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1 Introduction

We study the problem of planning collision-free paths for multiple labeled disc robots
operating in two-dimensional, multiply-connected, continuous environments (i.e.,
environments with holes). The primary goal of this work is to develop a practical,
extensible framework toward the efficient resolution of multi-robot path planning
(MppP) problems, in which the robots are densely packed, while simultaneously seek-
ing to minimize globally the task completion time. The framework is composed of
two key algorithmic components, executed in an sequential order. Using the example
illustrated in Fig. 1a, first, we compute the configuration space for a single robot, over
which an optimal lattice structure is overlaid (Fig. 1b). Using the lattice structure as a
roadmap, each start (resp., goal) location is assigned to a nearby node of the roadmap
as its unique discrete start (resp., goal) node, which translates the continuous problem
into a discrete one (Fig. 1c). Then, a state-of-the-art discrete planning algorithm is
applied to solve the roadmap-based problem near-optimally (Fig. 1d). Through the
tight composition of these two algorithmic components, our framework proves to be
highly effective in a variety of settings, pushing the boundaries on optimal multi-
robot path planning to new grounds in terms of the number of robots supported and
the allowed robot density.

Related work. MPP finds applications in a wide spectrum of domains such as naviga-
tion [1, 25], manufacturing and assembly [ 13], warehouse automation [40], computer
video games [26], and microfluidics [8]. Given the important role it holds in robotics-
related applications, MPP problems has received considerable attention in robotics
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Fig. 1 Anillustrative example of our algorithmic framework. a A problem instance with three disc
robots. The start and goal locations are indicated by the blue and red labeled discs, respectively. b
The configuration space (shaded area) for a single robot and the fitted hexagonal lattice. The blue
circles are the start positions, and the red circles are the goal positions. ¢ The discrete abstraction
of the original problem. d Solution to the original continuous problem

research with dedicated study on the subject dating back at least three decades [24],
in which a centralized approach is taken that considers all robots as a single entity
in a high dimensional configuration space. Because the search space in such prob-
lems grows exponentially as the number of robots increases linearly, a centralized
approach [24], although complete, would be extremely inefficient in practice. As
such, most ensuing research take the approach of decomposing the problem. One
way to do this is by assigning priorities to the robots so that robots with higher pri-
ority take precedence over robots with lower priority [3, 5]. Another often adopted
partitioning method is to plan a path for each robot separately without considering
robot-robot interaction. The paths are then coordinated to yield collision free paths
[2, 19]. Following these initial efforts, the decomposition scheme is further exploited
and improved [7, 17, 21, 31, 34, 35]. Many of the mentioned works also consider
optimality in some form. We emphasize that, since finding feasible solution for
Mppris already PSPACE-hard [10], i.e., no polynomial-time complete algorithm may
even exist for such problems unless P=PSPACE, computing globally near-optimal
solution for a large number of robots is extremely challenging.

Recent years have witnessed a great many new approaches being proposed for
solving MPP. One such method, reciprocal velocity obstacles [33, 36], which can
be traced back to [11], explicitly looks at velocity-time space for coordinating robot
motions. In [8], mixed integer programming (MIP) models are employed to encode
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the interactions between the robots. A method based on network-flow is explored
in [37]. In [20], similar to our framework upon a first look, an A*-based search
is performed over a discrete roadmap abstracted from the continuous environment.
However, the authors addressed a much narrower class of problems for which they
can bound the computation cost but cannot guarantee the solution optimality. It is
also unclear how the complex geometric problem of efficiently computing a discrete
roadmap from the continuous environment is resolved in the paper. In [28], discrete-
RRT (d-RRT) is proposed for the efficient search of multi-robot roadmaps. Lastly,
as a special case of MPPin continuous domains, efficient algorithms are proposed
[29, 32] for interchangeable robots (i.e., in the end, the only requirement is that
each goal location is occupied by an arbitrary robot). At the same time, discrete
(e.g., graph-based) MPPhas also been a subject of active investigation. This line of
research originates from the mathematical study of the 15-puzzle and related pebble
motion problems [14, 39]. Since then, many heuristics augmenting the A* algorithm
have been proposed for finding optimal solution, e.g., [23, 30, 38], to name a few.
These heuristics essentially explore the same decoupling idea used in the continuous
case to trim down the search space. A method based on network-flow also exists here
[42]. Some of these discrete solutions, such as [14], have helped solving continuous
problems [15, 27].

