnr×mr , Ar,Er ∈ Rnr×nr , and Er invertible.

http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_9
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(2) The nreg × nreg pencil Mreg − λNreg is regular and its eigenvalues are the eigen-
values of pencil M − λN. The pencil Mreg − λNreg may be chosen in a GRSF,
with arbitrary-ordered diagonal blocks.

(3) The (pl + nl) × nl pencil Ml − λNl has full column rank, nl, for all λ ∈ C and
is in a observability staircase form

Ml − λNl =
[
Al − λEl

Cl

]
, (10.21)

with Cl ∈ Rpl×nl , Al,El ∈ Rnl×nl , and El invertible.

Let νi, i = 1, . . . , k be the dimensions of the diagonal blocks of Ar − λEr in the
controllability staircase form

[
Br Ar − λEr

]
and define ν0 = mr . These dimensions

completely determine the right Kronecker structure of M − λN as follows: there
are νi−1 − νi blocks Li−1(λ) of size (i − 1) × i, i = 1, . . . , k. Analogously, let μi,
i = 1, . . . , 
 be the dimensions of the diagonal blocks ofAl − λEl in the observability

staircase form

[
Al − λEl

Cl

]
and define μ0 = pl. These dimensions completely deter-

mine the left Kronecker structure ofM − λN as follows: there are μi−1 − μi blocks
LT
i−1(λ) of size i × (i − 1), i = 1, . . . , 
. We have nr = ∑k

i=1 νi and nl = ∑

i=1 μi,

and the normal rank ofM − λN is nr + nreg + nl. The finite Smith zeros ofM − λN
are the finite eigenvalues of the regular pencil Mreg − λNreg and represent the finite
values of λ for which M − λN drops its rank below its normal rank.

In Sect. 10.3 several applications of the Kronecker-like forms are presented, such
as the computation of minimal nullspace basis, system zeros, inner–outer factoriza-
tions and the solution of linear rational equations.

For the computation of theKronecker-like form (10.19) the standard approach is to
achieve successive separations of the structural elements and eigenvalues of the pencil
M − λN . A typical basic pencil reduction procedure, as Procedure PREDUCE
presented in this section, uses two orthogonal transformation matrices Q and Z to
achieve the following separation:

M̃ − λÑ := Q(M − λN)Z =
[
Mr,∞ − λNr,∞ ∗

0 Mf ,l − λNf ,l

]
, (10.22)

where themr,∞ × nr,∞ pencilMr,∞ − λNr,∞ has full row rank for allλ ∈ C excepting
possibly a finite set of infinite values of λ, and the mf ,l × nf ,l pencilMf ,l − λNf ,l has
full column rank for all λ ∈ C excepting possibly a finite set of finite values of λ.
Moreover, the pencil M̃ − λÑ is in the following staircase form:
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M̃ − λÑ =

⎡

⎢⎢⎢⎢⎢
⎣

M1,1 M1,2 − λN1,2 · · · M1,k − λN1,k ∗
0 M2,2 · · · M2,k − λN2,k ∗
...

...
. . .

...
...

0 0 · · · Mk,k ∗
0 0 · · · 0 Mf ,l − λNf ,l

⎤

⎥⎥⎥⎥⎥
⎦

} ν1
} ν2

} νk
} mf ,l

︸︷︷︸
μ1

︸ ︷︷ ︸
μ2

︸ ︷︷ ︸
μk

︸ ︷︷ ︸
nf ,l

, (10.23)

whereMi,i ∈ Rνi×μi are full row rankmatrices for i = 1, . . . , k, andNi−1,i ∈ Rνi−1×μi

are full column rankmatrices for i = 2, . . . , k. The dimensions νi andμi of the blocks
in (10.23) satisfy

μ1 ≥ ν1 ≥ μ2 ≥ ν2 ≥ · · ·μk ≥ νk ≥ 0

and completely determine the right Kronecker structure and the eigenstructure at
infinity of the pencil M − λN as follows: there are μi − νi (i = 1, . . . , k) blocks
Li−1(λ) of size (i − 1) × i and, with μk+1 := 0, there are νi − μi+1 (i = 1, . . . , k)
nilpotent Jordan blocks Ji(0) of dimension i (see (9.43)) which correspond to the
infinite eigenvalues. The row and column dimensions of pencil Mr,∞ − λNr,∞ are
given by mr,∞ = ∑k

i=1 νi and nr,∞ = ∑k
i=1 μi, respectively.

Procedure PREDUCE: Pencil reduction to staircase form
Inputs :M − λN with M,N ∈ Rm×n

Outputs: Q, Z , M̃ − λÑ = Q(M − λN)Z in the staircase form (10.23).

0) Compute orthogonal matrices Q and Z such that

M̃ = QMZ =
[
B(0) A(0)

D(0) C(0)

]
, Ñ = QNZ =

[
0 E(0)

0 0

]
,

where E(0) ∈ Rñ×ñ is upper triangular and invertible with ñ = rank N , A(0) ∈ Rñ×ñ,
B(0) ∈ Rñ×m̃ with m̃ = n − ñ, C(0) ∈ Rp̃×ñ with p̃ = m − ñ, D ∈ Rp̃×m̃; set mr,∞ = 0,
nr,∞ = 0, i = 0.

Step–i: while m̃ > 0, do:

1) Compute orthogonal matrices W and Y such that WD(i)Y =
[
D(i)
1 D(i)

2
0 0

]

,

where D(i)
1 ∈ Rτi×τi is invertible and upper triangular. Obtain⎡

⎢
⎣
B(i)
1 B(i)

2 A(i) − λE(i)

D(i)
1 D(i)

2 C(i)
1

0 0 C(i)
2

⎤

⎥
⎦ := diag(Iñ,W )

[
B(i) A(i) − λE(i)

D(i) C(i)

]
diag(Y , Iñ) .

http://dx.doi.org/10.1007/978-3-319-51559-5_9
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Procedure PREDUCE: Pencil reduction to staircase form (continued)

2) Compress the rows of

[
B(i)
1 E(i)

D(i)
1 0

]

with orthogonal X such that

X

[
B(i)
1 E(i)

D(i)
1 0

]

=
[
B(i)
11 E(i)

1
0 E(i)

2

]

,

with B(i)
11 ∈ Rτi×τi and E(i)

2 ∈ Rñ×ñ invertible and upper triangular. Obtain

⎡

⎢
⎢⎢
⎢
⎣

B(i)
11 B(i)

12 A(i)
1 − λE(i)

1

0 B(i)
22 A(i)

2 − λE(i)
2

0 0 C(i)
2

⎤

⎥
⎥⎥
⎥
⎦

:= diag(X, Ip̃−τi
)

⎡

⎢
⎢⎢
⎢
⎢
⎣

B(i)
1 B(i)

2 A(i) − λE(i)

D(i)
1 D(i)

2 C(i)
1

0 0 C(i)
2

⎤

⎥
⎥⎥
⎥
⎥
⎦

.

3) Compress the rows of B(i)
22 with orthogonal U such that UB(i)

22 =
[
B̃(i)
22
0

]

, with B̃(i)
22 ∈ Rρi×(m̃−τi) full row rank,

and compute orthogonal V such that UE(i)
2 V is upper triangular. Obtain

⎡

⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎣

B(i)
11 B(i)

12 A(i)
11 − λE(i)

11 ∗

0 B̃(i)
22 A(i)

21 − λE(i)
21 ∗

0 0 A(i)
31 A(i)

32 − λE(i)
32

0 0 C(i)
21 C(i)

22

⎤

⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎦

:=

diag
(
Iτi ,U, Ip̃−τi

)

⎡

⎢⎢
⎢⎢
⎣

B(i)
11 B(i)

12 A(i)
1 − λE(i)

1

0 B(i)
22 A(i)

2 − λE(i)
2

0 0 C(i)
2

⎤

⎥⎥
⎥⎥
⎦
diag(Im̃, V ) ,

with E(i)
21 ∈ Rρi×ρi and E(i)

32 ∈ R(ñ−ρi)×(ñ−ρi) invertible and upper triangular.

4) Form Q(i) = diag
(
Imr,∞ , Q̃

)
and Z(i) = diag

(
Inr,∞ , Z̃

)
with

Q̃ = diag
(
Iτi ,U, Ip̃−τi

)
diag

(
X, Ip̃−τi

)
diag

(
Iñ,W

)
, Z̃ = diag (Y , V ) ,

and update M̃ ← Q(i)M̃Z(i), Ñ ← Q(i)ÑZ(i), Q ← Q(i)Q, Z ← ZZ(i)

Set νi+1 = ρi + τi , μi+1 = m̃ and define

Mi+1,i+1 :=
⎡

⎢
⎣
B(i)
11 B(i)

12

0 B̃(i)
22

⎤

⎥
⎦ , Mi+1,i+2 − λNi+1,i+2 :=

⎡

⎢
⎣
A(i)
11 − λE(i)

11

A(i)
21 − λE(i)

21

⎤

⎥
⎦ ,

with Mi+1,i+1 ∈ Rνi+1×μi+1 full row rank and Ni+1,i+2 ∈ Rνi+1×ρi full column rank, and

[
B(i+1) A(i+1) − λE(i+1)

D(i+1) C(i+1)

]

:=
⎡

⎢
⎣

A(i)
31 A(i)

32 − λE(i)
32

C(i)
21 C(i)

22

⎤

⎥
⎦ .

5) Update mr,∞ ← mr,∞ + νi+1, nr,∞ ← nr,∞ + μi+1, ñ ← ñ − ρi , m̃ ← ρi , p̃ ← p̃ − τi .
6) i ← i + 1 and go to Step–i
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At the end of Procedure PREDUCE we obtain the mf ,l × nf ,l pencil

Mf ,l − λNf ,l :=
[
A(i) − λE(i)

C(i)

]
, (10.24)

with mf ,l = ñ + p̃ and nf ,l = ñ, and with E(i) upper triangular and invertible. It fol-
lows that the pencil Mf ,l − λNf ,l has only finite and left structure. The number of
diagonal blocks Mj,j of Mr,∞ − λNr,∞ in the staircase form (10.23) is k = i − 1,
where i is the resulting final value of i at the exit of Procedure PREDUCE.

The Procedure PREDUCE performs exclusively orthogonal transformations on
the matrix pair (M,N). It is possible to show that the resulting pair (M̃, Ñ) is exact
for a slightly perturbed original pair, while Q and Z are nearly orthogonal matrices.
It follows that the Procedure PREDUCE is numerically stable.

The computational complexity of Procedure PREDUCEmainly depends on the
details of the computations performed at Step 2) to obtain E(i)

2 in an upper trian-
gular form and, at Step 3), to preserve the upper triangular form of UE(i)

2 V and to
obtain E(i)

21 and E(i)
32 invertible and upper triangular. If the transformation matrices

U and V are accumulated (e.g., by performing SVD-based row compressions), the
worst-case computational complexity of Procedure PREDUCE isO(n4) (assuming
n ≥ m), which, for large values of n, is unacceptable. However, using the techniques
described in [95], these operations can be performed such that a worst-case compu-
tational complexity of O(n3) can be guaranteed. The main computational ingredi-
ents are specially tailored QR decompositions with column pivoting, which provide
almost the same reliability as the rank determinations based on the use of SVD.Using
specialized QR decompositions, it is possible to implement the row compressions
at Steps 2) and 3) such that the preservation of the upper triangular shape of E(i) is
simultaneously possible, without the need to explicitly accumulate the intervening
transformations. For the rest of necessary row and column compressions at Step 0)
and Step 1), the safer SVD-based computations can be still employed, without
increasing excessively the computational complexity.

A straightforward application of the Procedure PREDUCE is to perform the
infinite–finite separation of the eigenvalues of a regular pencilM − λN (i.e., without
right and left structures). Since M − λN has no right structure, Mr,∞ − λNr,∞ has
only infinite eigenvalues. Similarly, sinceM − λN has no left structure,Mf ,l − λNf ,l

contains all finite eigenvalues of the pencil.
A complementary separation of the pencil M − λN can be achieved by applying

Procedure PREDUCE to the transposed pencil MT − λNT and pertranspose the
resulted pencil. Recall that the pertransposeMP of a matrixM ∈ Rm×n is defined as
MP := PnMTPm, wherePk denotes the k × k permutationmatrix of the form (10.10).
The net effect of applying Pn from left is to reverse the order of rows of a matrix,
while the application of Pm from right reverses the order of columns of the matrix.
If Q and Z are the orthogonal matrices used to reduce MT − λNT, then overall we
obtain
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PmZ
T (M − λN)QTPn =

[
Mr,f − λNr,f ∗

0 M∞,l − λN∞,l

]
,

whereMr,f − λNr,f contains the right and finite structure andM∞,l − λN∞,l contains
the infinite and left structure. Moreover, M∞,l − λN∞,l is in a dual staircase form,
which is obtained by reversing the orders of the blocks in the staircase form (10.23).
Sometimes, it is more advantageous to apply Procedure PREDUCE toMP − λNP

instead ofMT − λNT (e.g., already existing upper block structures are preserved by
pertransposition and thus can be further exploited).

For the computation of the complete Kronecker-like form (10.19) of the pen-
cil M − λN we can employ Procedure PREDUCE to perform the first separation
in (10.22). Then, by applying Procedure PREDUCE to the pertransposed pencil
MP

r,∞ − λNP
r,∞, we obtain the separation of the right and infinite structures in the

form

Q1(Mr,∞ − λNr,∞)Z1 =
[
Mr − λNr ∗

0 M∞ − λN∞

]
, (10.25)

where Q1 and Z1 are orthogonal matrices, the full row rank pencil Mr − λNr is
in the form (10.20) and the regular pencil M∞ − λN∞, with M∞ invertible and
N∞ nilpotent, contains the infinite eigenvalues. Similarly, by applying Procedure
PREDUCE to the pertransposed pencilMP

f ,l − λNP
f ,l, we obtain the separation of the

finite and left structures in the form

Q2(Mf ,l − λNf ,l)Z2 =
[
Mf − λNf ∗

0 Ml − λNl

]
, (10.26)

where Q2 and Z2 are orthogonal matrices, the regular pencil Mf − λNf with Nf

invertible contains the finite eigenvalues and the full column rank pencil Ml − λNl

is in an observability staircase form (10.21). Overall we achieved

diag(Q1,Q2)Q(M − λN)Z diag(Z1, Z2) =

⎡

⎢
⎢
⎣

Mr−λNr ∗ ∗ ∗
0 M∞−λN∞ ∗ ∗
0 0 Mf −λNf ∗
0 0 0 Ml−λNl

⎤

⎥
⎥
⎦

from which the regular part Mreg − λNreg in (10.19) can be immediately read out.
For this separation, it is possible to exploit the structure of the pencil Mf ,l − λNf ,l

in (10.24) which results when applying Procedure PREDUCE. Since in the per-
transposed pencil MP

f ,l − λNP
f ,l = [

(C(i))P (A(i))P − λ(E(i))P
]
, the invertible matrix

(E(i))P is already upper triangular, therefore when applying Procedure PREDUCE
toMP

f ,l − λNP
f ,l the preliminary reduction at Step0) is not necessary anymore.Alterna-

tively, the Procedure GCSF can be employed to obtainMl − λNl in an observability
staircase form (10.21). This computation is needed to be additionally performed, to
obtain Mr − λNr in a controllability staircase form (10.20).

The above Kronecker-like form exhibits the main structural elements of an arbi-
trary pencilM − λN . However, in some applications, as the computation of rational
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left nullspace bases in Sect. 7.4, it is necessary only to know the left Kronecker struc-
ture. For this purpose, it is sufficient to apply Procedure PREDUCE twice, to obtain
the basic separation (10.22) and then the splitting of finite and left structures as in
(10.26) to obtain the required form

diag(I,Q2)Q(M − λN)Z diag(I,Z2) =
⎡

⎣
Mr,∞−λNr,∞ ∗ ∗

0 Mf −λNf ∗
0 0 Ml−λNl

⎤

⎦ .

On the other hand, when all structural details of the Kronecker-like form are neces-
sary, as for example, when solving linear rational equations in Sect. 9.2.9, the sep-
aration of right and infinite structure of the pencil Mr,∞ − λNr,∞ is necessary. An
alternativeway to perform this separation is to employ a computational approach pro-
posed in [9] (see Algorithms 3.3.1 and 3.3.2). These algorithms exploit all structural
information in the staircase form (10.23) and perform the separation of right and infi-
nite structure by employing exclusively orthogonal transformations, howeverwithout
making any rank decisions. The resulting subpencilsMr − λNr andM∞ − λN∞ are
in staircase forms and the dimensions of the resulting diagonal blocks automatically
reveal the right Kronecker indices and infinite eigenvalue structure.

10.2 Solution of Matrix Equations

There are several linear and quadratic matrix equations which play an important role
in control theory. In this section, we discuss the computational solutions of some of
the main equations and give the conditions for the existence of a solution.

10.2.1 Linear Matrix Equations

We discuss the computational solution of two main classes of liner matrix equations.
In the first class, we consider the generalized Sylvester equation (GSE) of the form

AXG + EXF + Q = 0 , (10.27)

whereA,E ∈ Rn×n,F,G ∈ Rm×m,Q ∈ Rn×m, and the desired solution isX ∈ Rn×m.
The Eq. (10.27) has a unique solution if and only if the matrix pencils A − λE and
F − λG are regular and Λ(A − λE)

⋂
Λ(F + λG) = ∅.

Two special cases of Eq. (10.27) are of particular interest in this book: the gener-
alized continuous-time Lyapunov equation (GCLE) of the form

AXET + EXAT + Q = 0 (10.28)

http://dx.doi.org/10.1007/978-3-319-51559-5_7
http://dx.doi.org/10.1007/978-3-319-51559-5_9
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and the generalized discrete-time Lyapunov equation (GDLE) (also called general-
ized Stein equation)

AXAT − EXET + Q = 0 , (10.29)

where Q, and hence also X, are symmetric. The solvability condition of Eq. (10.28)
requires that E is invertible and λi + λj �= 0, for all λi, λj ∈ Λ(A − λE). The solv-
ability condition of Eq. (10.29) requires that λiλj �= 1, for all λi, λj ∈ Λ(A − λE). In
both cases, of special interest are (semi-)positive definite solutions in the case when
Q has the form Q = BBT ≥ 0 and Λ(A − λE) ∈ Cs. In this case, the solution X can
be directly obtained in a Cholesky-factored form X = SST , with S upper triangular.

For the numerical solution of the above matrix equations the transformation
method (developed initially by Bartels and Stewart to solve the Sylvester equation
AX + XB + C = 0) can be used. Let Q1 and Z1 be orthogonal matrices such that the
pair (P, S) := (QT

1AZ1,Q
T
1EZ1) is in a GRSF, and letQ2 and Z2 be orthogonal matri-

ces such that the pair (T ,R) := (QT
2FZ2,Q

T
2GZ2) is in a GRSF. The matricesQ1 and

Z1, and,Q2 and Z2, can be obtained by applying the QZ algorithm to the matrix pairs
(A,E) and (F,G), respectively. If we define Y = ZT

1 XQ2 and H = QT
1QZ2, then the

Eq. (10.27) can be rewritten as

PYR + SYT + H = 0 .

By exploiting the upper quasi-triangular–upper triangular structures of the pairs
(P, S) and (T ,R), this equation can be solved by a special (back substitution)
technique to obtain the solution Y [47, 54]. Then, the solution of (10.27) is
computed as X = Z1YQ

T
2 . The overall computational effort to solve Eq. (10.27) is

O(n3 + m3) + O(n2m + nm2). With obvious simplifications, this approach can be
used to solve the GCLE (10.28) and the GDLE (10.29) as well. The overall compu-
tational effort to solve these equations is O(n3).

The second class of linear equation is thegeneralized Sylvester systemof equations
(GSSE)

AX + YF = C,

EX + YG = D,
(10.30)

where A,E ∈ Rn×n, F,G ∈ Rm×m, C,D ∈ Rn×m, and the desired solution is X,Y ∈
Rn×m. The Eq. (10.30) has a unique solution if and only if the matrix pencils A −
λE and F − λG are regular and Λ(A − λE)

⋂
Λ(F − λG) = ∅. A transformation

method (which is similar to that used for solving (10.27)) can be employed to reduce
(10.30) to a simpler form. Let Q1 and Z1 be orthogonal matrices such that the pair
(P, S) := (QT

1AZ1,Q
T
1EZ1) is in a GRSF, and let Q2 and Z2 be orthogonal matrices

such that the pair (R,T) := (QT
2FZ2,Q

T
2GZ2) is in a GRSF. The matrices Q1 and

Z1, and Q2 and Z2 can be obtained by applying the QZ algorithms to the matrix
pairs (A,E) and (F,G), respectively. If we define X1 = ZT

1 XZ2, Y1 = QT
1 YQ2, C1 =

QT
1CZ2 and D1 = QT

1DZ2, then the system (10.30) can be rewritten as



10.2 Solution of Matrix Equations 323

PX1 + Y1R = C1,

SX1 + Y1T = D1.

