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Abstract How do humans control their actions and interactions with the physical
world? How do we learn to throw a ball or drink a glass of wine without spilling?
Compared to robots human dexterity remains astonishing, especially as slow neural
transmission and high levels of noise seem to plague the biological system. What
are human control strategies that skillfully navigate, overcome, and even exploit
these disadvantages? To gain insight we propose an approach that centers on how
task dynamics constrain and enable (inter-)actions. Agnostic about details of the
controller, we start with a physical model of the task that permits full understanding
of the solution space. Rendering the task in a virtual environment, we examine how
humans learn solutions that meet complex task demands. Central to numerous skills
is redundancy that allows exploration and exploitation of subsets of solutions. We
hypothesize that humans seek solutions that are stable to perturbations to make
their intrinsic noise matter less. With fewer corrections necessary, the system is
less afflicted by long delays in the feedback loop. Three experimental paradigms
exemplify our approach: throwing a ball to a target, rhythmic bouncing of a ball, and
carrying a complex object. For the throwing task, results show that actors are sensitive
to the error-tolerance afforded by the task. In rhythmic ball bouncing, subjects exploit
the dynamic stability of the paddle-ball system.Whenmanipulating a “glass ofwine”,
subjects learn strategies that make the hand-object interactions more predictable.
These findings set the stage for developing propositions about the controller: We
posit that complex actions are generated with dynamic primitives, modules with
attractor stability that are less sensitive to delays and noise in the neuro-mechanical
system.
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1 Introduction

Imagine a dancer, perhaps Rudolf Nureyev or Margaret Fonteyn, both legends in
classical ballet: we can only marvel at how they are in complete control of their
body, combining extraordinary flexibility and strength with technical difficulty and
elegance. And yet, I submit that Evgenia Kanaeva, two-times all-around Olympic
champion in rhythmic gymnastics, equals, if not surpasses their level of skill:Not only
does shemove her lithe bodywith perfection and grace, she also plays with numerous
objects: she throws, catches and bounces a ball, she rolls and swivels a hoop, and
sets a 6m-long ribbon into smooth spirals with the most exquisite movements of her
hands and fingers – and yes, sometimes also using her arms, shoulders, or her legs
and feet. Her magical actions and interactions with objects arguably represent the
pinnacle of human motor control.

How do humans act and interact with objects and tools? After all, tool use is
what gave humans their evolutionary advantage over other animals. In robotics,
manipulation of tools has clearly been one of the primary motivations to develop
robots, going back to the first industrial robots designed to automate repetitive tasks
such as placing parts or tightening screws. However, these actions lack the dexterity
that not only elite performers, but all healthy humans display. Opening a bottle of
wine with a corkscrew or eating escargot with a fork and tongs are skills that require
subtle interactions with complex tools and objects. How do humans control these
actions and interactions?

Research in motor neuroscience has only arrived at limited answers. To assure
experimental control and rigor, computational research has confined itself to sim-
ple laboratory tasks, most commonly reaching to a point target, while restricting
arm movements to two joints moving in the horizontal plane [57, 58]. Research on
sequence learning has typically been limited to finger presses evaluated with simple
discrete metrics of timing and serial errors [43, 81]. Grasping has been reduced to
isometric finger presses with predetermined contact points to analyze contact forces
[37, 82]. The obvious benefit of such simplifications is that the data are accessible
and tractable for testing theory-derived hypotheses. Over the past 20years, numerous
studies in computational neuroscience have embraced control-theoretical concepts,
such as Kalman filters [39], Bayesian multi-sensory integration [2, 80], and optimal
feedback control [74] to account for such experimentally controlled human data.
While advances have been made, nobody would deny that this approach encounters
challenges when the actions become more complex and realistic. This is particularly
problematic when actions are no longer free, as in reaching, but involve contact with
objects, ranging from pouring a glass of wine to moving the ribbon in gymnastics.
Needless to say, current state-of-the-art movements of robots are still a far cry from
those of Elena Kanaeva. Why do humans perform so much better, at least to date?
What can robotic control learn from human neuromotor control?
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1.1 The Paradox: Delays and Noise in the Human
Neuromotor System

A first look into the biological neuromotor control system reveals some puzzling
facts: information transmission in the human central nervous system is extremely
slow and also very noisy. Action potentials, the basic unit of information coding,
travel at a speed of approximately 100 m/s [32]; the shortest feedback loop is around
50 ms and reserved for startle reactions [35, 47]. When feedback is integral to more
meaningful responses, loop times of 200 ms and longer are a more realistic estimate.
In addition to such long delays, the biological neuromotor system displays noise and
fluctuations at all levels [13]. The biological system is an extremely complex non-
linear system with multiple levels of spatiotemporal scales, ranging from molecular
and cellular processes to motor units and muscle contractions, and to overt behavior.
Noise and fluctuations from all these levels manifest themselves at the behavioral
level as ubiquitous variability. For example, in simple rhythmic finger tapping even
trained musicians exhibit at least 5% variance of the period [19, 72]. In a discrete
throwing action, humans display a limit in timing resolution of 9 ms [8]. Such large
delays and high levels of noise pose extreme challenges for any control model. And
yet, humans are amazingly agile and dexterous.

While the human controller appears clearly inferior to robotic systems, the bio-
logical “hardware” with its compliant muscles and soft tissues defy any comparison
with the heavy actuators of robots. It seems highly likely that the dexterous hu-
man controller exploits these features. More recent developments in robotics have
produced actuators with variable compliance, such as hands or grippers made of soft
material [12] or actuators withmechanically adjustable series compliance [78]. How-
ever, the flexibility that comes with variable stiffness may also incur costs, such as
loss in precision or higher energy demands. How do humans combine their software
limitations and use their compliant and high-dimensional actuators to solve complex
task demands?

1.2 Intrinsic and Extrinsic Redundancy

The biological sensorimotor system has a large number of hierarchical levels with
high dimensionality on each level. One important consequence of this high dimen-
sionality is that it affords redundancy and thereby an infinite variety of ways a given
action can be performed. At the behavioral level, hammering a nail into a wooden
block can be achieved with multiple different arm trajectories and muscle activa-
tion patterns. The adage “repetitions without repetition” conveys that the ubiquitous
and ever-present fluctuations prevent any action to be the same as another one. Im-
portantly, this intrinsic redundancy faces an additional extrinsic redundancy that is
inherent to the task. Imagine dart throwing: the bull’s eye or the rings on the dart-
board allow a set of hits that achieve a given score. Further, orientation angle of
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the dart stuck on the board does not change the score. Hence, the task has extrinsic
redundancy that permits a manifold of solutions [68]. However, not all solutions are
equally suitable: some may not be biomechanically optimal, others may be risky,
yet others may have a lot of tolerance to error and noise. Examining human per-
formance may reveal how humans navigate the task’s redundancy and preferences
may give insight into the controller. Hence, a suitably constructed extrinsic redun-
dancy presents an important entry point into examining human control, strategies, or
objective functions.

1.3 An Agnostic Approach to Human Motor Control

Recognizing these challenges, our research has adopted an approach with minimal
assumptions about humanneuromotor control. Insteadof startingwith a hypothesized
controller and the plant, i.e., the brain and the musculo-skeletal system, connected
by forward and feedback loops transmitting motor and sensory signals, we take an
agnostic stance. We begin with what is known and can be analyzed: the physical task
that the actor performs. Under simplified conditions, very few assumptions need to
be made about the human controller.