Contribution. Our work brings two contributions toward solving MPP effectively
and optimally. First, we introduce a two-phase framework that allows any roadmap
building (i.e., discretization) method to be combined with any suitable discrete
Mprp algorithm for solving continuous MPP problems. The framework achieves this
by imposing a partial collision avoidance constraint during the roadmap building
phase while preserving path near-optimality. Second, we deliver a practical inte-
grated algorithmic implementation of the two-phase framework for computing near
optimal paths for a large number of robots. We accomplish this by combining (i) a
fast algorithm for superimposing dense regular lattice structures over a bounded two-
dimensional environment with holes and (ii) an integer linear programming (ILP)
based algorithm for computing near-time-optimal solutions to discrete Mpp [41]. To
the best of our knowledge, we present the first such algorithm that can quickly plan
near optimal, continuous paths for hundreds of robots densely populated in multiply-
connected environments.

Paper organization. The rest of the paper is organized as follows. We formulate the
Mppproblem in Sect.2. In Sect. 3, we describe the overall algorithmic framework
architecture and the first component of the framework on roadmap-based problem
construction. In Sect.4, we describe how the second component of the framework
may be realized. In Sect. 5, we demonstrate the effectiveness of our framework over
a variety of environments. We hold an extensive discussion and conclude in Sect. 6.

'Warehousing systems from Kiva Systems [40] can work effectively with hundreds of robots.
However, these robots essentially live on a grid within a structured environment.

2Due to limited space, detailed description of the ILP algorithm (Sect.4) and larger versions of
some figures are included in the online material available at http://arxiv.org/abs/1505.00200. An
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2 Problem Statement

Let # denote a bounded, open, multiply-connected (i.e., with holes), two-
dimensional region. We assume that the boundary and obstacles of % can be approx-
imated using polygons with an overall complexity of m (i.e., there are a total of m
edges). There are n unit disc robots residing in 7. These robots are assumed be omni-
directional with a velocity v satisfying |v| € [0, 1]. Let €y denote the free configura-
tion space for a single robot (the shaded area in Fig. 1b). The centers of the n robots
are initially located at § = {s1,...,s,} C €, with goals G = {g1, ..., &} C €.
For all 1 <i < n, arobot initially located at s; must be moved to g;.

In addition to planning collision-free paths, we are interested in optimizing path
quality. Our particular focus in this paper is minimizing the global task completion
time, also commonly known as makespan.3 Let P = {p1, ..., pn} denote a feasible
path set with each p; a continuous function, defined as

pi 10,171 = Cy, pi(0) =s;, pi(ty) = gi.

The makespan objective seeks solutions that minimize ¢¢. In other words, let &
denote the set of all solution path sets, the task is to find a path set with 7 close to

tin = Ir}éi; ty(P). (D

We emphasize that the aim of this work is a method for quickly solving “typical”
problem instances with many robots and high robot density (i.e., the ratio between
robot footprint and the free space is high) with optimality assurance. By typical, we
mean that: (i) the start location and goal locations are reasonably separated, (ii) a
start or goal location is not too close to static obstacles in the environment, and (iii)
there are no narrow passages in the environment that cause the discretized roadmap
structure to have poor connectivity. More formally, we assume that assumptions (i)
and (ii), respectively, take the forms*

Vi<i,j<n, lsi—sj|>4 |g—gil=4 (2)
and

Vpe{SUG), Ip—ql=<vS5=qe. 3)

(Footnote 2 continued)

accompanying video demonstrating our algorithm and software developed in this paper are available
from the corresponding author’s website.

3Note that our algorithmic framework also applies to other time- and distance-based optimality
objectives through the use of an appropriate discrete planning algorithm.

