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Preface

The model based approach to fault detection and diagnosis has been the subject of
continuing research for several decades. A number of monographs, several edited
books, and many conference proceedings cover a multitude of aspects of two
closely related important fields: fault diagnosis and fault tolerant control. This book
addresses from a procedural point of view a basic aspect of these techniques: the
synthesis of residual generators for fault detection and isolation. Although the need
for specialized computational procedures has been earlier recognized by several
authors, the computational aspects have been largely ignored in the existing liter-
ature or they are addressed only superficially without a clear understanding of the
main numerical issues. Therefore, the aim of this book, to address the fault
detection and isolation topics from a computational perspective, contrasts with most
existing literature. This book is an attempt to close the gap between the existing
well-developed theoretical results and the realm of reliable computational synthesis
procedures.

The book addresses several important aspects which make it unique in the fault
detection literature. A first aspect is the solution of standard synthesis problems in
the most general setting. Consequently, the presented synthesis procedures can
determine a solution to a specific problem whenever a solution exists in accordance
with the stated general existence conditions. Although this feature is a legitimate
goal when developing computational approaches, the existing literature still
abounds with technical assumptions which, although they often facilitate estab-
lishing of particular theoretical results, are not necessary for the solution of the
problems. A distinctive feature of the presented synthesis methods is their general
applicability to both continuous- and discrete-time systems, regardless of whether
the underlying system is proper or not.

The second aspect is the focus on the best suited numerical algorithms to solve
the formulated filter synthesis problems. In contrast to the opinions of some authors
that cultural aspects (e.g., familiarity with one approach or another) may influence
the choice of appropriate algorithms, I firmly believe that only state-space
description based algorithms are a viable choice when solving relatively high order
problems. Therefore, I completely dismissed computational procedures based on
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polynomial or rational matrix manipulations, and exclusively rely on state-space
representation based numerically reliable computational methods. An extra bonus is
the availability of a huge arsenal of numerically reliable linear algebra software
tools that facilitate the implementation of dedicated robust numerical software.

The third aspect emphasized is the development of so-called integrated com-
putational procedures, where the resulting filters are determined by successive
updating of partial synthesis results addressing specific requirements. Since each
partial synthesis may represent a valid fault detection filter, this approach is highly
flexible when using or combining different synthesis techniques. A common feature
of all synthesis methods is the use of the nullspace method as the first synthesis step
to reduce all synthesis problems to a simple standard form that allows easy
checking of solvability conditions and addressing least-order synthesis problems.

The fourth aspect is the provision of a comprehensive set of supporting software
tools which accompany this book. This software allows the easy implementation of
all synthesis procedures presented in the book and facilitates performing rapid
prototyping experiments in the computational environment MATLAB 1 . The
software tools rely on numerically reliable algorithms for solving computational
problems for systems in a generalized state-space form, also known as descriptor
systems. The provided collection of MATLAB functions, called Descriptor System
Tools, has been entirely implemented during the preparation of this book. There are
also numerous MATLAB scripts which allow the recalculation of all worked
examples and of several case studies. Since virtually all numerical results in the
book can be reproduced by the readers using these scripts, this book is one of the
first contributions to reproducible research in the field of fault detection.

Two alternative models are used in the book to describe systems with faults: an
input-output description based on transfer function matrices, and state-space
descriptions in standard or generalized (descriptor) forms. It is important to clarify
from the beginning the roles of these two model types used in the book. The
input-output models underlie the theoretical developments in the book to solve
various fault detection problems. Therefore, they serve to formulate the specific
fault detection problems to be solved, to establish algebraic existence conditions,
and even to describe high level conceptual solution procedures. In this way, it is
possible to hide in a first reading most of the involved computational details by
focusing mainly on conceptual aspects. However, when entering the realm of
developing reliable numerical algorithms, there is an exclusive reliance on the
equivalent state-space representations. There are several important reasons for this
decision. Firstly, state-space models are better suited to numerical computations
than are the potentially highly sensitive polynomial based models. Second,
state-space models allow the formulation of integrated algorithms, where successive
steps are closely connected and structural features can be fully exploited. Finally,
by developing explicit state-space representation based updating formulas, the
resulting algorithms lead to minimal order filters, by implicitly performing all

1MATLAB ® is a registered trademark of The Mathworks, Inc.
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hidden pole-zero cancelations. This significantly increases the reliability of com-
putations and confers a sound numerical basis for all developed algorithms.

The treatment of fault detection problems is limited to linear time-invariant
systems, for which both the theory and computational tools are well developed.
Although the proposed linear synthesis methodologies offer satisfactory solutions
for many practical applications, performance limitations (e.g., lack of sufficient
robustness) may still occur when facing more complicated systems. Nevertheless,
linear techniques are frequently used to address even problems where the under-
lying system models are nonlinear and parameter dependent. Besides providing
guidance for problem solvability and performance limitations, linear synthesis
approaches form the basis of complex gains-scheduling-based synthesis method-
ologies that are able to fully address robustness aspects. Also, using linear fault
detection filters in conjunction with signal processing techniques for online iden-
tification of various types of faults often represents a viable approach to enhance the
robustness of the fault detection and to provide useful information for control
reconfiguration purposes. The considered case studies illustrate these aspects.

The book includes a substantial amount of background material on rational
matrices, descriptor systems and computational algorithms. The presentation
of theoretical backgrounds on rational matrices and descriptor systems exhibits a
certain parallelism meant to ease introducing or recalling to readers the main the-
oretical concepts. The algorithmic details are presented only in the final chapter.
This may help readers, especially those not familiar with or not interested in
numerical aspects, to focus primarily on the main synthesis steps of the conceptual
synthesis procedures, by blending out all non-essential technicalities. Nevertheless,
the presentation of the underlying algorithms is a main part of this book, and the
final chapter even includes several algorithmic improvements, which are presented
for the first time here.

This book is primarily aimed at researchers and advanced graduate students in
the areas of fault diagnosis and fault tolerant control. The Chaps. 1 – 6 and 8 fit well
into an advanced fault diagnosis curricula relying on computer aided design tools.
The Chaps. 7 and 10 will appeal to mathematicians with interests in control oriented
numerics.

The present book is largely based on my own research, started in 2002, on
developing reliable numerical methods for the synthesis of fault detection filters.
Many colleagues working in the field of fault diagnosis recognized the need to
develop efficient and reliable computational methods. This was a constant stimulus
for me to understand all the subtleties of problem formulations, to discover the
technical and numerical limitations of many of the existing computational
approaches, and to pursue research to develop efficient and reliable algorithms
which are able to provide a solution whenever one exists. A particular impulse
came from the organizers of the SAFEPROCESS’2012 conference in Mexico City,
Prof. Jan Lunze (Program Chair) and Prof. Cristina Verde (General Chair), who
invited me to hold a semi-plenary lecture at this conference. In my talk I presented a
systematic account of linear time-invariant synthesis techniques of fault detection
filters. The underlying plenary paper was later published, in an extended and
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revised form, in Annual Reviews in Control (ARC, 2013). This paper, which is
simultaneously a survey of synthesis methods and a presentation of several new
ideas and research results, laid the methodical foundation for this book. During its
preparation, I realized the importance of the availability of numerical software
suitable for the easy implementation of the presented synthesis methods. Therefore,
implementing the free software tools that accompany this book was a natural
extension of my original plans.
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p
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uðkÞ Laplace- or Z -transformed control input vector
dðtÞ Disturbance input vector: dðtÞ 2 R

md

d ( λ ) Laplace- or Z -transformed disturbance input vector
wðtÞ Noise input vector: wðtÞ 2 R

mw

wðkÞ Laplace- or Z -transformed noise input vector
f ðtÞ Fault input vector: f ðtÞ 2 R

mf

fðkÞ Laplace- or Z -transformed fault input vector
xðtÞ State vector: xðtÞ 2 R

n

GuðkÞ Transfer function matrix from u to y
GdðkÞ Transfer function matrix from d to y
GwðkÞ Transfer function matrix from w to y
Gf ðkÞ Transfer function matrix from f to y
GfjðkÞ Transfer function matrix from the j -th fault input fj to y
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E System descriptor matrix
Bu , Bd , Bw , Bf System input matrices from u , d , w , f
C System output matrix
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rðtÞ Residual vector: rðtÞ 2 R

q

rðkÞ Laplace- or Z -transformed residual vector
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rðiÞðtÞ i -th residual vector component: rðiÞðtÞ 2 R

qi

rðiÞðkÞ Laplace- or Z -transformed i -th residual vector component
QðkÞ Transfer function matrix of the implementation form of the

residual generator from y and u to r
QyðkÞ Transfer function matrix of residual generator from y to r
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S Binary structure matrix
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yðtÞ Measured output vector: yðtÞ 2 R

p

yðkÞ Laplace- or Z -transformed measured output vector
uðtÞ Control input vector: uðtÞ 2 R

mu

uðkÞ Laplace- or Z -transformed control input vector
uðjÞðtÞ Control input vector of j -th model: uðjÞðtÞ :¼ uðtÞ 2 R

mu

uðjÞðkÞ Laplace- or Z -transformed control input vector of j -th model

dðjÞðtÞ Disturbance input vector of j -th model: dðjÞðtÞ 2 R
mðjÞ

d

dðjÞðkÞ Laplace- or Z -transformed disturbance input vector of j -th model

wðjÞðtÞ Noise input vector of j -th model: wðjÞðtÞ 2 R
mðjÞ

w

wðjÞðkÞ Laplace- or Z -transformed noise input vector of j -th model

yðjÞðtÞ Output vector of j -th model: yðjÞðtÞ 2 R
p

yðjÞðkÞ Laplace- or Z -transformed output vector of j -th model

xðjÞðtÞ State vector of j -th model: xðjÞðtÞ 2 R
nj

GðjÞ
u ðkÞ Transfer function matrix of j -th model from uðjÞ to yðjÞ

GðjÞ
d ðkÞ Transfer function matrix of j -th model from dðjÞ to yðjÞ

GðjÞ
w ðkÞ Transfer function matrix of j -th model from wðjÞ to yðjÞ

AðjÞ System state matrix of j -th model

EðjÞ System descriptor matrix of j -th model
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u , BðjÞ

d ,

BðjÞ
w

System input matrices of j -th model from uðjÞ , dðjÞ , wðjÞ

CðjÞ System output matrix of j -th model

DðjÞ
u , DðjÞ

d ,

DðjÞ
w

System feedthrough matrices of j -th model from uðjÞ , dðjÞ , wðjÞ

rðiÞðtÞ i -th residual vector component: rðiÞðtÞ 2 R
qi

rðiÞðkÞ Laplace- or Z -transformed i -th residual vector component
rðtÞ overall residual vector: rðtÞ 2 R

q , q ¼ PN
i¼1 qi

rðkÞ Laplace- or Z -transformed overall residual vector
QðiÞðkÞ Transfer function matrix of the implementation form of the i -th

residual generator from y and u to rðiÞ

QðiÞ
y ðkÞ Transfer function matrix of residual generator from y to rðiÞ

QðiÞ
u ðkÞ Transfer function matrix of residual generator from u to rðiÞ

QðkÞ Transfer function matrix of the implementation form of the overall
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Rði;jÞðkÞ The transfer function matrix of the internal form of the overall
residual generator from ðuðjÞ; dðjÞ;wðjÞÞ to rðiÞ

Rði;jÞ
u ðkÞ The transfer function matrix of the internal form of the overall

residual generator from uðjÞ to rðiÞ

Rði;jÞ
d ðkÞ The transfer function matrix of the internal form of the overall

residual generator from dðjÞ to rðiÞ

Rði;jÞ
w ðkÞ The transfer function matrix of the internal form of the overall

residual generator from wðjÞ to rðiÞ

hðtÞ N -dimensional residual evaluation vector
iðtÞ N -dimensional binary decision vector
si Decision threshold for i -th component of the residual vector
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Part I
Basics of Fault Diagnosis

In this part the main concepts related to model-based fault diagnosis are introduced
and several fault detection and isolation problems, as well as model detection prob-
lems are formulated. After a short introductory chapter, the modelling aspects of
linear systems with additive faults and with physical faults are discussed. Twomodel
types are used to describe systems with additive faults: an input-output description
based on transfer function matrices, and state-space descriptions in standard or gen-
eralized (descriptor) forms. The input-output models underlie the main theoretical
developments in the book, as the formulation of synthesis problems and development
of suitable conceptual synthesis algorithms. The state-space model based description
is the basis of developing numerically reliable computational algorithms. To address
robustness aspects when solving synthesis problems for systems described by linear
parametric models or multiple linear models, it is necessary to convert such mod-
els to the standard synthesis form used throughout the book. Several fault detection
and isolation as well as model detection problems are formulated in two separate
chapters. The solvability of these problems is characterized in terms of appropriately
defined concepts, such as, fault detectability or fault isolability, andmodel detectabil-
ity, respectively. An important aspect of the employed problem formulations is that
they are independent of any particular solution method, which can be potentially
used for their solution. This led to general solvability conditions which form the
basis of developing general synthesis procedures, whose primary aim is to produce
a satisfactory solution whenever the existence conditions are fulfilled.



Chapter 1
Introduction

1.1 Linear Synthesis Techniques for Fault Diagnosis

Fault diagnosis is a widely used term across many application domains. In this book
we restrict the meaning of this term to designate the usage of specific techniques to
discover anomalous behaviours occurring in physical plants (known as fault
detection) and the more challenging aspect of locating a fault within an industrial
equipment (known as fault isolation). The subsequent characterization of the type,
size and nature of occurred faults (known as fault identification) is also often a part
of fault diagnosis. Among many approaches for fault diagnosis we focus on the
model-based framework, where plant models are used to provide the required
redundancy, also called analytical redundancy, to execute the fault detection and
isolation tasks. A further restriction we purposely made is to restrict our focus to the
class of linear time-invariant (LTI) plant models, for which a reasonably complete
theory for the synthesis of fault detection and isolation (FDI) filters exists.

The focus on linear system techniques may appear as a strong limitation, taking
into account that most technical processes are nonlinear systems and their
dynamical behaviour depends on parameters, which may vary during the plant
operation or may have uncertain values. Besides that, unknown external signals,
acting as physical disturbances (e.g., external loads) as well as the ubiquitous
presence of measurement noises, often increase the complexity of problem solving.
To account (to some extent) for these inherent modelling deficiencies, linear models
depending on parameters, the so-called linear parameter-varying (LPV) models, or
collections of linearized models, the so-called LTI multiple models, can be used to
serve as approximate plant models. These models can then be put in a standard form
which underlies all developments in this book.

The original version of this chapter was revised: The following link has been corrected from
“https://sites.google.com/site/andreasvargacontact/home/book” to
“https://sites.google.com/view/andreasvarga/home/book” The correction to this chapter is
available at https://doi.org/10.1007/978-3-319-51559-5_11

© Springer International Publishing AG 2017, corrected publication 2023
A. Varga, Solving Fault Diagnosis Problems, Studies in Systems,
Decision and Control 84, https://doi.org/10.1007/978-3-319-51559-5_1
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The main emphasis of the book is on procedural aspects, by presenting general
synthesis procedures of FDI filters to address six “canonical” problems, termed as
fault detection, fault isolation and reference model-matching problems, aiming for
both exact and approximate solutions. The main goal of the book is to provide a
comprehensive presentation of the synthesis algorithms for the formulated prob-
lems, both at a conceptual level (using frequency-domain concepts) as well as at a
detailed implementable algorithm level (using state-space description based com-
putational methods). Although the discussion of procedural aspects is a recurring
theme in several textbooks, in our opinion this is the first time that a complete
collection of numerically viable methods are described, which can serve as basis for
robust numerical software implementations. Most of the “computational” methods
described in the fault diagnosis literature are not adequate for this purpose. The
reasons are simple: the basic requirements for satisfactory numerical algorithms (for
example, as those to solve linear algebra problems) are not fulfilled. Most of time,
the important aspect of numerical reliability is completely ignored, and therefore
many computational algorithms are provably numerically unstable. Also, the use of
ill-conditioned coordinate transformations (e.g., to compute certain canonical
forms), may drastically worsen the conditioning of the problem, by increasing the
sensitivity of solution to variations in problem data. Thus, the effects of inherent
roundoff errors are amplified and the accuracy of the solution is diminished.

We also present the somewhat new topic of the model detection, which consists
of finding in a collection of available models that one which best matches the
current plant behaviour. The solution of this problem is highly relevant to solving
special classes of fault detection problems (e.g., as those due to extreme variations
of plant parameters) or in the multiple-model-based adaptive control approaches.

An important novelty of this book is the many computational examples intended
for the use within the popular MATLAB environment. The underlying computa-
tional tools are either part of MATLAB itself, or are free software developed by the
author as part of this book project. All synthesis procedures are accompanied by
synthesis examples, for which MATLAB scripts are included in the book. These
scripts can be seen as prototype implementations of the synthesis procedures and
can serve as starting points for production quality implementations of dedicated
FDI filter synthesis tools. All software tools, including the scripts associated to the
worked out examples and case studies, are freely available (see the author’s
homepage dedicated to this book project1).

To a lesser extent we addressed the decision-making aspects, which are however
crucial for the use of fault diagnosis systems. The presented norm-based decision
schemes can be easily replaced by statistical methods based on change detection
techniques.

There are several issues which are not included in the presentation, for example,
synthesis methods based on the parity-space approach, polynomial representation or
unknown-input observers. The reasons for this are either the lack of the generality

1 https://sites.google.com/view/andreasvarga/home/book.
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of an approach (e.g., the observer-based method) or the intrinsic numerical insta-
bility of the associated computations (e.g., parity-space and polynomial approa-
ches). Furthermore, we exclusively use a deterministic framework, thus leaving out
a rich collection of statistical approaches. Note however, that the synthesis
approaches described in the book may prove useful also for a stochastic framework,
since the main difference lies in the employed decision-making tools (i.e., statistical
methods instead of norm-based approaches).

1.2 Outline of the Book

The book naturally falls into two parts, while a third part contains extensive
background material. We briefly comment on the contents of these parts.

Part I – Basics of Fault Diagnosis. This part contains four chapters, which serve
to introduce the fault diagnosis topic and to formulate the basic synthesis problems
associated with it. Chapter 1 is introductory. Chapter 2 introduces the standard forms
of LTI models used throughout the book for the synthesis of fault detection filters.
Both input–output and state-space representations are used, where the former mainly
serves to simplify the problem formulations and describe conceptual synthesis pro-
cedures, while the latter serves for developing reliable and efficient computational
algorithms. To mathematically describe systems with faults, both additive fault
models as well as physical fault models can be used. To address the robustness
aspects, LPV models (with explicit dependence of varying parameters) or multiple
LTI models (with implicit dependence of parameters) can be recast such that (ficti-
tious) noise inputs account for the effects of parameter variations. Chapter 3 discusses
the main aspects related to the fault diagnosis topic, as residual generation and
evaluation, definition and characterization of the basic fault detectability and isola-
bility concepts, formulation of six “canonical” problems for exact or approximate
synthesis of fault detection filters, and the selection of appropriate thresholds for
decision making. For all six formulated fault detection problems conditions for the
existence of a solution are given. In Chap. 4, the model detection topic is discussed,
by covering the generation of a structured set of residuals, definition and character-
ization of the model detectability concept, formulation of exact and approximate
model detection problems, and selection of thresholds for decision making.

Part II—Synthesis of Residual Generators. The second part of the book is
concerned with the synthesis procedures of residual generators. Chapter 5 is the
central part of the book and presents conceptual synthesis procedures for the
solution of the FDI problems formulated in Chap. 3. A common synthesis paradigm
of all procedures is the use of the nullspace method as the first synthesis step, to
reduce all synthesis problems to a simple standard form, which allows for easily
checking the solvability conditions and to address least-order synthesis aspects. The
selection of thresholds suitable for decision making is discussed for each of the
approximate synthesis methods. Chapter 6 presents the synthesis procedures for
solving the model detection problems formulated in Chap. 4. Once again, the
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nullspace method is used at the first step of both the exact and approximate syn-
thesis procedures to simplify the formulation of the model detection problems and
allow checking the existence conditions of a solution. The main computational
aspects of the presented synthesis procedures are discussed in Chap. 7, focusing
more on an informative presentation rather than on algorithmic details. The dis-
cussion of numerical aspects of the synthesis algorithms, such as the numerical
stability or reliability, algorithmic performance, choice of underlying synthesis
models, model conditioning, is rare in the fault detection related literature.
A common basic procedural framework of all presented procedures is the use of
updating techniques of the different representation forms of fault detection filters
(i.e., implementation, internal). As a consequence, each synthesis procedure pro-
duces a factored representation of the fault detection filter, where partial syntheses
achieved at intermediate synthesis steps may represent valid solutions satisfying
partial synthesis goals. The main computational aspects, as the application of the
nullspace method, least-order synthesis, coprime factorization techniques, and the
solution of exact or approximate model-matching problems are presented from the
fault detection perspective. Chapter 8 presents several case studies related to flight
control applications, as the isolation and identification of flight actuator faults and
reliable isolation of air data sensor failures.

Part III – Background Material. This part includes a substantial amount of
background material on advanced system theoretical concepts and specialized
computational algorithms. Chapter 9 deals with the presentation of basic concepts
and results on rational and polynomial matrices, followed by the discussion, in
parallel, of similar aspects in terms of equivalent descriptor system representations.
Chapter 10 presents in detail the main algorithms for descriptor systems, which
underlie the computational procedures of this book. For readers interested in the
algorithmic details, this will allow the understanding in depth of algorithmic sub-
tleties of the basic computations. Software implementations are available for all of
the presented algorithms, implemented either in Fortran 77 and available in the
SLICOT subroutine library, or as MATLAB functions accompanying this book.
The presentation of the underlying algorithms is intentionally done only in the final
chapter of the book, to relieve the casual readers of the need to understand highly
sophisticated numerical algorithms.

1.3 Notes and References

Several monographs and textbooks partly overlap with our book, especially in the
formulation of the main synthesis problems [14, 20, 26, 48, 65]. Statistical
approaches for decision making are considered in [7, 14, 48]. Data-driven methods
for fault diagnosis are presented in [27]. The use of sliding-mode control techniques
to address both fault diagnosis and fault-tolerant control problems is the subject of
the monograph [1].

6 1 Introduction
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Chapter 2
Modelling Systems with Faults

This book is intended as a guide to synthesis methods of residual generators for
various fault detection problems.Amain nontrivial task to be fulfilled before employ-
ing any of these methods is the development of adequate models which fit into the
envisaged design methodologies. Our interest lies primarily in developing synthe-
sis methods for the class of linear time-invariant (LTI) plant models, for which the
resulting residual generators are themselves LTI systems or filters. In spite of this
apparent limitation, a wide class of fault detection problems can be addressed either
by appropriate adjustments of the underlying models or by suitable reformulations
of the design objectives.

In this chapter, we address the basic aspects of modelling systems with faults.
Two basic approaches are described to model systems with faults. The first approach
involves models with additive faults, where the faults are explicitly defined as fictive
inputs which act on the system similarly to the unknown external disturbance inputs.
The main advantage of this modelling approach is that, by avoiding the explicit
modelling of different fault modes, a single model can be used to account for many
possible physical faults. For example, models with additive faults are widely used
to describe systems with various types of actuator and sensor faults. Models with
multiplicative faults often describe systems with parametric faults (i.e., abnormal
variations of some model parameters).

The second approach is based on physical fault models, where to each fault mode
corresponds a dedicated model, which is usually derived by adjusting appropriately
the non-faulty system model. For example, parametric faults can alternatively be
modelled using physical models by setting the model parameters to some abnormal
values. In other cases, physical fault models can be derived by removing some of
system control inputs in the case of total loss of control or defining new disturbance
inputs to account for specific fault effects.

The physical fault modelling approach typically involves multiple models, repre-
senting a collection of individual models where each model corresponds to a specific
fault situation. The multiple-model based approach for fault modelling is well suited
for certain fault tolerant control applications, where the detection of the “right”
fault model automatically triggers the reconfiguration of the controller. Another

© Springer International Publishing AG 2017
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important application field is the multiple-model adaptive control, where switch-
ing among several controllers is done after “recognizing” the best matching model
at each time moment.

In this chapter, we first review the main types of faults and then introduce the
input–output and state-space forms of LTI plant models with additive faults. These
models represent the basis of all synthesis approaches presented in this book. The
underlying fault-free models often include fictive noise inputs, which account for the
effects of parametric uncertainties in the matrices of the state-space representations.
We describe two approaches to arrive at such models starting from linear parameter-
varying models and multiple LTI models. Finally, we present physical fault models
described by a collection of LTI models, which form the basis of model detection
based approaches.

2.1 Types of Faults

A typical setup for the modelling of a system with faults is presented in Fig. 2.1.
The main system variables are the control inputs u, the unknown disturbance

inputs d, the noise inputs w, and the output measurements y. The control inputs u
are assumed to be known (measurable) and, in general, can have arbitrary bounded
variations. The output y and control input u are the only measurable signals which
therefore can be used for fault monitoring purposes. The disturbance inputs d and
noise inputs w are non-measurable “unknown” input signals, which act adversely on
the system performance. For example, the unknown disturbance inputs d may repre-
sent physical disturbance inputs, as for example, wind turbulence acting on an aircraft
or external loads acting on a plant. Typical noise inputs are sensor noise signals as
well as process input noise. However, fictive noise inputs can also account for the
cumulative effects of unmodelled system dynamics or for the effects of parametric
uncertainties. In general, there is no clear-cut separation between disturbances and
noise, and therefore, the appropriate definition of the disturbance and noise inputs is
a challenging aspect when modelling systems for solving fault detection problems.

We define a fault as any unexpected variation of some physical parameters or
variables of a plant causing an unacceptable violation of certain specification limits

dw

Plant
u y

faults

control
inputs

plant
outputs

noise
inputs

disturbance
inputs

Fig. 2.1 Plant model with faults
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for normal operation. For example, a change in the characteristics of an actuator
leading to a loss of efficiency or even to a complete breakdown is termed an actu-
ator fault, while erroneous measurements (e.g., corrupted by bias or drift) obtained
with a defective sensor are caused by a sensor fault. The malfunction of an internal
component (e.g., leakage, shortcut, etc.) is often assimilated with a parametric fault.
A failure designates a permanent interruption of the plant operation (e.g., complete
breakdown) and may be caused by one or more faults.

Besides this physical classification, faults are often classified on basis of their
perceived effects. Additive faults are fictive inputs acting independently on the plant
outputs. These inputs are zero in a fault-free situation and nonzero if a fault occurs.
Multiplicative faults produce effects on the plant outputs which depend on the mag-
nitude of some internal signals or known inputs. Sensor faults and several types of
actuator faults are usually considered as additive faults, while parametric faults are
considered as multiplicative faults.

Faults can be also differentiated on the basis of their behaviour over time. Inter-
mittent faults are short duration malfunctions, which can still induce long-lasting
effects. For example, actuator saturations caused by excessive loads fall often in this
category of faults. Persistent faults have a long-range time evolution, and often man-
ifest as slowly evolving incipient faults or abrupt changes, with permanent character,
of physical parameters or system structure.

2.2 Plant Models with Additive Faults

The synthesis methods presented in this book primarily deal with LTI systems
described by input–output relations of the form

y(λ) = Gu(λ)u(λ) + Gd(λ)d(λ) + Gw(λ)w(λ) + Gf (λ)f(λ), (2.1)

where y(λ), u(λ), d(λ), w(λ), and f(λ), with boldface notation, denote the Laplace-
transformed (in the continuous-time case) or Z-transformed (in the discrete-time
case) time-dependent vectors, namely, the p-dimensional system output vector y(t),
mu-dimensional control input vector u(t), md-dimensional disturbance vector d(t),
mw-dimensional noise vectorw(t) andmf -dimensional fault vector f (t), respectively.
Gu(λ), Gd(λ), Gw(λ) and Gf (λ) are the transfer function matrices (TFMs) from
the control inputs u, disturbance inputs d, noise inputs w, and fault inputs f to the
outputs y, respectively. According to the system type, λ = s, the complex variable
in the Laplace-transform in the case of a continuous-time system or λ = z, the
complex variable in the Z-transform in the case of a discrete-time system. For most
of practical applications, the TFMs Gu(λ), Gd(λ), Gw(λ), and Gf (λ) are proper
rational matrices. However, for complete generality of our problem settings, we will
allow that these TFMs are general improper rational matrices for which we will not
a priori assume any further properties (e.g., stability, full rank, etc.).



10 2 Modelling Systems with Faults

Remark 2.1 Throughout this book, the main difference between the disturbance
input d(t) and noise input w(t) arises from the formulation of the fault monitoring
goals. In this respect, when synthesizing devices to serve for fault diagnosis pur-
poses, we will generally target the exact decoupling of the effects of disturbance
inputs. Since generally the exact decoupling of effects of noise inputs is not achiev-
able, we will simultaneously try to attenuate their effects, to achieve an approximate
decoupling. Consequently, we will try to solve synthesis problems exactly or approx-
imately, in accordance with the absence or presence of noise inputs in the underlying
plant model, respectively. �

An equivalent descriptor state-space realization of the input–output model (2.1)
has the form

Eλx(t) = Ax(t) + Buu(t) + Bdd(t) + Bww(t) + Bf f (t) ,

y(t) = Cx(t) + Duu(t) + Ddd(t) + Dww(t) + Df f (t) ,
(2.2)

with the n-dimensional state vector x(t), where λx(t) = ẋ(t) or λx(t) = x(t + 1)
depending on the type of the system, continuous- or discrete-time, respectively. In
general, the square matrix E can be singular, but we will assume that the linear pencil
A − λE is regular. For systems with proper TFMs in (2.1), we can always choose a
standard state-space realization where E = I . In general, we can also assume that
the representation (2.2) is minimal, that is, the pair (A − λE,C) is observable and
the pair (A − λE, [Bu Bd Bw Bf ]) is controllable. The corresponding TFMs of the
model in (2.1) are

Gu(λ) = C(λE − A)−1Bu + Du,

Gd(λ) = C(λE − A)−1Bd + Dd,

Gw(λ) = C(λE − A)−1Bw + Dw,

Gf (λ) = C(λE − A)−1Bf + Df

(2.3)

or in an equivalent notation

[
Gu(λ) Gd(λ) Gw(λ) Gf (λ)

] :=
[
A − λE Bu Bd Bw Bf

C Du Dd Dw Df

]
.

Remark 2.2 Although the overall model (2.2) can always be chosen minimal (i.e.,
controllable and observable), the state-space realizations of individual channels of the
input–output model (2.1) may not be minimal. For example, the pair (A − λE,Bu)

(which is part of the state-space realization of Gu(λ)) may be uncontrollable and
even not stabilizable. In spite of this apparent deficiency, the chosen form (2.2) of
the systemmodel is instrumental for the development of all computational procedures
presented in this book. �

An important class of models with additive faults arises when defining the fault
signals for two main categories of faults, namely, actuator and sensor faults. Mod-
elling actuator faults can be done by replacing u(t) by a perturbed input u(t)+Safa(t),
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where fa(t) is the actuator fault signal and Sa is a fault distribution matrix. Sa is usu-
ally a full column rank matrix formed from distinct columns of an identity matrix
of appropriate order. Thus, the corresponding fault-to-output TFM is defined as
Gf (λ) := Gu(λ)Sa. Similarly, sensor faults can be modelled by replacing y(t) by
y(t) + Ssfs(t), where fs(t) is the sensor fault signal and Ss is an appropriate fault dis-
tribution matrix. The corresponding TFM is simply Gf (λ) := Ss. In the case when

both actuator and sensor faults are present, then for the fault signal f (t) :=
[
fa(t)
fs(t)

]
,

the corresponding fault-to-output TFM is

Gf (λ) := [
Gu(λ)Sa Ss

]
. (2.4)

In general, thematrices Sa and Ss can be chosen to also ensure a certain uniform range
of magnitudes of the expected fault signals via appropriate scaling of fault inputs.
The corresponding state-space realization (2.2) is obtained with Bf := [BuSa 0 ]
and Df := [DuSa Ss ]. An important aspect of this approach is that the resulting
models with additive faults can simultaneously cover several categories of actuator
and sensor faults.

Example 2.1 Flight actuators with faults are oftenmodelled as continuous-time LTImodels, whose
transfer-function representation is

y(s) = Gu(s)u(s) + Gf (s)f(s) ,

where u(t) and y(t) are respectively, the commanded and achieved surface positions and f (t) is a
fault signal. For an input (actuator) fault we can take Gf (s) = Gu(s), while for an output (sensor)
fault Gf (s) = 1. If both types of faults are present, then f (t) is a two-dimensional vector and
Gf (s) = [Gu(s) 1 ]. First- or second-order actuator models are frequently used for fault detection
purposes, where the effects of the load (e.g., air resistance) are included in the actuator parameters.
A first-order actuator model has the transfer function

Gu(s) = k

s + k
,

where k is a constant gain. A second-order actuator model can have the transfer function

Gu(s) = ω2

s2 + 2ζωs + ω2 ,

where ζ is the damping ratio and ω is the natural oscillation frequency. These simple additive faulty
system models are suitable to serve for monitoring several categories of actuator faults which can
be considered as additive faults, as—for example, jamming, runaway, oscillatory failure, or certain
types of loss of efficiency. ♦

The underlying plant models (i.e., without noise and fault inputs) often represent
linearizations of nonlinear dynamic plant models in specific operation points and for
fixed values of plant parameters. To cope with variabilities in operating conditions
and plant parameters, alternative representations are often used, which cover a whole
family of linearized models. To use such models for solving fault diagnosis problems
by employing the linear system techniques described in this book, we have to convert
them into LTI state-space representations with additional noise or fault inputs, where
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the noise inputs account for the effects of existing variabilities in operating points
and parameters, or for extreme parameter variations due to parametric faults. In what
follows, we show for two classes of plant models, namely state-space models with
parameter-dependent matrices and families of linearized state-space models (i.e.,
multiple LTI models), how they can be recast as standard LTI models with additional
noise or fault inputs.

2.2.1 Models with Parametric Uncertainties

The fault-free LTI model without noise inputs which underlies the additive fault
model of the form (2.1) or (2.2) often represents an approximation via linearization
of a nonlinear system model in a certain nominal operating point for a particular
combination of some model parameter values. Therefore, the validity of approxima-
tions by linearizedmodels is often restricted to small variations around some nominal
operating points and parameter values. To extend the range of validity of linear mod-
els, so-called linear parameter-varying (LPV) models have been introduced, where
the dependence of (time-varying) operating conditions and parameters is explicitly
reflected in the model (i.e., in the matrices of the state-space model). LPVmodels are
therefore useful to represent nonlinear systems in terms of a family of linear models.
The existing explicit parametric dependence can be exploited in various ways both
in robust synthesis methods as well as in robustness analysis. In this section, we
describe a useful technique to recast LPV models with parametric uncertainties into
LTI models with fictitious noise inputs, which account for the effects of paramet-
ric variations. These models can thus serve to arrive at additive fault models of the
general form (2.1) or (2.2).

There exist various techniques to determine LPV models. These techniques
encompass: (1) the symbolic manipulation of the nonlinear model equations leading
to so-called quasi-LPV models, where the matrices of the state-space model depend
on a parameter vector, whose components include both plant parameters but also
components of the state or output vectors of the nonlinear model; (2) direct parame-
ter estimation using special global identification experiments; or (3) interpolation of
a set of local models (e.g., obtained via linearizations) using regression-based para-
meter fitting techniques. We will not further discuss various existing techniques, but
note that this research field is still very active as documented by a rapidly increasing
amount of the literature dedicated to this topic.

Let ρ be a time-varying parameter vector and consider a state-space realization
of the fault-free system in the LPV form

E(ρ)λx(t) = A(ρ)x(t) + Bu(ρ)u(t) + Bd(ρ)d(t) ,

y(t) = C(ρ)x(t) + Du(ρ)u(t) + Dd(ρ)d(t) .
(2.5)

Consider the parameter-dependent matrix
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S(ρ) :=
[
E(ρ) A(ρ) Bu(ρ) Bd(ρ)

0 C(ρ) Du(ρ) Dd(ρ)

]
(2.6)

and express S(ρ) in the form

S(ρ) = S(0) + ΔSΓS(ρ) , (2.7)

where S(0) is the (nominal) value of S(λ) defined for a constant value ρ = ρ0 as

S(0) := S(ρ0) =
[
E(0) A(0) B(0)

u B(0)
d

0 C(0) D(0)
u D(0)

d

]
, (2.8)

ΓS(ρ) satisfies ΓS(ρ0) = 0, and ΔS is a constant matrix. The system (2.5) can be
alternatively expressed in the form

E(0)λx(t) = A(0)x(t) + B(0)
u u(t) + B(0)

d d(t) + Δx(t, ρ),

y(t) = C(0)x(t) + D(0)
u u(t) + D(0)

d d(t) + Δy(t, ρ),
(2.9)

where Δx(t, ρ) and Δy(t, ρ) can be interpreted as input and output noise terms and
are given by

[
Δx(t, ρ)

Δy(t, ρ)

]
:= ΔSΓS(ρ)

⎡

⎢⎢
⎣

−λx(t)
x(t)
u(t)
d(t)

⎤

⎥⎥
⎦ . (2.10)

If we denote withR(·) the range (or image) of a matrix, then we have for all values
of ρ [

Δx(t, ρ)

Δy(t, ρ)

]
∈ R (ΔS) .

We can define a LTI model of the form

E(0)λx(t) = A(0)x(t) + B(0)
u u(t) + B(0)

d d(t) + B(0)
w w(t),

y(t) = C(0)x(t) + D(0)
u u(t) + D(0)

d d(t) + D(0)
w w(t) ,

to replace the LPV model (2.5), provided we can determine the two matrices B(0)
w

and D(0)
w to satisfy the range condition

R
([

B(0)
w

D(0)
w

])
= R (ΔS) ,

where w(t) is a fictitious “noise” signal, whose dimension mw is equal to the column
dimension of B(0)

w andD(0)
w . Such a LTI model can be considered an “exact” (thus not

a conservative) replacement of the LPV model (2.5).
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The determination of B(0)
w and D(0)

w can be done from the following singular value
decomposition (SVD)

ΔS = [
U1 U2

] [
Σ 0
0 0

] [
V1 V2

]T = U1ΣV T
1 ,

where
[
U1 U2

]
and

[
V1 V2

]
are orthogonal matrices, and Σ is a nonsingular diag-

onal matrix with the decreasingly ordered nonzero singular values on its diagonal.
From linear algebra we know that the columns of U1 form an orthogonal basis for

the range of ΔS . Therefore, we can choose

[
B(0)
w

D(0)
w

]
= U1 or

[
B(0)
w

D(0)
w

]
= U1Σ . The

latter choice includes different scalings of noise inputs.
The representation of S(ρ) in the form (2.7) can be easily obtained for LPVmodels

whosematrices depend rationally on the components of ρ. For suchmodels, S(ρ) can
always be expressed using an upper linear fractional transformation1 (LFT) based
equivalent representation

S(ρ) = LFTu(M,Δ), (2.11)

where M =
[
M11 M12

M21 M22

]
is a certain constant matrix with M11 square and Δ =

Δ(ρ) is a diagonal matrix depending on the components of ρ such that Δ(ρ0) = 0.
Straightforward algorithms are available to obtain the above representation. The
above LFT-based representation of S(ρ) allows to immediately obtain S(0) = M22,
ΔS = M21 and ΓS(ρ) = Δ(I − ΔM11)

−1M12.

Example 2.2 We consider an LPV model with a standard state-space realization (2.5) with E = I ,
Bd = 0, Dd = 0 and

A(ρ1, ρ2) =
⎡

⎣
−0.8 0 0
0 −0.5(1 + ρ1) 0.6(1 + ρ2)

0 −0.6(1 + ρ2) −0.5(1 + ρ1)

⎤

⎦ , Bu =
⎡

⎣
1 1
1 0
0 1

⎤

⎦,

C =
[
0 1 1
1 1 0

]
, Du =

[
0 0
0 0

]
.

In the expression of A(ρ1, ρ2), ρ1 and ρ2 are uncertainties in the real and imaginary parts of the
two complex conjugate eigenvalues λ1,2 = −0.5 ± j0.6 of the nominal value A(0) = A(0, 0).

We can recast the effects of uncertain parameters ρ1 and ρ2 as fictitious noise inputs. Since
all system matrices, excepting the state matrix A(ρ1, ρ2) are constant, we only have to represent
A(ρ1, ρ2) as

A(ρ1, ρ2) = A(0) + ΔAΓA(ρ) ,

with

A(0) =
⎡

⎣
−0.8 0 0
0 −0.5 0.6
0 −0.6 −0.5

⎤

⎦

and ΔA and ΓA(ρ) given by

1An upper LFT for a partitioned matrix M =
[
M11 M12
M21 M22

]
and a compatible Δ is defined as

LFTu(M,Δ) := M22 + M21Δ(I − ΔM11)
−1M12.
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ΔA =
⎡

⎣
0 0
0 1
1 0

⎤

⎦ , ΓA(ρ) =
[
0 −0.6ρ2 −0.5ρ1
0 −0.5ρ1 0.6ρ2

]
. (2.12)

Thus, the noise terms in (2.9) are Δx(t, ρ) = ΔAΓA(ρ)x(t) and Δy(t, ρ) = 0 and therefore, ΔS
has the reduced form

ΔS =
[

ΔA
0

]
, (2.13)

which can be used for range computation. For this simple LPV model, we can define the noise
vector as w(t) := ΓA(ρ)x(t) and the corresponding noise matrices result as

B(0)
w := ΔA, D(0)

w = 0 .

The resulting equivalent LTI model with noise inputs is

ẋ(t) = A(0)x(t) + Buu(t) + B(0)
w w(t),

y(t) = Cx(t) + Duu(t) + D(0)
w w(t).

(2.14)

Using the LFT-based representation A(ρ) = LFTu(M,Δ) with Δ = diag (ρ1, ρ1, ρ2, ρ2) and

M =
[
M11 M12

M21 M22

]
=

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 −0.8 0 0 1 1

−0.5 0 0.6 0 0 1 0 0 −0.5 0.6 1 0
0 −0.5 0 −0.6 0 0 1 0 −0.6 −0.5 0 1
0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1 0 0 0

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎥
⎦

,

we can check that R(M21) = R(ΔS), with ΔS given in (2.13). Thus, we obtain the same B(0)
w

(though with permuted columns) and D(0)
w as above.

TheMatlab script Ex2_2 in Listing 2.1 generates the matrices B(0)
w andD(0)

w of the LTI model
(2.14) from the LPV model considered in this example. ♦

Listing 2.1 Script Ex2 2 to convert the LPV model of Example 2.2 to LTI form
% Uses the Robust Control Toolbox

% define ρ1 and ρ2 as uncertain parameters
r1=ureal('rho1 ',0); r2=ureal('rho2 ',0);

% define E, A(ρ1, ρ2), Bu, C, Du

n = 3; mu = 2; p = 2; % enter dimensions
E = eye(n);
A = [ -.8 0 0;

0 -0.5*(1+r1) 0.6*(1+ r2);
0 -0.6*(1+r2) -0.5*(1+r1) ];

Bu = [ 1 1; 1 0; 0 1]; C = [0 1 1;1 1 0]; Du = zeros(p,mu);

% build S(ρ)

S = [ E A Bu; zeros(p,n) C Du];

% compute the elements of LFT-based representation
[M,Delta] = lftdata(S);
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nd = size(Delta ,1); % size of Δ

% computes orthogonal basis for the range of M21

U1 = orth(M(nd+1:end ,1:nd)); % U1 directly from SVD

% compute Bw and Dw, and define the number of noise inputs mw

Bw = U1(1:n,:); Dw = U1(n+1:end ,:); mw = size(U1 ,2);

2.2.2 Models with Parametric Faults

Multiplicative faults are frequently used as synonym for parametric faults. Letρ(t) be
a time-varying parameter vector and consider a state-space realization of the system
in the LPV form (2.5). The components of ρ consist of those system parameters,
whose extreme variations represent the parametric faults for the given plant. In this
section, we discuss the conversion of LPV models of the form (2.5) into equivalent
LTI models with additive faults of the form (2.2). This conversion can be done using
similar techniques as those described in Sect. 2.2.1.

The parameter-dependentmatrixS(ρ) in (2.6) can be expressed in the formS(ρ) =
S(0) + ΔSΓS(ρ), where S(0) is the fault-free (nominal) value of S(λ) defined for a
(constant) normal value ρ = ρ0 as in (2.8); ΓS(ρ) satisfies ΓS(ρ0) = 0 and therefore
is zero in the fault-free case; and ΔS is a constant matrix. The system (2.5) can
be expressed in the alternative form (2.9), where, Δx(t, ρ) and Δy(t, ρ) in (2.10)
can be now interpreted as fault input terms. These terms defined in (2.10) depend
on the magnitudes of state and input vectors, which justifies the characterization of
parametric faults as multiplicative faults. The fault input terms are therefore zero if
the system state, the state derivative and the system inputs are zero, and they are also
zero if the plant operates in its normal condition corresponding to ρ = ρ0.

Let B(0)
f and D(0)

f be two matrices which satisfy the range condition

R
([

B(0)
f

D(0)
f

])

= R (ΔS) .

Since for all values of ρ we have

[
Δx(t, ρ)

Δy(t, ρ)

]
∈ R (ΔS) ,

we can define a fictitious “fault” signal f (t), whose dimension mf is equal to the
column dimension of B(0)

f and D(0)
f , and build the equivalent LTI model of the form

E(0)λx(t) = A(0)x(t) + B(0)
u u(t) + B(0)

d d(t) + B(0)
f f (t),

y(t) = C(0)x(t) + D(0)
u u(t) + D(0)

d d(t) + D(0)
f f (t).

(2.15)
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Remark 2.3 In general, the parameter vector ρ can be split in two components,
ρ = [ ρT

1 ρT
2 ]T , where ρ1 includes those model parameters which are susceptible

to parametric faults, while ρ2 is the part of parameters which have to be exclusively
handled as uncertainties. This separation should be also reflected in the equivalent
LTI model (2.15), where, besides the additive fault input terms B(0)

f f (t) andD(0)
f f (t),

which correspond to the parametric faults in ρ1, noise input terms B(0)
w w(t) and

D(0)
w w(t) have to be added, respectively, which correspond to the parametric uncer-

tainties in ρ2. Such a model can be easily determined, if the parametric matrix S(ρ)

in (2.6) exhibits an additive separability property with respect to the two components
of ρ of the form S(ρ) = S1(ρ1)+S2(ρ2). In this case, the fault and noise input matri-
ces can be generated separately for each term of S(ρ), employing the approaches
described in this and previous sections. An important class of parametric models for
which this condition is fulfilled is formed by LPV models with affine dependence of
system matrices of parameters. �

Although the LTI model (2.15) can be considered an “exact” (thus not a conserv-
ative) replacement of the LPV model (2.5), still it hides the complex dependence of
the fault input terms on the system parameters and variables exhibited in (2.10). For
example, a direct correspondence between the components of ρ and the components
of f is not explicitly provided, which could make the fault isolation task difficult.
By taking into account the explicit dependence of the fault input terms of the cur-
rent values of the state and input vectors, a more detailed (structured) representation
of parametric faults is possible, which, however, leads to time-varying matrices in
the fault input channel of the additive fault model (2.15) (i.e., using time-varying
matrices Bf (t) and Df (t) instead the constant matrices B(0)

f and B(0)
f , respectively).

For some particular LPVmodels, as—for example, thosewith the systemmatrices
having affine dependence on the components of ρ, it is possible to exploit this feature
to obtain a direct correspondence between the components of the additive fault vector
f (t) and the components of the parameter vector ρ. To show this, let assume that ρ has
k components and the LPV systemmatrices have the following affine representations

E(ρ) = E(0) +
k∑

i=1

E(i)ρi, A(ρ) = A(0) +
k∑

i=1

A(i)ρi,

Bu(ρ) = B(0)
u +

k∑

i=1

B(i)
u ρi, Bd(ρ) = B(0)

d +
k∑

i=1

B(i)
d ρi,

C(ρ) = C(0) +
k∑

i=1

C(i)ρi, Du(ρ) = D(0)
u +

k∑

i=1

D(i)
u ρi, Dd(ρ) = D(0)

d +
k∑

i=1

D(i)
d ρi .

This allows to express S(ρ) in (2.6) as S(ρ) = S(0) + ∑k
i=1 S

(i)ρi, with
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S(i) :=
[
E(i) A(i) B(i)

u B(i)
d

0 C(i) D(i)
u D(i)

d

]

=:
[
S(i)
x

S(i)
y

]

(2.16)

for i = 0, 1, . . . , k. The fault input terms in (2.9) can be now expressed as

[
Δx(t, ρ)

Δy(t, ρ)

]
:=

( k∑

i=1

S(i)ρi

)
z(t) = [

S(1)z(t) · · · S(k)z(t)
]
ρ,

where z(t) := [−λxT (t) xT (t) uT (t) dT (t)
]T
. Using the partitioning of S(i) in (2.16),

we can express the fault input terms as

Δx(t, ρ) = Bf (t)ρ(t), Δy(t, ρ) = Bf (t)ρ(t),

where Bf (t) = [
S(1)
x z(t) · · · S(k)

x z(t)
]
and Df (t) = [

S(1)
y z(t) · · · S(k)

y z(t)
]
. By

defining f (t) := ρ(t), we obtain the equivalent additive fault model

E(0)λx(t) = A(0)x(t) + B(0)
u u(t) + B(0)

d d(t) + Bf (t)f (t) ,

y(t) = C(0)x(t) + D(0)
u u(t) + D(0)

d d(t) + Df (t)f (t) ,
(2.17)

with the fault input channel containing time-varyingmatriceswith a special structure.
Although the synthesis methods presented in this book are mainly intended for LTI
models with additive faults, still some of these methods can be extended to handle
models of the form (2.17) (see Remark 7.4).

The following example illustrates the model conversion techniques presented in
this section on the basis of the model considered in Example 2.2.

Example 2.3 Consider the same model as that used in Example 2.2, where only the state matrix
A(ρ1, ρ2) depends on parameters. Large variations of these parameters are considered parametric
faults. We can convert this LPV model to a LTI model with additive faults, using the calculations
already done in Example 2.2. The resulting LTI model with additive fault inputs can be set up as

ẋ(t) = A(0)x(t) + Buu(t) + B(0)
f f (t) ,

y(t) = Cx(t) + Duu(t) ,
(2.18)

with B(0)
f := ΔA, where A(ρ1, ρ2) = A(0) + ΔAΓA(ρ), and ΔA and ΓA(ρ) are given in (2.12). The

equivalent fault input is defined as f (t) := ΓA(ρ)x(t).
For the fault vector f (t), we can use a more structured representation using the alternative affine

representation of A(ρ) as A(ρ) = A(0) + A(1)ρ1 + A(2)ρ2, which leads to

A(ρ)x(t) = A(0)x(t) + [
A(1)x(t) A(2)x(t)

]
ρ .

It follows that with f (t) := ρ(t), we obtain a time-varying input matrix Bf (t) = [
A(1)x(t) A(2)x(t)

]

to replace B(0)
f in (2.18). ♦

http://dx.doi.org/10.1007/978-3-319-51559-5_7
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2.2.3 Multiple Linear Models

A frequent situation which occurs in practical applications is that we only have at
our disposal N plant models (i.e., a multiple model) of the form

E(i)λx(i)(t) = A(i)x(i)(t) + B(i)
u u(t) + B(i)

d d(t),
y(i)(t) = C(i)x(i)(t) + D(i)

u u(t) + D(i)
d d(t),

(2.19)

where, for i = 1, . . . ,N , x(i)(t) ∈ Rn and y(i)(t) ∈ Rp are the state vector and output
vector of the i-th system, respectively. For simplicity, we assume that in all models,
the dimensions of the state, output and input vectors are the same. Typically, (2.19)
describes a family of linearizedmodels forN relevant combinations of plant operating
points and plant parameters. In what follows, we describe a simple method to recast
such a multiple model into a unique LTI model with additional fictitious noise inputs,
which account for the effects of variations in operating points and parameters. The
resulting LTI model can then serve to build models with additive faults of the form
(2.1) or (2.2).

The matrices of each component model can be expressed in the form

E(i) = E(0) + Δ
(i)
E , A(i) = A(0) + Δ

(i)
A , B(i)

u = B(0)
u + Δ

(i)
Bu

, , . . .

where E(0), A(0), B(0)
u , . . . are some nominal values (or simply the mean values of

the corresponding matrices), while Δ
(i)
E , Δ

(i)
A , Δ

(i)
Bu
, . . . are the deviations from the

nominal (or mean) values. If we denote

Δ
(i)
S :=

[
−Δ

(i)
E Δ

(i)
A Δ

(i)
Bu

Δ
(i)
Bd

0 Δ
(i)
C Δ

(i)
Du

Δ
(i)
Dd

]

,

then each model of the form (2.19) can be equivalently represented in the form

E(0)λx(i)(t) = A(0)x(i)(t) + B(0)
u u(t) + B(0)

d d(t) + Δ(i)
x (t),

y(i)(t) = C(0)x(i)(t) + D(0)
u u(t) + D(0)

d d(t) + Δ(i)
y (t),

(2.20)

where Δ(i)
x (t) and Δ(i)

y (t) are the noise terms specific to the i-th model, given by

[
Δ(i)

x (t)
Δ(i)

y (t)

]
:= Δ

(i)
S

⎡

⎢
⎢
⎣

λx(i)(t)
x(i)(t)
u(t)
d(t)

⎤

⎥
⎥
⎦ .

Therefore, for each component model we have



20 2 Modelling Systems with Faults

[
Δ(i)

x (t)
Δ(i)

y (t)

]
∈ R(

Δ
(i)
S

)
.

We can try to define a unique model of the form

E(0)λx(t) = A(0)x(t) + B(0)
u u(t) + B(0)

d d(t) + B(0)
w w(t),

y(t) = C(0)x(t) + D(0)
u u(t) + D(0)

d d(t) + D(0)
w w(t)

to approximate the collection of N models in (2.20), provided the two matrices B(0)
w

and D(0)
w satisfy the range condition

R
([

B(0)
w

D(0)
w

])
= R(

Δ
(1)
S

) ∪ · · · ∪ R(
Δ

(N)
S

) = R ([
Δ

(1)
S · · · Δ

(N)
S

])

and w(t) is a fictitious “noise” signal which formally matches the column dimension
of B(0)

w and D(0)
w . Such an unique model is certainly conservative, because it includes

in a single model the effects of all possible parametric variations. Nevertheless, the
degree of conservatism may be acceptable in practice, because often the component
models share common structural features which are reflected in the matrices Δ

(i)
S

(e.g., constant rank, fixed zero entries, etc.).
The determination of B(0)

w andD(0)
w can be done (as in the preceding section) from

the SVD

ΔS := [
Δ

(1)
S · · · Δ

(N)
S

] = [
U1 U2

]
[

Σ 0
0 0

]
[
V1 V2

]T = U1ΣV T
1 , (2.21)

where
[
U1 U2

]
and

[
V1 V2

]
are orthogonal matrices, and Σ is a diagonal matrix

with the decreasingly ordered nonzero singular values on its diagonal. Therefore, we

can choose

[
B(0)
w

D(0)
w

]
= U1 or

[
B(0)
w

D(0)
w

]
= U1Σ . The latter choice includes different

scalings of noise inputs. Often, we can even use instead U1, only a few of its leading
columns which correspond to the most significant singular values.

Remark 2.4 The determination of U1 in the SVD (2.21) involves the computation
of the SVD of the potentially large matrix ΔS with n+ p rows and N(2n+mu +md)

columns. This computation may require a tremendous computational effort for large
N or large n if ΔS is explicitly formed. Fortunately, this can be avoided by a suitable
preprocessingofΔS . Theproposed computational approachbelow leads to significant
saving in the computational effort if N(2n + mu + md) � n + p (which is usually
the case). Let Q be an orthogonal matrix which compresses the columns of ΔS to a
(n+p)× (n+p) matrix RS (upper triangular) according to the following orthogonal
RQ-decomposition of ΔS as

ΔS = [
RS 0

]
Q .
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Then, the SVDs of the large matrix ΔS and of the compressed matrix RS provide the
same U1 matrix as basis for R(ΔS). Since the computation of the right transforma-
tion matrix

[
V1 V2

]
is not necessary, it is possible to determine RS without deter-

mining explicitly Q. Moreover, we can compute RS even without the need to form
ΔS explicitly, using the following recursion based on successive low-dimensional
RQ-decompositions

[
Ri 0

]
Qi = [

Ri−1 Δ
(i)
S

]
, i = 1, . . . ,N ,

where R0 = 0(n+p)×(n+p). Here, each Ri is an (n + p) × (n + p) (upper triangular)
matrix and Qi is an orthogonal matrix of order 3n+ p+mu +md , which need not be
computed. At the end we set RS = RN and the SVD of RS provides the orthogonal
basis matrix U1 of R(SΔ) from the SVD (2.21). �

Example 2.4 We consider once again the LPV system with a standard state-space realization (2.5)
used in Example 2.2. Consider a set of parameter values (ρ

(i)
1 , ρ

(i)
2 ), for i = 1, . . . ,N . For each

value (ρ
(i)
1 , ρ

(i)
2 ) we define

A(i) := A(ρ
(i)
1 , ρ

(i)
2 ) = A(0) + Δ

(i)
A ,

where A(0) = A(0, 0) is the nominal value of A(ρ1, ρ2)

A(0) =
⎡

⎣
−0.8 0 0
0 −0.5 0.6
0 −0.6 −0.5

⎤

⎦

and Δ
(i)
A is given by

Δ
(i)
A =

⎡

⎣
0 0 0
0 −0.5ρ(i)

1 0.6ρ(i)
2

0 −0.6ρ(i)
2 0.5ρ(i)

1

⎤

⎦ .

With the reduced Δ
(i)
S defined as

Δ
(i)
S :=

[
Δ

(i)
A
0

]
,

we have that R(ΔS) = R(Δ
(i)
S ) for all simultaneously nonzero ρ

(i)
1 and ρ

(i)
2 . For convenience, we

take ρ
(1)
1 = √

0.5 and ρ
(1)
2 = √

0.5 and we only compute the SVD of the nonzero part Δ(1)
A as

Δ
(1)
A = [

U1 U2
]
[

Σ 0
0 0

]
[
V1 V2

]T =
⎡

⎣
0 0 1

−0.7071 −0.7071 0
−0.7071 0.7071 0

⎤

⎦
[
I2 0
0 0

]
⎡

⎣
0 0 1

−1 0 0
0 1 0

⎤

⎦

T

.

By defining the noise vector as w(t) := ΣVT
2 x(t) and the corresponding matrices

B(0)
w :=

⎡

⎣
0 0

−0.7071 −0.7071
−0.7071 0.7071

⎤

⎦ , D(0)
w =

[
0 0
0 0

]
,

we arrive to a LTI model similar to (2.14). It is easy to see that although B(0)
w in the Examples 2.2

and 2.4 are different, their ranges are the same. ♦
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2.3 Physical Fault Models

For physically modelled faults, each fault mode leads to a distinct model. Assume
that we have N LTI models describing the fault-free and faulty systems, and for
i = 1, . . . ,N the i-th model is specified in the input–output form

y(i)(λ) = G(i)
u (λ)u(i)(λ) + G(i)

d (λ)d(i)(λ) + G(i)
w (λ)w(i)(λ), (2.22)

where y(i)(t) ∈ Rp(i)
is the output vector of the i-th systemwith control input u(i)(t) ∈

Rm(i)
u , disturbance input d(i)(t) ∈ Rm(i)

d and noise input w(i)(t) ∈ Rm(i)
w , respectively,

and where G(i)
u (λ), G(i)

d (λ) and G(i)
w (λ) are the TFMs from the corresponding plant

inputs to outputs. The significance of disturbance and noise inputs, and the basic
difference between them, have already been discussed in Sect. 2.1. The state-space
realizations corresponding to the multiple model (2.22) are for i = 1, . . . ,N of the
form

E(i)λx(i)(t) = A(i)x(i)(t) + B(i)
u u(i)(t) + B(i)

d d(i)(t) + B(i)
w w(i)(t) ,

y(i)(t) = C(i)x(i)(t) + D(i)
u u(i)(t) + D(i)

d d(i)(t) + D(i)
w w(i)(t) ,

(2.23)

where x(i)(t) ∈ Rn(i)
is the state vector of the i-th system and, generally, can have

different dimensions for different systems.
The multiple-model description represents a very general way to describe plant

models with various faults. For example, extreme variations of parameters represent-
ing the so-called parametric faults, can be easily described by multiple models. Let ρ
be a parameter vector, which includes a set of model parameters whose extreme val-
ues characterize the different fault cases.We assume that the systemmodel depending
on ρ has the form

y(λ) = Gu(λ, ρ)u(λ) + Gd(λ, ρ)d(λ) + Gw(λ, ρ)w(λ) . (2.24)

Let ρ(i), i = 1, . . . ,N be a set of values, which characterize both the normal operation
as well as the fault cases. Then, the multiple model (2.22) for i = 1, . . . ,N can be
defined for u(i) = u, d(i) = d and w(i) = w as

G(i)
u (λ) := Gu(λ, ρ(i)), G(i)

d (λ) := Gd(λ, ρ(i)), G(i)
w (λ) := Gw(λ, ρ(i)) . (2.25)

Similarly, if the state-space realization of the system model has the LPV form

E(ρ)λx(t) = A(ρ)x(t) + Bu(ρ)u(t) + Bd(ρ)d(t) + Bw(ρ)w(t) ,

y(t) = C(ρ)x(t) + Du(ρ)u(t) + Dd(ρ)d(t) + Dw(ρ)w(t) ,
(2.26)

then a multiple model of the form (2.23) for i = 1, . . . ,N can be defined with

E(i) = E
(
ρ(i)

)
, A(i) = A

(
ρ(i)

)
, . . . (2.27)
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and x(i) = x, u(i) = u, d(i) = d and w(i) = w.
As an example, consider the modelling of a category of loss of efficiency actuator

faults for a system of the form

y(λ) = Gu(λ)u(λ) + Gd(λ)d(λ) ,

without noise input. The loss of efficiency of the i-th actuator, can be modelled by
defining

G(i)
u (λ) := Gu(λ)F(i)

a , G(i)
d (λ) := Gd(λ), (2.28)

where F(i)
a is a diagonal matrix with unit diagonal entries excepting the i-th diagonal

entry which is set to a nonnegative subunitary value. Several values for F(i)
a can be

employed to cope with different degrees of failures of a single actuator. A complete
failure of the i-th actuator can be easily modelled by setting the i-th diagonal element
to zero.

Different categories of sensor faults (e.g., bias, drift, frozen value) can bemodelled
by adding fictive disturbances which act on the respective outputs. For example, for
a fault in the i-th output sensor we can define the fault model with

G(i)
u (λ) = F(i)

s Gu(λ), G(i)
d (λ) = [F(i)

s Gd(λ), ei ],

where F(i)
s is chosen a diagonal matrix (similar to F(i)

a ) to account for the i-th sensor
fault and ei is the i-th column of the identity matrix. Simultaneous sensor faults can
be also easily modelled in this way.

The multiple-model approach to fault modelling offers a simple framework to
model faults, by associating a distinct model to each fault or combination of sev-
eral simultaneous faults. Occasionally, this involves defining additional disturbance
inputs which account for the effects of modelled faults. However, employing this
approach for complex systems with many potential actuator and sensor faults can
easily lead to a large number of models. The situation can be even worse if addi-
tionally parametric faults can occur. Since the number of required models increases
exponentially with the number of faults, the applicability of this modelling frame-
work is restricted to system with a relatively small number of faults. Often, the
single-fault-at-time assumption is used to limit the number of considered faults and
thus of the associated models.

Example 2.5 Flight actuators can be often modelled as first-order parameter-dependent linear
continuous-time models, whose transfer-function representation is (assuming constant parameter)

y(s) = Gu(s, k)u(s) ,

with

Gu(s, k) = k

s + k
.

The input u(t) is usually the demanded position (e.g., angle) of the attached control surface and the
output y(t) is the actual surface position. Here, k is the effective actuator gain, which, in general,
depends on flight parameters such as the current weight-balance, current flight conditions, as well
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as the current deflection of the attached control surface. High accuracy models may also cover the
dependence of the effects of air resistance on the associated control surface.

Several categories of actuator faults are best modelled as parametric faults and described by
several special values of the gain parameter k. Assume that the normal operation of a flight actuator is
well approximated by aLTImodelwithG(1)

u (s) := Gu(s, k0), where k0 is ameanvalue of k in normal
operation (e.g., a typical valuemay be k0 = 14). The actuator disconnection fault due to a broken rod
between the actuator and corresponding control surface is considered a severe fault (although very
improbable). Physically, this fault is equivalentwith the lackof any air resistance andhingemoments,
because the actuator rod can move practically without encountering any resistance from the control
surface. Therefore, this fault can be modelled by a LTI model with G(2)

u (s) := Gu(s, kmax), where
kmax is the highest achievable gain (e.g., a typical value satisfies kmax > 50). On the opposite
side, highly deflected control surfaces produce large air resistance and therefore, the actuators
are susceptible to intermittent position saturations. This intermittent fault is called stall load and
represents a sudden change of gain to its lowest value kmin (e.g., a typical valuemay be kmin = 0.01).
Thus, this fault can be modelled by a LTI with G(3)

u (s) := Gu(s, kmin). Finally, a sluggish behaviour
of the actuator can be associated with a second type of loss-of-effectiveness fault and can be
modelled as a LTI with G(4)

u (s) := Gu(s, γ k0), where 0 < γ < 1 is a parameter which indicates
the degradation of the actuator dynamics (e.g., γ = 0.5 for a 50% sluggishness). Several values of
γ can be used to characterize different degradation levels. ♦

2.4 Notes and References

Background material on input–output representations via TFMs is given in Sect. 9.1.
The structural properties of descriptor system representations are discussed, for
example, in [23]. See also Sect. 9.2 for background material on descriptor systems.

The LTI model with additive faults, control, disturbance and noise inputs has been
already used in the textbook of Gertler [48], while other authors as Chen and Patton
[20] and more recently Ding [26] employ LTI models with faults without making
difference between disturbance and noise inputs, when solving fault detection prob-
lems. However, the distinction between disturbance and noise inputs is the basis
of the synthesis methods presented in this book and allows the exploitation of all
existing structural features related to the unknown inputs acting on the system. The
presence or absence of noise inputs in the underlying LTI synthesis models deter-
mines a direct correspondence with the synthesis methods labelled as “approximate”
or “exact”, respectively. This systematics has been introduced in a recent survey of
synthesis methods [151].

Several methods to recast uncertain models into models with noise inputs are
described by Chen and Patton [20]. For the derivation of LPV models, there are
many approaches proposed in the literature (see for example the special issue of the
IEEE Transactions on Control Systems Technology [79]). The determination of a
high fidelity first-order LPV flight-actuator model approximation has been described
in [152].

The use of multiple models is a standard way to address robust synthesis problems
in the presence of parametric uncertainties. Several applications of multiple-model
based approaches are presented in [89]. The use ofmultiplemodels for fault detection

http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_9
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and fault tolerant control has been proposed by Maybeck [84] and by Boškovic and
Mehra [16].

Techniques for handling models with parametric (multiplicative) faults are
described by Gertler in [48]. The special case of handling affine LPV models is
considered by Ding in [26].



Chapter 3
Fault Diagnosis

In this chapter we describe first the basic fault monitoring tasks, such as fault detec-
tion, fault isolation, fault estimation and fault identification. The concepts of fault
detectability and fault isolability are then introduced and characterized. Six “canoni-
cal” fault detection problems are formulated for the class of LTI systemswith additive
faults. The formulation of the exact and approximate synthesis problems are indepen-
dent of any possible solution method and allow the derivation of general solvability
conditions in terms of ranks of certain transfer functionmatrices. An important aspect
to emphasize is that the formulations of approximate problems include, as particular
cases, the formulations of exact problems. This chapter is concluded with a discus-
sion of performance requirements for fault diagnosis systems and the selection of
thresholds to be used for decision-making.

3.1 Basic Fault Monitoring Tasks

A fault represents a deviation from the normal behaviour of a system due to an
unexpected event (e.g., physical component failure or supply breakdown). In safety
critical technical systems, a fault must be detected as early as possible to prevent any
serious consequence. For this purpose, fault diagnosis techniques are used to allow the
detection of occurrence of faults (fault detection), the localization of detected faults
(fault isolation), the reconstruction of the fault signal (fault estimation) and a precise
classification of the detected faults and their characteristics (fault identification). In
a specific practical application, the term fault detection and diagnosis (FDD) may
include, besides fault detection, also further aspects such as fault isolation, fault
estimation or fault identification. A FDD system is a device (usually based on a
collection of real-time processing algorithms) suitably set-up to fulfill the above
tasks. The minimal functionality of any FDD system is illustrated in Fig. 3.1.

The main component of any FDD system (as that in Fig. 3.1) is the resid-
ual generator (or fault detection filter or simply fault detector), which produces
residual signals grouped in a q-dimensional vector r by processing the available

© Springer International Publishing AG 2017
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Fig. 3.1 Basic fault
diagnosis setup

measurements y and the known values of control inputs u. The role of the residual
signals is to indicate the presence or absence of faults, and therefore the residual r
must be equal (or close) to zero in the absence of faults and significantly different
from zero after a fault occurs. For decision-making, suitable measures of the residual
magnitudes (e.g., signal norms) are generated in a vector θ , which is then used to
produce the corresponding decision vector ι. In what follows, several fault monitor-
ing tasks are formulated and discussed. The discussion which follows also serves to
fix the basic terminology used throughout this book.

Fault detection is simply a binary decision on the presence of any fault ( f �= 0)
or the absence of all faults ( f = 0). Typically, θ(t) is scalar evaluation signal, which
approximates ‖r‖2, the L2- or �2-norms of signal r , while ι(t) is a scalar decision-
making signal defined as ι(t) = 1 if θ(t) > τ (fault occurrence) or ι(t) = 0 if θ(t) ≤
τ (no fault), where τ is a suitable threshold quantifying the gap between the “small”
and “large” magnitudes of the residual. The decision on the occurrence or absence of
faults must be done in the presence of arbitrary control inputs u, disturbance inputs
d and noise inputs w acting simultaneously on the system. The effects of the control
inputs on the residual can be always decoupled by a suitable choice of the residual
generation filter. In the ideal case, when no noise inputs are present (w ≡ 0), the
residual generation filter must additionally be able to exactly decouple the effects
of the disturbances inputs in the residual and ensure, simultaneously, the sensitivity
of the residual to all faults (i.e., complete fault detectability, see Sect. 3.3). In this
case, τ = 0 can be (ideally) used. However, in the general case when w �≡ 0, only an
approximate decoupling ofw can be achieved (at best) and a sufficient gap must exist
between the magnitudes of residuals in fault-free and faulty situations. Therefore, an
appropriate choice of τ > 0 must avoid false alarms and missed detections.

Fault isolation concerns with the exact localization of occurred faults and involves
for each component f j of the fault vector f the decision on the presence of j-th
fault ( f j �= 0) or its absence ( f j = 0). Ideally, this must be achieved regardless the
faults occur one at a time or several faults occur simultaneously. Therefore, the fault
isolation task is significantly more difficult than the simpler fault detection. For fault
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isolation purposes, wewill assume a partitioning of the q-dimensional residual vector
r in nb stacked qi -dimensional subvectors r (i), i = 1, . . . , nb, in the form

r =
⎡

⎢
⎣

r (1)

...

r (nb)

⎤

⎥
⎦ , (3.1)

where q = ∑nb
i=1 qi . A typical fault evaluation setup used for fault isolation is to

define θi (t), the i-th component of θ(t), as a real-time computable approximation of
‖r (i)‖2. The i-th component of ι(t) is set to ιi (t) = 1 if θi (t) > τi (i-th residual fired)
or ιi (t) = 0 if θi (t) ≤ τi (i-th residual not fired), where τi is a suitable threshold
for the i-th subvector r (i)(t). If a sufficiently large number of measurements are
available, then it can be aimed that r (i) is influenced only by the i-th fault signal
fi . This setting, with nb = m f , allows strong fault isolation, where an arbitrary
number of simultaneous faults can be isolated. The isolation of the i-th fault is
achieved if ιi (t) = 1, while for ιi (t) = 0 the i-th fault is not present. Inmany practical
applications, the lack of a sufficiently large number of measurements impedes strong
isolation of simultaneous faults. Therefore, often only weak fault isolation can be
performed under simplifying assumptions as, for example that the faults occur one
at a time or no more than two faults may occur simultaneously. The fault isolation
schemes providing weak fault isolation compare the resulting nb-dimensional binary
decision vector ι(t), with a predefined set of binary fault signatures. If each individual
fault f j has associated a distinct signature s j , the j-th fault can be isolated by simply
checking that ι(t) matches the associated signature s j . Similarly to fault detection,
besides the decoupling of the control inputs u from the residual r (always possible),
the exact decoupling of the disturbance inputs d from r can be strived in the casewhen
w ≡ 0. However, in the general case when w �≡ 0, only approximate decoupling of
w can be achieved (at best) and a careful selection of tolerances τi is necessary to
perform fault isolation without false alarms and missed detections.

The combined fault detection and isolation (FDI) is the basis of the fault diagnosis
and it is nowadays fully accepted that FDI is a must for almost all practical applica-
tions. This justifies partly the main emphasis of this book on residual generation for
this class of problems.

Fault estimation represents the next level of complexity in fault diagnosis and
addresses the reconstruction of fault signals from the available measurements. The
fault estimation can be interpreted as amore challenging strong fault isolation, where
additionally, the fault signal must be reconstructed. Fault estimation can serve, for
example, as basis for control law reconfiguration for specific classes of faults or for
virtual sensor development. Exact fault estimation can be seldom achieved (even
if sufficient number of measurements are available), and often the only meaningful
requirement is the approximate reconstruction of the fault signal (e.g., via asymptotic
estimation).

Fault identification is intended to fully characterize the type, size and nature of
the faults, and therefore is often a part of fault diagnosis, usually subsequent to
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fault isolation. The fault identification relies on a range of techniques which include
parameter estimation, active fault detection, signal analysis and classification, pattern
recognition, etc. These techniqueswill not be addressed in this book, but some aspects
related to characterizing fault modes (e.g., detection of classes of persistent faults)
can be explicitly considered in formulating concrete design requirements for residual
generators.

3.2 Residual Generation

Recall the additive fault model (2.1) introduced in Chap.2, described by input–output
representations of the form

y(λ) = Gu(λ)u(λ) + Gd(λ)d(λ) + Gw(λ)w(λ) + G f (λ)f(λ) , (3.2)

where y(λ), u(λ), d(λ), w(λ), and f(λ) are Laplace-transformed (in the continuous-
time case) or Z-transformed (in the discrete-time case) vectors of the p-dimensional
systemoutput vector y(t),mu-dimensional control input vector u(t),md -dimensional
disturbance vector d(t),mw-dimensional noise vectorw(t) andm f -dimensional fault
vector f (t), respectively, andwhereGu(λ),Gd(λ),Gw(λ) andG f (λ) are the transfer
function matrices (TFMs) from the control inputs to outputs, disturbance inputs to
outputs, noise inputs to outputs, and fault inputs to outputs, respectively. For complete
generality of our problem formulations, we will allow that these TFMs are general
rational matrices (proper or improper) for which we will not a priori assume any
further properties.

A linear residual generator (or fault detection filter) processes the measurable
system outputs y(t) and known control inputs u(t) and generates the residual signals
r(t) which serve for decision-making on the presence or absence of faults. The
input–output form of this filter is

r(λ) = Q(λ)

[
y(λ)

u(λ)

]
= Qy(λ)y(λ) + Qu(λ)u(λ) , (3.3)

with Q(λ) = [ Qy(λ) Qu(λ) ], and is called the implementation form. The TFM
Q(λ) for a physically realizable filter must be proper (i.e., only with finite poles) and
stable (i.e., only with poles having negative real parts for a continuous-time system
or magnitudes less than one for a discrete-time system). The dimension q of the
residual vector r(t) depends on the fault detection problem to be addressed.

The residual signal r(t) in (3.3) generally depends on all system inputs u(t), d(t),
w(t) and f (t) via the system output y(t). The internal form of the filter is obtained
by replacing in (3.3) y(λ) by its expression in (3.2), and is given by

http://dx.doi.org/10.1007/978-3-319-51559-5_2
http://dx.doi.org/10.1007/978-3-319-51559-5_2
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r(λ) = R(λ)

⎡

⎢⎢
⎣

u(λ)

d(λ)

w(λ)

f(λ)

⎤

⎥⎥
⎦= Ru(λ)u(λ)+Rd(λ)d(λ)+Rw(λ)w(λ)+R f (λ)f(λ) , (3.4)

with R(λ) = [ Ru(λ) Rd(λ) Rw(λ) R f (λ ] defined as

[
Ru(λ) Rd(λ) Rw(λ) R f (λ)

] := Q(λ)

[
Gu(λ) Gd(λ) Gw(λ) G f (λ)

Imu 0 0 0

]
. (3.5)

For a properly designed filter Q(λ), the corresponding internal representation R(λ)

is also a proper and stable system, and additionally fulfills specific fault detection
and isolation requirements.

3.3 Fault Detectability

The concepts of fault detectability and complete fault detectability deal with the
sensitivity of the residual to an individual fault and to all faults, respectively. For
the discussion of these concepts we will assume that no noise input is present in the
system model (3.2) (w ≡ 0).

Definition 3.1 For the system (3.2), the j-th fault f j is detectable if there exists a
fault detection filter Q(λ) such that for all control inputs u and all disturbance inputs
d, the residual r �= 0 if f j �= 0 and fk = 0 for all k �= j.

Definition 3.2 The system (3.2) is completely fault detectable if there exists a fault
detection filter Q(λ) such that for each j , j = 1, . . . ,m f , all control inputs u and
all disturbance inputs d, the residual r �= 0 if f j �= 0 and fk = 0 for all k �= j.

We have the following result to characterize fault detectability.

Theorem 3.1 For the system (3.2) the j-th fault is detectable if and only if

rank
[
Gd(λ) G f j (λ)

]
> rank Gd(λ), (3.6)

where G f j (λ) is the j-th column of G f (λ) and rank (·) is the normal rank (i.e., over
rational functions) of a rational matrix.

Proof To prove necessity, we show that the assumption of the detectability of f j
implies condition (3.6). If f j is detectable, then there exists a filter Q(λ) such that if
f j (λ) �= 0 and fk(λ) = 0 for k �= j , the corresponding residual in (3.4)

r(λ) = R f j (λ)f j (λ) + Ru(λ)u(λ) + Rd(λ)d(λ) (3.7)
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is nonzero for all u(λ) and d(λ), where R f j (λ) is the j-th column of R f (λ). In
particular, there always exists a scalar output filter Q(λ) which fulfills the above
conditions. From (3.7) it follows that it is necessary that the corresponding Ru(λ)

and Rd(λ) in (3.4) satisfy Ru(λ) = 0 and Rd(λ) = 0, otherwise there always exist
control inputs and disturbances which make r(λ) = 0 for any f j (λ). It follows that

r(λ) = R f j (λ)f j (λ), (3.8)

To guarantee the sensitivity of r to f j , R f j (λ) must be nonzero.
Condition (3.8) together with Ru(λ) = 0 and Rd(λ) = 0 can be transcribed into

a linear rational matrix equation fulfilled by Q(λ)

Q(λ)

[
G f j (λ) Gu(λ) Gd(λ)

0 Imu 0

]
= [

R f j (λ) 0 0
]

. (3.9)

This equation has a solution Q(λ) if and only if the following rank condition for the
compatibility of the linear system (3.9) is fulfilled

rank

[
G f j (λ) Gu(λ) Gd(λ)

0 Imu 0

]
= rank

⎡

⎣
G f j (λ) Gu(λ) Gd(λ)

0 Imu 0
R f j (λ) 0 0

⎤

⎦ .

Since rank R f j (λ) = 1, by equating the ranks of the left- and right-hand sidesmatrices
above, we obtain

mu + rank
[
G f j (λ) Gd(λ)

] = mu + 1 + rank Gd(λ) ,

which is equivalent to (3.6).
To prove the sufficiency of (3.6), we determine a filter Q(λ) such that if f j (λ) �= 0

and fk(λ) = 0 for k �= j , the residual r(λ) in (3.7) is nonzero for all u(λ) and d(λ).
For this, we can choose an arbitrary R f j (λ) �= 0 and determine Q(λ) by solving the
Eq. (3.9), whose solvability is guaranteed by condition (3.6). �

The following extension of Theorem 3.1 characterizes the complete fault
detectability:

Theorem 3.2 The system (3.2) is completely fault detectable if and only if

rank
[
Gd(λ) G f j (λ)

]
> rank Gd(λ), j = 1, . . . ,m f . (3.10)

Proof The necessity follows simply by applying Theorem 3.1 for each individual
fault f j . To prove sufficiency, we need to show that there exists a single filter Q(λ)

such that the residual r is sensitive to all faults. This is equivalent to asking that
all columns of the corresponding R f (λ) in (3.5) are nonzero. The conditions (3.10)
guarantee that each fault is detectable, and therefore, we can build for each fault f j
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a filter Q( j)(λ) such that the corresponding R f j (λ) is nonzero and Q( j)(λ) satisfies
the linear rational equation

Q( j)(λ)

[
G f j (λ) Gu(λ) Gd(λ)

0 Imu 0

]
=

[
R( j)

f j
(λ) 0 0

]
.

We define

Q(λ) :=
⎡

⎢
⎣

Q(1)(λ)
...

Q(m f )(λ)

⎤

⎥
⎦ ,

for which the corresponding R f (λ) has the following partitioned form

R f (λ) =

⎡

⎢⎢
⎣

R(1)
f1

(λ) · · · ∗
...

. . .
...

∗ · · · R
(m f )

fm f
(λ)

⎤

⎥⎥
⎦ .

Each of the m f columns of R f (λ) is nonzero because of the presence of the nonzero
diagonal blocks R( j)

f j
(λ) for j = 1, . . . ,m f . �

Remark 3.1 The complete fault detectability condition (3.10) is generically fulfilled
if p > md , which is also a necessary condition for complete fault detectability. This
imposes that there must be more output measurements than disturbance inputs. �

Remark 3.2 For the casemd = 0, condition (3.10) reduces to the input observability
conditions of all faults

G f j (λ) �= 0, i = 1, . . .m f . (3.11)

Note that in several works, this simpler condition is used for the definition of com-
plete fault detectability. While these conditions are necessary for complete fault
detectability, they are not sufficient for the existence of a filter guaranteeing that all
columns of the corresponding R f (λ) are nonzero. �

Remark 3.3 For the characterization of complete fault detectability, the stability
and properness of the filter Q(λ) and of the corresponding R f (λ) play no role.
However, it is easy to see that we can always impose that both Q(λ) and R f (λ)

are proper and stable, because any filter Q(λ) can be replaced by an updated filter
M(λ)Q(λ), where M(λ) is a stable invertible TFMwhich can be always chosen such
that M(λ)[ Q(λ) R f (λ) ] is stable and proper (see Sect. 9.1.6). �

Strong fault detectability is a concept related to the reliability and easiness of
performing fault detection. The main idea behind this concept is the ability of the
residual generators to produce persistent residual signals in the case of persistent
fault excitation. For example, for reliable fault detection it is advantageous to have
an asymptotically non-vanishing residual signal in the case of persistent faults as step

http://dx.doi.org/10.1007/978-3-319-51559-5_9
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or sinusoidal signals. On the contrary, the lack of strong fault detectability may make
the detection of these type of faults more difficult, because their effects manifest in
the residual only during possibly short transients, thus the effect disappears in the
residual after an enough long time although the fault itself still persists.

The definitions of strong fault detectability and complete strong fault detectability
given below cover several classes of persistent fault signals. Let Ω ⊂ ∂Cs be a set
of complex frequencies, which characterize the classes of persistent fault signals
in question. Common choices in a continuous-time setting are Ω = {0} for a step
signal or Ω = {iω} for a sinusoidal signal of frequency ω. However, Ω may contain
several such frequency values or even a whole interval of frequency values, such
as Ω = {iω | ω ∈ [ ω1, ω2 ]}. We denote by FΩ the class of persistent fault signals
characterized by Ω .

Definition 3.3 For the system (3.2) and a given set of frequencies Ω ⊂ ∂Cs , the
j-th fault f j is strong fault detectable with respect to Ω if there exists a stable fault
detection filter Q(λ) such that for all control inputs u and all disturbance inputs d,
the residual r(t) �= 0 for t → ∞ if f j ∈ FΩ and fk = 0 for all k �= j.

Definition 3.4 The system (3.2) is completely strong fault detectablewith respect to
a given set of frequenciesΩ ⊂ ∂Cs , if there exists a stable fault detection filter Q(λ)

such that for each j = 1, . . . ,m f , all control inputs u and all disturbance inputs d,
the residual r(t) �= 0 for t → ∞ if f j ∈ FΩ and fk = 0 for all k �= j.

For a given stable filter Q(λ) checking the strong detection property of the filter for
the j-th fault f j involves to check that R f j (λ) has no zeros in Ω . A characterization
of strong detectability as a system property is given in what follows.

Theorem 3.3 Let Ω ⊂ ∂Cs be a given set of frequencies. For the system (3.2), f j
is strong fault detectable with respect to Ω if and only if f j is fault detectable and

the rational matrices Ge, j (λ) and

[
Ge, j (λ)

Fe(λ)

]
have the same zero structure for each

λz ∈ Ω , where

Ge, j (λ) :=
[
G f j (λ) Gu(λ) Gd(λ)

0 Imu 0

]
, Fe(λ) := [ 1 01×mu 01×md ] . (3.12)

Proof First we prove the necessity. Strong fault detectability trivially implies fault
detectability. Along the lines of reasoning in the proof of necessity of Theorem 3.1,
the condition (3.8) together with Ru(λ) = 0 and Rd(λ) = 0 can be transcribed into
the matrix equation (3.9) to be fulfilled by any scalar output filter Q(λ)

Q(λ)Ge, j (λ) = Fe, j (λ), (3.13)

where Fe, j (λ) := [ R f j (λ) 0 0 ] is a stable TFM. According to Lemma 9.5, this equa-
tion has a stable solution Q(λ) if and only if rank

[
Gd(λ) G f j (λ)

]
> rankGd(λ)

http://dx.doi.org/10.1007/978-3-319-51559-5_9
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(fault detectability of f j ), andGe, j (λ) and

[
Ge, j (λ)

Fe, j (λ)

]
have the same pole-zero struc-

ture for all λz ∈ Cu . Since Fe, j (λ) is assumed stable, the condition on poles is trivially
fulfilled, while the condition on zeros includes the requirement for having the same
zero structure for all λz ∈ Ω (because Ω ⊂ Cu). Since R f j (λ) must not have zeros
in any λz ∈ Ω , the condition on the lack of zeros inΩ must be fulfilled, in particular,
for R f j (λ) = 1.

To prove sufficiency, we determine a stable scalar output filter Q(λ) such that if
f j (λ) �= 0 and fk(λ) = 0 for k �= j , the residual r(λ) in (3.7) is nonzero for all u(λ)

and d(λ), and the corresponding R f j (λ) has no zeros in Ω . For this, we solve for
Q̃(λ) the linear rational matrix equation Q̃(λ)Ge, j (λ) = Fe(λ), whose solvability is
guaranteed by the fault detectability condition of f j . Furthermore, the condition on
the zero structures in λz ∈ Ω (see Lemma 9.5) ensures that the resulting solution
Q̃(λ) has no poles in Ω . However, Q̃(λ) may still have poles in Cu or at infinity.
In this case, we can choose a stable proper transfer function M(λ), without zeros
in Ω , such that Q(λ) := M(λ)Q̃(λ) is stable and proper (see Sect. 9.1.6), and the
corresponding R f j (λ) = M(λ) is stable and has no zeros in Ω . �

Remark 3.4 A necessary condition for strong fault detectability of f j is that G f j (λ)

has no zeros in Ω . This follows from the condition on zeros in Theorem 3.3, which
guarantees the existence of a solution Q(λ), without poles in Ω , of the equation
Q(λ)Ge, j (λ) = Fe(λ). This includes the solvability of the equation

Q(λ)

[
G f j (λ)

0

]
= 1 ,

with Q(λ) having no poles in Ω , which requires that G f j (λ) has no zeros
in Ω . �

Remark 3.5 Strong fault detectability implies fault detectability, which can be thus
assimilated with a kind of weak fault detectability property. For the characterization
of the strong fault detectability, we can impose aweaker condition, involving only the
existence of a filter Q(λ) without poles in Ω (instead imposing stability). For such
a filter Q(λ), the stability can always be achieved by replacing Q(λ) by M(λ)Q(λ),
where M(λ) is a stable and invertible TFM without zeros in Ω . Such an M(λ) can
be determined from a left coprime factorization with least-order denominator of
[ Q(λ) R f (λ) ] (see Sect. 9.1.6). �

Example 3.1 Consider the continuous-time system of the form (3.2) with

Gu(s) =
[

1
s
1
s

]

, Gd (s) =
[

0
s

s+3

]
, G f (s) =

[
s+1
s+2
1

s+2

]

and Ω = {0}. Since Ge,1(s) has a double zero in 0, while

[
Ge,1(λ)

Fe(λ)

]
has only a single zero in 0, it

follows that this system is not strongly fault detectable for constant faults. ♦

http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_9
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Example 3.2 Consider a slightly different continuous-time system of the form (3.2) with

Gu(s) =
[

1
s+1
1

s+1

]

, Gd (s) =
[

0
s

s+3

]
, G f (s) =

[
s+1
s+2
1

s+2

]

and Ω = {0}. Since both Ge,1(s) and

[
Ge,1(λ)

Fe(λ)

]
have a single zero in 0, it follows, that the system

is strongly fault detectable for constant fault inputs. For example, the fault detection filter

Q(s) = [
1 0 − 1

s+1

]

achieves

Ru(s) = 0, Rd (s) = 0, R f (s) = s + 1

s + 2
.

♦

For complete strong fault detectability, the strong fault detectability of each indi-
vidual fault is necessary, however, it is not a sufficient condition. This fact is illustrated
in the following example.

Example 3.3 Consider the system with

Gu(s) = 0, Gd (s) = 0, G f (s) = [
1 1

s

]
, Gw(s) = 0 .

The checks of Theorem 3.3 indicate strong detectability of both fault inputs f1 and f2 for constant
fault inputs. However, it is easy to see that there is no stable filter Q(s) such that the corresponding
R f (s) = Q(s)G f (s) is stable and both R f1 (0) and R f2 (0) are nonzero. For example, with Q(s) =
s/(s + 1) the corresponding R f (s) is

R f (s) = [ s
s+1

1
s+1

]
.

Since R f1 (0) = 0, strong fault detectability is not achieved. This fact has a simple explanation.
Any filter which makes R f (s) stable must have a zero at s = 0, which therefore becomes a zero of
R f1 (s) too. ♦

The following theorem gives a general characterization of the complete strong
fault detectability as a system property.

Theorem 3.4 LetΩ be the set of frequencies which characterize the persistent fault
signals. The system (3.2)withw ≡ 0 is completely strong fault detectablewith respect
to Ω if and only if each fault f j , for j = 1, . . . ,m f , is strong fault detectable with
respect to Ω and all G f j (λ), for j = 1, . . . ,m f , have the same pole structure in λp

for all λp ∈ Ω .

Proof To prove necessity, we observe first that the complete strong fault detectability
with respect to Ω trivially implies the strong fault detectability with respect to Ω of
all fault inputs f j , for j = 1, . . . ,m f . According to Remark 3.4, this also implies that
G f j (λ) has no zeros in Ω . Let Q(λ) be any scalar output fault detection filter such
that Q(λ) and the corresponding R f (λ) are stable, and, for all λp ∈ Ω , R f j (λp) �= 0,
j = 1, . . . ,m f . Each G f j (λ), for j = 1, . . . ,m f , can be expressed in the form
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G f j (λ) = 1

β( j)(λ)
G̃ f j (λ) ,

where β( j)(λ) is a monic polynomial1 whose roots are the poles of G f j (λ) in Ω , and
G̃ f j (λ) has no poles (and also no zeros) in Ω . Since Q(λ) is a stable filter which
satisfies the linear equation

Q(λ)

[
G f j (λ)

0

]
= R f j (λ) ,

it follows that Q(λ) must have the form Q(λ) = β( j)(λ)Q̃( j)(λ), where Q̃( j)(λ) is a
stable TFM which satisfies

Q̃( j)(λ)

[
G̃ f j (λ)

0

]
= R f j (λ) ,

Moreover, since G̃ f j (λz) �= 0 for all λz ∈ Ω , it follows that Q̃( j)(λz) �= 0 as well,
thus Q̃( j)(λ) has no zeros in Ω . For any two distinct values i and j , we have
β(i)(λ)Q̃(i)(λ) = β( j)(λ)Q̃( j)(λ), and therefore,we can express, for example, Q̃(i)(λ)

as

Q̃(i)(λ) = β( j)(λ)

β(i)(λ)
Q̃( j)(λ) .

Since both Q̃(i)(λ) and Q̃( j)(λ) are stable and have no zeros in Ω , the above relation
can be fulfilled only if β(i)(λ) = β( j)(λ). It follows, that all G f j (λ) must have the
same set of poles in Ω .

To prove sufficiency we show that we can construct a stable filter Q(λ) such that
the corresponding R f (λ) is stable and none of its columns R f j (λ), for j = 1, . . . ,m f ,
has zeros inΩ . Since allG f j (λ), for j = 1, . . . ,m f , have the same pole structure for
all λp ∈ Ω , we can express each G f j (λ) in the form G f j (λ) = G̃ f j (λ)/β(λ), where
β(λ) is the monic polynomial whose roots are the common poles in Ω of G f j (λ),
for j = 1, . . . ,m f , and, consequently, G̃ f j (λ), for j = 1, . . . ,m f , have no poles in
Ω . The strong fault detectability of each fault component f j , allows to determine a
stable scalar output filter Q( j)(λ) such that

Q( j)(λ)

[
G f j (λ) Gu(λ) Gd(λ)

0 Imu 0

]
=

[
R( j)

f j
(λ) 0 0

]
,

with R( j)
f j

(λ) having no poles in Ω and R( j)
f j

(λz) �= 0 for all λz ∈ Ω . Since Q( j)(λ)

also satisfies

Q( j)(λ)

[
G̃ f j (λ)

0

]
/β(λ) = R( j)

f j
(λ) ,

1A monic polynomial has its leading coefficient equal to 1.
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it must have the form Q( j)(λ) = β(λ)Q̃( j)(λ), with Q̃( j)(λ) stable and without zeros
in Ω . For all i = 1, . . . ,m f we have

R( j)
fi

(λ) := Q̃( j)(λ)

[
G̃ fi (λ)

0

]

and therefore, all R( j)
fi

(λ), for i = 1, . . . ,m f , have no poles in Ω . To enforce the

stability of all R( j)
fi

(λ), i = 1, . . . ,m f , we can replace Q̃( j)(λ) by χ( j)(λ)Q̃( j)(λ),
where χ( j)(λ) is a suitably chosen proper stable rational function without zeros in
Ω (see Sect. 9.1.6). Therefore, the resulting updated R( j)

f j
(λ) ← χ( j)(λ)R( j)

f j
(λ) is

guaranteed to have no zeros in Ω .
We obtain the overall stable filter Q(λ) and the corresponding stable R f (λ) in the

block-structured forms

Q(λ) :=
⎡

⎢
⎣

Q(1)(λ)
...

Q(m f )(λ)

⎤

⎥
⎦ , R f (λ) =

⎡

⎢⎢
⎣

R(1)
f1

(λ) · · · ∗
...

. . .
...

∗ · · · R
(m f )

fm f
(λ)

⎤

⎥⎥
⎦ .

We see that for all λz ∈ Ω , each of the m f columns of R f (λz) is nonzero because of
the presence of the nonzero diagonal blocks R( j)

f j
(λz) for j = 1, . . . ,m f . �

Example 3.4 Consider the system with

Gu(s) = 0, Gd (s) = 0, G f (s) =
[

1
s

1
s(s+2)

]
, Gw(s) = 0,

where both G f1 (s) and G f2 (s) have a pole in the origin. For Q(s) = s/(s + 1) the corresponding
R f (s) is

R f (s) = Q(s)G f (s) =
[

1
s+1

1
(s+1)(s+2)

]

and therefore the system is completely strong fault detectable for constant faults. ♦

The following straightforward consequence of Theorem 3.4 states that, when
G f (λ) has no poles in Ω , the strong fault detectability of all individual faults is a
necessary and sufficient condition for complete strong fault detectability.

Corollary 3.1 Let Ω ⊂ ∂Cs be a given set of frequencies. The system (3.2) with
G f (λ) having no poles in Ω is completely strong fault detectable with respect to Ω

if and only if each fault f j , for j = 1, . . . ,m f , is strong fault detectable with respect
to Ω .

3.4 Fault Isolability

While the detectability of a fault can be individually defined and checked, for the
definition of fault isolability, we need to deal with the interactions among all fault

http://dx.doi.org/10.1007/978-3-319-51559-5_9
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inputs. Therefore for fault isolation, we assume a structuring of the residual vector
r into nb subvectors as in (3.1), where each individual qi -dimensional subvector r (i)

is differently sensitive to faults. We assume that each fault f j is characterized by a
distinct pattern of zeros and ones in a nb-dimensional vector s j called the signature of
the j-th fault. Then, fault isolation consists of recognizing which signature matches
the resulting decision vector ι generated by the FDD system in Fig. 3.1 according to
the partitioning of r in (3.1).

For the discussion of fault isolability, we will assume that no noise input is present
in the model (3.2) (w ≡ 0). The structure of the residual vector in (3.1) corresponds
to a q × m f TFM Q(λ) (q = ∑nb

i=1 qi ) of the residual generation filter, built by
stacking a bank of nb filters Q(1)(λ), . . ., Q(nb)(λ) as

Q(λ) =
⎡

⎢
⎣

Q(1)(λ)
...

Q(nb)(λ)

⎤

⎥
⎦ . (3.14)

Thus, the i-th subvector r (i) is the output of the i-th filter with the qi × m f TFM
Q(i)(λ)

r(i)(λ) = Q(i)(λ)

[
y(λ)

u(λ)

]
. (3.15)

Let R f (λ) be the corresponding q × m f fault-to-residual TFM in (3.4) andwe denote

R(i)
f j

(λ) := Q(i)(λ)

[
G f j (λ)

0

]
, the qi × 1 (i, j)-th block of R f (λ) which describes

how the j-th fault f j influences the i-th residual subvector r (i). Thus, R f (λ) is an
nb × m f block-structured TFM of the form

R f (λ) =

⎡

⎢⎢
⎣

R(1)
f1

(λ) · · · R(1)
fm f

(λ)

...
. . .

...

R(nb)
f1

(λ) · · · R(nb)
fm f

(λ)

⎤

⎥⎥
⎦ . (3.16)

We associate to such a structured R f (λ) the nb × m f structure matrix SR f whose
(i, j)-th element is defined as

SR f (i, j) = 1 if R(i)
f j

(λ) �= 0 ,

SR f (i, j) = 0 if R(i)
f j

(λ) = 0 .
(3.17)

If SR f (i, j) = 1 then we say that the residual component r (i) is sensitive to the j-th
fault f j , while if SR f (i, j) = 0 then the j-th fault f j is decoupled from r (i).

Fault isolability is a property which involves all faults and this is reflected in the
following definition, which relates the fault isolability property to a certain structure
matrix S. For a given structure matrix S, we refer to the i-th row of S as the specifi-
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cation associated with the i-th residual component r (i), while the j-th column of S
is called the signature (or code) associated with the j-th fault f j .

Definition 3.5 For a given nb × m f structure matrix S, the model (3.2) is S-fault
isolable if there exists a fault detection filter Q(λ) such that SR f = S.

When solving fault isolation problems, the choice of a suitable structure matrix
S is an important aspect. This choice is, in general, not unique and several choices
may lead to satisfactory synthesis results.We discuss shortly only some basic aspects
regarding the choice of S and for a pertinent discussion, the literaturementioned at the
end of this chapter can be consulted. In this context, the availability of the maximally
achievable structurematrix is of paramount importance, because it allows to construct
any S by simply selecting a (minimal) number of achievable specifications (i.e.,
rows of this matrix). The Procedure GENSPEC, presented in Sect. 5.4, allows the
computation of the maximally achievable structure matrix for a given system.

The choice of S should usually reflect the fact that complete fault detectability
must be a necessary condition for the S-fault isolability. This requirement is fulfilled
if S is chosen without zero columns. Also, for the unequivocal isolation of the j-th
fault, the corresponding j-th column of S must be different from all other columns.
Structure matrices having all columns pairwise distinct are called weakly isolating.
Fault signatures which results as (logical OR) combinations of two or more columns
of the structure matrix, can be occasionally employed to isolate simultaneous faults,
provided they are distinct from all columns of S. In this sense, a structure matrix S
which allows the isolation of an arbitrary number of simultaneously occurring faults
is called strongly isolating. It is important to mention in this context that a system
which is not fault isolable for a given S may still be fault isolable for another choice
of the structure matrix.

Before we establish formal conditions for fault isolability, we consider several
examples of structure matrices for a system with m f = 4 faults to illustrate several
important types of fault isolability.

1. The structure matrix
S = [

1 1 1 1
]

characterizes the complete fault detectability property and allows the detection
(but no isolation) of any fault or an arbitrary number of simultaneous faults.

2. The structure matrix

S =

⎡

⎢⎢
⎣

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤

⎥⎥
⎦

characterizes a kindofweak fault isolability,which allows to isolate any individual
fault occurring one at a time. This structure has the remarkable property that it

http://dx.doi.org/10.1007/978-3-319-51559-5_5
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can cope with partial firings of the residual components, without producing false
alarms.2

3. The structure matrix

S =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

characterizes the strong fault isolability. This structure matrix allows to isolate an
arbitrary number of simultaneous faults, because any (logical OR) combination
of two or more columns of S leads to a fault signature which can be unequivocally
associated to a certain occurrence of simultaneous faults.

4. The block-diagonal structure matrix

S =
⎡

⎣
1 0 0 0
0 1 1 0
0 0 0 1

⎤

⎦

characterizes a weaker form of strong isolability called strong block fault isola-
bility. It allows to isolate simultaneous faults belonging to three different groups
of faults.

5. The structure matrix

S =
⎡

⎣
0 1 1 1
1 0 0 1
1 1 1 0

⎤

⎦

characterizes a kind of weak block fault isolability, which allows to isolate three
groups of faults, with faults in different groups occurring one at a time.

To characterize the fault isolability property, we observe that each block row
Q(i)(λ) of the TFM Q(λ) is itself a fault detection filter which must achieve the
specification contained in the i-th row of S. Thus, the isolability conditions will con-
sist of a set of nb independent conditions, each of them characterizing the complete
detectability of particular subsets of faults. We have the following straightforward
characterization of fault isolability.

Theorem 3.5 For a given nb × m f structure matrix S, the model (3.2) is S-fault
isolable if and only if for i = 1, . . . , nb

rank [Gd(λ) Ĝ(i)
d (λ) G f j (λ) ] > rank[Gd(λ) Ĝ(i)

d (λ) ], ∀ j, Si j �= 0 , (3.18)

where Ĝ(i)
d (λ) is formed from the columns G f j (λ) of G f (λ) for which Si j = 0.

Proof According to the specification encoded in the i-th row of S, the corresponding
residual r (i) must be decoupled from all faults for which Si j = 0. We simply redefine

2This structure matrix is called in [48] strongly isolating.
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these faults as fictive disturbances and build the corresponding TFM Ĝ(i)
d (λ). Now,

we apply the results of Theorem 3.1 for a system with an extended disturbance
set characterized by the TFM [Gd(λ) Ĝ(i)

d (λ) ] to obtain condition (3.18) for the
complete detectability of all faults f j for which Si j �= 0. �

The conditions (3.18) of Theorem3.5 give a very general characterization of isola-
bility of faults. An important particular case is strong fault isolability, in which case
S = Im f , and thus diagonal. The following result characterizes the strong isolability.

Theorem 3.6 The model (3.2) is strongly fault isolable if and only if

rank [Gd(λ) G f (λ) ] = rank Gd(λ) + m f . (3.19)

Proof Since S = Im f , R f (λ) must be a full-column rank block-diagonal TFM and

r(λ) = R f (λ)f(λ) . (3.20)

This condition together with Ru(λ) = 0 and Rd(λ) = 0 can be expressed as the
matrix equation to be satisfied by Q(λ)

Q(λ)

[
G f (λ) Gu(λ) Gd(λ)

0 Imu 0

]
= [

R f (λ) 0 0
]

.

This equation has a solution Q(λ) if and only if the following rank condition for
compatibility is fulfilled

rank

[
G f (λ) Gu(λ) Gd(λ)

0 Imu 0

]
= rank

⎡

⎣
G f (λ) Gu(λ) Gd(λ)

0 Imu 0
R f (λ) 0 0

⎤

⎦ .

Since rank R f (λ) = m f , by equating the ranks of the left- and right-hand sides
matrices above, we obtain

mu + rank
[
G f (λ) Gd(λ)

] = mu + m f + rank Gd(λ) ,

which is equivalent to (3.19). �

Note that this result can be also derived as a corollary of Theorem 3.5 for the case
S = Im f .

Remark 3.6 Generically, the strong fault isolability condition (3.19) is fulfilled if
p ≥ m f + md , which imposes that the systemmust have at least as manymeasurable
outputs as fault and disturbance inputs counted together. �

Remark 3.7 In the case md = 0, the strong fault isolability condition reduces to the
left invertibility condition
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rank G f (λ) = m f . (3.21)

This condition is a necessary condition even in the case md �= 0 (otherwise R f (λ)

would not have full column rank). �
Remark 3.8 The definition of the structure matrix SR f associated with a given TFM
R f (λ) can be extended to cover the strong fault detectability requirement defined
by Ω ⊂ ∂Cs , where Ω is the set of relevant frequencies. This comes down to a
straightforward modification of the definition (3.17) of the structure matrix

SR f (i, j) = 1 if R(i)
f j

(λz) �= 0 for all λz ∈ Ω ,

SR f (i, j) = 0 if R(i)
f j

(λz) = 0 for some λz ∈ Ω .
(3.22)

�

3.5 Fault Detection and Isolation Problems

In this section we formulate several synthesis problems of fault detection and isola-
tion filters for LTI systems. These problems can be considered as a minimal (canon-
ical) set to cover the needs of most practical applications. For the solution of these
problems we seek linear residual generators (or fault detection filters) of the form
(3.3), which process the measurable system outputs y(t) and known control inputs
u(t) and generate the residual signals r(t), which serve for decision-making on the
presence or absence of faults. The standard requirements on all TFMs appearing in
the implementation form (3.3) and internal form (3.4) of the fault detection filter
are properness and stability, to ensure physical realizability of the filter Q(λ) and
to guarantee a stable behaviour of the FDD system. The order of the filter Q(λ)

is its McMillan degree, that is the dimension of the state vector of a minimal state-
space realization of Q(λ). For practical purposes, lower order filters are preferable to
larger order ones, and therefore, determining least-order residual generators is also
a desirable synthesis goal. Finally, while the dimension q of the residual vector r(t)
depends on the fault detection problem to be solved, filters with the least number of
outputs, are always of interest for practical usage.

For the solution of fault detection and isolation problems it is always possible
to completely decouple the control input u(t) from the residual r(t) by requiring
Ru(λ) = 0. Regarding the disturbance input d(t) and noise input w(t) we aim to
impose a similar condition on the disturbance input d(t) by requiring Rd(λ) = 0,
while minimizing simultaneously the effect of noise input w(t) on the residual (e.g.,
by minimizing the norm of Rw(λ)). Thus, from a practical synthesis point of view,
the distinction between d(t) and w(t) lies solely in the way these signals are treated
when solving the residual generator synthesis problem.

In all fault detection problems formulated in what follows, we require that by a
suitable choice of a stable fault detection filter Q(λ), we achieve that the residual
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signal r(t) is fully decoupled from the control input u(t) and disturbance input d(t).
Thus, the following decoupling conditions must be fulfilled for the filter synthesis

(i) Ru(λ) = 0 ,

(i i) Rd(λ) = 0 .
(3.23)

In the case when condition (i i) can not be fulfilled (e.g., due to lack of sufficient
number of measurements), we can redefine some (or even all) components of d(t)
as noise inputs and include them in w(t).

For each fault detection problem formulated inwhat follows, specific requirements
have to be fulfilled, which are formulated as additional synthesis conditions. For all
formulated problems we also give the existence conditions of the solutions of these
problems.

3.5.1 Exact Fault Detection Problem

For the exact fault detection problem (EFDP) the basic additional requirement is
simply to achieve by a suitable choice of a stable and proper fault detection filter
Q(λ) that, in the absence of noise input (i.e., w ≡ 0), the residual r(t) is sensitive to
all fault components f j (t), j = 1, . . . ,m f . Thus, the following detection condition
has to be fulfilled:

(i i i) R f j (λ) �= 0, j = 1, . . . ,m f with R f (λ) stable. (3.24)

This is precisely the complete fault detectability requirement (see also Remark 3.3)
and leads to the following solvability condition:

Theorem 3.7 For the system (3.2) with w ≡ 0 the EFDP is solvable if and only if
the system (3.2) is completely fault detectable.

Proof On the basis of Theorem 3.2, the synthesis conditions (3.23) and (3.24), with-
out enforcing the stability of Q(λ) and R f (λ), can be fulfilled provided the sys-
tem (3.2) is completely fault detectable. To ensure the stability of both Q(λ) and
R f (λ), the filter Q(λ) and its internal form R f (λ) can be replaced by M(λ)Q(λ)

and M(λ)R f (λ), respectively, where

M−1(λ)N (λ) = [ Q(λ) R f (λ) ]

is a stable left coprime factorization. �

Let Ω ⊂ ∂Cs be a given set of frequencies which characterize the relevant per-
sistent faults. We can give a similar result in the case when the EFDP is solved with
the following strong detection condition to be fulfilled:
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(i i i)′ R f j (λz) �= 0, ∀λz ∈ Ω, j = 1, . . . ,m f with R f (λ) stable. (3.25)

The solvability condition of the EFDP with the strong detection condition above
is precisely the complete strong fault detectability requirement as stated by the fol-
lowing theorem.

Theorem 3.8 LetΩ be the set of frequencies which characterize the persistent fault
signals. For the system (3.2) withw ≡ 0 the EFDPwith the strong detection condition
(3.25) is solvable if and only if the system (3.2) is completely strong fault detectable
with respect to Ω .

Proof On the basis of Theorem 3.4, the synthesis conditions (3.23), (3.24) and
(3.25) can be fulfilled provided the system (3.2) with w ≡ 0 is complete strong
fault detectable with respect to Ω . �

3.5.2 Approximate Fault Detection Problem

The effects of the noise inputw(t) can usually not be fully decoupled from the residual
r(t). In this case, the basic requirements for the choice of Q(λ) can be expressed
to achieve that the residual r(t) is influenced by all fault components f j (t) and the
influence of the noise signal w(t) is negligible. For the approximate fault detection
problem (AFDP) the following two additional conditions have to be fulfilled:

(i i i) R f j (λ) �= 0, j = 1, . . . ,m f with R f (λ) stable;
(iv) Rw(λ) ≈ 0, with Rw(λ) stable.

(3.26)

Here, (i i i) is the detection condition of all faults employed also in the EFDP,
while (iv) is the attenuation condition for the noise input. The condition Rw(λ) ≈ 0
expresses the requirement that the transfer gain ‖Rw(λ)‖ (measured by any suitable
norm) can be made arbitrarily small.

The solvability conditions of the formulated AFDP can be easily established:

Theorem 3.9 For the system (3.2) the AFDP is solvable if and only if the EFDP is
solvable.

Proof We can always determine a solution Q(λ) of the EFDP such that additionally
the resulting Rw(λ) is stable. Moreover, by rescaling Q(λ) with a constant factor γ ,
the norm of Rw(λ)/γ can be made arbitrarily small. The necessity is trivial, because
any solution of the AFDP is also a solution of the EFDP. �

Remark 3.9 The proof of theorem relies on the fact that any solution Q(λ) of the
EFDP can be also used as a solution of the AFDP. While mathematically this is true,
still the employed scaled filter Q(λ)/γ which makes ‖Rw(λ)/γ ‖ “small” reduces
simultaneously ‖R f (λ)/γ ‖, while preserving the fault detectability property. In prac-
tical applications, the usefulness of a solution Q(λ) of the AFDP must be judged by
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taking into account the maximum size wmax of the noise signal and the desired min-
imum detectable sizes of faults. Since Q(λ) automatically ensures that Ru(λ) = 0
and Rd(λ) = 0, the corresponding residual is given by

r(λ) = Rw(λ)w(λ) + R f (λ)f(λ) .

If f j,min is the desired minimum detectable size of the j-th fault f j , then a filter Q(λ)

is satisfactory provided the least size faults can be detected in the presence of the
worst-case (i.e., maximum size) noise inputs. This is achieved if

min
j

(‖R f j (λ)‖ f j,min) > ‖Rw(λ)‖wmax .

It follows, that for assessing the usefulness of a design, not the size of ‖Rw(λ)‖ is
the relevant measure, but the ratio

min j (‖R f j (λ)‖ f j,min)

‖Rw(λ)‖wmax
.

Therefore, a meaningful goal for the synthesis methods which solve the AFDP is to
determine a filter Q(λ) which maximizes this ratio. �

3.5.3 Exact Fault Detection and Isolation Problem

For a row block-structured fault detection filter Q(λ) as in (3.14), let R f (λ) be
the corresponding block-structured fault-to-residual TFM as defined in (3.16) with
nb × m f blocks, and let SR f be the corresponding nb × m f structure matrix defined
in (3.17) (see Sect. 3.4). Let s j , j = 1, . . . ,m f be a set of nb-dimensional binary
signature vectors associated to the faults f j , j = 1, . . . ,m f , which form the desired
structure matrix S := [ s1 . . . sm f ]. The exact fault detection and isolation problem
(EFDIP) requires to determine for a given nb × m f structure matrix S, a stable and
proper filter Q(λ) of the form (3.14) such that the following condition is additionally
fulfilled:

(i i i) SR f = S, with R f (λ) stable. (3.27)

We have the following straightforwardsolvability condition:

Theorem 3.10 For the system (3.2) with w ≡ 0 and a given structure matrix S, the
EFDIP is solvable if and only if the system (3.2) is S-fault isolable.

Proof The synthesis conditions (3.23) and (3.27), without enforcing the stability of
Q(λ) and R f (λ), can be fulfilled provided the system (3.2) is S-fault isolable. To
ensure the stability of both Q(λ) and R f (λ), the filter Q(λ) and its internal form
R f (λ) can be replaced by M(λ)Q(λ) and M(λ)R f (λ), respectively, where
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M−1(λ)N (λ) = [ Q(λ) R f (λ) ]

is a stable left fractional factorization with M(λ) diagonal (see Sect. 9.1.6).

A similar result can be established for the case when S is them f -th order identity
matrix S = Im f . We call the associated synthesis problem the strong EFDIP. The
proof is similar to that of Theorem 3.10.

Theorem 3.11 For the system (3.2) with w ≡ 0 and S = Im f , the EFDIP is solvable
if and only if the system (3.2) is strongly fault isolable.

3.5.4 Approximate Fault Detection and Isolation Problem

Let S be a desired nb × m f structure matrix targeted to be achieved by using a
structured fault detection filter Q(λ) with nb row blocks as in (3.14). The nb × m f

block-structured fault-to-residual TFM R f (λ), corresponding to Q(λ) is defined in
(3.16). It can be additively decomposed as R f (λ) = R̃ f (λ) + R f (λ), where R̃ f (λ)

and R f (λ) have the same block structure as R f (λ) and have their (i, j)-th blocks
defined as

R̃(i)
f j

(λ) = Si j R
(i)
f j

(λ), R
(i)
f j (λ) = (1 − Si j )R

(i)
f j

(λ) .

To address the approximate fault detection and isolation problem, we will target to
enforce for the part R̃ f (λ) of R f (λ) the desired structure matrix S, while the part
R f (λ) must be (ideally) negligible. The approximate fault detection and isolation
problem (AFDIP) can be formulated as follows. For a given nb × m f structurematrix
S, determine a stable and proper filter Q(λ) in the form (3.14) such that the following
conditions are additionally fulfilled:

(i i i) SR̃ f
= S, R f (λ) ≈ 0, with R f (λ) stable,

(iv) Rw(λ) ≈ 0, with Rw(λ) stable.
(3.28)

It is straightforward to show that a necessary and sufficient condition for the
solvability of the AFDIP is the solvability of the EFDP.

Theorem 3.12 For the system (3.2) and a given structure matrix S without zero
columns, the AFDIP is solvable if and only if the EFDP is solvable.

Proof The necessity trivially follows for any structure matrix S without zero
columns, since the solvability of the EFDP in the case w ≡ 0, corresponds to a
1 × m f binary structure matrix with all elements equal to one. Such a structure
matrix can be built as the (logical) sum of all rows of the given S (e.g., using the
elementary binary operations 1 ⊕ 0 = 1, 1 ⊕ 1 = 1 and 0 ⊕ 0 = 0).

To prove the sufficiency, we show that if the EFDP for w ≡ 0 is solvable, then we
can determine a filter Q(λ) in the form (3.14) such that conditions (3.28) are fulfilled.

http://dx.doi.org/10.1007/978-3-319-51559-5_9
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Since the EFDP is solvable, we can determine for each row i of S a filter Q(i)(λ) such
that the blocks R(i)

f j
(λ) of the i-th block row of the corresponding R f (λ) in (3.16)

are nonzero for all j for which Si j �= 0. Additionally, we can choose Q(i)(λ) to also
enforce the stability of the block rows

R(i)
f (λ) := Q(i)(λ)

[
G f (λ)

0

]
, R(i)

w (λ) := Q(i)(λ)

[
Gw(λ)

0

]
.

We collect all blocks R(i)
f j

(λ) for which Si j = 0 into a matrix R
(i)
f . By rescaling

Q(i)(λ) with a constant factor γi , arbitrary small norms of R(i)
w (λ)/γi and R

(i)
f (λ)/γi

can be achieved. The overall Q(λ), R f (λ) and Rw(λ) result as

Q(λ) =
⎡

⎢
⎣

Q(1)(λ)/γ1
.
.
.

Q(nb)(λ)/γnb

⎤

⎥
⎦ , R f (λ) =

⎡

⎢⎢
⎣

R(1)
f (λ)/γ1

.

.

.

R(nb)
f (λ)/γnb

⎤

⎥⎥
⎦ , Rw(λ) =

⎡

⎢⎢
⎣

R(1)
w (λ)/γ1

.

.

.

