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1 Introduction

We consider the problem of planning an optimal trajectory between two spatial loca-
tions in an initially unknown environment with an autonomous, vision-controlled,
micro aerial vehicle (MAV). In many previous works, optimal trajectories are those
with the shortest or lowest effort path to the goal position. To improve the perfor-
mance of vision-based control, and consequently all of the other perception functions
that rely on the robot’s pose estimate, we instead consider optimal trajectories to be
those that minimize the uncertainty in this pose estimate. Because we compute the
robot pose uncertainty as a function of the photometric information of the scene, we
call this approach Perception-aware Path Planning.

Despite the impressive results achieved in visual SLAM applications [1, 2], most
of vision-controlled MAVs navigate towards a goal location using a predefined set
of viewpoints or by remote control, without responding to environmental conditions
[3, 4]. Recently, several works have tackled the problem of autonomously planning
an optimal trajectory towards a goal location [5, 6], and others have extended this
to uncertainty-aware planning that tries to provide high localization accuracy [7, 8].
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Fig. 1 Online perception-aware path planning:An initial plan is computedwithout prior knowledge
about the environment (a). The plan is then updated as new obstacles (b) or new textured areas (c)
are discovered. Although the new trajectory is longer than the one in b, it contains more photometric
information and, thus, is optimal with respect to the visual localization uncertainty

However, these approaches discard the photometric information (i.e, texture) of the
scene and plan the trajectory in advance, which requires prior knowledge of the full
3D map of the environment. We propose a system that instead selects where to look,
in order to capture the maximum visual formation from the scene to ensure pose
estimates with low uncertainty.

Additionally, we consider the scenario where the robot has no prior knowledge of
the environment, and it explores to generate a map and navigate to a goal. Without
an a priori map, we update the planned path as new images are collected by the
camera while the robot explores the surroundings (see Fig. 1). In particular, we uti-
lize the photometric information in the newly observed regions of the environment
to determine the optimal path with respect to pose uncertainty. To the best of our
knowledge, this is among the first works that propose to plan a perception-aware
trajectory on-the-fly, while perceiving the environment with only a camera sensor.

We evaluate the proposed methods with several different experiments designed to
illustrate the feasibility of our approach for an autonomousMAV, and to demonstrate
the improvement in pose uncertainty when planning with perception awareness.

1.1 Related Work

When the minimization of the localization uncertainty is considered in the planning
process, the problem is often referred to as “PlanningunderUncertainty” or “Planning
in Information Space”. Probabilistic planning with the inability to directly observe
all the state information is often based on Partially Observable Markov Decision
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Processes (POMDPs) or solved as a graph-search problem. The major drawback
of these approaches is their exponential growth in computational complexity. Sim
and Roy [9] selected trajectories that maximize the map reconstruction accuracy
in SLAM applications. They proposed to use a breadth-first search over possible
robot positions to predict a sequence of EKF estimates and select the one that lead
to the maximum information gain. Recently, sampling-based methods have been
introduced to plan trajectories in complex configuration spaces. Optimal Rapidly-
exploring Random Trees (RRT*s) [10] have been widely used in path planning
problems and their extension toRapidly-exploringRandomBelief Trees (RRBTs) [7]
takes pose uncertainty into account and avoids collisions.

Selecting sequences of viewpoints that optimize for a certain task (e.g, pose esti-
mation or map uncertainty minimization) is referred to as active perception [11, 12].
While previous papers on active perception relied on using range sensors (e.g, [8]),
Davison and Murray [13] were among the first to use vision sensors (a stereo cam-
era setup) to select where the camera should look to reduce the pose drift during
visual SLAM. More recently, Sadat et al. [14] and Achtelik et al. [15] investigated
optimal path planning by leveraging visual cues. The former ensures good local-
ization accuracy by extending RRTs* to select feature-rich trajectories, while the
latter uses RRBT to compute the propagation of the pose uncertainty by minimizing
the reprojection error of 3D map points. Kim and Eustice [16] proposed a Percep-
tion Driven Navigation (PDN) framework: the robot follows a pre-planned path and
computes information gain at the viewpoints along it, but revisits already-explored,
highly-salient areas to regain localization accuracy if its pose uncertainty increases.