4Equations (2) and (3) are unit-less given the unit disc robot assumption. If the robots have radius
r, the right side of the inequalities from (2) and (3) should be scaled by a multiplicative factor of r.
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(a) (b)

Fig. 2 a An environment with a discretization that does not capture its original topology. b The
roadmap after restoring connectivity (the operations are performed automatically from our code),
which then captures the topology of the original environment

For (iii), the discretized roadmap should capture the topology of the continuous

environment well. To be more concrete, see Fig. 2a. In this environment, there are two
holes. The lattice graph, after contraction of faces that do not contain any obstacles,
does not have any holes. We expect the discrete roadmap to be connected and have
number of holes (after face contraction) equal to the number of holes of the continuous
environment (e.g., Fig. 1d).
Remark. We provide these assumptions only to suggest situations in which our
framework is expected to perform well. In our evaluation, these assumptions are not
enforced. We in fact greatly relax (2) (from 4 to 2.5) and do not enforce (3) at all. We
also give an efficient subroutine for restoring connectivity when assumption (iii) is
not satisfied. For example, the routine, when applied to the example in Fig. 2a, yields
the result in Fig. 2b, which is a screen capture from our program. We also emphasize
that, given that optimal MPPis an extremely challenging task computationally [10]
and our focus on method effectiveness, we do not consider the problem from the
angle of solution completeness.

3 Algorithmic Framework Architecture
and Roadmap-Based Discrete Problem
Construction

We solve the proposed problem using an algorithmic framework with two algorithmic
components—discretization of the continuous problem followed by resolution of the
roadmap-based problem. The overall framework contains four sequential procedures:

(i) select and overlay a regular lattice structure over the configuration space,
(ii) restore environment connectivity lost in the discretization process,
(iii) snap start and goal locations to roadmap nodes to create a discrete problem on
the roadmap, and
(iv) solve the discrete MPP problem optimally or near-optimally.
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We note that, when compared with motion planning methods such as PRM [12]
and RRT [16], our framework, looking somewhat similar on the surface, is in fact
rather different. In methods like PRM and RRT, the discretization deals with the
configuration space encompassing all degrees of freedom of the target system. Our
approach, on the other hand, performs a careful, mostly uniform discretization of
the configuration space for a single robot with two degrees of freedom. In doing
so, we trade probabilistic completeness for the faster computation of near-optimal
solutions. In the rest of this section, we describe the first key component of our
algorithmic framework—the construction of the roadmap-based discrete problem,
which subsumes the first three algorithmic procedures of the overall framework.

3.1 Lattice Selection and Imposition

Appropriate lattice structure selection In selecting the appropriate lattice structure,
we aim to allow the packing of more robots simultaneously on the resulting roadmap
and obtain the structure fast. Clearly, if an insufficient number of nodes exists in
the roadmap, the resulting discrete problem can be crowded with robots, which is
difficult to solve and may not even have a solution. On the other hand, to allow
a clean separation between the roadmap building phase and the discrete planning
phase of the framework, the nodes cannot be too close to each other, e.g., two robots
occupying two different nodes should not be in collision. Moreover, it is desirable
that two robots moving on different edges in parallel will not collide with each other.

Considering all these factors together, we resort to adopting uniform tilings of
the plane [22]. A uniform tiling of the plane is a regular network structure that
can be repeated infinitely to cover the entire two-dimensional plane. Due to the
regularity of uniform tilings, it is computationally easy to overlay a tiling pattern
over ¢y. Choosing such a tiling then relieves us from selecting each node for the
roadmap individually. Over the 11 uniform tilings® of the plane [22], we computed
the density of robots supported by each. To allow concurrent moves of robots on
nearby edges, take square tiling as an example, a square must have a side length of
4/+/2 to avoid potential collision incurred by such moves (see, e.g., Fig. 3a). Indeed,
it is straightforward to show that the closest inter-robot distance is reached when two
robots are in the middle of two edges connecting to the same node. For hexagonal
tilings, this results in a minimum side length of 4/+/3 (Fig. 3b).

After obtaining the required side length parameters for all 11 tilings, the maximum
robot density allowed by these tilings can then be computed. We compute the density
by assuming that all nodes of the regular tiling patterns are occupied by robots and
compute the ratio between the area occupied by robots and the free space when it is
unoccupied. For an infinite lattice with no obstacles, the hexagonal tiling is the best

SThese tilings are: triangular, trihexagonal, square, elongated triangular, hexagonal, truncated
square, truncated trihexagonal, truncated hexagonal, snub square, rhombitrihexagonal, snub hexag-
onal.
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Fig. 3 Minimum distance between robots. To ensure no collision when executing a discrete plan,
the distance between two lattice nodes must be 4/+/2 + ¢ for square tilings (a) and 4/+/3 + ¢

for hexagonal tilings (b). At exactly 4/ V2 (resp. 4/ V/3) the robots will touch when reaching the
midpoint of the edge. The contact point is shown as a red doc in both figures

Fig. 4 Efficient computation
of the hexagonal lattice that ) _ ; )
falls inside €’¢ - "-._ _ e *.__ b "._‘ s b

with about 45% density, followed by the square tiling with roughly 39% density.
Triangular tilings have a density of only 23%. This leads us to choose hexagonal
lattices as the base structure of the discrete roadmap.