R(nb)
w (λ)/γnb

⎤

⎥⎥
⎦

and R f (λ) and Rw(λ) fulfill the conditions (3.28). �

Remark 3.10 If the given structure matrix S has zero columns, then all faults cor-
responding to the zero columns of S can be redefined as additional noise inputs. In
this case, the Theorem 3.12 can be applied to a modified system with a reduced set
of faults and increased set of noise inputs. �

Example 3.5 The somehow surprising result of Theorem 3.12 allows to address the solution of
approximate fault detection and isolation problems in the cases when no sufficient measurements
are available to solve the EFDIP. Consider the static model with two additive faults

y(t) = f1(t) + f2(t) ,

for which the EFDP is solvable, but the EFDIP with S = I2 is not solvable. However, the AFDIP
for this system with S = I2 is solvable according to Theorem 3.12. Still, it is clear that the isolation
of either of faults is generally a futile task, unless additional information on the nature of faults is
available. Let assume—for example, that f1(t) and f2(t) represent two narrowband signals, with
well-separated centre frequencies ω1 and ω2. Then we can build a bank of two filters

[
r(1)(λ)

r(2)(λ)

]
=

[
Q(1)(λ)

Q(2)(λ)

]
y(λ),

where Q(1)(λ) is a bandpass filter for the frequency band aroundω1, and Q(2)(λ) is a bandpass filter
for the frequency band around ω2. It follows that r (1)(t) ≈ f1(t) and r (2)(t) ≈ f2(t), and therefore,
the isolation of these faults is easily achievable. ♦

The solvability of the EFDIP is clearly a sufficient condition for the solvability of
the AFDIP, but is not, in general, also a necessary condition, unless we impose in the
formulation of the AFDIP the stronger condition R f (λ) = 0 (instead R f (λ) ≈ 0).
This is equivalent to require SR f = S. Therefore, we can alternatively formulate the
AFDIP to fulfill the conditions:
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(i i i)′ SR f = S, with R f (λ) stable,
(iv)′ Rw(λ) ≈ 0, with Rw(λ) stable.

(3.29)

In this case we have the straightforward result:

Theorem 3.13 For the system (3.2) and a given structure matrix S, the AFDIP is
solvable with SR f = S if and only if the EFDIP is solvable.

Proof We can always determine a solution Q(λ) of the EFDIP, which also ensures
that Rw(λ) is stable. By rescaling Q(λ)with a constant factor γ , the norm of Rw(λ)/γ

can be made arbitrarily small. The necessity is trivial, because any solution of the
AFDIP with SR f = S is also a solution of the EFDIP. �

3.5.5 Exact Model-Matching Problem

Let Mr (λ) be a given q × m f TFMof a stable and proper reference model specifying
the desired input–output behaviour from the faults to residuals as r(λ) = Mr (λ)f(λ).
Thus, we want to achieve by a suitable choice of a stable and proper Q(λ) satisfying
(i) and (i i) in (3.23), that we have additionally R f (λ) = Mr (λ). For example, a
typical choice for Mr (λ) is anm f × m f diagonal and invertible TFM, which ensures
that each residual ri (t) is influenced only by the fault fi (t). The choice Mr (λ) = Im f

targets the solution of an exact fault estimation problem (EFEP).
To determine Q(λ), we have to solve the linear rational equation (3.5), with the

settings Ru(λ) = 0, Rd(λ) = 0, and R f (λ) = Mr (λ) (Rw(λ) andGw(λ) are assumed
emptymatrices). The choice ofMr (λ)may lead to a solution Q(λ)which is not proper
or is unstable or has both these undesirable properties. Therefore, besides determining
Q(λ), we also consider the determination of a suitable updating factorM(λ) ofMr (λ)

to ensure the stability and properness of the solution Q(λ) for R f (λ) = M(λ)Mr (λ).
Obviously, M(λ) must be chosen a proper, stable and invertible TFM. Additionally,
by choosing M(λ) diagonal, the zero and nonzero entries of Mr (λ) can be also
preserved in R f (λ) (see also Sect. 3.5.3).

The exact model-matching problem (EMMP) can be formulated as follows: given
a stable and proper Mr (λ), it is required to determine a stable and proper filter Q(λ)

and a diagonal, proper, stable and invertible TFM M(λ) such that the following
condition is additionally fulfilled:

(i i i) R f (λ) = M(λ)Mr (λ) . (3.30)

The solvability condition of the EMMP is the standard solvability condition of
systems of linear equations:

Theorem 3.14 For the system (3.2) with w ≡ 0 and a given Mr (λ), the EMMP is
solvable if and only if the following condition is fulfilled
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rank [G f (λ) Gd(λ) ] = rank

[
G f (λ) Gd(λ)

Mr (λ) 0

]
. (3.31)

Proof The necessity is immediate by writing down the condition for the existence
of a stable solution Q(λ) for a suitable invertible M(λ). To prove the sufficiency,
we determine first Q̃(λ), a solution of the linear equations Ru(λ) = 0, Rd(λ) = 0
and R f (λ) = Mr (λ). The existence of such a solution is guaranteed by the solv-
ability condition (3.31) for this linear system. A stable solution Q(λ) satisfying
condition (3.30) is obtained by expressing Q̃(λ) in a left factorized form Q̃(λ) =
M−1(λ)Q(λ), withM(λ) and Q(λ) proper and stable TFMs, andM(λ) diagonal (see
Sect. 9.1.6). �

Remark 3.11 When Mr (λ) has full column rank m f , the solvability condition
(3.31) of the EMMP reduces to the strong isolability condition (3.19) (see also
Theorem 3.11). �

The solvability conditions become more involved if we strive for a stable proper
solution Q(λ) for a given reference model Mr (λ) without allowing its updating. For
example, this is the case when solving the EFEP for Mr (λ) = Im f . For a slightly
more general case, we have the following result.

Theorem 3.15 For the system (3.2) with w ≡ 0 and a given stable and minimum-
phase Mr (λ) of full column rank, the EMMP is solvable with M(λ) = I if and only
if the system is strongly fault isolable and G f (λ) is minimum phase.

Proof We prove first the necessity. Since Mr (λ) has full column rank m f , the solv-
ability condition for Q(λ) satisfying Ru(λ) = 0, Rd(λ) = 0, and R f (λ) = Mr (λ)

is precisely the strong fault isolability of the system (3.2) (see condition (3.19) in
Theorem 3.6). The underlying linear system satisfied by Q(λ) is Q(λ)G(λ) = F(λ),
where

G(λ) =
[
G f (λ) Gu(λ) Gd(λ)

0 Imu 0

]
, F(λ) = [

Mr (λ) 0 0
]

. (3.32)

According to Lemma 9.5 and taking into account that F(λ) is stable, a stable and
proper filter Q(λ) satisfying Q(λ)G(λ) = F(λ) exists if additionally the TFMsG(λ)

and

[
G(λ)

F(λ)

]
have the same unstable zero structure. Equivalently,

[
G f (λ) Gd(λ)

]
and

[
G f (λ) Gd(λ)

Mr (λ) 0

]
(3.33)

must have the same unstable zero structure. Since rank G f (λ) = m f , any zero of
G f (λ) is also a zero of [G f (λ) Gd(λ) ]. Therefore, G f (λ) must be minimum phase,
because otherwise any unstable zero ofG f (λ)would violate the existence conditions
of Lemma 9.5 of a stable and proper solution (i.e., the same zero structure of the
TFMs in (3.33) for all unstable zeros). This proves the necessity.

http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_9
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To prove the sufficiency, observe that the strong fault isolability condition (3.19)
and theminimum-phase property ofG f (λ) andMr (λ) ensure that the TFMs in (3.33)
have the same zero structure for all unstable zeros (any such unstable zero must be
a zero of Gd(λ)). According to Lemma 9.5, this also guarantees the existence of a
stable solution Q(λ) of the system Q(λ)G(λ) = F(λ), with G(λ) and F(λ) defined
in (3.32). �

Remark 3.12 If G f (λ) has unstable or infinite zeros, the solvability of the EMMP
with M(λ) = I is possible provided Mr (λ) is chosen such that the condition (3.33)
is fulfilled. For this it is necessary that Mr (λ) has the same unstable and infinity zeros
structure as G f (λ). �

3.5.6 Approximate Model-Matching Problem

Similarly to the formulation of the EMMP, we include the determination of an updat-
ing factor of the reference model in the formulation of the approximate model-
matching problem (AMMP). Specifically, for a given stable and proper TFM Mr (λ),
it is required to determine a stable and proper filter Q(λ) and a diagonal, proper,
stable and invertible TFM M(λ) such that the following conditions are additionally
fulfilled:

(i i i) R f (λ) ≈ M(λ)Mr (λ), with R f (λ) stable;
(iv) Rw(λ) ≈ 0, with Rw(λ) stable.

(3.34)

The condition (i i i)means that we strive to achieve that ‖R f (λ) − M(λ)Mr (λ)‖ ≈ 0.
A sufficient condition for the solvability of AMMP is simply the solvability of

the EMMP:

Proposition 3.1 For the system (3.2) and a given Mr (λ), the AMMP is solvable if
the EMMP is solvable.

Proof Let Q(λ) andM(λ) be a solution of the EMMP, which also ensures that Rw(λ)

is stable. By simultaneously rescaling both Q(λ) and M(λ) with the same constant
factor γ , arbitrary small norms of (R f (λ) − M(λ)Mr (λ))/γ and Rw(λ)/γ can be
achieved. �

Alternative sufficient conditions for the solvability of the AMMP exist for appro-
priately formulated norm minimization based solution approaches (see Sect. 5.7).

3.6 Threshold Selection

A well-designed FDD system as that in Fig. 3.1 must fulfill standard performance
requirements as: operationwithout producing false alarms, operationwithoutmissing

http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_5
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the detection of relevant faults and generation of timely decisions on the presence of
faults. A false alarm is when a fault is declared although no fault exists, whereas a
missed detection is when a fault occurs but is not detected. The origins of false alarms
and missed detections lie in the presence of uncertainties. In the linear setting of this
book, these uncertainties are exclusively due to the presence of noise inputs (which
also may account for the presence of model uncertainties, see Sects. 2.2.1 and 2.2.3).
Critical parameters to choose to avoid false alarms and missed detections are the
decision threshold τ used for fault detection or the set of thresholds τi , i = 1, . . . , nb
used in FDI schemes. For example, consider the case of a fault detection setup of
the FDD system in Fig. 3.1, where θ(t) is the corresponding residual evaluation
signal (usually an approximation of ‖r‖2, the L2- or �2-norm of the time signal
r(t)). Then, false alarms may result at time tā if for a given decision threshold τ ,
the condition for the occurrence of a fault θ(tā) > τ is fulfilled, in the absence of
any fault. This may occur in the case when the unknown noise inputs w have too
large magnitudes. Likewise, missed detections of small amplitude faults can occur,
if the detection condition θ(t) > τ is not fulfilled for any t in the maximum allowed
detection interval [t f , t f + Δtd ], where t f is the fault occurrence time and Δtd is
the allowed maximal duration of fault detection. Missed detections may occur, for
example if the value of τ is set too high (e.g., to avoid false alarms due to large noise
input signals).

A related performance aspect of FDD systems is the timely decision on the occur-
rence of faults. For a fault occurring at time t f , let td be the fault detection time
defined as the least value of time t ≥ t f for which θ(t) ≥ τ . For timely decisions,
the difference td − t f must be less than a maximal allowed duration Δtd , thus the
following constraint on the detection time must be fulfilled

td − t f ≤ Δtd . (3.35)

The detection time can be reduced—for example, by imposing faster dynamics for the
residual generator. Also a careful selection of the decision threshold τ is instrumental
in achieving satisfactory detection times.

In what follows, we present a general approach for choosing suitable thresholds
to avoid both false alarms and missed detections. Let W and F be the classes of
noise inputs w and fault inputs f , respectively, which are relevant for a fault moni-
toring application. For example,W may be the class of white noise signals of given
maximal amplitude and covariance, or may be the class of disturbance signals with
bounded variations, while F usually includes several categories of fault signals of
given minimal amplitudes. For our discussion on the selection of thresholds, we only
consider the selection of the threshold τ for the simpler case of fault detection. How-
ever, the same approach can be employed to select the individual thresholds τi for
the components of the residual vector used for an FDI setup.

Let τ be the threshold used for decision making. The requirement for no false
alarms in the absence of faults, leads to a lower bound for τ , representing the false
alarm bound

http://dx.doi.org/10.1007/978-3-319-51559-5_2
http://dx.doi.org/10.1007/978-3-319-51559-5_2
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τ f := sup
t∈[0,tm ]
f =0

w∈W

θ(t), (3.36)

where tm is the maximum signal monitoring time. The requirement for no missed
detections leads to an upper bound for τ , representing the detection bound

τd := inf
t∈[t f ,t f +Δtd ]
f ∈F ,w∈W

θ(t) ≥ τ . (3.37)

To ensure simultaneously the lack of false alarms and of missed detections, the
condition τ f ≤ τd must be fulfilled, which ensures that the threshold τ can be chosen
such that

τ f ≤ τ ≤ τd .

If however τ f > τd , then either the requirement for the lack of false alarms or the
requirement for the lack of missed detections can not be fulfilled. To deal with such
cases in practical applications, often the detection bound has to be increased by
suitably adjusting the requirements on the least size of the detectable faults.

The lack of false alarms, of missed detection, and the fulfillment of the con-
straint (3.35) on the detection time are standard requirements when setting up any
FDD system. The appropriate selection of the detection threshold τ is of paramount
importance for the fulfillment of above aims. In practice, the value of τ is determined
from the requirement of lack of false alarms. This value is then used to determine
the minimum amplitude detectable faults. For this purpose, the false alarm bound τ f

can be used to determine the least size of detectable faults δ f , which satisfy

τ f = inf
t∈[t f ,t f +Δtd ]

w∈W
f ∈F

‖ f ‖=δ f

θ(t) . (3.38)

Alternatively, a conservative estimate of δ f can be determined from

2τ f = inf
t∈[t f ,t f +Δtd ]
w=0, f ∈F
‖ f ‖=δ f

θ(t) . (3.39)

In what follows, we illustrate the selection of the decision threshold τ for the
AFDP formulated previously. For this, we will make some assumptions. First, we
assume that the fault detection filter has the form (3.3) and the corresponding internal
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form of the residual generator is

r(λ) = Rw(λ)w(λ) + R f (λ)f(λ) .

This form always results when solving theAFDP, provided the decoupling conditions
Ru(λ) = 0 and Rd(λ) = 0 are satisfied by the resulting filter. Second, we assume that
we use to compute the residual evaluation signal θ(t), finite time approximations of
the usual signal norms as ‖r‖2, where we assume r(t) = 0 for t < 0. For example,
in a continuous-time setting, we can use

θ(t) = ‖r‖[ 0, t ]
2 :=

(∫ t

0
r T (t̃)r(t̃)d t̃

)1/2

,

while in a discrete-time setting we can use

θ(t) = ‖r‖[ 0, t ]
2 :=

⎛

⎝
t∑

t̃=0

r T (t̃)r(t̃)

⎞

⎠

1/2

,

where discrete values t̃ , t̃ + 1, . . ., t are assumed for the time t̃ . Note that ‖r‖2 =
limt→∞ ‖r‖[ 0, t ]

2 and in the frequency domain, we have similar norms ‖r‖2 of the
Fourier-transformed continuous- or discrete-time signals (see Sect. 9.1.7). According
to Plancheret’s theorem, we have

‖r‖2 = ‖r‖2 ,

which allows to use time-domain and frequency-domain signal norms interchange-
ably. Finally, we assume that w(t) has bounded energy and ‖w‖2 ≤ δw holds.

For the AFDP we can determine the false alarm bound as

τ f = sup
‖w‖2≤δw

‖Rw(λ)w(λ)‖2 = ‖Rw(λ)‖∞δw

and set the threshold to τ := τ f . With this values, we can estimate the minimum
size detectable fault using, for example, (3.39) (see Remark5.9 in Sect. 5.3). The
determination of the thresholds for the AFDIP and AMMP are discussed in Sect. 5.5
(see Remark 5.11) and Sect. 5.7 (see Remark 5.15), respectively.

Remark 3.13 The computation of the residual evaluation signal θ(t) must be per-
formed in real time. For fast detection of faults, often only the instantaneous value of
residual can ensure timely detections. In this case we can simply use the Euclidean
norm of the vector r(t) as evaluation signal

θ(t) = ‖r(t)‖2 .

http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_5
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It is also possible to use a finite-interval approximation of the norm over a sliding
time window [ t − T, t ] as

θ(t) =
(∫ t

t−T
r T (t̃)r(t̃)d t̃

)1/2

.

In several applications, aweighted combination of instantaneous and lowpass filtered
values represents the best compromise, as provided by a Narendra-type evaluation
scheme

θ(t) = α‖r(t)‖2 + β

(∫ t

0
e−γ (t−t̃)r T (t̃)r(t̃)d t̃

)1/2

, (3.40)

where α ≥ 0 and β > 0 are suitable weighting factors, while e−γ (t−t̃) with γ > 0 is
an exponential forgetting factor used to reduce the influence of old data. For example,
this last approximation can be simply implemented as a first-order filter

ξ̇ (t) = −γ ξ(t) + r T (t)r(t) ,

θ(t) = α‖r(t)‖2 + β
√

ξ(t) .

Similar evaluation schemes can be used in the discrete-time setting. �

3.7 Notes and References

The material in this chapter is partially covered in textbooks [14, 20, 26, 48, 65].
The used terminology largely agrees on terms as fault detection, fault isolation and
fault identification with the published literature, while there are slight variations in
the coverage of the term fault diagnosis.

The notions of implementation form and internal forms of a fault detection filter
have been introduced by Gertler [48]. The definition of structure matrix and the
related nomenclature used in Sect. 3.4 stem partly also from [48].

The definition of the fault detectability concept as a property of the underlying
system has been introduced and characterized by Nyberg in [92], where conditions
for strong fault detectability are also provided. The characterizations of strong fault
detectability and complete strong fault detectability in terms of the original system
matrices, as given in the Theorems 3.3 and 3.4, respectively, appear to be new results.
The definition of the fault isolability concept used in this chapter differs from those
introduced in the literature, although the ideas behind this concept are similar to the
discussions in several textbooks [14, 21, 48]. The two main novelties introduced
are: (1) the characterization of fault isolability in the presence of unknown distur-
bance inputs (intended to be decoupled by the detector), and (2) the characterization
with respect to an arbitrary given structure matrix. The main appeal of employed
definitions is that the conditions for fault detectability and fault isolability coincide
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with the conditions for the existence of the solution of the related fault detection and
isolation problems.

The formulation of several basic synthesis problems is done in terms of the TFMs
of the input–output description of the internal form of the residual generator filter.
These formulations lead in a straightforward manner to intuitive equivalent algebraic
synthesis conditions. An important aspect is that our formulations are independent of
any concrete solution approach and the solvability conditions are derived in the most
general setting. Similar formulations (of fourteen) fault detection and isolation prob-
lems, and derivations of solvability conditions have been done by Saberi et al. [107].

The solvability conditions of the EFDP have been established for proper systems,
see for example [32, 92], and form the basis for establishing the solvability conditions
for the EFDIP. The solvability condition for the strong EFDIP in Theorem 3.11 has
been established in [44]. For a comprehensive discussion of choosing suitable fault
signatures see [48].

Themodel-matching approach is awidely employed formulation to solve approxi-
mate FDI filter synthesis problems (see—for example, [14, 20, 48] and the references
cited therein). The earliest use of the model-matching approach for the synthesis of
FDI filters is apparently due to Viswanadham and Minto [157]. The formulation of
the AMMP used in this book extends the standard model-matching approach also by
including the determination of an updating factor of the reference model.

The general solvability condition of the EMMPhas been discussed in [135].When
Mr (λ) has full column rankm f , the solvability condition of the EMMP coincide with
those derived in [44] for diagonal Mr (λ). The solvability conditions of the EMMP
in the case when the reference model Mr (λ) is fixed and no updating is allowed
can be derived from the general conditions for solving linear rational equations with
stability constraints. See [69] for a complete treatment of this case. The choice of
a diagonal reference model in the EMMP corresponds to the so-called directional
residuals based FDI approach used by Gertler [48]. Here, also the use of a diagonal
M(λ) for updating purposes has been proposed (see also earlier papers cited in [48]).

The concepts of false alarm bound, detection bound, least size detectable fault
have been introduced in [39]. The conservative estimation of the least size of
detectable faults based on the equation (3.39) has been also suggested in [39], and
is the basis for several attempts to determine explicit analytic expressions for the
least norm of detectable faults, see for example [29, 106]. The Narendra-type resid-
ual evaluation scheme has been proposed in [90] and successfully used in recent
applications (see for example [153]).



Chapter 4
Model Detection

In this chapter, we first formulate the basic model detection task to discover among
N given LTI models, that particular model which best matches the current plant
behaviour. Then, the concept of model detectability is introduced and characterized.
The exact and approximate model detection problems are formulated. These prob-
lems target the synthesis of a bank of N LTI model detection filters which generate
a structured set of residuals allowing the discrimination of models in the case of
absence or presence of noise inputs, respectively. The discussion of specific perfor-
mance requirements for model detection and the selection of thresholds to be used
for decision-making conclude the chapter.

4.1 Basic Model Detection Task

Multiple models which describe various fault situations have been frequently used
for fault detection purposes. In such applications, the detection of the occurrence
of a fault comes down to identifying, using the available measurements from the
measurable outputs and control inputs, that model (from a collection of models)
which best matches the dynamical behaviour of the faulty plant. Another typical
application is the multiple-model-based adaptive control, where the adaptation of
the control law (for example, by switching from one controller to another) is based
on the recognition of that model which best approximates the current dynamical
behaviour of the plant. In this book, we will use the (not yet standard) term model
detection to describe the model identification task consisting of the selection of a
model from a collection of N models, which best matches the current dynamical
behaviour of a plant.

A related term used in the literature ismodel validation, which covers an arsenal of
statistical methods to assess the adequacy of a model to a set of measurements. Often
model validation also includes the identification of suitable uncertainty boundswhich
account for the unmodelled dynamics, initial condition uncertainty, andmeasurement
noise. Strictly speaking, model validation is generally impossible (or at least very
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Fig. 4.1 Basic model
detection setup
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challenging), because it would involve to checking that the model can describe any
input–output behaviour of the physical plant. Therefore, a closer related term to
model detection is model invalidation, which relies on the trivial fact that a model
can be invalidated (i.e., it does not fit with the input and output data) on the basis of
a single input–output data set. In this sense, the invalidation of N − 1 models can be
seen as part of the model detection task.

A typical model detection setting is shown in Fig. 4.1. A bank of N residual
generation filters (or residual generators) is used, with r (i)(t) being the output of
the i-th residual generator. The i-th component θi of the N -dimensional evaluation
vector θ usually represents an approximation of ‖r (i)‖2, the L2- or �2-norm of r (i).
The i-th component of the N -dimensional decision vector ι is set to 0 if θi ≤ τi and 1
otherwise, where τi is a suitable threshold. The j-th model is “detected” if ι j = 0 and
ιi = 1 for all i �= j . It follows that model detection can be interpreted as a particular
type of week fault isolation with N signature vectors, where the N -dimensional j-th
signature vector has all elements set to one, excepting the j-th entry which is set to
zero. An alternative decision scheme can also be devised if θi can be associated with
a distance function from the current model to the i-th model. In this case, ι is a scalar,
set to ι = j , where j is the index for which θ j = mini=1:N θi . Thus, the decision
scheme selects that model j which best fits with the current model characterized by
the measured input and output data.

The underlying synthesis techniques of model detection systems rely onmultiple-
model descriptions of physical fault cases of the form (2.22). Since different degrees
of performance degradations can be easily described via multiple models, model
detection techniques have potentially the capability to address certain fault identifi-
cation aspects too.
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4.2 Residual Generation

Assume we have N LTI models of the form (2.22), where for j = 1, ..., N , the j-th
model is specified in the input–output form

y( j)(λ) = G( j)
u (λ)u( j)(λ) + G( j)

d (λ)d( j)(λ) + G( j)
w (λ)w( j)(λ) . (4.1)

We further assume that the N models originate from a common underlying system
with y(t) ∈ Rp, the measurable output vector, and u(t) ∈ Rmu , the known control
input. Therefore, y( j)(t) ∈ Rp is the output vector of the j-th system with the
control input u( j)(t) ∈ Rmu , disturbance input d( j)(t) ∈ Rm( j)

d , and noise input
w( j)(t) ∈ Rm( j)

w , respectively, and G( j)
u (λ), G( j)

d (λ), and G( j)
w (λ) are the TFMs from

the corresponding plant inputs to outputs. We assume that all models are controlled
with the same control inputs u( j)(t) := u(t), but the disturbance and noise inputs
d( j)(t) andw( j)(t), respectively, may differ for each component model. For complete
generality of our problem formulations, we will allow that these TFMs are general
rational matrices (proper or improper) for which we will not a priori assume any
further properties.

Residual generation for model detection is performed using N linear residual
generators which process the measurable system outputs y(t) and known control
inputs u(t) and generate N residual signals r (i)(t), i = 1, . . . , N , which serve for
decision-making on which one of the models best matches the current input–output
measurement data. As already mentioned, model detection can be interpreted as
a week fault isolation problem with an N × N structure matrix S having all its
elements equal to one, excepting those on its diagonal which are zero. The task of
model detection is thus to find out the model which best matches the measurements
of outputs and inputs, by comparing the resulting decision vector ι with the set of
signatures associated to each model and coded in the columns of S. The residual
generation filters in their implementation form are described by the input–output
relations

r(i)(λ) = Q(i)(λ)

[
y(λ)

u(λ)

]
, i = 1, . . . , N , (4.2)

where y is the actual measured system output, being one of the system outputs
generated by the multiple model (4.1). The TFMs Q(i)(λ), for i = 1, . . . , N , must
be proper and stable. The overall model detection filter has the form

Q(λ) =
⎡

⎢
⎣

Q(1)(λ)
...

Q(N )(λ)

⎤

⎥
⎦ . (4.3)

The dimension qi of the residual vector component r (i)(t) can be chosen always one,
but occasionally values qi > 1 may provide better sensitivity to model mismatches.
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Assuming y(t) = y( j)(t), the residual signal component r (i)(t) in (4.2) generally
depends on all system inputs u( j)(t), d( j)(t), andw( j)(t) via the systemoutput y( j)(t).
The internal form of the i-th filter driven by the j-th model is obtained by replacing
in (4.2) y(λ) with y( j)(λ) from (4.1) and u(λ) with u( j)(λ). To make explicit the
dependence of r (i) on the j-th model, we will use r̃ (i, j), to denote the i-th residual
output for the j-th model. After replacing in (4.2), y(λ) with y( j)(λ) from (4.1), and
u(λ) with u( j)(λ), we obtain

r̃(i, j)(λ) := R(i, j)(λ)

⎡

⎣
u( j)(λ)

d( j)(λ)

w( j)(λ)

⎤

⎦

= R(i, j)
u (λ)u( j)(λ) + R(i, j)

d (λ)d( j)(λ) + R(i, j)
w (λ)w( j)(λ) ,

(4.4)

with R(i, j)(λ) :=
[
R(i, j)
u (λ) R(i, j)

d (λ) R(i, j)
w (λ)

]
defined as

[
R(i, j)
u (λ) R(i, j)

d (λ) R(i, j)
w (λ)

]
:= Q(i)(λ)

[
G( j)

u (λ) G( j)
d (λ) G( j)

w (λ)

Imu 0 0

]
. (4.5)

For a successfully designed set of filters Q(i)(λ), i = 1, . . . , N , the corresponding
internal representations R(i, j)(λ) in (4.4) are also a proper and stable.

4.3 Model Detectability

The concept of model detectability concerns with the sensitivity of the components
of the residual vector to individualmodels from a given collection ofmodels. Assume
that we have N models, with the j-th model specified in the input–output form (4.1).
For the discussion of the model detectability concept, we will assume that no noise
inputs are present in the models (4.1) (i.e., w( j) ≡ 0 for j = 1, . . . , N ). For model
detection purposes, N filters of the form (4.2) are employed. It follows from (4.4)
that the i-th component r (i) of the residual r is sensitive to the j-th model provided

R(i, j)(λ) :=
[
R(i, j)
u (λ) R(i, j)

d (λ)

]
�= 0 . (4.6)

We can associate to the N × N blocks R(i, j)(λ) defined in (4.6), the N × N structure
matrix SR with the (i, j)-th element set to 1 if R(i, j)(λ) �= 0 and set to 0 if R(i, j)(λ) =
0. As already mentioned, model detection can be interpreted as a week fault isolation
problem with an N × N structure matrix S having all its elements equal to one,
excepting those on its diagonal which are zero. Having this analogy in mind, we
introduce the following concept of model detectability.
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Definition 4.1 The multiple model defined by the N component systems (4.1) with
w( j) ≡ 0 for j = 1, . . . , N , is model detectable if there exist N filters of the form
(4.2), such that R(i, j)(λ) defined in (4.6) fulfills R(i,i)(λ) = 0 for i = 1, . . . , N and
R(i, j)(λ) �= 0 for all i, j = 1, . . . , N such that i �= j .

The following result characterizes the model detectability property.

Theorem 4.1 The multiple model defined by the N component systems (4.1) with
w( j) ≡ 0 for j = 1, . . . , N, is model detectable if and only if for i = 1, . . . , N

rank [G(i)
d (λ) G( j)

d (λ) G(i)
u (λ)−G( j)

u (λ) ] > rank G(i)
d (λ) ∀ j �= i . (4.7)

Proof For the proof of necessity, assume the model detectability of the multiple
model (4.1) and, for i = 1, . . . , N , let Q(i)(λ) be a corresponding set of filters for
model detection. Let us partition the columns of each Q(i)(λ) as

Q(i)(λ) = [
Q(i)

y (λ) Q(i)
u (λ)

]
,

to correspond to the two filter inputs y(t) and u(t) in (4.2). The conditions to achieve
the i-th specification are R(i,i)(λ) = 0 and R(i, j)(λ) �= 0 for all j �= i . With the
above partitioning of Q(i)(λ), this comes down to

Q(i)
y (λ)G(i)

u (λ) + Q(i)
u (λ) = 0 ,

Q(i)
y (λ)G(i)

d (λ) = 0

and [
Q(i)

y (λ)G( j)
u (λ) + Q(i)

u (λ) Q(i)
y (λ)G( j)

d (λ)

]
�= 0, ∀ j �= i .

Since Q(i)
u (λ) = −Q(i)

y (λ)G(i)
u (λ), after some manipulations, we obtain the condi-

tions to be satisfied by Q(i)
y (λ)

Q(i)
y (λ)G(i)

d (λ) = 0 ,

Q(i)
y (λ)

[
G( j)

u (λ)−G(i)
u (λ) G( j)

d (λ)

]
�= 0, ∀ j �= i .

For each j �= i , the second condition requires that there exists at least one column in[
G( j)

u (λ)−G(i)
u (λ) G( j)

d (λ)

]
, say g(λ), for which Q(i)

y (λ)g(λ) �= 0. This condition

together with Q(i)
y (λ)G(i)

d (λ) = 0 is equivalent with the fault detectability condition
(see Theorem 3.1)

rank [G(i)
d (λ) g(λ) ] > rank G(i)

d (λ) .

It is easy to observe that this condition implies (4.7).
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To prove the sufficiency of (4.7), we determine a bank of N filters Q(i)(λ), i =
1, . . . , N to solve the model detection problem. For this, we construct the i-th filter
Q(i)(λ) such that the corresponding

R(i, j)(λ) := Q(i)(λ)

[
G( j)

u (λ) G( j)
d (λ)

Imu 0

]

satisfies R(i,i)(λ) = 0 and R(i, j)(λ) �= 0 ∀ j �= i . We show that we can determine
Q(i)(λ) in the stacked form

Q(i)(λ) =
⎡

⎢
⎣

Q(i)
1 (λ)
...

Q(i)
N (λ)

⎤

⎥
⎦ , (4.8)

where each row Q(i)
j (λ) is a stable scalar output filter which satisfies

Q(i)
j (λ)

[
G(i)

u (λ) G(i)
d (λ)

Imu 0

]
= 0 (4.9)

and, additionally for j �= i

Q(i)
j (λ)

[
G( j)

u (λ) G( j)
d (λ)

Imu 0

]
�= 0 . (4.10)

For convenience, we set Q(i)
i (λ) = 0 (a null row vector). This construction of

Q(i)(λ) in (4.8), ensures with the help of the condition (4.10) that the corresponding
R(i, j)(λ) �= 0 ∀ j �= i .

To determine Q(i)
j (λ) for j �= i , we observe that the condition (4.7) can be

interpreted as an extended fault detectability condition for (fictive) fault inputs cor-
responding to an input–output faulty system defined by the triple of TFMs

{
G(i)

u (λ),G(i)
d (λ),

[
G( j)

d (λ) G(i)
u (λ) − G( j)

u (λ)
]}

from suitably defined control, disturbance and fault inputs, respectively. It follows,
that there exists Q(i)

j (λ) such that (4.9) is fulfilled and

Q(i)
j (λ)

[
G( j)

d (λ) G(i)
u (λ) − G( j)

u (λ)

0 0

]
�= 0 .

Taking into account (4.9), this condition can be rewritten in the equivalent form
(4.10), which in turn implies that R(i, j)(λ) �= 0 for j �= i . �
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4.4 Model Detection Problems

In this section we formulate the exact and approximate synthesis problems of model
detection filters for the collection of N LTI systems (4.1). As in the case of the EFDIP
or AFDIP, we seek N linear residual generators (or model detection filters) of the
form (4.2), which process the measurable system outputs y(t) and known control
inputs u(t) and generate the N residual signals r (i)(t) for i = 1, . . . , N . These signals
serve for decision-making by comparing the pattern of fired and not fired residuals
with the signatures coded in the columns of the associated standard N × N structure
matrix S with zeros on the diagonal and ones elsewhere. The standard requirements
for the TFM of the overall filter Q(λ) in (4.3) are properness and stability. For
practical purposes, the order of the overall filter Q(λ) must be as small as possible.
A least-order Q(λ) can be usually achieved by employing N scalar output least-order
filters (see Sect. 6.2).

In analogy to the formulations of theEFDIPandAFDIP,weuse the internal formof
the i-th residual generator (4.4) to formulate the basic model detection requirements.
Independently of the presence of the noise inputs w( j), we will target that the i-th
residual is exactly decoupled from the i-th model if w(i) ≡ 0 and sensitive to the
j-th model, for all j �= i . These requirements can be easily translated into algebraic
conditions using the internal form (4.4) of the i-th residual generator:

(i) [ R(i,i)
u (λ) R(i,i)

d (λ) ] = 0, i = 1, . . . , N ,

(i i) [ R(i, j)
u (λ) R(i, j)

d (λ) ] �= 0, ∀ j �= i, with [ R(i, j)
u (λ) R(i, j)

d (λ) ] stable. (4.11)

Here, (i) is the model decoupling condition for the i-th model in the i-th residual
component, while (i i) is the model sensitivity condition of the i-th residual compo-
nent to all models, excepting the i-th model. In the case when condition (i) cannot be
fulfilled (e.g., due to lack of sufficient measurements), some (or even all) components
of d(i)(t) can be redefined as noise inputs and included in w(i)(t).

In what follows, we formulate twomodel detection problems which are addressed
in this book.

4.4.1 Exact Model Detection Problem

The standard requirement for solving the exact model detection problem (EMDP)
is to determine for the multiple model (4.1), in the absence of noise input (i.e.,
w( j) ≡ 0 for j = 1, . . . , N ), a set of N proper and stable filters Q(i)(λ) such that,
for i = 1, . . . , N , the conditions (4.11) are fulfilled. These conditions are similar to
the model detectability requirement and lead to the following solvability condition:

Theorem 4.2 For the multiple model (4.1) with w( j) ≡ 0 for j = 1, . . . , N, the
EMDP is solvable if and only if the multiple model (4.1) is model detectable.
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Proof For each i , the conditions (4.11) can be fulfilled provided the multiple model
(4.1) is model detectable. To ensure the stability of Q(i)(λ), R(i, j)

u (λ) and R(i, j)
d (λ),

the filter with TFM Q(i)(λ) can be replaced by M (i)(λ)Q(i)(λ), where

(M (i)(λ))−1N (i)(λ) = [ Q(i)(λ) R(i,1)
u (λ) R(i,1)

d (λ) · · · R(i,N )
u (λ) R(i,N )

d (λ) ]

is a stable left coprime factorization. �

4.4.2 Approximate Model Detection Problem

The effects of the noise input w(i)(t) can usually not be fully decoupled from the
residual r (i)(t). In this case, the basic requirements for the choice of Q(i)(λ) can
be expressed as achieving that the residual r (i)(t) is influenced by all models in
the multiple model (4.1), while the influence of the i-th model is only due to the
noise signal w(i)(t) and is negligible. For the approximate model detection problem
(AMDP) the following additional conditions to (4.11) have to be fulfilled:

(i i i) R(i,i)
w (λ) ≈ 0, with R(i,i)

w (λ) stable;
(iv) R(i, j)

w (λ) stable ∀ j �= i.
(4.12)

Here, (i i i) is the attenuation condition of the noise input.
The solvability conditions of the formulated AMDP can be easily established:

Theorem 4.3 For the multiple model (4.1) the AMDP is solvable if and only the
EMDP is solvable.

Proof We can always determine a solution of the EMDP with Q(λ) in the form
(4.3), such that additionally the resulting R(i, j)

w (λ) are stable for i, j = 1, . . . , N .
Moreover, by rescaling Q(i)(λ) with a constant factor γi , the norm of R(i,i)

w (λ)/γi
can be made arbitrarily small. The necessity is trivial, because any solution of the
AMDP is also a solution of the EMDP. �

4.5 Threshold Selection

Similar to the performance requirements for FDD systems, a well-designed model
detection system as that in Fig. 4.1, must fulfill standard performance requirements
as timely and unequivocal identification of a singlemodel out of N candidate models
which best fits with the input–output measurements. Assume that we use N residual
evaluation signals θi (t), i = 1, . . . , N , where θi (t) is an approximation of ‖r (i)‖2 (see
Sect. 3.6), and for each i let τi be the corresponding threshold. For the unequivocal
identification of the i-th model, we must have θi (t) ≤ τi and θ j (t) > τ j for all
j �= i ,which corresponds to a binary signature with N − 1 ones and single zero
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in the i-th element. A false alarm occurs when, due to the effects of noise inputs,
the j-th model (a “false” one) is identified as the best matching one instead the i-th
model (the “true” one). A missed detection occurs, for example, when θi (t) > τi
for all i = 1, . . . , N , or when the resulting binary signature contains several zero
entries. In both of these cases, no unequivocal model identification can take place.

In what follows, we discuss the choice of the decision thresholds τi , i = 1, . . . , N
to be used in the model detection schemes, such that false alarms and missed detec-
tions can be avoided. For j = 1, . . . , N , let U ( j), D( j) and W ( j) be the classes
of control inputs u( j), disturbance inputs d( j) and noise inputs w( j), respectively,
which are relevant for a model detection application. For example, U ( j) is the class
of nonzero control inputs with bounded variations, D( j) may be the class of distur-
bance signals with bounded variations for the j-th model, while W ( j) may be the
class of white noise signals of given maximal amplitude and covariance for the j-th
model. We consider the selection of the threshold τi , which is instrumental for the
discrimination of the i-th model from the rest of models.

To account for the dependence of the evaluation signal θ(t) of the input variables
u( j) ∈ U ( j), d( j) ∈ D( j), and w( j) ∈ W ( j) and of the corresponding time response
of the output signal y( j) of the j-th model up to the time moment t , we will indicate
this dependence explicitly as θ(t, u( j), d( j), w( j), y( j)). Assume that the i-th model
is the current model (to be detected) and y(i) is the corresponding time response of
the i-th model output. The requirement for no false alarms in recognizing the i-th
model leads to a lower bound for τi , representing the i-th false alarm bound

τ
(i)
f := sup

t∈[0,tm ]
u(i)∈U (i)

d(i)∈D(i)

w(i)∈W (i)

θi (t, u
(i), d(i), w(i), y(i)) , (4.13)

where tm is the maximum signal monitoring time. We can define the i-th detection
bound as the least of the N − 1 lower bounds of the evaluation signal for any other
current model different of the i-th model:

τ
(i)
d := min

j �=i
inf

t∈[0,tm ]
u( j)∈U ( j)

d( j)∈D( j)

w( j)∈W ( j)

θi (t, u
( j), d( j), w( j), y( j)) . (4.14)

It is usually assumed, that the choice of the i-th filter Q(i)(λ), can be done such
that τ (i)

f < τ
(i)
d , which ensures that the threshold τi can be chosen such that

τ
(i)
f < τi ≤ τ

(i)
d .



66 4 Model Detection

With such a choice for all N threshold values τi , i = 1, . . . , N , it is possible to guar-
antee the lack of false alarms and missed detections, and thus ensure the unequivocal
identification of any of the N models. Note that, with a suitable rescaling of the N
component filters Q(i)(λ), i = 1, . . . , N , it is possible to arrange that all thresholds
can be taken equal to a common value τi = τ , for i = 1, . . . , N . If the condition
τ

(i)
f < τ

(i)
d cannot be enforced, then no unequivocal identification of the i-th model

is possible. A possible remedy in such cases is to redefine the set of models, by
including only models which are sufficiently “far” from each other.

Remark 4.1 In practical applications the chosen N models usually form a represen-
tative set of models, but frequently do not cover the entire set of possible models,
which can even be infinite due to continuous ranges of variation of fault parame-
ters (e.g., loss of efficiency degree). Thus, a typical operation mode for any model
detection setup is with the current model lying “in between” two candidate models.
To handle this situation and to avoid false alarms and missed detections, an alterna-
tive decision scheme can be employed, where the i-th model is selected, provided
the corresponding evaluation signal θi < θ j for all j �= i . Although this decision
scheme “always” works, still wrong identifications may result, because of the diffi-
culty to correctly map (via a set of N filters Q(i)(λ), i = 1, . . . , N ), the “nearness”
of two models, as for example, the i-th and j-th models, into the “nearness” of the
corresponding evaluations θi and θ j . �

4.6 Notes and References

The termmodel detection has been apparently used for the first time in [142]. Model
validation and also model invalidation have been discussed in [104, 111] in the con-
text of model identification for robust control. The definition of model detectability
appears to be new.

Two model selection problems have been formulated, in a stochastic setting, by
Baram in [4], which are very similar to the model detection problem considered in
this book. These problems consist of the selection of a model out of N given models,
which is the closest to or exactly matches the “true” model. Stochastic measures of
closeness are used to discriminate between two models. The use of Kalman filters
to perform model selection has been discussed by Willsky [161]. The selection of
adequate models for the purpose of multiple-model adaptive control (MMAC) is
discussed in [41].

The use of multiple model techniques for fault detection and isolation has been
considered in several publications, see—for example—[16, 158]. The exact model
detection problem has been formulated and solved in [142]. The formulation of
the approximate model detection problem is similar to several formulations based
on the use of Kalman filters as model detection filters, where all unknown inputs
(noise and disturbances) are assumed to be white noise signals [84, 90, 161]. The
model detection approach discussed in this book is a viable alternative to Kalman
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filter-based approaches used for switching or interpolating among different con-
trollers for MMAC (see—for example, [2]) or in interacting multiple model (IMM)
Kalman filters-based reconfiguration schemes [70]. The main advantages of using
model detection filters over various Kalman filter-based techniques are the ability
of formers to exactly decouple the influence of nonstochastic disturbances from the
residual signals and their significantly lower dynamical orders. The first of these
advantages has been noted in a related approach based on unknown-input observers
proposed in [158].

The decision scheme based on the choice of that model for which the corre-
sponding evaluation signal has the least value among all evaluation signals has been
advocated in [90], where the Narendra-type residual evaluation filter has also been
introduced.



Part II
Synthesis of Residual Generators

The second part is dedicated to the development of synthesis procedures of fault
detection and model detection filters, which solve the fault and model detection
problems formulated in the first part of this book. The proposed synthesis proce-
dures are completely general and deliver solutions whenever the general existence
conditions (also established in the first part) are fulfilled. Although this goal for gen-
erality appears as perfectly legitimate, still it rules out several “consecrated“ synthesis
methods (e.g., unknown input observer based synthesis), whose applicability requires
the fulfillment of non-necessary (technical) assumptions. A distinctive feature of the
presented synthesis methods is their general applicability to both continuous- and
discrete-time systems regardless of whether the underlying system is proper or not.

The developed synthesis procedures of fault detection and isolation filters and of
model detection filters are presented in two separate chapters. For each synthesis
procedure we present a general derivation of the underlying synthesis method and
give the pseudocode of a conceptual synthesis procedure which makes precise the
involved computational steps. A detailed synthesis example, accompanied by the
listing of aMatlab script implementing the synthesis steps in this example are also
given. This allows to reproduce virtually all the results of the synthesis examples
presented in the book. The numerical aspects of the developed procedures are dis-
cussed in Chap. 7, where state-space representation based formulas are derived for
each main computational step of the developed synthesis procedures. The selection
of computational procedures on the basis of widely accepted criteria for satisfactory
computational algorithms, such as generality, numerical reliability, and computa-
tional efficiency, largely contributed to dismiss the so-called parity-space methods,
which, although general, cannot be considered reliable computational methods due
to their intrinsic numerical instability.

Several common computational paradigms emerge when contemplating the pre-
sented synthesis procedures. A first paradigm is the product form representation of
all synthesised filters in both implementation and internal forms. Each factor of the
resulting filter is derived by enforcing new features for an already available par-
tial synthesis. However, the explicit forming of the product is completely avoided
by employing suitable updating formulas. Therefore, the derivation of the explicit
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updating formulas is an important part of the presented algorithmic developments.
Besides ensuring implicit pole-zero cancellations, the use of updating techniques
leads to highly integrated steps, where the structural features achieved at the ter-
mination of a computational step, are fully exploited by the computations in the
subsequent step. Other computational paradigms worth to be mentioned are the use
of the null space method as a first synthesis step to reduce all synthesis problems to
a simple standard form which allows to easily check solvability conditions; the use
of minimum dynamic cover algorithms to address least order synthesis problems; or
the use of coprime factorization techniques to enforce a desired filter dynamics.

Two case studies illustrate the use of linear synthesis techniques to address the
robustness aspects in the synthesis of fault detection and isolation filters for two fault
monitoring applications in aeronautics. The first case study considers the robust
monitoring of flight actuator faults using global and local monitoring approaches.
The second case study considers the robust monitoring of air data sensor faults.



Chapter 5
Synthesis of Fault Detection and Isolation
Filters

This chapter presents general synthesis procedures of fault detection filters which
solve the fault detection problems formulated in Chap. 3. The synthesis procedures
are described in terms of input–output models, which allow simpler conceptual
presentations. Numerically reliable state-space representation based synthesis algo-
rithms, well-suited for robust software implementations, are described in Chap. 7.

In the recently developed computational procedures for the synthesis of fault
detection filters, two important computational paradigms emerged, which are instru-
mental in developing generally applicable, numerically reliable and computationally
efficient synthesis methods. The first paradigm is the use of factorization-based syn-
thesis methods. Accordingly, for all presented synthesis procedures, it is possible to
express the TFM of the final filter Q(λ) in a factored form as

Q(λ) = QK(λ) · · ·Q2(λ)Q1(λ) , (5.1)

whereQ1(λ),Q2(λ)Q1(λ), . . ., can be interpreted as partial syntheses addressing spe-
cific requirements. Since each partial synthesis may represent a valid fault detection
filter, this approach has a high flexibility in using or combining different synthesis
techniques. The factorization-based synthesis approach naturally leads to the so-
called integrated computational algorithms, with strongly coupled successive com-
putational steps. For a K-step synthesis procedure to determine Q(λ) in the factored
form (5.1), K updating operations of the form Q(λ) ← Qi(λ)Q(λ) are performed
for i = 1, . . . ,K , where Qi(λ) is the factor computed at the i-th synthesis step. The
state-space description based filter updating formulas are described in Chap. 7 for
specific synthesis steps.

The second paradigm is the use of the nullspace method as a first synthesis step
to reduce all synthesis problems to simpler problems, which allow to easily check
the solvability conditions and address least-order synthesis problems. The nullspace-
based synthesis approach is described in Sect. 5.1. In Sects. 5.2–5.7 specific synthesis
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procedures, relying on the nullspace method, are presented for each of the fault
detection and isolation problems formulated in Chap. 3.

5.1 Nullspace-Based Synthesis

A useful parametrization of all fault detection filters can be obtained on the basis of
conditions Ru(λ) = 0 and Rd(λ) = 0 in (3.23). For any fault detection filter Q(λ)

the condition [Ru(λ) Rd(λ) ] = 0 is equivalent to

Q(λ)

[
Gu(λ) Gd(λ)

Imu 0

]
= 0 .

Thus, any fault detection filter Q(λ) must be a left annihilator of the TFM

G(λ) :=
[
Gu(λ) Gd(λ)

Imu 0

]
. (5.2)

Let rd be the normal rank of Gd(λ) (i.e., maximal rank over all λ). Using standard
linear algebra results (see Sect. 9.1.3), there exists a maximal full row rank left
annihilator Nl(λ) of size (p − rd) × (p + mu) such that Nl(λ)G(λ) = 0. Any such
an Nl(λ) represents a basis ofNL(G(λ)), the left nullspace of G(λ). Using this fact,
we have the following straightforward parametrization of all fault detection filters:

Theorem 5.1 Let Nl(λ) be a basis of NL(G(λ)), with G(λ) defined in (5.2). Then,
any fault detection filter Q(λ) satisfying (3.23) can be expressed in the form

Q(λ) = V (λ)Nl(λ), (5.3)

where V (λ) is a suitable TFM.

Proof Let q(i)(λ) be the i-th row of Q(λ). Since q(i)(λ)G(λ) = 0, it follows that
q(i)(λ) ∈ NL(G(λ)) and therefore there exists a vector v(i)(λ) such that q(i)(λ) =
v(i)(λ)Nl(λ), representing a linear combination of the nullspace basis vectors. Thus,
we build V (λ) in (5.3) as a TFM whose i-th row is v(i)(λ). �

Remark 5.1 For any non-singular polynomial or rational matrixM(λ) of appropriate
dimension, Ñl(λ) := M(λ)Nl(λ) is also a nullspace basis. Frequently, M(λ) is the
denominator matrix of a left coprime factorization (LCF) of an original basis Nl(λ)

in the form
Nl(λ) = M(λ)−1Ñl(λ), (5.4)

where the factors M(λ) and Ñl(λ) are determined to satisfy special requirements,
such as properness, or to have only poles in a certain “good” region of the complex
plane (e.g., in the stability region), or both. In this case, if Nl(λ) is a basis, then
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Ñl(λ) = M(λ)Nl(λ) is a basis as well. Moreover, M(λ) has as zeros all poles of
Nl(λ) lying outside of the “good” region. For more details on coprime factorizations
see Sect. 9.1.6. �

An interesting property of nullspace bases is the following elementary fact. Con-
sider a column partitioning of G(λ) as G(λ) = [

G1(λ) G2(λ)
]
and let Nl,1(λ) be a

basis ofNL(G1(λ)) andNl,2(λ) be a basis ofNL(Nl,1(λ)G2(λ)). Then,Nl,2(λ)Nl,1(λ)

is a basis of NL(G(λ)). Using this fact with the following partitioning

G(λ) = [
G1(λ) G2(λ)

] :=
[
Gu(λ) Gd(λ)

Imu 0

]
,

we immediately obtain the left nullspace basis Nl(λ) in the factorized form

Nl(λ) = Nl,d(λ)
[
Ip −Gu(λ)

]
, (5.5)

where Nl,d(λ) is a (p − rd) × p TFM representing a basis of NL(Gd(λ)). This form
leads to simple expressions ofNl(λ) for particular cases asNl(λ) = Nl,d(λ) ifmu = 0,
or Nl(λ) = [

Ip −Gu(λ)
]
if md = 0, or Nl(λ) = Ip if mu + md = 0.

A proper and stable representation of Nl(λ) for arbitrary rational or polynomial
matrices Gu(λ), Gd(λ), Gw(λ) and Gf (λ) can be obtained from the LCF

[
Gu(λ) Gd(λ) Gw(λ) Gf (λ)

] = M̂−1(λ)
[
Ĝu(λ) Ĝd(λ) Ĝw(λ) Ĝf (λ)

]
, (5.6)

where M̂(λ) and
[
Ĝu(λ) Ĝd(λ) Ĝw(λ) Ĝf (λ)

]
are proper and stable factors. With

obvious replacements, the left nullspace basis Nl(λ) can be chosen as

Nl(λ) = N̂l,d(λ)
[
M̂(λ) −Ĝu(λ)

]
, (5.7)

where N̂l,d(λ) is a (p − rd) × p proper and stable TFM representing a basis of
NL(Ĝd(λ)). If mu = md = 0, then we can formally set Nl(λ) := M̂(λ).

For the particular form of the nullspace basis in (5.7), we have the following
straightforward corollary of Theorem 5.1:

Corollary 5.1 Let Ĝd(λ) and Ĝu(λ) be the TFMs defined in (5.6) and let N̂l,d(λ) be
a basis of NL(Ĝd(λ)). Then, any fault detection filter Q(λ) satisfying (3.23) can be
expressed in the form

Q(λ) = W (λ)N̂l,d(λ)
[
M̂(λ) −Ĝu(λ)

]
, (5.8)

where W (λ) is a suitable TFM.

The parametrization result of Theorem 5.1 underlies the nullspace method based
synthesis procedures of fault detection filters, which form themain focus of this book.
All synthesis procedures of the fault detection filters rely on the initial factored form
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Q(λ) = Q1(λ)Q1(λ), (5.9)

where Q1(λ) = Nl(λ) is a basis of NL(G(λ)), while Q1(λ) is a factor to be sub-
sequently determined. The nullspace-based first step allows to reduce all synthesis
problems formulated for the system (3.2) to simpler problems, which make straight-
forward to check the solvability conditions.

Using the factored form (5.9), the fault detection filter in (3.3) can be rewritten in
the alternative form

r(λ) = Q1(λ)Q1(λ)

[
y(λ)

u(λ)

]
= Q1(λ)y(λ) , (5.10)

where

y(λ) := Q1(λ)

[
y(λ)

u(λ)

]
= Gf (λ)f(λ) + Gw(λ)w(λ) , (5.11)

with

[Gf (λ) Gw(λ) ] := Q1(λ)

[
Gf (λ) Gw(λ)

0 0

]
. (5.12)

With this first preprocessing step, we reduced the original problems formulated
for the system (3.2) to simpler ones, which can be formulated for the reduced system
(5.11) (without control and disturbance inputs), for which we have to determine the
TFM Q1(λ) of the simpler fault detection filter (5.10).

Remark 5.2 At this stage, we can assume that both Q1(λ) and the TFMs of the
reduced system (5.11) are proper and even stable. This can be always achieved
by replacing any basis Nl(λ), with a stable basis Q1(λ) = M(λ)Nl(λ), where
M(λ) is an invertible, stable and proper TFM, of least McMillan degree, such
that M(λ)[Nl(λ) Gf (λ) Gw(λ) ] is stable and proper. Such an M(λ) can be
determined as the minimum-degree denominator of a stable and proper LCF of
[Nl(λ) Gf (λ) Gw(λ) ] (see Sect. 9.1.6). Even if Nl(λ) is a minimal basis, the result-
ing stable basis Q1(λ) is, in general, not a minimal basis. �

We conclude this section with the derivation of simpler conditions for checking
the fault detectability conditions studied in the Sect. 3.3. The following result char-
acterizes the complete fault detectability of the system (3.2) as the complete fault
input observability property of the reduced system (5.11).

Proposition 5.1 For the system (3.2) with w ≡ 0, let Q1(λ) = Nl(λ) be a rational
basis ofNL(G(λ)), where G(λ) is defined in (5.2), and let (5.11) be the corresponding
reduced system with w ≡ 0. Then, the system (3.2) is completely fault detectable if
and only if

Gfj (λ) �= 0, j = 1, . . .mf . (5.13)

Proof To prove necessity we show that if the original system is completely fault
detectable, then the reduced system (5.11) is also completely fault detectable (i.e.,

http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3


5.1 Nullspace-Based Synthesis 75

conditions (5.13) are fulfilled). For the completely fault detectable system (3.2), let
Q(λ) be a filter such that Rfj (λ) �= 0 for j = 1, . . . ,mf . According to Theorem
5.1, for a given nullspace basis Nl(λ), any filter Q(λ) can be expressed in the form
Q(λ) = W (λ)Nl(λ), whereW (λ) is a suitable rationalmatrix. It follows thatRfj (λ) =
W (λ)Gfj (λ) and therefore, Rfj (λ) �= 0 only if Gfj (λ) �= 0.

The proof of sufficiency is trivial, since with Q(λ) := Nl(λ) the corresponding
Rf (λ) = Gf (λ), and thus satisfies Rfj (λ) �= 0 for j = 1, . . . ,mf . �

The following result is a general characterization of the complete strong fault
detectability of the system (3.2) in terms of a particular reduced system (5.11) and
can serve as an easy check of this property.

Proposition 5.2 Let Ω be the set of frequencies which characterize the persistent
fault signals. For the system (3.2) with w ≡ 0 and for G(λ) defined in (5.2), let Q1(λ)

be a least-order rational basis of NL(G(λ)), such that Q1(λ) and Gf (λ) in (5.12)
have no poles in Ω . Then, the system (3.2) is completely strong fault detectable with
respect to Ω if and only if

Gfj (λz) �= 0, j = 1, . . .mf , ∀λz ∈ Ω . (5.14)

Proof Toprove necessity,we note that complete strong fault detectability implies that
there exists a stable filterQ(λ) such that the correspondingRf (λ) is stable, andRfj (λ),
the j-th columnofRf (λ), has no zeros inΩ . According toTheorem5.1, anyfilterQ(λ)

satisfying Q(λ)G(λ) = 0, can be expressed in the form Q(λ) = W (λ)Q1(λ), where
W (λ) is a suitable rational matrix. It follows that Rfj (λ) = W (λ)Gfj (λ). Assume λz ∈
Ω is a zero of Gfj (λ), such that Gfj (λz) = 0. However, this implies that Rfj (λz) = 0,
which contradicts the assumption of complete strong detectability. Therefore, Gfj (λ)

can not have zeros in Ω . This requirement is expressed, for j = 1, . . . ,mf , by the
conditions (5.14).

To prove sufficiency, we show that for any given basis Q1(λ) without poles in
Ω and for Gfj (λ) without poles and zeros in Ω we can build a stable filter Q(λ)

such that, Rfj (λ) has no zeros in Ω as well. For this we take Q(λ) = M(λ)Q1(λ),
where [Q1(λ) Gf (λ) ] = M−1(λ)[Q(λ) Rf (λ) ] is a stable left coprime factorization.
The zeros of M(λ) are the unstable poles of [Q1(λ) Gf (λ) ]. Since by assumption,
this TFM has no poles in Ω , it follows that M(λ) has no zeros in Ω . Therefore,
for any λz ∈ Ω , detM(λz) �= 0. It follows, for each fj that if Gfj (λz) �= 0, then
Rfj (λz) = M(λz)Gfj (λz) �= 0. This proves the complete strong fault detectability
with respect to Ω . �
Remark 5.3 The conditions on the poles of Q1(λ) and Gf (λ) imposed in Proposi-
tion 5.2 are essential to check the complete strong fault detectability. In Example 3.3
with Gu(s) = 0, Gd(s) = 0 and Gf (s) = [ 1 1/s ], we can chooseQ1(s) = s/(s+1)
to obtain Gf (s) = Q1(s)Gf (s) = [ s/(s + 1) 1/(s + 1) ]. This system is not com-
pletely strong fault detectable with respect to constant faults because Gf1(0) = 0.
The following example shows, that the check of strong fault detectability may lead
to an erroneous result if the condition on the poles of Q1(λ) is not fulfilled. �
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Example 5.1 Consider the continuous-time system (3.2) from Example 3.1 with

Gu(s) =

⎡

⎢⎢
⎣

1

s
1

s

⎤

⎥⎥
⎦ , Gd(s) =

⎡

⎣
0
s

s + 3

⎤

⎦ , Gf (s) =

⎡

⎢⎢
⎣

s + 1

s + 2
1

s + 2

⎤

⎥⎥
⎦

and Ω = {0}. This system is not strongly fault detectable. To see this, we employ the check based
on Proposition 5.2.

A stable rational (minimal) basis is

Q1(s) =
[

s

s + 1
0 − 1

s + 1

]
,

which leads to
Gf (s) = s

s + 2
.

Since Gf (s) has a zero in 0, the system is not strongly fault detectable for constant faults.
However, if we use, instead, the rational (minimal) basis with a pole in the origin

Q1(s) =
[
1 0 −1

s

]
,

we obtain

Gf (s) = s + 1

s + 2
,

for which, the zeros based check indicates, erroneously, strong fault detectability. ♦

5.2 Solving the Exact Fault Detection Problem

Using Proposition 5.1, the solvability conditions of the exact fault detection problem
(EFDP) formulated in Sect. 3.5.1 for the system (3.2) with w ≡ 0 can be expressed
as fault input observability conditions for the reduced system (5.11) with w ≡ 0
according to the following corollary to Theorem 3.7:

Corollary 5.2 For the system (3.2) with w ≡ 0 the EFDP is solvable if and only if
the reduced system (5.11) with w ≡ 0 is completely fault detectable, or equivalently,
the following input observability conditions hold

Gfj (λ) �= 0, j = 1, . . .mf . (5.15)

Using Proposition 5.2, the solvability conditions of the EFDP with the strong
detection condition (3.25) can be equivalently expressed as conditions on the lack of
zeros in Ω for all columns of the TFM Gf (λ) of reduced system (5.11) according to
the following corollary to Theorem 3.8:

Corollary 5.3 Let Ω ⊂ ∂Cs be a given set of frequencies, and assume that the
reduced system (5.11) has been obtained by choosing Q1(λ) without poles in Ω and
such that also Gf (λ) in (5.12) has no poles inΩ . Then, for w ≡ 0, the EFDPwith the
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strong detection condition (3.25) is solvable if and only if the reduced system (5.11)
with w ≡ 0 is completely strong fault detectable with respect to Ω , or equivalently,
the following conditions hold

Gfj (λz) �= 0, j = 1, . . .mf , ∀λz ∈ Ω . (5.16)

When solving the EFDP, it is obvious that any stable and proper rational nullspace
basis Q1(λ) already represents a solution, provided the complete fault detectability
conditions (5.15) or the complete strong fault detectability conditions (5.16) are
fulfilled and Gf (λ) is stable. According to Remark 5.2, the dynamics of both Q1(λ)

and Gf (λ) (i.e., their poles) can be arbitrarily assigned. Moreover, fault detection
filters with an arbitrary number of outputs q ≤ p − rd can be easily obtained, by
building linear combinations of the rows of Q1(λ).

Example 5.2 Consider a continuous-time system with the transfer function matrices

Gu(s) =

⎡

⎢⎢
⎣

s + 1

s + 2
s + 2

s + 3

⎤

⎥⎥
⎦ , Gd(s) =

⎡

⎣
1

s + 2

0

⎤

⎦ , Gw(s) = 0, Gf (s) =
⎡

⎣
s + 1

s + 2
0

0 1

⎤

⎦ .

A minimal left nullspace basis of G(λ) defined in (5.2) for λ = s can be obtained in the form (5.5)
as Nl(s) = Nl,d(s)

[
I2 −Gu(s)

]
, with Nl,d(s) = [

0 1
]
. We obtain Q1(s) = Nl(s) as

Q1(s) =
[
0 1 − s + 2

s + 3

]

and the TFMs of the reduced system (5.11) are

Gw(s) = 0, Gf (s) = [ 0 1 ] .

The presence of a zero column in Gf (s) indicates that the EFDP has no solution, because the fault
f1 and the disturbance d share the same signal space. By appropriately redefining d and w, we will
address this problem in Example 5.5 and show that an approximate solution of this problem is still
possible. Note that the filter with Q(λ) = Nl(s) can be still used for the detection of f2. ♦

We can exploit in various ways the existing freedom in determining fault detection
filters which solve the EFDP. For practical use, it is sometimes advantageous to
impose for the number of residual signals q a certain low value, as for example,
q = 1, which leads to scalar output fault detection filters. Of both theoretical and
practical interest are fault detection filters which have the least possible order (i.e.,
least McMillan degree). For example, least-order scalar output fault detection filters
can be employed to build banks of scalar output filters with global least-orders to
solve the more involved FDIPs.

For the computation of a least-order solution we can choose the factor Q1(λ) in
(5.9) in the factored form

Q1(λ) = Q3(λ)Q2(λ),

whereQ2(λ) is a q×(p−rd) proper TFMdetermined such thatQ2(λ)Q1(λ) has least-
order, while Q3(λ) is a q× q proper, stable and invertible TFM determined such that
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both the overall filter Q(λ) = Q3(λ)Q2(λ)Q1(λ) and Rf (λ) = Q3(λ)Q2(λ)Gf (λ)

are stable. The least possible order of the fault detection filter Q(λ) is uniquely
determined by the fulfillment of a certain admissibility condition. When solving the
EFDP, we say that the filterQ(λ) is admissible, if the fault detection conditions (3.24)
are fulfilled by the corresponding Rf (λ). Thus, an admissible choice of Q2(λ) must
guarantee the admissibility ofQ(λ). SinceQ3(λ) is invertible, its choice plays no role
in ensuring admissibility. Interestingly, a least-order filter synthesis can be always
achieved by a scalar output fault detection filter.

The Procedure EFD given below summarizes the main computational steps of
the synthesis of least-order fault detection filters. In view of potential applications of
Procedure EFD, we devised this procedure to be applicable to the complete faulty
system (2.1), including also the noise inputs.

Procedure EFD: Exact synthesis of fault detection filters
Inputs : {Gu(λ),Gd(λ),Gf (λ),Gw(λ)}, q
Outputs: Q(λ), Rf (λ), Rw(λ)

1) Compute a (p − rd) × (p + mu) minimal basis matrix Q1(λ) for the left
nullspace of G(λ) defined in (5.2), where rd := rankGd(λ);

set Q(λ) = Q1(λ) and compute
[
Rf (λ) Rw(λ)

] = Q1(λ)

[
Gf (λ) Gw(λ)

0 0

]
.

Exit if exists j ∈ {1, . . . ,mf } such that Rfj (λ) = 0 (no solution exists).
2) Choose a min(q, p − rd) × (p − rd) rational matrix Q2(λ) such that

Q2(λ)Q(λ) has least McMillan degree and Q2(λ)Rfj (λ) �= 0, j = 1, . . . ,mf ;
compute Q(λ) ← Q2(λ)Q(λ), Rf (λ) ← Q2(λ)Rf (λ) and Rw(λ) ← Q2(λ)Rw(λ).

3) Choose a proper and stable invertible rational matrix Q3(λ) such that Q3(λ)Q(λ),
Q3(λ)Rf (λ) and Q3(λ)Rw(λ) have desired stable dynamics; compute
Q(λ)←Q3(λ)Q(λ), Rf (λ)←Q3(λ)Rf (λ), Rw(λ)←Q3(λ)Rw(λ).

This procedure illustrates several computational paradigms common to all syn-
thesis algorithms presented in this book, such as: the use of product form represen-
tations of the filter and the use of the associated filter updating techniques, the use of
nullspace method as the first computational step, the determination of least-order of
the resulting filter on the basis of suitable admissibility conditions, or the arbitrary
assignment of filter dynamics using coprime factorization techniques.

The computational details of the above procedure differ according to the type of
the employed nullspace basis at Step 1). We consider first the case when at Step 1) of
ProcedureEFD,Q(λ) = Q1(λ) is aminimal polynomial basis and the corresponding
Rf (λ) satisfies Rfj (λ) �= 0 for j = 1, . . . ,mf . For simplicity, we determine a least-
order fault detection filter with scalar output (i.e., for q = 1). At Step 2) we have to
determine Q2(λ) = φ(λ), where φ(λ) is a polynomial vector, such that φ(λ)Q1(λ)

has least degree and φ(λ)Rfj (λ) �= 0 for j = 1, . . . ,mf . Assume Q1(λ) is formed of
p − rd row vectors vi(λ), where vi(λ) is a polynomial basis vector of degree ni. We
assume that the basis vectors vi(λ) are ordered such that n1 ≤ n2 ≤ . . . ≤ np−rd .
We can easily construct linear combinations of basis vectors of final degree ni, for
i = 1, . . . , p − rd , by choosing φ(λ) = φ(i)(λ), with
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φ(i)(λ) = [φ(i)
1 (λ) . . . φ

(i)
i (λ) 0 . . . 0 ], (5.17)

where φ
(i)
j (λ) is a polynomial of maximum degree ni − nj and φ

(i)
i (λ) is a nonzero

constant value. The achievable least-order can be determined by successively con-
structing linear combinations of polynomials with increasing degrees n1, n2, . . .,
np−rd (e.g., with randomly generated coefficients). For each trial degree ni, the con-
dition φ(i)(λ)Rfj (λ) �= 0 for j = 1, . . . ,mf is checked. The search stops for the
first value of i for which this condition is fulfilled. At Step 3) we can often choose
Q3(λ) = 1/d(λ), with d(λ) a polynomial of degree ni with only stable roots. How-
ever, if the resulting Q3(λ)Rf (λ) is not stable or not proper, then Q3(λ) must be
computed to also enforce the stability of Q3(λ)Rf (λ) as well as of Q3(λ)Rw(λ). This
can be achieved by replacing Q(λ), Rf (λ) and Rw(λ) resulted at Step 2) with the
proper and stable factors Q̃(λ), R̃f (λ) and R̃w(λ), respectively, resulting from a LCF
with proper and stable factors

[Q(λ) Rf (λ) Rw(λ) ] = Q−1
3 (λ)[ Q̃(λ) R̃f (λ) R̃w(λ) ] , (5.18)

where the poles of the scalar transfer function Q3(λ) can be freely assigned.
The polynomial nullspace approach allows to easily solve the least-order synthesis

problemof fault detectionfilterswith scalar outputs. The least-order is boundedbelow
by ni, the degree of the i-th basis vector, where i is the first index for which there
exists a φ(i)(λ) of the form (5.17) such that φ(i)(λ)Rfj (λ) �= 0 for j = 1, . . . ,mf

(with Rf (λ) computed at Step 1) of Procedure EFD). The value ni for the McMillan
degree of the final filterQ(λ) can be often achieved, as for example, when Gf (λ) and
Gw(λ) are already stable and proper.

Remark 5.4 The Step 2) of this synthesis procedure can be significantly simplified
by determining directly the least degree of candidate polynomial vectors suited to
solve the EFDP, instead of iterating with candidate vectors of increasing orders. For
this purpose, we can use the (p − rd) × mf structure matrix SRf associated to the
resulting Rf (λ) at Step 1) of Procedure EFD. Let SRf be the binary matrix (see
Sect. 3.4), whose the (i, j)-th element is set to 1 if the (i, j)-th element of Rf (λ) is
nonzero, and otherwise is set to 0. Let i be the least row index such that the leading
i rows of SRf contain at least one nonzero element in all columns. It follows, that we
can build, using a polynomial vector φ(i)(λ) of the form (5.17), a linear combination
of the first i basis vectors of least degree ni, such that all faults can be detected. A
straightforward simplification is to use, instead of the polynomial vector φ(i)(λ) in
(5.17), a constant vector (with the same structure)

h(i) = [ h1, . . . , hi, 0, . . . , 0 ] , (5.19)

with hj �= 0, j = 1, . . . , i, to build a linear combination of basis vectors up to degree
ni (e.g., using randomly generated values). The nonzero components of h(i) can be
interpreted as weighting factors of the individual basis vectors. Therefore, an optimal

http://dx.doi.org/10.1007/978-3-319-51559-5_3
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choice of these weights can maximize the overall sensitivity of residual to faults.
Suitable fault sensitivity measures for this purpose are discussed in Remark 5.6. �

Remark 5.5 Although the EFDP can be always solved using a scalar output fault
detection filter of least dynamical order, theremay exist advantageswhen using filters
withmore than one output. First, it may be possiblewith a residual vectorwith several
components to enforce a more uniform sensitivity of the residual vector to individual
fault components. This aspect is related to an increased number of free parameters
which can be thus optimally chosen (see Remark 5.6). A second potential advantage
is that with several residual outputs, it may be possible to also achieve a certain block
isolation of group of faults. For example, suitable combinations of individual basis
vectors in Q1(λ) can be easily constructed using the binary information coded in the
structure matrix SRf associated to the resulting Rf (λ) at Step 1) of the Procedure
EFD. This can be advantageous especially in the case when the expected magnitudes
of the residual signals may significantly vary for different groups of faults. A more
involved synthesis procedure to achieve block isolation can be performed using
several scalar output filters, where each filter is designed to be sensitive to a group
of faults and insensitive to the rest of faults (see Procedure EFDI in Sect. 5.4). �

When using a proper rational basis instead a polynomial one at Step 1) of the
Procedure EFD, a synthesis approach leading directly to a proper filter can be
devised. Assume Q1(λ) is a simple minimal proper rational basis (see Sect. 9.1.3 for
the definition of simple bases) formedofp−rd rational rowvectors vi(λ)/di(λ),where
vi(λ) is a polynomial vector of degree ni and di(λ) is a stable polynomial of degree
ni. We assume that the vectors vi(λ) are the basis vectors of a minimal polynomial
basis, ordered such that n1 ≤ n2 ≤ . . . ≤ np−rd , and each denominator di(λ) divides
dj(λ) for i < j. It follows immediately, that a linear combination h(i)Q1(λ) of the first
i rows with h(i) of the form (5.19) has a McMillan degree ni. At Step 2), choosing the
least index i such that h(i)Rfj (λ) �= 0 for j = 1, . . . ,mf , allows to take Q2(λ) := h(i).
Often the choice Q3(λ) = 1 at Step 3) solves the synthesis problem. However, if
Rf (λ) is unstable or not proper, then the same computational approach, based on the
LCF in (5.18), can be used as in the case of a polynomial basis.

The Procedure EFD employing polynomial or simple proper nullspace bases
involves polynomial manipulations and therefore is not a reliable computational
approach for large order systems due to the intrinsic high sensitivity of polynomial-
based representations. A numerically reliable alternative algorithm employsminimal
(non-simple) proper bases and is based on state-space computations described in
details in Sect. 7.4 (see also Sect. 10.3.2). The importance of Procedure EFD, and
especially of the synthesis with least-order scalar fault detection filters, lies in being
the basic computational procedure which allows to solve the more involved fault
detection and isolation problem formulated in Sect. 3.5.3.

Remark 5.6 Steps 2) and 3) of Procedure EFD can be easily embedded into an
optimization-based tuning procedure to determine an optimalQ2(λ)which ensures a
more uniform sensitivity of the detector to individual faults. The free parameters to be
tuned are the polynomial coefficients of φ(i)(λ) in (5.17) or the nonzero components

http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_7
http://dx.doi.org/10.1007/978-3-319-51559-5_10
http://dx.doi.org/10.1007/978-3-319-51559-5_3
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of the real vector h(i) in (5.19). It is assumed that for given values of these parameters
at Step 2), the computations at Step 3) follow automatically to produce a stable
candidate solution Q(λ). For optimal tuning of parameters, the sensitivity condition
can be used as a criterion to be minimized. For a given Rf (λ), this criterion is defined
as

ξ := max
j

‖Rfj (λ)‖∞/min
j

‖Rfj (λ)‖∞ . (5.20)

For tuning based on strong fault detectability, a similar sensitivity condition can be
defined in terms of the gains at a selected frequency λs as

ξ s := max
j

‖Rfj (λs)‖2/min
j

‖Rfj (λs)‖2 . (5.21)

A large value of the sensitivity condition ξ (or ξ s) indicates potential difficulties in
detecting faults due to a substantial gap between the maximum and minimum gains.
In such cases, employing fault detection filters with several outputs (q > 1) could
be advantageous. �
Example 5.3 Consider a continuous-time system with the TFMs

Gu(s) =

⎡

⎢
⎢
⎣

s + 1

s + 2
s + 2

s + 3

⎤

⎥
⎥
⎦ , Gd(s) =

⎡

⎣
s − 1

s + 2

0

⎤

⎦ , Gw(s) = 0, Gf (s) =

⎡

⎢
⎢
⎣

s + 1

s + 2
0

s + 2

s + 3
1

⎤

⎥
⎥
⎦ .

The fault f1 corresponds to an additive actuator fault, while f2 describes an additive sensor fault in
the second output y2. The TFM Gd(s) is non-minimum phase, having an unstable zero at 1.

At Step 1) of the Procedure EFD, a proper minimal left nullspace basis can be determined,
consisting of a single row vector, which we can choose, for example,

Q1(s) =
[
0 1 − s + 2

s + 3

]
.

For the reduced system (5.11) computed at Step 1) we obtain

Rf (s) = Gf (s) =
[
s + 2

s + 3
1

]
,

which shows that according to Corollary 5.2 the EFDP has a solution. Since this basis is already
stable, Q(s) = Q1(s) is a least-order solution of the EFDP. ♦
Example 5.4 Consider an unstable continuous-time system with the TFMs

Gu(s) =

⎡

⎢
⎢
⎣

s + 1

s − 2
s + 2

s − 3

⎤

⎥
⎥
⎦ , Gd(s) =

⎡

⎣
s − 1

s + 2

0

⎤

⎦ , Gw(s) = 0, Gf (s) =

⎡

⎢
⎢
⎣

s + 1

s − 2
0

s + 2

s − 3
1

⎤

⎥
⎥
⎦ ,

where as before, the fault f1 corresponds to an additive actuator fault, while f2 describes an additive
sensor fault in the second output y2, with the difference that the underlying system is unstable. The
TFM Gd(s) is non-minimum phase, having an unstable zero at 1.

At Step 1) of the Procedure EFD, a proper minimal left nullspace basis can be determined,
consisting of a single row vector, which we can choose, for example,
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Q1(s) =
[
0 1 − s + 2

s − 3

]
.

For the reduced system (5.11) computed at Step 1) we obtain

Rf (s) = Gf (s) =
[
s + 2

s − 3
1

]
,

which shows that according to Corollary 5.2 the EFDP has a solution. Since Q(s) = Q1(s) is
unstable, it must be suitably updated. With Q2(s) = 1 at Step 2) and Q3(s) = s−3

s+3 at Step 3) we
finally obtain

Q(s) =
[
0

s − 3

s + 3
− s + 2

s + 3

]
, Rf (s) =

[
s + 2

s + 3

s − 3

s + 3

]
.

The script Ex5_4 in Listing 5.1 solves the considered EFDP, by computing intermediary results
which differ from those of this example. The script Ex5_4c (not listed) is a compact version of
this script, which calls the function efdsyn, a prototype implementation of Procedure EFD. ♦

Listing 5.1 Script Ex5 4 to solve the EFDP of Example 5.4 using Procedure EFD
% Uses the Control Toolbox and the Descriptor System Tools

% define s as an improper transfer function
s = tf('s');
% define Gu(s), Gd (s), Gf (s)
Gu = [(s+1)/(s-2); (s+2)/(s -3)]; % enter Gu(s)
Gd = [(s -1)/(s+2); 0]; % enter Gd (s)
Gf = [(s+1)/(s-2) 0; (s+2)/(s-3) 1]; % enter Gf (s)
p = 2; mu = 1; md = 1; mf = 2; % set dimensions

% compute a left nullspace basis Q1 of [Gu Gd ; I 0 ] and Rf ,1 = Q1[Gf ; 0 ]
Q1 = glnull(ss([Gu Gd;eye(mu ,mu+md )]));
Rf1 = gir(Q1*[Gf;zeros(mu ,mf)]);

% check solvability using a random frequency
if min(abs(evalfr(Rf1 ,rand ))) > 0.01

% compute a stable left coprime factorization [Q1 Rf ,1 ] = Q−1
3 [Q Rf ]

% enforce stability degree -3
[Q_Rf ,Q3] = glcf([Q1 ,Rf1],struct('sdeg ',-3));
% extract Q and Rf

Q = Q_Rf (:,1:p+mu); Rf = Q_Rf(:,p+mu+1: end);
% normalize Q and Rf to match example
sc = evalfr(Rf(1,1),inf); Q = tf(Q/sc); Rf = tf(Rf/sc);

else
disp('No solution exists ')

end

5.3 Solving the Approximate Fault Detection Problem

Using the factorized representation Q(λ) = Q1(λ)Q1(λ) in (5.9) with Q1(λ) chosen
proper and stable, it follows thatQ(λ) solves the approximate fault detection problem
(AFDP) formulated in Sect. 3.5.2 for the system (3.2) if and only if Q1(λ) solves
the AFDP for the reduced system (5.11). By a suitable choice of Q1(λ) we can

http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
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always additionally enforce that both Gw(λ) and Gf (λ) in (5.11) are proper, which
will be assumed throughout this section. The solvability conditions of the AFDP for
the system (3.2) can be replaced by similar conditions for the reduced system (3.2)
according to the following corollary to Theorem 3.9:

Corollary 5.4 For the system (3.2) the AFDP is solvable if and only if the system
(5.11) is completely fault detectable, or equivalently, the following input observability
conditions hold

Gfj (λ) �= 0, j = 1, . . . ,mf .

We have seen in the proof of Theorem 3.9, that a solution of the AFDP can be
determined by solving the related EFDP with w ≡ 0, using, for example, Procedure
EFD. The usefulness of such a solution can be assessed in terms of the magnitudes
of the minimum size detectable fault inputs in the presence of noise inputs. While
for small noise levels such a solution may often be satisfactory, for large noise levels
a purposely designed fault detection filter, which maximizes the magnitudes of the
minimum size detectable fault inputs for the given class of noise inputs, usually
represents a better solution. Such a solution, which aims to maximize the sensitivity
of residual to faults and, simultaneously, to minimize the effects of noise on the
residual, can be targeted by solving a suitably formulated optimization problem.

Consider a fault detection filter Q(λ), in the general parameterized form (5.9),
which has the internal form

r(λ) := Rf (λ)f(λ) + Rw(λ)w(λ) .

Let γ > 0 be an admissible level for the effect of the noise signalw(t) on the residual
r(t), which can be imposed, for example, as

‖Rw(λ)‖2/∞ ≤ γ , (5.22)

where ‖ · ‖2/∞ denotes either the H2- or H∞-norm. The H2-norm corresponds to
the case when w(t) is a white noise signal, while theH∞-norm is better suited when
w(t) is an unknown signal with bounded energy (or power). The choice of γ usually
reflects the desired robustness of the fault detection filter to reject the noise. The
value γ = 0 can be used to formulate the EFDP as a particular AFDP. For γ > 0
it is always possible, via a suitable scaling of the filter, to use the normalized value
γ = 1.

As measures of the sensitivity of residuals to faults, several “indices” have been
proposed in the literature to characterize the least sensitivity in terms of Rf (λ). Such
an index, commonly denoted by ‖Rf (λ)‖−, has been defined in terms of the least
singular value (denoted by σ(·)) of the frequency response of Rf (λ) as

‖Rf (λ)‖− := inf
ω∈Ω

σ
(
Rf (ω)

)
, (5.23)

http://dx.doi.org/10.1007/978-3-319-51559-5_3
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where Ω ⊂ ∂Cs is a finite or infinite set of frequency values on the boundary of the
appropriate stability domain. In viewofDefinition 3.4 (see Sect. 3.3), the requirement
‖Rf (λ)‖− > 0 can be interpreted as a complete strong fault detectability condition. In
some works, the formulation of the AFDP involves the determination of a filterQ(λ)

which maximizes the index (5.23) such that the noise attenuation constraint (5.22)
is simultaneously fulfilled. This binding of the formulation of the AFDP to a partic-
ular optimization-based solution method is generally not desirable, since it imposes
additional constraints, usually of purely technical character, on the solvability of
the AFDP.While the satisfaction of such constraints guarantees the solvability of the
underlyingmathematical optimization problem, these conditions are usually not nec-
essary for the solvability of the AFDP (according to the formulation in Sect. 3.5.2).
Two inherent weaknesses in the definition of the index ‖Rf (λ)‖− worsen additionally
the solvability of the optimization-based formulation of the AFDP.

A first issue is that the index (5.23) is meaningful only when mf ≤ p, because
if mf > p, only the detectability of p out of mf faults can be assessed by this
index, mf − p singular values being null. It was argued that the case mf > p can
be addressed using a bank of filters, where each filter must be sensitive only to a
subset of maximal p faults. However, this leads to an unnecessary increase of the
global order of the resulting fault detection filter and therefore represents a strong
technical limitation for practical use. The second issue is rather of conceptual nature.
The definition (5.23) targets primarily the complete strong fault detectability aspect
(see Definition 3.4), and therefore appears to be less adequate to characterize the
weaker property of complete fault detectability (see Definition 3.2), which merely
requires that each column of Rf (λ) must be nonzero. While this property can be still
indirectly targeted, for example, by a suitable choice of Ω (e.g., Ω = {λ0} with λ0 a
representative frequency value at which Rfj (λ0) must be nonzero for j = 1, . . . ,mf ),
an alternative index, discussed in what follows, is better suited to address directly
the complete fault detectability aspect.

To overcome both these deficiencies, an alternative index will be used to charac-
terize fault sensitivity. This index is defined as

‖Rf (λ)‖2/∞− := min
1≤j≤mf

‖Rfj (λ)‖2/∞, (5.24)

where ‖ · ‖2/∞ stays for either ‖ · ‖2 or ‖ · ‖∞, while ‖ · ‖2/∞− stays for either ‖ · ‖2−
or ‖ · ‖∞− indices defined in terms of H2 or H∞ norms in (5.24), respectively. The
requirement ‖Rf (λ)‖2/∞− > 0 merely asks that all columns of Rfj (λ) are nonzero,
and therefore, the index ‖Rf (λ)‖2/∞− characterizes the complete fault detectability
(of an arbitrary number of faults) as defined in Definition 3.2. To characterize the
complete strong fault detectability with respect to Ω , the modified index ‖ · ‖Ω− can
be used, defined as

‖Rf (λ)‖Ω− := min
1≤j≤mf

{
inf
ω∈Ω

∥∥Rfj (ω)
∥∥
2

}
. (5.25)
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For a particular problem, a combination of the two indices (5.24) and (5.25) can
also be meaningful, by selecting for the j-th column of Rf (λ) either ‖Rfj (λ)‖2/∞− or
‖Rfj (λ)‖Ω− as a problem specific fault sensitivity measure.

Using the above definitions of the‖·‖2/∞− and‖·‖Ω− indices, several optimization
problems can be formulated to address the computation of a satisfactory solution of
the AFDP for the reduced system (5.11) with Gw(λ) and Gf (λ) proper, using the
parametrization (5.9) of the fault detection filter with stable Q1(λ). In what follows,
we only discuss one of the most popular formulations, the H∞−/H∞ synthesis,
for which we give a detailed computational procedure. The synthesis goal is to
determine Q1(λ) which maximizes the fault sensitivity for a given level of noise:
Given γ ≥ 0, determine the stable and proper optimal fault detection filter Q1(λ)

and the corresponding optimal fault sensitivity level β > 0 such that

β = max
Q1(λ)

{ ∥∥Q1(λ)Gf (λ)
∥∥∞−

∣∣ ∥∥Q1(λ)Gw(λ)
∥∥∞ ≤ γ

}
. (5.26)

An alternative formulation of an optimization-based solution, called the H∞/H∞−
synthesis, minimizes the effects of noise by imposing a certain fault sensitivity level:
Given β > 0, determine γ ≥ 0 and a stable and proper fault detection filter Q1(λ)

such that

γ = min
Q1(λ)

{ ∥∥Q1(λ)Gw(λ)
∥∥∞

∣∣ ∥∥Q1(λ)Gf (λ)
∥∥∞− ≥ β

}
. (5.27)

The two approaches may lead to different solutions, depending on the properties of
the underlying transfer function matrices and problem dimensions. For both cases,
the gap β/γ can be interpreted as a measure of the quality of fault detection. For
γ = 0, both formulations include the exact solution (i.e., of the EFDP for w ≡ 0)
and the corresponding gap is infinite.

Before we discuss the computational issues, we consider a simple example which
highlights the roles of fault and noise input signals when solving an AFDP.

Example 5.5 This is the same as Example 5.2, where we redefined the noise input w as d and thus
we have

Gu(s) =
⎡

⎢
⎣

s + 1

s + 2
s + 2

s + 3

⎤

⎥
⎦ , Gd(s) = 0, Gw(s) =

⎡

⎣
1

s + 2
0

⎤

⎦ , Gf (s) =
⎡

⎣
s + 1

s + 2
0

0 1

⎤

⎦ .

A minimal basis is simply Nl(s) = [ I2 − Gu(s) ], which leads to Gw(s) = Gw(s) and Gf (s) =
Gf (s). This basis is in fact a solution of an EFDP in the case w ≡ 0. Thus, this solution can
be also employed to solve the AFDP, as pointed out in the proof of Theorem 3.9. To be useful
for practical purposes, a fault detection filter must provide reliable detection of all faults in the
presence of noise. This condition is evidently fulfilled by the fault input f2, since withQ(s) = Nl(s),
the second component of the residual r2 is simply r2 = f2, because there is no any interaction
between the noise input w and fault input f2. However, because f1 and w share the same input
space, the minimal detectable size of f1 will depend on the possible maximum size of noise input
w. Assume ‖w‖2 ≤ δw, thus for all w we have ‖Gw(s)w(s)‖2 ≤ ‖Gw(s)‖∞‖w(s)‖2 ≤ δw/2. Thus,

http://dx.doi.org/10.1007/978-3-319-51559-5_3
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the minimum size of detectable faults f1,min satisfies ‖Gf1 (s)f1,min(s)‖2 > δw/2. The solution of
this problem depends on the classes of faults considered. Assuming f1,min(s) = η/s (thus a step
input fault of amplitude η), the resulting asymptotic value of Gf1 (s)f1,min(s) is Gf1 (0)η = η/2. It
follows that we can reliably detect constant faults, provided their amplitude satisfies η > δw. More
generally, for step inputs in f1, the condition η > ‖Gw(s)‖∞δw/Gf1 (0)most be fulfilled for reliable
detection. Similar conditions can be established in the case of sinusoidal fault inputs. ♦

To solve the H∞−/H∞ optimization problem (5.26), we devise a synthesis pro-
cedure based on successive simplifications of the original problem by reducing it to
simpler problems with the help of a factorized representation of the fault detection
filter. We start with the factorized representation (5.9) of the fault detection filter
Q(λ), where Q1(λ) is a left nullspace basis of G(λ) in (5.2) and Q1(λ) has to be
determined. Let Gf (λ) and Gw(λ) be the TFMs of the reduced system (5.11) deter-
mined according to (5.12). We can immediately check the solvability conditions of
the AFDP of Corollary 5.2 as ‖Gf (λ)‖∞− > 0. Assume that this test indicates the
solvability of the AFDP. In this context, we introduce a useful concept to simplify the
presentation. A fault detection filter Q(λ) is called admissible if the corresponding
Rf (λ) satisfies ‖Rf (λ)‖∞− > 0 (i.e., it has all its columns nonzero).

Let q be the desired number of residual components. As in the case of an EFDP, if
a solution of the AFDP exists, then generally we can always use a scalar output fault
detection filter (thus choose q = 1). However, larger values of q can be advantageous,
because generally involve more free parameters which can be appropriately tuned. In
the proposed synthesis procedure (see Procedure AFD), the choice of q is restricted
to q ≤ rw ≤ p − rd , where rw := rankGw(λ) and rd := rankGd(λ). This choice
is, however, only for convenience, because it leads to a simpler synthesis procedure.
As shown in Remark 5.10, in practical applications q must only satisfy q ≤ p − rd ,
which limits q to the maximum number of left nullspace basis vectors of G(λ) in
(5.2) (i.e., the number of rows of Q1(λ)). This bound on q is the same as in the case
of solving the EFDP.

At the next step, we use a factorized representation ofQ1(λ) in the formQ1(λ) =
Q2(λ)Q2(λ), where the rw×(p−rd) factorQ2(λ) is determined such thatQ2(λ)Gw(λ)

has full row rank rw, and the productQ2(λ)Q1(λ) is admissible andhas leastMcMillan
degree. If this latter requirement is not imposed, then a simple choice is Q2(λ) = H,
whereH is a rw × (p− rd) full row rank constant matrix which ensures admissibility
(e.g., chosen as a randomly generatedmatrixwith orthonormal columns). This choice
corresponds to building Q2(λ)Q1(λ) as rw linear combinations of the left nullspace
basis vectors contained in the rows of Q1(λ).

At this stage, the optimization problem to be solved falls in one of two categories.
The standard case is whenQ2(λ)Gw(λ) has no zeros on the boundary of the stability
domain ∂Cs (i.e., on the extended imaginary axis in the continuous-time case, or
on the unit circle centred in the origin in the discrete-time case). The nonstandard
case corresponds to the presence of such zeros. This categorization can be easily
revealed at the next step, which also involves the computation of the respective
zeros. For the full row rank TFM Q2(λ)Gw(λ) we compute the quasi-co-outer–co-
inner factorization

Q2(λ)Gw(λ) = Gwo(λ)Gwi(λ), (5.28)
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where the quasi-co-outer factorGwo(λ) is invertible, having only stable zeros except-
ing possible zeros on the boundary of the stability domain, and Gwi(λ) is co-inner
(i.e., Gwi(λ)G∼

wi(λ) = I with G∼
wi(s) = GT

wi(−s) in the continuous-time case, and
G∼

wi(z) = GT
wi(1/z) in the discrete-time case).

We choose Q2(λ) = Q3(λ)Q3(λ), with Q3(λ) = G−1
wo (λ) and Q3(λ) to be deter-

mined. Using (5.10)–(5.12), the fault detection filter in (3.3) can be rewritten as

r(λ) = Q3(λ)Q3(λ)Q2(λ)y(λ) = Q3(λ)̃y(λ) , (5.29)

where
ỹ(λ) := Q3(λ)Q2(λ)y(λ) = G̃f (λ)f(λ) + Gwi(λ)w(λ) , (5.30)

with
G̃f (λ) := Q3(λ)Q2(λ)Gf (λ) . (5.31)

It follows, that Q3(λ) can be determined as the solution of

β = max
Q3(λ)

{ ∥∥Q3(λ)G̃f (λ)
∥∥∞−

∣∣ ∥∥Q3(λ)
∥∥∞ ≤ γ

}
, (5.32)

where we used that
∥∥Q3(λ)Gwi(λ)

∥∥∞ = ∥∥Q3(λ)
∥∥∞.

In the standard case, we can always ensure that both the partial filter defined by
the product of stable factors Q3(λ)Q2(λ)Q1(λ) and G̃f (λ) are stable. Thus, Q3(λ) is
determined as Q3(λ) = Q4, where Q4 is a constant matrix representing the optimal
solution of the reduced problem

β = max
Q4

{ ∥∥Q4G̃f (λ)
∥∥∞−

∣∣ ‖Q4‖∞ ≤ γ
}
,

such that the resulting detector Q(λ) = Q4Q3(λ)Q2(λ)Q1(λ) is admissible. For
square Q4(λ), Q4 = γ I is the simplest H∞−/H∞ optimal solution.

We give the following result without proof. For proofs in continuous- and discrete-
time, see [77, 78], respectively.

Theorem 5.2 For the reduced system (5.11) and with a suitable choice of Q2(λ)

assume that we have ‖Q2(λ)Gf (λ)‖∞− > 0, Q2(λ)Gw(λ) has full row rank and
Q2(λ)Gw(λ) has no zeros on the boundary of the stability domain. Then, for γ > 0
theH∞−/H∞ optimal solution of the optimization problem (5.26) is

Q1,opt(λ) := γG−1
wo (λ)Q2(λ) ,

where Gwo(λ) is the co-outer factor of the co-outer–co-inner factorization (5.28).

In the nonstandard case, both the partial detector Q̃(λ) := Q3(λ)Q2(λ)Q1(λ) and
G̃f (λ) can result unstable or improper due to the presence of poles on the boundary
of the stability domain in the factor Q3(λ) = G−1

wo (λ). In this case, we choose
Q3(λ) = Q5Q4(λ), where Q4(λ) results from a LCF with stable and proper factors

http://dx.doi.org/10.1007/978-3-319-51559-5_3
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[ Q̃(λ) G̃f (λ) ] = Q−1
4 (λ)[ Q̂(λ) Ĝf (λ) ] ,

while Q5 is a constant matrix which solves

β = max
Q5

{ ∥∥Q5Ĝf (λ)
∥∥∞−

∣∣ ‖Q5Q4(λ)‖∞ ≤ γ
}
.

SinceQ4(λ) can be always chosen diagonal and such that its diagonal elements have
H∞-norms equal to 1, this choice will significantly simplify the solution of the above
problem. For example, the choice Q5 = γ I is always a possibility to obtain a fault
detection filter.

Remark 5.7 The presence of unstable zeros of Gwo(λ) on the boundary of the sta-
bility domain prevents the computation of an “optimal” solution of the H∞−/H∞-
optimization problem. When solving practical applications, this apparent limitation
is superfluous, because the presence of these zeros represents in fact an advantage
rather than a disadvantage. For example, in the case of a continuous-time system, a
zero at infinity (e.g., in the case when the original Gw(s) is strictly proper) confers to
Gwo(s) a low-pass character as well, such that high-frequency noise will be attenu-
ated in the noise input channel. Similarly, a zero in the origin will cancel all constant
variations in the noise, thus will also attenuate slowly varying noise inputs. Finally,
a pair of conjugated zeros on the imaginary axis will attenuate all sinusoidal noise
signals of nearby frequencies. This behaviour is thus very similar to that of notch
filters, which are purposely included in the feedback loops to address disturbance
attenuation or rejection problems in control systems design. The above approach for
the nonstandard case simply copes with the presence of zeros on the boundary of the
stability domain. �

Remark 5.8 In the nonstandard case, we can alternatively regularize the problem
by replacing Gwo(λ) in (5.28) by Gwo,ε(λ), which, for ε > 0, is a minimum-phase
spectral factor satisfying

Gwo,ε(λ)G∼
wo,ε(λ) = ε2I + Gwo(λ)G∼

wo(λ) .

By choosing Q2(λ) = Q3(λ)Q3(λ) with Q3(λ) = G−1
wo,ε(λ), we arrive to the same

optimization problem (5.32) for Q3(λ) as for the standard case. The solution of the
AFDP along this line has been discussed in [52]. �

The dynamical order of the resulting residual generator in the standard case, is
the order of Q3(λ) if we choose Q4(λ) a constant matrix. This order results from
the conditions that Q2(λ)Gw(λ) has full row rank and Q2(λ)Q1(λ) has least-order
and is admissible (i.e., ‖Q2(λ)Gf (λ)‖∞− > 0). For each candidate Q2(λ), the corre-
sponding optimal Q3(λ) results automatically, but the different “optimal” detectors
for the same level γ of noise attenuation performance can have significantly differing
fault detection performance levels (measured via the optimal cost β). Finding the
best compromise between achieved order and the achieved performance (measured
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via the gap β/γ ), should take into account that larger orders and larger number of
detector outputs q potentially lead to better performance.

The Procedure AFD, given in what follows, allows the synthesis of least-order
fault detection filters to solve the AFDP employing anH∞−/H∞ optimization-based
approach. This procedure includes also theProcedureEFD in the casewhen an exact
solution exists. Similar synthesis procedures relying on alternative optimization-
based formulations (e.g., H∞−/H2, H2−/H∞, H2−/H2, HΩ−/H∞, HΩ−/H2 as
well as their finite frequency range counterparts) can be devised by only adapting
appropriately the last computational step of the Procedure AFD.

Procedure AFD: Approximate synthesis of fault detection filters
Inputs : {Gu(λ),Gd(λ),Gf (λ),Gw(λ)}, q, γ
Outputs: Q(λ), Rf (λ), Rw(λ), β

1) Compute a (p − rd) × (p + mu) minimal proper stable basis Q1(λ) for the left
nullspace of G(λ) defined in (5.2), where rd = rankGd(λ); set Q(λ) = Q1(λ)

and compute

[Rf (λ) Rw(λ) ] = Q1(λ)

[
Gf (λ) Gw(λ)

0 0

]
.

Exit if exists j ∈ {1, . . . ,mf } such that Rfj (λ) = 0 (no solution).
2) Compute rw = rankRw(λ); if rw = 0, set q1 = min(p−rd, q); else, set

q1 = rw; choose a q1 × (p−rd) rational matrix Q2(λ) such that Q2(λ)Q(λ)

is admissible, has least McMillan degree and, if rw > 0 then Q2(λ)Rw(λ)

has full row rank rw; compute Q(λ) ← Q2(λ)Q(λ), Rf (λ) ← Q2(λ)Rf (λ)

and Rw(λ) ← Q2(λ)Rw(λ).
3) If rw > 0, compute the quasi-co-outer–co-inner factorization

Rw(λ) = Rwo(λ)Rwi(λ), where the quasi-co-outer factor Rwo(λ) is
invertible and has only stable zeros, excepting possible zeros on the
boundary of the tability domain, and Rwi(λ) is co-inner; with Q3(λ) =
R−1
wo (λ) compute Q(λ) ← Q3(λ)Q(λ), Rf (λ) ← Q3(λ)Rf (λ) and

Rw(λ) ← Rwi(λ).
4) Compute Q4(λ) such that Q4(λ)Q(λ) and Q4(λ)Rf (λ) are proper and

stable; compute Q(λ) ← Q4(λ)Q(λ), Rf (λ) ← Q4(λ)Rf (λ), and
Rw(λ) ← Q4(λ)Rw(λ).

5) If rw > 0, choose Q5 ∈ Rmin(q,rw)×q1 such that ‖Q5Q4(λ)‖∞ = γ and
β = ‖Q5Rf (λ)‖∞− > 0; update Q(λ) ← Q5Q(λ), Rf (λ) ← Q5Rf (λ),
and Rw(λ) ← Q5Rw(λ); else, set β = ∞.

Remark 5.9 The threshold selection approach of Sect. 3.6 can be applied to deter-
mine a threshold value τ which guarantees the lack of false alarms. For any selected
value of the threshold τ , we can estimate for j = 1, . . . ,mf the magnitude δfj , of the
minimum size detectable fault fj �= 0, provided fk = 0 ∀k �= j. Consider the internal
representation of the resulting fault detection filter in the form

http://dx.doi.org/10.1007/978-3-319-51559-5_3
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r(λ) =
mf∑

j=1

Rfj (λ)fj(λ) + Rw(λ)w(λ) .

By using (3.39) in the frequency domain (via Plancherel’s theorem), δfj can be com-
puted from

2τ = inf
‖fj‖=δfj

‖Rfj (λ)fj(λ)‖2 = δfj‖Rfj (λ)‖Ω− ,

where we used the properties of the index defined in (5.25). Forw(t) having bounded
energy and satisfying ‖w‖2 ≤ δw, we obtain

δfj = 2‖Rw(λ)‖∞δw

‖Rfj (λ)‖Ω−
. (5.33)

The resulting value of δfj can be used to assess the “practical usefulness” of any
solution. A small value of ‖Rfj (λ)‖Ω− may indicate a large size of the minimal
detectable faults for a particular choice of Ω . Therefore, various alternative choices
ofΩ may be used to arrive tomore realistic estimates. For example,Ω can be defined
as a relevant interval of frequency values, or only a finite set of relevant frequencies
(e.g., the DC-gain frequency λs). �

Example 5.6 If we applyProcedureAFD to solve theH∞−/H∞ synthesis problem for the system
in Example 5.5, the resulting optimization problem is nonstandard, because Gw(s) has a zero at
infinity. Let choose γ = 1. At Step 1) we set Q1(s) = Nl(s), with Nl(s) determined in Example
5.5. We have that Rw(s) = Gw(s) and Rf (s) = Gf (s). Since each column of Rf (s) is nonzero, the
AFDP is solvable. Since rw = 1, at Step 2), we can employ a constant vector Q2(λ) = [ 1 1 ] to
obtain the updated quantities

Q(s) =
[
1 1 − 2s2 + 8s + 7

(s + 2)(s + 3)

]
, Rw(s) = 1

s + 2
, Rf (s) =

[
s + 1

s + 2
1

]
. (5.34)

At Step 3), the quasi-outer factor Gwo(s) is simply Rw(s) and, being strictly proper, has thus a zero
at infinity. With Q3(s) = R−1

w (s), the resulting Q(s) and Rf (s) are therefore improper. At Step 4),
we choose Q4(s) of unity H∞-norm of the form Q4(s) = a/(s + a) with a ≥ 2. For γ = 1 we
obtain at Step 5) with Q5 = 1 the final Q(s), Rf (s), and Rw(s)

Q(s) =
[
a
s + 2

s + a
a
s + 2

s + a
−a

2s2 + 8s + 7

(s + a)(s + 3)

]
, Rf (s) =

[
a
s + 1

s + a
a
s + 2

s + a

]
, Rw(s) = a

s + a
.

Since β = ‖Rf (s)‖∞− = a, it follows that β can be arbitrarily large, and thus the H∞−/H∞
problem (5.26) has no optimal solution. Although not optimal, the resulting fault detection filter can
be reliably employed for detecting faults, whose minimum amplitude is above a certain threshold.
The value of this threshold can be easily determined using information on the size and waveform
of the noise input.

http://dx.doi.org/10.1007/978-3-319-51559-5_3
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The script Ex5_6 in Listing 5.2 solves the AFDP considered in this example. ♦

Listing 5.2 Script Ex5 6 to solve the AFDP of Example 5.6 using Procedure AFD
% Uses the Control Toolbox and the Descriptor System Tools

% define s as an improper transfer function
s = tf('s');
% define Gu(s), Gw(s), Gf (s)
Gu = [(s+1)/(s+2); (s+2)/(s+3)]; % enter Gu(s)
Gw = [1/(s+2); 0]; % enter Gw(s)
Gf = [(s+1)/(s+2) 0; 0 1]; % enter Gf (s)
p = 2; mu = 1; mw = 1; mf = 2; % enter dimensions

tol = 1.e-7; % set tolerance for rank tests

% choose the left nullspace as Q = [ I − Gu ] and
% intialize Rf = Q[Gf ; 0 ] = Gf and Rw = Q[Gw; 0 ] = Gw

Q = ss([eye(p) -Gu]); Rf = ss(Gf); Rw = ss(Gw);

% compress Rw to a full row rank matrix
rw = rank(evalfr(Rw,rand )); nb = size(Q,1);
if rw < nb

h = ones(rw ,nb);
% may use alternatively h = rand(rw,nb);
Q = h*Q; Rf = h*Rf; Rw = h*Rw;

end

% compute the quasi-co-outer-co-inner factorization Rw = RwoRwi

[Rwi ,Rwo] = goifac(Rw ,tol);

% compute optimal filter (for standard case)
Q = gir(Rwo\Q,tol); % update Q ← R−1

woQ
Rf = gir(Rwo\Rf ,tol); Rw = Rwi; % update Rf ← R−1

woRf and Rw ← Rwi

% check for poles on the extended imaginary axis
poles = gpole ([Q Rf]);
if max(real(poles )) == inf || min(abs(real(poles ))) < 0.0001

% compute a stable and proper left coprime factorization
% of [Q Rf Rw ]; enforce stability degree -3
opts = struct('sdeg ',-3,'smarg ',-3);
[Q_Rf_Rw ,M] = glcf(gir([Q,Rf ,Rw],tol),opts);
% adjust denominator to unit infinity norm to match example
scale = -norm(M,inf);
Q = minreal(tf(Q_Rf_Rw (:,1:p+mu)/ scale ));
Rf = minreal(tf(Q_Rf_Rw (:,p+mu+1:p+mu+mf)/ scale ));
Rw = minreal(tf(Q_Rf_Rw (:,p+mu+mf+1: end)/ scale ));

end

Example 5.7 We solve the problem in Example 5.6 using the alternative approach suggested in
Remark 5.8. At Steps 1) and 2) we determine the same Q(s), Rw(s) and Rf (s) as in (5.34). The
quasi-outer factor is as before Gwo(s) = Rw(s) and is strictly proper, having thus a zero at infinity.
For ε > 0, we determineGwo,ε(s) such that Gwo,ε(s)G∼

wo,ε(s) = ε2 +Gwo(s)G∼
wo(s) and we obtain

Gwo,ε(s) = εs + √
1 + 2ε2

s + 2
.

With Q3(s) = G−1
wo,ε(s), the optimal solution of the problem (5.32) is Q3(s) = 1 for which the final

Q(s), Rf (s) and Rw(s) are
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Q(s) =
[

s + 2

εs + √
1 + 2ε2

s + 2

εs + √
1 + 2ε2

− 2s2 + 8s + 7

(εs + √
1 + 2ε2)(s + 3)

]
,

Rf (s) =
[

s + 1

εs + √
1 + 2ε2

s + 2

εs + √
1 + 2ε2

]
, Rw(s) = 1

εs + √
1 + 2ε2

.

Since β = ‖Rf (s)‖∞− = 1/ε, it follows that β becomes arbitrarily large as ε → 0. Although the
H∞−/H∞ problem (5.26) has no optimal solution, the resulting filter Q(s) can be acceptable for a
large range of values of ε. ♦

Example 5.8 If we solve the H∞/H∞− synthesis problem for Example 5.5, the optimal solution
Q(s) and the corresponding Rf (s) are simply

Q(s) = G−1
f (s)Nl(s) =

[ s+2
s+1 0 −1
0 1 − s+2

s+3

]
, Rf (s) =

[
1 0
0 1

]
,

which lead to the optimal values β = 1 and γ = 1. In contrast to the filter in Example 5.7, this filter
is optimal (in a certain sense) and able to perform fault isolation as well, by exactly reconstructing
fault f2 and approximately fault f1. ♦

Remark 5.10 The solution of the AFDP can be refined in the case when rw < p −
rd . In this case, it follows that there exists a left nullspace basis Nl,w(λ) such that
Nl,w(λ)Gw(λ) = 0, thus the noise input can be exactly decoupled. Also, there exists
a maximal subvector f (1) of fault inputs which are completely fault detectable (i.e.,
the columns of the corresponding Nl,w(λ)Gf (1) (λ) are nonzero), while none of the
components of its complementary part f (2) of f is fault detectable (i.e., all columns
of the corresponding Nl,w(λ)Gf (2) (λ) are zero), and thus are completely decoupled.
Here, we denoted with Gf (1) (λ) and Gf (2) (λ) the columns of Gf (λ) corresponding to
f (1) and f (2), respectively. This allows the partitioning of the reduced system (5.11)
as

y(λ) := Gf (1) (λ)f (1)(λ) + Gf (2) (λ)f (2)(λ) + Gw(λ)w(λ) . (5.35)

In general, we can construct Q1(λ) and Q(λ) in the forms

Q1(λ) =
[
Q

(1)
1 (λ)

Q
(2)
1 (λ)

]

, Q(λ) =
[
Q(1)(λ)

Q(2)(λ)

]
:=

[
Q

(1)
1 (λ)

Q
(2)
1 (λ)

]

Q1(λ), (5.36)

where Q
(1)
1 (λ) solves the EFDP for the reduced system (5.35) with respect to fault

components f (1) and decouples f (2) and w in the leading components r(1) of the

residual r, while Q
(2)
1 (λ) solves the AFDP for the reduced system (5.35) for the

fault components f (2) and generates the trailing components r(2) of the residual r.
The maximum number of components of r(1) is p − rd − rw, while r(2) will have
maximum rw components. Thus, the number of components of r is limited to p− rd .
The case f = f (1) corresponds to the solution of an EFDP for which Procedure EFD
can be used, while the case f = f (2) corresponds to the solution of an AFDP, for
which Procedure AFD can be used. �
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Example 5.9 Consider once again the solution of the H∞−/H∞ synthesis problem for Example
5.5. With Nl(s) chosen as in Example 5.5, we have that the rank of Gw(s) (or Rw(s) at Step
1) of Procedure AFD) is rw = 1. With Nl,w(s) = [

0 1
]
, we obtain Nl,w(s)Gw(s) = 0 and

Nl,w(s)Gf (s) = [
0 1

]
. Thus, with f (1) = f2, f (2) = f1 and

Gf (1) (s) :=
[
0
1

]
, Gf (2) (s) :=

⎡

⎣
s + 1

s + 2

0

⎤

⎦ ,

we arrive to the partitioned subsystem (5.35). We determine Q(s) in the partitioned form (5.36),
where the solution of the EFDP with the above Gf (2) (s) is simply

Q(1)(s) = Nl,w(s)Nl(s) =
[
0 1 − s + 2

s + 3

]
.

We determine Q(2)(s) by solving the AFDP formulated with Gf (1) (s) and Gw(s) using Procedure
AFD. With Q1(s) = Nl(s) chosen in Example 5.5 and Q2(s) = [

1 0
]
we obtain at Step 2)

Q(2)(s) =
[
1 0 − s + 1

s + 2

]
, Rw(s) = 1

s + 2
, Rf (2) (s) = s + 1

s + 2
.

With Q3(s) = R−1
w (s) at Step 3), Q4(s) = Q−1

3 (s) = Rw(s) at Step 4), and Q5 = 2 we obtain at
Step 5) for γ = 1 the final Q(2)(s) and corresponding Rf (2) (s)

Q(2)(s) =
[
2 0 −2

s + 1

s + 2

]
, Rf (2) (s) = 2

s + 1

s + 2
,

for which β = ‖Rf (2) (s)‖∞− = 2. The combined solutions according to (5.36) give

Q(s) =
[
Q(1)(s)
Q(2)(s)

]
=

⎡

⎢⎢
⎣

0 1 − s + 2

s + 3

2 0 −2
s + 1

s + 2

⎤

⎥⎥
⎦ , Rf (s) =

⎡

⎣
0 1

2
s + 1

s + 2
0

⎤

⎦ .

The resulting filter is able to perform fault isolation as well, and even the exact reconstruction of the
fault f2. The optimal value β = 1 for γ = 1 is the same as for the “optimal” solution of Example 5.7.
However, since the exact solution Q(1)(s) can be arbitrarily scaled, the effective value of β is 2,
which is larger than for the “optimal” solution of Example 5.8. ♦

5.4 Solving the Exact Fault Detection
and Isolation Problem

Let S be a given nb × mf structure matrix to be achieved by the fault detection filter
Q(λ). Using the factorized representation Q(λ) = Q1(λ)Q1(λ) in (5.9), it follows
that, to solve the exact fault detection and isolation problem (EFDIP) formulated in
Sect. 3.5.3 for the system (3.2) with w ≡ 0, the same S must be achieved by Q1(λ)

for the reduced system (5.11) for w ≡ 0. For this, we consider Q1(λ) partitioned
with nb block rows, in the form

http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
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Q1(λ) =

⎡

⎢⎢⎢⎢
⎣

Q
(1)
1 (λ)

Q
(2)
1 (λ)
...

Q
(nb)
1 (λ)

⎤

⎥⎥⎥⎥
⎦

, (5.37)

where the i-th block row Q
(i)
1 (λ) generates the i-th component of the residual vector

r(i)(λ) := Q
(i)
1 (λ)y(λ) (5.38)

and achieves the i-th specification contained in the i-th row of S.
The solvability conditions of the EFDIP given in Theorem 3.10 (also explicitly

given in Theorem 3.5) can be replaced by simpler conditions for the reduced system
(5.11). This comes down to checking for i = 1, . . . , nb, the solvability conditions
for the i-th specification contained in the i-th row of S. For this purpose, we rewrite
for each i, i = 1, . . . , nb, the reduced system (5.11) for w ≡ 0 as

y(λ) = G
(i)
d (λ)d(i)(λ) + G

(i)
f (λ)f (i)(λ), (5.39)

where d(i) contains those components fj of f for which Sij = 0, f (i) contains those

components fj of f for which Sij �= 0, while G
(i)
d (λ) and G

(i)
f (λ) are formed from the

corresponding sets of columns of Gf (λ), respectively. Thus, d(i) contains all fault
components to be decoupled in the i-th component r(i) of the residual by the i-th

filter Q
(i)
1 (λ), while f (i) contains those faults which need to be detected in the i-th

component r(i) of the residual.
The following corollary to Theorem 3.10 provides the solvability conditions of

the EFDIP in terms of the nb reduced systems formed in (5.39):

Corollary 5.5 For the system (3.2) with w ≡ 0 and a given structure matrix S, the
EFDIP is solvable if and only if the system (5.11) with w ≡ 0 is S-fault isolable, or
equivalently, for i = 1, . . . , nb

rank [G(i)
d (λ) Gfj (λ) ] > rank G

(i)
d (λ), ∀j, Sij �= 0 ,

where G
(i)
d (λ) is formed from the columns Gfj (λ) of Gf (λ) for which Sij = 0.

In other words, to check the fault isolability for the i-th specification, we have simply
to check the complete fault detectability of the corresponding reduced system (5.39)
with permuted inputs.

A similar corollary to Theorem 3.11 provides the solvability condition for the
solution of the EFDIP with strong isolability.

http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
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Corollary 5.6 For the system (3.2) with w ≡ 0 and S = Imf , the EFDIP is solvable
if and only if the system (5.11) with w ≡ 0 is strongly fault isolable, or equivalently

rank Gf (λ) = mf .

To determine the i-th block row Q
(i)
1 (λ) of Q1(λ) in (5.37), we have to solve an

EFDP for the corresponding reduced system (5.39). For this purpose, the Procedure
EFD can be applied, which also checks the solvability conditions for the correspond-
ing specification. The resulting overall detector Q(λ) and the corresponding Rf (λ)

are

Q(λ) =

⎡

⎢
⎢⎢
⎣

Q(1)(λ)

Q(2)(λ)
...

Q(nb)(λ)

⎤

⎥
⎥⎥
⎦

=

⎡

⎢⎢
⎢⎢
⎣

Q
(1)
1 (λ)

Q
(2)
1 (λ)
...

Q
(nb)
1 (λ)

⎤

⎥⎥
⎥⎥
⎦
Q1(λ), Rf (λ) =

⎡

⎢⎢
⎢⎢
⎣

R(1)
f (λ)

R(2)
f (λ)

...

R(nb)
f (λ)

⎤

⎥⎥
⎥⎥
⎦

, (5.40)

where the i-th block row R(i)
f (λ) achieves the i-th specification contained in the i-th

row of S.
The Procedure EFDI, given below, determines the nb row blocks Q(i)(λ) and

R(i)
f (λ), i = 1, . . . , nb, of Q(λ) and Rf (λ), respectively, with the i-th blocks having

the desired row dimension qi.

Procedure EFDI: Exact synthesis of fault detection and isolation filters

Inputs : {Gu(λ),Gd(λ),Gf (λ)}, S ∈ Rnb×mf , {q1, . . . , qnb}
Outputs: Q(i)(λ), R(i)

f (λ), i = 1, . . . , nb

1) Compute a (p − rd) × (p + mu) minimal basis matrix Q1(λ) for the
left nullspace of G(λ) defined in (5.2), where rd := rankGd(λ);

set Q(λ) = Q1(λ) and compute Rf (λ) = Q1(λ)

[
Gf (λ)

0

]
.

