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Preface

Operations Research, Engineering, and Cyber Security: Trends in Applied Math-
ematics and Technology brings together a variety of mathematical methods and
theories with several applications from a number of disciplines. It discusses new
scientific perspectives of an interdisciplinary nature that pertain to several domains
of research from pure and applied mathematical sciences including operations
research, engineering, and cyber security.

The book presents 18 papers written by eminent scientists from the international
mathematical community. Some representative papers in this book had been com-
municated during the International Conference held at the Hellenic Artillery School
in May 2015.

These contributions focus on new developments of mathematical sciences with
emphasis to the solvability of the direct electromagnetic scattering problem, geomet-
ric approaches to cyber security, ellipsoid targeting with overlap, nonequilibrium
solutions of dynamic networks, measuring ballistic dispersion, elliptic regularity
theory for the numerical solution of variational problems, approximation theory for
polynomials on the real line and the unit circle, complementarity and variational
inequalities in electronics, new two-slope parameterized achievement scalarizing
functions for nonlinear multiobjective optimization, and strong and weak convexity
of closed sets in a Hilbert space. Furthermore, two papers provide expositions
on optimization problems related to security in network systems as well as an
investigation of some recent inequalities for relative operator entropy. Some papers
in this volume could be particularly useful for a broader readership, specifically
in the optimal batch production with time-varying demand over finite planning
horizon, electromagnetic compatibility in challenging environment, cybersecu-
rity investments with budget constraints, region-based watermarking for images,
optimal inventory policies for finite horizon inventory models with time-varying
demand, metrical Pareto efficiency, and monotone Ekeland’s variational principle.

v
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We would like to express our deepest thanks to all the contributors of papers in
this book. We would also wish to acknowledge the superb assistance that the staff
of Springer has provided for this publication.

Vari Attikis, Greece Nicholas J. Daras
Athens, Greece Themistocles M. Rassias
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Complementarity and Variational Inequalities
in Electronics

Khalid Addi and Daniel Goeleven

Abstract The purpose of this chapter is to review and describe the main
mathematical models applicable to the study of electrical networks involving
devices like diodes whose Ampere–Volt characteristics are set-valued graphs.
The mathematical models in question are related to complementarity problems,
variational inequalities, and non-regular dynamical systems.

Introduction

In this expository work, we review and discuss some methodology that has been
recently developed by several authors for the rigorous formulation and the mathe-
matical analysis of circuits in electronics like slicers, amplitude selectors, sampling
gates, operational amplifiers, four-diode bridge full-wave rectifiers, etc. All these
circuits use semiconductors like diodes and transistors leading to some highly non-
linear phenomena like switching and clipping. The peculiarity of devices like diodes
is that their Ampere-Volt characteristics are described by graphs including vertical
branches. Such graphs are thus set-valued and their mathematical treatment requires
the use of appropriate tools. The objective of this work is to explain to engineers
and mathematicians how advanced tools from convex analysis can be used to build
rigorous mathematical models for the qualitative study and numerical simulation of
electrical networks involving devices like diodes and transistors. Our objective is
also to show that mathematical models like complementarity problems, variational
inequalities, and differential inclusions can be used to analyze diverse problems
in electronics. These last models are indeed well known for their applications in
mechanics and economics but we show here that electronics is also an important
source applications. We will review the main mathematical models applicable to
the study of electrical networks involving devices like diodes and transistors. It is,
however, not our intention here to discuss theoretical mathematical results like
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2 K. Addi and D. Goeleven

existence and uniqueness of a solution or stability of a stationary solution, but
in developing our subject, we will refer the reader to the appropriate articles.
Mathematical models like complementarity problems, variational inequalities, and
non-regular dynamical systems are indeed particularly useful to characterize the
qualitative properties of the circuits (see [5–7, 18, 21–23, 25–27, 39–41, 50]) as
well as to compute some defined output signal (see [1–4, 24, 30, 33]). Such
mathematical models are also useful for the determination of the stationary points
of dynamical circuits and to determine the corresponding Lyapunov stability
and attractivity properties (see [8, 16, 17, 35]) a topic of major importance for
further dynamical analysis and control applications (see [11, 14, 15, 19, 42]).
Hemivariational inequalities are also important mathematical models that can be
used to study electrical networks involving devices like thyristors (see [5]).

On the Use of Complementarity Problem in Electronics

In this section, we show how complementarity problems can be used to develop
a suitable approach for the formulation and mathematical analysis of electrical
networks involving devices like ideal diodes. For U;V 2 R

n, the notation hU;Vi DPn
iD1 UiVi is used to denote the euclidean scalar product on R

n and kUk DphU;Ui to denote the corresponding norm. The identity mapping on R
n will be

denoted by idRn while the identity matrix of order n is denoted by In�n. We set
R

nC D Œ0;C1Œn and we denote by “�” the ordering defined by R
nC, i.e., U � V if

and only if V �U 2 R
nC. We will also use the notations:

minfU;Vg D

0

B
B
B
@

minfU1;V1g
minfU2;V2g

:::

minfUn;Vng

1

C
C
C
A
; maxfU;Vg D

0

B
B
B
@

maxfU1;V1g
maxfU2;V2g

:::

maxfUn;Vng

1

C
C
C
A
:

The Complementarity Relation

We say that two vectors U;V 2 R
n satisfy the complementarity relation provided

that

U � 0;V � 0 and hU;Vi D 0:

The equation hU;Vi D 0 being an orthogonality condition, we also present the
complementarity relation as

0 � U ? V � 0
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or also

R
nC 3 U ? V 2 R

nC:

It is easy to check that the complementarity relation model is the following set of
relations:

8
ˆ̂
<

ˆ̂
:

.8i/ W Ui � 0

.8i/ W Vi � 0

.8i/ W Ui > 0 H) Vi D 0

.8i/ W Vi > 0 H) Ui D 0
which is equivalent to the equation

minfU;Vg D 0:

The Complementarity Relation in Electronics

The diode is a device that constitutes a rectifier which permits the easy flow of
charges in one direction but restrains the flow in the opposite direction. Diodes are
used in power electronics applications like rectifier circuits, switching, and inverter
and converter circuits. Figure 1 illustrates the Ampere-Volt characteristic of an ideal
diode. This kind of diode is a simple switch. If V < 0, then i D 0 and the diode is
blocking while if i > 0, then V D 0 and the diode is conducting. We see that the
ideal diode is described by the complementarity relation.

V � 0; i � 0; Vi D 0, 0 � �V ? i � 0:

The Complementarity Problem

Let F W Rn ! R be a given function. The complementarity problem consists to find
x 2 R

n such that x and F.x/ satisfy the complementarity relation
8
<

:

x � 0
F.x/ � 0
hx;F.x/i D 0

, 0 � x ? F.x/ � 0, R
nC 3 x ? F.x/ 2 R

nC:

The complementarity problem is equivalent to the equation

minfx;F.x/g D 0:



4 K. Addi and D. Goeleven

V

i

+ -

Fig. 1 Ideal diode model

Let ˛ > 0, it is also possible to give an equivalent fixed point formulation of the
complementarity problem as follows:

0 � x ? F.x/ � 0, minfx;F.x/g D 0
, maxf�x;�˛F.x/g D 0, x D maxf0; x � ˛F.x/g:

Recall also that if F D rG for some G 2 C1.RnIR/, then any solution x� of the
optimization problem:

min
x2Rn

C

G.x/

satisfies the complementarity problem 0 � x� ? F.x�/ � 0. The converse is
also true provided that G is convex. The complementarity mathematical theory
has known important developments. Both qualitative results and numerical meth-
ods have been developed by several authors in using tools from convex analysis,
optimization, and fixed point theory. We refer the readers to the following books
[28, 32, 44] and [53] where various results in the field are discussed.

The Complementarity Problem in Electronics

Theoretical tools from complementarity theory can be used to develop a rigorous
mathematical study of electrical networks involving devices like ideal diodes.
We present here only one example because the variational inequality model that
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we will discuss in the following section is more general and recovers the comple-
mentarity model. The use of complementarity problems in electronics originates in
different papers devoted to the mathematical study of dynamical systems in which
certain variables are coupled by means of a static piecewise linear characteristic
(see, e.g., [21, 22, 24–26, 39–42, 48, 50]).

A Clipping Circuit with Ideal Diode

Let us consider the circuit of Fig. 2 involving a load resistance R > 0, an input-signal
source u, corresponding instantaneous current i, an ideal diode as a shunt element,
and a supply voltage E. Kirchhoff’s voltage law gives

u D UR C V C E

where UR D Ri denotes the difference of potential across resistor and V is the
difference of potential across diode. Thus

0 � i ? EC Ri� u � 0, minfi;E � uC Rig D 0

, minfi; E � u

R
C ig D 0, iCminf0; E � u

R
g D 0

, i D �minf0; E � u

R
g D 1

R
maxf0; u� Eg:

If u � E, then the diode is blocking while if u > E, then the diode is conducting.
Let us now consider a driven time depending input t 7! u.t/ and define the output-
signal t 7! Vo.t/ as

Vo.t/ D EC V.t/:

u(t)

R

V+

-

+

-

E

i

Fig. 2 Clipping circuit 1: diode as shunt element



6 K. Addi and D. Goeleven
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Fig. 3 Clipping circuit 1: ideal diode as shunt element, E D 1

The time depending current t 7! i.t/ is given by

i.t/ D 1

R
maxf0; u.t/� Eg (1)

and thus

Vo.t/ D V.t/C E D u.t/ � Ri.t/ D u.t/Cminf0;E � u.t/g D minfu.t/;Eg: (2)

This shows that the circuit in Fig. 2 can be used to transmit the part of a given input-
signal u which lies below some given reference level E (Fig. 3).

On the Use of Variational Inequalities in Electronics

In this section, we show how variational inequalities can be used to develop
a suitable method for the formulation and mathematical analysis of electrical
networks involving devices like different types of diodes (not necessarily ideal) and
transistors.

The Convex Subdifferential Relation

We denote by �0.RnIR [ fC1g/ the set of proper, convex, and lower semicontin-
uous functions from R

n to R [ fC1g. The domain D.˚/ of ˚ is defined by

D.˚/ D fx 2 R
n W ˚.x/ < C1g:
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Let ˚ 2 �0.RnIR [ fC1g/ be given. The convex subdifferential @˚.x/ (see, e.g.,
[43, 59]) of ˚ at x is defined by

@˚.x/ D fw 2 R
n W ˚.v/ �˚.x/ � hw; v � xi;8v 2 R

ng:

The set @˚.x/ describes the differential properties of ˚ by means of the
supporting hyperplanes to the epigraph of ˚ at .x; ˚.x//. Let ˚ 2 �0.R

nIR [
fC1g/ be given. The Fenchel transform ˚� of ˚ is the function defined by

.8z 2 R
n/ W ˚�.z/ D sup

x2D.˚/
fhx; zi � ˚.x/g:

The function˚� W Rn ! R[fC1g is proper convex and lower semicontinuous.
A well-known result in convex analysis (see, e.g., [43, 59]) ensures that

z 2 @˚.x/() x 2 @˚�.z/() ˚.x/C ˚�.z/ D hx; zi:

We say that U;V 2 R
n satisfy a convex subdifferential relation provided that

.8U 2 R
n/ W V 2 @˚.U/;

for some ˚ 2 �0.RnIR [ fC1g/.

The Convex Subdifferential Relation and the Complementarity
Relation

Let K � R
n be a nonempty closed convex set. We denote by �K the indicator

function of K, that is:

�K.x/ D
�

0 if x 2 K
C1 if x … K:

(3)

Then

@�K.x/ D
� fw 2 R

n W hw; h � xi � 0;8h 2 Kg if x 2 K
; if x … K:

We may use this last result to prove that the complementarity relation can be
written equivalently as a convex subdifferential relation. More precisely:

0 � U ? V � 0, �V 2 @�R
n
C
.U/:
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Indeed, let U;V 2 R
n satisfying the complementarity relation 0 � U ? V � 0:

Then .8h � 0/ W hV; hi � 0 and since hV;Ui D 0, we see that .8h � 0/ W
hV; h � Ui � 0 meaning that �V 2 @�R

n
C
.U/: Reciprocally, if �V 2 @�R

n
C
.U/,

then U � 0 and .8h � 0/ W hV; h � Ui � 0. Setting h D 2U we obtain hV;Ui � 0.
Then setting h D 0, we get hV;Ui � 0. Thus V ? U. Moreover, for any H � 0, we
may set h D H C U to see that hV;Hi � 0. It results that V � 0. Thus U;V 2 R

n

satisfy the complementarity relation.

The Convex Subdifferential Relation in Electronics

Electrical devices like diodes are described in terms of Ampere-Volt characteristics
.i;V/ that is a graph expressing the difference of potential V across the device as a
function of current i through the device. The schematic symbol of a circuit element
is given in Fig. 4. The conventional current flow i will be depicted on the conductor
in the direction of the arrow and the potential V D VA � VB where VA (resp. VB)
denotes the potential of point A (resp. B) across the device will be denoted alongside
the device. Experimental measures as well as empirical and physical models lead to
a variety of monotone graphs that may present vertical branches. The reader can
find general descriptions of devices and Ampere-Volt characteristics either in the
appropriate electronics literature (see, e.g., [10, 49]) or in the various electronics
society catalogs available on the web.

Let us suppose here that we may write

.8i 2 R/ W V 2 F .i/;

for some set-valued function F W R ⇒ R. The domain D.F / of F is defined by

D.F / D fx 2 R W F .x/ ¤ ;g:
We assume that F is maximal monotone. That means that F is monotone, i.e.,

8 x1; x2 2 D.F /; z1 2 F .x1/; z2 2 F .x2/ W .z1 � z2/.x1 � x2/ � 0
and the graph G.F / of F , i.e.,

G.F / WD f.x; y/ 2 R
n �R

n W x 2 D.F /; y 2 F .x/g
is not properly included in any other monotone subset of R � R.

V

i

+ -

Fig. 4 Electrical device
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A classical result (see, e.g., Proposition 1.3.15 in [38]) ensures that there exists
a proper, convex, and lower semicontinuous function ' W R! R[fC1g such that

.8i 2 R/ W F .i/ D @'.i/:

Remark 1 Note that there exists �1 � a � b � C1 such that �a; bŒ � D.F / �
Œa; b� and ' can be determined by the formula

'.i/ D
( R i

i0
ˇ0.s/ds if i 2 Œa; b�

C1 if i 2 RnŒa; b� (4)

where i0 2 �a; bŒ and ˇ0 W D.F / ! R denotes the minimal section of F , i.e.,
ˇ0.x/ 2 F .x/ and jˇ0.x/j D inffjwj W w 2 F .x/g. Remark that the function '
in (4) is determined by F up to an additive constant.

Note also that

.8i 2�a; bŒ/ W @'.i/ D �ˇ0.i�/; ˇ0.iC/� ;

where

ˇ0.i�/ D lim
z!i;z<i

ˇ.z/

and

ˇ0.iC/ D lim
z!i;z>i

ˇ.z/:

Any Ampere-Volt characteristic that can be described by a maximal monotone
graph can thus also be formulated as a convex subdifferential relation

V 2 @'.i/

for some ' 2 �0.RIR [ fC1g/. Recall also that

V 2 @'.i/() i 2 @'�.V/() '.i/C '�.V/ D iV:

The function ' will be called the electrical superpotential (determined up to an
additive constant) of the device. Roughly speaking, the electrical superpotential '
appears as a “primitive” of F in the sense that the “derivative” (in the generalized
sense determined by the convex subdifferential) of ' recovers the set-valued
function F .

The notion of superpotential has been introduced by Moreau [51] for convex
but generally non-differentiable energy functionals so as to manage nonlinear
phenomena like unilateral contact and Coulomb friction. This approach has led to
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a major generalization of the concept of superpotential by Panagiotopoulos [54] so
as to recover the case of non-convex energy functionals. The approach of Moreau
as well as the one of Panagiotopoulos is now well-established and often used for the
treatment of various problems in elasticity, plasticity, fluid mechanics, and robotics
(see, e.g., [37, 38, 52, 54] and [55]). More recently, the superpotential approach
of Moreau and Panagiotopoulos has been used to develop a suitable method for
the formulation and mathematical analysis of circuits involving devices like diodes,
diacs, and thyristors in [5]. The case of circuits with transistors has been studied
in [34] and a mathematical general theory applicable to a large class of electrical
networks has been developed in [6].

Ideal Diode Model

Let us come back again in this section to the ideal diode model. Figure 1 illustrates
the Ampere-Volt characteristic of this kind of diode. We have previously seen that
the ideal diode is described by the complementarity relation

0 � �V ? i � 0

which is equivalent to the convex subdifferential relation

V 2 @�RC
.i/:

The electrical superpotential of the ideal diode is

'D.x/ D �RC
.x/:

Then

'�D.z/ D �R�
.z/:

We also have

@'D.x/ WD
8
<

:

R� if x D 0
0 if x > 0
; if x < 0

and

@'�D.z/ WD
8
<

:

RC if z D 0
0 if z < 0
; if z > 0

:
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The complementarity relation can thus be written as

V 2 @'D.i/() i 2 @'�D.V/() 'D.i/C '�D.V/ D iV:

Practical Diode Model

Figure 5 illustrates the Ampere-Volt characteristic of a practical diode model.
Figure 5 illustrates the Ampere-Volt characteristic of a practical diode model. There
is a voltage point, called the knee voltage V1, at which the diode begins to conduct
and a maximum reverse voltage, called the peak reverse voltage V2, that will not
force the diode to conduct. When this voltage is exceeded, the depletion may
breakdown and allow the diode to conduct in the reverse direction. Note that usually
j V2 j>>j V1 j and the model is locally ideal. For general purpose diodes used in low
frequency/speed applications, j V1 j' 0:7–2.5 V and j V2 j' 5 kV; for high voltage
rectifier diodes, j V1 j' 10V and j V2 j' 30 kV; for fast diodes used in switched
mode power supply and inverter circuits, j V1 j' 0:7-1.5 V and j V2 j' 3 kV and
for Schottky diodes used in high frequency applications, j V1 j' 0:2–0.9 V and
j V2 j' 100V.

V

i

+ -

V1

V2

1 

-100 

V (Volts) 

i (mA) 

Fig. 5 Practical diode model
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The electrical superpotential of the practical diode is

'PD.x/ D
�

V1x if x � 0
V2x if x < 0

:

Then

'�PD.z/ D �ŒV2;V1�.z/:
We see that

@'PD.x/ D
8
<

:

V2 if x < 0
ŒV2;V1� if x D 0
V1 if x > 0

recovers the Ampere-Volt characteristic .i;V/ while

@'�PD.z/ D

8
ˆ̂
<

ˆ̂
:

R� if z D V2
0 if z 2�V2;V1Œ
RC if z D V1
; if z 2 Rn ŒV2;V1�

recovers the volt-ampere characteristic .V; i/. The Ampere-Volt characteristic of the
practical diode can thus be written as

V 2 @'PD.i/() i 2 @'�PD.V/() 'PD.i/C '�PD.V/ D iV:

Complete Diode Model

Figure 6 illustrates a complete diode model which includes the effect of the
natural resistance of the diode, called the bulk resistance, the reverse current IR1 , the
diode capacitance, and the diffusion current. This last model is more accurate and
represents the true operating characteristics of the diode.

Note that j V4 j<<j V1 j. For example, the 10ETS.. rectifier (SAFEIR series) has
been designed with j V1 jD 1:1V, j V4 jD 800–1600 V, IR1 D 0:05mA and with
a bulk resistance equal to 20 m�. Let us use the notation of Fig. 6. It is implicitly
assumed that

IR2 < 0 < IR1; V4 < V2 < 0 < V1 < V3:

Let us also set

˛ WD .V3 � V1/

.IR3 � IR1/
; ˇ WD .IR1V3 � IR3V1/

.IR3 � IR1/
; � WD IR1.IR1V3 � IR3V1/

2.IR3 � IR1/
:
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V1

V2

V

i

+ -

Fig. 6 Complete diode model

The electrical superpotential of the complete diode is

'CD.x/ D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

V4xC IR2.
V2
2
� V4/ if x � IR2

V2
2IR2

x2 if IR2 < x � 0
V1
2IR1

x2 if 0 < x � IR1

1
2
˛x2 � ˇxC � if IR1 < x

and simple calculations yield

@'CD.x/ D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

V4 if x < IR2

ŒV4;V2� if x D IR2
V2
IR2

x if IR2 < x � 0
V1
IR1

x if 0 < x � IR1

˛x � ˇ if IR1 < x:

:
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On the other hand, we may compute the conjugate function

'�CD.z/ D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

C1 if z � V4

IR2.z � V2
2
/ if V4 < z � V2

IR2

2V2
z2 if V2 < z � 0

IR1

2V1
z2 if 0 < z � V1

1

2
˛z2 C .IR1 � ˛V1/zC 1

2
V1.˛V1 � I1/ if V1 < z

and

@'�CD.z/ D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

; if z < V4
� �1; IR2� if z D V4
IR2 if V4 < z � V2
IR2

V2
z if V2 < z � 0

IR1

V1
z if 0 < z � V1

˛zC .IR1 � ˛V1/ if V1 < z:

The Ampere-Volt characteristic of the complete diode can then be written as

V 2 @'CD.i/() i 2 @'�CD.V/() 'CD.i/C '�CD.V/ D iV:

Zener Diode Models

The Zener diodes are made to permit current to flow in the reverse direction if the
voltage is larger than the rated breakdown or “Zener voltage” V2. For example, for
a common Zener diode, V1 ' 0:7V and V2 ' �7V.

The Zener diode (see Fig. 7) is a good voltage regulator to maintain a constant
voltage regardless of minor variations in load current or input voltage. There is a
current point IZ , called the Zener knee current, which is the minimum value of the
Zener current required to maintain voltage regulation and a maximum allowable
value of Zener current IM. Currents above this value will damage or destroy
the system. The graph corresponding to the Ampere-Volt characteristic .i;V/ is
maximal monotone and there exists a proper convex and continuous electrical
superpotential ' W R! R such that

.8i 2 R/ W V 2 @'.i/:
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V

+ -

V1

V2

i

Fig. 7 Zener diode model

The ideal Zener diode model is given by the practical diode model (see Fig. 5)
with the appropriate values for V1 and V2. This means that the voltage across the
diode is constant over a wide range of device current values. The practical Zener
diode model (see Fig. 8) is a piecewise linear model that includes the effects of the
Zener impedance. Let us use the notation of Fig. 8. It is here implicitly assumed that

I1 < 0 < I2; V1 < V3 < 0 < V4 < V2:

The electrical superpotential of the Zener diode is

'Z.x/ D
(

.V1�V3/
2I1

x2 C V3x if x < 0
.V2�V4/
2I2

x2 C V4x if x � 0:

Then

'�Z .z/ D

8
<̂

:̂

I1
2.V1�V3/

.z2 � 2V3zC V2
3 / if z < V3

0 if V3 � z � V4
I2

2.V2�V4/
.z2 � 2V4zC V2

4 / if V4 < z:
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V

i

+ -

V1

V2

I1

Fig. 8 Practical Zener diode model

Moreover

@'Z.x/ D

8
<̂

:̂

.V1�V3/
I1

xC V3 if x < 0

ŒV3;V4� if x D 0
.V2�V4/

I2
xC V4 if x > 0

and

@'�Z .z/ D

8
<̂

:̂

I1
V1�V3

.z� V3/ if z < V3
0 if V3 � z � V4

I2
V2�V4

.z� V4/ if V4 < z:

The Ampere-Volt characteristic of the concrete Zener diode can thus be written as

V 2 @'Z.i/() i 2 @'�Z .V/() 'Z.i/C '�Z .V/ D iV:

Varistor Model

A varistor is a nonlinear device that has an electrical behavior similar to the Zener
diode (with j V1 jDj V2 j). More precisely, the varistor (see Fig. 9) is a voltage-
dependent resistor with a symmetrical monotone Ampere-Volt characteristic. It is
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V

+ -

V (Volts) 

i (mA) 

i

Fig. 9 Varistor

used connected in parallel with the electronic device or circuit that is to be guarded
in order to form a low-resistance shunt when voltage increases and thus prevent
any further rise in the overvoltage. The graph corresponding to the Ampere-Volt
characteristic .i;V/ is maximal monotone and there exists a proper convex and
continuous electrical superpotential ' W R! R such that

.8i 2 R/ W V 2 @'.i/:

Transistor Models

A junction transistor is a semiconductor triode capable of producing amplification.
A P-N-P (resp. N-P-N) transistor consists of a silicon (or germanium) crystal in
which a layer of N-type silicon (resp. P-type) is sandwiched between two layers of
P-type silicon (resp. N-type). The three portions of transistor are known as emitter,
base, and collector.

The behavior of a transistor can be described by means of the Ebers-Moll model
(see, e.g., [49]) involving two diodes placed back to back and two dependent
current-controlled sources ˛I IC and ˛NIE shunting the diodes. Here ˛N 2 Œ0; 1Œ

is known as the current gain in normal operation and ˛I 2 Œ0; 1Œ is known as the
inverted common-base gain current. Throughout this paper, we will use the notations
and conventions of Figs. 10 and 11.
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Fig. 10 Transistor P-N-P

Let us here assume that the two diodes of Ebers-Moll are ideal. That means that
each diode acts as a simple switch. If VE < 0 (resp. VC < 0), then I D 0 (resp.
I0 D 0) and the diode is blocking. If I > 0 (resp. I0 > 0), then VE D 0 (resp.
VC D 0) and the diode is conducting. We may then write VE � 0; I � 0; VEI D 0

and VC � 0; I0 � 0; VCI0 D 0. That is also:

��VE

�VC

�

� 0;
�

I
I0
�

� 0; h
��VE

�VC

�

;

�
I
I0
�

i D 0 (5)

or equivalently

�
VE

VC

�

2
�
@ RC

.I/
@ RC

.I0/

�

: (6)
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Fig. 11 Transistor N-P-N

Moreover,
�

I
I0
�

D
�
1 ˛I

˛N 1

��
IE

IC

�

(7)

and

IB D �.IE C IC/: (8)

The relations in (6)–(8) constitute a handy mathematical model for the transistor.
Let us now consider a more general mathematical model in assuming that

there exist proper convex and lower semicontinuous functions 'E, 'C such that
the Ampere-Volt characteristics of the two diodes of Ebers-Moll model can be
formulated as
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VE 2 @'E.I/; VC 2 @'C.I
0/:

The function 'E is called the emitter electrical superpotential of the transistor
while the function 'C is named the collector electrical superpotential. The mathe-
matical model of the transistor reads

�
VE

VC

�

2
�
@'E.I/
@'C.I0/

�

; (9)

�
I
I0
�

D
�
1 ˛I

˛N 1

��
IE

IC

�

(10)

and

IB D �.IE C IC/: (11)

The different models of diodes that have been discussed in the previous section
can be here used so as to define the corresponding models of transistors.

The Variational Inequality Model

Let˚ 2 �0.RnIR[fC1g/ and let F W Rn ! R be a given function. The variational
inequality problem consists to find u 2 R

n such that

hF.u/; v � ui C ˚.v/ � ˚.u/ � 0; 8v 2 R
n: (12)

It is easy to see that (12) is equivalent to the convex subdifferential relation

F.u/ 2 �@˚.u/: (13)

Problem (12) is called a “variational inequality of the second kind” or “mixed
variational inequality” (see, e.g., [32, 37, 47] and [55]). This model recovers the
one called “variational inequality of the first kind” which consists to find u 2 C such
that

hF.u/; v � ui � 0; 8v 2 C; (14)

with C a nonempty closed convex set. It suffices indeed to set ˚ D �C to see that in
this case, (12) is equivalent to (14). Let us also recall here that if C D R

nC, then (14)
is equivalent to the complementarity problem

0 � u ? F.u/ � 0: (15)
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It is well known that for each y 2 R
n, there exists a unique x 2 R

n such that

hx � y; v � xi C ˚.v/ �˚.x/ � 0; 8v 2 R
n;

that is

y 2 xC @˚.x/:

The mapping P˚ W Rn ! R
nI y 7! P˚.y/, called the proximal operator (see, e.g.,

[56]), and defined by

.8y 2 R
n/ W P˚.y/ D .idRn C @˚/�1.y/; (16)

is thus a well-defined single-valued operator. Moreover, it is easy to check that

y 2 xC @˚.x/() x D .idRn C @˚/�1.y/() x D argminv2Rn f1
2
jjv � yjj2 C ˚.v/g:

If C is a nonempty closed convex set, then

P�C � PC

where PC denotes the projector from R
n onto C, i.e.,

PC.x/ D argminv2Cf
1

2
jjv � xjj2g:

Let ˛ > 0 be given. Using the proximal operator, we see that (12) can be
formulated as an equivalent fixed point problem

u D .idRn C @˚/�1.u � ˛F.u//:

Finally, we recall that if F D rG for some G 2 C1.RnIR/, then any solution x�
of the optimization problem:

min
x2Rn

G.x/C ˚.x/

satisfies the variational inequality

hF.x/; v � xi C ˚.v/ �˚.x/ � 0; 8v 2 R
n:

The converse is also true provided that G is convex.
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The Variational Inequality Model in Electronics

A circuit in electronics is formed by the interconnection of electrical devices like
generators, resistors, capacitors, inductors, transistors, diodes, and various others.
The behavior of a circuit is usually described in terms of currents and voltages
that can be specified through each involved electrical device. The approach to state
a mathematical model that can be used to determine these currents and voltages
consists to formulate the Ampere-Volt characteristic of each electrical device, to
write the Kirchhoff’s voltage law expressing that the algebraic sum of the voltages
between successive nodes in all meshes in the circuit are zero and to write the
Kirchhoff’s current law stating that the algebraic sum of the currents in all branches
which converge to a common node equals zero. We will see in this section that
general electrical circuits with diodes and transistors can be studied in using the
variational inequalities modelling approach.

The approach using variational inequalities of the second kind so as to study
electrical networks involving devices like diodes and transistors has been developed
in [6] and [34]. The mathematical approach studied in [6] uses recession tools
so as to define a new class of problems that is called “semi-complementarity
problems” (see also [36]). It is first shown that the study of semi-complementarity
problems can be used to prove qualitative results applicable to the study of linear
variational inequalities of the second kind. In using variational inequalities of the
second kind, the authors study diode circuits like amplitude selectors that are used
to transmit the part of a given waveform which lies above or below some given
reference level, double-diode clippers that are used to limit the input amplitude at
two independent levels, sampling gates which are transmission circuits in which
the output is a reproduction of an input waveform during a selected time interval
and is zero otherwise and other circuits involving both diodes, transistors, and
operational amplifiers. Further theoretical results, applications in electronics and
numerical simulations can be find in the following papers: [7, 23] and [33].

A General Clipping Circuit

Let us again consider the circuit of Fig. 2. We discuss here the case of a diode with
electrical superpotential '. Kirchhoff’s voltage law gives

u D UR C V C E

where UR D Ri denotes the difference of potential across the resistor and V 2 @'.i/
is the difference of potential across diode (Fig. 12). Thus

EC Ri� u 2 �@'.i/ (17)
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Fig. 12 Clipping circuit 1: practical diode as shunt element using, V1 D 0:1;V2 D �90; E D 1

which is equivalent to the variational inequality

.RiC E � u/.v � i/C '.v/ � '.i/ � 0;8v 2 R:

Moreover,

E

R
C i� u

R
2 � 1

R
@'.i/() �E

R
C u

R
2 iC 1

R
@'.i/

() i D .idR C 1

R
@'/�1.

u � E

R
/:

Let us now consider a driven time depending input t 7! u.t/ and define the
output-signal t 7! Vo.t/ as

Vo.t/ D EC V.t/ D u.t/� Ri.t/:

The time depending current t 7! i.t/ is given by

i.t/ D .idR C 1
R@'/

�1. u.t/�E
R /

D argminx2Rf 12 jx � . u.t/�E
R /j2 C 1

R'.x/g:
(18)
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A Rectifier-Stabilizer Circuit

In this section, we illustrate our mathematical modelling approach with a rectifier-
stabilizer circuit (Fig. 13). The rectifier-stabilizer circuit involves four diodes D1,
D2, D3, and D4, a Zener diode Dz, an N-P-N transistor T, two resistors R1 and R2,
and two capacitors C1 and C2. This circuit is supplied by the signal input u. We first
follow a classical compartmental approach to split it into two blocks: the “rectifier”
circuit depicted in Fig. 14 and the “stabilizer” one presented in Fig. 15. We suppose
that all diodes of the rectifier block are ideal. We denote by Vi the voltage of diode
Di .1 � i � 4/, V the voltage of the capacitor and use the other notation indicated
in Fig. 14. Kirchhoff’s laws yield the system

u

D2

D4

D3

D1

2CC1
R1

R2DZ

T

Fig. 13 Rectifier-stabilizer circuit

V1

i2

i1

V2 V3

i3

i4

V4

R V

D2

D4

D3

D1

C1
u

Fig. 14 Rectifier circuit
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2CR1

R1

Fig. 15 Stabilizer circuit

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

i1 C i4 D V

R
C C1

dV

dt
;

�V4 D V C V3;
i3 D i4 C i1 � i2;
�V1 D V C V3 � u;
�V2 D �V3 C u:

We have

8
ˆ̂
<

ˆ̂
:

�V4 2 �@'D.i4/;
�V1 2 �@'D.i1/;
�V2 2 �@'D.i2/;
�V3 2 �@'D.i3/:

Moreover V3 2 @'D.i3/ if and only if i3 2 @'�D.V3/. Setting

.8 V 2 R/ W �D.V/ D '�D.�V/

we get

.8 V 2 R/ W @�D.V/ D �@'�D.�V/

Note that here �D.V/ D �R�
.�V/ D �RC

.V/ D 'D.V/.
Therefore

V3 2 @'D.i3/, i3 2 �@'D.�V3/:

We also set

˚.x/ D �RC
.x1/C �RC

.x2/C �RC
.x3/C �RC

.x4/ D �.RC/
4
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It results that the dynamical behavior of the circuit in Fig. 14 is described by

dV

dt
D �1

RC1
V C

B
‚ …„ ƒ�
1

C1
0

1

C1
0

�
0

B
B
@

i4
�V3

i1
i2

1

C
C
A ; (19)

y
‚ …„ ƒ
0

B
B
@

�V4
i3
�V1
�V2

1

C
C
A D

C
‚…„ƒ
0

B
B
@

1

0

1

0

1

C
C
A V C

N
‚ …„ ƒ
0

B
B
@

0 �1 0 0

1 0 1 �1
0 �1 0 0

0 1 0 0

1

C
C
A

yL
‚ …„ ƒ
0

B
B
@

i4
�V3

i1
i2

1

C
C
AC

F
‚ …„ ƒ
0

B
B
@

0

0

�1
1

1

C
C
A u (20)

and

y 2 �@˚.yL/: (21)

At equilibrium, the dynamical circuit in Fig. 14 reduces to the circuit in Fig. 16
and the stationary solutions of (19)–(21) satisfy the problem

8
ˆ̂
<

ˆ̂
:

� 1

RC1
V C ByL D 0

hNyL C CV C Fu; v � yLi C ˚.v/ �˚.yL/ � 0; 8 v 2 R
4:

(22)

From the first equation of (22) one deduces that V D RC1ByL, so that y D .N C
1
a CB/yL C Fu and our problem reduces to the variational inequality VI.M; ˚;Fu/

yL 2 R
4 W hMyL C Fu; v � yLi C ˚.v/ � ˚.yL/ � 0; 8 v 2 R

4: (23)
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Fig. 16 Rectifier circuit
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with

M WD N C RC1CB D

0

B
B
@

R �1 R 0

1 0 1 �1
R �1 R 0

0 1 0 0

1

C
C
A :

Let us now consider the stabilizer block as in Fig. 17.
We denote by VE, VC, and Vz the voltages of the transistor and the Zener diode,

respectively, as indicated in Fig. 17. Note that we omit the capacitor C2; thanks to
the equilibrium, and use the other notation indicated in Fig. 17. Kirchhoff’s laws
yield the system

8
<

:

�Vz D V C�R1.iz C ie C ic/
�Vz � VC D V
VE � VC D V � R2ie:

The N-P-N transistor behavior is described by means of the Ebers-Moll model
as given in the previous section while the ideal Zener diode behavior is depicted
in Fig. 18.

Setting

Vze D Vz � Vs;

we see that the ideal Zener diode is then described by the complementarity relation

Vze � 0; iz � 0; Vzeiz D 0:
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where K D 1 � ˛I˛N . Then

w
‚ …„ ƒ
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�VC

1

A D

�
‚ …„ ƒ

1

K
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C

q
‚ …„ ƒ
0

@
V C Vs

V C Vs

V

1

A :

We also have

8
<

:

Vze 2 �@�RC.iz/
�VE 2 �@�RC.I/
�VC 2 �@�RC.I0/:

Setting

.8x 2 RC/ W 	.x/ D �R
3
C
.x/ D �RC

.x1/C �RC
.x2/C �RC

.x3/;

we obtain the variational inequality model VI.�;	; q/:

z 2 R
3 W h�zC q; v � zi C	.v/ �	.z/ � 0; 8v 2 R

3: (24)

Let u W RC ! R be a given supplied voltage (Figs. 19, 20). Using the results
proved in [6], we may assert that for each t 2 RC, the rectifier output-signal V.t/ is
uniquely defined by

.8t 2 RC/ W V.t/ D R.i1.t/C i4.t// (25)
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Fig. 19 Rectifier circuit
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Fig. 20 Stabilizer circuit

where for each t 2 RC, i1.t/ and i4.t/ are computed as solutions of the variational
inequality VI.M; ˚;Fu.t// in (23). Setting

.8t 2 RC/ W q.t/ D
0

@
V.t/C Vs

V.t/C Vs

V.t/

1

A ;

with V.t/ defined in (25), we may also use the results proved in [6], to assert that
for each t 2 RC, the stabilizer output-signal Vo.t/ is uniquely defined by

.8t 2 RC/ W Vo.t/ D R2
K
.I.t/� ˛I I

0.t//; (26)

where I.t/ and I0.t/ are determined in solving the variational inequality
VI.�;	; q.t// in (24).

A General Framework

The practice (see [5] and [15]) shows that a large class of circuits can be studied
via the following general mathematical formalism.

Let 	 2 �0.RmIR [ fC1g/ be a given. Let A 2 R
n�n, B 2 R

n�m, C 2 R
m�n,

and D 2 R
n�p be given matrices. Let u 2 R

p be given, we consider the problem
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NRM.A;B;C;D; u; 	/: Find .x; yL/ 2 R
n �R

m such that

Ax � ByL C Du D 0; (27)

y D Cx; (28)

and

yL 2 @	.y/: (29)

The matrices A, B;C, and D in (27) are structural matrices used to state
Kirchhoff’s voltage laws and Kirchhoff’s current laws in matrix form. The matrix
A depends of electrical parameters like resistances, capacitances, and inductances.
Usually u is a control vector that drives the system, x denotes a current vector, and yL

is a voltage vector corresponding to electrical devices like diodes whose (possibly
set-valued) Ampere-Volt characteristics can be described as in (29).

It is noteworthy that (27)–(29) may represent not only the equations of a static
circuit, but also the generalized equation that is to be satisfied by the equilibrium
points of a dynamical circuit, or more generally of a class of differential inclusions
(see [15] for applications in the absolute stability problem).

Let us now make the following two assumptions:

Assumption .H1/: There exists Nx0 2 R
n such that 	 is finite and continuous at

Ny0 D CNx0.
Assumption .H2/: There exists an invertible matrix P 2 R

n�n such that
PB D CT .

We set

.8x 2 R
n/ W ˚.x/ D 	.Cx/: (30)

Then

D.˚/ D fx 2 R
n W Cx 2 D.	/g: (31)

Assumption .H1/ entails that D.˚/ ¤ ; and it is clear that˚ W Rn ! R[fC1g
is a proper convex and lower semicontinuous function. The following result shows
that our general framework can be reduced to a variational inequality of the second
kind.

Proposition 1 Suppose that assumptions .H1/� .H2/ are satisfied and let˚ be
defined as in (30). i) If .x; yL/ is a solution of Problem NRM.A;B;C;D; u; 	/ then
x 2 R

n is a solution of the variational inequality

h�PAx� PDu; v � xi C˚.v/ � ˚.x/ � 0;8v 2 R
n: (32)
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Fig. 21 Four-diode-bridge sampling gate

ii) If x 2 R
n is a solution of the variational inequality (32) then there exists yL 2 R

m

such that .x; yL/ is a solution of Problem NRM.A;B;C;D; u; 	/.

Indeed, let .x; yL/ be a solution of Problem (27)–(29). Then 0 2 Ax�B@	.Cx/C
Du which is equivalent to 0 2 PAx � PB@	.Cx/ C PDu since P is invertible. Thus
0 2 PAx � CT@	.Cx/ C PDu: The existence of a vector Ny0 D CNx0 at which 	
is finite and continuous ensures that (see, e.g., [55]) CT@	.Cz/ D @˚.z/. Thus
0 2 PAx C PDu � @˚.x/ and (32) holds. Suppose now that x is solution of
Problem (̃32). We see as above that 0 2 Ax� B@	.Cx/CDu. It results that there
exists yL 2 @	.Cx/ such that 0 D Ax � ByL C Du. Then we obtain the relations
in (27)–(29) by setting y D Cx:

A Sampling Gate

The circuit in Fig. 21 is a sampling gate, i.e., a circuit in which the output is a
reproduction of the input waveform during a selected time interval and is zero
otherwise. The time interval is selected by the gate signal Vc. The circuit involves a
bridge of four diodes D1;D2;D3;D4 and symmetrically controlled by gate voltages
CVc and �Vc through the control resistors Rc > 0. The input-signal is given by Vi

and the output signal is defined by the voltage Vo through the load resistor RL > 0.
Usually, Vi is sinusoidal while Vc is rectangular shaped. We denote by Vj the voltage
of the diode Dj and by xj the current across the diode Dj .1 � j � 4/. Moreover,
x5 denotes the current through the left resistor Rc, x6 is the current through the right
resistor Rc and x7 denotes the current trough resistor RL.
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Kirchhoff’s laws yield the system

A
‚ …„ ƒ
0

@
�RL 0 0

0 �2Rc 0

0 0 0

1
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1
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B
‚ …„ ƒ
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@
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0 0 1 1

1 1 �1 �1

1

A
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B
B
@

V1
V2
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1

C
C
AC

C

D
‚ …„ ƒ
0

@
1 0

0 1

0 0

1

A

u
‚ …„ ƒ�

Vi

2Vc

�

D 0

and we suppose that the electrical superpotentials of the four diodes D1;D2;D3;D4

are respectively given by '1; '2; '3; '4 2 �0.RIR [ f1g/

V1 2 @'1.x1/;
V2 2 @'2.x2/ D @'2.x1 � x7/;

V3 2 @'3.x3/ D @'3.x6 � x1/;

V4 2 @'4.x4/ D @'4.x7 C x6 � x1/:

Setting

y D

C
‚ …„ ƒ
0

B
B
@

0 0 1

�1 0 1

0 1 �1
1 1 �1

1

C
C
A

0

@
x7
x6
x1

1

A

and defining the function	.x/ D '1.x1/C '2.x2/C '3.x3/C'4.x4/, we may write
V 2 @	.y/ and then consider problem NRM.A;B;C;D; u; 	/. It is easy to see that

in practice,
�
2 1 1 2

�T D C
�
1 3 2

�T 2 �0;C1Œ4 is a point at which	 is finite and
continuous since electrical superpotentials 'i .1 � i � 4/ of any type of diode are
finite and continuous on �0;C1Œ. It results that Assumption .H1/ holds (Fig. 22).
We remark also that CT D B and thus Assumption .H2/ holds with P D I. So, for
a driven time depending input t 7! Vi.t/ and control gate signals t 7! Vc.t/ and
t 7! �Vc.t/, the output time depending voltage t 7! Vo.t/ through the resistor RL is
determined by Vo.t/ D RLx7.t/ where the current function t 7! x7.t/ is determined
in solving the variational inequality (32).
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Fig. 22 Four-diode-bridge sampling gate with ideal diodes
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Fig. 23 Illustration of the circuit with a feedback branch

Non-regular Dynamical Systems

In this section, we introduce a general formalism whose study has been initiated in
[14]. We refer also the reader to [5, 16] and [35] for some related recent works. Let
A 2 R

n�n, B 2 R
n�m, C 2 R

m�n, and D 2 R
n�p be given matrices. Let	 W Rm ! R

be a given mapping. It is assumed that 	 2 �0.RmIR [ fC1g/. Our aim is to
introduce a system described by a transfer function

H.s/ D C.sI � A/�1B

and a feedback branch containing a sector static nonlinearity as depicted in Fig. 23.
The feedback nonlinearity that describes the graph .y; yL/ is here defined by the
model

yL 2 @	.y/:
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Moreover, the system is driven by inputs Du for some given function

u W Œ0;C1Œ! R
pI t 7! u.t/:

The state-space equations of such a system are given by

dx

dt
.t/ D Ax.t/ � ByL.t/C Du.t/; (33)

y.t/ D Cx.t/; (34)

and

yL.t/ 2 @	.y.t//: (35)

Note that if .8t � 0/ W u.t/ D u for some given u 2 R
p, then the stationary solu-

tions of (33)–(35) are given by the solutions of the problem NRM.A;B;C;D; u; 	/
discussed in the previous section.