By exploiting the upper quasi-triangular–upper triangular structures of the pairs
(P, S) and (R,T), this system of equations can be efficiently solved using meth-
ods proposed in [68]. After solving the transformed system for X1 and Y1, we obtain
the solution of (10.30) as X = Z1X1Z

T
2 and Y = Q1Y1Q

T
2 . The overall computational

effort to solve these equations is O(n3 + m3) + O(n2m + nm2).

10.2.2 Generalized Algebraic Riccati Equations

In this section we address the numerical solution of a class of generalized Riccati
equations which appear in various algorithms as the computation of inner–outer
factorization (see Sect. 10.3.6) or in spectral factorization problems discussed in
Sect. 7.8. We consider a sextuple of matrices (A,E,B,Q, S,R), with the following
properties of component matrices: A ∈ Rn×n, E ∈ Rn×n invertible, B ∈ Rn×m, Q ∈
Rn×n symmetric positive semi-definite,R ∈ Rm×m symmetric and invertible, and S ∈
Rn×m. We seek the symmetric positive semi-definite stabilizing solution Xs ∈ Rn×n

of the generalized continuous-time algebraic Riccati equation (GCARE)

ATXE + ETXA − (ETXB + S)R−1(BTXE + ST ) + Q = 0

and the corresponding stabilizing state feedback gain Fs ∈ Rm×n, given by

Fs = −R−1(BTXsE + ST ) ,

such that all generalized eigenvalues of the pair (A + BFs,E) have negative real
parts. Similarly, we seek the symmetric positive semi-definite stabilizing solution
Xs ∈ Rn×n of the generalized discrete-time algebraic Riccati equation (GDARE)

ATXA − ETXE − (ATXB + S)(R + BTXB)−1(BTXA + ST ) + Q = 0

and the corresponding stabilizing state feedback gain Fs ∈ Rm×n, given by

Fs = −(R + BTXsB)−1(BTXsA + ST ) ,

such that all generalized eigenvalues of the pair (A + BFs,E) have moduli less than
one. Since E is invertible, it is possible to reduce both the GCARE and GDARE to
standardRiccati equations, forwhich there exist standard solutionmethods.However,
to avoid possible accuracy losses due to the need to explicitly invertE,wewill indicate
methods which directly tackle the above equations, without inverting E.

http://dx.doi.org/10.1007/978-3-319-51559-5_7
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A unified approach to determine the solutions of the GCARE and GDARE relies
on determining an orthogonal basis of the stable deflating subspace of a suitably
defined regular matrix pencil L − λP. For the solution of the GCARE we have

L =
⎡

⎣
A 0 B

−Q −AT −S
ST BT R

⎤

⎦ , P =
⎡

⎣
E 0 0
0 ET 0
0 0 0

⎤

⎦ , (10.31)

while for the solution of the GDARE we have

L =
⎡

⎣
A 0 B

−Q ET −S
ST 0 R

⎤

⎦ , P =
⎡

⎣
E 0 0
0 AT 0
0 −BT 0

⎤

⎦ . (10.32)

Under fairly standard assumptions (e.g., the stabilizability of the pair (A − λE,B)

and detectability of the pair (A − λE,Q − SR−1ST )), the existence of the positive
semi-definite stabilizing solution Xs is guaranteed. For computational purposes, the
main property of the regular pencil L − λP is the existence of an n dimensional
(right) deflating subspace corresponding to the stable eigenvalues of L − λP. If this
subspace is spanned by a (2n + m) × n matrix Z1, then we have that LZ1 = PZ1W ,
where W is an n × n matrix such that Λ(W ) ∈ Cs. If we partition Z1 in accordance
with the block column structure of the pencil L − λP as

Z1 =
⎡

⎣
Z11
Z21
Z31

⎤

⎦ , (10.33)

then the stabilizing positive definite solution Xs of both the GCARE and GDARE,
and the corresponding stabilizing feedback Fs can be computed as

Xs = Z21(EZ11)
−1, Fs = Z31Z

−1
11 .

To compute Z1, we can employ the QZ algorithm to determine an ordered GRSF of
the pair (L,P) in the from

UT (L − λP)Z =
[
L11 − λP11 L12 − λP12

0 L22 − λP22

]
, (10.34)

where U and Z are orthogonal transformation matrices, the n × n subpencil L11 −
λP11 has only stable eigenvalues, i.e., Λ(L11 − λP11) ⊂ Cs, and Λ(L22 − λP22) ⊂
C \ Cs. Then, Z1 is formed from the first n columns of the orthogonal matrix Z .
Using this approach, the overall computational effort for solving both the GCARE
and GDARE is O((n + m)3).
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10.3 Algorithms for Descriptor Systems

In this section we present computational procedures for the solution of several basic
computational problems for descriptor systems. The theoretical aspects of these prob-
lems have been succinctly addressed in Sect. 9.2, where several canonical forms
(e.g., Weierstrass, Kronecker) played an important conceptual role in their solutions.
However, these canonical forms are not suited to develop reliable numerical algo-
rithms, due to the need of using potentially ill-conditioned transformations for their
computation. We present reliable numerical algorithms, which rely on the alterna-
tive condensed forms discussed in Sect. 10.1. These forms can be computed using
exclusively orthogonal transformations. Therefore, these algorithms are intrinsically
numerically reliable and some of them are even numerically stable.

10.3.1 Minimal Realization

Consider a p × m rational matrix G(λ) and let (A − λE,B,C,D) be an n-th order
descriptor system realization satisfying

G(λ) = C(λE − A)−1B + D,

with A − λE an n × n regular pencil. If Q,Z ∈ Rn×n are invertible matrices, then
it is easy to check that two realizations (A − λE,B,C,D) and (̂A − λÊ, B̂, Ĉ,D),
whose matrices are related by a similarity transformation of the form

Â − λÊ = Q(A − λE)Z, B̂ = QB, Ĉ = CZ ,

have the same TFMG(λ). Similarity transformations withQ and Z orthogonal matri-
ces can be used to obtain various staircase forms of the systemmatrices, which allow
to extract lower dimensional descriptor realizations of G(λ), and finally to arrive to
a minimal order realization with the least possible order n.

A minimal realization (A − λE,B,C,D) is characterized by the five conditions
(i)–(v) of Theorem 9.2. An irreducible realization fulfils only conditions (i)–(iv)
and is thus controllable and observable. In what follows, we describe a two-stage
approach which first constructs an irreducible realization of lower order by succes-
sively removing the uncontrollable and unobservable eigenvalues of A − λE, and in
a second stage removes the non-dynamics modes (i.e., the simple infinite eigenvalues
of A − λE).

The first reduction stage is accomplished in four steps, by employing repeat-
edly Procedure GCSF to successively remove the finite uncontrollable, infinite
uncontrollable, finite unobservable and infinite unobservable eigenvalues of A − λE.
At the first step of this reduction stage, we apply Procedure GCSF to the triple
(A − λE,B,C) to obtain the orthogonal transformation matrices Q1 and Z1, such

http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_9
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that the equivalent descriptor realization of G(λ) has the form

[
QT

1 (A − λE)Z1 QT
1B

CZ1 D

]
=

⎡

⎢
⎣
Af
c − λEf

c ∗ Bf
c

0 Af
c̄ − λEf

c̄ 0

Cf
c Cf

c̄ D

⎤

⎥
⎦ . (10.35)

The finite controllable descriptor system (Af
c − λEf

c ,B
f
c,C

f
c ,D) has the same TFM

G(λ) and its order nfc ≤ n. By this step we can remove the n − nfc uncontrollable
eigenvalues of Af

c̄ − λEf
c̄ from the original descriptor system representation (A −

λE,B,C,D). Besides all finite uncontrollable eigenvalues, Λ(Af
c̄ − λEf

c̄) may also
contain some of infinite uncontrollable eigenvalues of A − λE.

At the second step of the reduction stage, we apply Procedure GCSF to the triple
(Ef

c − λAf
c,B

f
c,C

f
c) (note that A

f
c and Ef

c are interchanged) to obtain the orthogonal
transformation matrices Q2 and Z2, such that the equivalent descriptor realization of
G(λ) has the form

[
QT

2 (Af
c − λEf

c)Z2 QT
2B

f
c

Cf
cZ2 D

]

=
⎡

⎣
Ac − λEc ∗ Bc

0 A∞
c̄ − λE∞

c̄ 0
Cc C∞

c̄ D

⎤

⎦ . (10.36)

As before, the controllable descriptor system (Ac − λEc,Bc,Cc,D) has the same
TFM G(λ) and its order nc ≤ nfc. By this step we can remove the nfc − nc uncon-
trollable infinite eigenvalues of A∞

c̄ − λE∞
c̄ (or equivalently the uncontrollable

zero eigenvalues of E∞
c̄ − λA∞

c̄ ) from the original descriptor system representation
(A − λE,B,C,D).

At the third step, we apply Procedure GCSF to the dual triple (ET
c −λAT

c ,CT
c ,

BT
c ) to obtain the orthogonal transformation matrices Z3 and Q3 (note the changed

order), such that the equivalent descriptor realization of G(λ) has the form

[
P3QT

3 (Ac − λEc)Z3P3 P3QT
3Bc

CcZ3P3 D

]
=

⎡

⎢
⎣
Af
cō − λEf

cō ∗ Bf
cō

0 Af
co − λEf

co Bf
co

0 Cf
co D

⎤

⎥
⎦ , (10.37)

where P3 is the permutation matrix (10.10) of appropriate size. The controllable
and finite observable descriptor system (Af

co − λEf
co,B

f
co,C

f
co,D) has the same TFM

G(λ) and its order nfco ≤ nc. By this step we can remove the nc − nfco unobservable
eigenvalues of Af

cō − λEf
cō from the original descriptor system representation (A −

λE,B,C,D).
Finally, at the fourth step, we apply Procedure GCSF to the dual triple

((Ef
co)

T − λ(Af
co)

T , (Cf
co)

T , (Bf
co)

T ) (note that Af
co and E

f
co are interchanged) to obtain

the orthogonal transformationmatrices Z4 andQ4, such that the equivalent descriptor
realization of G(λ) has the form
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[
P4QT

4 (Af
co − λEf

co)Z4P4 P4QT
4B

f
co

Cf
coZ4P4 D

]

=
⎡

⎣
A∞
cō − λE∞

cō ∗ B∞
cō

0 Aco − λEco Bco

0 Cco D

⎤

⎦ ,

(10.38)
where P4 is a permutation matrix as in (10.10) of appropriate size. The irreducible
(i.e., controllable and observable) descriptor system (Aco − λEco,Bco,Cco,D) has the
same TFM G(λ) and its order nco ≤ nfco. By this step we can remove the nfco − nco
unobservable infinite eigenvalues of A∞

cō − λE∞
cō from the original descriptor system

representation (A − λE,B,C,D).
With the overall transformation matrices defined as

Q := Q1 diag(Q2, I) diag(Q3P3, I) diag(I,Q4P4, I),

Z := Z1 diag(Z2, I) diag(Z3P3, I) diag(I,Z4P4, I),

we obtained the orthogonally similar system representation

(̃A − λẼ, B̃, C̃,D) := (QTAZ − λQTEZ,QTB,CZ,D) ,

with

[
Ã − λẼ B̃

C̃ D

]

=

⎡

⎢
⎢⎢
⎢
⎢⎢
⎢
⎣

Af
cō − λEf

cō ∗ ∗ ∗ ∗ Bf
cō

0 A∞
cō − λE∞

cō ∗ ∗ ∗ B∞
cō

0 0 Aco − λEco ∗ ∗ Bco
0 0 0 A∞̄

c − λE∞̄
c ∗ 0

0 0 0 0 Af
c̄ − λEf

c̄ 0

0 0 Cco C∞̄
c Cf

c̄ D

⎤

⎥
⎥⎥
⎥
⎥⎥
⎥
⎦

.

This form, obtained using exclusively orthogonal similarity transformations, repre-
sents a particular instance of a generalized Kalman decomposition of the descriptor
system matrices from which an irreducible realization (Aco − λEco,Bco,Cco,D) can
be readily extracted. There are various ways to improve the efficiency of computa-
tions. For example, if the original realization corresponds to a proper system, then
the second and fourth steps (i.e., removing of uncontrollable or unobservable infinite
eigenvalues) can be skipped. Similar simplifications are possible —for example, if
the original system description corresponds to a polynomial matrix, or if the original
system representation is known to be controllable or observable, or if A − λE has
no zero eigenvalues. In the latter case, only the second and fourth steps need to be
performed.

The whole computational approach is summarized in the following procedure,
which computes for a given triple (A − λE,B,C) an irreducible (i.e., controllable
and observable) triple (Aco − λEco,Bco,Cco).
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Procedure GIR: Generalized irreducible realization algorithm
Input : (A − λE,B,C)

Output: Irreducible (Aco − λEco,Bco,Cco)

1) Perform Procedure GCSF on the triple (A − λE,B,C) and extract the finite
controllable triple (Af

c − λEf
c ,B

f
c,C

f
c).

2) Perform Procedure GCSF on the triple (Ef
c − λAf

c,B
f
c,C

f
c) and extract the

controllable triple (Ac − λEc,Bc,Cc).
3) With P an appropriate permutation matrix as in (10.10), perform Procedure

GCSF on the triple (PAT
c P − λPET

c P,PCT
c ,BT

c P) and extract the
controllable and finite observable triple (Af

co − λEf
co,B

f
co,C

f
co).

4) With P an appropriate permutation matrix as in (10.10), perform Procedure
GCSF on the triple (P(Ef

co)
TP − λP(Af

co)
TP,P(Cf

co)
T , (Bf

co)
TP) and

build the irreducible triple (Aco − λEco,Bco,Cco).

At the end of Step 1), Af
c is in an upper block Hessenberg form and Ef

c is upper
triangular. The upper block Hessenberg shape of Af

c at Step 2) can be exploited by the
Procedure GCSF, to reduce the computational burden at the initial reduction of Af

c

to an upper triangular form. The resulting Ac at Step 2) is therefore upper triangular,
while Ec is upper block Hessenberg. At Step 3), the use of PET

c P instead of ET
c

allows to preserve the upper block Hessenberg form of Ec obtained at the previous
step. This is also the case at Step 4), where the upper block Hessenberg structure of
Af
co is preserved when using P(Af

co)
TP instead.

The computational effort for Procedure GIR isO(n3) form, p � n. It is possible
to show that the computed irreducible descriptor system (Aco − λEco,Bco,Cco,D) is
exact for a slightly perturbed original system. Therefore, the Procedure GIR can be
considered numerically stable.

In the second stage, we have to remove the simple infinite eigenvalues of Aco −
λEco from the resulting irreducible descriptor representation. For this purpose, we
isolate the simple infinite eigenvalues by employing two SVDs. First, we compute
the SVD of Eco such that

UT
1 EcoV1 =

[
E11 0
0 0

]
,

with U1 and V1 orthogonal matrices and E11 a (diagonal) invertible matrix of rank r.
Applying the same transformations to A we obtain

UT
1 AcoV1 =

[
A11 Ã12

Ã21 Ã22

]
.

Now, we compute the SVD of Ã22 such that

UT
2 Ã22V2 =

[
A22 0
0 0

]
,
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with U2 and V2 orthogonal matrices and A22 a (diagonal) invertible matrix of rank q.
WithU = U1 diag(Ir,U2) and V = V1 diag(Ir, V2)we have the equivalent descriptor
realization

[
UTAcoV − λUTEcoV UTBco

CcoV D

]
=

⎡

⎢⎢
⎣

A11 − λE11 A12 A13 B1

A21 A22 0 B2

A31 0 0 B3

C1 C2 C3 D

⎤

⎥⎥
⎦ .

At this step, we have the transformed state vector x̃(t) := V Tx(t) partitioned into
three components

x̃(t) =
⎡

⎣
x1(t)
x2(t)
x3(t)

⎤

⎦ ,

which correspond to the column structure of UTAV . We can eliminate the second
component x2(t) as

x2(t) = −A−1
22 A21x1(t) − A−1

22 B2u(t)

and obtain a descriptor representation with the reduced state vector x(t) =
[
x1(t)
x3(t)

]

and the corresponding minimal realization (A − λE,B,C,D) of G(λ), with the
matrices given by

A − λE =
[
A11 − A12A

−1
22 A21 − λE11 A13

A31 0

]
, B =

[
B1 − A12A

−1
22 B2

B3

]
,

C = [
C1 − C2A

−1
22 A21 C3

]
, D = D − C2A

−1
22 B2.

This final elimination step involves non-orthogonalmatrix operations,which can lead
to unstable computations if the norm of the intervening matrices is too large or A22 is
ill conditioned. Fortunately, in most computational algorithms for descriptor systems
presented in this book, the elimination of simple infinite eigenvalues is not necessary
and we can work with irreducible realizations instead minimal ones. Therefore, we
can almost always delay the computation of minimal realizations for the final results
of whole computational cycles.

10.3.2 Minimal Proper Rational Nullspace Bases

Let G(λ) be a p × m rational matrix of normal rank r. A proper rational basis of the
left nullspace NL(G(λ)) (see Sect. 9.1.3) is any (p − r) × p proper rational matrix
Nl(λ) of full row rank such that Nl(λ)G(λ) = 0. Similarly, a proper rational basis of
the right nullspaceNR(G(λ)) is an m × (m − r) proper rational matrix Nr(λ) of full

http://dx.doi.org/10.1007/978-3-319-51559-5_9
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column rank such that G(λ)Nr(λ) = 0. Of special interest are the minimal proper
rational bases, which have the leastMcMillan degree. AssumeG(λ) has an n-th order
descriptor system realization (A − λE,B,C,D), with A − λE regular. In this section
we present a numerically reliable computational approach to determine a descriptor
system realization of a proper rational left nullspace basis Nl(λ) of G(λ) and discuss
conditions for its minimality. The same approach can be used to determine Nr(λ),
a proper rational right nullspace basis of G(λ), by determining NT

r (λ) as a proper
rational left nullspace basis of GT (λ).

The proposed computational approach relies on the fact that Nl(λ) is a left
nullspace basis of G(λ) if and only if, for a suitable (p − r) × n rational matrix
Ml(λ),

Yl(λ) := [Ml(λ) Nl(λ) ] (10.39)

is a left nullspace basis of the system matrix

S(λ) =
[
A − λE B

C D

]
. (10.40)

Thus, to compute Nl(λ) we can first determine a left nullspace basis Yl(λ) for S(λ)

and then Nl(λ) simply results as

Nl(λ) = Yl(λ)

[
0
Ip

]
. (10.41)

As it will be apparent below, the main appeal of this approach is that for the computa-
tion of Yl(λ)we can employ powerful pencil manipulation techniques via orthogonal
similarity transformations.

Let U and V be orthogonal matrices such that the transformed pencil S̃(λ) :=
US(λ)V is in the Kronecker-like staircase form (see Sect. 10.1.6)

S̃(λ) =
⎡

⎣
Ar − λEr Ar,l − λEr,l

0 Al − λEl

0 Cl

⎤

⎦ , (10.42)

where the descriptor pair (Al − λEl,Cl) is observable, El is invertible, and Ar − λEr

has full row rank excepting possibly a finite set of values of λ (i.e., the invariant zeros
of S(λ)). As explained in Sect. 10.1.6, the reduction of S(λ) to the form (10.42) can
be obtained using (twice) the Procedure PREDUCE.

A left nullspace Ỹl(λ) of S̃(λ) in (10.42) can be chosen in the form

Ỹl(λ) = [
0 Cl(λEl − Al)

−1 I
]
. (10.43)

Then, the left nullspace of S(λ) is Yl(λ) = Ỹl(λ)U and can be obtained easily after
partitioning suitably U as
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U =
⎡

⎣
B̂r,l Br,l

B̂l Bl

D̂l Dl

⎤

⎦ ,

where the row partitioning corresponds to the column partitioning of Ỹl(λ) in (10.43),
while the column partitioning corresponds to the row partitioning of S(λ) in (10.40).
We obtain

Yl(λ) =
[
Al − λEl B̂l Bl

Cl D̂l Dl

]

(10.44)

and the nullspace of G(λ) is

Nl(λ) =
[
Al − λEl Bl

Cl Dl

]
. (10.45)

To obtain this representation of the nullspace basis, we performed exclusively orthog-
onal transformations on the systemmatrices.We can prove that all computedmatrices
are exact for a slightly perturbed original system matrix (10.40). It follows that this
method for the computation of the nullspace basis is numerically backward stable.