It should be noted that all approaches mentioned so far [13–16] rely on sparse
2D features to compute highly-informative trajectories. By contrast, in this paper
we rely on direct methods [17]. Contrarily to feature-based approaches—which only
use small patches around corners—direct methods use all information in the image,
including edges. They have been shown to outperform feature-based methods in
terms of robustness and accuracy in sparsely-texture scenes [1, 2, 18].

Several works have addressed the problem of online planning. Efficient replan-
ning was addressed in Ferguson et al. [19] by updating the trajectory whenever a
new obstacle is spotted. For RRT*, Boardman et al. [20] proposed to dynamically
update an initial planned trajectory by computing a new RRT* tree rooted by the
robot’s current location and reusing branches from the initially-grown tree. Otte and
Frazzoli [21] further address the problem of online planning in dynamic environ-
ments by modifying the original search graph whenever changes in the environment
are observed. Among MAVs, Grzonka et al. [5] considered a quadrotor equipped
with an on-board laser scanner, and scanned the environment, adapting the trajectory
as new objects were spotted. Similarly, Nieuwenhuisen et al. [6] also used a 3D laser
scanner on an autonomous quadrotor to build and update an obstacle map and replan
collision-free trajectories. Similar approaches based on different sensors, such as
cameras or depth sensors, were proposed in [22]. However, the previous approaches
[5, 6, 22] rely on configurations that include other sensors (e.g, IMU, Laser Scanner)
in addition to cameras. Furthermore, planning is performed without considering the
visual perception and, in particular, the photometric information.
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1.2 Contribution

In contrast to the previous works, in this paper we propose a novel method to update
the optimal trajectory that leverages the photometric information (i.e, texture) and the
3D structure of newly-explored areas on the fly (i.e, online), avoiding full replanning.
In order to use that information for minimizing pose uncertainty, we perform path
planning in four degrees of freedom (x, y, z, and yaw). Furthermore we proposed a
novel textured volumetric map representation that allows us to efficiently synthesize
views to compute the photometric information in the scene and plan accordingly. To
the best of our knowledge, this is among the first works to propose a fully autonomous
robotic system that performs onboard localization and online perception-aware plan-
ning. The main contributions of this paper are:

1. We propose to leverage the photometric appearance of the scene, in addition
to the 3D structure, to select trajectories with minimum pose uncertainty. The
photometric information is evaluated by using direct methods. As direct methods
use all the information in the image, they provide a more robust and effective way
to exploit visual information compared to feature-based strategies.

2. Perception-aware planning is performed online as the robot explores the sur-
roundings, without prior knowledge of the full map of the environment.

3. A novel textured volumetricmap formulation is proposed to efficiently synthesize
views for perception-aware planning.

4. We demonstrate the effectiveness of our approach with experiments in both real-
world and simulated environment with aMAV only equipped with vision sensors.

2 Perception-Aware Pose Uncertainty Propagation

The visual localization system relies on the availability of texture in the scene to
reduce the pose estimation uncertainty. As a consequence, selecting the trajectory
that is optimal with respect to the localization accuracy requires evaluation of the
pose-uncertainty propagation along a candidate path and the uncertainty reduction
associated with the photometric information in the scene.