2) For i = 1, ..., nb

2.1) Define G
(i)
d (λ) as those columns Rfj (λ) of Rf (λ) for which Sij = 0 and

G
(i)
f (λ) as those columns Rfj (λ) for which Sij �= 0.

2.2) Apply the Procedure EFD to the system described by the quadruple

{0,G(i)
d (λ),G

(i)
f (λ), 0} to obtain the qi × (p − rd) least-order filter

Q
(i)
1 (λ). Exit if no solution exists.

2.3) Compute Q(i)(λ) = Q
(i)
1 (λ)Q(λ) and R(i)

f (λ) = Q
(i)
1 (λ)Rf (λ).

This synthesis procedure ensures that each block Q
(i)
1 (λ) and the corresponding

R(i)
f (λ) are stable. Thus the overall Rf (λ) in (5.40) is also stable. The stability of

overall Q(λ) in (5.40) can be always ensured, by choosing a stable left nullspace

http://dx.doi.org/10.1007/978-3-319-51559-5_3
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basisQ1(λ) at Step 1). As it will be shown in Sect. 7.4, this is not necessary, because

the computation of both Q(i)(λ) = Q
(i)
1 (λ)Q(λ) and R(i)

f (λ) = Q
(i)
1 (λ)Rf (λ) at Step

2.3) can be done by using state-space representation based updating techniques,
which always guarantee that Q(i)(λ) and R(i)

f (λ) have the state-space representations
with the same state and descriptor matrices, and result simultaneously stable.

The applicability of Procedure EFDI for a given system relies on the assump-
tion that the structure matrix S is achievable. Therefore, to select a minimal set of
specifications which cover all expected fault combinations, it is important to know
all achievable specifications for a given system. For a system with mf faults, the
complete set of possible distinct specifications contains 2mf − 1 elements. Thus, a
brute force approach is based on an exhaustive search, by trying to solve the EFDIP
for each of these specifications to find out which specifications are feasible (i.e., the
corresponding design was successful). The main problem with this approach is its
lack of efficiency, as explained in what follows.

Each synthesis problem of a fault detection filter for a given specification can
be reformulated as a standard EFDP, where all faults with zero signatures in the
checked specification are redefined as disturbances.With this reformulation, themain
computation is the determination of the nullspace basis of a TFM with p + mu rows
andmu +md + k columns, where k denotes the number of null elements in the tested
specification (i.e., 0 ≤ k < mf ) and represents the number of additional disturbance
inputs which results by recasting the fault inputs to be decoupled as disturbances.
The nullspace computation must be performed for all 2mf −1 possible specifications,
although this may not be necessary ifmf > p− rd , where we recall that rd is the rank
of Gd(λ). In what follows, we describe a more efficient approach, where the product
representation of nullspace, mentioned in Sect. 5.1, is systematically exploited. The
expected efficiency gain arises by replacing the above nullspace computations on
matrices with p + mu rows and at least mu + md columns, with a succession of
nullspace determinations on single columnmatrices with decreasing number of rows.
This leads to a significant reduction of the total computational burden.

We now describe a recursive procedure to generate in a systematic and computa-
tionally efficient way suitable nullspace bases to serve for the determination of all
achievable specifications.We illustrate the core computation with two generic pe×m
and pe×mf TFMsG(λ) andF(λ), respectively. The basic computational step consists
of successively determining left nullspace basesNl(λ) ofG(λ) (i.e.,Nl(λ)G(λ) = 0)
such that the structurematrix ofNl(λ)F(λ)has up tomin(mf , pe−r)−1 zero columns,
where r = rankG(λ). To initialize the procedure for the system (2.1), we initialize
these TFMs as

G(λ) =
[
Gu(λ) Gd(λ)

Imu 0

]
, F(λ) =

[
Gf (λ)

0

]
, (5.41)

with pe = p + mu and m = mu + md .

http://dx.doi.org/10.1007/978-3-319-51559-5_7
http://dx.doi.org/10.1007/978-3-319-51559-5_2
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Fig. 5.1 Tree of performed
computations of fault
specifications

To describe the nullspace generation process in more details, let N0
l (λ) be the

(pe − r)× pe proper minimal left nullspace basis of G(λ) and let SF0 be the structure
matrix of F0(λ) := N0

l (λ)F(λ). This structure matrix is a 1 × mf row vector corre-
sponding to F0(λ) seen as an 1×mf block row (see the definition of structure matrix
in (3.17) based on (3.16)), with the (1, j)-th block row element formed of the j-th
column of F0(λ). If min(mf , pe − r) > 1, then for each i = 1, . . . ,mf , determine
the left nullspace basis Ni

l (λ) of the i-th column of F0(λ) and let SFi be the structure
matrix corresponding to Fi(λ) := Ni

l (λ)F0(λ). Each SFi is a 1×mf row vector with
the i-th column element equal to zero. If the i-th column is zeroed with Ni

l (λ), then
Ni
l (λ) is a (pe − r − 1)× (pe − r) TFM. If now pe − r − 1 > 1, we continue by com-

puting for each j-th column of Fi(λ), j > i, the corresponding left nullspace Nj,i
l (λ)

and the corresponding structure matrix SFj,i ofFj,i(λ) := Nj,i
l (λ)Fi(λ). Each SFj,i will

have zeros in its i-th and j-th columns. This process continues in a similar way until
all nonzero SFk,...,j,i have been generated. The resulting S is formed by concatenating
row-wise the determined SF0 , SF1 , . . ., SFmf , SF2,1 , . . ., SFmf ,1 , . . ., SFmf ,mf −1 , . . .. The
tree in Fig. 5.1 illustrates the performed computations for a system with mf = 3 and
pe − r = 3.

If we denote with S the matrix formed of all achievable specifications, then, for
the considered example, we have S = [ STF0 STF1 STF2,1 STF3,1 STF2 STF3,2 STF3 ]T , where
each SFi has the i-th column zero, while each SFj,i has the i-th and j-th columns zero.
Note that in nongeneric cases, other elements may also be zero. It can be observed
that the computation of F1,2(λ) is not necessary because the same information is
provided by F2,1(λ). Similarly, the computation of both F1,3(λ) and F2,3(λ) is not
necessary, because the corresponding information is provided byF3,1(λ) andF3,2(λ),
respectively.

The computational process can be easily formulated as a recursive procedure,
which for the given matrices G(λ) and F(λ), computes the maximally achievable
structure matrix S. This procedure can be formally called as S = GENSPEC(G,F).

http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
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For example, the maximally achievable structure matrix for the system (2.1) can be
computed with G(λ) and F(λ) defined in (5.41).

Procedure GENSPEC: Generation of achievable fault specifications

Inputs : G(λ) ∈ R(λ)pe×m, F(λ) ∈ R(λ)pe×mf

Output: S ∈ Rq×mf

Function S = GENSPEC(G,F)

1) Compute a left nullspace basis Nl(λ) of G(λ).
Exit with S = ∅ if Nl(λ) is empty.

2) Compute Nf (λ) = Nl(λ)F(λ).
3) Compute the structure matrix S of Nf (λ). Exit if Nf (λ) is a row vector.
4) For i = 1, . . . ,mf

4.1) Form G̃i(λ) as column i of Nf (λ).
4.2) Form F̃i(λ) from columns 1, . . . , i − 1, i + 1, . . . ,mf of Nf (λ).
4.3) Call S̃ = GENSPEC

(
G̃i, F̃i

)
.

4.4) Partition S̃ = [ S̃1 S̃2 ] such that S̃1 has i − 1 columns.

4.5) Define Ŝ = [ S̃1 0 S̃2 ] and update S ←
[
S
Ŝ

]
.

The Procedure GENSPEC performs the minimum number of nullspace com-
putations and updating. This number is given by kS = ∑imax

i=0

(mf

i

)
, where imax =

min(mf , pe − r) − 1 and r is the rank of the initial G(λ). As it can be observed, kS
depends on the number of initial basis vectors pe−r and the number of faultsmf , and,
although the number of distinct specifications can be relatively low, still kS can be a
large number. For the example considered above, mf = 3 and pe − r = 3, thus the
maximum number kS = 7(= 2mf − 1) nullspace computations are necessary. How-
ever, in contrast to the brute force approach, all but one of nullspace computations
are performed for rational matrices with a single column (and varying number of
rows), and therefore a substantial saving in the computation effort can be expected.

Example 5.10 Consider a continuous-time system with triplex sensor redundancy on one of its
measured output components, which we denote by y1, y2 and y3. Each output is related to the
control and disturbance inputs by the input–output relation

yi(s) = Gu(s)u(s) + Gd(s)d(s), i = 1, 2, 3,

where Gu(s) and Gd(s) are 1 × mu and 1 × md TFMs, respectively. We assume all three outputs
are susceptible to additive sensor faults. Thus, the input–output model of the system has the form

y(s) :=
⎡

⎣
y1(s)
y2(s)
y3(s)

⎤

⎦ =
⎡

⎣
Gu(s)
Gu(s)
Gu(s)

⎤

⎦ u(s) +
⎡

⎣
Gd(s)
Gd(s)
Gd(s)

⎤

⎦ d(s) +
⎡

⎣
f1(s)
f2(s)
f3(s)

⎤

⎦ .

The maximal achievable structure matrix obtained by applying the Procedure GENSPEC is

http://dx.doi.org/10.1007/978-3-319-51559-5_2
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Smax =

⎡

⎢⎢
⎣

1 1 1
0 1 1
1 0 1
1 1 0

⎤

⎥⎥
⎦ .

If we can assume that no simultaneous sensor failures occur, then we can target to solve a EFDIP
for the structure matrix

S =
⎡

⎣
0 1 1
1 0 1
1 1 0

⎤

⎦ ,

where the columns of S codify the desired fault signatures.
By using the Procedure EFDI, we compute first a left nullspace basis Nl(s) of

G(s) =

⎡

⎢
⎢
⎣

Gu(s) Gd(s)
Gu(s) Gd(s)
Gu(s) Gd(s)
1 0

⎤

⎥
⎥
⎦ ,

in a product form similar to (5.5). We obtain

Nl(s) =
[
1 −1 0
0 1 −1

]
⎡

⎣
1 0 0 −Gu(s)
0 1 0 −Gu(s)
0 0 1 −Gu(s)

⎤

⎦ =
[
1 −1 0 0 · · · 0
0 1 −1 0 · · · 0

]
. (5.42)

We set Q1(s) = Nl(s) and

Rf (s) =
[
1 −1 0
0 1 −1

]
. (5.43)

For example, to achieve the first specification
[
0 1 1

]
, we redefine f1 as a disturbance d(1) := f1

to be decoupled, f (1) := [ f2 f3 ]T , G(1)
d (s) as the first column of Rf (s) and G

(1)
f (s) as the last two

columns of Rf (s). With Procedure EFD we obtain Q
(1)
1 (s) = [ 0 1 ] (as a constant basis of the left

nullspace of G
(1)
d (s)). Thus, the first row of the overall filter Q(s) is given by

Q(1)(s) = Q
(1)
1 (s)Q1(s) = [

0 1 −1 0 · · · 0 ]
.

The corresponding residual component is simply

r1 = y2 − y3 = f2 − f3 ,

which is fully decoupled from f1. Similarly, with Q
(2)
1 (s) = [−1 − 1 ] and Q

(3)
1 (s) = [ 1 0 ] we

obtain
Q(2)(s) = Q

(2)
1 (s)Q1(s) = [ −1 0 1 0 · · · 0 ]

and
Q(3)(s) = Q

(3)
1 (s)Q1(s) = [

1 −1 0 0 · · · 0 ]
.

The TFM of the overall FDI filter is

Q(s) =
⎡

⎣
Q(1)(s)
Q(2)(s)
Q(3)(s)

⎤

⎦ =
⎡

⎣
0 1 −1 0 · · · 0

−1 0 1 0 · · · 0
1 −1 0 0 · · · 0

⎤

⎦ (5.44)

and the overall residual vector is
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r =
⎡

⎣
r1
r2
r3

⎤

⎦ :=
⎡

⎣
y2 − y3
y3 − y1
y1 − y2

⎤

⎦ =
⎡

⎣
0 1 −1

−1 0 1
1 −1 0

⎤

⎦

⎡

⎣
f1
f2
f3

⎤

⎦ .

This fault detection filter implements the widely employed voting-based fault isolation scheme for
the case when the assumption of a single sensor fault at a time is fulfilled. Its main appeal is its
independence of the system dynamics. Thus the constant filter (5.44) can be applied even in the case
of a system with nonlinear dynamics. Since parametric variations have no effects on the residuals, a
perfect robustness of this scheme is guaranteed. However, for applications to safety critical systems,
the voting scheme is potentially unreliable, in the (improbable) case of two simultaneous failures
with a common value of faults (e.g., f2 = f3 �= 0). In such a case, the faults remain undetected, and
often the common fault value is wrongly used as the “valid” measurement.

The script Ex5_10 in Listing 5.3 solves the EFDIP considered in this example. The script
Ex5_10c (not listed) is a compact version of this script, which calls the function efdisyn, a
prototype implementation of Procedure EFDI. ♦

Listing 5.3 Script Ex5 10 to solve the EFDIP of Example 5.10 using Procedure EFDI
% Uses the Control Toolbox and the Descriptor System Tools

% enter output and fault vector dimensions
p = 3; mf = 3;
% generate random dimensions for system order and input vectors
nu = floor (1+4* rand); mu = floor (1+4* rand);
nd = floor (1+4* rand); md = floor (1+4* rand);
% define random Gu(s) and Gd (s) with triplex sensor redundancy
% and Gf (s) for triplex sensor faults
Gu = ones (3 ,1)* rss(nu ,1,mu); % enter Gu(s) in state-space form
Gd = ones (3 ,1)* rss(nd ,1,md); % enter Gd (s) in state-space form
Gf = eye (3); % enter Gf (s) for sensor faults
tol = 1.e-7; % tolerance for rank tests

% build model with faults
sysf = [Gu Gd Gf];

% set input groups
sysf.InputGroup.controls = 1:mu; % controls
sysf.InputGroup.disturbances = mu+(1:md); % disturbances
sysf.InputGroup.faults = mu+md+(1:mf); % faults

S = [ 0 1 1; 1 0 1; 1 1 0]; % enter structure matrix

% Procedure EFDI

% Step 1): compute Q1, the left nullspace of [ Gu Gd ; I 0 ]
% Rf ,1 = Q1[ Gf ; 0 ]; the resulting QRf contains [Q1 Rf ,1 ]
options_glnull=struct('tol ',tol ,'m2 ',mf);
QRf = glnull ([sysf; eye(mu ,mu+md+mf)], options_glnull );

% Step 2): determine the filters Q(i) and corresponding R(i)
f

% initialization
nb = size(S,1); % number of necessary filters nb
Qt = cell(nb ,1); Rft = cell(nb ,1);
% options for EFDSYN for the synthesis of scalar output filters
options = struct('tol ',tol ,'rdim ',1);
QRf.InputGroup.aux = 1:p+mu+mf ; % indices of [Q1 Rf ,1 ]
for i = 1:nb

% Step 2.1): Define Gd(i) as Rf ,1(:, indd) and Gf (i) as Rf ,1(:, indf )
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indd = find(S(i,:) == 0); indf = find(S(i,:) ~= 0);
QRf.InputGroup.disturbances = p+mu+indd; % indices of Gd(i)

QRf.InputGroup.faults = p+mu+indf; % indices of Gf (i)

% Step 2.2): Apply Procedure EFD to {0,Gd(i) ,Gf (i) , [Q1 Rf ,1 ]}
% to determine a least-order Q(i)

1 such that Q(i)
1 Gd(i) = 0

% and the DC-gain of Q(i)
1 Gf (i) has all columns nonzero;

% the resulting QRfauxi contains: [Q(i)
1 Gf (i) Q(i)

1 Q1 Q(i)
1 Rf ,1 ]

[~,QRfauxi] = efdsyn( QRf , options );

QRfi = QRfauxi(:,'aux '); % extract [Q(i)
1 Q1 Q(i)

1 Rf ,1 ]
QRfi.InputGroup.aux = []; % clear auxiliary input group

% Step 2.3): extract Q(i) = Q(i)
1 Q1 and R(i)

f = Q(i)
1 Rf ,1

Qt{i} = QRfi (:,1:p+mu);
Rft{i} = QRfi(:,p+mu+(1:mf));

end

% normalize Q(i) and R(i)
f to match example

scale = sign([ Rft {1}.d(1,2) Rft {2}.d(1,3) Rft {3}.d(1 ,1)]);
for i = 1:3, Qt{i} = scale(i)*Qt{i}; Rft{i} = scale(i)*Rft{i}; end
Q = [Qt{1};Qt{2};Qt{3}], Rf = [Rft {1}; Rft {2}; Rft {3}]

5.5 Solving the Approximate Fault Detection
and Isolation Problem

Let S be a given nb×mf structurematrix targeted to be achieved by the fault detection
filter Q(λ). Using the factorized representation Q(λ) = Q1(λ)Q1(λ) in (5.9), it
follows that, to solve the approximate fault detection and isolation problem (AFDIP)
formulated in Sect. 3.5.4, the same S has to be targeted by any Q1(λ), which solves
the AFDIP for the reduced system (5.11). For this, we consider Q1(λ) partitioned

with nb block rows, in the form (5.37), where the i-th block rowQ
(i)
1 (λ) generates the

i-th component r(i) of the residual vector r according to (5.38) and targets to achieve
the i-th specification contained in the i-th row of S.

The solvability conditions of the AFDIP given in Theorems 3.12 and 3.13 can
be replaced by simpler conditions for the reduced system (5.11). This comes down
to checking for i = 1, . . . , nb, the solvability conditions for the i-th specification

contained in the i-th row of S. To determine the filter Q
(i)
1 (λ), an AFDP can be

formulated for each i, by suitably redefining the disturbance, fault and noise inputs
of the reduced system (5.11).

The reduced system (5.11) can be rewritten for each i = 1, . . . , nb, in the form

y(λ) = G
(i)
d (λ)d(i)(λ) + G

(i)
f (λ)f (i)(λ) + Gw(λ)w(λ) , (5.45)

where d(i) contains those components fj of f for which Sij = 0, f (i) contains those

components fj of f for which Sij �= 0, while G
(i)
d (λ) and G

(i)
f (λ) are formed from

http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
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the corresponding sets of columns of Gf (λ), respectively. The vector f (i) contains all
faults which need to be detected in the i-th component r(i) of the residual.

In the case when the AFDIP is formulated to fulfill the weaker conditions (3.28),
d(i) contains all fault components which have to be approximately decoupled in the

i-th component r(i) of the residual by the i-th filter Q
(i)
1 (λ), and therefore, d(i) have

to be treated as additional noise inputs. The following corollary to Theorem 3.12
provides the solvability conditions of the AFDIP in terms of the reduced system
(5.11) for an arbitrary structure matrix S (see also Remark 3.10):

Corollary 5.7 For the system (3.2) and a given nb × mf structure matrix S with
columns Sj, j = 1, . . . ,mf , the AFDIP is solvable with conditions (3.28) if and only
if the reduced system (5.11) is fault input observable for all faults fj corresponding
to nonzero columns of S, or equivalently,

Gfj (λ) �= 0 ∀j, Sj �= 0 .

In the case when the AFDIP is formulated to fulfill the stronger conditions (3.29),
d(i) contains all fault components to be exactly decoupled in the i-th component r(i)

of the residual by the i-th filter Q
(i)
1 (λ). The following corollary to Theorem 3.13

provides the solvability conditions of the AFDIP in terms of the reduced system
(5.11):

Corollary 5.8 For the system (3.2) and a given structure matrix S, the AFDIP is
solvable with conditions (3.29) if and only if the reduced system (5.11) is S-fault
isolable, or equivalently, for i = 1, . . . , nb

rank [G(i)
d (λ) Gfj (λ) ] > rank G

(i)
d (λ), ∀j, Sij �= 0 ,

where G
(i)
d (λ) is formed from the columns Gfj (λ) of Gf (λ) for which Sij = 0.

To determine Q
(i)

(λ) we can always try first to achieve the i-th specification
exactly, by applying the Procedure AFD (see Sect. 5.3) to solve the AFDP for the

reduced system (5.45), and determine a least-order fault detection filter Q
(i)

(λ) in
(5.38) which fully decouples d(i)(t). If the AFDP for the reduced system (5.45) is not
solvable, then the Procedure AFD can be applied to solve the AFDP for the same
reduced system (5.45), but with the disturbance inputs d(i)(t) redefined as additional
noise inputs.

The Procedure AFDI, given below, determines for a given nb × mf structure
matrix S, a bank of nb least-order fault detection filters Q(i)(λ), i = 1, . . . , nb, which
solve the AFDIP. Additionally, the block rows of Rf (λ) and Rw(λ) corresponding to
Q(i)(λ) are determined as

R(i)
f (λ) := Q(i)(λ)

[
Gf (λ)

0

]
, R(i)

w (λ) := Q(i)(λ)

[
Gw(λ)

0

]
.

http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
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The existence conditions for the solvability of the AFDIP are implicitly tested when
applying the Procedure AFD to solve the appropriate AFDP for the system (5.45),
with specified number of components qi of r(i) and noise signal gain level γ . For
each filter Q(i)(λ), the achieved fault sensitivity level βi is also computed by the
Procedure AFD.

Procedure AFDI: Approximate synthesis of FDI filters

Inputs : {Gu(λ),Gd(λ),Gw(λ),Gf (λ)}, S ∈ Rnb×mf , {q1, . . . , qnb}, γ
Outputs: Q(i)(λ), R(i)

f (λ), R(i)
w (λ), βi, i = 1, . . . , nb

1) Compute a (p − rd) × (p + mu) minimal basis matrix Q1(λ) for the left
nullspace of G(λ) defined in (5.2), where rd := rank Gd(λ);

set Q(λ) = Q1(λ) and compute [Rf (λ) Rw(λ) ] = Q1(λ)

[
Gf (λ) Gw(λ)

0 0

]
.

2) For i = 1, ..., nb

2.1) Form G
(i)
d (λ) from the columns Rfj (λ) for which Sij = 0 and G

(i)
f (λ)

from the columns Rfj (λ) for which Sij �= 0.
2.2) Apply Procedure AFD to the system described by the quadruple

{0,G(i)
d (λ),G

(i)
f (λ),Rw(λ)} to obtain the qi×(p−rd) least-order filter

Q
(i)
1 (λ) and βi. Go to Step 2.4) if successful.

2.3) Apply Procedure AFD to the system described by the quadruple

{0, 0,G(i)
f (λ),

[
Rw(λ) G

(i)
d (λ)

]} to obtain the qi × (p− rd) least-order

filter Q
(i)
1 (λ) and βi. Exit if no solution exists.

2.4) Compute Q(i)(λ) = Q
(i)
1 (λ)Q(λ), R(i)

f (λ) = Q
(i)
1 (λ)Rf (λ) and

R(i)
w (λ) = Q

(i)
1 (λ)Rw(λ).

Remark 5.11 For the selection of the threshold τi for the component r(i)(t) of the
residual vector we can use a similar approach to that described in Remark 5.9. To
determine the false alarm boundwe can use the corresponding internal representation
of the resulting i-th fault detection filter in the form

r(i)(λ) = R(i)
f (λ)f(λ) + R(i)

w (λ)w(λ) . (5.46)

If we assume, for example, a bounded energy noise input w(t) such that ‖w‖2 ≤ δw,
then the false alarm bound τ

(i)
f for the i-th residual vector component r(i)(t) can be

computed as
τ

(i)
f = sup

‖w‖2≤δw

‖R(i)
w (λ)w(λ)‖2 = ‖R(i)

w (λ)‖∞δw . (5.47)

However, by simply setting τi = τ
(i)
f , we can only detect the presence of a fault

in any of the components of f , but we ignore the additional structural information
needed for fault isolation. Therefore, we need to take into account the partition of
the components of f into two distinct vectors, namely f (i), which contains those
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components fj of f for which Sij = 1 (i.e., the faults to be detected in r(i)) and
f̄ (i), which contains those components fj of f for which Sij = 0 (i.e., the faults to
be decoupled from r(i)). By denoting R(i)

f (i) (λ) and R(i)
f̄ (i) (λ) the columns of R(i)

f (λ)

corresponding to f (i) and f̄ (i), respectively, we can rewrite (5.46) in the form

r(i)(λ) = R(i)
f (i) (λ)f (i)(λ) + R(i)

f̄ (i) (λ)f̄ (i)(λ) + R(i)
w (λ)w(λ) . (5.48)

If we assume, for example, a bounded energy noise input w(t) such that ‖w‖2 ≤ δw
and, similarly, a bounded energy fault input f̄ (i)(t) such that ‖f̄ (i)‖2 ≤ δf̄ (i) , then the

false alarm bound for isolation τ
(i)
fi for the i-th residual vector component r(i)(t) can

be bounded as follows:

τ
(i)
fi = sup

‖w‖2≤δw

‖f̄ (i)‖2≤δf̄ (i)

‖R(i)
f̄ (i) (λ)f̄ (i)(λ) + R(i)

w (λ)w(λ)‖2

≤ ‖R(i)
f̄ (i) (λ)‖∞δf̄ (i) + ‖R(i)

w (λ)‖∞δw := τ̃
(i)
fi . (5.49)

The setting of the threshold τi = τ̃
(i)
fi ensures no false isolation alarms due to faults

occurring in f̄ (i). A somewhat smaller (i.e., less conservative) threshold can be used if
additionally the information on themaximumnumber of faults which simultaneously
may occur is included in bounding ‖R(i)

f̄ (i) (λ)f̄ (i)(λ)‖2. Note that if the i-th specification
(coded in the i-th row of the structure matrix S) has been exactly achieved at Step
2.2) of the Procedure AFDI, then R(i)

f̄ (i) (λ) = 0 and therefore τ
(i)
f = τ

(i)
fi = τ̃

(i)
fi . In

this case we can set the threshold to the lowest value τi = τ
(i)
f (i.e., the false alarm

bound).
The least size δ

(i)
fj

of the fault fj which can be detected in r(i) for Sij = 1, can be
estimated similarly as done in Remark 5.9 (see (5.33))

δ
(i)
fj

= 2‖R(i)
w (λ)‖∞δw

‖R(i)
fj

(λ)‖Ω−
, (5.50)

where Ω is a given set of relevant frequency values. Overall, δfj , the least size of the
isolable fault fj, can be defined as

δfj := min
i∈Ij

δ
(i)
fj

,

where Ij := {i : i ∈ {1, . . . , nb} ∧ Sij = 1}. �

Example 5.11 Consider the solution of the AFDIP for the system

Gu(s) =

⎡

⎢⎢
⎣

s + 1

s + 2
s + 2

s + 3

⎤

⎥⎥
⎦ , Gd(s) = 0, Gw(s) =

⎡

⎣
1

s + 2

0

⎤

⎦ , Gf (s) =
⎡

⎣
s + 1

s + 2
0

0 1

⎤

⎦
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used also in Examples 5.5 and 5.8. At Step 1) of the Procedure AFDI, we compute a minimal left
nullspace basis of G(λ) defined in (5.2) as Q1(s) = [ I2 −Gu(s) ], which leads to Rw(s) = Gw(s)
and Rf (s) = Gf (s). By inspecting Rf (s) it follows that the strong isolability condition is fulfilled
(i.e., rankRf (s) = 2), thus we can target to solve an AFDIP with S = I2.

To achieve the specification in the first row of S, we define the reduced model (5.45) with

G
(1)
d (s) = Rf2 (s) and G

(1)
f (s) = Rf1 (s). We can apply the Procedure AFD to solve the AFDP for

the quadruple {0,G(1)
d (s),G

(1)
f (s),Rw(s)}. At Step 1) we compute a left nullspace basis of G

(1)
d (s)

as Q(1)
1 (s) = [

1 0
]
and determine

R(1)
w (s) := Q(1)

1 (s)Rw(s) = 1

s + 2
, R(1)

f (s) := Q(1)
1 (s)Rf1 (s) = s + 1

s + 2
.

Since R(1)
f (s) �= 0, it follows that the EFDP, and therefore also the AFDP has a solution according to

Theorem 3.9. At Step 2) we takeQ(1)
2 (s) = 1 and at Step 3), the quasi-co-outer factorGwo(s) is sim-

ply R(1)
w (s), which is strictly proper and, thus, has a zero at infinity. WithQ(1)

3 (s) = (
R(1)
w (s)

)−1, the

resulting Q̃(1)(s) := Q(1)
3 (s)Q(1)

2 (s)Q(1)
1 (s) and R̃(1)

f (s) := Q(1)
3 (s)Q(1)

2 (s)Q(1)
1 (s)Rf1 (s) are therefore

improper. At Step 4), we choose Q(1)
4 (s) of unity H∞-norm of the form Q(1)

4 (s) = a/(s + a) with

a ≥ 1, such that Q(1)
4 (s)[ Q̃(1)(s) R̃(1)

f (s) ] is stable and proper. For γ = 1 we obtain at Step 5) with

Q(1)
5 = 1 the final Q

(1)
(s) as

Q
(1)

(s) = Q(1)
5 (s)Q(1)

4 (s)Q(1)
3 (s)Q(1)

2 (s)Q(1)
1 (s) =

[
a(s + 2)

s + a
0

]
.

At Step 2.4) of Procedure AFDI we obtain

Q(1)(s) = Q
(1)

(s)Q1(s) =
[

a(s + 2)

s + a
0 −a(s + 1)

s + a

]
,

R(1)
f (s) = Q

(1)
1 (s)Rf (s) =

[
a(s + 1)

s + a
0

]
, R(1)

w (s) = Q
(1)
1 (s)Rw(s) = a

s + a
.

Since β1 = ‖R(1)
f1

(s)‖∞ = a can be arbitrarily large, the underlying H∞−/H∞ problem has no

optimal solution. Still, the resulting Q(1)(s) is completely satisfactory, by providing an arbitrary
large gap β1/γ = a.

To achieve the specification in the second row of S, we define G
(2)
d (s) = Rf1 (s) (the first column

of Rf (s)) and G
(2)
f (s) = Rf2 (s). Again, we apply Procedure AFD to solve the AFDP for the

quadruple {0,G(2)
d (s),G

(2)
f (s),Rw(s)}. At Step 1) we compute a left nullspace basis of G

(2)
d (s) as

Q(2)
1 (s) = [

0 −1
]
and determine

R(2)
w (s) := Q(2)

1 (s)Rw(s) = 0, R(2)
f (s) := Q(2)

1 (s)Rf2 (s) = −1 .

Observe that we actually solved the AFDP as an EFDP, by obtaining Q
(2)
1 (s) = Q(2)

1 (s). At Step
2.4) of Procedure AFDI we obtain

Q(2)(s) = Q
(2)

(s)Q1(s) =
[

0 −1
s + 2

s + 3

]
,

R(2)
f (s) = Q

(2)
1 (s)Rf (s) = [

0 −1
]
, R(2)

w (s) = Q
(2)
1 (s)Rw(s) = 0 .

http://dx.doi.org/10.1007/978-3-319-51559-5_3
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Although β2 = ‖R(2)
f2

(s)‖∞ = 1, but β2 can be arbitrary large by suitably rescaling Q(2)(s).
The script Ex5_11 in Listing 5.4 solves the AFDIP considered in this example. ♦

Listing 5.4 Script Ex5 11 to solve the AFDIP of Example 5.11 using Procedure AFDI
% Uses the Control Toolbox and the Descriptor System Tools

% define s as an improper transfer function
s = tf('s');
% define Gu(s), Gw(s), Gf (s)
Gu = [(s+1)/(s+2); (s+2)/(s+3)]; % enter Gu(s)
Gw = [1/(s+2); 0]; % enter Gw(s)
Gf = [(s+1)/(s+2) 0; 0 1]; % enter Gf (s)
p = 2; mu = 1; mw = 1; mf = 2; % enter dimensions
S = eye(mf); % enter structure matrix

% Step 1): choose the left nullspace as Q1 = [ I − Gu ] and
% form Rf ,1 = Q1[Gf ; 0 ] and Rw,1 = Q1[Gw; 0 ]
Q1 = [eye(p) -Gu]; Rf1 = Gf; Rw1 = Gw;

% Step 2): determine Q(i) and the corresponding R(i)
f and R(i)

w

% initialization
nb = size(S,1); % number of necessary filters nb
Q = cell(nb ,1); Rf = cell(nb ,1); Rw = cell(nb ,1);

% set options for coprime factorizations;
% enforce stability degree -3
opts = struct('sdeg ',-3,'smarg ',-3);
for i = 1:nb

% perform Procedure AFD to compute Q(i)

indd = (S(i,:) == 0);

Qi1 = glnull(ss(Rf1(:,indd ))); % compute Q(i)
1

% initialize Q(i), R(i)
f , and R(i)

w

Qi = Qi1*Q1; Rfi = Qi1*Rf1; Rwi = Qi1*Rw1;

% compute optimal solution if R(i)
w nonzero

if norm(evalfr(Rwi ,rand)) > 0.0001
% compute the quasi-co-outer-co-inner factorization
[Rwi ,Rwo]= goifac(Rwi ,1.e-7); % R(i)

w = R(i)
woR

(i)
wi; R(i)

w ← R(i)
wi

% update Q(i) ← (R(i)
wo)

−1Q(i) and R(i)
f ← (R(i)

wo)
−1R(i)

f
Qi = Rwo\Qi; Rfi = Rwo\Rfi;

end

% update the solution if [Q(i) R(i)
f R(i)

w ] is improper or unstable
[Qi_Rfi_Rwi ,M] = glcf([Qi Rfi Rwi],opts);
% adjust denominator to unit infinity norm to match example
scale = norm(M,inf);
Q{i} = tf(Qi_Rfi_Rwi (:,1:p+mu)/scale );
Rf{i} = tf(Qi_Rfi_Rwi(:,p+mu+1:p+mu+mf)/scale );
Rw{i} = tf(Qi_Rfi_Rwi(:,p+mu+mf+1:end)/ scale );

end
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5.6 Solving the Exact Model-Matching Problem

LetMr(λ) be a given q×mf TFM of a stable and proper reference model specifying
the desired input–output behaviour from the faults to residuals as r(λ) = Mr(λ)f(λ).
Using the factorized representation Q(λ) = Q1(λ)Q1(λ) in (5.9), it follows that the
exact model-matching problem (EMMP) formulated in Sect. 3.5.5 is solvable for the
system (3.2) with w ≡ 0 if it is solvable for the reduced system (5.11) with w ≡ 0.
The following corollary to Theorem 3.14 provides the solvability conditions of the
EMMP in terms of the reduced system (5.11):

Corollary 5.9 For the system (3.2) with w ≡ 0 and a given reference model Mr(λ),
the EMMP is solvable if and only if the EMMP is solvable for the reduced system
(5.11) with w ≡ 0, or equivalently, the following condition is fulfilled:

rank Gf (λ) = rank

[
Gf (λ)

Mr(λ)

]
. (5.51)

The case when Mr(λ) is diagonal and invertible corresponds to a strong FDI
requirement. The solvability condition for this case is the same as the solvability
condition resulting from (5.51) for the case when Mr(λ) has full column rank mf .

Corollary 5.10 For the system (3.2) with w ≡ 0 and a given reference model Mr(λ)

with rank Mr(λ) = mf , the EMMP is solvable if and only if the reduced system (5.11)
with w ≡ 0 is strongly isolable, or equivalently, the following condition is fulfilled:

rank Gf (λ) = mf . (5.52)

Remark 5.12 For a strongly isolable system (3.2) with w ≡ 0, the left invertibility
condition (5.52) is a necessary and sufficient condition for the solvability of the
EMMP for an arbitraryMr(λ). �

For the solution of the EMMP, we present a synthesis procedure which employs
the factorized representation Q(λ) = Q1(λ)Q1(λ) in (5.9), where Q1(λ) is a min-
imal proper left nullspace basis of G(λ) defined in (5.2). The factor Q1(λ) can be
determined in the product form

Q1(λ) = Q3(λ)Q2(λ),

where Q2(λ) is a solution, possibly of least McMillan degree, of the linear rational
matrix equation

Q2(λ)Gf (λ) = Mr(λ) , (5.53)

while the diagonal updating factor Q3(λ) := M(λ) is determined such that

Q(λ) = Q3(λ)Q2(λ)Q1(λ)

http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
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is stable and proper. The computation of Q3(λ) is necessary only if Q2(λ)Q1(λ) is
not proper or is unstable. The Procedure EMM, given below, summarizes the main
computational steps for solving the EMMP.

Procedure EMM: Exact model-matching synthesis of FDI filters
Inputs : {Gu(λ),Gd(λ),Gf (λ)}, Mr(λ)

Outputs: Q(λ), M(λ)

1) Compute a minimal proper basis Q1(λ) for the left nullspace of G(λ)

defined in (5.2); set Q(λ) = Q1(λ) and compute Rf (λ) = Q1(λ)

[
Gf (λ)

0

]
.

2) Solve, for the least McMillan degree solution Q2(λ), the linear rational
matrix equation Q2(λ)Rf (λ) = Mr(λ). Exit if no solution exists. Otherwise
update Q(λ) ← Q2(λ)Q(λ).

3) Determine a diagonal, stable, proper and invertible Q3(λ) := M(λ) such
thatM(λ)Q(λ) is stable and proper; update Q(λ) ← Q3(λ)Q(λ).

To perform the computation at Step 2), a state-space realization based algorithm
to compute least McMillan degree solutions of linear rational matrix equations is
described in Sect. 10.3.7. For the determination of the diagonal updating factorM(λ)

at Step 3), coprime factorization techniques can be used, as described in Sect. 9.1.6.
The underlying state-space realization based algorithms are presented in Sect. 10.3.5.

Remark 5.13 The solution of theEMMPcanbe alternatively performedbydetermin-
ing Q(λ) as Q(λ) = Q2(λ)Q1(λ), where Q1(λ) is a least McMillan degree solution
of the linear rational matrix equation

Q1(λ)

[
Gu(λ) Gd(λ) Gf (λ)

Imu 0 0

]
= [

0 0 Mr(λ)
]
. (5.54)

The diagonal updating factor Q2(λ) := M(λ) is determined to ensure that Q(λ) is
proper and stable. �
Example 5.12 In Example 5.10 we solved an EFDIP for a system with triplex sensor redundancy.
To solve an EMMP for the same system, we use the resulting Rf (s) to define the reference model

Mr(s) := Rf (s) =
⎡

⎣
0 1 −1

−1 0 1
1 −1 0

⎤

⎦ .

Using Procedure EMM, we determine first a left nullspace basis Q1(s) = Nl(s), with Nl(s) given
in (5.42). The corresponding Rf (s) (given in (5.43)) is

Rf (s) =
[
1 −1 0
0 1 −1

]
.

The solvability condition can be easily checked

rankRf (s) = rank

[
Rf (s)
Mr(s)

]
= 2 .

http://dx.doi.org/10.1007/978-3-319-51559-5_10
http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_10
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We solve for Q2(s)
Q2(s)Rf (s) = Mr(s)

and obtain

Q2(s) =
⎡

⎣
0 1

−1 −1
1 0

⎤

⎦ .

Finally, we have

Q(s) = Q2(s)Q1(s) =
⎡

⎣
0 1 −1 0 · · · 0

−1 0 1 0 · · · 0
1 −1 0 0 · · · 0

⎤

⎦ .

We obtain the same result by solving directly (5.54) for Q(s) = Q1(s).
The script Ex5_12 in Listing 5.5 solves the EMMP considered in this example. ♦

Listing 5.5 Script Ex5 12 to solve the EMMP of Example 5.12 using Procedure EMM
% Uses the Control Toolbox and the Descriptor System Tools

% enter output and fault vector dimensions
p = 3; mf = 3;
% generate random dimensions for system order and input vectors
nu = floor (1+4* rand); mu = floor (1+4* rand);
nd = floor (1+4* rand); md = floor (1+4* rand);
% define random Gu(s) and Gd(s) with triplex sensor redundancy
% and Gf (s) for triplex sensor faults
Gu = ones (3,1)*rss(nu ,1,mu); % enter Gu(s) in state-space form
Gd = ones (3,1)*rss(nd ,1,md); % enter Gd (s) in state-space form
Gf = eye (3); % enter Gf (s) for sensor faults
% enter reference model Mr

Mr = ss([ 0 1 -1; -1 0 1; 1 -1 0]);

% two step solution using Procedure EMM
% 1. Compute left nullspace Q1 of [Gu Gd ; I 0 ] and
% the reduced system Rf = Q1[Gf ; 0 ].
Q_Rf = glnull ([Gu Gd Gf; eye(mu ,mu+md+mf)],struct('m2 ',mf));
Q1 = Q_Rf(:,1:p+mu); Rf = Q_Rf(:,p+mu+1:end);

% 2. Solve Q2Rf = Mr and form Q = Q2Q1.
Q2 = glsol(Rf ,Mr,struct('tol ',1.e -7));
Q = Q2*Q1;

% one step solution
% solve QGe = Me, where Ge = [Gu Gd Gf ; I 0 0 ] and Me = [ 0 0 Mr ].
Ge = [Gu Gd Gf; eye(mu,mu+md+mf)]; Me = [zeros(p,mu+md) Mr];
Qbar = glsol(Ge ,Me ,struct('tol ',1.e-7));

% compare solutions by computing ‖Q − Q‖∞
norm(Q-Qbar ,inf)

In what follows, we discuss the solution of the EMMP for strongly isolable sys-
tems. According to Remark 5.12, the solvability of the EMMP is automatically guar-
anteed in this case, regardless the choice of the reference modelMr(λ). An important
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particular case in practical applications is whenMr(λ) is diagonal, stable, proper and
invertible. In this case, the solution of the EMMP allows the detection and isolation
of up tomf simultaneous faults, and thus is also a solution of a strong EFDIP (i.e., for
an identity structure matrix). Fault reconstruction (or fault estimation) problems can
be addressed in this way by choosingMr(λ) = Imf . For the solution of the EMMP for
strongly isolable systems we develop a specialized synthesis procedure, which also
addresses the least-order synthesis aspect for a regularity-enforcing admissibility
condition.

Using the factorized representationQ(λ) = Q1(λ)Q1(λ) in (5.9), the factorQ1(λ)

can be determined in the product form

Q1(λ) = Q2(λ)Q2(λ),

where Q2(λ) is computed such that

G̃f (λ) := Q2(λ)Gf (λ)

is invertible. This regularization step is always possible, since, for a strongly isolable
system, Gf (λ) is left invertible (see Remark 5.12). The simplest choice of Q2(λ)

is a constant (e.g., orthogonal) projection matrix which simply selects mf linearly
independent rows of Gf (λ). A more involved choice is based on an admissibility
condition, which enforces the invertibility of G̃f (λ) simultaneously with the least
dynamical orders of Q2(λ)Q1(λ) and G̃f (λ). Such a choice of Q2(λ) is possible
using minimal dynamic cover techniques (see Sect. 7.5).

The factor Q2(λ) can be determined in the form

Q2(λ) = Q4(λ)Q3(λ) ,

where Q3(λ) = Mr(λ)G̃−1
f (λ) and Q4(λ) := M(λ) is chosen a diagonal, stable,

proper and invertible TFM, to ensure that the resulting final filter

Q(λ) = Q4(λ)Q3(λ)Q2(λ)Q1(λ)

is stable and proper. The updating factor M(λ) can be determined using stable and
proper coprime factorization techniques (see Sects. 9.1.6 and 10.3.5).

The above synthesis method is sometimes called in the literature the inversion-
based method. The Procedure EMMS, given in what follows, formalizes the com-
putational steps of the inversion-based synthesis method to solve the EMMP for
strongly isolable systems.

http://dx.doi.org/10.1007/978-3-319-51559-5_7
http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_10
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Procedure EMMS: Exact model-matching synthesis of strong FDI filters
Inputs : {Gu(λ),Gd(λ),Gf (λ)}, Mr(λ)

Outputs: Q(λ), M(λ)

1) Compute a proper minimal basis Q1(λ) for the left nullspace of G(λ)

defined

in (5.2); set Q(λ) = Q1(λ) and compute Rf (λ) = Q1(λ)

[
Gf (λ)

0

]
.

Exit if rank Rf (λ) < mf (no solution).
2) Choose Q2(λ) such that Q2(λ)Rf (λ) is invertible and Q2(λ)[Rf (λ) Q(λ)]

has least-order; update Q(λ) ← Q2(λ)Q(λ) and Rf (λ) ← Q2(λ)Rf (λ).
3) With Q3(λ) = Mr(λ)R−1

f (λ), update Q(λ) ← Q3(λ)Q(λ).
4) Determine diagonal, stable, proper and invertible Q4(λ) := M(λ) such that M(λ)

Q(λ) is stable and proper; update Q(λ) ← Q4(λ)Q(λ).

Example 5.13 Consider a continuous-time system with the transfer function matrices

Gu(s) =

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

s

s2 + 3 s + 2

1

s + 2
s

s + 1
0

0
1

s + 2

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

, Gd(s) = 0, Gf (s) =

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

s

s2 + 3 s + 2

1

s + 2
s

s + 1
0

0
1

s + 2

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

for which we want to solve the EMMP with the reference model

Mr(s) =
[

1 0
0 1

]
.

Using Procedure EMMS, we choose at Step 1) the left nullspace basis Q1(s) = [
I −Gu(s)

]
and

initialize Q(s) = Q1(s) for which the corresponding Rf (s) is simply Rf (s) = Gf (s). Rf (s) has full
column rank (thus is left invertible) and therefore the EMMP has a solution. Since Rf (s) has zeros
in the origin and at infinity, the existence condition of Lemma 9.5 for a stable solution Q1(s) of
Q1(s)Rf (s) = Mr(s) is not fulfilled.

At Step 2), we chooseQ2(s) such thatQ2(s)[Rf (s) Q(s) ] has a least-order. This can be achieved
with the simple choice

Q2(s) =
[

0 1 0
0 0 1

]

and, after updating Q(s) ← Q2(s)Q(s) and Rf (s) ← Q2(s)Rf (s), we obtain

Q(s) =
⎡

⎢
⎣

0 1 0 − s

s + 1
0

0 0 1 0 − 1

s + 2

⎤

⎥
⎦ , Rf (s) =

⎡

⎢
⎣

s

s + 1
0

0
1

s + 2

⎤

⎥
⎦ .

At Step 3), the resulting

Q3(s) := Mr(s)R
−1
f (s) =

⎡

⎣
s + 1

s
0

0 s + 2

⎤

⎦

is improper and unstable, and, therefore, the updated Q(s) ← Q̃(s) := Q3(s)Q(s)

http://dx.doi.org/10.1007/978-3-319-51559-5_9
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Q̃(s) =
⎡

⎣ 0
s + 1

s
0 −1 0

0 0 s + 2 0 −1

⎤

⎦

is improper and unstable as well.
Finally, at Step 4) we determine a diagonal

Q4(s) = M(s) =
⎡

⎢
⎣

s

s + 1
0

0
1

s + 1

⎤

⎥
⎦ ,

which ensures the properness and stability of the solution. The final Q(s) = Q4(s)Q̃(s) is

Q(s) =
⎡

⎢
⎣

0 1 0 − s

s + 1
0

0 0
s + 2

s + 1
0 − 1

s + 1

⎤

⎥
⎦ .

TheMcMillan degree of this fault detection filter is 2 and is the least achievable one among all stable
and proper filters which solve the EMMP. Note that the presence of the zero s = 0 inM(s)Mr(s) is
unavoidable for the existence of a stable solution. It follows, that while a constant fault f2 is strongly
detectable, a constant fault f1 is only detectable during transients.

An alternative way, see Remark 5.13, to determine a least-order solution of the considered
EMMP is to directly solve, for the least-order solution Q1(s), the linear rational matrix equation

Q1(s)

[
Gu(s) Gf (s)
I 0

]
= [

0 Mr(s)
]

and then determine Q2(s) (as above Q4(s) at Step 4) of Procedure EMMS) to obtain a stable and
proper Q(s) := Q2(s)Q1(s).

The script Ex5_13 in Listing 5.6 solves the EMMP considered in this example. The alternative
direct approach is implemented in the script Ex5_13a (not listed). ♦

Listing 5.6 Script Ex5 13 to solve the EMMP of Example 5.13 using Procedure EMMS
% Uses the Control Toolbox and the Descriptor System Tools

% define s as an improper transfer function
s = tf('s');
% enter Gu(s), Gf (s) and Mr(s)
Gu = [s/(s^2+3*s+2) 1/(s+2);

s/(s+1) 0;
0 1/(s+2)];

Gf = [s/(s^2+3*s+2) 1/(s+2);
s/(s+1) 0;
0 1/(s+2)];

Mr = tf(eye (2));
[p,mf] = size(Gf); mu = size(Gu ,2);

% compute left nullspace basis as Q1(s) = [ I − Gu(s) ]; set Rf (s) = Gf (s).
Q1 = [eye(p) -Gu]; Rf = Gf;

% check solvability condition
if rank(evalfr(Rf,rand)) ~= mf

error('No solution ')
end
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% check for unstable or infinite zeros
gzero(ss(Rf)) % zeros at infinity and in the origin exist

tol = 1.e-7; % set tolerance
sdeg = -1; % set stability degree

% solve a minimum dynamic cover problem
% select rows [2 3] of [Rf Q1 ] to combine them with row 1
% Rf_Q contains [Rf Q ] ← Q2[Rf Q1 ] with Rf full row rank
cinp = [ 2 3 1];
Rf_Q = glmcover1(ss([Rf(cinp ,:) Q1(cinp ,:) ]),mf ,tol);

% compute irreducible realization of Q̃ = MrR
−1
f Q by first solving

% the linear rational matrix equation Rf X = Q
X = grsol(Rf_Q ,p+mu ,struct('tol ',tol));
Qtilde = gir(Mr*X,tol);

% compute stable and proper Q = Q4Q̃ with suitable diagonal Q4 = M
Q = ss(zeros(0,p+mu)); M = ss(zeros (0 ,0));
opt_glcf = struct('tol ',tol ,'sdeg ',sdeg);
for i=1:mf

[Qi ,Mi] = glcf(Qtilde(i,:), opt_glcf );
scale = get(zpk(Mi),'k'); % scale with gain to fit example
Q = [Q;Qi/scale]; M = append(M,Mi/scale);

end

% convert to standard state-space representation
Q = gss2ss(Q); M = gss2ss(M);
% display results
minreal(tf(Q)), tf(M)

% check solution
G = [Gu Gf;eye(mu,mu+mf)]; F = [zeros(mf,mu) M*Mr];
norm(Q*G-F,inf)

5.7 Solving the Approximate Model-Matching Problem

Using the factorized representation Q(λ) = Q1(λ)Q1(λ) in (5.9), with Q1(λ) sta-
ble and proper, allows to reformulate the approximate model-matching problem
(AMMP) formulated in Sect. 3.5.6 for the system (3.2) in terms of the reduced
system (5.11), with both Gf (λ) and Gw(λ) assumed to be stable and proper (this
can be always enforced by a suitable choice of Q1(λ)). The following corollary to
Proposition 3.1 gives a sufficient condition for the solvability of the AMMP in terms
of the reduced system (5.11):

Corollary 5.11 For the system (3.2) and a given Mr(λ), the AMMP is solvable if
the EMMP is solvable for the reduced system (5.11).

http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
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According to Remark 5.12, for a strongly isolable system (3.2), the left invertibility
condition (5.52) (i.e., rank Gf (λ) = mf ), is, therefore, a sufficient condition for the
solvability of the AMMP.

To solve the AMMP for the reduced system (5.11), a standard model-matching
problem can be formulated to determine the optimal stable and proper solutionQ1(λ)

of the norm-minimization problem

∥∥Q1(λ)
[
Gf (λ) Gw(λ)

] − [
Mr(λ) 0

] ∥∥ = minimum . (5.55)

With F(λ) := [Mr(λ) 0 ], G(λ) := [Gf (λ) Gw(λ) ], and the error function

E(λ) := F(λ) − X(λ)G(λ) , (5.56)

a solution of theAMMPcan be aimed by solving either aH∞- orH2-model-matching
problem (MMP) (see Sect. 9.1.10) to determine Q1(λ) as the stable and proper opti-
mal solution X(s) which minimizes ‖E(λ)‖∞ or ‖E(λ)‖2, respectively. Sufficient
conditions for the solvability of the H∞-MMP and H2-MMP are given in Lem-
mas 9.6 and 9.7, respectively. These sufficient conditions require that G(λ) has no
zeros in ∂Cs. However, these conditions are not necessary for the solvability of the
AMMP, and, therefore, we define the standard case, when G(λ) has no zeros in ∂Cs,
and the nonstandard case, when G(λ) has zeros in ∂Cs.

Solution procedures for the standard case are presented in Sect. 9.1.10 and deter-
mine optimal solutions which are stable and proper. The same procedures applied in
the nonstandard case, determine “optimal” solutions, which, in general, have poles in
∂Cs, and thus are unstable or improper. IfX(λ) is such a solution, then a diagonal, sta-
ble, proper and invertible updating factorM(λ) can be determined such that the filter
Q1(λ) := M(λ)X(λ) is stable and proper, and achieves the (suboptimal) performance
level γsub := ‖M(λ)E(λ)‖. Let X(λ) be an “optimal” solution (possibly unstable or
improper) which minimizes the weighted error norm ‖M(λ)E(λ)‖ and let γopt be the
corresponding optimal performance level. Since γopt ≤ γsub, the difference γsub−γopt
is an indicator of the achieved degree of suboptimality of the resulting filter Q1(λ)

for theweighted norm-minimization problem corresponding to the updated reference
model M(λ)Mr(λ). The choice of a diagonal M(λ) is instrumental to preserve the
zero–nonzero structure ofMr(λ).

Example 5.14 Consider the H∞-MMP in a continuous-time setting with

G(s) = [
Gf (s) Gw(s)

] :=
[

1

s + 1

1

s + 2

]
, F(s) = [

Mr(s) 0
] =

[
1

s + 3
0

]
.

This problem is nonstandard, because G(s) has a zero at infinity. Ignoring momentarily this aspect,
we can formally use the solution approach in Sect. 9.1.10 relying on the quasi-co-outer–inner
factorization of G(s) followed by the solution of a 2-block H∞-least distance problem. We obtain
the H∞-optimal solution

X∞(s) = 0.041587(s + 13.65)(s + 2)(s + 1)

(s + 3)(s + 1.581)
,

http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_9
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which is improper. The optimal error norm is γ∞,opt := ‖F(λ) − X∞(s)G(s)‖∞ = 0.1745, thus
finite. WithM(s) = 1

s+1 , we obtain a proper candidate filter

Q1(s) = M(s)X∞(s) = 0.041587(s + 13.65)(s + 2)

(s + 3)(s + 1.581)
,

for which γsub := ‖M(λ)F(λ) −Q1(s)G(s)‖∞ = 0.1522. The optimal solution X∞(s) of theH∞-
MMP,whichminimizes‖M(s)F(s)−X(s)G(s)‖∞, leads to anoptimal value ofγopt = ‖M(λ)F(λ)−
X∞(λ)G(λ)‖∞ = 0.1491.As expected, the optimal solutionX∞(s) is improper. Since γsub−γopt =
0.0031, the degree of suboptimality of the proper and stable filter M(s)X∞(s) with respect to the
optimal (but improper) solution X∞(s) appears to be acceptable. ♦

Example 5.15 We can also solve the H2-MMP for Example 5.14. Although this problem is non-
standard, still cancelations of infinite poles and zeros make that the resulting H2-optimal solution
is proper

X2(s) = 0.54572(s + 2)(s + 1)

(s + 3)(s + 1.581)
.

The corresponding optimal performance is γopt = ‖F(λ) − X2(λ)G(λ)‖2 = 0.2596. Interestingly,
the H∞ error norm of the H2-optimal solution is ‖F(λ) − X2(s)G(s)‖∞ = 0.1768, which is
only marginally worse than γ∞,opt , the optimal performance of the improperH∞-optimal solution
X∞(λ). Thus, X2(s) can be considered an acceptable H∞-suboptimal solution.

In what follows we develop a general synthesis procedure for solving AMMPs
relying on the solution ofH2/∞-MMPs. We assume that the reference modelMr(λ)

has been chosen to capture a fault estimation or, equivalently, a strong fault isolation
setup. Often, Mr(λ) is chosen diagonal, and even equal to the identity matrix, when
trying to solve a fault estimation problem. Therefore,Mr(λ) will be assumed to be a
stable and invertible TFM. In the case of an EMMP (when w ≡ 0), a necessary and
sufficient condition for the existence of a proper and stable solution (possibly with
an updated reference modelM(λ)Mr(λ), withM(λ) a diagonal, stable and invertible
factor) is that Gf (λ) has full column rank (i.e., left invertible) (see Corollary 5.10).
For simplicity, we will assume that this condition is fulfilled and provide a synthesis
procedure which computes an optimal solution in the standard case or a suboptimal
solution of a weighted problem in the nonstandard case. As it will be apparent,
the final fault detection filter intrinsically results in a factored form as in (5.1),
which automatically leads to a synthesis procedure relying on successive updating
of partially synthesized filters.

Let � ≥ mf be the rank of the (p − rd) × (mf + mw) TFM G(λ). We take
Q1(λ) = Q2(λ)Q2(λ), where Q2(λ) is an � × (p− rd) proper TFM chosen to ensure
thatQ2(λ)G(λ) has full row rank �. If � < p− rd (i.e., G(λ) has not a full row rank),
a possible choice of Q2(λ) is one which simultaneously minimizes the McMillan
degree of Q2(λ)Q1(λ) (see Sect. 7.5). A simpler choice with Q2(λ) a constant (e.g.,
orthogonal) matrix is also always possible. If � = p − rd , then Q2(λ) = I� can be
chosen.

The next step is standard in solvingH2/∞-MMPs and consists in compressing the
full row rank TFM G(λ) to a full column rank (thus invertible) TFM. For this, we
compute an extended quasi-co-outer–co-inner factorization in the form

http://dx.doi.org/10.1007/978-3-319-51559-5_7


116 5 Synthesis of Fault Detection and Isolation Filters

Q2(λ)G(λ) = [Go(λ) 0 ]
[
Gi,1(λ)

Gi,2(λ)

]
:= [Go(λ) 0 ]Gi(λ), (5.57)

where the quasi-co-outer part Go(λ) is invertible and has only zeros inCs, and Gi(λ)

is a square co-inner factor (i.e., Gi(λ)G∼(λ) = I). The factor Q2(λ) is determined
in the product form

Q2(λ) = Q5(λ)Q4(λ)Q3(λ),

with Q3(λ) = G−1
o (λ) and Q4(λ), the optimal solution which minimizes the error

norm ‖Ẽ(λ)‖2/∞, with Ẽ(λ) defined as

Ẽ(λ) := E(λ)G∼
i (λ) = [

F̃1(λ) − Q4(λ) F̃2(λ)
]

, (5.58)

where F̃1(λ) := F(λ)G∼
i,1(λ) and F̃2(λ) := F(λ)G∼

i,2(λ). The factor Q5(λ) := M(λ)

is chosen to enforce the stability and properness of the final filter

Q(λ) = Q5(λ)Q4(λ)Q3(λ)Q2(λ)Q1(λ) . (5.59)

The determination of a stable and proper Q4(λ) which minimizes ‖Ẽ(λ)‖2/∞ =
‖E(λ)‖2/∞ is aH2/∞-least distance problem (H2/∞-LDP), for which solution meth-
ods are given in Sect. 9.1.10.

The overall filterQ(λ) in (5.59) can be alternatively expressed in the formQ(λ) =
Q5(λ)Q4(λ)Q(λ), where Q(λ) := Q3(λ)Q2(λ)Q1(λ) can be interpreted as a partial
synthesis. The TFMs of the internal form corresponding to this filter are

[Rf (λ) Rw(λ) ] := Q3(λ)Q2(λ)[Gf (λ) Gw(λ) ]
= [ I� 0 ]

[
Gi,1(λ)

Gi,2(λ)

]
= Gi,1(λ) (5.60)

and thus, are parts of the (stable) co-inner TFM Gi,1(λ).
Generally, Q(λ) contains among its poles the zeros of Go(λ). This is also true for

the product Q4(λ)Q(λ), where Q4(λ) is the stable and proper solution of the H2/∞-
LDP. In the standard case (i.e., when G(λ) has no zeros in ∂Cs), Go(λ) has only
stable finite zeros and no infinite zeros, and therefore, Q(λ) results stable, provided
Q2(λ)Q1(λ) is stable. In this case, we take simplyQ5(λ) = I and the updating factor
M(λ) = I . In the nonstandard case (i.e., whenG(λ) has zeros in ∂Cs), the quasi-outer
factor Go(λ) will have these zeros in ∂Cs too. Therefore, Q(λ) results unstable or
improper, and we choose a diagonal, stable, proper and invertible M(λ) := Q5(λ),
such that, the final Q(λ) is proper and stable.

The computation of suitable M(λ) can be done using LCF-based techniques
as described in Sect. 9.1.6. The choice of M(λ) can be performed such that
‖M(λ)Ẽ(λ)‖2/∞ ≈ ‖Ẽ(λ)‖2/∞ and M(λ) has the least possible McMillan degree.
For example, to ensure properness or strict properness,M(λ) can be chosen diagonal
with the diagonal terms Mj(λ), j = 1, . . . ,mf having the form

http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_9
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Mj(s) = 1

(τ s + 1)kj
or Mj(z) = 1

zkj
,

for continuous- or discrete-time settings, respectively. Notice that both above factors
have unit H∞-norm.

The Procedure AMMS, given below, formalizes the computational steps of the
described synthesis method for a strongly isolable system and an invertible reference
modelMr(λ). This procedure can be also interpreted an enhanced version of Proce-
dure EMMS.

Procedure AMMS: Approximate model-matching synthesis of FDI filters
Inputs : {Gu(λ),Gd(λ),Gw(λ),Gf (λ)}, invertible Mr(λ)

Outputs: Q(λ), Rf (λ), Rw(λ),M(λ)

1) Compute a minimal proper basis Q1(λ) for the left nullspace of G(λ)

defined in (5.2); set Q(λ) = Q1(λ) and compute

[
Rf (λ) Rw(λ)

] = Q1(λ)

[
Gf (λ) Gw(λ)

0 0

]

Exit if rankRf (λ) < mf (no solution).
2) Choose Q2(λ) such that Q2(λ)

[
Rf (λ) Rw(λ)

]
has maximal full row rank

and Q2(λ)Q(λ) has least McMillan degree; update Q(λ) ← Q2(λ)Q(λ),
Rf (λ) ← Q2(λ)Rf (λ) and Rw(λ) ← Q2(λ)Rw(λ).

3) Compute the extended quasi-co-outer–co-inner factorization

[
Rf (λ) Rw(λ)

] = [Go(λ) 0 ]
[
Gi,1(λ)

Gi,2(λ)

]
.

With Q3(λ) = G−1
o (λ), update Q(λ) ← Q3(λ)Q(λ) and compute

F̃1(λ) = [
Mr(λ) 0

]
G∼

i,1(λ), F̃2(λ) = [
Mr(λ) 0

]
G∼

i,2(λ).
Set

[
Rf (λ) Rw(λ)

] = Gi,1(λ).
4) Compute the solution Q4(λ) of the H2/∞-LDP

min
Q4(λ)∈H∞

∥∥[
F̃1(λ) − Q4(λ) F̃2(λ)

]∥∥
2/∞ ;

update Q(λ) ← Q4(λ)Q(λ), Rf (λ) ← Q4(λ)Rf (λ) and
Rw(λ) ← Q4(λ)Rw(λ).

5) Determine diagonal, stable, proper and invertible Q5(λ) := M(λ) such that
M(λ)Q(λ) is stable and proper; update Q(λ) ← Q5(λ)Q(λ),
Rf (λ) ← Q5(λ)Rf (λ) and Rw(λ) ← Q5(λ)Rw(λ).

Remark 5.14 The main advantage of the Procedure AMMS over alternative meth-
ods, as—for example, solving H2/∞ filter synthesis problems using standard H2/∞
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optimization procedures, lies in the possibility to easily handle frequently encoun-
tered nonstandard cases (e.g., strictly proper systems). For such a case, the standard
procedureswould either failwithout providing any useful result, or determine unprac-
ticable solutions (e.g., with very fast dynamics or excessively large or small gains).
In contrast, the described method produces the weighting TFMM(λ), which allows
to easily obtain a suboptimal solution of a weighted problem. �

Remark 5.15 In the case when Mr(λ) is an mf × mf invertible diagonal TFM, the
solution of the AMMP targets the solution of an AFDIP with a structure matrix
S = Imf . It follows, that we can apply the threshold selection approach described in
Remark 5.11 with Rf (λ) and Rw(λ) beingmf ×mf and, respectively,mf ×mw TFMs.
An alternative approach can be devised for the case whenMr(λ) is a given reference
model (not assumed to be structured). To account for the achieved model-matching
performance, we employ instead of the residual r, the tracking error

e(λ) := r(λ) − M(λ)Mr(λ)f(λ) = (Rf (λ) − M(λ)Mr(λ))f(λ) + Rw(λ)w(λ)

and we set the threshold τi ≥ τ
(i)
f , where τ

(i)
f is the false alarm bound for the i-th

component ei of the tracking error defined as

τ
(i)
f := sup

‖w‖2≤δw

‖f ‖2≤δf

‖ei(λ)‖2 .

As in Remark 5.11, δf and δw are the assumed bounds for the norms of the fault and
noise signals, respectively. For example, τi can be chosen as

τi = ‖R(i)
f (λ) − M(i)(λ)Mr(λ)‖∞δf + ‖R(i)

w (λ)‖∞δw ,

whereR(i)
f (λ),M(i)(λ) andR(i)

w (λ) are the i-th rows ofRf (λ),M(λ) andRw(λ), respec-
tively. The above bound can be refined along the approach used in Remark 5.11 in
the case when Mr(λ) is a structured matrix with the corresponding structure matrix
SMr . �

Example 5.16 We use the LTI system of Example 2.2 to solve a robust fault detection and isolation
problem for actuator faults by employing theH∞-norm based version of Procedure AMMS. The
fault system in state-space form (2.2) has a standard state-space realization with E = I and

A =
⎡

⎣
−0.8 0 0
0 −0.5 0.6
0 −0.6 −0.5

⎤

⎦ ,

Bu =
⎡

⎣
1 1
1 0
0 1

⎤

⎦ , Bd = 0, Bw :=
⎡

⎣
0 0
0 0.25

0.25 0

⎤

⎦ , Bf =
⎡

⎣
1 1
1 0
0 1

⎤

⎦ ,

C =
[
0 1 1
1 1 0

]
, Du = 0, Dd = 0, Dw = 0, Df = 0 .

http://dx.doi.org/10.1007/978-3-319-51559-5_2
http://dx.doi.org/10.1007/978-3-319-51559-5_2
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The noise input matrix Bw accounts for the effect of parametric uncertainties in the complex conju-
gated eigenvalues of A and is a 0.25 times scaled version of Bw derived in Example 2.2. Let Gu(s),
Gd(s) = 0, Gw(s), and Gf (s) denote the TFMs defined according to (2.3). The FDI filter Q(s) is
aimed to provide robust fault detection and isolation of actuator faults in the presence of parametric
uncertainties.

At Step 1) of Procedure AMMS, we choose as nullspace basis

Q1(s) = [ I − Gu(s) ] =
[
sI − A 0 −Bu

C I −Du

]

and obtain Rf (s) = Gf (s) and Rw(s) = Gw(s). The solvability condition is: rank Rf (s) = 2, and
thus fulfilled. Note that Rf (s) is invertible and we can choose Q2(s) = I at Step 2).

At Step 3), the extended quasi-co-outer–co-inner factorization of G(s) = [Rf (s) Rw(s) ] in
(5.57) is computed. The state-space realization of the resulting Go(s) is obtained in the form (see
dual version of Theorem 9.3)

Go(s) =
[
A − sI Bo

C Do

]

,

with

Bo =
⎡

⎣
−1.313 −0.48

−0.9334 0.3602
−0.398 −0.9538

⎤

⎦ , Do = 0 .

Since G(s) has two zeros at infinity, Go(s) inherits these two zeros and has an additional stable zero
at −1.7772. This stable zero is also the only pole of the first-order inner factor Gi(s) ∈ H(s)4×4.
With Q3(s) = G−1

o (s), the descriptor realization of the current synthesis Q(s) = Q3(s)Q2(s)Q1(s)
can be explicitly computed as (see (7.80) in Sect. 7.9)

Q(s) = G−1
o (s)Q1(s) =

⎡

⎣
A − sI Bo 0 −Bu

C Do I −Du

0 −I 0 0

⎤

⎦ .

While the current filter Q(s) is improper (having two infinite poles), the updated Rf (s) and Rw(s)
can also be expressed according to (5.60) as [Rf (s) Rw(s) ] ← Q3(s)[Rf (s) Rw(s) ] = Gi,1(s) and
are therefore, stable systems (as parts of the inner factor).

With Mr(s) = I2, we compute F̃1(s) and F̃2(s) as

[ F̃1(s) F̃2(s) ] = [ I 0 ][G∼
i,1(s) G∼

i,2(s) ] =
[
Ã − sI B̃1 B̃2

C̃ D̃1 D̃2

]

,

where

Ã = 1.7772, B̃1 = [ −0.01688 −1.129
]
, B̃2 = [

4.304 4.754
]
,

C̃ =
[
0.04136
−0.1661

]
, D̃1 =

[ −0.9090 0.3542
−0.4035 −0.7796

]
, D̃2 =

[
0.2190 −0.0136

−0.4273 −0.2165

] .

Both F̃1(s) and F̃2(s) are first order systems with an unstable eigenvalue at 1.7772.
At Step 4) we solve a H∞-LDP and determine the optimal solution

Q4(s) =
[ −1.017 0.3501

−0.448 −0.7868

]
,

which leads to the current optimal synthesis Q̃(s) = Q4(s)Q(s), which is still improper. To obtain
a proper and stable FDI filter Q(s) = Q5(s)Q̃(s), we take at Step 5) Q5(s) = M(s) = 10

s+10 I2. The

http://dx.doi.org/10.1007/978-3-319-51559-5_2
http://dx.doi.org/10.1007/978-3-319-51559-5_2
http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_7
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Fig. 5.2 Parametric step responses for H∞-synthesis

resulting overall filter Q(s) has order three. Note that the orders of the realizations of the individual
factorsQ1(s),Q2(s),Q3(s),Q4(s), andQ5(s) are respectively 2, 0, 5, 0, and 3, which sum together to
10. The corresponding (suboptimal) error norm is γsub := ‖M(s)Ẽ(s)‖∞ = 0.4521. The minimum
error norm γopt := ‖X(s)G(s)−M(s)F(s)‖∞ corresponding to the optimal improper solution X(s)
(of McMillan degree 4) is γopt = 0.4502. The relatively small difference γsub − γopt = 0.0019
indicates that the computed Q(s) is a satisfactory suboptimal proper and stable solution of the
weighted problem.

We can check the robustness of the resulting Q(s) by applying this FDI filter to the original
system in Example 2.2 with the parameter dependent state matrix

A(ρ1, ρ2) =
⎡

⎣
−0.8 0 0
0 −0.5(1 + ρ1) 0.6(1 + ρ2)

0 −0.6(1 + ρ2) −0.5(1 + ρ1)

⎤

⎦ ,

where ρ1 and ρ2 take values on uniform grids with five values in their definition ranges ρ1 ∈
[−0.25, 0.25 ] and ρ2 ∈ [−0.25, 0.25 ]. The simulations have been performed for all 5× 5 = 25
combinations of values of ρ1 and ρ2. For each combination, the step responses of the internal
form of the fault detection filter have been computed. As it can be observed from Fig. 5.2, with an
appropriate choice of the detection threshold, the detection and isolation of constant faults can be
reliably performed in the presence of parametric uncertainties.

The script Ex5_16 in Listing 5.7 solves the AMMP considered in this example. ♦

http://dx.doi.org/10.1007/978-3-319-51559-5_2
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Listing 5.7 Script Ex5 16 to solve the H∞ AMMP of Example 5.16 using Procedure AMMS
% Uses the Control Toolbox and the Descriptor System Tools

% define system with control, noise and actuator fault inputs
A = [-.8 0 0; 0 -.5 .6; 0 -.6 -.5];
Bu = [1 1;1 0;0 1]; Bw = 0.25*[0 0;0 1;1 0]; Bf = Bu;
C = [0 1 1; 1 1 0]; Du = zeros (2,2);
% define Gu, Gw, Gf and Mr
Gu = ss(A,Bu ,C,0); Gw = ss(A,Bw ,C,0); Gf = Gu;
Mr = ss(eye (2));
[p,mu] = size(Gu); mw = size(Gw ,2); mf = size(Gf ,2);

% compute left nullspace basis as Q1 = [ I − Gu ]
% initialize Rf = Q1[Gf ; 0] and Rw = Q1[Gw; 0]
Q1 = ss(A,[zeros(n,p) -Bu],C,[eye(p) -Du]); Rf = Gf; Rw = Gw;

% check solvability condition
if rank(evalfr(Rf ,rand)) ~= mf

error('No solution ')
end

% check for unstable or infinite zeros of [Rf Rw ]
Rf_Rw = ss(A,[Bu Bw],C,0);
gzero(Rf_Rw) % two infinite zeros

tol = 1.e-7; % set tolerance

% compute the quasi-co-outer-co-inner factorization of [Rf Rw ]
[Gi ,Go] = goifac(Rf_Rw ,tol);

% with Q3 = G−1
o form Q = Q3Q1 using explicit formulas

Qbar = dss([Go.a Go.b; Go.c Go.d],[Q1.b; Q1.d],...
[ zeros(mf,n) -eye(mf)], zeros(mf,p+mu),...
[eye(n,n+mf); zeros(mf,n+mf)]);

% compute [ F̃1 F̃2 ] = [Mr 0 ]G∼
i

F1_F2 = [Mr zeros(mf,mw)]*Gi ';

% solve the H∞ least distance problem min ‖[ F̃1 − Q4 F̃2 ]‖∞
options = struct('tol ',tol ,'reltol ',5.e-4);
Q4 = glinfldp(F1_F2 ,mw ,options );
Qtilde = Q4*Qbar; % form Q̃ = Q4Q

% compute stable and proper Q = Q5Q̃ with suitable diagonal Q5 = M
Q = ss(zeros(0,p+mu)); M = ss(zeros (0 ,0));
opt_glcf = struct('tol ',tol ,'sdeg ',-10,...

'mindeg ',true ,'mininf ',true);
for i=1:mf

[Qi ,Mi] = glcf(Qtilde(i,:), opt_glcf );
% normalize Mi to unit H-infinity norm to match example
scale = norm(Mi ,inf)*sign(dcgain(Mi));
Q = [Q;Qi/scale ]; M = append(M,Mi/scale );

end

% compare suboptimal and optimal (improper) solutions
% compute γsub = ‖Q[Gf Gw Gu; 0 0 I ] − MMr [ I 0 0 ]‖∞
G = [Gf Gw Gu; zeros(mu ,mf+mw) eye(mu)];
F = M*Mr*eye(mf ,mu+mw+mf);
gamma_sub = norm(Q*G-F,inf)
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% compute γopt = ‖Qopt [Gf Gw Gu; 0 0 I ] − MMr [ I 0 0 ]‖∞
Yopt = glinfldp(M*F1_F2 ,mw ,tol);
Qopt = Yopt*Qbar;
gamma_opt = norm(gir(Qopt*G-F,tol),inf)

Example 5.17 The model used is the same as in Example 5.16, but this time we employ the H2-
norm based version of Procedure AMMS. Therefore, we choose Mr(s) = 10

s+10 I2 which ensures

that ‖E(s)‖2, the H2-norm of the error function in (5.56), is finite. Steps 1)–3) are the same as in
Example 5.16. At Step 4) the solution Q4(s) of the H2-LDP is simply the stable part of F̃1(s)

Q4(s) =

⎡

⎢
⎢
⎣

−10 − s 0 −9.090 3.582
0 −10 − s −4.038 −7.955
1 0 0 0
0 1 0 0

⎤

⎥
⎥
⎦ .

At Step 5) we take Q5(s) = M(s) = I . The resulting FDI filter Q(s) has order three. Note that
the orders of the realizations of the individual factors Q1(s), Q2(s), Q3(s), Q4(s), and Q5(s) are
respectively 3, 0, 5, 2, and 0, which sum together to 10. The corresponding H2-norm of the error
is ‖Ẽ(s)‖2 = 1.1172, while the H∞-norm of the error is 0.4519. It follows, that Q(s) can be also
interpreted as a fully satisfactory suboptimal solution of the H∞-MMP. For the resulting filter,
simulation results similar to those in Fig. 5.2 have been obtained, which indicates a satisfactory
robustness of the FDI filter. ♦

5.8 Notes and References

Section 5.1. The two computational paradigms which underly the synthesis proce-
dures presented in this chapter have been discussed for the first time in the authors’
papers [144, 151]. The factorized form (5.1) of the resulting fault detection filters is
the basis of numerically reliable integrated computational algorithms. The numer-
ical aspects of these algorithms are presented in Chap. 7. The parametrization of
fault detection filters given in Theorem 5.1 extends the product form parametrization
proposed in [45] given in terms of a polynomial nullspace basis. An alternative less
general parametrization, without including the disturbance inputs, is presented in
[31, 44]. The nullspace-based characterization of strong fault detectability in Propo-
sition 5.2 generalizes the characterization proposed in [92] based on polynomial
bases.

Section 5.2. The nullspace method (without using this naming), in a state-space
based formulation, has been originally employed in [101] to solve the EFDIP using
structured residuals and extended in [62] to descriptor systems. The least-order syn-
thesis problem has been apparently addressed for the first time in [45], where a
minimal polynomial basis based solution has been proposed. The application of
the polynomial basis method to systems with improper TFMs is done in [93]. A
numerically reliable state-space approach to the least-order synthesis relying on
rational nullspace bases has been proposed in [132]. The computational details of
this approach, in a state-space based setting, are discussed in Sect. 7.4. The role of

http://dx.doi.org/10.1007/978-3-319-51559-5_7
http://dx.doi.org/10.1007/978-3-319-51559-5_7
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the nullspace method as a universal first computational step in all synthesis algo-
rithms has been recognized in [151] as an important computational paradigms to
address the synthesis of residual generators for a range of fault detection problems.
The sensitivity condition (5.20) has been introduced in [48, p. 353] as a criterion to
be minimized for an optimal design.

Section 5.3. To solve the AFDP,H∞/H∞ optimization-based methods have been
suggested by several authors, as [31, 44, 105] to cite a few of them. In this context, the
H∞-filter based solution, advocated in [37, 38], is one of several possible synthesis
methods. The H∞/H∞ optimization-based problem formulation as well as similar
ones (e.g.,H2/H∞,H2/H2, etc.) have a basic difficulty in enforcing the sensitivity
of residual to all fault inputs. To enhance the optimization-based formulations, the
‖ · ‖− index has been introduced in [64] as a sensitivity measure covering globally
all fault inputs. Based on this definition, synthesis methods to solve the AFDP have
been proposed in several papers [28, 66, 77, 78, 163]. The alternative fault sensitivity
measures ‖ · ‖∞− and ‖ · ‖2− have been introduced by the author in [141], where a
synthesis procedure similar to Procedure AFD has been also proposed. The solution
of several nonstandard problems has been considered in [52]. A solution approach for
the nonstandard case has been described in [28], based on a special factorization of
the quasi-outer factor as a product of an outer factor and a second factor containing
all zeros on the boundary of stability domain. This latter approach is implicitly
contained in Procedure AFD, where the respective zeros are dislocated as the poles
of the inverse of the quasi-outer factor using coprime factorization techniques. The
extended quasi-co-outer–co-inner factorization of an arbitrary rational matrix can be
computed using the dual of the algorithm of [97] for the continuous-time case and
the dual of the algorithm of [94] for the discrete-time case. Specialized versions of
these algorithms for proper and full column rank rational matrices are presented in
Sect. 10.3.6.

Section5.4. The solution of theEFDIPwas one of themost intensively investigated
problems in the fault detection literature.We onlymention some of the notable works
in this area, by pointing out the main achievements. Historically, of fundamental
importance for a range of subsequent developments was the geometric approach
introduced by Massoumnia [81], which was the starting point of observer-based
methods. The main limitation of this single filter approach is the assumed form
of the fault detection filter as a full-order Luenberger observer [80], with a suitably
determinedoutput gainmatrix targeting the achievement of a desired structurematrix.
The strong solvability conditions can frequently not be satisfied (no single stable filter
exists), even if the FDIP has a solution. The use of a bank of filters, as suggested
in [83], appears therefore as a natural approach to solve FDIPs for a given structure
matrix. Phatak and Viswanadham proposed the use of a bank of unknown-input
observers (UIOs) as fault detection and isolation filters [103]. Although the lack of
generality of this approach is well known and ways to eliminate them have been
proposed by Hou and Müler [63], the UIO-based approach preserved over the years
a certain popularity (e.g., being the preferred method in [20]). The extension of
the observer-based approach to the case of general proper systems has been done
by Patton and Hou [101] and later extended by Hou to descriptor systems in [62].

http://dx.doi.org/10.1007/978-3-319-51559-5_10
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The least-order synthesis aspect, in the most general setting, has been addressed by
the author in [140] and later improved in [149], where the nullspace method has
been used as a first preprocessing step to reduce the complexity of the FDIP and for
designing a bank of fault detection filters to provide a set of structured residuals. This
improved approach underlies the Procedure EFDI. Similar synthesis methods can
be devised using the parity-space approach proposed by Chow and Willsky [22],
where the least-order synthesis aspect has been discussed in [30]. The synthesis of
FDI schemes based on structured residuals, also including the selection of structure
matrices for suitable coding sets, has been discussed in several works of Gertler [48–
50]. The nullspace-based algorithm for the efficient determination of the maximally
achievable structure matrix has been proposed in [145]. This algorithm underlies the
Procedure GENSPEC.

Section 5.5. The Procedure AFDI represents a refined version of the approach
suggested in [151].

Section 5.6. The solution of the EMMP involves the solution of a linear rational
matrix equation (see Sect. 9.1.9 for existence conditions and parametrization of all
solutions). General computational algorithms, based on state-space representations,
have been proposed by the author in [134, 135] and are discussed in details in
Sect. 10.3.7. The inversion-based method to solve the EFDIP with the strong fault
isolability requirement goes back to Massoumnia and Vander Velde [82], where
only the case without disturbance inputs is addressed. For further extensions and
discussions of this method see [31, 49, 72]. A recent development, leading to the
general numerically reliable computational approach inProcedureEMMS, has been
proposed by the author in [151].

Section 5.7. The solution of the AMMP using a H∞ or H2 optimal controller
synthesis setup is the method of choice in some textbooks, see for example [14,
20]. Standard software tools for controller synthesis are available (e.g., the functions
hinfsyn or h2syn available in MATLAB), but their general applicability to solve
the (dual) filter synthesis problems may face difficulties. Typical bottlenecks are the
assumptions on stabilizability (not fulfilled for filter synthesis for unstable plants),
the lack of zeros on ∂Cs (typically not fulfilled if only actuator faults are considered)
or the need to formulate meaningful reference models for the TFM from faults to
residuals. The first two aspects can be overcome with the help of stable factorization
techniques and using more general computational frameworks (e.g., linear matrix
inequalities (LMIs) based formulations). However, in spite of some efforts (see for
example, [91]), there are no clear guidelines for choosing reference models able to
guarantee the existence of stable solutions. This is why, a new approach has been
proposed by the author in [137], where the choice of a suitable Mr(λ) is part of the
solution procedure. This procedure has been later refined in [146, 147, 150] and
Procedure AMMS represents its final form. The main computational ingredients of
this procedure are discussed in Chap. 7, in a state-space formulation based setting.

Final note: A common aspect worth to mention regarding the proposed synthesis
procedures to solve the approximate synthesis problems AFDP, AFDIP and AMMP
is that the main focus in developing these algorithms lies not on solving the associ-
ated optimization problems, but on obtaining “useful” solutions of these synthesis

http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_10
http://dx.doi.org/10.1007/978-3-319-51559-5_7
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problems, in the most general setting and using reliable numerical techniques.
Although the proposed solution approaches in [141, 146, 147, 150] follow the usual
solution processes to determine the optimal solutions, still the resulting filters are
usually not optimal in the nonstandard cases. The assessment of the “usefulness” of
the resulting filters involves the evaluation of the actual signal bounds on the contri-
bution of noise inputs in the residual signal and the determination of the minimum
detectable amplitudes of fault signals. A solution can be considered as “useful” if it
is possible to choose a suitable decision threshold which allows a robust fault mon-
itoring without false alarms and missed fault detections. For a pertinent discussion
of these aspects see [48].



Chapter 6
Synthesis of Model Detection Filters

This chapter presents general synthesis procedures of residual generatorswhich solve
themodel detection problems formulated in Chap.4. Similarly to Chap. 3, the synthe-
sis procedures are described in terms of input–output models. The numerical aspects
of equivalent state-space representation based synthesis algorithms are essentially
the same as for the synthesis algorithms of fault detection and isolation filters, and
the discussion of related computational techniques is also covered in Chap. 7.

6.1 Nullspace-Based Synthesis

We assume the overall residual generator filter Q(λ) has the TFM of the form (4.3),
which corresponds to a bank of N individual filters as in (4.2). Furthermore, for
i = 1, . . . , N , the i-th filter driven by the j-th model has the internal form in
(4.4). Let R(i, j)

u (λ) and R(i, j)
d (λ) be the TFMs defined in (4.4) and (4.5). A useful

parametrization of all individual filters can be obtained on the basis of the conditions
R(i,i)
u (λ) = 0 and R(i,i)

d (λ) = 0 for i = 1, . . . , N in (4.11). For each filter with the
TFM Q(i)(λ), these conditions are equivalent to

Q(i)(λ)

[
G(i)

u (λ) G(i)
d (λ)

Imu 0

]
= 0 . (6.1)

Therefore, Q(i)(λ) must be a left annihilator of the TFM

G(i)(λ) :=
[
G(i)

u (λ) G(i)
d (λ)

Imu 0

]
. (6.2)

Let r (i)
d be the normal rank of G(i)

d (λ). It follows that there exists a maximal full row
rank left annihilator N (i)

l (λ)of size
(
p−r (i)

d

)×(p+mu) such that N
(i)
l (λ)G(i)(λ) = 0.

Any such N (i)
l (λ) is a rational basis of NL(G(i)(λ)), the left (rational) nullspace of
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G(i)(λ). Using this fact and Theorem 5.1, we have the following straightforward
parametrization of all component filters:

Theorem 6.1 For i = 1, . . . , N, let N (i)
l (λ) be a basis ofNL(G(i)(λ)), with G(i)(λ)

defined in (6.2). Then, each filter Q(i)(λ) satisfying condition (i) of (4.11) can be
expressed in the form

Q(i)(λ) = V (i)(λ)N (i)
l (λ), i = 1, . . . , N , (6.3)

where V (i)(λ) is a suitable TFM.

The parametrization result of Theorem 6.1 underlies the nullspace method based
synthesis procedures ofmodel detection filters. All synthesis procedures of themodel
detection filters, presented in this book, rely on the initial factored forms

Q(i)(λ) = Q
(i)
1 (λ)Q(i)

1 (λ), i = 1, . . . , N , (6.4)

where each Q(i)
1 (λ) = N (i)

l (λ) is a basis of NL(G(i)(λ)), while each factor Q
(i)
1 (λ)

has to be subsequently determined. The nullspace-based first step allows to reduce
the synthesis problems of model detection filters formulated for the multiple models
(4.1) to simpler problems, which allow to easily check the solvability conditions.

Using the factored form (6.4), the model detection filters in (4.2) can be rewritten
in the alternative forms

r(i)(λ) = Q
(i)
1 (λ)Q(i)

1 (λ)

[
y(λ)

u(λ)

]
= Q

(i)
1 (λ)y(i)(λ), i = 1, . . . , N , (6.5)

where

y(i)(λ) := Q(i)
1 (λ)

[
y(λ)

u(λ)

]
. (6.6)

For y(t) = y( j)(t), both the residual signal r (i)(t) in (6.5) and y(i)(t) in (6.6) depend
on all system inputs u( j)(t), d( j)(t) and w( j)(t) via the system output y( j)(t). The
internal form (4.4) of the i-th filter for the j-th model can be expressed as

r̃(i, j)(λ) = Q
(i)
1 (λ)̃y(i, j)(λ) ,

where

ỹ(i, j)(λ) := Q(i)
1 (λ)

[
y( j)(λ)

u( j)(λ)

]
.

Using the expression of y( j)(λ) from (4.1), we obtain

ỹ(i, j)(λ) = G
(i, j)
u (λ)u( j)(λ) + G

(i, j)
d (λ)d( j)(λ) + G

(i, j)
w (λ)w( j)(λ) , (6.7)

with
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[
G

(i, j)
u (λ) G

(i, j)
d (λ) G

(i, j)
w (λ)

]
:= Q(i)

1 (λ)

[
G( j)

u (λ) G( j)
d (λ) G( j)

w (λ)

Imu 0 0

]
. (6.8)

The system (6.7) can be interpreted as the internal form of the i-th filter driven by the
j-th model, corresponding to the partial synthesis Q(i)

1 (λ). For j = i , the particular

choice of Q(i)
1 (λ) as a left nullspace basis ofG(i)(λ) in (6.2) ensures thatG

(i,i)
u (λ) = 0

and G
(i,i)
d (λ) = 0.

At this stage we can assume that both Q(i)
1 (λ) and the TFMs (6.8) are proper

and stable. This can be always achieved using Q(i)
1 (λ) = M (i)(λ)N (i)

l (λ) (instead
Q(i)

1 (λ) = N (i)
l (λ)), where M (i)(λ) is a stable and proper TFM such that

M (i)(λ)
[
N (i)
l (λ) | G(1)

u (λ) G
(1)
d (λ) G

(1)
w (λ) | · · · | G(N )

u (λ) G
(N )

d (λ) G
(N )

w (λ)
]

is stable and proper. Such an M (i)(λ) can be determined as the denominator matrix
of a stable and proper LCF (see Sect. 9.1.6).

Relying on the parametrization result of Theorem 6.1, we have the following
straightforward characterization of the model detectability of the multiple model
(4.1) in terms of the N multiple models (6.7):

Proposition 6.1 For the multiple model (4.1), let Q(i)
1 (λ) = N (i)

l (λ), i = 1, . . . , N,
be rational bases of NL(G(i)(λ)), with G(i)(λ) defined in (6.2), and let (6.7) be the
multiple model associated to the i-th residual. Then, the multiple model (4.1) with
w( j) ≡ 0 for j = 1, . . . , N, is model detectable if and only if, for i = 1, . . . , N

[
G

(i, j)
u (λ) G

(i, j)
d (λ)

]
�= 0 ∀ j �= i . (6.9)

6.2 Solving the Exact Model Detection Problem

Using Proposition 6.1, the solvability conditions of the exact model detection prob-
lem (EMDP) formulated in Sect. 4.4.1 for the multiple model (4.1), can be also
expressed in terms of the multiple models (6.7), according to the following corollary
to Theorem 4.2:

Corollary 6.1 For the multiple model (4.1) with w( j) ≡ 0 for j = 1, . . . , N, the
EMDP is solvable if and only if for the multiple model (6.7), with w( j) ≡ 0 for
j = 1, . . . , N, the following conditions hold for i = 1, . . . , N

[
G

(i, j)
u (λ) G

(i, j)
d (λ)

]
�= 0 ∀ j �= i . (6.10)

The synthesis procedure of the N component filters Q(i)(λ), i = 1, . . . , N ,
employs a common computational approach. Accordingly, the i-th filter Q(i)(λ)

is determined in the factored form

http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_4
http://dx.doi.org/10.1007/978-3-319-51559-5_4
http://dx.doi.org/10.1007/978-3-319-51559-5_4
http://dx.doi.org/10.1007/978-3-319-51559-5_4
http://dx.doi.org/10.1007/978-3-319-51559-5_4
http://dx.doi.org/10.1007/978-3-319-51559-5_4
http://dx.doi.org/10.1007/978-3-319-51559-5_4


130 6 Synthesis of Model Detection Filters

Q(i)(λ) = Q(i)
3 (λ)Q(i)

2 (λ)Q(i)
1 (λ) ,

where: Q(i)
1 (λ) is a rational basis ofNL

(
G(i)(λ)

)
, the left nullspace ofG(i)(λ) defined

in (6.2); Q(i)
2 (λ) ensures that Q(i)

2 (λ)Q(i)
1 (λ) has least McMillan degree; and, Q(i)

3 (λ)

is chosen such that Q(i)(λ) is stable and the corresponding R(i, j)(λ) defined in (4.6),
for j = 1, . . . , N , j �= i , are stable and nonzero. Using Proposition 6.1, the existence
condition of the i-th filter is satisfied if Q(i)

1 (λ)G( j)(λ) �= 0, ∀ j �= i .
There exists some freedom in determining model detection filters which solve

the EMDP. For example, the number of outputs of the i-th filter Q(i)(λ) can be
chosen arbitrarily between 1 and p − r (i)

d , where r (i)
d := rankG(i)

d (λ), provided the
model detectability conditions are fulfilled. Also, least-order scalar output model
detection filters can be employed to ensure that the overall bank of filters has the
least achievable global order. However, filters with more outputs can occasionally
provide a better sensitivity condition (see later) for model detection.

The Procedure EMD, given below, determines the N filters Q(i)(λ), i =
1, . . . , N , and the corresponding internal forms R(i, j)(λ) := [

R(i, j)
u (λ) R(i, j)

d (λ)
]
,

for i, j = 1, . . . , N , with the i-th filter having a maximal row dimension qmax .

Procedure EMD: Exact synthesis of model detection filters

Inputs : {G( j)
u (λ),G( j)

d (λ)}, for j = 1, . . . , N ; qmax

Outputs: Q(i)(λ), for i = 1, . . . , N ; R(i, j)(λ) for i, j = 1, . . . , N

For i = 1, ..., N

1) Compute a (p − r (i)
d ) × (p + mu) minimal basis matrix Q(i)

1 (λ) for the left
nullspace of G(i)(λ) defined in (6.2), where r (i)

d := rankG(i)
d (λ); set

Q(i)(λ) = Q(i)
1 (λ) and compute R(i, j)(λ)=Q(i)(λ)G( j)(λ) for j =1, ..., N .

Exit if R(i, j)(λ) = 0 for any j ∈ {1, . . . , N }, j �= i (no solution exists).
2) Choose a min

(
qmax , p−r (i)

d

) × (p+mu) rational matrix Q(i)
2 (λ), such that

Q(i)
2 (λ)Q(i)(λ) has least McMillan degree and Q(i)

2 (λ)R(i, j)(λ) �= 0 for
j = 1, . . . , N , j �= i ; compute Q(i)(λ)←Q(i)

2 (λ)Q(i)(λ) and
R(i, j)(λ) ← Q(i)

2 (λ)R(i, j)(λ) for j = 1, . . . , N , j �= i .
3) Choose a proper and stable invertible rational matrix Q(i)

3 (λ) such that
Q(i)

3 (λ)Q(i)(λ) has a desired stable dynamics and Q(i)
3 (λ)R(i, j)(λ) for

j = 1, . . . , N , j �= i are stable; compute Q(i)(λ) ← Q(i)
3 (λ)Q(i)(λ) and

R(i, j)(λ) ← Q(i)
3 (λ)R(i, j)(λ) for j = 1, . . . , N , j �= i .

The computational algorithms underlying Procedure EMD are essentially the
same as those used for the synthesis of fault detection filters (see Procedure EFD)
and rely on state-space representations as in (2.19) of the component models. These
algorithms are amply described in Sects. 7.4–7.6, and therefore, we restrict our
discussion on specific aspects of Steps 2) and 3). To determine filters with least
dynamical orders at Step 2), a straightforward systematic approach is to build suc-
cessive candidate filters Q(i)

2 (λ)Q(i)
1 (λ)with increasingMcMillan degrees and check

http://dx.doi.org/10.1007/978-3-319-51559-5_4
http://dx.doi.org/10.1007/978-3-319-51559-5_2
http://dx.doi.org/10.1007/978-3-319-51559-5_7
http://dx.doi.org/10.1007/978-3-319-51559-5_7


6.2 Solving the Exact Model Detection Problem 131

the specific admissibility condition Q2(i)(λ)Q(i)
1 (λ)G( j)(λ) �= 0 (or equivalently

Q(i)
2 (λ)

[
G

(i, j)
u (λ) G

(i, j)
d (λ)

] �= 0) for all j �= i . The least possible order of the fault
detection filter Q(i)(λ) is uniquely determined by the fulfilment of the above admis-
sibility condition. Since Q(i)

3 (λ) is invertible, its choice plays no role in ensuring
admissibility. However, the final orders of the individual filters can occasionally fur-
ther increase at Step 3), if the cancellation of unstable poles in the component models
is necessary, in accordance with the formulated requirements for the EMDP. As in
the case of solving the EFDP, a least-order filter synthesis can be always achieved
by a scalar output filter. Since the choice of Q(i)

2 (λ) is not unique, an appropriate
parametrization of Q(i)

2 (λ) allows to make an optimal choice of free parameters (e.g.,
to achieve other desirable features; see Remark 6.1). Further aspects of selecting suit-
able Q(i)

2 (λ), in accordance with the employed type of nullspace basis, are discussed
in Sect. 5.2, in the context of solving the EFDP.

Remark 6.1 Assume that all component models in (4.1) are stable and all vectors
d(i)(t), i = 1, . . . , N , have dimension md . In this case, the norm of R(i, j)(λ) has a
simple interpretation as a weighted distance between the i-th and j-th models. In
accordancewithTheorem6.1, Q(i)(λ) can be expressed as Q(i)(λ) = V (i)(λ)N (i)

l (λ),
with the nullspace basis N (i)

l (λ) chosen in a form similar to (5.5), as

N (i)
l (λ) = N (i)

l,d (λ)
[
Ip −G(i)

u (λ)
]

,

where N (i)
l,d (λ) is a (p − r (i)

d ) × p TFM representing a basis of NL
(
G(i)

d (λ)
)
. This

choice leads to

R(i, j)(λ) = Q(i)(λ)G( j)(λ)

= V (i)(λ)N (i)
l,d (λ)

[
G( j)

u (λ) − G(i)
u (λ) G( j)

d (λ) − G(i)
d (λ)

]
.

(6.11)

If we define the distance between the i-th and j-th models as

dist (G(i)(λ),G( j)(λ)) := ∥∥[
G( j)

u (λ) − G(i)
u (λ) G( j)

d (λ) − G(i)
d (λ)

]∥∥ ,

then, the norm of R(i, j)(λ) can be interpreted as a weighted distance between the
TFMs of the i-th and j-th models. An ideal model detection filter Q(λ) of the form
(4.3) wouldmonotonically map the distances between twomodels to the correspond-
ing norms of R(i, j)(λ), that is, if the distances of the j-th and k-th models to the i-th
model satisfy

dist (G(i)(λ),G( j)(λ)) < dist (G(i)(λ),G(k)(λ)) ,

then the weighted distances satisfy

‖R(i, j)(λ)‖ < ‖R(i,k)(λ)‖ .

http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_4
http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_4
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Moreover, the fulfilment of the symmetry conditions

‖R(i, j)(λ)‖ = ‖R( j,i)(λ)‖, ∀i �= j ,

is also highly desirable. A model detection filter having these properties, can be
employed to reliably identify the nearest model from a given set of models to the
actual plant model.

Ensuring the monotonic distance mapping and symmetry properties can be seen
as a global synthesis goal of model detection filters, and can be targeted in various
ways, as—for example, by an optimal choice of the free parameters of the weighting
functions V (i)(λ)N (i)

l,d (λ), or by choosing each filter Q(i)(λ) to enforce a certain

isometry (i.e., distance preserving) property (e.g., by choosing V (i)(λ)N (i)
l,d (λ) a co-

inner matrix). �

Remark 6.2 A properly designed model detection system as in Fig. 4.1 (e.g., with
the model detection filter determined using Procedure EMD), is always able to
identify the exact matching of the current model with one (and only one) of the N
component models. However, in practice, we often encounter the situation that the
actual (or true) model will never match exactly any of the N component models,
and therefore, the best we can aim is to correctly figure out the nearest model to
the actual one. Assume that the actual model has G̃u(λ) and G̃d(λ), the TFMs from
the control-input-to-output and disturbance-input-to-output, respectively. Therefore,
G̃u(λ) and G̃d(λ) can be expressed in terms of their deviations to the N component
models for j = 1, . . . , N as

G̃u(λ) = G( j)
u (λ) + ΔG( j)

u (λ), G̃d(λ) = G( j)
d (λ) + ΔG( j)

d (λ) .

Assuming the N component models are mutually distinct, there exists for each i =
1, . . . , N , a largest δ(i) > 0 such that the following conditions simultaneously hold

∥∥[
ΔG(i)

u (λ) ΔG(i)
d (λ)

]∥∥∞ ≤ δ(i),
∥∥[

ΔG( j)
u (λ) ΔG( j)

d (λ)
]∥∥∞ > δ(i),∀ j �= i .

The size of δ(i) defines the family of all sufficiently nearby models to the i-th model
which are distinguishable (using the H∞-norm based distance) from the rest of
models. In the case when the nearest model to the actual model is the i-th model
(i.e., the above inequalities are fulfilled), it is highly desirable that themodel detection
filter ensures that the i-th evaluation signal, θi ≈ ‖r (i)‖2, has the least value among the
N components of θ , and thus, allow to identify the i-thmodel as the nearest one to the
current model. The attainability of this goal usually depends on the concrete problem
to be solved. With the interpretation of the norm of R(i, j)(λ) in Remark 6.1 as a
weighted distance between the i-th and j-th models, a prerequisite to fulfill the above
goal is the use of a model detection filter able to monotonically map the distances
between the models to the corresponding norms of the internal representations (i.e.,
to R(i, j)(λ)). �

http://dx.doi.org/10.1007/978-3-319-51559-5_4
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Example 6.1 To illustrate the effectiveness of the proposed nullspace-based synthesis approach of
model detection filters, we consider the detection and identification of loss of efficiency of flight
actuators using a model detection based approach. The fault-free state-space model describes the
continuous-time lateral dynamics of an F-16 aircraft with the matrices

A(1) =

⎡

⎢⎢
⎣

−0.4492 0.046 0.0053 −0.9926
0 0 1.0000 0.0067

−50.8436 0 −5.2184 0.7220
16.4148 0 0.0026 −0.6627

⎤

⎥⎥
⎦ , B(1)

u =

⎡

⎢⎢
⎣

0.0004 0.0011
0 0

−1.4161 0.2621
−0.0633 −0.1205

⎤

⎥⎥
⎦ ,

C (1) = I4, D(1)
u = 04×2 .

The four state variables are the sideslip angle, roll angle, roll rate and yaw rate, and the two input
variables are the aileron deflection and rudder deflection. The individual failure models correspond
to different levels of surface efficiency degradation. For simplicity, we build a multiple model with
N = 9 componentmodels on a coarse two-dimensional parameter grid for N values of the parameter
vector ρ := [ρ1, ρ2]T . For each component of ρ, the chosen three grid points are {0, 0.5, 1}. The
component system matrices in (2.19) are defined for i = 1, 2, . . . , N as: E (i) = I4, A(i) = A(1),
C (i) = C (1), and B(i)

u = B(1)
u Γ (i), where Γ (i) = diag

(
1 − ρ

(i)
1 , 1 − ρ

(i)
2

)
and

(
ρ

(i)
1 , ρ

(i)
2

)
are the

values of parameters (ρ1, ρ2) on the chosen grid

ρ1 : 0 0 0 0.5 0.5 0.5 1 1 1
ρ2 : 0 0.5 1 0 0.5 1 0 0.5 1

For example,
(
ρ

(1)
1 , ρ

(1)
2

) = (0, 0) corresponds to the fault-free situation, while
(
ρ

(9)
1 , ρ

(9)
2

) = (1, 1)

corresponds to complete failure of both control surfaces. It follows, that the TFM G(i)
u (s) of the i-th

system can be expressed as
G(i)

u (s) = G(1)
u (s)Γ (i), (6.12)

where
G(1)

u (s) = C (1)(s I − A(1))−1
B(1)
u

is the TFM of the fault-free system. Note that G(N )
u (s) = 0 describes the case of complete failure.

We applied the Procedure EMD to design N = 9 model detection filters of least dynamical
order with scalar outputs. At Step 1), nullspace bases of the form

Q(i)
1 (s) =

[
I4 −G(i)

u (s)
]

=
[
I4 −G(1)

u (s)Γ (i)
]

have been chosen as initial designs. The internal forms corresponding to these designs are

R(i, j)
1 (s) := Q(i)

1 (s)

[
G( j)

u (s)
I2

]
= G( j)

u (s) − G(i)
u (s) = G(1)

u (s)
(
Γ ( j) − Γ (i)) .

At this stage, the norms
∥
∥R(i, j)

1 (s)
∥
∥∞ monotonically map the distances between the i-th and j-th

component models, as can be also seen in Fig. 6.1.
At Step 2) we target to preserve the monotonic mapping of norms (as in Fig. 6.1) after updating

Q(i)
1 (s), by choosing the updating filter Q(i)

2 (s) such that Q(i)
2 (s)Q(i)

1 (s) has least-order. For this pur-
pose, with a suitably chosen row vector h, a linear combination of the basis vectors has been formed
as X (i)(s) = hQ(i)

1 (s), and then a proper rational row vector Y (i)(s) has been determined such that

Q(i)
2 (s)Q(i)

1 (s) := X (i)(s) + Y (i)(s)Q(i)
1 (s) has least McMillan degree and Q(i)

2 (s)R(i, j)
1 (s) �= 0

for all j �= i . The resulting Q(i)
2 (s) is simply Q(i)

2 (s) = h + Y (i)(s). For this computation, minimal
dynamic cover techniques described in Sect. 7.5 have been used. After some trials with randomly
generated h, the value

h = [ 0.7645 0.8848 0.5778 0.9026 ]

http://dx.doi.org/10.1007/978-3-319-51559-5_2
http://dx.doi.org/10.1007/978-3-319-51559-5_7
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Fig. 6.1 Norms of residual
models for the initial full
order synthesis
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led to a satisfactory dynamics of a first-order updated filter, without the need of further stabilization.
Due to the particular forms of G(i)

u (s) in (6.12), the same Q(i)
2 (s) := Q(1)

2 (s), i = 1, . . . , N , can
be used for all models. The resulting final filters are given by

Q(i)(s) = Q(i)
2 (s)Q(i)

1 (s) =
[
Q(1)

2 (s) −Q(1)
2 (s)G(1)

u (s)Γ (i)
]

, (6.13)

where, for convenience, we set Q(N )(s) as

Q(N )(s) =
[
Q(1)

2 (s) 0
]

,

with a first-order state-space realization, although Q(N )(s) = [
h 0

]
was also possible.

The final internal filters R(i, j)(s) result as

R(i, j)(s) = Q(1)
2 (s)G(1)

u (s)
(
Γ ( j) − Γ (i)), i, j = 1, . . . , N

and preserve the monotonic mapping of distances, as in Fig. 6.1.
For practical use, the N filters Q(i)(s) have been scaled such that the corresponding row blocks

R(i, j)(s) fulfill the condition min j=1:N ,i �= j
∥∥R(i, j)(s)

∥∥∞ = 1. This amounts to replace Q(i)(s) by
Q(i)(s)/γi and R(i, j)(s)by R(i, j)(s)/γi , for j = 1, . . . , N , whereγi = min j=1:N ,i �= j

∥
∥R(i, j)(s)

∥
∥∞.

This scaling also enforces the symmetry conditions
∥
∥R(i, j)(s)

∥
∥∞ = ∥

∥R( j,i)(s)
∥
∥∞ for all i �= j .

In Fig. 6.2 the step responses from u1 (aileron) and u2 (rudder) are presented for the 9×9 block
array, whose entries are the rescaled TFMs R(i, j)(s). Each column corresponds to a specific model
for which the step responses of the N residuals are computed. The achieved typical structure matrix
for model detection (with zeros down the diagonal) can easily be read out from this signal-based
assessment.

The script Ex6_1 in Listing 6.1 solves the EMDP considered in this example. The script
Ex6_1figs (not listed) generates the plots in Figs. 6.1 and 6.2. ♦
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Listing 6.1 Script Ex6 1 to solve the EMDP of Example 6.1 using Procedure EMD
% Uses the Control Toolbox and the Descriptor System Tools

% define lateral aircraft model without faults Gu
A = [ -.4492 0.046 .0053 -.9926;

0 0 1 0.0067;
-50.8436 0 -5.2184 .722;
16.4148 0 .0026 -.6627];

Bu = [0.0004 0.0011; 0 0; -1.4161 .2621; -0.0633 -0.1205];
C = eye (4); p = size(C,1); mu = size(Bu ,2);

% define the LOE faults Γ (i)

Gamma = 1 - [ 0 0 0 .5 .5 .5 1 1 1;
0 .5 1 0 .5 1 0 .5 1 ]';

N = size(Gamma ,1);

% define multiple physical fault model G(i)
u = GuΓ (i)

sysu = ss(zeros(p,mu,N,1));
for i=1:N

sysu(:,:,i,1) = ss(A,Bu*diag(Gamma(i,:)),C,0);
end

% setup initial full order model detector Q(i)
1 = [ I − G(i)

u ]
Q1 = [eye(p) -sysu];

% form a linear combination of hQ(i)
1 with the rows of Q(i)

1
% to obtain a minimum order synthesis, by solving a minimum
% dynamic cover problem; the result is a least-order Q(i) = Q(i)

2 Q(i)
1

h = [ 0.7645 0.8848 0.5778 0.9026];
tol = 1.e-7; % set tolerance
Q = ss(zeros(1,p+mu ,N,1));
for i = 1:N-1

Q(:,:,i,1) = glmcover1 ([h;eye(p)]*Q1(:,:,i,1),1,tol);
end

Q(1,1:p,N,1) = Q(1,1:p,1,1); % set Q(N ) = [ Q(1)
2 0 ]

% compute internal forms R(i, j) and their norms
R = ss(zeros(1,mu ,N,N));
for i = 1:N

for j = 1:N
temp = Q(:,:,i ,1)*[ sysu(:,:,j,1); eye(mu)];
R(:,:,i,j) = gir(temp ,tol);

end
end

% scale Q(i) and R(i, j)

distinf = norm(R,inf);
for i=1:N

gammai = 1/min(distinf(i,[1:i-1 i+1:N]));
Q(:,:,i,1) = gammai*Q(:,:,i,1);
for j = 1:N

R(:,:,i,j) = gammai*R(:,:,i,j);
end

end
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Fig. 6.2 Step responses of R(i, j)(s) from u1 (blue) and u2 (red) for least-order syntheses

6.3 Solving the Approximate Model Detection Problem

Using Proposition 6.1, the solvability conditions of the approximate fault detection
problem (AMDP) formulated in Sect. 4.4.2 for the multiple model (4.1), can be also
expressed in terms of the multiple models (6.7), according to the following corollary
to Theorem 4.3:

Corollary 6.2 For the multiple model (4.1) the AMDP is solvable if and only if for
the multiple models (6.7) the following conditions hold for i = 1, . . . , N

[
G

(i, j)
u (λ) G

(i, j)
d (λ)

]
�= 0 ∀ j �= i . (6.14)

We have seen in the proof of Theorem 4.3, that a solution of the AMDP can be
determined by solving the related EMDP with w( j) ≡ 0 for j = 1, . . . , N , using, for
example, theProcedure EMD. However, potentially better solutions can be obtained
by trying to maximize the gap between the requirements for high sensitivity to non-
current models and strong attenuation of noise signals for the current model. An
optimization-based approach, similar to that used for the solution of the AFDP, can
be used to achieve this goal.

http://dx.doi.org/10.1007/978-3-319-51559-5_4
http://dx.doi.org/10.1007/978-3-319-51559-5_4
http://dx.doi.org/10.1007/978-3-319-51559-5_4
http://dx.doi.org/10.1007/978-3-319-51559-5_4
http://dx.doi.org/10.1007/978-3-319-51559-5_4
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Consider the parametrization (6.4) of the i-th filter as Q(i)(λ) = Q
(i)
1 (λ)Q(i)

1 (λ).
With the notation used in (6.8), we obtain from (4.5)

R(i, j)(λ) = Q
(i)
1 (λ)R

(i, j)
(λ) , (6.15)

where
R

(i, j)
(λ) :=

[
G

(i, j)
u (λ) G

(i, j)
d (λ) G

(i, j)
w (λ)

]
. (6.16)

The above choice of Q(i)(λ) ensures that

R
(i,i)

(λ) =
[
0 0 G

(i,i)
w (λ)

]
. (6.17)

Let γi > 0 be an admissible level for the effect of the noise signal w(i)(t) on the
residual r (i)(t) in the case when the i-th model is the current model. In the light of
(6.17), such a limitation can be imposed, for example, as a constraint of the form

‖R(i,i)
w (λ)‖2/∞ ≤ γi , (6.18)

where R(i, j)
w (λ) is defined in (4.5). Using (6.15)–(6.17), R(i,i)

w (λ) can expressed as

R(i,i)
w (λ) = Q

(i)
1 (λ)G

(i,i)
w (λ), and therefore, (6.18) becomes

∥∥Q
(i)
1 (λ)G

(i,i)
w (λ)

∥∥
2/∞ ≤ γi . (6.19)

For γi > 0 it is always possible, via a suitable scaling of the i-th filter, to use the
normalized value γi = 1.

In the absence of noise, the influence of the j-th model on the i-th residual can
be characterized by the associated gain

∥∥[
R(i, j)
u (λ) R(i, j)

d (λ)
]∥∥

2/∞. Therefore, as
a measure of the global sensitivity of the i-th residual to the rest of N − 1 models
different from the i-th model, the minimum values of these gains can be employed.
Using the parametrization (6.4) of the i-th filter, the following sensitivity measure
can be defined

ζ
(i)
1

(
Q

(i)
1 (λ)

) := min
1≤ j≤N , j �=i

∥∥Q
(i)
1 (λ)

[
G

(i, j)
u (λ) G

(i, j)
d (λ)

]∥∥
2/∞, (6.20)

where the dependence of ζ
(i)
1 of the choice of the filter Q

(i)
1 (λ) is explicitly empha-

sized. The requirement ζ (i)
1 > 0 for i = 1, . . . , N can be interpreted as an alternative

characterization of the model detectability of the N component models.
We can formulate several optimization problems (for different combinations of

employed norms) to address the computation of a satisfactory (or even optimal)
solution of the AMDP, having the goal of maximizing the model sensitivities (6.20)
under the noise attenuation constraints (6.19). In what follows, we only discuss the
H∞-norm based synthesis, for which we give a detailed computational procedure.

http://dx.doi.org/10.1007/978-3-319-51559-5_4
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The synthesis of the i-th filter, can be individually addressed, by solving for each i =
1, . . . , N the following constrained optimization problem: Given γi ≥ 0, determine

βi > 0 and a stable and proper filter Q
(i)
1 (λ) such that

βi = max
Q

(i)
1 (λ)

{
ζ

(i)
1

(
Q

(i)
1 (λ)

) ∣∣∣
∥∥Q

(i)
1 (λ)G

(i,i)
w (λ)

∥∥∞ ≤ γi

}
. (6.21)

The gap ηi := βi/γi can be interpreted as a measure of the quality of i-th filter in
differentiating between the i-th model and the rest of models in the presence of noise.
For γi = 0, the above formulation includes the exact solution (i.e., of the EMDP)
and the corresponding gap is infinite.

To solve the formulated N optimization problems (6.21), we devise a synthesis
procedure based on successive simplifications of the original problem by reducing
it to simpler problems with the help of the factorized representations of the filters
(6.4). The existence conditions of Corollary 6.2 can be immediately checked. In this
context, we introduce a useful concept to simplify the presentation. A filter Q(i)(λ) is
called admissible if the corresponding

[
R(i, j)
u (λ) R(i, j)

d (λ)
]
in (4.5) are all nonzero

for j �= i . Tests as those of Corollary 6.2 can be used to check admissibility. Assume
that the test indicates the solvability of the AMDP.

Let qi be the desired number of residual components for the i-th filter with output
r (i)(t). As in the case of an EMDP, if a solution of the AMDP exists, then, in general,
the use of a scalar output fault detection filter (thus, qi = 1) is always possible.
However, larger values of qi can be advantageous, because may provide more free
parameters which can be appropriately tuned. In general, the choice of qi must
satisfy qi ≤ p − r (i)

d , where r (i)
d := rankG(i)

d (λ). In the Procedure AMD to solve
the AMDP, given in what follows, the choice qi ≤ r (i)

w is enforced, in the case when

r (i)
w := rankG

(i,i)
w (λ) > 0. This choice is only for convenience and leads to a simpler

synthesis procedure.

As next step, the factor Q
(i)
1 (λ) is determined in the product form Q

(i)
1 (λ) =

Q
(i)
2 (λ)Q(i)

2 (λ), where the r (i)
w × (p − r (i)

d ) factor Q(i)
2 (λ) is determined such that

Q(i)
2 (λ)G

(i,i)
w (λ) has full row rank r (i)

w , the product Q(i)
2 (λ)Q(i)

1 (λ) is admissible, and,
has the least possible McMillan degree. If this latter requirement is not imposed,
then a simple choice is Q(i)

2 (λ) = H (i), where H (i) is an r (i)
w × (

p − r (i)
d

)
full row

rank constant matrix (e.g., chosen as a randomly generated matrix with orthonormal
rows). This corresponds to building Q(i)

2 (λ)Q(i)
1 (λ) as r (i)

w linear combinations of the
left nullspace basis vectors contained in the rows of Q(i)

1 (λ).
At this stage, the optimization problem to be solved falls in one of two categories.

The standard case is when Q(i)
2 (λ)G

(i,i)
w (λ) has no unstable zeros on the boundary

of the stability domain ∂Cs (i.e., the extended imaginary axis in the continuous-
time case, or the unit circle centered in the origin in the discrete-time case). The
nonstandard case corresponds to the presence of such zeros. This categorization is
revealed at the next step, which also involves the computation of the respective zeros.

http://dx.doi.org/10.1007/978-3-319-51559-5_4
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The quasi-co-outer–co-inner factorization of the full row rank Q(i)
2 (λ)G

(i,i)
w (λ) is

Q(i)
2 (λ)G

(i,i)
w (λ) = G(i)

wo(λ)G(i)
wi (λ), (6.22)

where the quasi-co-outer factor G(i)
wo(λ) is invertible, having only zeros in Cs , and

G(i)
wi (λ) is co-inner. The factor Q

(i)
2 (λ) is chosen in the product form Q

(i)
2 (λ) =

Q
(i)
3 (λ)Q(i)

3 (λ), with Q(i)
3 (λ) = (

G(i)
wo(λ)

)−1
and Q

(i)
3 (λ) to be determined. Using

(6.16), we define
R̃(i, j)(λ) := Q(i)

3 (λ)Q(i)
2 (λ)R

(i, j)
(λ) , (6.23)

with the component blocks defined as

[
R̃(i, j)
u (λ) | R̃(i, j)

d (λ) | R̃(i, j)
w (λ)

] := Q(i)
3 (λ)Q(i)

2 (λ)
[
R

(i, j)
u (λ) | R(i, j)

d (λ) | R(i, j)
w (λ)

]
.