Imposing the lattice structure After deciding on the lattice structure, we need a
procedure for imposing the structure on ¢’. Essentially, every edge must be checked
to determine whether it is entirely contained in the free configuration space €. Note
that if this is performed naively, i.e., performing collision checking of each edge with
all obstacles, the overall complexity is on the order of O(mA), in which m is the
complexity of the workspace and A is the area contained in the outer boundary. The
naive approach quickly becomes time-consuming as either m or A grows.

To complete this step efficiently, we start by making an arbitrary alignment
between a sufficiently large piece of the infinite hexagonal lattice and the contin-
uous environment (Fig.4). Then, we look at one C-space obstacle (including the
outer boundary) at a time. For each obstacle, we pick an arbitrary vertex on the
boundary (red dot in Fig.4) and locate the hexagon from the lattice it belongs to
(in case of the example in Fig. 4, the shaded hexagonal with the label “1”’). We then
follow the obstacle boundary and find all (green) edges of the lattice that intersect the
boundary. The edges found this way do not belong to ¢’ and the final discrete graph
structure; moreover, they partition the lattice into pieces that are either completely
inside %’y or completely outside €. This allows us to efficiently check whether the
rest of the lattice edges belong to ¢’y. To do so, we start with a vertex that is within €’y
that also belongs to one of these green edges and perform a breath first search over
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Fig. 5 Smallest cycles fully
surrounding the two ¢’y
obstacles j—

the lattice structure, now with all the green edges deleted. All edges found this way
must be long to €’y. We repeat this until all vertices of the lattice that fall inside €’
are exhausted. Note that this BFS is a discrete search without performing geometric
computation over real numbers, which can be done much faster than edge intersec-
tion checks. In the end, we obtain an output sensitive algorithm that typically takes
time between ® («/Z) and © (A), depending the total length of obstacle boundaries.
In practice, using the said method, the computation time used by this step is trivial
in comparison to the time it takes to do the discrete planning.

Restore Configuration Space Connectivity We now address how we may ensure
that the topology of 6’ is preserved in the discrete roadmap. Essentially, we must
locate places where connectivity in the continuous environment is lost. We illustrate
our algorithmic solution for doing so using an example. For the problem given in
Fig. 3a, for each C-space obstacle, it is straightforward to obtain the smallest cycle on
the lattice enclosing the obstacle (e.g., the green and red cycles in Fig. 5). Then, for
each pair of obstacles, we check whether the corresponding enclosing cycles share
non-trivial interior and if so, locate a minimum segment on the overlapping section
(e.g., the red segments between the two orange nodes in Fig.5). Using visibility
graph [18], we may then restore the lost connectivity and obtain the roadmap shown in
Fig. 3b. Most of the computation time in this step is spent on computing the visibility
graph itself, which takes time O (m logm + E) [6], with m being the complexity of
the environment and E being the number of edges in the resulting visibility graph.
Remark. In the process of restoring connectivity, it is possible that the resulting
roadmap cannot guarantee that simultaneous movements of disc robots are collision-
free. Without getting into details, we mention that this issue can be fully addressed
by sacrificing some time optimality.

We also note that the preservation of the connectivity or topology of the contin-
uous environment can be crucially important. A better connected environment has
a more diverse set of candidate paths, making the resulting problem easier to solve.
Perhaps more importantly, the preservation of the connectivity of ¢ is essential to
preserving path optimality. For a roadmap built from an overlaid square lattice, given
a shortest path p C ¢’y between two points, due to the strong equivalence between
the Euclidean metric and the Manhattan metric, the shortest path p and the corre-
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Fig. 6 Suppose that the start and goal locations are at the center of the blue and the red discs,
respectively. If the robot does not find the narrow passage on the left, it then needs to travel through
a winding path on the right. By extending the width of the environment, we can make the winding
path arbitrarily long when compared to the shortest path

sponding shortest path p’ on the square lattice-based roadmap are within a constant
factor multiple of each other for any reasonably long path p (that s, length(p) < 1
does not hold). The same argument applies to the roadmap-based hexagonal lattices.
Without obstacles, the ratio length(p')/length(p) over along path p is bounded by
/2 for square lattices and roughly the same for hexagonal lattices. The ratio is largely
the same when obstacles are present. On the other hand, if the connectivity of €’
is not preserved, then it becomes possible that length(p’)/length(p) is arbitrarily
large. An example is given in Fig. 6.