2.1 Pose Propagation

We represent the pose of the robot as a 6 Degree of Freedom (DoF) transformation
matrix T, member of the special Euclidean group inR3, which is defined as follows:

SE(3) :=
{
T =

[
C r
0T 1

] ∣∣∣∣C ∈ SO(3), r ∈ R
3

}
, (1)

where SO(3) is the special orthogonal group in R
3 (the set of spatial rotations, i.e,

CCT = 1, detC = 1) and 1 is the 3 × 3 identity matrix. The Lie Algebra associated
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to the SE(3) Lie Group is indicated as se(3). To represent the uncertainty of the robot
pose, we define a random variable for SE(3) members according to:

T := exp(ξ∧)T̄, (2)

where T̄ is a noise-free value that represents the pose and ξ ∈ R
6 is a small pertur-

bation that we assume to be normally distributedN (ξ|0,Σ). We make use of the ∧
operator to map ξ to a member of the Lie algebra se(3) (see [23]).

We refer to Tk,w as the robot pose at time k relative to the world frame w and to
Tk+1,k as the transformation between the pose at time k and k + 1.

Assuming no correlation between the current pose and the transformation between
k and k + 1, we can represent Tk,w and Tk+1,k with their means and covariances
{T̄k,w,Σk,w} and {T̄k+1,k,Σk+1,k}, respectively. Combining them, we get

Tk+1,w = Tk,w Tk+1,k . (3)

To compute the mean and the covariance of the compound pose, we use the results
from [23]. The mean and the covariance, approximated to fourth order, are:

T̄k+1,w = T̄k,w T̄k+1,k , Σk+1,w � Σk,w + T Σk+1,kT � + F (4)

where T is Ad(T̄k,w), the adjoint operator for SE(3), andF encodes the fourth-order
terms. Using Eq. (4), we propagate the uncertainty along a given trajectory.

2.2 Measurement Update

In contrast to previously published approaches, which mostly rely on sparse image
features, we use direct methods, in the form of dense image-to-model alignment, for
the measurement update. Integrating the intensity and depth of every pixel in the
image enables us to consider photometric information when planning the trajectory.

2.2.1 Preliminary Notation

At each time step of the robot navigation, we can compute a dense surface model
S ∈ R

3 × R
+ (3D position and grayscale intensity) of the explored part of the scene.

The rendered synthetic image is denoted with Is : Ωs ⊂ R
2 → R

+, where Ωs is the
image domain and u = (u, v)T ∈ Ωs are pixel coordinates. Furthermore, we refer
to the depthmap Ds , associated to an image Is , as the matrix containing the distance
at every pixel to the surface of the scene: Ds : Ωs → R

+; u �→ du where du is the
depth associated to u. A 3D point p = (x, y, z)T in the camera reference frame is
mapped to the corresponding pixel in the image u through the camera projection
model π : R3 → R

2, u = π(p). On the other hand, we can recover the 3D point
associated to the pixel u using the inverse projection function π−1 and the depth du:
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pu = π−1(u, du). (5)

Note that the projection function π is determined by the intrinsic camera parameters
that are known from calibration. Finally, a rigid body transformation T ∈ SE(3)
rotates and translates a point q to:

q′(T) := (1 | 0)T (qT , 1)T . (6)

2.2.2 Dense Image-to-Model Alignment

To refine the current pose estimate, we use dense image-to-model alignment
[18, 24] (see Fig. 2). This approach computes the pose Tk,w of the synthetic image Is
by minimizing the photometric error between the observed image and the synthetic
one. Once converged, it also provides the uncertainty of the alignment by evaluating
the Fisher Information Matrix, which we use to select informative trajectories.

The photometric error ru for a pixel u is the difference of the intensity value at
pixel u in the real image acquired at time step k and the intensity value in the synthetic
image rendered at the estimated position T̂k,w:

ru = Ik(u) − Is(π(p′
u(T̂k,w))) (7)

The error is assumed to be normally distributed ru ∼ N (0,σ2
i ), where σi is the

standard deviation of the image noise.
Due to the nonlinearity of the problem, we assume that we have an initial guess of

the pose T̂k,w and iteratively compute update steps T̂k,w ← exp(ξ∧)T̂k,w, ξ
∧ ∈ se(3)

that minimize the error. The update step minimizes the least-squares problem:

Fig. 2 Illustration of the dense image-to-model alignment used in the measurement update. Given
an estimate of the pose T̂k,w , we can synthesize an image and depthmap {Ik ,Dk} from the 3D
model S
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ξ = argmin
ξ

∑
u∈Ωs

1

2σ2
i

[
Ik(u′) − Is(π(p′

u(T̂k,w)))
]2

, (8)

with pu given by (5), p′
u as in (6), and u′ = π

(
p′
u(exp(ξ

∧))
)
.