This chapter will review this task-dynamic approach as it was developed in three
experimental paradigms that examine human interactive skills. These three skills
progress from the simple action of throwing a ball, to rhythmic intermittent bouncing
of a ball, to the continuous manipulation of a complex object, a cup with a rolling
ball inside, mimicking a cup of coffee – or a glass of wine. Mathematical analyses
and exemplary results will show that variability, stability and predictability matters
in human motor control. I will close with a still largely speculative hypothesis on
how the human control system generates such actions, a perspective that may be less
hampered by long delays and noise: control via dynamic primitives.

2 A Task-Dynamic Approach to Understanding
Control of Interactions

Using mathematical modeling and virtual technology we developed a task-dynamic
approach to study the acquisition and control of simple andmore complex interactive
skills. Following a brief outline of the methodological steps, three exemplary lines
of research will be reviewed with some selected results.
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2.1 Identifying a Motor Task

The important initial step is choosing a motor task that satisfies several desiderata:
First, it should represent a core aspect germane to many other tasks that is “inter-
esting” from a control perspective. Second, the motor task should have redundancy:
the well-defined goal should allow for a variety of solutions to achieve the task goal.
Third, the task should be novel and sufficiently challenging to require practice to
achieve success. The changes over practice provide an important lens to reveal how
humans navigate through the space of solutions. (Note this differs from studying
everyday behaviors, such as reaching or grasping, where only adaptations to novel
scenarios produce change.) Fourth, improvement should happen within one or few
experimental session(s), but should also allow for fine-tuning over a longer time
scale. These stages are likely to reveal processes underlying motor learning.

We selected and designed three tasks: The arguably simplest (inter-)active task
is to throw a ball to a target. While the ball only needs to be released, the size and
location of the target imposes constraints on the release that fully determine the
projectile’s trajectory and thereby the hitting accuracy. A next step in interaction is
to repeatedly contact the ball – such as in bouncing a ball rhythmically in the air.
This intermittent interaction extends the control demands, as the propelled object
needs to be intercepted again. Any error at one contact influences the subsequent
contact – these repeated interactions render the task a dynamic system. The third task
takes interactions one significant step further: motivated by the seemingly mundane
action of carrying a cup of coffee or glass of wine, we designed a simplified task that
exemplifies the continuous interaction with a complex object.

2.2 Mathematical Model of the Task

Once the core control challenge is identified, the task is modeled mathematically to
formalize and prune away irrelevant aspects of the real-life task. A simple physical
model also facilitates subsequent analyses of both model and human data. What
system captures the essential demands of ball release and permits a full analysis of
the solution space? What is the simplest intermittent dynamical system that lends
itself tomathematical analysis?What is the simplest physical system that captures the
continuous interaction between the human and a dynamically complex object? One
core element in ourmathematicalmodeling and analysis is the distinction between the
execution variables x and the result variables r: The result variable(s) are defined by
the task goal and the instruction to the subject andquantify the quality of performance.
This is typically an error measure, although this error measure can take many forms.
Execution variables are under control of the performer and determine the task result.
For the analysis it is important to identify all execution variables that fully determine
the result, in order to have an analytic or numerical understanding of the space of
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solutions. The functional relation between execution and result is the essence of the
model and analysis: r = f (x).

2.3 Mathematical Analysis and Derivation of Hypotheses

Based on the physical model, the space of all possible solutions to the task can be
derived. As the model system is typically nonlinear, the space of solutions may be
complex and subsets of solutionsmayhave additional properties, such as dynamic sta-
bility, risk, or predictability, as elaborated below. The model structure determines the
mathematical tools that can be used to derive predictions. Core to our task-dynamic
approach are analyses of stability, error sensitivity, or robustness to perturbations
and noise. Importantly, exact quantitative hypotheses can be formulated that define
those solutions with the greatest probability of success.

2.4 Implementation in a Virtual Environment

Based on the explicit mathematical model, the task is rendered in a virtual envi-
ronment that permits precise measurement of human execution and errors, i.e., the
execution and result variables. The execution variables are those that the subject con-
trols via interfacing with the virtual system. For example, while the subject performs
a throwing task, the real arm trajectory controls the ball release, but the ball and the
target are virtual. The virtual rendering has the advantage that it confines the task to
exactly the model variables and its known parameters. There are no uncontrolled as-
pects as would occur in a real experiment. Further, the parameters and result variables
can be freely manipulated to test hypotheses about human control strategies.

2.5 Measurement, Analysis, and Hypothesis Testing
of Human Performance

Subjects interact with the virtual physics of the task via manipulanda that simul-
taneously render the task dynamics and measure human performance strategies.
The measured execution variables and the task result are then evaluated against the
mathematical analysis of the solution space. The virtual environment affords easy
manipulation of the model, its parameters, and specific task goals. Hypotheses about
preferred solutions are derived from model analysis and can be evaluated based on
the human data. As shown below, the task can be parameterized to create interesting
task variations to contrast alternative control hypotheses.
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2.6 Interventions

Based on the findings, the controlled virtual environment can also be used to create
interventions that guide or shape behavior. This is significant for clinical applications,
where scientifically-grounded quantitative assessments and interventions are still
rare. While this review will focus on the basic science issues, some applications
to questions on motor control in children with dystonia or on interventions for the
elderly can be found in Sternad [60], Chu et al. [5], Hasson and Sternad [24].

3 Throwing a Ball to Hit a Skittle – Variability, Noise,
and Error-Tolerance

3.1 The Motor Task

This experimental paradigm was motivated by a ball game found in many pubs and
playgrounds around the world: The actor throws a ball that is tethered to a virtual
post by a string like a pendulum; the goal is to hit a target skittle (or skittles) on the
opposite side of the pole (Fig. 1a). Accurate throwing requires a controlled hand/ball
trajectory that prepares the ball release at exactly the right position with the right
velocity to send the ball onto a trajectory that knocks over the target skittle. The
practical advantage of this game is that the tethered ball cannot be lost and the
game can be played in a small space; the theoretical advantage is that the pendular
motions of the ball introduce “interesting” dynamics with a nonlinear solution space
including discontinuities that present challenges to trivial learning strategies such as
gradient descent. Importantly, the task has redundancy and thereby offers a manifold
of solutions with different properties.

Target

Ball

Center Post

2D Model

Error

C

PC

force 
sensor

optical
encoder

(a) (b) (c)

Fig. 1 The virtual throwing task. a Schematic of the real task. b The 2D model from a top-down
view. c The experimental set-up with force and position sensors for recording of human movement.
Measured movements are shown in real time on the screen (Reproduced from [68])
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3.2 The Model and Its Virtual Implementation

To simplify the three-dimensional task, the ball was confined to the horizontal plane,
eliminating the pendular elevation during excursion (Fig. 1b). In the model, the ball
is attached to two orthogonal, massless springs with its rest position at the center
post. In the virtual implementation, the actor views the workspace from above on
a backprojection screen (Fig. 1c). S/he throws the virtual ball by moving his/her
real arm in a manipulandum that measures the forearm rotations with an optical
encoder; thesemeasuredmovements are shownonline by a virtual lever arm (Fig. 1b).
Deflecting the ball from the rest position and throwing the ball with a given release
angle and velocity, the ball traverses an elliptic path generated by the restoring forces
of the two springs. The following equations describe the ball motion in the x − y
coordinates of the workspace:

(
x(t)
y(t)

)
=

(
xp
yp

)
cosωt +

(
cos φr − sinφr

− sinφr cos φr

) (
l cosωt
vr/ωt

)
(1)

ω denotes the natural frequency of the springs, (xp, yp) denotes the lever’s pivot
point, and l the length of the arm (Fig. 1b). Damping of the springs can be added;
asymmetric damping and also stiffness may be used to introduce a more complex
force field in the workspace. For a given throw, the two execution variables angle φr

and velocity vr of the virtual hand at ball release fully determine the ball trajectory
in the workspace x(t), y(t) (for more details see [7]).