We suppose that u 2 L1loc.0;C1IRp/ and for x0 2 R
n, we consider the problem

P.x0/: Find a function x W Œ0;C1Œ! R
nI t 7! x.t/ and a function yL W Œ0;C1Œ!

R
mI t 7! yL.t/ such that

x 2 C0.Œ0;C1ŒIRn/; (36)

ByL 2 L1loc.0;C1IRn/; (37)

dx

dt
2 L1loc.0;C1IRn/; (38)

x.0/ D x0; (39)

dx

dt
.t/ D Ax.t/� ByL.t/C Du.t/; a.e. t � 0; (40)

y.t/ D Cx.t/; 8 t � 0; (41)

and

yL.t/ 2 @	.y.t//; a.e. t � 0: (42)

Let us now make the following two assumptions:

Assumption .G1/: There exists a symmetric and invertible matrix R 2 R
n�n

such that

R�2CT D B:
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Assumption .G2/: There exists z0 2 R
n such that 	 is finite and continuous at

y0 D CR�1z0.

Note that R�2 D .R�1/2. Using (40)–(42), we may consider the differential
inclusion

dx

dt
2 Ax � B@	.Cx/C Du:

Setting z D Rx, we remark that

dx

dt
2 Ax � B@	.Cx/C Du

, R
dx

dt
2 RAR�1Rx � RB@	.CR�1Rx/C RDu

, dz

dt
2 RAR�1z � R�1R2B@	.CR�1z/C RDu

, dz

dt
2 RAR�1z� R�1CT@	.CR�1z/C RDu:

We set

.8z 2 R
n/ W ˚.x/ D 	.CR�1z/:

Then

D.˚/ D fz 2 R
n W CR�1z 2 D.	/g:

and with Assumption .G1/, we have

.8z 2 R
n/ W @˚.z/ D R�1CT@	.CR�1z/:

This allows us to consider, for x0 2 R
n, the problem Q.x0/: Find a function

z W Œ0;C1Œ! R
nI t 7! z.t/ such that

z 2 C0.Œ0;C1ŒIRn/; (43)

dz

dt
2 L1loc.0;C1IRn/; (44)

z.0/ D Rx0; (45)

dz

dt
.t/ 2 RAR�1z.t/C RDu.t/� @˚.z.t//; a.e. t � 0: (46)
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Note that this last differential inclusion is equivalent to the variational inequality

hdz

dt
.t/�RAR�1z.t/�RDu.t/; v� z.t/iC˚.v/�˚.z.t// � 0;8v 2 R

n; a.e. t � 0:

Proposition 2 Suppose that assumptions .G1/ � .G2/ are satisfied. If .x; yL/ is
solution of Problem P.x0/, then z D Rx is solution of Problem Q.x0/. Reciprocally,
if z is solution of Problem Q.x0/, then there exists a function yL such that .R�1z; yL/

is solution of Problem P.x0/.

Indeed, we have seen above that if .x; yL/ is solution of Problem P.x0/, then
z D Rx is solution of Problem Q.x0/. Suppose now that z is solution of Problem
Q.x0/. Then setting x D R�1z, we see as above that

dx

dt
2 Ax � B@	.Cx/C Du:

It results that there exists a function yL 2 @	.Cx/ such that

dx

dt
D Ax � ByL CDu:

Note that

ByL D �dx

dt
C AxC Du 2 L1loc.0;C1IRn/:

Then we obtain the relations in (36)–(42) by setting

y D Cx:

So, using assumptions .G1/ � .G2/, we may reduce the study of problem P.x0/
to the one of problem Q.x0/ which can be investigated by means of mathematical
tools from set-valued analysis, theory of maximal monotone operators, and vari-
ational inequality theory (see, e.g., [9, 12, 13, 19, 29, 31, 37, 38, 45, 52, 55]). The
equivalence between complementarity systems, projected systems, and unilateral
differential inclusions are recapitulated in [20]. General results allowing a stability
analysis of the stationary solutions of non-regular dynamical systems can be
found in [18] and [35]. A generalization of Krakovskii-LaSalle invariance theory
for non-regular systems can be found in [16] and related results in [17]. The
stability analysis applicable to the study of a DC-DC Buck converter is detailed
in [8]. Piecewise affine dynamical systems and linear complementarity systems
with applications in electronics are given in [11, 14, 21–27]. Numerical methods
have been proposed in [4] and [3] so as to study switched circuits. The nonsmooth
approach applied to simulating integrated circuits and power electronics is detailed
in [30]. We refer also the readers to [1] for a book on numerical methods for
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nonsmooth dynamical systems with applications in electronics. Let us here also
mention a study including mathematical formulation and numerical simulations of
higher order Moreau’s sweeping process in electronics [2].

Assumption .G1/ and Kalman–Yakubovich–Popov Lemma

Let A 2 R
n�n, B 2 R

n�m, and C 2 R
m�n. One says that the representation .A;B;C/

is minimal provided that .A;B/ is controllable and .A;C/ is observable, i.e., the
matrices .B AB A2B : : : An�1B/ and .C CA CA2 : : : CAn�1/T have full rank. Let
us now consider the real, rational matrix-valued transfer function H W C ! C

m�m

given by

H.s/ D C.sIn � A/�1B: (47)

Definition 1 One says that H is positive real if

• H is analytic in C
C WD fs 2 R W ReŒs� > 0g,

• H.s/C HT.Ns/ is positive semi-definite for all s 2 C
C,

where Ns is the conjugate of s.

The following result is called Kalman–Yakubovich–Popov lemma [46, 57] and
[61] (see also, e.g., [19, 58]).

Lemma 1 Let .A;B;C/ be a minimal realization and let H be defined in (47). The
transfer function matrix H is positive real if and only if there exist a symmetric and
positive definite matrix P 2 R

n�n and a matrix L 2 R
n�m, such that

PAC ATP D �LLT

PB D CT :

(48)

So, if the realization .A;B;C/ is minimal and the transfer function H is positive
real then there exists a symmetric and positive definite matrix P 2 R

n�n and a matrix
L 2 R

n�m such that PACATP D �LLT and PB D CT . Choosing R as the symmetric
square root of P, i.e., R D RT , R positive definite and R2 D P, we see that BTR2 D C
and thus

R�2CT D B:

It results that assumption .G1/ holds.
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A Non-regular Circuit

Let us consider the following dynamics that corresponds to the circuit depicted
in Fig. 24:

0

B
B
B
B
B
@

dx1
dt

dx2
dt

dx3
dt

1

C
C
C
C
C
A

D

A
‚ …„ ƒ0

B
@

0 1 0

� 1
L3C4
� .R1CR3/

L3
R1
L3

0 R1
L2

� .R1CR2/
L2

1

C
A

0

@
x1
x2
x3

1

A

�

B
‚ …„ ƒ0

B
@

0 0
1

L3
1

L3
� 1

L2
0

1

C
A

�
yL;1

yL;2

�

C

D
‚…„ƒ0

B
@

0

0
1

L2

1

C
A u;

and

�
yL;1 2 @'D.�x3 C x2/
yL;2 2 @'Z.x2/

(49)

where R1 > 0;R2 > 0;R3 > 0 are resistors, L2 > 0, L3 > 0 are inductors, C4 > 0

is a capacitor, x1 is the time integral of the current across the capacitor, x2 is the
current across the capacitor, x3 is the current across the inductor L2 and resistor
R2, yL;1 is the voltage of the Zener diode, yL;2 is the voltage of the diode, 'Z is the
electrical superpotential of the Zener diode, and 'D is the electrical superpotential
of the diode. Setting

y D
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@
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Fig. 24 Non-regular circuit
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and defining the function	 W R2 ! RIX 7! 	.X/ by the formula

	.X/ D 'D.X1/C 'Z.X2/;

we may write the relations in (49) equivalently as

yL 2 @	.Cx/:

It is easy to see that

rankf.B AB A2B/g D rankf.C CA CA2/Tg D 3

and a simple computation shows that the transfer function

H.s/ D C.sI � A/�1B D
1

D.s/

 
s2C4L3 C s2C4L2 C sC4R2 C sC4R3 C 1 C4L3

L2
s.sL2 C R2/

C4s.sL2 C R2/
C4L3

L2
s.sL2 C R1 C R2/

!

;

where

D.s/ D s3C4L3L2 C s2C4L3R1C s2C4L3R2 C s2C4R1L2 C sC4R1R2 C s2C4R3L2C
sC4R3R1 C sC4R3R2 C sL2 C R1 C R2;

is positive real. The existence of a matrix R that satisfies condition .G1/ is thus
here also a consequence of the Kalman–Yakubovich–Popov lemma. A simple
computation shows that the matrix

R D

0

B
@

1p
C4

0 0

0
p

L3 0

0 0
p

L2

1

C
A

is convenient.
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Electromagnetic Scattering by a Chiral
Impedance Screen

C.E Athanasiadis, V. Sevroglou, and K.I. Skourogiannis

Abstract In this paper the solvability of the direct electromagnetic scattering
problem by an impedance screen in a chiral environment is presented. Time-
harmonic electromagnetic plane waves in a chiral medium are considered as incident
fields. These propagating fields are scattered by an obstacle which is a partially
coated open surface 
 , well known as the “screen". Uniqueness results are proved
using appropriate relations for Beltrami fields, and in addition, existence results are
established by using a variational method in suitable functional space setting.

Keywords Chiral media • Beltrami fields • Impedance boundary conditions
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Introduction

In this work the scattering problem of plane time-harmonic electromagnetic waves
by a partially coated chiral obstacle embedded in an infinite homogeneous isotropic
chiral medium is studied. From the mathematical point of view, chiral media
satisfy a set of constitutive relations in which the magnetic and electric fields
are coupled. Different expressions exist for the constitutive relations [14]; in this
work the well-known Drude-Born-Fedorov (DBF) constitutive relations are used.
These constitutive relations are chosen because they are symmetric under time
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reversality and duality transformations. Chiral obstacles are characterized by the
so-called chirality (or preferential handedness) and the related electromagnetic
fields are composed of left circularly polarized (LCP) and right circularly polarized
(RCP) components. These fields have independent directions of propagation and
different wave numbers. Chirality is common in a variety of naturally occurring and
man-made objects (e.g. DNA in molecular scale, helices) and has also played an
important role to the study of optical activity. Properties and scattering problems
involving chiral media have been studied by many scientists; for an excellent
source we refer to [15, 16] and [17] (and therein references). Solvability results
concerning direct scattering problems where the obstacle is a perfect conductor or a
dielectric (penetrable scatterer) in chiral media can be found in [5, 6]. In these cases,
Bohren decomposition is used and an equivalent boundary integral formulation to
the scattering problems is considered. Furthermore, boundary integral equations for
electromagnetic scattering by a homogeneous chiral obstacle were studied in [4], by
using a generalization of Müller’s equations for scattering by a non- chiral obstacle.
In [1], existence and uniqueness of the solution to the diffraction problem of a plane
electromagnetic field by a chiral curved layer covering a perfectly conducting object
have been studied. In particular, approximative impedance conditions are given for
thin chiral curved layers and optimal error estimates are obtained (the reader can
also see [2]). We end up with the work studied in [3], where the LCP and the
RCP Beltrami Herglotz functions were defined by an integral representation over
the unit sphere where the corresponding kernels are exactly the Beltrami far-field
patterns. These functions will play an important role for the investigation of the
inverse electromagnetic problem for a mixed-impedance screen in chiral media.
For non-chiral media, mixed boundary value problems which describe model of
scattering by obstacles that are covered by a thin layer of material on part of their
boundaries are studied in [10]. The direct and inverse scattering problem of a time-
harmonic electromagnetic plane wave by a mixed perfectly conducting-impedance
screen is studied in [8, 11] and [9]. Further, we mention that problems with mixed-
impedance boundary conditions in elasticity have been considered in [7].

Setting Up the Problem

We consider a plane time-harmonic electromagnetic wave Einc which is propagated
in an infinite homogeneous isotropic chiral medium. This field is disturbed by a
very thin partially coated chiral obstacle (the scatterer), known as screen, which is
an open, bounded, smooth surface 
 2 R

3 with two sides coated by impedance
material. This surface is also a part of a piecewise smooth surface @D of a bounded
domain D � R

3. The domain D as well as the infinite medium is filled up with
a homogeneous and isotropic chiral medium of chirality measure “. For our case
we assume that “ is a positive constant. We denote On the unit normal vector to 

which coincides with the outward normal vector defined almost everywhere on @D.
The boundary condition on each side of this surface obstacle is described by an
impedance boundary condition.
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For a vector u we use the notation On � uCj
 , On � uCj
 , �CT uj
 for the restriction
to 
 of the traces On � uCj@D, On � uCj@D and�CT uj@D, respectively, from the outside
of the @D, where �CT u WD On � .uC � On/ is the tangential component of uC. Similar
considerations for the traces from the inside of the@D which are notated by On �
u�j
 , On � u�j
 , ��T uj
 also hold. We also use the notation u˙j
 when a relation is
hold for both the restrictions of the vector u on 
 .

The total electric field E is the superposition of the incident electric field Einc and
the scattered electric field Esc, i.e.,

E D Einc C Esc: (1)

The scattering electromagnetic problem by a double impedance screen in chiral
media is to determine the total electric field E that satisfies

r � r � E D 2 �2 ˇr � EC �2E in R
3 n 
; (2)

On � r � E� D i���2

k2
On � E� � OnC �2 ˇ On � E� on
; (3)

On � r � EC D i�C�2

k2
On � EC � OnC �2 ˇ On � EC on
; (4)

Or � r � Esc � ˇ �2 Or � Esc C i �2

k
Esc D o.

1

r
/ r!1; (5)

where �2 D k2=.1�k2ˇ2/, k D !p" � , with! the angular frequency,"; � been the
electric permittivity and magnetic permeability, respectively, and ��; �C 2 L1.
/
with�� ; �C � �0 > 0. The Silver-Müller radiation condition (5) holds uniformly
in all directions Or D r=r where r WD jrj. We note that the electric field E is
divergence-free, that is r � E D 0. In addition, k is not a wave number and its
notation has not any particular physical significance.

In what follows we deal with the uniqueness and existence of the solution of the
scattering problem (2)–(5) in an appropriate space setting . Hence, we define the
following Sobolev spaces:

H.curl;B n 
/ WD fu 2
�
L2.B n 
/

�3 W curlu 2 �L2.B n 
/
�3g; (6)

L2t .
/ WD fu 2 ŒL2.
/�3 W u � On D 0; on
g; (7)

Hloc.curl; R3n
/ WD ˚u 2 H.curl; B n 
/ for every B such that D � B
	
; (8)
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and

X.curl; R3n
/ WD ˚u 2 Hloc.curl; R3 n 
/ W On � u�j
 ; On � uCj
 2 L2t .
/
	
; (9)

where B is a sphere with radius  large enough, containing the bounded domain D.
The last space is equipped with the graph norm

k u k2
X.curl;R3n
/ WD k r � u k2

.L2.Bn
//3
C k u k2

.L2.Bn
//3

C k On � u� k2
L2t .
/
C k On � uC k2

L2t .
/
: (10)

Uniqueness Results

In order to prove uniqueness for the scattering problem (2)–(5) we will be based on
the Bohren decomposition of the electric field E and magnetic field H into the QL

(LCP) and QR (RCP) Beltrami fields

E D QL � i�QR; H D 1

i�
QL CQR; (11)

where � D
q

�

"
is the intrinsic impedance of the chiral medium. In view of (11) the

Beltrami fields are expressed as

QL D EC i�H
2

; QR D i��1ECH
2

: (12)

In addition the Beltrami fields satisfy the following equations:

r �QL D �L QL; r �QR D ��R QR; (13)

where �L D k.1� kˇ/�1, �R D k.1C kˇ/�1 are the wave numbers for the Beltrami
fields, QL;QR, respectively.

The scattered Beltrami fields Qsc
L ;Q

sc
R , satisfy the Silver-Müller type radiation

conditions [3, 5]

Or �Qsc
L C i Qsc

L D o.
1

r
/; Or �Qsc

R � i Qsc
R D o.

1

r
/; as r!1; (14)

as well as the asymptotic relations

Qsc
L D O.

1

r
/; Qsc

R D O.
1

r
/; as r!1: (15)
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Relations (14) and (15) are obtained via (12) with the aid of the asymptotic
behaviour of E; H as r ! 1, [12]. In what follows, with the notation QA; A D
L;R, the bar “�" will denote the conjugate vector of QA and with Q�A , QCA we denote
the limit from inside and outside of the boundary @D, respectively. In addition, the
notation QȦ is for both the previous limits. We are now ready to proceed with the
following proposition:

Theorem 2.1 The Beltrami fields QA; A D L;R, with QA 2 X.curl;R3n
/, satisfy
the following relation:

Z

S

Ox � .QA �QA/ ds D
Z




On � .Q�A �Q �A / ds�
Z




On � .QCA �QCA / ds; (16)

where S D fx 2 R
3 W jxj D g and Ox is the unit normal vector to the spherical

surface S.

Proof The reader can be found an analogous proposition in [8], and hence the proof
is omitted for brevity. �
Further we have the following result:

Theorem 2.2 The Beltrami fields QL; QR 2 X.curl;R3 n 
/ satisfy the relation

=
�
1

�

Z




On � .QL̇ �Q L̇ / ds� �
Z




On � .QṘ �Q Ṙ / ds

�

D k

�

Z




1

�˙
.jU˙j2 � jOn � U˙j2/ ds; (17)

where U˙ WD Q L̇ C i �Q Ṙ .

Proof The boundary conditions (3) and (4) via the relations (11) and (13) and the
vector identity u D . On � u/ On � On � .u � On/ lead to

QL̇ D i�QṘ C Œ On � .QL̇ � i�QṘ /� On

C ik2

�˙
.ˇ � �L

�2
/ On �QL̇ C

�k2

�˙
.ˇ C �R

�2
/ On �QṘ on 
; (18)

but via

ˇ � 1

�R
D �1

k
and ˇ C 1

�L
D 1

k
(19)

the relation (18) takes the form

QL̇ D i�QṘ C Œ On � .QL̇ � i�QṘ /� On

� ik

�˙
On �QL̇ C

�

�˙
On �QṘ on 
: (20)
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Multiplying (20) by On and then by Q
˙
L we arrive at

On � .QL̇ �Q L̇ / D i� On � .QṘ �Q L̇ /

� ik

�˙
. On �QL̇ /. On �Q L̇ /C

�k

�˙
. On �QṘ /. On �Q L̇ /

C ik

�˙
QL̇ �Q L̇ �

�k

�˙
QṘ �Q L̇ (21)

as well as

On � .QṘ �Q Ṙ / D �
i

�
On � .QL̇ �Q Ṙ /

C ik

�˙
. On �QṘ /. On �Q Ṙ /C

k

��˙
. On �QL̇ /. On �Q Ṙ /

� ik

�˙
QṘ �Q Ṙ �

k

��˙
QL̇ �Q Ṙ : (22)

For the remaining of the proof of (17), we use (21) and (22) in order to evaluate the
quantity

1

�
On � .QL̇ �Q L̇ /� � On � .QṘ �Q Ṙ /: (23)

Taking into account that

i On � .QṘ �Q L̇ /C i On � .QL̇ �Q Ṙ / (24)

is a real number, after some calculations we can arrive at the relations

ik

��˙
QL̇ �Q L̇ �

k

�˙
QṘ �Q L̇ C

k

�˙
QL̇ �Q Ṙ C

i�k

�˙
QṘ �Q Ṙ D

ik

��˙
jU˙j2; (25)

and

� ik

��˙
. On �QL̇ /. On �Q L̇ /C

k

�˙
. On �QṘ /. On �Q L̇ /�

k

�˙
. On �QL̇ /. On �Q Ṙ /

� i�k

�˙
. On �QṘ /. On �Q Ṙ / D �

ik

��˙
j On �U˙j2; (26)

and hence, the assertion of the proposition is proved. �
In the sequel, uniqueness for the boundary value problem (2)–(5) will be established.
We will consider the corresponding homogeneous scattering problem of (2)–(5), i.e.,
incident electric field Einc D 0. Relations (12), (16) and (23) will be used in order
to prove the following uniqueness theorem:
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Theorem 2.3 The electromagnetic scattering problem (2)–(5) in chiral media, for
Einc D 0, has the trivial solution.

Proof By radiation conditions (14) we have

lim
!1

 
1

�

Z

S

j O� �QL C iQLj2dsC �
Z

S

j O� �QR � iQRj2ds

!

D 0: (27)

If Dex D R
3nD, relation (27) with the aid of the divergence theorem in D and

Dex \ B for the vectors QA � QA; A D L;R with QA 2 X.curl;R3 n 
/, and due
to (16), yields to

lim
!1

 
1

�

Z

S
j O� �QLj2dsC 1

�

Z

S
jQLj2dsC �

Z

S
j O� �QRj2dsC �

Z

S
jQRj2ds

!

C2=
�
1

�

Z



.QCL �QCL / � On ds � �

Z



.QCR �QCR / � On ds

�

C2=
�
1

�

Z



.Q�L �Q�L / � On ds � �

Z



.Q�R �Q�R / � On ds

�

D 0 (28)

Taking into account (17) and (28), via Rellich’s lemma in chiral media [6], we
arrive at QL D QR D 0, and from (11) the theorem now easily follows. �

Existence of the Solution

In this section we will prove the existence of the solution of the scattering
problem (2)–(5) using a variational method. Having in mind the Sobolev spaces
defined in (6)–(9), we multiply equation (2) by a test function w 2 X.curl; R3 n 
/
and we integrate by parts in D and Dex \ B . If we apply the divergence and the
first vector Green’s theorem in D and Dex\B, in view of the continuity of On�E and
On�r�E across @Dn
 we can obtain the variational form of the scattering problem

Z

D
.r � E/ � .r � w/ duC

Z

Dex\B

.r � E/ � .r � w/ du

�2�2ˇ
Z

D
E � .r � w/ du� 2�2ˇ

Z

Dex \B

E � .r � w/ du

��2
Z

D
E � w du � �2

Z

Dex \B

E � w du
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C i�2

k2

Z




�C �CT E � �CT w ds� i�2

k2

Z




�� ��T E � ��T w ds

��2ˇ
Z




. On � E/ � �CT w dsC �2ˇ
Z




. On � E/ � ��T w ds

C
Z

S

Gkce.Ox � E/ � �Twds

D � i� 2

k2

Z




�C �CT Einc � �CT wdsC i� 2

k2

Z




�� ��T Einc � ��T wds

C�2ˇ
Z




. On � Einc/ � �CT w ds� �2ˇ
Z




. On � Einc/ � ��T w ds

�
Z

S%

Gkce.Ox � Einc/ � �Tw ds ; (29)

where Einc is a given field and Gkce is a Calderon type operator in chiral media
which maps a tangential vector field Ox � E on S to an also tangential vector field
Ox � .r � E � 2�2ˇ E/ on the same surface space. These operators for non-chiral
media have been studied in [13] and [18]. The authors of this article will present
Calderon type operators in chiral media, as well as their identities, in a future work.

We are going to prove gradually the existence theorem:

Theorem 3.1 For any given field Einc 2 X.curl; R3 n 
/ the electromagnetic
scattering problem in chiral media (29) has a unique solution E 2 X.curl; R3 n
/.
The scattered field E in (29) also satisfies

r � r � E D 2 �2ˇ r � EC �2E; in R
3 n B (30)

Ox � E D �; on S (31)

Or � r � E � ˇ �2 Or � EC i�2

k
E D o.

1

r
/; r!1 (32)

where � 2 L2t .S/. We note that in (29), we have taken into account that for the
incident electric field Einc the equation

r � r � Einc � 2 �2 ˇr � Einc � �2Einc D 0; in R
3 (33)

holds. We now define the space

S WD ˚p 2 H1.B n 
/ W p�j
 D c� and pCj
 D cC
	
; (34)

where cC and c� are constant numbers, as well as the space
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X0 WD
n
u 2 X.curl; R3 n 
/ W< Gkce.Ox� u/ ;rSq > � �2.u ;rq/B D 0; for q 2 S

o
: (35)

Then we write (29) in a more compact form

A.u;w/ D B.w/; (36)

where

A.u;w/ D .r � u;r � w/D C .r � u;r � w/Dex \B

�2�2ˇ �.u;r � w/D C .u;r �w/Dex \B

�

��2..u;w/D C .u;w/Dex\B /C < Gkce.Ox � u/; �Tw >S

C i�2

k2
< �C�CT u; �CT w >
 � i�2

k2
< ����T u; ��T w >


��2ˇ < On � u; �CT w >
 C�2ˇ < On � u; ��T w >
; (37)

and the right part of equation (36), due to (29), consists of boundary data

B.w/ D i�2

k2
< ����T Einc; ��T w >
 � i�2

k2
< �C�CT Einc;w >


C �2ˇ < On�;Einc�CT w >
 ��2ˇ < On � Einc; ��T w >


� < Gkce.Ox � Einc/; �Tw >S : (38)

The first step is to prove the following:

Lemma 3.2 The equation A.r p ;r q/ D B.r q/ has a unique solution for any
q 2 S.

Proof We put u D r p and w D r q so the equation (36) takes the form

��2.r p;r q/L2.B/C < Gkce.Ox � r p/;rSq >SD B.r q/; (39)

since .r p/T D On�r p� On D �Tr p D 0 for p 2 S. Then compactness properties of
the Calderon type operators allow us to apply the usual procedure of the Fredholm
alternative theory to (39) as in [18] in order to complete the proof. �
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We move on with the next step which is the lemma below:

Lemma 3.3 r S is a closed subspace of X.curl; R3 n 
/ and

X.curl; R3 n 
/ D X0 ˚rS: (40)

Proof The spacerS is closed in X.curl; R3n
/ since S is closed in H1.B n
/ [11].
Then if u 2 X.curl; R3 n 
/ is a solution of (36), we have A.u;r q/ D B.r q/

for any q 2 S. We consider that u D vC r p 0, where r p 0 is the unique solution
of (39), so it holds A.v ;r q/ D 0 and from the definition (35) we take v 2 X0.
Then it is easy to prove that this expression of u as a sum of elements of r S and X0

is the unique one. �
Then we are going to deal with the equation A.u; v/ D B.v/; for any v 2 X0, which
finally takes the form

A.w; v/ D B.v/� A.r p 0; v/; for any v 2 X0: (41)

We continue our proof with the following result, due to [8].

Lemma 3.4 The space X0 is compactly imbedded in L2.B/.

Proof We consider a sequence
˚
uex

n

	1
nD1 of solutions of the scattering problem

r � r � uex
n D 2 �2ˇr � uex

n C �2uex
n in R

3 n B; (42)

Ox � uex
n D Ox � un on S ; (43)

Or � r � uex
n � ˇ �2 Or � uex

n C
i �2

k
uex

n D o.
1

r
/ r!1; (44)

where fung1nD1 is a given bounded sequence in X0. For the solutions uex
n we can give

series expansions using proper vector wave functions in chiral media analogous to
[18]. The boundary condition (43) and the definition (35) lead to the conclusion that
the vectors uex

n and un have equal normal and tangential components on S so each
element of the sequence un can be extended to a function u0n 2 Hloc.curl;B n 
/ to
all R3, defined as,

u0n D
8
<

:

un in B;

uex
n in R

3 n B:
(45)

Following analogous ideas for chiral media as those in [11], the proof is completed.
�
The above result allows us to define proper compact operators in order to apply
again the Fredholm alternative theory to (41), and with the aid of Lemma 3.4 to
prove that Eq. (41) has a unique solution. This conclusion completes the proof of
Theorem 3.1 for the existence of the solution of (29), and therefore establishes the
existence result for the scattering problem (2)–(5).
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Conclusions

This paper was concerned with the solvability of the direct electromagnetic scatter-
ing problem by a chiral impedance screen in a chiral environment. In particular, the
terms 2�2 ˇr�Einc, �2ˇ On�E in (2)–(4) were the main reason for using the Beltrami
fields in order to prove uniqueness for the electromagnetic problem in chiral media.
We also make the following remarks:

1. If ˇ D 0, i.e., non-chiral environment, the approach for existence and
uniqueness is similar to the case for the mixed scattering problem in [11],
which holds for scattering by a screen in non-chiral media. In addition if
�C D 0 and�� D 0, we can analogous prove that the scattering problem (2)–(5)
has a unique solution.

2. In the case where the chirality measure ˇ is not a constant, our method can also
be applied, since the modifications that occurred can be handled.
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Optimal Batch Production with Rework Process
for Products with Time-Varying Demand Over
Finite Planning Horizon

Lakdere Benkherouf, Konstantina Skouri, and Ioannis Konstantaras

Abstract In this paper a finite planning horizon, production–inventory model with
rework, is considered. During the production process defective items are produced.
These items, after the end of the production process, are repaired and converted
into items of perfect quality. The demand for the item is assumed to be time
varying. The objective is the determination of the production–reworking schedule
that minimizes the total cost over the planning horizon. A procedure is proposed for
the determination of such schedule.

Keywords Production • Imperfect • Rework • Finite horizon • Time-varying
demand
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Economic Production Quantity (EPQ) model determines the quantity that should
be produced to minimize the total inventory costs by balancing the holding cost and
fixed setup cost. The EPQ model uses the same assumptions as the basic EOQ model
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in Harris [1], except that it uses a finite replenishment rate. However, the possibility
of producing defective items is not taken into account in EPQ model. Indeed,
product quality is not always perfect and defective items may be produced during the
regular production cycle. The reasons that defective items may be produced are the
deterioration of the production process and the imperfect quality of the components
and subassemblies that are procured from the suppliers. These defective items can
be rejected or reworked and sold as new to secondary markets with a low price.
However, there are products, like printed circuit boards (pcbs) with high production
requirements (because of their use in smart phones and tablets), and at the same
time, thousands of boards are damaged and need rework. Since the cost of these pcbs
can be significant, good planning of the production rework process is important.

The complexity of a production/inventory model depends heavily on the assump-
tions that someone makes for demand pattern and treatment of defective items.
Thus, several models have been proposed in the inventory control literature, which
examine the effect of imperfect quality production on the economic production
quantity. Rosenblatt and Lee [2] were the first who proposed a modified version
of the EPQ model assuming that the production process shifts from an in-control
to an out-of-control state. They derived the optimal production cycle and showed
that it is shorter than that of the EPQ model. Hariga and Ben-Daya [3] extended
the model proposed by Rosenblatt and Lee [2] by considering the general time
shift distribution. Moon et al. [4] considered the Economic Lot Scheduling (ELS)
problem with imperfect production process with sequence-independent setups and
developed mathematical models under common cycle and time-varying lot sizes
approaches. Wang [5] proposed a mathematical model to determine the joint
optimal production run length and inspection policy under the assumption that
product inspections are performed at the end of the production run. Sana et al. [6]
extended the EPQ model in an imperfect production situation where the defective
items are sold at a reduced price while Cardenas-Barron [7] examined the effects of
shortages on the production quantity for the EPQ model with imperfect production.

Hayek and Salameh [8] studied an EPQ model with rework of imperfect quality
items and derived an optimal solution for the production quantity. Chiu [9] studied
the effects of the reworking of defective items on the EPQ model with shortages.
Jamal et al. [10] developed a mathematical model for the optimal production
quantity assuming rework of defective items. They considered two different policies
according to the time that the defective items are reworked. Cardenas-Barron [11]
proposed a simple algebraic procedure to determine the optimal solution for the two
inventory models which were proposed in by Jamal et al. [10]. Biswas and Sarker
[12] studied an inventory model assuming inspection of the new manufactured
products, rework and scrap of the defective items. They assumed that the defective
items are reworked within the same cycle and obtained closed-form expression
for the optimal batch quantity with various cases of scrap detection. Chiu et al.
[13] developed a mathematical model to determine the optimal run time for an
imperfect finite production rate model with scrap and examined the joint effects
of rework and machine breakdown. Chung et al. [14] proposed some EPQ-type
inventory models for deterioration items with machine unavailability and shortages
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while Wee et al. [15] derived closed-form expressions of the optimal production
and backordering lots for an EPQ model with imperfect quality items, shortages
and screening constraints. Tai [16] studied a similar model to that of Wee et al.
[15] assuming inspection errors and deterioration of good quality items. Pal et al.
[17] considered an imperfect production system which undergoes in out-of-control
state from in-control one after a time that follows a probability density function.
Sarkar et al. [18] extended the model proposed in [7] assuming that defective rate
is random and studied three different distribution density functions for this rate.
Recently, Sivashankari and Panayappan [19] studied a single stage manufacturing
system that generates imperfect quality products, where a proportion of defective
products are reworked in the same cycle and for this system they developed a
production–inventory model with planned backorders to determine the optimum
production lot size.

Most of the above surveyed work adopted an infinite planning horizon with
constant demand rate. When the demand rate varies with time the use of the
demand information over a finite planning period is required (Silver et al. [20]).
Production–inventory models with time-varying demand and finite planning horizon
have been developed for deteriorating items, which can be considered as some
kind of imperfect items. Specifically, Balkhi [21] studied a production–inventory
system assuming that production, demand and deteriorating rates are continuous
function of time. Sana et al. [22] presented a model with constant production
and deterioration rates and linear time dependent demand rate. They used the box
complex algorithm to find the optimal inventory policy. Roy et al. [23] developed a
model for a randomly deteriorating item with linearly time-varying demand rate and
where the production rate is considered as a decision variable. A genetic algorithm
is used to minimize the total inventory costs. Yang [24] extended the model of [21]
assuming partial backlogging. Benkherouf and Boushehri [25] considered a model
with constant production and deterioration rates together with time varying demand
rate. They provided technical conditions which ensure existence and uniqueness of
an optimal inventory policy. Das et al. [26] developed a two warehouse production–
inventory model for a deteriorating item with time-varying demand. However, in all
these models no repair or rework process was considered.

Finally, we should note that a different approach, for catering for certain
inventory production models with defective items, may be found in Benkherouf
et al. [27] and the references therein. There, used products are returned by
customers and after inspection they can be classified either as “remanufacturable”
or as “refurbishable” items. There are two facilities for storing the return and new
goods. The remanufacturing process brings “remanufacturable” items up to quality
standards that are as rigorous as those of new items. The refurbished items are sold
to a secondary market at a reduced price. The optimal inventory policy for a finite
planning horizon reduces (in some cases) to a similar class of optimization problems
treated in the present paper.

In the present paper, we study an imperfect production system that produces
imperfect quality items and where a proportion of the defective items are reworked
in the same cycle along the same lines of [10] and Benkherouf and Omar [28].
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Table 1 Comparison between the basic characteristics of proposed model and other existing
ones

Model Demand rate Production rate Rate of imperfect Reworked quantity Horizon

Balkhi [21] Time varying Time varying Time varying None Finite

Sana et al.
[22]

Time varying Constant Constant None Finite

Biswas and
Sarker [12]

Constant Constant Constant Proportion Infinite

Roy et al.
[23]

Time varying Decision variable Constant None Finite

Yang [24] Time varying Time varying Constant None Finite

Benkherouf
and
Boushehri
[25]

Time varying Constant Constant None Finite

Tai et al.
[16]

Constant Constant Constant Proportion Infinite

Sarkar et al.
[18]

Constant Constant Random All Infinite

Das et al.
[26]

Time varying Constant Constant None Finite

Sivashankari
and
Panayappan
[19]

Constant Constant Constant Proportion Infinite

The
proposed
model

Time varying Constant Constant All or proportion Finite

After the reworking process, the reworked items are considered as good as new
and used to satisfy the demand. We assume that the demand rate for the product is
not constant but varying with time and also the planning horizon is not infinite but
finite. These two modifications lead to a change in the corresponding optimization
problem. In Table 1, the differences between the proposed model and the more
relevant existing ones are summarized.

The remainder of this paper is organized as follows. The assumptions and nota-
tions of the inventory problem considered are presented in section “Assumptions and
Notations”. Section “The mathematical model” contains the mathematical model
while the solution procedure is presented in section “Optimization procedure”.
Section “Numerical example” presents and discusses numerical results. Finally,
this paper summarizes, concludes and proposes future research extension in sec-
tion “Conclusions”.
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Assumptions and Notations

The production–inventory model of the present paper is developed under the
following assumptions:

(1) The planning horizon of the system is finite and is taken as H time units,
H > 0. The initial and the final inventory levels are both zero.

(2) The demand rate at time t is given by a continuous function D, D.t/ W Œ0;H�!
.0;1/.

(3) Items are produced at a fixed production rate p, p > 0.
(4) During the production process defective items are produced at fixed rate a > 0.
(5) The production rate is such that p > D.t/C a, for t 2 Œ0;H�.
(6) The reworking process starts after the end of the regular production process.
(7) All defective items are reworked at a fixed rework rate � > 0, where D.t/ � � .
(8) No defective items are produced during rework.
(9) The demand is satisfied from product which are produced during the produc-

tion process and the reworking process.
(10) The lead time is zero.
(11) Shortages are not allowed during the planning horizon.

Notations

H the planning horizon.
n number of production–reworking cycles (cycles).
ti starting time of the production process in cycle i, i D 1; : : : ; n.
tp
i production stopping time in cycle i, i D 1; : : : ; n.
�i stopping time of the reworking process in cycle i, i D 1; : : : ; n.
c0 setup cost (sum of production and reworking setup cost).
ch holding cost per unit per unit time.
cp unit production cost.
cr cost of reworking per unit.

The Mathematical Model

In this section the mathematical formulation of the model is developed. The
planning horizon is made up of multiple cycles. A typical cycle i (see Fig. 1), say,
begins at time ti�1 and ends at time ti, where ti > ti�1 � 0, for i D 1; � � � ; n with
t0 D 0 and tn D H. During the i-th cycle, the regular production process lasts
from time ti�1 to tp

i and some of the produced items are defective. These items are
immediately reworked on the interval Œtp

i ; �i/ where �i < ti at a rate � > 0. Then due
to demand the inventory falls to zero at time ti.
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-D(t)+γ

p-D(t)-a
-D(t)

ti-1 τip
it ti

Fig. 1 The variation of the inventory for the i-th cycle

On the time interval Œti�1; tp
i � the inventory level is affected by production,

demand and defective items, so the following differential equation describes its
variation:

dI.t/

dt
D p � a � D.t/; ti�1 � t � tp

i ; (1)

with I.ti�1/ D 0. By setting � D p � a, then the solution of (1) is:

I.t/ D
Z t

ti�1

f��D.u/gdu; (2)

The inventory level during Œtp
i ; �i� is affected by reworking process and demand

and it is described by differential equation:

dI.t/

dt
D �D.t/C �; tp

i � t � �i; (3)

with

I.tp
i / D

Z t
p
i

ti�1

f��D.u/gdu: (4)

The solution of the above differential equation is:

I.t/ D �
Z t

t
p
i

fD.u/� �gduC I.tp
i /: (5)

The inventory level during Œ�i; ti� decreases due to demand and it is described by the
differential equation:

dI.t/

dt
D �D.t/; �i � t � ti; (6)
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with I.ti/ D 0. The solution of (6) is:

I.t/ D
Z ti

t
D.u/du: (7)

Since I.t/ is continuous on [tp
i ; ti] the following relation prevails:

Z ti

�i

D.u/du D �
Z �i

t
p
i

fD.u/� �gduC I.tp
i /; (8)

or

Z ti

t
p
i

D.u/du D �.�i � tp
i /C I.tp

i /; (9)

or using (4)

Z ti

ti�1

D.u/du D �.�i � tp
i /C �.tp

i � ti�1/ (10)

Taking into account assumption (7) which is expressed as:

a.tp
i � ti�1/ D �.�i � tp

i /; (11)

relation (10) gives:

Z ti

ti�1

D.u/du D a.tp
i � ti�1/C �.tp

i � ti�1/ D p.tp
i � ti�1/; (12)

or equivalently

tp
i D ti�1 C 1

p

Z ti

ti�1

D.u/du: (13)

In addition, by (11), the following relation holds:

�i � tp
i D

a

�
.tp

i � ti�1/ D a

�p

Z ti

ti�1

D.u/du; (14)

and consequently �i is expressed as a function of ti�1 and ti:

�i D tp
i C

a

�p

Z ti

ti�1

D.u/du D ti�1 C aC �
�p

Z ti

ti�1

D.u/du: (15)
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The total inventory cost over the finite horizon is the sum of: setup cost: c0n,
production cost:

cp

nX

iD1

Z t
p
i

ti�1

pdt D cpp
nX

iD1
.tp

i � ti�1/ D cp

nX

iD1

Z ti

ti�1

D.u/du D cp

Z H

0

D.u/du; (16)

reworking cost:

cr

nX

iD1

Z �i

t
p
i

�dt D cr�

nX

iD1
.�i � tp

i / D cr�

nX

iD1

a

�p

Z ti

ti�1

D.u/du D cr
a

p

Z H

0

D.t/dt;

(17)
holding cost. This is given by the following theorem:

Theorem 1 The total holding costs is given by:

HC.t1; t2; : : : ; tn; n/

D ch

nX

iD1

"Z ti

ti�1

.t � ti�1/D.t/dt � a2 C �.aC p/

2�p2

�Z ti

ti�1

D.u/du


 2
#

: (18)

Proof The proof follows from similar arguments used in [28].