This allows to express ζ
(i)
1 in (6.20) as ζ

(i)
1

(
Q

(i)
1 (λ)

) = ζ
(i)
3

(
Q

(i)
3 (λ)

)
, where

ζ
(i)
3

(
Q

(i)
3 (λ)

) := min
1≤ j≤N , j �=i

∥
∥Q

(i)
3 (λ)

[
R̃(i, j)
u (λ) | R̃(i, j)

d (λ)
]∥∥∞ . (6.24)

It follows, that Q
(i)
3 (λ) can be determined as the solution of

βi = max
Q

(i)
3 (λ)

{
ζ

(i)
3

(
Q

(i)
3 (λ)

) ∣∣∣
∥∥Q

(i)
3 (λ)

∥∥∞ ≤ γi

}
,

where we used that

∥∥Q
(i)
3 (λ)Q(i)

3 (λ)Q(i)
2 (λ)G

(i,i)
w (λ)

∥∥∞ = ∥∥Q
(i)
3 (λ)G(i,i)

wi (λ)
∥∥∞ = ∥∥Q

(i)
3 (λ)

∥∥∞ .

In the standard case, we can always ensure that the partial filter defined by the
product of stable factors Q(i)

3 (λ)Q(i)
2 (λ)Q(i)

1 (λ) is stable. However, R̃(i, j)(λ) is gen-
erally not stable, unless all component systems of the multiple model (4.1) are stable.

In such a case, Q
(i)
3 (λ) can be simply determined as Q

(i)
3 (λ) = Q(i)

4 , where Q(i)
4 is a

constant matrix representing the optimal solution of the simpler problem

βi = max
Q(i)

4

{
ζ

(i)
3

(
Q(i)

4

) ∣∣∣
∥∥Q(i)

4

∥∥∞ ≤ γi

}
,

such that the resulting filter Q(i)(λ) = Q(i)
4 Q(i)

3 (λ)Q(i)
2 (λ)Q(i)

1 (λ) is admissible. For
square Q(i)

4 , the choice Q(i)
4 = γi I is the simplest optimal solution. If R̃(i, j)(λ)

is unstable or improper, the solution approach for the nonstandard case, discussed
below, can be used.

http://dx.doi.org/10.1007/978-3-319-51559-5_4
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The following result, given without proof, is similar to Theorem 5.2. The proof is
similar to the proofs in the case of solving AFDPs in continuous- and discrete-time,
see [77] and [78], respectively.

Theorem 6.2 Using the parametrization (6.4) of the i-th filter and the notation in

(6.16), let Q(i)
2 (λ) be such that

∥∥Q(i)
2 (λ)

[
G

(i, j)
u (λ) G

(i, j)
d (λ)

]∥∥∞ > 0 for all j �= i ,

and, additionally, Q(i)
2 (λ)G

(i,i)
w (λ) has full row rank and has no zeros on the boundary

of the stability domain. Then, for γi > 0, the optimal solution of the optimization
problem (6.21) is

Q
(i)
1,opt (λ) := γi

(
G(i)

wo(λ)
)−1

Q(i)
2 (λ) ,

where G(i)
wo(λ) is the co-outer factor of the co-outer–co-inner factorization (6.22).

In the nonstandard case, both the partial filter Q̃(i)(λ) := Q(i)
3 (λ)Q(i)

2 (λ)Q(i)
1 (λ)

and the corresponding R̃(i, j)(λ) in (6.23) for j = 1, . . . , N , can result unstable or
improper due the presence of poles of Q(i)

3 (λ) = (
G(i)

wo(λ)
)−1

in ∂Cs (i.e., G(i)
wo(λ)

has zeros in ∂Cs). In this case, Q
(i)
3 (λ) is chosen in the form Q

(i)
3 (λ) = Q(i)

5 Q(i)
4 (λ),

where Q(i)
4 (λ) results form a LCF with stable and proper factors

[
Q̃(i)(λ) R̃(i,1)(λ) . . . R̃(i,N )(λ)

] = (
Q(i)

4 (λ)
)−1[

Q̂(i)(λ) R̂(i,1)(λ) . . . R̂(i,N )(λ)
]
,

while Q(i)
5 is a constant matrix which solves

βi = maxQ(i)
5

{
ζ

(i)
5

(
Q(i)

5

) ∣∣∣
∥∥Q(i)

5 Q(i)
4 (λ)

∥∥∞ ≤ γi

}
,

where

ζ
(i)
5

(
Q(i)

5

) := min
1≤ j≤N , j �=i

∥∥Q(i)
5 Q(i)

4 (λ)
[
R̃(i, j)
u (λ) | R̃(i, j)

d (λ)
]∥∥∞ .

The choice of a diagonal Q(i)
4 (λ), with all its diagonal elements having H∞-norms

equal to 1, significantly simplifies the solution of the above problem. In this case,
the choice Q(i)

5 = γi I is always possible.
In the standard case, the dynamical order of the resulting filter Q(i)(λ) is the

McMillan degree of Q(i)
3 (λ), provided Q(i)

4 (λ) is chosen a constant matrix. This order

results from the conditions that Q(i)
2 (λ)G

(i,i)
w (λ) has full row rank and Q(i)

2 (λ)Q(i)
1 (λ)

has least-order and is admissible. For each candidate Q(i)
2 (λ), the corresponding

optimal Q(i)
3 (λ) results automatically, but the different “optimal” filters for the same

level γi of noise attenuation performance can have significantly differing optimal
performance levels βi . Finding the best compromise between the achieved order and
the achieved performance (measured via the gap βi/γi ), should take into account
that larger orders and larger number of detector outputs qi may potentially lead to
better performance.

http://dx.doi.org/10.1007/978-3-319-51559-5_5
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The Procedure AMD, given in what follows, allows the synthesis of least-order
model detection filters, by solving the AMDP employing an H∞ optimization-
based approach. This procedure includes also the Procedure EMD, in the case
when, an exact solution exists. Similar synthesis procedures, relying on alternative
optimization-based formulations, can be devised by only adapting appropriately the
last computational step of Procedure AMD.

Procedure AMD: Approximate synthesis of model detection filters

Inputs : {G( j)
u (λ),G( j)

d (λ),G( j)
w (λ)}, for j = 1, . . . , N ; qmax

Outputs: Q(i)(λ), for i = 1, . . . , N ; R(i, j)(λ) for i, j = 1, . . . , N

For i = 1, ..., N

1) Compute a (p − r (i)
d ) × (p + mu) minimal proper stable basis Q(i)

1 (λ) for

the left nullspace of G(i)(λ) defined in (6.2), where r (i)
d := rankG(i)

d (λ);

set Q(i)(λ) = Q(i)
1 (λ), compute G

(i,i)
w (λ) = Q(i)

1 (λ)

[
G(i)

w (λ)

0

]
, and

R(i, j)(λ) = [ R(i, j)
u (λ) | R(i, j)

d (λ) | R(i, j)
w (λ) ]

= Q(i)
1 (λ)

[
G( j)

u (λ) G( j)
d (λ) G( j)

w (λ)

Imu 0 0

]
, j = 1, . . . , N

Exit if [ R(i, j)
u (λ) R(i, j)

d (λ) ] = 0 for any j ∈ {1, . . . , N }, j �= i
(no solution)

2) Compute r (i)
w = rankG

(i,i)
w (λ); if r (i)

w = 0, set q(i)
1 = min(p−r (i)

d , qmax );

else, set q(i)
1 = r (i)

w ; choose a q(i)
1 × (p−r (i)

d ) rational matrix Q(i)
2 (λ) such that

Q(i)
2 (λ)[ R(i, j)

u (λ) R(i, j)
d (λ) ] �= 0 for j = 1, . . . , N , j �= i , Q(i)

2 (λ)Q(i)(λ) has

least McMillan degree, and, if r (i)
w > 0, then rank Q(i)

2 (λ)G
(i,i)
w (λ)=r (i)

w ;

compute Q(i)(λ) ← Q(i)
2 (λ)Q(i)(λ) and R(i, j)(λ) ← Q(i)

2 (λ)R(i, j)(λ) for
j = 1, . . . , N , j �= i .

3) If r (i)
w > 0, compute the quasi-co-outer–co-inner factorization (6.22) with G(i)

wo(λ)

invertible and having only zeros in Cs , and G(i)
wi (λ) co-inner;

with Q(i)
3 (λ) = (

G(i)
wo(λ)

)−1 compute Q(i)(λ) ← Q(i)
3 (λ)Q(i)(λ) and

R(i, j)(λ) ← Q(i)
3 (λ)R(i, j)(λ) for j = 1, . . . , N , j �= i .

4) Choose a square rational matrix Q(i)
4 (λ) such that Q(i)

4 (λ)Q(i)(λ) has a

desired stable dynamics and Q(i)
4 (λ)R(i, j)(λ) for j = 1, . . . , N , j �= i are stable;

compute Q(i)(λ) ← Q(i)
4 (λ)Q(i)(λ) and R(i, j)(λ) ← Q(i)

4 (λ)R(i, j)(λ) for
j = 1, . . . , N , j �= i .

5) If r (i)
w > 0, choose Q(i)

5 ∈ Rmin(qmax ,r
(i)
w )×q(i)

1 such that ‖Q(i)
5 Q(i)

4 (λ)‖∞ = γi

and βi = min1≤ j≤N , j �=i
∥∥Q(i)

5 [ R(i, j)
u (λ) R(i, j)

d (λ) ]∥∥∞>0; compute

Q(i)(λ)←Q(i)
5 Q(i)(λ) and R(i, j)(λ) ← Q(i)

5 R(i, j)(λ) for j = 1, . . . , N ,
j �= i ; else, set βi = ∞.
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Remark 6.3 For the selection of the threshold τi for the component r (i)(t) of the
residual vector, a similar approach to that described in Remark 5.11 can be used. The
i-th residual, which results when the j-th model is the current one, is

r(i)(λ) = R(i, j)
u (λ)u(λ) + R(i, j)

d (λ)d( j)(λ) + R(i, j)
w (λ)w( j)(λ), (6.25)

where R(i, j)
u (λ), R(i, j)

d (λ), and R(i, j)
w (λ) are formed from the columns of R(i, j)(λ)

corresponding to the inputs u, d( j) and w( j), respectively. To determine the false
alarm bound for the i-th residual, we can use the residual which results for the i-th
filter if the i-th model is the current one. Taking into account that R(i,i)

u (λ) = 0 and
R(i,i)
d (λ) = 0, we obtain

r(i)(λ) = R(i,i)
w (λ)w(i)(λ) . (6.26)

If we assume, for example, a bounded energy noise input w(i)(t) such that ‖w(i)‖2 ≤
δ(i)
w , then the false alarm bound τ

(i)
f for the i-th residual vector component r (i)(t) can

be computed as

τ
(i)
f = sup

‖w(i)‖2≤δ
(i)
w

‖R(i,i)
w (λ)w(i)(λ)‖2 = ‖R(i,i)

w (λ)‖∞δ(i)
w . (6.27)

The setting of the thresholds to τi = τ
(i)
f for i = 1, . . . , N ensures no false alarms

in detecting the i-th model, provided sufficient control, disturbance or noise activity
is present such that

‖r ( j)‖2 > τ
( j)
f , ∀ j �= i .

Therefore, to enhance the decision-making process it must be additionally checked
that the control input u has a certain minimum energy, i.e., ‖u‖2 > δu , where δu is
the least size of the acceptable control inputs. A conservative (worst-case) estimate
of δu can be determined by enforcing

∥
∥R(i, j)

u (λ)u(λ)
∥
∥
2 ≥ ∥

∥R(i, j)
d (λ)d( j)(λ)

∥
∥
2 + ∥

∥R(i, j)
w (λ)w( j)(λ)

∥
∥
2

for
∥∥d( j)

∥∥
2 ≤ δ

( j)
d and

∥∥w( j)
∥∥
2 ≤ δ

( j)
w , ∀ i, j with j �= i . A possible choice is

δu = max
i, j;i �= j

∥
∥R(i, j)

d (λ)
∥
∥∞δ

( j)
d + ∥

∥R(i, j)
w (λ)

∥
∥∞δ

( j)
w

∥∥R(i, j)
u (λ)

∥∥∞
.

�

Example 6.2 This is basically the same multiple model as that used in Example 6.1, however with
only two measured outputs, namely, the sideslip angle and roll angle, and additional input noise
and output noise. The fault-free state-space model describes the continuous-time lateral dynamics
of a F-16 aircraft with the matrices

http://dx.doi.org/10.1007/978-3-319-51559-5_5
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A(1) =

⎡

⎢⎢
⎣

−0.4492 0.046 0.0053 −0.9926
0 0 1.0000 0.0067

−50.8436 0 −5.2184 0.7220
16.4148 0 0.0026 −0.6627

⎤

⎥⎥
⎦ , B(1)

u =

⎡

⎢⎢
⎣

0.0004 0.0011
0 0

−1.4161 0.2621
−0.0633 −0.1205

⎤

⎥⎥
⎦ ,

C (1) =
[
57.2958 0 0 0

0 57.2958 0 0

]
, D(1)

u = 02×2, D(1)
w = [ 02×4 I2 ] .

The component systemmatrices in (2.19) are defined for i = 1, 2, . . . , N as: E (i) = I4, A(i) = A(1),
C (i) = C (1), B(i)

w = B(1)
w , D(i)

w = D(1)
w , and B(i)

u = B(1)
u Γ (i), where Γ (i) = diag

(
1−ρ

(i)
1 , 1−ρ

(i)
2

)

and
(
ρ

(i)
1 , ρ

(i)
2

)
are the values of parameters (ρ1, ρ2) on the chosen grid points {0, 0.5, 1} for each

component ofρ := [ρ1, ρ2]T . The values
(
ρ

(1)
1 , ρ

(1)
2

) = (0, 0) correspond to the fault-free situation.

The TFMs G(i)
u (s) and G(i)

w (s) of the i-th system can be expressed as

G(i)
u (s) = G(1)

u (s)Γ (i), G(i)
w (s) = G(1)

w (s) , (6.28)

where

G(1)
u (s) = C (1)(s I − A(1))−1

B(1)
u , G(1)

w (s) = C (1)(s I − A(1))−1
B(1)
w + D(1)

w .

We applied the Procedure AMD to design N = 9 model detection filters of least dynamical
order with scalar outputs. At Step 1), nullspace bases of the form

Q(i)
1 (s) =

[
I2 −G(i)

u (s)
]

=
[
I2 −G(1)

u (s)Γ (i)
]

have been chosen as initial designs. The internal forms corresponding to these designs are

R(i, j)
u,1 (s) := Q(i)

1 (s)

[
G( j)

u (s)
I2

]

= G(1)
u (s)

(
Γ ( j) − Γ (i)), R(i, j)

w,1 (s) := Q(i)
1 (s)

[
G( j)

w (s)
0

]

= G(1)
w (s) .

At Step 2), the choice Q(i)
2 (s) = I ensures that Q(i)

2 (s)G(1)
w (s) has full row rank and no zeros.

Therefore, the co-outer–co-inner factorization (6.22) of Q(i)
2 (s)G(1)

w (s) computed at Step 3) allows
to obtain the optimal solution for γi = 1 (see Theorem 6.2) as

Q(i)(s) = (
G(i)

wo(s)
)−1

Q(i)
1 (s) .

The final internal forms of the filters, R(i, j)(s) = [
R(i, j)
u (s) R(i, j)

w (s)
]
, result for i, j = 1, . . . , N

with
R(i, j)
u (s) = (

G(i)
wo(s)

)−1
G(1)

u (s)
(
Γ ( j) − Γ (i)), R(i, j)

w (s) = G(i)
wi (s) ,

and, therefore, R(i, j)
u (s) preserves the monotonic mapping of distances between the i-th and j-th

models. The performance of eachfilter Q(i)(s) is given by the resulting gapηi = βi/γi (= βi ), where
βi = min j=1:N ,i �= j

∥∥R(i, j)
u (s)

∥∥∞. For the resulting design, we have ηi = 0.0525, for i = 1, . . . , N .
Each of the filters Q(i)(s) has McMillan degree 4, and therefore, the overall filter Q(s) has the

same complexity as a filter based on a bank of Kalman filters. A Kalman-filter-based approach is
well suited in the case when the input and measurement noise are Gaussian white noise processes.
Assuming the input noise has a covariance of �x = 0.012 I4 and the measurement noise has a
covariance of �y = 0.22 I2, then N Kalman-filters-based residual generators Q̃(i)(s), with state-
space realizations of the form

ẋ (i)
e (t) = (A(i) − K (i)C (i))x (i)

e (t) + K (i)y(t) + B(i)u(t) ,

r (i)(t) = C (i)x (i)
e (t) − y(t)

http://dx.doi.org/10.1007/978-3-319-51559-5_2
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Fig. 6.3 Time responses of evaluation signals for optimal syntheses

can be determined, where the optimal gains K (i) result by solving suitable algebraic Riccati equa-
tions. The achieved gaps for these filters are η̃i = 0.0152, and therefore, below the values achieved in
the optimalH∞ synthesis. An optimal synthesis with second-order scalar output residual generators
achieves a gap of 0.0323.

In Fig. 6.3 the time responses of the residual evaluation signals θi (t) are presented, where θi (t)
are computed using a Narendra-type evaluation filter (3.40) with input ‖r (i)(t)‖22 and parameters
α = 0.9, β = 0.1, γ = 10 (see Sect. 3.6). The control inputs have been chosen as follows: u1(t) is a
step of amplitude 0.3 added to a square wave of period 2π , and u2(t) is a step of amplitude 1.5 added
to a sinus function of unity amplitude and period π . The noise inputs are zero mean white noise of
amplitude 0.01 for the input noise and 0.03 for the measurement noise. Each column corresponds
to a specific model for which the time responses of the N residual evaluation signals are computed.
The achieved typical structure matrix for model detection (with zeros down the diagonal) can easily
be read out from this signal based assessment, even in the presence of noise.

The script Ex6_2 in Listing 6.2 solves the AMDP considered in this example. The script
Ex6_2KF (not listed) generates the analysis results for the Kalman filter-based synthesis and the
least-order optimal synthesis. ♦

Listing 6.2 Script Ex6 2 to solve the AMDP of Example 6.2 using Procedure AMD
% Uses the Control Toolbox and the Descriptor System Tools

% define lateral aircraft model without faults Gu
A = [ -.4492 0.046 .0053 -.9926;

0 0 1 0.0067;
-50.8436 0 -5.2184 .722;
16.4148 0 .0026 -.6627];

Bu = [0.0004 0.0011; 0 0; -1.4161 .2621; -0.0633 -0.1205];

http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_3
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[n,mu] = size(Bu); p = 2; mw = n+p; m = mu+mw;
Bw = eye(n,mw);
C = 180/pi*eye(p,n); Du = zeros(p,mu); Dw = [zeros(p,n) eye(p)];

% define the LOE faults Γ (i)

Gamma = 1 - [ 0 0 0 .5 .5 .5 1 1 1;
0 .5 1 0 .5 1 0 .5 1 ]';

N = size(Gamma ,1);

% define multiple physical fault model G(i)
u = GuΓ (i)and G(i)

w = Gw
sysuw = ss(zeros(p,m,N,1));
for i=1:N

sysuw(:,:,i,1) = ss(A,[Bu*diag(Gamma(i,:)) Bw],C,[Du Dw]);
end

% optimal H-inf design
% setup initial full order model detector Q(i)

1 = [ I − G(i)
u ]

Q1 = [eye(p) -sysuw (:,1:mu)];

% perform optimal synthesis (standard case)
R = ss(zeros(p,mu+mw,N,N)); Q = ss(zeros(p,p+mu ,N,1));
tol = 1.e-7;
for i = 1:N

rwi = gir(Q1(:,1:p,i,1)* sysuw(:,mu+1:m,i,1),tol);
[gi ,go] = goifac(rwi ,1.e-7);
Q(:,:,i,1) = gminreal(go\Q1(:,:,i,1),tol);
for j = 1:N

R(:,:,i,j) = gir(Q(:,:,i ,1)*[ sysuw(:,:,j,1); eye(mu,m)],tol);
end

end

% scale Q(i) and R(i, j); determine gap
distinf = norm(R(:,1:mu),inf);
beta = zeros(N,1);
for i=1:N

scale = min(distinf(i,[1:i-1 i+1:N]));
distinf(i,:) = distinf(i,:)/ scale;
Q(:,:,i,1) = Q(:,:,i,1)/ scale;
for j = 1:N

R(:,:,i,j) = R(:,:,i,j)/ scale;
end
beta(i) = scale;

end
gap = beta

6.4 Notes and References

Section6.1. The nullspace-based computational paradigm, which underlies the syn-
thesis procedures presented in this chapter, has been discussed for the first time in
the author’s papers [144, 151] in the context of solving fault detection and isolation
problems. The resulting factorized form of the component filters is similar to that for
fault detection filters (see (5.1)) and is the basis of numerically reliable integrated
computational algorithms. Specific numerical aspects of these algorithms are pre-
sented in Chap.7. The parametrization of component filters given in Theorem 6.1

http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_7
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is similar to that used for solving FDI synthesis problems stated in Theorem 5.1.
The nullspace-based characterization of model detectability in Proposition 6.1 can
be interpreted as an extension of a special version of Theorem 3.5 for a particular
structure matrix S.

Section6.2. The nullspace-based synthesismethod to solve the EMDP using least-
order component filters has been proposed in [142]. The multiple model used in
Example 6.1 has been used in [70] to address a fault tolerant control problem using
interactingmultiple-model Kalman filters. A solution with N = 25models, allowing
a more accurate identification of the degree of loss of efficiency, has been presented
in [142].

Section6.3. The solution method of the AMDP using an optimization-based
method, summarized in Procedure AMD, represents a straightforward adaptation
of the synthesis method for solving the AFDIP given in Procedure AFDI. The
Kalman filter-based multiple-model approaches have been investigated by Wilsky
in [161], where the Baram’s proximity measure, introduced in [4], has been used to
define the distance between two stochastic models. This measure is also the basis
for discriminating among stochastic models in recently proposed methods for robust
multiple-model adaptive control [41].

http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_3


Chapter 7
Computational Issues

This chapter discusses the main computational issues underlying the synthesis pro-
cedures of fault detection filters presented in Chap. 5. While all synthesis procedures
have been developed in terms of input–output system representations, the underlying
numerical algorithms exclusively rely on state-space representation-based compu-
tational methods. The preference for state-space models is justified by discussing
the suitability of different (input–output, polynomial, state-space) system represen-
tations for the development of reliable numerical algorithms. In this context, an
important aspect discussed is the improvement of the conditioning of the state-space
models using coordinate transformations.

All discussed computational procedures rely on the numerical algorithms
described in details in Chap.10, for which quality assessments regarding their gen-
erality, numerical reliability and computational efficiency have been already estab-
lished in the literature. Since the development of quality numerical algorithms was
seldom considered in the fault detection literature, we discuss in a separate section
the main attributes which characterize a satisfactory numerical algorithm.

The core of our presentation is the discussion in depth of several basic computa-
tional paradigms, which are employed at typical computational steps of the synthe-
sis procedures. These paradigms have been already mentioned in the introduction to
Part II and, for the sake of completeness, are recalled here once again: (a) the product
form representation of the synthesized filters, which leads to updating-based filter
synthesis techniques; (b) the use of the nullspace method as a first synthesis step to
reduce all synthesis problems to simpler forms, which allow to easily check solv-
ability conditions; (c) the use of minimum dynamic cover algorithms, which allows
to address least-order synthesis problems; and (d) the use of coprime factorization
techniques, which allows to conveniently enforce a desired filter dynamics. Without
entering into algorithmic details, our discussion of the computational issues of the
synthesis procedures primarily focuses on three aspects: (1) emphasizing the struc-
tural features present in the computed intermediary results (e.g., particular shapes
of the matrices of the resulting state-space representations), (2) exploiting the struc-
tural features achieved at the termination of a computational step at the subsequent

© Springer International Publishing AG 2017
A. Varga, Solving Fault Diagnosis Problems, Studies in Systems,
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steps, and (3) developing, if possible, explicit updating formulas for the state-space
representations of partial filter syntheses.

The synthesis procedures of model detection filters, presented in Chap. 6, employ
similar computational paradigms, and therefore, the involved computational issues
are practically the same.

7.1 Developing Satisfactory Numerical Algorithms

The development of computational methods for solving the synthesis problems of
fault detection filters was a constant activity which complemented most theoretical
works. Unfortunately, there are many signs for a general lack of numerical awareness
in the fault diagnosis community. For example, many of proposed methods employ
highly questionable numerical techniques, as polynomial manipulations, operations
involving matrix products and powers, or even the computation of highly sensitive
canonical forms. Most of proposed computational methods suffer of the lack of
guaranteed numerical reliability, and therefore, may produce inaccurate results even
for well-conditioned computational problems. Hence, such methods are generally
unsuited for solving large order problems.

Despite many algorithmic developments, it is rather surprising that, with a few
notable exceptions, the vast literature on fault detection until around 2000 contains
almost no results on the development of reliable numerical methods along the well-
established criteria for satisfactory algorithms in the field of numerical linear algebra.
Because of the lack of generality or the lack of numerical reliability, most of popular
synthesis techniques of fault detection filters (e.g., parity-space methods, geometric
methods, unknown-input-observer-based methods) cannot be considered as satisfac-
tory numerical approaches. To remedy this situation, a new generation of numerically
reliable computational algorithms has been developed by the author during the last
decade. The new algorithms are able to solve various synthesis problems of fault
detection filter in the most general setting, without employing any technical assump-
tions.

In what follows, we shortly review the general principles that lead to the develop-
ment of satisfactory numerical algorithms.The term satisfactory numerical algorithm
has been coined in the field of numerical linear algebra to designate an algorithm
which is suitable to be implemented as quality numerical software, as exists nowadays
for most standard linear algebra problems, such as the solution of linear algebraic
equations, computation of eigenvalues and eigenvectors, etc. The standard require-
ments for a satisfactory algorithm, in the order of their importance, are: generality,
reliability, stability, accuracy and efficiency. As it will be shown, according to these
requirements, very few of the existing synthesis algorithms of fault detection filters
are completely satisfactory.

Generality means that the synthesis method is applicable to a wide class of LTI
systems which fulfil the existence conditions of various synthesis problems. There-
fore, we only consider algorithms which are able to compute a solution, whenever a

http://dx.doi.org/10.1007/978-3-319-51559-5_6
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solution exists. To ensure the highest level of generality, all proposed algorithms in
this book are applicable to both standard and generalized systems, in both continuous-
and discrete-time settings. Although the requirement for generality appears as a legit-
imate desideratum for any synthesis algorithm, still many algorithms in the field of
fault detection donot fulfil this elementary requirement. For example, synthesismeth-
ods based on unknown-input observers, and also the equivalent geometric synthesis
methods, are not applicable for systems having unstable zeros in the disturbance
channel (i.e., when Gd(λ) is not minimum phase).

To define terms like reliability, stability and accuracy, we consider an algorithm as
an abstract function f , which computes y = f (u), where f acts on the data u ∈ U ⊂
Rm to produce the “true” result y ∈ Rp. Let u∗ be an approximation of u (i.e., assume
that u∗ is “near” to u). If f (u∗) is “near” to f (u), the computational problem f is
said to be well conditioned in u. If f (u∗) and f (u) may differ greatly, the problem
is said to be ill conditioned. The concept of “near” can be made precise by using
appropriate norms. The perturbation analysis is themainmathematical tool to analyze
the conditioning of problems and to assess the potential loss of accuracy (see below).
Although the problem conditioning is independent of any specific algorithm used to
solve the problem, but it is important that the employed algorithms do not increase the
problem sensitivity to small variations in the data. Consequently, any method based
on employing ill-conditioned coordinate transformations (e.g., to highly sensitive
“canonical” forms) can not be considered satisfactory.

The computation of y = f (u) is done using finite-precision arithmetic, typically
using double-precision floating-point computations involving 16 decimal accurate
digits. Since the performed elementary computations such as additions and multi-
plications are always rounded to 16 digits, so-called roundoff errors occur at each
performedfloating-point operation. The cumulated effect of all roundoff errorsmakes
that the finite-precision computational algorithm to evaluate f (u)will in general pro-
duce y = f ∗(u), where f ∗ denotes the function which corresponds to the floating-
point-based evaluation of f (sometimes denoted by f ∗(·) = f l( f (·))). The algo-
rithm f ∗ is said numerically (backward) stable if, for all u ∈ U , there exists u∗ ∈ U
“near” u such that f ∗(u) = f (u∗), that is, the computed solution is the exact solution
of a slightly perturbed problem.

The concept of accuracy is related to the resulting error y − y between the exact
and computed solutions. If a stable algorithm is used to solve a well-conditioned
problem, the computed solution f ∗(u) must be near to the exact solution f (u).
However, when a stable algorithm is used to solve an ill-conditioned problem, the
resulting error may be large, since there is no guarantee that f ∗(u) and f (u) are near
from one another. The accuracy of an algorithm also refers to the error introduced
by truncating infinite series or terminating iterations.

Proving the numerical stability of an algorithm allows to have guarantees that rea-
sonably accurate results can be expected for well-conditioned computational prob-
lems. For complex algorithms, the proof of numerical stability can be very tedious and
even not possible, although all involved computational steps can be provably numeri-
cally stable. This is a typical case for complex synthesis procedures as those presented
in this book, where the best we can achieve is to exclusively build on numerically
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stable computational methods. Fortunately, for many algorithms, it is relatively easy
to recognize that they are numerically unstable. For example, the parity-space-based
synthesis methods frequently perform multiplications with nonorthogonal matrices
and also raising ofmatrices to powers. Such computations are, in general, numerically
unstable and, therefore, these synthesis methods can not be considered satisfactory.
Interestingly, an algorithm can be unstable and still be reliable if the instability can
be detected. An algorithm is said to be reliable if it gives some warning whenever
it introduces excessive errors. A well-known example is the solution of systems of
algebraic equations using Gaussian elimination with either partial or complete piv-
oting, where the growth of matrix elements during the elimination can be easily
detected. In practice, however, such growth is rare and therefore this algorithm is the
method of choice when solving linear systems.

Efficiency is measured by the amount of computer time required to solve a par-
ticular problem. We are primarily concerned with the order of magnitude of the
involved computational effort, in terms of the number of performed floating-point
operations (flops), where 1 flop accounts for either one multiplication or one addi-
tion. For algorithms based on matrix computations, O(n3) flops is the usual order
of acceptable magnitude, where n is the largest dimension of the problem (e.g., the
order of state-space realization). For example, a method which would requireO(n4)
flops would be considered grossly inefficient, unless the asymptotic estimate of the
coefficient of n4 is particularly small.

When developing numerical algorithms for solving synthesis problems, we rely
on a vast collection of proven numerically stable or numerically reliable algorithms.
It is generally not possible to show that complete synthesis algorithms are numeri-
cally stable, but it is always possible to show that all synthesis steps in these algo-
rithms can be performed using numerically stable or numerically reliable methods.
To assess this property, we rely on well-established techniques which promote or
even guarantee numerical stability, as—for example, the use of orthogonal trans-
formations, while completely avoiding “dubious” computations, as—for example,
forming matrix powers or performing reductions to canonical forms.

7.2 Modelling Issues

In this section we discus some modelling related aspects which are important when
solving numerical problems. Two of the discussed aspects are of particular impor-
tance: the choice of the best-suited system representation for numerical computations
and the conditioning of the chosen representation and its improvement. For simplicity
we consider only continuous-time representations, but all discussed aspects equally
apply to discrete-time representations.
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7.2.1 System Representations

In this section we discuss the three main system representations of linear time-
invariant systems: the input–output representation based on transfer function matri-
ces, the polynomial-fraction models relying on polynomial matrices and the gener-
alized state-space representations based on descriptor system representations. The
basic data in the first two representations are polynomials with real coefficients,
while state-space models use real matrices. The main aim of our discussion is to
compare the three model classes with respect to their suitability for developing reli-
able numerical algorithms for the synthesis of fault detection filters. As it will be
apparent, the main concerns against using polynomial-based representations is the
potential ill-conditioning of polynomial roots with respect to small variations in the
coefficients. A second aspect is the lack of numerically reliable algorithms for poly-
nomial or rational matrix manipulations to cover all computational aspects of solving
the synthesis problems. In contrast, state-space representations are better suited for
handling relatively large order models (e.g., up to a few hundred state variables) and,
for addressing the solution of the synthesis problems in this book, a huge arsenal of
numerically reliable algorithms and associated software is available.

Transfer-function-based representation of systems are widely used in the control
and fault detection related literature to describe input–output representations of the
form

y(s) = G(s)u(s) , (7.1)

where y(s) and u(s) are the Laplace-transformed output y(t) ∈ Rp and input
u(t) ∈ Rm , respectively, and the transfer function matrix (TFM) G(s) is p × m
rational matrix. The (i, j)-th element of G(s) has the form gi j (s) = α(s)/β(s),
where α(s) and β(s) are polynomials with real coefficients. The complexity of TFM-
based models is characterized by the number of outputs p and number of inputs m,
and additionally by the McMillan degree n, which represents the number of poles
(finite and infinite) counting multiplicities. TFM-based models often result from
physical model building or system identification. Typical values of n are not larger
than 50–100. TFM-based models are well suited to describe elementary coupling
operations of systems, such as series, parallel or feedback couplings, to perform
frequency-domain analysis (Bode, Nichols, etc), to build discretized sampled-data
representation. Input–output representations based on TFMs can be easily converted
to alternative representations, as polynomial or state-spacemodels. Due to their com-
pactness, we used TFM-based models to illustrate some of the synthesis procedures
presented in this book. However, as we will see, these models are not the best choice
to perform numerical computations, especially for large values of n.

Polynomial models, in their simplest form, can be expressed as

M(s)y(s) = N (s)u(s) , (7.2)
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where M(s) and N (s) are p × p and p ×m polynomial matrices, respectively, with
M(s) nonsingular. The matrices of the two models (7.1) and (7.2) are related as

G(s) = M−1(s)N (s) ,

which is the reason why these models are also called polynomial-fraction models.
Polynomial models frequently arise from first principle modelling of subsystems,
as—for example, second order linear differential equations describing the dynamics
of mechanical systems.

The third representation we consider is the state-space model in the generalized
form

Eẋ(t) = Ax(t) + Bu(t) ,

y(t) = Cx(t) + Du(t) ,
(7.3)

where x(t) ∈ Rn is the system state variable, E , A, B, C and D are real matrices,
and the pencil A − λE is regular. The state-space model of the form (7.3), with E
possibly singular, is also called a descriptor system model, while for E = In , it is
called a standard state-space model. The corresponding TFM of the input–output
model (7.1) is given by

G(s) = C(sE − A)−1B + D .

Models in the form (7.3) often result from the linearization of nonlinear physical
plant models or from the spatial discretization of linear partial differential equation
models. In the latter case, n may range from a few hundreds to several ten-thousands.
The main appeal of state-space models is that they are generally better suited for
numerical computations than their rational function or polynomial-fraction-based
counterparts.

It is well known that polynomials with multiple roots are very sensitive to small
variations in the coefficients. For example, the polynomial s2 − ε (a perturbation
of size ε of s2) has roots at ±√

ε, which is much bigger than ε when ε is small.
However, this large sensitivity may be present even in the case of polynomials with
well-separated roots, if the order of polynomial is sufficiently large. This will be
illustrated by the following example.

Example 7.1 The simple transfer function

g(s) = 1

(s + 1)(s + 2) · · · (s + 25)
= 1

s25 + 325s24 + · · · + 25!
has the exact poles {−1,−2, . . . ,−25}. The denominator is a modification of the famousWilkinson
polynomial (originally of order 20 and with positive roots), which has been used in many works to
illustrate the pitfalls of algorithms for computing eigenvalues of a matrix by computing the roots
of its characteristic polynomial. If we explicitly construct the transfer function g(s) and compute
its poles using the MATLAB commands



7.2 Modelling Issues 153

Fig. 7.1 Example for high
sensitivity of polynomial
poles
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g = tf(1,poly(-25:1:-1));
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inaccurate poles with significant imaginary parts result, as can be observed from Fig.7.1. For
example, instead the poles at −19 and −20, two complex conjugate poles at −19.8511 ± 3.2657i
result.1

The main reason for these inaccurately computed poles is the high sensitivity of the polyno-
mial roots to small variations in the coefficients. In this case, inherent truncations take place in
representing the large integer coefficients due to the finite representation with 16 accurate digits
of double-precision floating-point numbers. For example, the constant term in the denominator
25! ≈ 1.55 ·1025 has 25 decimal digits, thus can not be exactly represented with 16 digits precision.
While the relative error in representing 25! is of the order of the machine-precision εM ≈ 10−16,
the absolute error is of the order 109! ♦

The extreme sensitivity of roots of polynomials with respect to small variations
in the coefficients illustrated in Example7.1 is well known in the literature and is
inherent for polynomial-based representations above a certain degree (say n > 10).
Therefore, all algorithms which involve rounding errors are doomed to fail by giving
results of extremely poor accuracy when dealing with an ill-conditioned polynomial.
This potential loss of accuracy is one of the main reasons why polynomial-based
system representations with rational or polynomial matrices are generally not suited
for numerical computations.

It was frequently argued that polynomial-description-based algorithms are more
efficient in terms of the involved computational effort due to an intrinsically more
compact system representation. For a single-input single-output system of degree n,
there are 2n coefficients to represent the polynomial model data, while for a state-
spacemodel there are n2+2nmodel parameters. This corresponds roughly to n

2 times

1Computed with Matlab R2015b Version, under 64-Bit Microsoft Windows 10.
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less parameters in the polynomial representation, and this advantage also holds for
multi-input multi-output models (albeit is less significant for larger number of inputs
and outputs). At the algorithmic level, typically the polynomial algorithms have a
complexity of n time smaller than equivalent state-space-based algorithms. In spite
of this advantage in efficiency, it is frequently the case that algorithms for polynomial
models suffer from numerical instabilities, whereas there exist satisfactory numerical
algorithms for most problems formulated in state space. The main cause usually lies
in the classes of allowed transformation performed in these algorithms. While for
state-space representations usually well-conditioned orthogonal transformations can
be routinely used for most of required problem transformations, in the case of poly-
nomial models unimodular transformations have to be employed. The usual pivot
selection step merely involves checking for nonzero elements, and therefore usually
there is no way to enforce the numerical stability of computations by selecting the
“largest” pivots, as done in reducing real matrices using stabilized transformations.
Therefore, the second major reason for the unsuitability of polynomial-based mod-
els is the lack of satisfactory numerical algorithms for most of basic computations
required for the solution of the main computational problems.

7.2.2 Model Conditioning

Occasionally numerical algorithms may fail, just because of poor problem formula-
tions involving ill-conditioned models. This is why, we shortly discuss in this section
the main aspects related to conditioning of state-space models. To simplify the dis-
cussions, we confine to LTI continuous-time standard state-space models of the form

ẋ(t) = Ax(t) + Bu(t) ,

y(t) = Cx(t) + Du(t) ,
(7.4)

which are specified by the quadruple of matrices (A, B,C, D). Two sources of
possible ill-conditioning are discussed more in details: poorly scaled models and
poorly balanced models. To improve the model conditioning in each case, suitable
coordinate transformations can be used.

Poorly scaled models usually exhibit a large spreading of numerical values in
the elements of the system matrices. If the system matrices have simultaneously
elements which some are very small and other are very large, then numerical meth-
ods can simply fail by considering small, but physically nonzero elements, as zeros.
Other times, small elementsmerely represent roundoff numerical errors and their han-
dling as zeros is perfectly legitimate. In the first case, rescaling the system matrices
can drastically improve the overall model conditioning. For example, by employing
diagonal scaling matrices Tx , Ty and Tu , it is possible to replace in many problem
formulations, the initial (ill-conditioned) model (A, B,C, D) by

( Ã, B̃, C̃, D̃) := (T−1
x ATx , T

−1
x BTu, TyCTx , TyDTu) .
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The general aims for choosing the scaling matrices are to equilibrate the system
matrices by compressing the numerical range of their elements and to normalize the
dynamic ranges of input and output variables. It is important also to introduce no
roundoff errors if possible, thus the diagonal elements of scaling matrices can be
enforced to be powers of 2, the basis of numerical representation of floating-point
numbers. Since automatic scaling is in some software a default option, it is impor-
tant to mention some caveats regarding possible negative effects of scaling, such as:
increasing the sensitivity of (some) system poles and zeros, worsening the controlla-
bility or observability degrees of the system, or amplifying of roundoff errors in the
data. This latter aspect is particularly important when employing structure exploiting
and structure preserving algorithms, where roundoff errors may blur the fixed zero
entries in the system matrices. In such cases, it is advisable to set explicitly to zero
small elements resulting due to roundoff errors (if these can be easily recognized).

A second source of ill-conditioning is present in so-called unbalanced models,
where the degree of controllability and degree of observability are significantly dif-
fering.Measures of the degrees of controllability and observability for a stable system
can be defined in terms of the controllability gramian P and observability gramian
R, respectively. The two symmetric and positive semi-definite gramians satisfy the
respective Lyapunov equations

AP + PAT + BBT = 0, AT R + RA + CTC = 0 .

The controllability and observability properties of the system (7.4) can be (equiva-
lently) characterized by the positive definiteness of the controllability and observ-
ability gramians, P > 0 and R > 0, respectively. The degree of controllability can
be defined as the least eigenvalue of P , while the degree of observability as the least
eigenvalue of R. If any of these eigenvalues is zero, the system is not minimal (i.e.,
uncontrollable, or unobservable, or both). For a balanced system, the two positive
definite gramians are equal and diagonal, P = R = Σ , with the diagonal elements
of Σ ordered with decreasing magnitudes. While the eigenvalues of Σ (also called
Hankel singular values) are invariant to a system coordinate transformation of the
form x = T x̃ , with T nonsingular, the two gramians are generally not. To balance
a system, a coordinate transformation x = T x̃ is performed with a nonsingular
transformation matrix T to obtain the transformed system

( Ã, B̃, C̃, D̃) := (T−1AT, T−1B,CT, D) . (7.5)

The system transformation (7.5) is called a similarity transformation and the two sys-
tems (A, B,C, D) and ( Ã, B̃, C̃, D̃) have the same TFM G(s). From the singular
value decomposition RP = UΣ2V T , where U and V are orthogonal matrices and
Σ diagonal, we can determine the balancing transformation matrix as T = PVΣ−1

(also T−1 = Σ−1UT R). The main aim of system balancing is to determine state-
space representations with minimum sensitivity to small variations in the matrix
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elements. An important application area of system balancing is in model reduc-
tion. Unfortunately, balancing often relies on ill-conditioned transformations if the
underlying system is nearly non-minimal (the least eigenvalue of Σ is very small)
or nearly unstable. For non-minimal stable systems in descriptor form, a general
approach to compute balanced minimal realizations is described in Sect. 10.4.4 (see
also Procedure GBALMR).

We discuss shortly the effects of a similarity transformation with a transformation
matrix T on small errors in the system matrices. Assume A is perturbed with a small
error δA. The effect of this perturbation via the similarity transformation with T can
be expressed as

Ã + δ Ã := T−1(A + δA)T ,

where
δ Ã = T−1δAT .

It follows that ∥∥δ Ã
∥∥ ≤ κ(T )‖δA‖ ,

where
κ(T ) := ‖T−1‖‖T ‖ ≥ 1 .

is the condition number of T with respect to matrix inversion. The condition num-
ber κ(T ) measures the worst possible amplification of perturbations in A, which
can be induced in the transformed Ã by the transformation matrix T . Evidently, a
large value of κ(T ) indicates a large potential loss of accuracy and, therefore, T is
called an ill-conditioned transformation. Interestingly, model conditioning transfor-
mations are frequently ill conditioned, but the resulting scaled or balanced models
have usually better numerical properties for subsequent computations. If T is an
orthogonal transformation matrix satisfying T T T = I , then κ(T ) = 1 (the least
achievable value), and therefore T is a perfectly conditioned transformation matrix
which ensures that ‖δ Ã‖ = ‖δA‖. This desirable property justifies the use of orthog-
onal similarity transformations as the principal class of transformations, for which
the numerical stability can be often proved.

In some works on fault diagnosis, transformations to so-called canonical forms
are used in the proposed synthesis algorithms. In general, canonical forms as the
Jordan form of the state matrix A, or controllability (observability) related forms of
the matrix pair (A, B) ((A,C)), or the Kronecker-form of a matrix pencil A−λE are
notorious examples, whose computationmay involve ill-conditioned transformations
leading to extremely sensitive condensed forms. The dangers of such an approach are
illustrated in the following simple example to compute the controllability companion
form of a state-space model.

http://dx.doi.org/10.1007/978-3-319-51559-5_10
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Example 7.2 Consider a state-space realization of order n = N of g(s) in Example7.1 with

A =

⎡

⎢
⎢
⎢⎢
⎢
⎣

−1 1 0 · · · 0 0
0 −2 1 · · · 0 0
.
.
.

.

.

.
.
.
.

. . .
. . .

.

.

.

0 0 0 · · · −N + 1 1
0 0 0 · · · 0 −N

⎤

⎥
⎥
⎥⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢⎢
⎢
⎣

0
0
.
.
.

0
1

⎤

⎥
⎥
⎥⎥
⎥
⎦

,

C = [
1 0 0 · · · 0 0

]
, D = [

0
]

.

The transformation matrix to the controllable companion form of the pair (A, B) can be explicitly
built as

T = [
B AB · · · AN−1B

]
.

If P is the N × N permutation matrix

P =

⎡

⎢⎢
⎢⎢
⎢
⎣

0 0 · · · 0 1
0 0 · · · 1 0
.
.
.

.

.

.
.
.
.

.

.

.

0 1 · · · 0 0
1 0 · · · 0 0

⎤

⎥⎥
⎥⎥
⎥
⎦

,

then it is easy to see that PT is an upper triangular matrix with unit elements on the diagonal. Thus,
T−1 can be easily computed as T−1 = (PT )−1P . If we denote

(s + 1)(s + 2) · · · (s + N ) = sN + β1s
N−1 + · · · + βN−1s + βN ,

then the transformed state-space matrices are is

Ã = T−1AT =

⎡

⎢⎢
⎢⎢
⎢
⎣

0 0 · · · 0 −βN
1 0 · · · 0 −βN−1
0 1 · · · 0 −βN−2
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 · · · 1 −β1

⎤

⎥⎥
⎥⎥
⎥
⎦

, B̃ = T−1B =

⎡

⎢
⎢⎢
⎣

1
0
.
.
.

0

⎤

⎥
⎥⎥
⎦

,

C̃ = CT = [
0 0 · · · 0 1

]
.

Up to N = 13, the computed Ã is exact, although for N = 13 the condition number κ(T ) is
of order 1023. However, starting with N = 14, the difference between the above theoretical form
and the numerically computed form is nonzero. For N = 25, this difference is extremely large (of
order 1026), which is partly the consequence of the large condition number κ(T ) of order 1059. ♦

Finally, we discuss the conversion from a descriptor system representation of the
form

Eẋ(t) = Ax(t) + Bu(t) ,

y(t) = Cx(t) + Du(t) ,
(7.6)

with x(t) ∈ Rn , to a standard state-space system of the form

˙̃x(t) = Ãx̃(t) + B̃u(t) ,

y(t) = C̃ x̃(t) + D̃u(t) ,
(7.7)
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with x̃(t) ∈ Rñ and ñ ≤ n. This conversion is necessary, for example, after the
final synthesis step, to obtain the final fault detection filter in a standard state-space
form which is better suited for real-time processing. However, we cautiously recom-
mend to avoid such conversions at early steps of the synthesis procedures, unless we
can guarantee that no significant loss of accuracy takes place due to ill-conditioned
transformations.

The conversion to a standard state-space form can be performed only if the asso-
ciated TFM G(s) = C(sE − A)−1B + D is proper. For simplicity, we consider only
the case when the descriptor realization is irreducible. Therefore, we assume that
the regular pencil A − sE has r finite eigenvalues and n − r simple eigenvalues at
infinity, where r is the rank of E . When E is nonsingular, we can simply choose
x̃(t) = x(t) and

Ã = E−1A, B̃ = E−1B, C̃ = C, D̃ = D,

or alternatively choose x̃(t) = Ex(t) and

Ã = AE−1, B̃ = B, C̃ = CE−1, D̃ = D .

In these conversion formulas, the inverse of E is explicitly involved and, therefore,
severe loss of accuracy can occur if the condition number κ(E) is large. A somewhat
better choice is to use the singular value decomposition (SVD) E = UΣV T , with
U and V orthogonal matrices and Σ a diagonal matrix whose diagonal elements are
the decreasingly ordered singular values σ1 ≥ σ2 ≥ · · · ≥ σn > 0. We can choose
x̃(t) = Σ

1
2 V T x(t) and

Ã = Σ− 1
2UT AVΣ− 1

2 , B̃ = Σ− 1
2UT B, C̃ = CVΣ− 1

2 , D̃ = D .

From the SVD of E , we can easily compute the condition number κ(E) = σ1/σn ,
and thus have a rough estimation of potential loss of accuracy induced using the
above transformation.

More involved transformation is necessary when E is singular, with rank E =
r < n. In this case, we employ the singular value decomposition of E in the form

E = UΣV T := [
U1 U2

] [
Σ̃ 0
0 0

] [
V1 V2

]T
,

where Σ̃ is a nonsingular diagonal matrix of order ñ := r with the nonzero singular
values of E on the diagonal, and U and V are compatibly partitioned orthogonal
matrices. If we apply a system similarity transformation with the transformation
matrices

Ũ = diag
(
Σ̃− 1

2 , In−r
)
UT , Ṽ = V diag

(
Σ̃− 1

2 , In−r
)
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we obtain

Ũ (A − sE)Ṽ =
[
A11 − s Ir A12

A21 A22

]
, Ũ B =

[
B1

B2

]
, CṼ = [

C1 C2
]

,

where A22 is nonsingular, due to the assumption of only simple infinite eigenvalues
of the regular pencil A − sE . The above transformed matrices correspond to the
coordinate transformation x = Ṽ−1x(t) and lead to the partitioned system represen-
tation

ẋ1(t) = A11x1(t) + A12x2(t) + B1u(t) ,

0 = A21x1(t) + A22x2(t) + B2u(t) ,

y(t) = C1x1(t) + C2x2(t) + Du(t) ,

where x(t) =
[
x1(t)
x2(t)

]
is partitioned such that x1(t) ∈ Rr and x2(t) ∈ Rn−r . We

can solve the second (algebraic) equation for x2(t) to obtain

x2(t) = −A−1
22 A21x1(t) − A−1

22 B2u(t)

and arrive to a standard system representation with x̃(t) = x1(t) and the correspond-
ing matrices

Ã = A11 − A12A
−1
22 A21, B̃ = B1 − A12A

−1
22 B2,

C̃ = C1 − C2A
−1
22 A21, D̃ = D − C2A

−1
22 B2.

In this case, if any of the condition numbers κ(Σ̃) or κ(A22) is large, potential
accuracy losses can be induced by the conversion to a standard state-space form.

This discussion emphasizes that the synthesis algorithms must be able to cover
both standard and descriptor system representations, because any conversion to a
standard state-space form may induce severe accuracy losses in the whole chain of
subsequent computations due to the use of possibly ill-conditioned transformations.
This is one of the reasons why an extensive research effort took place over several
decades to develop algorithms for descriptor system representations. These algo-
rithms work directly on the original descriptor representation, without the need for
conversion to a standard system form (even if this is feasible). However, if all involved
transformations are well conditioned, such a conversion is numerically harmless, and
therefore can be safely performed. Such a conversion can occasionally reduce the
computational effort, because the algorithms for descriptor systems are usually more
involved than their counterparts for standard systems.

7.3 Basic Procedural Framework

In the rest of this chapter we discuss the computational issues related to the syn-
thesis procedures of fault detection filters presented in Chap. 5. These discussions
also cover the main numerical issues associated with the synthesis procedures of

http://dx.doi.org/10.1007/978-3-319-51559-5_5
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model detection filters presented in Chap. 6. It was shown in the previous section
that polynomial-based system representations are generally not suited for numerical
computations due to potential high sensitivity of such models, which precludes any
guarantee for numerical reliability. Therefore, for the development of numerically
reliable computational synthesis algorithms which are suitable for robust software
implementations, we focus exclusively on algorithms based on the manipulation of
state-space representations. For all computational subproblems formulated in terms
of TFMs in the synthesis procedures presented in Chap.5, we indicate the state-space
based computational methods which are best suited for solving these problems. The
choice of suitable algorithms is guided by the requirements formulated in Sect. 7.1
for satisfactory numerical algorithms.

The synthesis procedures of the FDI filters are formulated in Chap. 5 in terms of
three mathematical objects, which are recalled below:

• the system model with additive faults has the input–output representation

y(λ) = Gu(λ)u(λ) + Gd(λ)d(λ) + Gw(λ)w(λ) + G f (λ)f(λ) (7.8)

and represents the main input data object to all synthesis procedures;
• the fault detection filter in the input–output implementation form

r(λ) = Q(λ)

[
y(λ)

u(λ)

]
= Qy(λ)y(λ) + Qu(λ)u(λ) (7.9)

is the main output object of all synthesis procedures;
• the fault detection filter in the input–output internal form

r(λ) = Ru(λ)u(λ) + Rd(λ)d(λ) + Rw(λ)w(λ) + R f (λ)f(λ) (7.10)

is the second main output object of most of synthesis procedures.

Recall that the implementation and internal forms are related as follows

[
Ru(λ) Rd(λ) Rw(λ) R f (λ)

] := Q(λ)

[
Gu(λ) Gd(λ) Gw(λ) G f (λ)

Imu 0 0 0

]
. (7.11)

In all synthesis procedures the nullspace method is used as the first synthesis step to
enforce Ru(λ) = 0 and Rd(λ) = 0. Also, for all exact synthesis methods w ≡ 0 is
assumed, and therefore no Rw(λ) term exists.

For a typical synthesis procedure with K synthesis steps, we can express the
resulting filter Q(λ) in a factored form

Q(λ) = QK (λ) . . . Q2(λ)Q1(λ) , (7.12)

where Qi (λ), i = 1, . . . , K are the factors computed at the i-th synthesis step. The
computational steps usually involve the updating of both the implementation form

http://dx.doi.org/10.1007/978-3-319-51559-5_6
http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_5
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and the nonzero parts of the internal forms of the fault detection filter. All synthesis
procedures presented in Chap.5 have the following simple logical structure:

1) Compute Q1(λ), a left nullspace basis of

[
Gu(λ)Gd (λ)

Imu 0

]
;

set Q(λ) = Q1(λ) and R(λ) = Q1(λ)

[
Gw(λ) G f (λ)

0 0

]
;

Exit if solvability conditions are not fulfilled.

For i = 2, . . . , K
i) Choose Qi (λ); update

[
Q(λ) R(λ)

] ← Qi (λ)
[
Q(λ) R(λ)

]

The use of the nullspacemethod as the first synthesis is instrumental in simplifying
the formulations of all synthesis problems. This approach emerged in the last decade
as an important computational paradigm for all synthesis algorithms presented in this
book. The main appeals of the nullspace-based fault detection filter synthesis are:
generality, being applicable to both standard and singular (or non-proper) systems;
numerical reliability, by relying on numerically sound computational techniques;
and flexibility, by leading to simplified problem formulations which allow to easily
check solvability conditions and address least-order synthesis problems.

The choice of each Qi (λ) at subsequent steps is based on the current partial syn-
thesis Q(λ) and R(λ) computed at the previous iteration step. In this chapter, we
discuss in detail both the determination of Qi (λ) at each computational step as well
as the derivation of suitable updating formulas for Q(λ) and R(λ), which exploit all
possible pole-zero cancellations. In this context, a second paradigm emerged when
developing generally applicable, numerically reliable and computationally efficient
synthesis methods. The so-called integrated synthesis algorithms rely on the suc-
cessive updating of partial syntheses, where each step addresses specific synthesis
requirements. Since each partial synthesis may represent a valid fault detection filter,
the updating based approach has a built-in flexibility in devising several particular
synthesis approaches. However, the main strength of the integrated algorithms lies in
their ability to exploit at each updating step all available structural information at the
previous step,which globally leads to very efficient structure exploiting computations
to perform the necessary updating.

To develop numerically reliable computational procedures, we exclusively rely
on state-space representations of the different synthesis objects. The state-space
representation of the system model with faults (see also (2.2)) is

[
Gu(λ) Gd(λ) Gw(λ) G f (λ)

] :=
[
A − λE Bu Bd Bw B f

C Du Dd Dw D f

]
, (7.13)

where we can generally assume that the state-space realization (7.13) is minimal. A
particular feature of the realization (7.13) is that the individual realizations ofGu(λ),
Gd(λ), Gw(λ) and G f (λ) share the common observable pair (A−λE,C). Although

http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_2
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for most practical problems the original system model corresponds to a causal phys-
ical system for which we can always enforce E = I , we prefer to use the generalized
system representation in (7.13) in conjunction with computational techniques for
descriptor systems to prevent possible loss of accuracy due to ill-conditioned inver-
sion of E and, simultaneously, to preserve the most general problem formulation for
arbitrary E . As it will be apparent in the next section, the computational aspects are
practically the same for systems in both standard and descriptor forms.

For the intermediary (or even final) forms of the fault detection filter Q(λ) (imple-
mentation form) and R(λ) (internal form) it is possible to enforce at the end of each
computational step state-space representations of the form

[
Q(λ) R(λ)

] =
[
AQ − λEQ BQ BR

CQ DQ DR

]
,

where the descriptor pair (AQ−λEQ,CQ) is observable. This is done either explicitly,
via explicit updating formulas or, implicitly, by using minimal realization techniques
to enforce all possible pole-zero cancellations.

In the following sections we describe the computational aspects of the main steps
of the synthesis procedures presented in Chaps. 5 and 6. The emphasis of the presen-
tation is to give an overview of the basic computations performed at each synthesis
step, but without entering into algorithmic details. However, for the interested read-
ers these details are partly explained in the Chap.10 and, further, in the references
provided in the Sects. 7.11 and 10.6. Some special algorithms for descriptor systems,
which are instrumental for solving the computational problems for the synthesis of
fault detection filters are described in Sect. 10.4. Available software implementations
are mentioned in Sect. 10.5.

7.4 Nullspace-Based Reduction

In this section we discuss the numerical computations performed at Step 1) of all
synthesis procedures presented in this book. In particular, this is the main step of
Procedure EFD, where the resulting (stable) filter represents a solution of the EFDP,
provided the fault detectability conditions are fulfilled. This step typically involves
two main computations. The first one is the computation of Nl(λ), a proper rational
left nullspace basis of the (p + mu) × (mu + md) TFM

G(λ) =
[
Gu(λ) Gd(λ)

Imu 0

]
. (7.14)

This serves to set the first factor of Q(λ) to Q1(λ) := Nl(λ) and to initialize the filter
synthesis by setting the TFM of the implementation form of the filter to Q(λ) =
Q1(λ). The second computation is the determination of the nonzero TFMs of the
reduced proper system (5.11)

http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_6
http://dx.doi.org/10.1007/978-3-319-51559-5_10
http://dx.doi.org/10.1007/978-3-319-51559-5_10
http://dx.doi.org/10.1007/978-3-319-51559-5_10
http://dx.doi.org/10.1007/978-3-319-51559-5_10
http://dx.doi.org/10.1007/978-3-319-51559-5_5
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[
Gw(λ) G f (λ)

] := Nl(λ)F(λ) , (7.15)

where

F(λ) :=
[
Gw(λ) G f (λ)

0 0

]
. (7.16)

This serves to initialize the TFM of the internal form as R(λ) = [
Gw(λ) G f (λ)

]
.

For both computations we rely on the numerically stable algorithm described in
Sect. 10.3.2 to compute proper nullspace basis. Additionally, we discuss the check-
ing of solvability conditions for several problems using the resulting state-space
representation of the TFM G f (λ).

In what follows, we assume that p > rd := rank Gd(λ), which guarantees the
existence of a nonempty left nullspace basis with p−rd rational basis vectors. Using
the realization (7.13), state-space realizations of G(λ) and F(λ) are

G(λ) =
⎡

⎣
A − λE Bu Bd

C Du Dd

0 Imu 0

⎤

⎦ , F(λ) =
⎡

⎣
A − λE Bw B f

C Dw D f

0 0 0

⎤

⎦ . (7.17)

The computational method of left nullspace bases exploits the simple fact that Nl(λ)

is a left nullspace basis of G(λ) if and only if, for a suitable Ml(λ),

Yl(λ) := [ Ml(λ) Nl(λ) ] (7.18)

is a left nullspace basis of the associated system matrix

S(λ) =
⎡

⎣
A − λE Bu Bd

C Du Dd

0 Imu 0

⎤

⎦ . (7.19)

Thus, to compute a proper rational left nullspace basis Nl(λ) of G(λ) we can deter-
mine first a proper rational left nullspace basis Yl(λ) of S(λ) and then, Nl(λ) simply
results as

Nl(λ) = Yl(λ)

[
0

Ip+mu

]
. (7.20)

Since Yl(λ), of the form (7.18), is a left nullspace basis of S(λ) in (7.19), it is easy
to show that

Yl(λ)

⎡

⎣
A − λE Bw B f

C Dw D f

0 0 0

⎤

⎦ = [
0 Gw(λ) G f (λ)

]
,

http://dx.doi.org/10.1007/978-3-319-51559-5_10
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and, therefore, Nl(λ)F(λ) in (7.15) results as

[
Gw(λ) G f (λ)

] = Yl(λ)

⎡

⎣
Bw B f

Dw D f

0 0

⎤

⎦ . (7.21)

We recall shortly the computation of Yl(λ), using the approach presented in
Sect. 10.3.2. Let U and V be orthogonal matrices such that the transformed pen-
cil S̃(λ) := US(λ)V is in the Kronecker-like staircase form (see Sect. 10.1.6)

S̃(λ) =
⎡

⎣
Ar − λEr Ar,l − λEr,l

0 Al − λEl

0 Cl

⎤

⎦ , (7.22)

where the descriptor pair (Al − λEl,Cl) is observable, El is non-singular, and
Ar − λEr has full row rank excepting possibly a finite set of values of λ (i.e., the
invariant zeros of S(λ)). The proper rational left nullspace basis Yl(λ) of S(λ) can
be determined as

Yl(λ) = [
0 Cl(λEl − Al)

−1 Ip−rd

]
U . (7.23)

We compute now

U

⎡

⎣
0 0 Bw B f

Ip 0 Dw D f

0 Imu 0 0

⎤

⎦ =

⎡

⎢⎢
⎣

∗ ∗ ∗
Bl Bw B f

Dl Dw D f

⎤

⎥⎥
⎦, (7.24)

where the row partitioning of the right hand side corresponds to the row partitioning
of S̃(λ) in (7.22). With Yl(λ) in the form (7.23) and using (7.24), we obtain from
(7.20) and (7.21)

[ Nl(λ) Gw(λ) G f (λ) ] =
[

Al − λEl Bl Bw B f

Cl Dl Dw D f

]

. (7.25)

The descriptor representation (7.25) has been obtained by performing exclusively
orthogonal transformations on the system matrices. We can prove that all computed
matrices are exact for a slightly perturbed system matrix pencil. It follows that the
approach to compute the matrices of the realization (7.25) is numerically backward
stable.

According to Proposition10.2, the realization (Al − λEl, Bl ,Cl , Dl) of Nl(λ)

resulted in (7.25) represents a minimal proper rational left nullspace basis provided
the realization (7.14) is controllable. In this case, according to Proposition10.3, the
realization of Nl(λ) is also maximally controllable. Since, in general, Nl(λ) has no
infinite zeros, Dl has full row rank. However, in the case, when the realization (7.17)

http://dx.doi.org/10.1007/978-3-319-51559-5_10
http://dx.doi.org/10.1007/978-3-319-51559-5_10
http://dx.doi.org/10.1007/978-3-319-51559-5_10
http://dx.doi.org/10.1007/978-3-319-51559-5_10
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of G(λ) is not controllable, then the descriptor realization (Al − λEl, Bl ,Cl , Dl)

does not represent, in general, a minimal proper left nullspace basis, because, it can
be uncontrollable, or it can be controllable, but not maximally controllable. In both
cases, a lower order basis exists.

Remark 7.1 The realization (7.13) can be always assumed minimal, in which case
the realization (7.17) of G(λ) is observable, but, in general, may be uncontrollable.
For example, uncontrollable generalized eigenvalues of the pair (A, E) may exist,
if some poles of [Gw(λ) G f (λ) ], are not simultaneously poles of [Gu(λ) Gd(λ) ].
Fortunately, the minimality of the realization of G(λ) is typically fulfilled if only
additive actuator and sensor faults are considered and w ≡ 0. In this case, B f has
partly the same columns as Bu (in the case of actuator faults) or zero columns (in the
case of sensor faults). Controllability is also guaranteed if the noise input w accounts
exclusively for the effects of parametric uncertainties and the nominal model is
controllable (see Sect. 2.2.1). �
Remark 7.2 We can always determine a stable nullspace basis, using an output injec-
tion matrix K such that the pair (Al + KCl, El) has stable generalized eigenvalues,
or, alternatively, the spectrum Λ(Al + KCl, El) = Γ , where Γ is any symmetric
set of nl complex values in Cs . Following the approach in Sect. 10.3.2, we perform
an additional similarity transformation on S̃(λ) in (7.22), with the transformation
matrix

Û =
⎡

⎣
I 0 0
0 I K
0 0 I

⎤

⎦ , (7.26)

to obtain Ŝ(λ) := Û S̃(λ) as

Ŝ(λ) =
⎡

⎣
Ar − λEr Ar,l − λEr,l

0 Al + KCl − λEl

0 Cl

⎤

⎦ . (7.27)

After computing

ÛU

⎡

⎣
0 0 Bw B f
Ip 0 Dw D f
0 Imu 0 0

⎤

⎦ =

⎡

⎢⎢
⎣

∗ ∗ ∗
Bl + K Dl Bw + K Dw B f + K D f

Dl Dw D f

⎤

⎥⎥
⎦, (7.28)

we can form the realization for an alternative basis Ñl(λ) and the corresponding
reduced system [ G̃w(λ) G̃ f (λ) ] in the form

[
Ñl(λ) G̃w(λ) G̃ f (λ)

] =
[
Al+KCl−λEl Bl+K Dl Bw+K Dw B f +K D f

Cl Dl Dw D f

]

.

(7.29)

http://dx.doi.org/10.1007/978-3-319-51559-5_2
http://dx.doi.org/10.1007/978-3-319-51559-5_10
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It is easy to check that, with

M̃l(λ) =
[
Al + KCl − λEl K

Cl I

]
, (7.30)

we implicitly determined the stable LCF

[
Nl(λ) Gw(λ) G f (λ)

] = M̃−1
l (λ)

[
Ñl(λ) G̃w(λ) G̃ f (λ)

]
.

�

An important property of the resulting realizations of Nl(λ), Gw(λ) and G f (λ)

in (7.25) is that they share the same observable pair (Al − λEl,Cl). However, in
general, all three individual realizations may be uncontrollable (thus not minimal).
However, we can easily show the following result.

Proposition 7.1 If the realization (7.13) of
[
Gu(λ) Gd(λ) Gw(λ) G f (λ)

]
is irre-

ducible, then the realization (7.25) is minimal.

Proof The pair (Al −λEl ,Cl) is observable by construction. To prove the controlla-
bility of the pair (Al−λEl , [ Bl Bw B f ])we apply the same technique as in the proof
of Proposition10.2. Since the realization (7.13) of

[
Gu(λ) Gd(λ) Gw(λ) G f (λ)

]
is

controllable, the realization

[
Gu(λ) Gd(λ) Gw(λ) G f (λ)

Imu 0 0 0

]
=

⎡

⎣
A − λE Bu Bd Bw B f

C Du Dd Dw D f

0 Imu 0 0 0

⎤

⎦

is controllable as well. Due to the controllability of the pair (A − λE, [ Bu Bd Bw
B f ]), the pencil [ A − λE Bu Bd Bw B f ] has full row rank, and thus the reduced
pencil

U

⎡

⎣
A − λE Bu Bd Bw B f 0 0

C Du Dd Dw D f Ip 0
0 Imu 0 0 0 0 Imu

⎤

⎦
[
V 0
0 I

]
=

⎡

⎣
Ar − λEr Ar,l − λEr,l ∗ ∗ ∗

0 Al − λEl Bw B f Bl
0 Cl Dw D f Dl

⎤

⎦

has full row rank as well. It follows that
[
Al − λEl Bl Bw B f

]
has full row rank

and thus the pair (Al −λEl ,
[
Bl Bw B f

]
) is controllable. The minimality is implied

by irreducibility, because El is invertible. �

Remark 7.3 If mu = md = 0 and [Gw(λ) G f (λ) ] is not proper, then realizations
of the form (7.25) can be obtained by computing [ Nl(λ) Gw(λ) G f (λ) ], a proper
left nullspace basis satisfying

[ Nl(λ) Gw(λ) G f (λ) ]
⎡

⎣
Gw(λ) G f (λ)

−Imw 0
0 −Im f

⎤

⎦ = 0 .

http://dx.doi.org/10.1007/978-3-319-51559-5_10
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The described nullspace computation approach leads to a state-space realization of
the three TFMs Nl(λ), G f (λ) and Gw(λ) as in (7.25), which share the observable
pair (Al − λEl,Cl). �

Proposition7.1 and Remark7.3 show that the initial synthesis problems formu-
lated for the system

[
Gu(λ) Gd(λ) Gw(λ) G f (λ)

]
with minimal realization (7.13)

have been reduced to simpler problems formulated for a reduced proper system[
0 0 Gw(λ) G f (λ)

]
, without control and disturbance inputs, such that the com-

pound TFM

[
Q(λ) Rw(λ) R f (λ)

] := [
Nl(λ) Gw(λ) G f (λ)

]
, (7.31)

representing the initial synthesis at Step 1) of the synthesis procedures, has a mini-
mal realization given by (7.25). Moreover, the stability of the initial synthesis can be
enforced, as discussed in Remark7.2, by using a suitable output injection matrix K
such that the pair (Al + KCl, El) has only stable generalized eigenvalues. Accord-
ingly, the alternative initial synthesis

[
Q(λ) Rw(λ) R f (λ)

] := [
Ñl(λ) G̃w(λ) G̃ f (λ)

]
(7.32)

can be chosen, whose minimal realization is given in (7.29). An important aspect to
mention is that, similarly to the original realization (7.13), both realizations (7.25)
and (7.29), share the same observable pairs (Al −λEl,Cl) and (Al +KCl −λEl,Cl),
respectively. Any further updating of the initial synthesis can be done by preserving
these properties.

Updating of the initial synthesis takes place in Procedure EFDI to solve the
EFDIP, in Procedure AFDI to solve the AFDIP, and in Procedure GENSPEC
to compute the maximally achievable fault specifications. The updating techniques
employed in these procedures, can be conveniently described in terms of two ratio-
nal matrices: G(λ), the rational matrix for which a left nullspace basis has to be
determined, and F(λ), the rational matrix which has to be multiplied from left with
the computed basis. The key property of the state-space realizations of G(λ) and
F(λ), which is instrumental to perform the necessary updating is that they share the
same state, descriptor, and output matrices. Note that, for the initial synthesis, the
choices in (7.14) for G(λ) and (7.16) for F(λ), with the corresponding state-space
realizations in (7.17), have been used.

The resulting realizations of R f (λ) (i.e., eitherG f (λ) in (7.25) or G̃ f (λ) in (7.29))
allow to check various solvability conditions. The following result is the state-space
version of Corollary5.2 to characterize the solvability of the EFDP.

Corollary 7.1 For the system (7.13) with w ≡ 0 the EFDP is solvable if and only if

[
B f j

D f j

]
�= 0, j = 1, . . .m f , (7.33)

where B f j and D f j are, respectively, the j-th columns of B f and D f .

http://dx.doi.org/10.1007/978-3-319-51559-5_5
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Proof Since the pair (Al − λEl,Cl) is observable, the fault input observability con-
ditions G f j (λ) �= 0, for j = 1, . . . ,m f , of Corollary5.2 are equivalent to the
conditions (7.33). �

For the solvability of the EFDP, by imposing the strong detectability condition
with respect to a set of frequencies Ω , we have the following state-space version of
Corollary5.3.

Corollary 7.2 Let Ω be the set of frequencies which characterize the persistent
fault signals and assume that the resulting descriptor realization in (7.25) is such
that Λ(Al , El) ∩ Ω = ∅. For the system (7.13) with w ≡ 0 the EFDP is solvable
with the strong detectability condition with respect to Ω if and only if for all λz ∈ Ω

rank

[
Al − λz El B f j

Cl D f j

]
> nl , j = 1, . . . ,m f . (7.34)

Proof The conditions (7.34) are equivalent with the strong detectability requirement
of Corollary5.3 for G f j (λ) to have no zero in Ω , for j = 1, . . . ,m f . �

These corollaries can be extended in a straightforward way to cover the fault
isolability conditions for the solvability of EFDIP. For the solvability of the EFDIP
with strong isolability condition we have the following state-space version of Corol-
lary5.6.

Corollary 7.3 For the system (7.13) with w ≡ 0 the EFDIP with strong isolability
is solvable if and only if

rank

[
Al − λEl B f

Cl D f

]
= nl + m f . (7.35)

Proof The strong isolability condition for the solvability of the EFDIP is equivalent
with the left invertibility condition (3.21) for the reduced model G f (λ). However,
this is equivalent with the normal rank condition (7.35). �
This corollary serves also to check the solvability conditions for the AMMP.

Example 7.3 Consider the continuous-time system with the TFMs

Gu(s) =

⎡

⎢⎢
⎢
⎣

s + 1

s + 2

s + 2

s + 3

⎤

⎥⎥
⎥
⎦

, Gd (s) =
⎡

⎢
⎣

s − 1

s + 1

0

⎤

⎥
⎦ , Gw(s) = 0, G f (s) =

⎡

⎢⎢
⎢
⎣

s + 1

s − 2
0

s + 2

s − 3
1

⎤

⎥⎥
⎥
⎦

.

The compound TFM [Gu(s) Gd (s) G f (s) ] has the standard state-space realization with matrices
E = I5 and

A =

⎡

⎢⎢
⎢
⎣

−2 0 0 0 0
0 −3 0 0 0
0 0 −1 0 0
0 0 0 2 0
0 0 0 0 3

⎤

⎥⎥
⎥
⎦

,
[

Bu Bd B f
] =

⎡

⎢⎢
⎢
⎣

1 0 0 0
1 0 0 0
0 2 0 0
0 0 2 0
0 0 2 0

⎤

⎥⎥
⎥
⎦

,

http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_3


7.4 Nullspace-Based Reduction 169

C =
[ −1 0 −1 3

2 0
0 −1 0 0 5

2

]
,

[
Du Dd D f

] =
[

1 1 1 0
1 0 1 1

]
.

It is easy to observe that the pair (A, [ Bu Bd ]) is not controllable, and therefore the realization of
G(s) in (7.17) is not controllable as well.

Using the nullspace computation approach, we obtain for Nl (s) and G f (s) the matrices of the
descriptor realizations

Al − sEl =
[

1.5522 −1.0552
−2.0011 −2.5848

]
− s

[ −0.8442 −0.1362
0 −0.9672

]
,

[
Bl B f

] =
[

0 0.3666 0.3666 −0.5133 0.3666
0 −0.1796 −0.1796 −1.9757 −0.1796

]
,

Cl = [
0 1.904

]
,

[
Dl D f

] = [
0 0.7071 −0.7071 0.7071 0.7071

]
.

The generalized eigenvalues of the pair (Al , El ) are −2.5 and 3. The pair (Al − sEl , Bl ) is not
controllable, and even not stabilizable, because the unstable eigenvalue 3 is not controllable. The
corresponding TFMs, scaled with

√
2, are

√
2Nl(s) =

[
0

s + 3

s + 2.5
− s + 2

s + 2.5

]
,

√
2G f (s) =

[
(s + 3)(s + 2)

(s − 3)(s + 2.5)

s + 3

s + 2.5

]
.

Since G f (s) is unstable, we can choose the output injection matrix

K =
[
0.8503
3.0480

]
,

such that the generalized eigenvalues of the pair (Al + KCl , El ) become −2.5 and −3. With
M̃l(s) defined in (7.30), we obtain the updated basis Ñl(s) = M̃l(s)Nl (s) and the corresponding
G̃ f (s) = M̃l (s)G f (s), whose realizations are given in (7.29). The resulting realization of Ñl (s) is
nowcontrollable (due to output injection) and Q(s) := √

2Ñl(s) is a leastMcMillan degree solution,
of order two, of the EFDP. The TFM Q(s) of the implementation form and the corresponding TFM
of the internal form R f (s) are

Q(s) =
[
0

s − 3

s + 2.5
− (s + 2)(s − 3)

(s + 3)(s + 2.5)

]
, R f (s) =

[
s + 2

s + 2.5

s − 3

s + 2.5

]
.

The denominator factor M̃l(s) employed for the stabilization of G f (s) is

M̃l(s) = s − 3

s + 3
.

Note that this factor needs not be computed explicitly.
It is worth to mention that the resulting filter Q(s) is a proper nullspace basis of G(s), but is not

a minimal proper nullspace basis (it contains the non-constant factor M̃l(s)). Thus, this example
illustrates the case when the peculiarities of the fault dynamics of G f (s) (e.g., unstable poles which
are not poles of the underlying system) impose the use of a higher order fault detection filter than
the order of a minimal nullspace basis.

The script Ex7_3 in Listing7.1 computes the results obtained in this example. ♦
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Listing 7.1 Script Ex7 3 to compute the results of Example7.3
% Uses the Control Toolbox and the Descriptor System Tools

% define the state-space realizations of Gu, Gd and G f

A = diag([ -2 -3 -1 2 3]);
Bu = [1 1 0 0 0]'; Bd = [0 0 2 0 0]';
Bf = [0 0 0 2 2;0 0 0 0 0]';
C = [-1 0 -1 1.5 0; 0 -1 0 0 2.5];
Du = [ 1 1]'; Dd = [1 0]'; Df = [1 0; 1 1];
p = 2; mu = 1; md = 1; mf = 2; % enter dimensions
sys = ss(A,[Bu Bd Bf],C,[Du Dd Df]); % define system

% compute initial synthesis [ Nl G f ] in Q_Rf, where Nl is a
% left nullspace basis of [Gu Gd ; I 0 ] and G f = Nl [G f ; 0 ];
Q_Rf = glnull ([sys;eye(mu ,mu+md+mf)],struct('m2',mf));

% compute a stable left coprime factorization [ Ñl G̃ f ] = M̃l [ Nl G f ]
% using explicitly computed output injection matrix K
[al ,b,cl ,d,el] = dssdata(Q_Rf);
k = gsfstab(al',el',cl ',-3,-2).'; % assign one pole at -3
M = dss(al+k*cl ,k,cl ,1,el); % M̃l

Q_Rf = dss(al+k*cl,b+k*d,cl,d,el); % M̃l [ Nl G f ]

% alternative computation (comment out next line)
% [Q_Rf,M] = glcf(Q_Rf,struct('sdeg',-3,'smarg',-2));

% compute Q and R f ; scale to match example
Q = sqrt (2)* Q_Rf (:,1:p+mu); Rf = sqrt (2)* Q_Rf(:,p+mu+1:end);

% display results
minreal(zpk(Q)), minreal(zpk(Rf)), minreal(zpk(M))

Remark 7.4 We can easily extend the nullspace method to systems with parametric
faults, described by equivalent linear models with additive faults of the form

Eλx(t) = Ax(t) + Buu(t) + Bdd(t) + B f (t) f (t) ,

y(t) = Cx(t) + Duu(t) + Ddd(t) + D f (t) f (t) ,
(7.36)

where the fault input channel contains time-varying matrices with special struc-
tures (see (2.17) in Sect. 2.2.2). If we denote f̃1(t) := B f (t) f (t) ∈ Rn , f̃2(t) :=
D f (t) f (t) ∈ Rp, and f̃ (t) = [ f̃ T1 (t) f̃ T2 (t) ]T , then the time-varying system (7.36)
can be equivalently expressed in the form

Eλx(t) = Ax(t) + Buu(t) + Bdd(t) + [ In 0 ] f̃ (t) ,

y(t) = Cx(t) + Duu(t) + Ddd(t) + [ 0 Ip ] f̃ (t) .
(7.37)

For this LTI system, we can compute, similarly as in (7.24),

http://dx.doi.org/10.1007/978-3-319-51559-5_2
http://dx.doi.org/10.1007/978-3-319-51559-5_2
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U

⎡

⎣
0 0 In 0
Ip 0 0 Ip
0 Imu 0 0

⎤

⎦ =

⎡

⎢⎢
⎣

∗ ∗
Bl B f

Dl D f

⎤

⎥⎥
⎦, (7.38)

from which we obtain the descriptor system realizations of the proper left nullspace
basis (Al−λEl , Bl ,Cl , Dl) andof the reducedproper system (Al−λEl , B f ,Cl , D f ),
with outputs y(t), as defined in (5.11), and inputs f̃ (t). According to Remark7.2,
we can arbitrarily assign the dynamics of both the nullspace basis as well as of the
reduced system, using an additional LTI prefilter of the form (7.30). Recall that any
stable nullspace basis can serve as a fault detection filter, with outputs r(t) and inputs
y(t) and u(t), provided the fault detectability conditions for the reduced system are
fulfilled (jointly with the stability requirement). This comes down to check (e.g., via
simulations or by exploiting the special structures of matrices B f (t) and D f (t), see
Sect. 2.2.2), that the residual signal r(t) is sensitive to each parametric fault fi (t), for
i = 1, . . . , k. It follows that the nullspace method allows to address fault detection
problems for parametric faults in a simple way, involving only multiplications of
(structured) time-varying matrices with constant matrices. �

7.5 Least-order Synthesis

The synthesis of fault detection filters of least McMillan degree underlies an impor-
tant computational paradigm, typically employed at Step 2) of several of the pre-
sented synthesis procedures. This paradigm concerns with the updating of the proper
left nullspace basis Q(λ) = Nl(λ), computed at Step 1), by determining a factor
Q2(λ) such that the product Q2(λ)Nl(λ) has the least possible McMillan degree
under the constraint that certain admissibility conditions are simultaneously ful-
filled. A basic admissibility condition is the (problem dependent) solvability condi-
tion, which must be always fulfilled by the updated reduced system with the TFMs
Q2(λ)Gw(λ) and Q2(λ)G f (λ). For example, for the solvability of the EFDP and
AFDP, all columns of Q2(λ)G f (λ) must be nonzero (see Corollaries5.2 and 5.4),
while for the solvability of the EMMP and AMMP with enforced strong isola-
bility, Q2(λ)G f (λ) must be left invertible (i.e., must have full column rank) (see
Corollaries5.10 and 5.11). Certain regularization conditions are additionally
imposed, as—for example, Q2(λ)Gw(λ) to have full row rank when solving the
AFDP, Q2(λ)G f (λ) to be invertible when solving the EMMP with strong isolabil-
ity, or [ Q2(λ)Gw(λ) Q2(λ)G f (λ) ] to have full row rank when solving the AMMP.
These additional conditions are enforced to ease the solution of some synthesis prob-
lems, however, they are not necessary for the solvability of the respective problems.

We assume that the initial nullspace-based synthesis computed at Step 1) of all
synthesis procedures is [ Q(λ) Rw(λ) R f (λ) ] := [ Nl(λ) Gw(λ) G f (λ) ] in (7.31)
and has the state-space realization (7.25), with Dl of full row rank. To simplify the
presentation, we denote W (λ) := [ Q(λ) Rw(λ) R f (λ) ] the (p − rd) × (p + mu +

http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_2
http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_5
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mw +m f ) proper rational matrix, where rd = rank Gd(λ). For the q× (p−rd) TFM
Q2(λ) we assume the state-space realization

Q2(λ) =
[
Ul(Al + KCl − λEl)Vl Ul K

HClVl H

]
, (7.39)

where H ∈ Rq×(p−rd ) is a full row rank matrix, to be chosen, and K ∈ Rnl×(p−rd )

is an output injection matrix, to be determined together with the two nonsingular
transformation matrices Ul and Vl . It is straightforward to check that the state-space
realization of Q2(λ)W (λ) is

[
Ul(Al + KCl − λEl)Vl Ul(Bl + K Dl) Ul(Bw + K Dw) Ul(B f + K D f )

HClVl HDl HDw HDw

]

.

(7.40)
For H fixed, the main computation is to determine the output injection matrix K ,
jointlywith the transformationmatricesUl andVl , such that Q2(λ)Q(λ), whose state-
space realization is contained in (7.40), has the least possible McMillan degree, for
which the solvability conditions, as those in Corollaries7.1, 7.2 or 7.3, are fulfilled.
For example, with H chosen as a p − rd dimensional row vector (i.e., q = 1), we
want to determine the least-order fault detection filter with scalar output which solves
the EFDP in Procedure EFD. Or, we choose H such that Q2(λ)Rw(λ) in Procedure
AFD, Q2(λ)R f (λ) in Procedure EMMS, or Q2(λ)[ Rw(λ) R f (λ) ] in Procedure
AMMS are all full row rank TFMs.

We discuss first how to determine, for a given H , the output injection matrix
K such that Q2(λ)Q(λ) has the least possible McMillan degree. For this pur-
pose, we will attempt, with a suitable choice of K , to achieve the least possible
McMillan degree of Q2(λ)Q(λ) (and also of Q2(λ)W (λ)) by making the pair
(Al + KCl − λEl, HCl) maximally unobservable. Minimal dynamic cover tech-
niques can be employed to perform this computation (see Sects. 10.4.2 and 10.4.3
for the definitions of Type I and Type II dynamic covers and for numerical algorithms
for their computations).

The minimum dynamic cover algorithm described in Procedure GRMCOVER1
in Sect. 10.4.2 relies on a preliminary orthogonal similarity transformation performed
on the state-space realization of

[
WT (λ)HT WT (λ)

]
, withW (λ) given in (7.25). In

a first stage, the controllable descriptor pair (AT
l − λET

l ,
[
CT
l H

T CT
l

]
) is reduced

to a special controllability staircase form by applying Procedure GSCSF presented
in Sect. 10.4.1. Then, with additional block permutations and non-orthogonal block
row and block column transformations, the system matrices are transformed into a
special form which allows to cancel, using a suitable output injection, the maximum
number of unobservable eigenvalues. For the so-called Type I dynamic covers, two
nonsingular transformation matrices Ul and Vl result such that

http://dx.doi.org/10.1007/978-3-319-51559-5_10
http://dx.doi.org/10.1007/978-3-319-51559-5_10
http://dx.doi.org/10.1007/978-3-319-51559-5_10
http://dx.doi.org/10.1007/978-3-319-51559-5_10
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Ul(Al − λEl)Vl =
[

Â11 − λÊ11 Â12 − λÊ12

Â21 Â22 − λÊ22

]

,

Ul [ Bl Bw B f ] =
[
B̂1 B̂w,1 B̂ f,1

B̂2 B̂w,2 B̂ f,2

]

,

[
HCl

Cl

]

Vl =
[

0 Ĉ22

Ĉ11 Ĉ12

]

,

(7.41)

where the pairs
(
Â11 − λÊ11, Ĉ11

)
and

(
Â22 − λÊ22, Ĉ22

)
are observable, and the

submatrices Ĉ11 and Â21 have the particular structure

[
Â21

Ĉ11

]
=

[
0 A21

0 C11

]
,

with C11 having full column rank. By taking

K = U−1
l

[
0
K2

]
,

with K2 satisfying
K2C11 + A21 = 0, (7.42)

we annihilate Â21 + K2Ĉ11, the (2,1)-block of Ul(Al + KCl)Vl , and thus make all
eigenvalues of Â11 − λÊ11 unobservable. The resulting realization of Q2(λ)W (λ)

has a maximum number of unobservable eigenvalues and allows to determine from
(7.40) an observable realization, by removing the unobservable part. The resulting
observable state-space realization of Q2(λ)W (λ) can be explicitly written down as

Q2(λ)W (λ) =
[
Â22+K2Ĉ12−λÊ22 B̂2+K2Dl B̂w,2+K2Dw B̂ f,2+K2D f

Ĉ22 HDl HDw HD f

]

.

(7.43)
Since both H and Dl have full row rank, it follows that HDl has also full row rank.

Using similar arguments as in the proof of Proposition7.1, we can easily prove
the following result.

Proposition 7.2 If the realization (7.25) of [ Q(λ) Rw(λ) R f (λ) ] in (7.31) is mini-
mal, then the realization (7.43) is minimal.

The algorithm underlying Procedure GRMCOVER1 to compute the output
injection matrix K is not numerically stable, because it involves similarity trans-
formations with nonorthogonal transformation matrices Ul and Vl in (7.41) and the
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computation of the solution K2 of the matrix equation (7.42). Still, this algorithm
can be considered a numerically reliable algorithm, because the potential loss of
numerical stability can be easily detected, either by detecting large norms of the
employed transformation matrices Ul and Vl , or a large norm of the resulting K2. In
both cases, a possible remedy is to employ a different choice of H or to increase the
targeted order.

The resulting realization (7.43) can be used to check the admissibility conditions
for different synthesis problems. To simplify the notations, we denote the resulting
state-space realization of Q2(λ)W (λ), of order ñl , as

Q2(λ)
[
Q(λ) Rw(λ) R f (λ)

] =
[

Ãl − λẼl B̃l B̃w B̃ f

C̃l D̃l D̃w D̃ f

]

. (7.44)

The selected H ∈ Rq×(p−rd ) is a valid choice when solving the EFDP, provided the
following solvability conditions of the EFDP (see Corollary7.1) are fulfilled

[
B̃ f j

D̃ f j

]
�= 0, j = 1, . . . ,m f , (7.45)

where B̃ f j and D̃ f j are the j-th columns of B̃ f and D̃ f j , respectively. When solving
the AFDP, besides checking the conditions (7.45), the full row rank condition for
Q2(λ)Rw(λ) must be also checked. Using the resulting realization in (7.44), this
involves to check that

rank

[
Ãl − λc Ẽl B̃w

C̃l D̃w

]
= ñl + q, (7.46)

where λc is any real value (e.g., randomly chosen), which is not a pole or zero of
Q2(λ)Rw(λ). To fulfil (7.46), the choice of the number of filter outputs, q, must
satisfy q ≤ rw ≤ p − rd , where rw := rank Gw(λ) (in the case when rw < p − rd ,
see Remark5.10 for choosing q satisfying rw < q ≤ p − rd ). Similar tests have
to be performed to check the admissibility conditions for the EMMP or AMMP. If
the admissibility test fails, a different choice of H is necessary. In what follows, we
discuss possible choices of H , which lead to the leastMcMillan degree of Q2(λ)Q(λ)

and satisfy the admissibility conditions.
Weassume that aminimal proper rational left nullspace basis Nl(λ)with aminimal

(i.e., controllable and observable) descriptor realization (Al − λEl, Bl ,Cl , Dl) has
been determined using the approach described in Sect. 10.3.2. Accordingly, we can
assume that the observable descriptor pair (Al − λEl,Cl) is in the observability
staircase form

http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_10
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[
Al − λEl

Cl

]

=

⎡

⎢⎢⎢⎢⎢
⎣

A,+1 A, − λE, · · · A,1 − λE,1

A−1,
. . .

...

. . . A1,1 − λE1,1

A0,1

⎤

⎥⎥⎥⎥⎥
⎦

, (7.47)

where Ai−1,i ∈ R
μi−1×μi are full column rank upper triangular matrices, for i =

1, . . . ,  + 1, with μ+1 := 0. The matrices Ai−1,i have the form

Ai−1,i =
[
Ri−1,i

0

]
, (7.48)

where Ri−1,i is an invertible upper triangular matrix of order μi . The left (or row)
Kronecker indices of the system pencil S(λ) in (7.19) are the column numbers of the
LT

ηi
(λ) blocks of theKronecker canonical form (seeLemma9.9) and result as follows:

there areμi−1 −μi Kronecker blocks LT
ηi
(λ) of size i × (i −1), for i = 1, . . . , +1.

Notice that μi−1 − μi is also the row dimension of the zero block of Ai−1,i . From
standard linear algebra results it follows that the number of linearly independent basis
vectors (i.e., the number of rows of Nl(λ)) is p − rd , where rd = rankGd(λ). This
number is equal to the total number of Kronecker indices, thus

∑+1
i=1 (μi−1 − μi ) =

μ0. According to Proposition10.1, μi−1 − μi represents the number of polynomial
vectors of degree i−1 in a minimal polynomial basis, and therefore, also the number
of rational vectors of McMillan degree i − 1 in a simple proper basis.

Let n j , j = 1, . . . , p− rd , be the (decreasingly ordered) row minimal indices (or
left Kronecker indices, see Sect. 9.1.3), representing the degrees of the polynomial
basis vectors in a minimal polynomial basis (or the McMillan degrees of the rational
basis vectors in a simple minimal rational basis). The order of the descriptor real-
ization of Nl(λ) is νl = ∑

i=1 μi and is equal to the degree
∑p−rd

j=1 n j of a minimal
polynomial basis (also the sum of McMillan degrees of the rational basis vectors in a
simple proper basis). For a desired number of filter outputs q, it is possible to choose
a suitable matrix H ∈ Rq×(p−rd ), which leads to a least McMillan degree of the
resulting Q2(λ)Nl(λ), such that the (problem dependent) admissibility conditions
are fulfilled. The possible values of the least McMillan degree of Q2(λ)Nl(λ), are
among the possible dimensions of the controllability subspaces of the dual standard
pair

(
E−T
l AT

l , E−T
l CT

l

)
containing span

(
E−T
l CT

l H
T
)
, and according to [159, The-

orem 1], are directly determined by the minimal indices n j , i = 1, . . . , p − rd . For
example, if k is an index such that 1 ≤ k ≤ p−rd −1, and nk+1 >

∑k
i=1 ni +1, then

there exists no controllability subspace of dimension l, with
∑k

i=1 ni < l < nk+1.
(This result is the statement of Corollary 1 in [159].) In what follows, we discuss
how to choose H , for obtaining fault detection filters of McMillan degree smaller
than νl .

For simplicity, we only discuss the determination of the least-order solution of the
EFDP, for whichwe discuss two possible approaches. (Both approaches can be easily
extended to all other least-order synthesis problems.) The first approach is direct

http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_10
http://dx.doi.org/10.1007/978-3-319-51559-5_9
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(i.e., non-iterative) and is based on the selection of a suitable H by exploiting the
binary information contained in the structure matrix corresponding to an alternative
simple proper rational basis of the left nullspace of G(λ) in (7.14). According to
Proposition10.4, for the choice H ( j) = eTj , where e j is the j-th column of the
identity matrix of order p − rd , there exists an output injection matrix K j , such that
the McMillan degree of the resulting proper rational vector v j (λ) := Q( j)

2 (λ)Nl(λ)

is the j-th minimal index n j , where

Q( j)
2 (λ) := H ( j)Cl(λEl − Al − K jCl)

−1K j + H ( j)Dl .

The row vectors v j (λ), j = 1, . . . , p − rd , form a simple proper rational basis of
the left nullspace of G(λ) in (7.14). Let s( j) be the resulting 1×m f binary structure
matrix (see Sect. 3.4) of Q( j)

2 (λ)G f (λ) and let S(i) be the binary matrix formed by
stacking the i rowvectors s( j) for j = p−rd−i+1, . . . , p−rd . Let i be the least value
such that S(i) contains at least one nonzero element in all its columns. It follows, that
the filter formed by stacking the i vectors v j (λ), for j = p− rd − i + 1, . . . , p− rd ,
is admissible for the solution of the EFDP. In the case q = 1, it follows from
Corollary10.1, that there exists a linear combination (with rational coefficients)

v(λ) =
i∑

j=1

φ( j)(λ)vp−rd−i+ j (λ)

of the i rational basis vectors with McMillan degrees up to ni , such that v(λ) has
McMillan degree ni and the filter Q(λ) = v(λ) is admissible.

The above analysis allows an easy selection of a suitable H leading to reduced
order filters. In the case q = 1, instead of determining explicitly the linear combina-
tion using rational coefficients, such a linear combination can be directly computed
with the choice

H = h(i) := [ 0 . . . 0 hi . . . h1 ], (7.49)

with h j �= 0 for j = 1, . . . , i , which ensures that Q2(λ)Nl(λ) has McMillan degree
at most ni and the admissibility conditions in (7.45) are fulfilled. In the case q > 1,
H can be chosen in the form

H = [
0 H (i)

]
, (7.50)

where H (i) is a q×max(q, i) full row rankmatrixwhich builds q linear combinations
of the basis vectors up to McMillan degrees nmax(q,i). A practical approach, to be
used in both cases, is to generate the nonzero elements of H as random numbers.

The use of the direct approach for the selection of H requires the computa-
tion of (at least) i basis vectors of a simple proper rational left nullspace basis,
using the minimum dynamic covers-based technique described in Sect. 10.3.2 (see
Proposition10.4). Additionally, for the selected H , the same technique is used to
determine the output injection gain matrix K leading to the least McMillan degree

http://dx.doi.org/10.1007/978-3-319-51559-5_10
http://dx.doi.org/10.1007/978-3-319-51559-5_3
http://dx.doi.org/10.1007/978-3-319-51559-5_10
http://dx.doi.org/10.1007/978-3-319-51559-5_10
http://dx.doi.org/10.1007/978-3-319-51559-5_10
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of Q2(λ)Nl(λ). For these computations the Procedure GRMCOVER1 can be
employed, which can also detect potential accuracy losses due to the usage of ill-
conditioned transformations when determining the vectors of a simple proper ratio-
nal basis. To avoid the use of ill-conditioned transformations, another approach,
presented below, may be better suited.

The second approach for the selection of H is based on a systematic search by
using successive candidates for H as in (7.50) (or in (7.49) for q = 1) with increasing
number i , of nonzero trailing columns, and checking, for each i , the admissibility
conditions. The corresponding observable realizations of Q2(λ)Nl(λ), Q2(λ)G f (λ),
and Q2(λ)Gw(λ), obtained in (7.43) or in (7.44), allow to check the admissibility
conditions as those in (7.45) (or those in (7.46)). The successively determined partial
filtersQ2(λ)Nl(λ)havenon-decreasingorders and therefore, thefirst admissible filter
represents a satisfactory least McMillan degree synthesis. To speed up the selection
in the case q = 1, the choices of i = μ0 − μ j , j = 1, . . . , , nonzero components
of h(i) in (7.49) ensures a tentative order ni , by building a linear combination of all
μ0 − μi basis vectors of orders less than or equal to ni . In this way, repeated checks
for the same order are avoided and the search is terminated in at most  steps.

If p − rd > 1, the resulting admissible value of H , in the form (7.50), is not
unique. From a numerical point view, it is desirable to use an “optimal” choice of
H , which increases the overall reliability of computations, as—for example, that
one, which minimizes the condition numbers of the transformation matrices Ul and
Vl employed in (7.41), or, the norm of the employed injection matrix K2 in (7.42).
From the point of view of the performance of the resulting fault detection filters,
the minimization of the sensitivity conditions, introduced in Remark5.6, can equally
represent valuable goals for an optimal tuning of the nonzero elements of H .

Example 7.4 Consider the continuous-time system with the standard state-space realization with
matrices E = I5 and

A =

⎡

⎢⎢
⎢
⎣

0 0 1.1320 0 −1.0000
0 −0.0538 −0.1712 0 0.0705
0 0 0 1.0000 0
0 0.0485 0 −0.8556 −1.0130
0 −0.2909 0 1.0532 −0.6859

⎤

⎥⎥
⎥
⎦

,

[
Bu Bd B f

] =

⎡

⎢
⎢⎢
⎣

0 0 0 0 0 0 0 0 0
−0.1200 1 0 0 0 0 0 −0.1200 1

0 0 0 0 0 0 0 0 0
4.4190 0 −1.6650 −1.6650 0 0 0 4.4190 0
1.5750 0 −0.0732 −0.0732 0 0 0 1.5750 0

⎤

⎥
⎥⎥
⎦

,

C =
⎡

⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

⎤

⎦,

[
Du Dd D f

] =
⎡

⎣
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0

⎤

⎦ .

It is easy to observe that the pair (A, [ Bu Bd ]) is controllable, and therefore the realization of G(s)
in (7.17) is controllable as well.

http://dx.doi.org/10.1007/978-3-319-51559-5_5
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The resulting rational left nullspace basis Nl(s) of G(s) has two vectors, which together form
a minimal proper rational basis of order 3, while a minimal polynomial basis has two vectors, one
of degree one and a second of degree two. A first order synthesis, obtained with h(1) = [ 0 1 ] and
imposing a pole at −1, is

Q(1)(s) = 1

s + 1

[ −0.07033s −0.9975s − 0.05367 −0.09117 −0.1197 0.9975 0
]
.

A second-order synthesis, obtained with h(2) = [ 1 1 ] and imposing a stability degree of −1, is

Q(2)(s) = 1

s2 + 2s + 1.159

[
0.9262s2 + 0.5839s −1.068s2 − 0.8869s − 0.3381 · · ·

0.04403s2 − 0.1388s − 0.8029 −0.1281s + 1.283 1.068s + 0.8294 0
]
.

For the resulting

R(1)
f (s) := Q(1)(s)

[
G f (s)

0

]
, R(2)

f (s) := Q(2)(s)

[
G f (s)

0

]
,

we can check the admissibility conditions for an arbitrary value of s, say s = i = √−1. The
resulting absolute values of the gains R(1)

f (i) are

∣∣R(1)
f (i)

∣∣ = [
0.0497 0.7064 0.0645 0.0846 0.7054

]
,

with the ratio of the maximum and minimum gains of 14.2049. The resulting absolute values of the
gains R(2)

f (i) are

∣
∣R(2)

f (i)
∣
∣ = [

0.5457 0.5724 0.4278 0.6428 0.6739
]
,

with the ratio of the maximum and minimum gains of 1.5754. Therefore, the second-order filter
provides a more uniform detection performance at frequencies nearby s = i.

The script Ex7_4 in Listing7.2 computes the results obtained in this example. ♦

Listing 7.2 Script Ex7 4 to compute the results of Example7.4
% Uses the Control Toolbox and the Descriptor System Tools

% define the state-space realizations of Gu, Gd and G f

n = 5; p = 3; mu = 3; md = 1; mf = 5; % enter dimensions
% define matrices of the state-space realization
A = [ 0 0 1.132 0 -1;
0 -0.0538 -0.1712 0 0.0705;
0 0 0 1 0;
0 0.0485 0 -0.8556 -1.013;
0 -0.2909 0 1.0532 -0.6859];
Bu = [0 0 0; -0.12 1 0;0 0 0;4.419 0 -1.665;1.575 0 -0.0732];
Bd = Bu(:,mu); Bf = [zeros(n,p) Bu(:,1:mu -1)];
C=eye(p,n); Du=zeros(p,mu); Dd=zeros(p,md); Df=eye(p,mf);
sys = ss(A,[Bu Bd Bf],C,[Du Dd Df]); % define system

% compute [ Q R f ], where Q = Nl is a 3-rd order left nullspace
% basis of [Gu Gd ; I 0 ] and R f = Q[G f ; 0 ];
[Q_Rf ,info] = glnull ([sys;eye(mu ,mu+md+mf)],struct('m2 ',mf));
info.degs % polynomial basis degrees
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% determine 1-st and 2-nd order scalar output designs
Q1_Rf1 = glmcover1 ([0 1;eye (2)]* Q_Rf ,1); % [ Q(1) R(1)

f ]
Q2_Rf2 = glmcover1 ([1 1;eye (2)]* Q_Rf ,1); % [ Q(2) R(2)

f ]

% compute stable left coprime factorizations
opt_glcf = struct('sdeg ',-1,'smarg ',-1);
Q1_Rf1 = glcf(Q1_Rf1 ,opt_glcf );
Q2_Rf2 = glcf(Q2_Rf2 ,opt_glcf );

% compute Q(1) and R(1)
f ; check admissibility

Q1 = Q1_Rf1 (:,1:p+mu); Rf1 = Q1_Rf1(:,p+mu+1:end);
g1 = abs(evalfr(Rf1 ,1i)), max(g1)/min(g1)

% compute Q(2) and R(2)
f ; check admissibility

Q2 = Q2_Rf2 (:,1:p+mu); Rf2 = Q2_Rf2(:,p+mu+1:end);
g2 = abs(evalfr(Rf2 ,1i)), max(g2)/min(g2)

% display results
tf(Q1), tf(Q2)

7.6 Coprime Factorization Techniques

A computational paradigm used in all synthesis algorithms is the adjustment of the
filter dynamics by premultiplying the current filter Q(λ), and, if appropriate, the
TFMs Rw(λ) and R f (λ) of its internal form, with a square M(λ), such that the
updated filters Q̂(λ) := M(λ)Q(λ), as well as R̂w(λ) := M(λ)Rw(λ) and R̂ f (λ) :=
M(λ)R f (λ), are physically realizable (i.e., proper) and have only poles in a “good”
domainCg of the complex planeC. These computations can be implicitly performed
by determining a left fractional factorization (see Sect. 9.1.6) of the compound TFM
[ Q(λ) Rw(λ) R f (λ) ] in the form

[ Q(λ) Rw(λ) R f (λ) ] = M−1(λ)
[
Q̂(λ) R̂w(λ) R̂ f (λ)

]
, (7.51)

such that both the numerator factor
[
Q̂(λ) R̂w(λ) R̂ f (λ)

]
and the denominator factor

M(λ) are proper and have poles only in Cg . Let us assume that Q(λ) and the TFMs
Rw(λ) and R f (λ) of its internal form have the joint descriptor realization

[
Q(λ) Rw(λ) R f (λ)

] =
[

Ãl − λẼl B̃l B̃w B̃ f

C̃l D̃l D̃w D̃ f

]

, (7.52)

and, therefore, share the descriptor pair ( Ãl − λẼl, C̃l). As we have seen in the
previous sections, such state-space realizations are instrumental in developing filter
updating formulas for both the implementation and internal forms of the fault detec-
tion filters. The LCF-based filter updating techniques, discussed in this section, fully

http://dx.doi.org/10.1007/978-3-319-51559-5_9


180 7 Computational Issues

support the updating-based synthesis methods presented in this book. Consequently,
the resulting factors

[
Q̂(λ) R̂w(λ) R̂ f (λ)

]
and M(λ) are determined with descriptor

realizations of the form (see also Sect. 9.2.6)

[
Q̂(λ) R̂w(λ) R̂ f (λ)

] =
[

Âl − λÊl B̂l B̂w B̂ f

Ĉl D̂l D̂w D̂ f

]

, (7.53)

M(λ) =
[

Âl − λÊl B̂M

Ĉl D̂M

]

, (7.54)

which, once again, share the same descriptor pair ( Âl − λÊl, Ĉl).
In the synthesis procedures presented in Chap.5 we encounter two distinct cases,

where the factorization (7.51) is necessary. The first case consists in determining
M(λ) as the denominator factor of a stable and proper LCF of a generalized (possibly
improper) system (see Sect. 9.2.6). This case is encountered—for example, at Step 3)
of the Procedure EFD, where the proper TFMs Q(λ), Rw(λ) and R f (λ) resulted
at Step 2) have descriptor realizations of the form (7.52) (see also (7.44)), with
Ẽl invertible, and where the pencil Ãl − λẼl may have “bad” eigenvalues, which
are either unstable or exhibit unsatisfactory dynamics for the filter Q(λ). A similar
computation is performed at Step 4) of the Procedure AFD, where a proper and
stable LCF of a generalized system is computed, which is possibly improper, or
unstable, or both. Such a computation can be also encountered—for example, at
Step 1) of all synthesis algorithms, when the original system (2.1) is not proper and
has no control and disturbance inputs, or it may be necessary (see Remark5.2) to
obtain a proper and stable rational left nullspace basis, from an ad-hoc choice as in
(5.5).

To determine the LCF in (7.51), the Procedure GRCF, presented in Sect. 10.3.5,
can be used to compute the RCF of the transposed (dual) compound TFM

[ Q(λ) Rw(λ) R f (λ) ]T = [
Q̂(λ) R̂w(λ) R̂ f (λ)

]T (
MT (λ)

)−1
.

When applying Procedure GRCF to the dual TFM [ Q(λ) Rw(λ) R f (λ) ]T , the
updating operation

[ Q(λ) Rw(λ) R f (λ) ]T ← [ Q(λ) Rw(λ) R f (λ) ]T MT (λ) = [
Q̂(λ) R̂w(λ) R̂ f (λ)

]T

is implicitly performed, and the resulting realizations of Q̂(λ), R̂w(λ), and R̂ f (λ) in
(7.53) share the descriptor pair ( Âl − λÊl, Ĉl).

TheRCFalgorithmunderlyingProcedureGRCF can be interpreted as a recursive
(partial) pole assignment method, which successively moves the “bad” observable
eigenvalues of Ãl −λẼl into the “good” regionCg . A useful feature of this factoriza-
tion algorithm is that “bad” unobservable eigenvalues of Ãl − λẼl are automatically

http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_2
http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_10
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detected and, therefore, are removed from the resulting final descriptor representation
(7.53). This feature automatically ensures that the order of the resulting descriptor
realization (7.53) is always equal to or less than the order of the initial descriptor
realization (7.52).

The second case consists in computing a diagonalM(λ) as the denominator factor
of a stable and proper fractional representation of a possibly improper fault detection
filter Q(λ). This computation is performed at Step 3) of Procedure EMM, at Step 4)
of Procedure EMMS, or at Step 5) of Procedure AMMS. In all these procedures,
the resulting M(λ) serves for updating an initial reference model Mr (λ) and has the
form

M(λ) = diag
(
M (1)(λ), . . . , M (m f )(λ)

)
, (7.55)

where M (i)(λ), for i = 1, . . . ,m f , is a scalar proper and stable TFM. To determine
each M (i)(λ), the approach to determine proper and stable LCFs, described previ-
ously, can be applied to the i-th row Q(i)(λ) of Q(λ), and, if appropriate, jointly
to the i-th rows R(i)

w (λ) and R(i)
f (λ) of Rw(λ) and R f (λ), respectively. Assume that

[ Q(λ) Rw(λ) R f (λ) ] has the realization in (7.52) and we denote C̃ (i)
l , D̃(i)

l , D̃(i)
w , and

D̃(i)
f , the i-th rows of the matrices C̃l , D̃l , D̃w, and D̃ f , respectively. The descriptor

realization of
[
Q(i)(λ) R(i)

w (λ) R(i)
f (λ)

]
is

[
Q(i)(λ) R(i)

w (λ) R(i)
f (λ)

]
=

[
Ãl − λẼl B̃l B̃w B̃ f

C̃ (i)
l D̃(i)

l D̃(i)
w D̃(i)

f

]

, (7.56)

and is, in general, unobservable (and even undetectable). The factor M (i)(λ) results
from the stable and proper LCF

[ Q(i)(λ) R(i)
w (λ) R(i)

f (λ) ] = (
M (i)(λ)

)−1[ Q̂(i)(λ) R̂(i)
w (λ) R̂(i)

f (λ) ] , (7.57)

where Q̂(i)(λ), R̂(i)
w (λ), and R̂(i)

f (λ) are the i-th rows of the resulting Q̂(λ), R̂w(λ), and
R̂ f (λ) in (7.53). The descriptor system realizations of the factors Q̂(i)(λ), R̂(i)

w (λ),
R̂(i)

f (λ) and M (i)(λ) result in the form

[
Q̂(i)(λ) R̂(i)

w (λ) R̂(i)
f (λ)

]
=

[
Â(i)
l − λÊ (i)

l B̂(i)
l B̂(i)

w B̂(i)
f

Ĉ (i)
l D̂(i)

l D̂(i)
w D̂(i)

f

]

, (7.58)

M (i)(λ) =
[

Â(i)
l − λÊ (i)

l B̂(i)
M

Ĉ (i)
l D̂(i)

M

]

. (7.59)
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In general, both state-space realizations in (7.58) and (7.59) are nonminimal, because
the descriptor pair ( Â(i)

l −λÊ (i)
l , Ĉ (i)

l ) may be unobservable (albeit detectable, being
stable). However, controllability is generically preserved, provided the original real-
ization (7.52) (thus also (7.56)) is controllable.

To compute the LCF in (7.57), the Procedure GRCF can be employed, by com-
puting the RCF of the appropriate dual system. A main advantage of using this pro-
cedure is its general applicability, regardless the underlying descriptor realization is
finite detectable or not, or if it is infinite-observable or not (undetectable eigenvalues
are simply removed from the resulting factors). The dimension of the state-space
realization of the resulting descriptor system (7.58) can be evaluated in terms of the
eigenvalues of Ãl − λẼl , and is given by the sum of four numbers: (1) the number
of stable eigenvalues (which are kept in the resulting Â(i)

l − λÊ (i)
l ); (2) the number

of observable unstable eigenvalues (which are moved to the stable domain); (3) the
number of observable nonsimple infinite eigenvalues (which are moved to finite val-
ues in the stable domain); and (4) the number of simple infinite eigenvalues (which
are the same as of Ãl − λẼl). Therefore, to determine an irreducible realization, it is
usually sufficient to only remove the unobservable stable eigenvalues of Â(i)

l −λÊ (i)
l

(which are the same as the unobservable stable eigenvalues of Ãl −λẼl). The overall
descriptor realization in (7.53) is obtained by simply stacking them f computed rows
of the numerator factors (see Sect. 9.2.3 for the formulas for building column con-
catenation of descriptor systems). The resulting final descriptor realization (7.53) has
block-diagonal matrices Âl , Êl , and Ĉl , and is, in general, nonminimal. Irreducible
andminimal realizations of descriptor systems can be computed using the algorithms
described in Sect. 10.3.1.

The above considerations apply also to the realization of M (i)(λ) in (7.59). How-
ever, a useful feature of usingProcedureGRCF is the possibility to obtain aminimal
descriptor system realization

M (i)(λ) =
[

Â(i)
l,o − λÊ (i)

l,o B̂(i)
M,o

Ĉ (i)
l,o D̂(i)

M,o

]

, (7.60)

which can be simply read out from the resulting realization of M (i)(λ) in (7.59) (see
Sect. 10.3.5 for details). The resulting realization of M(λ) in (7.55) can be obtained
by employing the diagonal stacking formulas of descriptor systems (see Sect. 9.2.3).

7.7 Outer–Inner Factorizations

An important computation in solving several approximate synthesis problems
involves the quasi-co-outer–co-inner factorization of a full row rank TFM.We recall
(see Sect. 9.1.8) that a quasi-co-outer TFMhas full column rank (i.e., is injective) and
has only zeros in the closed stability domain Cs . A particular aspect enforced in all

http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_10
http://dx.doi.org/10.1007/978-3-319-51559-5_10
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approximate synthesis procedures is that the quasi-co-outer factor has also full row
rank, and therefore, is invertible. The main advantage of this feature is the easiness
of performing the subsequent filter updating operations, which involve the inverses
of the quasi-co-outer factors. In some cases, we need to determine the extended
quasi-outer–inner factorization, where a square co-inner factor results.

The quasi-outer–co-inner factorization of the q × mw TFM Rw(λ), of full row
rank, is computed at Step 3) of the Procedure AFD in the form

Rw(λ) = Go(λ)Gi (λ), (7.61)

where the resulting q × q quasi-outer factor Go(λ) is invertible and the q × mw co-
inner TFM Gi (λ) has full row rank. The extended quasi-outer–co-inner factorization
of the compound q × (m f + mw) TFM

[
R f (λ) Rw(λ)

]
, of full row rank q ≥ m f ,

is computed at Step 3) of Procedure AMMS in the form

[
R f (λ) Rw(λ)

] = [Go(λ) 0 ]Gi (λ), (7.62)

where the q × q quasi-outer factor Go(λ) is invertible and Gi (λ) is an (m f +mw) ×
(m f +mw) square co-inner factor. Subsequently, with Q3(λ) = G−1

o (λ), the follow-
ing updating operations are performed

[ Q(λ) Rw(λ) R f (λ) ]←[ Q(λ) Rw(λ) R f (λ) ] :=Q3(λ)[ Q(λ) Rw(λ) R f (λ) ].
(7.63)

In this section we discuss the computation of the above factorizations and show how
the subsequent updating can be efficiently performed.

We assume that at the end of Step 2) of either Procedure AFD or Procedure
AMMS, the proper TFMs Q(λ), Rw(λ) and R f (λ) have the observable state-space
realizations in (7.44), which, for convenience, are reproduced below

[
Q(λ) Rw(λ) R f (λ)

] =
[

Ãl − λẼl B̃l B̃w B̃ f

C̃l D̃l D̃w D̃ f

]

, (7.64)

where Ẽl is invertible. Furthermore, we can always assume that D̃l has full row
rank. To compute the factorizations in (7.61) or (7.62), we apply the inner–outer
factorization method presented in Sect. 10.3.6 to the transposed TFMs RT

w (λ) and
[ Rw(λ) R f (λ) ]T , respectively, to obtain the quasi-outer factor GT

o (λ) and inner
factorGT

i (λ). The resulting descriptor system realization of the quasi-co-outer factor
Go(λ) has the form

Go(λ) =
[
Ãl − λẼl B̃o

C̃l D̃o

]

, (7.65)

http://dx.doi.org/10.1007/978-3-319-51559-5_10
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where B̃o and D̃o are matrices with q columns. For the co-inner factors Gi (λ),
in each case, explicit minimal order descriptor realizations are obtained from either
Proposition10.6, in the continuous-time case, or Proposition10.7, in the discrete-
time case.

To perform the updating operations in (7.63), we can alternatively solve the linear
rational system of equations

Go(λ)
[
Q(λ) Rw(λ) R f (λ)

]=[
Q(λ) Rw(λ) R f (λ)

]
. (7.66)

Observe thatGo(λ), Q(λ), Rw(λ) and R f (λ) have descriptor realizationswhich share
the same observable pair ( Ãl −λẼl, C̃l). This allows to compute the solution as (see
also Sect. 7.9 for more details)

[
Q(λ) Rw(λ) R f (λ)

] = [
0 Iq

]
Y (λ),

where Y (λ) is the rational solution of the linear polynomial equation

[
Ãl − λẼl B̃o

C̃l D̃o

]
Y (λ) =

[
B̃l B̃w B̃ f

D̃l D̃w D̃ f

]
. (7.67)

Since the system matrix

So(λ) =
[
Ãl − λẼl B̃o

C̃l D̃o

]
(7.68)

of the descriptor system realization (7.65) is invertible, we obtain

[
Q(λ) Rw(λ) R f (λ)

] = [
0 Iq

]
S−1
o (λ)

[
B̃l B̃w B̃ f

D̃l D̃w D̃ f

]
,

which leads to the explicit descriptor realizations of the updated terms

[
Q(λ) Rw(λ) R f (λ)

] =
⎡

⎣
Ãl − λẼl B̃o B̃l B̃w B̃ f

C̃l D̃o D̃l D̃w D̃ f

0 −Iq 0 0 0

⎤

⎦ . (7.69)

In obtaining the realization (7.69), implicit pole-zero cancellations take place,
leading to the cancellation of all eigenvalues of Ãl − λẼl . This feature allows to
perform the updating operation in (7.63) using an explicit updating formula, based
on the realization (7.69), and was the main reason for enforcing the full row rank
property of Rw(λ), in Procedure AFD, or of [ Rw(λ) R f (λ) ], in Procedure AMMS.