Addressing the least-squares problem (8) we can compute the optimal ξ using the
Gauss-Newton method and solving the normal equations JT Jξ = −JT r, where J
and r are the stacked Jacobian and image residuals of all pixels u ∈ Ωs , respectively.

At the convergence of the optimization, the quantity

Λk = 1

σ2
i

JT J (9)

is the Fisher Information Matrix and its inverse is the covariance matrix Σ Ik of
the measurement update. According to [23], we find the covariance matrix after the
measurement update at time k by computing

Σk,w ←
(
Λ−1

k + J −TΣk,wJ −1
)−1

, (10)

where the “left-Jacobian” J is a function of how much the measurement update
modified the estimate. Given the informationmatrix in (9), we define the photometric
information gain as tr(Λk).

3 Online Perception-Aware Path Planning

The framework described in Sect. 2 is able to predict the propagation of the pose
uncertainty along a given trajectory by integrating the photometric information when
available. However, to select the best sequence of camera viewpoints we need to
evaluate all the possible trajectories. As we do not assume to have any given prior
knowledge about the scene, the photometric information of the environment, as well
as its 3D geometry, are unknown. Hence, the plan that is considered optimal in the
beginning, will be adapted as new information is gathered by the robot.

In this section, we describe how we enhance the RRT* [10] with the perception-
aware nature that takes benefit from the photometric information to select the trajec-
tory that is optimal with respect to the localization accuracy.

The RRT* incrementally grows a tree in the state space by randomly sampling
and connecting points through collision-free edges. Optimality is guaranteed through
the rewire procedure, which checks for better connections when adding a new point
to the tree. The tree is composed of a set of vertices V that represent points in
the state space. Each vertex v = {xv,Σv,Λv, cv, pv} ∈ V is described via its state
xv = Tv,w (i.e, the pose relative to the vertex v with respect to the reference frame
w), cv being the accumulated cost of the trajectory up to v and a unique parent vertex
pv . In addition, we add the pose covariance Σv and the photometric information Λv
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(relative to the camera view associated to the pose xv) to the vertex v in order to
update the pose covariance according to the photometric information.

To select the best path among all possible trajectories Ti ∈ P , we minimize:

J (Ti ) =
Ni∑
j=1

α Dist(xvij
, xvij−1

) + (1 − α) tr(xvij
.Σ) , (11)

Algorithm 1 Perception-aware RRT*
01: Init: xv0 = xinit; pv0 = root; Σv0 = Σ0; cv0 ; V = {v0}; Number of iterations T
02: for t = 1, . . . , T do
03: xnew = SampleUnexplored()
04: vnst = Nearest(xnew)

05: if ObstacleFree(vnew, vnst)
06: Σt = PropagateAndUpdate(xvnst , Σvnst , xvnew , Λvnew )

07: Jmin = cvnst + (1 − α) tr(Σt) + αDist(xvnst , xvnew )

08: vmin = vnst
09: V = V ∪ v(xnew)

10: Vneighbors = Near(V, vnew)

11: for all vnear ∈ Vneighborsdo
12: if CollisionFree(vnear, vnew)
13: Σt = PropagateAndUpdate(xvnear , Σvnear , xvnew , Λvnew )

14: if cvnear + (1 − α) tr(Σt) + αDist(xvnear , xvnew ) < Jmin
15: Jmin = cvnear + (1 − α) tr(Σt) + αDist(xvnear , xvnew )