When using Procedure PREDUCE, as described in Sect. 10.1.6, to determine
the Kronecker-like form (10.42), we can assume that the resulting subpencil

[
Ao − λEo

Co

]
:=

[
Al − λEl

Cl

]
, (10.46)

which characterizes the left structure of S(λ), has the pair (Ao − λEo,Co) in an
observability staircase form as in (10.17) and (10.18). Let μi, i = 1, . . . , 
 be the
dimensions of the diagonal blocks of Ao in (10.17) (and also of Eo in (10.18)), and
defineμ0 := pl andμ
+1 := 0 (which corresponds to a fictive full column rank diag-
onal block A
,
+1 ∈ Rμ
×μ
+1 in the leading position of Ao). These dimensions com-
pletely determine the left Kronecker structure of S(λ) as follows: there areμi−1 − μi

blocks LT
i−1(λ) of size i × (i − 1), i = 1, . . . , 
 + 1 (see (9.45)). The row dimension

of Nl(λ) (i.e., the number of linearly independent basis vectors) is given by the
total number of LT

ηi
(λ) blocks (see Example 9.1), thus

∑
+1
i=1 (μi−1 − μi) = μ0 (i.e.,

the row dimension of Cl). Applying standard linear algebra results, it follows that
μ0 := p − r.

The following result shows that the resulting staircase form (10.46) provides the
complete structural information on any minimal polynomial basis (and also on any
simple proper basis constructed from it, see Sect. 9.1.3).

Proposition 10.1 If the realization (A − λE,B,C,D) of G(λ) is controllable and
if μi, i = 1, . . . , 
 are the dimensions of the diagonal blocks of Ao in (10.17) (and
also of Eo in (10.18)), and μ0 := pl and μ
+1 := 0, then a minimal polynomial basis
of the left nullspace of G(λ) has degree nl = ∑


i=1 μi and is formed of μi−1 − μi

polynomial vectors of degree i − 1, for i = 1, . . . , 
 + 1.

http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_9
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Proof The controllability of the descriptor realization ensures that the left Kronecker
structure of G(λ) and of S(λ) are characterized by the same left Kronecker indices.
A minimal polynomial basis for the left nullspace of S̃(λ) can be determined of the
form

Ŷl(λ) = [
0 N̂l(λ)

]
, (10.47)

where N̂l(λ) is a minimal polynomial basis for the left nullspace of

[
Al − λEl

Cl

]
.

To construct N̂l(λ), the basis vectors can be determined by exploiting the staircase
form of this pencil. It was shown in [8, Sect. 4.6.4], in a dual context, that a minimal
polynomial basis can be computed by selecting μi−1 − μi polynomial basis vectors
of degree i − 1, for i = 1, . . . , 
 + 1. The degree of this polynomial basis is

∑
+1
i=1 (μi−1 − μi)(i − 1) = ∑
+1

i=1 μi−1(i − 1) − ∑
+1
i=1 μi(i − 1)

= ∑

i=1μii − ∑


i=1μi(i − 1)
= ∑


i=1μi ,

which is equal to nl, the dimension of the square matrices Al and El. �

A straightforward consequence of Proposition 10.1 is the following result.

Proposition 10.2 If the realization (A − λE,B,C,D) of G(λ) is controllable, then
the rational matrix Nl(λ) defined in (10.45) is a minimal proper rational basis of the
left nullspace of G(λ).

Proof According to the definition of aminimal proper rational basis (see Sect. 9.1.3),
itsMcMillandegree is givenby thedegree of aminimal polynomial basis (i.e., the sum
of the left minimal indices). By Proposition 10.1, the degree of a minimal polynomial
basis is nl := ∑


i=1 μi, which is thus equal to the dimension of the square matrices
Al and El. Therefore, we only need to show that the realization (10.45) is irreducible
and Nl(λ) defined in (10.45) has no zeros.

The pair (Al − λEl,Cl) is observable, by the construction of the Kronecker-like
form (10.42). To show that the pair (Al − λEl,Bl) is controllable, observe that due
to the controllability of the pair (A − λE,B), the subpencil [A − λE B ] of S(λ) in
(10.40) has full row rank for all λ ∈ C, and thus the reduced pencil

U

[
A − λE B 0

C D Ip

] [
V 0
0 Ip

]
=

⎡

⎣
Ar − λEr Ar,l − λEr,l Br,l

0 Al − λEl Bl

0 Cl Dl

⎤

⎦

has full row rank for all λ ∈ C as well. It follows that for all λ ∈ C

rank
[
Al − λEl Bl

] = nl

and thus the pair (Al − λEl,Bl) is controllable.

http://dx.doi.org/10.1007/978-3-319-51559-5_9
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Since, we also have that

rank

[
Al − λEl Bl

Cl Dl

]
= nl + p − r

for all λ ∈ C, it follows that Nl(λ) has no finite or infinite zeros. Thus, Dl has full
row rank p − r and the computed basis is column reduced at λ = ∞ [122]. �

In the case, when the realization of G(λ) is not controllable, the realization of
Nl(λ) is not guaranteed to be controllable. The uncontrollable eigenvalues of A − λE
may turn partly up as eigenvalues of Ar − λEr (i.e., invariant zeros) or of Al − λEl.
In the latter case, the resulting proper nullspace basis has not the least possible
McMillan degree. Interestingly, aminimal basis cannot be always obtained by simply
eliminating the uncontrollable part of the pair (Al − λEl,Bl). The reason for this is
the lack of the maximal controllability property (see Proposition 10.3).

We can always determine a proper nullspace basis with arbitrarily assigned poles.
To show this, consider the transformation matrix

Û =
⎡

⎣
I 0 0
0 I K
0 0 I

⎤

⎦ (10.48)

and compute Ŝ(λ) := ÛS̃(λ) as

Ŝ(λ) =
⎡

⎣
Ar − λEr Ar,l − λEr,l

0 Al + KCl − λEl

0 Cl

⎤

⎦ . (10.49)

We also compute

ÛU

[
0
Ip

]
=

⎡

⎣
Br,l

Bl + KDl

Dl ,

⎤

⎦

and obtain the proper rational left nullspace basis with the alternative realization

Ñl(λ) =
[
Al + KCl − λEl Bl + KDl

Cl Dl

]
. (10.50)

Since the descriptor pair (Al − λEl,Cl) is completely observable, there exists an
output injection matrix K such that the pair (Al + KCl,El) has arbitrary assigned
generalized eigenvalues. According to Proposition 10.2, the basis (10.50) is minimal
provided the realization (A − λE,B,C,D) of G(λ) is controllable.

This construction shows that the placement of poles of the left nullspace basis
(10.50) can be simply achieved by additionally performing a particular similarity
transformation on the reduced pencil S̃(λ). As a consequence, the output injection
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may move some of uncontrollable generalized eigenvalues of the pair (Al,El) to
other locations and make them controllable. It follows that determining a minimal
nullspace basis from a non-minimal one may involve the determination of suitable
injection matrix, which makes a maximum number of eigenvalues uncontrollable.

Remark 10.5 The alternative proper left nullspace basis Ñl(λ) can be interpreted as
the numerator factor of the left coprime factorization

Nl(λ) = M̃−1
l (λ)Ñl(λ) ,

where M̃l(λ) has the descriptor system realization

M̃l(λ) =
[
Al + KCl − λEl K

Cl Ip−r

]
.

�

The following result shows that a minimal proper basis of the form (10.45) has the
nice property of being maximally controllable, that is, the alternative basis (10.50)
remains controllable for an arbitrary output injection matrix K , or equivalently, the
pair (Al + KCl − λEl,Bl + KDl) is controllable for all K .

Proposition 10.3 If the realization (A − λE,B,C,D) of G(λ) is controllable, then
the realization of Nl(λ) defined in (10.45) is maximally controllable.

Proof We have to show that for an arbitrary output injection matrix K , the pair (Al +
KCl − λEl,Bl + KDl) is controllable. Let K be an arbitrary injection matrix and
construct the alternative proper left nullspace basis Ñl(λ) with the realization given
in (10.50). Since according to Proposition 10.2, Nl(λ) is a minimal nullspace basis,
the alternative nullspace basis Ñl(λ), with the same McMillan degree, is a minimal
basis as well. Therefore, the pair (Al + KCl − λEl,Bl + KDl) is controllable. �

Even if the resulting rational basis (10.45) has the least possibleMcMillan degree,
and thus is minimal, still, in general, this basis is not a simple basis. The properties
of simple proper minimal bases resemble, in many aspects, the properties of minimal
polynomial bases. For our purposes, the main use of simple proper nullspace bases
is in the nullspace-based synthesis methods of least-order fault detection filters. As it
will be shown below, it is possible to obtain a simple basis starting from a non-simple
one.

Consider the properminimal left nullspace basisNl(λ)ofG(λ), with the descriptor
realization given in (10.45), and we denote with cl,i and dl,i the i-th rows of matrices
Cl and Dl, respectively. The approach to construct a simple minimal proper rational
left nullspace basis is based on the following result.

Proposition 10.4 For each i = 1, . . . , p − r, let Ki be an output injection matrix
such that

vi(λ) := cl,i(λEl − Al − KiCl)
−1(Bl + KiDl) + dl,i (10.51)
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has the least possible McMillan degree. Then, Ñl(λ) formed by stacking the p − r
rational row vectors vi(λ) is a simple minimal proper rational left nullspace basis.

Proof According to Proposition 10.3, the realization (10.45) of Nl(λ) is maximally
controllable, i.e., the pair (Al + KiCl − λEl,Bl + KiDl) is controllable for arbitrary
Ki. Therefore, the maximal order reduction of the McMillan degree of vi(λ) can be
achieved by making the pair (Al + KiCl − λEl, cl,i) maximally unobservable via an
appropriate choice of Ki. For each i = 1, . . . , p − r, the achievable least McMillan
degree of vi(λ) is the corresponding minimal index ni, representing, in a dual set-
ting, the dimension of the least-order controllability subspace of the standard pair
(E−T

l AT
l ,E−T

l CT
l ) containing span (E−T

l cTl,i). This result is the statement of Lemma
6 in [159]. It is easy to check that vi(λ)G(λ) = 0, thus Ñl(λ) is a left annihilator of
G(λ). Furthermore, the set of vectors { v1(λ), . . . , vp−r(λ) } is linearly independent
since the realization of Ñl(λ) has the same full row rank matrix Dl as that of Nl(λ).
It follows that Ñl(λ) is a proper left nullspace basis of least dimension

∑p−r
i=1 ni, with

each row vi(λ) of McMillan degree ni. It follows that Ñl(λ) is simple. �

Let assume that each rational vector vi(λ) has a descriptor realization of the form

vi(λ) =
[
Ãl,i − λẼl,i B̃l,i

c̃l,i dl,i

]
. (10.52)

Then, the simple minimal proper rational basis Ñl(λ), constructed by stacking all
vi(λ), for i = 1, . . . , r, has the realization

Ñl(λ) =
[
Ãl − λẼl B̃l

C̃l Dl

]

, (10.53)

with

Ãl − λẼl =
⎡

⎢
⎣

Ãl,1 − λẼl,1

. . .

Ãl,p−r − λẼl,p−r

⎤

⎥
⎦ , B̃l =

⎡

⎢
⎣

B̃l,1
...

B̃l,p−r

⎤

⎥
⎦ ,

C̃l =
⎡

⎢
⎣

c̃l,1
. . .

c̃l,p−r

⎤

⎥
⎦ .

Remark 10.6 The poles of the simple minimal proper rational left nullspace basis
Ñl(λ) can be arbitrarily placed by performing left coprime rational factorizations
using the realizations in (10.52) (see Remark 10.5)

vi(λ) = mi(λ)−1v̂i(λ), (10.54)
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wheremi(λ) are polynomials with arbitrary roots inCs. Therefore, the resulting alter-
native simple basis N̂l(λ) := [ v̂T1 (λ), . . . , v̂Tp−r(λ) ]T can have arbitrarily assigned
poles. In particular, a special simple basis can be constructed such that each mi(λ)

divides mj(λ), if j < i. �

Simple rational bases are direct correspondents of polynomial bases and, hence,
all operations on polynomial bases have analogous operations on simple rational
bases. An important operation (with applications in the synthesis of least-order fault
detection filters) is building linear combinations of basis vectors up to a certain
McMillan degree. For example, using the special simple basis in Remark 10.6, any
linear combination

∑k
i=1 hiv̂i(λ) with constant coefficients hi of the basis vectors of

McMillan degree up to a certain value k has McMillan degree at most k.
Consider the proper left nullspace basis Nl(λ) constructed in (10.45). From the

details of the resulting staircase form (10.46) of the pair (Al − λEl,Cl), recall that it
is possible to obtain the full column rank matrices Ai−1,i ∈ Rμi−1×μi in the form

Ai−1,i =
[
Ri−1,i

0

]
,

where Ri−1,i is an upper triangular invertible matrix of order μi. The row dimension
μi−1 − μi of the zero block of Ai−1,i gives the number of polynomial vectors of
degree i − 1 in a minimal polynomial basis [8, Sect. 4.6] and thus, also the number
of vectors of McMillan degree i − 1 in a simple basis. It is straightforward to show
the following result.

Corollary 10.1 For a given minimal proper rational left nullspace basis Nl(λ) in
the form (10.45), let i be a given index such that 1 ≤ i < p − r, and let h be a (p − r)-
dimensional row vector having only the trailing i components nonzero. Then, a linear
combination of the simple proper rational basis vectors, with McMillan degree at
most ni, can be generated as

v(λ) := hCl(λEl − Al − KCl)
−1(Bl + KDl) + hDl , (10.55)

where K is an output injection matrix such that v(λ) has the least possible McMillan
degree.

This result shows that the determination of a linear combination of vectors of a sim-
ple proper rational basis up to a given order ni is possible directly from a proper
rational basis determined in the form (10.45). The matrix K together with a mini-
mal realization of v(λ) can be computed efficiently using minimal dynamic cover
techniques presented in Sect. 10.4.2. The same approach can be applied repeatedly
to determine the basis vectors vi(λ), i = 1, . . . , p − r, of a simple basis using the
particular choices h = eTi , where ei is the i-th column of Ip−r .
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10.3.3 Poles and Zeros Computation

The computation of poles of a rational matrix G(λ), with an irreducible descriptor
system realization (A − λE,B,C,D), comes down to compute the eigenvalues of
the regular pole pencil A − λE. This can be achieved by computing the eigenval-
ues of A − λE from the GRSF of the pair (A,E). The finite poles are the nfp finite
eigenvalues of A − λE, while there are n∞

p = rank E − nfp infinite poles (recall that
the multiplicities of infinite eigenvalues are in excess with one with respect to the
multiplicities of infinite poles). The McMillan degree of G(λ) results as

δ
(
G(λ)

) = nfp + n∞
p = rank E .

A straightforward application of the Kronecker-like form is the computation of
the system zeros. LetG(λ) be a rational matrix, with an irreducible descriptor system
representation (A − λE,B,C,D). The system zeros are those values of λ, where the
system pencil

S(λ) =
[
A − λE B

C D

]
:= M − λN

drops its rank below its normal rank. Thus, the system zeros can be determined
from the eigenvalues of the regular pencil Mreg − λNreg in the Kronecker-like form
(10.19) of the pencil M − λN . This can be achieved by computing the eigenvalues
ofMreg − λNreg from the GRSF of the pair (Mreg,Nreg). IfMreg − λNreg has n

f
z finite

eigenvalues, these are the nfz finite transmission zeros of the system. Additionally,
there are n∞

z = rank Nreg − nfz infinite zeros (recall that the multiplicities of infi-
nite eigenvalues are in excess with one with respect to the multiplicities of infinite
zeros).

10.3.4 Additive Decompositions

Consider a disjunct partition of the complex plane C as C = Cg ∪ Cb, where both
Cg andCb are symmetrically located with respect to the real axis,Cg has at least one
point on the real axis, andCg ∩ Cb = ∅. LetG(λ) be a rational TFMwith a descriptor
system realization (A − λE,B,C,D).Wedescribe a state-space approach to compute
the additive decomposition

G(λ) = Gg(λ) + Gb(λ), (10.56)

where Gg(λ) has only poles in Cg , while Gb(λ) has only poles in Cb.
The additive spectral decomposition (10.56) can be computed using a block

diagonalization technique of the pole pencil A − λE (9.68). The basic computa-
tion is to determine the two invertible matrices U and Z to bring the matrices of

http://dx.doi.org/10.1007/978-3-319-51559-5_9
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the transformed pair (UEZ,UAZ) in suitable block diagonal forms. The follow-
ing procedure computes the additive decomposition (10.56) using the descriptor
realization (A − λE,B,C,D) of G(λ), by determining the descriptor realizations
(Ag − λEg,Bg,Cg,Dg) of Gg(λ) and (Ab − λEb,Bb,Cb,Db) of Gb(λ).

Procedure GSDEC: Generalized additive spectral decomposition
Inputs : G(λ) = (A − λE,B,C,D), Cg

Outputs: Gg(λ) = (Ag − λEg,Bg,Cg,Dg), Gb(λ) = (Ab − λEb,Bb,Cb,Db)

1) Using the QZ algorithm, compute orthogonal U1 and V1, such that the
matrix pair (U1AV1,U1EV1) is in an ordered GRSF

U1AV1 =
[
Ag Agb

0 Ab

]
, U1EV1 =

[
Eg Egb

0 Eb

]
,

such that Λ(Ag − λEg) ⊂ Cg and Λ(Ab − λEb) ⊂ C \ Cg .
2) Compute the left and right transformation matrices, U2 and V2, respectively,

of the form

U2 =
[
I Y
0 I

]
, V2 =

[
I X
0 I

]
,

where X and Y satisfy the Sylvester system of equations

AgX + YAb = −Agb ,

EgX + YEb = −Egb .

3) Compute

[
Bg

Bb

]
= U2U1B,

[
Cg Cb

] = CV1V2, Dg = D, Db = 0,

where the row partitioning of U2U1B and column partitioning of CV1V2 are
analogous to the row and column partitioning of U1AV1.

The resulting pencil U2U1(A − λE)V1V2 at Step 2) is block diagonal. The exis-
tence of a unique solution (X,Y) of the Sylvester system to be solved at Step 2)
is guaranteed by Λ(Ag − λEg) ∩ Λ(Ab − λEb) = ∅. An efficient solution method,
which exploits the GRSFs of the pairs (Ag,Eg) and (Ab,Eb), has been proposed in
[68].
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10.3.5 Coprime Factorizations

Consider a p × m rational matrix G(λ) having a descriptor system realization
(A − λE,B,C,D), for which we will not assume further properties (e.g., mini-
mality or irreducibility). Consider also a disjunct partition of the complex plane
as C = Cb ∪ Cg , Cb ∩ Cg = ∅, where Cb and Cg denote the “bad” and “good”
regions of C, respectively. In this section we present algorithms for the computation
of a right coprime factorization (RCF) of G(λ) in the form G(λ) = N(λ)M−1(λ),
where N(λ) and M(λ) are proper rational matrices with all poles in Cg and are
mutually coprime (see Sect. 9.1.6 for definitions). A special case relevant for many
applications is when Cg = Cs and Cb = C \ Cg and we additionally impose that
the denominator factor M(λ) is inner. The algorithms to compute RCFs can be
equally employed to determine a left coprime factorization (LCF) ofG(λ) in the form
G(λ) = M−1(λ)N(λ), where N(λ) and M(λ) are coprime proper rational matrices
with all poles in Cg . We can determine the factors of a LCF factorization from those

of a RCF of GT (λ) = NT (λ)
(
MT (λ)

)−1
. Therefore, we only discuss algorithms for

the computation of RCFs.
The presented algorithms compute RCFs with minimum-degree denominators,

by employing a recursive pole dislocation technique (see Sect. 9.1.6), by which all
poles of G(λ) situated inCb are successively moved intoCg , via recursive pole–zero
cancellations with elementary denominator factors. To cancel a real pole β ∈ Cb of
G(λ), we multiply G(λ) from right with an elementary invertible proper factor M̃(λ)

of McMillan degree one, which has β as a zero and γ ∈ Cg as a pole. For a complex
pole, the corresponding M̃(λ) would contain complex coefficients. Fortunately, we
can simultaneously cancel a pair of complex conjugate poles β, β̄ ∈ Cb of G(λ), by
post-multiplyingG(λ)with an elementary invertible proper factor M̃(λ) ofMcMillan
degree two, having only real coefficients. This factor has β and β̄ as zeros and
γ1, γ2 ∈ Cg as poles (either two real poles or a pair of complex conjugate poles).
This pole–zero cancellation technique can be successively employed to dislocate all
nb poles of G(λ). The resulting denominator factor can be represented in a product
form as

M(λ) = M̃1(λ)M̃2(λ) · · · M̃k(λ), (10.57)

where each M̃i(λ) (i = 1, . . . , k) is an invertible elementary proper factor with
McMillan degree equal to one or two. The computational procedure can be for-
malized as k successive applications of the updating formula

[
Ni(λ)

Mi(λ)

]
=

[
Ni−1(λ)

Mi−1(λ)

]
M̃i(λ), i = 1, . . . , k , (10.58)

initialized with N0(λ) = G(λ) and M0(λ) = Im. Then, N(λ) = Nk(λ) and M(λ) =
Mk(λ). By this approach, it is automatically achieved that the resultingM(λ) has the
least achievable McMillan degree nb.

http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_9
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We can derive state-space formulas for the efficient implementation of the updat-
ing operations in (10.58). Assume Ni−1(λ) and Mi−1(λ) have the descriptor realiza-
tions

[
Ni−1(λ)

Mi−1(λ)

]
=

⎡

⎢⎢
⎣

A11 − λE11 A12 − λE12 B1

0 A22 − λE22 B2

CN,1 CN,2 DN

CM,1 CM,2 DM

⎤

⎥⎥
⎦ =:

⎡

⎢
⎣
Ã − λẼ B̃

C̃N D̃N
C̃M D̃M

⎤

⎥
⎦ , (10.59)

where Λ(A22 − λE22) ⊂ Cb. We assume that A22 − λE22 is a 1 × 1 pencil in the
case when A22 − λE22 has a real or an infinite eigenvalue, or is a 2 × 2 pencil,
in the case when A22 − λE22 has a pair of complex conjugate eigenvalues. This
form automatically results if the pair (̃A, Ẽ) is in the specially ordered generalized
real Schur form (GRSF) determined using Procedure GSORSF in Sect. 10.1.4. If
B2 = 0, then the eigenvalue(s) of A22 − λE22 is (are) not controllable, and thus can
be removed to obtain realizations of Ni−1(λ) and Mi−1(λ) of reduced orders

[
Ni−1(λ)

Mi−1(λ)

]
=

⎡

⎣
A11 − λE11 B1

CN,1 DN

CM,1 DM

⎤

⎦ . (10.60)

After suitable reordering of diagonal blocks of A11 − λE11 using orthogonal simi-
larity transformations (see Sect. 10.1.4), a new realization Ni−1(λ) and Mi−1(λ) can
be determined with the matrices again in the form (10.59). If B2 �= 0, then we have
two cases, which are separately discussed in what follows.