The actor’s goal is to throw the ball to hit the target skittle, without hitting the
center post. The latter restriction eliminates simple ball releases with zero velocity.
Post hits are therefore penalized with a large fixed error. Otherwise, error is defined
as the minimum distance between the ball trajectory and the target center (Fig. 1b).
Thus, the result variable is the scalar error that is fully determined by φr and vr .
Importantly, there is more than one combination of φr and vr that leads to zero error,
i.e. the task has the simplest kind of redundancy: two variables map onto one. While
this low dimensionality permits easy visualization in 3D to develop intuitions, the
manifold of zero-error solutions can also be analytically derived and expressed in
implicit form:

vr
ω

=
∣∣(−l sinφr − yp

)
xt +

(
l cos φr + xp

)
yt

∣∣√(
l + cos φrxp + sinφryp

)2 − ( cos φrxt + sinφryt)
2

(2)

3.3 Geometry of the Solution Space

Figure 2 illustrates two different target constellations that generate two different
topologies of the result space [61]. Figure 2a, b show the top-down view of the
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Fig. 2 Two target constellations (a, b) and their corresponding result spaces (c, d). For each task,
three exemplary ball trajectories are shown which correspond to the three release points plotted
in the result spaces (green dots). White denotes zero-error solutions, increasing error is shown by
increasingly darker grey shades, black denotes a post hit. In both constellations, two ball trajectories
exemplify how different release variables can lead to the same result with zero error (1, 2, dashed
lines). Trajectory 3 shows a trajectory that does not intersect the target (Modified from [61])

workspace with the red circle representing the center post and the yellow circle the
target. The manipulandum is shown at the bottom with its angular coordinates. The
three elliptic trajectories are three exemplary ball trajectories with different release
angles and velocities. In both work spaces two ball trajectories (1, 2) go through the
target and have zero error, while one (3) has a non-zero error. Figure 2c, d show
the respective result spaces, spanned by release angle and velocity; error is depicted
by shades of gray, with lighter shades indicating smaller errors. White denotes the
zero-error solutions, or the solution manifold. Black signifies those releases that hit
the center post, which incur a penalty in the experiment. The three points are the ball
releases pertaining to the three ball trajectories above.

The two result spaces present several interesting features: In target constellation
(a) the solution manifold has a nonlinear J-shape that represents solutions over a
wide range of release velocities and angles. As indicated by the grey shades, the
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regions adjacent to the solution manifold have different gradients and the sensitivity
of the zero-error solution changes along the solution manifold. Further, the region
on the J-shaped manifold with the lowest sensitivity is directly adjacent to the black
penalty region. Hence, strategies with the lowest velocity were adjacent to penalized
post hits; this poses risk and a simple gradient descent may run into problems. In
target constellation (b) the zero-error solutions are independent of velocity and fully
specified by the release angle, as the solution manifold runs parallel to velocity. As
visible from color shading, low-velocity solutions have slightly less error tolerance
compared to high-velocity solutions and again transition directly into the penalty
region. Note that other target locations have yet different geometries of the solution
manifold creating different challenges to the performer [68].

3.4 Generating Hypotheses from Task Analysis

One study created two result spaces with different topologies to generate specific
predictions [61]. Given that humans have limited control accuracy due to the per-
vasive noise in their neuromotor system, we hypothesized that in such redundant
tasks humans seek solutions that are tolerant to their intrinsic noise and also to
extrinsic perturbations (Hypothesis 1). Such error-tolerant solutions have higher like-
lihood to be accurate and would therefore also obviate some error corrections. This
is advantageous as error corrections incur computational cost and, importantly, the
sensorimotor feedback loop suffers from the long delays in the human system. Note
that our definition of error tolerance differs from standard sensitivity analyses that
assess local sensitivity in a linearized neighborhood. As humans make relatively
large errors and the topology is highly nonlinear, we calculated error tolerance as the
average error over an extended neighborhood around a chosen solution; this neigh-
borhood is defined by the individual’s variability. An alternative hypothesis was that
humans select strategies that minimize velocity at release to avoid costs associated
with higher effort or signal-dependent noise (Hypothesis 2). There is much evidence
that movements at slow velocities are preferred, as higher speed tends to decrease
accuracy (speed-accuracy trade-off) [16, 17, 42]. This observation concurs with the
information-theoretical expectation that noise increases with signal strength. In mo-
tor control, signal strength is typically equated with firing rate of action potentials,
i.e. force magnitude in the isometric case or, in the dynamic case, movement velocity
or acceleration. A third hypothesis discussed in the human motor control literature
is that risk is avoided, and participants stay at a distance from the penalty area
(Hypothesis 3) [6, 40, 48].

3.5 Error Tolerance Over Minimizing Velocity and Risk

Nine participants practiced 540 and 900 throws with Task (a) and (b), respectively.
Figure 3 illustrates the predictions as computed forHypothesis 1 and 2 in the top two



Human Control of Interactions with Objects – Variability … 311

-150
0

150
0

500

1000
0

100

Angle (deg)

Velocity (deg/s)-150
0

150
0

500

1000
0

100

Angle (deg)

Velocity (deg/s)

-150
0

150

0

500

1000
0

100

Angle (deg)

Velocity (deg/s)-150
0

150
0

500

1000
0

100

Angle (deg)

Velocity (deg/s)

-150
0

150
0

500

1000
0

100

Angle (deg)

Velocity (deg/s)

-150
0

150
0

500

1000
0

100

Angle (deg)

Velocity (deg/s)

E(R)
(%max)

E(R)
(%max) E(R)

(%max)

E(R)
(%max)

E(R)
(%max)

Frequency
(%)

Frequency
(%)

0

50

100

Fig. 3 Hypotheses and experimental results for two task a (left column) and task b (right column).
The top row shows the expected results, E(R) forHypothesis 1:Maximizing error tolerance; the sec-
ond row shows simulated predictions for Hypothesis 2: Minimizing velocity and signal-dependent
noise. The expected result E(R) was computed as average error over a neighborhood scaled by a
softmax function (for details see [61]). The peaks highlighted by the red circles denote the expected
solutions. The third row shows the data as histograms plotted over the result spaces to compare
against the predicted solutions (Modified from [61])
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rows. Error tolerance was quantified as the expected error or result E(R) over a neigh-
borhood around each strategy, simulating that human strategies are noisy: it was then
by a softmax function. For Hypothesis 2, expected velocity was computed over the
same neighborhood, again scaled by a softmax function. The solutions that are most
error-tolerant and those with lowest velocity are indicated by red circles in themiddle
panels. Examining all throws after removing the initial transients, the bottom panels
show the histograms of all subjects’ releases in both result spaces (from Fig. 2c, d).
In Task (a) the data distribution clustered along the solution manifold at low veloc-
ities and close to the discontinuity. The mode at angle 236 deg and velocity 136
deg/s was close to the maximally error-tolerant point as predicted by Hypothesis 1.
However, the solutions also had relatively low velocity, which was consistent with
Hypothesis 2. These two benefits seemed to outweigh that these solutions were close
to the high-penalty area, i.e. risky strategies were not avoided, counter toHypothesis
3. Task (b) was designed to dissociate Hypotheses 1 and 2. The histograms on the
right panel illustrate that the data were distributed across a large range of velocities
between 140 and 880 deg/s, with the mode of the data distribution at 544 deg/s, al-
though individual preferences were more clustered on the velocity axes. The fact that
individuals chose solutions over a wide range of velocities, without a specific prefer-
ence for low-velocity or the high-tolerance point was at first sight inconsistent with
both Hypotheses 1 and 2. However, in further analyses the observed variability of
each individualwas regressed against release velocity, which revealed that variability
did not increase at higher velocities, as would be expected from Hypothesis 2. In-
stead, these analyses showed that strategies were better explained by error-tolerance,
consistent with Hypothesis 1 (for details see [61]).