16: Σvnew = Σt, cvnew = Jmin, vmin = vnear
17: end if
18: end if
19: ConnectVertices(vmin, vnew)
20: end for
21: RewireTree()
22: end if
23: end for

where the trajectory is represented by a sequence of Ni waypoints vi
j , Dist(·, ·)

computes the distance between two vertices and α defines the trade-off between this
distance and the photometric information gain. Note that we jointly optimize for
position and yaw orientation w.r.t. information gain, so the optimal poses are not just
the RRT* poses with optimized orientation. We choose the trace to include the visual
information into the cost function following the considerations in [25]. In particular,
theminimization of the trace of the pose covariancematrix (A-optimality) guarantees
that themajority of the state space dimensions are be considered (in contrast to the D-
optimality), but does not require us to compute all the eigenvalues (E-optimality). The
fundamental steps of the perception-aware RRT* are summarized in Algorithm 1. At
each iteration, it samples a new state from the state space and connects it to the nearest
vertex (lines 3–19). Next, the function Near() checks on the vertices within a ball,
centered at the sampled state (see [10]), and propagate the pose covariance from these
vertices to the newly sampled one. The one that minimizes the cost function (11)
gets selected. Finally, we update the tree connections through the rewire procedure.
Note that although the optimization is performed on the trace, the full covariance is
propagated along each trajectory for evaluation.
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Fig. 3 Online update steps during exploration: Figures a–c depict the subtree invalidation and
rewiring update when an obstacle is spotted, while d–f show how the tree is rewired when new
photometric information is available from the scene

Given an initially optimal path, we can now start exploring the environment.
When new parts of the scene are revealed, the current trajectory might become
non-optimal or even infeasible in case of obstacles. One possibility would be to
recompute the tree from scratch after every map update but this would be costly and
computationally intractable to have the system integrated into an MAV application.
For this reason, we propose to update the planning tree on-the-fly by only processing
vertices and edges affected by new information. This online update is illustrated
in Fig. 3 and its fundamental steps are depicted in Algorithm 2. Consider an initial
planning tree as in Fig. 3a, that is grown from a starting point (indicated by a green
circle) to a desired end point location (the red circle). Whenever a new obstacle is
spotted, the respective edge and the affected subtree get invalidated and regrown
(lines 04–06) as in Fig. 3b. Note that the SampleUnexplored() function is now
bounded within the subspace corresponding to the invalidated subtree, which results
in a drastically reduced number of iterations compared to fully regrowing the RRT*
tree from scratch. The second scenario in Fig. 3d–f demonstrates the case of gaining
areas with distinctive photometric information. As newly discovered areas provide
photometric information, as shown in Fig. 3e, the neighboring vertices are updated
by the RewireTree() procedure (lines 07–10 in Algorithm 2). Potentially better
connections are considered to form a new path with lower costs (Fig. 3f).

Algorithm 2 Online perception-aware RRT*
01: while 1 do
02: UpdateCollisionMap()
03: UpdatePhotometricInformationMap()
04: Vcolliding = NewCollidingVertices()
05: InvalidateSubTree(Vcolliding)
06: Run PerceptionAwareRRT* 1
07: Vinf = UpdatedVertices()
08: for all vinf ∈ Vinfdo
09: Λv = Λnew

v
10: RewireTree()
11: end for
12: end while
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4 Textured Volumetric Mapping

We implement an extension to the popular OctoMap [26] 3D mapping framework
that records texture information within the volumetric map, allowing novel views to
be synthesized for perception-aware path planning (see Fig. 4).