The aim is to find the production–inventory policy, which minimizes the total
cost over the finite planning horizon. This requires to find the optimal number of
production–reworking cycles, n, the optimal production starting, ti, and stopping,
tp
i , times and reworking stopping times, �i. From (16) and (17) it is obvious that

the production and reworking costs are constants over the planning horizon. This
means that they do not influence the inventory policy. From (13) and (15) when ti
are determined then tp

i and �i are also determined. So, the optimal policy is obtained
from the solution of the following optimization problem:

P W

min
.t1;t2;:::;tn;n/

nc0 C ch

nX

iD1

"Z ti

ti�1

.t � ti�1/D.t/dt � a2 C �.aC p/

2�p2

�Z ti

ti�1

D.t/dt


 2
#

subject to: 0 D t0 � t1 � : : : � tn D H, and n integer.

Remark 1 Assumption (7) can be easily modified in order for a proportion, say ˇ,
of defective items to be reworked. In this case (11) is modified as:

aˇ.tp
i � ti�1/ D �.�i � tp

i /; (19)

In the next section results are presented that ensure the existence of the optimal
values for the decision variables t1; t2; : : : ; tn; n.
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Optimization Procedure

The optimization problem P can be handled using results found in Al-Khamis et al.
[29]. These results are adapted to problem P and are stated with no proof. Let

p0 D �p2

a2 C �.aC p/
: (20)

Theorem 2 For fixed n and t 2 Œ0;H�, if (i) the demand rate is log-concave and
differentiable in t such that p0 > D.t/ and (ii) D0.t/=fp0 � D.t/g is non-decreasing
in t, Problem P has a unique optimal solution. Moreover, if Z.n/ denotes the value
of the objective function at this minimum, then Z.n/ is convex in n.

Note that the requirement for the demand rate to be log-concave is to ensure
uniqueness of the optimal inventory policy. Log-concave functions include the
linear and the exponential function and many other functions. For example, many
probability distributions are log-concave such as the normal distribution, the logistic
distribution and others: see Dharmadhikari and Kumar [30].

Theorem 3 below is a direct consequence of the convexity of Z.n/. This contains
a procedure (similar to the one described in Rau and Ou Yang [31] or Benkherouf
and Gilding [32]) which may be applied to find the optimal value of production–
reworking cycles, n. Let S.n/ WD Z.n/� nc0. Then, we have

Theorem 3 The optimal number of replenishment schedule is such that:

(i) If c0 > S.1/ � S.2/, then the optimal number of replenishment schedule is
n D 1.

(ii) If there exists an N � 0 such that S.N � 1/ � S.N/ > c0 > S.N/ � S.N C 1/,
then the optimal n is N.

(iii) If there exists an N � 1 such that c0 D S.N/ � S.N C 1/, then there are two
optimal values for n: N and N C 1.

Numerical Example

In order to obtain some managerial insight from the presented model the following
data are used D.t/ D 15 exp.0:2t/, P D 7000, a D 70, � D 300, ch D 5, co D 900,
cp D 50, cr D 25, H D 5. For these data the optimal number of production–
rework cycles is n D 6 and the optimal cost is 263426:33. In Table 2 the optimal
production–rework schedule is presented, i.e., the optimal production starting times,
ti, i D 1; � � � ; n, the optimal production stopping times, tp

i , i D 1; � � � ; n and the
optimal reworking stopping times, �i; i D 1; : : : ; n.

Table 3 shows the impact to optimal cost in consequence of changes to input
parameters.
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Table 2 The optimal ti, tp
i , and �i, i D 1; : : : ; 6

(D.t/ > � )

t1 t2 t3 t4 t5 t6
1.935 2.944 3.621 4.139 4.578 5

tp
1 tp

2 tp
3 tp

4 tp
5 tp

6

0.016 1.978 3.021 3.739 4.317 4.864

�1 �2 �3 �4 �5 �6

0.020 1.988 3.038 3.767 4.358 4.931

Table 3 Sensitivity analysis

Parameter n Optimal cost

PD 7500 7 263487.74

PD 8000 6 263533.48

a D 140 6 264643.57

a D 210 6 265849.46

� D 400 6 263427.68

� D 6500 6 263431.61

c0 D 1000 6 264026.38

c0 D 1100 6 264626.38

ch D 6 7 264304.68

ch D 7 7 265176.18

From the results given in tables it seems that the model is not sensitive to the
parameter changes both in terms of the optimal cost and in terms of decision
variables. Even in the case of the significant change in the reworking rate, � , the
production–rework schedule remains virtually unchanged, probably because of the
low defective rate.

Conclusions

In this study a production system is considered that produces defective items. All
(or part of) defective items are reworked in the same production cycle. After the
reworking process, the items are considered good as new and used to satisfy the
demand. The demand rate for the product is time varying and the planning horizon is
finite. The aim is the determination of production–reworking policy that minimizes
the total cost of the system. By updating existing results of a similar optimization
problem, conditions are found under which a unique production–reworking policy
exists. This model can be extended by assuming that shortages could be allowed and
also that reworking process takes place after a predetermined number of cycles.
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On Co-polynomials on the Real Line
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Abstract In this paper, we present an overview about algebraic and analytic
aspects of orthogonal polynomials on the real line when finite modifications of
the coefficients of the three-term recurrence relation they satisfy, the so-called co-
polynomials on the real line, are considered. We investigate the behavior of their
zeros, mainly interlacing and monotonicity properties. Furthermore, using a transfer
matrix approach we obtain new structural relations, combining theoretical and
computational advantages. In the case of orthogonal polynomials on the unit circle,
we analyze the effects of finite modifications of Verblunsky coefficients on Szegő
recurrences. More precisely, we study the structural relations and the corresponding
C-functions of the orthogonal polynomials with respect to these modifications from
the initial ones. By using the Szegő’s transformation we deduce new relations
between the recurrence coefficients for orthogonal polynomials on the real line and
the Verblunsky parameters of orthogonal polynomials on the unit circle as well as
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Introduction

Orthogonal Polynomials on the Real Line and Spectral
Transformations

Let d� be a nontrivial probability measure supported on I 	 R. The sequence of
polynomials fpn.x/gn�0 where

pn.x/ D �nxn C ınxn�1 C .lower degree terms/; �n > 0;

is said to be an orthonormal polynomial sequence with respect to d� if

Z

I
pn.x/pmd�.x/ D ın;m; m � 0: (1)

The corresponding monic orthogonal polynomials (with leading coefficient equal to
1) are Pn.x/ D pn.x/=�n, see [8, 32, 36]. These polynomials satisfy the following
three-term recurrence relation

PnC1.x/ D .x � bnC1/Pn.x/� dnPn�1.x/; dn ¤ 0; d0 D 1; n � 0; (2)

where the recurrence coefficients are given by

bn D ın

�n
� ınC1
�nC1

; dn D a2n; an D �n�1
�n

> 0; n � 1:

Notice that the initial conditions P�1.x/ D 0 and P0.x/ D 1 hold.
The converse of this result is the so-called Favard’s theorem in the theory of

orthogonal polynomials on the real line (OPRL, in short) [8]. In other words, given
a sequence of monic polynomials, fPn.x/gn�0, generated by (2) with recurrence
coefficients fan W an 2 R ^ an > 0gn�1 and fbn W bn 2 Rgn�1, then there exists a
nontrivial probability measure d� supported on the real line so that the orthogonality
conditions (1) hold. Moreover, if fangn�1 and fbngn�1 are bounded sequences, then
d� is unique. From now on, we will assume that the recurrence coefficients always
satisfy the hypothesis of Favard’s theorem.

It is very well known that the zeros of Pn.x/, fxn;kgnkD1, are real, simple, and are
located in the interior of the convex hull of the support I of the measure d� and the
zeros of Pn and PnC1 strictly interlace. The notation for zeros is

xn;n < xn;n�1 < � � � < xn;2 < xn;1:

We suggest the reader to consult [8, 17, 32, 36], where a complete presentation of
the classical theory of OPRL can be found.
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From the sequence of monic orthogonal polynomials fPn.x/gn�0 we can define

the sequence of associated monic polynomials of order k [13], fP.k/n .x/gn�0, k � 1,
by means of the shifted recurrence relation

P.k/nC1.x/ D .x � bnCkC1/P.k/n .x/� dnCkP.k/n�1.x/; n � 0;

with P.k/�1.x/ D 0 and P.k/0 .x/ D 1. The three-term recurrence relation (2) is often
represented in matrix form

xP.x/ D JP.x/; P D ŒP0;P1; : : : �T ;

where J is a semi-infinite tridiagonal matrix

J D

2

6
6
6
6
6
6
4

b1 1
d1 b2 1

d2 b3 1

d3 b4
: : :

: : :
: : :

3

7
7
7
7
7
7
5

;

which is called the monic Jacobi matrix [8, 19]. A useful property of the matrix J
is that the eigenvalues of its n � n leading principal submatrices Jn are the zeros of
the polynomial Pn.x/. Indeed, Pn.x/ is the characteristic polynomial of Jn,

Pn.x/ D det.xIn � Jn/;

where In is the n � n identity matrix.
The Stieltjes or Cauchy transformation of the orthogonality measure d� is

defined by

S�.x/ D
Z

I

d�.y/

x � y
; x 2 C n I:

It has a particular interest in the OPRL theory. S�.x/ admits the following series
expansion:

S�.x/ D
1X

kD0

uk

xkC1 ;

where uk are the moments associated with d�, i.e.,

uk D
Z

I
xkd�.x/; k � 0:
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By a spectral transformation of the S-function S�.x/, we mean a new S-function
associated with a measure de�, whose moments are a modification of the moments
of the original measure d�. We refer to pure rational spectral transformation as a
transformation of S�.x/ given by

S�.x/ PD A.x/S�.x/; A.x/ D
�

a.x/ b.x/
c.x/ d.x/

�

; (3)

where a.x/, b.x/, c.x/, and d.x/ are non-zero polynomials that provide a “true”
asymptotic behavior to (3) (see [37]). In (3), we adopt the notation PD introduced in
[32], i.e., for the homography mapping

f .x/ D a.x/g.x/C b.x/

c.x/g.x/C d.x/
; a.x/d.x/� b.x/c.x/ ¥ 0;

we will write

f .x/ PD A.x/g.x/:

Polynomials orthogonal with respect to a measure d� play a central role in
Harmonic Analysis (Fourier expansions of functions in the space L2.d�/, rational
approximation to functions defined by the Cauchy transformation of the measure
d� (the denominators of the diagonal Padé approximants are the corresponding
orthogonal polynomials and the numerators are the associated polynomials of order
1), quadrature rules as well as their extensions, polynomial inequalities, and their
applications (see [2, 21, 25], and the references therein, among others).

Orthogonal Polynomials on the Unit Circle and Spectral
Transformations

Let d� be a nontrivial probability measure supported on the unit circle T D fz 2
C W jzj D 1g parametrized by z D ei� . There exists a unique sequence f�n.z/gn�0 of
orthonormal polynomials

�n.z/ D �nzn C .lower degree terms/; �n > 0;

such that
Z �

��
�n.e

i� /�m.ei� /d�.�/ D ın;m; m � 0:

The corresponding monic polynomials are defined by ˚n.z/ D �n.z/=�n and they
are well known as orthogonal polynomials on the unit circle (OPUC, in short). These
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polynomials satisfy the following recurrence relations (see [14, 32, 36]):

˚nC1.z/ D z˚n.z/ � ˛n˚
�
n .z/; n � 0; (4)

˚�nC1.z/ D ˚�n .z/ � ˛nz˚n.z/; n � 0; (5)

with initial condition ˚0.z/ D 1. The polynomial ˚�n .z/ D zn˚ n.z�1/ is
the so-called reversed polynomial and the complex numbers f˛ngn�0 where
˛n D �˚nC1.0/, are known as Verblunsky, Schur, Geronimus, or reflection
parameters. Let notice that j˛nj < 1.

In this context, there is an analogous of the Favard’s theorem, called in the
contemporary literature as Verblunsky’s theorem [32, 34].

Theorem 1 ([32, 34], Verblunsky Theorem) Let f�ngn�0 be a sequence of complex
numbers in D. Then, there is a unique nontrivial probability measure d�.z/
supported on the unit circle such that ˛n D �n.

Based on the above theorem, the OPUC are completely determined by their
Verblunsky coefficients. This fact reaffirms the need to study orthogonal polyno-
mials associated with modifications of the original Verblunsky coefficients. In our
opinion, one of the most interesting results in this direction appeared in [27]. In this
work, Peherstorfer introduced and studied the so-called associated polynomials on
the unit circle. Indeed, for a fixed positive integer number r, the associated polyno-

mials of order r,
n
˚
Œr�
n .z/

o

n�0, are generated by the shifted Verblunsky coefficients

f˛nCrgn�0 through the Szegő recurrences with initial condition ˚Œr�
0 .z/ WD 1.

If we replace in (4) the sequence f˛ngn�0 by f�˛ngn�0, then we obtain the
sequence of second kind polynomials f˝n.z/gn�0, that is a sequence of OPUC
according to Verblunsky Theorem. These polynomials can be expressed in terms
of the monic orthogonal polynomials with respect to the measure d�.z/ as follows:

˝n.z/ D
Z

@D

yC z

y � z
.˚n.y/� ˚n.z// d�.y/; n � 1:

Notice that deg˝n.z/ D n and˝n.z/ is monic.
The Riesz-Herglotz transform of the measure d� is given by

F� .z/ D
Z �

��
ei� C z

ei� � z
d�.�/:

Since F� .0/ D 1 and <F�.z/ > 0 on the unit open disc D D fz 2 C W jzj < 1g,
F� .z/ is called a Carathéodory function [15], or, simply, C-function. Let ck be the
k-th moment associated with the measure d� , i.e.,

ck D
Z �

��
e�ik�d�.�/:
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F� .z/ can be written in terms of the moments fcngn�0 as follows:

F.z/ D 1C 2
1X

kD1
ckzk:

As for the real line case, by a spectral transformation of a C-function F�.z/ we
mean a new C-function associated with a measure d , a modification of the original
measure d� . We refer to pure rational spectral transformation as a transformation of
F� .z/ given by

F .z/ PD E.z/F� .z/; E.z/ D
�

A.z/ B.z/
C.z/ D.z/

�

; (6)

where A.z/, B.z/, C.z/, and D.z/ are non-zero polynomials that provide a “true”
behavior to (6) around the origin (see [3]), i.e., A.z/D.z/ � C.z/B.z/ ¥ 0:

Szegő Transformation and Geronimus Relations

Let us assume that the measure d� is supported on the interval Œ�1; 1�. Let introduce
a measure supported on the unit circle d� such that

d�.�/ D 1

2
jd�.cos �/j:

In particular, if d� is an absolutely continuous measure, i.e., d�.x/ D !.x/dx, we
have

d�.�/ D 1

2
!.cos �/j sin � jd�:

This is the so-called Szegő transformation of probability measures supported on
Œ�1; 1� to probability measures supported on T (see [14, 15, 33, 36]). We write the
relation between d� and d� through the Szegő transformation as � D Sz.�/. Of
course, under the previous considerations, we get

˛n 2 .�1; 1/; n � 0:

There is a relation between the OPRL associated with a measure d� supported on
Œ�1; 1� and the OPUC associated with the measure � D Sz.�/ supported on T, [33]

pn.x/ D �2n
p
2.1� ˛2n�1/

.z�n˚2n.z/C zn˚2n.1=z// : (7)
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From (7) one can obtain a relation between the coefficients of the corresponding
recurrence relations, see [33],

dnC1 D 1

4
.1 � ˛2n�1/

�
1 � ˛22n

�
.1C ˛2nC1/ ; n � 0; (8)

bnC1 D 1

2
Œ˛2n .1 � ˛2n�1/ � ˛2n�2 .1C ˛2n�1/�; n � 0; (9)

with the convention ˛�1 D �1. Notice that bn � 0; n � 1, if and only if ˛2n D
0; n � 0.

There is also a relation between the S-function and the C-function associated
with d� and d� , respectively, as follows:

F.z/ D 1 � z2

2z
S.x/;

or, equivalently,

S.x/ D F.z/p
x2 � 1 ;

with 2x D zC z�1 and z D x �px2 � 1.
The aim of this paper is to present an overview about COPRL, COPUC, and

its connection through the Szegő transformation. The structure of the paper is as
follows. In section “Co-Polynomials on the Real Line”, we present an overview
about algebraic and analytic aspects, structural relations, and spectral transforma-
tions of COPRL proposed in [5]. In section “Co-polynomials on the Unit Circle”,
we obtain a new structural relation based on a transfer matrix approach proposed in
[3] for similar perturbations in the OPUC theory. In section “Szegő Transformation
and Co-polynomials”, we explore the relation between the co-polynomials on the
real line (resp. on the unit circle), and the corresponding sequences of monic
orthogonal polynomials obtained on the unit circle (resp. on the real line) via Szegő
transformation.

Co-Polynomials on the Real Line

Let fgn.x/gn�0 be a sequence of orthogonal polynomials satisfying the three
term-recurrence relation for OPRL with new recurrence coefficients, fbngn�1 and
fdngn�1, i.e.,

gnC1.x/ D .x � bnC1/gn.x/� dngn�1.x/;



76 K. Castillo et al.

with initial conditions g�1.x/ D 0 and g0.x/ D 1, perturbed in a (generalized) co-
dilated and/or co-recursive way, namely co-polynomials on the real line (COPRL).
In other words, we will consider an arbitrary single modification of the recurrence
coefficients as follows:

dn D �ın;k
k dn; �k > 0; (co-dilated case) (10)

bn D bn C �kC1ın;kC1; �kC1 2 R: (co-recursive case) (11)

where k is a fixed non-negative integer number, and ınk is the Kronecker delta.
The study of the algebraic and analytic properties of the COPRL and its applica-

tions was initiated by Chihara [7] and later continued by several authors. Among
others, the contributions of Marcellán [23, 30], Maroni [10, 31], Ronveaux [29, 31],
and Peherstorfer [26] are remarkable. For some applications, see [11, 12, 20, 35].

In the next section, we study some inequalities for zeros of COPRL. The original
contributions are contained in [5] following some ideas developed in [4].

Zeros and Inequalities

It is very well known that the orthonormal version of (2), for recurrence coefficients
depending on a parameter �, can be written in an operator form by using a symmetric
Jacobi matrix, J.�/,

J.�/ D

2

6
6
6
4

b1 a1
a1 b2 a2

a2 b3 a3
: : :

: : :
: : :

3

7
7
7
5
;

where a2n D dn (for simplicity, we omit here the dependence of �). In a matrix form,

xp D J.�/p;

where pn.x/ D �
�1=2
n Pn.x/ and p D Œp0.x/; p1.x/; : : : �T : According to a version of

Hellmann-Feynman’s theorem [17, Sect. 7.3], if @Jn.�/=@� is strictly positive (resp.
negative) definite, then the zeros of the corresponding OPRL are strictly increasing
(resp. decreasing) functions of �. But for some cases related with COPRL, we can
obtain more information on the behavior of zeros following a different approach
recently proposed in [3].

In [23], using the theory of difference equations, the authors deduced the explicit
expression of the COPRL associated with the perturbation (10) and/or (11) in terms
of the initial OPRL and their associated polynomials of order k. However, in the
previous research the questions related to the domain of validity of the connection
formulas between COPRL and OPRL were omitted.
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Let us define

D.un; vn/ WD
ˇ
ˇ
ˇ
ˇ

un vn

unC1 vnC1

ˇ
ˇ
ˇ
ˇ ; (12)

the Casorati determinant associated with two arbitrary sequences fungn�1 and
fvngn�1. From the theory of linear difference equations, we know that if the Casorati
determinant is different from zero for every n, then these two sequences are said
to be linearly independent [24]. Notice that fP.k/n�k.x/gn�0, is a solution of the
recurrence relation (2). It is easy to verify that

D.Pn.x/;P
.k/
n�k.x// D dn


Pn�1.x/P.k/n�k.x/� P.k/n�k�1.x/Pn.x/

�
;

D dnD.Pn�1.x/;P.k/n�k�1.x//:

Let X denote the set of zeros of Pk�1.x/. From the above equalities, we get

D.Pn.x/;P
.k/
n�k.x// D

0

@
nY

jDk

dj

1

APk�1.x/; (13)

which means that Pn.x/ and P.k/n�k.x/ with n > k, are linearly independent in C n X.
If we denote by fPn.xI�m; �mC1I : : : I�k; �kC1/gn�0 the COPRL associated with the
finite composition of perturbations (10) and (11) from order m to order k, m � k
then, after elementary calculations, for m D k we have

Theorem 2 ([23]) For x 2 C n X the following formulas hold:

Pn.xI�k; �kC1/ D Pn.x/; n � k;

Pn.xI�k; �kC1/ D Pn.x/ �Qk.x/P
.k/
n�k.x/; n > k;

where Qk.x/ D �kC1Pk.x/C dk.�k � 1/Pk�1.x/.

As a consequence of the last result, we get

Corollary 1 ( [5]) Pn.xI�k; �kC1/ and Pn.x/ share at most the zeros of Qk.x/ and
Pk�1.x/.

From the interlacing property of two consecutive OPRL, we can easily deduce
that Qk.x/, Pk.x/, and Pk�1.x/ are coprime. But we can go a step further.

Proposition 1 ( [5]) Let assume �k ¤ 1 and �kC1 ¤ 0 and define c WD .�k �
1/=�kC1. Let fyk;j.c/gkjD1 be the zeros of Qk.x/. The following statements hold:



78 K. Castillo et al.

i) If c > 0, then

xk�1;j�1 < yk;j.c/ < xk;jI xk�1;0 WD �1:

Moreover, yk;j.c/ (for a fixed value of j) is a strictly increasing (resp. decreasing)
function of �k (resp. �kC1).

ii) If c < 0, then

xk;j < yk;j.c/ < xk�1;jI xk�1;k WD 1:

Also, yk;j.c/ (for a fixed value of j) is a strictly decreasing (resp. increasing)
function of �k (resp. �kC1).

Furthermore,

lim
�k!1

yk;j.c/ D xk�1;j; lim
�kC1!1

yk;j.c/ D xk�1;j:

The location of the extreme zeros with respect to the orthogonality interval I can be
given by using [36, Theorem 3.3.4].

The next theorem has direct consequences in the interlacing and monotonicity of
zeros of COPRL.

Theorem 3 ( [5]) Let xn;jC1 and xn;j be two consecutive zeros of Pn.x/, then the
following holds. If there are no zeros of Qk.x/Pk.x/ in Ij D .xn;jC1; xn;j/ that are not
common with the zeros Pn.xI�k; �kC1/, then the interval Ij contains at most an odd
number of zeros of Pn.xI�k; �kC1/. Moreover, if there are zeros of Qk.x/Pk.x/ in Ij

that are not common to the zeros of Pn.xI�k; �kC1/, then the interval Ij contains at
most an even number of zeros of Pn.xI�k; �kC1/.

Note that the previous result contains as a particular case the interlacing property
obtained in [7]. For the co-recursive case, that is, �k WD 1, we have the following
interlacing property.

Corollary 2 ( [5]) Let l < k be the number of no common zeros between
Pn.xI 1; �kC1/ and Pn.x/. Denote by fyn;j.1; �kC1/gljD1 and fyn;jgljD1, these zeros. If
�kC1 < 0, then

yn;n.1; �kC1/ < yn;l < yn;l�1.1; �kC1/ < yn;l�1 < � � � < yn;1.1; �kC1/ < yn;1; (14)

where the role of the zeros fyn;j.1; �kC1/gljD1 and fyn;jgljD1 is reversed when �kC1 > 0.

Corollary 3 ( [5]) The zeros of the polynomial Pn.xI 1; �kC1I 1; �kC2/ (for a fixed
value of k and n > k) are strictly increasing functions of �kC1 and �kC2.

The previous results for the co-recursive case reduce and give more information
than Hellmann-Feynman’s theorem. Notice that the existence of cases for which
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det.@Jn.�/=@�/ D 0, mentioned in the beginning of the section, could imply strictly
monotonicity of zeros. We recall that Corollary 3 was deduced in [4] from the
perturbation theory for symmetric matrices.

Example 1 It is well known [8] that the monic Jacobi polynomials fP.˛;ˇ/n .x/gn�0
satisfy for any real value of ˛ and ˇ, the recurrence relation (2) where

a.˛;ˇ/n D 4n.nC ˛/.nC ˇ/.nC ˛ C ˇ/
.2nC ˛ C ˇ � 1/.2nC ˛ C ˇ C 1/.2nC ˛ C ˇ/2 ;

b.˛;ˇ/nC1 D
ˇ2 � ˛2

.2nC ˛ C ˇ/.2nC ˛ C ˇ C 2/ :

Furthermore, if ˛; ˇ > �1 the polynomials are orthogonal with respect to the
weight .1 � x/˛.1 C x/ˇ on the interval Œ�1; 1�. In order to illustrate Corollary 3,
we consider a new sequence of Jacobi polynomials associated with two consecutive
modification (11). Figure 1 is obtained by using Wolfram Mathematica® 9.01

with the aid of the function JacobiPŒn; ˛; ˇ; x� and the recurrence relation (2),
and shows the polynomials P.2;1/6 .x/ (continuous line), P.2;1/6 .xI 1; 0:1I 1; 0:2/ (large-

dashed line), and P.2;1/6 .xI 1; 0:25I 1; 0:28/ (small-dashed line). Observe that the
zeros behave in accordance with our result. In other words, the monotonicity is
“strictly” and it is not something that can be guaranteed by Hellmann-Feynman’s
theorem.

-1 1

0.05

-0.061

Fig. 1 Graphs of P.2;1/6 .x/, P.2;1/6 .xI 1; 0:1I 1; 0:2/, and P.2;1/6 .xI 1; 0:25I 1; 0:28/

1Wolfram Mathematica is a registered trademark of Wolfram Research, Inc.
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Theorem 4 ([5]) With the notation of Proposition 1, let us define y1 WD
maxfxk;1; yk;1.c/g. Let denote by fxn;j.�k; �kC1/gnjD1 the zeros of the polynomial
Pn.xI�k; �kC1/. If c > 0, then

xn;l < xn;l.�k; �kC1/;

for all the zeros of Pn.xI�k; �kC1/ and Pn.x/ in R n Œ�1; y1�, where the role of the
zeros xn;l and xn;l.�k; �kC1/ is reversed when c < 0.

The usual tool dealing with the inequalities concerning the largest (or the smallest
zero) of OPRL is the Perron-Frobenius Theorem [17, Theorem 7.4.1]. Notice that
the previous result gives more information.

Example 2 The monic Laguerre polynomials fL.˛/n .x/gn�0 satisfy, for any real
value of ˛, the recurrence relation (2) where

a.˛/n D n.nC ˛/;
b.˛/nC1 D 2nC 1C ˛:

Furthermore, if ˛ > �1 the polynomials are orthogonal with respect to the
weight x˛e�x on the interval Œ0;1/. In order to illustrate Theorem 4, we consider
a new sequence of Laguerre polynomials associated with the modifications (10)
and (11). Figure 2 is obtained by using Wolfram Mathematica® 9.0 with the
aid of the function LaguerreLŒn; ˛; x� and the recurrence relation (2), and shows
the polynomials L.2/5 .x/ (continuous line) and L.2/5 .xI 1:2; 3/ (dashed line). Observe
that for this case with c D 0:0N6, all the zeros greater than y1 D 1:2268 behave
in accordance with Theorem 4. Notice that, the Perron-Frobenius Theorem can
guarantee this result only for the largest zero.

3000

18

-20000

y1

Fig. 2 Graphs of L.2/5 .x/ and L.2/5 .xI 1:2; 3/
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A Transfer Matrix Approach

Theorem 2 has been successfully used in the study of zeros of COPRL but it has
two main constraints. First, the structural relation is not useful if we are interested
in the finite composition of perturbations, mainly from a computational point of
view. Second, the structural relation is not valid on the whole complex plane. The
aim of this section is to use a transfer matrix approach to avoid these constraints.

Set

PnC1.x/ WD
�
PnC1.x/;Pn.x/

�T
; An WD

�
x � bnC1 �dn

1 0

�

:

From (2), we get

PnC1.x/ D An Pn.x/; P0.x/ WD
�
P0.x/;P�1.x/

�T
;

as well as

PnC1.x/ D .An � � �A0/P0.x/; (15)

As previously, we have

PnC1.xI�k; �kC1/ D .An � � �AkC1/Ak.�k; �kC1/ .Ak�1 � � �A0/P0.x/; (16)

where

Ak.�k; �kC1/ D
�

x � bkC1 � �kC1 ��kdk

1 0

�

:

Combining (15) and (16), we can deduce that the following formula holds on C

PnC1.xI�k; �k/ D .An � � �AkC1/Ak.�k; �kC1/A�1k .An � � �AkC1/�1 PnC1.x/: (17)

The previous equation has some computational advantage as compared to Theo-
rem 2 and it holds in C. But we can improve this result by using an auxiliary
sequence of polynomials.

Consider the associated polynomials of order k D 1 (also called either first kind
associated polynomials, or numerator polynomials) frn.x/gn�0, which are the unique
solution of the recurrence relation

xrn.x/ D anC1rnC1.x/C bnC1rn.x/C anrn�1.x/; a2n D dn; n � 0; (18)

with initial conditions r�1.x/ WD �1 and r0.x/ WD 0 or, equivalently, r0.x/ WD 0

and r1.x/ WD 1=a1. Note that rn.x/ is a polynomial of degree n � 1. We define
Rn.x/ WD ��1n rn.x/ D P.1/n�1.x/ which is a monic polynomial.
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Theorem 5 ([5]) The following formulas hold in C:

0

@
kY

jD1
dj

1

A
�

PnC1.xI�k; �kC1/
�RnC1.xI�k; �kC1/

�

D Mk

�
PnC1.x/
�RnC1.x/

�

; n > k;

where Mk is

Mk D

2

6
6
6
6
6
4

kY

jD1
dj C Qk.x/Rk.x/ Qk.x/Pk.x/

bRk.x/Rk.x/
kY

jD1
dj CbRk.x/Pk.x/

3

7
7
7
7
7
5

;

withbRk.x/ D ��kC1Rk.x/ � .�k � 1/dkRk�1.x/:

Next we give a relation between the COPRL associated with two modifications of
different levels.

Corollary 4 ([5]) Let k;m be two fixed non-negative integer numbers with m < k.
Then, the following relation holds:

0

@
kY

jDmC1
dj

1

A
�

PnC1.xI�k; �kC1/
�RnC1.xI�k; �kC1/

�

DMkM�1m

�
PnC1.xI�m; �mC1/
�RnC1.xI�m; �mC1/

�

; n > k:

For a finite composition of perturbations we have the following result:

Theorem 6 ( [5]) . For 0 < m � k < 1 and for n > m the following relation
holds:
0

@
kY

jDm

jY

lD0
dl

1

A
�

PnC1.xI�m; �mC1I : : : I�k; �kC1/
�RnC1.xI�m; �mC1I : : : I�k; �kC1/

�

D
0

@
kY

jDm

Mj

1

A
�

PnC1.x/
�RnC1.x/

�

:

Spectral Transformations of COPRL

Following Chihara [8], let us consider

S.x/ D
X

n>0

un

xnC1 D
�

x � b1 � d1
x � b2 � : : :

��1
(19)
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and

SkC1.x/ D
�

x � bkC2 � dkC2
x � bkC3 � : : :

��1
; (20)

which are the Stieltjes function associated with our initial OPRL and the Stieltjes
function for the associated polynomial sequence of order k C 1, where un is
the sequence of the moments for the regular linear functional U whose monic
orthogonal polynomial sequence satisfies (2).

A rational spectral transformation of the S-function S is a new S-function SR.x/
defined by

SR.x/ PD A S.x/ (21)

where a.x/, b.x/, c.x/, and d.x/ are coprime polynomials that provide a true
asymptotic behavior to (21) around infinity, see [37].

Theorem 7 ([5]) Let S.xI�k; �kC1/ be the S-function associated with the perturba-
tions (10) and (11). Then

S.xI�k; �kC1/ PD
�

dkC1Rk.x/ �RkC1.x/� ORk.x/
dkC1Pk.x/ �PkC1.x/C Qk.x/

�

SkC1.x/: (22)

As an immediate corollary, if we take �kC1 D 0 and �k D 1, then

dkC1SkC1.x/ PD
�

PkC1.x/ �RkC1.x/
Pk.x/ �Rk.x/

�

S.x/: (23)

Theorem 8 ([5]) S.xI�k; �kC1/ is a pure rational spectral transformation of S.x/,
given by

S.xI�k; �kC1/ PDcof .Mk/S.x/; (24)

where cof .:/ is the cofactor matrix operator.

An equivalent result was obtained in [23].

Corollary 5 ([5]) S.xI�m; �mC1I : : : I�k; �kC1/ is a pure rational spectral transfor-
mation of S.x/ given by

S.xI�m; �mC1I : : : I�k; �kC1/ PD cof

0

@
kY

jDm

Mj

1

A S.x/: (25)

Additional results related with spectral transformations of COPRL can be found in
[23, 37].
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Co-polynomials on the Unit Circle

For a fixed non-negative integer number k, let us consider the perturbed Verblunsky
coefficients fˇngn�0 given by

ˇn D �kınk C .1� ınk/˛n: .k�modification/ (26)

where �k is an arbitrary complex number. In order to achieve a new sequence of
Verblunsky coefficients, from now on we assume that j�kj < 1 with �k ¤ ˛k.
We define a sequence of monic co-polynomials on the unit circle (COPUC, in
short), f˚n.zI k/gn�0, those polynomials generated using fˇngn�0 through the Szegő
recurrences. Analogously, we denote by f˝n.zI k/gn�0 the corresponding sequence
of polynomials of the second kind.

A Transfer Matrix Approach

The Szegő recurrences (4) and (5) can be rewritten as

�
˚nC1.z/
˚�nC1.z/

�

D Cn.z/

�
˚n.z/
˚�n .z/

�

; Cn.z/ D
�

z �˛n

�˛nz 1

�

; (27)

where Cn.z/ is said to be a transfer matrix (see [16, 32, 33]). Notice that if we set
˚n.z/ WD 0 and ˚�n .z/ WD 0 for n � �1, and ˛�1 WD �1 and ˛n WD 0, for n � �2,
then (27) holds for all n 2 Z.

Obviously, ˚n.zI k/ (resp. ˝n.zI k/) is exactly ˚n.z/ (resp. ˝n.z/), for n � k.
When n � k C 1, we follow an analogue procedure to the one of [32, Chap. 3] to
obtain the relation between ˚n.zI k/ (resp.˝n.zI k/) and ˚n.z/ (resp.˝n.z/) using a
simple matrix recursion based on the transfer matrix for the COPUC.

Theorem 9 ([3]) The following relations hold:

2zkC2��2kC1
��˝nC1.zI k/
˚nC1.zI k/

�

D Bk.z/

��˝nC1.z/
˚nC1.z/

�

; n � kC 1;

where the corresponding transfer matrix Bk.z/ is

Bk.z/ D
�

r.zI k/˝�k .z/C zr�.zI k/˝k.z/ s.zI k/˝�k .z/� zs�.zI k/˝k.z/
r.zI k/˚�k .z/� zr�.zI k/˚k.z/ s.zI k/˚�k .z/C zs�.zI k/˚k.z/

�

;

with

r.zI k/ D .1 � ˛kˇk/z˚k.z/� .˛k � ˇk/˚
�
k .z/;

s.zI k/ D .1 � ˛kˇk/z˝k.z/C .˛k � ˇk/˝
�
k .z/:
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Next, we give a relation between the COPUC associated with two modifications
of different level.

Corollary 6 ([3]) For ` < k, the following relation holds :

zk�`
�
�kC1
�`C1

��2 ��˝nC1.zI k/
˚nC1.zI k/

�

D Bk.z/B�1` .z/
��˝nC1.zI `/
˚nC1.zI `/

�

; n � kC 1:

For a finite composition of perturbations we have the following result:

Theorem 10 ([3]) For 0 � l < � � � < m <1, the following relation holds:

2m�l
mC1Y

jDlC1
zjC1��2j

��˝nC1.zI l; : : : ;m/
˚nC1.zI l; : : : ;m/

�

D
mY

jDl

Bj.z/

��˝nC1.z/
˚nC1.z/

�

; n � lC 1:

Spectral Transformations of COPUC

Let F.zI k/ be the C-function, associated with the sequence of COPUC f˚n.zI k/gn�0.
We begin expressing F.zI k/ in terms of F� .z/.

Theorem 11 ( [3]) F.zI k/ is a pure rational spectral transformation of F� .z/,
given by

F.zI k/ PD B.zI k/F� .z/: (28)

From the above theorem, as in [27], we can obtain the orthogonality measure
associated with F.zI k/.

Let F.zI l; : : : ;m/ be the C-function associated with the finite composition of
COPUC f˚n.zI l; : : : ;m/gn�0. As a consequence of Theorem 10, we obtain the next
corollary.

Corollary 7 ( [3]) F.zI l; : : : ;m/ is a pure rational spectral transformation of
F� .z/, given by

F.zI l; : : : ;m/ PD
mY

jDl

Bj.z/F� .z/: (29)

The above corollary can be read in terms of quadratic irrationality. An analytic
function f .z/ in D is said to satisfy quadratic irrationality condition if and only
if there exist polynomials a.z/, b.z/, and c.z/ such that

a.z/f 2.z/C b.z/f .z/C c.z/ D 0; a.z/ ¤ 0:
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Lemma 1 ( [32]) Let f and g be analytic functions in D such that there exist
polynomials a.z/, b.z/, c.z/, and d.z/ with

A.z/ D
�

a.z/ b.z/
c.z/ d.z/

�

; det A.z/ ¤ 0;

so that

g.z/ PD A.z/f .z/:

Then g satisfies a quadratic irrationality condition if and only if f satifies such a
condition.

In other words, the quadratic irrationality condition is preserved by rational spectral
transformations. As a straightforward consequence of Corollary 11 and Lemma 1,
we obtain the next result.

Corollary 8 ( [3]) F.z/ satisfies a quadratic irrationality condition if and only if
F.zI l; � � � ;m/ is.

Notice that Corollary 8 characterizes in terms of the Verblunsky coefficients
a wide class of orthogonal polynomials such that their corresponding C-functions
satisfy a quadratic irrationality condition.

Szegő Transformation and Co-polynomials

In this section, we explore the relation between the co-polynomials on the real line
(resp. on the unit circle), and the corresponding sequences of monic orthogonal
polynomials obtained on the unit circle (resp. on the real line) via Szegő transfor-
mation.

Szegő Transformation and Co-polynomials on the Real Line

The modification of the Verblunsky coefficients for the corresponding OPUC asso-
ciated with the perturbed recurrence coefficients through the Szegő transformation
is shown in the following result:

Theorem 12 ([6]) Let fb̨ngn�0 be the Verblunsky coefficients for the corresponding
OPUC, associated with (10) and (11) through the Szegő transformation. Then, for
a fixed non-negative integer k,

b̨n D ˛n; 0 � n < 2k � 1;
b̨2k�1 D ˛2k�1 CM;
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b̨2k D .1 � ˛2k�1/˛2k C 2�kC1 CM˛2k�2
1� ˛2k�1 �M

;

b̨2mC1 D �1C 4dmC1
.1� b̨2m�1/.1 � b̨22m/

; n D 2mC 1; m � k;

b̨2m D 2bmC1 C .1C b̨2m�1/b̨2m�2
1 � b̨2m�1

; n D 2m; m � kC 1;

where M D 4.�k � 1/dk

.1 � ˛2k�3/.1� ˛22k�2/
.

Note that, through the Szegő transformation, the modifications (10) and (11) yield
the modification of all the Verblunsky coefficients b̨n with n > k.

Example 3 Let fSn.x/gn�0 be a sequence of monic symmetric polynomials orthog-
onal with respect to an even weight function supported on a symmetric subset of
Œ�1; 1�. They are generated by

SnC1.x/ D xSn.x/� dnSn�1.x/; dn ¤ 0; d0 D 1; n � 0;

with initial conditions S�1.x/ D 0 and S0.x/ D 1, see [8].
Let fb�ngn�0 be the Verblunsky coefficients for the corresponding OPUC, asso-

ciated with (10) through the Szegő transformation. Then, for a fixed non-negative
integer k,

b�2n D �2n D 0; n � 0;
b�2n�1 D �2n�1; 0 � n < k;

b�2k�1 D �2k�1 C 4.�k � 1/dk

1 � �2k�3
;

b�2nC1 D �1C 4dnC1
.1 �b�2n�1/

; n � k:

Notice that the modification (10) yields, from the Szegő transformation, the
modification of all odd Verblunsky coefficients greater than k.

Consider the S-function S.xI�k; �kC1/, associated with the COPRL [5], given by

S.xI�k; �kC1/ PDcof .Mk/S.x/:

By applying the Szegő transformation in the above expression, we have the
following result:

Theorem 13 ([6]) Let F.zI�k; �kC1/ be the C-function associated with the pertur-
bations (10) and (11) through the Szegő transformation. Then,
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2z

1� z2
F.zI�k; �kC1/ PD cof

�

Mk

�
zC z�1

2

�� �
2z

1 � z2
F.z/

�

;

with 2x D zC z�1.

For the finite composition of perturbations (10) and (11), we can consider
the S-function S.xI�m; �mC1I : : : I�k; �kC1/, associated with the COPRL Pn.xI�m;

�mC1I : : : I�k; �kC1/ [5], given by

S.xI�m; �mC1I : : : I�k; �kC1/ PD cof

0

@
kY

jDm

Mj

1

A S.x/:

Then, applying the Szegő transformation, we get the following result:

Theorem 14 ( [6]) Let F.zI�m; �mC1I : : : I�k; �kC1/ be the C-function associated
with the finite composition of perturbations (10) and (11) through the Szegő
transformation. Then,

2z

1 � z2
F.zI�m; �mC1I : : : I�k; �kC1/ PD cof

0

@
kY

jDm

Mj

�
zC z�1

2

�
1

A
�

2z

1 � z2
F.z/

�

;

with 2x D zC z�1.

Szegő Transformation and Co-polynomials on the Unit Circle

It is easy to check that (26) implies, through the Szegő transformation, the
modification of both sequences of recurrence coefficients associated with the OPRL.
More precisely,

Theorem 15 ( [3]) Let fbbngn�1 and fbdngn�1 be the recurrence coefficients for
the corresponding COPRL associated with (k-modification) through the Szegő
transformation. Then, for k D 2m � 1,

bdnC1 D
�
1C �2m�1
1C ˛2m�1

�ınC1;m
�
1 � �2m�1
1 � ˛2m�1

�ınC1;mC1

dnC1;

bbnC1 D bnC1 C 1

2
.˛2m�1 � �2m�1/.˛2m C ˛2m�2/ınC1;mC1;
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and for k D 2m,

bdnC1 D
�
1� �22m

1� ˛22m

�ınC1;mC1

dnC1;

bbnC1 D bnC1 C 1

2
.�2m � ˛2m/.1� ˛2m�1/ınC1;mC1 C 1

2
.˛2m � �2m/.1C ˛2mC1/ınC1;mC2:

Notice that the co-dilated case (resp. co-recursive case) for OPRL yields, through
the Szegő transformation, the modifications of all odd (resp. even) Verblunsky
coefficients.