If the pencil A22 − λE22 has finite eigenvalues (i.e., E22 is invertible), then the pair
(A22 − λE22,B2) is (finite) controllable and there exists F2 such that the eigenvalues
of A22 + B2F2 − λE22 can be placed in arbitrary locations in Cg . Assume that such
an F2 has been determined and define the elementary factor M̃i(λ) = (A22 + B2F2 −
λE22, B2W, F2, W ), where W is chosen to ensure the invertibility of M̃i(λ). To
compute stable and proper RCFs, the choice W = Im is always possible. However,
alternative choices ofW are necessary to ensure, for example, that M̃i(λ) is inner. It is
easy to check that the updated factorsNi(λ) andMi(λ) in (10.58) have the realizations

[
Ni(λ)

Mi(λ)

]
:=

[
Ni−1(λ)

Mi−1(λ)

]
M̃i(λ) =

⎡

⎢⎢
⎣

A11 − λE11 A12 + B1F2 − λE12 B1W
0 A22 + B2F2 − λE22 B2W

CN,1 CN,2 + DNF2 DNW
CM,1 CM,2 + DMF2 DMW

⎤

⎥⎥
⎦ .

If we denote F̃ = [
0 F2

]
, then the above relations lead to the following updating

formulas:
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Ã ← Ã + B̃F̃,

B̃ ← B̃W,

C̃N ← C̃N + D̃N F̃,

C̃M ← C̃M + D̃MF̃,

D̃N ← D̃NW,

D̃M ← D̃MW.

(10.61)

If the 1 × 1 pencil A22 − λE22 has an infinite eigenvalue (i.e., E22 = 0), then
we choose the elementary factor M̃i(λ) = (γ − λ, B2, F2, W ), where γ is an arbi-
trary real eigenvalue in Cg , W is a projection matrix chosen such B2W = 0 and

rank

[
B2

W

]
= m, andF2 has been chosen such thatB2F2 = −A22 and rank[F2 W ] =

m (the rank conditions guarantee the invertibility of M̃i(λ)). Straightforward choices
ofF2 andW are, for example,F2 = −BT

2 (B2B
T
2 )−1A22 andW = Im − BT

2 (B2B
T
2 )−1B2.

By this choice of M̃i(λ), we made the infinite eigenvalue in the realization of the
updated factors Ni(λ) and Mi(λ) simple, and after its elimination, we obtain the
realizations

[
Ni(λ)

Mi(λ)

]
:=

[
Ni−1(λ)

Mi−1(λ)

]
M̃i(λ) =

⎡

⎢⎢
⎣

A11 − λE11 A12 + B1F2 − λE12 B1W
0 γ − λ B2

CN,1 CN,2 + DNF2 DNW
CM,1 CM,2 + DMF2 DMW

⎤

⎥⎥
⎦ .

The above relations lead to the following updating formulas:

Ã ←
[
A11 A12 + B1F2

0 γ

]
,

Ẽ ←
[
E11 E12

0 1

]
,

B̃ ←
[
B1W
B2

]
,

C̃N ← [
CN,1 CN,2 + DNF2

]
,

C̃M ← [
CM,1 CM,2 + DMF2

]
,

D̃N ← DNW,

D̃M ← DMW.

(10.62)

The updating techniques relying on the formulas (10.61) and (10.62) ensure that,
if the original pair (̃A, Ẽ) was in a GRSF, then the updated pair will have a similar
form, possibly with Ã − λẼ having a 2 × 2 trailing block which corresponds to two
real generalized eigenvalues (to recover the GRSF, such a block can be further split
into two 1 × 1 blocks using an orthogonal similarity transformation). By reordering
the diagonal blocks in the GRSF of the updated pair (̃A, Ẽ), we can bring in the
trailing position new blocks whose generalized eigenvalues lie in Cb. The described
eigenvalue dislocation process is repeated until all eigenvalues are moved into Cg ,
using suitably chosen elementary denominators.
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The following procedure computes a proper and stable RCF of an arbitrary
rational TFM G(λ) with respect to a given partition C = Cb ∪ Cg as G(λ) =
N(λ)M−1(λ), where the resulting factors N(λ) and M(λ) have the realizations
N(λ) = (̃A − λẼ, B̃, C̃N , D̃N ) and M(λ) = (̃A − λẼ, B̃, C̃M , D̃M).

Procedure GRCF: Generalized stable right coprime factorization

Inputs : G(λ) = (A − λE,B,C,D) with A,E ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n,
D ∈ Rp×m; Cg and Cb, such that C = Cb ∪ Cg , Cb ∩ Cg = ∅

Outputs: N(λ) = (̃A − λẼ, B̃, C̃N , D̃N ) and M(λ) = (̃A − λẼ, B̃, C̃M , D̃M)

such that G(λ) = N(λ)M−1(λ), all finite eigenvalues of Ã − λẼ are in
Cg and all infinite eigenvalues of Ã − λẼ are simple

1) Compute, using Procedure GSORSF, the orthogonal matrices Q and Z to
reduce the pair (A,E) to the special ordered GRSF

Ã := QTAZ =
⎡

⎣
A∞ ∗ ∗
0 Ag ∗
0 0 Ab

⎤

⎦ , Ẽ := QTEZ =
⎡

⎣
0 ∗ ∗
0 Eg ∗
0 0 Eb

⎤

⎦ ,

where A∞ ∈ R(n−r)×(n−r) is invertible and upper triangular, with r = rank E,
Λ(Ag − λEg) ⊂ Cg with Ag,Eg ∈ Rng×ng and Λ(Ab − λEb) ⊂ Cb with
Ab,Eb ∈ Rnb×nb . Compute B̃ := QTB, C̃N := CZ , C̃M = 0, D̃N = D, D̃M = Im.
Set q = n − nb.

2) If q = n, Exit.
3) Let (A22,E22) be the last k × k diagonal blocks of the GRSF of (̃A, Ẽ)

(with k=1 or k=2) and let B2 be the k × m matrix formed from the
last k rows of B̃. If ‖B2‖ ≤ ε (a given tolerance), then remove the parts
corresponding to the uncontrollable eigenvalues Λ(A22 − λE22):
Ã ← Ã(1 : n − k, 1 : n − k), Ẽ ← Ẽ(1 : n − k, 1 : n − k),
B̃ ← B̃(1 : n − k, 1 : m), C̃N ← C̃N (1 : p, 1 : n − k),
C̃M ← C̃M(1 : p, 1 : n − k); update n ← n − k, q ← q − k and go to Step 2).

4) If E22 �= 0, determine F2 such that Λ(A22 + B2F2 − λE22) ⊂ Cg .
Set F̃ = [ 0 F2 ] and compute Ã ← Ã+B̃F̃, C̃N ← C̃N+D̃N F̃, C̃M ← C̃M+
D̃MF̃.

5) If E22 = 0, compute F2 = −BT
2 (B2B

T
2 )−1A22 and W = Im − BT

2 (B2B
T
2 )−1B2.

Choose γ ∈ Cg and update Ã, Ẽ, B̃, C̃N , D̃N , C̃M and D̃M using (10.62).
6) Compute the orthogonal matrices Q̃ and Z̃ to move the last blocks of (̃A, Ẽ) to

positions (q + 1, q + 1) by interchanging the diagonal blocks of the GRSF.
Compute Ã ← Q̃T ÃZ̃ , Ẽ ← Q̃T ẼZ̃ , B̃ ← Q̃T B̃, C̃N ← C̃N Z̃ , C̃M ← C̃MZ̃ .
Put q ← q + k and go to Step 2).

This algorithm is completely general, being applicable regardless the original
descriptor realization is Cb-stabilizable or not, is infinite controllable or not. The
resulting pair (̃A, Ẽ) is in a special GRSF with n − r simple infinite eigenvalues
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in the leading n − r positions (no such block exists if E is invertible). A minimal
realization of the leastMcMillan degree denominatorM(λ) can be easily determined.
The resulting C̃M has always the form

C̃M = [ 0 C̃M,2 ], (10.63)

where the number of columns of C̃M,2 is equal to the number of controllable gen-
eralized eigenvalues of the pair (A,E) lying in Cb. By partitioning accordingly the
resulting Ẽ, Ã and B̃

Ã =
[
A11 A12

0 A22

]
, Ẽ =

[
E11 E12

0 E22

]
, B̃ =

[
B1

B2

]
, (10.64)

then (A22 − λE22,B2, C̃M,2, D̃M) is a minimal descriptor system realization ofM(λ).
Notice however that the order of the minimal realization of M(λ) can be higher
than the least possible McMillan degree if some eigenvalues of A − λE in Cb are
controllable but not observable.

The Procedure GRCF can be interpreted as an extension of the generalized pole
assignment algorithm of [127], which generalizes the pole assignment algorithm
of [123] for standard systems. The roundoff error analysis of this latter algorithm
[124] revealed that if each gain matrix F2 computed at Step 4) or Step 5) satisfies
‖F2‖ ≤ κ‖A‖/‖B‖, with κ having moderate values (say κ < 100), then the standard
pole assignment algorithm is numerically backward stable. This condition is also
applicable in our case, because it is independent of the presence of E. We note how-
ever that, unfortunately, this condition cannot be always fulfilled if large gains are
necessary to stabilize the system. This can arise either if the unstable poles are too
“far” from the stable region or if these poles are weekly controllable. Nevertheless,
the Procedure GRCF can be considered a reliable algorithm, since the above con-
dition can be checked at each computational step and therefore the potential loss of
numerical stability can be easily detected.

A similar recursive procedure can be developed to compute RCFs with inner
denominators. In this case, we use the partition of the complex plane with Cg = Cs

and Cb = C \ Cs. A necessary and sufficient condition for the existence of such a
factorization is thatG(λ) has no poles in ∂Cs (the boundary ofCs). In the continuous-
time case, thismeans that the pencilA − sE has nofinite eigenvalues on the imaginary
axis and all infinite eigenvalues of A − sE are simple. In the discrete-time case,
A − zE has no eigenvalues on the unit circle centred in the origin. However, for the
sake of generality, G(z) can be improper, thus A − zE may have multiple infinite
eigenvalues.

For the computation of theRCFwith inner denominatorsweuse a similar recursive
pole dislocation technique as in the case of a general RCF, using elementary inner
factors. The denominator factor results in the factored form (10.57),where each M̃i(λ)

(i = 1, . . . , k) is an elementary inner factor with McMillan degree equal to one or
two. These factors are used to reflect the unstable poles of G(λ) to stable symmetric
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positions with respect to the imaginary axis, in the case of a continuous-time system,
or with respect to the unit circle in the origin, in the case of a discrete-time system.

In what follows, we give the formulas to determine the elementary inner factors to
be used in (10.57) and derive appropriate updating formulas of the factors.We assume
Ni−1(λ) and Mi−1(λ) have the descriptor realizations in (10.59) and B2 �= 0 (other-
wise the uncontrollable part A22 − λE22 can be removed from the realization, see
(10.60)). In the casewhenA22 − λE22 has finite eigenvalues (i.e.,E22 is invertible) we
choose the elementary inner factor as M̃i(λ) = (A22 + B2F2 − λE22, B2W, F2, W ).
The updating formulas for this case are the same as those employed in Procedure
GRCF given in (10.61). For the computation of F2 and W we have the following
results.

Lemma 10.1 Let (A22 − sE22,B2)be a controllable continuous-timedescriptor pair
with E22 invertible and Λ(A22 − sE22) ⊂ Cu. Then the elementary denominator fac-
tor M̃i(s) = (A22 + B2F2 − sE22, B2W, F2, W ) is inner by choosing F2 and W as

A22YE
T
22 + E22YA

T
22 − B2B

T
2 = 0,

F2 = −BT
2 (YET

22)
−1, W = Im.

Lemma 10.2 Let (A22 − zE22,B2) be a controllable discrete-time descriptor pair
with E22 invertible and Λ(A22 − zE22) ⊂ Cu. Then the elementary denominator fac-
tor M̃i(z) = (A22 + B2F2 − zE22, B2W, F2, W ) is inner by choosing F2 and W as

A22YA
T
22 − B2B

T
2 = E22YE

T
22,

F2 = −BT
2 (YAT

22)
−1,

WT (I + BT
2 (E22YE

T
22)

−1B2)W = I.

If the 1 × 1 pencil A22 − zE22 has an infinite eigenvalue (i.e., E22 = 0), then we
have the following result for the choice of the elementary inner factor.

Lemma 10.3 Let (A22 − zE22,B2) be an infinite controllable discrete-time descrip-
tor pair with E22 = 0, and A22 nonzero. Then the elementary denominator factor
M̃i(z) = (0 + zA22, B2, F2, W ) is inner by choosing F2 and W as

F2 = −BT
2 (B2B

T
2 )−1A22,

W = I − BT
2 (B2B

T
2 )−1B2.

By this choice of M̃i(z), we made the infinite eigenvalue in the realization of the
updated factors Ni(z) and Mi(z) simple, and after its elimination, we obtain the
realizations

[
Ni(z)
Mi(z)

]
:=

[
Ni−1(z)
Mi−1(z)

]
M̃i(z) =

⎡

⎢⎢
⎣

A11 − zE11 A12 + B1F2 − zE12 B1W
0 zA22 B2

CN,1 CN,2 + DNF2 DNW
CM,1 CM,2 + DMF2 DMW

⎤

⎥⎥
⎦ ,

The above relations lead to the following updating formulas:
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Ã ←
[
A11 A12 + B1F2
0 0

]
, Ẽ ←

[
E11 E12
0 −A22

]
, B̃ ←

[
B1W
B2

]
,

C̃N ← [
CN,1 CN,2 + DNF2

]
, C̃M ← [

CM,1 CM,2 + DMF2
]
,

D̃N ← DNW, D̃M ← DMW.

(10.65)

The following procedure computes a stable RCF with inner denominator of a ratio-
nal TFM G(λ), without poles in ∂Cs, as G(λ) = N(λ)M−1(λ), where the result-
ing factors N(λ) and M(λ) have the realizations N(λ) = (̃A − λẼ, B̃, C̃N , D̃N ) and
M(λ) = (̃A − λẼ, B̃, C̃M , D̃M).

Procedure GRCFID: Generalized RCF with inner denominator
Inputs : G(λ) = (A − λE,B,C,D) with A,E ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n,

D ∈ Rp×m

Outputs: N(λ) = (̃A − λẼ, B̃, C̃N , D̃N ) and M(λ) = (̃A − λẼ, B̃, C̃M , D̃M)

such that G(λ) = N(λ)M−1(λ),M(λ) is inner, all finite eigenvalues
of Ã − λẼ are in Cs and all infinite eigenvalues of Ã − λẼ are simple

1) Compute using Procedure GSORSF, the orthogonal matrices Q and Z to
reduce the pair (A,E) to the special ordered GRSF

Ã := QTAZ =
⎡

⎣
A∞ ∗ ∗
0 As ∗
0 0 Au

⎤

⎦ , Ẽ := QTEZ =
⎡

⎣
0 ∗ ∗
0 Es ∗
0 0 Eu

⎤

⎦ ,

where A∞ ∈ R(n−r)×(n−r) is invertible and upper triangular, with r = rank E,
Λ(As − λEs) ⊂ Cs with As,Es ∈ Rns×ns and Λ(Au − λEu) ⊂ Cu with
Au,Eu ∈ Rnu×nu . Compute B̃ := QTB, C̃N := CZ , C̃M = 0, D̃N = D,
D̃M = Im. Set q = n − nu.

2) If q = n, Exit.
3) Let (A22,E22) be the last k × k diagonal blocks of the GRSF of (̃A, Ẽ) (with

k = 1 or k = 2) and let B2 be the matrix formed from the last k rows of B̃.
If ‖B2‖ ≤ ε (a given tolerance), then remove the parts corresponding to the
uncontrollable eigenvalues Λ(A22 − λE22): Ã ← Ã(1 : n − k, 1 : n − k),
Ẽ ← Ẽ(1 : n − k, 1 : n − k), B̃ ← B̃(1 : n − k, 1 : m),
C̃N ← C̃N (1 : p, 1 : n − k), C̃M ← C̃M(1 : p, 1 : n − k); update n ← n − k,
q ← q − k and go to Step 2).

4) If E22 �= 0, compute F2 and W according to Lemma 10.1 in the
continuous-time case or according to Lemma 10.2 in the discrete-time case.
Set F̃ = [ 0 F2 ] and update Ã, B̃, C̃N , D̃N , C̃M and D̃M using (10.61).

5) If E22 = 0, compute F2 = −BT
2 (B2B

T
2 )−1A22 and W = Im − BT

2 (B2B
T
2 )−1B2,

and update Ã, Ẽ, B̃, C̃N , D̃N , C̃M and D̃M using (10.65).
6) Compute the orthogonal matrices Q̃ and Z̃ to move the last blocks of (̃A, Ẽ) to

positions (q + 1, q + 1) by interchanging the diagonal blocks of the GRSF.
Compute Ã ← Q̃T ÃZ̃ , Ẽ ← Q̃T ẼZ̃ , B̃ ← Q̃T B̃, C̃N ← C̃N Z̃ , C̃M ← C̃MZ̃ .
Put q ← q + k and go to Step 2).
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The resulting inner factor M(λ) has least McMillan degree, only if all unstable
generalized eigenvalues of the pair (E,A) are observable. A minimal realization of
M(λ) canbe explicitly determined as (A22 − λE22,B2, C̃M,2, D̃M),where thematrices
of the realization are defined in (10.64) and (10.63).

The numerical properties of Procedure GRCFID are similar to those of Proce-
dureGRCF, as long as thematrix gains ‖F2‖ at Steps 4) and 5) are reasonably small.
However, this condition for numerical reliability may not always be fulfilled due to
the lack of freedom in assigning the poles. Recall that the unstable poles are reflected
in symmetrical position with respect to ∂Cs, and this may occasionally require large
gains.

10.3.6 Inner–Outer Factorization

In the light of the needs of the synthesis algorithms presented in Chap. 5, we discuss
the computation of the inner–outer factorization of a particular p × m rational matrix
G(λ), namely which is proper and has full column rank. Assume that G(λ) has an
n-th order descriptor system realization

G(λ) =
[
A − λE B

C D

]
, (10.66)

with E an invertible n × n matrix. Consider the disjunct partition of the complex
plane as C = Cu ∪ Cs. We discuss the computation of the inner–outer factorization
of G(λ) either in the compact form

G(λ) = Gi,1(λ)Go(λ) , (10.67)

or in the extended form

G(λ) = [
Gi,1(λ) Gi,2(λ)

] [
Go(λ)

0

]
= Gi(λ)

[
Go(λ)

0

]
, (10.68)

where Gi(λ) := [
Gi,1(λ) Gi,2(λ)

]
is a square inner TFM (i.e., with Gi,1(λ) inner

too), and Go(λ) is an invertible quasi-outer TFM, having all zeros in Cs. The sta-
bility of Go(λ) is ensured, provided G(λ) is stable. The component Gi,2(λ) is a
complementary inner factor (also called an “orthogonal” complement of Gi,1(λ))
(see Sect. 9.1.8).