We utilize this stored texture to synthesize views of the known map from hypo-
thetical positions for the camera. For each synthetic view, we synthesize an image of
what it would look like to observe the environment from that pose—at least up to the
currently observed state of the map—and use these synthetic images in the computa-
tion of information gain during planning. As an extension to an OctoMap that stores
an estimate of occupancy probability for each voxel, we maintain an estimate of the
texture for each face of each voxel as an intensity value, averaged over all of the
observations of that face. We chose this approach because of its compactness—we
must only store the current estimate and the number of cumulative observations—and
because it is not depth dependent for either updating or querying. It is also directly
extensible to a hierarchical representation, such that texture values at higher levels of
the octree can be computed from the faces of their child voxels. While our approach
to rendering images from a volumetric map is similar to the one in [27], we chose to
store texture for the faces, and not just for the volume, because the space represented
by a voxel does not necessarily have the same appearance when observed from dif-
ferent sides. Storing more descriptive representations of texture (e.g. Harris corner
scores) for the faces would be beneficial, but these metrics are often dependent on
the range at which they are observed, presenting a barrier for maintaining a general
estimate. The average intensity representation is efficient to update with new obser-
vations, efficient to query for the current estimate, and adds only minimal overhead
to the computation required for mapping.

Our update method proceeds as follows. Given an input point cloud, occupancy is
updated as in [26], where ray casting from the sensor origin is used to update each leaf
voxel along the ray, until the observed point, and each leaf voxel is updated at most
once for occupancy. To update the texture, for each point pki in the k

th point cloudCk ,
we determine the face f that its ray intersects in the leaf voxel n containing pki . At
leaf voxel n, we maintain the current intensity estimate t f and number of cumulative
observations m f for each face f ∈ 1 . . . 6 of the voxel cube (see Fig. 4a). After the
insertion of k point clouds, these quantities are:

mk
f =

k∑
j=1

∣∣∣p j
i ∈ n

∣∣∣ , t kf =
∑k

j=1 tp j
i

∈ f

m f
(12)

This can be updated efficiently for each new point cloud input:

mk+1
f = mk

f + ∣∣pk+1
i ∈ n

∣∣ , t k+1
f = mk

f t
k
f + tpki

mk+1
f

(13)
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Fig. 4 Textured volumetric mapping: texture information is stored for each face of each voxel in
the OctoMap. Each face maintains a mean intensity value for all of the sensor observations that
have intersected with it when adding data to the map (a). A visualization of a Textured Octomap
is shown in b, where an office scene was observed with a handheld stereo camera. In c, we have
synthesized some images from the map, at poses that the camera has not yet observed

The inclusion of texture in the OctoMap requires an additional computational over-
head of only 15% for both insertion and querying.

Storing texture in a volumetricmap allows us to hypothesize about the photometric
information that our robot could obtain if it moved to a particular pose. We do this
by synthesizing images of the map from a hypothetical pose, casting rays through
each pixel in the image into the map (See Fig. 4c). When these rays intersect with
the face of an occupied voxel, we record the texture of the face and the depth to that
voxel in intensity and depth images. These synthetic images are generated for each
sampled pose when the planner generates or rewires the tree.

5 System Overview

We consider an MAV that explores an unknown environment by relying only on its
camera to perform localization, dense scene reconstruction and optimal trajectory
planning. We have integrated the online perception-aware planner with two different
mapping systems (seeFig. 5): amonocular dense reconstruction system that generates
a point cloud map, and a volumetric system that uses stereo camera input.

In themonocular system, the localization of the quadrotor runs onboard, providing
the egomotion estimation to perform navigation and stabilization. To achieve real-
time performance, the dense map reconstruction and the online perception-aware
path planning runs off-board on an Intel i7 laptop with a GPU, in real-time.
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Fig. 5 Block diagram of the online perception-aware planning system

At each time step k, the quadrotor receives a new image to perform egomotion
estimation. We use the Semi-direct monocular Visual Odometry (SVO) proposed in
[2], which allows us to estimate the quadrotor motion in real-time. The computed
pose Tk,w and the relative image are then fed into the dense map reconstruction
module (REMODE [28], a probabilistic, pixelwise depth estimate to compute dense
depthmaps). Afterwards, the dense map provided by the reconstruction module is
sent to the path planning pipeline and is used to update both the collision map (using
Octomap [26]) and the photometric information map. The last one is then used to
updateΛv for each vertex affected by the map update. Finally, we update the optimal
trajectory following the procedure described in Algorithm 2.