Example 4 Let d� be a nontrivial probability measure supported on T and let
f˚n.z/gn�0 be the corresponding OPUC. For a positive integer ` the sieved OPUC
f˚ f`gn .z/gn�0 are defined as those orthogonal polynomials associated with the
Verblunsky coefficients f˛f`gn gn�0 given by

˛f`gn D
(
˛m�1 if nC 1 D m`;

0 otherwise;
(30)

for n � 0. We also denote by �f`g the nontrivial probability measure supported on T

associated with f˛f`gn gn�0. Note that f˚ f1gn .z/gn�0 are the polynomials f˚n.z/gn�0.
The earliest treatment of f˚ f`gn .z/gn�0 for ` � 2 is found in [1, 18, 22]. The best
general reference on this subject is the work by Petronilho [28], see also [9].

Consider the case ` D 2, then from (30) we have f˛f2gn gn�0 D f0; ˛0; 0; ˛1; : : :g.
Then we have the following result.

Let fbbf2gn gn�1 and fbdf2gn gn�1 be the recurrence coefficients for the corresponding
OPRL associated with (k-modification) through the Szegő transformation. Then, for
a fixed non-negative integer k,

bdf2gnC1 D
�
1C �k

1C ˛k

�ınC1;kC1
�
1 � �k

1 � ˛k

�ınC1;kC2

df2gnC1;

bbf2gnC1 D 0:

Note that this k-modification yields, by using the Szegő transformation, the modifi-
cation of two consecutive recurrence coefficients df2gkC1 and df2gkC2.

Consider the C-function F.zI k/, corresponding to the COPUC [3], given by

F.zI k/ PD B.zI k/F� .z/:

Then, applying the Szegő transformation to the above equation, we have
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Theorem 16 ( [3]) Let S.xI k/ be the S-function for the corresponding COPRL
associated with (26) through the Szegő transformation. Then,

p
x2 � 1 S.xI k/ PDBk.x �

p
x2 � 1/

��
1

x �px2 � 1 � x

�

S�.x/

�

;

where z D x �px2 � 1.

Let us consider the C-function F.zI l; : : : ;m/ associated with the finite composition
of perturbations (26) [3], given by

F.zI l; : : : ;m/ PD
mY

jDl

Bj.z/F� .z/:

Then, applying the Szegő transformation, we get

Theorem 17 ( [6]) Let S.xI l; : : : ;m/ be the S-function for the corresponding
OPRL associated with the finite composition of perturbations (26) through the Szegő
transformation. Then,

p
x2 � 1 S.xI l; : : : ;m/ PD

mY

jDl

Bj.x �
p

x2 � 1/
p

x2 � 1S�.x/
�
;

where z D x �px2 � 1.

Verblunsky Coefficients and LU Factorization

If we define the sequence fvkgk�0, given in terms of the Verblunsky coefficients by

vk D 1

2
.1C ˛k/.1 � ˛k�1/; (31)

then

dkC1 D v2kv2kC1; (32)

bkC1 C 1 D v2k�1 C v2k; (33)

and, we can find a unique factorization

JC I D LU;
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where J is the Jacobi matrix associated with (2), I is the semi-infinite identity matrix,
L is a lower bidiagonal matrix, and U is a upper bidiagonal matrix, with

L D

2

6
6
6
4

1

v1 1

v3 1
: : :

: : :

3

7
7
7
5
; U D

2

6
6
6
4

v0 1

v2 1

v4 1
: : :

: : :

3

7
7
7
5
:

Thus, from (31), we have

˛k D �1C 2vk

1 � ˛k�1
; (34)

or equivalently,

˛k D �1C 2vk

2
� 2vk�1

2
� � � � � 2v1

2 � v0 :

Therefore, from the a sequence fvkgk�0 we can determine in a very simple way the
Verblunsky coefficients f˛kgk�0 for the measure d� supported on T.

From (32) and (33), we can find the sequence fvkgk�0 in terms of the recurrence
coefficients fbkgk�1 and fdkgk�1, as follows:

v2k D bkC1 C 1 � dk

bk C 1 � � � � �
d1

b1 C 1 ;

v2kC1 D dkC1
bkC1 C 1 �

dk

bk C 1 � � � � �
d1

b1 C 1 ;

with k � 0.
If we perturb the entries of the Jacobi matrix J at the level k, then we have a new

sequence f Qvngn�0, given by

Qv2n D bnC1 C 1 � dn

bn C 1 � � � � �
dkC1

bkC1 C �kC1 C 1 �
�kdk

bk C 1 � � � � �
d1

b1 C 1 ;

Qv2nC1 D dnC1
Qv2n

;

with k � 0. This can be summarized in the following:
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Theorem 18 ([6]) Let f Qvngn�0 be the new sequence associated with (10) and (11).
Then

Qvn D vn; 0 � n � 2k � 1;
Qv2k D v2k C .1 � �k/v2k�1 C �kC1;

Qv2mC1 D dmC1
Qv2m

; Qv2.mC1/ D bmC2 C 1 � Qv2mC1; m � k:

Therefore, as we mentioned previously, we can compute the new Verblunsky
coefficients directly from the sequence f Qvngn�0 as follows:

Theorem 19 ([6]) Let fb̨ngn�0 be the Verblunsky coefficients for the corresponding
OPUC associated with the perturbations (10) and (11) through Szegő transforma-
tion. Then,

b̨n D ˛n; 0 � n � 2k � 1;

b̨2k D ˛2k C 2Œ.1 � �k/v2k�1 C �kC1�
1 � ˛2k�1

;

b̨n D �1C 2 Qvn

1 � b̨n�1
; n � 2kC 1:

This is an alternative way to compute the perturbed Verblunsky coefficients
through the Szegő transformation using the LU factorization.

Acknowledgements The authors wish to express their thanks to Th. M. Rassias and N. J. Daras
for the invitation to participate in this volume. The research of the first author is supported by the
Portuguese Government through the FCT under the grant SFRH/BPD/101139/2014 and partially
supported by the Brazilian Government through the CNPq under the project 470019/2013-1.
The research of the first and second author is supported by Dirección General de Investigación
Científica y Técnica, Ministerio de Economía y Competitividad of Spain, grant MTM2012-36732-
C03-01.

References

1. V.M. Badkov, Systems of orthogonal polynomials explicitly represented by the Jacobi polyno-
mials. Math. Notes 42, 858–863 (1987)

2. P. Borwein, T. Erdelyi, Polynomials and Polynomial Inequalities (Springer, New York, 1995)
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and the unit circle via Szegő’s transformation. Appl. Math. Comput. (2017, Accepted for
publication)



On Co-polynomials on the Real Line and the Unit Circle 93

7. T.S. Chihara, On co-recursive orthogonal polynomials. Proc. Am. Math. Soc. 8, 899–905
(1957)

8. T.S. Chihara, An introduction to orthogonal polynomials, in Mathematics and Its Applications,
vol. 13 (Gordon and Breach, New York/London/Paris, 1978)

9. M.N. de Jesus, J. Petronilho, On orthogonal polynomials obtained via polynomial mappings.
J. Approx. Theory 162, 2243–2277 (2010)

10. J. Dini, P. Maroni, A. Ronveaux, Sur une perturbation de la récurrence vérifiée par une suite de
polynômes orthogonaux. Portugal. Math. 46, 269–282 (1989)

11. W. Erb, Optimally space localized polynomials with applications in signal processing.
J. Fourier Anal. Appl. 18(1), 45–66 (2012)

12. W. Erb, Accelerated Landweber methods based on co-dilated orthogonal polynomials. Numer.
Algorithms 68, 229–260 (2015)

13. Y.L. Geronimus, On some difference equations and corresponding systems of orthogonal
polynomials. Izv. Akad. Nauk SSSR, Ser. Mat. 5, 203–210 (1943)

14. Y.L. Geronimus, Orthogonal Polynomials: Estimates, Asymptotic Formulas and Series of
Polynomials Orthogonal on the Unit Circle and on an Interval (Consultants Bureau, New York,
1961)

15. Y.L. Geronimus, Orthogonal polynomials on a circle and their applications. Am. Math. Soc.
Translat. Ser. 1 3, 1–78 (1962)
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Electromagnetic Compatibility (EMC)
in Challenging Environments

C. Christopoulos

Abstract The paper describes the essential aspects of ElectroMagnetic
Compatibility (EMC) as applied to the response of critical systems to severe
ElectroMagnetic (EM) threats. The significance of deterministic and stochastic
models is outlined together with the role of numerical modelling and physical
testing in the analysis and synthesis of complex systems. It is emphasised that
the exploitation of the synergies between modelling and testing is the best way to
approach the EM design of complex systems.

Keywords Electromagnetic interference • Electromagnetic compatibility •
Electromagnetic hardening of systems

Introduction

Modern engineering systems, including defence systems, incorporate a multi-
tude of electrical and electronic systems for command, control, communication
and actuation purposes. Increasingly, electromechanical systems are being replaced
by electronic systems since this offers advantages in terms of weight, cost and
flexibility. Electromechanical systems are reliable as long as physical integrity is
maintained. It is difficult to compromise their operation other than by direct physical
damage. In contrast, electronic based systems, which rely on the transmission of
data streams or power pulses for control and actuation purposes, can be made to
malfunction or be permanently damaged if by remote action messages encoded
in electrical signals are interfered with. This may be caused either by deliberate
action (electronic warfare) or, inadvertently by other users of the electromagnetic
(EM) spectrum (ElectroMagnetic Interference-EMI). Hence, defence systems in
particular are designed to be able to sustain severe electromagnetic threats so that
their operation, or at least their failure in a safe mode, is assured. By defence
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systems we mean a very wide range of assets be they land, sea or air based, and also
important infrastructure such as essential power and communications networks, and
logistics facilities.

ElectroMagnetic Compatibility (EMC) is the discipline concerned with the
analysis and design of systems which are electromagnetically compliant with each
other, are able to sustain a certain amount of interference and in addition do not
contribute undue amounts of EM energy to the environment (EM pollution) [1].
The maximum EM energy levels that each systems is designed to withstand without
losing functionality (its immunity or susceptibility level) depends on its nature and
importance and varies widely between commercial and military systems. Similarly,
permitted EM energy levels which may be emitted by systems are specified in
commercial and military standards. Such limits are specified over broad frequency
ranges and it is fair to say that increasingly the range of frequencies over which
EMC standards need to be enforced is continuously extending. We should work on
the basis that we need to design electromagnetically compliant systems from dc
to light!

In the case of military systems the requirements are very strict as in most cases
we deal with safety critical systems where malfunction may have catastrophic
results (very high immunity is required). The emission aspect is also important as
defence systems which broadcast an electromagnetic signature are easily detected
and with some effort important information can be obtained by a hostile agent on
the operation of the system, internal information exchanges, etc. [2, 3].

It is therefore imperative that all designers and users of defence systems are
familiar with the essentials of EMI and EMC and in particular with severe EM
threats as are likely to be experienced in adverse environments and in hostile
situations. In this article we aim to offer some guidance to the main issues and
remedies which may be employed to reduce risks and harden systems to potential
EM threats. It is not possible to offer comprehensive guidance but interested readers
may access references for more details [1, 4].

EMC in the Context of Electromagnetic System Design

In this section we address the reasons that EMC is becoming increasingly important
to the EM design of systems. These are technological and economic in nature.

Starting with the technological issues, it is undoubtedly the case that the replace-
ment of cumbersome pneumatic and hydraulic controls by compact electronic
controllers brings benefits in terms of size, weight, long-term reliability, servicing,
versatility and flexibility. An example is the initiative on more electric aircraft
where weight is at a premium [5, 6]. The immense processing power of modern
electronic controllers allows for sophisticated control and monitoring strategies
to be implemented, and regularly updated with minimum cost and disturbance to
operations. On the negative side, the operation of electronic controllers may be
affected by electrical signals which deliberately or inadvertently impinge on these
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controllers either guided by conductors (conducted interference) or airborne (radi-
ated interference). If this were to happen then, potentially, systems will malfunction
or even fail completely and may require extensive repairs and replacement. These
problems are not new—practitioners were aware of the potential vulnerability of
electronic systems to EMI since the 1930s. What is new in the last 30 years is
the extensive use of electronics in engineering, the lowering of logic level to a
few volts and the ubiquitous presence of EM spectrum users. These factors taken
together have lowered the EM energy level which may cause logic malfunctions
and increased the EM energy levels that are injected into the environment as the
result of the operation of commercial and military systems. Thus the challenges
come from two directions—the increased vulnerability of systems on the one hand
and the more electromagnetically hostile environment on the other.

It is also important to emphasise that EM emission comes in different ways,
e.g. narrow band (e.g. radar), broad band (e.g. LEMP, NEMP) as will be seen in
the next section. Thus, whilst a system may appear on first reflection to operate
over a restricted frequency range (e.g. an electrical motor drive connected to
a mains supply of 50, 60 or 300 Hz), in reality we are dealing with a system
containing microprocessor equipment driven by clock frequencies in the GHz
range, switched mode power supplies driven by clocks in the MHz range, which,
including their harmonics, generate EMI energy well into the microwave range.
In terms of vulnerability such systems are susceptible to EMI over an equally
wide frequency range. The designer and user of such equipment must be aware
of the susceptibility and emission from such systems not just over the restricted
frequency range represented by the functional (operational) signals but also over
the broad band of frequencies where the system is vulnerable and/or injects EMI
into the environment. This is the most challenging aspect of EMC as it requires the
characterisation of systems across a very wide frequency band.

Equally important and challenging are the cost implications of EMC or lack
of it. It is difficult to obtain accurate figures on EMC costs but a minimum 2% of
the development cost of new products may be attributed to EMC. The exact figure
depends on the nature of the product, the degree of innovation and the manner in
which EMC is embedded into the design process. Basically, we can adopt one of the
two strategies.

First, we may take the optimistic view that our design will not suffer from
EMC problems and therefore design without reference to EMC. We thus spend no
money or time on EMC related issues before a prototype has been produced. On
the production of a prototype we then test and more often than not we will find
that we have EMC problems. Fixing them will require spending money and time.
It is a truism that retrofitting is a costly way to address problems as many potential
remedies are simply not available so late in the design process. Significant costs and
unplanned delays are the characteristics of this approach.

Second, we may approach EMC as a fundamental aspect of design and therefore
spend time and money at the start of the design phase addressing potential EMC
issues. At the production of a prototype we test and inevitably there may still be
some EMC issues to address. These, in a well-managed design, will be relatively
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minor and may be addressed promptly and without major expense. The result is
invariably a compliant design arrived at in a shorter time and at a lower cost
compared with the first approach. The implications of this are that EMC should
be incorporated into design right from the start to minimise costs and allow scope
for seeking the optimum technical solutions without undue constrains imposed by
already solidified design choices.

We are thus brought to recognise that EMC must be part of a concurrent design
process, essentially communicating with a whole host of other design requirements,
e.g. mechanical, thermal, etc. Only in this way can we hope that EMC can be
ensured in an optimal way in a complex design environment. Naturally, this requires
the availability of sophisticated design tools (analytical, numerical, experimental,
etc.), highly trained personnel, awareness of the level of EM threats and the
regulatory and standards regime applicable in each case. In addition to proper
design for EMC, a continuing effort should be made to manage EMC throughout
the lifetime of the designed system. Often, a good design is compromised by
changes made as part of maintenance or for operational reasons by persons who are
unfamiliar with EMC and focus instead on convenience during normal operations.
This is clearly highly undesirable and counters good EMC practices embedded
during the design phase.

We will have something to say on some (but not all) of these issues in the
forthcoming sections.

EMI Sources, Coupling Paths and Potential Victims

In order for EMC issues to arise there must be an EM threat (a source of EMI), one
or more coupling paths via which EM energy can travel from the source of EMI
to the engineering system, and components or sub-systems which are vulnerable
to EM threats (potential victims). If at least one of these three factors affecting
the EM integrity of systems is absent, then we do not have an EMC problem.
It follows therefore that we can reduce the risks of malfunctions due to EM threats
by intervening in one or more of these three aspects of EMC. We may seek to reduce
the EM energy generated at source (if at all possible), weaken coupling paths (e.g.
by introducing EM shielding) or increase the immunity of components so that they
can sustain a certain amount of EMI without malfunction or permanent damage
(hardening). Each of these interventions has its own technological challenges and
cost implications and therefore designers must be able to weigh against each other
the various proposed remedies and interventions aimed at hardening systems to EM
threats and assuring compliance to applicable standards and in-house requirements.
A well-designed system should meet all applicable civilian and military EMC
standards and any further additional requirements which specific systems may
demand because of special operational circumstances. Typical military standards are
described in [7, 8]. It has to be accepted that that the nature of EM emissions is such
that they do not respect boundaries or a black-box approach. EMC is best pursued by
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adopting a holistic global approach, working closely with other design disciplines,
and being able to influence the design team in recognising the importance and
challenges of designing EM compliant systems [9]. To illustrate the nature and
extent of the challenges we offer below a shortlist as an illustration only of the
various facets of the EMC problem. In reality, clear-cut boundaries do not always
exist between the various areas indicated below:

1. Source region (e.g. the extent, frequency range, duration and intensity of the EM
threat). Site surveys may be necessary or access to other research results to assess
fully the nature of the EM threat. If the system under consideration is very close
to the source region (e.g. for NEMP), then highly non-linear phenomena take
place making the entire study very difficult.

2. External interaction (e.g. the calculation of induced current flows on the outer
surfaces-shields of the system, on wire penetrations, on grounding wires, etc.).

3. Internal interaction (e.g. current flows on internal wiring, penetration through
apertures, wire-to-wire and field-to-wire coupling inside the system).

4. Device susceptibility (e.g. calculation of device pin currents and voltages,
calculation of failure probabilities of particular sub-systems).

Naturally, analysis of the threats is only one aspect and should it indicate an unac-
ceptable probability of failure then the designer is required to develop a synthesis
of counter measures (e.g. filtering, electrical isolation, balancing, shielding, better
grounding, etc.) capable of reducing the risks.

Sources of EMI

Any serious study of electromagnetic interference requires an assessment and basic
understanding of EM threats. EMI can come from natural or man-made sources.

Natural sources contribute to the EM environment at low-frequencies (LF), e.g.
through slow fluctuations of the earth’s magnetic field, through lightning discharges
and at high-frequencies through extra-terrestrial processes. We will describe in more
detail the nature of the lightning EM pulse (LEMP) as it is severe enough to affect
even well-designed systems. But this should not be taken to mean that other natural
threats such as the slow variation of magnetic fields during geomagnetic storms
is harmless—there is ample evidence that they may affect the operation of major
infrastructure (e.g. power systems) by tripping protective relays and interrupting
energy supplies over large territories.

Man-made sources of EMI are the result of human activity and have been
increasing steadily as more IT, communications and power electronic systems
are incorporated into industrial and military processes. Civilian EMC standards
set upper limits for emissions by individual equipment but there is no doubt
that background noise over large areas of the frequency spectrum is steadily on
the increase. Results from some recent surveys of commercial environments are
given in [10]. An understanding of civilian EMC specifications is also useful in
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Fig. 1 Schematic of the EM interference spectrum indicating particular threats

the military field as increasingly commercial off the self (COTS) equipment are
employed in military applications. However, we will limit our discussion here to
two examples of severe EM threat-the lightning EM pulse (LEMP) and nuclear
EM pulse (NEPM). A schematic depicting spectrum users and EM threats adapted
from [11] is shown in Fig. 1. The basic phenomenology of the lightning discharge
is the attachment of an ionised channel to a structure and hence the transfer of large
amounts of electric charge. The resulting pulsed high currents have a fast rise-time
of the order of 1�s and decay time approximately 50�s. Several such discharges
may take place in rapid succession. In terms of the response of engineering systems
to LEMP of importance are the attachment point (in cases of a direct hit) and the
pulse shape, peak value and repetition rate of the pulse train. In order to design
and test systems which are able to function properly under LEMP threats standards
specify pulse shapes which reproduce as far as possible actual LEMP threats as
shown in Fig. 2. The current waveform for each segment A to D is specified in
detail in [12]. Facilities are available in major industries and agencies which permit
the injection of the appropriate current shapes for testing and validation purposes.
A particular concern in recent years is the widespread introduction (especially in
airborne systems) of carbon fibre composites (CFCs) in preference to metals as this
offers weight savings and good mechanical strength. From the EMC point of view,
however, this creates difficulties as CFCs afford limited EM shielding compared
to metals. Moreover, the laminated, layered, anisotropic nature of CFC panels,
electrical conditions and current sharing at junctions and at riveted joints make it
difficult to predict current flows under lightning strike conditions. Whole system
modelling under these conditions is very challenging and the subject of continuing
research and development work. In case of a nuclear detonation (especially a
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Fig. 2 Schematic of lightning test waveforms. Detailed descriptions of components A-D may be
found in [12]

high-altitude one) in addition to the physical and other phenomena, an EM wave
is established driven by currents generated by the impact of � -rays on matter and
the production of fast electrons (Compton Effect). The pulsed wave has typically a
rise-time of a few nanoseconds and decay time of the order of�s and a peak electric
field of the order of 50 kV/m [13]. Such a broad spectrum and high intensity field
propagating over distances on a continental scale can severely impact on important
infrastructure and military assets to such a degree as to make any defensive or
offensive response problematic. Thus important systems have to be designed to
cope with such an eventuality. The spectral densities of LEMP and NEMP threats
are discussed in more detail in [14]. Material on high power electromagnetics and
intentional EMI (IEMI) in general may be found in [15, 16]. The threat of IEMI to
infrastructure is addressed in [17–19].

Coupling Paths

Coupling of EM radiation to potential victims can take place in several ways.
At low-frequencies and typically below 30 MHz EMI enters systems through wire or
other conducting penetrations (mains, control and communication cables, Cu water
pipes, structural steel work, etc.). At higher frequencies, penetration takes place
either in wire guided mode or through space much like the radiation from antenna.
In the former case we talk about conducted interference and in the latter about
radiated interference. Radiated interference can also be distinguished into near-
field and far-field coupling. In the former case coupling can be understood in terms
of mutual capacitance and inductance and in the latter as true radiative coupling
as experienced far from a radiating antenna. The number of coupling paths can be
large and sometimes unpredictable in large complex systems and care must be taken
to establish the critical paths as any potential remedy will depend critically on the
exact nature of coupling. It is not possible in a short article to paint a comprehensive
picture of all coupling mechanisms but in order to sensitise readers to the issues
involved we will give some illustrative examples.
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Wires, cables, tracks, in close proximity to each other are electromagnetically
coupled through mutual inductance and capacitances (cross-talk). As the frequency
increases, coupling gets more complicated and transmission line behaviour dom-
inates when the electrical length of the wiring is comparable to the wavelength
(electrically long wires). At even higher frequencies, wire-to-wire coupling resem-
bles that between antennas and requires a full-field treatment based on solving
Maxwell’s equations. Central to the understanding of wire-borne interference is
the idea of differential-mode (DM) and common-mode (CM) signals. The concept
applies to any multi-conductor systems the simplest case being between two
conductors. Here the current in each conductor is equal and opposite (DM currents).
However, in practice such a system strictly does not exist—there are always
conducting objects in the proximity, e.g. ground, chassis, etc. At high-frequencies
in particular, the currents on the two conductor are not equal and opposite but an
additional current component shared equally and flowing in the same direction in
the two wires is present (CM current). This current “returns” through conducting
objects in the proximity of the wires and its origin can be simply understood at
least at low-frequencies in terms of current flows from the two conductors through
stray inductances and capacitance to the nearby objects. The situation is depicted
in Fig. 3.

The total current flowing in a wiring system is made up of two modes for two
wires and a third object [4].

I1 D Id C Ic

I2 D �Id C Ic

The common- and differential-mode currents Ic and Id, respectively, may be
obtained in terms of the total currents from,

Ic D .I1 C I2/ =2
Id D .I1 � I2/ =2

Two-wire line

surrounding objects

I1
IDM

IDM ICM
2ICM

ICM

I2

I1 + I2

Fig. 3 The various current components in a two-wire transmission line in the proximity of other
objects (e.g. equipment cabinet)
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Fig. 4 A simple grounding arrangement to illustrate the nature of the grounding impedance at
various frequencies

In normal operation, the DM currents are the ones required by design and the
CM currents are the result of unavoidable and undesirable stray coupling to other
circuits. Moreover, radiation (emission) from wiring is primarily due to CM currents
(antenna mode) as there is partial cancellation of radiation from the two opposing
DM currents. No understanding of EMC problems caused by emission from wires
can be reached without recognising and controlling the flow of common mode
currents. Generally speaking, the task of the EMC engineer is not simply to
cope with the DM currents but more importantly to control the flow of stray
currents, return CM currents, grounding wire currents, etc. As these are not normally
explicitly identified or calculated during design it is imperative that they form part
of a thorough EMC study.

For the purposes of further illustration, we address here the problem of ground-
ing. We attempt to estimate the magnitude of the grounding impedance at the point
of connection of the grounding wire to the equipment. Without loss of generality and
in order to facilitate calculation we idealise somewhat the grounding configuration
as shown in Fig. 4. We estimate the grounding impedance at low- medium- and high-
frequencies. At LF the grounding impedance consists essentially of the resistance of
the grounding wire which is normally very low of the order of m�. As the frequency
of the currents flowing in the grounding wire rises the inductance of the wire
contributes to a voltage drop and hence its impact begins to dominate. The situation
for these two cases (LF and MF) is described by equations,

Zgnd ' R
Zgnd ' RC j!L

At even higher frequencies, when the length of the grounding wire becomes
comparable to the wavelength the grounding assembly resembles more to a trans-
mission line (a cylindrical wire above ground in our case) and hence the grounding
impedance is that of a short-circuited transmission line as shown below,

Zgnd D jZ0 tan .2�`=�/
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where Z0 is the characteristic impedance of the line and `=� is the ratio of the wire
length to the wavelength. We see from this expression that the grounding impedance
varies greatly with this ratio and can assume very high values when the ratio is equal
to 0.25! Such a high grounding impedance will naturally cancel out any benefits or
protection the grounding system is meant to provide. It is therefore imperative for
EMC to look carefully at all stray current flows, including grounding currents, as
they can affect greatly system EMC response especially at HF. Particular care is
needed in the grounding of electrically large installations where instead of single
grounding wires a wire grid with a periodicity a fraction of the wavelength at the
highest frequency of interest is required to avoid resonances as suggested by the
discussion above. It must also be emphasised that components sharing a common
grounding structure will suffer from cross-talk through potential fluctuation at the
point of connection to the grounding structure.

More information on the different types of coupling may be found in the literature
[1, 4, 9, 20].

Victims of Interference

EMI may affect the operation of integrated circuits (ICs) by excessive cross-talk
and thus alteration in logic states, or in more severe cases by direct damage
(electrical breakdown across solid-state junctions). EMC designers aim to minimise
interference and add suitable protections so damage is limited except in exceptional
circumstances. It is also the responsibility of general functional design to implement
defensive measures so that in the case of interference systems fail in a safe mode and
are able to reset/restart automatically if this is appropriate for the safe operation of
the system. Proper software design minimises the impact of interference and hence
enhances immunity. Guidelines and design practices to enhance the immunity of
ICs may be found in [21, 22].

Detailed information on emission and immunity levels of various components
and systems may be found in the appropriate standards but it is useful to give some
general guidance on interference levels which are likely to cause problems. The
relevant parameters of interfering signals are frequency, bandwidth, magnitude and
polarisation.

A reasonable expectation is that electric field levels of the order of 100 V/m may
cause upsets and permanent damage can be expected at the 10 kV/m level. These are,
however, ball park numbers the exact values depending on technology used, design
and construction practices. Coupling to systems through airborne interference is
likely to be strongest when the wavelength of the incident radiation is comparable
to the physical dimension of the potential victim as in this case we can expect
resonances. Common control equipment are handheld hence of the order of 10 s
of cm in size. The wavelength in air at 1 GHz is 30 cm hence the frequencies most
likely to couple in a resonant manner to handheld systems are of the order of 1 GHz.
For conducted interference taking account of the typical lengths of wires we can
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expect maximum coupling in the 10 s of MHz region. It appears therefore that
if we wish to cause maximum interference and even damage we need to employ
frequencies which resonate with the potential victim. However, in general, we
cannot be certain of the resonances of potential victims and hence we cannot select
with reasonable certainty the most appropriate frequency for maximum interference.
In such cases we may prefer a broadband interference signal hoping that we will hit
some system resonances over the frequency range. However, we can launch much
higher intensity interference signals at a single frequency rather than over a broad
range of frequencies. Some typical examples of narrow- middle- and broad-band
signals are shown in Fig. 5.

We see that a narrow pulse in the time-domain gives a broad spectrum in the
frequency domain and thus a better chance of hitting a resonance, albeit at a lower
intensity level. Portable equipment for the launching of hostile signals have been
developed and some are described in the literature [15, 16].

Shielding, Non-linear Protection and Filtering

In military systems and in high-value important civilian infrastructure systems it
is necessary to incorporate sufficient protection and countermeasures against EM
interference whether unintentional or hostile. The extent of measures taken will
depend on the importance of the system to be protected the consequences of failure
and the likelihood of an EM hostile environment. In most systems, a degree of EM
shielding is considered an essential design measure and we therefore start with
a description of the fundamentals of shielding. We then briefly address a more
complete protection arrangement against severe threats.

EM Shielding

A highly conducting enclosure with no apertures or wire penetrations is a very
effective EM shield at all frequencies except for low-frequency magnetic fields [1].
In practice, all enclosures will have wire penetrations, some apertures and may not
be made of perfect conductors. We deal in this section with perfectly conducting
enclosures with apertures and in the next with protection from wire penetrations.
The case of enclosures made of materials which are not highly conducting (e.g.
CFCs) although important cannot be addressed in this article.

A schematic of the basic shielded enclosure with an aperture is shown in Fig. 6a.
This canonical configuration may represent a vehicle, aircraft or missile structure
and it allows us to illustrate in an elegant and efficient way the main attributes of
shielding. We consider the case of an EM wave incident on the enclosure with the
aperture. For simplicity we assume this to be a plane wave incident at a right angle
on the front face of the enclosure as shown in Fig. 6a. The first issue to address is
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Fig. 5 Half-cycle of a 1 GHz sinusoidal signal (a) and its spectrum (b). A full-cycle 1 GHz
sinusoidal signal (c) and its spectrum (d). Twenty cycles of a 1 GHz sinusoidal signal (e) and
its spectrum (f)

the worst case of electric field polarisation for EMI penetration. The two extreme
cases are for the electric field vector to be parallel or vertical to the long side of the
narrow aperture. The answer, although perhaps counterintuitive, is straightforward
from EM theory. Penetration is easiest if the electric field vector is perpendicular to
the long side of the aperture. For the alternative parallel case boundary conditions
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Fig. 6 Typical arrangement of a cabinet with an aperture (a) and its equivalent circuit for
calculating shielding effectiveness (b)

dictate that the electric field parallel to a perfectly conducting boundary must be
zero hence over the narrow aperture the electric filed is forced almost to zero. We
therefore focus on the worst case shown in Fig. 6a.

The EMC designer is primarily interested in the estimation of the Shielding
Effectiveness (SE) of the enclosure namely the ratio (in dB) between the electric
field at a point inside the enclosure with and without the enclosure. In effect, the
SE is a measure of how effective the enclosure is in reducing the penetration of an
external field into the enclosure. A full rigorous analytical solution to such problems
is not possible, instead, full-field numerical solutions are required [23]. However,
in order to illustrate the main aspects of shielding we describe here a simplified
approach based on representing the enclosure by an equivalent transmission line
(TL) as shown in Fig. 6b [24, 25]. The electric field inside the enclosure is
represented by the voltage across the TL and thus the shielding effectiveness,
calculated at a distance z from the aperture, may be obtained from,

SE D 20 log

�
V0

2V .z/

�

In the equivalent TL the two parameters are,

�g D �0
,r

1 �

�=2a

�2
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An example of an SE calculation using this model is shown in Fig. 7. The following
conclusions may be drawn from this figure:

1. The SE is strongly frequency dependent and generally decreases with increasing
frequency.

2. At certain frequencies (around 700 MHz in our example) the SE may be negative
indicating the enclosure makes matters worse. These frequencies correspond
to enclosure resonances and hence users must avoid exposure to signals with
substantial energy at these specific frequencies.

3. Although the SE at one location inside the enclosure is shown in Fig. 7 it is
clear by the nature of the model that SE also depends on the position inside
the enclosure thus suggesting avoiding the placing of sensitive equipment at
locations of low SE.

In [26] further examples are shown, including comparisons with measurements,
and in the presence of PCBs as loads inside the enclosure. These indicate that if
the enclosure is loaded, then the drop in SE at resonances is less pronounced or
even disappears. This merely means that EM energy from the interfering signal
is absorbed by the PCB and thus further investigation is needed to establish the
consequences on PCB normal operation of this absorption. Several refinements
to this simple model have been made to increase its utility and allow rapid and
inexpensive assessments of SE at the early stages of design. Details are available in
the literature.
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Non-linear Protection, Filtering

In this section we aim to give a broad outline of the range of measures that need to
be taken to protect important assets against severe EM threats.

Severe threats involve potentially high amounts of EM energy (high voltages
and currents), fast rise-times and long durations. Most protective measures are
particularly suited to address one of these features and alone cannot cope with the
entire range of potential threats. Some protection is suited to high energy signals,
other to fast rise-time signal, etc. Thus, we need a staged protection each stage aimed
at achieving a particular threat reduction. A schematic of a typical arrangement
is shown in Fig. 8. The main principle here is the removal of EMI on entry to
the protected area and the binding together of ground/reference conductors. Power
signals are initially attenuated by a combination of non-linear resistors and lightning
arresters as shown in Fig. 9a. This arrangement removes high-voltage peaks but is
not able to deal with fast rise-time transients which require solid-state devices (zener
diodes) as shown in the same figure. The resulting signal which has now most of the
EMI energy removed pass through a filter which removes common-mode signals as
shown in Fig. 9b. A similar arrangement for data signals based on a combination of
solid-state (for fast signals) and lightning arresters (for slow high-energy signals) is
shown in Fig. 9c.

Fig. 8 Schematic of protection arrangements against severe threats
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Fig. 9 (a) Clipping of high-voltage signals with non-linear resistors and gas discharge devices.
The remaining fast rise-time signals are absorbed by zener diodes. (b) Common-mode suppression
filter. (c) Data lines are protected by zener diodes. Overvoltage signals to common are attenuated
by lightning arresters

Analysis and Design Tools: Simulation and Testing

The current trends for rapid, right-first-time designs and the complexity of modern
systems make traditional design techniques cumbersome and instead the use of
numerical computer-aided techniques is much favoured. Numerical models of phys-
ical systems are thus created in software and provided they incorporate correctly
the relevant physics of the system they can be used to predict behaviour and test
design modifications well in advance of the production of a prototype [27, 28].
There are, however, those who believe that a numerical model cannot represent
fully all aspects of system behaviour and that actual physical testing is required.
The view advocated in this paper is that both approaches are needed and that the best
guarantee of successful design is the complementary use of both thus maximising
their advantages and minimising their disadvantages. Tables 1 and 2 summarise the
advantages and disadvantages of both approaches. It can be seen that numerical
techniques can alert the designer to potential EMC problems very early in the
design stage thus offering a wide scope for remedies. But, there is no guarantee
that a numerical model encompasses all relevant interactions, e.g. an imperfection
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Table 1 Advantages and disadvantages of testing

Many aspects of the test environment are difficult to isolate and control (resonances and
damping of screened rooms, spurious reflections in open-are test sites, etc.)

Proximity effects affect the calibration of measurement antennas

Extrapolations from near- to far-field are not always correct

Very large objects require very expensive test facilities

Testing is only possible when a prototype is available by which time some design changes
are not possible or too expensive

Some experiments are too costly (e.g. inaccessible places) or dangerous to be performed

Testing can reveal inadvertent errors and omissions in manufacture and assembly

Table 2 Advantages and disadvantages of numerical modelling

Easy to isolate design factors and study the sensitivity of the design to various parameters
(“what is” experiments)

Possible to study response well before a prototype is available when design changes are
easier to make

Can have full diagnostics even in remote and hostile places

Can do studies which in real life would be too dangerous or costly to do

It is easy to overlook significant factors or to miss manufacturing problems

Can be overwhelmed with information!

during manufacture or assembly and thus actual physical testing is always desirable.
Testing on its own, however, reveals problems very late in the design when the
options for re-design are limited and very costly.

There is naturally a desire to minimise testing as it is very time-consuming and
costly. Moreover, in modern complex systems (e.g. military aircraft with several
miles of wiring, connectors, etc.) it is virtually impossible to incorporate diagnostics
at thousands of inaccessible points. Numerically, however, this is not a problem.
Part of testing therefore, in addition of demonstrating compliance with standards,
is to validate the numerical model. If measurements at a few selected critical
points agree with the model predictions there is then a reasonable expectation that
the model operates correctly and the rest of its predictions can be accepted with
confidence. Thus the testing cycle is reduced in duration and cost with obvious
benefits. A further advantage is that with a validated numerical model any future
modifications (e.g. introduction of a new component or sub-system) need only be
tested in software thus avoiding the cost and complexity of further physical testing.

Uncertainty and Lifetime Compliance

Most engineers most of the time are exposed to problems of deterministic type. This
means that all the parameters of the system are precisely known and under these
conditions the response to a known stimulus is required. In EMC this typically
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means that all system geometrical and material details are known, we assume an
incident EM pulse (the threat) and we wish to calculate the voltage at a critical
pin to determine whether there will be a failure or not. In real life, however, this
situation is rarely the case. Full geometrical details are rarely known and vary
somewhat from one batch to another. The same is true for material properties and
even for the EM threat which may have uncertain polarisation, rise-time, etc. We
are then asked to calculate the response of a system where several parameters
are not fixed but typically have a mean value and a spread around this mean. In
the language of mathematics the system has a number of random variables and
hence the response too is a random variable. These types of problem are termed
as stochastic. It is clearly important to be able to address stochastic problem and not
merely deterministic ones. Even if we start with a deterministic system, through its
lifetime parameters will change (e.g. component tolerances, ageing of components,
replacement of parts with new “equivalent” replacement components, etc.). We need
to be able to assure the performance of the system throughout its lifetime and for a
range of eventualities brought about by ageing, deterioration in service, selective
introduction of new parts and new technologies etc. A stochastic model of the
system helps us to minimise further testing provided any parameter changes remain
within the statistical envelope used in the original calculation. This offers economy
and confidence in design.

A first approach to a stochastic model is to do a number of trials (simulations)
of the system with a range of parameters taken from the spread of the system
random variables. In this way we will eventually build up the statistics of the
response and thus the mean, standard deviation, etc., of the response. This is the
so-called Monte Carlo approach and requires typically 1000s of trials. Since in
EMC studies each trial requires running a complete simulation this represents an
immense simulation task which in most cases is unrealistic. It is, however, possible
to obtain statistical information on system response by performing a small number
of trials and combining the results of the calculated responses, with appropriate
weight factors, to obtain the mean value, variance and other higher moments of
the response random variable [29, 30]. The complete probability density function
of the response may also be reconstructed in this way. These statistical techniques
are similar to the approximations of an integral from a few selected values of the
integrand over the interval of integration (Gaussian Quadrature). For problems with
one Gaussian random variable x D NX C Qx where NX is the mean value of the random
variable and Qx is a zero-mean random variable, three evaluations of the response g(.)
are required to obtain the first two moments,
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The three evaluations points and corresponding weight factors are shown in
Table 3. In the case of say two random variables nine evaluations are required.
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Table 3 Derivation of the first two moments (mean
and variance) of a random output using responses
at three values of the single random input and
corresponding weight factors

Evaluation points NX � �p3 NX NXC �p3
Weights 1/6 2/3 1/6

Fig. 10 The mean (a) and standard deviation (b) of the shielding effectiveness of a cabinet with
two parameters which are Gaussian random variables

As the number of random variables increases then the number of evaluations also
increases rapidly but special sampling techniques can be used to reduce the number
of evaluations to realistic levels at the expense of prediction accuracy [31]. An
example for the mean value and variance of the shielding effectiveness (SE) of a
cabinet is shown in Fig. 10 [32]. Here, the statistics of the SE are obtained over
a wide frequency range from nine evaluations of the two random variables (length
and width of the aperture).

Conclusions

An assessment of some of the most severe EM threats and possible mitigation
techniques has been presented in this paper.

The nature of EM interactions requires a deep understanding of source regions,
coupling paths and potential victims, so that the most effective and inexpensive
measures are adopted to minimise the possibility of EMC problems. This requires
a wide grasp of many electrical engineering disciplines (electromagnetics, signals,
communications, power electronics) but also areas such as heat transfer which can
make competing demands on design.
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It has been proposed that a combination of numerical models, simulations and
experimental testing techniques offer the best approach to solving EMC related
problems. It is important that designers exploit fully the capabilities offered by
each approach and their synergies. A hierarchy of models is available to address
all stages in the design which together with physical testing can give confidence in
the analysis and synthesis of systems. Models should be used intelligently to aid
understanding and support the creative thinking of designers. It is also important to
appreciate that strictly speaking all problems are ultimately stochastic and therefore
techniques should be developed which can address efficiently this aspect of EMC.

Designing systems which are initially compliant with EMC requirements is
only one important step. It is also necessary that EMC is managed through the
entire expected lifetime of systems by putting in place measures to check that
EMC is maintained. Paramount in this respect is to educate users, and maintenance
personnel on the principles of EMC and the manner in which designed features
which on first reflection do not affect normal operations have nevertheless important
EMC implications.
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Abstract In this paper, we consider a recently introduced cybersecurity investment
supply chain game theory model consisting of retailers and consumers at demand
markets with the retailers being faced with nonlinear budget constraints on their
cybersecurity investments. We construct a novel reformulation of the derived
variational inequality formulation of the governing Nash equilibrium conditions.
The reformulation then allows us to exploit and analyze the Lagrange multipliers
associated with the bounds on the product transactions and the cybersecurity
levels associated with the retailers to gain insights into the economic market
forces. We provide an analysis of the marginal expected transaction utilities and
of the marginal expected cybersecurity investment utilities. We then establish some
stability results for the financial damages associated with a cyberattack faced by the
retailers. The theoretical framework is subsequently applied to numerical examples
to illustrate its applicability.
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Introduction

Cybercrime is a major global issue with cyberattacks adversely affecting firms,
governments, other organizations, and consumers [14]. For example, it has been
estimated that cyberattacks cost firms $400 billion annually [22]. In a recent study
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[19] that surveyed 959 top executives in such industries as banking, insurance,
energy, retail, pharmaceuticals, healthcare, and automotive, it was found that 63%
reported that their companies experienced significant attacks daily or weekly. Cyber-
attacks can result not only in direct financial losses and/or the loss of data, but also
in an organization’s highly valued asset—its reputation. It is quite understandable,
hence, that worldwide spending on cybersecurity was approximately $75 billion
in 2015, with the expectation that, by 2020, companies around the globe will be
spending around $170 billion annually (see [12]).