For the computation of inner–outer factorization of G(λ), a special reduced form
of the system matrix will be instrumental.

Proposition 10.5 Let G(λ) be a p × m proper rational matrix of full column rank
with a stabilizable realization given in (10.66). Then, there exist orthogonal matrices
U and Z such that

[
U 0
0 I

] [
A − λE B

C D

]
Z =

⎡

⎣
As − λEs ∗ ∗

0 Au
 − λEu
 Bu


0 Cu
 Du


⎤

⎦ , (10.69)

http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_9
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where

(a) The regular pencil As − λEs contains the zeros of G(λ) in Cs;
(b) The descriptor system defined by

Gu
(λ) =
[
Au
 − λEu
 Bu


Cu
 Du


]
(10.70)

is proper, with the n
 × n
 matrix Eu
 invertible, is stabilizable, has full column
rank and has only zeros in Cu.

Proof This proposition is a simplified version of a slight variation of Theorem 3.1 of
[97] combined with Theorem 2.2 in [94], where constructive proofs are also given to
determine the orthogonal matrices U and Z , as well as the condensed form (10.69),
using numerically stable computational algorithms. For convenience, we describe
the main computational steps of this reduction for the considered particular case. Let
us denote the initial system pencil as

S0(λ) :=
[
A − λE B

C D

]

and observe that S0(λ) has full column rank n + m and furthermore [A − λE B ] has
full row rank for all λ ∈ Cu. The reduction algorithm has three computational steps,
which are presented in what follows.

(1) Compute orthogonal Z1 such that
[
C D

]
Z1 = [

0 C(1)
2

]
,

with C(1)
2 of full column rank and define

S1(λ) := S0(λ)Z1 =
[
A(1)
11 − λE(1)

11 A(1)
12 − λE(1)

12

0 C(1)
2

]

.

Since E is invertible, it follows that [E(1)
11 E(1)

12 ] has full row rank n.
(2) Compute orthogonal U and Z2 to reduce the pencil A

(1)
11 − λE(1)

11 to a Kronecker-
like form (see Sect. 10.1.6)

U
(
A(1)
11 − λE(1)

11

)
Z2 =

⎡

⎣
As−λEs ∗ ∗

0 Au−λEu ∗
0 0 A
−λE


⎤

⎦ :=
[
As−λEs ∗

0 Au
−λEu


]
,

where Λ(As − λEs) ⊂ Cs, Λ(Au − λEu) ⊂ Cu, and A
−λE
 has full column
rank for all λ ∈ C. Define

S2(λ) := diag(U, I)S1(λ) diag(Z2, I) =
⎡

⎢
⎣

As−λEs ∗ ∗
0 Au
−λEu
 Bu
−λFu


0 0 C(1)
2

⎤

⎥
⎦ .
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It easy to show that [Au
−λEu
 Bu
−λFu
 ] has full row rank for all λ ∈ Cu

and also [Eu
 Fu
 ] has full row rank.
(3) Compute orthogonal Z3 such that

[
Eu
 Fu


]
Z3 =

[
Eu
 0
Cu
 Du


]
,

with Eu
 invertible. Define

S3(λ) = S2(λ) diag(I,Z3) =
⎡

⎣
As − λEs ∗ ∗

0 Au
 − λEu
 Bu


0 Cu
 Du


⎤

⎦ .

The properties (a) and (b) follow immediately from the above properties of the
blocks of the reduced final form. The overall transformation matrix Z is defined as

Z = Z1 diag(Z2, I) diag(I,Z3) .

�

Remark 10.7 This proposition extracts from the original system (10.66) a proper
system (10.70) which has a standard inner–outer factorization. It can be shown that
there exists an invertible Gr(λ) with zeros only in Cs such that

Gu
(λ)Gr(λ) = G(λ) .

It follows thatGu
(λ) andG(λ) have the same inner factor. AssumeGi(λ) is a square
inner TFM such that

Gu
(λ) = Gi(λ)

[
Go,1(λ)

0

]

is an extended standard inner–outer factorization, where Go,1(λ) has only zeros in
Cs. Then with Go(λ) := Go,1(λ)Gr(λ) we immediately obtain an inner–quasi-outer
factorization of G(λ) in the form (10.68). �

We discuss now the computation of the inner–outer factorization separately for
the continuous-time and discrete-times cases.

In the continuous-time case, we can further refine the reduced form (10.69) by
observing that Du
 is full column rank (otherwise Gu
(s) would have infinite zeros).
Therefore, we can compress Du
 to a full row rank matrix using an orthogonal trans-
formation matrix V , such that

V TDu
 =
[
D


0

]
, C
 := V TCu
 =

[
C
,1

C
,2

]
, (10.71)

where D
 is invertible. With this, we have the following result from [97].
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Proposition 10.6 Let G(s) be a p × mproper full column rank rationalmatrixwith a
stabilizable realization (10.66), let U and Z be orthogonal transformation matrices
such that (10.69) holds and let V be an orthogonal transformation matrix which
compresses Du
 as in (10.71). Let Xs be the positive definite stabilizing solution of
the generalized continuous-time Riccati equation (GCARE)

AT
u
XEu
 + ET

u
XAu
 − (ET
u
XBu
 + CT

u
Du
)

× (DT
u
Du
)

−1(BT
u
XEu
 + DT

u
Cu
) + CT
u
Cu
 = 0 (10.72)

and let Fs be the corresponding stabilizing feedback

Fs = −R−1(BT
u
XsEu
 + DT

u
Cu
) ,

with R := DT
u
Du
 > 0. Then, the factors of the inner–quasi-outer factorization

(10.68) are given by

Gi(s) = [
Gi,1(s) Gi,2(s)

] = V

⎡

⎣
Au
 + Bu
Fs − sEu
 Bu
D

−1

 −X−1

s E−T
u
 CT


,2

C
,1 + D
Fs I 0
C
,2 0 I

⎤

⎦

and

Go(s) =
[
A − sE B

C̃ D̃

]

,

where
[
C̃ D̃

] := R1/2
[
0 Fs I

]
ZT .

In the discrete-time case, we have the following result from [94].

Proposition 10.7 Let G(z) be a p × m proper full column rank rational matrix with
a stabilizable realization (10.66), and let U and Z be orthogonal transformation
matrices such that (10.69) holds. Let Xs be the stabilizing solution of the generalized
discrete-time Riccati equation (GDARE)

AT
u
XAu
 − ET

u
XEu
 − (AT
u
XBu
 + CT

u
Du
)

× (DT
u
Du
 + BT

u
XBu
)
−1(BT

u
XAu
 + DT
u
Cu
) + CT

u
Cu
 = 0 (10.73)

and let Fs be the corresponding stabilizing feedback

Fs = −R−1(BT
u
XsAu
 + DT

u
Cu
) ,

with R := DT
u
Du
 + BT

u
XsBu
 > 0. Then, the factors of the inner–quasi-outer fac-
torization (10.67) are given by
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Gi,1(z) =
[
Au
 + Bu
Fs − zEu
 Bu
R− 1

2

Cu
 + Du
Fs Du
R− 1
2

]

and

Go(z) =
[
A − zE B

C̃ D̃

]

,

where
[
C̃ D̃

] := R1/2
[
0 Fs I

]
ZT .

Remark 10.8 The complementary inner factor Gi,2(z) can be computed in the form
[164]

Gi,2(z) =
[
Au
 + Bu
Fs − zEu
 Y

Cu
 + Du
Fs W

]
,

where Y and W satisfy
AT
u
XsY + CT

u
W = 0 ,

BT
u
XsY + DT

u
W = 0 ,

WTW + YTXsY = I .

To compute Y and W we can determine first an orthogonal nullspace basis

[
Ỹ
W̃

]

satisfying [
AT
u
Xs C

T
u


BT
u
Xs D

T
u


] [
Ỹ
W̃

]
= 0

and then computeY = ỸL−1 andW = W̃L−1,whereL is aCholesky factor satisfying

W̃ T W̃ + Ỹ TXsỸ = LTL .

A numerically reliable way to compute the orthogonal nullspace is via the singular
value decomposition

[
AT
u
Xs C

T
u


BT
u
Xs D

T
u


]
= [

U1 U2
] [

Σ 0
0 0

] [
V1 V2

]T
,

where Σ is an invertible k × k diagonal matrix and
[
U1 U2

]
and

[
V1 V2

]
are com-

patibly partitioned orthogonal matrices. Then we can set

[
Ỹ
W̃

]
= V2 ,

where V2 is a matrix whose orthonormal columns span the right nullspace
basis. �
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10.3.7 Linear Rational Matrix Equations

Several synthesis algorithms presented in Chap.5 (see Sect. 7.9) involve the solution
of linear rational equations of the form

G(λ)X(λ) = F(λ), (10.74)

where G(λ) and F(λ) are given p × m and p × q rational matrices, respectively,
and X(λ) is the m × q rational matrix sought, which must have the least possible
McMillan degree. It is a well-known fact that the system (10.74) has a solution
provided the rank condition

rank G(λ) = rank[G(λ) F(λ) ] (10.75)

is fulfilled. We assume in what follows that this condition holds.
The general solution of (10.74) can be expressed as

X(λ) = X0(λ) + XN (λ)Y(λ), (10.76)

where X0(λ) is any particular solution of (10.74), XN (λ) is a rational matrix whose
columns form a basis for the right nullspace ofG(λ), and Y(λ) is an arbitrary rational
matrix with compatible dimensions. In the case when both X0(λ) and XN (λ) are
proper, a possible approach to compute a solution X(λ) of least McMillan degree is
to determine a suitable properY(λ) to achieve this goal. A geometric control theoretic
method for this purpose has been developed in [88], based on computing minimum
dynamic covers. This method has been turned into an efficient and numerically
reliable state-space computational approach in [133], which can be used to determine
a least McMillan degree solution of (10.74) for this particular case.

Since XN (λ) can always be chosen proper (see Sect. 7.4), the main difficulty using
the above approach is the computation of an appropriate Y(λ) in the case when there
is no proper solution of (10.74), and thusX0(λ) cannot be chosen proper. To overcome
this difficulty we can determine X0(λ) so that its polynomial part corresponds to a
minimal number of infinite poles. These infinite poles originate from the intrinsic
improper nature of any solution of (10.74) and are related to the common infinite zeros
of G(λ) and F(λ). In what follows, we show how to determine a special particular
solutionX0(λ)withminimumnumber of infinite poles. Then, we determine a rational
basis XN (λ) for the right nullspace of G(λ) which will serve to determine a solution
X(λ) of least McMillan degree. This goal is achieved by employing an approach
similar to that of [88] to determine a proper Y(λ) to reduce the McMillan degree
of the proper part of X0(λ). This approach relies on the generalized minimum cover
algorithm of [136].

Computation of X0(λ)

Let assume that the rational matrices G(λ) and F(λ) have descriptor realizations of
order n of the forms

http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_7
http://dx.doi.org/10.1007/978-3-319-51559-5_7
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G(λ) :=
[
A − λE BG

C DG

]
, F(λ) :=

[
A − λE BF

C DF

]
, (10.77)

where we only assume that the pencil A − λE is regular. Such realizations, which
share the pair (A − λE,C), automatically result from a minimal realization of the
compound TFM

[
G(λ) F(λ)

]
.

Let SG(λ) and SF(λ) be the system matrix pencils associated to the realizations
of G(λ) and F(λ)

SG(λ) =
[
A − λE BG

C DG

]
, SF(λ) =

[
A − λE BF

C DF

]
.

Using the straightforward relations

[
A − λE BG

0 G(λ)

]
=

[
In 0

−C(A − λE)−1 Ip

]
SG(λ) ,

[
A − λE BF

0 F(λ)

]
=

[
In 0

−C(A − λE)−1 Ip

]
SF(λ) ,

it is easy to see that X(λ) is a solution of G(λ)X(λ) = F(λ) if and only if

Y(λ) =
[
Y11(λ) Y12(λ)

Y21(λ) X(λ)

]

is a solution of
SG(λ)Y(λ) = SF(λ) . (10.78)

The existence of the solution of (10.78) is guaranteed by (10.75), which is equivalent
to

rank SG(λ) = rank[ SG(λ) SF(λ) ] . (10.79)

It follows that, instead of solving the rational equation G(λ)X(λ) = F(λ), we can
solve the polynomial equation (10.78) and take

X(λ) = [
0 Im

]
Y(λ)

[
0
Iq

]
.

In fact, since we are only interested in the second block column Y2(λ) of Y(λ), we
need only to solve [

A − λE BG

C DG

]
Y2(λ) =

[
BF

DF

]
(10.80)

and compute X(λ) as
X(λ) = [

0 Im
]
Y2(λ) .
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The condition (10.79) for the existence of a solution becomes

rank

[
A − λE BG

C DG

]
= rank

[
A − λE BG BF

C DG DF

]
. (10.81)

To solve (10.80), we isolate a full rank part of SG(λ) by reducing it to a particular
Kronecker-like form. Let Q and Z be orthogonal matrices to reduce SG(λ) to the
Kronecker-like form

SG(λ) := QSG(λ)Z =
⎡

⎣
Br Ar − λEr Ar,reg − λEr,reg ∗
0 0 Areg − λEreg ∗
0 0 0 Al − λEl

⎤

⎦ , (10.82)

where Areg − λEreg is a regular subpencil, the pair (Ar − λEr,Br) is controllable
with Er invertible and the subpencil Al − λEl has full column rank for all λ ∈ C. The
above reduction can be computed by employing numerically stable algorithms, as
those described in Sect. 10.1.6.

If Y 2(λ) is a solution of the reduced equation

SG(λ)Y 2(λ) = Q

[
BF

DF

]
, (10.83)

then Y2(λ) = ZY 2(λ), and thus

X(λ) = [
0 Im

]
ZY 2(λ)

is a solution of the equation G(λ)X(λ) = F(λ). Partition

Q

[ −BF

−DF

]
=

⎡

⎣
B1

B2

B3

⎤

⎦

in accordance with the row structure of SG(λ). Since Al − λEl has full column rank,
it follows from (10.81) that B3 = 0 (otherwise no solution exists). Thus, Y 2(λ) has
the form

Y 2(λ) =

⎡

⎢⎢
⎣

Y 12(λ)

Y 22(λ)

Y 32(λ)

0

⎤

⎥⎥
⎦ ,

where the partitioning of Y 2(λ) corresponds to the column partitioning of SG(λ). To
determine a particular solutionX0(λ),we can freely chooseY 12(λ) = 0 anddetermine
Y 22(λ) and Y 32(λ) by solving

[
Y 22(λ)

Y 32(λ)

]
=

[
λEr − Ar λEr,reg − Ar,reg

0 λEreg − Areg

]−1 [
B1

B2

]
.
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Let partition [ 0 Im ]Z in accordance with the column structure of SG(λ) as

[ 0 Im ]Z = [Dr Cr Creg Cl ] (10.84)

and denote

A − λE =
[
Ar − λEr Ar,reg − λEr,reg

0 Areg − λEreg

]
, B =

[
B1

B2

]
, C = [Cr Creg ] . (10.85)

Then, a particular solution X0(λ) of the equation G(λ)X(λ) = F(λ) can be deter-
mined with the descriptor system realization

X0(λ) :=
[
A − λE B

C 0

]

. (10.86)

Someproperties ofX0(λ) canbe easily deduced from the computedKronecker-like
form.The pair (C,A − λE) is always observable, but, in general, the pair (A − λE,B)

may be uncontrollable. The poles of X0(λ) are among the generalized eigenvalues
of the pair (A,E) and are partly freely assignable and partly fixed. The generalized
eigenvalues of the pair (Ar,Er) are called the “spurious” poles, and they originate
from the column singularity ofG(λ). These poles are freely assignable by appropriate
choice of a (non-orthogonal) right transformation matrix [131]. The fixed poles are
the controllable eigenvalues of the pair (Areg − λEreg,B2). If G(λ) and F(λ) have no
common poles and zeros then the pair (Areg − λEreg,B2) is controllable. In this case
X0(λ) has the minimum possible poles at infinity.

According to the dual of Lemma 9.5, there exists a solution X0(λ) without a pole
in γ (finite or infinite) if the pole and zero structures of G(λ) and [G(λ) F(λ)] at
γ coincide. For practical computations, this implies that some or all of common
poles and zeros of G(λ) and [G(λ) F(λ)] will cancel. This cancellation can be done
explicitly by removing the uncontrollable eigenvalues (finite and infinite) of the pair
(Areg − λEreg,B2).

Removing the uncontrollable eigenvalues of the pair (Areg − λEreg,B2) can be
done using the generalized controllability staircase form algorithm of Procedure
GCSF described in Sect. 10.1.5 (see also Sect. 10.3.1). By applying this algorithm,
two orthogonal matrices Qreg and Zreg are determined such that all uncontrollable
finite eigenvalues are separated in the trailing part of the transformed regular pen-
cil Qreg(Areg − λEreg)Zreg , while the corresponding rows of QregB2 are zero. The
uncontrollable part of the triple (A − λE,B,C) can be thus eliminated by remov-
ing the appropriate trailing rows and columns from the matrices of the transformed
triple (Q(A − λE)Z,QB,CZ), where Q = diag(I,Qreg) and Z = diag(I,Zreg). The
same technique can be used to remove the uncontrollable infinite eigenvalues by
simply interchanging the roles of matrices A and E, thus working on the triple
(E − λA,B,C). For the sake of simplicity we reuse the same notation (with bar)
by assuming that the pair (A − λE,B) is already controllable, thus the resulting
X0(λ) fulfils the requirement for a minimal number of poles at infinity.

http://dx.doi.org/10.1007/978-3-319-51559-5_9


10.3 Algorithms for Descriptor Systems 355

To compute the particular solution X0(λ) we employed exclusively orthogonal
similarity transformations to determine the matrices of a descriptor realization in
(10.86). Therefore, this computation is numerically stable, because we can easily
show that the computed system matrices in the presence of roundoff errors are exact
for an original problem with slightly perturbed data.

In view of the order reduction step described later, we need to enforce a block
diagonal descriptor matrix E in (10.85) (i.e., with Er,reg = 0). This can be easily
achieved by performing an additional non-orthogonal column transformation using
the transformation matrix

V =
[
I −E−1

r Er,reg

0 I

]
.

The transformed system (AV − λEV,B,CV, 0), representing also X0(λ), has thus a
block diagonal descriptor matrix EV . To simplify the presentation we will reuse the
notation with bar and assume in what follows that Er,reg = 0 in (10.85).

Computation of XN (λ)

Using the same reduction of SG(λ) to SG(λ) as in (10.82), a right nullspace basis
XN (λ) of G(λ) can be computed from a right nullspace basis YN (λ) of SG(λ) as

XN (λ) = [ 0 Im ]ZYN (λ) .

We can determine YN (λ) in the form

YN (λ) =

⎡

⎢
⎢
⎣

I
(λEr − Ar)

−1Br

0
0

⎤

⎥
⎥
⎦ .

With Cr and Dr defined in (10.84), we obtain a descriptor realization of XN (λ) as

XN (λ) :=
[
Ar − λEr Br

Cr Dr

]
.

Obviously XN (λ) is proper and controllable. Furthermore, according to Proposi-
tion 10.2 applied to the dual realization of XT

N (λ), the realization of XN (λ) is observ-
able, provided the realization ofG(λ) in (10.77) is observable.Moreover, the poles of
XN (λ) are freely assignable by appropriately choosing the transformation matricesQ
and Z to reduce the system pencil SG(λ). Note that, to obtain this nullspace basis, we
performed exclusively orthogonal transformations on the system matrices. We can
prove that all computed matrices are exact for a slightly perturbed original system.
It follows that the algorithm to compute the nullspace basis is numerically stable.
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Computation of a Least-Order Solution X(λ)

We can represent XN (λ) to have the same state, descriptor and output matrices as
X0(λ). Let these realizations of X0(λ) and XN (λ) be

[
X0(λ) XN (λ)

] :=
[
A − λE B Br

C D Dr

]

:=
⎡

⎣
Ar − λEr Ar,reg B1 Br

0 Areg − λEreg B2 0
Cr Creg 0 Dr

⎤

⎦ ,

(10.87)
where Er is invertible.

We consider first the case when X0(λ) is proper, that is, all eigenvalues of the
pencil Areg − λEreg are finite and thus E is invertible. In this case, it was shown
in [88] that a solution with least McMillan degree can be determined as X(λ) =
X0(λ) + XN (λ)Y(λ) by choosing an appropriate proper Y(λ). This can be done by
determining a suitable feedback matrix Fr and a feedforward matrix Lr to cancel the
maximum number of unobservable and uncontrollable poles of

X(λ) :=
[
A + BrFr − λE B + BrLr

C + DrFr D + DrLr

]

. (10.88)

It can be shown that if we start with a minimal realization of [G(λ) F(λ) ], then we
cannot produce any unobservable poles in X(λ) via state feedback. Therefore, we
only need to determine the matrices Fr and Lr to cancel the maximum number of
uncontrollable poles.