For the textured volumetric map system, we take input from a stereo camera,
perform egomotion estimation with SVO as above, and compute a dense depth map
with OpenCV’s Block Matcher. The estimated camera pose from SVO and the point
cloud produced from the depth map are used to update the Textured OctoMap as
in Sect. 4. This volumetric map serves as a collision map, when it is queried for
occupancy, and is used to synthesize views and compute photometric information
gain during planning, when it is queried for texture. This pipeline runs in real time
onboard an MAV’s embedded single board computer (an Odroid XU3 Lite) using
a map with 5cm resolution, and with the input images downsampled by a factor
of 4 to 188 × 120, and throttled down to 1Hz. However, we evaluate this system
in simulation, and for the experiments in Sect. 6.2, we run the simulation, visual
pipeline, planner, and control software all on a laptop with an Intel i7.

6 Experiments

6.1 Real World Experiments

We motivate our approach by discussing how the photometric information distribu-
tion changes over time when exploring an unknown environment. Figure 6 shows the
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Fig. 6 Computed photometric information gain at different exploration stages (b, c and d) for
the scene in a. Warm (yellowish) colors refer to camera viewpoints exhibiting a higher amount of
texture, while the cool (bluish) ones indicate less informative areas

map for the photometric information gain at different exploration stages. In Fig. 6b
the almost unexplored scene has very little valuable information to compute a reliable
plan. Standard planners, which calculate trajectories only once without performing
online updates, compute sub-optimal plans or even collidewith undiscovered objects.
Hence, an online approach is needed to re-plan as new photometric information is
gathered (see Fig. 6c, d).

To evaluate the proposed online perception-aware path planning, we ran experi-
ments on an indoor environment with different configurations. We set up two scenar-
ios with different object arrangements to vary the texture and the 3D structure of the
scene. In the first scenario, the monocular camera on theMAV is downward-looking,
while in the last onewe choose a front-lookingmonocular configurationwith an angle
of 45 degrees with respect to the ground plane.Wemade experiments with two differ-
ent camera setups to investigate the influence of the camera viewpoint on the optimal
trajectory computation. Intuitively, the front-looking configuration provides more
information since also areas far from the quadrotor are observed. Conversely, with
the downward-looking configuration, the pose estimation algorithm is more reliable,
but less information is captured from the scene. Finally, in all the experiments we
set α = 0.1 to increase the importance of the pose uncertainty minimization.

In all the scenarios,weput highly-textured carpets andboxes along thewalls,while
the floor in the center of the room is left without texture (i.e, with a uniform color). In
the first scenario, we also put an obstacle in the center of the room. At the beginning
of the exploration, the planner shows similar behavior in all the experiments (see
Fig. 7a, d). The information about the scene is very low, thus, our approach computes a
simple straight trajectory to the goal. As the robot explores the environment, the plan
is updated by preferring areas with high photometric information (cf. Fig. 7b, c).
In the second scenario, a front-looking camera provides photometric information
about areas distant from the current MAV pose. As a consequence, we obtain an
optimal plan earlier with respect to the first experiment (see Fig. 7e, f).
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Fig. 7 Experimental results in two real scenarios (rows). The first column shows the initially
computed trajectories, only having little information of the environment available. The second and
third column demonstrate the update of the plan as new information is gathered by updating the
scene