Regarding the structural properties of the resulting realization (7.69), we have the
following result.

Proposition 7.3 If the realization (7.64) of
[
Q(λ) Rw(λ) R f (λ)

]
is irreducible and

D̃l has full row rank, then the realization (7.69) is irreducible.

http://dx.doi.org/10.1007/978-3-319-51559-5_10
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Proof Since the realization (7.64) is observable,

[
Ãl − λẼl

C̃l

]
has full column rank

for all λ ∈ C. The observability of the realization (7.69), then follows from the full
column rank property of ⎡

⎣
Ãl − λẼl B̃o

C̃l D̃o

0 −Iq

⎤

⎦ .

To prove the controllability of the realization (7.69), we have to show that for all
λ ∈ C the matrix

S̃(λ) :=
[
Ãl − λẼl B̃o B̃l B̃w B̃ f

C̃l D̃o D̃l D̃w D̃ f

]

has full row rank. This matrix is the systemmatrix of an irreducible proper descriptor
realization of the joint TFM

[
Go(λ) Q(λ) Rw(λ) R f (λ)

]
, which has no zeros (finite

or infinite) becauseQ(∞) = D̃l has full row rank. It follows that S̃(λ)has no invariant
zeros as well, and therefore has full row rank for all λ ∈ C. �

Even if the realization (7.69) is irreducible, it may still be non-minimal due to
the presence of simple infinite eigenvalues. For example, if Go(λ) has no infinite
zeros (e.g., when solving the standard cases of the AFDP or AMMP), then D̃o

is invertible and the descriptor realization (7.69) is proper. In this case, the simple
infinite eigenvalues can be eliminated to obtain a reduced order descriptor realization.
For example, a reduced order realization of Q(λ) results as

Q(λ) =
[
Ãl− B̃o D̃−1

o C̃l−λẼl B̃l− B̃o D̃−1
o D̃l

D̃−1
o C̃l D̃−1

o D̃l

]

.

Similar reduced order realizations can be obtained for Rw(λ) and R f (λ) too.
When solving the standard cases of the AFDP or AMMP, the resulting realiza-

tion (7.69) has only stable poles, which are the finite zeros of Go(λ). Looking to
the details of the inner–outer factorization procedure (see Sect. 10.3.6), these zeros
originate partly from the performed column compression and partly from the unsta-
ble zeros of the underlying TFMs to be factorized (i.e., R f (λ) or [ Rw(λ) R f (λ) ]),
which are moved into stable positions. These stable zeros are also the (only) poles
of the inner factor Gi (λ). If the TFMs to be factorized have zeros also in ∂Cs (e.g.,
in the nonstandard cases), then these zeros become also zeros of Go(λ), but not
poles of Gi (λ). Therefore, in this case, the resulting realizations of Rw(λ) or of
[ Rw(λ) R f (λ) ] are uncontrollable.

For the quasi-co-outer–co-inner factorization of Rw(λ) in (7.61), used in Proce-
dure AFD, a proper minimal state-space realization of Rw(λ) can be explicitly deter-
mined, by observing that Rw(λ) = G−1

o (λ)Rw(λ) = Gi (λ). Therefore, when using
the inner–outer factorization approach presented in Sect. 10.3.6, the resulting mini-
mal proper state-space realization of the co-inner factorGi (λ) is obtained from either

http://dx.doi.org/10.1007/978-3-319-51559-5_10
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Proposition10.6, in the continuous-time case, or Proposition10.7, in the discrete-time
case. Similarly, for the quasi-co-outer–co-inner factorization of [ Rw(λ) R f (λ) ] in
(7.62), used in ProcedureAMMS, an explicit properminimal state-space realization
of [ Rw(λ) R f (λ) ] can be determined from the resulting descriptor realization of the
(m f +mw)× (m f +mw) co-inner factor Gi (λ). Consider the co-inner factor Gi (λ),
partitioned row-wise to correspond to the column structure of [Go(λ) 0 ] in (7.62),
in the form

Gi (λ) =
[
Gi,1(λ)

Gi,2(λ)

]
, (7.70)

where Gi,1(λ) and Gi,2(λ) have q and m f + mw − q rows, respectively. It follows

[ Rw(λ) R f (λ) ] = G−1
o (λ)[ Rw(λ) R f (λ) ] = [ Iq 0 ]Gi (λ) = Gi,1(λ) .

Remark 7.5 At Step 3) of the Procedure AMMS, we need additionally to compute
the TFMs F̃1(λ) and F̃2(λ), which define the least distance problem to be solved at
the next step. For a given m f × m f reference model with TFM Mr (λ) and with the
square co-inner factor Gi (λ) partitioned as in (7.70), we need to evaluate

[ F̃1(λ) F̃2(λ) ] := [
Mr (λ) 0

]
G∼

i (λ) = [
Mr (λ) 0

] [G∼
i,1(λ) G∼

i,2(λ) ] ,

Assume that the conjugate TFM G∼
i (λ) has a descriptor system realization of the

form

G∼
i (λ) = [G∼

i,1(λ) G∼
i,2(λ) ] =

[
Ai − λEi Bi,1 Bi,2

Ci Di,1 Di,2

]
, (7.71)

where all generalized eigenvalues of the pair (Ai , Ei ) are unstable (see Sect. 9.2.3 for
formulas to build realizations of conjugated TFMs). The use of a descriptor system
realization (instead of a standard state-space realization) is necessary to cover all
possible cases. While for a continuous-time system with TFM Gi (s), the resulting
Ei is always invertible, this is not generally true for a discrete-time systemwith TFM
Gi (z), for which Ei can be singular if Gi (z) has poles in the origin. In such a case,
the pair (Ai , Ei ) has infinite (unstable) generalized eigenvalues. Let the quadruple
(Ar , Br ,Cr , Dr ) describe the state-space realization of [ Mr (λ) 0 ]. Then, using
(7.71), the state-space realization of [ F̃1(λ) F̃2(λ) ] has the form

[ F̃1(λ) F̃2(λ) ] =
⎡

⎣
Ar − λI BrCi Br Di,1 Br Di,2

0 Ai − λEi Bi,1 Bi,2

Cr DrCi Dr Di,1 Dr Di,2

⎤

⎦ , (7.72)

where Ar has only stable eigenvalues, while the pair (Ai , Ei ) has only unstable
generalized eigenvalues. �
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7.8 Spectral Factorizations

Let G(λ) be a proper TFM. A first problem we discuss in this section is the com-
putation, for a stable TFM G(λ), of a minimum-phase spectral factor Go(λ) which
solves the left spectral factorization problem

γ 2 I + G(λ)G∼(λ) = Go(λ)G∼
o (λ), (7.73)

where γ > 0. This computation appears in addressing the solution of the nonstandard
AFDP using the regularization approach described in Remark5.8 (see also [52]). A
second problem we consider is the computation, for a TFM G(λ) without poles on
the boundary of the stability domain ∂Cs , of a stable and minimum-phase spectral
factor Go(λ) which solves the left spectral factorization problem

γ 2 I − G(λ)G∼(λ) = Go(λ)G∼
o (λ), (7.74)

where γ > ‖G(λ)‖∞. This computation is repeatedly performed at Step 4) of Pro-
cedure AMMS, when solving the 2-blockH∞-least distance problem, discussed in
Sect. 9.1.10, using the approach described in Sect. 7.10.

For the solution of the considered spectral factorization problems, the numerically
reliable computation of the solutions of the generalized continuous- and discrete-
time algebraic Riccati equation (GCARE, GDARE) is of paramount importance.
Numerically reliable methods for the solution of GCARE and GDARE are discussed
in Sect. 10.2.2.

AssumeG(λ) has a descriptor system realization (A−λE, B,C, D), with invert-
ible E . The spectral factorization problem (7.73) can be equivalently written in the
form

γ 2 I + G(λ)G∼(λ) = [
γ I G(λ)

] [
γ I

G∼(λ)

]
,

which is a standard minimum-phase left spectral factorization problem for the full
row rank G̃(λ) := [

γ I G(λ)
]
(see Sect. 9.1.8). SinceGo(λ) in (7.73) is the co-outer

factor of the co-outer–co-inner factorization of G̃(λ), we can use, for the dual descrip-
tor system realization of G̃T (λ), the results of Theorem9.3, in the continuous-time
case, and of Theorem9.4, in the discrete-time case. The co-outer factor is obtained,
in both cases, in the form

Go(λ) =
[
A − λE −Ks R1/2

C R1/2

]

,

where Ks is the stabilizing output injection gain, obtained from the stabilizing solu-
tion of the appropriate continuous- or discrete-time Riccati equation, with R defined
accordingly.

For the continuous-time case, R = γ 2 I + DDT and Ks is determined as

http://dx.doi.org/10.1007/978-3-319-51559-5_5
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Ks = −(EYsC
T + BDT )R−1 ,

where Ys is the stabilizing solution the dual (filter) GCARE

AY ET + EY AT − (EYCT + BDT )R−1(CY ET + DBT ) + BBT = 0 .

In the discrete-time case, R = RD + CYsCT , with RD := γ 2 I + DDT , and Ks is
determined as

Ks = −(AYsC
T + BDT )R−1,

where Ys is the stabilizing solution of the dual (filter) GDARE

AY AT − EY ET − (AYCT + BDT )(RD +CYCT )−1(CY AT + DBT )+ BBT = 0 .

For the solution of the second left spectral factorization problem (7.74) we assume
that G(λ) has no poles on the boundary of stability domain ∂Cs . Furthermore, in
the continuous-time case, we assume G(λ) is proper. Under these conditions, the
computation of the spectral factor Go(λ) can be done in two successive steps. In the
first step, we compute a right coprime factorization G(λ) = N (λ)M−1(λ), where
the denominator factor M(λ) is inner. It follows that

γ 2 I − G(λ)G∼(λ) = γ 2 I − N (λ)N∼(λ) ,

where N (λ) is proper and has only poles in Cs . Assume G(λ) has a descriptor
system realization (A− λE, B,C, D). In the continuous-time case, we assume E is
invertible, while in the discrete-time case, E may be singular, in which case, the pair
(A, E) has (unstable) infinite eigenvalues. The computation of the RCF with inner
denominator can be done using the Procedure GRCFID described in Sect. 10.3.5,
which determines N (λ) and M(λ) in the form

N (λ) =
[
Ã − λẼ B̃

C̃N D̃N

]

, M(λ) =
[
Ã − λẼ B̃

C̃M D̃M

]

. (7.75)

This procedure can be interpreted as a recursive partial pole assignment method,
which uses the generalized real Schur form of the pair (A, E) for an initial separation
of the stable and unstable eigenvalues, and determines the resulting pair ( Ã, Ẽ) also
in a generalized real Schur form, where the stable eigenvalues of the pair (A, E) are
preserved, while the controllable unstable generalized eigenvalues are successively
moved to stable locations,which are symmetrically placedwith respect to the stability
domain boundary ∂Cs . The factorization method is applicable regardless the original
descriptor system realization is stabilizable or not, because all unstable uncontrollable
eigenvalues are simply removed from the resulting factors.

In the second step, we determine the stable andminimum-phase left spectral factor
Go(λ), which satisfies

http://dx.doi.org/10.1007/978-3-319-51559-5_10
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γ 2 I − N (λ)N∼(λ) = Go(λ)G∼
o (λ) .

The descriptor system realization of Go(λ) is obtained in the form

Go(λ) =
[
Ã − λẼ −Ks R1/2

C̃ R1/2

]

,

where Ks is the stabilizing output injection gain, obtained from the stabilizing solu-
tion of the appropriate continuous- or discrete-time Riccati equation, with R defined
accordingly.

In the continuous-time case, using the results of Lemma9.14, we have

R = γ 2 I − D̃ D̃T ,

Ks = (ẼYsC̃T + B̃ D̃T )R−1

and Ys is the stabilizing solution of the GCARE

ÃY ẼT + ẼY ÃT + (ẼY C̃T + B̃ D̃T )R−1(C̃Y ẼT + D̃ B̃T ) + B̃ B̃T = 0 .

In the discrete-time case, using the results of Lemma9.15, we have

RD = γ 2 I − D̃ D̃T ,

R = RD − C̃YsC̃T ,

Ks = (B̃ D̃T + ÃYsC̃T )R−1

and Ys is the stabilizing solution of the GDARE

ÃY ÃT − ẼY ẼT −( ÃY C̃T + B̃ D̃T )(−RD+C̃Y C̃T )−1(C̃Y ÃT + D̃ B̃T )+ B̃ B̃T = 0 .

7.9 Linear Rational Equations

In this section we discuss the computational aspects of solving linear rational equa-
tions encountered in the synthesis algorithms presented in Chap. 5. First, we consider
an important particular case of solving the equation

G(λ)X (λ) = F(λ) , (7.76)

with G(λ) a p × p invertible rational matrix and F(λ) an p × q (arbitrary) ratio-
nal matrix. Such a computation is encountered in performing the filter updating
operations at Step 3) of the Procedure AFD, at Step 3) of Procedure EMMS
and at Step 3) of the Procedure AMMS. In the Procedures AFD and AMMS,
G(λ) = Go(λ), where Go(λ) is the invertible quasi-outer factor resulting from

http://dx.doi.org/10.1007/978-3-319-51559-5_9
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particular quasi-co-outer–co-inner factorizations. The corresponding updating oper-
ations have been already discussed in Sect. 7.7. In Procedure EMMS, a similar
computation is performed with G(λ) = R f (λ), where R f (λ) is an invertible TFM
representing the current TFM from faults to residual.

A straightforward way to determine a descriptor realization of X (λ) starting with
existing descriptor realizations of G(λ) and F(λ) is to form first G−1(λ) explicitly
and then to compute a minimal realization of G−1(λ)F(λ). Fortunately, we can
exploit a nice common feature of all the above computations, where the descriptor
realizations of G(λ) and F(λ) have the forms

G(λ) =
[
A − λE BG

C DG

]
, F(λ) =

[
A − λE BF

C DF

]
, (7.77)

which share the observable descriptor system pair (A−λE,C). It is easy to observe
that any solution of (7.76) is also part of the solution of the linear polynomial equation

[
A − λE BG

C DG

]
Y (λ) =

[
BF

DF

]
, (7.78)

where Y (λ) =
[
W (λ)

X (λ)

]
. Therefore, alternative to solving (7.76) using explicit inver-

sion of G(λ), we can solve instead (7.78) for Y (λ) and compute X (λ) as

X (λ) = [
0 Ip

]
Y (λ) . (7.79)

It is straightforward to see that a descriptor system realization of X (λ) can be explic-
itly obtained as

X (λ) =
⎡

⎣
A − λE BG BF

C DG DF

0 −Ip 0

⎤

⎦ . (7.80)

Thus, all updating computations can be performed explicitly without any numerical
computations. For example, in theProcedureAFD the linear rational equation (7.66)
is solved via the equivalent linear pencil-based Eq. (7.67) leading to the explicit
realization (7.69). Entirely similar realizations can be employed also in Procedure
AMMS.

An important case is when the Eq. (7.76) has a non-unique solution and the non-
uniqueness can be exploited to determine a special particular solution, as for example,
one having the least McMillan degree. Assume that G(λ) and F(λ) are p × m and
p × q rational matrices, respectively, and X (λ) is a (non-unique) m × q solution.
The solvability condition of Eq. (7.76) results from Lemma9.4 (applied to the dual
problem GT (λ)XT (λ) = FT (λ)) as

rank G(λ) = rank[G(λ) F(λ) ]

http://dx.doi.org/10.1007/978-3-319-51559-5_9
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and assume that it is fulfilled. The general solution of (7.76) can be expressed as

X (λ) = X0(λ) + Xr (λ)Y (λ),

where X0(λ) is any particular solution of (7.76) and Xr (λ) is a rational basis matrix
for the right nullspace of G(λ). By choosing Y (λ) appropriately, we aim to achieve
that X (λ) has the least possible McMillan degree. The numerical solution of this
problem is addressed in details in Sect. 10.3.7, where a general numerical approach
is provided, which relies on combining orthogonal pencil reduction techniques and
minimal dynamic covers-based order reduction. The computational algorithm can
be equally employed to solve the dual equation X (λ)G(λ) = F(λ), by solving for
Y (λ) = XT (λ) the equation GT (λ)Y (λ) = FT (λ).

The solution of the dual equation X (λ)G(λ) = F(λ) is encountered at Step 2) of
theProcedureEMM, when solving theEMMPformulated in Sect. 3.5.5. In this case,
the rational matrix G(λ) is built from the reduced system (5.11) as G(λ) = G f (λ),
while F(λ) is set as F(λ) = Mr (λ), where Mr (λ) is the TFM of a desired reference
model. In this case, the solution X (λ) represents one of the factors in the product form
representation of the FDI filter. However, according to Remark5.13, the EMMP can
be also solved directly to determine a solution X (λ) which represents a preliminary
or even the final synthesis of a FDI filter. In this case, G(λ) and F(λ) stay for

G(λ) =
[
Gu(λ) Gd(λ) G f (λ)

Imu 0 0

]
, F(λ) = [

0 0 Mr (λ)
]

.

The general solution of the dual equation X (λ)G(λ) = F(λ) can be expressed as

X (λ) = X0(λ) + Y (λ)Xl(λ),

where X0(λ) is any particular solution and Xl(λ) is a rational basis matrix of the left
nullspace of G(λ). By choosing Y (λ) appropriately, we aim to achieve that X (λ) has
the least possible McMillan degree.

7.10 Solution of Least Distance Problems

In this section we discuss the computational aspects involved by the solution of the
H∞ least distance problem (H∞-LDP)

min
Y (λ)∈H∞

∥∥[
F̃1(λ) − Y (λ) F̃2(λ)

]∥∥∞ , (7.81)

where F̃1(λ) and F̃2(λ) are rational matrices without poles in ∂Cs , the boundary
of the stability domain. In the continuous-time setting we additionally assume that
F̃1(s) and F̃2(s) are proper TFMs. If F̃2(λ) = 0, then we have an 1-block H∞-LDP,

http://dx.doi.org/10.1007/978-3-319-51559-5_10
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http://dx.doi.org/10.1007/978-3-319-51559-5_5
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while if F̃2(λ) �= 0 then we have a 2-block H∞-LDP. The solution of a H∞-LDP is
performed at Step 4) of Procedure AMMS presented in Sect. 5.7.

Conceptual algorithms for the solution of the 1-block and 2-block H∞-LDP are
described in Sect. 9.1.10, in the context of solving theH∞ model-matching problem
(H∞-MMP). In this section, we discuss the underlying computational algorithms in
terms of descriptor system representations. For this we assume

[
F̃1(λ)and F̃2(λ)

]

have the descriptor representation

[
F̃1(λ) F̃2(λ)

] =
[
Ã − λẼ B̃1 B̃2

C̃ D̃1 D̃2

]

. (7.82)

In the continuous-time case we assume Ẽ invertible.
When solving the AMMP using Procedure AMMS,

[
F̃1(λ) F̃2(λ)

]
is computed

as [
F̃1(λ) F̃2(λ)

] = [
Mr (λ) 0

]
G∼

i (λ),

whereMr (λ) is theTFMof adesired referencemodel (assumedproper and stable) and
Gi (λ) is a square inner factor (i.e., G−1

i (λ) = G∼
i (λ) is anti-stable). In Remark7.5,

the descriptor system realization (7.82) is constructed as

[
Ã − λẼ B̃1 B̃2

C̃ D̃1 D̃2

]

:=
⎡

⎣
Ar − λI BrCi Br Di,1 Br Di,2

0 Ai − λEi Bi,1 Bi,2

Cr DrCi Dr Di,1 Dr Di,2

⎤

⎦ , (7.83)

where the quadruple (Ar , Br ,Cr , Dr ) is a standard state-space realization of the
stable TFM [ Mr (λ) 0 ] and the anti-stable TFM G∼

i (λ) has the descriptor realization
(7.71). It follows that Ar has only stable eigenvalues, while the pair (Ai , Ei ) has
only unstable generalized eigenvalues. This structure can be exploited to simplify
the computations when solving theH∞-LDP.

Solution of the 1-block H∞-LDP. The stable optimal solution Y (λ) of the 1-block
problem can be computed by solving an optimal Nehari-problem. Let Ls(λ) be the
stable part and let Lu(λ) be the unstable part of the additive decomposition

Ls(λ) + Lu(λ) = F̃1(λ) . (7.84)

Then, for the optimal solution Y (λ) we have successively

‖F̃1(λ) − Y (λ)‖∞ = ‖Lu(λ) − Ỹ (λ)‖∞ = ‖L∼
u (λ)‖H , (7.85)

where Ỹ (λ) is the optimal Nehari solution and Y (λ) = Ỹ (λ) + Ls(λ).
For the computation of the additive spectral decomposition (7.84), the Procedure

GSDEC, described in Sect. 9.2.5, can be used. Basically, using suitable invertible
matrices U and Z , the transformed pencil U ( Ã − λẼ)Z results in a block diagonal

http://dx.doi.org/10.1007/978-3-319-51559-5_5
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form with two diagonal blocks, where one block contains the stable eigenvalues and
the secondblock contains the unstable eigenvalues.Byperforming a systemsimilarity
transformation using the matricesU and Z , we obtain the system representation with
partitioned matrices of the form

[
U ÃZ − λU Ẽ Z U B̃1

C̃ Z D

]

=
⎡

⎣
As − λEs 0 B1,s

0 Au − λEu B1,u

Cs Cu D

⎤

⎦ , (7.86)

where Λ(As − λEs) ⊂ Cs and Λ(Au − λEu) ⊂ Cu . It follows that

Ls(λ) =
[
As − λEs B1,s

Cs D

]
, Lu(λ) =

[
Au − λEu B1,u

Cu 0

]
.

To determine U and Z using the approach described in Sect. 9.2.5, the two main
computations are the reduction of the matrix pair ( Ã, Ẽ) to an ordered generalized
real Schur form (GRSF) using the QZ-algorithm (see Sect. 10.1.4) and the solution
of a generalized Sylvester system of equations (see Sect. 10.2.1).

For the computation of the solutionY (λ) of the optimalNehari-problem (7.85), the
Procedure GNEHARI, presented in Sect. 10.4.5, can be employed. If the resulting
optimal solution is Y (λ) = ( Â − λÊ, B̂, Ĉ, D̂), then the overall solution Y (λ) =
Ls(λ) + Y (λ) has the descriptor system realization

Y (λ) =
⎡

⎣
As − λEs 0 B1,s

0 Â − λÊ B̂

Cs Ĉ D + D̂

⎤

⎦ .

When solving the AMMP using Procedure AMMS, the structure of the real-
ization (7.83) can be exploited to simplify the computation of the additive spectral
separation (7.84). Since Ar has only stable eigenvalues and all generalized eigenval-
ues of the pair (Ai , Ei ) are unstable, the initial descriptor system realization (7.83) is
already with separated stable-unstable spectrum. Therefore, using orthogonal trans-
formations, the matrix Ar can be separately reduced to a RSF, while the matrix pair
(Ai , Ei ) can be separately reduced to a GRSF. Therefore, we can assume that the
initial realizations of Mr (λ) and G∼

i (λ) are such that Ar is in a RSF, while the pair
(Ai , Ei ) is in a GRSF.

To achieve the block diagonal form in (7.86) of matricesU ÃZ andU Ẽ Z , we can
use the particular transformation matrices

U =
[
I X
0 I

]
, Z =

[
I −XEi

0 I

]
,

http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_10
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where X satisfies the generalized Sylvester equation

X Ai − Ar XEi = −BrCi .

This equation can be solved using algorithms discussed in Sect. 10.2.1. In this way,
instead of solving a system of two Sylvester equations, we have to only solve a single
generalized Sylvester equation. The resulting elements of the additive decomposition
(7.84) are

Ls(λ) =
[
Ar − λI Br Di,1 + XBi,1

Cr Dr Di,1

]
, Lu(λ) =

[
Ai − λEi Bi,1

DrCi − Cr XEi 0

]
.

If the resulting optimal solution is Ỹ (λ) = ( Â − λÊ, B̂, Ĉ, D̂), then the overall
solution Y (λ) = Ls(λ) + Ỹ (λ) has the descriptor system realization

Y (λ) =
⎡

⎣
Ar − λI 0 Br Di,1 + XBi,1

0 Â − λÊ B̂

Cr Ĉ Dr Di,1 + D̂

⎤

⎦ .

Solution of the 2-block H∞-LDP. Following the conceptual procedure described
in Sect. 9.1.10, a stable optimal solution Y (λ) of the 2-block least distance problem
can be approximately determined as the solution of the suboptimal 2-block least
distance problem

‖[ F̃1(λ) − Y (λ) F̃2(λ) ]‖∞ < γ, (7.87)

where γopt < γ ≤ γopt +ε, with ε an arbitrary user specified (accuracy) tolerance for
the least achievable value γopt of γ . The standard solution approach is a bisection-
based γ -iterationmethod, where the solution of the 2-block problem is approximated
by successively computed γ -suboptimal solutions of appropriately defined 1-block
problems.

To start the γ -iteration, we have to determine γl and γu , the lower and the upper
bounds for γopt , respectively. Such bounds can be computed, for example, as

γl = ∥
∥F̃2(λ)

∥
∥∞, γu = ∥

∥[
F̃1(λ) F̃2(λ)

]∥∥∞ .

To compute these L∞-norms, efficient algorithms can be employed based on exten-
sions of the method of [18] (for which standard numerical tools are available in
Matlab). Note that for computing γu we can exploit that γu = ‖Mr (λ)‖∞ as a
consequence of the all-pass property of G∼

i (λ).
The determined bounds γl and γu on γopt serve for the initialization of the γ -

iteration, which successively updates the lower and upper bounds until their distance

http://dx.doi.org/10.1007/978-3-319-51559-5_10
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is less than or equal to a given threshold (i.e., γu − γl ≤ ε). The main computations
to be performed in one iteration are:

1) Set γ = (γl + γu)/2) and compute, using the method described in Sect. 7.8, the
left spectral factorization

γ 2 I − F̃2(λ)F̃∼
2 (λ) = V (λ)V∼(λ), (7.88)

where V (λ) is biproper, stable and minimum-phase.
2) Compute, using the Procedure GSDEC, the additive decomposition

Ls(λ) + Lu(λ) = V−1(λ)F̃1(λ), (7.89)

where Ls(λ) is the stable part and Lu(λ) is the unstable part.
3) Compute γH := ‖L∼

u (λ)‖H using Procedure GBALMR in Sect. 10.4.4;
if γH < 1, then set γu := γ (γ > γopt ); else, set γl := γ (γ < γopt ).

These steps are repeated until γu − γl ≤ ε, where ε is a given threshold. The sub-
optimal 2-block problem (7.87) has been reduced to the suboptimal 1-block problem

∥∥V−1(λ)
(
F̃1(λ) − Y (λ)

)∥∥∞ ≤ 1 . (7.90)

The stable solution of (7.90) can be computed as

Y (λ) = V (λ)(Ls(λ) + Ys(λ)) , (7.91)

where Ys(λ) is the stable solution of the optimal Nehari problem

‖Lu(λ) − Ys(λ)‖∞ = ‖L∼
u (λ)‖H (7.92)

and can be computed using the Procedure GNEHARI presented in Sect. 10.4.5.
When solving the AMMP using Procedure AMMS, the structure of the real-

ization (7.83) can be exploited to simplify the solution of the 2-block H∞-LDP.
The computation of the spectral factorization (7.88), using the method described in
Sect. 7.8, involves two steps. First, we compute a RCF of F̃2(λ) with inner denom-
inator such that F̃2(λ) = Ñ2(λ)M̃−1

2 (λ), where M̃2(λ) is inner. It follows that
F̃2(λ)F̃∼

2 (λ) = Ñ2(λ)Ñ∼
2 (λ). This computation needs to be performed only once,

before starting the γ -iteration, and suitable algorithms are described in Sect. 10.3.5
(see Procedure GRCFID) for both continuous- and discrete-time cases. The result-
ing stable factor Ñ2(λ) has a descriptor system realization of the form

Ñ2(λ) =
⎡

⎢
⎣
Ar − λI Ari − λEri Br Di,2

0 Ai − λEi Bi,2

Cr Ci D

⎤

⎥
⎦ ,

http://dx.doi.org/10.1007/978-3-319-51559-5_10
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where Ei is nonsingular and Λ(Ai − λEi ) ⊂ Cs . The second step of the method
presented in Sect. 7.8 determines the biproper, stable and minimum-phase factor
V (λ) which solves the left spectral factorization problem

γ 2 I − Ñ2(λ)Ñ∼
2 (λ) = V (λ)V∼(λ)

in the form

V (λ) =
⎡

⎢
⎣
Ar − λI Ari − λEri Bri

0 Ai − λEi Bi

Cr Ci Dri

⎤

⎥
⎦ ,

where Dri is invertible. Recall that this computation involves the solution of a
GCARE or GDARE at each iteration. An explicit realization of the inverse can
be computed in the form

V−1(λ) =

⎡

⎢⎢
⎣

Ar − λI Ari − λEri Bri 0
0 Ai − λEi Bi 0
Cr Ci Dri −I
0 0 I 0

⎤

⎥⎥
⎦ ,

where recall that the inverse V−1(λ) is proper and stable. The nondynamic part
can be eliminated without accuracy loss provided Dri is well conditioned (e.g.,
κ(Dri ) < 104) to obtain a descriptor realization without non-dynamic modes.

To obtain a realization of V−1(λ)F̃1(λ) = V−1(λ)
[
Mr (λ) 0

]
G∼

i,1(λ), we com-
pute first a minimal realization of V−1(λ)

[
Mr (λ) 0

]
as a descriptor system of the

form (A − λE, B,C, D), with E invertible. For this purpose, we can employ the
numerically stable Procedure GIR (see Sect. 10.3.1) to compute irreducible realiza-
tions of descriptor systems, or alternatively, the balancing technique-based Proce-
dureGBALMR (see Sect. 10.4.4) to computeminimal realizations of stable descrip-
tor systems. Using the realization (7.71) of G∼

i,1(λ), we obtain

V−1(λ)F̃1(λ) =
⎡

⎣
A − λE BCi BDi,1

0 Ai − λEi Bi,1

C DCi DDi,1

⎤

⎦ ,

where the pair (A, E) has only stable eigenvalues, while the pair (Ai , Ei ) has only
unstable eigenvalues. This form is structurally similar with the realization of F̃1(λ)

in (7.83), and therefore simplifications arise in the subsequent computations.
To compute the spectral separation (7.89) we perform a similarity transforma-

tion which annihilates the off-diagonal terms. Using the transformation matrices

http://dx.doi.org/10.1007/978-3-319-51559-5_10
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U =
[
I X
0 I

]
, Z =

[
I Y
0 I

]
,

we achieve

U

[
A − λE BCi

0 Ai − λEi

]
Z =

[
A − λE 0

0 Ai − λEi

]
,

provided X and Y satisfy the system of two Sylvester equations

X Ai + AY = −BCi ,

XEi + EY = 0 .

After applying the transformations to the input and output matrices we obtain

U

[
BDi,1

Bi,1

]
=

[
BDi,1 + XBi,1

Bi,1

]
,

[
C DCi

]
Z = [

C CY + DCi

]
.

The stable and unstable terms are given by

Ls(λ) =
[
A − λE BDi,1 + XBi,1

C DDi,1

]

, Lu(λ) =
[

Ai − λEi Bi,1

CY + DCi 0

]

.

In the light of the cancellation theory for continuous-time two-block problems
of [76], pole-zero cancellations occur when forming Y (s) in (7.91). In accordance
with this theory, the expected order of Y (s) is ñ − 1, where ñ is the order of the
realization (7.82). It is conjectured that similar cancellations will occur also for
discrete-time systems, where a cancellation theory for two-block problems is still
missing. Although we were not able to derive an explicit minimal state-space real-
ization of Y (λ), we can safely employ minimal realization procedures as Procedure
GIR to compute irreducible descriptor realizations (see Sect. 10.3.1), or Procedure
GBALMR, which exploits that the resulting Y (λ) is stable (see Sect. 10.4.4).

7.11 Notes and References

Section7.1. The requirements for satisfactory algorithms in the field of numerical
linear algebra have been already formulated in [87]. Classical textbooks which cover
most of standard linear algebra algorithms, such as the solution of linear systems
of equations, linear least-squares problems, standard and generalized eigenvalue
problems are [55, 112].

Section7.2. The ill-conditioning of polynomial-based representations was a con-
stantly discussed subject in the control literature to justify the advantage of using

http://dx.doi.org/10.1007/978-3-319-51559-5_10
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state-space realization-based models for numerical computations. For an authorita-
tive discussion see [116]. More details on these issues are provided in Chap.6 of
[119]. The ill-conditioned polynomial f (s) = (s − 1)(s − 2) · · · (s − 20), with dis-
tinct roots, is known in the numerical literature as theWilkinson polynomial and the
sensitivity of its roots has been analyzed by Wilkinson in [160]. The ill-conditioned
transfer function in Example7.1 has been coined by Daniel Kressner (private com-
munication).

Section7.3. The general procedural framework for the synthesis of fault detection
filters has been formally introduced by the author in [151] and relies on the concept
of integrated synthesis algorithms proposed for solving H2- and H∞-optimal FDI
synthesis problems [146, 147, 150].

Section7.4. The first use of the nullspace method to solve the EFDIP has been
proposed in [101] using a state-space-based approach. The term nullspace method
has been formally introduced in [45], where a polynomial basis-based approach was
used to design minimal order residual generators for fault detection. This approach
has been later extended in [132] to solve the EFDP using rational bases instead poly-
nomial ones. The computation of these bases can be done using numerically stable
algorithms based on the reduction of an extended system pencil to a Kronecker-like
form using orthogonal similarity transformations. The solution of the EFDIP using
a bank of least-order fault detection filters synthesized using the rational nullspace
method has been addressed in [140], where easy to check solvability conditions have
been established in terms of explicit realization of the internal form of the fault detec-
tion filter. The presentation of this section basically relies on [149], where the use
of the nullspace method, as a preliminary reduction step, is the basis for an efficient
solution of the EFDIP. This emerged later as an important computational paradigm
to solve all fault detection problems formulated in this book. It was shown in [144]
that the nullspace method provides a unifying synthesis paradigm of fault detection
filters for most of existing approaches, which can be interpreted as special cases of
this method. The computation of Kronecker-like forms of linear matrix pencils is
discussed in Sect. 10.1.6 and suitable numerically stable algorithms have been pro-
posed, for example, in [8, 9, 24, 95, 115, 128]. Alternative synthesis methods of
fault detection filters for systems with parametric faults have been proposed—for
example, in [26, 48].

Section7.5. The presentation of this section is based on [149] and strongly relies
on the structural details of matrices of the descriptor realization of the nullspace
basis. The order reduction is achieved using Type I minimal dynamic covers [71],
for which reliable computational algorithms have been proposed in [133] for the
standard system case and in [136] for the descriptor system case.

Section7.6. The computation of proper coprime factorizations can be obtained
using the nullspace-based technique proposed in [149], or the stabilization and pole-
assignment-based techniques proposed in [129]. The algorithms for the computation
of stable coprime factorizations of proper systems rely on algorithms based on updat-
ing generalized Schur forms which have been also proposed in [129]. An extension
of these techniques to compute proper and stable coprime factorizations is the basis
of Procedure GRCF presented in Sect. 10.3.5.

http://dx.doi.org/10.1007/978-3-319-51559-5_6
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Section7.7. For the computation of the quasi-co-outer–co-inner factorizations we
can employ the dual of the general algorithm of [97] for the continuous-time case
and the dual of the algorithm of [94] for the discrete-time case. Simplified versions
of these algorithms for the case of proper and full row rank TFMs are presented in
Sect. 10.3.6.

Section7.8. The methods to compute minimum-phase spectral factorizations, and
stable and minimum-phase spectral factorizations represent straightforward exten-
sions, to proper descriptor systems, of the standard solution methods described in
[164]. The new, recursive pole assignment-based algorithm proposed in Sect. 10.3.5,
which underlies Procedure GRCFID for the computation of right coprime factor-
izations with inner denominators, is generally applicable regardless the properties of
the employed descriptor system realization. Alternative direct methods, applicable to
stabilizable or detectable realizations, have been proposed in [96] for the continuous-
time case and in [94] for the discrete-time case.

Section7.9. This section partly relies on the algorithm proposed in [151, Appendix
C] to solve rational systems of equations of the form X (λ)G(λ) = F(λ), which can
serve to obtain particular solutions of theEMMP inProcedureEMM. This algorithm
can be seen as the first step of a general algorithm proposed in [134] to solve the dual
rational systems of equations of the formG(λ)X (λ) = F(λ), which also includes the
computation of a least-order solution. The complete algorithm to solve this equation
is presented in Sect. 10.3.7 and form the basis of a complete synthesis procedure to
solve the EMMP proposed in [135].

Section7.10. The computational approach to solve the H∞-LDP represents a
specialization of more general procedures described in [43, 109].

http://dx.doi.org/10.1007/978-3-319-51559-5_10
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Chapter 8
Case Studies

This chapter is intended to illustrate the formulation of typical FDD problems for
monitoring faults in complex technological systems and the application of the linear
synthesis techniques, described in this book, to address the challenges of practical
applications. Common to many industrial setups is that the underlying plant dynam-
ics are nonlinear and depend on parameters whose values may vary during plant
operations. Furthermore, various uncertainties may exist, which either manifest as
exogenous (unknown) disturbances or are inherent inaccuracies in the plant para-
meters. For synthesis purposes, often only a set of linearized models is available,
which covers the relevant plant operating conditions and main parameter variations.
The aim of the synthesis is to design a robust FDD system, whose fault monitoring
performance is satisfactory in the presence of variabilities induced by the nonlinear
plant behaviour, parameter variations and various uncertainties.

Linear synthesis techniques can be used in many ways to address the chal-
lenges of solving robust FDD problems, as—for example, in assessing solvability,
analysing performance limitations or determining meaningful design specifications
(e.g., reference models). Moreover, linear synthesis approaches often underlie the
gains-scheduling-based synthesis methodologies, intended to cope with the robust-
ness requirement. The use of linear fault detection filters in conjunction with signal
processing techniques for the online identification of various types of faults often
enhances the robustness of the fault detection and provides useful information for
control reconfiguration purposes.

Two case studies are presented in this chapter to illustrate the above aspects. The
chosen examples are related to flight control applications and address the monitoring
of flight actuator faults and air data sensor faults. Our choice is partly a recognition
of the leading role of the aerospace industry as one of the main drivers of the FDD
research activities. On the other side, the choice also reflects the author’s involve-
ments in several research projects focussing on fault monitoring aspects of flight
control, where some of the synthesis techniques described in this book have been
assessed using realistic transport aircraft models. The considered examples can be
seen representative to illustrate the applicability, but also the limitations, of linear
synthesis techniques in addressing challenging industrial fault monitoring problems.

© Springer International Publishing AG 2017
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8.1 Monitoring Flight Actuator Faults

Themonitoring of primary actuator failures of an aircraft is of paramount importance
for the aircraft safe operation, prevention of excessive structural loads and reduction
of the environmental footprint. For civil aircraft several fault scenarios are of par-
ticular interest. For example, the ability to detect single primary actuator faults is of
critical importance, because it is part of the aircraft certification requirements. Hence,
a minimal request from an active fault accommodation perspective is the require-
ment, for any modern aircraft design, that no single failure can lead to a catastrophic
consequence. Simultaneous actuator faults can also occur—for example, in the case
of more severe surface damages. The detection and isolation of simultaneous faults is
therefore a standard requirement for any FDD system for monitoring flight actuator
faults.

There are several classes of flight actuator faults, such as jamming, runaway,
oscillatory failure or loss of efficiency, whose early detection and timely handling
contribute to the efficient operation of aircraft, avoid excessive fuel consumption
(with all associated negative environmental effects) and increase the aircraft opera-
tional autonomy. These faults can be often considered as additive faults, for which
the synthesis methods of FDI filters developed in this book are applicable. In prac-
tice, the detection and isolation of one or several faults is usually followed by fault
identification (i.e., determination of fault characteristics as size and shape, or even
fault estimation), to allow performing appropriate reconfiguration actions in order to
minimize the effects of malfunctioning and ensure acceptable performance.

Two basic approaches to monitoring flight actuator faults are, in principle, possi-
ble. The global (or system level) monitoring uses the complete available information
on all actuator inputs and allmeasured outputs to perform the detection and isolation
of actuator failures. The main advantage of the global approach is that, virtually, all
categories of actuator faults (even multiplicative faults) can be detected. The disad-
vantage of the global approach is the inherent complexity of the global FDI filters
and the challenges associated with providing guarantees for the robustness of fault
diagnosis. The main advantage of local (or component level) monitoring is that the
basic fault detection functionality automatically provides the fault isolation capabil-
ity too. The robustness aspects can be tackled using straightforward gain-scheduling
schemes, by employing low complexity (e.g., first- or second-order) fault detec-
tion filters. However, local monitoring may have difficulties in detecting parametric
faults, as the loss of efficiency due to control surface damages and icing, or actuator
disconnection due to a broken rod. The monitoring of these categories of faults may
require the use of alternative approaches (e.g., based onmodel detection techniques),
which are suitable for the detection of parametric faults.

In Sect. 8.1.1, we apply the global approach for the synthesis of a least-order LTI
FDI filter for the nominal case. For a chosen set of fault signatures, a bank of low-
order filters is synthesized, leading to a least-order global filter. Since the robustness
of the nominal filter in the presence of mass variations is not satisfactory for practical
usage, we address in Sect. 8.1.2 the same problem, using additionally measurements
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of the control surface positions associated to all monitored actuators. The resulting
bank of first-order filters is a solution of a strong FDI problem, which can isolate
an arbitrary number of faults occurring simultaneously. The remarkable robustness
of this synthesis to variations of aircraft parameters, and the low complexity (first
order) of the resulting component filters are strong indications to employ a local
(actuator level) fault monitoring approach instead a global one. Specific aspects of
the usage of the local monitoring of flight actuator faults in an industrially relevant
FDD system are discussed in Sect. 8.1.3. The models used for global monitoring
are described in Sect. 8.1.4 and consist of a collection of full sized linearized civil
aircraft models augmented with simple (first order) actuator dynamics. The models
describe the aircraft dynamics during cruise and each component model corresponds
to a specific value of the aircraft mass.

8.1.1 Nominal Synthesis

In this section, we present a global (or system level) monitoring approach of primary
actuator faults of a civil aircraft having 11 primary control surface actuators (4
elevators, 1 stabilizer, 4 ailerons, 2 rudders). To study the model-based FDI aspects,
we employ aLTImodel,which describes a normal cruise flight in the presence ofwind
disturbances. The main goal of our study is to emphasize the intrinsic difficulties of
using a global monitoring approach for a reliable detection and isolation of actuator
faults. Concretely,wewill show for the considered nominal case, that althoughwe can
assess the feasibility of a global FDI system capable to localize individual or, partly,
even simultaneous actuator faults, still the reliable (i.e., robust)monitoring of actuator
failures using a global approach is a nonrealistic task, in the presence of variousmodel
and environmental uncertainties (e.g., variations of operating conditions and mass,
wind disturbances). Alternative approaches, able to overcome these limitations, are
discussed in the next sections.

To address the robustness aspects, a multiple model consisting of N = 11 lin-
earized aircraft models, including the actuator dynamics and the additive actuator
faults, has been developed in Sect. 8.1.4. The i-th model has the state-space form

ẋ(i)(t) = A(i)x(i)(t) + B(i)
u u(t) +B(i)

d d(t) + B(i)
f f (t),

y(i)(t) = C(i)x(i)(t) +D(i)
d d(t),

(8.1)

where the dimensions of the vectors x(i)(t), y(i)(t), u(t), d(t) and f (t), are respectively,
n = 32, p = 10, mu = 22, md = 3, and mf = 8. The significance of the components
of these vectors and the numerical values of the matrices of the nominal model (for
i = 7) are given in Sect. 8.1.4. Each of the N component model (8.1) corresponds
to a certain value of the aircraft mass and all other parametric or operational point
variabilities are ignored in this study. The chosen mass values mi, for i = 1, . . . ,N ,
cover the whole range of mass variations, from aminimum valuemmin to a maximum
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Fig. 8.1 A closed-loop fault
diagnosis setup

value mmax. The i-th mass value is given by mi = mmin + Δmi(mmax − mmin), where
Δmi is the percentage of themass variation from the total mass variationmmax−mmin.

The resulting linearized models (8.1) are not minimal. Besides an uncontrollable
zero eigenvalue in the aircraft model, there are 10 unobservable eigenvalues, all equal
to−5. This lack of observability originates from the fact that the actuators of spoilers
are coupled to the aircraft surfaces via a summation of their effects, thus of the 12
eigenvalues (poles) introduced by the spoiler actuators, 10 are not observable. For
our studies, we employed minimal order realizations of order n = 21, which have
been determined using standard minimal realization tools.

All component models being unstable, the fault monitoring can be performed
only in a closed-loop setting, because, even for the nominal case, slight deviations of
model parameters may induce unstable behaviour in the FDD system dynamics. For
evaluation purposes we employed the setting in Fig. 8.1, where the feedback block
K is simply a constant output feedback gain K , chosen such that, with the control
input u = v + Ky(i), each of the resulting closed-loop system

ẋ(i)
cl (t) = (A(i)+B(i)

u KC(i))x(i)
cl (t) + B(i)

u v(t)+ (B(i)
d +B(i)

u KD(i)
d )d(t) + B(i)

f f (t),

y(i)(t) = C(i)x(i)
cl (t) + D(i)

d d(t),

u(t) = KC(i)x(i)
cl (t) + v(t) + KD(i)

d d(t)

(8.2)

is robustly stable (i.e., Λ
(
A(i) + B(i)

u KC(i)
) ⊂ Cs for i = 1, . . . ,N). The chosen

feedback gain K has no relation to any particular flight control law design and it has
been determined to solely provide a stable closed-loop environment, which allows the
assessment of the robustness of the fault monitoring system in presence of parametric
variations. Note that without ensuring closed-loop stability, any fault detection filter
will lead to an unstable FDD system due to the presence of inherent parametric
uncertainties in the employed linearized synthesis models.
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In Listing 8.1, we present the Matlab code used for the setup of the augmented
LTI aircraft models and for the determination of the stability degree of the closed-
loop systems. Three input groups, ’controls’, ’disturbances’ and
’faults’, have been defined for the resulting minimal realization sysactf
of the augmented LTI aircraft models with faults.

Listing 8.1 Part 1 of script CS1 1: Model setup

% Uses the Control Toolbox

%% Part 1 - Model setup
% load aircraft multiple-model SYSACM, actuator model ACT,
% output-feedback gain K, percentages of mass variations massi
load('cs1data.mat ')
% build minimal realizations of AC-models with actuator faults
% set dimensions
[p,m,N] = size(SYSACM ); nom = 7; % index of nominal system
% set primary actuator indices
% [ ailerons, elevators, stabilizer, ruder ]
act_prim = [ [1,2,15,16], [17,19], 18, 20 ];
mu = size(ACT ,1); md = m-mu; mf = length(act_prim );

% form systems with faults [ G(i)
u G(i)

d G(i)
f ]

sysact = SYSACM*append(ACT ,eye (3)); % build series connection
sysact = minreal(sysact ); % build minimal realization
sysactf = sysact (: ,[1:m act_prim ]); % add fault inputs
% set input groups
sysactf.InputGroup.controls = 1:mu; % controls
sysactf.InputGroup.disturbances = mu+(1:md); % disturbances
sysactf.InputGroup.faults = mu+md+(1:mf); % faults

% determine closed-loop stability margin
sdegcl = max(max(real(eig(feedback(sysact ,K,1:mu ,1:p ,+1)))))

For the synthesis of the FDD system for monitoring the primary actuator faults,
we solve an EFDIP for the nominal case by using the Procedure EFDI described in
Sect. 5.4. To set up the fault signatures which allow the isolation of the actuator faults,
we computed first the maximally achievable structure matrix for the augmented air-
craft model with additive faults. For this purpose, we employed theMatlab function
genspec, which implements Procedure GENSPEC described in Sect. 5.4. In List-
ing 8.2, we present the Matlab code used for the determination of the achievable
structurematrix S containing weak fault specifications and the structurematrix Sstrong
containing the strong fault specifications. This latter matrix served for the selection
of the desired specifications contained in SFDI .

The first call of genspec determines S, the maximally achievable (weak) speci-
fications for the nominal system. The input of genspec is the state-space realization
of the partitioned TFM

[
G(7)

u (s) G(7)
d (s) G(7)

f (s)
Imu 0 0

]
:= [

G(λ) F(λ)
]
,

http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_5
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which defines the two input parameters, G(λ) and F(λ), used by the Procedure
GENSPEC. The number of columns of G(λ) is mu + md and is specified via the
option parameter m1. A threshold for nonzero frequency response gains is used
in genspec to generate the achievable specifications. This threshold is set to 10−5

via the option parameter FDTol. The resulting structure matrix S is a 55 × 8
binary matrix, containing the 55 achievable (weak) specifications. In a second call
of genspec, we also set the option parameters FDFreq to 0, FDGainTol to
0.01 and sdeg to−0.05. The parameter FDFreq specifies the frequencies values
� to be used for checking strong fault detectability according to Corollary 5.3 (i.e.,
� = {0} for constant faults), while FDGainTol is the internally used threshold for
the frequency response gains computed for each frequency in � (i.e., the DC-gains
for � = {0}). The parameter sdeg is used to specify a desired stability degree
for the real parts of the poles of the internally computed nullspace bases. From the
resulting structure matrix Sstrong, containing 52 strongly achievable specifications,
we selected the following structure matrix SFDI with 6 specifications, each of them
with at least three zero elements

SFDI =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

0 1 1 1 1 0 1 0
1 0 1 1 0 1 1 0
1 1 0 1 1 0 1 0
1 1 1 0 1 1 0 0
1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1

⎤

⎥⎥⎥
⎥⎥⎥
⎦

. (8.3)

Listing 8.2 Part 2 of script CS1 1: Setup of synthesis specifications

% Uses the Control Toolbox and the Descriptor System Tools

%% Part 2 - Setup of the synthesis specifications
% compute the achievable weak specifications
opt = struct('tol ',1.e-7,'FDTol ',1.e-5,'m1 ',mu+md);

% apply genspec to [ G(nom)
u G(nom)

d G(nom)
f ; I 0 0 ]

S = genspec ([ sysactf (:,:,nom); eye(mu ,mu+md+mf)],opt);

% compute the achievable strong specifications for constant faults
opt = struct('tol ',1.e-7,'FDTol ',1.e-5,'FDGainTol ' ,0.01 ,...

'FDFreq ',0,'sdeg ',-0.05,'m1 ',mu+md);

% apply genspec to [ G(nom)
u G(nom)

d G(nom)
f ; I 0 0 ]

S_strong = genspec ([ sysactf (:,:,nom); eye(mu,mu+md+mf)],opt);

% define SFDI, the signatures for isolation of single faults
SFDI = [0 1 1 1 1 0 1 0

1 0 1 1 0 1 1 0
1 1 0 1 1 0 1 0
1 1 1 0 1 1 0 0
1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1];

The selected structure matrix SFDI in (8.3) ensures the strong isolation of ruder
faults (independently of all other faults) and the weak isolation of the rest of faults

http://dx.doi.org/10.1007/978-3-319-51559-5_5
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Table 8.1 Additional admissible signatures for detection of simultaneous faults

f1 & f8 f2 & f8 f3 & f8 f4 & f8 f5 & f8 f6 & f8 f7 & f8

0 1 1 1 1 0 1

1 0 1 1 0 1 1

1 1 0 1 1 0 1

1 1 1 0 1 1 0

1 1 1 1 0 0 0

1 1 1 1 1 1 1

occurring one at a time. Moreover, it ensures the detection of all combinations of a
ruder fault with another (arbitrary) second fault, as shown in Table8.1.

Using the structure matrix SFDI in (8.3), we applied the Procedure EFDI for
the synthesis of a bank of nb = 6 fault detection filters Q(j)(s), j = 1, . . . , nb, with
scalar outputs. The Listing 8.3 illustrates the call of the function efdisyn, which
implements Procedure EFDI.

Listing 8.3 Part 3 of script CS1 1: Synthesis using Procedure EFDI

% Uses the Control Toolbox and the Descriptor System Tools

%% Part 3 - Synthesis using Procedure EFDI
% set options for least-order synthesis with EFDISYN
options = struct('tol ',1.e-7,'sdeg ',-5,'smarg ',-0.05,...

'FDFreq ',0,'FDGainTol ',0.0001,'rdim ',1,'SFDI ',SFDI);
[Q,Rf] = efdisyn( sysactf (:,:,nom), options );

The results computed by efdisyn are the bank of six scalar output fault detec-
tion filters Q(j)(s), for j = 1, . . . , 6, and the corresponding six internal forms R̃(j)

f (s),
for j = 1, . . . , 6,which are stored in the cell arrays Q and Rf, respectively. The j-th
filter Q(j)(s) achieves the j-th specification contained in the j-th row of the structure
matrix SFDI and has the least possible McMillan degree. The choice of scalar output
filters is specified by setting the option parameter rdim to 1, while the desired
structure matrix SFDI , contained in theMatlab variable SFDI, was used to set the
value of the option parameter SFDI. The stabilitymargin of−0.05 for the real parts
of the poles of the filters Q(j)(s), is specified via the option parameter smarg, and
the desired stability degree of−5 for all poles having real parts greater than the value
of smarg is specified via the option parameter sdeg. The strong detectability
of constant faults is enforced by specifying the DC-gain frequency of 0 using the
option parameter FDFreq. The resulting overall filter Q(s) has a global order 31,
where the six scalar output fault detection filters Q(j)(s) for j = 1, . . . , 6 have the
individual orders {6, 6, 6, 5, 4, 4}, respectively. Without employing the least-order
synthesis option in Procedure EFD (at Step 2 of Procedure EFDI), the resulting
order of the overall filter is 49 and the individual filters have orders {9, 9, 9, 8, 7, 7}.
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Table 8.2 Robustness analysis results for the nominal synthesis

Model #
∥
∥R

(i)
u (s)

∥
∥∞

∥
∥R

(i)
d (s)

∥
∥∞

∥
∥R

(i)
f (s) − R̃f (s)

∥
∥∞

1 136.0382 32.1952 135.9077

2 109.1135 25.4234 109.0137

3 84.1191 19.3249 84.0321

4 60.8408 13.8079 60.7787

5 39.1420 8.7917 39.1025

6 18.9002 4.2519 18.8813

7 0.0000 0.0000 0.0000

8 17.7335 3.9320 17.7023

9 34.4163 7.5802 34.3598

10 50.0823 10.9753 50.0064

11 64.7559 14.1428 64.6663

In Listing 8.4, we present the Matlab code used for the assessment of the syn-
thesis results. The overall filters, Q(s) and R̃f (s), are formed by stacking the six
computed scalar output filters Q(j)(s) and R̃(j)

f (s), respectively. The first check is to
verify the nominal synthesis conditions

Q(s)

[
G(7)

u (s) G(7)
d (s)

I 0

]
= 0, Q(s)

[
G(7)

f (s)
0

]
= R̃f (s). (8.4)

The second check is to verify that the achieved structure matrix SR̃f
(see Sect. 3.4) is

equal to SFDI . This comes down to verify that the DC-gain R̃f (0) and SFDI have the
same zero–nonzero pattern.

To overcome stability related problems in studying the robustness of the obtained
synthesis, we use the closed-loop setting in Fig. 8.1. With a robust output feedback
u = Ky(i) +v, the resulting i-th extended closed-loop systemwith inputs {v, d, f } and
outputs {y(i), u} is given in (8.2). Let G

(i)
e (s) be the TFM of this system and define

the partitioned internal form of the filter acting on the i-th model as

R
(i)

(s) =
[
R

(i)
v (s) R

(i)
d (s) R

(i)
f (s)

]
:= Q(s)G

(i)
e (s). (8.5)

SinceQ(s) andG
(i)
e (s), for i = 1, . . . ,N , are stable, the resulting R

(i)
(s) are stable as

well. For the robustness of the nominal synthesis, we need to check that
∥∥R

(i)
u (s)

∥∥∞,
∥∥R

(i)
d (s)

∥∥∞, and
∥∥R

(i)
f (s) − R̃f (s)

∥∥∞, are reasonably small for i = 1, . . . ,N .
The robustness analysis results, in terms of infinity norms, are summarized in

Table8.2. The large gains for some of mass values indicate that the nominal synthesis
is not robust with respect to mass variations.

http://dx.doi.org/10.1007/978-3-319-51559-5_3
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Fig. 8.2 Fault input step responses for nominal synthesis

In Fig. 8.2 we present the step responses from the fault inputs of the 31-st order

internal form of the (nominal) filter R̃(7)
f (s)

( = R
(7)
f (s)

)
, from which the achieved

fault signature can be easily read out.Observe the perfect cancellations of fault signals
in the residuals which match the zero elements in the corresponding specifications.

In Fig. 8.3 we present theN step responses ofR
(i)
f (s) for i = 1, . . . ,N . It can be easily

observed that the nominal filter is not robust with respect to largemass variations. For
example, step signals in the stabilizer input, which must be rejected in the residuals,
have comparable amplitudes with the signals to be detected.

Listing 8.4 Part 4 of script CS1 1: Assessment of synthesis results

% Uses the Control Toolbox and the Descriptor System Tools

%% Part 4 - Assessment of synthesis results
% form the extended open-loop systems G(i)

e = [G(i)
u G(i)

d G(i)
f ; I 0 0 ] with

% inputs [ u; d; f ] and outputs [ y(i); u ]
syse = [sysactf;eye(mu ,mu+md+mf)];

% with output feedback u = Ky(i) + v, form the extended closed-loop
% systems G

(i)
e with inputs [ v; d; f ] and outputs [ y(i); u ]

sysefb = feedback(syse ,K,1:mu ,1:p,+1);

% build overall Q and R̃f for the nominal open-loop system
Qtot = ss(zeros(0,size(Q{1} ,2))); Rftilde = ss(zeros(0,mf));
for i = 1:size(SFDI ,1)

Qtot = [Qtot; Q{i}]; Rftilde = [Rftilde; Rf{i}];
end

% open-loop checks: Q[Gu Gd ; I 0 ] = 0 and Q[Gf ; 0 ] = R̃f
norm(gir(Qtot*syse (:,1:mu+md ,nom),1.e-7),inf)
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norm(gir(Qtot*syse(:,mu+md+1:end ,nom)-Rftilde ,1.e-7),inf)

% check of achieved structure matrix
if size(Rftilde ,1) == size(SFDI ,1)

if any(any((abs(dcgain(Rftilde )) > .5) - SFDI))
error(['Desired FDI specification is not feasible '])

end
end

% evaluate [R(i)
u R

(i)
d R

(i)
f ] for the closed-loop setup

Rtot = Qtot*sysefb;
% check robustness by computing the H-inf norms
NormRu=squeeze(norm(Rtot(:,'controls '),inf));
NormRd=squeeze(norm(Rtot(:,'disturbances '),inf));
NormRfmRfnom=squeeze(norm(Rtot(:,'faults ')-Rftilde ,inf));
plot(massi ,NormRu ,massi ,NormRd ,massi ,NormRfmRfnom)

% visualization of step responses of fault inputs
rdim = size(Rftilde ,1); resn = cell(1,rdim); faultn = cell(1,mf);
for i=1:rdim , resn{i} = ['r_{',num2str(i),'}']; end
set(Rftilde ,'OutputName ',resn) % set residual component names
for i=1:mf, faultn{i} = ['f_{',num2str(i),'}']; end
set(Rftilde ,'InputName ',faultn) % set fault component names
% simulate step responses for fault inputs
figure , step(Rftilde ,10), grid ,
% set names for residual and fault components
set(Rtot ,'OutputName ',resn)
for i=1:mf, Rtot.InputName{mu+md+i}= faultn{i}; end
figure , step(Rtot(:,'faults '),10), grid ,

Fig. 8.3 Parametric fault input step responses for nominal synthesis
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Several remarks regarding the nominal synthesis are appropriate at this point.

1. For a nominal linearized aircraft model, augmented with first-order actuator mod-
els, an FDD system for the detection and isolation of additive primary actuator
faults has been successfully designed by using an exact FDI synthesis method-
ology. The synthesis has been performed using Procedure EFDI described in
Sect. 5.4 and resulted in a bank of six scalar output fault detection filters which
globally produce a structured residual set with a predefined structure matrix. The
resulting FDD system is able to isolate single faults, as well as two simultaneous
faults, provided one of them is the ruder actuator fault. The resulting overall fault
detection filter has the least possible order for the imposed fault signatures. The
nominal synthesis results are highly accurate and can serve, for example, as refer-
ence model for more involved synthesis methodologies, which target robustness
of the FDD system with respect to parameter variations.

2. The structure matrix SFDI in (8.3) does not have the very desirable property that
no column of SFDI can be obtained from any other column by changing a single
element from zero to one or viceversa. A structure matrix with this property is
called bidirectional strongly isolating of degree 1 in [48] and can be constructed
by selecting all specifications with three zero elements, one of which being in the
last position, and including additionally the specification in the last row of SFDI
in (8.3) (all elements are zero excepting that one in the last position). However,
the use of the resulting structure matrix, having 19 specifications, is problematic
for practical use due to the expected high order of the global FDI filter.

3. The nominal synthesis has several challenging aspects which originate from the
peculiarities of the underlying aircraft models. For example, the first two columns
of the input matrix B(7)

ac,u (see Sect. 8.1.4) which correspond to the right-outer and
right-inner aileron deflections only slightly differs (the norm of their difference is
about 0.0037). The same is valid for the columns 15 and 16 ofB(7)

ac,u corresponding
to the left-inner and left-outer aileron deflections, as well as for columns 17 and
19 of B(7)

ac,u corresponding to the left and right elevators. A first consequence of
this fact is the need for relatively high gains in the resulting overall filter Q(s),
which are necessary to compensate the small differences between the columns
of the input matrix. For example, the resulting direct feedthrough matrix DQ of
the overall filter Q(s) has a norm of about 3240! Thus the isolation of faults for
these pairs of control effectors is challenging even in the nominal case, because
the accuracy of matrix entries in linearized aircraft models is typically limited to
several accurate decimal digits.

4. The previous aspects partly explain the lack of robustness of the nominal FDD
synthesis in the presence of variations of aircraft parameters. Considering only
variations in a single parameter, as the mass, the maximal norm of the difference
between the first columns of B(i)

ac,u and first column of B(7)
ac,u is as large as 0.01.

This difference is significantly larger than the above difference of 0.0037 between
the columns corresponding to two adjacent ailerons. This makes the isolation of
individual aileron faults a futile task, when using a single FDI filter. The same

http://dx.doi.org/10.1007/978-3-319-51559-5_5
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applies for the possibility to discriminate between the left and right elevator faults.
The situation is even worse, if isolation of spoiler faults is also necessary.

5. There are several potential ways to increase the robustness of the FDD system.
If a reliable aircraft mass estimation is provided, then a straightforward way to
increase robustness is to design N separate sets of bank of detectors for each
of the N values of the mass. This approach involves the switching from a filter
corresponding to a larger mass value to a filter corresponding to the next lower
mass value, taking into account to the actual fuel consumption. This approach can
be extended to variations of other parameters as altitude and speed as well. In this
case, the robustness must be assessed by considering points between two adjacent
grid values of mass. A disadvantage of this approach is the need to store several
high-order filters. A possibility to avoid switching and simultaneously enhance
robustness is to employ gain-scheduling techniques, which allow to continuously
interpolate the filter gains even between two grid values.

8.1.2 Robust Synthesis Using Local Measurements

In this section, we explore another way to improve the robustness of the FDD system
by using additional measurements of the primary control surface positions. These
measurements are usually available for large civil transport aircraft and therefore can
be used for fault monitoring purposes. The resulting augmented aircraft model has
the form (8.1) with the system matrices defined in Sect. 8.1.4. The dimensions of the
vectors x(i)(t), y(i)(t), u(t), d(t) and f (t), are respectively, n = 32, p = 18, mu = 22,
md = 3, and mf = 8. The N = 11 linearized models correspond to an equidistant
grid of mass values from the minimum value mmin to the maximum value mmax.

In Listing 8.5, we present the Matlab code used for the setup of the augmented
LTI aircraft models with additional measurements and for the determination of the
stability degree of the closed-loop systems. Three input groups, ’controls’,
’disturbances’ and ’faults’, are defined for the resulting minimal real-
ization sysactf of the augmented LTI aircraft models with faults.

Listing 8.5 Part 1 of script CS1 2: Model setup

% Uses the Control Toolbox and the Descriptor System Tools

%% Part 1 - Model setup
% load aircraft multiple-model SYSACM, actuator model ACT,
% output-feedback gain K, percentages of mass variations massi
load('cs1data.mat ')
% build minimal realizations of AC-models with actuator faults
% set dimensions
[p,m,N] = size(sysact ); nom = 7; % index of nominal system
% set primary actuator indices
% [ ailerons, elevators, stabilizer, ruder ]
act_prim = [ [1,2,15,16], [17,19], 18, 20 ];
mu = size(ACT ,1); md = m-mu; mf = length(act_prim );
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% form augmented aircraft model with extended measurement set
ee = eye(m);
sysact = [ee(act_prim ,:); SYSACM )]* append(ACT ,eye(md));
sysact = gir(sysact ); % build minimal realization
% form systems with faults [ G(i)

u G(i)
d G(i)

f ]
sysactf = sysact (: ,[1:m act_prim ]);
% set input groups
sysactf.InputGroup.controls = 1:mu; % controls
sysactf.InputGroup.disturbances = mu+(1:md); % disturbances
sysactf.InputGroup.faults = mu+md+(1:mf); % faults

% determine closed-loop stability margin
sdegcl = max(max(real(eig(feedback(sysact ,K,1:mu ,mf+(1:p) ,+1)))))

For the synthesis of the FDD system for monitoring the primary actuator faults,
we solve an EFDIP for the nominal case by using the Procedure EFDI described in
Sect. 5.4. For the setup of the fault signatures which allow the isolation of the actu-
ator faults, we computed the achievable strong specifications in the structure matrix
Sstrong for the augmented aircraft with additional surface position measurements. The
achievable strong specifications include the entire set of 255 (= 28−1) possible spec-
ifications. Therefore, we chose the structure matrix to be achieved SFDI = I8, which
allows the simultaneous isolation of an arbitrary number of up to 8 primary actuator
faults. In Listing 8.6, we present theMatlab code used for the determination of the
achievable structure matrix Sstrong containing the strong fault specifications.

Listing 8.6 Part 2 of script CS1 2: Setup of synthesis specifications

% Uses the Control Toolbox and the Descriptor System Tools

%% Part 2 - Setup of the synthesis specifications
% compute Sstrong, the achievable strong fault specifications for
% constant faults
opt = struct('tol ',1.e-7,'FDTol ',1.e-5,'FDGainTol ' ,0.01 ,...

'FDFreq ',0,'sdeg ',-0.05,'m1 ',mu+md);

% apply genspec to [ G(nom)
u G(nom)

d G(nom)
f ; I 0 0 ]

S_strong = genspec ([ sysactf (:,:,nom); eye(mu,mu+md+mf)],opt);

% define the structure matrix for strong fault isolation
SFDI = eye(mf);

Using the structure matrix SFDI = I8, we performed the Procedure EFDI for
the synthesis of a bank of nb = 8 fault detection filters Q(j)(s), j = 1, . . . , nb,
with scalar outputs. The Listing 8.7 illustrates the call of the function efdisyn,
which implements Procedure EFDI. The results computed by efdisyn are the
bank of eight scalar output fault detection filters Q(j)(s), for j = 1, . . . , 8, and the
corresponding eight internal form filters R̃(j)

f (s), for j = 1, . . . , 8, which are stored
in the cell arrays Q and Rf, respectively. The j-th filter Q(j)(s) achieves the j-th
specification contained in the j-th row of the structure matrix SFDI and has the least
possibleMcMillan degree of one.The stabilitymargin for the eigenvalues of thefilters
Q(j)(s), for j = 1, . . . , 8, has been set to −1 via the option parameter smarg, and
all eigenvalues having real parts less than this value have been assigned to −5 using

http://dx.doi.org/10.1007/978-3-319-51559-5_5
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the option parameter sdeg. The resulting overall filter Q(s) obtained by stacking
the 8 scalar output filters Q(j)(s), for j = 1, . . . , 8, has a global order 8.

Listing 8.7 Part 3 of script CS1 2: Synthesis using Procedure EFDI

% Uses the Control Toolbox and the Descriptor System Tools

%% Part 3 - Synthesis using Procedure EFDI
% set options for least-order synthesis with EFDISYN
options = struct('tol ',1.e-7,'tolmin ',1.e-5,'FDGainTol ' ,0.01 ,...

'sdeg ',-5,'smarg ',-1,'rdim ',1,'minimal ',true ,'SFDI ',SFDI);
[Q,Rf] = efdisyn( sysactf (:,:,nom), options );

The assessment of the synthesis results can be performed using theMatlab code
presented in Listing 8.4. The overall filters Q(s) and R̃f (s) are formed by stacking
the eight scalar output filters Q(j)(s) and R̃(j)

f (s), respectively. The first check is to
verify the nominal synthesis conditions (8.4). The second check is to verify that the
achieved structure matrix SR̃f

(see Sect. 3.4) is equal to SFDI . This comes down to

simply verify that the DC-gain R̃f (0) and SFDI have the same zero–nonzero pattern
(i.e., R̃f (0) must be diagonal and nonsingular).

For the robustness of the nominal synthesis,we formed the internal representations

R
(i)

(s) in (8.5) for i = 1, . . . ,N , on the basis of the N closed-loop systems and

computed
∥∥R

(i)
u (s)

∥∥∞,
∥∥R

(i)
d (s)

∥∥∞, and
∥∥R

(i)
f (s) − R̃f (s)

∥∥∞, for i = 1, . . . ,N . The
robustness analysis results in terms of infinity norms are summarized in Table8.3.
The very small norms in Table8.3 indicate that the nominal synthesis is completely
satisfactory from the point of view of the robustness requirements. We cautiously
remark that these results correspond to a particular choice of a first-order filter, and
other choices may lead to different robustness performance.

In Fig. 8.4 we present the N step responses of R
(i)
f (s) for i = 1, . . . ,N . It can be

easily observed that the nominal filter is very robust with respect to mass variations.

Table 8.3 Robustness analysis results for the nominal synthesis with position measurements

Model #
∥
∥R

(i)
u (s)

∥
∥∞

∥
∥R

(i)
d (s)

∥
∥∞

∥
∥R

(i)
f (s) − R̃f (s)

∥
∥∞

1 1.1e–11 2.6e–15 2.7e–14

2 5.2e–12 2.6e–15 2.6e–14

3 4.1e–12 2.1e–15 1.7e–14

4 7.5e–12 1.9e–15 2.5e–14

5 6.0e–12 1.9e–15 2.1e–14

6 8.6e–12 1.8e–15 1.6e–14

7 6.5e–12 1.8e–15 2.2e–14

8 3.6e–12 1.8e–15 2.1e–14

9 6.2e–12 1.8e–15 2.2e–14

10 5.9e–12 1.9e–15 2.1e–14

11 6.9e–12 2.0e–15 1.8e–14

http://dx.doi.org/10.1007/978-3-319-51559-5_3
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Fig. 8.4 Parametric fault input step responses for nominal synthesis with position measurements

Practically, there are no differences between the nominal and non-nominal step
responses.

In summarizing the achieved synthesis results, we have to emphasize the remark-
able achievement to arrive to an overall FDI filter of lowest possible order 8 which is
able to isolate up to 8 simultaneous primary actuator faults and provide robust fault
monitoring performance over the whole range of mass variations. A clear sign for
good robustness is that all gains in the filter matrices have moderate sizes. We expect
that similar performance robustness is also provided in the presence of variations of
other key parameters as the position of the centre of gravity, altitude and speed. For
computations, we employed a prototype implementation of the Procedure EFDI, as
provided by theMatlab function efdisyn. We claim that none of the alternative
methods proposed in the fault detection literature and none of existing alternative
software tools are able to reproduce our synthesis results.

All individual filters are first-order systems and this order is equal to the order
of the corresponding monitored actuator. This fact is a strong indication to consider
an alternative approach for monitoring flight actuator faults, namely monitoring at
a component level. This approach is discussed in the next section, where additional
robustness aspects are also addressed.
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8.1.3 Local Monitoring of Actuator Faults—Industrial
Aspects

The results of the previous section strongly suggest the use of the alternative local
monitoring of flight actuator faults (see Fig. 8.4), where each flight actuator has
its own dedicated FDD system relying on local measurements of surface position
(or, equivalently, of actuator rod position) and of the commanded surface position
as control input. For an industrial usage of model-based fault monitoring on civil
aircraft, this could be an appealing optionwhich allows to graduallymove from a pure
signal-processing-based monitoring to the potentially more powerful model-based
approaches. In fact, as it will be apparent from our presentation, a combination of
model-based and signal-processing-based approaches seems to be the best solution,
guaranteeing timely and robust fault detection, and additional provision for fault
identification, which is necessary when control system reconfiguration has to be
performed.

The local FDD system attached to each actuator has two basic functions: (1) the
robust detection of any actuator fault, using a model-based fault detection filter, and
(2) the identification of fault characteristics by using signal processing techniques.
In what follows, we succinctly discuss these two steps.

Detection of Flight Actuator Faults

For fault detection purposes, the flight actuator dynamics are frequently modelled as
first- or second-order linear systems (see Example 2.1). A first-order flight actuator
model which relates uc, the commanded surface position, and uac, the corresponding
aircraft surface position, can be described by the state-space model

ẋa(t) = −kxa(t) + kuc(t),
uac(t) = xa(t).

(8.6)

Assuming a constant gain k, we can equivalently describe the actuator dynamics by
an input–output model via the transfer function

Gu(s) = k

s + k
. (8.7)

A constant gain k is always an approximation and its value usually represents an
average gain over all flight conditions. The range of typical values of k for primary
actuators is between 0.5 (e.g., for a stabilizer actuator) and 50 (e.g., for ruder and
aileron actuators), with somewhat lower values for elevator actuators. To set up an
actuator model with additive input faults of the form

uac(s) = Gu(s)uc(s) + Gf (s)f(s),

we can choose Gf (s) = Gu(s), by assuming control input located faults (the choice
Gf (s) = 1 is appropriate for measurement located faults).

http://dx.doi.org/10.1007/978-3-319-51559-5_2
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A simple fault detection filter is Q(s) = [
1 −Gu(s)

]
, which corresponds to an

estimator-based fault detection scheme. However, the dynamics of the filter can be
arbitrarily assigned by choosing a more general filter

Q(s) = M(s)
[
1 −Gu(s)

]
, (8.8)

where M(s) is a stable transfer function with arbitrary poles and a zero in −k. For
example, M(s) can be chosen as

M(s) = a

k0

s + k

s + a
, (8.9)

which has an arbitrary pole at −a and a DC-gain equal to a/k0. Usually k0 = k is
chosen, but k0 can be any nonzero constant gain. A state-space realization of the filter
(8.8) is

ẋQ(t) = −axQ(t) + a(k−a)
k0

uac(t) − ak
k0
uc(t),

r(t) = xQ(t) + a
k0
uac(t).

(8.10)

For the filter (8.8), withM(s) given by (8.9), the resulting transfer function from the
fault to residual (i.e., the internal form of the filter) is

Rf (s) = M(s)Gf (s) = k

k0

a

s + a
,

with the corresponding state-space realization

˙̃xQ(t) = −ãxQ(t) + ak
k0
f (t),

r(t) = x̃Q(t),
(8.11)

where x̃Q(t) := xQ(t) + xa(t)a/k0. Thus, the residual signal provides a filtered esti-
mation of the fault, allowing to easily reconstruct the actuator input fault signal f
(e.g., for further use in fault identification).

The simple fault detection filter (8.8) is primarily intended for the detection of sev-
eral classes of additive faults as jamming (also called lock-in-place failure), runaway
(also called hard-over failure) or oscillatory failure cases. Other types of actuator
faults discussed in Example 2.5 as actuator disconnection fault (also known as free-
play or float-type failure), stall load fault or loss-of-effectiveness fault belong to the
category of parametric faults because they basically involve changes in the actuator
gain k. These faults are more difficult to be reliably detected using methods based
on the additive fault assumption, because their effects can be only sensed during
short-time transitory dynamics. For such type of faults, model detection techniques,
as described in Chap.6, are more suitable.

The use of the simple LTI fault detection filters like in (8.10) for monitoring
(additive type) actuator faults on a civil aircraft may lead to difficulties, because the
use of a constant gain k in the actuator model (8.6) basically ignores the interactions

http://dx.doi.org/10.1007/978-3-319-51559-5_2
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between the actuator dynamics and the aerodynamic forces acting on the control
surfaces. In reality, the “effective” actuator gain exhibits a complex dependency
k(uac, u̇ac, η) of the position uac of the attached control surface, the direction of
surface movement u̇ac, as well as of other flight and aircraft parameters grouped in
a parameter vector η (e.g., speed, altitude, mass, etc.). For example, the “effective”
gain is larger for small surface deflections than for large deflections, while for a given
surface position, gain variations also occur due to the direction of surfacemovements.
Upwardmovements increase the aerodynamic forces and thus automatically decrease
the “effective” gain, while downward movements diminish the aerodynamics forces
and thus increase the actuator gains. Gain increases make the actuator more agile,
while gain decreasesmake the actuatormore sluggish. Ignoring these physical aspects
makes the FDD system more susceptible to false alarms due to the variations of the
flight parameters and presence of model uncertainties.

Assuming the explicit dependencies of the gain k(uac, u̇ac, η) are known, a gain-
scheduling fault detection filter can be simply constructed, by using k(uac, u̇ac, η)

instead of its assumed constant value in the realization of the filter (8.10). The devel-
opment of high fidelity actuator models with properly modelled nonlinear gains is a
nontrivial task to be performed by the aircraft or actuator manufacturers. The result-
ing expressions of the gain are usually too complicated to serve for gain-scheduling
purposes. Therefore, simpler approximations of gains are usually employed for real-
time implementations of the filters. By taking into account the above physical con-
siderations, any flight actuator gain k(uac, u̇ac, η) can be approximated by a gain
k̂(uac, u̇ac, η) of the form

k̂(uac, u̇ac, η) = C0(η) + C1(η) sgn(u̇ac)(uac + C2(η)), (8.12)

where, for a fixed value of parameter η, C0(η) can be interpreted as the nominal
gain; C1(η) describes the influence of the surface deflection uac on the gain, while
the factor sgn(u̇ac) allows to distinguish between upward and downward movements
of the control surface; and C2(η) can be interpreted as a position offset. The chosen
functional dependence on uac and sgn(u̇ac) reflects the actual physical behaviour
of the actuator for different control surface positions and signs of deflection rate.
The terms Ci(η), for i = 0, 1, 2 can be approximated using data fitting techniques.
Often simple affine approximations are sufficient to provide good matching with the
original gains.

The use of the gain-scheduling-based fault detection filter (8.10), with a simpler
gain k̂(uac, u̇ac, η) as in (8.12) replacing k, is a prerequisite for a robust fault detection
performance (i.e., lack of false alarms, lack ofmissed detection, satisfactory detection
times). To achieve this goal, we have to additionally choose appropriate thresholds
as well as the parameters of evaluation filters to be used in the fault evaluation and
decision-making blocks of the FDD system (see Fig. 3.1). The low real-time com-
putational burden associated with the on-board implementation of the FDD system
is guaranteed by the use of a low complexity (e.g., first order) fault detection filter
for each monitored flight actuator.

http://dx.doi.org/10.1007/978-3-319-51559-5_3
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Identification of Flight Actuator Faults

The detection of an actuator fault triggers the second phase of the fault diagnosis,
which involves the execution of the fault identification algorithms. These algorithms
are intended to discover the nature of the fault (e.g., jamming, runaway or oscillatory
failure) and to extract key characteristics which are essential for a control reconfig-
uration action. By confirming the occurrence of a specific fault, fault identification
additionally enhances the robustness of the fault detection. Special signal process-
ing algorithms are employed to determine the nature of the occurred fault. In what
follows we consider three categories of additive faults, namely jamming, runaway
and oscillatory failure, and discuss shortly their identification.

The jamming of an aircraft control surface creates a dissymmetry in the aircraft
configuration,whichmust be compensated by appropriate deflections of other control
surfaces. Therefore, the jamming leads to the degradation of the aircraft performance
due to the increased drag, which depends on the amplitude and localization of the
failure. To confirm the jamming of a control surface in a fixed position, it is sufficient
to check that the variance of n surface positionmeasurements uac(ti), for i = 1, . . . , n
is zero (or below a small threshold), where ti = t0+ iT , with t0 the starting time (e.g.,
the detection time) and T a given sampling interval. A related fault is the surface
(or rod displacement) sensor bias, which can be confirmed by checking that the
variance of the generated residual values r(ti) is zero. Another special case is the
jamming in null position, which can be identified only if sufficient control activity is
provided (i.e., during a certain manoeuvre). This fault is confirmed if both the mean
and variance of uac(ti) are zero, but the variance of uc(ti) is nonzero. The real-time
computation of variance of a signal involves also the computation of the mean value,
which provides the jamming deflection. To avoid the storage of a many samples of
measurements, the use of recursive algorithms to evaluate the mean and covariance
is recommended. A suitable algorithm for this purpose is based on the following
recursion to evaluate the mean E (uac) and variance Var (uac) in n steps

μi = μi−1 + (uac(ti) − μi−1)/i,
σi = σi−1 + (uac(ti) − μi−1)(uac(ti) − μi),

for i = 2, . . . , n, with the initializations μ1 = uac(t1) and σ1 = 0. After n− 1 steps,
we obtain E (uac) = μn and Var (uac) = σn/(n−1). The quantities μi and σi/(i−1)
are the mean value and variance after i steps.

An actuator runaway takes place when a large, not commanded, surface deflection
occurs and the surface tends to lock in its extreme position. In the case of a runaway,
excessive structural loads can be expected, and therefore it must be very quickly
detected and identified by the FDD system, before its full development. The fast
identification of runaway can be done by checking that themean value of the absolute
surface deflection variation rates |u̇ac(ti)| is greater than a certain allowed maximum
slew rate u̇max. The mean value E (|u̇ac|), for i > 1 samples, can be simply estimated
as E (|u̇ac|) ≈ |uac(ti) − uac(t1)|/(ti − t1).
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The so-called “oscillatory failure” (e.g., of a rudder) is a result of limit-cycle oscil-
lations, which take place in the actuator positioning loop. Two types of oscillatory
failure cases (OFCs) are usually considered. A liquid failure is an additive oscillatory
fault signal inside the actuator positioning control loop. A solid failure involves an
oscillatory signal which completely replaces a normal signal in the actuator position-
ing loop. The early detection of an OFC (even with small amplitude oscillations) in
a physically relevant frequency domain is important to prevent excessive structural
loads of the aircraft. For the identification of the OFC, the most reliable method is
based on determining the power spectrum of the residual signal using the discrete
Fourier transform (DFT). The use of DFT allows a satisfactory accurate evaluation of
the oscillation frequency, together with a strong statistical guarantee of the presence
of the oscillations in a signal. For a monitored frequency ω, the DFT for n values
r(tj), j = 1, . . . , n, of the residual signal, is computed as

X(ω) =
n∑

j=1

r(tj)e
−iωtj .

An oscillation of frequency nearby to ω is confirmed if the power spectrum |X(ω)|
is greater than a certain threshold value τω. For N monitored frequencies, the corre-
sponding N power spectra must be computed. The fast Fourier transform (FFT) is
usually used for this purpose and determines n values of the power spectrum for n
frequency values. However, the use of FFT requires the storage of n values of the
residual, and since usually n � N , the FFT-based DFT computation is possibly not
the most efficient way to evaluate the power spectra only for a few frequency val-
ues. An alternative, computationally more economical approach relies on a recursive
computation of the power spectrum using the straightforward recursion

Yk(ω) = Yk−1(ω) + r(tk)e
−iωtk ,

for k = 2, . . . , n, where Yk(ω) := ∑k
j=1 r(tj)e

−iωtj is the partial sum over k samples.
Evidently, X(ω) = Yn(ω). However, for the confirmation of an oscillation with
frequency ω, we can use the alternative detection condition |Yk(ω)| ≥ τω, which,
in the case of presence of oscillations, is usually fulfilled for a value k � n. This
ensures a fast detection of the presence of oscillations nearby ω.

It can be argued that the described fault identification methods of several classes
of additive flight actuator faults can be employed evenwithout previously performing
the model-based fault detection step. This would eliminate the potentially expensive
modelling step to develop suitableLPV-models of flight actuators for gain-scheduling
purposes. Although this seems reasonable to reduce the design costs of civil aircraft,
still the two-step approach, fault detection–fault identification, has certain advantages
which should prevail for its industrial usage. First, the overall reliability of fault diag-
nosis is clearly superior, since the fault identification can be seen as a supplementary
check of the appearance of a certain type of fault. Being in many cases insensitive
to modelling-related uncertainties, fault identification can significantly enhance the
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robustness of FDD performance, by fully avoiding false alarms and missed detec-
tions. A second advantage is the smaller overall on-board computational burden.
When using solely fault identification to detect faults, this requires running continu-
ously, in parallel, several fault identification algorithms for each actuator. In contrast,
when using the two-step approach, the execution of computations for fault identifi-
cation is only triggered by the detection of a fault for a single actuator. Therefore,
for most of the time, the only real-time computational effort is that for running the
gain-scheduling-based first-order fault detection filters for the monitored actuators.
The associated computational burden is substantially lower than running many fault
identification algorithms, all the time, in parallel, for the same actuators.

8.1.4 Linearized State-Space Models with Additive Actuator
Faults

Each of the linearized models (8.1) with additive actuator faults has been obtained by
augmenting a linearized aircraft model, corresponding to a standard cruise situation
(i.e., in straight and level flight), with simple (first order) actuator models. As usual in
the aeronautics industry, linearized aircraft models are obtained by the linearization
of nonlinear aircraft models in specific flight conditions (i.e., speed V and altitude
h) and for specific values of certain aircraft parameters (e.g., aircraft mass m and
relative position of its centre of gravity Xcg). Therefore, the numerical values of
the entries of the system matrices of any linearized aircraft model depend on such
parameters. The employed nonlinear model describes a generic two engine civil
aircraft with 8 primary control surfaces (2 elevators, 1 stabilizer, 1 ruder, 4 ailerons)
and 12 spoilers (as secondary control surfaces). The linearized aircraft models have
the multiple-model form (see Sect. 2.2.3)

ẋ(i)
ac (t) = A(i)

ac x
(i)
ac (t) + B(i)

ac,uuac(t) +B(i)
ac,dd(t),

y(i)
ac (t) = C(i)

ac x
(i)
ac (t) +D(i)

ac,dd(t),
(8.13)

where the dimensions of vectors x(i)
ac (t), y

(i)
ac (t), uac(t) and d(t), are respectively, nac =

10, pac = 10, mu = 22, and md = 3. These variables approximate small deviations
of the system variables of the aircraft nonlinear model from their equilibrium (or
trim) values. There are N = 11 models of the form (8.13), for i = 1, . . . ,N , which
correspond to N values mi, i = 1, . . . ,N , of the aircraft mass. The chosen values of
mass cover the whole range of variation of the mass [mmin,mmax ], where mmin and
mmax are the smallest and largest values of mass, respectively. The employed grid of
mass values is defined as mi = mmin + Δmi(mmax − mmin) for i = 1, . . . ,N , where
Δmi is the percentage of mass variation from its whole range. The chosen nominal
model corresponds to Δm7 = 60% of variation. For all linearized models, the rest
of parameters are constant and equal to their nominal values.

http://dx.doi.org/10.1007/978-3-319-51559-5_2
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The system variables in the state-space model (8.13) are defined as follows:

y(i)ac =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎝

roll angle
pitch angle
yaw angle
angle of attack
angle of sideslip
flight path angle
roll rate
pitch rate
yaw rate
calibrated airspeed

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎠

, x(i)
ac =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎝

first component of quaternion
second component of quaternion
third component of quaternion
fourth component of quaternion
ground speed X body axis
ground speed Y body axis
ground speed Z body axis
roll rate
pitch rate
yaw rate

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎠

,

uac =

⎛

⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

right outer aileron deflection
right inner aileron deflection
spoiler1 deflection

...

spoiler12 deflection
left inner aileron deflection
left outer aileron deflection
right elevator deflection
stabilizer trim angle
left elevator deflection
rudder deflection
left engine thrust
right engine thrust

⎞

⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

, d =
⎛

⎝
wind speed X axis
wind speed Y axis
wind speed Z axis

⎞

⎠ .

The numerical values of system matrices for the nominal model are given at the
end of this section. A particular feature of the employed linearized aircraft model
(8.13) is that it is unstable. For example, the eigenvalues of the state matrix A(7)

ac are

Λ
(
A(7)
ac

) =

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

−0.6646 +1.1951i
−0.6646 −1.1951i
−0.0016 +0.0600i
−0.0016 −0.0600i
−1.6550
0.0186 +0.8768i
0.0186 −0.8768i
0.0094

0
0

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

.

Moreover, one of the two structurally fixed eigenvalues in the origin is uncontrollable
for all system pairs

(
A(i)
ac , [B(i)

ac,u B
(i)
ac,d ]).
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The actuator and engine models are approximated by first-order LTI systems
with the following transfer functions: 10/(s + 10) for each of the two elevators,
0.5/(s+ 0.5) for the stabilizer, 6.67/(s+ 6.67) for each of the four ailerons and the
ruder, 2.5/(s + 5) for each of the twelve spoilers and 0.667/(s + 0.667) for each of
the two engines. The system formed by the actuators, augmented with additive faults
for the primary actuators, has a state-space realization of the form

ẋa(t) = Aaxa(t) + Ba,uu(t) + Ba,f f (t),
uac(t) = Caxa(t),

(8.14)

where xa(t) is the state vector of dimension 22 and u(t) contains the 20 deflection
demands and the 2 thrust demands. The elements of the vector f are the following 8
additive faults of the primary actuators

f =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

right-outer aileron actuator fault
right-inner aileron actuator fault
left-inner aileron actuator fault
left-outer aileron actuator fault
right elevator actuator fault
left elevator actuator fault
stabilizer actuator fault
ruder actuator fault

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

.

If we denote with Ba,uj the j-th column of Ba,u, then the fault input matrix Ba,f is
defined as

Ba,f = [
Ba,u1 Ba,u2 Ba,u15 Ba,u16 Ba,u17 Ba,u19 Ba,u18 Ba,u20

]
.

The matrices Aa, Ba,u and Ca are diagonal and defined as

Aa = diag(−6.667 · I2, −5 · I12, −6.667 · I2, −10, −0.5, −10, −6.667, −0.667 · I2),
Ba,u = diag(6.667 · I2, 5 · I12, 6.667 · I2, 10, 0.5, 10, 6.667, 0.667 · I2),
Ca = diag(I2, 0.5 · I12, I8).

The complete aircraftmodel (8.1) is obtained by series coupling of the actuatormodel
(8.14) and aircraft model (8.13). The state and output vectors are defined as

x(i)(t) =
[
x(i)
ac (t)
xa(t)

]
, y(i)(t) =

[
y(i)
ac (t)

Πuac(t)

]
,

where Π is an actuator output selection matrix. The system matrices (8.1) are deter-
mined as
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A(i) =
[
A(i)
ac B(i)

ac,uCa

0 Aa

]
, B(i)

u =
[

0
Ba,u

]
, B(i)

d =
[
B(i)
ac,d
0

]
, Bf =

[
0

Ba,f

]
,

C(i) =
[
C(i)
ac 0
0 ΠCa

]
, D(i)

d =
[
Dac,d

0

]
.

Each model in (8.1) has a state vector of dimension n = 32, mu = 22 control
inputs, m3 = 3 disturbance inputs, mf = 8 fault inputs, and the number of measured
variables is either p = 10 or p = 18. The latter case is when all control surfaces
corresponding to the monitored primary actuators are provided with angle (or equiv-
alent road position) sensors. The case without angle sensors corresponds to formally
choosing Π an 0 × 22 matrix (with empty rows), while in the case when surface
angle sensors are availableΠ is formed from 8 stacked rows eTi of the identity matrix
I22 to select the primary actuator outputs, where i = 1, 2, 15, 16, 17, 19, 18, 20.

Thematrices of the nominal state-spacemodel (8.13), for i = 7, have the following
numerical values:

A(7)
ac =

⎡

⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢
⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

−0.4447 0 −19.62 0 −0.003 0 0.061 · · ·
0 19.62 0 0.4447 0 −0.062 0

19.62 0 −0.4447 0 −0.0777 0 −0.8004
0 0 0 0 0 −0.0239 0
0 0 0 0 0.0001 0 −0.0073
0 0 0 0 0 0.0019 0

0 −0.0113 0
0.5 0 0.0113
0 0.5 0

−0.0113 0 0.5
0 −9.0618 0

8.5315 0 −199.3932
0 197.8868 0

−1.5599 0 0.3470
0 −0.5290 0

−0.0934 0 0.0136

⎤

⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎦

,

B(7)
ac,d =

⎡

⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢
⎣

0 0 0
0 0 0
0 0 0
0 0 0

0.0001 0 −0.0314
0 0.0319 0

0.0586 0 0.4097
0 0.0123 0

0.0001 0 0.0038
0 −0.0010 0

⎤

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥
⎦

, D(7)
ac,d =

⎡

⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢
⎣

0 0 0
0 0 0
0 0 0
0 0 −0.1467
0 −0.1467 0
0 0 0
0 0 0
0 0 0
0 0 0

−0.7321 0 0

⎤

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥
⎦

,
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B(7)
ac,u =

⎡

⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢
⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

−0.0009 −0.0009 −0.0006 −0.0006 −0.0006 −0.0006 −0.0006 · · ·
0 0 0 0 0 0 0

0.0552 0.0552 0.0071 0.0071 0.0071 0.0071 0.0071
−0.0219 −0.0183 0.0143 0.0127 0.0114 0.0095 0.0079
−0.0059 −0.0051 0.0001 0.0001 0.0001 0.0001 0.0001
−0.0007 −0.0005 0.0007 0.0007 0.0006 0.0005 0.0004

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−0.0006 −0.0006 −0.0006 −0.0006 −0.0006 −0.0012 −0.0012 −0.0009 · · ·
0 0 0 0 0 0 0 0

0.0071 0.0071 0.0071 0.0071 0.0071 0.0142 0.0142 0.0552
0.0053 −0.0053 −0.0079 −0.0095 −0.0114 −0.0254 −0.0286 0.0183
0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 −0.0051
0.0003 −0.0003 −0.0004 −0.0005 −0.0006 −0.0013 −0.0015 0.0005

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

−0.0009 0.0021 0.0094 0.0021 0 0.1712 0.1712
0 0 0 0 0.0769 0 0

0.0552 −0.1360 −0.6063 −0.1360 0 0 0
0.0219 −0.0077 0 0.0077 0.0051 0.0007 −0.0007

−0.0059 −0.0280 −0.1250 −0.0280 0 0.0015 0.0015
0.0007 −0.0002 0 0.0002 −0.0079 0.0079 −0.0079

⎤

⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎦

,

C(7)
ac =

⎡

⎢
⎢⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢
⎣

0 2.5971 0 114.5916 0 0
2.5998 0 114.7095 0 0 0

0 114.5916 0 2.5971 0 0
0 0 0 0 −0.0129 0
0 0 0 0 0 0.2850 · · ·

−2.5971 0 114.5916 0 0.0129 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1.4210 0

0 0 0 0
0 0 0 0
0 0 0 0

0.2847 0 0 0
0 0 0 0

−0.2849 0 0 0
0 57.2958 0 0
0 0 57.2958 0
0 0 0 57.2958

0.0644 0 0 0

⎤

⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥
⎥
⎦

.
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8.2 Monitoring Air Data Sensor Faults

The monitoring of the accuracy of air data sensor measurements, as the angle of
attack (AoA) and calibrated air speed (VCAS), is of paramount importance for the
satisfactory operation of civil aircraft. For example, the measurements of AoA are
used to implement several protection control laws as pitch axis and AoA protections
for the longitudinal control of the aircraft. These control laws are activated when
the measured AoA exceeds a certain critical value, to prevent potentially dangerous
aircraft stall situations. The measurements of VCAS are used in gain-scheduling-
based longitudinal control laws, where VCAS is one of the main scheduling vari-
ables. Therefore, inaccurate measurements of VCAS may negatively influence the
longitudinal control performance of the aircraft. Since the loss of accuracy in the
measurements of air data sensors for the AoA and VCAS may degrade the overall
aircraft control performance, the timely and reliable detection and isolation of air data
sensor malfunctions (faults) is an important task to be fulfilled for the satisfactory
operation of any aircraft.

The monitoring of air data sensor faults for AoA and VCAS is the second case
study considered in this book. Specifically, we consider the synthesis of a robust FDI
filter which, besides the detection and isolation of AoA and VCAS sensor faults,
additionally provides estimations of these additive faults. Provided these estimations
are sufficiently accurate, they can be used for the reconstruction of the correct mea-
surements, and thus for building virtual, model-based air data sensors. The reliability
of any fault diagnosis system depends on its ability to avoid false alarms and missed
detections in the presence of variabilities due to changes of operational conditions
of the aircraft, parameter variations and inherent uncertainties. In this case study, we
only consider a standard cruise situation of an aircraft flying at a constant altitude
and with a constant speed (i.e., in straight and level flight). The main parametric vari-
ability during cruise is the variation of the aircraft mass m due to fuel consumption.
The mass variation influences the aircraft dynamics behaviour, and, therefore, it is
an important parameter when addressing robustness aspects of the FDD system for
monitoring air data sensor faults. A collection ofN = 11 linearizedmodels described
in Sect. 8.2.4 serves for the synthesis of a robust FDD system. This case study illus-
trates the use of linear synthesis approaches as basis of synthesis methodologies that
are able to fully address robustness aspects.

Typical air data sensor malfunctions which can be assimilated with additive fault
signals are bias, drift, frozen value, random or even oscillatory values. Such faults
can be caused by (temporary) atmospheric influences as icing, or simply by dirt
(e.g., due to dust or sand), which obturates the sensor’s orifices. The basic difficulty
in monitoring air data sensor faults is the need to discriminate the (assumed) additive
faults from the additive effects of wind disturbances. For example, a VCAS sensor
measures the sum of the airspeed and wind speed, and therefore any additive fault
can be also interpreted as a change in the wind input characteristics. Therefore, the
only possibility to decouple the effects of the wind from an additive sensor fault is
to account for the global effects of the wind on the aircraft dynamics, while sensor
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faults, being strictly localized, intervene only in the air data sensor outputs. Besides
these physical constraints, the fault detection problem is even more challenging,
because the decoupling of wind effects in the residual signals must be done in pres-
ence of varying aircraft operating conditions and parameters. The current industrial
practice is to employ redundant measurements (e.g., triplex sensor redundancy) and
to eliminate the wind effects (assuming they are the same on all sensors) by forming
residual signals as pair-wise differences between the measured signals. An almost
zero residual component jointly with two nonzero residual components is a strong
indication for a single sensor fault, which can be thus easily located. Although, this
voting-based approach for the detection of single sensor faults is perfectly robust
with respect to all potential variabilities (e.g., unknown wind inputs and parame-
ter uncertainties), its main limitation arises due to the ambiguity of interpreting the
values of residual components when two or three sensors fail simultaneously.

In Sect. 8.2.1 we consider the synthesis of least-order robust LTI FDI filters in
presence of mass variations. The usage of a single LTI FDI filter, to guarantee the
robustness of the FDI performance for the whole range of mass variations, imposes
some limitations of the amplitudes of input signals. This is why, in Sect. 8.2.2 we
consider the mass as a scheduling variable to be used for the synthesis of least-order
robust LPV FDI filters. Specific aspects of the usage of the synthesized FDI filters in
an industrially relevant FDD system for monitoring air data sensors are discussed in
Sect. 8.2.3. The employed synthesis models consist of a collection of reduced order
linearized civil aircraft models, which describe the aircraft longitudinal dynamics
during cruise. Each component model corresponds to a specific value of aircraft
mass. The underlying models are described in Sect. 8.2.4.

8.2.1 Robust LTI FDI Filter Synthesis

In this section,we consider the synthesis of a constant (LTI) filter for the detection and
isolation of AoA and VCAS sensor faults for a civil aircraft. We assume the aircraft
is in a cruise condition with constant altitude and speed, and the only parametric
variability is the mass, which varies due to fuel consumption. We aim to synthesize a
LTI FDI filter, whose fault detection and isolation performance is robust in presence
of mass variations.

For synthesis purposes we use the multiple linearized models with additive sensor
faults described in Sect. 8.2.4. Recall that the N = 11 linearized longitudinal aircraft
models including the additive sensor faults have the state-space forms

ẋ(i)(t) = A(i)x(i)(t) + B(i)
u u(t) + B(i)

d d(t),
y(i)(t) = C(i)x(i)(t) + D(i)

u u(t) + D(i)
d d(t) + Df f (t),

(8.15)

where the dimensions of the vectors x(i)(t), y(i)(t), u(t), d(t) and f (t), are respectively,
n = 4, p = 8, mu = 3, md = 2, and mf = 2. The significance of the components
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of these vectors and the numerical values of the considered nominal model matrices
(for i = 7) are given in Sect. 8.2.4. The employed models (8.15) are minimal and
stable, therefore no stabilization is required to study the performance of the FDD
system. The considered mass variations cover the whole range of mass values from
a minimal value mmin to a maximum value mmax. The i-th value of mass is given by
mi = mmin + Δmi(mmax − mmin), where Δmi is the percentage of the mass variation
from the total mass variation mmax − mmin.

In Listing 8.1 we present the Matlab code used for the setup of the LTI aircraft
models, with additive AoA and VCAS sensor faults, to be used to solve an EFDIP.
Three input groups, ’controls’, ’disturbances’ and ’faults’, have
been defined for the resulting LTI aircraft models with sensor faults syssenf.

Listing 8.8 Part 1 of script CS2 1: Model setup

% Uses the Control Toolbox

%% Part 1 - Model setup
% load longitudinal aircraft multiple model SYSACSM and
% the corresponding percentages of mass variations massi
load('cs2data.mat ')
% build minimal realizations of AC-models with sensor faults
% set dimensions
[p,m,N] = size(SYSACSM ); nom = 7; % index of nominal system
% set sensor indices and set dimensions of inputs
% [ AoA VCAS ]
sen = [ 2 4 ];
md = 2; mu = m-md; mf = length(sen); n = max(order(SYSACSM ));

% form systems with faults [ G(i)
u G(i)

d G(i)
f ]

idm = eye(p);
syssenf = [ SYSACSM idm(:,sen)]; % add fault inputs
% set input groups
syssenf.InputGroup.controls = 1:mu; % controls
syssenf.InputGroup.disturbances = mu+(1:md); % disturbances
syssenf.InputGroup.faults = mu+md+(1:mf); % faults

For the synthesis of the FDD system for the isolation of air data sensor faults
we can solve an EFDIP for each of the N aircraft models by using the Procedure
EFDI described in Sect. 5.4. To choose the desired fault signatures, we computed
the strongly achievable specifications in the case of constant faults as

Sstrong =
⎡

⎣
1 1
0 1
1 0

⎤

⎦,

which shows that both AoA sensor faults and VCAS sensor faults can be strongly
isolated. Therefore, the specification SFDI = I2 can be targeted in the synthesis.

The Listing 8.9 presents the Matlab code used for the determination of the
achievable structure matrix Sstrong containing the strong fault specifications. This
matrix is the basis for the selection of the specifications contained in SFDI . For the
setting of option parameters see the explanations for Listing 8.2.

http://dx.doi.org/10.1007/978-3-319-51559-5_5
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Listing 8.9 Part 2 of script CS2 1: Setup of synthesis specifications

% Uses the Control Toolbox and the Descriptor System Tools

%% Part 2 - Setup of the synthesis specifications
% compute the achievable strong specifications for constant faults
opt = struct('tol ',1.e-7,'FDTol ',1.e-5,'FDGainTol ' ,0.001 ,...

'FDFreq ',0,'sdeg ',-0.05,'m1 ',mu+md);

% apply genspec to [ G(nom)
u G(nom)

d G(nom)
f ; I 0 0 ]

S_strong = genspec ([ syssenf (:,:,nom); eye(mu,mu+md+mf)],opt)

% define SFDI, the signatures for isolation of single faults
SFDI = eye(mf);

Using the structure matrix SFDI = I2, the Procedure EFDI has been performed
for each of the component systems. Specifically, for the i-th system, we determined
(a bank of) two fault detection filters Q(i,1)(s) and Q(i,2)(s), with scalar outputs, such
that the i-th FDI filter is given by

Q(i)(s) =
[
Q(i,1)(s)
Q(i,2)(s)

]
,

where Q(i,1)(s) is the filter for the isolation of AoA sensor faults (thus achieving the
specification [ 1 0 ]), while Q(i,2)(s) is the filter for the isolation of VCAS sensor
faults (thus achieving the specification [ 0 1 ]). It follows, that each of the N (overall)
FDI filters Q(i)(s) achieves the strong isolation of AoA and VCAS sensor faults. For
practical use (e.g., for a switching-based gain-scheduling approach with respect to
estimated mass variations), this solution requires the storage of N LTI filters, which
can also be used for interpolation purposes, in the case when the estimated mass lies
between two grid points. The synthesized individual filters Q(i)(s), for i = 1, . . . ,N
can be seen as a reference synthesis providing the best achievable performance with
respect to the chosen mass variation grid points.

Each Q(i)(s) of the designed N filters satisfies the two synthesis conditions

Q(i)(s)

[
G(i)

u (s) G(i)
d (s)

Imu 0

]
= 0, Q(i)(s)

[
G(i)

f (s)
0

]
= Imf , (8.16)

where the second condition is a fault estimation condition, which can be achieved by
a suitable scaling of the component filters Q(i,1)(s) and Q(i,2)(s). The internal forms
of the achieved filters for all N = 11 models are

R(i)(s) =
[
R(i)
u (s) R(i)

d (s) R(i)
f (s)

]
:= Q(i)(s)G(i)

e (s), (8.17)

where G(i)
e (s) is the i-th extended system

G(i)
e (s) =

[
G(i)

u (s) G(i)
d (s) G(i)

f (s)
I 0 0

]
, (8.18)
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with inputs {u, d, f } and outputs {y(i), u}.
The Listing 8.10 illustrates the usage of the function efdisyn, which imple-

ments Procedure EFDI to solve the EFDIP. By using the option for minimum
degree scalar output design (options.rdim = 1), all N resulting FDI fil-
ters are pure gains (i.e., without dynamics), thus in the state-space realization(
AQ(i) ,BQ(i) ,CQ(i) ,DQ(i)

)
of each Q(i)(s) only the direct feedthrough matrix DQ(i) is

non-empty. For example, for the nominal synthesis the resulted Q(7)(s) is

DQ(7) =
[−0.780 1 0.0040 0 0 0 −44.77 0.0777 0.0107 0.0475 0.0107

27.31 0 0.4970 1 0 0 1561 119.7 1.3258 5.9119 1.3258

]
.

Inspecting the numerical values of all DQ(i) , we observe that for the isolation of AoA
sensor faults, no measurements from the VCAS sensor are used, because all (2, 2)
elements of DQ(i) , i = 1, . . . ,N are zero. Similarly, for the isolation of VCAS sensor
faults, no measurements from the AoA sensor are used, because all (1, 4) elements of
DQ(i) . Interestingly, no measurements from the measured ground speed components
Vx and Vz are necessary to implement these filters, since the corresponding columns
are zero too. The relatively large gains in the (2, 7) elements of DQ(i) are a clear
indication of the already mentioned difficulties regarding the isolation of VCAS
sensor faults. We note in passing, that if the minimum synthesis option is not used
(options.rdim = []), each of the resulting filter Q(i)(s) would have a state-
space realization of order 8! This clearly illustrates the effectiveness of the employed
synthesis techniques in obtaining low complexity FDI filters.

Remark 8.1 Incidentally, the computed zeroth order solutionsQ(i)(s), satisfying con-
ditions (8.16), can be alternatively computed by solving, for each DQ(i) , the linear
equation

DQ(i)

[
C(i) D(i)

u D(i)
d Df

0 Imu 0 0

]
= [

0 0 0 Imf

]
,

where the (p + mu) × (n + mu + md + mf ) coefficient matrix, multiplying DQ(i) , is
square and nonsingular. �

Listing 8.10 Part 3 of script CS2 1: Multiple filter synthesis using Procedure EFDI

% Uses the Control Toolbox and the Descriptor System Tools

%% Part 3 - Multiple filter synthesis using Procedure EFDI
% set options for least-order synthesis with EFDISYN
options = struct('tol ',1.e-7,'sdeg ',-5,'smarg ',-0.05,...

'FDFreq ',0,'FDGainTol ',0.0001,'rdim ',1,'SFDI ',SFDI);
Q(:,:,1:N) = ss(zeros(mf ,p+mu));
for i = 1:N

% determine Q(i)(s) = [Q(i,1)(s); Q(i,2)(s) ]
Qi = efdisyn( syssenf (:,:,i), options );
Q(:,:,i) = [Qi{1};Qi{2}];

end
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Fig. 8.5 Step responses of individual filter syntheses

The Listing 8.11 presents the Matlab code used for the assessment of the syn-
thesis results. The step responses of R(i)(s) defined in (8.17) are shown in Fig. 8.5,
and clearly illustrate the fulfilment of conditions (8.16). TheH∞-norms of the error
systems

E(i)
Q(i) (s) := Q(i)(s)G(i)

e (s) − [
0 0 I2

]
(8.19)

are of the order O(10−11) and, therefore, practically zero.

Listing 8.11 Part 4 of script CS2 1: Assessment of synthesis results

% Uses the Control Toolbox

%% Part 4 - Assessment of synthesis results
% form the extended open-loop systems G(i)

e = [G(i)
u G(i)

d G(i)
f ; I 0 0 ] with

% inputs [ u; d; f ] and outputs [ y(i); u ]
syse = [syssenf;eye(mu ,mu+md+mf)];

% evaluate R(i) = Q(i)G(i)
e := [R(i)

u R(i)
d R(i)

f ]
R = Q*syse;

% check robustness by computing ‖R(i) − [ 0 0 I ]‖∞ in the grid points
Nref = norm(R-[zeros(mf ,mu+md) eye(mf)],inf)

% visualization of step responses from all inputs
% set names for residual and input components
set(R,'OutputName ',{'r_1 ','r_2 '})
for i=1:mu, R.InputName{i}=['u_{',num2str(i),'}']; end
for i=1:md, R.InputName{mu+i}=['d_{',num2str(i),'}']; end
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for i=1:mf, R.InputName{mu+md+i}=['f_{',num2str(i),'}']; end
figure , step(R,10), grid , % simulate step responses
ylabel(''), title('Step responses ')

A second analysis has been performed by simply taking a unique filter which
corresponds to the chosen nominal system, thus by setting Q(i)(s) = Q(7)(s) for i =
1, . . . ,N . The corresponding step responses in Fig. 8.6 show the lack of robustness
of the nominal synthesis, which could become a source of false alarms. This can be
also seen by the large norms of E(i)

Q(7) (s) := Q(7)(s)G(i)
e (s) − [

0 0 I2
]
(see Table8.4).

The best constant approximation Q0(s) has been obtained by approximating the
elements of the direct feedthrough gains DQ(i) with constant values. The resulting
feedthrough matrix DQ0 is

DQ0 =
[−0.7281 1 0.0049 0 0 0 −41.77 0.2178 0.0132 0.0589 0.0132

27.43 0 0.4992 1 0 0 1568.4 110.8 1.3316 5.9380 1.3316

]

and no notable improvements, with respect to the nominal filter, can be seen when
comparing the maximum norms of the errors E(i)

Q(7) (s) and E(i)
Q0

(s) := Q0(s)G(i)
e (s) −

[
0 0 I2

]
in Table8.4. The corresponding step responses are also very similar to those

in Fig. 8.6.
Amore uniformperformance in terms of error norms has been achieved by solving

for a constant filter Qopt(s) = DQopt
the min-max synthesis problem
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Fig. 8.6 Parametric step responses for the nominal filter synthesis
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Table 8.4 Robustness analysis results for constant approximations

Model #
∥∥E(i)

Q(i) (s)
∥∥∞

∥∥E(i)
Q(7) (s)

∥∥∞
∥∥E(i)

Q0
(s)

∥∥∞
∥∥E(i)

Qopt
(s)

∥∥∞

1 0 641.9689 503.4164 0.7680

2 0 529.2570 379.9477 0.7592

3 0 420.0194 261.3870 0.7522

4 0 312.5922 146.1351 0.7585

5 0 206.5090 34.7832 0.7679

6 0 102.0626 75.7578 0.7680

7 0 0.0000 180.9972 0.7595

8 0 98.7033 281.4598 0.7470

9 0 193.0166 376.1466 0.7392

10 0 281.9820 464.2081 0.7454

11 0 364.8010 544.9841 0.7651

min
Q

max
i=1:N

∥
∥E(i)

Q
(s)

∥
∥∞,

where E(i)
Q

(s) := QG(i)
e (s) − [

0 0 I2
]
. The resulting constant optimal filter has the

feedthrough gain

DQopt
=

[−0.7824 1 0.0119 0 0.0072 −0.2444
0.0605 0 −0.0075 1 −1.4179 −0.0058

· · ·

4.3004 0.5147 −0.0191 0.1044 −0.0735
4.6204 0.3052 −0.0194 −0.0862 −0.0206

]

and the corresponding norms of the errors E(i)
Qopt

(s), given in Table8.4, indicate a

substantial improvement of performance robustness with respect to the previous LTI
syntheses.

The step responses for the obtained optimal constant filter Qopt(s) are shown in
Fig. 8.7, where a much improved robustness is apparent. However, while the robust-
ness of isolation, and even of estimation, of the AoA faults seems to be satisfactory
for moderate size deflections of the control surfaces, the isolation of VCAS sensor
faults in the presence of large wind amplitudes in the (longitudinal) x-axis could
impose strong limitations on the minimum amplitude of detectable faults. An addi-
tional aspect worth mentioning is that the measurements of VCAS are not used for
the isolation of AoA sensor faults (i.e., the (1, 4)-element of DQopt

is zero), and vice
versa, the measurements of AoA sensors are not used for the isolation of VCAS sen-
sor faults (i.e., the (2, 2)-element ofDQopt

is zero). These features have been enforced
by fixing the respective elements to zero values, and thus exempting them from the
optimization.
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Fig. 8.7 Parametric step responses for the optimal constant filter synthesis

The Listing 8.12 illustrates the use of the non-smooth optimization based tuning
tool systune, available in the Robust Control Toolbox of Matlab, to perform
the optimal tuning of a fixed-structure LTI FDI filter, for the given multiple model
(8.15) of the linearized longitudinal aircraft dynamics.

Listing 8.12 Part 7 of script CS2 1: Optimal constant filter synthesis using multiple models

% Uses the Control Toolbox and Robust Control Toolbox

%% Part 7 - Multiple model synthesis of a constant gain
% define parameterized constant filter gain Q
Qbar = ltiblock.ss('Qbar ',0,mf ,p+mu);
Qbar.d.Value = Q(:,:,nom).d; % initialize with nominal synthesis
Qbar.d.Free (1,4) = false; % enforce VCAS decoupling
Qbar.d.Free (2,2) = false; % enforce AoA decoupling

% define soft objective E(i)
Q

= QG(i)
e − [

0 0 I2
]

syse = [syssenf;eye(mu ,mu+md+mf)];
E = (Qbar*syse -[zeros(mf ,mu+md) eye(mf)]);
E.InputName = 'udf '; E.OutputName = 'r';
Soft = TuningGoal.Gain('udf ','r',1);

% perform optimal tuning
Eopt = systune(E,Soft ,[]);
Qbaropt = getValue(Qbar , Eopt);

% scale to unit DC-gains
sc = dcgain(Qbaropt*syse(:,mu+md+1:end ,nom));
Qbaropt = sc\Qbaropt;



8.2 Monitoring Air Data Sensor Faults 235

Several concluding remarks regarding the synthesis of a LTI FDI filter are appro-
priate at this point.

1. The performed analyses provide strong indications that a zeroth-order synthe-
sis can be employed to solve the FDIP for monitoring AoA and VCAS sen-
sor faults. More insight into the synthesis procedure can be obtained by using
alternatively a simple basis based approach for the synthesis of individual fil-
ters. This can be achieved by setting the option parameters in the Listing 8.10
to options.rdim = [] and options.simple = true. For exam-
ple, the resulting Q(i,1) consists of 5 basis vectors of degrees {1, 1, 1, 1, 0} and
Q(i,2) has a completely similar structure. It is easy to choose first-order designs for
bothQ(i,1) andQ(i,2) by simply selecting suitable basis vectors. The overall design
Q(i) has thus order two and its dynamics can be set arbitrarily fast. It is interest-
ing to note that although the individual second-order designs provide almost the
same FDI performance (e.g., when inspecting the step responses of the internal
form of the FDI filter), the overall performance in terms of theH∞-norms is not
better than for a zeroth-order synthesis. This is also true for the best second-order
synthesis obtained directly using the Matlab tool systune.

2. The insight obtained by employing the Procedure EFDI for the synthesis of
zeroth (least)-order FDI filters can be fully exploited to simplify the computa-
tion of constant filter feedthrough gains DQ(i) (see Remark 8.1). These gains are
uniquely determined and therefore their smooth variations reflect the continuous
dependence of model data on the mass variation. As it will be shown in the next
section, the smooth dependence of gains on mass is instrumental in obtaining
LPV gain-scheduling-based filters by using standard interpolation techniques.