Organizations, as noted by Ostvold and Walker [19], are part of ecosystems
and the decisions that they make individually, including those in terms of cyber-
investments, may affect other organizations. Indeed, as discussed in [16], who
developed a supply chain game theory model for cybersecurity investments, the
level of a cybersecurity investment of a retailer may affect not only his vulnerability
to cyberattacks but also that of the network of the supply chain consisting of retailers
and consumers who engage in electronic transactions. Effective modeling of the
complexity of cyberattacks and cybersecurity investments using operations research
techniques, including game theory, can assist in the analysis of complex behaviors
and provide, ultimately, tools and insights for policymakers.

For example, [13] developed a multiproduct network economic model of cyber-
crime with a focus on financial services, since that industrial sector is a major
target of cyberattacks. The model captured the perishability of the value of financial
products to cybercriminals in terms of the depreciation in prices that the hacked
products command over time in the black market. Nagurney and Nagurney [14],
subsequently, constructed a supply chain game theory model in which sellers max-
imize their expected profits while determining both their product transactions with
consumers and their cybersecurity investments. However, network vulnerability was
not captured. Nagurney et al. [16] then showed how the model in [14] could be
extended to quantify and compute network vulnerability. The studies [14] and [16]
were inspired, in part, by the contributions in [20]. The supply chain game theory
network framework of [14] and [16] is, nevertheless, more general than that of [20]
since the firms, which are retailers, are not assumed to be identical, and the demand
side for products of the supply chain network is also captured. In addition, the firms
can have distinct cybersecurity investment cost functions and are faced with distinct
damages, if attacked. Such features provide greater modeling flexibility as well as
realism.

More recently, [15], building on the prior supply chain network cybersecurity
investment modeling and analysis work noted above, introduced a novel game
theory model in which the budget constraints for cybersecurity investments of
retailers, which are nonlinear, are explicitly included, and conducted a spectrum
of sensitivity analysis exercises. Consumers reflect their preferences for the product
through the demand price functions, which depend on the product demands and on
the average security of the network. The methodology utilized for the formulation,
analysis, and solution of the game theory models in [13, 14, 16], and [15] was that
of the theory of variational inequalities. We refer the reader to [11] for a survey
of game theory, as applied to network security and privacy, and to [9] for some
background on optimization models for cybersecurity investments. For a collection
of papers on cryptography and network security, see the edited volume [6].
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In this paper, we return to the cybersecurity investment supply chain game
theory model with nonlinear budget constraints of [15]. We provide an alternative
formulation of the variational inequality derived therein in order to provide a
deeper qualitative and economic analysis with a focus on the Lagrange multipliers
associated with the constraints. The constraints in the model in [15] include not
only the nonlinear budget constraints but also lower and upper bounds on the
cybersecurity levels as well as on the product transactions.

It is worth mentioning that a wide spectrum of papers has been devoted to the
analysis of the behavior of the solutions to a variational inequality which models
equilibrium problems by means of the Lagrange multipliers. For instance, we cite
the papers [1, 3, 5] for the financial equilibrium problem, the paper [2] for the
random traffic equilibrium problem, the papers [7, 8] for the elastic-plastic torsion
problem, and the paper [4] for the unilateral problems. This paper is the first to
analyze a cybersecurity investment supply chain game theory model with nonlinear
budget constraints by means of Lagrange multipliers.

This paper is organized as follows. In section “The Model”, we briefly recall, for
completeness and easy reference, the supply chain network game theory model for
cybersecurity investments with nonlinear budget constraints developed in [15] and
provide the variational inequality formulation of the Nash equilibrium conditions.
The model consists of retailers and consumers at demand markets with the former
competing on their product transactions as well as their cybersecurity levels. In
section “Equivalent Formulation of the Variational Inequality”, we construct an
alternative formulation of that variational inequality. We then provide an analysis
of the marginal expected transaction utilities and of the marginal expected cyber-
security investment utilities. In addition, we present some stability results for the
marginal expected cybersecurity investment utilities with respect to changes in
the financial damages sustained in a cyberattack. Section “A Numerical Example”
illustrates how the framework developed in section “Equivalent Formulation of the
Variational Inequality” can be applied in the context of numerical examples. We
summarize our results and present our conclusions in section “Conclusions”.

The Model

We now recall the supply chain game theory model of cybersecurity investments
with nonlinear budget constraints introduced in [15] (see also [21] for other equi-
librium models with nonlinear constraints). The supply chain network, consisting
of retailers and consumers at demand markets, is depicted in Fig. 1. Each retailer i;
i D 1; : : : ;m, can transact with demand market j; j D 1; : : : ; n, with Qij denoting
the product transaction from i to j. Also, each retailer i; i D 1; : : : ;m, determines
his cybersecurity or, simply, security, level si; i D 1; : : : ;m. We group the product
transactions for retailer i; i D 1; : : : ;m, into the n-dimensional vector Qi and then
we group all such retailer transaction vectors into the mn-dimensional vector Q. The
security levels of the retailers are grouped into the m-dimensional vector s.



120 P. Daniele et al.

1

1

. . .

. . .

Retailers

i

j

Demand Markets

· · ·

· · ·

m

n

Fig. 1 The bipartite structure of the supply chain network game theory model

The cybersecurity level in the supply chain network is the average security and

is denoted by Ns, where Ns D
mX

iD1

si

m
.

The retailers seek to maximize their individual expected utilities, consisting of
expected profits, and compete in a noncooperative game in terms of strategies
consisting of their respective product transactions and security levels. The governing
equilibrium concept is that of Nash equilibrium [17, 18].

The demand at each demand market j, dj, must satisfy:

dj D
mX

iD1
Qij; j D 1; : : : ; n: (1)

We group the demands at the demand markets into the n-dimensional vector d.
The product transactions are subject to upper bounds and must be nonnegative so

that we have the following constraints:

0 � Qij � NQij; i D 1; : : : ;mI j D 1; : : : ; n: (2)

The cybersecurity level of each retailer i must satisfy the following constraint:

0 � si � usi ; i D 1; : : : ;m; (3)

where usi < 1 for all i; i D 1; : : : ;m. The larger the value of si, the higher the
security level, with perfect security reflected in a value of 1. However, since, as
noted in [15], we do not expect perfect security to be attainable, we have usi < 1;
i D 1; : : : ;m. If si D 0, this means that retailer i has no security.

The demand price of the product at demand market j, j.d; Ns/; j D 1; : : : ; n,
is a function of the vector of demands and the network security. We can expect
consumers to be willing to pay more for higher network security. In view of the
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conservation of flow equations above, we can define Oj.Q; Ns/ � j.d; Ns/; j D
1; : : : ; n. We assume that the demand price functions are continuously differentiable.

There is an investment cost function hi; i D 1; : : : ;m, associated with achieving
a security level si with the function assumed to be increasing, continuously differ-
entiable and convex. For a given retailer i, hi.0/ D 0 denotes an entirely insecure
retailer and hi.1/ D 1 is the investment cost associated with complete security for
the retailer. An example of an hi.si/ function that satisfies these properties and that
is utilized here (see also [15]) is

hi.si/ D ˛i

 
1

p
.1 � si/

� 1
!

with ˛i > 0:

The term ˛i enables distinct retailers to have different investment cost functions
based on their size and needs. Such functions have been introduced by Shetty et al.
[20] and also utilized by Nagurney et al. [16]. However, in those models, there are
no cybersecurity budget constraints and the cybersecurity investment cost functions
only appear in the objective functions of the decision-makers.

In the model with nonlinear budget constraints as in [15] each retailer is faced
with a limited budget for cybersecurity investment. Hence, the following nonlinear
budget constraints must be satisfied:

˛i

 
1

p
.1 � si/

� 1
!

� BiI i D 1; : : : ;m; (4)

that is, each retailer can’t exceed his allocated cybersecurity budget.
The profit fi of retailer i; i D 1; : : : ;m (in the absence of a cyberattack and

cybersecurity investment), is the difference between his revenue
nX

jD1
Oj.Q; s/Qij and

his costs associated, respectively, with production and transportation: ci

nX

jD1
Qij C

nX

jD1
cij.Qij/, that is,

fi.Q; s/ D
nX

jD1
Oj.Q; s/Qij � ci

nX

jD1
Qij �

nX

jD1
cij.Qij/: (5)

If there is a successful cyberattack on a retailer i; i D 1; : : : ;m, retailer i incurs an
expected financial damage given by

Dipi;
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where Di, the damage incurred by retailer i, takes on a positive value, and pi is the
probability of a successful cyberattack on retailer i, where:

pi D .1 � si/.1 � Ns/; i D 1; : : : ;m; (6)

with the term .1 � Ns/ denoting the probability of a cyberattack on the supply chain
network and the term .1 � si/ denoting the probability of success of such an attack
on retailer i.

Each retailer i; i D 1; : : : ;m, hence, seeks to maximize his expected utility,
E.Ui/, corresponding to his expected profit given by:

E.Ui/ D .1� pi/fi.Q; s/C pi.fi.Q; s/�Di/� hi.si/ D fi.Q; s/� piDi � hi.si/: (7)

Let K
i denote the feasible set corresponding to retailer i, where K

i �
f.Qi; si/j0 � Qij � NQij;8j; 0 � si � usi and the budget constraint holds for ig
and define K �

mY

iD1
K

i.

We now recall the following definition from [15]:

Definition 1 (A Supply Chain Nash Equilibrium in Product Transactions and
Security Levels) A product transaction and security level pattern .Q�; s�/ 2 K is
said to constitute a supply chain Nash equilibrium if for each retailer iI i D 1; : : : ;m,

E.Ui.Q
�
i ; s
�
i ;
OQ�i ; Os�i // � E.Ui.Qi; si; OQ�i ; Os�i //; 8.Qi; si/ 2 K

i; (8)

where

OQ�i � .Q�1 ; : : : ;Q�i�1;Q�iC1; : : : ;Q�m/I and Os�i � .s�1 ; : : : ; s�i�1; s�iC1; : : : ; s�m/:

Hence, according to (8), a supply chain Nash equilibrium is established if no
retailer can unilaterally improve upon his expected utility (expected profit) by
choosing an alternative vector of product transactions and security level.

The following theorem was established in [15]:

Theorem 1 (Variational Inequality Formulation) Assume that, for each retailer
i; i D 1; : : : ;m, the expected profit function E.Ui.Q; s// is concave with respect
to the variables fQi1; : : : ;Qing, and si, and is continuously differentiable. Then
.Q�; s�/ 2 K is a supply chain Nash equilibrium according to Definition 1 if and
only if it satisfies the variational inequality

�
mX

iD1

nX

jD1

@E.Ui.Q�; s�//
@Qij

� �Qij � Q�ij
� �

mX

iD1

@E.Ui.Q�; s�//
@si

� �si � s�i
� � 0;

8.Q; s/ 2 K (9)
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or, equivalently, .Q�; s�/ 2 K is a supply chain Nash equilibrium product
transaction and security level pattern if and only if it satisfies the variational
inequality

mX

iD1

nX

jD1

"

ci C
@cij.Q�ij/
@Qij

� Oj.Q
�; s�/�

nX

kD1

@ Ok.Q�; s�/
@Qij

�Q�ik

#

� .Qij � Q�ij/

C
mX

iD1

"
@hi.s�i /
@si

�
 

1 �
mX

kD1

s�k
m
C 1 � s�i

m

!

Di �
nX

kD1

@ Ok.Q�; s�/
@si

� Q�ik

#

�.si � s�i / � 0; 8.Q; s/ 2 K: (10)

Equivalent Formulation of the Variational Inequality

The aim of this section is to find an alternative formulation of the variational
inequality (9) governing the Nash equilibrium for the cybersecurity supply chain
game theory model with nonlinear budget constraints by means of the Lagrange
multipliers associated with the constraints defining the feasible set K: To this end,
we remark that K can be rewritten in the following way:

K D
�

.Q; s/ 2 R
mnCn W �Qij � 0; Qij � Qij � 0; �si � 0; si � usi � 0;

hi.si/ � Bi � 0; i D 1; : : : ;m; j D 1; : : : ; n



; (11)

and that variational inequality (9) can be equivalently rewritten as a minimization
problem. Indeed, by setting:

V.Q; s/ D �
mX

iD1

nX

jD1

@E.Ui.Q�; s�//
@Qij

�
Qij �Q�ij

��
mX

iD1

@E.Ui.Q�; s�//
@si

�
si � s�i

�
;

we have:

V.Q; s/ � 0 in K and min
K

V.Q; s/ D V.Q�; s�/ D 0: (12)

Then, we can consider the following Lagrange function:

L.Q; s; �1; �2; �1; �2; �/ D �
mX

iD1

nX

jD1

@E.Ui.Q�; s�//
@Qij

�
Qij � Q�ij

�



124 P. Daniele et al.

�
mX

iD1

@E.Ui.Q�; s�//
@si

�
si � s�i

�

C
mX

iD1

nX

jD1
�1ij.�Qij/

C
mX

iD1

nX

jD1
�2ij.Qij �Qij/C

mX

iD1
�1i .�si/

C
mX

iD1
�2i .si � usi/C

mX

iD1
�i.hi.si/ � Bi/; (13)

where .Q; s/ 2 R
mnCn; �1; �2 2 R

mnC ; �1; �2 2 R
mC; � 2 R

mC: Since for the
convex set K the Slater condition is verified and .Q�; s�/ is a minimal solution to

problem (12), by virtue of well-known theorems (see [10]), there exist �
1
; �

2 2
R

mnC ; �
1; �2; � 2 R

mC such that the vector .Q�; s�; �1; �2; �1; �2; �/ is a saddle
point of the Lagrange function (13); namely,

L.Q�; s�; �1; �2; �1; �2; �/ � L.Q�; s�; �1; �2; �1; �2; �/
� L.Q; s; �1; �2; �1; �2; �/ (14)

8.Q; s/ 2 K; 8�1; �2 2 R
mnC ; 8�1; �2; � 2 R

mC and

�
1

ij.�Q�ij/ D 0; �
2

ij.Q
�
ij � Qij/ D 0; i D 1; : : : ;m; j D 1; : : : ; n;

(15)

�1i .�s�i / D 0; �2i .s
�
i � usi/ D 0; �i.hi.s

�
i /� Bi/ D 0; i D 1; : : : ;m:

From the right-hand side of (14) it follows that .Q�; s�/ 2 R
mnCn
C is a minimal

point of L.Q; s; �1; �2; �1; �2; �/ in the whole space R
mnCn and, hence, for all i D

1; : : : ;m; and j D 1; : : : ; n, we get:

@L.Q�; s�; �1; �2; �1; �2; �/
@Qij

D �@E.Ui.Q�; s�//
@Qij

� �1ij C �
2

ij D 0 (16)

@L.Q�; s�; �1; �2; �1; �2; �/
@si

D �@E.Ui.Q�; s�//
@si

��1i C �2i C �i
@hi.s�i /
@si

D 0 (17)

together with conditions (15).
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Conditions (15)–(17) represent an equivalent formulation of variational inequa-
lity (9).

It is easy to see that from (16) and (17) the variational inequality (9) follows.
Indeed, multiplying (16) by .Qij � Q�ij/ we obtain:

�@E.Ui.Q�; s�//
@Qij

.Qij � Q�ij/� �
1

ij.Qij � Q�ij/C �
2

ij.Qij � Q�ij/ D 0

and, taking into account (15), we have:

�@E.Ui.Q�; s�//
@Qij

.Qij � Q�ij/ D �
1

ijQij � �2ij.Qij � Qij/ � 0:

Analogously, multiplying (17) by .si � s�i /, we get:

�@E.Ui.Q�; s�//
@si

.si � s�i /� �1i .si � s�i /C �2i .si � s�i /C �i
@hi.s�i /
@si

.si � s�i / D 0:

From (15), we have:

�1i .�s�i / D 0; �2i s�i D �2i usi :

Moreover, if �i > 0; then hi.s�i / D Bi D max hi.si/; but hi.si/ is a nondecreasing
function; hence, it attains its maximum value at s�i D usi : Therefore, we get:

�@E.Ui.Q�; s�//
@si

.si � s�i / D �1i si � �2i .si � usi/� �i
@hi.s�i /
@si

.si � usi/ � 0

because hi.si/ is a nonnegative convex function such that hi.0/ D 0: Then hi.si/

attains the minimum value at 0. Hence,
@hi.0/

@si
� 0 and, since

@hi.si/

@si
is increasing,

it results in:

0 � @hi.0/

@si
� @hi.si/

@si
; 80 � si � usi :

The term
@E.Ui.Q�; s�//

@Qij
is called the marginal expected transaction utility, i D

1; : : : ;m; j D 1; : : : ; n; and the term
@E.Ui.Q�; s�//

@si
is called the marginal expected

cybersecurity investment utility, i D 1; : : : ;m: Our aim is to study such marginal
expected utilities by means of (15)–(17).
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Analysis of Marginal Expected Transaction Utilities

From (16) we get

�@E.Ui.Q�; s�//
@Qij

� �1ij C �
2

ij D 0; i D 1; : : : ;m; j D 1; : : : ; n:

So, if 0 < Q�ij < Qij, then we get (see also (10))

�@E.Ui.Q�; s�//
@Qij

D ci C
@cij.Q�ij/
@Qij

� Oj.Q
�; s�/ �

mX

kD1

@ Ok

@Qij
�Q�ik D 0; (18)

i D 1; : : : ;m; j D 1; : : : ; n;

whereas if �
1

ij > 0; and, hence, Q�ij D 0; and �
2

ij D 0; we get

�@E.Ui.Q�; s�//
@Qij

D ci C
@cij.Q�ij/
@Qij

� Oj.Q
�; s�/ �

mX

kD1
k¤i

@ Ok

@Qij
�Q�ik D �

1

ij; (19)

i D 1; : : : ;m; j D 1; : : : ; n;

and if �
2

ij > 0, and, hence, Q�ij D Qij; and �
1

ij D 0; we have

�@E.Ui.Q�; s�//
@Qij

D ci C
@cij.Q�ij/
@Qij

� Oj.Q
�; s�/ �

mX

kD1
k¤i

@ Ok

@Qij
�Q�ik D ��

2

ij; (20)

i D 1; : : : ;m; j D 1; : : : ; n:

Now let us analyze the meaning of equalities (18)–(20). From equality (18), which
holds when 0 < Q�ij < Qij; we see that for retailer i, who transfers the product Q�ij to
the demand market j, the marginal expected transaction utility is zero; namely, the

marginal expected transaction cost ci C
@cij.Q�ij /
@Qij

is equal to the marginal expected

transaction revenue Oj.Q
�; s�/C

mX

kD1
k¤i

@ Ok

@Qij
� Q�ik:

In equality (19), minus the marginal expected transaction utility is equal to �
1

ij;
namely, the marginal expected transaction cost is greater than the marginal expected

transaction revenue. Retailer j has a marginal loss given by �
1

ij:
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In contrast, in case (20), in which Qij D Qij and �
2

ij > 0; minus the marginal

expected transaction utility is equal to ��2ijI namely, the marginal expected revenue
is greater than the expected transaction cost. Retailer j has a marginal gain given

by �
2

ij.

In conclusion, we remark that the Lagrange variables �
1

ij; �
2

ij give a precise
evaluation of the behavior of the market with respect to the supply chain product
transactions.

Analysis of Marginal Expected Cybersecurity Investment
Utilities

From (17) we have:

�@E.Ui.Q�; s�//
@si

� �1i C �2i C �i
@hi.s�/
@si

D 0; i D 1; : : : ;m: (21)

If 0 < s�i < usi ; then �1i D �2i D 0 and we have (see also (10))

@hi.s�i /
@si

C �i
@hi.s�i /
@si

D
 

1 �
mX

kD1

s�k
m
C 1 � s�i

m

!

Di C
mX

kD1

@ Ok.Q�; s�/
@si

� Q�ik: (22)

Since 0 < s�i < usi ; h.s�i / cannot be the upper bound Bi; hence, �i is zero and (22)
becomes:

@hi.s�i /
@si

D
 

1 �
mX

kD1

s�k
m
C 1 � s�i

m

!

Di C
mX

kD1

@ Ok.Q�; s�/
@si

� Q�ik: (23)

Equality (23) shows that the marginal expected cybersecurity cost is equal
to the marginal expected cybersecurity investment revenue plus the term 

1 �
mX

kD1

s�k
m
C 1 � s�i

m

!

DiI namely, the marginal expected cybersecurity

investment revenue is equal to
@hi.s�i /
@si

�
 

1 �
mX

kD1

s�k
m
C 1 � s�i

m

!

Di: This is

reasonable because

 

1 �
mX

kD1

s�k
m
C 1 � s�i

m

!

Di is the marginal expected damage

expense.
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If �1i > 0 and, hence, s�i D 0; and �2i D 0; we get:

�@E.Ui.Q�; s�//
@si

D @hi.0/

@si
�

0

B
@1 �

mX

kD1
k¤i

s�k
m
C 1 � s�i

m

1

C
ADi �

mX

kD1

@ Ok.Q�; s�/
@si

Q�ik D �1i : (24)

In (24) minus the marginal expected cybersecurity investment utility is equal
to �1i I hence, the marginal expected cybersecurity cost is greater than the marginal
expected cybersecurity investment revenue plus the marginal damage expense. Then
the marginal expected cybersecurity investment revenue is less than the marginal
expected cybersecurity cost minus the marginal damage expense. We note that

case (24) can occur if
@hi.0/

@si
is strictly positive.

In contrast, if �2i > 0 and, hence, s�i D usi ; retailer j has a marginal gain given
by �2i ; because

� @E.Ui.Q�; usi//

@si
D �

0

B
@1 �

mX

kD1
k¤i

usk

m
C 1 � usi

m

1

C
ADi

�
mX

kD1

@ Ok.Q�; s�/
@si

� Q�ik

C @hi.usi/

@si
C �i

@hi.usi/

@si
D ��2i : (25)

We note that �i could also be positive, since, with s�i D usi ; hi.si/ could reach
the upper bound Bi: In (25) minus the marginal expected cybersecurity investment
utility is equal to ��2i . Hence, the marginal expected cybersecurity cost is less than
the marginal expected cybersecurity investment revenue plus the marginal damage
expense. Then the marginal expected cybersecurity investment revenue is greater
than the marginal expected cybersecurity cost minus the marginal damage expense.

From (25) we see the importance of the Lagrange variables �1i ; �
2
i which

describe the effects of the marginal expected cybersecurity investment utilities.
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Remarks on the Stability of the Marginal Expected
Cybersecurity Investment Utilities

Let us consider the three cases related to the marginal expected cybersecurity
investment utilities studied in section “Analysis of Marginal Expected Cybersecurity
Investment Utilities”. Each of these cases holds for certain values of the damage Di:

Let us consider the value Di for which the first case (23) occurs. We see that in this
case there is a unique value of Di for which (23) holds and if we vary such a value,
also the value s�i in (23) varies. Now let us consider the value Di for which (24)
holds and let us call D�i the value of Di for which we have

�@E.Ui.Q�; s�//
@si

D @hi.0/

@si
�

0

B
@1 �

mX

kD1
k¤i

s�k
m
C 1 � s�i

m

1

C
AD�i �

mX

kD1

@ Ok.Q�; s�/
@si

Q�ik D 0:

Then for 0 < Di < D�i the solution .Q�; s�/ to variational inequality (9) remains
unchanged because (24) still holds for these new values of Di and the marginal
expected cybersecurity investment utility remains negative, but it is increasing with
respect to Di:Analogously, if we consider the value Di for which (25) holds and call
D�i the value such that

�@E.Ui.Q�; usi//

@si
D �

0

B
@1 �

mX

kD1
k¤i

usk

m
C 1 � usi

m

1

C
AD�i

�
mX

kD1

@ Ok.Q�; s�/
@si

� Q�ik

C @hi.usi/

@si
C �i

@hi.usi/

@si
D 0;

we see that for Di > D�i the solution .Q�; s�/ to (9) remains unchanged because (25)
still holds and the marginal expected cybersecurity investment utility remains
positive and is increasing with respect to Di:

A Numerical Example

The first example consists of two retailers and two demand markets as depicted
in Fig. 2.
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1

1

Retailers

Demand Markets

2

2

Fig. 2 Network topology for Example 1

It is inspired by related examples as in [15]. So, the cost function data are:

c1 D 5; c2 D 10;

c11.Q11/ D 0:5Q2
11 C Q11; c12.Q12/ D 0:25Q2

12 C Q12;

c21.Q21/ D 0:5Q2
21 C Q21; c22.Q22/ D 0:25Q2

22 C Q22:

The demand price functions are:

1.d; s/ D �d1 C 0:1 s1 C s2
2
C 100; 2.d; s/ D �0:5d2 C 0:2 s1 C s2

2
C 200:

The damage parameters are: D1 D 200 and D2 D 210with the investment functions
taking the form:

h1.s1/ D 1p
1 � s1

� 1; h2.s2/ D 1p
1 � s2

� 1:

The damage parameters are in millions of $US, the expected profits (and revenues)
and the costs are also in millions of $US. The prices are in thousands of dollars
and the product transactions are in thousands. The budgets for the two retailers are
identical with B1 D B2 D 2:5 (in millions of $US). In this case the bounds on the
security levels are us1 D us2 D 0:91 and the capacities Qij are set to 100 for all i; j:

For i D 1; 2 we obtain:

�@E.Ui.Q; s//

@Qi1
D 2Qi1 C Q11 C Q21 � 0:1 s1 C s2

2
C ci � 99;

�@E.Ui.Q; s//

@Qi2
D Qi2 C 0:5Q12 C 0:5Q22 � 0:2 s1 C s2

2
C ci � 199;
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�@E.Ui.Q; s//

@si
D � 1

20
Qi1 � 1

10
Qi2 �

�

1 � s1 C s2
2
C 1 � si

2

�

Di

C 1

2
p
.1 � si/3

:

Now, we want to find the equilibrium solution, taking into account the different
values assumed by �1; �2; �1; �2 and �; and searching, among them, the feasible
ones. After some algebraic calculations, we realize that for i D 1; 2 and j D 1; 2 we

get the solution when �
1

ij D �
2

ij D �1i D �i D 0; and �2i > 0: Hence, s�1 D s�2 D
0:91 (which is the maximum value). In this case, the marginal expected transaction
utilities are zero, whereas the marginal expected cybersecurity investment utilities
are positive; namely, there is a marginal gain, given by �2i ; i D 1; 2: Solving the
system:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

@L.Q�; s�; �1; �2; �1; �2; �/
@Qi1

D 0

@L.Q�; s�; �1; �2; �1; �2; �/
@Qi2

D 0

@L.Q�; s�; �1; �2; �1; �2; �/
@si

D 0

i D 1; 2;

namely:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

3Q�11 C Q�21 � 0:1
s�1 C s�2
2

C c1 � 99 � �111 C �
2

11 D 0

Q�11 C 3Q�21 � 0:1
s�1 C s�2
2

C c2 � 99 � �121 C �
2

21 D 0

1:5Q�12 C 0:5Q�22 � 0:2
s�1 C s�2
2

C c1 � 199� �112 C �
2

12 D 0
0:5Q�12 C 1:5Q�22 � 0:2

s�1 C s�2
2

C c2 � 199� �122 C �
2

22 D 0

� 1
20

Q�11 �
1

10
Q�12 �

3 � 2s�1 � s�2
2

D1 C 1C �1
2
p
.1 � s�1 /3

� �11 C �21 D 0

� 1
20

Q�21 �
1

10
Q�22 �

3 � s�1 � 2s�2
2

D2 C 1C �2
2
p
.1 � s�2 /3

� �12 C �22 D 0;
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and therefore, assuming for i D 1; 2; j D 1; 2; �
1

ij D �
2

ij D �1i D �i D 0; and

�2i > 0; hence s�1 D s�2 D 0:91, and D1 D 200 and D2 D 210; we have:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

3Q�11 C Q�21 D 94:091

Q�11 C 3Q�21 D 89:091

1:5Q�12 C 0:5Q�22 D 195:82

0:5Q�12 C 1:5Q�22 D 190:82

�21 D 1

20
Q�11 C

1

10
Q�12 C

3 � 3 � 0:91
2

200� 1

2
p
.1 � 0:91/3

�22 D 1

20
Q�21 C

1

10
Q�12 C

3 � 3 � 0:91
2

210� 1

2
p
.1 � 0:91/3 :

The solution to the previous system is:

Q�11 D 24:148; Q�21 D 21:586; Q�12 D 99:16; Q�22 D 94:16;
�21 D 19:6055; �22 D 20:3273;

where �21 and �22 are the positive marginal expected gains.
For this example the stability results of Sect. hold. We are in the third case and if

we double the value of the damage for the first retailer and assume now D1 D 400;

then the new value of the Lagrange multiplier is �21 D 46:6055:

Conclusions

Cyberattacks are negatively globally impacting numerous sectors of economies
as well as governments and even citizens, and resulting in financial damages,
disruptions, loss of services, etc. Hence, organizations, including companies from
financial service firms to retailers, as well as utilities, are investing in cybersecurity.
In this paper, we revisit a recently introduced cybersecurity investment supply chain
game theory model described in [15] consisting of retailers and consumers at
demand markets in which nonlinear budget constraints of the retailers associated
with cybersecurity investments are explicitly included. The retailers compete in both
product transactions and cybersecurity levels seeking to maximize their expected
utilities, that is, expected profits, which capture both the expected revenues and
the expected damages in the case of a cyberattack, which can differ from retailer
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to retailer. The consumers display their preferences through the demand price
functions which are functions of the market demands for the product as well as the
average security level of the network, which depends on all the retailers’ investment
levels. The governing equilibrium concept in this model of noncooperative behavior
is that of Nash equilibrium.

In this paper, we provide a novel alternative formulation of the variational
inequality formulation derived in [15]. The alternative formulation enables a deep
analysis of the Lagrange multipliers associated with both the bounds on the product
transactions between retailers and demand markets and the security levels of the
retailers, with accompanying insights into the economic market forces. Specifically,
we provide an analysis of both the marginal expected transaction utilities and the
marginal expected cybersecurity investment utilities of the retailers. We also obtain
stability results for the marginal expected cybersecurity investment utilities with
respect to changes in the values of the retailers’ financial damages.

The novel theoretical framework is then further illustrated through a numerical
example for which the equilibrium product transaction and cybersecurity investment
patterns are computed, along with the Lagrange multipliers. In addition, stability
results are also given for the case where the first retailer’s damage due to a
cyberattack doubles.

The results in this paper add to the growing literature of operations research and
game theory techniques for cybersecurity modeling and analysis.
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Ellipsoid Targeting with Overlap

Nicholas J. Daras

Abstract First, we investigate the possibility of destruction of a passive point
target. Subsequently, we study the problem of determination of best targeting points
in an area within which stationary or mobile targets are distributed uniformly or
normally. Partial results are given in the case in which the number of targeting
points is less than seven or four, respectively. Thereafter, we study the case where
there is no information on the enemy distribution. Then, the targeting should be
organized in such a way that the surface defined by the kill radii of the missiles fully
covers each point within a desired region of space-time. The problem is equivalent
to the problem of packing ellipsoids of different sizes and shapes into an ellipsoidal
container in R

4 so as to minimize a measure of overlap between ellipsoids is
considered.

Keywords Function of damage • Distribution of targets • Ellipsoid targeting with
overlap • Sphere packing • Ellipsoid packing • Overlap measure

AMS subject classifications 2010: 65K10, 90C22, 65C50

The Probability of Destruction of a Point Target

Let P be the probability that a single shot destroys the point target. Then the
probability that the target is destroyed by at least one shot of n independently aimed
shots is given by P .n shots/D1�.1�P/n. Thus, to determine P .n shots/ it suffices
to know P.

Assuming that the point target is located at the center .0; 0/ of the plan, and
denoting by d .x; y/ the probability density function of destruction of the target, if
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the explosion point of the offensive weapon is the point .x; y/ and by p .x; y/ the
probability density function in which the explosion point of the offensive weapon
will be the point .x; y/, it is immediately verified that

P D
Z 1

�1

Z 1

�1
d .x; y/ p .x; y/ dx dy;

Generally, the function of damage d .x; y/ is circularly symmetric, i.e. the
probability of destruction is a function of the variable

rDr .x; y/D�x2Cy2�1=2

If, in particular,

d .x; y/D
�

1; whenever r � R
0; whenever r > R

(d .x; y/ is the cookie-cutter damage function), then

P D
“

p
x2Cy2�R

p .x; y/ dx dy:

In what follows

1. We will be interested in the problem of determining the probability P depending
on the various choices of the probability density of the explosion

p .x; y/ :

2. Generally, it is assumed that the explosion density is described as a normal
bivariate probability density function:

p .x; y/D 1
2� � x� y

exp

 

� .x�x0/
2

2 � 2
x
� .y�y0/

2

2 � 2
y

!

:

We must distinguish 4 cases ( [6, p. 17–27] and [15, p.34–42]):

1st Case The coordinate variations are equal and the expected point of explosion is
the zero point:

x0Dy0D0I � 2
xD� 2

yD� 2:

Then it is easily verified that

PDP
�

R
�

�

D
Z R

0

r
� 2

exp

�

� r2

2� 2

�

dr D1�
�

� R2

2� 2

�

:
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2nd Case The coordinate variations are equal and the coordinates of the expected
point of the explosion are not equal to zero:

x0 ¤ 0; y0 ¤ 0I � 2
xD� 2

yD� 2:

Then

PDP
�

R
�
;

r0

�

�

D 1
� 2

exp

�

� r2
0

2� 2

� Z R

0
r exp

�

� r2

2� 2

�

I0

 r0

� 2
r
�

dr

where I0 .z/DP1�D0
1

.2��Š/2
z� and r0D

�
x2

0Cy2
0

�1=2
.

Alternatively, the following approximate formula is available [1, page 940]

PDP
�

R
�
;

r0

�

�

Š

8
ˆ̂
<̂

ˆ̂
:̂

2R2

4CR2 exp

� r2

0
4CR2

�
; if R � 1

1
2


1Cerf


x1p

2

��
; if 1 < R � 5

1
2


1Cerf


x2p

2

��
; if 5 < R

where

x1D
3
p

R2=.2Cr0/�1C .2=9/
�
2C2r2

0

�
=
�
2Cr2

0

�2

q

.2=9/
�
2C2r2

0

�
=
�
2Cr2

0

�2
;

x2DR�ˇˇr2
0�1

ˇ
ˇ1=2

;

erf .z/D 2p
�

Z z

0
e�t2

dt:

3rd Case The coordinate variations are not equal and the coordinates of the
expected point of the explosion are equal to zero:

x0Dy0D0I � 2
x ¤ � 2

y:

Then

PDP
�

R
� max

; c
�

D1
c

Z R=� 2
max

0
r exp

�

�r2 1Cc2

4c2

�

I0

�

r2 1�c2

4c2

�

dr;

where I0 .z/DP1�D0
1

.2��Š/2
z� , � maxW Dmax

˚
� x; � y

	
and cW D minf� 2

x;�
2
yg

maxf� 2
x;�

2
yg .

Alternatively, the following approximate formula is available [10].

PDP
�

R
� max

; c
�

Š 3p
2

3
q

R2
�
� 2

xC� 2
y

��1C2
�
� 2

xC� 4
y

�
=9
�
� 2

xC� 2
y

�2

q
� 2

xC� 4
y=
�
� 2

xC� 2
y

� :
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4th Case The coordinate variations are not equal and the coordinates of the
expected point of the detonation are not equal to zero:

x0 ¤ 0; y0 ¤ 0I � 2
x ¤ � 2

y:

Then

PDP .R; c/D 1
2�c

exp

 

�1
2

(
x2

0

� 2
x
C y2

0

� 2
y

)! 1X

mD0

BmPm

�

R2 1Cc2

4c2

�

:

where Pm .�/DP1�DmC1
e����

�Š
and cW D minf� 2

x;�
2
yg

maxf� 2
x;�

2
yg . Here we have used the notation

BmW D1
2

mŠ
�

4c2

1Cc2

�mC1 mX

iD0

Dm;i

with

Dm;iW D 1
iŠ

�
1�c2

4c2

�i m�iX

jD0


x2

0
� 2

x

�j
�

y2
0

c2�
2
x

�m�i�j

.2j/ Š .2m�2i�2j/ Š
:

Alternatively, a third approximation formula is available [10]:

PDP .R; c/ Š
3
q

R2
�
� 2

xC� 2
y

�
t� �1� ˚v=9t2

	�

p
v=9t2

where tD1C x2
0Cy2

0
� 2

xC� 2
y

and vD2 � 4
xC� 4

yC2� 2
xx2

0C2� 2
yy2

0

� 2
xC� 2

y
.

Targeting Into Area in Which the Targets are Circularly
Uniformly Distributed

Having regard to the mathematical formulas of the previous section, let us now
suppose that after many observations, it was found by using statistical methods that
the opponent targets (moving or stationary) are circularly uniformly distributed into
a two-dimensional region. The 1st problem which we will discuss is to determine
the optimal target points, within the opponent region, against which should aim n
missiles.

The case nD2 is very simple.
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The case
n=3

The case
n=4

R

R R
R (1 +      )( )

K = 2R
3

2

÷

K = 2R÷

1 +
3÷

2÷

Fig. 1 Graphical representation of the cases n D 3 and nD 4

Fig. 2 Graphical representation of the radius of the larger circle of targets which is completely
covered five weapons

Proposition 1 ([7]) The largest circle within which all targets can be covered
completely from two weapons has a radius equal to KDR.

It follows that the use of two arms with a view to cover an entire disk shows no
advantage compared to using only one weapon.

The cases nD3 and nD4 are a bit more complicated (Figs. 1 and 2).

Proposition 2 ([7]) Three weapons should be targeted at middle points of the sides
of an equilateral triangle entered in a circle of radius KD 2Rp

3
.

Four arms should be targeted at middle points of the sides of a rectangle entered
in a circle of radius KDp2R.
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Proposition 3 ([14]) The radius of the larger circle of targets which is completely
covered by five weapons is K D 1:6409 R.

The next result gives the smaller radii containing targets and covering weapons.

Proposition 4 ([7]) The smaller disks containing targets and covering the kill radii
of three, four, five, six or seven weapons have respective radii equal to

R
�

1C 2p
3

�

;R


1Cp2
�
;R


1Csec 54
ı
�
;3Ror 3R:

Remark 1 There are two crucial open questions. First, what happens when the
weapons used are more than seven? And, secondly, if the dimension of the region,
into which the observations are made, is equal to three (: observations in the three-
dimensional space) or four (: observations in the space-time), what are the points
(in the three-dimensional space or in the space-time) on which you need to target n
weapons?

Targeting into Area in Which the Targets are Circularly
Normally Distributed

By analogy with section, let us suppose that after many observations, it was found
by using statistical methods that the opponent targets (moving or stationary) are
circularly normally distributed into a two-dimensional region. The 2nd problem
which we will now discuss is the following. Having regard to the mathematical
formulas of the first section, determine optimal target points, within the opponent
region, against which should aim n missiles.

Proposition 5 ([6, 7]) Suppose the weapons explode randomly according to a
uniform distribution and the target is distributed according to a circularly normal
probability density function, with variance � 2

T, into a disk having a radius equal to
D (>R).

1. The rate of overall target value that is expected to be destroyed by n weapons is
given by:

En Œf� D
�

1�exp

�

� D2

2� 2
T

���

1�exp

�

�n R2

D2

��

:

2. The value Dopt of the radius D that maximizes En Œf� is given by the formula:

�
Dopt

� T

�2

Dp2n
�

R
� T

�

.) En Œf�D
�

1�exp

�

�
r

n
2

R
� T

��

/:
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The case in which the weapons explode with accurate targeting is given below.

Proposition 6 Suppose the weapons explode with accurate targeting and the
target is distributed according to a circularly normal probability density function,
with variance � 2

T, into a disk having a radius equal to D (>R).

i Marsaglia [13] If the kill radius of each of the two weapons is equal to RDR0� T,
then the two weapons should explode on opposite sides from one another around
the center of the target, at a distance dDd0� T from the center, wherein the
constants R0 and d0 must satisfy the equation

Z 1

�d0=R0

y e�d0R0y

p
1�y2

dyD0:

ii Gilliland [9]

1. If .R=� T/ � 1, then two weapons must explode in the two opposing sides
symmetric relative to the center .0; 0/, the point of explosion of each weapon
at distance R from the center.

2. If .R=� T/ � 2=


1Cp3
�

, then three weapons should explode at the vertices

of an equilateral triangle with sides equal to 2R and center in .0; 0/.
3. If .R=� T/ � 1=

p
3, then four weapons should explode on the vertices of a

rhombus having sides equal to 2R, small diagonal equal to 2R, and center in
.0; 0/.

Remark 2 There are two crucial open questions. First, what happens when the
weapons are not accurate when targeting? And, secondly, if the dimension of the
region, into which the observations are made, is equal to three (: observations in
the three-dimensional space) or four (: observations in the space-time), what are the
points (in the three-dimensional space or in the space-time) on which you need to
target n weapons?

Ellipsoid Targeting with Overlap: Statement of the Problem

Question If, after a shot, there is no successful intercept enemy and if the enemy
who remains invulnerable changes positions constantly, how should we react?

From a practical point of view, it seems unprofitable to attempt to make
new observations to derive new stochastic conclusions on how is the enemy
allocation, and then try new shots, aiming at selected points according to the above
specifications.

Immediate Reaction Make simultaneous shots of many weapons that will fully
cover the whole area and throughout a period of time. It should be identified
targeting points into the space of 4 or more generally of n (> 4) dimensions,
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so that the balls with centers at the targeting points and with appropriate radii
depending on the (same or different) kill radii of the used arms, fully cover the
entire enemy area, during a selected period.

From a general mathematical point of view, it should be sought a minimum
number of overlapping ellipsoids into the space of four or more dimensions,
covering the entire enemy space during a given entire period. This is the problem
of packing ellipsoids of different sizes and shapes into an ellipsoidal container so
as to minimize a measure of overlap between ellipsoids considered [2, 8, 12].

We shall use some notation and preliminaries.

1. We denote by @f the Clarke subdifferential [5] of the function f WX ! R,
where X is a finite-dimensional vector space over the real numbers endowed
with inner product h ; i. (The usual Euclidean space R

n with inner product
hx; yi WD xTy and the space of symmetric matrices SRn�n with inner product
hX;Yi WD trace .XY/ are two examples of particular interest in this presenta-
tion.)