6.2 Simulated Experiments

We demonstrate the proposed system in a simulated environment, using the compo-
nents described in Sect. 5. Two trials were performed in environments simulated with
Gazebo, one designed to explicitly test perception (labyrinth) and one designed to
simulate a real world environment (kitchen). The labyrinth scenario is designed with
flat and highly-textured walls to test the capability of our perception-aware planner to
choose the MAV orientations that maximize the amount of photometric information.
The quadrotor starts in one of the two long corridors in the scene (see Fig. 8a) and is
asked to reach the goal location that is located at 25m from the start location. In the
kitchen world (see Fig. 8d), the MAV begins at a position that is separated by two
walls from the goal location, which is 12.5m away. We compare the performance of
the standard RRT* planner and our perception-aware planner in Figs. 8 and 9.

6.3 Discussion

The qualitative results shown for the real world (Fig. 7) and simulated (Fig. 8) exper-
iments show that the perception aware planner does indeed choose trajectories that
allow the MAV to observe more photometric information. Quantitatively, this results
in a dramatic improvement in the uncertainty of the vehicle’s pose estimate. The
results in Fig. 9 show that the pose uncertainty, measured as the trace of the covari-
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(a) (b)

RRT*

(c)

Perception-aware

(d) (e)

RRT*

(f)

Perception-aware

Fig. 8 Exploration trial in the labyrinth (a) and in the kitchen (d) simulated environments. The
trajectories computed by the RRT* planner are shown in b for the labyrinth scenario and in e
for the kitchen, while the ones computed with the perception aware planner are shown in c and f,
respectively. TheTexturedOctoMaps are visualizedwith a color corresponding to themean intensity
over all of the observed faces, with red representing high intensity, and purple representing low
intensity. The pose covariance at each waypoint is shown as an ellipse, with the most recent update
in orange, and the rest of the plan in blue

ance matrix and visualized as ellipses in Fig. 8, is up to an order of magnitude smaller
when the planner considers the texture of the environment.

In both of the simulated experiments, the RRT* and perception aware planners
both reached the goal location in all trials. On average, for the labyrinth it took 718.3
and 715.2 s, respectively, and for kitchen it took 578.3 and 580.4 s, respectively. The
results are shown in Fig. 8b, c for the labyrinth tests and in Fig. 8e, f for the kitchen
ones. The most important distinction in this performance comparison is the pose
uncertainty across the trajectory. The two planners produce similar trajectories in
terms of waypoint positions, but the covariances for the RRT* trajectory are much
larger due to the desired yaw angles that are chosen for the waypoints. The proposed
perception aware planner specifically optimizes the waypoint position and yaw angle
(i.e. where to look) in order to minimize this pose uncertainty. As a consequence,
the plan computed with our strategy has low pose uncertainty values, while the
RRT* trajectory, which does not consider the visual information, leads to very low
localization accuracy, which can make the navigation infeasible due to the high risk
of collisions.
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Fig. 9 Quantitative results for our experiments showing the evolution of theMAV’s pose covariance
during the planned trajectory. a shows results of the real world experiments. b and c show the
simulated kitchen and labyrinth trials, respectively. The plans for each trial result in different length
trajectories, so the length of each trajectory is normalized to one. For each simulated experiment, we
conducted 15 trials, normalized the trajectories, and inferred Gaussian distributions at each point in
a set of equally-spaced samples along a normalized trajectory. In b and c, each solid line represents
the mean over all of the trials, and the colored band is the 95% confidence interval

7 Conclusions

We have proposed a novel approach for performing online path planning that lever-
ages the photometric information in the environment to plan a path that minimizes
the pose uncertainty of a camera-equipped MAV that is performing vision-based
egomotion estimation. These advances include a perception-aware path planner and
a textured volumetric map. This planning framework has been evaluated with real
and simulated experiments, and both the qualitative and quantitative results support
the conclusion that taking photometric information into account when planning sig-
nificantly reduces a vision-controlled MAV’s pose uncertainty. Utilizing perception
awareness will enable more robust vision-controlled flight in arbitrary environments.
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