3. The amplitudes of step responses in Fig. 8.7 can be used to roughly estimate the
maximum amplitudes of inputs which still allow the robust detection and isolation
of faults of given amplitudes. For example, to detect an AoA sensor fault of
amplitude f1,min, the maximum amplitudes of step signals of control inputs must
be less than |u1| < f1,min/0.14, |u2| < f1,min/0.52, |u3| < f1,min/0.22, while the
disturbance input |d2| < f1,min/0.13. For f1,min = 4 deg, the maximum amplitudes
for the system inputs u1, u2, u3 are, respectively, 33.3, 7.9, and 18.2 deg, while
the maximum amplitude of the disturbance input d2 is 30 kts. This will allow
the robust isolation of AoA faults practically for all physically meaningful wind
conditions. Since the two elevators are simultaneously actuated during normal
operation, their allowed maximum amplitudes must be halved. To cope with
the limited range of allowed elevator and stabilizer deflections, fault isolation
can be performed, without false alarms, only during low control activities of
these surfaces. Similarly, to detect a VCAS sensor fault of amplitude f2,min, the
main limitation arises from the maximum amplitude of the disturbance input
|d1| < f2,min/0.73. For f2,min = 20 kts, the maximum amplitude of the disturbance
input d1 is about 28 kts. For practical situations, this value may impose a severe
limitation on the minimum size of robustly detectable VCAS sensor faults. The
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use of gain-scheduling techniques (see next section) may substantially improve
the robustness of isolation of VCAS sensor faults.

4. For the synthesis of a robust LTI FDI filter it is possible to alternatively employ
the Procedure AFDI, to solve a suitably formulated AFDIP with fictitious noise
inputs generated to account for the effects of mass variations. Also, Procedure
AMMS can be employed to solve an AMMPwithMr(s) = I2 as reference model.

8.2.2 Robust LPV FDI Filter Synthesis

We show in this section that the robustness of the FDD system can be signifi-
cantly improved by employing gain-scheduling techniques with respect tomass. This
approach is realistic, since there exist several weight and balance calculation pro-
cedures which can produce sufficiently accurate mass estimations during the whole
flight of an aircraft. Therefore, instead of using a constant LTI FDI filter Q(s), it is
possible to use a parameter dependent filter Q(s,Δm), whose matrices in its state-
space realization depend smoothly on the actual mass variation Δm. We discuss two
methods to determine a parameter dependent feedthrough matrix DQ(Δm) to serve
for interpolating at arbitrary values of mass.

The first method relies on building polynomial approximations of the entries of
DQ(Δm) by using the N values DQ(i) corresponding to mass variation values Δmi,
for i = 1, . . . ,N . The method is a simple parameter fitting approach which assumes
a k-th degree polynomial form

DQk (Δm, θ) :=
k∑

j=0

DQk,j (Δm)j, (8.20)

with θ a mf × (k + 1)(p + mu) parameter matrix defined as

θ = [
DQk,0 · · · DQk,k

]
. (8.21)

The best fitting determines the coefficient matrices DQk,0 , . . ., DQk,k by solving for
the optimal value θopt of θ , the linear least-squares problem

min
θ

∥∥∥∥∥∥
∥

⎡

⎢
⎣

DQk (Δm1, θ) − DQ(1)

...

DQk (ΔmN , θ) − DQ(N)

⎤

⎥
⎦

∥∥∥∥∥∥
∥
F

,

where ‖ · ‖F denotes the Frobenius matrix norm.
We computed for k = 0, . . . , 4 the optimal k-th degree approximations of the form

(8.20) and with Qk(s,Δm) := DQk (Δm, θopt) we evaluated the corresponding H∞-
norms of E(i)

Qk
(s) := Qk(s,Δmi)G(i)

e (s) − [
0 0 I2

]
. As it can be seen in Table8.5,
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Table 8.5 Robustness analysis results of interpolation based approximations

Model #
∥∥E(i)

Q0
(s)

∥∥∞
∥∥E(i)

Q1
(s)

∥∥∞
∥∥E(i)

Q2
(s)

∥∥∞
∥∥E(i)

Q3
(s)

∥∥∞
∥∥E(i)

Q4
(s)

∥∥∞
1 503.4164 138.6186 16.2823 0.8877 0.0233

2 379.9477 45.0780 3.5464 0.6995 0.0723

3 261.3870 18.3910 10.3841 0.6291 0.0059

4 146.1351 57.0849 9.6080 0.1465 0.0696

5 34.7832 75.1029 5.1209 0.2186 0.0571

6 75.7578 75.7578 0.3034 0.3034 0.0176

7 180.9972 61.9527 4.5886 0.1938 0.0825

8 281.4598 36.3294 6.5901 0.0756 0.0695

9 376.1466 1.4734 5.5857 0.1425 0.0331

10 464.2081 40.8114 1.3503 0.1265 0.1221

11 544.9841 88.0194 5.9994 0.2085 0.0668
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Fig. 8.8 Parametric step responses for LPV filter synthesis using polynomial interpolation

the fourth-order polynomial gain approximation provides acceptable performance
robustness in terms of the norms ‖E(i)

Q4
(s)‖∞, which is near to the performance of the

reference solution in all mass grid points.
The step responses of R(i)(s) defined in (8.17) for Q(i)(s) = Q(i)

4 (s) are shown in
Fig. 8.8, and clearly illustrate that the fourth-order polynomial approximation pro-
vides a satisfactory robustnesswith respect tomass variations, without any noticeable
difference to the reference solution.

The Listing 8.13 presents the Matlab code used for determining a fourth-order
polynomial fitting of the individual elements of the filter feedthrough matrix and for
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the assessment of the robustness of approximations by computing the corresponding
error norms ‖E(i)

Qk
(s)‖∞. Note that the simplified approach described in Remark 8.1

to determine the filter gains of individual syntheses is also included. This code fully
exploits the structural features of the formulated FDIP, by using the insight obtained
by applying Procedure EFDI.

Listing 8.13 Part 3 of script CS2 2: LPV FDI filter synthesis using polynomial data fitting

% Uses the Control Toolbox

%% Part 3 - LPV synthesis using fourth-order polynomial LPV gains
% form the extended system G(i)

e := [G(i)
u G(i)

d G(i)
f ; I 0 0 ]

syse = [syssenf;eye(mu ,mu+md+mf)];

% determine constant filter gains q(i) by solving q(i)[C(i)
e D(i)

e ] = [ 0 I ]
q = zeros(mf ,p+mu ,N);
for i = 1:N,

cde = [syse(:,:,i).c syse(:,:,i).d];
q(:,:,i) = [zeros(mf ,n+mu+md) eye(mf)]/cde;

end

k = 4; % set order of polynomial approximation
% determine element-wise kth order polynomial approximations
% θ =

[
DQk,0

· · · DQk,k

]
such that DQk

= DQk,0
+ xDQk,1

+ · · · + xkDQk,k
theta = zeros(mf ,p+mu,k+1);
x = 2*(massi -0.5); % normalize mass variation to [-1,1]
for i = 1:mf

for j = 1:p+mu
theta(i,j,k+1: -1:1)= polyfit(x(:), squeeze(q(i,j,:)),k);

end
end

% evaluate D(i)
Qk

= ∑k
j=0 DQk,j

x
j
i using Horner's rule

DQk = zeros(mf ,p+mu ,N);
for i = 1:N

Qval = theta(:,:,k+1);
for j = k:-1:1

Qval = x(i)*Qval+theta(:,:,j);
end
DQk(:,:,i) = Qval;

end

% evaluate R(i) = D(i)
Qk

G(i)
e := [R(i)

u R(i)
d R(i)

f ]
R = DQk*syse;

% check robustness by computing ‖R(i) − [ 0 0 I ]‖∞ in the grid points
Nk = norm(R-[zeros(mf,mu+md) eye(mf)],inf)

The excellent results obtained previously rely on the important assumption of
a smooth variation of the underlying data DQ(i) , i = 1, . . . ,N , which are used for
interpolation purposes. This condition is not always fulfilled, especially, in the cases
when the numerically computed solutions are not unique. The presence of outliers
in the computed results may make the interpolation task difficult, if not impossible.
Special techniques, as for example, variable scaling, data normalization, transforma-
tions to special coordinate forms, etc., are necessary to enforce the continuity of the
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mapping, provided by the employed computational method, from the input data to
the computed results.

A more suitable solution to the synthesis of LPV FDI filters is to use tools which
find the best fitting of the LPV filter parameters working on the original multiple
model. For this purpose, consider the normalized grid parameters xi = 2(Δmi −0.5)
and define the parameterized gain as

D̃Qk (x, θ) :=
k∑

j=0

D̃Qk,j x
j, (8.22)

where the LPV filter parameters are collected in

θ = [
D̃Qk,0 · · · D̃Qk,k

]
. (8.23)

To determine the optimal parameters, the min-max optimization problem

min
θ

max
i=1:N

∥∥E(i)
Q̃k

(s, xi, θ)
∥∥∞, (8.24)

can be solved, where E(i)
Q̃k

(s, x, θ) := Q̃k(s, x, θ)G(i)
e (s)− [

0 0 I2
]
and Q̃k(s, x, θ) =

D̃Qk (x, θ), with D̃Qk (x, θ) defined in (8.22).
The Listing 8.13 presents the Matlab code used for determining a third-order

polynomial LPV filter by solving the min-max optimization problem (8.24) using
the systune function in conjunction with the tunableSurface function,
both from the Matlab Robust Toolbox. The latter function allows to easily define
parameterized gain-scheduling system objects (e.g., controllers or filters), whose free
parameters (e.g., θ in (8.21)) are optimally fitted by systune using a multiple-
model based optimization setting. The error norms ‖E(i)

Q̃k
(s, xi, θopt)‖∞ for the result-

ing optimal value θopt of θ are listed in Table8.6 and exhibit comparable performance
robustness as that of the fourth degree element-wise polynomial fitting of gains. This
can be also observed by inspecting the step responses shown in Fig. 8.9.

Listing 8.14 Part 4 of script CS2 2: LPV FDI filter synthesis using tuning with systune

% Uses the Control Toolbox and Robust Control Toolbox
% Part 4 - LPV FDI filter synthesis using tuning with SYSTUNE

% parameterize the LPV filter
domain = struct('mass ',massi (:));
shapefcn = @(x) [x,x^2,x^3];
% define gain as DQ(x) := D0 + xD1 + x2D2 + x3D3 and θ := [D0 D1 D2 D3 ]
Qd = tunableSurface('Qd ',q(:,:,nom),domain ,shapefcn );
Qd.Coefficients.free (1,2:p+mu:end) = false;
Qd.Coefficients.free (2,4:p+mu:end) = false;
Qd.Coefficients.free (1,4:p+mu:end) = false;
Qd.Coefficients.free (2,2:p+mu:end) = false;

% define soft objective Ẽ(i)
Q3

:= Q̃(i)
3 (θ)G(i)

e − [
0 0 I2

]

syse = [syssenf;eye(mu ,mu+md+mf)];
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E0 = (Qd*syse -[zeros(mf ,mu+md) eye(mf)]);
E0.InputName = 'udf '; E0.OutputName = 'r';
Soft = TuningGoal.Gain('udf ','r',1);

% perform optimal tuning
E0opt = systune(E0 ,Soft ,[]);
Qlpv = setData(Qd ,E0opt.Blocks.Qd.Value );

% evaluate R(i) = Q̃(i)
3 (θopt )G

(i)
e := [R(i)

u R(i)
d R(i)

f ]
R = Qlpv*syse;

% check robustness by computing ‖R(i) − [ 0 0 I ]‖∞ in the grid points
Nlpvopt = norm(R-[ zeros(mf ,mu+md) eye(mf)],inf)

Table 8.6 Robustness analysis results of LPV filter syntheses with systune

Model #
∥∥E(i)

Q4
(s)

∥∥∞
∥∥E(i)

Q̃3
(s, xi, θopt)

∥∥∞
1 0.0233 0.0486

2 0.0723 0.0487

3 0.0059 0.0487

4 0.0696 0.0487

5 0.0571 0.0487

6 0.0176 0.0487

7 0.0825 0.0458

8 0.0695 0.0397

9 0.0331 0.0485

10 0.1221 0.0486

11 0.0668 0.0487
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Fig. 8.9 Parametric step responses for LPV filter synthesis with systune
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Some remarks on the synthesis of an LPV FDI filter are appropriate at this point.

1. The individual synthesis, in each mass grid point, performed in the previous
section provided strong indications that a zeroth-order synthesis, in conjunc-
tion with gain-scheduling, can lead to significant increase of robustness when
compared with constant gain based syntheses. The two approaches employed to
obtain suitable LPV FDI filter gains have each their advantages and difficulties.
The described data fitting approach using the individually computed gains led
to satisfactory results, by exploiting various particular features of the problem
(e.g., zeroth-order dynamics of the FDI filter, simple computation of gains to
guarantee smooth variations, employing element-wise polynomial interpolation
for each of 2 × 11 = 22 elements of the gain). This approach has certainly
difficulties in the case when a reasonable smoothness of the solution cannot be
guaranteed (e.g., due to non-uniqueness of the solution) or when the solution
has higher order dynamics. In this latter case, coordinate transformations may
be necessary to enforce the continuous mapping of problem data to the results
computed by the synthesis algorithms. The second approach is based on direct
tuning methods of fixed-structure filter using non-smooth optimization based
tuning tools of the (2 × 11 − 4) × 4 = 72 free elements of θ in (8.23). This
optimization-based approach has a considerable flexibility in choosing the nature
of interpolation formulas employed for gain-scheduling, in handling model vari-
abilities (e.g., via multiple models), or in imposing particular structure of the
LPV coefficients (e.g., by fixing the values of certain coefficients and excepting
them from the optimization). However, this approach needs a careful definition of
the optimization problem by translating the synthesis conditions into meaningful
optimization criteria or constraints. Also, due to the intrinsic local nature of the
employed search techniques, finding initial starting points leading to the best (or
even global) minima can be challenging.

2. An issue which has not been addressed in the synthesis is the robustness of the
gain-scheduling-based filter with respect to estimation errors in the scheduling
variable. Estimation errors, as large as 10% of the aircraft mass, are common
and can significantly degrade the robustness performance. One way to address
this issue is to include this uncertainty in the problem formulation, by requiring
to determine the FDI filter which best fits the uncertainties induced by inaccu-
rate mass estimations. This can be seen as a non-standard formulation of the
gain-scheduling-based synthesis and can be addressed, for example, by extend-
ing the number of models N , by including for each grid point several models
corresponding to different nearby mass values.

3. The fault estimation aspect of the AoA and VCAS sensor faults has been solved
in a robust way and allows the reconstruction of correct measurements in the
case of failures. This permits the replacement of the failed sensors by virtual,
model-based sensors, which can further be employed without impeding the con-
trol performance, even after a total failure of all air data sensors (a triple sensor
redundancy is usually provided on civil aircraft for each sensor). This is an impor-
tant aspectwhen solving air data sensormonitoring problems in the light of several
incidents caused by such failures.
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8.2.3 Monitoring Air Data Sensor Faults—Industrial Aspects

The current industrial practice for monitoring air data sensor faults is to employ
redundant measurements, usually via a triplex redundancy for each AoA and VCAS
sensor. The use of triplex sensor redundancy for isolation of single sensor faults has
been already discussed in Example 5.10, which illustrates the perfect robustness of
this (2-of-3) voting-based scheme. A consolidated measurement can be determined
as the mean value of three or two healthy sensor measurements. The main limitation
of this scheme is due to the potentially erroneous interpretation of the healthy and
non-healthy measurements, in the case when two sensors fail simultaneously and
produce almost the same wrong measurements. This case may occur, for example,
if two AoA sensors freeze similarly due to icing. In such a case, the two wrong
measurements are (erroneously) “diagnosed” by the voting-based FDD system as
healthy. Their use to form a consolidated measurement may lead to unpredictable
effects. Also, inconsistencies in the VCAS measurements (e.g., also caused by icing
or dirt) may negatively impact the performance of the aircraft control system.

To enhance the fault isolation capabilities of presently employed voting-based
schemes, an alternative monitoring scheme can be employed, where each measure-
ment of AoA and VCAS is individually monitored by a low-order FDI filter. The
consolidated AoA and VCAS measurements can be computed as the mean values of
all healthy AoA and VCAS sensors, respectively.

In the case of monitoring the AoA sensors, the filter corresponding to the first
row of the optimal Qopt(s) determined in Sect. 8.2.1, can be employed to build three
(identical) zero-order FDI filters to monitor the AoA measurements. These filters
thus individually detect and isolate the three AoA sensor faults. All healthy sensor
measurements can be used for signal consolidation, and even the measurement of
a single healthy sensor can be reliably employed. Moreover, in the case of a total
failure of all AoA sensors, a virtual sensor can be built as

α̂(t) = α(t) − f̂1(t),

where α(t) is the actual (faulty) AoA measurement and f̂1(t) is the estimated AoA
fault produced by the AoA FDI filter.

Similarly, in the case of monitoring the VCAS sensors, the filter corresponding
to the second row of the optimal Qopt(s) determined in Sect. 8.2.1, can be employed
to build three (identical) zero-order FDI filters to monitor the VCAS measurements.
However, if sufficiently accurate mass estimations are available, then better FDD
performance robustness can be achieved by using—for example, the LPV FDI filter
Q4(s,Δm) determined in Sect. 8.2.2, to build gain-scheduling-based FDI filters for
the VCAS sensors. In the case of a total failure of all VCAS sensors, a virtual sensor
can be built to provide a corrected VCAS measurement V̂c(t) as

V̂c(t) = Vc(t) − f̂2(t),

http://dx.doi.org/10.1007/978-3-319-51559-5_5
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where Vc(t) is the actual (faulty) VCAS measurement and f̂2(t) is the estimated
VCAS fault produced by the VCAS FDI filter.

The robustness of the FDD system for air data sensor faults during cruise can be
enhanced, by switching between several filters, which are robust on smaller ranges
of mass variations. This can alleviate the potential difficulties related to inaccuracies
in mass estimation. Also, robustness with respect to other variabilities typical for a
cruise condition, such as, limited variations in altitude and speed, aswell as variations
of the centre of gravity position can be enforced by using the described synthesis
techniques. Covering all flight regimes and manoeuvres (e.g., take-off, landing, etc.)
across the flight envelope of a civil aircraft can be done by combining several possible
approaches, as for example, switching between several robust FDIfilters,which cover
limited ranges of flight altitudes, or mass variations, or both.

8.2.4 Linearized State-Space Models with Additive Sensor
Faults

Each of the linearized models (8.15) with additive sensor faults has been obtained
by extracting a minimal realization of the longitudinal dynamics of a linearized
aircraft model corresponding to a standard cruise situation (i.e., in straight and level
flight). The original linearized aircraft models are the same as that used in Sect. 8.1.4,
however with a different set of output measurements and a reduced set of inputs. No
actuator models have been included and it was assumed that the control inputs in
the model are the corresponding deflections of the attached control surfaces. The
linear multiple models of the aircraft have been obtained by the linearization of a
nonlinear aircraft model in a specific flight condition (i.e., cruise with constant speed
V0 at constant altitude h0) and for specific values of certain aircraft parameters (i.e.,
N values mi, i = 1, . . . ,N of the aircraft mass m and a constant value of the relative
position of its centre of gravityXcg). The numerical values of the entries of the system
matrices of any linearized aircraft model depend on such parameters. The employed
nonlinear model describes a generic longitudinal model of a civil aircraft with three
primary control surfaces (twoelevators, one stabilizer). The linearized aircraftmodels
with additive sensor faults have the multiple-model form (see Sect. 2.2.3)

ẋ(i)(t) = A(i)x(i)(t) + B(i)
u u(t) + B(i)

d d(t),
y(i)(t) = C(i)x(i)(t) + D(i)

u u(t) + D(i)
d d(t) + Df f (t),

(8.25)

where the dimensions of vectors x(i)(t), y(i)(t), u(t), d(t) and f (t), are respectively,
n = 4, p = 8, mu = 3, md = 2, and mf = 2. These variables approximate
small deviations of the system variables of the aircraft nonlinear model from their
equilibrium (or trim) values. The models (8.25) correspond to the N = 11 values of
the mass parameter, covering the whole range of variation of the mass [mmin,mmax ],
where mmin and mmax are the smallest and largest values of mass, respectively. The

http://dx.doi.org/10.1007/978-3-319-51559-5_2
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employed grid of mass values is defined as mi = mmin + Δmi(mmax − mmin) for
i = 1, . . . ,N , where Δmi is the percentage of mass variation from its whole range.
The chosen nominal model corresponds to Δm7 = 60% of mass variation. For all
linearized models, the rest of parameters are constant and equal to their nominal
values.

The system variables in the state-space model (8.25) are defined as follows:

y(i) =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎜
⎝

pitch angle
angle of attack
pitch rate
calibrated airspeed
ground speed X axis
ground speed Z axis
acceleration X axis
acceleration Z axis

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎟
⎠

, x(i) =

⎛

⎜⎜
⎝

residual quaternion component
ground speed X body axis
ground speed Z body axis
pitch rate

⎞

⎟⎟
⎠ ,

u =
⎛

⎝
right elevator deflection
stabilizer trim angle
left elevator deflection

⎞

⎠ , d =
(

wind speed X axis
wind speed Z axis

)
,

f =
(
angle of attack sensor fault
calibrated airspeed sensor fault

)
.

The basis of the longitudinal aircraft multiple model (8.25) was the same aircraft
multiple model as that used for obtaining the multiple model in (8.13). However,
this time, a different set of output measurements has been used, which, besides the
monitored measurements of AoA and VCAS sensors, includes all relevant longitu-
dinal measurements which are independent of the measurements of air data sensors.
A reduced set of five state variables resulted by eliminating all unobservable states
of the full model (8.25) with the selected set of measurements. The final models with
four state equations have been obtained by eliminating an uncontrollable eigenvalue
in the origin. This was done by forming a residual quaternion component as a linear
combination of the second and fourth quaternion components.

Thematrices of the nominal state-spacemodel (8.25), for i = 7, have the following
numerical values:

A(7) =

⎡

⎢⎢
⎣

0 0 0 0.5
−19.61 −0.003 0.061 −9.0618

−0.8893 −0.0777 −0.8004 197.8868
0 0.0001 −0.0073 −0.5290

⎤

⎥⎥
⎦,

B(7)
u =

⎡

⎢⎢
⎣

0 0 0
0.0021 0.0094 0.0021

−0.1360 −0.6063 −0.1360
−0.0280 −0.1250 −0.0280

⎤

⎥⎥
⎦, B(7)

d =

⎡

⎢⎢
⎣

0 0
0.0001 −0.0314
0.0586 0.4097
0.0001 0.0038

⎤

⎥⎥
⎦,
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C(7) =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

114.6505 0 0 0
0 −0.0129 0.2847 0
0 0 0 57.2958
0 1.4210 0.0644 0
0 0.9995 0.0453 0

−402.2337 −0.0453 0.9995 0
−1.9990 −0.0003 0.0062 0.0046
−0.0907 −0.0079 −0.0816 −0.2977

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

, Df =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

0 0
1 0
0 0
0 1
0 0
0 0
0 0
0 0

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

,

D(7)
u =

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0.0002 0.0010 0.0002
−0.0139 −0.0618 −0.0139

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

, D(7)
d =

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

0 0
0 −0.1467
0 0

−0.7321 0
0 0
0 0
0 −0.0032

0.0060 0.0418

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

.

Each component model of the linearized aircraft multiple model (8.25) is stable. For
example, the eigenvalues of the state matrix A(7) are

Λ
(
A(7)

) = {−0.6646 ± 1.1951i,−0.0016 ± 0.0600i}.

8.3 Notes and References

Section 7.1. For the considered two case studies of flight actuator and air data sensor
faults, the underlying model is similar to several civil transport aircraft models. The
global and local monitoring of primary flight actuator faults has been considered
in [139] within the GARTEUR FM-AG16,1 where the focus was on the synthesis
of least-order FDI filters for a linearized nominal aircraft model. A similar work,
performedwithin the IMMUNEProject,2 has been reported in [143]. Themonitoring
of several types of actuator faults (jamming, oscillatory failure, disconnection) was
one of the benchmark scenarios formulated in the European Union funded project
ADDSAFE.3 Results on the local (actuator level) monitoring of flight actuator faults

1The European Flight Mechanics Action Group FM-AG(16) on Fault Tolerant Control was estab-
lished in 2004 and concluded in 2008. It represented a collaboration involving thirteen European
partners from industry, universities and research establishments under the auspices of the Group
for Aeronautical Research and Technology in Europe (GARTEUR) program.
2IMMUNE (Intelligent Monitoring and Management of Unexpected Events) was a ONERA-DLR
Joint Research Project started in 2006 and concluded in 2009.
3ADDSAFE (Advanced Fault Diagnosis for Safer Flight Guidance and Control) was a EU-funded
project in the framework programme FP7, started in 2009 and finished in 2012, http://cordis.europa.
eu/project/rcn/92071_en.html.

http://dx.doi.org/10.1007/978-3-319-51559-5_7
http://cordis.europa.eu/project/rcn/92071_en.html
http://cordis.europa.eu/project/rcn/92071_en.html
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have been reported, for example, in [99, 152, 153, 165]. The monitoring of a specific
type of flight actuator faults (oscillatory failure case) for an AIRBUS A380 aircraft
is discussed in [56], while the AIRBUS practice to address actuator and sensor
fault monitoring problems in conjunction with control reconfiguration techniques is
described in [57].

Section 8.2 The monitoring of simultaneous air data sensor faults for the AoA
and VCAS was one of the benchmark scenarios formulated in the European Union
funded project RECONFIGURE.4 Preliminary results formonitoring theAoA sensor
faults have been presented in [154]. The individualmonitoring of triplexAoA sensors
has been earlier proposed in [98], by using measurements of the VCAS sensor. The
reconstruction of air data sensor faults has been also addressed in [1] by using sliding-
mode techniques. Here, the sensor faults are reformulated as (fictitious) actuator
faults, for which unknown-input estimation techniques are employed. The resulting
filters have orders which exceed the order of the underlying aircraft model.

4RECONFIGURE (Reconfiguration of Control in Flight for Integral Global Upset Recovery) was
a EU-funded project in the framework programme FP7, started in 2013 and finished in 2016, http://
cordis.europa.eu/project/rcn/104633_en.html.

http://cordis.europa.eu/project/rcn/104633_en.html
http://cordis.europa.eu/project/rcn/104633_en.html


Part III
Background Material

The third part of the book includes a substantial amount of background material
on rational matrices, descriptor systems, and computational algorithms for descrip-
tor systems. It starts with the presentation of the theoretical backgrounds on ratio-
nal matrices and descriptor systems. The presentation exhibits a certain parallelism
between the two main sections, intended to ease introducing or recalling to read-
ers the main theoretical concepts. The final chapter starts with the presentation of
an overview of numerical linear algebra techniques, which form the basic compu-
tational layer for the developed synthesis procedures. These algorithms cover the
computation of several important matrix decompositions and condensed forms, as
well as the solution of several classes of linear and quadratic matrix equations. The
next computational layer consists of several algorithms for descriptor systems, which
are instrumental for the developed synthesis procedures. Most of these algorithms
are presented for the first time in a book. Their presentations partly serve to doc-
ument the accompanying numerical software, the Descriptor System Tools, which
was implemented by the author as part of this book project.



Chapter 9
System Theoretical Concepts

Rational transfer function matrices and linear time-invariant descriptor systems are
the two main system representations employed in this book. The purpose of this
chapter is to provide a concise statement of the main results on rational matrices and
descriptor systems to facilitate the understanding of the mathematical terminology
used throughout the book. The treatment in depth of most of concepts was not
possible in the restricted size of this book. Therefore, at the end of this chapter,
we indicate the main references covering the presented results and make suggestions
for supplementary readings.

9.1 Rational Transfer Function Matrices

In this section we succinctly present the main concepts and properties of transfer
function matrices (TFMs) of linear time-invariant systems which are relevant for
this book, especially, for the formulation of fault detection problems in Chap. 3 and
for the development of synthesis procedures in Chap.5. We consider only TFMs
which belong to the class of rational matrices, for which each entry is expressed
as a ratio of two polynomials in a complex indeterminate. The polynomials are
assumed to have real coefficients. Polynomial matrices can be seen as a particular
type of rational matrices. Many aspects for scalar rational functions, as for example,
poles and zeros, partial-fraction decompositions, or coprime factorizations have non-
trivial generalizations for polynomial and rational matrices. Many operations on
standard matrices have nice generalizations for rational matrices. Straightforward
generalizations are the rank, determinant, and inverse. The conjugate transposition
of a complex matrix generalizes to the conjugation of a rational matrix, while the
inner–outer and spectral factorizations can be seen as generalizations of the familiar
QR and Cholesky factorizations, respectively.

© Springer International Publishing AG 2017
A. Varga, Solving Fault Diagnosis Problems, Studies in Systems,
Decision and Control 84, DOI 10.1007/978-3-319-51559-5_9
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9.1.1 Transfer Functions

Transfer functions are used to describe the input–output behaviour of single-input
single-output (SISO) linear time-invariant (LTI) systems by relating the input and
output variables via a gain depending on a frequency variable. For a SISO system
with input u(t) and output y(t) depending on the continuous time variable t, let
u(s) := L(u(t)) and y(s) := L(y(t)) denote the Laplace transformed input and
output, respectively. Then, the transfer function of the continuous-time LTI system
is defined as

g(s) := y(s)
u(s)

and relates the input and output in the form

y(s) = g(s)u(s) .

The complex variable s = σ + jω has for σ = 0 the interpretation of a complex
frequency. If the time variable has a discrete variationwith equally spaced valueswith
increments given by a sampling-period T , then the transfer function of the discrete-
time system is defined using the Z-transforms of the input and output variables
u(z) := Z(u(t)) and y(z) := Z(y(t)), respectively, as

g(z) := y(z)
u(z)

and relates the input and output in the form

y(z) = g(z)u(z) .

The complex variable z is related to the complex variable s as z = esT .Wewill use the
variable λ to denote either the s or z variables, depending on the context, continuous-
or discrete-time, respectively. Furthermore, we will restrict our discussion to rational
transfer functions g(λ) which can be expressed as a ratio of two polynomials with
real coefficients

g(λ) = α(λ)

β(λ)
= amλm + am−1λ

m−1 + · · · + a1λ + a0
bnλn + bn−1λn−1 + · · · + b1λ + b0

, (9.1)

with am �= 0 and bn �= 0. There are notable exceptions (e.g., continuous-time systems
with time delays) which lead to nonrational transfer functions. In such cases, suitable
approximations of the nonrational part canbeused (e.g., rational Padé approximation)
to arrive to a rational expression as above.

Let R(λ) be the set of real rational functions with real coefficients in an
indeterminate λ, and let R[λ] be the set of polynomials with real coefficients.
Since polynomials can be assimilated with special rational functions with 1 as
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denominator,R[λ] ⊂ R(λ). It is easy to show thatR(λ) is closed under the addition
and multiplication operations. Both operations are associative and commutative, the
multiplication is distributive over addition, and each operation possesses an identity
element inR(λ). Finally, there exist inverses for all elements under addition and for
all nonzero elements under multiplication. Therefore, the setR(λ) forms a field. The
subset of polynomials R[λ] forms only a ring (more exactly, an Euclidean domain
with identity), because the only invertible elements in R[λ] are the nonzero real
constants, which are thus the units of the ring.

A transfer function g(λ) as in (9.1) is called proper if m ≤ n, strictly proper if
m < n, biproper if m = n, and improper if m > n. A polynomial g(λ) corresponds
to the case when n = 0. The subset of proper rational functions forms a ring, whose
units are the biproper rational functions. The degree of g(λ) in (9.1) is defined as
deg g(λ) = max(m, n), while the differencen−m is called the relative degreeof g(λ).
Using the Euclidean polynomial division algorithm, it follows that any improper g(λ)

can be written as the sum of a proper part and a polynomial part.

9.1.2 Transfer Function Matrices

Transfer function matrices are used to describe the input–output behaviour of multi-
input multi-output (MIMO) LTI systems by relating the input and output variables
via a matrix of gains depending on a frequency variable. Consider a MIMO system
with m inputs u1(t), . . ., um(t), which form the m-dimensional input vector u(t) =
[ u1(t), . . . , um(t) ]T , and p outputs y1(t), . . ., yp(t), which form the p-dimensional
output vector y(t) = [ y1(t), . . . , yp(t) ]T . For a continuous dependence of u(t) and
y(t) on the time variable t, let u(s) and y(s) be the Laplace-transformed input and
output vectors, respectively; while in the case of a discrete dependence on t, we
denote u(z) and y(z) the Z-transformed input and output vectors, respectively. We
denote with λ the frequency variable, which is either s or z, depending on the nature
of the time variation, continuous or discrete, respectively. Let G(λ) be the p × m
transfer function matrix (TFM) defined as

G(λ) =
⎡

⎢
⎣

g11(λ) · · · g1m(λ)
...

. . .
...

gp1(λ) · · · gpm(λ)

⎤

⎥
⎦ ,

which relates the m-dimensional input vector u to the p-dimensional output vector y
in the form

y(λ) = G(λ)u(λ) .

The element gij(λ) describes the contribution of the j-th input uj(t) to the i-th out-
put yi(t). We assume that each matrix entry gij(λ) ∈ R(λ) and thus it can be
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expressed as ratio of two polynomials αij(λ) and βij(λ) with real coefficients as
gij(λ) = αij(λ)/βij(λ) of the form (9.1).

Each TFM G(λ) belongs to the set of rational matrices with real coefficients,
thus having elements in the field of real rational functions R(λ). Polynomial matri-
ces, having elements in the ring of polynomials with real coefficients R[λ], can be
assimilated in a natural way with special rational matrices with all elements having
1 as denominator. Let R(λ)p×m and R[λ]p×m denote the sets of p × m rational and
polynomial matrices with real coefficients, respectively. To simplify the notation,
we will also use G(λ) ∈ R(λ) or G(λ) ∈ R[λ] if the dimensions of G(λ) are not
relevant or are clear from the context.

A rational matrix G(λ) ∈ R(λ) is called proper if limλ→∞ G(λ) = D, with D
having a finite norm. Otherwise, G(λ) is called improper. If D = 0, then G(λ) is
strictly proper. An invertibleG(λ) is biproper if bothG(λ) andG−1(λ) are proper. A
polynomial matrix U(λ) ∈ R[λ] is called unimodular if is invertible and its inverse
U−1(λ) ∈ R[λ] (i.e., is a polynomial matrix). The determinant of a unimodular
matrix is therefore a constant.

The degree of a rational matrix G(λ), also known as the McMillan degree, is
defined in Sect. 9.1.4. We only give here the definition of the degree of a rational
vector v(λ). For this, we express first v(λ) in the form v(λ) = ṽ(λ)/d(λ), where d(λ)

is the monic least common multiple of all denominator polynomials of the elements
of v(λ) and ṽ(λ) is the corresponding polynomial vector ṽ(λ) := d(λ)v(λ). Then,
deg v(λ) = max(deg ṽ(λ), deg v(λ)).

9.1.3 Linear Dependence, Normal Rank, Minimal Basis

A p-dimensional rational vector v(λ) ∈ R(λ)p can be seen as either a 1 × p or
a p × 1 rational matrix. A set of rational vectors V (λ) := {v1(λ), . . . , vk(λ)} is
said to be linearly dependent over the field R(λ) if there exists k rational functions
γi(λ) ∈ R(λ), i = 1, . . . , k, with γi(λ) �= 0 for at least one i, such that, the linear
combination

k∑

i=1

γi(λ)vi(λ) = 0 . (9.2)

The set of vectors V (λ) is linearly independent over R(λ) if (9.2) implies that
γi(λ) = 0 for each i = 1, . . . , k. It is important to note that a linearly dependent set
V (λ) overR(λ) can be still linearly independent over another field (e.g., the field of
reals if γi ∈ R).

The normal rank of a rational matrix G(λ) ∈ R(λ)p×m, which we also denote
by rank G(λ), is the maximal number of linearly independent rows over the field
of rational functions R(λ). It can be shown that the normal rank of G(λ) is the
maximally possible rank of the complex matrix G(λ) for all values of λ ∈ C such
that G(λ) has finite norm. This interpretation provides a simple way to determine
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the normal rank by evaluating the maximal rank of G(λ) for a few random values of
the frequency variable λ.

It is easy to check that the set of p-dimensional rational vectorsR(λ)p forms a vec-
tor spacewith scalars defined overR(λ). IfV(λ) ⊂ R(λ)p is a vector space, then there
exists a set of linearly independent rational vectors V (λ) := {v1(λ), . . . , vnb(λ)} ⊂
V(λ) such that any vector in V(λ) is a linear combination of the vectors in V (λ)

(equivalently, any set of nb + 1 vectors, including an arbitrary vector from V(λ) and
the nb vectors in V (λ), is linearly dependent). The set V (λ) is called a basis of the
vector space V(λ) and nb is the dimension of V(λ). With a slight abuse of notation,
we denote V (λ) the matrix formed of the nb stacked row vectors

V (λ) =
⎡

⎢
⎣

v1(λ)
...

vnb(λ)

⎤

⎥
⎦

or the nb concatenated column vectors

V (λ) = [
v1(λ) · · · vnb(λ)

]
.

Interestingly, as basis vectors we can always use polynomial vectors since we can
replace each vector vi(λ)of a rational basis, by vi(λ)multipliedwith the least common
multiple of the denominators of the components of vi(λ).

The use of polynomial bases allows to define the main concepts related to so-
called minimal bases. Let ni be the degree of the i-th polynomial vector vi(λ) of
a polynomial basis V (λ) (i.e., ni is the largest degree of the components of vi(λ)).
Then, n := ∑nb

i=1 ni is, by definition, the degree of the polynomial basis V (λ). A
minimal polynomial basis of V(λ) is one for which n has the least achievable value.
For a minimal polynomial basis, ni, for i = 1, . . . , nb, are called the row or column
minimal indices (also known as left or right Kronecker indices, respectively). Two
important examples are the left and right nullspace bases of a rational matrix, which
are shortly discussed below.

Let G(λ) be a p × m rational matrix G(λ) whose normal rank is r < min(p,m).
It is easy to show that the set

NL(G(λ)) := {v(λ) ∈ R1×p(λ) | v(λ)G(λ) = 0}

is a linear space called the left nullspace of G(λ). Analogously,

NR(G(λ)) := {v(λ) ∈ Rm×1(λ) | G(λ)v(λ) = 0}

is a linear space called the right nullspace of G(λ). The dimension of NL(G(λ))

[NR(G(λ)) ] is p− r [m − r], and therefore, there exist p− r [m − r] linearly inde-
pendent polynomial vectors which form a minimal polynomial basis for NL(G(λ))

[NR(G(λ)) ]. Let nl,i [ nr,i ] be the left [right]minimal indices and let nl := ∑p−r
i=1 nl,i
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[
nr := ∑m−r

i=1 nr,i
]
be the least possible degree of the left [right] nullspace basis. The

least left and right degrees nl and nr , respectively, play an important role in relating
the main structural elements of rational matrices (see the discussion of poles and
zeros in Sect. 9.1.4).

Some properties ofminimal polynomial bases, which are relevant for the synthesis
methods presented in this book, are summarized below for the left nullspace bases.
Similar results can be given for the right nullspace bases.

Lemma 9.1 Let G(λ) be a p × m rational matrix of normal rank r and let Nl(λ)

be a (p − r) × p minimal polynomial basis of the left nullspace NL(G(λ)) with left
minimal (or left Kronecker) indices nl,i, i = 1, . . . , p− r. Then the following holds:

1. The left minimal indices are unique up to permutations (i.e., if Ñl(λ) is another
minimal polynomial basis, then Nl(λ) and Ñl(λ) have the same left minimal
indices).

2. Nl(λ) is irreducible, having full row rank for all λ ∈ C (i.e., Nl(λ) has no finite
zeros, see Sect.9.1.4).

3. Nl(λ) is row reduced (i.e., the leading row coefficient matrix formed from the
coefficients of the highest row degrees has full row rank.)

An irreducible and row-reduced polynomial basis is actually a minimal poly-
nomial basis. Irreducibility implies that any polynomial vector v(λ) in the space
spanned by the rows of Nl(λ) can be expressed as a linear combination of basis vec-
tors v(λ) = φ(λ)Nl(λ), with φ(λ) being a polynomial vector. In particular, assuming
the rows of Nl(λ) are ordered such that nl,i ≤ nl,i+1 for i = 1, . . . , p− r−1, then for
any v(λ) of degree nl,i, the corresponding φ(λ) has as its j-th element a polynomial
of degree at most nl,i −nl,j for j = 1, . . . , i, and the rest of components are zero. This
property allows to easily generate left polynomial annihilators of given degrees and
can be exploited in the synthesis of least-order residual generators (see Sect. 5.2).

Minimal polynomial bases allow to easily build simple minimal proper rational
bases, which are the natural counterparts of the minimal polynomial bases. These
are proper rational bases having the property that the sum of degrees of the rows
[columns] is equal to the least left [right] degree of a minimal polynomial basis nl
[nr]. A simple minimal proper rational left nullspace basis with arbitrary poles can
be constructed by forming Ñl(λ) := M(λ)Nl(λ) with

M(λ) = diag
(
1/d1(λ), . . . , 1/dp−r(λ)

)
, (9.3)

where di(λ) is a polynomial of degree nl,i with arbitrary roots. Since Nl(λ) is row
reduced, it follows that Dl := limλ→∞ Ñl(λ) has full row rank (i.e., Ñl(λ) has no
infinite zeros, see Sect. 9.1.4). A simple minimal proper rational left nullspace basis
allows to generate, in a straightforward manner, left rational annihilators of given
McMillan degrees by forming linear combinations of the basis vectors in Ñl(λ)

using specially chosen rational vectors φ(λ) (see Sect. 9.1.4 for the definition of the
McMillan degree of a rational matrix). This property can be equally exploited in the
synthesis of least-order residual generators (see Sect. 5.2).

http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_5
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9.1.4 Poles and Zeros

For a scalar rational function g(λ) ∈ R(λ), the values of λ for which g(λ) is infinite
are called the poles of g(λ). If g(λ) = α(λ)/β(λ) has the form in (9.1), then the n
roots λ

p
i , i = 1, . . . , n, of β(λ) are the finite poles of g(λ), while if m < n, there are

also, by convention, n − m infinite poles. The values of λ for which g(λ) = 0 are
called the zeros of g(λ). The m roots λz

i , i = 1, . . . ,m, of α(λ) are the finite zeros of
g(λ), while if n < m, there are also, by convention, m − n infinite zeros. It follows
that the number of poles is equal to the number of zeros and is equal to max(m, n),
the degree of g(λ). The rational function g(λ) in (9.1) can be equivalently expressed
in terms of its finite poles and zeros in the factorized form

g(λ) = kg

∏m
i=1(λ − λz

i )∏n
i=1(λ − λ

p
i )

, (9.4)

where kg = am/bn. If g(λ) is the transfer function of a SISO LTI system, then we
will always assume that g(λ) is in a minimal cancelled (irreducible) form, that is, the
polynomials α(λ) and β(λ) in (9.1) have 1 as greatest common divisor. Equivalently,
the two polynomials have no common roots, and therefore no pole-zero cancellation
may occur in (9.4). Two such polynomials are called coprime.

In studying the stability of systems, the poles play a primordial role. Their real
parts, in the case of a continuous-time system, or moduli, in the case of a discrete-
time system, determine the asymptotic (exponential) decay or divergence speed of the
system output. A SISO LTI system with the transfer function g(λ) is exponentially
stable (or equivalently g(λ) is stable) if g(λ) is proper and has all poles in the
appropriate stability domain Cs. The system is unstable if it has at least one pole
outside of the stability domain and anti-stable if all poles lie outside of the stability
domain. Poles inside the stability domain are called stable poles, while those outside
of the stability domain are called unstable poles. For continuous-time systems the
stability domain is the open left half complex plane Cs = {s ∈ C : �(s) < 0}, while
for discrete-time systems the stability domain is the open unit disk Cs = {z ∈ C :
|z| < 1}. We denote by ∂Cs the boundary of the stability domain. For continuous-
time systems, the boundary of the stability domain is the extended imaginary axis
(i.e., including the point at infinity) ∂Cs = {∞} ∪ {s ∈ C : �(s) = 0}, while
for discrete-time systems the boundary of the stability domain is the unit circle
∂Cs = {z ∈ C : |z| = 1}. We denote Cs = Cs ∪ ∂Cs the closure of the stability
domain. The instability domain of poles we denote by Cu and is the complement of
Cs in C, Cu = C \ Cs. It is also the closure of the set denoted by Cu, which for a
continuous-time system is the open right-half planeCu = {s ∈ C : �(s) > 0}, while
for a discrete-time systems is the exterior of the unit circle Cu = {z ∈ C : |z| > 1}.
The stability degree of poles is defined as the largest real part of the poles in the
continuous-time case, or the largest absolute value of the poles in the discrete-time
case.
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Let Rs(λ) be the set of proper stable transfer functions having poles only in
Cs. A transfer function g(λ) ∈ Rs(λ) having only zeros in Cs is called minimum-
phase. Otherwise it is called non-minimum-phase. The zeros of g(λ) inCs are called
minimum-phase zeros, while those outside Cs are called non-minimum-phase zeros.

There are no straightforward generalizations of poles and zeros of scalar rational
functions to the rational matrix case. Instrumental for a rigorous definition are two
canonical forms: the Smith form for polynomial matrices and the Smith–McMillan
form for rational matrices. For polynomial matrices we have the following important
result.

Lemma 9.2 Let P(λ) ∈ R[λ]p×m be any polynomial matrix. Then, there exist uni-
modular matrices U(λ) ∈ R[λ]p×p and V (λ) ∈ R[λ]m×m such that

U(λ)P(λ)V (λ) = S(λ) :=

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

α1(λ) 0 · · · 0 · · · 0
0 α2(λ) · · · 0 · · · 0
...

...
. . .

...
...

0 0 · · · αr(λ) · · · 0
...

...
...

...

0 0 · · · 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

(9.5)

and αi(λ) divides αi+1(λ) for i = 1, . . . , r − 1.

The polynomial matrix S(λ) is called the Smith form of P(λ) and r is the normal rank
ofP(λ). The diagonal elementsα1(λ), . . . , αr(λ) are called the invariant polynomials
of P(λ). The roots of the polynomials αi(λ), for i = 1, . . . , r, are called the finite
zeros of the polynomial matrix P(λ). To each distinct finite zero λz of P(λ), we can
associate the multiplicities σi(λz) ≥ 0 of root λz in each of the polynomials αi(λ), for
i = 1, . . . , r. By convention, σi(λz) = 0 if λz is not a root of αi(λ). The divisibility
properties of αi(λ) imply that

0 ≤ σ1(λz) ≤ σ2(λz) ≤ · · · ≤ σr(λz) .

Any rational matrix G(λ) can be expressed as

G(λ) = P(λ)

d(λ)
,

where d(λ) is the monic least common multiple of the denominator polynomials of
the entries of G(λ), and P(λ) := d(λ)G(λ) is a polynomial matrix. Then, we have
the following straightforward extension of Lemma 9.2 to rational matrices.

Lemma 9.3 Let G(λ) ∈ R(λ)p×m be any rational matrix. Then, there exist unimod-
ular matrices U(λ) ∈ R[λ]p×p and V (λ) ∈ R[λ]m×m such that
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U(λ)G(λ)V (λ) = H(λ) :=

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

α1(λ)

β1(λ)
0 · · · 0 · · · 0

0 α2(λ)

β2(λ)
· · · 0 · · · 0

...
...

. . .
...

...

0 0 · · · αr(λ)

βr(λ)
· · · 0

...
...

...
...

0 0 · · · 0 · · · 0

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

, (9.6)

with αi(λ) and βi(λ) coprime for i = 1, . . . , r and αi(λ) divides αi+1(λ) and βi+1(λ)

divides βi(λ) for i = 1, . . . , r − 1.

The rational matrix H(λ) is called the Smith–McMillan form of G(λ) and r is the
normal rank ofG(λ). The Smith–McMillan form is a powerful conceptual tool which
allows to define rigorously the notions of poles and zeros of MIMO LTI systems and
to establish several basic factorization results of rational matrices.

The roots of the numerator polynomials αi(λ), for i = 1, . . . , r, are called the
finite zeros of the rational matrix G(λ) and the roots of the denominator polynomials
βi(λ), for i = 1, . . . , r, are called the finite poles of the rational matrixG(λ). To each
finite λz, which is a zero or a pole ofG(λ) (or both), we can associate its multiplicities
{σ1(λz), . . . , σr(λz)}, where σi(λz) is the multiplicity of λz either as a pole or a zero
of the ratio αi(λ)/βi(λ), for i = 1, . . . , r. By convention, we use negative values
for poles and positive values for zeros. The divisibility properties of αi(λ) and βi(λ)

imply that
σ1(λz) ≤ σ2(λz) ≤ · · · ≤ σr(λz) .

The r-tuple of multiplicities {σ1(λz), . . . , σr(λz)} completely characterizes the pole-
zero structure of G(λ) in λz.

The relative degrees of αi(λ)/βi(λ) do not provide the correct information on the
multiplicity of infinite zeros and poles. This is because the used unimodular trans-
formations may have poles and zeros at infinity. To overcome this, the multiplicity
of zeros and poles at infinity are defined in terms of multiplicities of poles and zeros
of G(1/λ) in zero. TheMcMillan degree of a rational matrix G(λ), usually denoted
by δ(G(λ)), is the number np of its poles, both finite and infinite, counting all multi-
plicities. If nz is the number of zeros (finite and infinite, counting all multiplicities),
then we have the following important structural relation for any rational matrix

np = nz + nl + nr,

where nl and nr are the least degrees of the minimal polynomial bases for the left
and right nullspaces of G(λ), respectively.

For a given rational matrixG(λ), any (finite or infinite) pole of its elements gij(λ),
is also a pole of G(λ). Therefore, many notions related to poles of SISO LTI systems
introduced previously can be extended in a straightforward manner to MIMO LTI
systems. For example, the notion of properness of G(λ) can be equivalently defined
as the nonexistence of infinite poles in the elements of G(λ) (i.e., G(λ) has only
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finite poles). The notion of exponential stability of a LTI system with a proper TFM
G(λ) can be defined as the lack of unstable poles in all elements of G(λ) (i.e., all
poles of G(λ) are in the stable domain Cs). A TFM G(λ) with only stable poles is
called stable. Otherwise, G(λ) is called unstable. A similar definition applies for the
stability degree of poles.

The zeros of G(z) are also called the transmission zeros of the corresponding LTI
system. A proper and stable G(z) is minimum-phase if all its finite zeros are stable.
Otherwise, it is called non-minimum-phase.

9.1.5 Additive Decompositions

Consider a disjunct partition of the complex plane C as

C = Cg ∪ Cb, Cg ∩ Cb = ∅ , (9.7)

where bothCg andCb are symmetrically located with respect to the real axis, andCg

has at least one point on the real axis. Since Cg and Cb are disjoint, each pole of any
transfer function lies either in Cg or in Cb. Therefore, the subscripts are sometimes
associated with the “good” and “bad” poles of the transfer functions. In applications,
Cg corresponds to a region or a discrete set of points in which we wish to place the
poles of a synthesized controller or fault detection filter. In what follows, we will
always assume that ∞ /∈ Cg .

Since Cg and Cb are disjoint, each pole of any element gij(λ) of a TFM G(λ) lies
either in Cg or in Cb. Therefore, it is easy to see that any G(λ) can be additively
decomposed as

G(λ) = Gg(λ) + Gb(λ), (9.8)

where Gg(λ) has only poles in Cg , while Gb(λ) has only poles in Cb. For such a
decomposition of G(λ) we always have that

δ (G(λ)) = δ
(
Gg(λ)

) + δ (Gb(λ)) .

For example, if Cg = C \ {∞} and Cb = {∞}, then (9.8) represents the additive
decomposition of a possibly improper rational matrix as the sum of its proper and
polynomial parts. This decomposition, in general, is not unique, because an arbi-
trary constant term can be always added to one term and subtracted from the other
one. Another frequently used decomposition is the stable–unstable decomposition of
proper rational matrices, when Cg = Cs (stability region) and Cb = Cu (instability
region).
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9.1.6 Fractional Factorizations

For a given disjunct partition (9.7) of the complex plane asC = Cg∪Cb, any rational
matrix G(λ) can be expressed in a left fractional form

G(λ) = M−1(λ)N(λ) , (9.9)

or in a right fractional form

G(λ) = N(λ)M−1(λ) , (9.10)

where both the denominator factor M(λ) and the numerator factor N(λ) have only
poles in Cg . These fractional factorizations over a “good” domain of poles Cg are
important in various observer, fault detection filter, or controller synthesis methods,
because they allow to achieve the placement of all poles of a TFMG(λ) in the domain
Cg simply, by a premultiplication or postmultiplication ofG(λ)with a suitableM(λ).
Fractional factorizations of the form (9.9) or (9.10) are not unique. For example, if
U(λ) is an invertible rational matrix with poles only in Cg , then both (9.9) and

G(λ) = (U(λ)M(λ))−1 (U(λ)N(λ)) (9.11)

are left fractional factorizations of G(λ).
Of special interest are the so-called coprime factorizations, where the factors

satisfy additional conditions. A fractional representation of the form (9.9) is a left
coprime factorization (LCF) over Cg of G(λ), if there exist U(λ) and V (λ) with
poles only in Cg which satisfy the Bezout identity

M(λ)U(λ) + N(λ)V (λ) = I .

A fractional representation of the form (9.10) is a right coprime factorization (RCF)
over Cg of G(λ), if there exist U(λ) and V (λ) with poles only in Cg which satisfy

U(λ)M(λ) + V (λ)N(λ) = I .

Coprime factorizations are not unique as well. For example, if U(λ) is an invertible
rational matrix with poles and zeros only in Cg and G(λ) = M−1(λ)N(λ) is a LCF,
then (9.11) is also a LCF of G(λ).

An important class of coprime factorizations is the class of coprime factorizations
with minimum-degree denominators. Recall that δ (G(λ)), the McMillan degree of
G(λ), is defined as the number of poles of G(λ), both finite and infinite, counting all
multiplicities. It follows that for any G(λ) we have δ (G(λ)) = ng + nb, where ng
and nb are the number of poles of G(λ) inCg andCb, respectively. The denominator
factorM(λ) has the minimum-degree property if δ (M(λ)) = nb. When determining
minimum-degree coprime factorizations, the nb poles of M(λ) can be arbitrarily
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chosen from Cg . However, the poles of M−1(λ) (which are the zeros of M(λ)) are
fixed, and are precisely the nb poles of G(λ) in Cb. An important consequence of
this fact, is that if G(λ) has no poles in a certain region Ω ⊂ Cb, then M(λ) has no
zeros in Ω as well.

Of special interest in FDI related synthesis procedures is the left factorization with
respect to a given partition (9.7) of the complex plane of a row partitioned matrix
with nb block rows

G(λ) =

⎡

⎢⎢
⎢
⎣

G1(λ)

G2(λ)
...

Gnb(λ)

⎤

⎥⎥
⎥
⎦

,

such that M(λ) in (9.9) has a block diagonal form

M(λ) = diag
(
M1(λ),M2(λ), . . . ,Mnb(λ)

)
, (9.12)

where the size of the square diagonal block Mi(λ) is equal to the number of rows
of Gi(λ). Such a factorization can be obtained by determining each diagonal block
Mi(λ) separately from a LCF of the i-th block-row Gi(λ) = M−1

i (λ)Ni(λ). The
resulting N(λ) is

N(λ) =

⎡

⎢⎢
⎢
⎣

N1(λ)

N2(λ)
...

Nnb(λ)

⎤

⎥⎥
⎥
⎦

. (9.13)

If all nb row blocks are row vectors, then M(λ) results diagonal. In this case, the
overall left factorization with M(λ) in (9.12) and N(λ) in (9.13) preserves in the
resulting N(λ) the zero–nonzero structure of G(λ). Although for each block row
Gi(λ) we used a LCF, in general, the overall factorization (9.9) is, in general, not
coprime.

The conjugate of the TFM G(λ) is denoted G∼(λ) and is defined in a continuous-
time setting as G∼(s) = GT (−s), while in a discrete-time setting as G∼(z) =
GT (1/z). A square TFM G(λ) is all-pass if G∼(λ)G(λ) = I . If G(λ) is a stable
TFM and satisfies G∼(λ)G(λ) = I then it is called an inner TFM, while if it satisfies
G(λ)G∼(λ) = I it is called a co-inner TFM. Note that an inner or co-inner TFM
must not be square, but must have full column rank (injective) or full row rank
(surjective), respectively. It is remarkable, that each proper TFM G(λ)without poles
on the boundary of stability domain ∂Cs has a stable LCF of the form (9.9) or a stable
RCFof the form (9.10)with the denominator factorM(λ) inner. TheMcMillan degree
of M(λ) is equal to the number of the unstable poles of G(λ).

A possible approach to compute coprime factorizations with denominator factors
of least McMillan degrees employs the additive decomposition (9.8) with respect to
a disjunct partition of the complex plane (9.7). Consider the additive decomposition
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G(λ) = Gg(λ) + Gb(λ), (9.14)

where Gg(λ) has only poles in Cg , while Gb(λ) has only poles in Cb. For such a
decomposition of G(λ) we always have that δ (G(λ)) = δ

(
Gg(λ)

) + δ (Gb(λ)).
Compute now a LCF Gb(λ) = M−1(λ)Ng(λ), such that M(λ) and Ng(λ) have only
poles in Cg and δ(M(λ)) = δ(Gb(λ)) (thus the least possible one). The numerator
factor of a LCF with least-order denominator factor M(λ) is given by

N(λ) = M(λ)Gg(λ) + Ng(λ)

and has only poles in Cg . Similarly, if Gb(λ) = Ng(λ)M−1(λ) is a RCF with
δ(M(λ)) = δ(Gb(λ)), then the numerator factor of a RCF with least-order denomi-
nator factor M(λ) is given by

N(λ) = Gg(λ)M(λ) + Ng(λ) .

This factorization approach can be applied also to compute left or right fractional fac-
torizations with least-order diagonal denominators, by applying the above procedure
to each row or column of G(λ).

For the computation of coprime factorizations with minimum-degree denom-
inators recursive pole-zero cancellation techniques can be employed. For exam-
ple, for the computation of the LCF of Gb(λ), it is possible to find a sequence of
nb := δ(Gb(λ)) nonsingular rational matricesMi(λ), i = 1, . . . , nb, each of McMil-
lan degree 1, with one (arbitrary) pole in Cg and one (fixed) zero in Cb, such that the
sequence Ni(λ) := Mi(λ)Ni−1(λ) for i = 1, . . . , nb, initialized with N0(λ) = Gb(λ),
generates the factors Ng(λ) := Nnb(λ) and M(λ) := Mnb(λ) · · ·M1(λ) of the LCF
Gb(λ) = M−1(λ)Ng(λ). The zero ofMi(λ) is chosen to cancel with a pole ofNi−1(λ)

lying in Cb, such that after nb steps, all poles of Gb(λ) are cancelled and dislocated
to values in Cg . This approach can be also employed when additionally imposing
that all elementary factors Mi(λ) are inner. In the case of complex poles, the above
technique leads, in general, to complex factorizations. Therefore, to obtain real fac-
torizations, for each complex conjugate pair of poles a second-degree real factor
can be used to cancel simultaneously both poles. Second-degree factors may also
be necessary when dislocating a pair of real poles into a pair of complex conjugate
poles. General formulas for constructing first- and second-degree factors are given
in [121]. Similar first-degree factors can be used for cancelling a single infinite pole
(to be used in the case of an improper G(λ)).

The use of the above approach involves several delicate computations involv-
ing transfer function manipulations. First, one has to compute the poles of G(λ)

in order to know which ones have to be cancelled. Then, one has to compute a
partial-fraction expansion of G(λ) to arrive to the additive decomposition (9.14)
and, further, of each Ni−1(λ) (for i = 1, . . . , nb). From the coefficient matrices of
this expansion one derives certain vectors needed for the construction of the factors
Mi(λ). This computation can be very involved when Gb(λ) has multiple poles or
when real factors have to be enforced by using second-degree real factors to cancel
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a pair of complex conjugated poles (see [121] for details). Moreover, after each pole
cancellation with a factor Mi(λ), the expansion of Ni−1(λ) has to be updated. The
state-space-computation-based methods, presented in Sect. 10.3.5, provide numeri-
cally appealing alternative approaches for the computation of coprime factorizations.

9.1.7 Norms

The H∞-norm of a proper and stable TFM G(λ) ∈ R
p×m
s (λ) can be defined as

‖G‖∞ := sup
λ∈∂Cs

σ (G(λ)) , (9.15)

where σ(·) denotes the largest singular value. The set Rp×m
s (λ) together with the

norm defined in (9.15) is denoted Hp×m
∞ (or simply H∞ if the dimensions are not

relevant or are clear from the context) and is the Hardy space of TFMs with bounded
∞-norm (i.e., the set of stable and proper TFMs). Let Lp×m

∞ (or L∞) denote the set
of proper TFMs without poles on the boundary of the stability domain ∂Cs. The
L∞-norm of a G(λ) ∈ L∞ is defined as in (9.15). Its computation can be reduced
to a H∞-norm computation by using the stable RCF with inner denominator of
G(λ) = G̃(λ)M−1

i (λ) and the fact that M−1
i (λ) is an all-pass TFM. It follows

‖G‖∞ = ‖G̃(λ)M−1
i (λ)‖∞ = ‖G̃(λ)‖∞ .

The H2-norm of TFM G(λ) ∈ R
p×m
s (λ) is defined for a continuous-time system

as

‖G‖2 :=
(

1

2π

∫ ∞

−∞
trace

(
GT (−jω)G(jω)

)
dω

)1/2

(9.16)

and for a discrete-time system as

‖G‖2 :=
(

1

2π

∫ 2π

0
trace

(
GT (e−jθ )G(ejθ )

)
dθ

)1/2

. (9.17)

Hp×m
2 (or H2) denotes the Hardy space of TFMs with bounded 2-norm. In the

continuous-time case, this is the set of stable and strictly proper TFMs.Wedefine sim-
ilarly Lp×m

2 (or L2) the space of TFMs without poles on ∂Cs such that the integrals
in (9.16) or (9.17), depending on the type of the system (continuous- or discrete-
time) are bounded. The L2-norm has formally the same definition as theH2-norm in
(9.16) or (9.17) and can be computed using the stable RCF with inner denominator
of G(λ) = G̃(λ)M−1

i (λ) and the norm-preserving property of all-pass factors

‖G‖2 = ‖G̃(λ)M−1
i (λ)‖2 = ‖G̃(λ)‖2 .

http://dx.doi.org/10.1007/978-3-319-51559-5_10
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The Hankel norm of a stable TFM G(λ) is a measure of the influence of past
inputs on future outputs and will be denoted by ‖G(λ)‖H . The precise mathematical
definition of the Hankel norm involves some advanced concepts from functional
analysis (i.e., it is the norm of the Hankel operator �G associated to G(λ)). For any
stable G(λ) the relation to H∞-norm is ‖G(λ)‖H ≤ ‖G(λ)‖∞. For further details,
see [164].

9.1.8 Inner–Outer and Spectral Factorizations

A proper and stable TFM G(λ) is outer if it is minimum-phase and full row rank
(surjective), and is co-outer if it is minimum-phase and full column rank (injective).
A full row rank (full column rank) proper and stable TFMG(λ) is quasi-outer (quasi-
co-outer) if it has only zeros in Cs (i.e., in the stability domain and its boundary).
Any stable TFM G(λ) without zeros in ∂Cs has an inner–outer factorization

G(λ) = Gi(λ)Go(λ) , (9.18)

with Gi(λ) inner and Go(λ) outer. Similarly, G(λ) has an co-outer–co-inner factor-
ization

G(λ) = Gco(λ)Gci(λ) , (9.19)

withGco(λ) co-outer andGci(λ) co-inner. Any stable TFMG(λ) has an inner–quasi-
outer factorization of the form (9.18), whereGi(λ) is inner andGo(λ) is quasi-outer,
and also has a quasi-co-outer–co-inner factorization of the form (9.19), whereGci(λ)

is co-inner and Gco(λ) is quasi-co-outer.

Remark 9.1 The inner–outer factorization of a TFM G(λ) can be interpreted as a
generalization of the orthogonal QR-factorization of a real matrix. The inner factor
can be seen as the generalization of a matrix with orthonormal columns. Its role in an
inner–outer factorization is twofold: to compress the given G(λ) to a full row rank
TFM and to dislocate all zeros of G(λ) lying in Cu into positions within Cs, which
are symmetric (in a certain sense) with respect to ∂Cs. �

In some applications, instead of the (compact) inner–outer factorization (9.18), an
alternative (extended) factorizationwith square inner factor is desirable. The extended
inner–outer factorization and extended inner–quasi-outer factorization have the form

G(λ) = [
Gi(λ) G⊥

i (λ)
] [

Go(λ)

0

]
, (9.20)

where G⊥
i (λ) is the inner orthogonal complement of Gi(λ) such that

[
Gi(λ) G⊥

i (λ)
]

is square and inner. Similarly, the extended co-outer–co-inner factorization and
extended quasi-co-outer–co-inner factorization have the form
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G(λ) = [
Gco(λ) 0

] [
Gci(λ)

G⊥
ci(λ)

]
, (9.21)

where G⊥
ci(λ) is the co-inner orthogonal complement of Gi(λ) such that

[
Gci(λ)

G⊥
ci(λ)

]

is square and co-inner (thus also inner).
The outer factor Go(λ) of an G(λ) without zeros in ∂Cs satisfies

G∼(λ)G(λ) = G∼
o (λ)Go(λ)

and therefore, it is a solution of the minimum-phase right spectral factorization
problem. Similarly, the co-outer factor Gco(λ) of an G(λ) without zeros on ∂Cs

satisfies
G(λ)G∼(λ) = Gco(λ)G∼

co(λ)

and therefore, it is a solution of the minimum-phase left spectral factorization prob-
lem.

Combining the LCFwith inner denominator and the inner–outer factorization, we
have for an arbitrary G(λ), without poles and zeros on the boundary of the stability
domain ∂Cs, that

G(λ) = M−1
i (λ)N(λ) = M−1

i (λ)Ni(λ)No(λ),

where Mi(λ) and Ni(λ) are inner and No(λ) is outer. It follows that the outer fac-
tor No(λ) is the solution of the stable minimum-phase right spectral factorization
problem

G∼(λ)G(λ) = N∼
o (λ)No(λ) .

Similarly, by combining the RCF with inner denominator and the co-outer–co-inner
factorization we obtain

G(λ) = N(λ)M−1
i (λ) = Nco(λ)Nci(λ)M−1

i (λ) ,

with Mi(λ) inner, Nci(λ) co-inner and Nco(λ) co-outer. Then, Nco(λ) is the solution
of the stable minimum-phase left spectral factorization problem

G(λ)G∼(λ) = Nco(λ)N∼
co(λ) .

If G(λ) has poles or zeros on the boundary of the stability domain ∂Cs, then we
can still achieve the above factorizations by including all poles and zeros of G(λ) on
∂Cs in the resulting spectral factors No(λ) or Nco(λ).



9.1 Rational Transfer Function Matrices 265

9.1.9 Linear Rational Matrix Equations

ForG(λ) ∈ R(λ)p×m andF(λ) ∈ R(λ)q×m consider the solution of the linear rational
matrix equation

X(λ)G(λ) = F(λ) (9.22)

where X(λ) ∈ R(λ)q×p is the solution we seek. The existence of a solution is guar-
anteed if the compatibility condition for the linear system (9.22) is fulfilled.

Lemma 9.4 The rational equation (9.22) has a solution if and only if

rank G(λ) = rank

[
G(λ)

F(λ)

]
. (9.23)

Let r be the rank of G(λ). In the most general case, the solution of (9.22) (if exists)
is not unique and can be expressed as

X(λ) = X0(λ) + Y(λ)Nl(λ), (9.24)

whereX0(λ) is a particular solution of (9.22),Nl(λ) ∈ R(λ)(p−r)×p is a rationalmatrix
representing a basis of the left nullspace NL(G(λ)) (can be empty if r = p), while
Y(λ) ∈ R(λ)q×(p−r) is an arbitrary rational matrix. The particular solution X0(λ)

can be expressed as X0(λ) = F(λ)G+(λ), where G+(λ) is a particular generalized
inverse (so-called {1}-inverse) of G(λ).

An important aspect is to establish conditions which ensure the existence of a
solution X(λ) which has only poles in a “good” domain Cg , or equivalently, X(λ)

has no poles in the “bad" domain Cb := C \Cg . Such a condition can be obtained in
terms of the pole-zero structures of the rational matrices G(λ) and [GT (λ) FT (λ) ]T
at a particular value λz of the frequency parameter λ.

Lemma 9.5 The rational equation (9.22) has a solution without poles in Cb if and

only if (9.23) is fulfilled and the rational matrices G(λ) and

[
G(λ)

F(λ)

]
have the same

pole-zero structure for all λz ∈ Cb.

All solutions of (9.22), without poles inCb, can be also expressed in the form (9.24),
where all intervening matrices Xo(λ), Nl(λ) and Y(λ) are rational matrices without
poles in Cb.

The characterization provided by Lemma 9.5 is relevant when solving synthesis
problems of fault detection filters and controllers using an exact model-matching
approach, where the physical realizability requires the properness and stability of
the solutions (i.e., Cg = Cs). For example, if G(λ) has unstable zeros in λz, then
F(λ) must be chosen to have the same or richer zero structure in order to ensure
the cancellation of these zeros (appearing now as unstable poles of any generalized
inverse G+(λ)). The fixed poles in Cb correspond to those zeros of G(λ) for which
the above condition is not fulfilled, and thus no complete cancellations take place.
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If the solvability condition (9.23) is satisfied, but no solution with poles only in
Cg exists, then from any computed solution X(λ) we can compute a LCF on Cg

X(λ) = M−1(λ)X̃(λ) with least McMillan degree M(λ) such that X̃(λ) has only
poles in Cg and satisfies X̃(λ)G(λ) = M(λ)F(λ). In this way, we can determine the
least McMillan degree updating factor M(λ) of the right-hand side F(λ), for which
the problem becomes solvable over Cg .

An important aspect is the exploitation of the non-uniqueness of the solution in
(9.22)when rank G(λ) < p, by determining a solutionwith the least possibleMcMil-
lan degree. This problem is known in the literature as the minimum design problem
(MDP) and primarily targets the reduction of the complexity of real-time burden
when implementing filters or controllers. Of particular importance are proper and
stable solutions which are suitable for a physical (causal) realization. If the minimal
degree solution is not proper and stable, then it is of interest to find a proper and
stable solution with the least McMillan degree. Surprisingly, this problem does not
have a satisfactory procedural solution, most of proposed approaches involves para-
metric searches using suitably parameterized solutions of given candidate degrees.
The above-mentioned updating of F(λ) by replacing it withM(λ)F(λ) for a suitable
factor M(λ) allows to compute least McMillan degree stable and proper solutions
for the updated problem. This order can not be achieved if structural constraints on
M(λ) (e.g., diagonal form) are present.

9.1.10 Approximate Model-Matching

The formulation of the approximate model-matching problem can be done as an
error minimization problem, where the approximate solution of the rational equation
X(λ)G(λ) = F(λ) involves the minimization of some norm (e.g., L2- or L∞-norm)
of the error E(λ) := F(λ) − X(λ)G(λ). For example, the standard formulation
of the H∞ model-matching problem (H∞-MMP) is given G(λ),F(λ) ∈ H∞, find
X(λ) ∈ H∞ which minimizes ‖E(λ)‖∞. The H2 model-matching problem (H2-
MMP) has a similar formulation. We will use ‖ · ‖∞/2 to denote either the L∞- or
L2-norm.

The following results provide sufficient conditions for the solvability of theH∞-
MMP and H2-MMP in the standard case.

Lemma 9.6 An optimal solution X(λ) of the H∞-MMP exists if G(λ) has no zeros
on ∂Cs.

Lemma 9.7 An optimal solution X(λ) of the H2-MMP exists if G(λ) has no zeros
on ∂Cs and, additionally, in the continuous-time

rank G(∞) = rank

[
G(∞)

F(∞)

]
. (9.25)
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The rank condition (9.25) merely ensures that the optimal solution X(λ) can be
chosen such that the resulting E(λ) is strictly proper and therefore ‖E(λ)‖2 is finite.

Inwhat follows,wewill sketch a general approach for solving approximatemodel-
matching problems based on transforming the error minimization problems into
appropriate least distance problems (LDPs), by using factorization techniques.When
solvingH∞- orH2-MMPs we will additionally assume that G(λ) has full row rank.

For the solution of both H∞- and H2-MMPs, we employ the (extended) outer–
inner factorization of G(λ) to reduce these problems to H∞- or H2-LDPs, respec-
tively. Consider the extended factorization

G(λ) = [
Go(λ) 0

]
Gi(λ) = [

Go(λ) 0
] [

Gi,1(λ)

Gi,2(λ)

]
= Go(λ)Gi,1(λ),

where Gi(λ) :=
[
Gi,1(λ)

Gi,2(λ)

]
is square and inner and Go(λ) is square and outer

(therefore invertible in H∞). This allows to write successively

‖E(λ)‖∞/2 = ‖F(λ) − X(λ)G(λ)‖∞/2

= ∥
∥(
F(λ)G∼

i (λ) − X(λ)
[
Go(λ) 0

])
Gi(λ)

∥
∥∞/2

= ∥
∥[

F̃1(λ) − Y(λ) F̃2(λ)
]∥∥∞/2

,

where Y(λ) := X(λ)Go(λ) ∈ H∞ and

F(λ)G∼
i (λ) = [

F(λ)G∼
i,1(λ) F(λ)G∼

i,2(λ)
] := [

F̃1(λ) F̃2(λ)
]

.

Thus, the problem of computing a stable X(λ) which minimizes the error norm
‖E(λ)‖∞/2 has been reduced to aLDP to compute the stable solutionY(λ)whichmin-
imizes the norm

∥∥[
F̃1(λ) − Y(λ) F̃2(λ)

]∥∥∞/2
. The solution of the original MMP

is given by
X(λ) = Y(λ)G−1

o (λ) .

In general, we have that
[
F̃1(λ) F̃2(λ)

]
/∈ H∞. If F̃2(λ) is present (i.e.,G(λ) is not

square), we have a 2-block LDP, while ifG(λ) is square, then F̃2(λ) is not present and
we have an 1-block LDP. In what follows, we discuss shortly the solution approaches
for the 1- and 2-block problems. Note that these approaches underlie the approximate
synthesis methods of optimal fault detection filters presented in Sect. 5.7.

Solution of the 1-block H∞-LDP. In the case of theH∞-norm, the stable optimal
solution Y(λ) of the 1-block problem can be computed by solving an optimal Nehari
problem. Let Ls(λ) be the stable part and let Lu(λ) be the unstable part in the additive
decomposition

F̃1(λ) = Ls(λ) + Lu(λ) . (9.26)

Then, for the optimal solution we have successively

http://dx.doi.org/10.1007/978-3-319-51559-5_5
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‖E(λ)‖∞ = ‖F̃1(λ) − Y(λ)‖∞ = ‖Lu(λ) − Ys(λ)‖∞ = ‖L∼
u (λ)‖H ,

where Ys(λ) is the stable optimal Nehari solution and

Y(λ) = Ys(λ) + Ls(λ) .

Solution of the 2-block H∞-LDP. A stable optimal solution Y(λ) of the 2-block
LDP can be approximately determined as the solution of the suboptimal 2-block
LDP

‖[ F̃1(λ) − Y(λ) F̃2(λ) ]‖∞ < γ, (9.27)

where γopt < γ ≤ γopt +ε, with ε an arbitrary user specified (accuracy) tolerance for
the least achievable value γopt of γ . The standard solution approach is a bisection-
based γ -iterationmethod, where the solution of the 2-block problem is approximated
by successively computed γ -suboptimal solutions of appropriately defined 1-block
problems.

Let γl and γu be lower and upper bounds for γopt , respectively. Such bounds can
be computed, for example, as

γl = ‖F̃2(λ)‖∞, γu = ∥∥[
F̃1(λ) F̃2(λ)

]∥∥∞ . (9.28)

For a given γ > γl, we compute first a stable minimum-phase left spectral factoriza-
tion

γ 2I − F̃2(λ)F̃∼
2 (λ) = V (λ)V∼(λ), (9.29)

where V (λ) is biproper, stable andminimum-phase. Further, we compute the additive
decomposition

V−1(λ)F̃1(λ) = Ls(λ) + Lu(λ), (9.30)

whereLs(λ) is the stable part andLu(λ) is the unstable part. Ifγ > γopt , the suboptimal
2-block problem (9.27) is equivalent to the suboptimal 1-block problem

∥∥V−1(λ)
(
F̃1(λ) − Y(λ)

)∥∥∞ ≤ 1 (9.31)

and γH := ‖L∼
u (λ)‖H < 1. In this case we readjust the upper bound to γu = γ . If

γ ≤ γopt , then γH ≥ 1 and we readjust the lower bound to γl = γ . For the bisection
value γ = (γl + γu)/2 we redo the factorization (9.29) and decomposition (9.30).
This process is repeated until γu − γl ≤ ε.

At the end of iterations, we have either γopt < γ ≤ γu if γH < 1 or γl < γ ≤ γopt
if γH ≥ 1, in which case we set γ = γu. We compute the stable solution of (9.31) as

Y(λ) = V (λ)(Ls(λ) + Ys(λ)), (9.32)

where, for any γ1 satisfying 1 ≥ γ1 > γH , Ys(λ) is the stable solution of the optimal
Nehari problem



9.1 Rational Transfer Function Matrices 269

‖Lu(λ) − Ys(λ)‖∞ = ‖L∼
u (λ)‖H . (9.33)

Solution of the H2-LDP. In the case ofH2-norm, the solution of the LDP is

Y(λ) = Ls(λ),

where Ls(λ) is the stable projection in (9.26). In the continuous-time case, we take
the unstable projection Lu(s) strictly proper. With the above choice, the achieved
minimum H2-norm of E(λ) is

‖E(λ)‖2 = ‖[Lu(λ) F̃2(λ) ]‖2 .

Since the underlying TFMs are unstable, the L2-norm is used in the last equation. In
the continuous-time case, according to Lemma 9.7, the error norm ‖E(s)‖2 is finite
only if F̃2(s) is strictly proper.

9.2 Descriptor Systems

In this section, we present the main concepts and properties of systems in a general-
ized state-space form

Eλx(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

(9.34)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input vector and y(t) ∈ Rp is the
output vector, andwhereλ is the differential operatorλx(t) = d

dt x(t) for a continuous-
time system and the advance operator λx(t) = x(t+1) for a discrete-time system. In
all what follows, we assume E is square and possibly singular, and the pencil A−λE
is regular (i.e., det(A − λE) �≡ 0). If E = In, we call the representation (9.34) a
standard state-space system, while for E �= In we call (9.34) a descriptor system.
The corresponding input–output representation of the descriptor system (9.34) is

y(λ) = G(λ)u(λ) ,

where, depending on the system type, λ = s, the complex variable in the Laplace
transform for a continuous-time system, or λ = z, the complex variable in the Z-
transform for a discrete-time system,y(λ) andu(λ) are theLaplace- orZ-transformed
output and input vectors, respectively, and G(λ) is the rational transfer function
matrix (TFM) of the system defined as

G(λ) = C(λE − A)−1B + D . (9.35)
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We alternatively denote descriptor systems of the form (9.34) with the quadruple
(A − λE,B,C,D) or a standard state-space system with (A,B,C,D) (if E = In),
and use the notation

G(λ) :=
[
A − λE B

C D

]
, (9.36)

to relate the TFM G(λ) to a particular descriptor system realization as in (9.34).
It is well known that a descriptor system of the form (9.34) is the most general

description for a linear time-invariant systems. Continuous-time descriptor systems
arise frequently frommodelling interconnected systems containing algebraic loops or
constrained mechanical systems which describe contact phenomena. Discrete-time
descriptor representations are frequently used to model economic processes.

9.2.1 Descriptor Realizations of Rational Matrices

The main use of the descriptor systems in this book is to allow the manipulation of
rational matrices via their descriptor representations. The main result which allows
this is the following:

Theorem 9.1 For any rational matrix G(λ) ∈ R(λ)p×m, there exist n ≥ 0 and the
real matrices E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m, with A − λE
regular, such that (9.35) holds.

If G(λ) is proper, this theorem is a well-known result of the realization theory of
standard state-space systems. Using this, a simple constructive proof allows to obtain
a descriptor realization of an improper G(λ) by using the additive decomposition
(see Sect. 9.1.5)

G(λ) = Gp(λ) + Gpol(λ),

where Gp(λ) is the proper part of G(λ) and Gpol(λ) is its strict polynomial part. The
proper part Gp(λ) has a standard state-space realization (Ap,Bp,Cp,Dp) and for the
strictly proper λ−1Gpol(λ

−1) we can build another standard state-space realization
(Apol,Bpol,Cpol, 0). Then, we obtain

G(λ) =
[
A − λE B

C D

]
:=

⎡

⎣
Ap − λI 0 Bp

0 I − λApol Bpol

Cp Cpol Dp

⎤

⎦ .

The descriptor realization (A − λE,B,C,D) of a given rational matrix G(λ) is
not unique. For example, ifU and V are invertible matrices of the size n of the square
matrix E, then two descriptor realizations (A− λE,B,C,D) and (̃A− λẼ, B̃, C̃, D̃)

related by a system similarity transformation of the form

(̃A − λẼ, B̃, C̃, D̃) = (UAV − λUEV,UB,CV,D) , (9.37)
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have the same TFM G(λ). Moreover, among all possible realizations of a given
G(λ), with different sizes n, there exist realizations which have the least dimension.
A descriptor realization (A − λE,B,C,D) of the rational matrix G(λ) is called
minimal if the dimension n of the square matrices E and A is the least possible
one. The minimal realization of a given G(λ) is also not unique, since two minimal
realizations related by a system similarity transformation as in (9.37) correspond to
the same G(λ).

A minimal descriptor system realization (A − λE,B,C,D) is characterized by
the following five conditions.

Theorem 9.2 Adescriptor system realization (A−λE,B,C,D)of order n isminimal
if the following conditions are fulfilled:

(i) rank
[
A − λE B

] = n, ∀λ ∈ C,

(ii) rank
[
E B

] = n,

(iii) rank

[
A − λE

C

]
= n, ∀λ ∈ C,

(iv) rank

[
E
C

]
= n,

(v) AN (E) ⊆ R(E).

The conditions (i) and (ii) are known as finite and infinite controllability, respec-
tively. A system which fulfills both (i) and (ii) is called controllable. Similarly, the
conditions (iii) and (iv) are known as finite and infinite observability, respectively. A
system which fulfills both (iii) and (iv) is called observable. Condition (v) expresses
the absence of non-dynamic modes. A descriptor realization which satisfies only
(i) − (iv) is called irreducible (also weakly minimal). The numerical computation
of minimal realizations is addressed in Sect. 10.3.1.

9.2.2 Poles, Zeros and Minimal Indices

Consider the irreducible descriptor system (A−λE,B,C,D)with the corresponding
TFM G(λ) ∈ R(λ)p×m. Two pencils play a fundamental role in defining the main
structural elements of the rational matrix G(λ) (see Sects. 9.1.3 and 9.1.4). The
regular pole pencil

P(λ) := A − λE (9.38)

characterizes the pole structure ofG(λ), exhibited by theWeierstrass canonical form
of the pole pencil P(λ). The (singular) system pencil

http://dx.doi.org/10.1007/978-3-319-51559-5_10
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S(λ) :=
[
A − λE B

C D

]
(9.39)

characterizes the zero structure of G(λ), as well as the right- and left-singular struc-
tures of G(λ), which are exhibited by the Kronecker canonical form of the system
pencil S(λ). Both canonical forms can be defined in terms of strict equivalence of
linear pencils. Recall that two pencilsM−λN and M̃−λÑ withM,N, M̃, Ñ ∈ Cm×n

are strictly equivalent if there exist two invertible matricesU ∈ Cm×m and V ∈ Cn×n

such that

U(M − λN)V = M̃ − λÑ . (9.40)

For a regular pencil, the strict equivalence leads to the (complex) Weierstrass
canonical form, which is instrumental to characterize the poles of a descriptor system.

Lemma 9.8 Let M − λN be an arbitrary regular pencil with M,N ∈ Cn×n. Then,
there exist invertible matrices U ∈ Cn×n and V ∈ Cn×n such that

U(M − λN)V =
[
Jf − λI 0

0 I − λJ∞

]
, (9.41)

where Jf is in a (complex) Jordan canonical form

Jf = diag
(
Js1(λ1), Js2(λ2), . . . , Jsk (λk)

)
, (9.42)

with Jsi(λi) an elementary si × si Jordan block of the form

Jsi(λi) =

⎡

⎢⎢⎢⎢
⎣

λi 1

λi
. . .

. . . 1
λi

⎤

⎥⎥⎥⎥
⎦

and J∞ is nilpotent and has the (nilpotent) Jordan form

J∞ = diag
(
Js∞1 (0), Js∞2 (0), . . . , Js∞h (0)

)
. (9.43)

The Weierstrass canonical form (9.41) exhibits the finite and infinite eigenvalues of
the pencil M − λN . Overall, by including all multiplicities, there are nf = ∑k

i=1 si
finite eigenvalues and n∞ = ∑h

i=1 s
∞
i infinite eigenvalues. Infinite eigenvalues with

s∞i = 1 are called simple infinite eigenvalues. We can also express the rank of N as

rank N = nf + rank J∞ = nf +
h∑

i=1

(s∞i − 1) = nf + n∞ − h = n − h.
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IfM and N are real matrices, then there exist real matrices U and V such that the
pencilU(M−λN)V is in a real Weierstrass canonical form, where the only difference
is that Jf is in a real Jordan form. In this form, the elementary real Jordan blocks
correspond to pairs of complex conjugate eigenvalues. If M − λN = A − λI (e.g.,
the pole pencil for a standard state-space system), then all eigenvalues are finite and
Jf in the Weierstrass form is simply the (real) Jordan form of A. The transformation
matrices can be chosen such that U = V−1.

For a general (singular) pencil, the strict equivalence leads to the (complex) Kro-
necker canonical form, which is instrumental to characterize the zeros and singular-
ities of a descriptor system.

Lemma 9.9 Let M − λN be an arbitrary pencil with M,N ∈ Cm×n. Then, there
exist invertible matrices U ∈ Cm×m and V ∈ Cn×n such that

U(M − λN)V =
⎡

⎣
Kr(λ)

Kreg(λ)

Kl(λ)

⎤

⎦ , (9.44)

where:

(1) The full row rank pencil Kr(λ) has the form

Kr(λ) = diag
(
Lε1(λ),Lε2(λ), · · · ,Lενr

(λ)
)
,

with Li(λ) (i ≥ 0) an i × (i + 1) bidiagonal pencil of form

Li(λ) =
⎡

⎢
⎣

−λ 1
. . .

. . .

−λ 1

⎤

⎥
⎦ ; (9.45)

(2) The regular pencil Kreg(λ) is in a Weierstrass canonical form

Kreg(λ) =
[
J̃f − λI

I − λ̃J∞

]
,

with J̃f in a (complex) Jordan canonical form as in (9.42) and with J̃∞ in a
nilpotent Jordan form as in (9.43);

(3) The full column rank Kl(λ) has the form

Kl(λ) = diag
(
LT

η1
(λ),LT

η2
(λ), . . . ,LT

ηνl
(λ)

)
.

As it is apparent from (9.44), the Kronecker canonical form exhibits the right
and left singular structures of the pencil M − λN via the full row rank block Kr(λ)

and full column rank block Kl(λ), respectively, and the eigenvalue structure via
the regular pencil Kreg(λ). The full row rank pencil Kr(λ) is nr × (nr + νr), where
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nr = ∑νr
i=1 εi, the full column rank pencilKl(λ) is (nl+νl)×nl, where nl = ∑νl

j=1 ηj,
while the regular pencil Kreg(λ) is nreg × nreg , with nreg = ñf + ñ∞, where ñf is the
number of finite eigenvalues in Λ(̃Jf ) and ñ∞ is the number of infinite eigenvalues
in Λ(I − λ̃J∞) (or equivalently the number of null eigenvalues in Λ(̃J∞)). The
εi × (εi + 1) blocks Lεi(λ) with εi ≥ 0 are the right elementary Kronecker blocks,
and εi, for i = 1, . . . , νr , are called the right Kronecker indices. The (ηi + 1) × ηi
blocks LT

ηi
(λ) with ηi ≥ 0 are the left elementary Kronecker blocks, and ηi, for

i = 1, . . . , νl, are called the left Kronecker indices. The normal rank r of the pencil
M − λN results as

r := rank(M − λN) = nr + ñf + ñ∞ + nl.

If M − λN is regular, then there are no left- and right-Kronecker structures and the
Kronecker canonical form is simply the Weierstrass canonical form.

Remark 9.2 By additional column permutations of the block Kr(λ) and row permu-
tations of the blockKl(λ) (which can be included in the left and right transformations
matrices U and V ) we can bring these blocks to the alternative forms

Kr(λ) = [
Br Ar − λInr

]
, Kl(λ) =

[
Al − λInl

Cl

]
, (9.46)

where the pair (Ar,Br) is in a Brunovsky controllable form

Ar =

⎡

⎢⎢
⎢
⎣

Ar,1

Ar,2

. . .

Ar,νr

⎤

⎥⎥
⎥
⎦

, Br =

⎡

⎢⎢
⎢
⎣

br,1
br,2

. . .

br,νr

⎤

⎥⎥
⎥
⎦

,

with Ar,i an εi × εi matrix and br,i an εi × 1 column vector of the forms

Ar,i =
[
0 Iεi−1

0 0

]
= Jεi(0), br,i =

⎡

⎢⎢
⎢
⎣

0
...

0
1

⎤

⎥⎥
⎥
⎦

,

and the pair (Al,Cl) is in a Brunovsky observable form

Al =

⎡

⎢⎢⎢
⎣

Al,1

Al,2

. . .

Al,νl

⎤

⎥⎥⎥
⎦

, Cl =

⎡

⎢⎢⎢
⎣

cl,1
cl,2

. . .

cl,νl

⎤

⎥⎥⎥
⎦

, (9.47)

with Al,i an ηi × ηi matrix and cl,i a 1 × ηi row vector of the forms
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Al,i =
[

0 0
Iηi−1 0

]
= JTηi(0), cl,i = [

0 · · · 0 1
]

.

�

The main structural results for the rational TFM G(λ) can be stated in terms of its
irreducible descriptor system realization (A−λE,B,C,D) of order n. The following
facts rely on the Weierstrass canonical form (9.41) of the pole pencil P(λ) in (9.38)
(see Lemma 9.8) and the Kronecker canonical form (9.44) of the system pencil S(λ)

in (9.39) (see Lemma 9.9):

(1) The finite poles of G(λ) are the finite eigenvalues of the pole pencil P(λ) and
are the eigenvalues (counting multiplicities) of the matrix Jf in the Weierstrass
canonical form (9.41) of the pencil P(λ).

(2) The infinite poles of G(λ) have multiplicities defined by the multiplicities of the
infinite eigenvalues of the pole pencilP(λ)minus 1 and are the dimensionsminus
1 of the nilpotent Jordan blocks in the matrix J∞ in the Weierstrass canonical
form (9.41) of the pencil P(λ).

(3) The finite zeros of G(λ) are the nf finite eigenvalues (counting multiplicities) of
the system pencil S(λ) and are the eigenvalues (counting multiplicities) of the
matrix J̃f in the Kronecker canonical form (9.44) of the pencil S(λ).

(4) The infinite zeros of G(λ) have multiplicities defined by the multiplicities of
the infinite eigenvalues of the system pencil S(λ) minus 1 and are the dimen-
sions minus 1 of the nilpotent Jordan blocks in the matrix J̃∞ in the Kronecker
canonical form (9.44) of the pencil S(λ).

(5) The left minimal indices ofG(λ) are pairwise equal to the left Kronecker indices
of S(λ) and are the row dimensions εi of the blocks Lεi(λ) for i = 1, . . . , νr in
the Kronecker canonical form (9.44) of the pencil S(λ).

(6) The right minimal indices of G(λ) are pairwise equal to the right Kronecker
indices of S(λ) and are the column dimensions ηi of the blocks LT

ηi
(λ) for i =

1, . . . , νl in the Kronecker canonical form (9.44) of the pencil S(λ).
(7) The normal rank of G(λ) is r = rank S(λ) − n = nr + ñf + ñ∞ + nl − n.

These facts allow to formulate simple conditions to characterize some pole-zero
related properties, such as properness, stability or minimum-phase of an irreducible
descriptor system (A − λE,B,C,D) in terms of the eigenvalues of the pole and
system pencils. The descriptor system (A − λE,B,C,D) is proper if all infinite
eigenvalues of the regular pencil A − λE are simple (i.e., the system has no infinite
poles). It is straightforward to show using the Weierstrass canonical form of the
pencil A − λE, that any irreducible proper descriptor system can be always reduced
to a minimal order descriptor system, with the descriptor matrix E invertible, or even
to a standard state-space representation with E = I (see Sect. 7.2.2 for numerical
procedures). The irreducible descriptor system (A − λE,B,C,D) is improper if
the regular pencil A − λE has at least one infinite eigenvalue which is not simple
(i.e., has at least one infinite pole). A polynomial descriptor system is one for which
A − λE has only infinite eigenvalues of which at least one is not simple (i.e., has

http://dx.doi.org/10.1007/978-3-319-51559-5_7
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only infinite poles). The concept of stability involves naturally the properness of the
system. The irreducible descriptor system (A− λE,B,C,D) is exponentially stable
if it has only finite poles and all poles belong to the stable region Cs (the pencil
A−λE still can have simple infinite eigenvalues). The irreducible descriptor system
(A − λE,B,C,D) is unstable if it has at least one finite pole outside of the stability
domain or at least one infinite pole. The finite poles (or finite eigenvalues) inside the
stability domain are called stable poles (stable eigenvalues), while the poles lying
outside of the stability domain are called unstable poles. The irreducible descriptor
system (A − λE,B,C,D) is minimum-phase if it has only finite zeros and all finite
zeros belong to the stable region Cs.

To check the finite controllability condition (i) and finite observability condition
(iii) of Theorem 9.2, it is sufficient to check that

rank
[
A − λiE B

] = n (9.48)

and, respectively,

rank

[
A − λiE

C

]
= n (9.49)

for all distinct finite eigenvalues λi in the Weierstrass canonical form (9.41) of the
pencil A− λE. A finite eigenvalue λi is controllable if (9.48) is fulfilled, and uncon-
trollable otherwise. Similarly, a finite eigenvalue λi is observable if (9.49) is fulfilled,
and unobservable otherwise. If the rank conditions (9.48) are fulfilled for all λi ∈ Cu

we call the descriptor system (A−λE,B,C,D) (or equivalently the pair (A−λE,B))
finite stabilizable. Finite stabilizability guarantees the existence of a state-feedback
matrix F ∈ Rm×n such that all finite eigenvalues of A + BF − λE lie in Cs. If the
rank conditions (9.49) are fulfilled for all λi ∈ Cu we call the descriptor system
(A − λE,B,C,D) (or equivalently the pair (A − λE,C)) finite detectable. Finite
detectability guarantees the existence of an output-injection matrix K ∈ Rn×p such
that all finite eigenvalues of A + KC − λE lie in Cs.

The notion of strong stabilizability is related to the existence of a state-feedback
matrix F such that all finite eigenvalues of A + BF − λE lie in Cs and all infinite
eigenvalues of A+ BF − λE are simple. The necessary and sufficient conditions for
the existence of such an F is the strong stabilizability of the pair (A − λE,B), that
is: (1) the finite stabilizability of the pair (A−λE,B); and (2) rank[E AN∞ B ] = n,
where the columns of N∞ form a basis of N (E). Similarly, strong detectability is
related to the existence of an output-injectionmatrixK such that all finite eigenvalues
of A + KC − λE lie in Cs and all infinite eigenvalues of A + KC − λE are simple.
The necessary and sufficient conditions for the existence of such a K is the strong
detectability of the pair (A − λE,C), that is: (1) the finite detectability of the pair
(A−λE,C); and (2) rank[ET ATL∞ CT ] = n, where the columns of L∞ for a basis
of N (ET ).

Remark 9.3 The reduction of matrix pencils to the Weierstrass or Kronecker canon-
ical forms generally involves the use of non-orthogonal, possibly ill-conditioned,
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transformation matrices. Therefore, the computation of these forms must be avoided
when devising numerically reliable algorithms for descriptor systems. Alternative
condensed forms, as the generalized real Schur form or various Kronecker-like
forms, can be determined by using exclusively orthogonal transformations and can
be often used instead the Weierstrass or Kronecker canonical forms, respectively.
Suitable algorithms for the computations of these alternative forms are discussed in
Sects. 10.1.4 and 10.1.6. �

9.2.3 Operations with Rational Matrices

In this section, we present some of the most frequently used operations on the TFMs
of descriptor systems. For all operations, we will assume that the conditions to
perform these operations (e.g., lack of particular poles, dimensional compatibility)
are fulfilled. First, we address operations on a single TFM G(λ) with the descriptor
realization (A − λE,B,C,D). The transposed TFM GT (λ) corresponds to the dual
descriptor system with the realization

GT (λ) =
[
AT − λET CT

BT DT

]

.

An alternative realization of the transpose which, for example, preserves the upper
triangular, upper quasi-triangular or upper block-triangular structure of the pencil
A − λE is

GT (λ) = P =
[

PATP − λPETP PCT

BTP DT

]

,

where P is the particular permutation matrix

P =
⎡

⎢
⎣

0 1
...

1 0

⎤

⎥
⎦ .

IfG(λ) is invertible, then an inversion free realization of the inverse TFMG−1(λ)

is given by

G−1(λ) =
⎡

⎣
A − λE B 0

C D I
0 −I 0

⎤

⎦ .

This realization is not minimal, even if the original realization is minimal. If D is
invertible, then an alternative realization of the inverse is

http://dx.doi.org/10.1007/978-3-319-51559-5_10
http://dx.doi.org/10.1007/978-3-319-51559-5_10
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G−1(λ) = P =
[

A − BD−1C − λE −BD−1

D−1C D−1

]

,

which is minimal if the original realization is minimal.
The conjugate (or adjoint) TFM G∼(λ) is defined in the continuous-time case as

G∼(s) = GT (−s) and has the realization

G∼(s) = P =
[

−AT − sET CT

−BT DT

]

,

while in the discrete-time case G∼(z) = GT (1/z) and has the realization

G∼(z) =
⎡

⎣
ET − zAT 0 −CT

zBT I DT

0 I 0

⎤

⎦ .

If G(z) has a standard state-space realization (A,B,C,D) with A invertible, then an
alternative realization of G∼(z) is

G∼(z) = P =
[

A−T − zI −A−TCT

BTA−T DT − BTA−TCT

]

.

The transformed discrete-time G(z) via the bilinear transformation z = 1+s
1−s has

the continuous-time realization

G
(
1+s
1−s

) = P =
[

A − E − s(A + E)
√
2B√

2C(A + E)−1E D − C(A + E)−1B

]

, (9.50)

or alternatively

G
(
1+s
1−s

) = P =
[

A − E − s(A + E)
√
2E(A + E)−1B√

2C D − C(A + E)−1B

]

. (9.51)

By this transformation, the infinite eigenvalues of the pencilA−zE become the eigen-
values at s = 1 of the pencil A − E − s(A + E). It is straightforward to observe that
if A− zE has h nilpotent Jordan blocks in its Weierstrass canonical form, then there
will be h unobservable or h uncontrollable eigenvalues at s = 1 in the realization of
G

(
1+s
1−s

)
according to which realization is used, (9.50) or (9.51), respectively. There-

fore, in general, the realization (9.50) may not be detectable, while the realization
(9.51) may not be stabilizable.

Conversely, the transformed continuous-timeG(s) obtained via the bilinear trans-
formation s = z−1

z+1 has the discrete-time realization



9.2 Descriptor Systems 279

G
(
z−1
z+1

) = P =
[

A + E − z(E − A)
√
2B√

2C(E − A)−1E D + C(E − A)−1B

]

, (9.52)

or alternatively

G
(
z−1
z+1

) = P =
[

A + E − z(E − A)
√
2E(E − A)−1B√

2C D + C(E − A)−1B

]

. (9.53)

By this transformation, the infinite eigenvalues of the pencil A − sE become the
eigenvalues at z = −1 of the pencil A + E − z(E − A). It is straightforward to
observe that if A − sE has h nilpotent Jordan blocks in its Weierstrass canonical
form, then there will be h unobservable or h uncontrollable eigenvalues at z = −1
in the realization of G

(
z−1
z+1

)
according to which realization is used, (9.52) or (9.53),

respectively. Therefore, in general, the realization (9.52)may not be detectable, while
the realization (9.53) may not be stabilizable.

Consider now two systems with TFMs G1(λ) having the descriptor realiza-
tion (A1 − λE1,B1,C1,D1) and G2(λ) having the descriptor realization (A2 −
λE2,B2,C2,D2). The product G1(λ)G2(λ) represents the series coupling of the
two systems and has the descriptor realization

G1(λ)G2(λ) :=
⎡

⎣
A1 − λE1 B1C2 B1D2

0 A2 − λE2 B2

C1 D1C2 D1D2

⎤

⎦ .

The parallel coupling corresponds to the sum G1(λ)+G2(λ) and has the realization

G1(λ) + G2(λ) :=
⎡

⎣
A1 − λE1 0 B1

0 A2 − λE2 B2

C1 C2 D1 + D2

⎤

⎦ .

The column concatenation of the two systems corresponds to building

[
G1(λ)

G2(λ)

]
and

has the realization

[
G1(λ)

G2(λ)

]
=

⎡

⎢⎢
⎣

A1 − λE1 0 B1

0 A2 − λE2 B2

C1 0 D1

0 C2 D2

⎤

⎥⎥
⎦ .

The row concatenation of the two systems corresponds to building
[
G1(λ) G2(λ)

]

and has the realization

[
G1(λ) G2(λ)

] =
⎡

⎣
A1 − λE1 0 B1 0

0 A2 − λE2 0 B2

C1 C2 D1 D2

⎤

⎦ .
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The diagonal stacking of the two systems corresponds to building

[
G1(λ) 0
0 G2(λ)

]

and has the realization

[
G1(λ) 0
0 G2(λ)

]
=

⎡

⎢⎢
⎣

A1 − λE1 0 B1 0
0 A2 − λE2 0 B2

C1 0 D1 0
0 C2 0 D2

⎤

⎥⎥
⎦ .

9.2.4 Minimal Rational Nullspace Bases

Let G(λ) a p × m rational matrix of normal rank r and let (A − λE,B,C,D) be a
descriptor realization of G(λ). To determine a basis Nl(λ) of the left nullspace of
G(λ), we can exploit the simple fact that Nl(λ) is a left nullspace basis of G(λ) if
and only if, for a suitable Ml(λ),

Yl(λ) := [Ml(λ) Nl(λ) ] (9.54)

is a left nullspace basis of the associated system pencil S(λ) (9.39). Thus, to compute
Nl(λ)wecan determine first a left nullspace basisYl(λ) for S(λ) and thenNl(λ) results
as

Nl(λ) = Yl(λ)

[
0
Ip

]
.

By duality, if Yr(λ) is a right nullspace basis for S(λ), then a right nullspace basis of
G(λ) is given by

Nr(λ) = [
0 Im

]
Yr(λ).

The Kronecker canonical form (9.44) of the system pencil S(λ) in (9.39) allows
to easily determine left and right nullspace bases of G(λ). Let S(λ) = US(λ)V be
the Kronecker canonical form (9.44) of S(λ), where U and V are the respective left
and right transformation matrices. If Yl(λ) is a left nullspace basis of S(λ) then

Nl(λ) = Yl(λ)U

[
0
Ip

]
. (9.55)

Similarly, if Yr(λ) is a right nullspace basis of S(λ) then

Nr(λ) = [
0 Im

]
VYr(λ). (9.56)

We choose Yl(λ) of the form

Yl(λ) = [
0 Yl,3(λ)

]
, (9.57)
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where Yl,3(λ) satisfies Yl,3(λ)Kl(λ) = 0. Similarly, we choose Yr(λ) of the form

Yr(λ) =
[
Yr,1(λ)

0

]
, (9.58)

whereYr,1(λ) satisfiesKr(λ)Yr,1(λ) = 0.BothYl,3(λ) andYr,1(λ) can be determined
as polynomial or rational matrices and the resulting bases are polynomial or rational
as well.

Example 9.1 We show exemplary how to determine a minimal left nullspace basis. We can choose
Yl,3(λ) in (9.57) a νl × (νl + nl) polynomial matrix with a block diagonal form

Yl,3(λ) =

⎡

⎢
⎢⎢
⎣

w1(λ)

w2(λ)

. . .

wνl (λ)

⎤

⎥
⎥⎥
⎦

,

with wi(λ) a 1 × (ηi + 1) least degree polynomial vector satisfying wi(λ)LTηi (λ) = 0. Each vector
wi(λ) can be chosen of the form

wi(λ) = [
1 −λ λ2 · · · (−λ)ηi

]
.

If we denote vi(λ) the i-th row vector of the nullspace basis Nl(λ), it follows, by taking into account
(9.55) and (9.57), that vi(λ) is a polynomial vector of degree ηi. The resulting Nl(λ) has degree
nl (i.e., the sum of row degrees), and thus is a minimal polynomial basis for the left nullspace
of G(λ). From linear algebra arguments we have that the number νl of basis vectors in Nl(λ) is
νl = p − r. ♦

We can construct simple minimal proper rational nullspace bases by assuming
that U and V have been updated to include row and column permutations such that
Kr(λ) and Kl(λ) have the forms in (9.46). We compute first

U

[
0
Ip

]
=

⎡

⎣
∗
Bl

Dl

⎤

⎦ , (9.59)

where Bl ∈ Rnl×p and Dl ∈ Rνl×p. Then, by choosing Yl,3(λ) in (9.57) as

Yl,3(λ) = [
Cl(λI − Al)

−1 I
]

,

we obtain from (9.55) with (9.59)

Nl(λ) = Cl(λI − Al)
−1Bl + Dl . (9.60)

By direct computation, we can verify that the i-th row of Nl(λ) has McMillan degree
ηi, thus the total order of the realization (Al,Bl,Cl,Dl) is nl. It follows that Nl(λ) is
a simple minimal proper rational left nullspace basis.
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Consider the transformation matrix

U =
⎡

⎣
Inr+nreg 0 0

0 Inl K
0 0 Iνl

⎤

⎦ =:
[
Inr+nreg 0

0 Ul

]
(9.61)

and compute S̃(λ) := UUSG(λ)V , which has the updated full column rank block

UlKl(λ) =
[
Al + KCl − λInl

Cl

]
.

Since the pair (Al,Cl) is observable, we can assign the eigenvalues of Al + KCl to
arbitrary values (e.g., in a “good” domain Cg ⊂ C). From

UU

[
0
Ip

]
=

⎡

⎣
∗

Bl + KDl

Dl

⎤

⎦ , (9.62)

we obtain an alternative expression of the nullspace basis

Ñl(λ) = Cl(λI − Al − KCl)
−1(Bl + KDl) + Dl . (9.63)

Similarly, we can compute

[
Dr Cr ∗ ] = [

0 Im
]
V, (9.64)

where Dr ∈ Rm×νr and Cr ∈ Rm×nr . Then, by choosing Yr,1(λ) in (9.58) as

Yr,1(λ) =
[

I
(λI − Ar)

−1Br

]
,

we obtain from (9.56) with (9.64)

Nr(λ) = Cr(λI − Ar)
−1Br + Dr , (9.65)

which is a simple minimal proper rational right nullspace basis as well. We can also
obtain a dual alternative form (which corresponds to (9.63))

Ñr(λ) = (Cr + DrF)(λI − Ar − BrF)−1Br + Dr . (9.66)

A numerically reliable computational approach to compute proper minimal null-
space bases of rational matrices is described in Sect. 10.3.2 and relies on using
Kronecker-like forms (instead the Kronecker form), which can be determined by
using exclusively orthogonal similarity transformations.

http://dx.doi.org/10.1007/978-3-319-51559-5_10
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9.2.5 Additive Decompositions

Consider a disjunct partition of the complex plane C as

C = Cg ∪ Cb, Cg ∩ Cb = ∅ , (9.67)

where both Cg and Cb are symmetrically located with respect to the real axis, and
Cg has at least one point on the real axis. Since Cg and Cb are disjoint, each pole of
any transfer function lies either inCg or inCb. Let G(λ) be a rational TFM (possibly
improper) with a descriptor system representation G(λ) = (A−λE,B,C,D). Using
a general similarity transformation using two invertible matrices U and V , we can
determine an equivalent representation of G(λ) with partitioned system matrices of
the form

G(λ) =
[
UAV − λUEV UB

CV D

]
=

⎡

⎣
Ag − λEg 0 Bg

0 Ab − λEb Bb

Cg Cb D

⎤

⎦ , (9.68)

where Λ(Ag − λEg) ⊂ Cg and Λ(Ab − λEb) ⊂ Cb. It follows that G(λ) can be
additively decomposed as

G(λ) = Gg(λ) + Gb(λ), (9.69)

where

Gg(λ) =
[
Ag − λEg Bg

Cg D

]
, Gb(λ) =

[
Ab − λEb Bb

Cb 0

]
, (9.70)

and Gg(λ) has only poles in Cg , while Gb(λ) has only poles in Cb. The spectral
separation in (9.68) is automatically provided by the Weierstrass canonical form
of the pencil A − λE, where the diagonal Jordan blocks are suitably permuted to
correspond to the desired eigenvalue splitting. This approach automatically leads to
partial-fraction expansions of Gg(λ) and Gb(λ).

For the computation of additive spectral decompositions, a numerically reliable
procedure is presented in Sect. 10.3.4.

9.2.6 Coprime Factorizations

Consider a disjunct partition of the complex plane as C = Cb ∪ Cg , Cb ∩ Cg = ∅,
where Cb and Cg denote the “bad” and “good” regions of C, respectively. Let G(λ)

be a p × m rational matrix with an n-th order descriptor system realization

G(λ) =
[
A − λE B

C D

]
. (9.71)

http://dx.doi.org/10.1007/978-3-319-51559-5_10
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We say the descriptor system (9.71) (or equivalently the pair (A − λE,B)) is Cb-
stabilizable if rank

[
A − λE B

] = n for all finite λ ∈ Cb and rank[E AN∞ B ] = n,
where the columns of N∞ form a basis of N (E). The descriptor system (9.71) (or

equivalently the pair (A − λE,C)) is Cb-detectable if rank

[
A − λE

C

]
= n for all

finite λ ∈ Cb and rank[ET ATL∞ CT ] = n, where the columns of L∞ for a basis of
N (ET ). The strong stabilizability and strong detectability properties of the descriptor
system (9.71), defined in Sect. 9.2.2, correspond to the choice Cb = Cu.

For any Cb-stabilizable descriptor realization (A− λE,B,C,D) of G(λ), we can
construct a right coprime factorization (RCF)G(λ) = N(λ)M−1(λ), whereN(λ) and
M(λ) are proper rational matrices with only poles in Cg and are mutually coprime
(see Sect. 9.1.6 for definitions). For this, it is sufficient to determine a state-feedback
matrix F such that all finite eigenvalues in Λ(A + BF − λE) belong to Cg and all
infinite eigenvalues in Λ(A + BF − λE) are simple. The descriptor realizations of
the factors are given by

[
N(λ)

M(λ)

]
=

⎡

⎣
A + BF − λE B

C + DF D
F Im

⎤

⎦ . (9.72)

For the computation of a suitable state-feedback matrix F, the S-stabilization algo-
rithm proposed in [127] can be employed.

Similarly, for a Cb-detectable descriptor realization (A − λE,B,C,D) of G(λ),
we can construct a left coprime factorization (LCF) G(λ) = M−1(λ)N(λ), where
N(λ) and M(λ) are proper rational matrices with only poles in Cg and are mutually
coprime. For this, it is sufficient to determine an output-injection matrix K such that
all finite eigenvalues in Λ(A + KC − λE) belong to Cg and all infinite eigenvalues
of Λ(A + KC − λE) are simple. The descriptor realizations of the factors are given
by

[
N(λ) M(λ)

] =
[
A + KC − λE B + KD K

C D Ip

]
. (9.73)

For the computation of a suitable output-injection matrix K , the S-stabilization algo-
rithm of [127] can be applied to the dual pair (AT − λET ,CT ) to obtain KT .

The RCF and LCF can be seen as techniques to dislocate the poles of a given
TFM G(λ) by postmultiplication or premultiplication with a suitable TFM M(λ),
respectively. For both the RCF and LCF it is possible to determine the denominator
factor M(λ) of least McMillan degree which dislocates the minimum number of
poles. The least McMillan degree of M(λ) is equal to the number of generalized
eigenvalues of the pair (E,A)which lie inCb. In what follows, we give the descriptor
system representation-based version of the conceptual approach of Sect. 9.1.6 to
determine coprime factorizations with minimum-degree denominator factors. The
additive decomposition of G(λ) as G(λ) = Gg(λ) + Gb(λ) can be obtained (see
Sect. 9.2.5) with
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Gg(λ) =
[
Ag − λEg Bg

Cg D

]
, Gb(λ) =

[
Ab − λEb Bb

Cb 0

]
, (9.74)

and Gg(λ) has only poles in Cg (i.e., Λ(Ag − λEg) ⊂ Cg), while Gb(λ) has only
poles in Cb (i.e., Λ(Ab − λEb) ⊂ Cb).

The RCF Gb(λ) = Ng(λ)M−1(λ) can be obtained with the factors

[
Ng(λ)

M(λ)

]
=

⎡

⎣
Ab + BbF − λEb Bb

Cb 0
F Im

⎤

⎦ , (9.75)

where F has been determined such that M(λ) and also Ng(λ) have poles only in Cg

(i.e., all finite eigenvalues of the pencil Ab + BbF − λEb are in Cg and all its infinite
eigenvalues are simple). The numerator factor is given by

N(λ) = (Gb(λ) + Gg(λ))M(λ) = [
Ip Gg(λ)

] [
Ng(λ)

M(λ)

]

and has the descriptor realization

N(λ) =
⎡

⎣
Ag − λEg BgF Bg

0 Ab + BbF − λEb Bb

Cg Cb + DF D

⎤

⎦ . (9.76)

Similarly, the LCF Gb(λ) = M−1(λ)Ng(λ) can be obtained with the factors

[
Ng(λ) M(λ)

] =
[
Ab + KCb − λEb Bb K

Cb 0 Ip

]
,

where K has been determined such that M(λ) and also Ng(λ) have poles only Cg

(i.e., all finite eigenvalues of the pencil Ab +KCb − λEb are in Cg and all its infinite
eigenvalues are simple). The numerator factor is given by

N(λ) = M(λ)(Gb(λ) + Gg(λ)) = [
Ng(λ) M(λ)

] [
Im

Gg(λ)

]

and has the descriptor realization

N(λ) =
⎡

⎣
Ab + KCb − λEb KCg Bb + KD

0 Ag − λEg Bg

Cb Cg D

⎤

⎦ . (9.77)

The above approach can be employed to compute a RCF G(λ) = N(λ)M−1(λ)

with least-order inner denominatorM(λ). For this, defineCg = Cs andCb = C\Cs.
Assume also that G(λ) has no poles in ∂Cs, including infinity in the continuous-time



286 9 System Theoretical Concepts

case. In the continuous-time case,we use the additive decompositionG(s) = Gg(s)+
Gb(s), with the two terms given in (9.74) for λ = s, and we compute first a stable
and proper RCF Gb(λ) = Ng(λ)M−1(λ) such that M(λ) is inner. The factors Ng(s)
and M(s) have for λ = s the realizations in (9.75), with F computed as

F = −BT
b E

−T
b Y−1,

where Y is the positive definite solution of the generalized Lyapunov equation

AbYE
T
b + EbYA

T
b − BbB

T
b = 0.

The resulting realization of N(s) is given by (9.76) for λ = s.
In the discrete-time case, we use the additive decomposition G(z) = Gg(z) +

Gb(z), where the realization (Ab − zEb,Bb,Cb, 0) of Gb(z) includes, in the most
general case, all infinite poles among the unstable poles. Therefore, the natural setting
is to allow forEb to be singular.Unfortunately, explicit formulas for the factors similar
to (9.72) exist only in the case whenEb is invertible. Therefore, to address the general
case,we canuse the bilinear transformation technique to be able to employ the explicit
formulas stated above for the continuous-time case. For this, we perform first the
bilinear transformation z = 1+s

1−s to obtain G̃b(s) := Gb(
1+s
1−s ) with the continuous-

time descriptor system realization (̃Ab − sẼb, B̃b, C̃b, D̃b), which we assume to be
minimal. (Note: This is always the case if Eb is nonsingular. However, for a singular
Eb, the pair (̃Ab − sẼb, B̃b) has uncontrollable eigenvalues at s = 1 (thus it is not
stabilizable) if the realization is computed using (9.51) or the pair (̃Ab − sẼb, C̃b)

has unobservable eigenvalues at s = 1 (thus it is not detectable) if the realization is
computed using (9.50). The nonminimal part can be eliminated by using a suitable
algorithm to remove the uncontrollable or unobservable eigenvalues, as presented in
Section 10.3.1. Therefore, we assume that this operation has been already performed
and the realization (̃Ab − sẼb, B̃b, C̃b, D̃b) is minimal.) Then, we apply the above
procedure, for continuous-time systems, to obtain theRCF G̃(s) = Ñg(s)M̃−1(s)with
the inner denominator M̃(s). Assume that Ng(z) := Ñg(

z−1
z+1 ) and M(z) := M̃( z−1

z+1 )

have the realizations
[
Ng(z)
M(z)

]
=

⎡

⎢
⎣

Ag − zEg Bg

Cg Dg

F W

⎤

⎥
⎦ ,

where Λ(Ag − zEg) ⊂ Cs. Then, the numerator factor results as

N(z) = [
Ip Gg(z)

] [
Ng(z)
M(z)

]
=

⎡

⎢
⎣
Ag − zEg BgF BgW

0 Ag − zEg Bg

Cg Cg + DgF Dg + DgW

⎤

⎥
⎦ .

A similar approach can be devised to determine a LCF with inner denominator.
Numerically reliable procedures, which avoid the computation of the potentially

http://dx.doi.org/10.1007/978-3-319-51559-5_10
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sensitive Weierstrass canonical form (by working instead with the generalized real
Schur form), are described in Sect. 10.3.5.

9.2.7 Norms

Consider in this section a TFM G(λ) without poles in ∂Cs (the boundary of stability
domain including infinity in the continuous-time case) having a descriptor state-space
realization (A − λE,B,C,D). The definition (9.15) of the H∞-norm of G(λ) (and
also of theL∞-norm) in terms of the largest singular value of the frequency-response
gain (see Sect. 9.1.7) is already an indication for the lack of closed-form formulas to
express this norm in terms ofmatrices of a state-space realization. Efficient numerical
algorithms for the computation of theH∞- andL∞-norms are iterative (e.g., employ
bisection-based approximation techniques) and rely on state-space representations of
G(λ). This latter aspect is instrumental for both efficiency and numerical reliability of
the computational algorithms. For efficient numerical algorithms for the computation
of the H∞- and L∞-norms see the literature cited in Sect. 9.3.