2. In defining this quantity, we assume Lipschitz continuity of f at x, and define the
Clarke directional derivative as follows [3]:

f0 .xIh/ WD limsup y�!x and t&0
f .yCth/�f .y/

t

3. The Clarke subdifferential is then

@f .x/ WD ˚v 2X W h v; hi � f0 .xIh/ for all h 2X
	
: (1)

If f is convex, the Clarke subdifferential coincides with the usual subdifferential
from convex analysis:

@f .x/ WD fv 2X Wf .y/ � f .x/Ch v; y�xi for all y 2 dom fg :

Definition 1 An ellipsoid E � R
n (n � 2) can be specified in terms of its center

c 2 R
n and a symmetric positive definite eccentricity matrix S:

ED
n
x 2 R

nW.x�c/TS�2 .x�c/ � 1
o
DfcCSuWkuk2 � 1g (2)

It is easy that the ellipsoid E can equivalently be written as

ED
n
x 2 R

nW.x�c/T˙�1 .x�c/ � 1
o
: (3)

where˙ WD S2 is also a symmetric positive definite matrix.

Remark 3 Note that the eigenvalues of S are the lengths r1, r2,. . . , rn of the
principal semi-axes of E . Further, the eigenvalues of ˙ are r2

1,. . . , r2
n and the

matrices S and˙ have the form
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SD Q

0

B
@

r1 0
: : :

0 rn

1

C
AQT and ˙ D Q

0

B
@

r2
1 0
: : :

0 r2
n

1

C
AQT

for some orthogonal matrix Q, which determines the orientation of the ellipsoid.

In view of the above, we can proceed to the rigorous mathematical restatement
of the problem we have set.

Formulation of the Problem Given the semi-axis lengths ri;1, . . . , ri;n for a
collection of N ellipsoids

Ei; i D 1; 2; : : :;N;

we want to specify centers ci and matrices Si for these ellipsoids, such that

(a) Ei � E , for some fixed ellipsoidal container E ;
(b) The eigenvalues of Si are ri;1, . . . , ri;n, for i D 1; 2; : : :;N;
(c) Some measure of volumes of the pairwise overlaps

Ei

\
Ej; i ;jD 1; 2; : : :;N; i ¤ j;

is minimized.

A Partial Case: The Sphere Packing Problem

We will first deal with the simplest case in which all enclosed shapes are spheres of
arbitrary dimension [11, 16] and present a successive approximation algorithm that
is shown to accumulate or converge to a stationary point of the formulation. To do
so, we may proceed as in [17].

When the inscribed objects are spheres, the variables in the problem are the
centers ci 2 R

n, i D 1; 2; : : :;N, which we aggregate as a matrix:

c WD .c1; c2; : : :; cN/: (4)

Assuming that the corresponding radii ri, i D 1; 2; : : :;N are given, we express the
containment condition for each sphere as follows:

Ei � E , ci 2 Ki (5)

where Ki is a closed, bounded, convex set with nonempty interior. Obviously, if E
is a sphere of radius R centered at 0, then KiDfciW kcik � R�rig. It is reasonable
to consider as a natural and simple measure for the overlap between two spheres Ei
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and Ej is the diameter of the largest sphere inscribed into the intersection, which we
denote by an auxiliary variable:

�i;j WD max
˚
0;
�
riCrj

����ci�cj
�
�

2

	
; � WD �� i;j

�
1�i<j�N

: (6)

With this notation, our minimum-overlap problem can thus be formulated as
follows:

minc;� H .�/ (7a)

subject to

�
riCrj

����ci�cj
�
�

2 � �i;j for 1 � i < j � N (7b)

0 � � (7c)

ci 2 KiI for i D 1; 2; : : :;N; (7d)

where (7c) denotes the entry wise condition �i;j � 0, 1 � i < j � N, and the

objective HWRn.n�1/=2
C ! RC is chosen to be a convex and continuous function

satisfying the following norm properties.

(a) H.0/ D 0,
(b) H .�/>0 whenever � ¤ 0;
(c) 0 �e� � � ) H

�
e�
� � H .�/.

Linearization of (7) around iterateec restates the problem as follows:

P.ec/ WD minec;�H
�
e�
�

(8a)

subject to

�
riCrj

��zT
i;j

�
ci�cj

� �e�i;j for 1 � i<j � N (8b)

0 �e� (8c)

ci 2 KiI for i D 1; 2; : : :;N (8d)

where

zi;j WD
8
<

:

.eci�ecj/
T

keci�ecjk ; wheneci ¤ecj

0; otherwise
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Algorithm 1 Packing Spheres by Minimizing Overlap
Given ri, iD 1; 2; : : :;N and Ki closed, convex, bounded with nonempty interior;
Choose c.0/ 2 K1�K2� � � ��KN;
for kD 0; 1; 2; : : : do

Solve P
�
c.k/

�
defined by (8) to obtain .c.kC1/I �.kC1//;

if H

�.kC1/

�
DH


�.k/

�
then

stop and return c.k/;
end if

Set �
.kC1/
i;j Dmax

n
0;
�
riCrj

��
�
�
�c.kC1/

i �c.kC1/
j

�
�
�

2

o
for 1 � i < j � N;

end for

Fig. 3 Solutions obtained by Algorithm 1 for packing circles of radius 0:5 into a circle of radius 1,
showing final overlap measures for each. (a) Global solution: o D 0:4122147478. (b) Local
solution o D 0:5. (c) Local solution o D 0:5

This problem is convex, with affine constraints except for the inclusion (8d),
which is satisfied strictly since each set Ki is closed, bounded and convex, with
nonempty interior. To solve (8), we apply the next iterative algorithm, given by
Uhler and Wright in [17]).

The convergence behavior of Algorithm 1 is described in the following.

Theorem 1 ([17]) Suppose that the sets Ki in (7) are closed, bounded, and convex,
with a nonempty interior, and that Assumption 1 holds. Then Algorithm 1 either
terminates at a stationary point for (7), or else generates an infinite sequence�
c.k/

�
kD0;1;2;::: for which all accumulation points bc are either stationary points

for (7), or else havebciDbcj for some pair .i; j/ with 1 D i<j D N.

To be more attractive, let us give three examples cited in [17].

Example 1 (Five Circles) Consider the problem of packing five circles of radius
rjD0:5 into an enclosing circle of radius RD1. A few iterations of Algorithm 1 with
H .�/Dk�k1 and random starting points reveal a global solution in Fig. 3a and a
family of local solutions in Fig. 3b and c.
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Fig. 4 Circle packing in a circular enclosure. A nearly hexagonal arrangement is seen in the
interior

Fig. 5 Local minima obtained by Algorithm 1 for packing circles into a square, showing final
overlap measures for each. (a) o D 0:1192514295. (b) oD 0:1188906843. (c) o D 0:1181440939.
(d) o D 0:1179656050

Observe that, in the local solutions, one of the packed circles is positioned in the
center of the enclosing circle and the remaining four circles are arranged around
the boundary, in such a way that the maximum overlap between any pair of circles
is 0:5.

Example 2 (Uniform Circles in R
2) Application of Algorithm 1 with ND150

circles, each of area �, and a circular container of size 150
p

12, results in a total
circle area-to-container area ratio which is equal to the optimal packing density (see
Fig. 4). The hexagonal arrangement of the circles is clearly visible in the interior of
the container.

Running tests in which 100 circles are packed into a square container and starting
points are generated by arranging centers in a 10�10 square lattice are shown
in Fig. 5, where, for clarity, only the centers appear, omitting the circles and a
random perturbation to each center may be added. When no perturbations are added
to the starting configuration, the algorithm does not move from the initial square
configuration shown in Fig. 5a. When random initial enough large perturbations are
applied, many different local minima are obtained (Fig. 5b–d).

Note that all of these have a maximum overlap less than the square configuration,
and that hexagonal structure is recognizable in large parts of the domain, with square
structure and disorder in intermediate regions.
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Fig. 6 Neighbor counts for packing of 100 three-dimensional spheres in a spherical container.
(a) Distribution of neighbor counts. (b) Distribution of neighbor counts after removing spheres at
the periphery

Fig. 7 Graph representing the sphere arrangement for one central sphere and neighboring spheres
up to a distance of 2. Vertices correspond to spheres and edges represent overlap or “touching”.
(a) Neighbor graph for distance 1. (b) Neighbor graph for distance 2

Example 3 (Uniform Spheres in R
3) Algorithm 1 converges to a solution in a

finite minimum-overlap arrangement with 200 spheres enclosed in a larger sphere.
Choosing the small spheres to have volume � and the containing sphere to have
volume 200

p
18, the corresponding density of �=

p
18 is optimal in infinite space.

At the solution obtained by Algorithm 1, we count the number of spheres that touch
or intersect each sphere. This statistic provides an indication of the type of packing
attained. The histogram for the number of neighboring spheres is shown in Fig. 6a.
A more instructive diagram is obtained by removing from consideration those
spheres that touch the enclosing sphere. After doing so, we obtain the histogram
in Fig. 6b.

For further evidence, C. Uhler and S. J. Wright construct a graph where the
vertices correspond to spheres and the edges represent overlap or “touching” with
neighboring spheres [17]. They chose one centrally located sphere and graphed its
contacts with neighbors (Fig. 7a) and neighbors-of-neighbors (Fig. 7b).
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The General Case: The Ellipsoid Packing Problem

Let us now turn to a discussion of a bi-level optimization procedure for packing
ellipsoids into an ellipsoidal container in a way that minimizes the maximum
overlap of any pair of ellipsoids. It is not as obvious how to measure the overlap
between two ellipsoids as between two spheres, since it depends on the orientation
of the ellipsoids as well as the location of their centers.

In [17] C. Uhler and S. J. Wright proposed to measure the overlap by the sum of
principal semi-axes of the largest ellipsoid that can be inscribed in the intersection
of the two ellipsoids. To do so, they studied an alternative problem to the problem
of finding the ellipsoid of largest volume [18] inscribed in an intersection of
ellipsoids, first considered by Boyd and Vandenberghe in Sect. 8.4.2 of their book
[4]. In fact, defining the ellipsoid EiDfciCSiuWkuk2 � 1g and parameterizing the
inscribed ellipsoid similarly by Ei;jD

˚
ci;jCSi;juWkuk2 � 1

	
, C. Uhler and S. J.

Wright formulated the problem of measuring the maximal overlap as follows:

bO
�
ci; cj; ˙i; ˙j

� WD max
Si;j�0; ci;j;�

.1/
i;j ;�

.2/
i;j

trace
�
Si;j
�

subject to

0

B
@

��
.1/
i;j I O Si;j

O �
.1/
i;j �1

�
ci;j�ci

�T

Si;j ci;j�ci �˙ i

1

C
A � 0 (9a)

subject to

0

B
@

��
.2/
i;j I O Si;j

O �
.1/
i;j �1

�
ci;j�cj

�T

Si;j ci;j�cj �˙ j

1

C
A � 0 (9b)

where˙iDS2
i and ˙jDS2

j . The Lagrangian can be written as

L


ci;j;Si;j;�
.1/
i;j ;�

.2/
i;j ;Ti;j;M

.1/
i;j ;M

.2/
i;j

�
WD

˝
I;Si;j

˛C ˝Ti;j;Si;j
˛�
*

M.1/
i;j ;

0

B
@

��
.1/
i;j I O Si;j

O �
.1/
i;j �1

�
ci;j�ci

�T

Si;j ci;j�ci �˙ i

1

C
A

+

�
*

M.2/
i;j ;

0

B
@

��
.2/
i;j I O Si;j

O �
.2/
i;j �1

�
ci;j�cj

�T

Si;j ci;j�cj �˙ j

1

C
A

+

;
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with the dual problem being derived from

min
M.1/

i;j �0;M.2/
i;j �0;Ti;j�0

�

max
Si;j�0;ci;j;�

.1/
i;j ;�

.2/
i;j
L


ci;j;Si;j;�
.1/
i;j ;�

.2/
i;j ;Ti;j;M

.1/
i;j ;M

.2/
i;j

�


:

Introducing the following notation for M.1/
i;j and M.2/

i;j :

M.1/
i;j D

0

B
B
@

R.1/
i;j r.1/i;j P.1/i;j

r.1/i;j

�T
p.1/i;j


p.1/i;j

�T

P.1/i;j q.1/i;j Q.1/
i;j

1

C
C
A and M.2/

i;j D

0

B
B
@

R.2/
i;j r.2/i;j P.2/i;j

r.2/i;j

�T
p.2/i;j


p.2/i;j

�T

P.2/i;j q.2/i;j Q.2/
i;j

1

C
C
A (10)

the dual is written explicitly as follows:

bO
�
ci; cj; ˙i; ˙j

� WD min
M.1/

i;j �0;M.2/
i;j �0;Ti;j�0

p.1/i;j Cp.2/i;j C2


q.1/i;j

�T
ci

C2


q.2/i;j

�T
cjC

D
Q.1/

i;j ; ˙i

E
C
D
Q.2/

i;j ; ˙j

E (11a)

subject to

0DICTi;j�2P.1/i;j �2P.2/i;j (11b)

0Dtrace


R.1/
i;j

�
�p.1/i;j (11c)

0Dtrace


R.2/
i;j

�
�p.2/i;j (11d)

0Dq.1/i;j Cq.2/i;j (11e)

We have assumed without loss of generality that P.1/i;j and P.2/i;j are in SRn�n;
this follows from Si;j 2 SRn�n. A strong duality relationship holds between
problems (9) and (11) because Slater’s constraint qualification is satisfied for the
second problem—it has a strictly feasible point. We construct this point by setting
Ti;jDI, and defining

M.1/
i;j DM.2/

i;j D
0

@
I O

� 1
2

�
I

0 n 0
� 1

2

�
I O I

1

A

It is easy to verify that these choices satisfy the linear constraints in (11), along with
the (strict) interiority conditions M.1/

i;j 
 0, M.2/
i;j 
 0, Ti;j 
 0.
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We now turn to the problem of choosing ellipsoid positions and orientations.
Using the notation defined in (9) and (11), C. Uhler and S. J. Wright formulated the
min-max overlap problem as the following bi-level optimization problem:

min�;.ci; ;Si ;˙i/;iD1;2;:::;N � (12a)

subject to

� � bO �
ci; cj; ˙i; ˙j

�
; 1 � i < j � N (12b)

Ei � E ; i D 1; 2; : : :;N (12c)

˙iDS2
i ; iD 1; 2; : : :;N (12d)

semi � axes of Ei have lengths ri;1; : : : ; ri;n; iD 1; 2; : : :;N (12e)

This problem is nonconvex.Finally, defining the containing ellipsoid to be

ED
n
x 2 R

nW.x�c/T˙�1 .x�c/ � 1
o
;

condition (12c) can be formulated as follows:
0

@
��iI O Si

O �i�1 .ci�c/T

Si ci�c �˙

1

A � 0 (13)

Given all these considerations, the relaxed version of (12) to be addressed in this
section is expressed as follows:

min�;.ci; ;Si ;˙i/;iD1;2;:::;N � (14a)

subject to

� � bO �
ci; cj; ˙i; ˙j

�
; 1 � i < j � N (14b)

0

@
��iI O Si

O �i�1 .ci�c/T

Si ci�c �˙

1

A � 0;i D 1; 2; : : :;N (14c)

�
˙i Si

Si I

�

� 0;i D 1; 2; : : :;N (14d)

trace .Si/Dri;1C: : :Cri;n; i D 1; 2; : : :;N (14e)



Ellipsoid Targeting with Overlap 151

Note that when the ellipsoid Ei is actually a circle, that is ri;1D: : :Dri;n, we can
fix SiDri;1I and˙iDr2

i I in (12), and eliminate these variables. Hence we can assume
without loss of generality that ri;1>ri;n.

Properties of the Overlap Measure of an Ellipsoid Pair

To simplify the notation, we note that each dual overlap problem (10) has the general
form

P .l;C/ W t�l .C/ WD minMl hC; Mli (15a)

subject to

hAl;h; MliDbl;h;hD1; 2; : : :;pl;Ml � 0 (15b)

Here C captures the parameters that describe all the ellipsoids and Ml is the dual
variable for the overlap problem (11). We construct C as a block-diagonal matrix
with N C 1 diagonal blocks. First, there are N diagonal blocks of the form

0

@
O O O
O 1 cT

i

O ci ˙i

1

A ; i D 1; 2; : : :;N (16)

where each such block has dimension 7�7 and has the same partitioning scheme as
the matrices M.1/

i;j and M.2/
i;j in (10). The remaining diagonal block in C is simply a

n�n zero matrix that is used as the coefficient of the variable Ti;j in (11), for each
pair .i; j/.

The variable Ml in (15) has the same size and the same and block-diagonal
structure as C, where M.1/

i;j occupies the ith block-diagonal location, M.2/
i;j occupies

the jth block-diagonal location, and Ti;j occupies the .NC1/st block-diagonal
location (which is the n�n submatrix that appears in the lower right corner of
Ml). In the constraints (15b), the matrices Al;h are chosen to capture the constraints
in (11) (all of which are equalities).

Structural constraints that enforce zeros in the locations of Ml not occupied by
the M.1/

i;j , M.2/
i;j , and Ti;j may be added to the formulation, but they are not necessary.

The primal form (8) of the overlap problem (15) has the form

max
�lD

�

�
.1/
l ;:::;�

.pl/
l

�bT
l�l (17a)

subject to

C�
plX

hD1

�
.h/
l Al;h � 0 (17b)

The program (11) and thus (15) always has a strictly feasible point. It follows that
strong duality holds, that is, the optimal values of (15) and (17) are identical.
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The Min-Max Overlap Problem and a Reference Problem

Using the notation of (15) and (17) to capture the relaxed min-maxoverlap prob-
lem (14), we can state this problem as follows:

P W minC2K t� .C/ WD maxlD1;2;:::;mt�l .C/ (18)

Here each element l 2 f1; 2; : : :;mg represents the overlap problem for a single
pair of ellipsoids.

Note that t� .C/D�8 if no pair of ellipsoids overlaps or touches. We now define
a similar problem that depends on just a subset F � f1; 2; : : :;mg of the overlaps.
The objective of this “reference problem” is

t�F .C/ WD maxl2F t�l .C/ ; (19)

where F is a subset of the strictly overlapping ellipsoid pairs, that is,

F � ˚lD1; 2; : : :;mWt�l .C/>0
	
:

In the trust-region algorithm to be described below, the solutions Ml .C/ of (15)
for l 2 F are used to construct a linearized subproblem whose solution is a step
�C in the parameter C, assuming that the current C is feasible. The subproblem is
as follows:

l.F ; C; MF .C/ ;�/ W r .F ; C; MF .C/ ;�/ WD minr;�C r (20a)

subject to

r � t�l .C/Ch�C;Ml .C/ i ;l 2 F (20b)

CC�C 2 K; k�Ck � � (20c)

Here � > 0 is a trust-region radius, and MF .C/ denotes the set of matrices
fMl .C/ W l 2 F g. The problem (20) is convex, and its feasible set is bounded,
so it has an optimal value which we denote by�C .�/. Further, the KKT conditions
are satisfied at this point.

For purposes of our main technical lemma, we define the “predicted decrease”
from sub-problem l .F ; C; MF .C/ ;�/ as follows:

�.F ; C;MF .C/ ;�/ W Dt�F .C/�r .F ; C; MF .C/ ;�/ (21)

Note that since �CD0 is feasible for (20), we have �.F ; C; MF .C/ ;�/ D 0.
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Trust Region Algorithm

We now define the algorithm for solving the problem P defined by (18).Note that in
this general setting, t�l .C/ defined by (15) is continuous on the set

�j WD
˚
CWt�l .C/> �1

	

which is closed and convex. We make additional assumptions about the nature of
the solutions to the parameterized primal–dual pair (15), (17), that do not hold in
general, but which are satisfied for the application we consider here:

(i) t�l .C/> �1) t�l .C/ D 0
(ii) If t�l .C/>0, the problem (17) has a strictly feasible point.

We settle on the following requirement, which depends on parameters 	1,
	2 2 �0; 1Œ with 0 < 	1<	2< 1:

Given Ck for which t� .Ck/>0, we choose Fk to satisfy:

˚
lWt�l .Ck/ � 	2t� .Ck/ � Fk �

˚
lWt�l .Ck/ � 	1t� .Ck/

		
(22)

The Main Convergence Result for Algorithm 2 is given in the following.

Theorem 2 ([17]) Suppose that Assumption 2 holds. Then either

Algorithm 2 Packing Ellipsoids by Minimizing Overlap
Given K � SRn�n compact; 	 2 �0; 1Œ; c1 and c2 with 0 < c1<c2<1;
˚1 and ˚2 with 0 < ˚1<1 < ˚2; and max> 0;
Choose C0 2 K, �0 2

�
0; �max

�
;

for kD 0; 1; 2; : : : do
Define Fk as in (22);
Solve l

�
Fk; Ck; MFk .Ck/ ; �k

�
(20) to obtain �Ck;

Compute predicted decrease �
�
Fk; Ck; MFk .Ck/ ; �k

�
from (21);

if �
�
Fk; Ck; MFk .Ck/ ; �k

�D0 then
stop and return Ck;

end if
if t� .CkC�Ck/ � t� .Ck/�c1�

�
Fk; Ck; MFk .Ck/ ; �k

�
then

CkC1 � Ck C�Ck;
if t� .CkC�Ck/ � t� .Ck/�c2�

�
Fk; Ck; MFk .Ck/ ; �k

�
then

�kC1 � min
˚
˚2�k; �max

	 I
end if
if t�

�
CkC1

� � 0 then
stop and return CkC1;

end if
else

CkC1 � Ck

�kC1  � ˚1�k;
end if

end for
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(a) Algorithm 2 terminates finitely at a point that is Clarke-stationary for problem
P (18), or has a non-positive value of t�; or

(b) it generates an infinite sequence of iterates fCkg for which accumulation points
exist, and all accumulation points C either are Clarke-stationary for P or have

t�


C
�
D0.
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A Review of Several Optimization Problems
Related to Security in Networked System

Bhaskar DasGupta and Venkatkumar Srinivasan

Abstract Security issues are becoming more and more important to activities of
individuals, organizations, and the society in our modern networked computerized
world. In this chapter we survey a few optimization frameworks for problems
related to security of various networked system such as the internet or the power
grid system.

Keywords Security • Networked system • Optimization framework

Introduction

Security issues are essential to activities of individuals, organizations, and the
society as a whole in our modern networked computerized world in healthcare,
power management, online purchase, banking, intra-business transactions, and
many other similar activities in distributed-computing settings. A typical activity
in such a networked system involves a set of (digital) transactions between various
components (“agents”) of the system to perform a specific task such as online
purchase of an item or submitting an online application for a job, and requires
interaction with various computer servers/databases and encryption services. Any
compromise of these activities due to other malicious agents within the system or
outside may lead to severe consequences such as disruption of critical infrastructure
or national economy, and thus making sure that these activities are secure against
such attacks is of paramount importance. The significance of maintaining security
of networked systems has in fact led to organization of many security competitions,
such as the international Capture The Flag [24] for researchers to discuss, discover,
and validate new solutions for security issues.

In this chapter, we survey several optimization problems related to the security
issues in distributed networked systems. We start by surveying some of the
grand mathematical challenges in developing and analyzing security of real-world
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networked systems in section “Mathematical and Statistical Challenges in Net-
worked Security”. Then, in the remaining sections we survey several optimization
problems related to maintaining and evaluating securities of such systems.

Mathematical and Statistical Challenges in Networked
Security

Some of the major mathematical and statistical challenges for security issues in
networked systems are discussed in the two white papers [7, 15]. Based on these
and other white papers, at least the following four possible challenge areas can be
identified:

Data acquisition: The challenge here is to generate accurate trace and log data
while maintaining their integrity throughout the lifetime of their intended use for
scientific analysis and verification since lack of public data sets is a significant
barrier in current research [19]. This challenge is also related to the so-called
utility versus privacy trade-off issue [21] since making data publicly available
may pose confidentiality and privacy issues.
Modelling networks: This challenge refers to the difficulties in developing
mathematical network models that accurately model real-world networks and
statistical methods for comparing networks (e.g., see [9]). For example, a typical
question could be whether the distribution of degrees of nodes over the entire
network is governed by power-laws or its variants?
Detection and response to security threats: This challenge refers to the
difficulty in formulating and solving problems such as malicious code or
behavior detection that provide long-term proactive approach to network security.
Research methods for overcoming this challenge may involve techniques from
diverse areas of mathematics or computer science such as dynamic data mod-
elling methods, optimization methods, machine learning methods, and methods
for uncertainty modelling via probabilistic models.
Modelling network dynamics: This challenge refers to developing appropriate
mathematical models to understand the mechanism of spread of infections (i.e.,
time evolution of malicious attacks) in networks. Ideas from game theory or
dynamical systems may be particularly useful in this context.

Application of Convex Optimization in Network Security

In this section, we review an application of convex or concave optimization methods
by Vamvoudakis et al. [23] to model the complex behavior of a malicious attacker
in a networked system. The model was incorporated in a cyber security advisory
system to demonstrate its effectiveness. The optimization problem is formulated
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from the point of view of a malicious attacker, i.e., the goal is to find an optimal
allocation of available resources for an attacker to maximize the potential damage.

We start by specifying a model of the damage caused by a (malicious) attacker
of the given network. In the model, t 2 f1; 2; : : : ;Tg indicates the discrete time
variable. Assume that there are a set of S services, indexed by 1; 2; : : : ; S, in our
networked system that may be attacked for disruption. The following parameters
are used in the model:

us
ARt
� 0: A scalar quantifying the amount of attack resources (e.g., amount of

money devoted to attack a particular resource) used by the attacker to attack
service s at time t.

xs
PDt
� 0: A scalar denoting the amount of potential damage caused by attacks. In

general xs
PDt
D f s

t

�
us

ARt

�
for some appropriate function f s

t W RC 7! R
C.

gs
t : gs

t

�
us

ARt

�
denotes the probability that the damage f s

t

�
us

ARt

�
is realized as a

result of the attack xs
PDt

.
ys

TDt
: ys

TDt
D gs

t

�
us

ARt

�
f s
t

�
us

ARt

�
is the expected damage caused by us

ARt
.

yTD: yTD D
TP

tD1

SP

sD1
ys

TDt
is the total expected damage.

UTR: This is the total budget of attack resources available to the attacker.

In order to ensure that the resulting optimization problems are convex or concave,
Vamvoudakis et al. [23] make the following assumptions that are justified for real
applications of the model:

• f s
t is a linear function, i.e.,

f s
t

�
us

ARt

� D as
t C bs

t us
ARt

(1)

for some constants as
t ; b

s
t 2 R

C. The constant as
t models the extent of damage

without any attack whereas the constant bs
t models the extent of damage per unit

of attack resources employed. The equation has the realistic implication that an
increase in attack resources leads to an increase in the potential damage caused.

• gs
t is a linearly increasing function projected to the interval Œ0; 1�, i.e.,

gs
t

�
us

ARt

� D

8
<̂

:̂

0; if ds
t us

ARt
> cs

t

cs
t � ds

t us
ARt
; if cs

t � 1 � ds
t us

ARt
� cs

t

1; if ds
t us

ARt
< cs

t � 1
(2)

for some given constants cs
t ; d

s
t � 0. The constant cs

t models the probability
of damage realization without any attack whereas the constant ds

t models the
decrease of the probability of damage realization per unit of attack resources
employed. Note that this choice of gs

t models the realistic assumption that
an increase in attack resources decreases the realization probability of the
potential damage since a large-scale attack is much more likely to trigger defense
mechanisms.



158 B. DasGupta and V. Srinivasan

Now we can consider two different optimization problems for optimal allocation of
available resources by an attacker to maximize the potential damage depending on
the availability of relevant data.

Optimization Problem When All Relevant Damage Data Is Known When all
the relevant damage data, i.e., all the numbers in f as

t ; b
s
t ; c

s
t ; d

s
t j 1 � s � S;

1 � t � Tg, are known a-priori, it is easy to see that the optimal attack resource
allocation values (i.e., the us

ARt
’s) that maximizes the total expected damage yTD can

be obtained by solving the following constrained optimization problem:

maximize yTD

subject to
TP

tD1

SP

sD1
us

ARt
� UTR

us
ARt
� 0; 1 � s � S; 1 � t � T

(3)

Although in general (3) may be difficult to solve, Vamvoudakis et al. [23]
show that the special choices of f s

t in (1) and gs
t in (2) ensure that the above

optimization problem is equivalent to solving the following concave maximization
(or, equivalently convex minimization)1 problem with linear constraints involving
an addition set of zs

t variables:

maximize
TP

tD1

SP

sD1
�
as

t C bs
t us

ARt

� �
cs

t � ds
t us

ARt
� zs

t

�

subject to
TP

tD1

SP

sD1
us

ARt
� UTR

cs
t � ds

t us
ARt
� zs

t � 1; 1 � s � S; 1 � t � T

us
ARt
� 0; 1 � s � S; 1 � t � T

(4)

and, moreover, if 0 � cs
t � 1 for all s and t, then one can set zs

t D 0 for all s and t in
the above concave optimization problem.

Optimization Problem When Not All Relevant Damage Data Is Known
Often the parameter values in

˚
as

t ; b
s
t ; c

s
t ; d

s
t j 1 � s � S; 1 � t � T

	
are not known

a-priori. In that case, one needs to estimate these parameter values online based on
past observations using some machine learning techniques such as the maximum-
likelihood approach. Vamvoudakis et al. [23] propose the following approach for
the parameter estimation problem:

1A function h of k variables is convex (resp. concave) if and only if, for all
x1; x2; : : : ; xk; y1; y2; : : : ; yk and for all 0 < � < 1, h

�
.1��/ �x1; x2; : : : ; xk

�C� �y1; y2; : : : ; yk

�� �
.1��/ h

�
x1; x2; : : : ; xk

�C� h
�
y1; y2; : : : ; yk

�
(resp. h

�
.1��/ �x1; x2; : : : ; xk

�C� �y1; y2; : : : ; yk

�� �
.1��/ h

�
x1; x2; : : : ; xk

�C� h
�
y1; y2; : : : ; yk

�
). When the objective function and all the constraints

are convex (resp. concave), we have a convex (resp. concave) optimization problem. The convexity
or concavity property often makes an optimization problem easier to solve as opposed to the
general case; see [3] for further details.
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• Assume that these parameters are generated by a linear dynamical system over
time t, i.e.,

as
t D Cs

axs
a.t/ where xs

a.t/ is generated by xs
a.t/ D As

axs
a.t � 1/C Bs

aws.t � 1/
(5)

bs
t D Cs

bxs
b.t/ where xs

b.t/ is generated by xs
b.t/ D As

bxs
b.t � 1/C Bs

bws.t � 1/
(6)

cs
t D Cs

cxs
c.t/ where xs

c.t/ is generated by xs
c.t/ D As

cxs
c.t � 1/C Bs

cws.t � 1/ (7)

ds
t D Cs

dxs
d.t/ where xs

d.t/ is generated by xs
d.t/ D As

dxs
d.t � 1/C Bs

dws.t � 1/
(8)

where
n

As
j ;B

s
j ;C

s
j ;D

s
j j 1 � s � S; j 2 fa; b; c; dg

o
are scalar parameters of the

dynamics, and ws
t are sequences generated by a random process with zero mean

and variance zs
t . Use historical data to estimate these dynamics using blackbox

identification techniques.
• Now use online data to estimate the values of f as

t ; b
s
t ; c

s
t ; d

s
t j 1 � s � S;

1 � t � Tg based on past observations using a k-step ahead predictor in the
following manner. Let

˚
as

t ; b
s
t ; c

s
t ; d

s
t j 1 � s � S; 1 � t � k < T

	
be the set of

values observed (by the attacker) for these parameters up to sometime k < T
and the attacker needs to compute the “future” values of us

ARt
’s for k < t � T.

Then, one can do the following:

– Estimate the values of
˚

as
t ; b

s
t ; c

s
t ; d

s
t j 1 � s � S; k < t � T

	
using (5)–(8). Let

the estimated values for as
t ; b

s
t ; c

s
t ; d

s
t be denoted by bas

t ;bb
s
t ;bc

s
t ;bd

s
t . Let bf s

t and bgs
t

be the function values of f s
t and gs

t , respectively, for k < t � T when the
estimated values bas

t ;bb
s
t ;bc

s
t ; bd

s
t are used, i.e.,

bf s
t


us

ARt

�
D bas

tCbbs
t us

ARt
and bgs

t


us

ARt

�
D

8
ˆ̂
<

ˆ̂
:

0; if bds
t us

ARt
> bcs

t

bcs
t � bds

t us
ARt
; if bcs

t � 1 � bds
t us

ARt
� bcs

t

1; if bds
t us

ARt
< bcs

t � 1
.

– Compute us
ARt

for k < t � T by solving the following optimization problem:

maximize
kP

tD1

SP

sD1
gs

t

�
us

ARt

�
f s
t

�
us

ARt

�C
TP

tDkC1

SP

sD1
bgs

t

�
us

ARt

�
bf s
t

�
us

ARt

�

subject to
TP

tD1

SP

sD1
us

ARt
� UTR

us
ARt
� 0; 1 � s � S; k � t � T

which is again a convex minimization problem similar to (4).

The k-step lookahead predictor can be used in an online fashion by the attacker
for every successive value of k.
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Application of Multi-Objective Distributed Constraint
Optimization in Network Security

In the previous section we saw how to formulate and solve some problems related
to the security of networked systems as a convex constraint optimization problem
with a single objective function. In this section, we review the results of Okimoto
et al. [18] that apply multi-objective distributed constraint optimization methods
to formulate and solve problems related to security issues of networked systems.
Okimoto et al. [18] do this by first formulating the security problem for networked
system as a multi-objective distributed constraint optimization problem (MO-DCOP)
using the formalization in [8], and then discussing some algorithmic approaches
to solve such an optimization problem. Generally, multi-objective distributed con-
straint optimization methods are very suitable for formalizing applications related
to multi-agent cooperation. An advantage of casting network security problems as
an MO-DCOP is that multiple criteria (e.g., level of risk, loss of privacy, cost of
operation) can be optimized simultaneously instead of separately; however, a disad-
vantage of this is that the resulting optimization problem may be computationally
quite hard. The multi-objective distributed constraint optimization framework of [8]
is an extension of mono-objective distributed constraint optimization framework
in [16] for modelling applications related to multi-agent cooperation games.

The MO-DCOP proposed by Okimoto et al. [18] is described by the following
parameters:

• A 5-tuple hS;X;D;C;Oi where

– S D fagent1;agent2; : : : ;agentn g is a set of n agents. An agent may be a
human, a program, an organization, a country, etc.

– X D fx1; x2; : : : ; xng is a set of n variables, where xi is owned by agenti.
– D D fD1;D2 : : : ;Dng is a set of n discrete domains, where Di is the domain of

values of variable xi. The notation .xi; di/will be used to denote an assignment
of value di 2 Di to variable xi.

– O D ˚O1;O2; : : : ;Om
	

is a set of m criteria that is to be optimized.
– C D ˚

C1;C2; : : : ;Cm
	

is a set of m sets of constraints, where C` is the set
of constraints corresponding to the `th criterion O`. A constraint relation
�‰i;k;‰j;k

�` 2 C` (for k D 1; 2; : : : ) denotes a constraint of the type˚
.xi; di/ ;

�
xj; dj

�	
involving the variables xi and xj, and is used to describe the

condition of cooperation of agenti and agentj on the objective C`.

•
n

f `i;j;k W Di � Dj 7! R
ˇ
ˇ 1 � ` � m; 1 � i; j � n; k 2 N

C
o

is a given set of cost

functions such that f `i;j;k
�
di; dj

�
gives, for each objective C` and pairs xi; xj

such that
�‰i;k;‰j;k

�` D ˚
.xi; di/ ;

�
xj; dj

� 	 2 C`, the cost for an assignment
(decision)

˚
.xi; di/ ;

�
xj; dj

� 	
.
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Fig. 1 A toy example for the MO-DCOP framework of Okimoto et al. [18]. The shaded row
indicates that when resource budget is the optimization criterion the cost of agent1 opting to scan
and agent2 opting to ignore is 4

For a set A of variable-value assignments and an objective O`, the cost incurred in
optimizing this objective is then given by:

R`.A/ D
X

k

X

.‰i;k;‰j;k/
`Df.xi;di/;.xj;dj/g2C`

f.xi;di/;.xj;dj/g	A

f `i;j;k
�
di; dj

�

and the solution corresponding to this variable-value assignment A over all
objectives is then characterized by the cost vector

R.A/ D �R1.A/;R2.A/; : : : ;Rm.A/�

A toy example of the above framework is depicted in Fig. 1 for the case of three
agents not all pairs of which cooperate with each other all the time.

Although ideally one would like to find a solution that optimizes all the objective
functions simultaneously, such a solution may not even exist and thus one would
resort to trade-offs among various objectives. One way to handle such a trade-off is
by adopting the concept of Pareto optimality from game theory [10] to the above
MO-DCOP formulation in the following manner.
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Definition 1 A cost vector R.A/ D �
R1.A/;R2.A/; : : : ;Rm.A/� is said to

(strictly) dominate another cost vector R.A0/ D �
R1.A0/;R2.A0/; : : : ;Rm.A0/�,

denoted by R.A/ � R.A0/, if and only if both the following conditions hold:

• R`.A/ � R`.A0/ for 1 � ` � m, and
• there exists at least one ` 2 f1; 2; : : : ;mg such that R`.A/ < R`.A0/.
A cost vector R.A/ is then called Pareto optimal solution if and only if there does
not exist another feasible cost vector A0 such that R.A0/ � R.A/.

Note that Pareto optimal solutions need not be unique. Okimoto et al. term a
Pareto optimal solution as a trade-off solution in [18]. Algorithms for computing
Pareto optimal solutions appear in the traditional computer science literature under
names such as the maximal vector computation problem [11, 12]. A pseudo-
tree based algorithm for solving multi-objective distributed constraint optimization
problems appears in [14]. Okimoto et al. [18] extend the algorithmic approach
in [14] by adding a pre-processing phase to design a new branch-and-bound
search algorithm (BnB) for finding all trade-off solutions2 using the branch-
and-bound technique with a depth-first-search strategy. For evolutionary (genetic)
algorithms to solve multi-objective distributed constraint optimization problems,
see [4, 6]. One can also design approximation algorithms (heuristics) for solving
multi-objective distributed constraint optimization problems, e.g., see the bounded
multi-objective max-sum algorithm in [8].

Optimization Problems in Security for Power Networks

Maintaining a secure electric power distribution and transmission system against
malicious attacks is an extremely important issue since almost any modern society
relies critically on the proper operation of these systems. In this chapter we review
some basic optimization problems related to this issue, and the application of
`1-relaxation techniques of Sou et al. [22] in solving these optimization problems.

To begin with, a power network model is one with the following components:

• The network topology is specified by a directed graph G D .V;E/ with n nodes
(buses) and m arcs (transmission lines). The corresponding (directed) edge-node
incidence matrix of the graph is denoted by A 2 f�1; 0; 1gn�m where

AŒu; e� D
8
<

:

�1; if e D .u; v/ 2 E
1; if e D .v; u/ 2 E
0; otherwise

.

2Okimoto et al. [18] claim that an advantage of finding all trade-off solutions is that agents
can dynamically change decisions in case of emergencies. Unfortunately, the number of trade-off
solutions may be exponential in the worst case.
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• The physical property of the network is described by a nonsingular diagonal
matrix D 2 R

m�m such that the reactance of the transmission line (arc) e is
1=DŒe; e�.

• The states of the nodes of the network are summarized by a state vector
� 2 Œ0; 2�/n�1, assuming constant bus voltages throughout but non-constant bus
phase angles and using one arbitrary bus (node) as a reference.

• Assuming the DC power flow model and under malicious data attacks, the
measurement vector z of the states of the buses that is obtained by a state
estimator

z D H � Cbz with H D
�

PDAT

QADAT

�

(9)

where

– bz 2 R
n�1 is the vector of malicious data attacks [13].

– A 2 R
.n�1/�m is obtained from A by removing the row corresponding to the

reference bus (node).
– P is a subset of rows of an identity matrix of appropriate dimension indicating

flow measurements of which arcs (transmission lines) are actually taken.
– Q is a subset of rows of an identity matrix of appropriate dimension indicating

power injection measurements of which nodes (buses) are actually taken.

Typically, � is estimated using the values in H and z. Assuming that the network
is observable (in control-theoretic terms), it is known that an estimate b� of � can
be obtained using the following equation where W is a positive definite diagonal
matrix [1, 17]:

b� D �HTWH
��1

WHTz

To detect possible malicious attacks against the measurements viabz, the commonly
performed test [1, 17] is used: if the norm kz �Hb� k of the following residual
quantity

z� Hb� D


I �H
�
HTWH

��1
WHT

�
bz

is large then trigger the alarm.
Although the above test works well if there is a single malicious attack on one

data measurement, it may fail under coordinated malicious attacks on multiple data
measurements. For such scenarios, a notion of security index was introduced in by
Sandberg et al. in [20]. Intuitively, a small security index implies that the power
network is more vulnerable to malicious attacks. Let H` denote the `th row of H
and the notation kXk0 for a vector X denote the cardinality (number of non-zero
elements) of X. The security index for the power flow measurement of the kth
transmission line (arc) for a given k is formulated as the optimal objective value
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of the following optimization problem:

minimize kH xk0
subject to Hk x D 1

x 2 R
n�1

(10)

The more general case when certain measurements are protected in the sense that
they are too secure to be attacked can easily be handled by extending (10) in the
following manner [2, 5, 13]. Let I � f1; 2; : : : ;mg denote the indices of those
transmission lines whose power flow measurements are protected and let HI be the
submatrix of H with rows indexed by I. Then, (10) can be generalized to the
following cardinality minimization problem:

minimize kH xk0
subject to Hk x D 1

HI x D 0
x 2 R

n�1
(11)

In general, there are no efficient algorithms for solving cardinality minimization
problems and thus heuristics are often employed. Sou et al. in [22] provide an
efficient application of `1-relaxation techniques to solve an important special case
of (11) that assumes H D PDAT instead of the more general form shown in (9).
They prove that this special case is in fact contained in the following type of
optimization problem of a more general nature:

minimize kCf1;2;:::;mgnI xk
0

subject to Ck x D 1
CI x D 0
x 2 R

n�1
(12)

where

• C 2 R
m�.n�1/ is a given totally unimodular matrix, i.e., a matrix whose every

square submatrix has a determinant of 0, 1, or �1,
• for any subset Y � f1; 2; : : : ;mg AY is the submatrix of A with rows indexed by

Y, and
• Ak is the kth row of A.

Then, a `1-relaxation of (12) can be obtained by replacing the objective function
kCf1;2;:::;mgnI xk

0
by the objective function kCf1;2;:::;mgnI xk

1
that uses the `1 norm.