Once we establish that the roadmap preserves the near-optimality on path length,
the same applies to time optimality. Given the preservation of near-optimality of
individual paths, it does not directly imply that an optimal solution to the abstracted
discrete problem also preserves optimality with respect to the original continuous
problem, in terms of time or distance. However, our computational experiments show
that this is generally the case when % has good connectivity.

3.2 Snapping Start and Goal Locations to Roadmap Nodes

After the full roadmap is built, each start or goal location in S U G must be associated
with a nearby roadmap node. We call this process snapping. For the snapping step,
for each s; € S, we simply associate s; with the closest roadmap node that s; can
reach without colliding with another s; € §. The same process is performed for all
g; € G With the separation assumptions (2) and (3), this is almost always possible.
In particular, (2) implies that each hexagon from the lattice contains (roughly) at
most one start and one goal location. Therefore, the number of nodes on the roadmap
is at least twice the number of robots. In rare cases when conflicts do happen, we
may apply the rearrangement algorithms (e.g., [29]) to perform the snapping step
without incurring much penalty on time optimality. The completeness of this step is
guaranteed by (2) and (3).
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With the snapping process complete, a discrete abstraction of the original con-
tinuous problem is obtained. For our example, this leads to the scenario captured in
Fig. lc. If we are not interested in optimality, the discrete problem may be attempted
using a non-optimal but polynomial time algorithm [14, 44]. As stated in the indi-
vidual subsections, the computation required in this section can be carried out using
low-degree polynomial time algorithms. The relative time used for this portion is triv-
ial as compared to the time required for solving the roadmap-based discrete problem.

4 Fast, Near-Optimal Discrete Path Planning

After a high quality roadmap is obtained with near-optimality guarantees on time
and distance (e.g., an optimality-preserving reduction from continuous space to dis-
crete space), one may then freely choose an algorithm for finding solutions to the
discrete abstraction (Fig. 1¢ in our example). Whereas an arbitrary number of glob-
ally optimal objectives can be conjured, four objectives are perhaps most natural.
These four objectives minimize the maximum or the total arrival time or travel dis-
tance. Viewing from the angle of service provider (e.g., delivery drones) and end user
(e.g., customers), minimizing the total distance or time allows the service provider
to minimize energy cost or overall vehicle fleet usage. On the other hand, minimiz-
ing the maximum time or distance promises a more uniform service quality among
customers. If minimizing the total arrival time or the total distance is the goal, then
discrete search methods such as ID [30] can be applied. Here, we focus on the mini-
mum makespan (i.e., maximum arrival time or task completion time). We describe an
effective method for minimizing the makespan [41, 42], which is also a good proxy
to minimizing the maximum travel distance. The method is an ILP-based one with
an optimal baseline algorithm, augmented with near-optimal heuristics to improve
the computational performance.

The baseline, ILP model-based algorithm We first describe how an ILP model
is obtained [42]. The key idea is to perform time expansion over the discrete (spa-
tial) roadmap and then build the ILP model over the resulting directed space-time
graph. This step essentially sequentially chains some 7 copies of the spatial roadmap
together. Locally, for a hexagonal roadmap, the space-time graph has the structure
given in Fig. 7. Now, if the discrete MPP allows a solution within 7" time steps, then
there is a corresponding solution on the space-time graph in the form of n vertex
disjoint paths. An ILP model can then be readily build to find these vertex disjoint

Fig. 7 In asingle time ( {

expansion step, a node’s \
neighbors (including the
ghbors (including () (t+1)
o— = o

node itself) at time step ¢ are

connected to the node at time %
stepr 41 ® o ® Py
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paths. Each solution found on the space-time graph can be easily mapped back to
yield a feasible solution to the original MPP problem. To ensure optimality, a conser-
vative initial estimate of 7', the number of steps for doing time expansion, is used.
This T is then gradually increased until a first feasible solution is found, which is
also a minimum makespan solution.