This problem has been solved in [88] by reformulating it as a minimal order
dynamic cover design problem. We denote Ã := E −1A, B̃ := E −1B, and B̃r :=
E −1Br , and also B̃ = span B̃ and B̃r = span B̃r . Consider the set

J = {V : B̃ + ÃV ⊂ B̃r + V} ,

and let J ∗ denote the set of subspaces in J of least dimension. If V ∈ J ∗, then a
pair (Fr,Lr) can be determined such that

(̃A + B̃rFr)V + span (̃B + B̃rLr) ⊂ V .

Thus, determining a minimal dimension V is equivalent to a minimal order cover
design problem, and a conceptual geometric approach to solve it has been indicated
in [88]. The outcome of his method is, besides V , the pair (Fr,Lr) which achieves
a maximal order reduction by forcing pole–zero cancellations. This approach, in the
case of standard systems (i.e., E = I), has been turned into a numerically reliable
procedure in [133] and extended to the descriptor case with invertible E in [136].
In this latter procedure, Fr and Lr are determined from a special controllability
staircase form of the pair (A − λE, [Br B ]) obtained using a numerically reliable
method relying on both orthogonal and non-orthogonal similarity transformations.
Details of this algorithm are given in Sect. 10.4.3.
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It is possible to refine this approach by exploiting the structure of matrices in
(10.87). Assuming Fr = [Fr Freg ] is partitioned according to the structure of A, we
get from (10.88)

X(λ) :=
⎡

⎢
⎣

Ar + BrFr − λEr Ar,reg + BrFreg B1 + BrLr

0 Areg − λEreg B2

Cr + DrFr Creg + DrFreg D + DrLr

⎤

⎥
⎦ .

Since the eigenvalues of Areg − λEreg are not controllable via Br , the state feedback
Fr affects only the blocks Ar − λEr and Ar,reg . To make a maximum number of
eigenvalues of Ar + BrFr − λEr uncontrollable we can alternatively solve a mini-
mum dynamic cover problem of lower dimension for the system

[
X0,r(λ) XN (λ)

] :=
[
Ar − λEr

[
Ar,reg B1

]
Br

Cr
[
Cr,reg D

]
Dr

]

,

by determining an appropriate state feedback matrix Fr and a feedforward matrix
[Freg Lr ]. Besides lower size of the computational problem, the main advantage of
this approach is that it is applicable regardless Areg − λEreg has infinite eigenvalues
or not.

10.4 Special Algorithms

In this section we describe several algorithms, which are instrumental in addressing
least-order synthesis problems of fault detection and isolation filters and the solution
of the Nehari problem, which is encountered in solving least distance problems.

10.4.1 Special Controllability Staircase Form Algorithm

The computational methods of minimum dynamic covers, presented in Sects. 10.4.2
and 10.4.3, rely on a special controllability staircase form (see Sect. 10.1.5) involving
a controllable descriptor pair (A − λE, [B1 B2 ]), where A,E ∈ Rn×n with E invert-
ible, B1 ∈ Rn×m1 , B2 ∈ Rn×m2 . The main difference to the reduction performed in
Procedure GCSF is in exploiting, at the j-th reduction step, the partitioned form of
the matrix B(j−1) := [B(j−1)

1 B(j−1)
2 ], by compressing its rows in two steps. In the first

step, the rows of B(j−1)
1 are compressed, while in the second step, those columns of

the updated B(j−1)
2 are compressed, which are linearly independent of the columns

of B(j−1)
1 . All row compressions can be performed using orthogonal similarity trans-

formations.
The following procedure determines for a descriptor triple (A − λE, [B1 B2 ],C),

two orthogonal transformation matrices Q and Z such that for the resulting triple
(QTAZ − λQTEZ, [QTB1 QTB2 ],CZ), the pencil [ QTB1 QTB2 QTAZ − λQTEZ ]
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is in a special controllability staircase form with QTEZ upper triangular.

Procedure GSCSF: Generalized special controllability staircase form
Input : (A − λE, [B1 B2 ],C)

Outputs: Q, Z , (A−λE, [B1 B2 ],C) :=(QTAZ−λQTEZ, [QTB1 QTB2 ],CZ),
(ν1,j, ν2,j), j = 1, . . . , 


1) Compute an orthogonal matrix Q such that QTE is upper triangular;
compute A ← QTA, E ← QTE, B1 ← QTB1, B2 ← QTB2. Set Z = In.

2) Set j=1, r=0, ν1,0 = m1, ν2,0 = m2, A(0) = A, E(0) = E, B(0)
1 = B1, B

(0)
2 = B2.

3) Compute orthogonal matrices W and U such that

WT
[
B(j−1)
1 B(j−1)

2

]
:=

⎡

⎣
A2j−1,2j−3 A2j−1,2j−2

0 A2j,2j−2

0 0

⎤

⎦
ν1,j
ν2,j
ρ

ν1,j−1 ν2,j−1

with A2j−1,2j−3 and A2j,2j−2 full row rank matrices and WTE(j−1)U is
upper triangular.

4) Compute and partition

WTA(j−1)U :=
⎡

⎣
A2j−1,2j−1 A2j−1,2j A2j−1,2j+1

A2j,2j−1 A2j,2j A2j,2j+1

B(j)
1 B(j)

2 A(j)

⎤

⎦
ν1,j
ν2,j
ρ

ν1,j ν2,j ρ

WTE(j−1)U :=
⎡

⎣
E2j−1,2j−1 E2j−1,2j E2j−1,2j+1

0 E2j,2j E2j,2j+1

0 0 E(j)

⎤

⎦
ν1,j
ν2,j
ρ

ν1,j ν2,j ρ

5) For i = 1, . . . , 2j − 2 compute and partition

Ai,2j−1U := [Ai,2j−1 Ai,2j Ai,2j+1 ]
ν1,j ν2,j ρ

Ei,2j−1U := [Ei,2j−1 Ei,2j Ei,2j+1 ]
ν1,j ν2,j ρ

6) Q ← Q diag(Ir,W ), Z ← Z diag(Ir,U), C ← C diag(Ir,U).
7) r ← r + ν1,j + ν2,j; if ρ = 0, then 
 = j and Exit;

else, j ← j + 1 and go to Step 3).
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At the end of this algorithm we have Â − λÊ := QT (A − λE)Z , B̂ := [QTB1

QTB2 ], Ĉ := CZ , Ê is upper triangular, and the pair (̂A, B̂) is in the special staircase
form

[
B̂ Â

]=

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

A1,−1 A1,0 A11 A12 · · · A1,2
−3 A1,2
−2 A1,2
−1 A1,2


0 A2,0 A21 A22 · · · A2,2
−3 A2,2
−2 A2,2
−1 A2,2


0 0 A31 A32 · · · A3,2
−3 A3,2
−2 A3,2
−1 A3,2


0 0 0 A42 · · · A4,2
−3 A4,2
−2 A4,2
−1 A4,2

...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · A2
−1,2
−3 A2
−1,2
−2 A2
−1,2
−1 A2
−1,2

0 0 0 0 · · · 0 A2
,2
−2 A2
,2
−1 A2
,2


⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

, (10.89)

where A2j−1,2j−3 ∈ Rν1,j×ν1,j and A2j,2j−2 ∈ Rν2,j×ν2,j are full row rank matrices for
j = 1, . . . , 
. The resulting upper triangular matrix Ê has a similar block partitioned
form

Ê =

⎡

⎢⎢⎢⎢
⎢
⎣

E11 E12 · · · E1,2
−1 E1,2


0 E22 · · · E2,2
−1 E2,2

...

...
. . .

...
...

0 0 · · · E2
−1,2
−1 E2
−1,2


0 0 · · · 0 E2
,2


⎤

⎥⎥⎥⎥
⎥
⎦

. (10.90)

The resulting block dimensions (ν1,j, ν2,j), j = 1, . . . , 
, satisfy

m1 = ν1,0 ≥ ν1,1 ≥ · · · ≥ ν1,
 ≥ 0

and
m2 = ν2,0 ≥ ν2,1 ≥ · · · ≥ ν2,
 ≥ 0

and represents the dimensions n1 := ∑

i=1 ν1,j and n2 := ∑


j=1 ν2,j of two subspaces,
which underlie the computation of appropriate minimal dynamic covers in the next
sections.

When implementing Procedure GSCSF, the row compressions at Step 3) are
usually performed using rank-revealing QR factorizations with column pivoting.
This computation can be done in two steps, first by compressing the r rows of B(j−1)

1

to a full row rankmatrix A2j−1,2j−3 using an orthogonal matrixW1 (i.e., asWT
1 B

(j−1)
1 ),

and then by compressing the trailing r − ν1,j rows of WT
1 B

(j−1)
2 to a full row rank

matrix A2j,2j−2 using a second orthogonal matrix W2. The overall transformation W
at Step 3) results asW = W1 diag(Iν1,j ,W2). Both reductions can be performed using
sequences of Givens rotations, which allow to simultaneously perform the column
transformations accumulated in U to maintain the upper triangular form of E(j−1).
This reduction technique is described in detail in [125]. Using this technique, the
numerical complexity of Procedure GSCSF isO(n3), provided all transformations
are immediately applied without accumulating explicitly W and U. The usage of
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the more robust rank determinations based on singular values decompositions would
increase the overall complexity toO(n4) due to the need to accumulate explicitlyW
and U. Regarding the numerical properties of Procedure GSCSF, it is possible to
show that the resulting system matrices Â, Ê, B̂, Ĉ are exact for slightly perturbed
original data A, E, B,C, whileQ and Z are nearly orthogonal matrices. It follows that
the Procedure GSCSF is numerically stable. In the standard case we have E = I ,
and therefore Q = Z and Ê = I .

Example 10.1 For 
 = 3, [ B̂ Â ] and Ê have similarly block partitioned forms

[
B̂ Â

] =

⎡

⎢⎢
⎢⎢
⎢
⎣

A1,−1 A1,0 A11 A12 A13 A14 A15 A16
0 A2,0 A21 A22 A23 A24 A25 A26
0 0 A31 A32 A33 A34 A35 A36
0 0 0 A42 A43 A44 A45 A46
0 0 0 0 A53 A54 A55 A56
0 0 0 0 0 A64 A65 A66

⎤

⎥⎥
⎥⎥
⎥
⎦

, Ê =

⎡

⎢
⎢⎢
⎣

E11 E12 · · · E16
0 E22 · · · E26
.
.
.

.

.

.
. . .

.

.

.

O O · · · E66

⎤

⎥
⎥⎥
⎦

.

♦

10.4.2 Order Reduction Using Minimum Dynamic
Covers of Type I

The computational problem which we address in this section is the following: given
a descriptor pair (A − λE,B) with A,E ∈ Rn×n and E invertible, B ∈ Rn×m, and
B partitioned as B = [B1 B2 ] with B1 ∈ Rn×m1 , B2 ∈ Rn×m2 , determine the matrix
F ∈ Rm2×n such that the pair (A + B2F − λE,B1) is maximally uncontrollable (i.e.,
A + B2F − λE has maximal number of uncontrollable eigenvalues).

This computation is useful to determine least-order solutions of linear rational
equations using state feedback techniques. Consider the compatible linear rational
system of equations G(λ)X(λ) = F(λ), where G(λ) and F(λ) are given and X(λ) is
sought. Assume X1(λ) and X2(λ) are two proper TFMs, which generate all solutions
of the rational system of equation G(λ)X(λ) = F(λ) in the form

X(λ) = X1(λ) + X2(λ)Y(λ), (10.91)

where X1(λ) is any particular solution satisfying G(λ)X1(λ) = F(λ), X2(λ) is a
proper rational basis of the right nullspace ofG(λ) (i.e.,G(λ)X2(λ) = 0), and Y(λ) is
arbitrary, having appropriate dimensions. Assume X1(λ) and X2(λ) have the descrip-
tor system realizations

[
X1(λ) X2(λ)

] =
[
A − λE B1 B2

C D1 D2

]
, (10.92)

with the descriptor pair (A − λE, [B1 B2 ]) controllable and E invertible. Let F be a
state feedback gain and define the TFMs
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[
X̃1(λ) X̃2(λ)

] :=
[
A + B2F − λE B1 B2

C + D2F D1 D2

]
. (10.93)

It is straightforward to check that

X̃1(λ) = X1(λ) + X2(λ)Y(λ), X̃2(λ) = X2(λ)Ỹ(λ), (10.94)

where Y(λ) and Ỹ(λ) have the descriptor system realizations

[
Y(λ) Ỹ(λ)

] =
[
A + B2F − λE B1 B2

F 0 I

]
. (10.95)

Therefore, X̃1(λ) and X̃2(λ) also generate all solutions, because X̃1(λ) is another
particular solution, while X̃2(λ) is another right nullspace basis, because Ỹ(λ) is
invertible. If F is determined such that the pair (A + B2F − λE,B1) is maximally
uncontrollable, then the resulting realization of X̃1(λ) contains amaximumnumber of
uncontrollable eigenvalues which can be eliminated using minimal realization tech-
niques. Thus, X̃1(λ) represents another particular solution with a reduced McMillan
degree.

Remark 10.9 The above approach achieves the maximum order reduction for X̃1(λ)

provided the descriptor system realization (A − λE,B2,C,D2) ismaximally observ-
able, i.e., the pair (A + B2F − λE,C + D2F) is observable for anyF [88]. If this con-
dition is not fulfilled, then the least -order can be achieved after a preliminary order
reduction, where a maximum number of unobservable eigenvalues are eliminated
using a suitable choice of F. If E = I and D2 = 0, a numerically stable algorithm
proposed in [116] to compute the maximal (A,B2)-invariant subspace contained in
the kernel of C can be employed for this purpose. If E is a general invertible matrix,
then the same algorithm can be applied to the triple (E−1A,E−1B2,C), provided E is
not too ill conditioned. The caseD2 �= 0 can be addressed using the extended system
technique suggested in [6, p. 240]. �

An important application of the above order reduction technique is to determine
least-order combinations of a left nullspace basis vectors, which satisfy additional
fault detectability conditions (see Sect. 7.5). In this case, we dealwith a homogeneous
equation Q(λ)G(λ) = 0 and find a suitable fault detection filter Q(λ) in the form

Q(λ) = HNl(λ) + Y(λ)Nl(λ), (10.96)

whereNl(λ) is a proper rational left nullspace basis ofG(λ) andH is a constantmatrix
(to be appropriately selected to fulfil the fault detectability condition). Assuming
Nl(λ) has the observable descriptor realization

Nl(λ) =
[
Al − λEl Bl

Cl Dl

]
,

http://dx.doi.org/10.1007/978-3-319-51559-5_7
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this leads to a dual problem to be solved in Sect. 7.5, which involves an observable
pair (Al − λEl, C̃l) with invertible El and with a C̃l matrix partitioned as

C̃l =
[
HCl

Cl

]
.

In this case, a matrix K is sought such that the pair (Al + KCl − λEl,HCl) is maxi-
mally unobservable. For this purpose, the algorithm described in this section can be
applied to the controllable pair (AT

l − λET
l , [HCT

l CT
l ]) to determine a suitable “state

feedback” KT , which cancels the maximum number of uncontrollable eigenvalues.
We denote A = E−1A, B1 = E−1B1, B2 = E−1B2, and also and B1 = span B1

and B2 = span B2. The problem to determine F which makes the pair (A + B2F −
λE,B1) maximally uncontrollable is equivalent [162] to compute a subspace V of
least possible dimension satisfying

(A + B2F)V ⊂ V, B1 ⊂ V. (10.97)

This subspace is the least-order (A,B2)-invariant subspace which contains B1 [162].
The above condition can be equivalently rewritten as a condition defining V as a Type
I minimum dynamic cover [40, 71]

AV ⊂ V + B2, B1 ⊂ V. (10.98)

In this section we describe a computational method for determining minimal
dynamic covers, which relies on the reduction of the descriptor system pair (A −
λE, [B1,B2]) to a particular condensed form, for which the solution of the problem
(i.e., the choice of appropriateF) is simple. This reduction is performed in two stages.
The first stage is the orthogonal reduction performed with the Procedure GSCSF
presented in Sect. 10.4.1. In the second stage, additional zero blocks are generated in
the reduced matrices using non-orthogonal transformations. With additional blocks
zeroed via a specially chosen state feedback F, the least-order (A,B2)-invariant
subspace containing B1 can be identified as the linear span of the leading columns
of the resulting right transformation matrix. In what follows we present in detail the
second reduction stage as well as the determination of F.

We assume that after performing the Procedure GSCSF, we obtained the orthog-
onal transformation matrices Q and Z , such that the transformed system triple

(̂A − λÊ, [ B̂1 B̂2 ], Ĉ) := (QTAZ − λQTEZ, [QTB1 Q
TB2 ],CZ) (10.99)

has the pair (̂A, B̂), with B̂ = [ B̂1 B̂2, ], in the staircase form (10.89) and the matrix Ê
in the block structured form (10.90). The dimensions of the first 2
 diagonal blocks of
Â and Ê are determined by the two sets of dimensions ν1,j and ν2,j for j = 1, . . . , 
, and
define the dimensions n1 := ∑


j=1 ν1,j and n2 := ∑

j=1 ν2,j. Additionally, partition

the columns of the resulting Ĉ in accordance with the column structure of Â in
(10.89)

Ĉ = [
C1 C2 · · · C2
−1 C2


]
. (10.100)

http://dx.doi.org/10.1007/978-3-319-51559-5_7
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In the second reduction stage we use non-orthogonal upper triangular left and
right transformation matrices W and U, respectively, to annihilate the minimum
number of blocks in Â and Ê which allows to solve the minimum cover problem.
Assume W and U have block structures identical to Ê. By exploiting the full rank
of submatrices A2k,2k−2 we can introduce zero blocks in the block row 2k of Â
by annihilating the blocks A2k,2j−1, for j = k, k + 1, . . . , 
. Similarly, by exploit-
ing the invertibility of E2j−1,2j−1, we can introduce zero blocks in the block row
2k − 2 of E by annihilating the blocks E2k−2,2j−1, for j = k, k + 1, . . . , 
 of Ê. This
computation is performed for k = 
, 
 − 1, . . . , 2. Let Ã := WÂU, Ẽ := WÊU,
[ B̃1 B̃2 ] := W [ B̂1 B̂2 ] = [ B̂1 B̂2 ], and C̃ = ĈU be the system matrices resulted
after this (non-orthogonal) reduction. Define also the feedback matrix F̃ ∈ Rm2×n

partitioned column-wise compatibly with Â

F̃ = [F1 0 F3 · · · 0 F2
−1 0 ] ,

where F2j−1 ∈ Rm2×ν1,j are such that A2,0F2j−1 + A2,2j−1 = 0 for j = 1, . . . , 
. With
this feedback we introduced 
 zero blocks in the second block row of Ã + B̃2F̃.
Finally, consider the permutation matrix defined by

P =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

Iν1,1 0 0 0 · · · 0 0
0 0 Iν1,2 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · Iν1,
 0
0 Iν2,1 0 0 · · · 0 0
0 0 0 Iν2,2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 Iν2,


⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

. (10.101)

If we define L = PWQT , V = ZUPT and F = F̃V−1, then overall we obtained
the reduced system (Ă − λĔ, [ B̆1 B̆2 ], C̆, [D1 D2 ]) defined with

Ă − λĔ := L(A + B2F − λE)V =
⎡

⎣
Ă11 − λĔ11 Ă12 − λĔ12

0 Ă22 − λĔ22

⎤

⎦ ,

[
B̆1 B̆2

] := L
[
B1 B2

] =
⎡

⎣
B̆11 B̆12

0 B̆22

⎤

⎦ ,

C̆ := (C + D2F)V = [
C̆1 C̆2

]
,

(10.102)

where, by construction, the pairs (Ă11 − λĔ11, B̆11) and (Ă22 − λĔ22, B̆22) are in
controllable staircase form. Thus, by the above choice of F, we made n2 of the n
eigenvalues of the pencil A + B2F − λE uncontrollable via B1. It is straightforward
to show that the matrix V1 formed from the the first n1 columns of V satisfies
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AV1 = V1Ĕ
−1
11 Ă11 − B2FV1, B1 = V1Ĕ

−1
11 B̆11 .

Thus, according to (10.98), V := span V1 is a dynamic cover of Type I of dimension
n1. It can be shown using the results of [71] that V has minimum dimension.

To illustrate the computational procedure, we consider the reduced system in
Example 10.1. First, the following zero blocks are introduced: A65, E45, A43, A45,
E23, E25 (in this order). The resulting Ã and Ẽ are

Ã =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

A31 A32 A33 A34 A35 A36

0 A42 0 A44 0 A46

0 0 A53 A54 A55 A56

0 0 0 A64 0 A66

⎤

⎥⎥⎥
⎥⎥⎥
⎦

, Ẽ =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

E11 E12 E13 E14 E15 E16

0 E22 0 E24 0 E26

0 0 E33 E34 E35 E36

0 0 0 E44 0 E46

0 0 0 0 E55 E56

0 0 0 0 0 E66

⎤

⎥⎥⎥
⎥⎥⎥
⎦

.