This `1-relaxation can in turn be written down as a linear program and solved
optimally. Sou et al. in [22] prove that an optimal solution of this linear program is
in fact also an optimal solution of (12).
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Conclusion

In this chapter we have surveyed a few optimization frameworks for problems
related to security of networked system such as the internet or power grid system.
There are other frameworks of modelling network security issues that we have not
considered in this chapter, such as game-theoretic formulations or in the context
of quantum computing. We believe that as networked systems of various nature
become more common in everyday transactions, the corresponding security issues
will give rise to more challenging optimization research questions.
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On Some Information Geometric Approaches
to Cyber Security

C.T.J. Dodson

Abstract Various contexts of relevance to cyber security involve the analysis of
data that has a statistical character and in some cases the extraction of particular
features from datasets of fitted distributions or empirical frequency distributions.
Such statistics, for example, may be collected in the automated monitoring of IP-
related data during accessing or attempted accessing of web-based resources, or may
be triggered through an alert for suspected cyber attacks. Information geometry pro-
vides a Riemannian geometric framework in which to study smoothly parametrized
families of probability density functions, thereby allowing the use of geometric tools
to study statistical features of processes and possibly the representation of features
that are associated with attacks. In particular, we can obtain mutual distances among
members of the family from a collection of datasets, allowing, for example, mea-
sures of departures from Poisson random or uniformity, and discrimination between
nearby distributions. Moreover, this allows the representation of large numbers of
datasets in a way that respects any topological features in the frequency data and
reveals subgroupings in the datasets using dimensionality reduction. Here some
results are reported on statistical and information geometric studies concerning
pseudorandom sequences, encryption-decryption timing analyses, comparisons of
nearby signal distributions and departure from uniformity for evaluating obscuring
techniques.
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Introduction

The British Columbia Institute of Technology (BCIT) maintained until 2006 an
industrial cyber security incident database (ISID) [8], designed to track incidents
of a cyber security nature that directly affected industrial control systems and
processes. Byres and Lowe [8, 9] pointed out that from 1980 to 2000 the cyber
threat was evenly split among internal, external and accidental cases. By 2001 this
had changed to 70% external threat sources, 20% accidental, 5% internal and 5%
other. Of these the internal security incidents arose from the following entry points:
business network 43%, human machine interface (HMI) 29%, physical access to
equipment 21% and laptop 7%. Externally the percentages included attacks from:
remote internet 36%, remote dial-up 20%, remote unknown 12%, VPN connection
8%, remote wireless 8%, the remainder from remote trusted third party, remote
Telco network, remote supervisory control and data acquisition (SCADA) network.
The consequences of these attacks were a production loss of 41% and loss of
ability to control or view the plant. Between 1995 and 2000 the number of security
incidents averaged 2 per year but that had increased linearly to 10 per year by 2003.
The current successor to ISID is the Repository of Industrial Security Incidents [54],
a database of incidents of a cyber security nature that have (or could have) affected
process control, industrial automation or supervisory control and data acquisition
(SCADA) systems. For a current view of the problem of criminal use of encrypted
messaging systems on smartphones, see the New York District Attorney’s report
to the 6th Annual Financial Crimes and Cybersecurity Symposium at the Federal
Reserve Bank of New York on 15 November 2015 [61], with a large bibliography.
This sets out the current capabilities of smartphones and tablets and makes a number
of proposals.

The UK government Centre for the Protection of National Infrastructure (CPNI)
[19] and the USA Homeland Security [60] provide up-to-date information and
advice on cyber security. Wang and Lu [62] provided a comprehensive study
of cyber security needs for the next generation power systems, particularly net-
work vulnerabilities, attack countermeasures, secure communication protocols and
architectures in the Smart Grid. The UK Information Assurance Advisory Council
(IAAC) [58] provides a wide range of documentation, including the latest Korea-
UK Initiatives in Cyber Security Research report [59]. The proceedings of the recent
international conference at the University of Piraeus [44] provides a collection of
more than 30 articles on cyber warfare and security and the book [50] contains
17 articles treating various aspects of cybersecurity. Via the assistance of the 2014
US AMS Network Science Mathematical Research Community, Burstein et al. [7]
studied the problem of increasingly frequent events of Border Gateway Protocol
route hijacking for traffic interception. They developed an optimal information
monitoring strategy based on an abstract model for routing networks in which
colluding sets of agent nodes conspire to divert traffic via them by sending false
distance information to honest agent nodes.
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In this paper we offer some geometrical methods for application in problems
of cyber security which can be addressed through statistical analyses of data.
Information geometry provides a Riemannian geometric framework in which to
study smoothly parametrized families of probability density functions, thereby
allowing the use of geometric tools to study statistical features of processes.
Geometrical provision of this kind has proved an enormous advantage in theoretical
physics and conversely, physical problems have stimulated many advances in
differential geometry, global analysis and algebraic geometry. The geometrization
of statistical theory [1–5, 22] has had similar success and its role in applications
is now widespread and generating new developments of theory, algorithms and
computational information geometry [48, 49]. We give a brief introduction to
information geometry in sections “The Fisher Information Metric” and “Expo-
nential Family of Distributions”, which is sufficient for the understanding of
techniques in the sequel. We outline the information geometry of univariate and
multivariate Gaussians in section “Information Geometry of Gaussians”, which
we use in section “Dimensionality Reduction Methods”. Situations in which such
methods are relevant to cyber security include discrimination between nearby
signal distributions, comparisons of real signal distributions with those obtained
via random number generators in testing obscuring procedures, and in testing for
anomalous behaviour, for example using departures from uniformity or indepen-
dence.

One aspect of cyber security is concerned with the analysis of the stochastic
process of attack events [21]. Such analyses can yield valuable data on the
frequency distributions of attacks and these may be amenable to study using
information geometric methods. In particular, spacings between events of interest
may be representable via gamma distributions, since they span a range of behaviour
from clustered through random (i.e. Poisson) to dispersed, Fig. 1; we discuss their
information geometry in section “Information Geometry of the Gamma Manifold”.
Gamma distributions have the property that the standard deviation is proportional
to the mean, characterized in Theorem 1 below, and they include a representation
of Poisson processes through the 1-parameter family of exponential distributions;
this is represented in Fig. 2. Their information geometry was used in a variety of
applications [5, 24]. In a range of contexts in cryptology for encoding, decoding or
for obscuring procedures, sequences of pseudorandom numbers are generated. Tests
for randomness of such sequences have been studied extensively and the NIST Suite
of tests [53] for cryptological purposes is widely employed. Information theoretic
methods also are used, for example see Crzegorzewski and Wieczorkowski [20]
also Ryabko and Monarev [55] and the references therein for recent work.
Covert timing channels operate by establishing an illegitimate communication
channel between two processes and transmitting information via timing modulation,
violating the underlying system’s security policy. Recent studies have shown the
vulnerability of popular computing environments, such as cloud, to these covert
timing channels. Chen and Venkataramani [18] proposed an algorithm to detect the
possible presence of covert timing channels on shared hardware that use contention-
based patterns for communication. They obtained an event density histogram to
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Fig. 1 Probability density functions, f .tI�; �/; for gamma distributions of inter-attack intervals
t with unit mean � D 1; and � D 1

2
; 1; 2: The case � D 1 corresponds to an exponential

distribution from an underlying Poisson process; � ¤ 1 represents some organization—clustering
or dispersion

represent the probability distribution of event density and compared this to a Poisson
process. We show in section “Statistics of Finite Random Spacing Sequences”
how pseudorandom sequences may be tested using information geometry by using
distances in the gamma manifold to compare maximum likelihood parameters for
separation statistics of sequence elements.

In practical signal comparison situations [28], we obtain statistical data for
an observable that is defined on some finite interval. We shall use as our model
the family of log-gamma probability density functions, Fig. 3, defined for random
variable a 2 .0; 1� in section “Neighbourhoods of Uniformity in the Log-Gamma
Manifold”. The choice of log-gamma model is due to the fact that it contains a
neighbourhood of the uniform distribution, and it has approximations to Gaussians
truncated to domain .0; 1� and with arbitrarily small variance. The role of these
functions in testing we discuss in section “Testing Nearby Signal Distributions and
Drifts from Uniformity”.

Encryption devices may be attacked by electromagnetic sensors that can extract
information on the timing of processes for a chosen range of input data values. Given
some knowledge of the software architecture, timings of operations typically relate
to modular exponentiation steps, associated with the processing of the binary bits in
the encryption key. This is discussed in section “Protecting Devices with Obscuring
Techniques”. In practice, clues to such timing information can be obtained from data
on power consumption using electromagnetic sensors, possibly needing statistical
processes to clean the data of noise. Kocher et al. [40] showed the effectiveness
of Differential Power Analysis (DPA) in breaking encryption procedures using
correlations between power consumption and data bit values during processing,
claiming that most smart cards revealed their DES keys using fewer than 15
power traces. A practicable defence is to obscure the power usage data on timing
information by spurious other processes. Then the effectiveness of such obscuring
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techniques can be evaluated using analyses of the distributions associated with time
series from power usage. For example, a time series of power consumption using
appropriately chosen thresholding and interval windows would yield a barchart and
that would ideally be like that arising from Poisson processes, which for a given
mean are maximally disorderd [36]. Information geometry can be used to measure
differences from the Poisson model, equivalently from its associated exponential
distribution—note that Grzegorzewski and Wieczorkowski [20] provided a detailed
analysis of their entropy-based goodness-of-fit test for exponentiality.

Evaluation of cyber security may involve also identifying potentially anomalous
behaviour in internet traffic on a network [47, 51], thus requiring extraction
of appropriate features from a large data set of event frequency distributions.
sometimes we can fit standard models to the empirical frequency distributions
using maximum likelihood methods as illustrated for gamma distributions in
section “Information Geometry of the Gamma Manifold”. In the absence of a model
family of distributions for which we have expressions for the information distances
among the members, we can use the symmetrized Kullback–Leibler relative entropy
expression, Eq. (40), to measure distance between empirical frequency distributions.
Once we have extracted distance measures between all pairs of datasets we can
use multi-dimensional scaling, or dimensionality reduction, to extract the three
most significant features from the data set so that all samples can be displayed
graphically in a 3-dimensional plot. The aim is to reveal groupings of data points
that correspond to the prominent characteristics, the methodology is discussed in
section “Dimensionality Reduction Methods”.

Such a dimensionality reduction can reveal anomalous behaviour of a process by
taking account of the true curved geometry of the data set, rather than displaying it
as uncurved in a Euclidean geometry (cf. [12, Fig. 3.2]). The significance is that any
non-obvious global topology of frequency connectivity in the data is revealed by the
pattern of mutual separations in the embedding. An illustration using router traffic
on the Abilene network showed how anomalous behaviour unseen by local methods
could be picked up through dimensionality changes (cf. [12, Fig. 3.10]). Moreover,
in document classification, the information metric approach outperformed standard
Principal Component Analysis and Euclidean embeddings [13], and it outperformed
traditional approaches to video indexing and retrieval with real world data [17].
In section “Dimensionality Reduction Methods” we outline how autocovariance
extraction from time series data may be studied using information geometry and
dimensionality reduction; we described an application to datasets of stochastic
textures from 2-dimensional pixel arrays in [27].

We begin here by outlining the method to compute the Fisher information metric
on a smoothly parametrized family of probability density functions, then illustrate
it with explicit expressions for some important examples.
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The Fisher Information Metric

Let � 	 Rn be the parameter space of an n-dimensional smooth family of
probability density functions defined on some fixed d-dimensional event space
˝ 	 Rd, so we have a set

fp� j� 2 �g with p� � 0 and
Z

˝

p� D 1 for all � 2 �:

A fundamental property of a probability density function p� is its Shannon entropy,
which is the negative of the expectation of its log-likelihood function, l D log p� ;
namely:

S.p�/ D �
Z

˝

p� log.p� /: (1)

The derivatives of the log-likelihood function, l D log p� ; yield a matrix function
on ˝ and the expectation of its entries is

gij D
Z

˝

p�

�
@l

@� i

@l

@� j

�

D �
Z

˝

p�

�
@2l

@� i@� j

�

; (2)

for coordinates .� i/ about � 2 � 	 R
n:

This gives rise to a positive definite matrix depending only on the parameters,
inducing a Riemannian metric structure g as a positive-definite symmetric quadratic
form, on the space � of parameters .� i/: From the construction of (2), a smooth
invertible transformation of random variables, that is of the labelling of the points in
the event space ˝ while keeping the same parameters .� i/; will leave the Rieman-
nian metric unaltered. Formally, it induces a smooth diffeomorphism of manifolds
that preserves the metric. This is a Riemannian isometry and the diffeomorphism is
simply the identity map on parameters [5]. We shall see this explicitly below for
the case of the log-gamma distribution section “Neighbourhoods of Uniformity in
the Log-Gamma Manifold” and its associated Riemannian manifold.

The elements in the matrix (2) define the arc length function

ds2 D
X

i;j

gij d� i d� j; often abbreviated to ds2 D gij d� i d� j (3)

using the convention to sum over repeated indices.
The metric (2) is called the expected information metric or Fisher–Rao or Fisher

metric for the manifold obtained from the family of probability density functions;
the original ideas are due to Fisher [32] and Rao [52]. The second equality in Eq. (2)
depends on certain regularity conditions [56] but when it holds it can be particularly
convenient to use. Amari [1, 2, 4] and Amari and Nagaoka [3] provide accounts of
the differential geometry that arises from the information metric. A wide range of
applications is studied in [5, 24].
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Exponential Family of Distributions

An n-dimensional parametric statistical model � � fp� j� 2 �g is said to be an
exponential family or of exponential type, when the probability density functions
in the family can be expressed in terms of functions fC;F1; : : : ;Fng on ˝ and a
function ' on� as:

p.xI �/ D efC.x/C
P

i �i Fi.x/�'.�/g ; (4)

then we say that .�i/ are its natural parameters, and ' is the potential function.
From the normalization condition

R
p.xI �/ dx D 1 we obtain:

'.�/ D log
Z

˝

efC.x/C
P

i �i Fi.x/g dx : (5)

This potential function is therefore a distinguished function of the coordinates .�i/

alone. Dodson and Matsuzoe [25] showed that use can be made of it for the
presentation of the manifold as an immersion in R

nC1 as follows:

˚ W Rn ! R
nC1 W .�i/ D � 7! .�; '.�// : (6)

With @i D @
@� i , we use from section “The Fisher Information Metric” the log-

likelihood function l.�; x/ D log.p� .x// to obtain

@il.�; x/ D Fi.x/� @i'.�/

and

@i@jl.�; x/ D �@i@j'.�/ :

The information metric g on the n-dimensional space of parameters � � R
n;

equivalently on the set S D fp� j� 2 � � R
ng; has coordinates:

Œgij� D �
Z

˝

Œ@i@jl.�; x/� p� .x/ dx D @i@j'.�/ D 'ij.�/: (7)

Then, .S; g/ is a Riemannian n-manifold. Distances between points in this manifold
are computed as the geodesic length between the points, which is the infimum over
all curves joining the points and in general difficult to obtain analytically [5, 26].
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Information Geometry of Gaussians

The family of univariate normal or Gaussian density functions has event space˝ D
R and probability density functions given by

N � fN.�; �2/g D fn.xI�; �/j� 2 R; � 2 R
Cg (8)

depending smoothly on the parameters mean � and variance �2. So topologically,
N D R � R

C is the upper half-plane, and the random variable is x 2 ˝ D R with

n.xI�; �/ D 1p
2 � �

e�
.x��/2

2 �2 (9)

The mean � and standard deviation � are commonly used as a local coordinate
system .�; �/. However, the univariate Gaussians (9) are of exponential type with
natural coordinates �1 D �

�2
and �2 D � 1

2 �2
. Then .

�

�2
;� 1

2 �2
/ is a natural

coordinate system and

' D � �1
2

4 �2
C 1

2
log.� �

�2
/ D �2

2 �2
C log.

p
2 � �/ (10)

is the corresponding potential function defined in section “Exponential Family of
Distributions”.

Multivariate Gaussians for a given k D 2; 3; : : : : : : ;N are parametrized by a k-
vector of means � 2 R

k and a symmetric k � k covariance matrix ˙ 2 R
.k2Ck/=2:

There is no analytic expression for the information distance between two general
k-variate Gaussians. What we have analytically are natural norms, on the space of
means and on the space of covariances, giving the information distance D.f A; f B/

between two k-Gaussians f A.�A; ˙A/ and f B.�B; ˙B/ in two particular cases:

˙A D ˙B D ˙ W The common positive definite symmetric quadratic form ˙

gives a norm on the difference vector of means:

D�.f
A; f B/ D

q

.�A � �B/
T �˙�1 � .�A � �B/: (11)

�A D �B D � W A positive definite symmetric matrix constructed from the two
covariance matrices˙A and ˙B is

SAB D ˙A�1=2 �˙B �˙A�1=2; with f�AB
j g D Eig.SAB/

and it gives a norm on the space of differences between covariances [6] so we
have

D˙.f
A; f B/ D

v
u
u
t1

2

kX

jD1
log2.�AB

j /: (12)
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In principle, (12) yields all of the true geodesic distances since the information
metric is invariant under affine transformations of the mean [6, Appendix 1]; see
also the article of Eriksen [30].

In practice, an approximate distance that is monotonically related to the true
information distance may serve the purpose at hand, for example the symmetric
sum:

D.f A; f B/ � 1

2

�
D�.f

A; f B/C D�.f
B; f A/

�C D˙.f
A; f B/;

which adds to the value of (12) the average of (11) using both available covariances.

Information Geometry of the Gamma Manifold

The smooth family of gamma probability density functions is given by

f W Œ0;1/! Œ0;1/ W x 7!
e�

x�
� x��1


�
�

��

� .�/
�; � > 0: (13)

Here � is the mean, and the variance �2 is �2

�
: So � is proportional to the mean

and the coefficient of variation, 1p
�
; is unity in the case that (13) reduces to the

exponential distribution. Thus, � D 1 corresponds to an underlying Poisson random
process complementary to the exponential distribution. When � < 1 the random
variable X represents spacings between events that are more clustered than for a
Poisson process and when � > 1 the spacings X are more evenly distributed than
for Poisson. The case when � D n is a positive integer and � D 2 gives the Chi-

Squared distribution with n�1 degrees of freedom; this is the distribution of .n�1/s
2

�2G

for variances s2 of samples of size n taken from a Gaussian population with variance
�2G: Illustrations of some gamma probability density functions are given in Fig. 1.
The gamma distribution is of exponential type, as we see by making the substitution
of parameters .�; �/ 7! .� D �

�
; �/: Then the probability density functions have the

form

p.xI �; �/ D �� x��1 e�x�

� .�/
: (14)

In this case .�; �/ is a natural coordinate system of the 1-connection and

'.�/ D log� .�/ � � log � (15)

is the corresponding potential function defined in section “Exponential Family of
Distributions”. An embedding of the gamma manifold in R

3 using (15) in (6)
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Fig. 2 An embedding of the gamma manifold, as a surface in R
3 using (15) in (6) including also

a tubular neighbourhood of the exponential distributions, which all lie on the curve � D 1

is shown in Fig. 2, including also a tubular neighbourhood of the exponential
distributions, which all lie on the curve � D 1:

The Fisher metric is given by the Hessian of ', that is, with respect to natural
coordinates:

�
gij
�
.�; �/ D

�
@2'.�/

@�i@�j

�

D
�

�
�2
� 1
�

� 1
�
 00.�/

�

D
"

�
�2

� 1
�

� 1
�

d2

d�2
log.� /

#

: (16)

In terms of the original parameters .�; �/ in (13) the metric turns out to be
diagonal:

�
gij
�
.�; �/ D D

"
�
�2

0

0 d2

d�2
log.� /� 1

�

#

: (17)

So the coordinates .�; �/ yield an orthogonal basis of tangent vectors, which is
useful in calculations because then the arc length function is simply

ds2 D �

�2
d�2 C

��
� 0.�/
� .�/

�0
� 1
�

�

d�2:

We note the following important uniqueness property:
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Theorem 1 (Cf [24, 37, 43]) For independent positive random variables with
a common probability density function f ; having independence of the sample
mean and the sample coefficient of variation is equivalent to f being the gamma
distribution.

A proof of Theorem 1 was given in [37] but in fact the result seems to have been
known much earlier and in [24] we gave a proof partly based on the 1954 article
by Laha [43], of interest for the methodology using Laplace Transforms, which are
related to moment generating functions in statistics [31]. Other useful information
geometric results involve very commonly occurring distributions and have been
applied in a number of areas [5, 24]. Some may have application in measuring
and representing statistical processes relevant to cyber security when there is a need
to study the neighbourhood of a target distribution:

Theorem 2 Every neighbourhood of a Poisson process contains a neighbourhood
of processes subordinate to gamma probability density functions.

Theorem 3 Every neighbourhood of a uniform process contains a neighbourhood
of processes subordinate to log-gamma probability density functions.

Theorem 4 Every neighbourhood of an independent pair of identical Poisson
processes contains a neighbourhood of bivariate processes subordinate to Freund
bivariate exponential probability density functions.

Theorem 5 The 5-dimensional space of bivariate Gaussians admits a 2-
dimensional subspace through which can be provided a neighbourhood of
independence for bivariate Gaussian processes.

Theorem 6 Via the Central Limit Theorem, by continuity, the tubular neighbour-
hoods of the curve of zero covariance for bivariate Gaussian processes will contain
all limiting bivariate processes sufficiently close to the independence case for all
processes with marginals that converge in probability density function to Gaussians.

The characterizing property in Theorem 1 is one of the main reasons for the
large number of applications of gamma distributions: many families of near-random
natural processes have standard deviation approximately proportional to the mean
[5], increasing together with time or changing ambient conditions, and this is easily
tested for in practice. To fit a gamma distribution to data we can obtain the maximum
likelihood parameter values O�; O�; as follows.

Given a set of identically distributed, independent data values X1;X2; : : : ;Xn; the
‘maximum likelihood’ or ‘maximum entropy’ parameter values O�; O� for fitting the
gamma distribution (13) are computed in terms of the mean and mean logarithm of
the Xi by maximizing the likelihood function

Lf .�; �/ D
nY

iD1
f .XiI�; �/:
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By taking the logarithm and setting the gradient to zero we obtain

O� D NX D 1

n

nX

iD1
Xi (18)

log O� � �
0. O�/

� . O�/ D log NX � 1
n

nX

iD1
log Xi

D log NX � log X: (19)

Neighbourhoods of Uniformity in the Log-Gamma Manifold

The log-gamma density (21) actually arises from the gamma density

f .x; �; �/ D x��1 ��

� .�/
e�x�: (20)

via the change of variable from x 2 R
C to a 2 .0; 1� via x D � log a:

The smooth family of log-gamma distributions has probability density functions
of form

P.a; �; �/ D a��1��
ˇ
ˇlog

�
1
a

�ˇ
ˇ��1

� .�/
(21)

Fig. 3 The log-gamma family of probability densities (21) with central mean a D 1
2

as a surface.
The surface tends to the delta function as � !1 and coincides with the constant 1 at � D 1
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for random variable a 2 .0; 1� and parameters �; � > 0; see Fig. 10. The mean and
variance are given by

a D E.a/ D
�

�

1C �
��

(22)

�2.a/ D
�

�

�C 2
��
�
�

�

1C �
�2�

: (23)

In this family the locus of those with central mean E.a/ D 1
2

satisfies

�.2
1
� � 1/ D 1 (24)

shown in Fig. 3; the uniform density is the special case with � D � D 1:

Figure 4 shows a spherical neighbourhood in Euclidean space centred on the point
at the uniform density on .0; 1� in the curved surface representing all log-gamma
distributions; the uniform density is represented by the point � D 1; � D 1: This
provides a method to measure departures from uniformity. The important informa-
tion geometric property is that the Riemannian manifold of gamma distributions
is isometric to that of log-gamma distributions, this is discussed with applications
in [5].

Fig. 4 An affine immersion in Euclidean space R3 of the curved surface of log-gamma probability
densities on .0; 1�: The two curves in the surface represent the log-gamma distributions with � D 1

and � D 1; and the spherical neighbourhood in R
3 is centred on their intersection, which point

represents the uniform distribution
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Neighbourhoods of Randomness in the Gamma Manifold

Cyber software sometimes uses pseudorandom number generators to provide seed
numbers for algorithms and sequences for testing procedures or for comparison with
application sequences in attempts to obscure internal processes, which otherwise
might reveal clues to the timing of underlying operations through power traces.
Cryptological attacks on encryption/decryption devices may be defended against by
obscuring algorithms that overlay randomizing procedures; then there is a need to
compare nearby signal distributions and again the information metric can help. The
Poisson distribution of events on a line is such that the probability of an event in an
interval depends only on the size of the interval, not on the position of the interval
in the line. Then the distribution of lengths of intervals between successive events
is easily shown to be exponential, and that distribution has maximal entropy within
the family of gamma distributions, so it is maximally haphazard and involves fewest
assumptions.

Tests for randomness of number sequences have been studied extensively and the
NIST Suite of tests [53] for cryptological purposes is widely employed. Information
theoretic methods also are used, for example see [20] also [55] and the references
therein for recent work. In [24] we added to the latter by outlining how finite
length pseudorandom sequences may be tested quickly and easily using information
geometry by computing distances in the gamma manifold to compare maximum
likelihood parameters for separation statistics of sequence elements. A Poisson
process defines a unique exponential distribution, the exponential distributions
with different means are special cases of gamma distributions and the information
geometry of the gamma family determines a metric structure for neighbourhoods,
cf. Fig. 2, of the 1-parameter curve of exponential distributions in the Riemannian
manifold of gamma distributions [5].

Mathematica [63] simulations were made of Poisson line processes using
random number sequences of length n D 100;000 for which spacing statistics
were computed [24]. Figure 5 shows maximum likelihood gamma parameter �
values from the simulations. The surface height in Fig. 6 represents upper bounds
on information geometric distances from .�; �/ D .511; 1/ in the gamma manifold.
This employs the approximate geodesic mesh function we described in Arwini and
Dodson [5].

DistanceŒ.511; 1/; .�; �/� �
ˇ
ˇ
ˇ
ˇ
d2 log�

d�2
.�/ � d2 log�

d�2
.1/

ˇ
ˇ
ˇ
ˇC

ˇ
ˇ
ˇ
ˇlog

511

�

ˇ
ˇ
ˇ
ˇ : (25)

The points shown in Fig. 6 are maximum likelihood gamma parameters from the
Mathematica simulations of Poisson random processes of 100;000 events with
expected separation � D 511: In the data from 500 such simulations the ranges
of maximum likelihood gamma parameters were

419 � � � 643 and 0:62 � � � 1:56:
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Fig. 5 The problem of finite length pseudorandom sequences. Maximum likelihood gamma
parameter � fitted to separation statistics for simulations of Poisson line processes of length
100;000 with expected parameter � D 1: These simulations used the pseudorandom number
generator in Mathematica [63]. In the limit, as the sequence length tends to infinity we expect
the gamma parameter � to tend to 1

Fig. 6 Distances in the space of gamma models, using a geodesic mesh. The surface height
represents upper bounds on distances from the target .�; �/ D .511; 1/ from Eq. (25). Also shown
are data points of maximum likelihood gamma parameters for interval lengths between events
from simulations of Poisson random processes of 100;000, for events with expected separation
� D 511: In the limit as the sequence length tends to infinity we expect the gamma parameter � to
tend to 1
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So, even with strings of 100;000 nominally random numbers, there is consid-
erable variability from the expected distribution of spacings in the sorted strings.
Clearly as the sequence length tends to infinity we expect the gamma parameter �
to tend to 1: However, finite sequences must be used in real applications and then
provision of a metric structure allows us, for example, to compare real sequence
generating procedures against an ideal Poisson random model in the space of gamma
distributions. Representations like that in Fig. 6 could be used to trigger an alert or
action when an automated updating sequence of events abnormally strays over a
chosen threshold of distance from a target.

Statistics of Finite Random Spacing Sequences

In the perfectly random case of haphazard allocation of events along a time line,
the result is an exponential distribution of inter-event intervals when the line is
infinite. However, for finite length processes it is a little more involved and we need
to analyse this first in order to provide our reference structure.

Think of a sequence of different events among which we have distinguished one,
represented by the letter X;while all others are represented by ‹: In the cyber security
context, X is the event of an attack. The relative abundance of X is given by the
probability p that an arbitrarily chosen location in the sequence has an occurrence
of X: Then 1 � p is the probability that the location contains a different event from
X: If the locations of X are chosen with uniform probability subject to the constraint
that the net density of X in the chain is p; then either X happens or it does not; we
have a binomial process.

It follows that, in a sequence of n events, the mean or expected number of
occurrences of X is np and its variance is np.1 � p/; but it is not immediately clear
what will be the distribution of lengths of intervals between consecutive occurrences
of X. Evidently the distribution of such lengths r; measured in units of one location
length also is controlled by the underlying binomial distribution.

We are interested in the probability of finding in a sequence of n events a
subsequence of form

� � �‹X
‚…„ƒ
‹ � � �‹ X‹ � � �„ ƒ‚ …;

where the overbrace ‚…„ƒ encompasses precisely r events that are not X (i.e. not
cyber attacks) and the underbrace „ƒ‚… encompasses precisely n events, the whole
sequence.
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Derivation of the Distributions

In a sequence of n locations filled by events we consider the probability of finding
a subsequence containing two X’s separated by exactly r non-X ‹’s, that is the
occurrence of an inter-X space length r: In our case the random variable r is the
interval between successive cyber attacks.

The probability distribution function P.r; p; n/ for inter-X space length r reduces
to the first expression below (26), which is a geometric distribution and simplifies
to (27)

P.r; p; n/ D
�
p2.1� p/r.n � r � 2/�

Pn�2
rD0.p2.1 � p/r.n � r � 2// ; (26)

D .1 � p/1Cr p2 .n � r � 2/
�1C .1 � p/n C p .nC p � n p/

; (27)

for r D 0; 1; : : : ; .n � 2/:

The mean Nr and standard deviation �r of the distribution (27) are given for r D
0; 1; : : : ; .n � 2/; by

Nr D
n�2X

rD0
r P.r;p; n/

D ..1 � p/n .2C .�3C n/ p//C .�1C p/2 .�2C .�1C n/ p/

p ..1 � p/n C p .nC p � n p/� 1/ (28)

�r D
v
u
u
t

 
n�2X

rD0
r2 P.r; p; n/

!

� Nr2 (29)

D

v
u
u
t .p � 1/


�2 .1 � p/2 n � .1 � p/n N.r; p; n/ � .p � 1/2 .2C .n� 1/ p .n p � 4//

�

p2 ..1 � p/n C p .nC p � n p/ � 1/2 ;

where we make the abbreviation

N.r; p; n/ D

4 n p� 4C .n � 6/ .n � 1/ p2 C .n � 2/2 .n � 1/ p3

�
(30)

for r D 0; 1; : : : ; .n � 2/:

The coefficient of variation is given by

cvr D �r

Nr D
p ..1 � p/n � 1C p .nC p � n p// L.r; p; n/

.1 � p/n .2C .n � 3/ p/C .p � 1/2 ..�1C n/ p � 2/
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Fig. 7 Effect of sequence length n in random event sequences of length from n D 50 to
n D 4000 in steps of 50: Plot of standard deviation �r against mean Nr for inter-attack interval
distributions (27). The mean probability for the occurrence of an attack is p D 0:01 (right, red)
and p D 0:02 (left, blue). The standard deviation is roughly equal to the mean; mean and standard
deviation increase monotonically with increasing n

where we make the abbreviations

L.r; p; n/ D
v
u
u
t .1� p/


2 .1� p/2 n C .1� p/n M.r;p; n/C .p� 1/2 .2C .n� 1/ p .n p� 4//

�

p2 ..1� p/n C p .nC p� n p� 1//2

M.r; p; n/ D

4. n p� 1/C .n� 6/ .n� 1/ p2 C .n� 2/2 .n� 1/ p3

�
:

The two main variables are: the number n of events in the sequence, and the
abundance probability p of occurrence of attacks. Their effects on the statistics of
the distribution of inter-attack intervals are illustrated in Figs. 7 and 8, respectively.
Figure 9 plots the maximum likelihood gamma parameter � against the mean inter-
attack interval r:

Testing Nearby Signal Distributions and Drifts from
Uniformity

In practical signal comparison situations [28], we obtain statistical data for an
observable that is defined on some finite interval. We shall use as our model
the family (21) of log-gamma probability density functions defined for random
variable a 2 .0; 1�: The choice of log-gamma model is due to the fact that it
contains a neighbourhood of the uniform distribution, illustrated in Fig. 4, namely
for parameter values near .�; �/ D .1; 1/ in (21). Also, for parameter values
� >> 1 it has approximations to Gaussians truncated to domain .0; 1� and with
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Fig. 8 Effect of attack probability p; over the range 0:01 � p � 0:1 in steps of 0:01: Plot of
standard deviation �r against mean Nr for inter-attack interval in random sequences of length n D
200 events (light green) and length n D 500 events (dark green), with probability 0:01 � p � 0:1
for occurrence of attack. The standard deviation is for many practical purposes proportional to the
mean; mean and standard deviation decrease monotonically with increasing p
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Fig. 9 Effect of sequence length n in random event sequences of length from n D 50 to n D
4000 in steps of 50: Plot of gamma parameter � from against mean Nr for inter-attack interval
distributions (27). The mean probability for the occurrence of an attack is p D 0:01 (right, red)
and p D 0:02 (left, blue), corresponding to the cases in Fig. 7. We expect that, as n ! 1; so
�! 1; the random case

arbitrarily small variance. Figure 10 illustrates symmetric such cases with mean
value E.a/ D 1

2
: From the information metric cf. (21) on the space of these

probability density functions we can obtain information distances between nearby
distributions as follows. Suppose that we record data on amplitude a 2 .0; 1� for two
cases with parameters .�0; �0/ and .�0 C ��; �0 C ��/ for small ��;��: Then



186 C.T.J. Dodson

For κ = 10, 50, 100

For κ .995, 1, 1.05
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Fig. 10 Examples from the log-gamma family of probability densities with central mean E.a/ D
1
2
: Upper: near to uniform, � D 0:995; 1; 1:05. Lower: approximations to truncated Gaussians,
� D 10; 50; 100

the information distance �s between these distributions is approximated from

In .�; �/ coordinates �s2 � �0

�20
��2 � 2

�0
���� C d2 log�

d�2
.�0/ ��

2 (31)

In .�; �/ coordinates �s2 � �0

�20
��2 C

�
d2 log�

d�2
.�0/� 1

�0

�

��2 (32)
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Table 1 Numerical val-
ues of d2 log�

d�2 .�0/ � 1
�0

for � D 1; 2; : : : ; 10

to illustrate the relative
effects of �� and �� on
�s in (32)

�0
d2 log�

d�2 .�0/� 1
�0

1 0:644934

2 0:144934

3 0:0616007

4 0:033823

5 0:021323

6 0:0146563

7 0:010688

8 0:00813701

9 0:0064009

10 0:00516634

Note that, as �0 increases from 1, the factor d2 log�
d�2

.�0/� 1
�0

decreases monoton-

ically from �2

6
� 1: So, in the information metric, the difference�� has increasing

prominence over�� as we see in Table 1.
Two particular cases are of interest:

Near to the uniform distribution: Here we have .�0 D 1; �0 D 1/ and �s2

reduces to

In .�; �/ coordinates �s2 � ��2 � 2���� C 1:645��2 (33)

In .�; �/ coordinates �s2 � ��2 C 0:645��2 (34)

Two nearby unimodular distributions: Here we have �0 >> 1 and�s2 reduces
to

In .�; �/ coordinates �s2 � �0

�0

2

��2 � 2
�
���� (35)

In .�; �/ coordinates �s2 � �0

�0

2

��2: (36)

For automated security monitoring of sample distributions, these distance values
can be used for creating alerts or action when certain chosen threshold deviations
arise from target uniform or chosen truncated Gaussian distributions.
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Protecting Devices with Obscuring Techniques

Public key encryption, such as RSA, employs modular arithmetic with a very large
modulus. It is necessary to compute

R � ye .mod m/ or R � yd .mod m/ (37)

for, respectively, encrypting or decrypting a message y: The modulus m is chosen to
be the product of two large prime numbers p; q; which are kept secret; then choose
d; e such that

ed � 1 .mod .p � 1/.q� 1//: (38)

The modulus m and the encryption key e are made public; the decryption key d is
secret.

Encoding and decoding computations both involve repeated numerical exponen-
tiation procedures. Kocher et al. [40] showed the effectiveness of Differential Power
Analysis (DPA) in breaking encryption procedures using correlations between
power consumption and data bit values during processing, claiming that most smart
cards reveal their DES keys using fewer than 15 power traces.

Chari et al. [16] provided a probabilistic encoding (secret sharing) scheme
for effectively secure computation. They obtained lower bounds on the number of
power traces needed to distinguish distributions statistically, under certain assump-
tions about Gaussian noise functions. DPA attacks depend on the assumption that
power consumption in a given clock cycle will have a distribution depending on the
initial state; the attacker needs to distinguish between different ‘nearby’ distributions
in the presence of noise. Zero-Knowledge proofs allow verification of secret-based
actions without revealing the secrets. Goldreich et al. [34] discussed the class
of promise problems in which interaction may give additional information in the
context of Statistical Zero-Knowledge (SZK). They invoked two types of difference
between distributions: the ‘statistical difference’ (SZK) and the ‘entropy difference’
of two random variables. In this context, typically, one of the distributions is the
uniform distribution. Thus, in the contexts of DPA and SZK tests, it is necessary to
compare two nearby distributions on bounded domains, other situations may need
similar comparisons.

Accordingly, some knowledge of the design of an implementation and informa-
tion on the timing or power consumption during computational stages could yield
clues to the decryption key d: Canvel and Dodson [10, 11] showed how timing
analyses of the modular exponentiation algorithm quickly reveal the private key,
regardless of its length. An obscuring procedure could mask the timing information
but that may not be straightforward for some small memory devices. It is important
to be able to assess departures from Poisson randomness of underlying or overlaid
procedures that are inherent in devices and here we outline some information
geometric methods to add to the standard tests [53].
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In cryptographic attacks, differential Power Analysis (DPA) methods and Sta-
tistical Zero-Knowledge (SZK) proofs depend on discrimination between noisy
samples drawn from pairs of closely similar distributions. In many cases the
distributions resemble truncated Gaussians; sometimes one distribution is uniform.
A log-gamma family of probability density functions provides a 2-dimensional
metric space of distributions on .0; 1�; ranging from the uniform distribution
to symmetric unimodular distributions of arbitrarily small variance. Illustrative
calculations are provided here; more discussion is given in [5]. An attack can make
use of the time taken for the computations for a chosen set of y values, given some
knowledge of the design of the device being used. So, access to timing data of
operations on a submission of a sequence of chosen messages yi; i D 1; 2; : : : could
reveal clues to the succession of bits in the encryption key e: We investigated the
square and multiply implementation to perform the exponentiations [11], using
Head’s algorithm, and we obtained xn.mod m/ where n D dkdk � 1 : : : d1d0 is the
exponent in binary form as follows [33]:

Modular exponentiation algorithm for xn.mod m/
While n > 0
Let d D n� 2Œn=2� If d D 1 then
r D xr.mod m/ (using Head’s algorithm)
End If
x D x2.mod m/ (using Head’s algorithm)
n D .n� d/=2
End While

Using the R.D. Oliviera library timer.h, Canvel [10] programmed in C++ to
obtain the timings of the portions of the code for each exponent bit in the square
and multiply algorithm. The full code is available in the thesis [10] and results were
reported for p and q of lengths from 50 to 290 bits, and e from 20 to 100 bits, both
of these ranges in steps of 5 bits. By way of illustration, Fig. 11 shows a typical
barchart of timing values, for a 20 bit encryption key e and 195 bit p and q: We
can see that the encryption key e can be read from right to left off the barchart of
timings.

In practice, clues to such timing information can be obtained from data on power
consumption using electromagnetic sensors, possibly needing statistical processes
to clean the data of noise. A practicable defence is to obscure the power usage
data on timing information by spurious other processes. Then the effectiveness
of such obscuring techniques can be evaluated using analyses of the distributions
associated with time series from power usage. For example, a time series of power
consumption using appropriately chosen thresholding and interval windows would
yield a barchart and that would ideally be like that arising from Poisson processes,
which for a given mean are maximally disordered [36]. Information geometry
can be used to measure differences from the Poisson model, equivalently from its
associated exponential distribution. Figure 11 shows the actual timing data of binary
digits in the encryption key, illustrating precisely the opposite of maximal disorder:
a binary barchart revealing the digit sequence.
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Fig. 11 Example for timings using an encrypting key e of 20 bits with p and q of size 195 bits.
The encryption key bits 10110111100000010001 can be read from right to left

Dimensionality Reduction Methods

A general class of methods used to represent high-dimensional datasets is called
multidimensional scaling or dimensionality reduction. In many real world problems
we encounter high dimensionality in large data sets and often do not know the
optimal net probability density function family for the features represented in the
data. A fundamental problem in the identification of probability densities from large
multidimensional data sets, that of efficient dimensionality reduction, was addressed
by Carter and his co-workers [12–15]. They used information geometry to obtain
nearest neighbour distances by means of geodesic estimates subordinate to a Fisher
information metric.

This method takes account of the curved geometry of the data set, rather
than displaying it as uncurved in a Euclidean geometry cf. [12, Fig. 3.2]. The
significance is that the non-obvious global topology of frequency connectivity in
the data is revealed by the geodesics. An illustration using router traffic on the
Abilene network showed how anomalous behaviour unseen by local methods could
be picked up through dimensionality changes cf. [12, Fig. 3.10]. Moreover, in
document classification, the information metric approach outperformed standard
Principal Component Analysis and Euclidean embeddings [13], and it outperformed
traditional approaches to video indexing and retrieval with real world data [17].
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Such information geometric methods could extend to anomaly detection using
large sample size data sets derived from an underlying probability distribution
in which the parameterization is unknown. A comparison of relevant information
theoretic measures that are important for anomaly detection can be found in Lee and
Xiang [45]. Raginsky et al. [51] provided a filtering and hedging joint approach
to the detection of anomalies in sequentially observed noisy data, by comparing the
current belief against a time-varying and data-adaptive threshold. The threshold is
adjusted based on the available feedback from an end user. The thesis of Liu [46]
addressed the problem of intrusion detection for wireless networks and developed a
hybrid anomaly intrusion detection approach, based on two data mining techniques,
association-rule mining and cross-feature mining.