For the computation of the H2-norm of a stable and proper TFM G(λ) closed-
form formulas are available for both continuous- and discrete-time systems (see the
definitions (9.16) or (9.17) in Sect. 9.1.7).

Lemma 9.10 Let G(s) be a strictly proper and stable TFM of a continuous-time
system and let (A − sE,B,C, 0) be an irreducible descriptor realization with E
invertible. Then, theH2-norm of G(s) can be evaluated as

‖G(s)‖2 =
√
trace (BTQB),

where Q is the observability Gramian satisfying the following generalized Lyapunov
equation

ATQE + ETQA + CTC = 0 .

Alternatively, theH2-norm of G(s) can be evaluated as

‖G(s)‖2 =
√
trace (CPCT ),

where P is the controllability Gramian satisfying the following generalized Lyapunov
equation

APET + EPAT + BBT = 0 .

Lemma 9.11 Let G(z) be a strictly proper and stable TFM of a discrete-time system
and let (A − zE,B,C,D) be an irreducible descriptor realization with E invertible.
Then, the H2-norm of G(z) can be evaluated as

‖G(z)‖2 =
√
trace (BTQB + DTD),

http://dx.doi.org/10.1007/978-3-319-51559-5_10
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where Q is the observability Gramian satisfying the following generalized Stein
equation

ATQA − ETQE + CTC = 0 .

Alternatively, theH2-norm of G(z) can be evaluated as

‖G(z)‖2 =
√
trace (CPCT + DTD),

where P is the controllability Gramian satisfying the following generalized Stein
equation

APAT − EPET + BBT = 0 .

The L2-norm of a proper TFM G(λ) without poles on the boundary of stability
domain ∂Cs has formally the same definition as theH2-norm in (9.16) or (9.17). This
norm can be computed using, for example, the stable RCF with inner denominator
G(λ) = G̃(λ)M−1

i (λ)withMi(λ) inner, and exploiting the norm-preserving property
of all-pass factors

‖G‖2 = ‖G̃(λ)M−1
i (λ)‖2 = ‖G̃(λ)‖2 .

Alternatively, we can use the stable–unstable decompositionG(λ) = Gs(λ)+Gu(λ)

and compute

‖G‖2 =
√

‖Gs(λ)‖22 + ‖G∼
u (λ)‖22 .

For the evaluation of the Hankel norm of a stable TFM G(λ), the state-space
representation allows to use explicit formulas.

Lemma 9.12 Let G(s) be a proper and stable TFM of a continuous-time system
and let (A − sE,B,C,D) be an irreducible descriptor realization with E invertible.
Then, the Hankel norm of G(s) can be evaluated as

‖G(s)‖H = σ(RES),

where P = SST is the controllability Gramian and Q = RTR is the observability
Gramian, which satisfy the following generalized Lyapunov equations

APET + EPAT + BBT = 0 ,

ATQE + ETQA + CTC = 0 .

Lemma 9.13 Let G(z) be a proper and stable TFM of a continuous-time system
and let (A − zE,B,C,D) be an irreducible descriptor realization with E invertible.
Then, the Hankel norm of G(z) can be evaluated as

‖G(z)‖H = σ(RES),
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where P = SST is the controllability Gramian and Q = RTR is the observability
Gramian, which satisfy the following generalized Stein equations

APAT − EPET + BBT = 0 ,

ATQA − ETQE + CTC = 0 .

For the solution of the generalized Lyapunov and Stein equations in this section,
computational procedures, discussed in Sect. 10.2.1, can be employed.

9.2.8 Inner–Outer and Spectral Factorizations

Recall form Sect. 9.1.8 that any stable proper TFM G(λ) without zeros in ∂Cs (the
boundary of the appropriate stability domain) has an inner–outer factorization

G(λ) = Gi(λ)Go(λ) , (9.78)

where Gi(λ) is the inner factor and Go(λ) is the outer factor. Similarly, G(λ) has a
co-outer–co-inner factorization

G(λ) = Gco(λ)Gci(λ) , (9.79)

where Gco(λ) is the co-outer factor and Gci(λ) is the co-inner factor. In view of the
applications of this factorization in solving the synthesis problems of fault detection
and isolation filters, using the procedures presented in Chap.5, we only consider the
particular case, when G(λ) has full column rank or full row rank, in which case the
outer factor or co-outer factor result invertible, respectively.

Assume that the stable proper TFM G(λ) has an irreducible descriptor realization

G(λ) =
[
A − λE B

C D

]
, (9.80)

withE invertible.Wehave the following standard result for a continuous-time system:

Theorem 9.3 If G(s) is a proper and stable, full column rank TFM without zeros
in ∂Cs, then G(s) has an inner–outer factorization G(s) = Gi(s)Go(s), with the
particular realizations of the factors

Gi(s) =
[
A + BF − sE BH−1

C + DF DH−1

]
, Go(s) =

[
A − sE B
−HF H

]
,

where H is an invertible matrix satisfying DTD = HTH, F is given by

F = −(DTD)−1(BTXsE + DTC) ,

http://dx.doi.org/10.1007/978-3-319-51559-5_10
http://dx.doi.org/10.1007/978-3-319-51559-5_5
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with Xs ≥ 0 being the stabilizing solution of the generalized continuous-time alge-
braic Riccati equation (GCARE)

ATXE + ETXA − (ETXB + CTD)(DTD)−1(BTXE + DTC) + CTC = 0.

The similar result for a discrete-time system is:

Theorem 9.4 If G(z) is a proper and stable, full column rank TFM without zeros
in ∂Cs, then G(z) has an inner–outer factorization G(z) = Gi(z)Go(z), with the
particular realizations of the factors

Gi(z) =
[
A + BF − zE BH−1

C + DF DH−1

]
, Go(z) =

[
A − zE B
−HF H

]
,

where H is an invertible matrix satisfying DTD + BTXsB = HTH, F is given by

F = −(HTH)−1(BTXsA + DTC) ,

with Xs ≥ 0 being the stabilizing solution of the generalized discrete-time algebraic
Riccati equation (GDARE)

ATXA − ETXE − (ATXB + CTD)(DTD + BTXB)−1(BTXA + DTC) + CTC = 0.

Instead of the (compact) inner–outer factorization (9.78), the extended inner–outer
factorization

G(λ) = [
Gi(λ) G⊥

i (λ)
] [

Go(λ)

0

]
(9.81)

is sometimes desirable, where G⊥
i (λ) is the inner orthogonal complement of Gi(λ)

such that
[
Gi(λ) G⊥

i (λ)
]
is square and inner. In the continuous-time case, a descriptor

realization of G⊥
i (λ) is given by

G⊥
i (s) =

[
A + BF − sE −X†

s E
−TCTD⊥

C + DF D⊥

]
,

where D⊥ is an orthogonal complement chosen such that
[
DH−1 D⊥ ]

is square and
orthogonal. In the discrete-time case we have

G⊥
i (z) =

[
A + BF − zE Y

C + DF W

]
,

where Y and W satisfy
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ATXsY + CTW = 0,
BTXsY + DTW = 0,
WTW + YTXsY = I.

The similar results for the co-outer–co-inner factorization (or the extended co-
outer–co-inner factorization) can be easily obtained by considering the inner–outer
factorization (or its extended version) for the dual systemwith theTFMGT (λ) having
the descriptor realization (AT − λET ,CT ,BT ,DT ).

Remark 9.4 The more general case with G(λ) having zeros in ∂Cs is relevant for
solving synthesis problems of fault detection filters by using approximate model-
matching techniques (see Sect. 5.7). A computational approach for this case is pre-
sented in Sect. 10.3.6. The resulting quasi-outer factor Go(λ) has all zeros in Cs,
which include all zeros of G(λ) in ∂Cs. �

Recall from Sect. 9.1.8, that the outer factor Go(λ) corresponding to a G(λ)with-
out zeros in ∂Cs is a solution of the minimum-phase right spectral factorization
problem, while the co-outer factor Gco(λ) is a solution of the minimum-phase left
spectral factorizationproblem.Bycombining theLCF (RCF)with inner denominator
and the inner–outer factorization, we can obtain a solution of the stable minimum-
phase right (left) spectral factorization problem. For a discussion of these aspects
see Sect. 9.1.8.

A special factorization encountered when solving the AMMP (see Eq. (9.29) in
Sect. 9.1.10) is the following: for a given TFMG(λ)without poles in ∂Cs and a given
bound γ > ‖G(λ)‖∞, compute a stable and minimum-phase TFM Go(λ) such that

γ 2I − G(λ)G∼(λ) = Go(λ)G∼
o (λ) .

This computation can be addressed in two steps. In the first step, we compute a RCF
G(λ) = N(λ)M−1(λ), with the denominator factor M(λ) inner. It follows that

γ 2I − G(λ)G∼(λ) = γ 2I − N(λ)N∼(λ),

where N(λ) is proper and has only poles in Cs. In the second step, we determine the
stable and minimum-phase Go(λ) which satisfies

γ 2I − N(λ)N∼(λ) = Go(λ)G∼
o (λ) . (9.82)

The first step has been already discussed in Sect. 9.2.6, and therefore we assume that
for an irreducible descriptor realization (A − λE,B,C,D) of G(λ), we determined
a stable N(λ) with a descriptor realization (̃A − λẼ, B̃, C̃, D̃).

In the continuous-time case, we can compute the spectral factor Go(s) by using
the following result.

Lemma 9.14 Let N(s) be a stable TFM and let (̃A − sẼ, B̃, C̃, D̃) be its descriptor
system realization. For γ > ‖N(s)‖∞, a realization of a stable and minimum-phase
spectral factor Go(s), satisfying (9.82) for λ = s, is given by

http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_10


292 9 System Theoretical Concepts

Go(s) =
[
Ã − sẼ −KsR1/2

C̃ R1/2

]

,

where
R = γ 2I − D̃D̃T ,

Ks = (ẼYsC̃T + B̃D̃T )R−1,

and Ys is the stabilizing solution of the GCARE

ÃYẼT + ẼYÃT + (ẼYC̃T + B̃D̃T )R−1(C̃YẼT + D̃B̃T ) + B̃B̃T = 0 .

We have the following analogous result in the discrete-time case.

Lemma 9.15 Let N(z) be a stable TFM and let (̃A − zẼ, B̃, C̃, D̃) be its descriptor
realization. For γ > ‖N(z)‖∞, a realization of a stable and minimum-phase spectral
factor Go(z), satisfying (9.82) for λ = z, is given by

Go(z) =
[
Ã − λẼ −KsR1/2

C̃ R1/2

]

,

where
RD = γ 2I − D̃D̃T ,

R = RD − C̃YsC̃T ,

Ks = (̃AYsC̃T + B̃D̃T )R−1,

and Ys is the stabilizing solution of the GDARE

ÃYÃT − ẼYẼT − (̃AYC̃T + B̃D̃T )(−RD + C̃YC̃T )−1(C̃YÃT + D̃B̃T ) + B̃B̃T = 0 .

9.2.9 Linear Rational Equations

ForG(λ) ∈ R(λ)p×m andF(λ) ∈ R(λ)q×m consider the solution of the linear rational
matrix equation

X(λ)G(λ) = F(λ) , (9.83)

where X(λ) ∈ R(λ)q×p is the solution we seek. The existence of a solution is
guaranteed if the compatibility condition for linear systems is fulfilled. Recall from
Lemma 9.4 that the rational equation (9.83) has a solution if and only if

rank G(λ) = rank

[
G(λ)

F(λ)

]
. (9.84)
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An equivalent condition can be derived in terms of descriptor system representations
of G(λ) and F(λ), which we assume to be of the form

G(λ) =
[
A − λE B
CG DG

]
, F(λ) =

[
A − λE B
CF DF

]
. (9.85)

Such representations which share the pair (A − λE,B) can be easily obtained by

determining a descriptor realization of the compound rational matrix

[
G(λ)

F(λ)

]
. It is

easy to observe that any solution of (9.83) is also part of the solution of the linear
polynomial equation

Y(λ)

[
A − λE B
CG DG

]
= [

CF DF
]

, (9.86)

whereY(λ) = [
W (λ) X(λ)

]
. Therefore, alternatively to solving (9.83), we can solve

instead (9.86) for Y(λ) and compute X(λ) as

X(λ) = Y(λ)

[
0
Ip

]
. (9.87)

Define the system pencils corresponding to G(λ) and the compound

[
G(λ)

F(λ)

]
as

SG(λ) :=
[
A − λE B
CG DG

]
, SG,F(λ) :=

⎡

⎣
A − λE B
CG DG

CF DF

⎤

⎦ . (9.88)

We have the following result similar to Lemma 9.4.

Lemma 9.16 The rational equation (9.83)withG(λ)andF(λ)having the descriptor
realizations in (9.85) has a solution if and only if

rank SG(λ) = rank SG,F(λ) . (9.89)

Let Cb be the “bad“ domain of the complex plane, where the solution X(λ) must
not have poles. We have the following result similar to Lemma 9.5.

Lemma 9.17 The rational equation (9.83)withG(λ)andF(λ)having the descriptor
realizations in (9.85) has a solutionwithout poles inCb if andonly if thematrix pencils
SG(λ) and SG,F(λ) defined in (9.88) fulfill (9.89) and have the same zero structure
for all zeros of G(λ) in Cb.

Inwhat follows,we give a constructive procedure for the computation of a solution
X(λ) of the rational equation (9.83), which can be seen also as a proof of the above
lemmas. To establish the solvability condition (9.89) and to solve (9.86), we reduce
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the system pencil SG(λ) to a suitable Kronecker form. Let U and V be invertible
matrices to reduce SG(λ) to the alternative Kronecker form (see Remark 9.2)

SG(λ) = USG(λ)V =

⎡

⎢⎢
⎣

Ar − λEr 0 0
0 Areg − λEreg 0
0 0 Al − λInl
0 0 Cl

⎤

⎥⎥
⎦ , (9.90)

where Ar − λEr (=: Kr(λ)) has full row rank nr , Areg − λEreg (=: Kreg(λ)) is

an nreg × nreg regular subpencil in a Weierstrass canonical form, and

[
Al − λInl

Cl

]

(=: Kl(λ)) has full column rank nl with the pair (Al − λInl ,Cl) observable. We have
immediately that if Y(λ) is a solution of the reduced equation

Y(λ)SG(λ) = [
CF DF

]
V, (9.91)

then Y(λ) = Y(λ)U is a solution of (9.86) and thus

X(λ) = Y(λ)U

[
0
Ip

]
(9.92)

is a solution of the Eq. (9.83).
Partition now [

CF DF
]
V := [−C1 −C2 −C3

]

in accordance with the column structure of SG(λ) in (9.90). We choose Y(λ) of the
form

Y(λ) = [
Y 1(λ) Y 2(λ) Y 3(λ) Y 4(λ)

]
,

where the column partitioning of Y(λ), in four blocks, corresponds to the row par-
titioning of SG(λ) in (9.90). From (9.91) we obtain the equations fulfilled by the
blocks of Y(λ):

Y 1(λ)(Ar − λEr) = −C1,

Y 2(λ)(Areg − λEreg) = −C2,

Y 3(λ)(Al − λInl ) + Y 4(λ)Cl = −C3.

The equation satisfied by Y 1(λ) has a solution if and only if

rank(Ar − λEr) = rank

[
Ar − λEr

−C1

]
.

Since Ar − λEr has full row rank nr , this is possible if and only if C1 = 0 and the
corresponding solution is Y 1(λ) = 0. For the rest of the blocks we have
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Y 2(λ) = C2(λEreg − Areg)
−1 ,

while Y 3(λ) and Y 4(λ) jointly satisfy

Y 3(λ) = C3(λInl − Al)
−1 + Y 4(λ)Cl(λInl − Al)

−1 .

Thus, the component Y 4(λ) can be freely chosen. The condition C1 = 0 makes that

rank SG,F(λ) = rank

[
SG(λ)[

CF DF
]
V

]
= nr + nreg + nl = rank SG(λ) .

This proves the existence condition of Lemma9.16 (which is also part of the existence
conditions in Lemma 9.17).

We can compute now the solution X(λ) according to (9.92). Let partition

U

[
0
Ip

]
=

⎡

⎢⎢
⎣

Br

Breg

Bl

Dl

⎤

⎥⎥
⎦ (9.93)

in accordance with the row structure of SG(λ). Then, we obtain the solution in the
general form

X(λ) = X0(λ) + Y 4(λ)XN (λ), (9.94)

where
X0(λ) := C2(λEreg − Areg)

−1Breg + C3(λInl − Al)
−1Bl

can be interpreted as a particular solution, the term

XN (λ) := Cl(λInl − Al)
−1Bl + Dl

is a νl × p proper rational left nullspace basis of G(λ) (see (9.60) in Sect. 9.2.4),
while Y 4(λ) is an arbitrary q × νl rational matrix. Recall that νl = p − rank G(λ).

We now discuss shortly the conditions for the existence of a solution X(λ)with all
poles in a desired “good” domainCg ⊂ C.We assumeCg includes only finite regions
of C. Observe first, in any particular solution X0(λ) has generally two components
X0(λ) = X0,z(λ) + X0,l(λ), where

X0,z(λ) = C2(λEreg − Areg)
−1Breg (9.95)

and
X0,l(λ) = C3(λInl − Al)

−1Bl .
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The term X0,z(λ) has poles which originate from the zeros of G(λ), while X0,l(λ) has
poles which originate from the left structure of G(λ). These latter poles are called
the “spurious” poles of X(λ) and we will show that they can be freely chosen to lie
in Cg . If we use the additional left transformation U in (9.61), then using (9.62) and
similar developments as in Sect. 9.2.4, we obtain instead X0,l(λ), the updated term

X̃0,l(λ) = C3(λInl − Al − KCl)
−1(Bl + KDl),

where K is a constant gain which, due to the observability of the pair (Al,Cl), can
be chosen such that Λ(Al + KCl) ⊂ Cg . Therefore, X̃0,l(λ) has only poles in Cg .

The poles of the term X0,z(λ) are fixed and represent a subset of Λ(Areg − λEreg).
More precisely, these poles are the controllable and observable eigenvalues in
Λ(Areg − λEreg) of the descriptor system realization (Areg − λEreg,Breg,C2, 0).
If we assume that the descriptor realizations in (9.85) share the controllable pair
(A − λE,B), then the pair (Areg − λEreg,Breg) is controllable as well. Therefore, to
guarantee that all poles of X0,z(λ) lie in Cg , all eigenvalues of Areg − λEreg outside
Cg must be unobservable. Assume that the regular pencil Areg − λEreg exhibits the
following spectral separation

Areg − λEreg =
[
Ab − λEb 0

0 Ag − λEg

]
,

where Ab − λEb contains the diagonal blocks in the Weierstrass canonical form
which have finite eigenvalues inCb or infinite eigenvalues with multiplicities at least
2, while Ag − λEg contains the diagonal blocks in the Weierstrass canonical form
which have finite eigenvalues in Cg or infinite eigenvalues with multiplicities equal
to 1 (this can be easily arranged by reordering the diagonal blocks in the Weierstrass
canonical form). Partition correspondingly C2 and Breg as

C2 = [
C2,b C2,g

]
, Breg =

[
Breg,b

Breg,g

]
.

All eigenvalues in Λ(Ab − λEb) are unobservable if and only if C2,b = 0. It follows

X0,z(λ) = C2,g(λEg − Ag)
−1Breg,g ,

which has poles only in Cg (because all infinite eigenvalues are simple).
The condition C2,b = 0 guarantees that SG(λ) and SG,F(λ) have the same eigen-

value (zero) structure for all λz ∈ Λ(Ab − λEb) ⊂ Cb, which is the statement of
Lemma 9.17.

The existing freedom to choose Y 4(λ) in (9.94) can be exploited to determine
solutions X(λ) with least McMillan degree. A numerically reliable computational
approach to determine such a least-order solution of the dual equation G(λ)X(λ) =
F(λ) is described in Sect. 10.3.7.

http://dx.doi.org/10.1007/978-3-319-51559-5_10
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9.3 Notes and References

Section9.1. The material in this section is covered in several textbooks, of which
we mention only two widely cited books of Kailath [69] and Vidyasagar [156].
Many useful information are also presented in [53]. Among them we mention an
elementary proof of Lemma 9.2 on the existence and uniqueness of the Smith form of
a polynomial matrix. The results of Lemma 9.1 on the properties of polynomial bases
have been established by Forney [42] and are taken from [69]. The concept of simple
minimal proper rational basis has been introduced by Vardulakis and Karcanias in
[122] as the natural counterpart of a minimal polynomial basis. The recursive pole-
dislocation-based approach to compute coprime factorizations has been inspired by
the ideas of Belevitch [10], and refined in the work of Vandewalle andDewilde [121].
See also the work of Van Dooren [118] for further discussions of this and similar
recursive factorization techniques. A basic treatment of the H∞-model-matching
problem, including the bisection-based γ -iteration approach, is given by Francis in
[43]. The main aspects related to spectral factorizations, solving minimum distance
problems (Nehari problem), as well as H2-optimal control, are covered in [164].

Section9.2. Linear descriptor systems (also known in the literature as linear
differential-algebraic-equations-based systems or generalized state-space systems
or singular systems), are discussed, to different depths and with different focus, in
several books [19, 23, 36, 73]. The simple realization procedure of general rational
matrices (representing the proof of Theorem 9.1) has been presented in [155]. The
equivalence theory of linearmatrix pencils is covered in [46]. For the real Jordan form
of a matrix see, for example, [61, Section3.4]. The concept of simple minimal proper
rational bases has been introduced in [122]. Necessary and sufficient conditions for
the existence of a feedback matrix which places r = rank E finite eigenvalues in
Λ(A + BF − λE) into a “good” region Cg are given in [85] and suitable stabiliza-
tion algorithms are discussed in [127]. Computational methods for the evaluation of
H∞- or L∞-norm have been proposed for standard continuous-time systems in [18],
[17] and, extended to both continuous- and discrete-time descriptor systems in [15].
Recent developments for proper continuous-time descriptor systems, proposed in
[13], target the reduction of computational effort and improvement of the numerical
accuracy, by employing sophisticated structure preserving matrix pencils reduction
techniques. Lemma 9.14 extends to proper descriptor systems the formulas devel-
oped in [164, Corollary 13.22]. Lemma 9.15 extends to proper descriptor systems the
formulas developed in [164, Theorem 21.26] for the solution of the dual factorization
problem γ 2I − N∼(z)N(z) = G∼

o (z)Go(z).



Chapter 10
Computational Algorithms and Software

This chapter presents, in details, the main algorithms for descriptor systems, which
underlie the computational methods used in the synthesis procedures considered in
this book. The core computations in these algorithms involve several matrix decom-
positions and condensed forms, which are obtainable using orthogonal transforma-
tions and, therefore, are provably numerical stable. Important applications of the
condensed form are in developing numerically stable computational algorithms for
the solution of several generalized matrix equations (Lyapunov, Stein, Sylvester,
Riccati), which are frequently encountered in addressing the solution of synthesis
problems in the fields of control and fault detection. The use of condensed forms,
obtainable using orthogonal transformations (instead of using the potentially highly
sensitive Weierstrass, Kronecker, or Brunovsky canonical forms), is also instrumen-
tal in developing numerically reliable procedures for the solution of several basic
computational problems for descriptor systems as well as in some, rather specialized,
algorithms for proper descriptor systems. Although this chapter is primarily intended
for numerical experts having interests in control-related numerical techniques, it also
serves to highlight the complexity of the underlying computations, which are nec-
essary to address the synthesis problems of fault detection and isolation filters in a
numerically sound way. A collection of software tools implements the algorithms
presented in this chapter and can be employed to reproduce all computational results
presented in this book.

10.1 Matrix Decompositions and Condensed Forms

The condensed forms of matrices play an important role in solving many control-
related computational problems. A widely used computational paradigm in solving
many computational problems consists of threemain steps: (1) transform the original
problem into a simpler one by reducing the problem data to condensed forms; (2)
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solve the transformed problem using specially devised methods for the respective
condensed forms; and (3) recover the solution of the original problem using back
transformation to the original form. In this section we present several basic matrix
decompositions, obtainable using orthogonal transformations, which involve several
condensed forms of matrices, pairs of matrices, or even triples of matrices.

The use of orthogonal transformations is a widely accepted approach to promote
numerical reliability of computations with finite precision. These transformations
are perfectly conditioned with respect to inversion and, therefore, have the very
desirable property that they do not amplify the existing uncertainties in the data.
This feature is very important, since uncertainties in problem data are ubiquitous,
representing inherent inaccuracies in data (e.g., truncation or discretization errors),
or roundoff errors occurred in previous computational steps, or both. When using
orthogonal transformations to transform problem data, it is often possible to bound
the roundoff errors resulted as an effect of performed transformations on the data
and even to show that the computed results are the exact solution of a problem with
slightly perturbed data. Numerical algorithms exhibiting such a property are called
(backward) numerically stable and underlie many algorithms for basic linear algebra
computations. The use of numerically stable algorithms guarantees that the computed
solution is accurate, provided the computational problem is well conditioned.

In what follows, we present several matrix decompositions involving particular
condensed forms, which can be obtained using exclusively orthogonal transforma-
tions. These decompositions are the basis for many numerically stable algorithms
employed by the synthesis procedures presented in this book. We will not address
detailed algorithms for the computation of these forms, because they are described
in details in several numerical linear algebra textbooks. However, we will indicate
the associated computational complexity, by giving an estimation of the number
of performed floating-point computations (flops) by a typical algorithm. For each
decomposition we mention several straightforward applications, which often repre-
sent the building blocks of more complex numerical algorithms.

10.1.1 Singular Value Decomposition

The singular value decomposition (SVD) is a fundamental matrix factorization,
which plays an important conceptual and computational role in linear algebra. The
computation of the SVD can be interpreted as the reduction of a given rectangu-
lar matrix to a “diagonal” form using pre- and post-multiplications with orthogonal
matrices. The main theoretical result regarding the SVD is the following theorem.

Theorem 10.1 For any matrix A ∈ Rm×n, there exist orthogonal matrices U ∈
Rm×m and V ∈ Rn×n such that

A = UΣV T ,

whereΣ = diag(Σr, 0)withΣr = diag(σ1, σ2, . . . , σr)and σ1 ≥ σ2 ≥ · · · ≥ σr > 0.
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The value of r defines obviously the rank of A. If we partition U = [
U1 U2

]
and

V = [
V1 V2

]
column-wise compatible with the row and column partitions of Σ ,

respectively, then

A = [
U1 U2

] [
Σr 0
0 0

] [
V T
1

V T
2

]
= U1ΣrV

T
1 , (10.1)

which can be interpreted as a full rank factorization of A. We denote with σi(A),
i = 1, . . . , p, the p := min(m, n) singular values of A, which are formed of the r
nonzero singular values σ1, . . . , σr together with p − r zero singular values. The
largest singular value σ(A) := σ1 is equal to ‖A‖2, the 2-norm of matrix A. For a
square invertible matrix of order n, the 2-norm condition number with respect to
inversion can be computed as κ2(A) := ‖A‖2‖A−1‖2 = σ1/σn. The Moore–Penrose
pseudo-inverse of A can be computed as A† = V1Σ

−1
r UT

1 . The minimum norm solu-
tion of the linear least-squares problem minx∈Rn ‖Ax − b‖2 is simply x = A†b =
V1Σ

−1
r UT

1 b.

Remark 10.1 The SVD is considered the primary tool to reliably determine the rank
of a matrix. However, by applying any of the available numerically stable algorithms
to compute the SVD, there will be almost always p nonzero singular values because
of the incurred roundoff errors. If the original matrix A has the “mathematical rank”
equal to r, then we can expect that p − r of the numerically computed singular
values to be “small.” Thus, to determine the rank of A correctly, we need to choose
a tolerance ε > 0 and define the “numerical rank” of A as r if the r-th and r + 1-th
computed singular values satisfy

σr > ε ≥ σr+1 . (10.2)

Such a rank decision can be seen “reliable” if the gap σr − σr−1 is “large.” It is
important to note that the significance of the terms “small” and “large” is always in
direct relation with the actual magnitudes of the matrix elements. The choice of the
tolerance ε should be consistent with both the machine precision (i.e., ε ≥ uσ(A),
where u = 2−52 ≈ 2.22 · 10−16 is the unit roundoff for the IEEE double precision
floating-point representation), but also with the relative errors in the data (i.e., ε ≥
10−kσ(A), where k is the number of correct decimal digits in the entries of A). We
call the rank r determined such as (10.2) holds the ε-rank of A. �

A typical numerical algorithm for the computation of the full SVD (i.e.,Σ ,U and
V ) requires, for m ≥ n, about 4m2n + 8mn2 + 9m3 flops, but only 4mn2 − 4n3/4
flops for rank determination (i.e., computation of only Σ). For a properly imple-
mented SVD algorithm, it can be shown that the computed diagonal matrix Σ is
exact for a slightly perturbed A, in the following sense:

UT (A + E)V = Σ,
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whereUTU = I ,V TV = I ,‖E‖2 = O(u‖A‖2) and the computedU andV are almost
orthogonal satisfying

∥∥U − U
∥∥
2 = O(u) and

∥∥V − V
∥∥
2 = O(u).

In the rest of this sectionwe discuss some straightforward applications of the SVD.
We assume the SVD of A has the partitioned form in (10.1), where r represents the
ε-rank for a given tolerance ε satisfying (10.2) (i.e., all singular values of A satisfying
σi(A) ≤ ε are considered equal to zero). The partitioned SVD (10.1) can be used to
define orthogonal bases for the range and kernel of the matrix A as

R(A) = R(U1), N (A) = R(V2) ,

as well as for its transpose AT as

R(AT ) = R(V1), N (AT ) = R(U2) .

The orthogonal projections on the respective subspaces can be computed as

PR(A) = U1UT
1 , PN (A) = V2V T

2 ,

PR(AT ) = V1V T
1 , PN (AT ) = U2UT

2 ,

where PX denotes the orthogonal projection on a subspace X .
Several row and column compressions can be easily obtained in terms of the

elements of the SVD (10.1). Let Πc and Πr be permutation matrices defined as

Πc =
[

0 Ir
In−r 0

]
, Πr =

[
0 Im−r

Ir 0

]
. (10.3)

Then

UTA =
[

ΣrV T
1

0

]
, ΠrU

TA =
[

0
ΣrV T

1

]
,

represent two widely used row compressions of A to full row rank matrices via
orthogonal transformations. Similarly,

AV = [
U1Σr 0

]
, AVΠc = [

0 U1Σr
]

are column compressions of A to full column rank matrices via orthogonal transfor-
mations.

10.1.2 QR Decomposition

The QR decomposition of a rectangular matrix in a product of an orthogonal matrix
and an upper triangular matrix has many applications, which are similar to those of
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the SVD. Since the associated computational burden for the determination of the
QR decomposition is significantly smaller than for the computation of the SVD, it
is almost always advantageous to employ the QR decomposition instead the SVD,
whenever this is possible.We cautiously remark that this gain of efficiencymay some-
time involve a certain loss of reliability in problems involving rank determinations.
Fortunately, this may only occur for some rather “exotic” matrices and, therefore,
QR factorization-based techniques are generally preferred to SVD-based methods in
many control-oriented algorithms.

The main result on the QR decomposition is the following one.

Theorem 10.2 For any matrix A ∈ Rm×n, there exists an orthogonal matrix Q ∈
Rm×m and an upper triangular matrix R ∈ Rm×n such that

A = QR .

Specifically, if m > n, then R has the form R =
[
R11

0

]
with m − n trailing zero rows,

while if n ≥ m then R = [
R11 R12

]
. In both cases, R11 is a p × p upper triangular

matrix, with p = min(m, n).

TheQRdecomposition (someauthors prefer the termQRfactorization) is the basic
tool to solve the linear least-squares problemminx∈Rn ‖Ax − b‖2, in the case when A
is a full column rank matrix. The least-squares solution is simply x = [

R−1
11 0

]
QTb.

Furthermore, if R11 is chosen with positive diagonal elements, then R11 is the upper
triangular factor of the Cholesky factorization of ATA as ATA = RT

11R11. Another
application in the casem > n is the computation of the SVD using bidiagonalization-
based methods. These techniques can exploit the upper triangular shape of R11 to
improve the overall computational efficiency.

We have a similar result for the so-called RQ decomposition, which is mainly
relevant for the case m ≤ n.

Theorem 10.3 For any matrix A ∈ Rm×n, with m ≤ n, there exists an orthogonal
matrix Q ∈ Rn×n and an upper triangular matrix R ∈ Rm×m such that

A = [
0 R

]
Q .

If r = rank A < min(m, p), the rank information cannot be usually read out from
the resulting upper triangular factor R of the QR decomposition. An alternative rank-
revealing factorization can be used which allows the determination of rank. The QR
factorization with column pivoting has the form

A = Q

[
R11 R12

0 0

]
Π =: Q

[
R1

0

]
Π, (10.4)

where Q is orthogonal, R11 ∈ Rr×r is upper triangular and invertible and Π is a
permutation matrix. Obviously r = rank A. The role of the column permutations
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is to enforce the invertibility of the leading block R11. The term column pivoting
indicates a specific column permutation strategy which tries to additionally enforce
that R11 is well conditioned (with respect to inversion).

Remark 10.2 The rank determination using the QR factorization with column pivot-
ing can be performed during the computation of this factorization. The factorization
procedure iteratively constructs the upper triangular matrix R11 in the leading posi-
tion. After r = rank A iterations, we have the partial decomposition

A = Q̂

[
R̂11 R̂12

0 R̂22

]
Π̂,

where we expect that R̂22 has a suitably small norm. A typical termination criterion
might be

‖R̂22‖2 ≤ ε, (10.5)

where ε = ε1‖A‖2 for some small parameter ε1 depending on the machine roundoff
unit u and the relative errors in the elements of A. If the above condition is ful-
filled, then the matrix has “numerical rank” r (also called ε-rank). Surprisingly, there
exist some artificially constructed examples (e.g., the Kahan matrices), for which
the nearly rank deficiency cannot be detected in this way. Nevertheless, in prac-
tice, the QR factorization with column pivoting is almost as reliable as the SVD in
determining matrix ranks. Therefore, it is widely used in many algorithms which
involve repeated rank determinations (see, for example, the staircase algorithms in
Sect. 10.3.1). Here, the repeated use of the full SVD would increase tremendously
the computational complexity, due to the need to explicitly compute the involved
orthogonal transformation matrices at each reduction step. �

A typical numerical algorithm for the computation of the QR factorization with
column pivoting is based on the Householder QR factorization technique combined
with column permutations, and requires about 4mnr − 2r2(m + n) + 4r3/3 flops.
Therefore, this algorithm is much more efficient than the algorithms for the com-
putation of the SVD. Using the Householder reduction, the orthogonal transfor-
mation matrix Q is determined in a factored form Q = H1H2 · · ·Hr , where Hi for
i = 1, . . . , r, are elementary orthogonal Householder transformation matrices (also
known as Householder reflectors). Therefore, it is possible to avoid the explicit build-
ing ofQwhen computing products asQTB orCQ, where B andC are arbitrary matri-
ces of compatible dimensions. For the Householder QR algorithm without pivoting,
it can be shown that the computed R is exact for a nearby A in the sense

QT (A + E) = R,

where QTQ = I and ‖E‖2 = O(u‖A‖2). The computed Q is almost orthogonal in
the sense that

∥∥Q − Q
∥∥
2 = O(u). A similar statement is obviously valid for the QR

factorization with column pivoting.
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In the rest of this section we discuss some straightforward applications of the QR
decomposition, which parallel those of the SVD. We assume the QR decomposition
with column pivoting ofA has the partitioned form in (10.4), where r represents the ε-
rank for a given tolerance ε satisfying (10.5) (i.e., the trailingm − r rows ofQTA are
considered equal to zero). Assume the orthogonal matrixQ in (10.4) is partitioned as
Q = [

Q1 Q2
]
, whereQ1 ∈ Rm×r andQ2 ∈ Rm×(m−r). We can determine orthogonal

bases for the range of matrix A and the kernel of the matrix AT (which is also its
orthogonal complement) as

R(A) = R(Q1), N (AT ) = R(A)⊥ = R(Q2) .

The orthogonal projections on these subspaces can be computed as PR(A) = Q1QT
1

and PN (AT ) = Q2QT
2 , respectively. Obviously, orthogonal bases forR(AT ) andN (A)

can be determined in terms of the QR decomposition with column pivoting of the
transposed matrix AT .

The row and column compressions can be obtained similarly as for the SVD. Let
Πr be the permutation matrix defined in (10.3). The row compressions of A to full
row rank matrices, via orthogonal transformations, can be obtained in one of the
following forms:

QTA =
[
R1Π

0

]
, ΠrQ

TA =
[

0
R1Π

]
.

Column compressions can be computed from the row compressions of the trans-
posed matrix AT , or, in the case of full row rank matrices, using directly the RQ
decomposition (see Theorem 10.3).

10.1.3 Real Schur Decomposition

The real Schur decomposition (RSD) of a square real matrix A is a basic matrix
decompositionwhich reveals the eigenvalues ofA, by determining its real Schur form
(RSF) (an upper quasi-triangular form) using orthogonal similarity transformations.
The following theorem is the main theoretical result regarding the RSD.

Theorem 10.4 For any A ∈ Rn×n there exists an orthogonal Q ∈ Rn×n such that
S = QTAQ is upper quasi-triangular of the form

S = QTAQ =

⎡

⎢⎢⎢
⎣

S11 S12 · · · S1k
0 S22 · · · S2k
...

...
. . .

...

0 0 · · · Skk

⎤

⎥⎥⎥
⎦

, (10.6)

where each Sii for i = 1, . . . , k is either a 1 × 1 or a 2 × 2 matrix having complex
conjugate eigenvalues.
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From the RSF (10.6), the eigenvalues of A result simply as

Λ(A) =
k⋃

i=1

Λ(Sii) .

The RSF also plays an important role in solving various linear matrix equations
(Lyapunov, Stein, Sylvester), while the associated transformation matrix Q can be
used to compute orthogonal bases of invariant subspaces (see below), which are
useful in solving quadratic matrix Riccati equations.

An important property of the RSF is that the order of eigenvalues (and thus of
the associated diagonal blocks) is arbitrary. The reordering of diagonal blocks (thus
also of corresponding eigenvalues) can be simply done by interchanging two adjacent
diagonal blocks of theRSF. For the swappingof such twoblocks orthogonal similarity
transformations can be used. Thus, any arbitrary reordering of blocks (and thus of the
corresponding eigenvalues) can be achieved in this way. An important application
of this fact is the computation of orthogonal bases for the invariant subspaces of A
corresponding to a particular eigenvalue or a particular set of eigenvalues.

Consider a disjunct partition of the complex plane asC = Cg ∪ Cb,Cg ∩ Cb = ∅,
whereCg andCb denote the “good” and “bad” regions ofC for the location of eigen-
values of A, respectively. The ordered RSF is frequently employed in computational
algorithms to exhibit a separation of eigenvalues into two sets, namely, all eigenvalues
located in Cg gathered in the leading diagonal block of the RSF and all eigenvalues
located in Cb gathered in the trailing diagonal block of the RSF. Overall we can
achieve the orthogonal reduction of A to an ordered RSF matrix S in the form

S = QTAQ =
[
Ag Agb

0 Ab

]
,

whereΛ(Ag) ⊂ Cg andΛ(Ab) ⊂ Cb. If we partitionQ asQ = [
Q1 Q2

]
compatibly

with the structure of the above S, then we can write

AQ1 = Q1Ag .

It follows that
AR(Q1) ⊂ R(Q1)

and thusR(Q1) is an invariant subspace corresponding to the eigenvalues of A lying
in Cg .

For the computation of the RSD the so-called Francis QR algorithm (or one of
its modern variants) is usually used. This algorithm requires about 25n3 flops if
both Q and S are computed. If the eigenvalue reordering is necessary, for example,
to move p eigenvalues in the leading diagonal block of the RSF, then additionally
at most 12n(n − p)p flops are necessary (e.g., 3n3 flops if p = n/2). If only the
eigenvalues are desired, then 10n3 flops are necessary. The roundoff properties of the
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QR algorithm are what one would expect of any orthogonal matrix technique. The
computed RSF S is orthogonally similar to a matrix near to A, that is,

QT (A + E)Q = S,

where QTQ = I and ‖E‖2 = O(u‖A‖2). The computed Q is almost orthogonal, in

the sense that
∥∥I − Q

T
Q

∥∥
2 = O(u). These relations are valid also in the case of

employing eigenvalue reordering.
If A is a symmetric real matrix, then all eigenvalues of A are real and the sym-

metric real Schur form S is the diagonal form formed from the (real) eigenvalues.
If additionally A is positive semi-definite, then all eigenvalues of A are non-negative
and we have the following simple formula for the square root of A:

A
1
2 = QS

1
2QT ,

where S
1
2 is the diagonal matrix formed from the square roots of the eigenvalues. We

can even compute the factor R of a Cholesky-like decomposition A = RTR as

R = S
1
2QT .

Such a factor is sometimes (improperly) called the square root of A.

10.1.4 Generalized Real Schur Decomposition

The eigenvalue structure of a regular pencil A − λE is completely described by
the Weierstrass canonical form (see Lemma 9.8). However, the computation of this
canonical form involves the use of (potentially ill-conditioned) general invertible
transformations, and therefore numerical reliability cannot be guaranteed. Fortu-
nately, the computation of Weierstrass canonical form can be avoided in almost
all computations, and alternative “less”-condensed forms can be employed instead,
which can be computed by employing exclusively orthogonal similarity transforma-
tions. The generalized real Schur decomposition (GRSD) of a matrix pair (A,E)

reveals the eigenvalues of the regular pencil A − λE, by determining the generalized
real Schur form (GRSF) of the pair (A,E) (a quasi-triangular–triangular form) using
orthogonal similarity transformations on the pencil A − λE. The main theoretical
result regarding the GRSD is the following theorem.

Theorem 10.5 Let A − λE be an n × n regular pencil, with A and E real matrices.
Then, there exist orthogonal transformation matrices Q and Z such that

S − λT := QT (A − λE)Z =
⎡

⎢
⎣

S11 · · · S1k
. . .

...

0 Skk

⎤

⎥
⎦ − λ

⎡

⎢
⎣

T11 · · · T1k
. . .

...

0 Tkk

⎤

⎥
⎦ , (10.7)

http://dx.doi.org/10.1007/978-3-319-51559-5_9
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where each diagonal subpencil Sii − λTii, for i = 1, . . . , k, is either of dimension
1 × 1 in the case of a finite real or infinite eigenvalue of the pencil A − λE or of
dimension 2 × 2, with Tii upper triangular, in the case of a pair of finite complex
conjugate eigenvalues of A − λE.

The pair (S,T) in (10.7) is in a GRSF and the eigenvalues of A − λE (or the gener-
alized eigenvalues of the pair (A,E)) are given by

Λ(A − λE) =
k⋃

i=1

Λ(Sii − λTii) .

If E = I , then we can always choose Q = Z , T = I and S is the RSF of A.
Similar to the RSF, the order of eigenvalues (and thus of the associated pairs of

diagonal blocks) of the reduced pencil S − λT is arbitrary. The reordering of the
pairs of diagonal blocks (thus also of corresponding eigenvalues) can be done by
interchanging two adjacent pairs of diagonal blocks of the GRSF. For the swapping
of such two pairs of blocks orthogonal similarity transformations can be used. Thus,
any arbitrary reordering of pairs of blocks (and thus of the corresponding eigenvalues)
can be achieved in this way. An important application of this fact is the computation
of orthogonal bases for the deflating subspaces of the pencil A − λE corresponding
to a particular eigenvalue or a particular set of eigenvalues.

For the computation of the GRSD the so-called QZ algorithm is usually used.
This algorithm requires about 66n3 flops if all matrices S, T , Q and Z are computed.
If the eigenvalue reordering is necessary, for example, to move p eigenvalues in the
leading diagonal blocks of the GRSF, then additionally at most 24n(n − p)p flops are
necessary (e.g., 6n3 flops if p = n/2). If only the eigenvalues are desired, then 30n3

flops are necessary. The roundoff properties of the QZ algorithm are what one would
expect of any orthogonal matrix technique. The computed pair (S,T), in GRSF, is
orthogonally similar to a matrix pair near to (A,E) and satisfies

QT (A + F)Z = S, QT (E + G)Z = T ,

where QTQ = I , ZTZ = I , ‖F‖2 = O(u‖A‖2) and ‖G‖2 = O(u‖E‖2). The com-
puted Q and Z are almost orthogonal, in the sense that

∥∥I − Q
T
Q

∥∥
2 = O(u) and

∥
∥I − Z

T
Z
∥
∥
2 = O(u). These relations are valid also in the case of employing eigen-

value reordering.
Consider a disjunct partition of the complex plane asC = Cg ∪ Cb,Cg ∩ Cb = ∅,

whereCg andCb denote the “good” and “bad” regions ofC, respectively.We assume
that Cg , and therefore also Cb, are symmetric with respect to the real axis. Then, it
is possible to determine the orthogonal transformation matrices Q and Z such that

QT (A − λE)Z =
[
Ag − λEg Agb − λEgb

0 Ab − λEb

]
(10.8)
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is in a GRSF, where Λ(Ag − λEg) ⊂ Cg and Λ(Ab − λEb) ⊂ Cb. Frequently used
eigenvalue splittings are the stable–unstable splitting (i.e., Cg = Cs and Cb =
C \ Cs) or the finite-infinite splitting (i.e., Cg = C \ {∞} and Cb = {∞}). More
complicated splittings are possible by combining two or more partitions (see below).

The eigenvalue splitting achieved in the ordered GRSF (10.8) is the main tool
for determining deflating subspaces corresponding to the eigenvalues of the pencil
A − λE. The subspacesX andY formadeflating pair for the eigenvalues ofA − λE if

dimX = dimY

and
AX ⊂ Y, EX ⊂ Y,

where dimS denotes the dimension of the subspace S. If we partition Q and Z com-
patibly with the structure of the GRSF (10.8) as Q = [

Q1 Q2
]
and, respectively,

Z = [
Z1 Z2

]
, then we can write

AZ1 = Q1Ag, EZ1 = Q1Eg .

It follows that dimR(Q1) = dimR(Z1) and

AR(Z1) ⊂ R(Q1), ER(Z1) ⊂ R(Q1) .

Thus, R(Q1) and R(Z1) form a pair of (left and right) deflating subspaces associ-
ated to the eigenvalues of Ag − λEg . Deflating subspaces generalize the notion of
invariant subspaces. If E is invertible, then the (right) deflating subspace R(Z1) is
an invariant subspace of E−1A corresponding to the eigenvalues of E−1A lying in
Cg . An important application of deflating subspaces is the solution of generalized
Riccati equations, which can be equivalently formulated as the problem of deter-
mining orthogonal bases of the right deflating subspace corresponding to the stable
eigenvalues of suitably defined regular pencils (see Sect. 10.2.2).

We describe now a special splitting of eigenvalues, which is instrumental for
the computation of the proper and stable coprime factorizations using the methods
described in Sect. 10.3.5. Assume Cg is finite region of C, symmetric with respect
to the real axis and Cb is its complement including also the point at infinity. The
eigenvalue splitting in question involves the reduction of A − λE to the form

Ã − λẼ = QT (A − λE)Z =
⎡

⎣
A∞ ∗ ∗
0 Ag − λEg ∗
0 0 Ab − λEb

⎤

⎦ , (10.9)

where A∞ is an (n − r) × (n − r) invertible (upper triangular) matrix, with r =
rank E, Λ(Ag − λEg) ⊂ Cg and Λ(Ab − λEb) ⊂ Cb. The leading pair (A∞, 0) con-
tains all infinite eigenvalues of A − λE corresponding to first-order eigenvectors,
while the rest of infinite eigenvalues are included in Ab − λEb.
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The Procedure GSORSF, presented in what follows, computes the specially
ordered GRSF in (10.9). The same procedure can be also used to obtain a reverse
ordering of the diagonal blocks of QT (A − λE)Z in (10.9). For this, we apply the
procedure to the transposed pencil AT − λET to obtainQ1 and Z1 such thatQT

1 (AT −
λET )Z1 is in a form, as in the right side of (10.9). Let P be the permutation matrix

P =
⎡

⎢
⎣

0 1
...

1 0

⎤

⎥
⎦ . (10.10)

Then, with Q = Z1P and Z = Q1P we obtain QT (A − λE)Z in the form

QT (A − λE)Z =
⎡

⎣
Ab − λEb ∗ ∗

0 Ag − λEg ∗
0 0 A∞

⎤

⎦ . (10.11)

Procedure GSORSF: Specially ordered generalized real Schur form
Inputs : A − λE regular, Cg and Cb such that C = Cg ∪ Cb, Cg ∩ Cb = ∅
Outputs: Q, Z , Ã − λẼ = QT (A − λE)Z in (10.9)

1) Compute an orthogonal Z1 such that EZ1 = [
0 E2

]
, with E2 full column rank

r = rank E; compute the conformably partitioned AZ1 = [
A1 A2

]
, with A1

having full column rank n − r.

2) Compute an orthogonal Q1 such that QT
1A1 =

[
A∞
0

]
, with A∞ an

(n − r) × (n − r) invertible upper triangular matrix; compute the
conformably partitioned matrices

QT
1A2 =

[
A12

A22

]
, QT

1E2 =
[
E12

E22

]
.

3) Compute orthogonal Q2 and Z2 such that

QT
2 (A22 − λE22)Z =

[
Ag − λEg Agb − λEgb

0 Ab − λEb

]

is in a GRSF, where Λ(Ag − λEg) ⊂ Cg and Λ(Ab − λEb) ⊂ Cb. Compute
A12Q2 = [

A∞,g A∞,b
]
and E12Q2 = [

E∞,g E∞,b
]
conformably partitioned

with QT
2 (A22 − λE22)Z .

4) Set Q = Q1 diag(In−r,Q2), Z = Z1 diag(In−r,Z2) and define Ã and Ẽ from
the pencil

Ã − λẼ =
⎡

⎣
A∞ A∞,g − λE∞,g A∞,b − λE∞,b

0 Ag − λEg Agb − λEgb

0 0 Ab − λEb

⎤

⎦ .
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10.1.5 Controllability and Observability Staircase Forms

Staircase forms represent a large family of block upper triangular condensed forms,
which arise from various algorithms which “compress” the numerical data available
in single matrices or matrix pairs. All forms already studied, such as the diagonal
form (originated from the SVD), upper triangular form (originated from the QR
decomposition), the RSF (originated from the Francis QR algorithm) or the GRSF
of a matrix pair (originated from the QZ algorithm), can be interpreted as particu-
lar staircase forms. For a general rectangular linear pencil, several Kronecker-like
staircase forms (see next section) are obtainable using strict pencil similarity transfor-
mations using orthogonal transformations. In this section, we discuss two particular
staircase forms, the controllability and observability staircase forms, which appear
as parts of this form. However, due to their special importance for the computation of
irreducible representation of descriptor systems, we dedicate a separate section for
the discussion of their properties and also give a numerically stable computational
procedure for their determination.

We have the following main result regarding the controllability staircase form.

Theorem 10.6 Consider the pair (A − λE,B), with A,E ∈ Rn×n and B ∈ Rn×m,
and assume the pencil A − λE is regular. Then, there exist orthogonal transformation
matrices Q and Z such that

[
B̂ Â − λÊ

] := [
QTB QTAZ − λQTEZ

] =
[
Bc Ac − λEc ∗
0 0 Ac̄ − λEc̄

]
, (10.12)

is in a generalized controllability staircase form with

[
Bc Ac

] =

⎡

⎢⎢⎢⎢
⎢
⎣

A1,0 A1,1 A12 · · · A1,k−1 A1,k

0 A2,1 A22 · · · A2,k−1 A2,k

0 0 A32 · · · A3,k−1 A3,k
...

...
...

. . .
...

...

0 0 0 · · · Ak,k−1 Ak,k

⎤

⎥⎥⎥⎥
⎥
⎦

, (10.13)

where Aj,j−1 ∈ Rνj×νj−1 , with ν0 = m, are full row rank matrices for j = 1, . . . , k,
and the resulting upper triangular matrix Ec has a similar block partitioned form

Ec =

⎡

⎢
⎢⎢⎢⎢
⎣

E1,1 E1,2 · · · E1,k−1 E1,k

0 E2,2 · · · E2,k−1 E2,k
...

...
. . .

...
...

0 0 · · · Ek−1,k−1 Ek−1,k

0 0 · · · 0 Ek,k

⎤

⎥
⎥⎥⎥⎥
⎦

, (10.14)
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where Ej,j ∈ Rνj×νj . The resulting block dimensions νj, j = 0, 1, . . . , k, satisfy

m = ν0 ≥ ν1 ≥ · · · ≥ νk > 0 .

The nc × (m + nc) pencil
[
Bc Ac − λEc

]
, with nc := ∑k

j=1 νj, has full row rank
for any finite λ ∈ C, and therefore the pair (Ac − λEc,Bc) is finite controllable.
If nc < n, then the (n − nc) × (n − nc) regular pencil Ac̄ − λEc̄ contains the finite
uncontrollable eigenvalues of A − λE (and also possibly some infinite ones).

Ifm = 1, then all subdiagonal blocks Aj,j−1 of Ac are 1 × 1 and Ac is in aHessen-
berg form. The pair (Ac,Ec)with Ac in Hessenberg form and Ec upper triangular is in
a so-called generalized Hessenberg form (GHF). If m > 1, then Ac is in a so-called
block Hessenberg form. If E = I , then we can choose Q = Z such that Ê = I .

Remark 10.3 If we partition Q and Z compatibly with the structure of the stair-
case form (10.12) as Q = [

Q1 Q2
]
and, respectively, Z = [

Z1 Z2
]
, then we can

write AZ1 = Q1Ac and EZ1 = Q1Ec. It follows that dimR(Q1) = dimR(Z1) and
AR(Z1) ⊂ R(Q1), ER(Z1) ⊂ R(Q1). Thus, R(Q1) and R(Z1) form a pair of (left
and right) deflating subspaces associated to the eigenvalues ofAc − λEc. Additionally
we have

R(B) ⊂ AR(Z1) + ER(Z1) (10.15)

and Cf := R(Z1) is a deflating subspace with least possible dimension satisfying
(10.15). We call Cf the finite controllability subspace of the pair (A − λE,B). The
pair (A − λE,B) is finite controllable if the dimension of Cf is n. �

We also have the dual result to Theorem 10.6 for the observability staircase form.

Theorem 10.7 Consider the pair (A − λE,C), with A,E ∈ Rn×n and C ∈ Rp×n,
and assume the pencil A − λE is regular. Then, there exist orthogonal transformation
matrices Q and Z such that

[
Â − λÊ

Ĉ

]
:=

[
QTAZ − λQTEZ

CZ

]
=

⎡

⎣
Aō − λEō ∗

0 Ao − λEo

0 Co

⎤

⎦ , (10.16)

is in a generalized observability staircase form with

[
Ao

Co

]
=

⎡

⎢⎢⎢⎢⎢⎢
⎢
⎣

A
,
 A
,
−1 · · · A
,2 A
,1

A
−1,
 A
−1,
−1 · · · A
−1,2 A
−1,1

0 A
−2,
−1 · · · A
−2,2 A
−2,1
...

...
. . .

...
...

0 0 · · · A1,2 A1,1

0 0 · · · 0 A0,1

⎤

⎥⎥⎥⎥⎥⎥
⎥
⎦

, (10.17)
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where Aj−1,j ∈ Rμj−1×μj , withμ0 = p, are full column rankmatrices for j = 1, . . . , 
,
and the resulting upper triangular matrix Eo has a similar block partitioned form

Eo =

⎡

⎢⎢
⎢⎢⎢
⎣

E
,
 E
,
−1 · · · E
,2 E
,1

0 E
−1,
−1 · · · E
−1,2 E
−1,1
...

...
. . .

...
...

0 0 · · · E2,2 E2,1

0 0 · · · 0 E1,1

⎤

⎥⎥
⎥⎥⎥
⎦

, (10.18)

with Ej,j ∈ Rμj×μj . The resulting block dimensions μj, j = 0, 1, . . . , 
, satisfy

p = μ0 ≥ μ1 · · · ≥ μ
 > 0 .

The (no + p) × no pencil

[
Ao − λEo

Co

]
, with no := ∑


j=1 μj, has full column rank

for any finite λ ∈ C, and therefore the pair (Ao − λEo,Co) is finite observable. If
no < n, then the (n − no) × (n − no) regular pencil Aō − λEō contains the finite
unobservable eigenvalues of A − λE (and also possibly some infinite ones).

Remark 10.4 If we partition Q and Z compatibly with the structure of the stair-
case form (10.16) as Q = [

Q1 Q2
]
and, respectively, Z = [

Z1 Z2
]
, then we can

write AZ1 = Q1Aō and EZ1 = Q1Eō. It follows that dimR(Q1) = dimR(Z1) and
AR(Z1) ⊂ R(Q1), ER(Z1) ⊂ R(Q1). Thus, R(Q1) and R(Z1) form a pair of (left
and right) deflating subspaces associated to the eigenvalues of Aō − λEō. Addi-
tionally, Of := R(Z1) is a deflating subspace with the largest dimension satisfying
R(Z1) ⊂ N (C).We callOf thefinite unobservable subspaceof the pair (A − λE,C).
The pair (A − λE,C) is finite observable if the dimension of Of is zero. �

The following procedure to compute the staircase form (10.12) can be seen as a
constructive proof of Theorem 10.6. In view of themain application of this procedure
(see Sect. 10.3.1), we included a matrix C ∈ Rp×n on which all transformations to
the right are also applied.
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Procedure GCSF: Generalized controllability staircase form
Inputs : (A − λE,B,C)

Outputs: Q, Z , (A−λE,B,C) :=(QTAZ−λQTEZ,QTB,CZ); νj, j = 1, . . . , 


1) Compute an orthogonal matrix Z such that EZ is upper triangular;
compute A ← AZ , E ← EZ , C ← CZ .

2) Set j = 1, nc = 0, ν0 = m, A(0) = A, E(0) = E, B(0) = B, Q = In.
3) Compute orthogonal matrices W and U such that

WTB(j−1) :=
[
Aj,j−1

0

]
νj
ρ

νj−1

,

with Aj,j−1 full row rank and WTE(j−1)U upper triangular.
4) Compute and partition

WTA(j−1)U :=
[
Aj,j Aj,j+1

B(j) A(j)

]
νj
ρ

νj ρ

, WTE(j−1)U :=
[
Ej,j Ej,j+1

O E(j)

]
νj
ρ

νj ρ

5) For i = 1, . . . , j − 1 compute and partition

Ai,jU := [ Ai,j Ai,j+1 ]
νj ρ

, Ei,jU := [ Ei,j Ei,j+1 ]
νj ρ

6) Q ← Q diag(Inc ,W ), Z ← Z diag(Inc ,U), C ← C diag(Inc ,U).
7) nc ← nc + νj; if ρ = 0 then 
 = j and Exit.
8) If νj > 0, then j ← j + 1 and go to Step 3); else, 
 = j − 1, and Exit.

If theProcedureGCSF exits at Step 7), then the original pair (A − λE,B) is finite
controllable. However, if the Procedure GCSF exits at Step 8), then the original
pair (A − λE,B) is not finite controllable. In this case, the trailing ρ × ρ pencil
A(
+1) − λE(
+1) =: Ac̄ − λEc̄, with ρ = n − nc, contains all uncontrollable finite
eigenvalues of A − λE.

The Procedure GCSF can be implemented such that at Step 1) it exploits any
particular shape in the lower triangle of E (e.g., E lower banded). In particular, if E is
upper triangular, then the resulting Z is simply Z = I and no further computations are
performed at this step. The row compressions at Step 3) are usually performed using
rank-revealing QR factorizations with column pivoting (see Sect. 10.1.2). The reduc-
tions can be performed using sequences of Givens rotations (instead Householder
reflectors), which allow to simultaneously perform the column transformations accu-
mulated inU tomaintain the upper triangular formofE(j−1). This reduction technique
is described in detail in [125] and is similar to the reduction of a matrix pair to a
generalized Hessenberg form. Using this technique, the numerical complexity of
Procedure GCSF is O(n3) (for m, p � n), provided all transformations are imme-
diately applied without accumulating explicitly W and U. Note that the usage of
the more robust rank determinations based on singular values decompositions would
increase the overall complexity to O(n4) due to the need to accumulate explicitly
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each W and U. Regarding the numerical properties of Procedure GCSF, it is pos-
sible to show that the resulting system matrices Â, Ê, B̂, Ĉ are exact for slightly
perturbed original data A, E, B, C, while Q and Z are nearly orthogonal matrices. It
follows that the Procedure GCSF is numerically stable.

To compute the observability staircase form of a pair (A − λE,C), the Proce-
dure GCSF can be applied to the dual pair (AT − λET ,CT ) to obtain the trans-
formed pair (̂AT − λÊT , ĈT ) in a controllability staircase form. Then, the pair
(PÂP − PÊP, ĈP), where P is the permutation matrix (10.10), is in an observability
staircase form.

10.1.6 Kronecker-Like Forms

Consider the reduction of a general rectangular (or singular) pencil M − λN , with
M,N ∈ Rm×n using strict similarity transformations of the form

M̂ − λN̂ = U(M − λN)V,

where U and V are invertible matrices. From Lemma 9.9, recall that, using general
invertible transformations, we can determine the Kronecker-canonical form (9.44)
of the pencilM − λN , which basically characterizes the right and left singular struc-
ture and the eigenvalue structure of the pencil. The computation of the Kronecker-
canonical formmay involve the use of ill-conditioned transformations and, therefore,
is potentially numerically unstable. Fortunately, alternative staircase forms, called
Kronecker-like forms, allow to obtain basically the same (or only a part of) structural
information on the pencil M − λN by employing exclusively orthogonal transfor-
mations (i.e., UTU = I and V TV = I).

The following result concerns with one of the main Kronecker-like forms.

Theorem 10.8 LetM ∈ Rm×n andN ∈ Rm×n be arbitrary realmatrices. Then, there
exist orthogonal U ∈ Rm×m and V ∈ Rn×n, such that

U(M − λN)V =
⎡

⎣
Mr − λNr ∗ ∗

0 Mreg − λNreg ∗
0 0 Ml − λNl

⎤

⎦ , (10.19)

where

(1) The nr × (mr + nr) pencil Mr − λNr has full row rank, nr, for all λ ∈ C and is
in a controllability staircase form

Mr − λNr = [
Br Ar − λEr

]
, (10.20)

with Br ∈ Rnr×mr , Ar,Er ∈ Rnr×nr , and Er invertible.

http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_9
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(2) The nreg × nreg pencil Mreg − λNreg is regular and its eigenvalues are the eigen-
values of pencil M − λN. The pencil Mreg − λNreg may be chosen in a GRSF,
with arbitrary-ordered diagonal blocks.

(3) The (pl + nl) × nl pencil Ml − λNl has full column rank, nl, for all λ ∈ C and
is in a observability staircase form

Ml − λNl =
[
Al − λEl

Cl

]
, (10.21)

with Cl ∈ Rpl×nl , Al,El ∈ Rnl×nl , and El invertible.

Let νi, i = 1, . . . , k be the dimensions of the diagonal blocks of Ar − λEr in the
controllability staircase form

[
Br Ar − λEr

]
and define ν0 = mr . These dimensions

completely determine the right Kronecker structure of M − λN as follows: there
are νi−1 − νi blocks Li−1(λ) of size (i − 1) × i, i = 1, . . . , k. Analogously, let μi,
i = 1, . . . , 
 be the dimensions of the diagonal blocks ofAl − λEl in the observability

staircase form

[
Al − λEl

Cl

]
and define μ0 = pl. These dimensions completely deter-

mine the left Kronecker structure ofM − λN as follows: there are μi−1 − μi blocks
LT
i−1(λ) of size i × (i − 1), i = 1, . . . , 
. We have nr = ∑k

i=1 νi and nl = ∑

i=1 μi,

and the normal rank ofM − λN is nr + nreg + nl. The finite Smith zeros ofM − λN
are the finite eigenvalues of the regular pencil Mreg − λNreg and represent the finite
values of λ for which M − λN drops its rank below its normal rank.

In Sect. 10.3 several applications of the Kronecker-like forms are presented, such
as the computation of minimal nullspace basis, system zeros, inner–outer factoriza-
tions and the solution of linear rational equations.

For the computation of theKronecker-like form (10.19) the standard approach is to
achieve successive separations of the structural elements and eigenvalues of the pencil
M − λN . A typical basic pencil reduction procedure, as Procedure PREDUCE
presented in this section, uses two orthogonal transformation matrices Q and Z to
achieve the following separation:

M̃ − λÑ := Q(M − λN)Z =
[
Mr,∞ − λNr,∞ ∗

0 Mf ,l − λNf ,l

]
, (10.22)

where themr,∞ × nr,∞ pencilMr,∞ − λNr,∞ has full row rank for allλ ∈ C excepting
possibly a finite set of infinite values of λ, and the mf ,l × nf ,l pencilMf ,l − λNf ,l has
full column rank for all λ ∈ C excepting possibly a finite set of finite values of λ.
Moreover, the pencil M̃ − λÑ is in the following staircase form:
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M̃ − λÑ =

⎡

⎢⎢⎢⎢⎢
⎣

M1,1 M1,2 − λN1,2 · · · M1,k − λN1,k ∗
0 M2,2 · · · M2,k − λN2,k ∗
...

...
. . .

...
...

0 0 · · · Mk,k ∗
0 0 · · · 0 Mf ,l − λNf ,l

⎤

⎥⎥⎥⎥⎥
⎦

} ν1
} ν2

} νk
} mf ,l

︸︷︷︸
μ1

︸ ︷︷ ︸
μ2

︸ ︷︷ ︸
μk

︸ ︷︷ ︸
nf ,l

, (10.23)

whereMi,i ∈ Rνi×μi are full row rankmatrices for i = 1, . . . , k, andNi−1,i ∈ Rνi−1×μi

are full column rankmatrices for i = 2, . . . , k. The dimensions νi andμi of the blocks
in (10.23) satisfy

μ1 ≥ ν1 ≥ μ2 ≥ ν2 ≥ · · ·μk ≥ νk ≥ 0

and completely determine the right Kronecker structure and the eigenstructure at
infinity of the pencil M − λN as follows: there are μi − νi (i = 1, . . . , k) blocks
Li−1(λ) of size (i − 1) × i and, with μk+1 := 0, there are νi − μi+1 (i = 1, . . . , k)
nilpotent Jordan blocks Ji(0) of dimension i (see (9.43)) which correspond to the
infinite eigenvalues. The row and column dimensions of pencil Mr,∞ − λNr,∞ are
given by mr,∞ = ∑k

i=1 νi and nr,∞ = ∑k
i=1 μi, respectively.

Procedure PREDUCE: Pencil reduction to staircase form
Inputs :M − λN with M,N ∈ Rm×n

Outputs: Q, Z , M̃ − λÑ = Q(M − λN)Z in the staircase form (10.23).

0) Compute orthogonal matrices Q and Z such that

M̃ = QMZ =
[
B(0) A(0)

D(0) C(0)

]
, Ñ = QNZ =

[
0 E(0)

0 0

]
,

where E(0) ∈ Rñ×ñ is upper triangular and invertible with ñ = rank N , A(0) ∈ Rñ×ñ,
B(0) ∈ Rñ×m̃ with m̃ = n − ñ, C(0) ∈ Rp̃×ñ with p̃ = m − ñ, D ∈ Rp̃×m̃; set mr,∞ = 0,
nr,∞ = 0, i = 0.

Step–i: while m̃ > 0, do:

1) Compute orthogonal matrices W and Y such that WD(i)Y =
[
D(i)
1 D(i)

2
0 0

]

,

where D(i)
1 ∈ Rτi×τi is invertible and upper triangular. Obtain⎡

⎢
⎣
B(i)
1 B(i)

2 A(i) − λE(i)

D(i)
1 D(i)

2 C(i)
1

0 0 C(i)
2

⎤

⎥
⎦ := diag(Iñ,W )

[
B(i) A(i) − λE(i)

D(i) C(i)

]
diag(Y , Iñ) .

http://dx.doi.org/10.1007/978-3-319-51559-5_9
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Procedure PREDUCE: Pencil reduction to staircase form (continued)

2) Compress the rows of

[
B(i)
1 E(i)

D(i)
1 0

]

with orthogonal X such that

X

[
B(i)
1 E(i)

D(i)
1 0

]

=
[
B(i)
11 E(i)

1
0 E(i)

2

]

,

with B(i)
11 ∈ Rτi×τi and E(i)

2 ∈ Rñ×ñ invertible and upper triangular. Obtain

⎡

⎢
⎢⎢
⎢
⎣

B(i)
11 B(i)

12 A(i)
1 − λE(i)

1

0 B(i)
22 A(i)

2 − λE(i)
2

0 0 C(i)
2

⎤

⎥
⎥⎥
⎥
⎦

:= diag(X, Ip̃−τi
)

⎡

⎢
⎢⎢
⎢
⎢
⎣

B(i)
1 B(i)

2 A(i) − λE(i)

D(i)
1 D(i)

2 C(i)
1

0 0 C(i)
2

⎤

⎥
⎥⎥
⎥
⎥
⎦

.

3) Compress the rows of B(i)
22 with orthogonal U such that UB(i)

22 =
[
B̃(i)
22
0

]

, with B̃(i)
22 ∈ Rρi×(m̃−τi) full row rank,

and compute orthogonal V such that UE(i)
2 V is upper triangular. Obtain

⎡

⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎣

B(i)
11 B(i)

12 A(i)
11 − λE(i)

11 ∗

0 B̃(i)
22 A(i)

21 − λE(i)
21 ∗

0 0 A(i)
31 A(i)

32 − λE(i)
32

0 0 C(i)
21 C(i)

22

⎤

⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎦

:=

diag
(
Iτi ,U, Ip̃−τi

)

⎡

⎢⎢
⎢⎢
⎣

B(i)
11 B(i)

12 A(i)
1 − λE(i)

1

0 B(i)
22 A(i)

2 − λE(i)
2

0 0 C(i)
2

⎤

⎥⎥
⎥⎥
⎦
diag(Im̃, V ) ,

with E(i)
21 ∈ Rρi×ρi and E(i)

32 ∈ R(ñ−ρi)×(ñ−ρi) invertible and upper triangular.

4) Form Q(i) = diag
(
Imr,∞ , Q̃

)
and Z(i) = diag

(
Inr,∞ , Z̃

)
with

Q̃ = diag
(
Iτi ,U, Ip̃−τi

)
diag

(
X, Ip̃−τi

)
diag

(
Iñ,W

)
, Z̃ = diag (Y , V ) ,

and update M̃ ← Q(i)M̃Z(i), Ñ ← Q(i)ÑZ(i), Q ← Q(i)Q, Z ← ZZ(i)

Set νi+1 = ρi + τi , μi+1 = m̃ and define

Mi+1,i+1 :=
⎡

⎢
⎣
B(i)
11 B(i)

12

0 B̃(i)
22

⎤

⎥
⎦ , Mi+1,i+2 − λNi+1,i+2 :=

⎡

⎢
⎣
A(i)
11 − λE(i)

11

A(i)
21 − λE(i)

21

⎤

⎥
⎦ ,

with Mi+1,i+1 ∈ Rνi+1×μi+1 full row rank and Ni+1,i+2 ∈ Rνi+1×ρi full column rank, and

[
B(i+1) A(i+1) − λE(i+1)

D(i+1) C(i+1)

]

:=
⎡

⎢
⎣

A(i)
31 A(i)

32 − λE(i)
32

C(i)
21 C(i)

22

⎤

⎥
⎦ .

5) Update mr,∞ ← mr,∞ + νi+1, nr,∞ ← nr,∞ + μi+1, ñ ← ñ − ρi , m̃ ← ρi , p̃ ← p̃ − τi .
6) i ← i + 1 and go to Step–i
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At the end of Procedure PREDUCE we obtain the mf ,l × nf ,l pencil

Mf ,l − λNf ,l :=
[
A(i) − λE(i)

C(i)

]
, (10.24)

with mf ,l = ñ + p̃ and nf ,l = ñ, and with E(i) upper triangular and invertible. It fol-
lows that the pencil Mf ,l − λNf ,l has only finite and left structure. The number of
diagonal blocks Mj,j of Mr,∞ − λNr,∞ in the staircase form (10.23) is k = i − 1,
where i is the resulting final value of i at the exit of Procedure PREDUCE.

The Procedure PREDUCE performs exclusively orthogonal transformations on
the matrix pair (M,N). It is possible to show that the resulting pair (M̃, Ñ) is exact
for a slightly perturbed original pair, while Q and Z are nearly orthogonal matrices.
It follows that the Procedure PREDUCE is numerically stable.

The computational complexity of Procedure PREDUCEmainly depends on the
details of the computations performed at Step 2) to obtain E(i)

2 in an upper trian-
gular form and, at Step 3), to preserve the upper triangular form of UE(i)

2 V and to
obtain E(i)

21 and E(i)
32 invertible and upper triangular. If the transformation matrices

U and V are accumulated (e.g., by performing SVD-based row compressions), the
worst-case computational complexity of Procedure PREDUCE isO(n4) (assuming
n ≥ m), which, for large values of n, is unacceptable. However, using the techniques
described in [95], these operations can be performed such that a worst-case compu-
tational complexity of O(n3) can be guaranteed. The main computational ingredi-
ents are specially tailored QR decompositions with column pivoting, which provide
almost the same reliability as the rank determinations based on the use of SVD.Using
specialized QR decompositions, it is possible to implement the row compressions
at Steps 2) and 3) such that the preservation of the upper triangular shape of E(i) is
simultaneously possible, without the need to explicitly accumulate the intervening
transformations. For the rest of necessary row and column compressions at Step 0)
and Step 1), the safer SVD-based computations can be still employed, without
increasing excessively the computational complexity.

A straightforward application of the Procedure PREDUCE is to perform the
infinite–finite separation of the eigenvalues of a regular pencilM − λN (i.e., without
right and left structures). Since M − λN has no right structure, Mr,∞ − λNr,∞ has
only infinite eigenvalues. Similarly, sinceM − λN has no left structure,Mf ,l − λNf ,l

contains all finite eigenvalues of the pencil.
A complementary separation of the pencil M − λN can be achieved by applying

Procedure PREDUCE to the transposed pencil MT − λNT and pertranspose the
resulted pencil. Recall that the pertransposeMP of a matrixM ∈ Rm×n is defined as
MP := PnMTPm, wherePk denotes the k × k permutationmatrix of the form (10.10).
The net effect of applying Pn from left is to reverse the order of rows of a matrix,
while the application of Pm from right reverses the order of columns of the matrix.
If Q and Z are the orthogonal matrices used to reduce MT − λNT, then overall we
obtain



320 10 Computational Algorithms and Software

PmZ
T (M − λN)QTPn =

[
Mr,f − λNr,f ∗

0 M∞,l − λN∞,l

]
,

whereMr,f − λNr,f contains the right and finite structure andM∞,l − λN∞,l contains
the infinite and left structure. Moreover, M∞,l − λN∞,l is in a dual staircase form,
which is obtained by reversing the orders of the blocks in the staircase form (10.23).
Sometimes, it is more advantageous to apply Procedure PREDUCE toMP − λNP

instead ofMT − λNT (e.g., already existing upper block structures are preserved by
pertransposition and thus can be further exploited).

For the computation of the complete Kronecker-like form (10.19) of the pen-
cil M − λN we can employ Procedure PREDUCE to perform the first separation
in (10.22). Then, by applying Procedure PREDUCE to the pertransposed pencil
MP

r,∞ − λNP
r,∞, we obtain the separation of the right and infinite structures in the

form

Q1(Mr,∞ − λNr,∞)Z1 =
[
Mr − λNr ∗

0 M∞ − λN∞

]
, (10.25)

where Q1 and Z1 are orthogonal matrices, the full row rank pencil Mr − λNr is
in the form (10.20) and the regular pencil M∞ − λN∞, with M∞ invertible and
N∞ nilpotent, contains the infinite eigenvalues. Similarly, by applying Procedure
PREDUCE to the pertransposed pencilMP

f ,l − λNP
f ,l, we obtain the separation of the

finite and left structures in the form

Q2(Mf ,l − λNf ,l)Z2 =
[
Mf − λNf ∗

0 Ml − λNl

]
, (10.26)

where Q2 and Z2 are orthogonal matrices, the regular pencil Mf − λNf with Nf

invertible contains the finite eigenvalues and the full column rank pencil Ml − λNl

is in an observability staircase form (10.21). Overall we achieved

diag(Q1,Q2)Q(M − λN)Z diag(Z1, Z2) =

⎡

⎢
⎢
⎣

Mr−λNr ∗ ∗ ∗
0 M∞−λN∞ ∗ ∗
0 0 Mf −λNf ∗
0 0 0 Ml−λNl

⎤

⎥
⎥
⎦

from which the regular part Mreg − λNreg in (10.19) can be immediately read out.
For this separation, it is possible to exploit the structure of the pencil Mf ,l − λNf ,l

in (10.24) which results when applying Procedure PREDUCE. Since in the per-
transposed pencil MP

f ,l − λNP
f ,l = [

(C(i))P (A(i))P − λ(E(i))P
]
, the invertible matrix

(E(i))P is already upper triangular, therefore when applying Procedure PREDUCE
toMP

f ,l − λNP
f ,l the preliminary reduction at Step0) is not necessary anymore.Alterna-

tively, the Procedure GCSF can be employed to obtainMl − λNl in an observability
staircase form (10.21). This computation is needed to be additionally performed, to
obtain Mr − λNr in a controllability staircase form (10.20).

The above Kronecker-like form exhibits the main structural elements of an arbi-
trary pencilM − λN . However, in some applications, as the computation of rational
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left nullspace bases in Sect. 7.4, it is necessary only to know the left Kronecker struc-
ture. For this purpose, it is sufficient to apply Procedure PREDUCE twice, to obtain
the basic separation (10.22) and then the splitting of finite and left structures as in
(10.26) to obtain the required form

diag(I,Q2)Q(M − λN)Z diag(I,Z2) =
⎡

⎣
Mr,∞−λNr,∞ ∗ ∗

0 Mf −λNf ∗
0 0 Ml−λNl

⎤

⎦ .

On the other hand, when all structural details of the Kronecker-like form are neces-
sary, as for example, when solving linear rational equations in Sect. 9.2.9, the sep-
aration of right and infinite structure of the pencil Mr,∞ − λNr,∞ is necessary. An
alternativeway to perform this separation is to employ a computational approach pro-
posed in [9] (see Algorithms 3.3.1 and 3.3.2). These algorithms exploit all structural
information in the staircase form (10.23) and perform the separation of right and infi-
nite structure by employing exclusively orthogonal transformations, howeverwithout
making any rank decisions. The resulting subpencilsMr − λNr andM∞ − λN∞ are
in staircase forms and the dimensions of the resulting diagonal blocks automatically
reveal the right Kronecker indices and infinite eigenvalue structure.

10.2 Solution of Matrix Equations

There are several linear and quadratic matrix equations which play an important role
in control theory. In this section, we discuss the computational solutions of some of
the main equations and give the conditions for the existence of a solution.

10.2.1 Linear Matrix Equations

We discuss the computational solution of two main classes of liner matrix equations.
In the first class, we consider the generalized Sylvester equation (GSE) of the form

AXG + EXF + Q = 0 , (10.27)

whereA,E ∈ Rn×n,F,G ∈ Rm×m,Q ∈ Rn×m, and the desired solution isX ∈ Rn×m.
The Eq. (10.27) has a unique solution if and only if the matrix pencils A − λE and
F − λG are regular and Λ(A − λE)

⋂
Λ(F + λG) = ∅.

Two special cases of Eq. (10.27) are of particular interest in this book: the gener-
alized continuous-time Lyapunov equation (GCLE) of the form

AXET + EXAT + Q = 0 (10.28)

http://dx.doi.org/10.1007/978-3-319-51559-5_7
http://dx.doi.org/10.1007/978-3-319-51559-5_9
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and the generalized discrete-time Lyapunov equation (GDLE) (also called general-
ized Stein equation)

AXAT − EXET + Q = 0 , (10.29)

where Q, and hence also X, are symmetric. The solvability condition of Eq. (10.28)
requires that E is invertible and λi + λj �= 0, for all λi, λj ∈ Λ(A − λE). The solv-
ability condition of Eq. (10.29) requires that λiλj �= 1, for all λi, λj ∈ Λ(A − λE). In
both cases, of special interest are (semi-)positive definite solutions in the case when
Q has the form Q = BBT ≥ 0 and Λ(A − λE) ∈ Cs. In this case, the solution X can
be directly obtained in a Cholesky-factored form X = SST , with S upper triangular.

For the numerical solution of the above matrix equations the transformation
method (developed initially by Bartels and Stewart to solve the Sylvester equation
AX + XB + C = 0) can be used. Let Q1 and Z1 be orthogonal matrices such that the
pair (P, S) := (QT

1AZ1,Q
T
1EZ1) is in a GRSF, and letQ2 and Z2 be orthogonal matri-

ces such that the pair (T ,R) := (QT
2FZ2,Q

T
2GZ2) is in a GRSF. The matricesQ1 and

Z1, and,Q2 and Z2, can be obtained by applying the QZ algorithm to the matrix pairs
(A,E) and (F,G), respectively. If we define Y = ZT

1 XQ2 and H = QT
1QZ2, then the

Eq. (10.27) can be rewritten as

PYR + SYT + H = 0 .

By exploiting the upper quasi-triangular–upper triangular structures of the pairs
(P, S) and (T ,R), this equation can be solved by a special (back substitution)
technique to obtain the solution Y [47, 54]. Then, the solution of (10.27) is
computed as X = Z1YQ

T
2 . The overall computational effort to solve Eq. (10.27) is

O(n3 + m3) + O(n2m + nm2). With obvious simplifications, this approach can be
used to solve the GCLE (10.28) and the GDLE (10.29) as well. The overall compu-
tational effort to solve these equations is O(n3).

The second class of linear equation is thegeneralized Sylvester systemof equations
(GSSE)

AX + YF = C,

EX + YG = D,
(10.30)

where A,E ∈ Rn×n, F,G ∈ Rm×m, C,D ∈ Rn×m, and the desired solution is X,Y ∈
Rn×m. The Eq. (10.30) has a unique solution if and only if the matrix pencils A −
λE and F − λG are regular and Λ(A − λE)

⋂
Λ(F − λG) = ∅. A transformation

method (which is similar to that used for solving (10.27)) can be employed to reduce
(10.30) to a simpler form. Let Q1 and Z1 be orthogonal matrices such that the pair
(P, S) := (QT

1AZ1,Q
T
1EZ1) is in a GRSF, and let Q2 and Z2 be orthogonal matrices

such that the pair (R,T) := (QT
2FZ2,Q

T
2GZ2) is in a GRSF. The matrices Q1 and

Z1, and Q2 and Z2 can be obtained by applying the QZ algorithms to the matrix
pairs (A,E) and (F,G), respectively. If we define X1 = ZT

1 XZ2, Y1 = QT
1 YQ2, C1 =

QT
1CZ2 and D1 = QT

1DZ2, then the system (10.30) can be rewritten as
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PX1 + Y1R = C1,

SX1 + Y1T = D1.

By exploiting the upper quasi-triangular–upper triangular structures of the pairs
(P, S) and (R,T), this system of equations can be efficiently solved using meth-
ods proposed in [68]. After solving the transformed system for X1 and Y1, we obtain
the solution of (10.30) as X = Z1X1Z

T
2 and Y = Q1Y1Q

T
2 . The overall computational

effort to solve these equations is O(n3 + m3) + O(n2m + nm2).

10.2.2 Generalized Algebraic Riccati Equations

In this section we address the numerical solution of a class of generalized Riccati
equations which appear in various algorithms as the computation of inner–outer
factorization (see Sect. 10.3.6) or in spectral factorization problems discussed in
Sect. 7.8. We consider a sextuple of matrices (A,E,B,Q, S,R), with the following
properties of component matrices: A ∈ Rn×n, E ∈ Rn×n invertible, B ∈ Rn×m, Q ∈
Rn×n symmetric positive semi-definite,R ∈ Rm×m symmetric and invertible, and S ∈
Rn×m. We seek the symmetric positive semi-definite stabilizing solution Xs ∈ Rn×n

of the generalized continuous-time algebraic Riccati equation (GCARE)

ATXE + ETXA − (ETXB + S)R−1(BTXE + ST ) + Q = 0

and the corresponding stabilizing state feedback gain Fs ∈ Rm×n, given by

Fs = −R−1(BTXsE + ST ) ,

such that all generalized eigenvalues of the pair (A + BFs,E) have negative real
parts. Similarly, we seek the symmetric positive semi-definite stabilizing solution
Xs ∈ Rn×n of the generalized discrete-time algebraic Riccati equation (GDARE)

ATXA − ETXE − (ATXB + S)(R + BTXB)−1(BTXA + ST ) + Q = 0

and the corresponding stabilizing state feedback gain Fs ∈ Rm×n, given by

Fs = −(R + BTXsB)−1(BTXsA + ST ) ,

such that all generalized eigenvalues of the pair (A + BFs,E) have moduli less than
one. Since E is invertible, it is possible to reduce both the GCARE and GDARE to
standardRiccati equations, forwhich there exist standard solutionmethods.However,
to avoid possible accuracy losses due to the need to explicitly invertE,wewill indicate
methods which directly tackle the above equations, without inverting E.

http://dx.doi.org/10.1007/978-3-319-51559-5_7
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A unified approach to determine the solutions of the GCARE and GDARE relies
on determining an orthogonal basis of the stable deflating subspace of a suitably
defined regular matrix pencil L − λP. For the solution of the GCARE we have

L =
⎡

⎣
A 0 B

−Q −AT −S
ST BT R

⎤

⎦ , P =
⎡

⎣
E 0 0
0 ET 0
0 0 0

⎤

⎦ , (10.31)

while for the solution of the GDARE we have

L =
⎡

⎣
A 0 B

−Q ET −S
ST 0 R

⎤

⎦ , P =
⎡

⎣
E 0 0
0 AT 0
0 −BT 0

⎤

⎦ . (10.32)

Under fairly standard assumptions (e.g., the stabilizability of the pair (A − λE,B)

and detectability of the pair (A − λE,Q − SR−1ST )), the existence of the positive
semi-definite stabilizing solution Xs is guaranteed. For computational purposes, the
main property of the regular pencil L − λP is the existence of an n dimensional
(right) deflating subspace corresponding to the stable eigenvalues of L − λP. If this
subspace is spanned by a (2n + m) × n matrix Z1, then we have that LZ1 = PZ1W ,
where W is an n × n matrix such that Λ(W ) ∈ Cs. If we partition Z1 in accordance
with the block column structure of the pencil L − λP as

Z1 =
⎡

⎣
Z11
Z21
Z31

⎤

⎦ , (10.33)

then the stabilizing positive definite solution Xs of both the GCARE and GDARE,
and the corresponding stabilizing feedback Fs can be computed as

Xs = Z21(EZ11)
−1, Fs = Z31Z

−1
11 .

To compute Z1, we can employ the QZ algorithm to determine an ordered GRSF of
the pair (L,P) in the from

UT (L − λP)Z =
[
L11 − λP11 L12 − λP12

0 L22 − λP22

]
, (10.34)

where U and Z are orthogonal transformation matrices, the n × n subpencil L11 −
λP11 has only stable eigenvalues, i.e., Λ(L11 − λP11) ⊂ Cs, and Λ(L22 − λP22) ⊂
C \ Cs. Then, Z1 is formed from the first n columns of the orthogonal matrix Z .
Using this approach, the overall computational effort for solving both the GCARE
and GDARE is O((n + m)3).
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10.3 Algorithms for Descriptor Systems

In this section we present computational procedures for the solution of several basic
computational problems for descriptor systems. The theoretical aspects of these prob-
lems have been succinctly addressed in Sect. 9.2, where several canonical forms
(e.g., Weierstrass, Kronecker) played an important conceptual role in their solutions.
However, these canonical forms are not suited to develop reliable numerical algo-
rithms, due to the need of using potentially ill-conditioned transformations for their
computation. We present reliable numerical algorithms, which rely on the alterna-
tive condensed forms discussed in Sect. 10.1. These forms can be computed using
exclusively orthogonal transformations. Therefore, these algorithms are intrinsically
numerically reliable and some of them are even numerically stable.

10.3.1 Minimal Realization

Consider a p × m rational matrix G(λ) and let (A − λE,B,C,D) be an n-th order
descriptor system realization satisfying

G(λ) = C(λE − A)−1B + D,

with A − λE an n × n regular pencil. If Q,Z ∈ Rn×n are invertible matrices, then
it is easy to check that two realizations (A − λE,B,C,D) and (̂A − λÊ, B̂, Ĉ,D),
whose matrices are related by a similarity transformation of the form

Â − λÊ = Q(A − λE)Z, B̂ = QB, Ĉ = CZ ,

have the same TFMG(λ). Similarity transformations withQ and Z orthogonal matri-
ces can be used to obtain various staircase forms of the systemmatrices, which allow
to extract lower dimensional descriptor realizations of G(λ), and finally to arrive to
a minimal order realization with the least possible order n.

A minimal realization (A − λE,B,C,D) is characterized by the five conditions
(i)–(v) of Theorem 9.2. An irreducible realization fulfils only conditions (i)–(iv)
and is thus controllable and observable. In what follows, we describe a two-stage
approach which first constructs an irreducible realization of lower order by succes-
sively removing the uncontrollable and unobservable eigenvalues of A − λE, and in
a second stage removes the non-dynamics modes (i.e., the simple infinite eigenvalues
of A − λE).

The first reduction stage is accomplished in four steps, by employing repeat-
edly Procedure GCSF to successively remove the finite uncontrollable, infinite
uncontrollable, finite unobservable and infinite unobservable eigenvalues of A − λE.
At the first step of this reduction stage, we apply Procedure GCSF to the triple
(A − λE,B,C) to obtain the orthogonal transformation matrices Q1 and Z1, such

http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_9
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that the equivalent descriptor realization of G(λ) has the form

[
QT

1 (A − λE)Z1 QT
1B

CZ1 D

]
=

⎡

⎢
⎣
Af
c − λEf

c ∗ Bf
c

0 Af
c̄ − λEf

c̄ 0

Cf
c Cf

c̄ D

⎤

⎥
⎦ . (10.35)

The finite controllable descriptor system (Af
c − λEf

c ,B
f
c,C

f
c ,D) has the same TFM

G(λ) and its order nfc ≤ n. By this step we can remove the n − nfc uncontrollable
eigenvalues of Af

c̄ − λEf
c̄ from the original descriptor system representation (A −

λE,B,C,D). Besides all finite uncontrollable eigenvalues, Λ(Af
c̄ − λEf

c̄) may also
contain some of infinite uncontrollable eigenvalues of A − λE.

At the second step of the reduction stage, we apply Procedure GCSF to the triple
(Ef

c − λAf
c,B

f
c,C

f
c) (note that A

f
c and Ef

c are interchanged) to obtain the orthogonal
transformation matrices Q2 and Z2, such that the equivalent descriptor realization of
G(λ) has the form

[
QT

2 (Af
c − λEf

c)Z2 QT
2B

f
c

Cf
cZ2 D

]

=
⎡

⎣
Ac − λEc ∗ Bc

0 A∞
c̄ − λE∞

c̄ 0
Cc C∞

c̄ D

⎤

⎦ . (10.36)

As before, the controllable descriptor system (Ac − λEc,Bc,Cc,D) has the same
TFM G(λ) and its order nc ≤ nfc. By this step we can remove the nfc − nc uncon-
trollable infinite eigenvalues of A∞

c̄ − λE∞
c̄ (or equivalently the uncontrollable

zero eigenvalues of E∞
c̄ − λA∞

c̄ ) from the original descriptor system representation
(A − λE,B,C,D).

At the third step, we apply Procedure GCSF to the dual triple (ET
c −λAT

c ,CT
c ,

BT
c ) to obtain the orthogonal transformation matrices Z3 and Q3 (note the changed

order), such that the equivalent descriptor realization of G(λ) has the form

[
P3QT

3 (Ac − λEc)Z3P3 P3QT
3Bc

CcZ3P3 D

]
=

⎡

⎢
⎣
Af
cō − λEf

cō ∗ Bf
cō

0 Af
co − λEf

co Bf
co

0 Cf
co D

⎤

⎥
⎦ , (10.37)

where P3 is the permutation matrix (10.10) of appropriate size. The controllable
and finite observable descriptor system (Af

co − λEf
co,B

f
co,C

f
co,D) has the same TFM

G(λ) and its order nfco ≤ nc. By this step we can remove the nc − nfco unobservable
eigenvalues of Af

cō − λEf
cō from the original descriptor system representation (A −

λE,B,C,D).
Finally, at the fourth step, we apply Procedure GCSF to the dual triple

((Ef
co)

T − λ(Af
co)

T , (Cf
co)

T , (Bf
co)

T ) (note that Af
co and E

f
co are interchanged) to obtain

the orthogonal transformationmatrices Z4 andQ4, such that the equivalent descriptor
realization of G(λ) has the form



10.3 Algorithms for Descriptor Systems 327

[
P4QT

4 (Af
co − λEf

co)Z4P4 P4QT
4B

f
co

Cf
coZ4P4 D

]

=
⎡

⎣
A∞
cō − λE∞

cō ∗ B∞
cō

0 Aco − λEco Bco

0 Cco D

⎤

⎦ ,

(10.38)
where P4 is a permutation matrix as in (10.10) of appropriate size. The irreducible
(i.e., controllable and observable) descriptor system (Aco − λEco,Bco,Cco,D) has the
same TFM G(λ) and its order nco ≤ nfco. By this step we can remove the nfco − nco
unobservable infinite eigenvalues of A∞

cō − λE∞
cō from the original descriptor system

representation (A − λE,B,C,D).
With the overall transformation matrices defined as

Q := Q1 diag(Q2, I) diag(Q3P3, I) diag(I,Q4P4, I),

Z := Z1 diag(Z2, I) diag(Z3P3, I) diag(I,Z4P4, I),

we obtained the orthogonally similar system representation

(̃A − λẼ, B̃, C̃,D) := (QTAZ − λQTEZ,QTB,CZ,D) ,

with

[
Ã − λẼ B̃

C̃ D

]

=

⎡

⎢
⎢⎢
⎢
⎢⎢
⎢
⎣

Af
cō − λEf

cō ∗ ∗ ∗ ∗ Bf
cō

0 A∞
cō − λE∞

cō ∗ ∗ ∗ B∞
cō

0 0 Aco − λEco ∗ ∗ Bco
0 0 0 A∞̄

c − λE∞̄
c ∗ 0

0 0 0 0 Af
c̄ − λEf

c̄ 0

0 0 Cco C∞̄
c Cf

c̄ D

⎤

⎥
⎥⎥
⎥
⎥⎥
⎥
⎦

.

This form, obtained using exclusively orthogonal similarity transformations, repre-
sents a particular instance of a generalized Kalman decomposition of the descriptor
system matrices from which an irreducible realization (Aco − λEco,Bco,Cco,D) can
be readily extracted. There are various ways to improve the efficiency of computa-
tions. For example, if the original realization corresponds to a proper system, then
the second and fourth steps (i.e., removing of uncontrollable or unobservable infinite
eigenvalues) can be skipped. Similar simplifications are possible —for example, if
the original system description corresponds to a polynomial matrix, or if the original
system representation is known to be controllable or observable, or if A − λE has
no zero eigenvalues. In the latter case, only the second and fourth steps need to be
performed.

The whole computational approach is summarized in the following procedure,
which computes for a given triple (A − λE,B,C) an irreducible (i.e., controllable
and observable) triple (Aco − λEco,Bco,Cco).
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Procedure GIR: Generalized irreducible realization algorithm
Input : (A − λE,B,C)

Output: Irreducible (Aco − λEco,Bco,Cco)

1) Perform Procedure GCSF on the triple (A − λE,B,C) and extract the finite
controllable triple (Af

c − λEf
c ,B

f
c,C

f
c).

2) Perform Procedure GCSF on the triple (Ef
c − λAf

c,B
f
c,C

f
c) and extract the

controllable triple (Ac − λEc,Bc,Cc).
3) With P an appropriate permutation matrix as in (10.10), perform Procedure

GCSF on the triple (PAT
c P − λPET

c P,PCT
c ,BT

c P) and extract the
controllable and finite observable triple (Af

co − λEf
co,B

f
co,C

f
co).

4) With P an appropriate permutation matrix as in (10.10), perform Procedure
GCSF on the triple (P(Ef

co)
TP − λP(Af

co)
TP,P(Cf

co)
T , (Bf

co)
TP) and

build the irreducible triple (Aco − λEco,Bco,Cco).

At the end of Step 1), Af
c is in an upper block Hessenberg form and Ef

c is upper
triangular. The upper block Hessenberg shape of Af

c at Step 2) can be exploited by the
Procedure GCSF, to reduce the computational burden at the initial reduction of Af

c

to an upper triangular form. The resulting Ac at Step 2) is therefore upper triangular,
while Ec is upper block Hessenberg. At Step 3), the use of PET

c P instead of ET
c

allows to preserve the upper block Hessenberg form of Ec obtained at the previous
step. This is also the case at Step 4), where the upper block Hessenberg structure of
Af
co is preserved when using P(Af

co)
TP instead.

The computational effort for Procedure GIR isO(n3) form, p � n. It is possible
to show that the computed irreducible descriptor system (Aco − λEco,Bco,Cco,D) is
exact for a slightly perturbed original system. Therefore, the Procedure GIR can be
considered numerically stable.

In the second stage, we have to remove the simple infinite eigenvalues of Aco −
λEco from the resulting irreducible descriptor representation. For this purpose, we
isolate the simple infinite eigenvalues by employing two SVDs. First, we compute
the SVD of Eco such that

UT
1 EcoV1 =

[
E11 0
0 0

]
,

with U1 and V1 orthogonal matrices and E11 a (diagonal) invertible matrix of rank r.
Applying the same transformations to A we obtain

UT
1 AcoV1 =

[
A11 Ã12

Ã21 Ã22

]
.

Now, we compute the SVD of Ã22 such that

UT
2 Ã22V2 =

[
A22 0
0 0

]
,
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with U2 and V2 orthogonal matrices and A22 a (diagonal) invertible matrix of rank q.
WithU = U1 diag(Ir,U2) and V = V1 diag(Ir, V2)we have the equivalent descriptor
realization

[
UTAcoV − λUTEcoV UTBco

CcoV D

]
=

⎡

⎢⎢
⎣

A11 − λE11 A12 A13 B1

A21 A22 0 B2

A31 0 0 B3

C1 C2 C3 D

⎤

⎥⎥
⎦ .

At this step, we have the transformed state vector x̃(t) := V Tx(t) partitioned into
three components

x̃(t) =
⎡

⎣
x1(t)
x2(t)
x3(t)

⎤

⎦ ,

which correspond to the column structure of UTAV . We can eliminate the second
component x2(t) as

x2(t) = −A−1
22 A21x1(t) − A−1

22 B2u(t)

and obtain a descriptor representation with the reduced state vector x(t) =
[
x1(t)
x3(t)

]

and the corresponding minimal realization (A − λE,B,C,D) of G(λ), with the
matrices given by

A − λE =
[
A11 − A12A

−1
22 A21 − λE11 A13

A31 0

]
, B =

[
B1 − A12A

−1
22 B2

B3

]
,

C = [
C1 − C2A

−1
22 A21 C3

]
, D = D − C2A

−1
22 B2.

This final elimination step involves non-orthogonalmatrix operations,which can lead
to unstable computations if the norm of the intervening matrices is too large or A22 is
ill conditioned. Fortunately, in most computational algorithms for descriptor systems
presented in this book, the elimination of simple infinite eigenvalues is not necessary
and we can work with irreducible realizations instead minimal ones. Therefore, we
can almost always delay the computation of minimal realizations for the final results
of whole computational cycles.

10.3.2 Minimal Proper Rational Nullspace Bases

Let G(λ) be a p × m rational matrix of normal rank r. A proper rational basis of the
left nullspace NL(G(λ)) (see Sect. 9.1.3) is any (p − r) × p proper rational matrix
Nl(λ) of full row rank such that Nl(λ)G(λ) = 0. Similarly, a proper rational basis of
the right nullspaceNR(G(λ)) is an m × (m − r) proper rational matrix Nr(λ) of full

http://dx.doi.org/10.1007/978-3-319-51559-5_9
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column rank such that G(λ)Nr(λ) = 0. Of special interest are the minimal proper
rational bases, which have the leastMcMillan degree. AssumeG(λ) has an n-th order
descriptor system realization (A − λE,B,C,D), with A − λE regular. In this section
we present a numerically reliable computational approach to determine a descriptor
system realization of a proper rational left nullspace basis Nl(λ) of G(λ) and discuss
conditions for its minimality. The same approach can be used to determine Nr(λ),
a proper rational right nullspace basis of G(λ), by determining NT

r (λ) as a proper
rational left nullspace basis of GT (λ).

The proposed computational approach relies on the fact that Nl(λ) is a left
nullspace basis of G(λ) if and only if, for a suitable (p − r) × n rational matrix
Ml(λ),

Yl(λ) := [Ml(λ) Nl(λ) ] (10.39)

is a left nullspace basis of the system matrix

S(λ) =
[
A − λE B

C D

]
. (10.40)

Thus, to compute Nl(λ) we can first determine a left nullspace basis Yl(λ) for S(λ)

and then Nl(λ) simply results as

Nl(λ) = Yl(λ)

[
0
Ip

]
. (10.41)

As it will be apparent below, the main appeal of this approach is that for the computa-
tion of Yl(λ)we can employ powerful pencil manipulation techniques via orthogonal
similarity transformations.

Let U and V be orthogonal matrices such that the transformed pencil S̃(λ) :=
US(λ)V is in the Kronecker-like staircase form (see Sect. 10.1.6)

S̃(λ) =
⎡

⎣
Ar − λEr Ar,l − λEr,l

0 Al − λEl

0 Cl

⎤

⎦ , (10.42)

where the descriptor pair (Al − λEl,Cl) is observable, El is invertible, and Ar − λEr

has full row rank excepting possibly a finite set of values of λ (i.e., the invariant zeros
of S(λ)). As explained in Sect. 10.1.6, the reduction of S(λ) to the form (10.42) can
be obtained using (twice) the Procedure PREDUCE.

A left nullspace Ỹl(λ) of S̃(λ) in (10.42) can be chosen in the form

Ỹl(λ) = [
0 Cl(λEl − Al)

−1 I
]
. (10.43)

Then, the left nullspace of S(λ) is Yl(λ) = Ỹl(λ)U and can be obtained easily after
partitioning suitably U as
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U =
⎡

⎣
B̂r,l Br,l

B̂l Bl

D̂l Dl

⎤

⎦ ,

where the row partitioning corresponds to the column partitioning of Ỹl(λ) in (10.43),
while the column partitioning corresponds to the row partitioning of S(λ) in (10.40).
We obtain

Yl(λ) =
[
Al − λEl B̂l Bl

Cl D̂l Dl

]

(10.44)

and the nullspace of G(λ) is

Nl(λ) =
[
Al − λEl Bl

Cl Dl

]
. (10.45)

To obtain this representation of the nullspace basis, we performed exclusively orthog-
onal transformations on the systemmatrices.We can prove that all computedmatrices
are exact for a slightly perturbed original system matrix (10.40). It follows that this
method for the computation of the nullspace basis is numerically backward stable.

When using Procedure PREDUCE, as described in Sect. 10.1.6, to determine
the Kronecker-like form (10.42), we can assume that the resulting subpencil

[
Ao − λEo

Co

]
:=

[
Al − λEl

Cl

]
, (10.46)

which characterizes the left structure of S(λ), has the pair (Ao − λEo,Co) in an
observability staircase form as in (10.17) and (10.18). Let μi, i = 1, . . . , 
 be the
dimensions of the diagonal blocks of Ao in (10.17) (and also of Eo in (10.18)), and
defineμ0 := pl andμ
+1 := 0 (which corresponds to a fictive full column rank diag-
onal block A
,
+1 ∈ Rμ
×μ
+1 in the leading position of Ao). These dimensions com-
pletely determine the left Kronecker structure of S(λ) as follows: there areμi−1 − μi

blocks LT
i−1(λ) of size i × (i − 1), i = 1, . . . , 
 + 1 (see (9.45)). The row dimension

of Nl(λ) (i.e., the number of linearly independent basis vectors) is given by the
total number of LT

ηi
(λ) blocks (see Example 9.1), thus

∑
+1
i=1 (μi−1 − μi) = μ0 (i.e.,

the row dimension of Cl). Applying standard linear algebra results, it follows that
μ0 := p − r.

The following result shows that the resulting staircase form (10.46) provides the
complete structural information on any minimal polynomial basis (and also on any
simple proper basis constructed from it, see Sect. 9.1.3).

Proposition 10.1 If the realization (A − λE,B,C,D) of G(λ) is controllable and
if μi, i = 1, . . . , 
 are the dimensions of the diagonal blocks of Ao in (10.17) (and
also of Eo in (10.18)), and μ0 := pl and μ
+1 := 0, then a minimal polynomial basis
of the left nullspace of G(λ) has degree nl = ∑


i=1 μi and is formed of μi−1 − μi

polynomial vectors of degree i − 1, for i = 1, . . . , 
 + 1.

http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_9
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Proof The controllability of the descriptor realization ensures that the left Kronecker
structure of G(λ) and of S(λ) are characterized by the same left Kronecker indices.
A minimal polynomial basis for the left nullspace of S̃(λ) can be determined of the
form

Ŷl(λ) = [
0 N̂l(λ)

]
, (10.47)

where N̂l(λ) is a minimal polynomial basis for the left nullspace of

[
Al − λEl

Cl

]
.

To construct N̂l(λ), the basis vectors can be determined by exploiting the staircase
form of this pencil. It was shown in [8, Sect. 4.6.4], in a dual context, that a minimal
polynomial basis can be computed by selecting μi−1 − μi polynomial basis vectors
of degree i − 1, for i = 1, . . . , 
 + 1. The degree of this polynomial basis is

∑
+1
i=1 (μi−1 − μi)(i − 1) = ∑
+1

i=1 μi−1(i − 1) − ∑
+1
i=1 μi(i − 1)

= ∑

i=1μii − ∑


i=1μi(i − 1)
= ∑


i=1μi ,

which is equal to nl, the dimension of the square matrices Al and El. �

A straightforward consequence of Proposition 10.1 is the following result.

Proposition 10.2 If the realization (A − λE,B,C,D) of G(λ) is controllable, then
the rational matrix Nl(λ) defined in (10.45) is a minimal proper rational basis of the
left nullspace of G(λ).

Proof According to the definition of aminimal proper rational basis (see Sect. 9.1.3),
itsMcMillandegree is givenby thedegree of aminimal polynomial basis (i.e., the sum
of the left minimal indices). By Proposition 10.1, the degree of a minimal polynomial
basis is nl := ∑


i=1 μi, which is thus equal to the dimension of the square matrices
Al and El. Therefore, we only need to show that the realization (10.45) is irreducible
and Nl(λ) defined in (10.45) has no zeros.

The pair (Al − λEl,Cl) is observable, by the construction of the Kronecker-like
form (10.42). To show that the pair (Al − λEl,Bl) is controllable, observe that due
to the controllability of the pair (A − λE,B), the subpencil [A − λE B ] of S(λ) in
(10.40) has full row rank for all λ ∈ C, and thus the reduced pencil

U

[
A − λE B 0

C D Ip

] [
V 0
0 Ip

]
=

⎡

⎣
Ar − λEr Ar,l − λEr,l Br,l

0 Al − λEl Bl

0 Cl Dl

⎤

⎦

has full row rank for all λ ∈ C as well. It follows that for all λ ∈ C

rank
[
Al − λEl Bl

] = nl

and thus the pair (Al − λEl,Bl) is controllable.

http://dx.doi.org/10.1007/978-3-319-51559-5_9
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Since, we also have that

rank

[
Al − λEl Bl

Cl Dl

]
= nl + p − r

for all λ ∈ C, it follows that Nl(λ) has no finite or infinite zeros. Thus, Dl has full
row rank p − r and the computed basis is column reduced at λ = ∞ [122]. �

In the case, when the realization of G(λ) is not controllable, the realization of
Nl(λ) is not guaranteed to be controllable. The uncontrollable eigenvalues of A − λE
may turn partly up as eigenvalues of Ar − λEr (i.e., invariant zeros) or of Al − λEl.
In the latter case, the resulting proper nullspace basis has not the least possible
McMillan degree. Interestingly, aminimal basis cannot be always obtained by simply
eliminating the uncontrollable part of the pair (Al − λEl,Bl). The reason for this is
the lack of the maximal controllability property (see Proposition 10.3).

We can always determine a proper nullspace basis with arbitrarily assigned poles.
To show this, consider the transformation matrix

Û =
⎡

⎣
I 0 0
0 I K
0 0 I

⎤

⎦ (10.48)

and compute Ŝ(λ) := ÛS̃(λ) as

Ŝ(λ) =
⎡

⎣
Ar − λEr Ar,l − λEr,l

0 Al + KCl − λEl

0 Cl

⎤

⎦ . (10.49)

We also compute

ÛU

[
0
Ip

]
=

⎡

⎣
Br,l

Bl + KDl

Dl ,

⎤

⎦

and obtain the proper rational left nullspace basis with the alternative realization

Ñl(λ) =
[
Al + KCl − λEl Bl + KDl

Cl Dl

]
. (10.50)

Since the descriptor pair (Al − λEl,Cl) is completely observable, there exists an
output injection matrix K such that the pair (Al + KCl,El) has arbitrary assigned
generalized eigenvalues. According to Proposition 10.2, the basis (10.50) is minimal
provided the realization (A − λE,B,C,D) of G(λ) is controllable.

This construction shows that the placement of poles of the left nullspace basis
(10.50) can be simply achieved by additionally performing a particular similarity
transformation on the reduced pencil S̃(λ). As a consequence, the output injection
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may move some of uncontrollable generalized eigenvalues of the pair (Al,El) to
other locations and make them controllable. It follows that determining a minimal
nullspace basis from a non-minimal one may involve the determination of suitable
injection matrix, which makes a maximum number of eigenvalues uncontrollable.

Remark 10.5 The alternative proper left nullspace basis Ñl(λ) can be interpreted as
the numerator factor of the left coprime factorization

Nl(λ) = M̃−1
l (λ)Ñl(λ) ,

where M̃l(λ) has the descriptor system realization

M̃l(λ) =
[
Al + KCl − λEl K

Cl Ip−r

]
.

�

The following result shows that a minimal proper basis of the form (10.45) has the
nice property of being maximally controllable, that is, the alternative basis (10.50)
remains controllable for an arbitrary output injection matrix K , or equivalently, the
pair (Al + KCl − λEl,Bl + KDl) is controllable for all K .

Proposition 10.3 If the realization (A − λE,B,C,D) of G(λ) is controllable, then
the realization of Nl(λ) defined in (10.45) is maximally controllable.

Proof We have to show that for an arbitrary output injection matrix K , the pair (Al +
KCl − λEl,Bl + KDl) is controllable. Let K be an arbitrary injection matrix and
construct the alternative proper left nullspace basis Ñl(λ) with the realization given
in (10.50). Since according to Proposition 10.2, Nl(λ) is a minimal nullspace basis,
the alternative nullspace basis Ñl(λ), with the same McMillan degree, is a minimal
basis as well. Therefore, the pair (Al + KCl − λEl,Bl + KDl) is controllable. �

Even if the resulting rational basis (10.45) has the least possibleMcMillan degree,
and thus is minimal, still, in general, this basis is not a simple basis. The properties
of simple proper minimal bases resemble, in many aspects, the properties of minimal
polynomial bases. For our purposes, the main use of simple proper nullspace bases
is in the nullspace-based synthesis methods of least-order fault detection filters. As it
will be shown below, it is possible to obtain a simple basis starting from a non-simple
one.

Consider the properminimal left nullspace basisNl(λ)ofG(λ), with the descriptor
realization given in (10.45), and we denote with cl,i and dl,i the i-th rows of matrices
Cl and Dl, respectively. The approach to construct a simple minimal proper rational
left nullspace basis is based on the following result.

Proposition 10.4 For each i = 1, . . . , p − r, let Ki be an output injection matrix
such that

vi(λ) := cl,i(λEl − Al − KiCl)
−1(Bl + KiDl) + dl,i (10.51)
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has the least possible McMillan degree. Then, Ñl(λ) formed by stacking the p − r
rational row vectors vi(λ) is a simple minimal proper rational left nullspace basis.

Proof According to Proposition 10.3, the realization (10.45) of Nl(λ) is maximally
controllable, i.e., the pair (Al + KiCl − λEl,Bl + KiDl) is controllable for arbitrary
Ki. Therefore, the maximal order reduction of the McMillan degree of vi(λ) can be
achieved by making the pair (Al + KiCl − λEl, cl,i) maximally unobservable via an
appropriate choice of Ki. For each i = 1, . . . , p − r, the achievable least McMillan
degree of vi(λ) is the corresponding minimal index ni, representing, in a dual set-
ting, the dimension of the least-order controllability subspace of the standard pair
(E−T

l AT
l ,E−T

l CT
l ) containing span (E−T

l cTl,i). This result is the statement of Lemma
6 in [159]. It is easy to check that vi(λ)G(λ) = 0, thus Ñl(λ) is a left annihilator of
G(λ). Furthermore, the set of vectors { v1(λ), . . . , vp−r(λ) } is linearly independent
since the realization of Ñl(λ) has the same full row rank matrix Dl as that of Nl(λ).
It follows that Ñl(λ) is a proper left nullspace basis of least dimension

∑p−r
i=1 ni, with

each row vi(λ) of McMillan degree ni. It follows that Ñl(λ) is simple. �

Let assume that each rational vector vi(λ) has a descriptor realization of the form

vi(λ) =
[
Ãl,i − λẼl,i B̃l,i

c̃l,i dl,i

]
. (10.52)

Then, the simple minimal proper rational basis Ñl(λ), constructed by stacking all
vi(λ), for i = 1, . . . , r, has the realization

Ñl(λ) =
[
Ãl − λẼl B̃l

C̃l Dl

]

, (10.53)

with

Ãl − λẼl =
⎡

⎢
⎣

Ãl,1 − λẼl,1

. . .

Ãl,p−r − λẼl,p−r

⎤

⎥
⎦ , B̃l =

⎡

⎢
⎣

B̃l,1
...

B̃l,p−r

⎤

⎥
⎦ ,

C̃l =
⎡

⎢
⎣

c̃l,1
. . .

c̃l,p−r

⎤

⎥
⎦ .

Remark 10.6 The poles of the simple minimal proper rational left nullspace basis
Ñl(λ) can be arbitrarily placed by performing left coprime rational factorizations
using the realizations in (10.52) (see Remark 10.5)

vi(λ) = mi(λ)−1v̂i(λ), (10.54)
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wheremi(λ) are polynomials with arbitrary roots inCs. Therefore, the resulting alter-
native simple basis N̂l(λ) := [ v̂T1 (λ), . . . , v̂Tp−r(λ) ]T can have arbitrarily assigned
poles. In particular, a special simple basis can be constructed such that each mi(λ)

divides mj(λ), if j < i. �

Simple rational bases are direct correspondents of polynomial bases and, hence,
all operations on polynomial bases have analogous operations on simple rational
bases. An important operation (with applications in the synthesis of least-order fault
detection filters) is building linear combinations of basis vectors up to a certain
McMillan degree. For example, using the special simple basis in Remark 10.6, any
linear combination

∑k
i=1 hiv̂i(λ) with constant coefficients hi of the basis vectors of

McMillan degree up to a certain value k has McMillan degree at most k.
Consider the proper left nullspace basis Nl(λ) constructed in (10.45). From the

details of the resulting staircase form (10.46) of the pair (Al − λEl,Cl), recall that it
is possible to obtain the full column rank matrices Ai−1,i ∈ Rμi−1×μi in the form

Ai−1,i =
[
Ri−1,i

0

]
,

where Ri−1,i is an upper triangular invertible matrix of order μi. The row dimension
μi−1 − μi of the zero block of Ai−1,i gives the number of polynomial vectors of
degree i − 1 in a minimal polynomial basis [8, Sect. 4.6] and thus, also the number
of vectors of McMillan degree i − 1 in a simple basis. It is straightforward to show
the following result.

Corollary 10.1 For a given minimal proper rational left nullspace basis Nl(λ) in
the form (10.45), let i be a given index such that 1 ≤ i < p − r, and let h be a (p − r)-
dimensional row vector having only the trailing i components nonzero. Then, a linear
combination of the simple proper rational basis vectors, with McMillan degree at
most ni, can be generated as

v(λ) := hCl(λEl − Al − KCl)
−1(Bl + KDl) + hDl , (10.55)

where K is an output injection matrix such that v(λ) has the least possible McMillan
degree.

This result shows that the determination of a linear combination of vectors of a sim-
ple proper rational basis up to a given order ni is possible directly from a proper
rational basis determined in the form (10.45). The matrix K together with a mini-
mal realization of v(λ) can be computed efficiently using minimal dynamic cover
techniques presented in Sect. 10.4.2. The same approach can be applied repeatedly
to determine the basis vectors vi(λ), i = 1, . . . , p − r, of a simple basis using the
particular choices h = eTi , where ei is the i-th column of Ip−r .
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10.3.3 Poles and Zeros Computation

The computation of poles of a rational matrix G(λ), with an irreducible descriptor
system realization (A − λE,B,C,D), comes down to compute the eigenvalues of
the regular pole pencil A − λE. This can be achieved by computing the eigenval-
ues of A − λE from the GRSF of the pair (A,E). The finite poles are the nfp finite
eigenvalues of A − λE, while there are n∞

p = rank E − nfp infinite poles (recall that
the multiplicities of infinite eigenvalues are in excess with one with respect to the
multiplicities of infinite poles). The McMillan degree of G(λ) results as

δ
(
G(λ)

) = nfp + n∞
p = rank E .

A straightforward application of the Kronecker-like form is the computation of
the system zeros. LetG(λ) be a rational matrix, with an irreducible descriptor system
representation (A − λE,B,C,D). The system zeros are those values of λ, where the
system pencil

S(λ) =
[
A − λE B

C D

]
:= M − λN

drops its rank below its normal rank. Thus, the system zeros can be determined
from the eigenvalues of the regular pencil Mreg − λNreg in the Kronecker-like form
(10.19) of the pencil M − λN . This can be achieved by computing the eigenvalues
ofMreg − λNreg from the GRSF of the pair (Mreg,Nreg). IfMreg − λNreg has n

f
z finite

eigenvalues, these are the nfz finite transmission zeros of the system. Additionally,
there are n∞

z = rank Nreg − nfz infinite zeros (recall that the multiplicities of infi-
nite eigenvalues are in excess with one with respect to the multiplicities of infinite
zeros).