Taken together, this first study showedhowa task analysis can generate predictions
that permit direct tests based on human data. The conclusion from this study is that
humans seek out error-tolerant strategies, i.e., thosewhere variability at the execution
level has minimal detrimental effect on the result. As these strategies attenuate noise
effects on the result, fewer errors occur that in turn require fewer corrections to stay
on target. This not only reduces computations but also diminishes the negative effect
that delays may cause.

3.6 Tolerance, Covariation, and Noise

Increasing error-tolerance is only one of three avenues to deal with unavoidable
variability in execution. Two more, conceptually different avenues exist for how
variability can be transformed to lessen its effect on the task result. Figure 4 illustrates
this notion with data from a representative subject who practiced the same throwing
task for 15days, 240 throws per day [7]. The geometry of the result space shows a
U-shaped solution manifold due to a different target constellation. The broad scatter
of the data onDay1 reflects initial exploratory attemptswith inferior results compared
to those after some practice. Most visibly, on Day 6 the data not only translated to a
location on the solution manifold with more error-tolerance (shown as a wider band
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Fig. 4 Data from an
exemplary subject who
practiced the throwing task
for 15days. The initially
broad scatter translated to a
more error-tolerant strategy,
rotated to covary with the
solution manifold (white)
and scaled of reduced the
amplitude of dispersion over
the course of practice
(Modified from Cohen and
Sternad [7])
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of white), but the observed variability also started to covary with the direction of
the solution manifold, while overall variability was only moderately reduced. The
distribution on Day 15 clearly reveals a third transformation: the overall dispersion
was significantly reduced or scaled, over and above the further enhanced covariation.
These three data transformations, corresponding to the matrix transformations of
translation, rotation, and scaling, were numerically quantified from individual data
distributions as costs: The average result of a given data set could be improved by
1.2cmonDay 1, if it were translated to the optimal location. The difference in average
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result from actual to optimal renders Tolerance-cost. If the actual data were rotated
or permuted optimally, the difference in result with the real data would quantify
Covariation-cost. If the real data distribution was scaled or its noise was reduced
optimally, the difference between initial and optimal data quantifies Noise-cost. The
parallel, but differential evolution of the three costs was shown in Cohen and Sternad
[7].

3.7 Covariation, Sensitivity to Geometry of Result Space
in Trial-by-Trial Learning

A separate study specifically focused on covariation and examined not only the dis-
tributions of the data, but also their temporal evolution to assess whether subjects’
trial-by-trial updateswere sensitive to the direction of the solutionmanifold [1]. Three
detailed hypotheses guided our experimental evaluation: Hypothesis 1: Humans are
sensitive to the direction of the solution manifold, which is reflected in preferred
directions of their trial-to-trial updates. Hypothesis 2: This direction-sensitivity be-
comesmore pronouncedwith practice.Hypothesis 3: The distributional and temporal
structure is oriented in directions orthogonal and parallel to the solution manifold.
Note that sensitivity to the directions of the null space is also core to several other
approaches, which employ covariance-based analyses that linearize around the point
of interest using standard null space analysis [10, 55]. In contrast to our approach,
those analyses do not exploit the entire nonlinear geometry of the result space.

Thirteen subjects practiced for 6days throwing to the same target as above, with
240 throws per day (4 blocks of 60 trials). To assess the distribution and also trial-
to-trial evolution, each block of 60 throws was examined as illustrated in Fig. 5a.
To assess whether the trial-to-trial changes had a directional preference, the 60 data
pointswere projected onto lines through the center of the data set (red lines in Fig. 5a).
The center was typically on or was close to the solution manifold. The direction
parallel to the solution manifold was defined as θpar , the direction orthogonal to the
solution manifold was defined as θort . The black horizontal line in Fig. 5a defines
the direction of θ = 0 deg. The time series of the projected data was then analyzed
using autocorrelation and Detrended Fluctuation Analysis (DFA).

This line was then rotated through 0 < θ < π rad, in 100 steps, with its pivot
at the center of the data. At each rotation angle θ , the data were projected onto the
line and time series analyses conducted. We expected that in directions orthogonal
to the solution manifold θort successive trials show negative lag-1 autocorrelation,
reflecting error corrections; in the parallel direction θpar correctionwas not necessary,
as deviations have no effect on the task result. Note that the result space is spanned
by angle and velocity, i.e. with different units; hence, both axes had to be normalized
to each individual’s variance to ensure orthogonality and a metric.

Figure 5b shows two time series of projected data from those directions that
rendered maximum and minimum autocorrelation. Note the visible difference in
temporal structure, reflecting that direction in the result space does matter. Plotting
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Fig. 5 aResult spacewith solutionmanifold (green),with angle andvelocity normalized to variabil-
ity of each individual. Red lines denote directions parallel and orthogonal to the solution manifold.
The black line denotes = 0 rad. Data are projected onto lines between 0 < θ < π rad and autocor-
relations are computed for each projection. b Time series of projected data where autocorrelation
was at a minimum and a maximum. Note that these directions do not necessarily correspond to
parallel and orthogonal directions (Reproduced from [1])

the results of the lag-1 autocorrelations across angle of the projection in Fig. 6 reveals
a marked modulation: The red lines (with variance across subjects shown by shaded
bands) show autocorrelation values for each rotation angle. The modulation supports
Hypothesis 1 that trial-by-trial updates are sensitive to the angle, and implicitly, the
direction of the solution manifold. The green vertical lines denote the orthogonal
and parallel directions of the solution manifold. The minima and maxima of the
autocorrelation values are indicated by triangles. Consistent with Hypothesis 2, the
modulation gets more pronounced across the three practice blocks, expressing that
after the initial stage, trial-to-trial dynamics becamemore directionally sensitive. The
structure in the orthogonal direction changed from initially positive autocorrelations
to white noise and eventually very small negative values [1].
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Fig. 6 Autocorrelation of time series of projected data in all directions in result space. The mod-
ulation across directions becomes more pronounced with practice, expressing increased sensitivity
to the geometry of the result space. Note that while the extrema are close to the directions of the
solution manifold (SMpar and SMort) they are not coincident (Modified from [1])

3.8 Orthogonality and Sensitivity to Coordinates

This analysis also revealed important discrepancies to Hypothesis 3. The directions
of minimum and maximum autocorrelation were near, but not coincident with the
orthogonal and parallel directions, as hypothesized. This finding alerts to an
important issue: orthogonality is sensitively dependent on the chosen variables. In
the present case, the original physical variables, angle and velocity, had different
units and required normalization. While technically correct, it raises the question
whether these units accurately reflect the units of the central nervous system. One
important caveat for this and related approaches is that the structure of variability is
fundamentally sensitive to the chosen coordinates.

This fact was highlighted in a separate study, which showed that this sensitiv-
ity is particularly pertinent for covariance-based analyses [69]. Even simple lin-
ear transformations can critically alter the results, as demonstrated by a simulation
that examined 2-joint pointing movements to a target line in the horizontal plane.
Given the univariate error measure, distance to the line, the mapping between error
and bivariate joint angles was redundant. Analysis of variability of error as a func-
tion of joint angles, revealed that the anisotropy of the data distribution depends on
the definition of joint angles: relative angles or absolute angles with reference to the
shoulder. While covariance-based analysis of anisotropy of data is dependent on the
coordinates, we also demonstrated that our analysis of error tolerance, covariation
and noise is significantly less sensitive, as it projects the execution variables into
the result space. Nevertheless, these critical questions open an interesting avenue
for conceptually deeper questions: What are the coordinates of the nervous system?
What is the appropriate metric? What is the best or most suitable representation of
the problem? While data may be dependent on the coordinates, can data be used to
reversely shed light on the coordinates that the nervous system uses?