Additional blocks are zeroed using the feedback F̃ to obtain

Ã + B̃2F̃ =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

A11 A12 A13 A14 A15 A16

0 A22 0 A24 0 A26

A31 A32 A33 A34 A35 A36

0 A42 0 A44 0 A46

0 0 A53 A54 A55 A56

0 0 0 A64 0 A66

⎤

⎥⎥⎥⎥
⎥⎥
⎦

.

Finally, after block permutations, we obtained the controllable staircase forms

[
B̆11 Ă11−λĔ11

] =
⎡

⎣
A1,−1 A11−λE11 A13−λE13 A15−λE15

0 A31 A33−λE33 A35−λE35

0 0 A53 A55−λE55

⎤

⎦ ,

[
B̆22 Ă22−λĔ22

] =
⎡

⎣
A2,0 A22 − λE22 A24 − λE24 A26 − λE26

0 A42 A44 − λE44 A46 − λE46

0 0 A64 A66 − λE66

⎤

⎦ .

The above approach to compute a minimum dynamic cover of Type I is the
basis of Procedure GRMCOVER1, presented in what follows. This procedure
determines, for a pair of generators (X1(λ),X2(λ)) with the descriptor realizations
given in (10.92), explicit minimal realizations for X̃1(λ) and Y(λ) (see (10.93) and
(10.95)) in the form

X̃1(λ) =
[

λĔ11 − Ă11 B̆11

C̆1 D1

]

, Y(λ) =
[

λĔ11 − Ă11 B̆11

F̆1 0

]

,
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where F̃PT =: [
F̆1 F̆2

]
, with F̆1 having n1 columns.

ProcedureGRMCOVER1:Order reduction using dynamic covers of Type I
Inputs : X1(λ) = (A − λE,B1,C,D1) and X2(λ) = (A − λE,B2,C,D2)

Outputs: X̃1(λ) = (Ă11 − λĔ11, B̆11, C̆1,D1) and
Y(λ) = (Ă11 − λĔ11, B̆11, F̆1, 0) such that
X̃1(λ) = X1(λ) + X2(λ)Y(λ) has least McMillan degree.

1) Apply Procedure GSCSF to the system triple (A−λE, [B1 B2 ],C) to
determine the orthogonally similar system triple (̂A − λÊ, [ B̂1 B̂2 ], Ĉ)

defined in (10.99) and (10.100), and the dimensions ν1,j and ν2,j for j =
1, . . . , 
; set n1 := ∑


j=1 ν1,j.

2) With Â partitioned as in (10.89) and Ê partitioned as in (10.90), perform the
second stage of the special reduction for Type I covers:
Set W = I , U = I , and partition W and U in blocks analogous to Ê
in (10.90).

for k = 
, 
 − 1, . . . , 2
Comment. Annihilate blocks A2k,2j−1, for j = k, k + 1, . . . , 
.
for j = k, k + 1, . . . , 


Compute U2k−2,2j−1 such that A2k,2k−2U2k−2,2j−1 + A2k,2j−1 = 0.
Ai,2j−1 ← Ai,2j−1 + Ai,2k−2U2k−2,2j−1, i = 1, 2, . . . , 2k .
Ei,2j−1 ← Ei,2j−1 + Ei,2k−2U2k−2,2j−1, i = 1, 2, . . . , 2k − 2 .
C2j−1 ← C2j−1 + C2k−2U2k−2,2j−1 .
Ui,2j−1 ← Ui,2j−1 + Ui,2k−2U2k−2,2j−1, i = 1, 2, . . . , 2
 .

end
Comment. Annihilate blocks E2k−2,2j−1, for j = k, k + 1, . . . , 
.
for j = k, k + 1, . . . , 


Compute W2k−2,2j−1 such that W2k−2,2j−1E2j−1,2j−1+E2k−2,2j−1=0.
A2k−2,i ← A2k−2,i + W2k−2,2j−1A2j−1,i, i = 2j − 2, 2j − 1, . . . , 2
 .
E2k−2,i ← E2k−2,i + W2k−2,2j−1E2j−1,i, i = 2j, 2j + 1, . . . , 2
 .
W2k−2,i ← W2k−2,i + W2k−2,2j−1W2j−1,i, i = 1, 2, . . . , 2
 .

end

end

Denote Ã − λẼ := WÂU − λWÊU, [ B̃1 B̃2 ] := W [ B̂1 B̂2 ], C̃ := ĈU.

3) Compute F̃ = [F1 0 F3 · · · 0 F2
−1 0 ], where F2j−1 ∈ Rm2×ν
(j)
1 are such that

A2,0F2j−1 + A2,2j−1 = 0 for j = 1, . . . , 
.
4) With P defined in (10.101), compute Ă − λĔ = P(̃A + B̃2F̃ − λẼ)PT ,

B̆1 = PB̃1, C̆ = (C̃ + D2F̃)PT and F̆ = F̃PT .
5) Set X̃1(λ) = (

Ă(1 :n1, 1 :n1) − λĔ(1 :n1, 1 :n1), B̆1(1 :n1, :), C̆(:, 1 :n1),D1
)

and Y(λ) = (
Ă(1 :n1, 1 :n1) − λĔ(1 :n1, 1 :n1), B̆1(1 :n1, :), F̆(:, 1 :n1), 0

)
.
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As stated in Sect. 10.4.1, the reduction of system matrices to the special control-
lability form at Step 1) can be performed using exclusively orthogonal similarity
transformations. It can be shown that the computed condensed matrices Â, Ê, B̂1, B̂2

and Ĉ are exact for matrices which are nearby to the original matrices A, E, B1, B2

and C respectively. Thus this part of the reduction is numerically backward stable.
The computations performed at Step 2), representing the second stage of the

special reduction and the computation of the feedback matrix F̃ at Step 3) involve
the solution of many, generally overdetermined, linear equations. Therefore, these
steps are generally not numerically stable. In spite of this, the numerical reliability
of the overall computations can be guaranteed, as long as W and U, the block upper
triangular transformation matrices employed at Step 2), have no excessively large
condition numbers. The condition numbers can be approximated as κ(L) ≈ ‖W‖2F
and κ(V ) ≈ ‖U‖2F . It follows that if these norms are relatively small (e.g., ≤10,000)
then practically there is no danger for a significant loss of accuracy due to performing
non-orthogonal reductions. On contrary, large values of these norms provide a clear
hint of potential accuracy losses. In practice, it suffices only to look at the largest
magnitudes of the generated elements of W and U at Step 2) to obtain equivalent
information. For the computation of F̃, condition numbers for solving the underlying
equations can be also easily estimated. However, a large norm of F̃ is an indication
of possible accuracy losses. For Step 2) of the reduction, a simple operation count
is possible by assuming all blocks are 1 × 1, and this indicates a computational
complexity of O(n3). Thus, the overall computational complexity of Procedure
GRMCOVER1 is also O(n3).

10.4.3 Order Reduction Using Minimum Dynamic
Covers of Type II

The computational problem which we address in this section is the following: given
the descriptor systempair (A − λE,B)withA,E ∈ Rn×n andE invertible,B ∈ Rn×m,
and B partitioned as B = [B1 B2 ] with B1 ∈ Rn×m1 , B2 ∈ Rn×m2 , determine the
matricesF andG such that the pair (A + B2F − λE,B1 + B2G) hasmaximal number
of uncontrollable eigenvalues.

This computation is useful to determine least-order solutions of linear rational
equations using state feedback and feedforward techniques. For the compatible lin-
ear rational system of equations G(λ)X(λ) = F(λ), considered also in Sect. 10.4.2,
assume there exists a particular solution X1(λ) which is proper. Then, the general
solution can be expressed as in (10.91), where X2(λ) is a proper rational basis of the
right nullspace of G(λ). The proper TFMs X1(λ) and X2(λ) thus generate all solu-
tions ofG(λ)X(λ) = F(λ). AssumeX1(λ) andX2(λ) have the controllable descriptor
realizations in (10.92) with invertible E. Let F be a state feedback gain and let G be
a feedforward gain. Then, the TFMs defined as

[
X̃1(λ) X̃2(λ)

] :=
[
A + B2F − λE B1 + B2G B2

C + D2F D1 + D2G D2

]
(10.103)
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generate also all solutions. It is straightforward to check that

X̃1(λ) = X1(λ) + X2(λ)Y(λ), X̃2(λ) = X2(λ)Ỹ(λ) , (10.104)

where Y(λ) and Ỹ(λ) have the descriptor system realizations

[
Y(λ) Ỹ(λ)

] =
[
A + B2F − λE B1 + B2G B2

F G I

]
. (10.105)

It follows that X̃1(λ) is another particular solution, while X̃2(λ) is another right
nullspace basis, because Ỹ(λ) is invertible. If the gains F and G are determined such
that the pair (A + B2F − λE,B1 + B2G) ismaximally uncontrollable, then the result-
ing realizations of X̃1(λ) and Y(λ) contain a maximum number of uncontrollable
eigenvalues which can be eliminated using minimal realization techniques. Thus,
X̃1(λ) represents another particular solution with a reduced McMillan degree. An
important application of the above order reduction technique addressed in Sect. 7.9
is to determine a least-order solution of the EMMP by solving a dual linear rational
equation G(λ) = X(λ)H(λ) using the techniques presented in Sect. 10.3.7.

The problem to determine thematricesF andG, whichmake the descriptor system
pair (A + B2F − λE,B1 + B2G)maximally uncontrollable, is essentially equivalent
[88] to compute a subspace V having least possible dimension and satisfying

(A + B2F)V ⊂ V, span (B1 + B2G) ⊂ V , (10.106)

where A = E−1A, B1 = E−1B1, and B2 = E−1B2. If we denote B1 = span B1 and
B2 = span B2, then the above condition can be equivalently rewritten also as a con-
dition defining a Type II minimum dynamic cover [40, 71] of the form

AV ⊂ V + B2, B1 ⊂ V + B2. (10.107)

The computation of the minimal dynamic covers of Type II can be done in two
stages using a similar technique as for the Type I covers presented in Sect. 10.4.2.
The first stage is identical to the reduction performed for covers of Type I and is
performed using Procedure GSCSF. Two orthogonal transformation matrices Q
and Z are determined, such that the transformed system triple

(̂A − λÊ, [ B̂2 B̂1 ], Ĉ) := (QTAZ − λQTEZ, [QTB2 Q
TB1 ],CZ) (10.108)

has the pair (̂A, B̂), with B̂ = [ B̂2 B̂1, ], in the staircase form (10.89) and the matrix Ê
in the block structured form (10.90). The dimensions of the first 2
 diagonal blocks of
Â and Ê are determined by the two sets of dimensions ν1,j and ν2,j for j = 1, . . . , 
, and
define the dimensions n1 := ∑


j=1 ν1,j and n2 := ∑

j=1 ν2,j. Additionally, partition

the columns of the resulting Ĉ in accordance with the column structure of Â in
(10.89)

Ĉ = [
C1 C2 · · · C2
−1 C2


]
. (10.109)

http://dx.doi.org/10.1007/978-3-319-51559-5_7
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In the second reduction stage we use non-orthogonal upper triangular left and
right transformation matrices W and U, respectively, to annihilate the minimum
number of blocks in Â and Ê which allows to solve the minimum cover problem.
AssumeW andU have block structures identical to Ê. By exploiting the invertibility
of the diagonal blocks E2j,2j, we can introduce zero blocks in the block row 2k − 1
of E by annihilating the blocks E2k−1,2j, for j = k, k + 1, . . . , 
 of Ê. Similarly, by
exploiting the full rank of submatrices A2k−1,2k−3, we can introduce zero blocks in
the block row 2k − 1 of Â by annihilating the blocks A2k−1,2j, for j = k − 1, k, . . . , 
.
Let Ã := WÂU, Ẽ := WÊU, [ B̃2 B̃1 ] := W [ B̂2 B̂1 ] = [ B̂2 B̂1 ] and C̃ = ĈU be the
system matrices resulted after this (non-orthogonal) reduction.

Choose the feedforward matrixG ∈ Rm2×m1 such that A1,−1G + A1,0 = 0 and the
feedback matrix F̃ ∈ Rm2×n partitioned column-wise compatibly with Ê as

F̃ = [ 0 F2 · · · F2
−2 0 F2
 0 ] ,

where F2j are such that A1,−1F2j + A1,2j = 0 for j = 1, . . . , 
. With the permutation
matrix

P =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

0 Iν2,1 0 0 · · · 0 0
0 0 0 Iν2,2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 Iν2,

Iν1,1 0 0 0 · · · 0 0
0 0 Iν1,2 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · Iν1,
 0

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

, (10.110)

we define L = PWQT , V = ZUPT and F = F̃V−1. Overall we obtain the reduced
system (Ă − λĔ, [ B̆2 B̆1 ], C̆, [ D̆2 D̆1 ]) defined with

Ă − λĔ := L(A + B2F − λE)V =
[
Ă11 − λĔ11 Ă12 − λĔ12

0 Ă22 − λĔ22

]

,

[
B̆2 B̆1

] := L
[
B2 B1 + B2G

] =
[

0 B̆12

B̆21 0

]

,

C̆ := (C + D2F)V = [
C̆1 C̆2

]
,

[
D̆2 D̆1

] := [
D2 D1 + D2G

]
,

(10.111)

where, by construction, the pairs (Ă11 − λĔ11, B̆12) and (Ă22 − λĔ22, B̆21) are in
controllable staircase form. Thus, by the above choice of F and G, we made n1
of eigenvalues of the pair (A + B2F − λE,B1 + B2G) uncontrollable. The first n2
columns V1 of V, satisfy

AV1 = V1Ĕ
−1
11 Ă11 − B2FV1, B2G = V1Ĕ

−1
11 B̆12 − B1
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and thus, according to (10.107), span a Type II dynamic cover of dimension n2 for
the pair (A, [B1 B2 ]). It can be shown using the results of [71] that the resulting Type
II dynamic cover V has minimum dimension.

To illustrate the computational procedure, we consider the reduced system in
Example 10.1. First, the following zero blocks are introduced: E56, A54, A56, E34,
E36, A3,2, A34, A36, E12, E14 and E16 (in this order). We obtain

[
B̃2 B̃1 Ã

] =

⎡

⎢⎢⎢⎢⎢⎢
⎣

A1,−1 A1,0 A11 A12 A13 A14 A15 A16

0 A2,0 A2,1 A22 A2,3 A24 A2,5 A26

0 0 A31 0 A33 0 A35 0
0 0 0 A42 A43 A44 A45 A46

0 0 0 0 A53 0 A55 0
0 0 0 0 0 A64 A65 A66

⎤

⎥⎥⎥⎥⎥⎥
⎦

,

Ẽ =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

E11 0 E13 0 E15 0
0 E22 E23 E24 E25 E26

0 0 E33 0 E35 0
0 0 0 E44 E45 E46

0 0 0 0 E55 0
0 0 0 0 0 E66

⎤

⎥⎥⎥⎥
⎥⎥
⎦

.

Additional blocks are zeroed using the feedback F̃ and feedforward gain G to obtain

[
B̃2 B̃1 + B̃2G Ã + B̃2F̃

] =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

A1,−1 0 A11 0 A13 0 A15 0
0 A2,0 A2,1 A22 A2,3 A24 A2,5 A26

0 0 A31 0 A33 0 A35 0
0 0 0 A42 A43 A44 A45 A46

0 0 0 0 A53 0 A55 0
0 0 0 0 0 A64 A65 A66

⎤

⎥⎥⎥⎥⎥
⎥
⎦

.

Finally, after block permutations, we obtained the controllable staircase forms

[
B̆1 Ă1 − λĔ1

] =
⎡

⎣
A2,0 A2,2 − λE2,2 A2,4 − λE2,4 A2,6 − λE2,6

0 A4,2 A4,4 − λE4,4 A4,6 − λE4,6

0 0 A6,4 A6,6 − λE6,6

⎤

⎦ ,

[
B̆2 Ă2 − λĔ2

] =
⎡

⎣
A1,−1 A1,1 − λE1,1 A1,3 − λE1,3 A1,5 − λE1,5

0 A3,1 A3,3 − λE3,3 A3,5 − λE3,5

0 0 A5,3 A5,5 − λE5,5

⎤

⎦ .

The above approach to compute a minimum dynamic cover of Type II is the
basis of Procedure GRMCOVER2, presented in what follows. This procedure
determines, for a pair of generators (X1(λ),X2(λ)) with the descriptor realizations
given in (10.92), explicit minimal realizations for X̃1(λ) and Y(λ) (see (10.103)
and (10.105)) in the form X̃1(λ) = (Ă11 − λĔ11, B̆12, C̆1, D̆1) and Y(λ) = (Ă11 −
λĔ11, B̆12, F̆1,G), where F̃PT =: [

F̆1 F̆2

]
, with F̆1 having n2 columns.
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Procedure GRMCOVER2: Order reduction using dynamic covers
of Type II
Inputs : X1(λ) = (A − λE,B1,C,D1) and X2(λ) = (A − λE,B2,C,D2)

Outputs: X̃1(λ) = (Ă11 − λĔ11, B̆12, C̆1, D̆1) and Y(λ) = (Ă11 − λĔ11, B̆12, F̆1,G) such that
X̃1(λ) = X1(λ) + X2(λ)Y(λ) has least McMillan degree.

1) Apply Procedure GSCSF to the system triple (A−λE, [B2 B1 ],C) to determine the
orthogonally similar system triple (̂A − λÊ, [ B̂2 B̂1 ], Ĉ) defined in (10.108) and
(10.109), and the dimensions ν1,j and ν2,j for j = 1, . . . , 
; set n2 := ∑


j=1 ν2,j .

2) With Â partitioned as in (10.89) and Ê partitioned as in (10.90), perform the second stage
of the special reduction for Type II covers:

Set W = In, U = In and partition W and U in blocks analogous to Ê in (10.90).

for k = 
, 
 − 1, . . . , 1
Comment. Annihilate blocks E2k−1,2j , for j = k, k + 1, . . . , 
.
for j = k, k + 1, . . . , 


Compute W2k−1,2j such that W2k−1,2jE2j,2j + E2k−1,2j = 0.
A2k−1,i ← A2k−1,i + W2k−1,2jA2j,i, i = 2j − 2, 2j − 1, . . . , 2
 .
E2k−1,i ← E2k−1,i + W2k−1,2jE2j,i, i = 2j, 2j + 1, . . . , 2
 .
W2k−1,i ← W2k−1,i + W2k−1,2jW2j,i, i = 1, 2, . . . , 2
 .

end
if k > 1 then

Comment. Annihilate blocks A2k−1,2j , for j = k − 1, k, . . . , 
.
for j = k − 1, k, . . . , 


Compute U2k−3,2j such that A2k−1,2k−3U2k−3,2j + A2k−1,2j = 0.
Ai,2j ← Ai,2j + Ai,2k−3U2k−3,2j , i = 1, 2, . . . , 2k − 1 .
Ei,2j ← Ei,2j + Ei,2k−3U2k−3,2j , i = 1, 2, . . . , 2k − 3 .
C2j ← C2j + C2k−3U2k−3,2j .
Ui,2j ← Ui,2j + Ui,2k−3U2k−3,2j , i = 1, 2, . . . , 2
 .

end
end if

end

Denote Ã − λẼ = WÂU − λWÊU, [ B̃2 B̃1 ] = W [ B̂2 B̂1 ], C̃ = ĈU.
3) Compute F̃ = [ 0 F2 · · · F2
−2 0 F2
 0 ], where F2j are such that A1,−1F2j +

A1,2j = 0 for j = 1, . . . , 
; compute G such that A1,−1G + A1,0 = 0.
4) With P in (10.110), compute Ă−λĔ=P(̃A+B̃2F̃−λẼ)PT , B̆1=P(̃B1+B̃2G),

C̆ = (C̃ + D2F̃)PT , D̆1 = D1 + D2G and F̆ = F̃PT .
5) Set X̃1(λ) = (

Ă(1 :n2, 1 :n2) − λĔ(1 :n2, 1 :n2), B̆1(1 :n2, :), C̆(:, 1 :n2), D̆1
)

and Y(λ) = (
Ă(1 :n2, 1 :n2) − λĔ(1 :n2, 1 :n2), B̆1(1 :n2, :), F̆(:, 1 :n2),G

)
.