k-way split heuristic As finding minimum makespan solutions to discrete MPPis
NP-hard [43], we observe the time in solving the corresponding ILP models grows
exponentially as the size of the model grows. This lead us to a heuristic that breaks a
large ILP model into multiple small ones along the time line. If the problem is broken
in k pieces, we call it a k-way split. Using 2-way split as an example, first, individual
paths for the robots are computed. Then the mid-point of these paths are used to divide
the discrete MPP problem into two sub-problems, with these mid-points serve as the
goals of the first sub-problem and the start locations of the second sub-problem. If
there are mid-points that overlap, randomization is used to find alternative locations.
Last, each sub-problem is solved individually, after which we stitch the solutions
together. Note that, because the division is over time, there are no interactions between
two sub-problems. In a k-way split, the original ILP model is effectively divided into
k equal sized pieces. Solving these k pieces is usually much less time consuming
than solving the single, larger ILP model. The heuristic, however, does not preserve
true optimality on makespan but rather yields near-optimal solutions.

Reachability analysis Another useful, optimality preserving heuristic is reachability
analysis. The basic idea here is to truncate edges from the space-time graph that are
unreachable, based on the start and goal locations of each individual robot.

5 Computational Evaluation

We implemented the roadmap building phase in C++ using CGAL [4]. The dis-
crete path planning module, written in Java, uses Gurobi [9] as the ILP solver. The
experiments were carried out on an Intel i7-4850HQ laptop PC.

For evaluation, we tested of our algorithmic framework over five distinct envi-
ronments. The first one is a simple square with a side length of 35 (recall that the
robots are unit discs), with no internal obstacles. The rest of the environments have
the same bounding square but contain different obstacle setups. We randomly select
start and goal locations for all our tests. These environments, along with a typical
50-robot problem instance, are illustrated in Fig. 8.

5.1 Performance in Bounded, Obstacle-Free Environment

We first characterize how our framework performs in terms computation speed and
solution optimality, as k-way split heuristic is used with different values of k. For
this task, we carry out two sets of computations. The first set, covered in this sub-
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Fig. 8 Environments with obstacles and 50 start and goal locations. The labeled blue discs mark
the start locations and the labeled pink discs mark the goal locations. Zoom-in on the digital version
of the paper for details. a Plus. b (Halloween) Jack. ¢ Triangles. d Bars
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Fig. 9 Performance of framework with various choices of heuristics for a square environment
without internal obstacles. Left Computation time. Right optimality ratio

section, focuses on bounded, obstacle-free environment. For this environment, we
let the number of robots vary between 10—100 and evaluate the performance of the
framework with the baseline algorithm (i.e., a single sub-problem), 2-way split (i.e.,
two sub-problems), 4-way split, and 8-way split. For each choice of the number
of robots and the heuristic, 10 test cases are randomly generated sequentially and
solved. The average running time and optimality ratio is plotted in Fig. 9. Note that
our computation of the optimality ratio is conservative. To compute this ratio, we
find the shortest distance between each pair of start and goal locations and use the
maximum of these distances as the estimate of optimal time (since the robot has
maximum speed of 1). We then obtain the optimality ratio by dividing the actual task
completion time by the estimated value.

From the experiments, we observe that the baseline algorithm actually performs
quite well for up to 40 robots in the absence of obstacles. With that said, both
2-way and 4-way splits do much better without losing much optimality—all three
achieves optimality ratio between 1.2—1.61in our experiments. With the 8-way split,
sacrificing some optimality, we were able to consistently solve problems with 100
robots in 10's on average. Such settings correspond to robots occupying over 25% of
the free space, a setting that has never been attempted before in optimal multi-robot
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Fig.10 Performance of our algorithmic framework with various choices of heuristics for the “Jack”
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path planning. With 8-way split, problems with 125 robots in the same environment,
which corresponds to a robot density over 31.4%, can be comfortably solved in about
15 min. We note that, if robot density is around 20%, our method can readily solve
problems with over 300 robots (in a larger environment).