To pursue these questions, the study by Abe and Sternad further examined how
a rescaling of the execution variables in a simple model of task performance with
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similar redundancy may reproduce these deviations [1]. While this revealed possi-
ble sources for these observations, much more work is needed. For example, scal-
ing noise in different execution variables or sensory signals might also give rise to
such “deviations”. These are clearly important issues for understanding biological
movement control, and possibly also worth reflection when designing control in
robotic systems.

3.9 Interim Summary

The throwing skill illustrated our model-based approach and its opportunities to
shed light on human control. The findings showed that humans choose strategies that
obviated the potentially detrimental effects of intrinsic noise. With less noise and
variability, less error corrections are needed. Error corrections are not only compu-
tationally costly, they are also hampered by the slow transmission speed in biologi-
cal systems. Are similar strategies also possible in different tasks, especially when
interacting with an object?

4 Rhythmic Bouncing of a Ball – Dynamic Stability
in Intermittent Interactions

4.1 The Motor Task

Rhythmically bouncing a ball on a racket is a playful and seemingly simple task. Yet,
it requires a high degree of visually-guided coordination to intercept the ball at the
right position and with the right velocity to reach a target amplitude and perform in
a rhythmic fashion (Fig. 7a–c). As in the throwing task, success is determined at one
critical moment when the racket intercepts the ball, as this impact fully determines
its amplitude. Hence, the core challenge of this task is the control of collisions, a
feature germane to numerous other behaviors, ranging from controlling foot-ground
impact in running to playing the drums. One key difference to throwing is that these
impacts are performed in a repeated fashion, and errors from one contact propagate
to the next. Hence, the actor becomes part of a hybrid dynamical system combining
discrete and continuous dynamics [11, 44, 46, 53].

4.2 The Model

The physical model for this task is again an extremely simple dynamical system,
originally developed for a particle bouncing on a vibrating surface [21, 75]. The
model consists of a planar surface moving sinusoidally in the vertical direction; a
point mass moving in the gravitational field impacts the surface with instantaneous
contact (Fig. 7b). The vertical position of the ball xb between the kth and the k + 1th
racket-ball impact follows ballistic flight:
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Fig. 7 Bouncing a ball with a racket. a The real task. b The physical and mathematical model.
c Simulated time series assuming invariant sine waves of the racket. d Redundancy of the result
space: Racket position and velocity and ball velocity determine ball amplitude. Blue data points are
from early practice, yellow data points are from late practice (Reproduced from [68])

xb(t) = xr(tk) + v+
b (t − tk) − g/2(t − tk)

2

where xr is racket position, v
+
b is the ball velocity just after impact, tk is the time of the

kth ball-racket impact, and g is the acceleration due to gravity. With the assumption
of instantaneous impact, the ball velocity just after impact v+

b is determined by:

v+
b = ((1 + α)v−

r − αv−
b )

where v−
b and v−

r are the ball and racket velocities just before impact, and the energy
loss at the collision is expressed in the coefficient of restitution α. The maximum
height of the ball between tk and tk+1 depends on v

−
b and v−

r and the position at impact
xr :

maxtk≤t≤tk+1xb(t) = xr(tk) + (((1 + α)v−
r − αv−

b )(t − tk))
2/2g (3)
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4.3 Redundancy

The task goal is to bounce the ball to a target height, and the error is defined as the
deviation from the target height (Fig. 7c). Even in this simplified form, the task has
redundancy, as the result variable error is determined by three execution variables:
v−
b , v−

r and xr . Figure 7d shows the execution spacewith the solutionmanifold, i.e. the
planar surface that represents all solutions leading to zero error. The blue and yellow
data points are two exemplary data sets from early and late practice, respectively;
each data point corresponds to one ball-racket contact. As to be expected, the early
(blue) data show a lot of scatter, while the late practice data (yellow) cluster around
the solution manifold.

4.4 Dynamic Stability

While the redundancy analysis is performed on separate collisions, the racket and
ball model also lends itself to dynamic stability analysis. To facilitate analysis, the
racketmovements are assumed to be sinusoidal, such that racket position and velocity
at impact collapse into a single state variable, racket phase θk . Applying a Poincare
section at the ball-racket contact, where xr and xb are identical, a discrete map can
be derived with v+

k and θk as state variables:

v+
k+1 = (1 + α)Aω cos θk+1 − αv+

k + gα(θk+1 − θk)/ω

0 = Aω2( sin θk − sin θk+1) + v+
k ω(θk+1 − θk) − g/2(θk+1 − θk)

2
(4)

A and ω are the amplitude and frequency of the sinusoidal racket movements [11,
53, 65]. This nonlinear system displays dynamic stability and, despite its simplicity,
shows the complex dynamics of a period-doubling route to chaos [21, 75]. For
present purposes, only stable fixed-point solutions are considered as they correspond
to rhythmic bouncing. Local linear stability analysis of this discrete map identifies a
stable fixed point, if racket acceleration at impact ar satisfies the inequality:

− 2g
(1 + α2)

(1 + α)2
< ar < 0 (5)

4.5 Hypotheses

In this dynamically stable state, small perturbations of the racket or ball die out
without requiring corrections. Hence, if subjects establish such dynamically sta-
ble regime, they need not correct for small perturbations that may arise from
the persistent neuromotor noise. Thus, we hypothesized that subjects learn these
“smart” solution and exploit dynamic stability by hitting the ball with negative racket
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acceleration (Hypothesis 1). Further, due to the system’s redundancy infinitely many
stable solutions can be adopted. Hence, we administered perturbations to test if sub-
jects established and re-established such stable states (Hypothesis 2).

4.6 Virtual Implementation

In the experiments, the participant stood in front of a projection screen and rhythmi-
cally bounced the virtual ball to a target line using a real table tennis racket. Similar
to the throwing task, the projected racket movements were shown on the screen in
real time impacting the ball. The display was minimal and only showed the modeled
and measured elements, a horizontal racket and a ball, both moving vertically to a
target height (Fig. 7b). A light rigid rod was attached to the racket and ran through
a wheel, whose rotations were registered by an optical encoder, which measured
the vertical displacement of the racket, in analogy with the model, and shown on
the screen. Racket velocity was continuously calculated. The vertical position of the
virtual ball was calculated using the ballistic flight equation initialized with values at
contact. To simulate the haptic sensation of a real ball-racket contact, a mechanical
brake, attached to the rod, was activated at each bounce and decelerated the up-
ward motions. Racket acceleration at or just before the impact was analyzed after the
experiment and served as the primary measure of dynamic stability to test
Hypothesis 1 [79]. Ball position and velocity and racket velocity at contact were
measured and analyzed to evaluate the data with respect to the solution manifold
(Hypothesis 2).

4.7 Learning and Adaptation to Perturbations

Did human subjects seek and exploit dynamic stability of the racket-ball system?
How robust is this system if the actor has to change and adapt to new situations?
An experiment tested these questions in two stages: On Day 1, 8 subjects performed
a sequence of 48 trials of rhythmic bouncing to a target height, each trial lasting
60 s. With the target height at 0.8m from the lowest racket position, and α = 0.6, the
average period between repeated contacts was 0.6 s, leading to approximately 100
contacts per trial. OnDay 2, subjects performed 10 trials under the same conditions as
on Day 1, but then performed another 48 trials after a perturbation was implemented.