10.3.4 Additive Decompositions

Consider a disjunct partition of the complex plane C as C = Cg ∪ Cb, where both
Cg andCb are symmetrically located with respect to the real axis,Cg has at least one
point on the real axis, andCg ∩ Cb = ∅. LetG(λ) be a rational TFMwith a descriptor
system realization (A − λE,B,C,D).Wedescribe a state-space approach to compute
the additive decomposition

G(λ) = Gg(λ) + Gb(λ), (10.56)

where Gg(λ) has only poles in Cg , while Gb(λ) has only poles in Cb.
The additive spectral decomposition (10.56) can be computed using a block

diagonalization technique of the pole pencil A − λE (9.68). The basic computa-
tion is to determine the two invertible matrices U and Z to bring the matrices of

http://dx.doi.org/10.1007/978-3-319-51559-5_9
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the transformed pair (UEZ,UAZ) in suitable block diagonal forms. The follow-
ing procedure computes the additive decomposition (10.56) using the descriptor
realization (A − λE,B,C,D) of G(λ), by determining the descriptor realizations
(Ag − λEg,Bg,Cg,Dg) of Gg(λ) and (Ab − λEb,Bb,Cb,Db) of Gb(λ).

Procedure GSDEC: Generalized additive spectral decomposition
Inputs : G(λ) = (A − λE,B,C,D), Cg

Outputs: Gg(λ) = (Ag − λEg,Bg,Cg,Dg), Gb(λ) = (Ab − λEb,Bb,Cb,Db)

1) Using the QZ algorithm, compute orthogonal U1 and V1, such that the
matrix pair (U1AV1,U1EV1) is in an ordered GRSF

U1AV1 =
[
Ag Agb

0 Ab

]
, U1EV1 =

[
Eg Egb

0 Eb

]
,

such that Λ(Ag − λEg) ⊂ Cg and Λ(Ab − λEb) ⊂ C \ Cg .
2) Compute the left and right transformation matrices, U2 and V2, respectively,

of the form

U2 =
[
I Y
0 I

]
, V2 =

[
I X
0 I

]
,

where X and Y satisfy the Sylvester system of equations

AgX + YAb = −Agb ,

EgX + YEb = −Egb .

3) Compute

[
Bg

Bb

]
= U2U1B,

[
Cg Cb

] = CV1V2, Dg = D, Db = 0,

where the row partitioning of U2U1B and column partitioning of CV1V2 are
analogous to the row and column partitioning of U1AV1.

The resulting pencil U2U1(A − λE)V1V2 at Step 2) is block diagonal. The exis-
tence of a unique solution (X,Y) of the Sylvester system to be solved at Step 2)
is guaranteed by Λ(Ag − λEg) ∩ Λ(Ab − λEb) = ∅. An efficient solution method,
which exploits the GRSFs of the pairs (Ag,Eg) and (Ab,Eb), has been proposed in
[68].
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10.3.5 Coprime Factorizations

Consider a p × m rational matrix G(λ) having a descriptor system realization
(A − λE,B,C,D), for which we will not assume further properties (e.g., mini-
mality or irreducibility). Consider also a disjunct partition of the complex plane
as C = Cb ∪ Cg , Cb ∩ Cg = ∅, where Cb and Cg denote the “bad” and “good”
regions of C, respectively. In this section we present algorithms for the computation
of a right coprime factorization (RCF) of G(λ) in the form G(λ) = N(λ)M−1(λ),
where N(λ) and M(λ) are proper rational matrices with all poles in Cg and are
mutually coprime (see Sect. 9.1.6 for definitions). A special case relevant for many
applications is when Cg = Cs and Cb = C \ Cg and we additionally impose that
the denominator factor M(λ) is inner. The algorithms to compute RCFs can be
equally employed to determine a left coprime factorization (LCF) ofG(λ) in the form
G(λ) = M−1(λ)N(λ), where N(λ) and M(λ) are coprime proper rational matrices
with all poles in Cg . We can determine the factors of a LCF factorization from those

of a RCF of GT (λ) = NT (λ)
(
MT (λ)

)−1
. Therefore, we only discuss algorithms for

the computation of RCFs.
The presented algorithms compute RCFs with minimum-degree denominators,

by employing a recursive pole dislocation technique (see Sect. 9.1.6), by which all
poles of G(λ) situated inCb are successively moved intoCg , via recursive pole–zero
cancellations with elementary denominator factors. To cancel a real pole β ∈ Cb of
G(λ), we multiply G(λ) from right with an elementary invertible proper factor M̃(λ)

of McMillan degree one, which has β as a zero and γ ∈ Cg as a pole. For a complex
pole, the corresponding M̃(λ) would contain complex coefficients. Fortunately, we
can simultaneously cancel a pair of complex conjugate poles β, β̄ ∈ Cb of G(λ), by
post-multiplyingG(λ)with an elementary invertible proper factor M̃(λ) ofMcMillan
degree two, having only real coefficients. This factor has β and β̄ as zeros and
γ1, γ2 ∈ Cg as poles (either two real poles or a pair of complex conjugate poles).
This pole–zero cancellation technique can be successively employed to dislocate all
nb poles of G(λ). The resulting denominator factor can be represented in a product
form as

M(λ) = M̃1(λ)M̃2(λ) · · · M̃k(λ), (10.57)

where each M̃i(λ) (i = 1, . . . , k) is an invertible elementary proper factor with
McMillan degree equal to one or two. The computational procedure can be for-
malized as k successive applications of the updating formula

[
Ni(λ)

Mi(λ)

]
=

[
Ni−1(λ)

Mi−1(λ)

]
M̃i(λ), i = 1, . . . , k , (10.58)

initialized with N0(λ) = G(λ) and M0(λ) = Im. Then, N(λ) = Nk(λ) and M(λ) =
Mk(λ). By this approach, it is automatically achieved that the resultingM(λ) has the
least achievable McMillan degree nb.

http://dx.doi.org/10.1007/978-3-319-51559-5_9
http://dx.doi.org/10.1007/978-3-319-51559-5_9
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We can derive state-space formulas for the efficient implementation of the updat-
ing operations in (10.58). Assume Ni−1(λ) and Mi−1(λ) have the descriptor realiza-
tions

[
Ni−1(λ)

Mi−1(λ)

]
=

⎡

⎢⎢
⎣

A11 − λE11 A12 − λE12 B1

0 A22 − λE22 B2

CN,1 CN,2 DN

CM,1 CM,2 DM

⎤

⎥⎥
⎦ =:

⎡

⎢
⎣
Ã − λẼ B̃

C̃N D̃N
C̃M D̃M

⎤

⎥
⎦ , (10.59)

where Λ(A22 − λE22) ⊂ Cb. We assume that A22 − λE22 is a 1 × 1 pencil in the
case when A22 − λE22 has a real or an infinite eigenvalue, or is a 2 × 2 pencil,
in the case when A22 − λE22 has a pair of complex conjugate eigenvalues. This
form automatically results if the pair (̃A, Ẽ) is in the specially ordered generalized
real Schur form (GRSF) determined using Procedure GSORSF in Sect. 10.1.4. If
B2 = 0, then the eigenvalue(s) of A22 − λE22 is (are) not controllable, and thus can
be removed to obtain realizations of Ni−1(λ) and Mi−1(λ) of reduced orders

[
Ni−1(λ)

Mi−1(λ)

]
=

⎡

⎣
A11 − λE11 B1

CN,1 DN

CM,1 DM

⎤

⎦ . (10.60)

After suitable reordering of diagonal blocks of A11 − λE11 using orthogonal simi-
larity transformations (see Sect. 10.1.4), a new realization Ni−1(λ) and Mi−1(λ) can
be determined with the matrices again in the form (10.59). If B2 �= 0, then we have
two cases, which are separately discussed in what follows.

If the pencil A22 − λE22 has finite eigenvalues (i.e., E22 is invertible), then the pair
(A22 − λE22,B2) is (finite) controllable and there exists F2 such that the eigenvalues
of A22 + B2F2 − λE22 can be placed in arbitrary locations in Cg . Assume that such
an F2 has been determined and define the elementary factor M̃i(λ) = (A22 + B2F2 −
λE22, B2W, F2, W ), where W is chosen to ensure the invertibility of M̃i(λ). To
compute stable and proper RCFs, the choice W = Im is always possible. However,
alternative choices ofW are necessary to ensure, for example, that M̃i(λ) is inner. It is
easy to check that the updated factorsNi(λ) andMi(λ) in (10.58) have the realizations

[
Ni(λ)

Mi(λ)

]
:=

[
Ni−1(λ)

Mi−1(λ)

]
M̃i(λ) =

⎡

⎢⎢
⎣

A11 − λE11 A12 + B1F2 − λE12 B1W
0 A22 + B2F2 − λE22 B2W

CN,1 CN,2 + DNF2 DNW
CM,1 CM,2 + DMF2 DMW

⎤

⎥⎥
⎦ .

If we denote F̃ = [
0 F2

]
, then the above relations lead to the following updating

formulas:
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Ã ← Ã + B̃F̃,

B̃ ← B̃W,

C̃N ← C̃N + D̃N F̃,

C̃M ← C̃M + D̃MF̃,

D̃N ← D̃NW,

D̃M ← D̃MW.

(10.61)

If the 1 × 1 pencil A22 − λE22 has an infinite eigenvalue (i.e., E22 = 0), then
we choose the elementary factor M̃i(λ) = (γ − λ, B2, F2, W ), where γ is an arbi-
trary real eigenvalue in Cg , W is a projection matrix chosen such B2W = 0 and

rank

[
B2

W

]
= m, andF2 has been chosen such thatB2F2 = −A22 and rank[F2 W ] =

m (the rank conditions guarantee the invertibility of M̃i(λ)). Straightforward choices
ofF2 andW are, for example,F2 = −BT

2 (B2B
T
2 )−1A22 andW = Im − BT

2 (B2B
T
2 )−1B2.

By this choice of M̃i(λ), we made the infinite eigenvalue in the realization of the
updated factors Ni(λ) and Mi(λ) simple, and after its elimination, we obtain the
realizations

[
Ni(λ)

Mi(λ)

]
:=

[
Ni−1(λ)

Mi−1(λ)

]
M̃i(λ) =

⎡

⎢⎢
⎣

A11 − λE11 A12 + B1F2 − λE12 B1W
0 γ − λ B2

CN,1 CN,2 + DNF2 DNW
CM,1 CM,2 + DMF2 DMW

⎤

⎥⎥
⎦ .

The above relations lead to the following updating formulas:

Ã ←
[
A11 A12 + B1F2

0 γ

]
,

Ẽ ←
[
E11 E12

0 1

]
,

B̃ ←
[
B1W
B2

]
,

C̃N ← [
CN,1 CN,2 + DNF2

]
,

C̃M ← [
CM,1 CM,2 + DMF2

]
,

D̃N ← DNW,

D̃M ← DMW.

(10.62)

The updating techniques relying on the formulas (10.61) and (10.62) ensure that,
if the original pair (̃A, Ẽ) was in a GRSF, then the updated pair will have a similar
form, possibly with Ã − λẼ having a 2 × 2 trailing block which corresponds to two
real generalized eigenvalues (to recover the GRSF, such a block can be further split
into two 1 × 1 blocks using an orthogonal similarity transformation). By reordering
the diagonal blocks in the GRSF of the updated pair (̃A, Ẽ), we can bring in the
trailing position new blocks whose generalized eigenvalues lie in Cb. The described
eigenvalue dislocation process is repeated until all eigenvalues are moved into Cg ,
using suitably chosen elementary denominators.
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The following procedure computes a proper and stable RCF of an arbitrary
rational TFM G(λ) with respect to a given partition C = Cb ∪ Cg as G(λ) =
N(λ)M−1(λ), where the resulting factors N(λ) and M(λ) have the realizations
N(λ) = (̃A − λẼ, B̃, C̃N , D̃N ) and M(λ) = (̃A − λẼ, B̃, C̃M , D̃M).

Procedure GRCF: Generalized stable right coprime factorization

Inputs : G(λ) = (A − λE,B,C,D) with A,E ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n,
D ∈ Rp×m; Cg and Cb, such that C = Cb ∪ Cg , Cb ∩ Cg = ∅

Outputs: N(λ) = (̃A − λẼ, B̃, C̃N , D̃N ) and M(λ) = (̃A − λẼ, B̃, C̃M , D̃M)

such that G(λ) = N(λ)M−1(λ), all finite eigenvalues of Ã − λẼ are in
Cg and all infinite eigenvalues of Ã − λẼ are simple

1) Compute, using Procedure GSORSF, the orthogonal matrices Q and Z to
reduce the pair (A,E) to the special ordered GRSF

Ã := QTAZ =
⎡

⎣
A∞ ∗ ∗
0 Ag ∗
0 0 Ab

⎤

⎦ , Ẽ := QTEZ =
⎡

⎣
0 ∗ ∗
0 Eg ∗
0 0 Eb

⎤

⎦ ,

where A∞ ∈ R(n−r)×(n−r) is invertible and upper triangular, with r = rank E,
Λ(Ag − λEg) ⊂ Cg with Ag,Eg ∈ Rng×ng and Λ(Ab − λEb) ⊂ Cb with
Ab,Eb ∈ Rnb×nb . Compute B̃ := QTB, C̃N := CZ , C̃M = 0, D̃N = D, D̃M = Im.
Set q = n − nb.

2) If q = n, Exit.
3) Let (A22,E22) be the last k × k diagonal blocks of the GRSF of (̃A, Ẽ)

(with k=1 or k=2) and let B2 be the k × m matrix formed from the
last k rows of B̃. If ‖B2‖ ≤ ε (a given tolerance), then remove the parts
corresponding to the uncontrollable eigenvalues Λ(A22 − λE22):
Ã ← Ã(1 : n − k, 1 : n − k), Ẽ ← Ẽ(1 : n − k, 1 : n − k),
B̃ ← B̃(1 : n − k, 1 : m), C̃N ← C̃N (1 : p, 1 : n − k),
C̃M ← C̃M(1 : p, 1 : n − k); update n ← n − k, q ← q − k and go to Step 2).

4) If E22 �= 0, determine F2 such that Λ(A22 + B2F2 − λE22) ⊂ Cg .
Set F̃ = [ 0 F2 ] and compute Ã ← Ã+B̃F̃, C̃N ← C̃N+D̃N F̃, C̃M ← C̃M+
D̃MF̃.

5) If E22 = 0, compute F2 = −BT
2 (B2B

T
2 )−1A22 and W = Im − BT

2 (B2B
T
2 )−1B2.

Choose γ ∈ Cg and update Ã, Ẽ, B̃, C̃N , D̃N , C̃M and D̃M using (10.62).
6) Compute the orthogonal matrices Q̃ and Z̃ to move the last blocks of (̃A, Ẽ) to

positions (q + 1, q + 1) by interchanging the diagonal blocks of the GRSF.
Compute Ã ← Q̃T ÃZ̃ , Ẽ ← Q̃T ẼZ̃ , B̃ ← Q̃T B̃, C̃N ← C̃N Z̃ , C̃M ← C̃MZ̃ .
Put q ← q + k and go to Step 2).

This algorithm is completely general, being applicable regardless the original
descriptor realization is Cb-stabilizable or not, is infinite controllable or not. The
resulting pair (̃A, Ẽ) is in a special GRSF with n − r simple infinite eigenvalues



10.3 Algorithms for Descriptor Systems 343

in the leading n − r positions (no such block exists if E is invertible). A minimal
realization of the leastMcMillan degree denominatorM(λ) can be easily determined.
The resulting C̃M has always the form

C̃M = [ 0 C̃M,2 ], (10.63)

where the number of columns of C̃M,2 is equal to the number of controllable gen-
eralized eigenvalues of the pair (A,E) lying in Cb. By partitioning accordingly the
resulting Ẽ, Ã and B̃

Ã =
[
A11 A12

0 A22

]
, Ẽ =

[
E11 E12

0 E22

]
, B̃ =

[
B1

B2

]
, (10.64)

then (A22 − λE22,B2, C̃M,2, D̃M) is a minimal descriptor system realization ofM(λ).
Notice however that the order of the minimal realization of M(λ) can be higher
than the least possible McMillan degree if some eigenvalues of A − λE in Cb are
controllable but not observable.

The Procedure GRCF can be interpreted as an extension of the generalized pole
assignment algorithm of [127], which generalizes the pole assignment algorithm
of [123] for standard systems. The roundoff error analysis of this latter algorithm
[124] revealed that if each gain matrix F2 computed at Step 4) or Step 5) satisfies
‖F2‖ ≤ κ‖A‖/‖B‖, with κ having moderate values (say κ < 100), then the standard
pole assignment algorithm is numerically backward stable. This condition is also
applicable in our case, because it is independent of the presence of E. We note how-
ever that, unfortunately, this condition cannot be always fulfilled if large gains are
necessary to stabilize the system. This can arise either if the unstable poles are too
“far” from the stable region or if these poles are weekly controllable. Nevertheless,
the Procedure GRCF can be considered a reliable algorithm, since the above con-
dition can be checked at each computational step and therefore the potential loss of
numerical stability can be easily detected.

A similar recursive procedure can be developed to compute RCFs with inner
denominators. In this case, we use the partition of the complex plane with Cg = Cs

and Cb = C \ Cs. A necessary and sufficient condition for the existence of such a
factorization is thatG(λ) has no poles in ∂Cs (the boundary ofCs). In the continuous-
time case, thismeans that the pencilA − sE has nofinite eigenvalues on the imaginary
axis and all infinite eigenvalues of A − sE are simple. In the discrete-time case,
A − zE has no eigenvalues on the unit circle centred in the origin. However, for the
sake of generality, G(z) can be improper, thus A − zE may have multiple infinite
eigenvalues.

For the computation of theRCFwith inner denominatorsweuse a similar recursive
pole dislocation technique as in the case of a general RCF, using elementary inner
factors. The denominator factor results in the factored form (10.57),where each M̃i(λ)

(i = 1, . . . , k) is an elementary inner factor with McMillan degree equal to one or
two. These factors are used to reflect the unstable poles of G(λ) to stable symmetric
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positions with respect to the imaginary axis, in the case of a continuous-time system,
or with respect to the unit circle in the origin, in the case of a discrete-time system.

In what follows, we give the formulas to determine the elementary inner factors to
be used in (10.57) and derive appropriate updating formulas of the factors.We assume
Ni−1(λ) and Mi−1(λ) have the descriptor realizations in (10.59) and B2 �= 0 (other-
wise the uncontrollable part A22 − λE22 can be removed from the realization, see
(10.60)). In the casewhenA22 − λE22 has finite eigenvalues (i.e.,E22 is invertible) we
choose the elementary inner factor as M̃i(λ) = (A22 + B2F2 − λE22, B2W, F2, W ).
The updating formulas for this case are the same as those employed in Procedure
GRCF given in (10.61). For the computation of F2 and W we have the following
results.

Lemma 10.1 Let (A22 − sE22,B2)be a controllable continuous-timedescriptor pair
with E22 invertible and Λ(A22 − sE22) ⊂ Cu. Then the elementary denominator fac-
tor M̃i(s) = (A22 + B2F2 − sE22, B2W, F2, W ) is inner by choosing F2 and W as

A22YE
T
22 + E22YA

T
22 − B2B

T
2 = 0,

F2 = −BT
2 (YET

22)
−1, W = Im.

Lemma 10.2 Let (A22 − zE22,B2) be a controllable discrete-time descriptor pair
with E22 invertible and Λ(A22 − zE22) ⊂ Cu. Then the elementary denominator fac-
tor M̃i(z) = (A22 + B2F2 − zE22, B2W, F2, W ) is inner by choosing F2 and W as

A22YA
T
22 − B2B

T
2 = E22YE

T
22,

F2 = −BT
2 (YAT

22)
−1,

WT (I + BT
2 (E22YE

T
22)

−1B2)W = I.

If the 1 × 1 pencil A22 − zE22 has an infinite eigenvalue (i.e., E22 = 0), then we
have the following result for the choice of the elementary inner factor.

Lemma 10.3 Let (A22 − zE22,B2) be an infinite controllable discrete-time descrip-
tor pair with E22 = 0, and A22 nonzero. Then the elementary denominator factor
M̃i(z) = (0 + zA22, B2, F2, W ) is inner by choosing F2 and W as

F2 = −BT
2 (B2B

T
2 )−1A22,

W = I − BT
2 (B2B

T
2 )−1B2.

By this choice of M̃i(z), we made the infinite eigenvalue in the realization of the
updated factors Ni(z) and Mi(z) simple, and after its elimination, we obtain the
realizations

[
Ni(z)
Mi(z)

]
:=

[
Ni−1(z)
Mi−1(z)

]
M̃i(z) =

⎡

⎢⎢
⎣

A11 − zE11 A12 + B1F2 − zE12 B1W
0 zA22 B2

CN,1 CN,2 + DNF2 DNW
CM,1 CM,2 + DMF2 DMW

⎤

⎥⎥
⎦ ,

The above relations lead to the following updating formulas:
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Ã ←
[
A11 A12 + B1F2
0 0

]
, Ẽ ←

[
E11 E12
0 −A22

]
, B̃ ←

[
B1W
B2

]
,

C̃N ← [
CN,1 CN,2 + DNF2

]
, C̃M ← [

CM,1 CM,2 + DMF2
]
,

D̃N ← DNW, D̃M ← DMW.

(10.65)

The following procedure computes a stable RCF with inner denominator of a ratio-
nal TFM G(λ), without poles in ∂Cs, as G(λ) = N(λ)M−1(λ), where the result-
ing factors N(λ) and M(λ) have the realizations N(λ) = (̃A − λẼ, B̃, C̃N , D̃N ) and
M(λ) = (̃A − λẼ, B̃, C̃M , D̃M).

Procedure GRCFID: Generalized RCF with inner denominator
Inputs : G(λ) = (A − λE,B,C,D) with A,E ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n,

D ∈ Rp×m

Outputs: N(λ) = (̃A − λẼ, B̃, C̃N , D̃N ) and M(λ) = (̃A − λẼ, B̃, C̃M , D̃M)

such that G(λ) = N(λ)M−1(λ),M(λ) is inner, all finite eigenvalues
of Ã − λẼ are in Cs and all infinite eigenvalues of Ã − λẼ are simple

1) Compute using Procedure GSORSF, the orthogonal matrices Q and Z to
reduce the pair (A,E) to the special ordered GRSF

Ã := QTAZ =
⎡

⎣
A∞ ∗ ∗
0 As ∗
0 0 Au

⎤

⎦ , Ẽ := QTEZ =
⎡

⎣
0 ∗ ∗
0 Es ∗
0 0 Eu

⎤

⎦ ,

where A∞ ∈ R(n−r)×(n−r) is invertible and upper triangular, with r = rank E,
Λ(As − λEs) ⊂ Cs with As,Es ∈ Rns×ns and Λ(Au − λEu) ⊂ Cu with
Au,Eu ∈ Rnu×nu . Compute B̃ := QTB, C̃N := CZ , C̃M = 0, D̃N = D,
D̃M = Im. Set q = n − nu.

2) If q = n, Exit.
3) Let (A22,E22) be the last k × k diagonal blocks of the GRSF of (̃A, Ẽ) (with

k = 1 or k = 2) and let B2 be the matrix formed from the last k rows of B̃.
If ‖B2‖ ≤ ε (a given tolerance), then remove the parts corresponding to the
uncontrollable eigenvalues Λ(A22 − λE22): Ã ← Ã(1 : n − k, 1 : n − k),
Ẽ ← Ẽ(1 : n − k, 1 : n − k), B̃ ← B̃(1 : n − k, 1 : m),
C̃N ← C̃N (1 : p, 1 : n − k), C̃M ← C̃M(1 : p, 1 : n − k); update n ← n − k,
q ← q − k and go to Step 2).

4) If E22 �= 0, compute F2 and W according to Lemma 10.1 in the
continuous-time case or according to Lemma 10.2 in the discrete-time case.
Set F̃ = [ 0 F2 ] and update Ã, B̃, C̃N , D̃N , C̃M and D̃M using (10.61).

5) If E22 = 0, compute F2 = −BT
2 (B2B

T
2 )−1A22 and W = Im − BT

2 (B2B
T
2 )−1B2,

and update Ã, Ẽ, B̃, C̃N , D̃N , C̃M and D̃M using (10.65).
6) Compute the orthogonal matrices Q̃ and Z̃ to move the last blocks of (̃A, Ẽ) to

positions (q + 1, q + 1) by interchanging the diagonal blocks of the GRSF.
Compute Ã ← Q̃T ÃZ̃ , Ẽ ← Q̃T ẼZ̃ , B̃ ← Q̃T B̃, C̃N ← C̃N Z̃ , C̃M ← C̃MZ̃ .
Put q ← q + k and go to Step 2).
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The resulting inner factor M(λ) has least McMillan degree, only if all unstable
generalized eigenvalues of the pair (E,A) are observable. A minimal realization of
M(λ) canbe explicitly determined as (A22 − λE22,B2, C̃M,2, D̃M),where thematrices
of the realization are defined in (10.64) and (10.63).

The numerical properties of Procedure GRCFID are similar to those of Proce-
dureGRCF, as long as thematrix gains ‖F2‖ at Steps 4) and 5) are reasonably small.
However, this condition for numerical reliability may not always be fulfilled due to
the lack of freedom in assigning the poles. Recall that the unstable poles are reflected
in symmetrical position with respect to ∂Cs, and this may occasionally require large
gains.

10.3.6 Inner–Outer Factorization

In the light of the needs of the synthesis algorithms presented in Chap. 5, we discuss
the computation of the inner–outer factorization of a particular p × m rational matrix
G(λ), namely which is proper and has full column rank. Assume that G(λ) has an
n-th order descriptor system realization

G(λ) =
[
A − λE B

C D

]
, (10.66)

with E an invertible n × n matrix. Consider the disjunct partition of the complex
plane as C = Cu ∪ Cs. We discuss the computation of the inner–outer factorization
of G(λ) either in the compact form

G(λ) = Gi,1(λ)Go(λ) , (10.67)

or in the extended form

G(λ) = [
Gi,1(λ) Gi,2(λ)

] [
Go(λ)

0

]
= Gi(λ)

[
Go(λ)

0

]
, (10.68)

where Gi(λ) := [
Gi,1(λ) Gi,2(λ)

]
is a square inner TFM (i.e., with Gi,1(λ) inner

too), and Go(λ) is an invertible quasi-outer TFM, having all zeros in Cs. The sta-
bility of Go(λ) is ensured, provided G(λ) is stable. The component Gi,2(λ) is a
complementary inner factor (also called an “orthogonal” complement of Gi,1(λ))
(see Sect. 9.1.8).

For the computation of inner–outer factorization of G(λ), a special reduced form
of the system matrix will be instrumental.

Proposition 10.5 Let G(λ) be a p × m proper rational matrix of full column rank
with a stabilizable realization given in (10.66). Then, there exist orthogonal matrices
U and Z such that

[
U 0
0 I

] [
A − λE B

C D

]
Z =

⎡

⎣
As − λEs ∗ ∗

0 Au
 − λEu
 Bu


0 Cu
 Du


⎤

⎦ , (10.69)

http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_9
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where

(a) The regular pencil As − λEs contains the zeros of G(λ) in Cs;
(b) The descriptor system defined by

Gu
(λ) =
[
Au
 − λEu
 Bu


Cu
 Du


]
(10.70)

is proper, with the n
 × n
 matrix Eu
 invertible, is stabilizable, has full column
rank and has only zeros in Cu.

Proof This proposition is a simplified version of a slight variation of Theorem 3.1 of
[97] combined with Theorem 2.2 in [94], where constructive proofs are also given to
determine the orthogonal matrices U and Z , as well as the condensed form (10.69),
using numerically stable computational algorithms. For convenience, we describe
the main computational steps of this reduction for the considered particular case. Let
us denote the initial system pencil as

S0(λ) :=
[
A − λE B

C D

]

and observe that S0(λ) has full column rank n + m and furthermore [A − λE B ] has
full row rank for all λ ∈ Cu. The reduction algorithm has three computational steps,
which are presented in what follows.

(1) Compute orthogonal Z1 such that
[
C D

]
Z1 = [

0 C(1)
2

]
,

with C(1)
2 of full column rank and define

S1(λ) := S0(λ)Z1 =
[
A(1)
11 − λE(1)

11 A(1)
12 − λE(1)

12

0 C(1)
2

]

.

Since E is invertible, it follows that [E(1)
11 E(1)

12 ] has full row rank n.
(2) Compute orthogonal U and Z2 to reduce the pencil A

(1)
11 − λE(1)

11 to a Kronecker-
like form (see Sect. 10.1.6)

U
(
A(1)
11 − λE(1)

11

)
Z2 =

⎡

⎣
As−λEs ∗ ∗

0 Au−λEu ∗
0 0 A
−λE


⎤

⎦ :=
[
As−λEs ∗

0 Au
−λEu


]
,

where Λ(As − λEs) ⊂ Cs, Λ(Au − λEu) ⊂ Cu, and A
−λE
 has full column
rank for all λ ∈ C. Define

S2(λ) := diag(U, I)S1(λ) diag(Z2, I) =
⎡

⎢
⎣

As−λEs ∗ ∗
0 Au
−λEu
 Bu
−λFu


0 0 C(1)
2

⎤

⎥
⎦ .
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It easy to show that [Au
−λEu
 Bu
−λFu
 ] has full row rank for all λ ∈ Cu

and also [Eu
 Fu
 ] has full row rank.
(3) Compute orthogonal Z3 such that

[
Eu
 Fu


]
Z3 =

[
Eu
 0
Cu
 Du


]
,

with Eu
 invertible. Define

S3(λ) = S2(λ) diag(I,Z3) =
⎡

⎣
As − λEs ∗ ∗

0 Au
 − λEu
 Bu


0 Cu
 Du


⎤

⎦ .

The properties (a) and (b) follow immediately from the above properties of the
blocks of the reduced final form. The overall transformation matrix Z is defined as

Z = Z1 diag(Z2, I) diag(I,Z3) .

�

Remark 10.7 This proposition extracts from the original system (10.66) a proper
system (10.70) which has a standard inner–outer factorization. It can be shown that
there exists an invertible Gr(λ) with zeros only in Cs such that

Gu
(λ)Gr(λ) = G(λ) .

It follows thatGu
(λ) andG(λ) have the same inner factor. AssumeGi(λ) is a square
inner TFM such that

Gu
(λ) = Gi(λ)

[
Go,1(λ)

0

]

is an extended standard inner–outer factorization, where Go,1(λ) has only zeros in
Cs. Then with Go(λ) := Go,1(λ)Gr(λ) we immediately obtain an inner–quasi-outer
factorization of G(λ) in the form (10.68). �

We discuss now the computation of the inner–outer factorization separately for
the continuous-time and discrete-times cases.

In the continuous-time case, we can further refine the reduced form (10.69) by
observing that Du
 is full column rank (otherwise Gu
(s) would have infinite zeros).
Therefore, we can compress Du
 to a full row rank matrix using an orthogonal trans-
formation matrix V , such that

V TDu
 =
[
D


0

]
, C
 := V TCu
 =

[
C
,1

C
,2

]
, (10.71)

where D
 is invertible. With this, we have the following result from [97].
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Proposition 10.6 Let G(s) be a p × mproper full column rank rationalmatrixwith a
stabilizable realization (10.66), let U and Z be orthogonal transformation matrices
such that (10.69) holds and let V be an orthogonal transformation matrix which
compresses Du
 as in (10.71). Let Xs be the positive definite stabilizing solution of
the generalized continuous-time Riccati equation (GCARE)

AT
u
XEu
 + ET

u
XAu
 − (ET
u
XBu
 + CT

u
Du
)

× (DT
u
Du
)

−1(BT
u
XEu
 + DT

u
Cu
) + CT
u
Cu
 = 0 (10.72)

and let Fs be the corresponding stabilizing feedback

Fs = −R−1(BT
u
XsEu
 + DT

u
Cu
) ,

with R := DT
u
Du
 > 0. Then, the factors of the inner–quasi-outer factorization

(10.68) are given by

Gi(s) = [
Gi,1(s) Gi,2(s)

] = V

⎡

⎣
Au
 + Bu
Fs − sEu
 Bu
D

−1

 −X−1

s E−T
u
 CT


,2

C
,1 + D
Fs I 0
C
,2 0 I

⎤

⎦

and

Go(s) =
[
A − sE B

C̃ D̃

]

,

where
[
C̃ D̃

] := R1/2
[
0 Fs I

]
ZT .

In the discrete-time case, we have the following result from [94].

Proposition 10.7 Let G(z) be a p × m proper full column rank rational matrix with
a stabilizable realization (10.66), and let U and Z be orthogonal transformation
matrices such that (10.69) holds. Let Xs be the stabilizing solution of the generalized
discrete-time Riccati equation (GDARE)

AT
u
XAu
 − ET

u
XEu
 − (AT
u
XBu
 + CT

u
Du
)

× (DT
u
Du
 + BT

u
XBu
)
−1(BT

u
XAu
 + DT
u
Cu
) + CT

u
Cu
 = 0 (10.73)

and let Fs be the corresponding stabilizing feedback

Fs = −R−1(BT
u
XsAu
 + DT

u
Cu
) ,

with R := DT
u
Du
 + BT

u
XsBu
 > 0. Then, the factors of the inner–quasi-outer fac-
torization (10.67) are given by
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Gi,1(z) =
[
Au
 + Bu
Fs − zEu
 Bu
R− 1

2

Cu
 + Du
Fs Du
R− 1
2

]

and

Go(z) =
[
A − zE B

C̃ D̃

]

,

where
[
C̃ D̃

] := R1/2
[
0 Fs I

]
ZT .

Remark 10.8 The complementary inner factor Gi,2(z) can be computed in the form
[164]

Gi,2(z) =
[
Au
 + Bu
Fs − zEu
 Y

Cu
 + Du
Fs W

]
,

where Y and W satisfy
AT
u
XsY + CT

u
W = 0 ,

BT
u
XsY + DT

u
W = 0 ,

WTW + YTXsY = I .

To compute Y and W we can determine first an orthogonal nullspace basis

[
Ỹ
W̃

]

satisfying [
AT
u
Xs C

T
u


BT
u
Xs D

T
u


] [
Ỹ
W̃

]
= 0

and then computeY = ỸL−1 andW = W̃L−1,whereL is aCholesky factor satisfying

W̃ T W̃ + Ỹ TXsỸ = LTL .

A numerically reliable way to compute the orthogonal nullspace is via the singular
value decomposition

[
AT
u
Xs C

T
u


BT
u
Xs D

T
u


]
= [

U1 U2
] [

Σ 0
0 0

] [
V1 V2

]T
,

where Σ is an invertible k × k diagonal matrix and
[
U1 U2

]
and

[
V1 V2

]
are com-

patibly partitioned orthogonal matrices. Then we can set

[
Ỹ
W̃

]
= V2 ,

where V2 is a matrix whose orthonormal columns span the right nullspace
basis. �



10.3 Algorithms for Descriptor Systems 351

10.3.7 Linear Rational Matrix Equations

Several synthesis algorithms presented in Chap.5 (see Sect. 7.9) involve the solution
of linear rational equations of the form

G(λ)X(λ) = F(λ), (10.74)

where G(λ) and F(λ) are given p × m and p × q rational matrices, respectively,
and X(λ) is the m × q rational matrix sought, which must have the least possible
McMillan degree. It is a well-known fact that the system (10.74) has a solution
provided the rank condition

rank G(λ) = rank[G(λ) F(λ) ] (10.75)

is fulfilled. We assume in what follows that this condition holds.
The general solution of (10.74) can be expressed as

X(λ) = X0(λ) + XN (λ)Y(λ), (10.76)

where X0(λ) is any particular solution of (10.74), XN (λ) is a rational matrix whose
columns form a basis for the right nullspace ofG(λ), and Y(λ) is an arbitrary rational
matrix with compatible dimensions. In the case when both X0(λ) and XN (λ) are
proper, a possible approach to compute a solution X(λ) of least McMillan degree is
to determine a suitable properY(λ) to achieve this goal. A geometric control theoretic
method for this purpose has been developed in [88], based on computing minimum
dynamic covers. This method has been turned into an efficient and numerically
reliable state-space computational approach in [133], which can be used to determine
a least McMillan degree solution of (10.74) for this particular case.

Since XN (λ) can always be chosen proper (see Sect. 7.4), the main difficulty using
the above approach is the computation of an appropriate Y(λ) in the case when there
is no proper solution of (10.74), and thusX0(λ) cannot be chosen proper. To overcome
this difficulty we can determine X0(λ) so that its polynomial part corresponds to a
minimal number of infinite poles. These infinite poles originate from the intrinsic
improper nature of any solution of (10.74) and are related to the common infinite zeros
of G(λ) and F(λ). In what follows, we show how to determine a special particular
solutionX0(λ)withminimumnumber of infinite poles. Then, we determine a rational
basis XN (λ) for the right nullspace of G(λ) which will serve to determine a solution
X(λ) of least McMillan degree. This goal is achieved by employing an approach
similar to that of [88] to determine a proper Y(λ) to reduce the McMillan degree
of the proper part of X0(λ). This approach relies on the generalized minimum cover
algorithm of [136].

Computation of X0(λ)

Let assume that the rational matrices G(λ) and F(λ) have descriptor realizations of
order n of the forms

http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_7
http://dx.doi.org/10.1007/978-3-319-51559-5_7
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G(λ) :=
[
A − λE BG

C DG

]
, F(λ) :=

[
A − λE BF

C DF

]
, (10.77)

where we only assume that the pencil A − λE is regular. Such realizations, which
share the pair (A − λE,C), automatically result from a minimal realization of the
compound TFM

[
G(λ) F(λ)

]
.

Let SG(λ) and SF(λ) be the system matrix pencils associated to the realizations
of G(λ) and F(λ)

SG(λ) =
[
A − λE BG

C DG

]
, SF(λ) =

[
A − λE BF

C DF

]
.

Using the straightforward relations

[
A − λE BG

0 G(λ)

]
=

[
In 0

−C(A − λE)−1 Ip

]
SG(λ) ,

[
A − λE BF

0 F(λ)

]
=

[
In 0

−C(A − λE)−1 Ip

]
SF(λ) ,

it is easy to see that X(λ) is a solution of G(λ)X(λ) = F(λ) if and only if

Y(λ) =
[
Y11(λ) Y12(λ)

Y21(λ) X(λ)

]

is a solution of
SG(λ)Y(λ) = SF(λ) . (10.78)

The existence of the solution of (10.78) is guaranteed by (10.75), which is equivalent
to

rank SG(λ) = rank[ SG(λ) SF(λ) ] . (10.79)

It follows that, instead of solving the rational equation G(λ)X(λ) = F(λ), we can
solve the polynomial equation (10.78) and take

X(λ) = [
0 Im

]
Y(λ)

[
0
Iq

]
.

In fact, since we are only interested in the second block column Y2(λ) of Y(λ), we
need only to solve [

A − λE BG

C DG

]
Y2(λ) =

[
BF

DF

]
(10.80)

and compute X(λ) as
X(λ) = [

0 Im
]
Y2(λ) .
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The condition (10.79) for the existence of a solution becomes

rank

[
A − λE BG

C DG

]
= rank

[
A − λE BG BF

C DG DF

]
. (10.81)

To solve (10.80), we isolate a full rank part of SG(λ) by reducing it to a particular
Kronecker-like form. Let Q and Z be orthogonal matrices to reduce SG(λ) to the
Kronecker-like form

SG(λ) := QSG(λ)Z =
⎡

⎣
Br Ar − λEr Ar,reg − λEr,reg ∗
0 0 Areg − λEreg ∗
0 0 0 Al − λEl

⎤

⎦ , (10.82)

where Areg − λEreg is a regular subpencil, the pair (Ar − λEr,Br) is controllable
with Er invertible and the subpencil Al − λEl has full column rank for all λ ∈ C. The
above reduction can be computed by employing numerically stable algorithms, as
those described in Sect. 10.1.6.

If Y 2(λ) is a solution of the reduced equation

SG(λ)Y 2(λ) = Q

[
BF

DF

]
, (10.83)

then Y2(λ) = ZY 2(λ), and thus

X(λ) = [
0 Im

]
ZY 2(λ)

is a solution of the equation G(λ)X(λ) = F(λ). Partition

Q

[ −BF

−DF

]
=

⎡

⎣
B1

B2

B3

⎤

⎦

in accordance with the row structure of SG(λ). Since Al − λEl has full column rank,
it follows from (10.81) that B3 = 0 (otherwise no solution exists). Thus, Y 2(λ) has
the form

Y 2(λ) =

⎡

⎢⎢
⎣

Y 12(λ)

Y 22(λ)

Y 32(λ)

0

⎤

⎥⎥
⎦ ,

where the partitioning of Y 2(λ) corresponds to the column partitioning of SG(λ). To
determine a particular solutionX0(λ),we can freely chooseY 12(λ) = 0 anddetermine
Y 22(λ) and Y 32(λ) by solving

[
Y 22(λ)

Y 32(λ)

]
=

[
λEr − Ar λEr,reg − Ar,reg

0 λEreg − Areg

]−1 [
B1

B2

]
.
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Let partition [ 0 Im ]Z in accordance with the column structure of SG(λ) as

[ 0 Im ]Z = [Dr Cr Creg Cl ] (10.84)

and denote

A − λE =
[
Ar − λEr Ar,reg − λEr,reg

0 Areg − λEreg

]
, B =

[
B1

B2

]
, C = [Cr Creg ] . (10.85)

Then, a particular solution X0(λ) of the equation G(λ)X(λ) = F(λ) can be deter-
mined with the descriptor system realization

X0(λ) :=
[
A − λE B

C 0

]

. (10.86)

Someproperties ofX0(λ) canbe easily deduced from the computedKronecker-like
form.The pair (C,A − λE) is always observable, but, in general, the pair (A − λE,B)

may be uncontrollable. The poles of X0(λ) are among the generalized eigenvalues
of the pair (A,E) and are partly freely assignable and partly fixed. The generalized
eigenvalues of the pair (Ar,Er) are called the “spurious” poles, and they originate
from the column singularity ofG(λ). These poles are freely assignable by appropriate
choice of a (non-orthogonal) right transformation matrix [131]. The fixed poles are
the controllable eigenvalues of the pair (Areg − λEreg,B2). If G(λ) and F(λ) have no
common poles and zeros then the pair (Areg − λEreg,B2) is controllable. In this case
X0(λ) has the minimum possible poles at infinity.

According to the dual of Lemma 9.5, there exists a solution X0(λ) without a pole
in γ (finite or infinite) if the pole and zero structures of G(λ) and [G(λ) F(λ)] at
γ coincide. For practical computations, this implies that some or all of common
poles and zeros of G(λ) and [G(λ) F(λ)] will cancel. This cancellation can be done
explicitly by removing the uncontrollable eigenvalues (finite and infinite) of the pair
(Areg − λEreg,B2).

Removing the uncontrollable eigenvalues of the pair (Areg − λEreg,B2) can be
done using the generalized controllability staircase form algorithm of Procedure
GCSF described in Sect. 10.1.5 (see also Sect. 10.3.1). By applying this algorithm,
two orthogonal matrices Qreg and Zreg are determined such that all uncontrollable
finite eigenvalues are separated in the trailing part of the transformed regular pen-
cil Qreg(Areg − λEreg)Zreg , while the corresponding rows of QregB2 are zero. The
uncontrollable part of the triple (A − λE,B,C) can be thus eliminated by remov-
ing the appropriate trailing rows and columns from the matrices of the transformed
triple (Q(A − λE)Z,QB,CZ), where Q = diag(I,Qreg) and Z = diag(I,Zreg). The
same technique can be used to remove the uncontrollable infinite eigenvalues by
simply interchanging the roles of matrices A and E, thus working on the triple
(E − λA,B,C). For the sake of simplicity we reuse the same notation (with bar)
by assuming that the pair (A − λE,B) is already controllable, thus the resulting
X0(λ) fulfils the requirement for a minimal number of poles at infinity.

http://dx.doi.org/10.1007/978-3-319-51559-5_9
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To compute the particular solution X0(λ) we employed exclusively orthogonal
similarity transformations to determine the matrices of a descriptor realization in
(10.86). Therefore, this computation is numerically stable, because we can easily
show that the computed system matrices in the presence of roundoff errors are exact
for an original problem with slightly perturbed data.

In view of the order reduction step described later, we need to enforce a block
diagonal descriptor matrix E in (10.85) (i.e., with Er,reg = 0). This can be easily
achieved by performing an additional non-orthogonal column transformation using
the transformation matrix

V =
[
I −E−1

r Er,reg

0 I

]
.

The transformed system (AV − λEV,B,CV, 0), representing also X0(λ), has thus a
block diagonal descriptor matrix EV . To simplify the presentation we will reuse the
notation with bar and assume in what follows that Er,reg = 0 in (10.85).

Computation of XN (λ)

Using the same reduction of SG(λ) to SG(λ) as in (10.82), a right nullspace basis
XN (λ) of G(λ) can be computed from a right nullspace basis YN (λ) of SG(λ) as

XN (λ) = [ 0 Im ]ZYN (λ) .

We can determine YN (λ) in the form

YN (λ) =

⎡

⎢
⎢
⎣

I
(λEr − Ar)

−1Br

0
0

⎤

⎥
⎥
⎦ .

With Cr and Dr defined in (10.84), we obtain a descriptor realization of XN (λ) as

XN (λ) :=
[
Ar − λEr Br

Cr Dr

]
.

Obviously XN (λ) is proper and controllable. Furthermore, according to Proposi-
tion 10.2 applied to the dual realization of XT

N (λ), the realization of XN (λ) is observ-
able, provided the realization ofG(λ) in (10.77) is observable.Moreover, the poles of
XN (λ) are freely assignable by appropriately choosing the transformation matricesQ
and Z to reduce the system pencil SG(λ). Note that, to obtain this nullspace basis, we
performed exclusively orthogonal transformations on the system matrices. We can
prove that all computed matrices are exact for a slightly perturbed original system.
It follows that the algorithm to compute the nullspace basis is numerically stable.
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Computation of a Least-Order Solution X(λ)

We can represent XN (λ) to have the same state, descriptor and output matrices as
X0(λ). Let these realizations of X0(λ) and XN (λ) be

[
X0(λ) XN (λ)

] :=
[
A − λE B Br

C D Dr

]

:=
⎡

⎣
Ar − λEr Ar,reg B1 Br

0 Areg − λEreg B2 0
Cr Creg 0 Dr

⎤

⎦ ,

(10.87)
where Er is invertible.

We consider first the case when X0(λ) is proper, that is, all eigenvalues of the
pencil Areg − λEreg are finite and thus E is invertible. In this case, it was shown
in [88] that a solution with least McMillan degree can be determined as X(λ) =
X0(λ) + XN (λ)Y(λ) by choosing an appropriate proper Y(λ). This can be done by
determining a suitable feedback matrix Fr and a feedforward matrix Lr to cancel the
maximum number of unobservable and uncontrollable poles of

X(λ) :=
[
A + BrFr − λE B + BrLr

C + DrFr D + DrLr

]

. (10.88)

It can be shown that if we start with a minimal realization of [G(λ) F(λ) ], then we
cannot produce any unobservable poles in X(λ) via state feedback. Therefore, we
only need to determine the matrices Fr and Lr to cancel the maximum number of
uncontrollable poles.

This problem has been solved in [88] by reformulating it as a minimal order
dynamic cover design problem. We denote Ã := E −1A, B̃ := E −1B, and B̃r :=
E −1Br , and also B̃ = span B̃ and B̃r = span B̃r . Consider the set

J = {V : B̃ + ÃV ⊂ B̃r + V} ,

and let J ∗ denote the set of subspaces in J of least dimension. If V ∈ J ∗, then a
pair (Fr,Lr) can be determined such that

(̃A + B̃rFr)V + span (̃B + B̃rLr) ⊂ V .

Thus, determining a minimal dimension V is equivalent to a minimal order cover
design problem, and a conceptual geometric approach to solve it has been indicated
in [88]. The outcome of his method is, besides V , the pair (Fr,Lr) which achieves
a maximal order reduction by forcing pole–zero cancellations. This approach, in the
case of standard systems (i.e., E = I), has been turned into a numerically reliable
procedure in [133] and extended to the descriptor case with invertible E in [136].
In this latter procedure, Fr and Lr are determined from a special controllability
staircase form of the pair (A − λE, [Br B ]) obtained using a numerically reliable
method relying on both orthogonal and non-orthogonal similarity transformations.
Details of this algorithm are given in Sect. 10.4.3.
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It is possible to refine this approach by exploiting the structure of matrices in
(10.87). Assuming Fr = [Fr Freg ] is partitioned according to the structure of A, we
get from (10.88)

X(λ) :=
⎡

⎢
⎣

Ar + BrFr − λEr Ar,reg + BrFreg B1 + BrLr

0 Areg − λEreg B2

Cr + DrFr Creg + DrFreg D + DrLr

⎤

⎥
⎦ .

Since the eigenvalues of Areg − λEreg are not controllable via Br , the state feedback
Fr affects only the blocks Ar − λEr and Ar,reg . To make a maximum number of
eigenvalues of Ar + BrFr − λEr uncontrollable we can alternatively solve a mini-
mum dynamic cover problem of lower dimension for the system

[
X0,r(λ) XN (λ)

] :=
[
Ar − λEr

[
Ar,reg B1

]
Br

Cr
[
Cr,reg D

]
Dr

]

,

by determining an appropriate state feedback matrix Fr and a feedforward matrix
[Freg Lr ]. Besides lower size of the computational problem, the main advantage of
this approach is that it is applicable regardless Areg − λEreg has infinite eigenvalues
or not.

10.4 Special Algorithms

In this section we describe several algorithms, which are instrumental in addressing
least-order synthesis problems of fault detection and isolation filters and the solution
of the Nehari problem, which is encountered in solving least distance problems.

10.4.1 Special Controllability Staircase Form Algorithm

The computational methods of minimum dynamic covers, presented in Sects. 10.4.2
and 10.4.3, rely on a special controllability staircase form (see Sect. 10.1.5) involving
a controllable descriptor pair (A − λE, [B1 B2 ]), where A,E ∈ Rn×n with E invert-
ible, B1 ∈ Rn×m1 , B2 ∈ Rn×m2 . The main difference to the reduction performed in
Procedure GCSF is in exploiting, at the j-th reduction step, the partitioned form of
the matrix B(j−1) := [B(j−1)

1 B(j−1)
2 ], by compressing its rows in two steps. In the first

step, the rows of B(j−1)
1 are compressed, while in the second step, those columns of

the updated B(j−1)
2 are compressed, which are linearly independent of the columns

of B(j−1)
1 . All row compressions can be performed using orthogonal similarity trans-

formations.
The following procedure determines for a descriptor triple (A − λE, [B1 B2 ],C),

two orthogonal transformation matrices Q and Z such that for the resulting triple
(QTAZ − λQTEZ, [QTB1 QTB2 ],CZ), the pencil [ QTB1 QTB2 QTAZ − λQTEZ ]
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is in a special controllability staircase form with QTEZ upper triangular.

Procedure GSCSF: Generalized special controllability staircase form
Input : (A − λE, [B1 B2 ],C)

Outputs: Q, Z , (A−λE, [B1 B2 ],C) :=(QTAZ−λQTEZ, [QTB1 QTB2 ],CZ),
(ν1,j, ν2,j), j = 1, . . . , 


1) Compute an orthogonal matrix Q such that QTE is upper triangular;
compute A ← QTA, E ← QTE, B1 ← QTB1, B2 ← QTB2. Set Z = In.

2) Set j=1, r=0, ν1,0 = m1, ν2,0 = m2, A(0) = A, E(0) = E, B(0)
1 = B1, B

(0)
2 = B2.

3) Compute orthogonal matrices W and U such that

WT
[
B(j−1)
1 B(j−1)

2

]
:=

⎡

⎣
A2j−1,2j−3 A2j−1,2j−2

0 A2j,2j−2

0 0

⎤

⎦
ν1,j
ν2,j
ρ

ν1,j−1 ν2,j−1

with A2j−1,2j−3 and A2j,2j−2 full row rank matrices and WTE(j−1)U is
upper triangular.

4) Compute and partition

WTA(j−1)U :=
⎡

⎣
A2j−1,2j−1 A2j−1,2j A2j−1,2j+1

A2j,2j−1 A2j,2j A2j,2j+1

B(j)
1 B(j)

2 A(j)

⎤

⎦
ν1,j
ν2,j
ρ

ν1,j ν2,j ρ

WTE(j−1)U :=
⎡

⎣
E2j−1,2j−1 E2j−1,2j E2j−1,2j+1

0 E2j,2j E2j,2j+1

0 0 E(j)

⎤

⎦
ν1,j
ν2,j
ρ

ν1,j ν2,j ρ

5) For i = 1, . . . , 2j − 2 compute and partition

Ai,2j−1U := [Ai,2j−1 Ai,2j Ai,2j+1 ]
ν1,j ν2,j ρ

Ei,2j−1U := [Ei,2j−1 Ei,2j Ei,2j+1 ]
ν1,j ν2,j ρ

6) Q ← Q diag(Ir,W ), Z ← Z diag(Ir,U), C ← C diag(Ir,U).
7) r ← r + ν1,j + ν2,j; if ρ = 0, then 
 = j and Exit;

else, j ← j + 1 and go to Step 3).
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At the end of this algorithm we have Â − λÊ := QT (A − λE)Z , B̂ := [QTB1

QTB2 ], Ĉ := CZ , Ê is upper triangular, and the pair (̂A, B̂) is in the special staircase
form

[
B̂ Â

]=

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

A1,−1 A1,0 A11 A12 · · · A1,2
−3 A1,2
−2 A1,2
−1 A1,2


0 A2,0 A21 A22 · · · A2,2
−3 A2,2
−2 A2,2
−1 A2,2


0 0 A31 A32 · · · A3,2
−3 A3,2
−2 A3,2
−1 A3,2


0 0 0 A42 · · · A4,2
−3 A4,2
−2 A4,2
−1 A4,2

...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · A2
−1,2
−3 A2
−1,2
−2 A2
−1,2
−1 A2
−1,2

0 0 0 0 · · · 0 A2
,2
−2 A2
,2
−1 A2
,2


⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

, (10.89)

where A2j−1,2j−3 ∈ Rν1,j×ν1,j and A2j,2j−2 ∈ Rν2,j×ν2,j are full row rank matrices for
j = 1, . . . , 
. The resulting upper triangular matrix Ê has a similar block partitioned
form

Ê =

⎡

⎢⎢⎢⎢
⎢
⎣

E11 E12 · · · E1,2
−1 E1,2


0 E22 · · · E2,2
−1 E2,2

...

...
. . .

...
...

0 0 · · · E2
−1,2
−1 E2
−1,2


0 0 · · · 0 E2
,2


⎤

⎥⎥⎥⎥
⎥
⎦

. (10.90)

The resulting block dimensions (ν1,j, ν2,j), j = 1, . . . , 
, satisfy

m1 = ν1,0 ≥ ν1,1 ≥ · · · ≥ ν1,
 ≥ 0

and
m2 = ν2,0 ≥ ν2,1 ≥ · · · ≥ ν2,
 ≥ 0

and represents the dimensions n1 := ∑

i=1 ν1,j and n2 := ∑


j=1 ν2,j of two subspaces,
which underlie the computation of appropriate minimal dynamic covers in the next
sections.

When implementing Procedure GSCSF, the row compressions at Step 3) are
usually performed using rank-revealing QR factorizations with column pivoting.
This computation can be done in two steps, first by compressing the r rows of B(j−1)

1

to a full row rankmatrix A2j−1,2j−3 using an orthogonal matrixW1 (i.e., asWT
1 B

(j−1)
1 ),

and then by compressing the trailing r − ν1,j rows of WT
1 B

(j−1)
2 to a full row rank

matrix A2j,2j−2 using a second orthogonal matrix W2. The overall transformation W
at Step 3) results asW = W1 diag(Iν1,j ,W2). Both reductions can be performed using
sequences of Givens rotations, which allow to simultaneously perform the column
transformations accumulated in U to maintain the upper triangular form of E(j−1).
This reduction technique is described in detail in [125]. Using this technique, the
numerical complexity of Procedure GSCSF isO(n3), provided all transformations
are immediately applied without accumulating explicitly W and U. The usage of
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the more robust rank determinations based on singular values decompositions would
increase the overall complexity toO(n4) due to the need to accumulate explicitlyW
and U. Regarding the numerical properties of Procedure GSCSF, it is possible to
show that the resulting system matrices Â, Ê, B̂, Ĉ are exact for slightly perturbed
original data A, E, B,C, whileQ and Z are nearly orthogonal matrices. It follows that
the Procedure GSCSF is numerically stable. In the standard case we have E = I ,
and therefore Q = Z and Ê = I .

Example 10.1 For 
 = 3, [ B̂ Â ] and Ê have similarly block partitioned forms

[
B̂ Â

] =

⎡

⎢⎢
⎢⎢
⎢
⎣

A1,−1 A1,0 A11 A12 A13 A14 A15 A16
0 A2,0 A21 A22 A23 A24 A25 A26
0 0 A31 A32 A33 A34 A35 A36
0 0 0 A42 A43 A44 A45 A46
0 0 0 0 A53 A54 A55 A56
0 0 0 0 0 A64 A65 A66

⎤

⎥⎥
⎥⎥
⎥
⎦

, Ê =

⎡

⎢
⎢⎢
⎣

E11 E12 · · · E16
0 E22 · · · E26
.
.
.

.

.

.
. . .

.

.

.

O O · · · E66

⎤

⎥
⎥⎥
⎦

.

♦

10.4.2 Order Reduction Using Minimum Dynamic
Covers of Type I

The computational problem which we address in this section is the following: given
a descriptor pair (A − λE,B) with A,E ∈ Rn×n and E invertible, B ∈ Rn×m, and
B partitioned as B = [B1 B2 ] with B1 ∈ Rn×m1 , B2 ∈ Rn×m2 , determine the matrix
F ∈ Rm2×n such that the pair (A + B2F − λE,B1) is maximally uncontrollable (i.e.,
A + B2F − λE has maximal number of uncontrollable eigenvalues).

This computation is useful to determine least-order solutions of linear rational
equations using state feedback techniques. Consider the compatible linear rational
system of equations G(λ)X(λ) = F(λ), where G(λ) and F(λ) are given and X(λ) is
sought. Assume X1(λ) and X2(λ) are two proper TFMs, which generate all solutions
of the rational system of equation G(λ)X(λ) = F(λ) in the form

X(λ) = X1(λ) + X2(λ)Y(λ), (10.91)

where X1(λ) is any particular solution satisfying G(λ)X1(λ) = F(λ), X2(λ) is a
proper rational basis of the right nullspace ofG(λ) (i.e.,G(λ)X2(λ) = 0), and Y(λ) is
arbitrary, having appropriate dimensions. Assume X1(λ) and X2(λ) have the descrip-
tor system realizations

[
X1(λ) X2(λ)

] =
[
A − λE B1 B2

C D1 D2

]
, (10.92)

with the descriptor pair (A − λE, [B1 B2 ]) controllable and E invertible. Let F be a
state feedback gain and define the TFMs
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[
X̃1(λ) X̃2(λ)

] :=
[
A + B2F − λE B1 B2

C + D2F D1 D2

]
. (10.93)

It is straightforward to check that

X̃1(λ) = X1(λ) + X2(λ)Y(λ), X̃2(λ) = X2(λ)Ỹ(λ), (10.94)

where Y(λ) and Ỹ(λ) have the descriptor system realizations

[
Y(λ) Ỹ(λ)

] =
[
A + B2F − λE B1 B2

F 0 I

]
. (10.95)

Therefore, X̃1(λ) and X̃2(λ) also generate all solutions, because X̃1(λ) is another
particular solution, while X̃2(λ) is another right nullspace basis, because Ỹ(λ) is
invertible. If F is determined such that the pair (A + B2F − λE,B1) is maximally
uncontrollable, then the resulting realization of X̃1(λ) contains amaximumnumber of
uncontrollable eigenvalues which can be eliminated using minimal realization tech-
niques. Thus, X̃1(λ) represents another particular solution with a reduced McMillan
degree.

Remark 10.9 The above approach achieves the maximum order reduction for X̃1(λ)

provided the descriptor system realization (A − λE,B2,C,D2) ismaximally observ-
able, i.e., the pair (A + B2F − λE,C + D2F) is observable for anyF [88]. If this con-
dition is not fulfilled, then the least -order can be achieved after a preliminary order
reduction, where a maximum number of unobservable eigenvalues are eliminated
using a suitable choice of F. If E = I and D2 = 0, a numerically stable algorithm
proposed in [116] to compute the maximal (A,B2)-invariant subspace contained in
the kernel of C can be employed for this purpose. If E is a general invertible matrix,
then the same algorithm can be applied to the triple (E−1A,E−1B2,C), provided E is
not too ill conditioned. The caseD2 �= 0 can be addressed using the extended system
technique suggested in [6, p. 240]. �

An important application of the above order reduction technique is to determine
least-order combinations of a left nullspace basis vectors, which satisfy additional
fault detectability conditions (see Sect. 7.5). In this case, we dealwith a homogeneous
equation Q(λ)G(λ) = 0 and find a suitable fault detection filter Q(λ) in the form

Q(λ) = HNl(λ) + Y(λ)Nl(λ), (10.96)

whereNl(λ) is a proper rational left nullspace basis ofG(λ) andH is a constantmatrix
(to be appropriately selected to fulfil the fault detectability condition). Assuming
Nl(λ) has the observable descriptor realization

Nl(λ) =
[
Al − λEl Bl

Cl Dl

]
,

http://dx.doi.org/10.1007/978-3-319-51559-5_7


362 10 Computational Algorithms and Software

this leads to a dual problem to be solved in Sect. 7.5, which involves an observable
pair (Al − λEl, C̃l) with invertible El and with a C̃l matrix partitioned as

C̃l =
[
HCl

Cl

]
.

In this case, a matrix K is sought such that the pair (Al + KCl − λEl,HCl) is maxi-
mally unobservable. For this purpose, the algorithm described in this section can be
applied to the controllable pair (AT

l − λET
l , [HCT

l CT
l ]) to determine a suitable “state

feedback” KT , which cancels the maximum number of uncontrollable eigenvalues.
We denote A = E−1A, B1 = E−1B1, B2 = E−1B2, and also and B1 = span B1

and B2 = span B2. The problem to determine F which makes the pair (A + B2F −
λE,B1) maximally uncontrollable is equivalent [162] to compute a subspace V of
least possible dimension satisfying

(A + B2F)V ⊂ V, B1 ⊂ V. (10.97)

This subspace is the least-order (A,B2)-invariant subspace which contains B1 [162].
The above condition can be equivalently rewritten as a condition defining V as a Type
I minimum dynamic cover [40, 71]

AV ⊂ V + B2, B1 ⊂ V. (10.98)

In this section we describe a computational method for determining minimal
dynamic covers, which relies on the reduction of the descriptor system pair (A −
λE, [B1,B2]) to a particular condensed form, for which the solution of the problem
(i.e., the choice of appropriateF) is simple. This reduction is performed in two stages.
The first stage is the orthogonal reduction performed with the Procedure GSCSF
presented in Sect. 10.4.1. In the second stage, additional zero blocks are generated in
the reduced matrices using non-orthogonal transformations. With additional blocks
zeroed via a specially chosen state feedback F, the least-order (A,B2)-invariant
subspace containing B1 can be identified as the linear span of the leading columns
of the resulting right transformation matrix. In what follows we present in detail the
second reduction stage as well as the determination of F.

We assume that after performing the Procedure GSCSF, we obtained the orthog-
onal transformation matrices Q and Z , such that the transformed system triple

(̂A − λÊ, [ B̂1 B̂2 ], Ĉ) := (QTAZ − λQTEZ, [QTB1 Q
TB2 ],CZ) (10.99)

has the pair (̂A, B̂), with B̂ = [ B̂1 B̂2, ], in the staircase form (10.89) and the matrix Ê
in the block structured form (10.90). The dimensions of the first 2
 diagonal blocks of
Â and Ê are determined by the two sets of dimensions ν1,j and ν2,j for j = 1, . . . , 
, and
define the dimensions n1 := ∑


j=1 ν1,j and n2 := ∑

j=1 ν2,j. Additionally, partition

the columns of the resulting Ĉ in accordance with the column structure of Â in
(10.89)

Ĉ = [
C1 C2 · · · C2
−1 C2


]
. (10.100)

http://dx.doi.org/10.1007/978-3-319-51559-5_7
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In the second reduction stage we use non-orthogonal upper triangular left and
right transformation matrices W and U, respectively, to annihilate the minimum
number of blocks in Â and Ê which allows to solve the minimum cover problem.
Assume W and U have block structures identical to Ê. By exploiting the full rank
of submatrices A2k,2k−2 we can introduce zero blocks in the block row 2k of Â
by annihilating the blocks A2k,2j−1, for j = k, k + 1, . . . , 
. Similarly, by exploit-
ing the invertibility of E2j−1,2j−1, we can introduce zero blocks in the block row
2k − 2 of E by annihilating the blocks E2k−2,2j−1, for j = k, k + 1, . . . , 
 of Ê. This
computation is performed for k = 
, 
 − 1, . . . , 2. Let Ã := WÂU, Ẽ := WÊU,
[ B̃1 B̃2 ] := W [ B̂1 B̂2 ] = [ B̂1 B̂2 ], and C̃ = ĈU be the system matrices resulted
after this (non-orthogonal) reduction. Define also the feedback matrix F̃ ∈ Rm2×n

partitioned column-wise compatibly with Â

F̃ = [F1 0 F3 · · · 0 F2
−1 0 ] ,

where F2j−1 ∈ Rm2×ν1,j are such that A2,0F2j−1 + A2,2j−1 = 0 for j = 1, . . . , 
. With
this feedback we introduced 
 zero blocks in the second block row of Ã + B̃2F̃.
Finally, consider the permutation matrix defined by

P =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

Iν1,1 0 0 0 · · · 0 0
0 0 Iν1,2 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · Iν1,
 0
0 Iν2,1 0 0 · · · 0 0
0 0 0 Iν2,2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 Iν2,


⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

. (10.101)

If we define L = PWQT , V = ZUPT and F = F̃V−1, then overall we obtained
the reduced system (Ă − λĔ, [ B̆1 B̆2 ], C̆, [D1 D2 ]) defined with

Ă − λĔ := L(A + B2F − λE)V =
⎡

⎣
Ă11 − λĔ11 Ă12 − λĔ12

0 Ă22 − λĔ22

⎤

⎦ ,

[
B̆1 B̆2

] := L
[
B1 B2

] =
⎡

⎣
B̆11 B̆12

0 B̆22

⎤

⎦ ,

C̆ := (C + D2F)V = [
C̆1 C̆2

]
,

(10.102)

where, by construction, the pairs (Ă11 − λĔ11, B̆11) and (Ă22 − λĔ22, B̆22) are in
controllable staircase form. Thus, by the above choice of F, we made n2 of the n
eigenvalues of the pencil A + B2F − λE uncontrollable via B1. It is straightforward
to show that the matrix V1 formed from the the first n1 columns of V satisfies
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AV1 = V1Ĕ
−1
11 Ă11 − B2FV1, B1 = V1Ĕ

−1
11 B̆11 .

Thus, according to (10.98), V := span V1 is a dynamic cover of Type I of dimension
n1. It can be shown using the results of [71] that V has minimum dimension.

To illustrate the computational procedure, we consider the reduced system in
Example 10.1. First, the following zero blocks are introduced: A65, E45, A43, A45,
E23, E25 (in this order). The resulting Ã and Ẽ are

Ã =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

A31 A32 A33 A34 A35 A36

0 A42 0 A44 0 A46

0 0 A53 A54 A55 A56

0 0 0 A64 0 A66

⎤

⎥⎥⎥
⎥⎥⎥
⎦

, Ẽ =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

E11 E12 E13 E14 E15 E16

0 E22 0 E24 0 E26

0 0 E33 E34 E35 E36

0 0 0 E44 0 E46

0 0 0 0 E55 E56

0 0 0 0 0 E66

⎤

⎥⎥⎥
⎥⎥⎥
⎦

.

Additional blocks are zeroed using the feedback F̃ to obtain

Ã + B̃2F̃ =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

A11 A12 A13 A14 A15 A16

0 A22 0 A24 0 A26

A31 A32 A33 A34 A35 A36

0 A42 0 A44 0 A46

0 0 A53 A54 A55 A56

0 0 0 A64 0 A66

⎤

⎥⎥⎥⎥
⎥⎥
⎦

.

Finally, after block permutations, we obtained the controllable staircase forms

[
B̆11 Ă11−λĔ11

] =
⎡

⎣
A1,−1 A11−λE11 A13−λE13 A15−λE15

0 A31 A33−λE33 A35−λE35

0 0 A53 A55−λE55

⎤

⎦ ,

[
B̆22 Ă22−λĔ22

] =
⎡

⎣
A2,0 A22 − λE22 A24 − λE24 A26 − λE26

0 A42 A44 − λE44 A46 − λE46

0 0 A64 A66 − λE66

⎤

⎦ .

The above approach to compute a minimum dynamic cover of Type I is the
basis of Procedure GRMCOVER1, presented in what follows. This procedure
determines, for a pair of generators (X1(λ),X2(λ)) with the descriptor realizations
given in (10.92), explicit minimal realizations for X̃1(λ) and Y(λ) (see (10.93) and
(10.95)) in the form

X̃1(λ) =
[

λĔ11 − Ă11 B̆11

C̆1 D1

]

, Y(λ) =
[

λĔ11 − Ă11 B̆11

F̆1 0

]

,
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where F̃PT =: [
F̆1 F̆2

]
, with F̆1 having n1 columns.

ProcedureGRMCOVER1:Order reduction using dynamic covers of Type I
Inputs : X1(λ) = (A − λE,B1,C,D1) and X2(λ) = (A − λE,B2,C,D2)

Outputs: X̃1(λ) = (Ă11 − λĔ11, B̆11, C̆1,D1) and
Y(λ) = (Ă11 − λĔ11, B̆11, F̆1, 0) such that
X̃1(λ) = X1(λ) + X2(λ)Y(λ) has least McMillan degree.

1) Apply Procedure GSCSF to the system triple (A−λE, [B1 B2 ],C) to
determine the orthogonally similar system triple (̂A − λÊ, [ B̂1 B̂2 ], Ĉ)

defined in (10.99) and (10.100), and the dimensions ν1,j and ν2,j for j =
1, . . . , 
; set n1 := ∑


j=1 ν1,j.

2) With Â partitioned as in (10.89) and Ê partitioned as in (10.90), perform the
second stage of the special reduction for Type I covers:
Set W = I , U = I , and partition W and U in blocks analogous to Ê
in (10.90).

for k = 
, 
 − 1, . . . , 2
Comment. Annihilate blocks A2k,2j−1, for j = k, k + 1, . . . , 
.
for j = k, k + 1, . . . , 


Compute U2k−2,2j−1 such that A2k,2k−2U2k−2,2j−1 + A2k,2j−1 = 0.
Ai,2j−1 ← Ai,2j−1 + Ai,2k−2U2k−2,2j−1, i = 1, 2, . . . , 2k .
Ei,2j−1 ← Ei,2j−1 + Ei,2k−2U2k−2,2j−1, i = 1, 2, . . . , 2k − 2 .
C2j−1 ← C2j−1 + C2k−2U2k−2,2j−1 .
Ui,2j−1 ← Ui,2j−1 + Ui,2k−2U2k−2,2j−1, i = 1, 2, . . . , 2
 .

end
Comment. Annihilate blocks E2k−2,2j−1, for j = k, k + 1, . . . , 
.
for j = k, k + 1, . . . , 


Compute W2k−2,2j−1 such that W2k−2,2j−1E2j−1,2j−1+E2k−2,2j−1=0.
A2k−2,i ← A2k−2,i + W2k−2,2j−1A2j−1,i, i = 2j − 2, 2j − 1, . . . , 2
 .
E2k−2,i ← E2k−2,i + W2k−2,2j−1E2j−1,i, i = 2j, 2j + 1, . . . , 2
 .
W2k−2,i ← W2k−2,i + W2k−2,2j−1W2j−1,i, i = 1, 2, . . . , 2
 .

end

end

Denote Ã − λẼ := WÂU − λWÊU, [ B̃1 B̃2 ] := W [ B̂1 B̂2 ], C̃ := ĈU.

3) Compute F̃ = [F1 0 F3 · · · 0 F2
−1 0 ], where F2j−1 ∈ Rm2×ν
(j)
1 are such that

A2,0F2j−1 + A2,2j−1 = 0 for j = 1, . . . , 
.
4) With P defined in (10.101), compute Ă − λĔ = P(̃A + B̃2F̃ − λẼ)PT ,

B̆1 = PB̃1, C̆ = (C̃ + D2F̃)PT and F̆ = F̃PT .
5) Set X̃1(λ) = (

Ă(1 :n1, 1 :n1) − λĔ(1 :n1, 1 :n1), B̆1(1 :n1, :), C̆(:, 1 :n1),D1
)

and Y(λ) = (
Ă(1 :n1, 1 :n1) − λĔ(1 :n1, 1 :n1), B̆1(1 :n1, :), F̆(:, 1 :n1), 0

)
.
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As stated in Sect. 10.4.1, the reduction of system matrices to the special control-
lability form at Step 1) can be performed using exclusively orthogonal similarity
transformations. It can be shown that the computed condensed matrices Â, Ê, B̂1, B̂2

and Ĉ are exact for matrices which are nearby to the original matrices A, E, B1, B2

and C respectively. Thus this part of the reduction is numerically backward stable.
The computations performed at Step 2), representing the second stage of the

special reduction and the computation of the feedback matrix F̃ at Step 3) involve
the solution of many, generally overdetermined, linear equations. Therefore, these
steps are generally not numerically stable. In spite of this, the numerical reliability
of the overall computations can be guaranteed, as long as W and U, the block upper
triangular transformation matrices employed at Step 2), have no excessively large
condition numbers. The condition numbers can be approximated as κ(L) ≈ ‖W‖2F
and κ(V ) ≈ ‖U‖2F . It follows that if these norms are relatively small (e.g., ≤10,000)
then practically there is no danger for a significant loss of accuracy due to performing
non-orthogonal reductions. On contrary, large values of these norms provide a clear
hint of potential accuracy losses. In practice, it suffices only to look at the largest
magnitudes of the generated elements of W and U at Step 2) to obtain equivalent
information. For the computation of F̃, condition numbers for solving the underlying
equations can be also easily estimated. However, a large norm of F̃ is an indication
of possible accuracy losses. For Step 2) of the reduction, a simple operation count
is possible by assuming all blocks are 1 × 1, and this indicates a computational
complexity of O(n3). Thus, the overall computational complexity of Procedure
GRMCOVER1 is also O(n3).

10.4.3 Order Reduction Using Minimum Dynamic
Covers of Type II

The computational problem which we address in this section is the following: given
the descriptor systempair (A − λE,B)withA,E ∈ Rn×n andE invertible,B ∈ Rn×m,
and B partitioned as B = [B1 B2 ] with B1 ∈ Rn×m1 , B2 ∈ Rn×m2 , determine the
matricesF andG such that the pair (A + B2F − λE,B1 + B2G) hasmaximal number
of uncontrollable eigenvalues.

This computation is useful to determine least-order solutions of linear rational
equations using state feedback and feedforward techniques. For the compatible lin-
ear rational system of equations G(λ)X(λ) = F(λ), considered also in Sect. 10.4.2,
assume there exists a particular solution X1(λ) which is proper. Then, the general
solution can be expressed as in (10.91), where X2(λ) is a proper rational basis of the
right nullspace of G(λ). The proper TFMs X1(λ) and X2(λ) thus generate all solu-
tions ofG(λ)X(λ) = F(λ). AssumeX1(λ) andX2(λ) have the controllable descriptor
realizations in (10.92) with invertible E. Let F be a state feedback gain and let G be
a feedforward gain. Then, the TFMs defined as

[
X̃1(λ) X̃2(λ)

] :=
[
A + B2F − λE B1 + B2G B2

C + D2F D1 + D2G D2

]
(10.103)
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generate also all solutions. It is straightforward to check that

X̃1(λ) = X1(λ) + X2(λ)Y(λ), X̃2(λ) = X2(λ)Ỹ(λ) , (10.104)

where Y(λ) and Ỹ(λ) have the descriptor system realizations

[
Y(λ) Ỹ(λ)

] =
[
A + B2F − λE B1 + B2G B2

F G I

]
. (10.105)

It follows that X̃1(λ) is another particular solution, while X̃2(λ) is another right
nullspace basis, because Ỹ(λ) is invertible. If the gains F and G are determined such
that the pair (A + B2F − λE,B1 + B2G) ismaximally uncontrollable, then the result-
ing realizations of X̃1(λ) and Y(λ) contain a maximum number of uncontrollable
eigenvalues which can be eliminated using minimal realization techniques. Thus,
X̃1(λ) represents another particular solution with a reduced McMillan degree. An
important application of the above order reduction technique addressed in Sect. 7.9
is to determine a least-order solution of the EMMP by solving a dual linear rational
equation G(λ) = X(λ)H(λ) using the techniques presented in Sect. 10.3.7.

The problem to determine thematricesF andG, whichmake the descriptor system
pair (A + B2F − λE,B1 + B2G)maximally uncontrollable, is essentially equivalent
[88] to compute a subspace V having least possible dimension and satisfying

(A + B2F)V ⊂ V, span (B1 + B2G) ⊂ V , (10.106)

where A = E−1A, B1 = E−1B1, and B2 = E−1B2. If we denote B1 = span B1 and
B2 = span B2, then the above condition can be equivalently rewritten also as a con-
dition defining a Type II minimum dynamic cover [40, 71] of the form

AV ⊂ V + B2, B1 ⊂ V + B2. (10.107)

The computation of the minimal dynamic covers of Type II can be done in two
stages using a similar technique as for the Type I covers presented in Sect. 10.4.2.
The first stage is identical to the reduction performed for covers of Type I and is
performed using Procedure GSCSF. Two orthogonal transformation matrices Q
and Z are determined, such that the transformed system triple

(̂A − λÊ, [ B̂2 B̂1 ], Ĉ) := (QTAZ − λQTEZ, [QTB2 Q
TB1 ],CZ) (10.108)

has the pair (̂A, B̂), with B̂ = [ B̂2 B̂1, ], in the staircase form (10.89) and the matrix Ê
in the block structured form (10.90). The dimensions of the first 2
 diagonal blocks of
Â and Ê are determined by the two sets of dimensions ν1,j and ν2,j for j = 1, . . . , 
, and
define the dimensions n1 := ∑


j=1 ν1,j and n2 := ∑

j=1 ν2,j. Additionally, partition

the columns of the resulting Ĉ in accordance with the column structure of Â in
(10.89)

Ĉ = [
C1 C2 · · · C2
−1 C2


]
. (10.109)

http://dx.doi.org/10.1007/978-3-319-51559-5_7
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In the second reduction stage we use non-orthogonal upper triangular left and
right transformation matrices W and U, respectively, to annihilate the minimum
number of blocks in Â and Ê which allows to solve the minimum cover problem.
AssumeW andU have block structures identical to Ê. By exploiting the invertibility
of the diagonal blocks E2j,2j, we can introduce zero blocks in the block row 2k − 1
of E by annihilating the blocks E2k−1,2j, for j = k, k + 1, . . . , 
 of Ê. Similarly, by
exploiting the full rank of submatrices A2k−1,2k−3, we can introduce zero blocks in
the block row 2k − 1 of Â by annihilating the blocks A2k−1,2j, for j = k − 1, k, . . . , 
.
Let Ã := WÂU, Ẽ := WÊU, [ B̃2 B̃1 ] := W [ B̂2 B̂1 ] = [ B̂2 B̂1 ] and C̃ = ĈU be the
system matrices resulted after this (non-orthogonal) reduction.

Choose the feedforward matrixG ∈ Rm2×m1 such that A1,−1G + A1,0 = 0 and the
feedback matrix F̃ ∈ Rm2×n partitioned column-wise compatibly with Ê as

F̃ = [ 0 F2 · · · F2
−2 0 F2
 0 ] ,

where F2j are such that A1,−1F2j + A1,2j = 0 for j = 1, . . . , 
. With the permutation
matrix

P =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

0 Iν2,1 0 0 · · · 0 0
0 0 0 Iν2,2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 Iν2,

Iν1,1 0 0 0 · · · 0 0
0 0 Iν1,2 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · Iν1,
 0

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

, (10.110)

we define L = PWQT , V = ZUPT and F = F̃V−1. Overall we obtain the reduced
system (Ă − λĔ, [ B̆2 B̆1 ], C̆, [ D̆2 D̆1 ]) defined with

Ă − λĔ := L(A + B2F − λE)V =
[
Ă11 − λĔ11 Ă12 − λĔ12

0 Ă22 − λĔ22

]

,

[
B̆2 B̆1

] := L
[
B2 B1 + B2G

] =
[

0 B̆12

B̆21 0

]

,

C̆ := (C + D2F)V = [
C̆1 C̆2

]
,

[
D̆2 D̆1

] := [
D2 D1 + D2G

]
,

(10.111)

where, by construction, the pairs (Ă11 − λĔ11, B̆12) and (Ă22 − λĔ22, B̆21) are in
controllable staircase form. Thus, by the above choice of F and G, we made n1
of eigenvalues of the pair (A + B2F − λE,B1 + B2G) uncontrollable. The first n2
columns V1 of V, satisfy

AV1 = V1Ĕ
−1
11 Ă11 − B2FV1, B2G = V1Ĕ

−1
11 B̆12 − B1
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and thus, according to (10.107), span a Type II dynamic cover of dimension n2 for
the pair (A, [B1 B2 ]). It can be shown using the results of [71] that the resulting Type
II dynamic cover V has minimum dimension.

To illustrate the computational procedure, we consider the reduced system in
Example 10.1. First, the following zero blocks are introduced: E56, A54, A56, E34,
E36, A3,2, A34, A36, E12, E14 and E16 (in this order). We obtain

[
B̃2 B̃1 Ã

] =

⎡

⎢⎢⎢⎢⎢⎢
⎣

A1,−1 A1,0 A11 A12 A13 A14 A15 A16

0 A2,0 A2,1 A22 A2,3 A24 A2,5 A26

0 0 A31 0 A33 0 A35 0
0 0 0 A42 A43 A44 A45 A46

0 0 0 0 A53 0 A55 0
0 0 0 0 0 A64 A65 A66

⎤

⎥⎥⎥⎥⎥⎥
⎦

,

Ẽ =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

E11 0 E13 0 E15 0
0 E22 E23 E24 E25 E26

0 0 E33 0 E35 0
0 0 0 E44 E45 E46

0 0 0 0 E55 0
0 0 0 0 0 E66

⎤

⎥⎥⎥⎥
⎥⎥
⎦

.

Additional blocks are zeroed using the feedback F̃ and feedforward gain G to obtain

[
B̃2 B̃1 + B̃2G Ã + B̃2F̃

] =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

A1,−1 0 A11 0 A13 0 A15 0
0 A2,0 A2,1 A22 A2,3 A24 A2,5 A26

0 0 A31 0 A33 0 A35 0
0 0 0 A42 A43 A44 A45 A46

0 0 0 0 A53 0 A55 0
0 0 0 0 0 A64 A65 A66

⎤

⎥⎥⎥⎥⎥
⎥
⎦

.

Finally, after block permutations, we obtained the controllable staircase forms

[
B̆1 Ă1 − λĔ1

] =
⎡

⎣
A2,0 A2,2 − λE2,2 A2,4 − λE2,4 A2,6 − λE2,6

0 A4,2 A4,4 − λE4,4 A4,6 − λE4,6

0 0 A6,4 A6,6 − λE6,6

⎤

⎦ ,

[
B̆2 Ă2 − λĔ2

] =
⎡

⎣
A1,−1 A1,1 − λE1,1 A1,3 − λE1,3 A1,5 − λE1,5

0 A3,1 A3,3 − λE3,3 A3,5 − λE3,5

0 0 A5,3 A5,5 − λE5,5

⎤

⎦ .

The above approach to compute a minimum dynamic cover of Type II is the
basis of Procedure GRMCOVER2, presented in what follows. This procedure
determines, for a pair of generators (X1(λ),X2(λ)) with the descriptor realizations
given in (10.92), explicit minimal realizations for X̃1(λ) and Y(λ) (see (10.103)
and (10.105)) in the form X̃1(λ) = (Ă11 − λĔ11, B̆12, C̆1, D̆1) and Y(λ) = (Ă11 −
λĔ11, B̆12, F̆1,G), where F̃PT =: [

F̆1 F̆2

]
, with F̆1 having n2 columns.
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Procedure GRMCOVER2: Order reduction using dynamic covers
of Type II
Inputs : X1(λ) = (A − λE,B1,C,D1) and X2(λ) = (A − λE,B2,C,D2)

Outputs: X̃1(λ) = (Ă11 − λĔ11, B̆12, C̆1, D̆1) and Y(λ) = (Ă11 − λĔ11, B̆12, F̆1,G) such that
X̃1(λ) = X1(λ) + X2(λ)Y(λ) has least McMillan degree.

1) Apply Procedure GSCSF to the system triple (A−λE, [B2 B1 ],C) to determine the
orthogonally similar system triple (̂A − λÊ, [ B̂2 B̂1 ], Ĉ) defined in (10.108) and
(10.109), and the dimensions ν1,j and ν2,j for j = 1, . . . , 
; set n2 := ∑


j=1 ν2,j .

2) With Â partitioned as in (10.89) and Ê partitioned as in (10.90), perform the second stage
of the special reduction for Type II covers:

Set W = In, U = In and partition W and U in blocks analogous to Ê in (10.90).

for k = 
, 
 − 1, . . . , 1
Comment. Annihilate blocks E2k−1,2j , for j = k, k + 1, . . . , 
.
for j = k, k + 1, . . . , 


Compute W2k−1,2j such that W2k−1,2jE2j,2j + E2k−1,2j = 0.
A2k−1,i ← A2k−1,i + W2k−1,2jA2j,i, i = 2j − 2, 2j − 1, . . . , 2
 .
E2k−1,i ← E2k−1,i + W2k−1,2jE2j,i, i = 2j, 2j + 1, . . . , 2
 .
W2k−1,i ← W2k−1,i + W2k−1,2jW2j,i, i = 1, 2, . . . , 2
 .

end
if k > 1 then

Comment. Annihilate blocks A2k−1,2j , for j = k − 1, k, . . . , 
.
for j = k − 1, k, . . . , 


Compute U2k−3,2j such that A2k−1,2k−3U2k−3,2j + A2k−1,2j = 0.
Ai,2j ← Ai,2j + Ai,2k−3U2k−3,2j , i = 1, 2, . . . , 2k − 1 .
Ei,2j ← Ei,2j + Ei,2k−3U2k−3,2j , i = 1, 2, . . . , 2k − 3 .
C2j ← C2j + C2k−3U2k−3,2j .
Ui,2j ← Ui,2j + Ui,2k−3U2k−3,2j , i = 1, 2, . . . , 2
 .

end
end if

end

Denote Ã − λẼ = WÂU − λWÊU, [ B̃2 B̃1 ] = W [ B̂2 B̂1 ], C̃ = ĈU.
3) Compute F̃ = [ 0 F2 · · · F2
−2 0 F2
 0 ], where F2j are such that A1,−1F2j +

A1,2j = 0 for j = 1, . . . , 
; compute G such that A1,−1G + A1,0 = 0.
4) With P in (10.110), compute Ă−λĔ=P(̃A+B̃2F̃−λẼ)PT , B̆1=P(̃B1+B̃2G),

C̆ = (C̃ + D2F̃)PT , D̆1 = D1 + D2G and F̆ = F̃PT .
5) Set X̃1(λ) = (

Ă(1 :n2, 1 :n2) − λĔ(1 :n2, 1 :n2), B̆1(1 :n2, :), C̆(:, 1 :n2), D̆1
)

and Y(λ) = (
Ă(1 :n2, 1 :n2) − λĔ(1 :n2, 1 :n2), B̆1(1 :n2, :), F̆(:, 1 :n2),G

)
.

The numerical properties of Procedure GRMCOVER2 are the same as those of
Procedure GRMCOVER1, which are discussed in Sect. 10.4.2.
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10.4.4 Minimal Realization Using Balancing Techniques

The aim of the algorithm presented in this section is to determine minimal order
realizations of stable systems in a descriptor state-space form, by exploiting the
concept of balanced realization. For a balanced realization, the controllability and
observability properties are perfectly equilibrated. This is expressed by the fact that
the controllability and observability gramians are equal and diagonal. The eigenval-
ues of the gramian of a balanced system are called the Hankel singular values. The
largest singular value represents the Hankel norm of the corresponding TFM of the
system, while the smallest one can be interpreted as a measure of the nearness of
the system to a non-minimal one. Important applications of balanced realizations
are to ensure minimum sensitivity to roundoff errors of real-time filter models or
to perform model order reduction, by reducing large order models to lower order
approximations. The order reduction can be performed by simply truncating the sys-
tem state to a part corresponding to the “large” singular values, which significantly
exceed the rest of “small” singular values. In what follows we present a procedure
to compute minimal balanced realizations of stable descriptor systems. This proce-
dure is instrumental in solving the Nehari approximation problem (see Procedure
GNEHARI in Sect. 10.4.5).

For a stable state-space system (A − λE,B,C,D) with E invertible, the con-
trollability gramian P and observability gramian Q satisfy appropriate generalized
Lyapunov equations. In the continuous-time case P and Q satisfy

APET + EPAT + BBT = 0 ,

ATQE + ETQA + CTC = 0 ,
(10.112)

while in the discrete-time case

APAT − EPET + BBT = 0 ,

ATQA − ETQE + CTC = 0 .
(10.113)

Since for a stable system both gramians P and Q are positive semi-definite matri-
ces, in many applications it is advantageous to determine these matrices directly
in (Cholesky) factored forms as P = SST and Q = RTR, where both S and R can
be chosen upper triangular matrices. Algorithms to compute directly these factors
have been proposed in [59] for standard systems (i.e., with E = I) and extended to
descriptor systems in [102]. The following minimal realization procedure proposed
in [113] extends to descriptor systems the algorithms proposed in [114] for standard
systems. This procedure determines for a stable system (A − λE,B,C,D) the mini-
mal balanced realization (̃A − λI, B̃, C̃,D) and the corresponding balanced diagonal
gramian matrix Σ̃ . The nonzero Hankel singular values are the decreasingly ordered
diagonal elements of Σ̃ and the largest Hankel singular value is ‖G(λ)‖H , the Hankel
norm of the corresponding TFM G(λ) = C(λE − A)−1B + D.
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Procedure GBALMR: Balanced minimal realization of stable systems
Input : (A − λE,B,C,D) such that Λ(A,E) ⊂ Cs
Outputs: Minimal realization (̃A, B̃, C̃,D), Σ̃

1) Compute the upper triangular factors S and R such that P = SST and Q = RTR satisfy
the appropriate Lyapunov equations (10.112) or (10.113), in accordance with the system
type, continuous- or discrete-time.

2) Compute the singular value decomposition

RES = [
U1 U2

]
[

Σ̃ 0
0 0

] [
VT
1

VT
2

]
,

where Σ̃ > 0.
3) With the projection matrices Tl = Σ̃−1/2UT

1 R and Tr = SV1Σ̃−1/2, compute the
matrices of the minimal realization (̃A, B̃, C̃,D) with

Ã = TlATr, B̃ = TlB, C̃ = CTr .

Remark 10.10 The projection matrices satisfy TlETr = I and for a minimal stan-
dard system (A,B,C,D) we have Tl = T−1

r . The reduction of a linear state-space
model to a balanced minimal realization may involve the usage of ill-conditioned
transformations (or projections) for systems which are nearly non-minimal or nearly
unstable. This is why, for the computation of minimal realizations, the so-called
balancing-free approaches, as proposed in [126] for standard systems and in [113]
for descriptor systems, are generally more accurate. In this case, we can avoid
any inversion using at Step 3) the projection matrices Tl = UT

1 R and Tr = SV1

to obtain the descriptor minimal realization (̃A − λẼ, B̃, C̃,D) with the invertible
Ẽ = TlETr . �

10.4.5 Solution of Nehari Problems

In this section we consider the solution of the following optimal Nehari problem:
Given R(λ) such that R∼(λ) ∈ H∞, find a Y(λ) ∈ H∞ which is the closest to R(λ)

and satisfies
‖R(λ) − Y(λ)‖∞ = ‖R∼(λ)‖H . (10.114)

This computation is encountered in the solution of the AMMP formulated in
Sect. 9.1.10. As shown in [51], to solve the Nehari problem (10.114), we can solve
instead for Y∼(λ) the optimal zeroth-order Hankel-norm approximation problem

‖R∼(λ) − Y∼(λ)‖∞ = ‖R∼(λ)‖H . (10.115)

In what follows, we only give a solution procedure for the solution of (10.114) in the
continuous-time setting. The corresponding procedure for discrete-time systems is

http://dx.doi.org/10.1007/978-3-319-51559-5_9
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muchmore involved (see [58]) and thereforeweprefer the approachbasedon employ-
ing a bilinear transformation as suggested in [51]. To solve the continuous-time
Nehari problem (10.114), we solve the optimal zeroth-order Hankel-norm approxi-
mation problem to determine Y(−s) such that

‖R(−s) − Y(−s)‖∞ = ‖R∼(s) − Y∼(s)‖∞ = ‖R∼(s)‖H . (10.116)

The following procedure is a straightforward adaptation of the general Hankel-
norm approximation procedure proposed in [51] and [108] for square R(λ)with poles
only inCu. Assuming (A − λE,B,C,D) is a state-space realization ofR(λ) (not nec-
essarily minimal), this procedure computes the optimal stable Nehari approximation
Y(λ) = (̃A − λẼ, B̃, C̃, D̃).

Procedure GNEHARI: Generalized optimal Nehari approximation
Input : R(λ) = (A − λE,B,C,D)

Output: Y(λ) = (̃A − λẼ, B̃, C̃, D̃) such that ‖R(λ) − Y(λ)‖∞ = ‖R∼(λ)‖H .
1) For a discrete-time system employ the bilinear transformation z = 1+s

1−s :

(E,A,B,C,D) ← (E + A,A − E,
√
2B,

√
2C(E + A)−1E,D − C(E + A)−1B) .

2) Compute using the Procedure GBALMR the balanced minimal realization
(̂A, B̂, Ĉ,D) of the system (−A − sE,−B,C,D) and the corresponding
diagonal Gramian Σ̂ of the balanced system satisfying ÂΣ̂ + Σ̂ÂT +
B̂B̂T = 0 and ÂT Σ̂ + Σ̂Â + ĈT Ĉ = 0.

3) Partition Σ̂ in the form Σ̂ = diag(σ1I, Σ̂2), such that Σ̂2 − σ1I < 0 and
partition Â, B̂ and Ĉ conformably with Σ̂ , as

Â =
[
Â11 Â12

Â21 Â22

]
, B̂ =

[
B̂1

B̂2

]
, Ĉ = [

Ĉ1 Ĉ2
] ;

compute an orthogonal U such that UB̂T
1 = −Ĉ1.

4) Compute the descriptor system realization (̃A − λẼ, B̃, C̃, D̃) of Y(s) as

Ẽ = Σ̂2
2 − σ 2

1 I ,

Ã = −(σ 2
1 Â22 + Σ̂2Â22Σ̂2 − σ1ĈT

2 UB̂T
2 ) ,

B̃ = −(Σ2B̂2 + σ1ĈT
2 U) ,

C̃ = Ĉ2Σ2 + σ1UB̂T
2 ,

D̃ = D − σ1U .

5) For a discrete-time system employ the bilinear transformation s = z−1
z+1 :

(Ẽ, Ã, B̃, C̃, D̃)←(Ẽ − Ã, Ã + Ẽ,
√
2B̃,

√
2C̃(Ẽ − Ã)−1Ẽ, D̃ + C̃(Ẽ − Ã)−1B̃) .
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Remark 10.11 If R(λ) is not square, then the Procedure GNEHARI can be applied
to an augmented square Ra(λ) formed by adding a sufficient number of zero rows or
columns to R(λ). From the resulting solution Ya(λ) we obtain the solution Y(λ) of
the original Nehari problem by removing the rows or columns corresponding to the
added zero rows or columns in Ra(λ). �

10.5 Numerical Software

Several basic requirements are desirable when implementing software tools for the
numerical algorithms discussed in this book. These requirements are

• employing exclusively numerically stable or numerically reliable algorithms;
• ensuring high computational efficiency;
• enforcing robustness against numerical exceptions (overflows, underflows) and
poorly scaled data;

• ensuring ease-of-use, high portability and high reusability.

The above requirements have been used for the development of high-performance
linear algebra software libraries, such as BLAS, a collection of basic linear algebra
subroutines and LAPACK, a comprehensive linear algebra package based on BLAS.
These requirements have been also adopted to implement SLICOT, a subroutine
library for control theory, based primarily on BLAS and LAPACK. The general-
purpose library LAPACK contains over 1300 subroutines and covers most of the
basic linear algebra computations for solving systems of linear equations and eigen-
value problems. The specialized library SLICOT1 contains over 500 subroutines and
covers the basic computational problems for the analysis and design of linear con-
trol systems. Among the covered problems we mention linear system analysis and
synthesis, filtering, identification, solution of matrix equations, model reduction and
system transformations. Of special interest for this book is the comprehensive col-
lection of routines for handling descriptor systems and for solving generalized linear
matrix equations, as well as the routines for computing Kronecker-like forms. The
subroutine librariesBLAS,LAPACKandSLICOThave been originally implemented
in the general-purpose language Fortran 77 and, therefore, provide a high level of
reusability, which allows their easy incorporation in user-friendly software envi-
ronments as—for example, MATLAB. In the case of MATLAB, selected LAPACK
routines underlie the linear algebra functionalities,while the incorporation of selected
SLICOT routines was possible via suitable gateways, as the provided mex-function
interface.

In what follows, we succinctly describe available software tools in the MATLAB
environment, which implement the numerically reliable algorithms discussed in this

1The SLICOT software library is freely available from http://www.slicot.org/. The version 4.5 is
a free software distributed under the GNU General Public Licence (GPL), while the substantially
enriched Release 5.0 is free for academic and non-commercial use.

http://www.slicot.org/
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Table 10.1 SLICOT-based mex-functions

Function Description

sl_gstra Generalized system similarity transformations

sl_klf Kronecker-like forms

sl_glme Generalized linear matrix equations

sl_gzero Generalized system zeros and Kronecker structure

sl_gminr Generalized minimal realization

sl_gsep Generalized additive decompositions

book. First, we have to mention that the basic computational needs to implement
the synthesis procedures presented in Chaps. 5 and 6 are covered by the functions
of the Descriptor Systems Toolbox2 for MATLAB. This toolbox is a proprietary
software, developed by the author in the period 1997–2006 at the German Aerospace
Center (DLR). TheDescriptor Systems Toolbox underlies the implementation of
the Fault Detection Toolbox, developed by the author between 2005–2011 at
DLR.3

To facilitate the implementation of the synthesis procedures described in this book,
a new collection of freely available m-functions, called the Descriptor System
Tools, has been implemented by the author. The basic numerical linear algebra
support for the implementation of this collection is provided by several LAPACK-
based core functions of MATLAB, such as svd, qr, schur, ordschur, qz,
ordqz, jointly with a set of mex-functions based on SLICOT subroutines. These
mex-functions are listed in Table10.1 and implement numerically reliable algorithms
with special focus on descriptor system-related computations. These algorithms are
described in this chapter and also underlie the implementations of the m-functions,
which form the collection of Descriptor System Tools. The functions of this
collection, which are used in this book, are listed in Table10.2.

The functions implemented in the collectionDescriptor System Tools use the
object-oriented approach provided by the Control Toolbox of MATLAB to handle
LTI systems in descriptor system representation. Among the called computational
functions, we mention care and dare for solving generalized continuous-time and
discrete-time algebraic Riccati equations, respectively; norm for computing system
norms; minreal to enforce pole–zero cancellations in TFMs; as well as functions
for systems coupling, inversion, conjugation, etc.

Several of implemented high-level descriptor systemsm-functions can be seen as
extensions of similar functions provided in the standard Control System Toolbox
of MATLAB. These are gpole, to compute system poles; gzero, to compute
system zeros; gir, to compute irreducible realizations; and gminreal, to compute
minimal realizations. The functionality of these functions is however richer than that
of their counterparts from the Control System Toolbox, such as pole, zero, or

2Software distributed by SYNOPTIO GmbH, http://synmath.synoptio.de/en/.
3This proprietary software is not distributed outside of DLR.

http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_6
http://synmath.synoptio.de/en/
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Table 10.2 Functions of the Descriptor System Tools collection used in this book

Function Description

gpole System poles and infinite pole structure

gzero System zeros and Kronecker structure of system pencil

gir Generalized irreducible realization

gss2ss Conversion to standard state-space representation

gminreal Generalized minimal realization

gsorsf Specially ordered generalized real Schur form

gklf Generalized Kronecker-like form

glnull Minimal rational left nullspace basis

gsdec Generalized additive spectral decomposition

glcf Generalized left coprime factorization

grcf Generalized right coprime factorization

glcfid Generalized left coprime factorization with inner denominator

grcfid Generalized right coprime factorization with inner denominator

giofac Generalized inner–outer factorization

goifac Generalized co-outer–co-inner factorization

glsol Solution of the linear rational equation X(λ)G(λ) = F(λ)

grsol Solution of the linear rational equation G(λ)X(λ) = F(λ)

glmcover1 Left minimum dynamic cover of Type-1 based order reduction of proper systems

grmcover1 Right minimum dynamic cover of Type-1 based order reduction of proper systems

glmcover2 Left minimum dynamic cover of Type-2 based order reduction of proper systems

grmcover2 Right minimum dynamic cover of Type-2 based order reduction of proper systems

gbalmr Balanced minimal realization of stable generalized systems

ghanorm Hankel norm of a proper and stable generalized system

gnehari Generalized optimal Nehari approximation

glsfg Generalized left spectral factorization of γ 2I − G(λ)G∼(λ)

glinfldp Solution of the L∞ least distance problem min ‖F1(λ) − X(λ) F2(λ) ‖∞
gsfstab Generalized state feedback stabilization

minreal. For example,gpole computes both the finite and infinite poles (counting
multiplicities), while pole only computes the finite poles. The function gzero
computes both the finite and infinite zeros (counting multiplicities) as well as the
Kronecker structural invariants of the system pencil, while zero only computes the
finite zeros. Finally, the functions gir and gminreal are applicable to a descriptor
system model (A − λE,B,C,D) regardless E is singular or nonsingular. In contrast,
the function minreal can be used only for systems with invertible E (because of
the need to explicitly invert E).

Several functions implementing some of the analysis and synthesis procedures
presented in Chap.5 are provided as examples of prototype implementations of ded-
icated FDI-related software. The three functions listed in Table10.3 are part of a

http://dx.doi.org/10.1007/978-3-319-51559-5_5
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Table 10.3 Functions in the FDI Tools collection

Function Description

genspec Generation of achievable fault detection specifications

efdsyn Exact synthesis of fault detection filters

efdisyn Exact synthesis of fault detection and isolation filters

collection called FDI Tools (under development) and have been used in solving
the case-study examples addressed in Chap. 8.

The collectionsDescriptor System Tools and FDI Tools, together with the
m-files of the synthesis examples presented in the Chaps. 5 and 6 of this book are
available from the web address below.4

10.6 Notes and References

Section 10.1. The numerical linear algebra aspects related to the SVD, QR decom-
position, the real Schur and generalized real Schur decompositions are covered in
several textbooks, of which we mention the works of Stewart [112] and of Golub
and Van Loan [55]. The latter work, which also contains an up to date list of further
references, served for the estimation of the computational efforts in terms of the
required number of flops for the basic decompositions considered in Sect. 10.1. The
book [60] is a modern reference for roundoff error analysis of floating-point com-
putations. The computation of the controllability and observability staircase forms
for standard and descriptor systems using orthogonal similarity transformations is
addressed in [116]. The detailed algorithm underlying Procedure GCSF has been
proposed by the author in [125]. Algorithms for the computation of Kronecker-like
forms of linear pencils, using SVD-based rank determinations, and SVD-based row
and column compressions, have been proposed in [25, 115]. Albeit numerically
reliable, these algorithms have a computational complexity O(n4), where n is the
minimum of row or column dimensions of the pencil. More efficient algorithms
of complexity O(n3) have been proposed in [9, 95, 128], which rely on using QR
decompositions with column pivoting for rank determinations, and row and column
compressions. The Procedure PREDUCE is based on the method proposed in [95].

Section 10.2. For a complete coverage of the topic of this section see [110]. The
algorithms for the solution of linear matrix equations can be seen as extensions
of the Bartels–Stewart method proposed for the solution of the Sylvester equation
AX + BX = C in [5]. This algorithm employs the reduction ofA andB to RSFs and is
considered a numerically reliable method. Further enhancements of this method and
extensions to generalized Sylvester equations have been proposed in [54], where one
of matrices (that with larger size) is reduced to a Hessenberg form, while the other

4https://sites.google.com/site/andreasvargacontact/home/book/matlab.

http://dx.doi.org/10.1007/978-3-319-51559-5_8
http://dx.doi.org/10.1007/978-3-319-51559-5_5
http://dx.doi.org/10.1007/978-3-319-51559-5_6
https://sites.google.com/site/andreasvargacontact/home/book/matlab
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is reduced to the RSF. Detailed algorithms for the solution of generalized Sylvester
matrix equation are described in [47]. Similar algorithmswith obvious simplifications
can be employed to solve standard and generalized Lyapunov equations. An impor-
tant algorithm for the solution of Lyapunov equations having positive semi-definite
solutions has been proposed in [59], where the solution X ≥ 0 is directly determined
in aCholesky-factored formX = SST . The extension of this algorithm to solve gener-
alized Lyapunov equations has been proposed in [102]. The first numerically reliable
algorithm to solve standard Riccati equations is the Schur method proposed in [74].
Enhancements of this method to cover discrete-time problems with singular state
matrix followed in [100] and to address nearly singular problems in [85, 117]. In
all these methods, however, the underlying Hamiltonian or symplectic structure of
intervening matrix pencils is not exploited. Therefore, a new direction in develop-
ing algorithms for solving GCAREs and GDAREs are the structure exploiting and
structure preserving methods to compute eigendecompositions of the Hamiltonian
and symplectic pencils (see the book [85] and the recent survey [11]).

Section 10.3. The reliable numerical computation of irreducible realizations of
descriptor systems has been considered in [116]. The orthogonal reduction-based
algorithm to compute generalized controllability staircase forms, which underlies
Procedure GIR, has been proposed in [125]. The algorithm to compute a ratio-
nal nullspace basis of a rational matrix has been proposed in [132] and is related
to the approach proposed in [8] to compute polynomial basis using pencil reduc-
tion techniques. For the computation of system zeros, an algorithm based on the
Kronecker-like form has been proposed in [86]. The approach for the computation
of the additive spectral decomposition employed in Procedure GSDEC has been
proposed in [67]. The iterative pole dislocation techniques underlying the Procedure
GRCF and Procedure GRCFID have been developed in the spirit of the approach
described in [118] (see also [129]). Alternative, non-iterative approaches to com-
pute coprime factorizations with inner denominators have been proposed in [94, 96].
The methods presented in Sect. 10.3.6 to compute inner–outer factorizations of full
column rank rational matrices are particular versions of the general methods for
continuous-time systems proposed in [97] and for discrete-time systems proposed
in [94]. The formulas for the complementary inner factors have been derived in
[164]. The numerically reliable computational approach for solving linear rational
equations, presented in Sect. 10.3.7, has been proposed in [134].

Section 10.4. The algorithm underlying Procedure GSCSF to compute the spe-
cial controllability staircase form, employed in the methods to determine minimum
dynamic covers, is a particular instance of the descriptor controllability staircase algo-
rithm of [125]. This algorithm and the computational methods of minimal dynamic
covers have been developed in [136]. The minimal realization procedure, based on
balancing techniques, has been proposed in [126] for standard systems. The exten-
sion of these techniques to descriptor systems has been proposed in [113] and is
the basis of Procedure GBALMR. The state-space method for the solution of the
Nehari problem for continuous-time systems has been developed in [51].

Section 10.5. BLAS is a set of specifications for standard vector and matrix oper-
ations, which form the core of implementing numerical algebra algorithms. Three
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levels of abstraction served to define the functionality of BLAS. Level-1 BLAS
basically covers operations with and on vectors [75] and served for the implemen-
tation of the widely used linear algebra package LINPACK [35]. Level 2 BLAS for
matrix–vector operations [34] and Level-3 BLAS for matrix–matrix operations [33]
formed the basic layer for implementing the high-performance linear algebra pack-
age LAPACK [3]. This package, originally written in Fortran 77, has been designed
to run efficiently on a wide range of high-performance machines using the BLAS,
which can be optimized for each computing environment.Moreover, the use ofBLAS
makes the subroutines portable and efficient across a wide range of computers. The
technology for developing, testing and documenting LAPACK has been adopted by
the developers of SLICOT [12, 120]. The initial version of the Descriptor Sys-
tems Toolbox for MATLAB is described in [130] (see also [120]). The first version
of the Fault Detection Toolbox is described in [138], while the last version of
this toolbox is described in [148].
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coprime factorization, 283
coprime factorization with inner denom-
inator, 283
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finite controllability, 271
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finite observability, 271
finite stabilizable, 276
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infinite observability, 271
inverse, 277
irreducible realization, 271
linear rational matrix equation, 190
minimal nullspace basis, 280
minimal realization, 270, 271
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normal rank, 275
nullspace basis

minimal proper rational, 329
observability, 271
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proper, 275
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strongly detectable, 276
strongly stabilizable, 276
uncontrollable eigenvalue, 276, 312
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F
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co-outer–co-inner, 263, 289
extended, 263

fractional, 259

block-diagonal denominator, 260
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inner–outer, 263, 289
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extended, 263

left coprime (LCF), 72, 259
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with inner denominator, 260
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extended, 182, 263
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minimum-degree denominator, 259
with inner denominator, 188, 260

spectral, 264, 291
minimum-phase left, 187, 264
minimum-phase right, 264
stable left, 264, 291
stable minimum-phase left, 188, 291
stable minimum-phase right, 291
stable right, 264, 291

Fault detectability, 28, 31, 98
complete, 31, 32, 40, 74
complete, strong, 34, 36, 38, 75
strong, 33, 34

Fault detection and diagnosis (FDD), 27–55
fault detection, 28
fault detection and isolation, 29
fault estimation, 29
fault identification, 29
fault isolation, 28
strong fault isolation, 29
weak fault isolation, 29

Fault detection and isolation problem, 43–51
exact (EFDIP), 46, 48, 63, 93, 95, 98,
100, 108, 167, 205, 213, 228, 230
solvability, 46, 49, 94

exact (EFDIP) with strong isolability, 47,
110
solvability, 47, 94, 168

approximate (AFDIP), 47, 48, 54, 63,
101, 102, 104–106, 118, 167, 236
solvability, 47, 49, 102

Fault detection performance
detection bound, 52
detection time, 52
false alarm bound, 52

Fault detection problem, 44–46
exact (EFDP), 44, 45, 48, 77, 79, 81–83,
85, 86, 92, 95, 96, 105, 131, 162, 169,
171, 172, 174–176
parametric faults, 170
solvability, 44, 45, 47, 76, 167
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exact (EFDP) with strong detectability,
44
solvability, 45, 76, 168

approximate (AFDP), 45, 46, 53, 82–86,
88, 90, 92, 93, 101, 102, 105, 136, 139,
171, 174, 185, 187
solvability, 45, 83

Fault identification, 219
Fault isolability, 38, 41

strong, 40–42
strong block, 41
structure matrix, 39, 98

fault signature, 39
specification, 39

weak, 40
weak block, 41

Faults, 8
actuator, 9

loss of efficiency, 23
additive, 9
flight actuator, 11, 24, 202, 217

additive, 216, 217
disconnection, 24, 217
float-type, see disconnection
free-play, see disconnection
hard-over, see runaway
jamming, 217
lock-in-place, see jamming
loss of effectiveness, 24, 217
oscillatory, 217
parametric, 24, 217
runaway, 217
stall load, 24, 217

intermittent, 9
multiplicative, 9, 16
parametric, 9, 16
persistent, 9

abrupt, 9
incipient, 9

sensor, 9, 23
air data, 226

Faulty system model
actuator, 22
additive, 7, 9

input–output, 10
state-space, 10

multiple model, 7, 22
multiplicative, 7
parametric, 7, 22
physical, 7, 22
sensor, 22

FDD, see fault detection and diagnosis
FDI, see fault detection and isolation

I
Input observability, 33, 76, 83, 129

L
Linear fractional transformation (LFT)

upper LFT, 14
Linear pencils, 271–277

eigenvalues, 272
finite eigenvalues, 272
infinite eigenvalues, 272
Kronecker canonical form, 273
Kronecker indices, 274
strict equivalence, 271, 272
Weierstrass canonical form, 272

M
MATLAB, viii, 374

Descriptor System Tools, 375, 376
Descriptor Systems Toolbox, 375
FDI Tools, 377
Fault Detection Toolbox, 375
care, 375
dare, 375
efdisyn, 207, 213, 214, 230, 231
efdsyn, 82, 101
genspec, 205, 206, 213, 228
gir, 82, 91, 113, 122, 134, 145
glcf, 82, 91, 107, 113
glinfldp, 120, 122
glmcover1, 113, 120, 134
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glsol, 109
goifac, 91, 107, 120, 145
gpole, 91
grsol, 113
gss2ss, 113, 145
gzero, 113, 120
minreal, 91, 113, 375
norm, 375

Matrix decompositions, 299–311
QR decomposition, 303
RQ decomposition, 303
real Schur decomposition (RSD), 305
generalized real Schur decomposition
(GRSD), 307

singular value decomposition (SVD),
300

Matrix equation, 321–325
generalized algebraic Riccati

continuous-time (GCARE), 188,
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discrete-time (GDARE), 188, 189,
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generalized Lyapunov
continuous-time (GCLE), 321
discrete-time (GDLE), 321

generalized Sylvester (GSE), 321
generalized Sylvester system (GSSE),
322

Minimal basis
polynomial, 78, 254
proper rational, 162, 254, 329
simple, proper rational, 80, 254, 334

Model conditioning, 154
balancing, 155
scaling, 154

Model detectability, 60, 129
Model detection, 57–66
Model detection performance

detection bound, 65
false alarm bound, 65

Model detection problem, 63–64
exact (EMDP), 63, 130, 131, 134, 136,
138
solvability, 63, 64, 129

approximate (AMDP), 64, 136–138,
141, 144
solvability, 64, 136

Model-matching problem
exact (EMMP), 49, 49, 50, 51, 107, 108,
109, 110, 112, 171, 174, 189, 191, 265,
367
solvability, 49, 51, 107, 113, 115

exact fault estimation (EFEP), 49
solvability, 50, 107

approximate (AMMP), 51, 54, 113–115,
117, 118, 120, 171, 174, 185, 189, 192,
193, 195, 236, 291, 372
solvability, 51, 113, 168

approximate (AMMP), H2-norm, 114,
115, 117, 266
solvability, 267

approximate (AMMP), H∞-norm, 114,
115, 117, 118, 120, 266
solvability, 266

N
Nullspace

basis, 253
left, 72
minimal polynomial, left, 254
minimal proper rational, left, 162,

164, 166, 329

minimal rational, left, 280
stable minimal proper rational, left,

165
left, 72, 253
right, 253

P
Polynomial basis

irreducible, 254
minimal, 78, 253
row reduced, 254

Polynomial matrix
invariant polynomials, 256
normal rank, 256
Smith form, 256
unimodular, 252

R
Rational basis

minimal proper, 162, 254, 329
simple minimal proper, 80, 176, 254,
281, 334

Rational function
biproper, 251
improper, 251
poles, 255

finite, 255
infinite, 255

proper, 251
strictly proper, 251
zeros, 255

finite, 255
infinite, 255

Rational matrix, 249–269
additive decomposition, 258
biproper, 252
co-inner, 263
conjugate, 263
co-outer, 263
improper, 252
inner, 263
linear rational matrix equation, 189, 265
McMillan degree, 257
normal rank, 252
outer, 263
poles, 257

finite, 257
infinite, 257

proper, 252
quasi-co-outer, 263
quasi-outer, 263
Smith–McMillan form, 256
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strictly proper, 252
zeros, 257

finite, 257
infinite, 257

Residual evaluation, 54
Euclidean norm, 54
finite-time Euclidean norm, 54
Narendra filter, 54
sliding window Euclidean norm, 54

Residual generation
for fault detection and isolation, 30
for model detection, 59

Residual generator
implementation form, 30, 59
internal form, 30, 59

S
Structure matrix

achievable specifications, 98
procedure,GENSPEC, 40, 98, 167,

205, 206
fault signature, 39
specification, 39

SVD, see matrix decompositions
Synthesis approaches, 71–146

fault detection filter, 76–93
exact synthesis, 76–82
procedure, EFD, 78, 79–83, 89, 92,

95, 99, 100, 130, 162, 172, 180
approximate synthesis, 82–93
procedure, AFD, 89, 90, 93, 102,

103, 105, 106, 172, 180, 183–185, 189,
190

fault detection and isolation filter, 93–
122
exact synthesis, 93–101
procedure, EFDI, 95, 99, 100, 167,

205, 207, 211, 213–215, 228, 230, 231,
235, 238
approximate synthesis, 101–107

procedure, AFDI, 103, 104–106,
167, 236
exact model-matching, 107–113

procedure, EMM, 108, 109, 181,
191

procedure, EMMS, 110, 112, 117,
172, 181, 189
approximate model-matching, 113–

122
procedure AMMS, 117, 118–120,

122, 172, 181, 183–187, 189, 190, 192,
193, 195, 236

least order, 78, 171, 191
model detection filter, 146

exact synthesis, 129–136
procedure, EMD, 130, 132–134

approximate synthesis, 136–146
procedure, AMD, 141, 143, 144

nullspace method, 72, 127, 162

T
Threshold selection

fault detection, 51–56
model detection, 64–66

Transfer function, 250–251
anti-stable, 255
biproper, 251
exponential stability, 255
minimum-phase, 255
poles, 255

finite, 255
infinite, 255
stability degree, 255
stable, 255
unstable, 255

proper, 251
relative degree, 251
stable, 255
strictly proper, 251
zeros, 255

finite, 255
infinite, 255
minimum-phase, 255
non-minimum-phase, 255

Transfer function matrix (TFM), 249–269
additive decomposition, 258
biproper, 252
co-inner, 263
conjugate, 263
co-outer, 263
inner, 263
linear rational matrix equation, 189, 265
McMillan degree, 257
minimum-phase, 258
non-minimum-phase, 258
norm

H2-norm, 262
H∞-norm, 262
Hankel-norm, 263, 371

normal rank, 252
outer, 263
poles, 257

finite, 257
infinite, 257
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proper, 252
quasi-co-outer, 263
quasi-outer, 263
stable, 258
strictly proper, 252

unstable, 258

zeros, 257

finite, 257

infinite, 257
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