The numerical properties of Procedure GRMCOVER2 are the same as those of
Procedure GRMCOVER1, which are discussed in Sect. 10.4.2.
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10.4.4 Minimal Realization Using Balancing Techniques

The aim of the algorithm presented in this section is to determine minimal order
realizations of stable systems in a descriptor state-space form, by exploiting the
concept of balanced realization. For a balanced realization, the controllability and
observability properties are perfectly equilibrated. This is expressed by the fact that
the controllability and observability gramians are equal and diagonal. The eigenval-
ues of the gramian of a balanced system are called the Hankel singular values. The
largest singular value represents the Hankel norm of the corresponding TFM of the
system, while the smallest one can be interpreted as a measure of the nearness of
the system to a non-minimal one. Important applications of balanced realizations
are to ensure minimum sensitivity to roundoff errors of real-time filter models or
to perform model order reduction, by reducing large order models to lower order
approximations. The order reduction can be performed by simply truncating the sys-
tem state to a part corresponding to the “large” singular values, which significantly
exceed the rest of “small” singular values. In what follows we present a procedure
to compute minimal balanced realizations of stable descriptor systems. This proce-
dure is instrumental in solving the Nehari approximation problem (see Procedure
GNEHARI in Sect. 10.4.5).

For a stable state-space system (A − λE,B,C,D) with E invertible, the con-
trollability gramian P and observability gramian Q satisfy appropriate generalized
Lyapunov equations. In the continuous-time case P and Q satisfy

APET + EPAT + BBT = 0 ,

ATQE + ETQA + CTC = 0 ,
(10.112)

while in the discrete-time case

APAT − EPET + BBT = 0 ,

ATQA − ETQE + CTC = 0 .
(10.113)

Since for a stable system both gramians P and Q are positive semi-definite matri-
ces, in many applications it is advantageous to determine these matrices directly
in (Cholesky) factored forms as P = SST and Q = RTR, where both S and R can
be chosen upper triangular matrices. Algorithms to compute directly these factors
have been proposed in [59] for standard systems (i.e., with E = I) and extended to
descriptor systems in [102]. The following minimal realization procedure proposed
in [113] extends to descriptor systems the algorithms proposed in [114] for standard
systems. This procedure determines for a stable system (A − λE,B,C,D) the mini-
mal balanced realization (̃A − λI, B̃, C̃,D) and the corresponding balanced diagonal
gramian matrix Σ̃ . The nonzero Hankel singular values are the decreasingly ordered
diagonal elements of Σ̃ and the largest Hankel singular value is ‖G(λ)‖H , the Hankel
norm of the corresponding TFM G(λ) = C(λE − A)−1B + D.
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Procedure GBALMR: Balanced minimal realization of stable systems
Input : (A − λE,B,C,D) such that Λ(A,E) ⊂ Cs
Outputs: Minimal realization (̃A, B̃, C̃,D), Σ̃

1) Compute the upper triangular factors S and R such that P = SST and Q = RTR satisfy
the appropriate Lyapunov equations (10.112) or (10.113), in accordance with the system
type, continuous- or discrete-time.

2) Compute the singular value decomposition

RES = [
U1 U2

]
[

Σ̃ 0
0 0

] [
VT
1

VT
2

]
,

where Σ̃ > 0.
3) With the projection matrices Tl = Σ̃−1/2UT

1 R and Tr = SV1Σ̃−1/2, compute the
matrices of the minimal realization (̃A, B̃, C̃,D) with

Ã = TlATr, B̃ = TlB, C̃ = CTr .

Remark 10.10 The projection matrices satisfy TlETr = I and for a minimal stan-
dard system (A,B,C,D) we have Tl = T−1

r . The reduction of a linear state-space
model to a balanced minimal realization may involve the usage of ill-conditioned
transformations (or projections) for systems which are nearly non-minimal or nearly
unstable. This is why, for the computation of minimal realizations, the so-called
balancing-free approaches, as proposed in [126] for standard systems and in [113]
for descriptor systems, are generally more accurate. In this case, we can avoid
any inversion using at Step 3) the projection matrices Tl = UT

1 R and Tr = SV1

to obtain the descriptor minimal realization (̃A − λẼ, B̃, C̃,D) with the invertible
Ẽ = TlETr . �

10.4.5 Solution of Nehari Problems

In this section we consider the solution of the following optimal Nehari problem:
Given R(λ) such that R∼(λ) ∈ H∞, find a Y(λ) ∈ H∞ which is the closest to R(λ)

and satisfies
‖R(λ) − Y(λ)‖∞ = ‖R∼(λ)‖H . (10.114)

This computation is encountered in the solution of the AMMP formulated in
Sect. 9.1.10. As shown in [51], to solve the Nehari problem (10.114), we can solve
instead for Y∼(λ) the optimal zeroth-order Hankel-norm approximation problem

‖R∼(λ) − Y∼(λ)‖∞ = ‖R∼(λ)‖H . (10.115)

In what follows, we only give a solution procedure for the solution of (10.114) in the
continuous-time setting. The corresponding procedure for discrete-time systems is

http://dx.doi.org/10.1007/978-3-319-51559-5_9
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muchmore involved (see [58]) and thereforeweprefer the approachbasedon employ-
ing a bilinear transformation as suggested in [51]. To solve the continuous-time
Nehari problem (10.114), we solve the optimal zeroth-order Hankel-norm approxi-
mation problem to determine Y(−s) such that

‖R(−s) − Y(−s)‖∞ = ‖R∼(s) − Y∼(s)‖∞ = ‖R∼(s)‖H . (10.116)

The following procedure is a straightforward adaptation of the general Hankel-
norm approximation procedure proposed in [51] and [108] for square R(λ)with poles
only inCu. Assuming (A − λE,B,C,D) is a state-space realization ofR(λ) (not nec-
essarily minimal), this procedure computes the optimal stable Nehari approximation
Y(λ) = (̃A − λẼ, B̃, C̃, D̃).

Procedure GNEHARI: Generalized optimal Nehari approximation
Input : R(λ) = (A − λE,B,C,D)

Output: Y(λ) = (̃A − λẼ, B̃, C̃, D̃) such that ‖R(λ) − Y(λ)‖∞ = ‖R∼(λ)‖H .
1) For a discrete-time system employ the bilinear transformation z = 1+s

1−s :

(E,A,B,C,D) ← (E + A,A − E,
√
2B,

√
2C(E + A)−1E,D − C(E + A)−1B) .

2) Compute using the Procedure GBALMR the balanced minimal realization
(̂A, B̂, Ĉ,D) of the system (−A − sE,−B,C,D) and the corresponding
diagonal Gramian Σ̂ of the balanced system satisfying ÂΣ̂ + Σ̂ÂT +
B̂B̂T = 0 and ÂT Σ̂ + Σ̂Â + ĈT Ĉ = 0.

3) Partition Σ̂ in the form Σ̂ = diag(σ1I, Σ̂2), such that Σ̂2 − σ1I < 0 and
partition Â, B̂ and Ĉ conformably with Σ̂ , as

Â =
[
Â11 Â12

Â21 Â22

]
, B̂ =

[
B̂1

B̂2

]
, Ĉ = [

Ĉ1 Ĉ2
] ;

compute an orthogonal U such that UB̂T
1 = −Ĉ1.

4) Compute the descriptor system realization (̃A − λẼ, B̃, C̃, D̃) of Y(s) as

Ẽ = Σ̂2
2 − σ 2

1 I ,

Ã = −(σ 2
1 Â22 + Σ̂2Â22Σ̂2 − σ1ĈT

2 UB̂T
2 ) ,

B̃ = −(Σ2B̂2 + σ1ĈT
2 U) ,

C̃ = Ĉ2Σ2 + σ1UB̂T
2 ,

D̃ = D − σ1U .

5) For a discrete-time system employ the bilinear transformation s = z−1
z+1 :

(Ẽ, Ã, B̃, C̃, D̃)←(Ẽ − Ã, Ã + Ẽ,
√
2B̃,

√
2C̃(Ẽ − Ã)−1Ẽ, D̃ + C̃(Ẽ − Ã)−1B̃) .
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Remark 10.11 If R(λ) is not square, then the Procedure GNEHARI can be applied
to an augmented square Ra(λ) formed by adding a sufficient number of zero rows or
columns to R(λ). From the resulting solution Ya(λ) we obtain the solution Y(λ) of
the original Nehari problem by removing the rows or columns corresponding to the
added zero rows or columns in Ra(λ). �

10.5 Numerical Software

Several basic requirements are desirable when implementing software tools for the
numerical algorithms discussed in this book. These requirements are

• employing exclusively numerically stable or numerically reliable algorithms;
• ensuring high computational efficiency;
• enforcing robustness against numerical exceptions (overflows, underflows) and
poorly scaled data;

• ensuring ease-of-use, high portability and high reusability.

The above requirements have been used for the development of high-performance
linear algebra software libraries, such as BLAS, a collection of basic linear algebra
subroutines and LAPACK, a comprehensive linear algebra package based on BLAS.
These requirements have been also adopted to implement SLICOT, a subroutine
library for control theory, based primarily on BLAS and LAPACK. The general-
purpose library LAPACK contains over 1300 subroutines and covers most of the
basic linear algebra computations for solving systems of linear equations and eigen-
value problems. The specialized library SLICOT1 contains over 500 subroutines and
covers the basic computational problems for the analysis and design of linear con-
trol systems. Among the covered problems we mention linear system analysis and
synthesis, filtering, identification, solution of matrix equations, model reduction and
system transformations. Of special interest for this book is the comprehensive col-
lection of routines for handling descriptor systems and for solving generalized linear
matrix equations, as well as the routines for computing Kronecker-like forms. The
subroutine librariesBLAS,LAPACKandSLICOThave been originally implemented
in the general-purpose language Fortran 77 and, therefore, provide a high level of
reusability, which allows their easy incorporation in user-friendly software envi-
ronments as—for example, MATLAB. In the case of MATLAB, selected LAPACK
routines underlie the linear algebra functionalities,while the incorporation of selected
SLICOT routines was possible via suitable gateways, as the provided mex-function
interface.

In what follows, we succinctly describe available software tools in the MATLAB
environment, which implement the numerically reliable algorithms discussed in this

1The SLICOT software library is freely available from http://www.slicot.org/. The version 4.5 is
a free software distributed under the GNU General Public Licence (GPL), while the substantially
enriched Release 5.0 is free for academic and non-commercial use.

http://www.slicot.org/
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Table 10.1 SLICOT-based mex-functions

Function Description

sl_gstra Generalized system similarity transformations

sl_klf Kronecker-like forms

sl_glme Generalized linear matrix equations

sl_gzero Generalized system zeros and Kronecker structure

sl_gminr Generalized minimal realization

sl_gsep Generalized additive decompositions

book. First, we have to mention that the basic computational needs to implement
the synthesis procedures presented in Chaps. 5 and 6 are covered by the functions
of the Descriptor Systems Toolbox2 for MATLAB. This toolbox is a proprietary
software, developed by the author in the period 1997–2006 at the German Aerospace
Center (DLR). TheDescriptor Systems Toolbox underlies the implementation of
the Fault Detection Toolbox, developed by the author between 2005–2011 at
DLR.3

To facilitate the implementation of the synthesis procedures described in this book,
a new collection of freely available m-functions, called the Descriptor System
Tools, has been implemented by the author. The basic numerical linear algebra
support for the implementation of this collection is provided by several LAPACK-
based core functions of MATLAB, such as svd, qr, schur, ordschur, qz,
ordqz, jointly with a set of mex-functions based on SLICOT subroutines. These
mex-functions are listed in Table10.1 and implement numerically reliable algorithms
with special focus on descriptor system-related computations. These algorithms are
described in this chapter and also underlie the implementations of the m-functions,
which form the collection of Descriptor System Tools. The functions of this
collection, which are used in this book, are listed in Table10.2.

The functions implemented in the collectionDescriptor System Tools use the
object-oriented approach provided by the Control Toolbox of MATLAB to handle
LTI systems in descriptor system representation. Among the called computational
functions, we mention care and dare for solving generalized continuous-time and
discrete-time algebraic Riccati equations, respectively; norm for computing system
norms; minreal to enforce pole–zero cancellations in TFMs; as well as functions
for systems coupling, inversion, conjugation, etc.

Several of implemented high-level descriptor systemsm-functions can be seen as
extensions of similar functions provided in the standard Control System Toolbox
of MATLAB. These are gpole, to compute system poles; gzero, to compute
system zeros; gir, to compute irreducible realizations; and gminreal, to compute
minimal realizations. The functionality of these functions is however richer than that
of their counterparts from the Control System Toolbox, such as pole, zero, or

2Software distributed by SYNOPTIO GmbH, http://synmath.synoptio.de/en/.
3This proprietary software is not distributed outside of DLR.

http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_6
http://synmath.synoptio.de/en/
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Table 10.2 Functions of the Descriptor System Tools collection used in this book

Function Description

gpole System poles and infinite pole structure

gzero System zeros and Kronecker structure of system pencil

gir Generalized irreducible realization

gss2ss Conversion to standard state-space representation

gminreal Generalized minimal realization

gsorsf Specially ordered generalized real Schur form

gklf Generalized Kronecker-like form

glnull Minimal rational left nullspace basis

gsdec Generalized additive spectral decomposition

glcf Generalized left coprime factorization

grcf Generalized right coprime factorization

glcfid Generalized left coprime factorization with inner denominator

grcfid Generalized right coprime factorization with inner denominator

giofac Generalized inner–outer factorization

goifac Generalized co-outer–co-inner factorization

glsol Solution of the linear rational equation X(λ)G(λ) = F(λ)

grsol Solution of the linear rational equation G(λ)X(λ) = F(λ)

glmcover1 Left minimum dynamic cover of Type-1 based order reduction of proper systems

grmcover1 Right minimum dynamic cover of Type-1 based order reduction of proper systems

glmcover2 Left minimum dynamic cover of Type-2 based order reduction of proper systems

grmcover2 Right minimum dynamic cover of Type-2 based order reduction of proper systems

gbalmr Balanced minimal realization of stable generalized systems

ghanorm Hankel norm of a proper and stable generalized system

gnehari Generalized optimal Nehari approximation

glsfg Generalized left spectral factorization of γ 2I − G(λ)G∼(λ)

glinfldp Solution of the L∞ least distance problem min ‖F1(λ) − X(λ) F2(λ) ‖∞
gsfstab Generalized state feedback stabilization

minreal. For example,gpole computes both the finite and infinite poles (counting
multiplicities), while pole only computes the finite poles. The function gzero
computes both the finite and infinite zeros (counting multiplicities) as well as the
Kronecker structural invariants of the system pencil, while zero only computes the
finite zeros. Finally, the functions gir and gminreal are applicable to a descriptor
system model (A − λE,B,C,D) regardless E is singular or nonsingular. In contrast,
the function minreal can be used only for systems with invertible E (because of
the need to explicitly invert E).

Several functions implementing some of the analysis and synthesis procedures
presented in Chap.5 are provided as examples of prototype implementations of ded-
icated FDI-related software. The three functions listed in Table10.3 are part of a

http://dx.doi.org/10.1007/978-3-319-51559-5_5
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Table 10.3 Functions in the FDI Tools collection

Function Description

genspec Generation of achievable fault detection specifications

efdsyn Exact synthesis of fault detection filters

efdisyn Exact synthesis of fault detection and isolation filters

collection called FDI Tools (under development) and have been used in solving
the case-study examples addressed in Chap. 8.

The collectionsDescriptor System Tools and FDI Tools, together with the
m-files of the synthesis examples presented in the Chaps. 5 and 6 of this book are
available from the web address below.4

10.6 Notes and References

Section 10.1. The numerical linear algebra aspects related to the SVD, QR decom-
position, the real Schur and generalized real Schur decompositions are covered in
several textbooks, of which we mention the works of Stewart [112] and of Golub
and Van Loan [55]. The latter work, which also contains an up to date list of further
references, served for the estimation of the computational efforts in terms of the
required number of flops for the basic decompositions considered in Sect. 10.1. The
book [60] is a modern reference for roundoff error analysis of floating-point com-
putations. The computation of the controllability and observability staircase forms
for standard and descriptor systems using orthogonal similarity transformations is
addressed in [116]. The detailed algorithm underlying Procedure GCSF has been
proposed by the author in [125]. Algorithms for the computation of Kronecker-like
forms of linear pencils, using SVD-based rank determinations, and SVD-based row
and column compressions, have been proposed in [25, 115]. Albeit numerically
reliable, these algorithms have a computational complexity O(n4), where n is the
minimum of row or column dimensions of the pencil. More efficient algorithms
of complexity O(n3) have been proposed in [9, 95, 128], which rely on using QR
decompositions with column pivoting for rank determinations, and row and column
compressions. The Procedure PREDUCE is based on the method proposed in [95].

Section 10.2. For a complete coverage of the topic of this section see [110]. The
algorithms for the solution of linear matrix equations can be seen as extensions
of the Bartels–Stewart method proposed for the solution of the Sylvester equation
AX + BX = C in [5]. This algorithm employs the reduction ofA andB to RSFs and is
considered a numerically reliable method. Further enhancements of this method and
extensions to generalized Sylvester equations have been proposed in [54], where one
of matrices (that with larger size) is reduced to a Hessenberg form, while the other

4https://sites.google.com/site/andreasvargacontact/home/book/matlab.

http://dx.doi.org/10.1007/978-3-319-51559-5_8
http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_6
https://sites.google.com/site/andreasvargacontact/home/book/matlab
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is reduced to the RSF. Detailed algorithms for the solution of generalized Sylvester
matrix equation are described in [47]. Similar algorithmswith obvious simplifications
can be employed to solve standard and generalized Lyapunov equations. An impor-
tant algorithm for the solution of Lyapunov equations having positive semi-definite
solutions has been proposed in [59], where the solution X ≥ 0 is directly determined
in aCholesky-factored formX = SST . The extension of this algorithm to solve gener-
alized Lyapunov equations has been proposed in [102]. The first numerically reliable
algorithm to solve standard Riccati equations is the Schur method proposed in [74].
Enhancements of this method to cover discrete-time problems with singular state
matrix followed in [100] and to address nearly singular problems in [85, 117]. In
all these methods, however, the underlying Hamiltonian or symplectic structure of
intervening matrix pencils is not exploited. Therefore, a new direction in develop-
ing algorithms for solving GCAREs and GDAREs are the structure exploiting and
structure preserving methods to compute eigendecompositions of the Hamiltonian
and symplectic pencils (see the book [85] and the recent survey [11]).

Section 10.3. The reliable numerical computation of irreducible realizations of
descriptor systems has been considered in [116]. The orthogonal reduction-based
algorithm to compute generalized controllability staircase forms, which underlies
Procedure GIR, has been proposed in [125]. The algorithm to compute a ratio-
nal nullspace basis of a rational matrix has been proposed in [132] and is related
to the approach proposed in [8] to compute polynomial basis using pencil reduc-
tion techniques. For the computation of system zeros, an algorithm based on the
Kronecker-like form has been proposed in [86]. The approach for the computation
of the additive spectral decomposition employed in Procedure GSDEC has been
proposed in [67]. The iterative pole dislocation techniques underlying the Procedure
GRCF and Procedure GRCFID have been developed in the spirit of the approach
described in [118] (see also [129]). Alternative, non-iterative approaches to com-
pute coprime factorizations with inner denominators have been proposed in [94, 96].
The methods presented in Sect. 10.3.6 to compute inner–outer factorizations of full
column rank rational matrices are particular versions of the general methods for
continuous-time systems proposed in [97] and for discrete-time systems proposed
in [94]. The formulas for the complementary inner factors have been derived in
[164]. The numerically reliable computational approach for solving linear rational
equations, presented in Sect. 10.3.7, has been proposed in [134].

Section 10.4. The algorithm underlying Procedure GSCSF to compute the spe-
cial controllability staircase form, employed in the methods to determine minimum
dynamic covers, is a particular instance of the descriptor controllability staircase algo-
rithm of [125]. This algorithm and the computational methods of minimal dynamic
covers have been developed in [136]. The minimal realization procedure, based on
balancing techniques, has been proposed in [126] for standard systems. The exten-
sion of these techniques to descriptor systems has been proposed in [113] and is
the basis of Procedure GBALMR. The state-space method for the solution of the
Nehari problem for continuous-time systems has been developed in [51].

Section 10.5. BLAS is a set of specifications for standard vector and matrix oper-
ations, which form the core of implementing numerical algebra algorithms. Three
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levels of abstraction served to define the functionality of BLAS. Level-1 BLAS
basically covers operations with and on vectors [75] and served for the implemen-
tation of the widely used linear algebra package LINPACK [35]. Level 2 BLAS for
matrix–vector operations [34] and Level-3 BLAS for matrix–matrix operations [33]
formed the basic layer for implementing the high-performance linear algebra pack-
age LAPACK [3]. This package, originally written in Fortran 77, has been designed
to run efficiently on a wide range of high-performance machines using the BLAS,
which can be optimized for each computing environment.Moreover, the use ofBLAS
makes the subroutines portable and efficient across a wide range of computers. The
technology for developing, testing and documenting LAPACK has been adopted by
the developers of SLICOT [12, 120]. The initial version of the Descriptor Sys-
tems Toolbox for MATLAB is described in [130] (see also [120]). The first version
of the Fault Detection Toolbox is described in [138], while the last version of
this toolbox is described in [148].
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