Stage 1: Figure 8a shows the ball amplitude errors averaged of all subjects across
48 trials. As expected, the error decreased with practice with a close-to exponential
decline. Concomitantly, the acceleration of the racket at contact decreased from an
initially positive to a negative value, indicative of performance attaining dynamic
stability (Fig. 8b). Importantly, it took approximately 11 trials for subjects to “dis-
cover” this strategy, showing that it was not trivial and required practice to learn it.
The parallel evolution of both error and racket acceleration with practice provide
strong support for Hypothesis 1 that subjects seek dynamic stability.
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Fig. 8 Ball amplitude errors and racket accelerations over 48 trials. All data points are averages
over 8 subjects. a, b Stage 1 of the experiment. c, d Stage 2 of the experiment. The shading denotes
the perturbed trials

Stage 2: The second experimental session presented an even stronger test. Starting
with 10 regular trials as on Day 1, subjects were exposed to a perturbation over the
subsequent 48 trials (yellow shading in Fig. 8c, d). This perturbation was calculated
using the redundancy of the execution: three execution variables, v−

b , v−
r and xr ,

determined the one result variable, absolute error of ball peak amplitude to the target
height. Following Day 1, the average and standard deviations of v−

b and v−
r and

xr of the first 10 baseline trials were calculated for each individual to render an
ellipsoid in result space representing the individually preferred solution (9). In the
subsequent perturbed trials this preferred strategy was penalized with an error in ball
amplitude. This error was delivered by replacing the veridical ball release velocity
with one calculated based on the execution ellipsoid. This new ball velocity over- or
undershot the target height as calculated. By simply replacing the ball velocity at the
contact discontinuity, subjects did not explicitly perceive the perturbation. Within
the ellipsoid, the penalty was maximal at its centroid and it linearly decreased to
zero towards the boundaries (defined by one standard deviation around its centroid).
Hence, assuming sensitivity to the error gradient in result space and the redundancy
of the task, subjects were expected to search for a new un-penalized solution. This
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Fig. 9 Presentation of performance in execution space; the planar surface is the solution manifold.
a The large execution ellipsoid represents the initially preferred strategy that is subsequently pe-
nalized during the perturbation phase. The smaller ellipsoid represents the final strategy that is
established during the perturbation phase to avoid the penalty. b The right panel shows the same
data and execution ellipsoid. The points are the sequence of trial means following the perturbation
onset. It shows that subjects stay on the manifold but migrate outside the penalty ellipsoid

perturbationwas calculated and delivered only in the virtual display such that subjects
saw their drop in performance, but did not notice its cause explicitly.

Figure 9 illustrates the performance of one representative subject. Starting with
the (larger) execution ellipsoid from the initial 10 trials (Fig. 9a), upon onset of the
perturbation the subject gradually translated her execution along the planar solution
manifold to a new location. The smaller and darker ellipsoid on the right depicts the
average execution of the last trial: The strategy shifted and the variability decreased
even further; importantly, there was no overlap with the initial ellipsoid (Hypoth-
esis 2). This illustrates that the subject not only found a new successful solution
without penalty, but the non-overlap also suggested that the subject was aware of her
variability.

Returning to themeasures or error and racket acceleration at impact for these same
data, shown in Fig. 8c, d, reveals that upon perturbation onset, both errors and racket
acceleration changed significantly as expected. However, over the course of the 48
perturbed trials, subjects incrementally decreased their errors and reestablished the
previously preferred racket acceleration of −3 m/s2. In fact, this acceleration value
was determined to be optimal for the given parameters in additional Lyapunov analy-
ses of the model system [53]. This result shows that subjects successfully established
dynamic stability in multiple different ways.

Experimental evidence that subjects learn to hit the ball with a decelerating racket
has been replicated in several different scenarios. The different experimental set-ups
included a pantograph linkage with precise control of the haptic contact, a real tennis
racket to bounce a real ball attached to a boom, and freely bouncing a real ball in
3D [65, 66]. The findings were robust: with experiences, performers learn to hit
the ball with negative racket acceleration; based on stability analyses of the model



Human Control of Interactions with Objects – Variability … 323

we concluded that they learn to tune into the dynamic stability of the racket-ball
system. Based on these findings, we also designed an intervention to guide subjects
towards this dynamically stable solution. Manipulating the contact parameters via a
state-based shift indeed successfully accelerated subjects’ learning the dynamically
stable solution, which correlated with faster performance improvement [30].

4.8 Interim Summary

These studies provided strong evidence that humans seek dynamic stability in a
task, a solution that is computationally efficient as small errors and noise converge
without necessitating explicit error correction. In the face of perturbations, subjects
successfully navigated the result space and established new solutions available due to
the redundancy. Therewas also evidence that theywere aware of their own variability.
As in skittles, subjects seek solutions where noise matters less.

5 Chaos in a Coffee Cup – Predictability in Continuous
Object Control

5.1 The Motor Task

Leading a cup of coffee to one’smouth to drink is a seemingly straightforward action.
However, transporting a cup filled with sloshing fluid to safely contact the mouth
without spilling remains a challenge not to be underestimated for both humans and
robots. Carrying a cup of coffee (or a glass of wine) exemplifies a class of tasks that
require continuous control of an object that has internal degrees of freedom. How
do humans control interactions with such an object, where the sloshing fluid creates
time-varying, state-dependent forces that have to be preempted and compensated to
avoid spill? Can humans or robots really have a sufficiently accurate internal model
of the complex fluid dynamics to online predict and react to the complex interaction
forces? In search of human strategies that apparently deal with this problem easily,
we started again with the analysis of the task dynamics, following the steps outlined
above.

5.2 The Model

In principle, the task presents a problem in fluid dynamics [38, 49]. To make this
complex infinitely-dimensional system more tractable, several simplifications were
made [23]: (1) the 3D cup was reduced to 2D, (2) the sloshing coffee was reduced to
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Fig. 10 Carrying a cup of coffee. a The model task. b The conceptual model: a 2D arc with a
ball rolling inside. c Control model of the cart-and-pendulum. d Virtual implementation with the
HapticMaster robot to control the cup in the horizontal direction. e The interactive screen display;
the green rectangles specify the amplitude of the cup movement. The lower panel shows a sequence
of moving cups with the arrows depicting the respective forces of cup and ball (Reproduced from
[60])

a ball with point mass rolling in a cup, (3) the hand contact with the cup was reduced
to a single point of interaction, (4) the cup transport was limited to a horizontal
line (Fig. 10a–c). More precisely, the moving liquid is represented by a pendulum
suspended to a cart that is translated in the horizontal x-direction. The pendulum is
a point mass m (the ball) with a mass-less rod of length l with one angular degree of
freedom θ . Subjects control the ball indirectly by applying forces to the cup, and the
ball can escape if its angle exceeds the rim of the cup. The cup is a point massM that
moves horizontally. The hand moving the cup is represented by a horizontal force
F(t). Despite these simplifications, the model system retained essential elements of
complexity: it is nonlinear and creates complex interaction forces between hand and



Human Control of Interactions with Objects – Variability … 325

object. The equations of the system dynamics are:

(m + M)ẍ = ml(−θ̈cosφ + θ̇2sinφ) + F(t)

lθ̈ = −ẍcosθ − gsinθ (6)

where θ, θ̇ , and θ̈ are angular position, velocity, and accelerationof theball/pendulum;
x, ẋ, and ẍ and are the cart/cup position, velocity, and acceleration, respectively; F
is the force applied to the cup by the subject; g is gravitational acceleration. The
model has four state variables x, ẋ, θ, θ̇ and the externally applied force F(t) that
determines the behavior of the ball and cup system. Hence, only one variable F(t) is
under direct control of the subject, but this is co-determined by the ball/pendulum
interacting with the cart. These instantaneous interaction forces make the distinc-
tion into execution and result variables significantly more complicated than in the
previous two examples.