5.2 Performance in Bounded Environment with Obstacles

The second set of experiments shifts the focus to an environment with obstacles. For
this we use the “Jack” environment. We choose this environment because it is in fact
a relatively difficult setting as many shortest paths have to pass through the middle,
causing conflicts. The experimental result, for 5-50 robots, is plotted in Fig. 10,
which is consistent with our first set of experiments. We note that obstacles, while
affecting the computation time, do not heavily impact the optimality of the result.

5.3 Evaluation of Overall Framework Performance

Our last set of experiments is aimed at showing the overall effectiveness of our
framework. For this purpose we select the splitting heuristic automatically. Roughly,
we do this by increasing k (in a k-way split) to keep each time expansion with
10 time steps, which we have found to strike a good balance between speed and
optimality. For the set of environments illustrated in Fig. 8, the experimental result
is plotted in Fig. 11. Our method is able to consistently solve all instances with an
average solution time from 0.5 to 10 s while providing good optimality assurance on
minimum makespan. The two spikes in Fig. 11a at 40 robots are due to the switching
to 8-way split at 45 robot for these two environments.
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Fig. 11 Performance of the overall framework in a wide variety of environments. Left computation
time. Right optimality ratio

6 Conclusion

In this paper, we present an algorithmic framework for tackling the multi-robot path
planning problem in continuous, multiply-connected environments. Our framework
partitions the planning task into two phases. In the first phase, the configuration space
is tiled with a carefully selected regular lattice pattern, taking into account robot-robot
collision avoidance. The imposed lattice is then processed to yield a roadmap that
preserves the connectivity of the continuous configuration space, which is essential
for achieving near optimality in the final solution. Snapping the robots and their goal
locations to the roadmap then transforms the initial continuous planning problem to a
discrete planning problem. In the second phase, the discrete planning problem can be
solved using any graph-based multi-robot path planning algorithms, after which the
solution can be readily used in continuous domains. With a good optimal planner for
discrete MPP, our overall algorithm can consistently solve large problem instances
with tens to hundreds of robots in seconds to minutes.

As we make an important first step here toward a generic framework for near-
optimal multi-robot path planning in continuous domains with obstacles, we also
bring about many natural next steps. We discuss a few of these here, which we plan
to fully explore in our future research.

Nonholonomic constraints. An important issue not addressed in this paper is path
planning for nonholonomic robots. We briefly touch upon this issue here. Our algo-
rithmic framework supports quite naturally nonholonomic robots that are small-time
locally controllable (STLC) with reasonable minimum turning radius. Essentially,
to apply our method to a nonholonomic robot, the robot only need the capability to:
(i) move from its start location to a nearby roadmap node with a given orientation,
(ii) trace any path on the roadmap without incurring collision, and (iii) move from
a roadmap node to a nearby goal location (with an arbitrary orientation). A car-like
robot, or any robot that is STLC, possesses the first and the third capabilities. Then,
as long as the robot has a minimum turning radius of 2, it can follow any path on a
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Fig. 12 A car-like robot
with a mininum turning
radius of 2 can trace any
given path on a hexagonal
lattice with side length 4/+/3
without violating its
nonholonomic constraints or
colliding with other robots

hexgonal lattice without violating its nonholonomic constraints (see Fig. 12). More
importantly, multiple robots may move concurrently in such a manner without caus-
ing collisions. The introduction of nonholonomic constraints does not significantly
affect optimality.

Decentralized planner. The current implementation of our framework yields a
centralized algorithm. It is possible, however, to make the algorithm decentralized
at the global scale. For example, we may simply let each robot perform planning
individually using a method such as reciprocal velocity obstacle (RVO) based algo-
rithm and engage locally our centralized method as the density of robots surpass
some critical threshold. Note that, as the density of robots increases, RVO-based or
repulsion-force-based methods generally do not have optimality guarantees and may
also create deadlocks.

Optimality of hexagonal lattice in general environments. While we have shown
that a hexagonal lattice structure yields the optimal tiling in the absence of obsta-
cles, it is unclear whether this holds well when there are obstacles in the bounded
environment. In future work, we plan to study this through simulation under various
obstacle settings. We will also characterize the performance using lattice structures
other than hexagonal ones. The reason behind this is that, although hexagonal lat-
tice allows the highest density, each node is only 3-connected. Square lattices, for
example, has a 4-connected structure, which facilitates the discrete planning phase.
Generally, discrete MPPproblems with higher connectivity are easier to optimally
solve.
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