5.3 Virtual Implementation

The ball-and-cup systemwas implemented in a virtual environment. The cart and the
pendulum rod was hidden, leaving only the ball visible. In addition, a semicircular
arc with radius equal to pendulum length l was drawn on the screen so that the ball
appeared to roll in a cup (Fig. 10d, e). Subjects manipulate the virtual cup-and-ball
system via a robotic arm, which measures hand forces FExternal applied to the cup
but also exerts forces from the virtual object onto the hand (HapticMaster, Motek
[76]). θ and θ̇ were computed online and the ball force FBall was computed based
on system equations such that the force that accelerated the virtual mass (m + M)

was Fapplied = Mẍ = FExternal + FBall. Two rectangular target boxes set the required
movement distance and spatial accuracy (for more details see [23]).

5.4 Model Analysis and Hypothesis

The cup of coffee can be moved as a relatively short discrete placement to a target, or
in a more continuous fashion, as for example carrying the cup while walking. A pre-
vious study examined a single placement onto a target focusing on the discontinuous
aspect of the task: the coffee can be spilled [23, 24]. Given the noise intrinsic to the
neuromotor system and the fluctuations created by the extrinsic cart-and-pendulum
system, avoiding spilling coffee, or losing the ball, became the core challenge when
the task was to move as fast as possible. The “distance” from losing the ball was
quantified by an energy margin, defined as the difference between the current energy
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state and the one where the ball angle would exceed the rim angle. Results showed
that this continuous metric sensitively captured performance quality and learning in
healthy and also older subjects.

Here, we review another study that examined more prolonged interaction, where
the nonlinear dynamics manifests its full complexity and, technically, displays
chaos [41, 67]. To this end, the task instruction was to move the cup rhythmically
between two very large targets leaving amplitude under-specified; the task-specified
frequency defined the result variable. Movement strategies were fully described
by the execution variables cup amplitude, frequency, and initial angle and velocity
of the ball, A, f , θ0, θ̇0. To derive hypotheses about the space of solutions, inverse
dynamics analysis was conducted to calculate the force F(t) required to satisfy the
task. Numerical simulations were run for combinations of the scalar execution vari-
ables A, f , θ0, θ̇0. To keep the number of simulations manageable, frequency f was
fixed to the task-required frequency, and θ̇0 was set to zero.

Figure 11 shows two example profiles generated by inverse dynamics calculations
with two different initial ball states θ0(θ̇0 = 0) that both result in a sinusoidal cup
trajectory x(t). The left profile F(t) shows irregular unpredictable fluctuations for
θ0 = 0.4 rad, while the right profile initialized at θ0 = 1.0 rad shows a periodic
waveform with high regularity. To characterize the pattern of force profiles with
respect to the cup dynamics, F(t)was strobed at every peak of cup position x(t). The
marginal distributions of the strobed force values are plotted as a function of initial
ball phase θ0 in the bottom panel. This input-output relation reveals a bifurcation
diagram with a pattern similar to the period-doubling behavior of chaotic systems,
indicating chaos in the cup-and-ball system.

5.5 Hypotheses for Human Control Strategies

It seems uncontested that controlling physical interaction requires “knowledge” and
prediction of object dynamics. On the other hand, it is reasonable to doubt that
the complex details of object dynamics are known or faithfully represented in an
internal model. In chaotic dynamics, small changes in initial states can dramatically
change the long-term behavior and, technically, lead to unpredictable solutions. Can
or should internal models be able to represent this complex dynamics? To make
this challenge more tractable for the neural control system we hypothesized that
subjects seek solutions that render the object behavior more predictable to reduce
computational effort and facilitate at least some prediction.

To quantify the concept of predictability of the object dynamics based on the
human’s applied force, we computed mutual information MI between the applied
force and the kinematics of the cup, i.e. long-term predictability of the object’s
dynamics [9].MI is a nonlinear correlation measure defined between two probability
density distributions that quantifies the information shared by two random variables,
F(t) and the kinematics of the cup x(t):
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Fig. 11 Inverse dynamics simulations of the cart-and-pendulum model. Top panels show two
different simulation runs with different initial ball angles θ0, requiring a complex and a relatively
simple input force (top row). Strobing force values at maxima of the cup profile x and plotting the
marginal distributions against all initial ball angles renders the bifurcation-like diagram (Reproduced
from [41])

MI (x,F) =
∫∫

p (x,F) loge
p(x,F)

p (x) p(F)
dxdF (7)

MI presents a scalar measure of the performer’s strategy calculated at each
point of the 4D execution space spanned by A, f , θ0, θ̇0. The higher MI, the more
predictable the relation between force and object dynamics. Hence, we expected
that subjects would seek strategies with high MI (Hypothesis 1, Fig. 12a). Pre-
dictability as a control priority had to be tested against alternative hypothesis. The
experiments permitted testing two alternative control priorities: minimizing effort
(Hypothesis 2, Fig. 12b) and maximizing smoothness (Hypothesis 3, Fig. 12c); both
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Fig. 12 Result space computed for three different hypothesized control priorities. The space is
computed for different initial ball angles and cup amplitudes; frequency is set to 1Hz, and ball
velocity is set to zero. a Mutual information. b Effort defined as mean squared force over a given
trial. c Smoothness or mean squared jerk defined over a given trial. The optimal strategy for each
hypothesis is noted by the large dot (Reproduced from [41])

are commonly accepted and widely supported criteria in free unconstrained move-
ments. To calculate the effort required for each strategy, the Mean Squared Force of

the force profile was calculated:MSF = 1
nT

nT∫
0
F(t)2dt, where n denoted the number

of cycles and T = 1/f the period of each cycle. Mean Square Jerk was calculated

asMSJ = 1

T(

...

θmax − ...

θmin)

T∫
0

|θ |
...

2dt, where the value was normalized with respect to

ball jerk amplitude to make it dimensionless [27]. Similar to MI, MSF-values were
calculated for all strategies in 4D execution space. To constrain the calculations, the
initial value of the angular velocity θ̇0 was set to zero, consistent with the experimen-
tal data. Figure 12 compares the corresponding predictions for MI, MSF, and MSJ.
Color shades express the degree as explained in the legend. The large dots denote
the points of maximum MI, minimum MSF and MSJ. Importantly, these predicted
strategies are at very different locations in result space.

To test these hypotheses, equivalent measures had to be calculated from the
experimental data to evaluate observed human strategies against the simulated result
space. In contrast to the simulations, the experimental trajectories were not fully
determined by initial values as online corrections were likely. Therefore, to attain
better estimates of the execution variables from the experimental trajectories, esti-
mates were extracted at each cycle k of the cup displacement x during each 40 sec
trial (see Fig. 11); trial averages Ā, f̄ , θ̄0,

¯̇θ0 served as correlates for the variables
in the simulations. MI, MSF, and MSJ were calculated for each measured strategy
Āk, f̄k, θ̄k,

¯̇θk .
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5.6 Predictable Interactions

An experimental study provided first evidence that subjects indeed favored pre-
dictable solutions over those that minimized the expended force and smoothness
[41]. Subjects performed rhythmic cup movements paced at the natural frequency
of the pendulum, which corresponded to the anti-resonance of the coupled system.
This facilitated the emergence of the system’s nonlinear characteristics with chaotic
solutions that maximized the challenge. Amplitude was free to choose and relative
phase between ball and cup was also unspecified. Each subject performed 50 trials
(40 s each). By choosing the cup amplitude and phase, subjects could manipulate
interaction forces of different complexity and predictability.

The main experimental results are summarized in Fig. 13; the plot shows MI in
shades of purple (lighter shades denote higher MI) and contours of selected values
ofMSF (green) from the simulations overlaid with the results from human subjects;
each data point represents one trial (red). The data clearly show how subjects gravi-
tated towards areas with higherMI, i.e. strategies with more predictable interactions,
consistent with Hypothesis 1. The left panel shows individual trials pooled over all
subjects; darker red indicates early practice and lighter red indicates late practice.

Fig. 13 Result space with Mutual Information as the result variable, shown by shades of purple.
The left panel plots trial data from all 9 subjects showing that they converge to the area with highest
MI. Each data point is one trial; darker color shades denote later in practice. The arrows in the
right panel show each subject with initial trial values the start of the arrow and the final practice
trial the tip of the arrow (Reproduced from [41])
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The right panel shows the same data separated by subject: the red arrows mark how
each subject’s average strategy changed from early practice (mean of first 5 trials) to
late practice (mean of last 5 trials). The majority of subjects switched from low- to
high-predictability regions in the result space. Both figures also show that all subjects
increased their movement amplitude, associated with an increase in overall exerted
force. None of the subjects moved toward the minimum force strategy, nor towards a
strategy with maximum smoothness (counter toHypotheses 2 and 3). In fact, overall
force exerted, or MSF, rather increased with practice.

5.7 Interim Summary

These results highlight that humans are sensitive to object dynamics and favor strate-
gies that make interactions predictable. In the case shown, these predictable solutions
were even favored over those with less effort. This is plausible because unpredictable
interaction forces are experienced as disturbances that continuously require reactions
and corrections. Knowing that in real life we carry a glass of wine without paying
much attention to the carrying, more predictable strategies appear plausible. Analo-
gous to the dynamically stable solutions in ball bouncing, predictable solutions may
require fewer computations as they obviate error corrections. Given that in chaotic
solutions small changes due to external or internal perturbations lead to unpredictable
behavior, noise matters less in predictable solutions.

6 From Analysis to Synthesis: Dynamic Primitives
for Movement Generation

This brief overview of our research revealed potential control priorities or cost func-
tions that humans may use to coordinate simple and complex interactions. Humans
favor strategies that are sensitive to dynamics and stability, that exploit redundancy
of the solution space to channel their intrinsic noise into task-irrelevant dimensions,
and that exploit predictable solutions of potentially very complex task dynamics.
The review also demonstrated what can be learnt from analysis of human data in
conjunction with mathematical understanding of the task and its solution space. The
only assumption is that the dynamics and stability properties of the task are funda-
mental and determine “opportunities” and “costs”. The known solution space serves
as reference to evaluate human movement.

The task-dynamic approach as outlined is analytic and largely agnostic about
details of the controller. This contrasts with other research in computational mo-
tor neuroscience that starts with a hypothesized controller and then compares the
predicted with the experimentally observed behavior. One recent prominent exam-
ple for this direction is work that has sought evidence that the brain operates like an
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optimal feedback controller [56, 73, 74]. Other control models include internal mod-
elswithKalman-filters or tapped-delay lines, tomention just a few [39].Our approach
refrains from such assumptions directly borrowed from control theory; rather, we aim
to extract principles from human data with as few assumptions as possible. Never-
theless, the question of synthesis remains: what controller or control policy would
generate these strategies? While still largely speculative, our task-dynamic perspec-
tive presents a sound foundation for a generative hypothesis.

To begin, let’s return to the initial pointer to the seemingly inferior features of
the human neuromotor system - the high degree of noise and the slow informa-
tion transmission. These features seem puzzling given the extraordinary dexterity
of humans that by far surpasses that of robots, at least to date. Therefore, the direct
translation of control policies that heavily rely on central control and feedback loops
may remain inadequate to achieve human dexterity. As mentioned earlier, the human
wetware with its compliant actuators and high dimensionality appears to provide
an advantage. Hence, lower levels of the hierarchical neuromotor system should be
given more responsibility. Consistent with our task-dynamic perspective, we have
therefore suggested that the biological system generates movements via dynamic
primitives, defined over the high-dimensional nonlinear neuromotor system [26, 28,
45, 50, 51, 59, 64]. We propose that the human neuromotor system exploits attrac-
tors states, defined over both the neural and mechanical nonlinear system. If the
neuromotor system is parameterized to settle into such stable states, central control
may only need to occasionally intervene. In principle, nonlinear autonomous sys-
tems have three possible stable attractor states: fixed point, limit cycle, and chaotic
attractors. Putting chaotic attractors aside for now, we proposed fixed-point and limit
cycle attractors for primitives.

The two main stable attractors fixed points and limit cycles directly map onto dis-
crete and rhythmic movements. To understand discrete movements such as reaching
to a target as convergence to a stable end state is not completely new. Equilibrium-
point control was first posited by Feldman for simple position control [14, 15].
Numerous subsequent studies, both behavioral and neurophysiological, have given
evidence for attractive properties in reaching behavior [4, 20, 25, 36]. This work has
widened to include a virtual trajectory, even though details are still much contested.
For rhythmic behavior a similar host of experimental and modeling studies have
presented support for stable limit cycle dynamics. For example, bimanual rhythmic
finger movements showed transitions from anti-phase to in-phase coordination that
bear the hallmarks of nonlinear phase transitions in coupled nonlinear oscillators
[22, 33]. Our own work has shown how extremely simple oscillator models can
account for synchronization in bimanual rhythmic coordination, including subtle
phase differences between oscillators with different natural frequencies [62, 70, 71].
Several different oscillator models have been developed that produce autonomous
oscillations to represent central pattern generators in the spinal cord of invertebrates
[31, 45]. Support for the distinction between rhythmic and discrete movements also
came from a neuroimaging study [54]. Brain activation revealed that in rhythmic
movements only primary motor areas were activated, while significantly more areas
were needed to control discrete movements.



332 D. Sternad

In an attempt to synthesize this evidence from largely disparate research groups,
our own research made first forays into combining the two types of building blocks.
Playing piano is after all a combination of complex rhythmic finger movements
combined with reaches across the keyboard. Note that in principle, optimal feedback
control could also achieve such movements, including those with dynamic stability.
In fact, there is no inherent limit to what optimal feedback control may achieve.
It is this omnipotence that contrasts with the well-known coordinative limitations
that may reveal features of the human controller. Beyond “patting your head while
rubbing your stomach”, research has revealed that rhythmic bimanual actions tends
to settle into in-phase and anti-phase coordination [34, 71], humans avoid moving
very slowly [3, 77], and the 2/3 power law in handwriting and drawing may reveal
intrinsic geometry or other limitations [18, 52]. Several modeling and experimental
studies showed the possibilities and limitations of combining twodynamic primitives.
Wiping a table rhythmically, while translating the hand across the table revealed that
rhythmic and discrete elements cannot be combined arbitrarily [63, 64].

However, research is still far from having generated conclusive evidence that
dynamic motion primitives underlie observed behavior. More specifically,
interactions with objects cannot be addressed with the two primitives alone. There-
fore, recently Hogan and myself argued that impedance is needed as a third dy-
namic primitive to enable the system to interact with objects and the environment
[28, 29]. Combining discrete and rhythmic primitives with impedance in an equiv-
alent network is a first proposal on how humans may interact with objects in the
environment. More details and first theoretical developments can be found in the
chapter of Hogan in the same volume. With these theoretical efforts under way, also
further complementary empirical work is needed. The challenge for the future is
to combine analysis and synthesis. How can dynamic primitives be employed to
pour—and enjoy—a glass of wine?
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