The methods described by Carter et al. [12, 13] reduce the dimensionality of
data sets and hence identify clustering of sets with similar features through 3-
dimensional rendering of the resultant plots. In cyber security we anticipate a large
data set X1;X2; ::;XN of distributions which represent to differing degrees features
relating to potential cyber attacks. Such data may be collected automatically and
routinely, with the objective of identifying anomalous behaviour associated with
attempted cyber attacks. The analytic procedure consists of a series of computational
steps:

1. Compute mutual ‘information distances’ D.i; j/ among the members of the
dataset of distributions X1;X2; ::;XN .

2. The array of N � N differences D.i; j/ is a symmetric positive definite matrix
with diagonal zero. Centralize this by subtracting row and column means and
then adding back the grand mean to give CD.i; j/:

3. The centralized matrix CD.i; j/ is again symmetric positive definite with diagonal
zero. Its N eigenvalues ECD.i/ are necessarily real, and there are N correspond-
ing N-dimensional eigenvectors VCD.i/:

4. Let A be the 3�3 diagonal matrix of the first three eigenvalues of largest absolute
magnitude and let B be the 3 � N matrix of the corresponding eigenvectors. The
matrix product A �B yields a 3�N matrix and its transpose is an N � 3 matrix T;
which gives us N coordinate values .xi; yi; zi/ to embed the N samples in R

3:

In the case when no obvious model family of distributions is available, Step 1 above
could be effected by means of the widely used Kullback–Leibler measure of relative
entropy [41, 42] which in symmetrized form for two probability density functions
f1; f2 defined on ˝ 	 R

n is

DKL.f1; f2/ D 1

2

�Z

˝

f1 log

�
f1
f2

�

C
Z

˝

f2 log

�
f2
f1

��

(39)

and for numerical, normalized frequency distributions F;G with bin indexing J we
could use the discrete form
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DKL.F;G/ D 1

2

0

@
X

j2J

Fj log

�
Fj

Gj

�

C
X

j2J

Gj log

�
Gj

Fj

�
1

A : (40)

See Johnson and Sinanovic [39] for more symmetrizing options with the Kullback–
Leibler relative entropy. We note that for such an empirical frequency distribution F
the entropy is

S.F/ D
X

j2J

Fj: (41)

The kind of data sets collected by security monitoring software is usually
customized to the context and network connectivity to be protected. Gu et al. [35]
used maximum entropy (41) and relative entropy (i.e. Kullback–Leibler (40)) to
compare a pre-trained baseline distribution for internet traffic with the current
traffic being monitored; their results indicated some success in anomaly detection,
including synchronizing (SYN) attacks and port scanning reconnaissance attacks.
Lee and Xiang [45] discuss intrusion detection systems, such as SunSHIELD [57]
and tcdump [38], which collect system and network activity data and analyse it to
determine whether an attack is in progress.

Carter’s thesis [12] included an illustration using router traffic on the Abilene
network that showed how anomalous behaviour unseen by local methods could be
picked up through dimensionality changes cf. [12, Fig. 3.10]. The data was from
the Abilene Network of 11 routers which comprise the core of the ‘edu’ network;
the number of packets on each of these routers was taken every 5 min through 1–2
January 2005, which yielded an 11-dimensional dataset of 576 samples.

Some illustrations of applications of dimensionality reduction to stochastic
textures in one and two dimensional processes can be found in [27]. An example of
a 1-dimensional stochastic texture is a grey-level barcode for a genome, obtained by
mapping the 20 amino acids onto grey levels. The neighbourhood structure of grey-
level values yielded autocovariances and hence multivariate Gaussian distributions;
then the dimensionality reduction of a large dataset of these could be represented on
a plot in R

3 which illustrated the main features discriminating among yeast, human,
and randomly generated genomes, cf. [27, Figs. 16 and 17]. Two-dimensional
stochastic textures can be represented as surface topographies and these were
studied in [29].

Autocovariance extractions can be made from administratively monitored time
series for a local network of nominally secure access points to a server providing
sensitive data. Then for the case of k variables arising from value x1 at a point t1
and the value of the succession of averages of its successive neighbours at distances
giving Nx2 at t˙2 and so on to Nxk at t˙k in the series, we can compute analytically the
information distance D.˙A; ˙B/ between pairs of k�k covariance matrices˙A; ˙B

from section “Information Geometry of Gaussians”



Information Geometric Cyber Security 193

D.˙A; ˙B/ D
v
u
u
t1

2

kX

jD1
log2.�AB

j / (42)

where f�AB
j g D Eig.SAB/ and SAB D ˙A�1=2 �˙B �˙A�1=2: (43)

Multivariate monitoring data in n-dimensional pixel form can be similarly treated
through its autocovariance matrices, the only difference being that the neighbours
for a given pixel .xi/ 2 R

n form annular regions of radius 1; 2; : : : ; k around the
pixel [29].

In the case that the data is more complex, for example mixtures of multivariate
Gaussians, analytic information distances are not available but approximations have
been obtained, for example in [23] where also the effects of different weighting
sequences were investigated. In many applications, a true information metric is not
essential since relative discriminations that are monotonically related to it may be
adequate for purposes of comparison between datasets.

Discussion

The framework of Riemannian geometry has been enormously valuable in the
development over the past century and a half of physical models for real processes in
time and space, as well as in the abstract high-dimensional and infinite-dimensional
spaces that are important for physical field theories. Conversely, these developments
in physical models have stimulated developments in geometry, global analysis and
functional analysis, to extend mathematical structures to contexts that were not
previously envisaged. The more recent development of cheap computer power and
rapid processing has made possible very effective developments in computational
geometry for numerical solution of complex problems.

Analytic computing packages like Mathematica [63] enable rapid handling of
complex operations in large numbers of variables to obtain analytic solutions to
mathematical problems that were previously inaccessible. Moreover, this analytic
work is easily performed by anyone with experience in writing mathematical
expressions and it is easy to display results and effects of variables graphically,
including with animation. The development during the last 70 years of information
geometry has provided all the tools of Riemannian geometry, for use on smoothly
parametrized families of probability density functions, and modern computational
information geometry makes possible the analysis of complex statistical models.
Moreover, it provides their representation through natural embeddings such as
Figs. 2, 4, 6, which are more easily interpreted than tables of data.

Encoding and decoding algorithms for public key encryption typically involve
repeated numerical exponentiation procedures. Correlations, between power con-
sumption and data bit values, during processing by a device when supplied with
chosen inputs can reveal clues to the encryption key, if a sensor can be placed to
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pick up the power consumption traces, section “Protecting Devices with Obscuring
Techniques”. This stems from the fact that the processing algorithms use different
times to run for steps involving a ‘1’ bit from a ‘0’ bit in the key, as we
illustrated using modular exponentiation with Head’s algorithm in Fig. 11 above,
from our report of timing studies in [11]. One practicable defence is to obscure
the power usage data on timing information by spurious other processes. Then the
effectiveness of such obscuring techniques can be evaluated using analyses of the
distributions associated with time series from power usage. For example, a time
series of power consumption using appropriately chosen thresholds and interval
windows would yield a barchart that would ideally be like that arising from Poisson
random processes, hiding any influence from internal process timings. In evaluating
such obscuring techniques, information geometry can measure differences from the
Poisson ideal.

The monitoring of networks to identify breaches of cyber security may often
involve the automated collection of very large volumes of possibly high dimen-
sional time series data, which may be representable through empirical frequency
distributions tailored to the process to be protected. In some cases these distributions
may be interpreted as perturbations of, for example, Poisson random processes or
uniform processes, which could be an ideal target for the data in the absence of
attacks or anomalous events. We have seen in section “Information Geometry of
the Gamma Manifold” that the family of gamma distributions and its logarithmic
version have relevance to this context. These have simple information geometry,
which we have illustrated in some example calculations, section “Testing Nearby
Signal Distributions and Drifts from Uniformity”, concerning the measurement of
departures from uniformity and from a Poisson random process. There also we
showed how to provide a distance between two nearby truncated Gaussian-like
distributions, Fig. 10. For automated security monitoring of sample distributions,
these distance values can be used for creating alerts or initiating action when certain
chosen threshold deviations arise from target uniform or chosen truncated Gaussian
distributions. In the absence of a model family of distributions we can use the
symmetrized Kullback–Leibler relative entropy expression, Eq. (40), to measure
distance between empirical frequency distributions.

In other cases, for n-dimensional data values .xi/ 2 R
n for any n D 1; 2; : : : ;

we can compute .k � k/ autocovariance matrices from values at a point in R
n and

the averages of its jth-neighbours for a set of j D 1; 2; : : : ; k: These are amenable
to an interpretation through the information geometry of k-variate Gaussian covari-
ances, which also have relatively simple information geometry as we showed in
section “Information Geometry of Gaussians” where we have provided explicit
analytic expressions, Eq. (42) for distances between two .k�k/ covariance matrices.

For the situations when large numbers of empirical or fitted distributions have
to be handled, we have described explicitly in section “Dimensionality Reduction
Methods” the steps to follow in the method of dimensionality reduction. The
methodology represents all of the datasets on one plot in R

3; which reveals the
topology of the dataset and any prominent features, such as clusters and natural
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subgroups within the data, regardless of the number of datasets. This procedure has
been shown to outperform the more common Principal Component Analysis [13]
in feature identification.
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A Survey of Recent Inequalities for Relative
Operator Entropy

Silvestru Sever Dragomir

Abstract The concepts of relative operator entropy and operator entropy play
an important role in different subjects, such as statistical mechanics, information
theory, dynamical systems and ergodic theory, biology, economics, human and
social sciences. They are closely related to the problem of the quantification of
entanglement, the distinguishability of quantum states and to thermodynamical
ideas. In this paper we survey some recent inequalities obtained by the author for the
relative operator entropy S .�j�/ ; for positive invertible operators A and B in general,
and, in particular when they satisfy the boundedness condition mA � B � MA for
some m; M with 0 < m < M: Natural applications for the operator entropy � .�/ are
provided. In the end, some trace inequalities for trace class operators A and B that
satisfy the normality condition tr .A/ D tr .B/ D 1 are also given.

Keywords Relative operator entropy • Operator entropy • Young’s inequality •
Convex functions • Operator inequalities • Means

Introduction

The concept of entropy was introduced in thermodynamics by Clausius in 1865,
and some of the main steps towards the consolidation of the concept were taken
by Boltzmann and Gibbs. Many generalizations and reformulations of this notion
have been proposed, with motivations and applications in different subjects, such
as statistical mechanics, information theory, dynamical systems and ergodic theory,
biology, economics, human and social sciences. In quantum mechanics, pure states
of physical systems are described by vectors in a Hilbert space, while mixed states
are described by positive semi-definite matrices with trace one. Such matrices are
called density matrices. In these contexts one mathematical function emerges as a
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central quantity, namely the relative operator entropy. It has a number of remarkable
properties [6, 7, 12, 19] and is closely related to the problem of the quantification
of entanglement, the distinguishability of quantum states and to thermodynamical
ideas. Any new inequality relating the relative entropy to other entropic quantities
is therefore expected to lead to potentially important new insights into any of these
topics and is potentially an important contribution.

To be more precise, recall that Kamei and Fujii [6, 7] defined the relative
operator entropy S .AjB/ ; for positive invertible operators A and B; by

S .AjB/ WD A
1
2


ln A�

1
2 BA�

1
2

�
A
1
2 (1)

which is a relative version of the operator entropy considered by Nakamura–
Umegaki [21].

In general, we can define for positive operators A; B

S .AjB/ WD s � lim
"!0C S .AC "IjB/

if it exists, here I is the identity operator.
For the entropy function � .t/ D �t ln t; the operator entropy has the following

expression:

� .A/ D �A ln A D S .AjI/ � 0

for positive contraction A: This shows that the relative operator entropy (1) is a
relative version of the operator entropy.

Following [12, pp. 149–155] we recall some important properties of relative
operator entropy for A and B positive invertible operators:

(i) We have the equalities

S .AjB/ D �A1=2
�
ln A1=2B�1A1=2

�
A1=2 (2)

D B1=2�
�
B�1=2AB�1=2

�
B1=2I

(ii) We have the inequalities

S .AjB/ � A .ln kBk � ln A/ and S .AjB/ � B � AI

(iii) For any C;D positive invertible operators we have that

S .AC BjCCD/ � S .AjC/C S .BjD/I

(iv) If B � C, then

S .AjB/ � S .AjC/I
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(v) If Bn # B, then

S .AjBn/ # S .AjB/I

(vi) For ˛ > 0 we have

S .˛Aj˛B/ D ˛S .AjB/I

(vii) For every operator T we have

T�S .AjB/T � S
�
T�ATjT�BT

�
:

The relative operator entropy is jointly concave, namely for any positive
invertible operators A, B; C; D we have

S .tAC .1 � t/BjtCC .1 � t/D/ � tS .AjC/C .1 � t/ S .BjD/

for any t 2 Œ0; 1�.
For recent results related on operator entropy see also [8, 10, 13, 16, 17, 20, 22].

The famous Young inequality for scalars says that if a; b > 0 and � 2 Œ0; 1�; then

a1��b� � .1 � �/ aC �b (3)

with equality if and only if a D b. The inequality (3) is also called �-weighted
arithmetic-geometric mean inequality.

We recall that Specht’s ratio is defined by [23]

S .h/ WD

8
ˆ̂
<̂

ˆ̂
:̂

h
1

h�1

e ln

�

h
1

h�1

� if h 2 .0; 1/[ .1;1/

1 if h D 1:
(4)

It is well known that limh!1 S .h/ D 1; S .h/ D S
�
1
h

�
> 1 for h > 0; h ¤ 1. The

function is decreasing on .0; 1/ and increasing on .1;1/:
The following inequality provides a refinement and a multiplicative reverse for

Young’s inequality

S
a

b

�r�
a1��b� � .1 � �/ aC �b � S

a

b

�
a1��b�; (5)

where a; b > 0, � 2 Œ0; 1�; r D min f1 � �; �g.
The second inequality in (5) is due to Tominaga [24] while the first one is due to

Furuichi [9].
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We consider the Kantorovich’s constant defined by

K .h/ WD .hC 1/2
4h

; h > 0: (6)

The function K is decreasing on .0; 1/ and increasing on Œ1;1/ ; K .h/ � 1 for any
h > 0 and K .h/ D K

�
1
h

�
for any h > 0:

The following multiplicative refinement and reverse of Young inequality in terms
of Kantorovich’s constant holds

Kr
a

b

�
a1��b� � .1 � �/ aC �b � KR

a

b

�
a1��b� (7)

where a; b > 0, � 2 Œ0; 1�; r D min f1 � �; �g and R D max f1 � �; �g :
The first inequality in (7) was obtained by Zou et al. in [26] while the second by

Liao et al. [18].
Kittaneh and Manasrah [14, 15] provided a refinement and an additive reverse

for Young inequality as follows:

r
p

a �pb
�2 � .1 � �/ aC �b � a1��b� � R

p
a �pb

�2
(8)

where a; b > 0, � 2 Œ0; 1�; r D min f1 � �; �g and R D max f1 � �; �g : The case
� D 1

2
reduces (8) to an identity.

In the recent paper [2] we obtained the following reverses of Young’s inequality
as well:

0 � .1 � �/ aC �b � a1��b� � � .1 � �/ .a � b/ .ln a � ln b/ (9)

and

1 � .1 � �/ aC �b

a1��b�
� exp

h
4� .1 � �/


K
a

b

�
� 1

�i
; (10)

where a; b > 0, � 2 Œ0; 1�:
In [3] we obtained the following inequalities that improve the corresponding

results of Furuichi and Minculete from [11]

1

2
� .1 � �/ .ln a � ln b/2 min fa; bg (11)

� .1 � �/ aC �b � a1��b�

� 1

2
� .1 � �/ .ln a � ln b/2 max fa; bg
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and

exp

"
1

2
� .1 � �/

�

1 � min fa; bg
max fa; bg

�2
#

(12)

� .1 � �/ aC �b

a1��b�

� exp

"
1

2
� .1 � �/

�
max fa; bg
min fa; bg � 1

�2
#

for any a; b > 0 and � 2 Œ0; 1�.
In this paper we survey some recent inequalities obtained by the author for the

relative operator entropy S .�j�/ ; for positive invertible operators A and B in general,
and, in particular when they satisfy the boundedness condition

mA � B � MA (13)

for some m; M with 0 < m < M: Natural applications for the operator entropy � .�/
are provided. In the end, some trace inequalities for trace class operators A and B
that satisfy the normality condition tr .A/ D tr .B/ D 1 are also given.

Inequalities via Uhlmann’s Representation

In [25], A. Uhlmann has shown that the relative operator entropy S .AjB/ can be
represented as the strong limit

S .AjB/ D s � lim
t!0

A]tB � A

t
(14)

where

A]�B WD A1=2
�
A�1=2BA�1=2

��
A1=2; � 2 Œ0; 1�

is the weighted geometric mean of positive invertible operators A and B: For � D 1
2

we denote A]B:
We have:

Theorem 1 (Dragomir, 2015 [4]) Let A; B be two positive invertible operators,
then we have

S .AjB/ � 2 .A]B � A/ � B � A: (15)
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Proof From the inequality (8) for � 2 �0; 1
2

�
and a; b > 0 we have

�
p

a�pb
�2 � .1 � �/ aC �b � a1��b�

that is equivalent to

a � 2pabC b � b � aC 1

�

�
a � a1��b�

�

and to

1

�

�
a1��b� � a

� � 2
p

ab � a
�
: (16)

If we take in (16) a D 1, then we get

1

�
.b� � 1/ � 2 �b1=2 � 1� ; (17)

for any � 2 �0; 1
2

�
and a; b > 0.

If we use the continuous functional calculus, then we have for any positive
operator X that

1

�
.X� � 1/ � 2 �X1=2 � 1� ; (18)

for any � 2 �0; 1
2

�
.

If we take in (18) X D A�1=2BA�1=2, then we get

1

�

�
A�1=2BA�1=2

�� � 1
�
� 2

�
A�1=2BA�1=2

�1=2 � 1
�
; (19)

for any � 2 �0; 1
2

�
.

Multiplying both sides of (19) by A1=2 we get

1

�


A1=2

�
A�1=2BA�1=2

��
A1=2 � A

�
(20)

� 2


A1=2
�
A�1=2BA�1=2

�1=2
A1=2 � A

�
;

for any � 2 �0; 1
2

�
.

By taking the strong limit over � ! 0C in (20) and by using the representa-
tion (14) we obtain the first inequality in (15).

By the operator geometric mean-arithmetic mean inequality A]B � 1
2
.AC B/

we deduce the second part of (15).
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Remark 1 The inequality (15) is an improvement of the result from (ii) in the
introduction.

Corollary 1 For any positive invertible operator C we have

� .C/ � 2 �C1=2 � C
� � I � C:

Theorem 2 (Dragomir, 2015 [4]) Let A; B be two positive invertible operators,
then we have

.0 �/ 1
2

A1=2
�
ln A�1=2BA�1=2

�2
�
1

2
I �

ˇ
ˇ
ˇ
ˇA
�1=2BA�1=2 � 1

2
I

ˇ
ˇ
ˇ
ˇ

�

A1=2 (21)

� B � A � S .AjB/

� 1

2
A1=2

�
ln A�1=2BA�1=2

�2
�
1

2
I C

ˇ
ˇ
ˇ
ˇA
�1=2BA�1=2 � 1

2
I

ˇ
ˇ
ˇ
ˇ

�

A1=2:

Proof From (9) we have

1

2
� .1 � �/ .ln a � ln b/2 min fa; bg

� .1 � �/ aC �b � a1��b�

� 1

2
� .1 � �/ .ln a � ln b/2 max fa; bg

for any for � 2 .0; 1/ and a; b > 0:
This is equivalent to

1

2
.1 � �/ .ln a � ln b/2 min fa; bg (22)

� b � aC 1

�

�
a � a1��b�

�

� 1

2
.1 � �/ .ln a � ln b/2 max fa; bg

for any for � 2 .0; 1/ and a; b > 0:
If we replace in (22) a D 1 and b D x, then we get

.0 �/ 1
2
.1 � �/ .ln x/2 min f1; xg

� x � 1C 1

�
.1 � x�/

� 1

2
.1 � �/ .ln x/2 max f1; xg

for any for � 2 .0; 1/ and x > 0:
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If we use the continuous functional calculus, then we have for any positive
operator X that

1

2
.1 � �/ .ln X/2

�
1

2
I �

ˇ
ˇ
ˇ
ˇX �

1

2
I

ˇ
ˇ
ˇ
ˇ

�

(23)

� X � 1C 1

�
.1 � X�/

� 1

2
.1 � �/ .ln X/2

�
1

2
I C

ˇ
ˇ
ˇ
ˇX �

1

2
I

ˇ
ˇ
ˇ
ˇ

�

for any for � 2 .0; 1/ :
If we take in (23) X D A�1=2BA�1=2, then we get

1

2
.1 � �/ �ln A�1=2BA�1=2

�2
�
1

2
I �

ˇ
ˇ
ˇ
ˇA
�1=2BA�1=2 � 1

2
I

ˇ
ˇ
ˇ
ˇ

�

(24)

� A�1=2BA�1=2 � 1C 1

�


1 � �A�1=2BA�1=2

���

� 1

2
.1 � �/ �ln A�1=2BA�1=2

�2
�
1

2
I C

ˇ
ˇ
ˇ
ˇA
�1=2BA�1=2 � 1

2
I

ˇ
ˇ
ˇ
ˇ

�

for any for � 2 .0; 1/ :
Multiplying both sides of (24) by A1=2 we get

1

2
.1 � �/A1=2

�
ln A�1=2BA�1=2

�2
�
1

2
I �

ˇ
ˇ
ˇ
ˇA
�1=2BA�1=2 � 1

2
I

ˇ
ˇ
ˇ
ˇ

�

A1=2 (25)

� B � AC 1

�
A1=2


I � �A�1=2BA�1=2

���
A1=2

� 1

2
.1 � �/A1=2

�
ln A�1=2BA�1=2

�2
�
1

2
I C

ˇ
ˇ
ˇ
ˇA
�1=2BA�1=2 � 1

2
I

ˇ
ˇ
ˇ
ˇ

�

A1=2

for any for � 2 .0; 1/ :
This is an inequality of interest in itself.
Now, if we let � ! 0C in (25), then we get

.0 �/ 1
2

A1=2
�
ln A�1=2BA�1=2

�2
�
1

2
I �

ˇ
ˇ
ˇ
ˇA
�1=2BA�1=2 � 1

2
I

ˇ
ˇ
ˇ
ˇ

�

A1=2

� B � A � S .AjB/

� 1

2
A1=2

�
ln A�1=2BA�1=2

�2
�
1

2
I C

ˇ
ˇ
ˇ
ˇA
�1=2BA�1=2 � 1

2
I

ˇ
ˇ
ˇ
ˇ

�

A1=2;

which proves the desired result (21).
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Corollary 2 For any positive invertible operator C we have

.0 �/ 1
2
.ln C/2

�
1

2
I �

ˇ
ˇ
ˇ
ˇC �

1

2
I

ˇ
ˇ
ˇ
ˇ

�

(26)

� I � C � � .C/ � 1

2
.ln C/2

�
1

2
I C

ˇ
ˇ
ˇ
ˇC �

1

2
I

ˇ
ˇ
ˇ
ˇ

�

:

Trapezoid Error Estimates

As shown below, by making use of the geometric mean-arithmetic mean inequality,
one can prove that

ln m

M � m
.MA � B/C ln M

M � m
.B �mA/ � S .AjB/ (27)

for positive invertible operators A and B that satisfy the condition (13).
Therefore, it is a natural question to ask how far the right term is from the left

term in (27).
In the following, we provide some upper and positive lower bounds for the

difference

S .AjB/� ln m

M � m
.MA � B/� ln M

M �m
.B � mA/

under the above assumptions.

Theorem 3 (Dragomir, 2015 [4]) Let A; B be two positive invertible operators
such that the condition (13) is valid, then we have

0 � A
1
2 #m;M

�
A�1=2BA�1=2

�
A
1
2 (28)

� S .AjB/� ln m

M � m
.MA � B/� ln M

M �m
.B � mA/

� ln S

�
M

m

�

A

where

#m;M .x/ WD ln S

 �
M

m

� 1
2� 1

M�m jx� mCM
2 j!

� 0 (29)

for x 2 Œm;M� :
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Proof From (5) we have

S

 �
M

m

�minf�;1��g!
m1��M� � .1 � �/mC �M (30)

� S

�
M

m

�

m1��M� ;

for any � 2 Œ0; 1� :
If we take in (30) � D x�m

M�m 2 Œ0; 1� with x 2 Œm;M�, then we get

S

 �
M

m

�minf x�m
M�m ;

M�x
M�m g!

m
M�x
M�m M

x�m
M�m � x

� S

�
M

m

�

m
M�x
M�m M

x�m
M�m ;

and by taking the logarithm we obtain

ln S

 �
M

m

�minf x�m
M�m ;

M�x
M�mg!

(31)

� ln x � M � x

M �m
ln m � x �m

M � m
ln M � ln S

�
M

m

�

:

Since

min

�
x �m

M �m
;

M � x

M � m




D 1

2
�
ˇ
ˇ
ˇ
ˇ
ˇ

x � mCM
2

M �m

ˇ
ˇ
ˇ
ˇ
ˇ

for any x 2 Œm;M� ; then by (31) we get

#m;M .x/ � ln x � M � x

M � m
ln m � x � m

M �m
ln M � ln S

�
M

m

�

(32)

for any x 2 Œm;M� ; where #m;M is (the continuous function) defined by (29).
Using the continuous functional calculus we have from (62) that

#m;M .X/ � ln X � ln m

M � m
.MI � X/� ln M

M �m
.X �mI/ (33)

� ln S

�
M

m

�

I

for any self-adjoint operator X with the property that mI � X � MI:
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Multiplying both sides of (13) by A�1=2 we get

mI � A�1=2BA�1=2 � MI

and by replacing X by A�1=2BA�1=2 in (33) we get

#m;M
�
A�1=2BA�1=2

�
(34)

� ln A�1=2BA�1=2

� ln m

M � m

�
MI � A�1=2BA�1=2

� � ln M

M � m

�
A�1=2BA�1=2 � mI

�

� ln S

�
M

m

�

I:

Multiplying both sides of (34) by A1=2 we get the desired result (28).

Corollary 3 Assume that pI � C � PI for some p;P with 0 < p < P: Then we
have for operator entropy � .C/ D �C ln C that

0 � C�p;P
�
C�1

� � � .C/C P ln P

P � p
.C � pI/C p ln p

P � p
.PI � C/ (35)

� ln S

�
P

p

�

C

where

�p;P .x/ D ln S

0

@
�

P

p

� 1
2� pP

P�p

ˇ
ˇ
ˇx� pCP

2pP

ˇ
ˇ
ˇ
1

A

where x 2
h
1
P ;

1
p

i
:

Proof We have

1

P
C � I � 1

p
C:

If we take B D I; A D C; m D 1
P and M D 1

p in Theorem 3, then we get

C
1
2 # 1

P ;
1
p

�
C�1

�
C

1
2

� S .CjI/� ln 1
P

1
p � 1

P

�
1

p
C � I

�

�
ln 1

p
1
p � 1

P

�

I � 1
P

C

�

� ln S

�
P

p

�

C;
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namely

C
1
2 �p;P

�
C�1

�
C

1
2 D C�p;P

�
C�1

�

� S .CjI/C P ln P

P � p
.C � pI/C p ln p

P � p
.PI � C/

� ln S

�
P

p

�

C;

where

# 1
P ;
1
p
.x/ D �p;P .x/ D ln S

0

@
�

P

p

� 1
2� pP

P�p

ˇ
ˇ
ˇx� pCP

2pP

ˇ
ˇ
ˇ
1

A ;

with x 2
h
1
P ;

1
p

i
:

We also have:

Theorem 4 (Dragomir, 2015 [4]) With the assumptions of Theorem 3 we have

0 �
�
1

2
A � 1

M � m
A1=2

ˇ
ˇ
ˇ
ˇA
�1=2

�

B � mCM

2
A

�

A�1=2
ˇ
ˇ
ˇ
ˇA1=2

�

(36)

� K

�
M

m

�

� S .AjB/� ln m

M � m
.MA � B/� ln M

M �m
.B � mA/

�
�
1

2
AC 1

M � m
A1=2

ˇ
ˇ
ˇ
ˇA
�1=2

�

B � mCM

2
A

�

A�1=2
ˇ
ˇ
ˇ
ˇA

1=2

�

� K

�
M

m

�

:

Proof Using the inequality (7) we have

Kminf�;1��g
�

M

m

�

m1��M� � .1 � �/mC �M (37)

� Kmaxf�;1��g
�

M

m

�

m1��M�

for any � 2 Œ0; 1� :
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If we take in (37) � D x�m
M�m 2 Œ0; 1� with x 2 Œm;M�, then we get

Kminf x�m
M�m ;

M�x
M�mg

�
M

m

�

m
M�x
M�m M

x�m
M�m

� x � Kmaxf x�m
M�m ;

M�x
M�mg

�
M

m

�

m
M�x
M�m M

x�m
M�m ;

which is equivalent to

.0 �/min

�
x �m

M �m
;

M � x

M � m




K

�
M

m

�

� ln x � M � x

M �m
ln m � x �m

M � m
ln M

� max

�
x �m

M � m
;

M � x

M �m




K

�
M

m

�

or to

.0 �/
�
1

2
� 1

M � m

ˇ
ˇ
ˇ
ˇx �

mCM

2

ˇ
ˇ
ˇ
ˇ

�

K

�
M

m

�

� ln x � M � x

M � m
ln m � x � m

M �m
ln M

�
�
1

2
C 1

M � m

ˇ
ˇ
ˇ
ˇx �

mCM

2

ˇ
ˇ
ˇ
ˇ

�

K

�
M

m

�

:

By making use of a similar argument to the one in the proof of Theorem 3 we get
the desired result (36).

Remark 2 If A and B commute, then

A1=2
ˇ
ˇ
ˇ
ˇA
�1=2

�

B � mCM

2
A

�

A�1=2
ˇ
ˇ
ˇ
ˇA1=2 D

ˇ
ˇ
ˇ
ˇB �

mCM

2
A

ˇ
ˇ
ˇ
ˇ ;

S .AjB/ D A .ln B � ln A/

and by (36) we have

0 �
�
1

2
A � 1

M �m

ˇ
ˇ
ˇ
ˇB �

mCM

2
A

ˇ
ˇ
ˇ
ˇ

�

K

�
M

m

�

(38)

� A .ln B � ln A/� ln m

M � m
.MA � B/� ln M

M � m
.B �mA/

�
�
1

2
AC 1

M � m

ˇ
ˇ
ˇ
ˇB �

mCM

2
A

ˇ
ˇ
ˇ
ˇ

�

K

�
M

m

�

:
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Corollary 4 With the assumptions of Corollary 3 we have

�
1

2
C � pP

P � p

ˇ
ˇ
ˇ
ˇI �

pC P

2pP
C

ˇ
ˇ
ˇ
ˇ

�

K

�
P

p

�

(39)

� � .C/C P ln P

P � p
.C � pI/C p ln p

P � p
.PI � C/

�
�
1

2
CC pP

P � p

ˇ
ˇ
ˇ
ˇI �

pC P

2pP
C

ˇ
ˇ
ˇ
ˇ

�

K

�
P

p

�

:

Proof Follows by Theorem 4 on choosing B D I; A D C; m D 1
P and M D 1

p and
taking into account that, by the continuous functional calculus for C; we have

C1=2

ˇ
ˇ
ˇ
ˇC
�1=2

�

I � pC P

2pP
C

�

C�1=2
ˇ
ˇ
ˇ
ˇC

1=2 D
ˇ
ˇ
ˇ
ˇI �

pC P

2pP
C

ˇ
ˇ
ˇ
ˇ :

Theorem 5 (Dragomir, 2015 [4]) With the assumptions of Theorem 3 we have

.0 �/ S .AjB/� ln m

M � m
.MA � B/� ln M

M � m
.B �mA/ (40)

� 4

.M � m/2

�

K

�
M

m

�

� 1
�

.B �mA/A�1 .MA � B/

�
�

K

�
M

m

�

� 1
�

A:

Proof From the inequality (10) we have

.1 �/ .1 � �/mC �M

m1��M�
� exp

�

4� .1 � �/
�

K

�
M

m

�

� 1
��

; (41)

for any � 2 Œ0; 1� :
If we take in (41) � D x�m

M�m 2 Œ0; 1� with x 2 Œm;M� then we get

.1 �/ x

m
M�x
M�m M

x�m
M�m

� exp

�
4 .x �m/ .M � x/

.M � m/2

�

K

�
M

m

�

� 1
��

: (42)

Taking the logarithm in (42) we get

.0 �/ ln x � M � x

M �m
ln m � x �m

M � m
ln M

� 4 .x � m/ .M � x/

.M �m/2

�

K

�
M

m

�

� 1
�

for any x 2 Œm;M� :
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Making use of a similar argument to the one from the proof of Theorem 3 we get

S .AjB/� ln m

M � m
.MA � B/� ln M

M �m
.B � mA/

� 4

.M � m/2

�

K

�
M

m

�

� 1
�

� A1=2
�
A�1=2BA�1=2 �m

� �
M � A�1=2BA�1=2

�
A1=2

and since

A1=2
�
A�1=2BA�1=2 � m

� �
M � A�1=2BA�1=2

�
A1=2

D A1=2
�
A�1=2 .B � mA/A�1=2

� �
A�1=2 .MA � B/A�1=2

�
A1=2

D .B � mA/A�1 .MA � B/ ;

we obtain the first part of (40).
The second part follows by the inequality

4 .x �m/ .M � x/

.M � m/2
� 1

for any x 2 Œm;M� :
Corollary 5 With the assumptions of Corollary 3 we have

.0 �/ � .C/C P ln P

P � p
.C � pI/C p ln p

P � p
.PI � C/ (43)

� 4pP

.P � p/2

�

K

�
P

p

�

� 1
�

.IP� C/C�1 .C � Ip/

�
�

K

�
P

p

�

� 1
�

C:

Finally, we have:

Theorem 6 (Dragomir, 2015 [4]) With the assumptions of Theorem 3 we have

1

2M2
.B �mA/A�1 .MA � B/ (44)

� S .AjB/� ln m

M � m
.MA � B/� ln M

M � m
.B �mA/

� 1

2m2
.B �mA/A�1 .MA � B/
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Proof From the inequality (12) we have

exp

�
1

2
� .1 � �/


1 � m

M

�2
�

(45)

� .1 � �/mC �M

m1��M�

� exp

"
1

2
� .1 � �/

�
M

m
� 1

�2
#

for any � 2 Œ0; 1� :
If we take in (41) � D x�m

M�m 2 Œ0; 1� with x 2 Œm;M�, then we get

exp

�
1

2

.x � m/ .M � x/

.M � m/2


1 � m

M

�2
�

� x

m
M�x
M�m M

x�m
M�m

� exp

"
1

2

.x � m/ .M � x/

.M �m/2

�
M

m
� 1

�2
#

that is equivalent to

exp

�
1

2

.x � m/ .M � x/

M2

�

� x

m
M�x
M�m M

x�m
M�m

� exp

�
1

2

.x �m/ .M � x/

m2

�

:

On taking the logarithm, we get

1

2

.x �m/ .M � x/

M2
� ln x � M � x

M �m
ln m � x �m

M � m
ln M (46)

� 1

2

.x � m/ .M � x/

m2
;

for any x 2 Œm;M� :
Making use of a similar argument to the one from the proofs of Theorems 3 and

5 we get the desired result (44).

Corollary 6 With the assumptions of Corollary 3 we have

1

2

p

P
.IP � C/C�1 .C � Ip/ (47)
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� � .C/C P ln P

P � p
.C � pI/C p ln p

P � p
.PI � C/

� 1

2

P

p
.IP � C/C�1 .C � Ip/ :

Absolute Value Upper and Lower Bounds

Observe that, if we replace in (2) B with A; then we get

S .BjA/ D A1=2�
�
A�1=2BA�1=2

�
A1=2

D A1=2
��A�1=2BA�1=2 ln

�
A�1=2BA�1=2

��
A1=2;

therefore we have

A1=2
�
A�1=2BA�1=2 ln

�
A�1=2BA�1=2

��
A1=2 D �S .BjA/

for positive invertible operators A and B:
It is well known that, in general S .AjB/ is not equal to S .BjA/ :
Motivated by the above results, we establish in this paper some bounds for the

quantity S .BjA/ under the same assumptions (13) for the operators A and B: For
this purpose, we use some scalar inequalities for convex functions from [1, 2] and
[3]. Applications for the operator entropy � .C/ D �C ln C D S .CjI/ under the
natural assumption pI � C � PI for some constants p; P with 0 < p < P; are also
provided.

We have:

Theorem 7 (Dragomir, 2015 [5]) Let A; B be two positive invertible operators
such that the condition (13) is valid, then we have

2

�
1

2
A � 1

M � m
A1=2

ˇ
ˇ
ˇ
ˇA
�1=2

�

B � mCM

2
A

�

A�1=2
ˇ
ˇ
ˇ
ˇA

1=2

�

(48)

� K .m;M/

� m ln m

M � m
.MA � B/C M ln M

M � m
.B �mA/C S .BjA/

� 2
�
1

2
AC 1

M � m
A1=2

ˇ
ˇ
ˇ
ˇA
�1=2

�

B � mCM

2
A

�

A�1=2
ˇ
ˇ
ˇ
ˇA

1=2

�

� K .m;M/ ;
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where

K .m;M/ WD
�

m ln mCM ln M

2
�
�

mCM

2

�

ln

�
mCM

2

��

D ln

 
G
�
mm;MM

�

ŒA .m;M/�A.m;M/

!

and G .a; b/ WD pab is the geometric mean while A .a; b/ WD aCb
2

is the arithmetic
mean of positive numbers a; b:

Proof Recall the following result obtained by the author in 2006 [1] that provides
a refinement and a reverse for the weighted Jensen’s discrete inequality:

n min
j2f1;2;:::;ng

˚
pj
	
2

41

n

nX

jD1
˚
�
xj
� �˚

0

@1

n

nX

jD1
xj

1

A

3

5 (49)

� 1

Pn

nX

jD1
pj˚

�
xj
� �˚

0

@ 1

Pn

nX

jD1
pjxj

1

A

� n max
j2f1;2;:::;ng

˚
pj
	
2

41

n

nX

jD1
˚
�
xj
� �˚

0

@1

n

nX

jD1
xj

1

A

3

5 ;

where ˚ W C ! R is a convex function defined on convex subset C of the linear
space X;

˚
xj
	

j2f1;2;:::;ngare vectors in C and
˚
pj
	

j2f1;2;:::;ngare nonnegative numbers

with Pn DPn
jD1 pj > 0. For n D 2, we deduce from (49) that

2r

�
˚.x/C ˚.y/

2
� ˚

�
xC y

2

��

(50)

� �˚ .x/C .1 � �/˚ .y/ �˚ Œ�xC .1 � �/ y�

� 2R

�
˚.x/C ˚.y/

2
� ˚

�
xC y

2

��

for any x; y 2 R and � 2 Œ0; 1�, where r D min f�; 1 � �g and R D max f�; 1 � �g :
Now, if we take in (50) the convex function ˚ .t/ D t ln t; t > 0; then we get

2r

�
x ln xC y ln y

2
�
�

xC y

2

�

ln

�
xC y

2

��

(51)

� �x ln xC .1 � �/ y ln y � Œ�xC .1 � �/ y� ln Œ�xC .1 � �/ y�

� 2R

�
x ln xC y ln y

2
�
�

xC y

2

�

ln

�
xC y

2

��

for any x; y > 0 and � 2 Œ0; 1� :
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This is an inequality of interest in itself as well.
Now, if we take in (51) x D m; y D M and � D M�u

M�m 2 Œ0; 1� with u 2 Œm;M�
then we get

2min

�
M � u

M �m
;

u �m

M � m




(52)

�
�

m ln mCM ln M

2
�
�

mCM

2

�

ln

�
mCM

2

��

� M � u

M �m
m ln mC u � m

M � m
M ln M � u ln u

� 2max

�
M � u

M � m
;

u � m

M �m




�
�

m ln mCM ln M

2
�
�

mCM

2

�

ln

�
mCM

2

��

:

Since

min

�
M � u

M � m
;

u � m

M �m




D 1

2
�
ˇ
ˇ
ˇ
ˇ
ˇ

u� mCM
2

M �m

ˇ
ˇ
ˇ
ˇ
ˇ

and

max

�
M � u

M � m
;

u � m

M � m




D 1

2
C
ˇ
ˇ
ˇ
ˇ
ˇ

u� mCM
2

M �m

ˇ
ˇ
ˇ
ˇ
ˇ
;

then from (52) we have

2

�
1

2
� 1

M �m

ˇ
ˇ
ˇ
ˇu �

mCM

2

ˇ
ˇ
ˇ
ˇ

�

K .m;M/ (53)

� M � u

M �m
m ln mC u � m

M � m
M ln M � u ln u

� 2
�
1

2
C 1

M �m

ˇ
ˇ
ˇ
ˇu �

mCM

2

ˇ
ˇ
ˇ
ˇ

�

K .m;M/

for any u 2 Œm;M�.
Using the continuous functional calculus we have from (53) that

2

�
1

2
I � 1

M � m

ˇ
ˇ
ˇ
ˇX �

mCM

2
I

ˇ
ˇ
ˇ
ˇ

�

K .m;M/ (54)
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� m ln m
MI � X

M � m
CM ln M

X � mI

M � m
� X ln X

� 2
�
1

2
I C 1

M � m

ˇ
ˇ
ˇ
ˇX �

mCM

2
I

ˇ
ˇ
ˇ
ˇ

�

K .m;M/

for any self-adjoint operator X with the property that mI � X � MI:
Multiplying both sides of (13) by A�1=2 we get

mI � A�1=2BA�1=2 � MI

and by replacing X by A�1=2BA�1=2 in (54) we obtain

2

�
1

2
I � 1

M �m

ˇ
ˇ
ˇ
ˇA
�1=2BA�1=2 � mCM

2
I

ˇ
ˇ
ˇ
ˇ

�

K .m;M/ (55)

� m ln m
MI � A�1=2BA�1=2

M �m
CM ln M

A�1=2BA�1=2 � mI

M � m

� A�1=2BA�1=2 ln.A�1=2BA�1=2/

� 2
�
1

2
I C 1

M �m

ˇ
ˇ
ˇ
ˇA
�1=2BA�1=2 � mCM

2
I

ˇ
ˇ
ˇ
ˇ

�

K .m;M/ :

Multiplying both sides of (55) by A1=2 we get the desired result (48).

Remark 3 If A and B commute, then

A1=2
ˇ
ˇ
ˇ
ˇA
�1=2

�

B � mCM

2
A

�

A�1=2
ˇ
ˇ
ˇ
ˇA1=2 D

ˇ
ˇ
ˇ
ˇB �

mCM

2
A

ˇ
ˇ
ˇ
ˇ ;

S .BjA/ D B .ln A � ln B/

and by (48) we have

.0 �/ 2
�
1

2
A � 1

M � m

ˇ
ˇ
ˇ
ˇB �

mCM

2
A

ˇ
ˇ
ˇ
ˇ

�

K .m;M/ (56)

� m ln m

M �m
.MA � B/C M ln M

M �m
.B � mA/C B .ln A � ln B/

� 2
�
1

2
AC 1

M �m

ˇ
ˇ
ˇ
ˇB �

mCM

2
A

ˇ
ˇ
ˇ
ˇ

�

K .m;M/ :

The above result can be applied for the operator entropy

� .C/ D �C ln C D S .CjI/

as follows:
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Corollary 7 Assume that pI � C � PI for some p; P with 0 < p < P: Then we
have that

.0 �/ 2
�
1

2
I � 1

P � p

ˇ
ˇ
ˇ
ˇC �

pC P

2
I

ˇ
ˇ
ˇ
ˇ

�

K .p;P/ (57)

� p ln p

P � p
.PI � C/C P ln P

P � p
.C � pI/C � .C/

� 2
�
1

2
I C 1

P � p

ˇ
ˇ
ˇ
ˇC �

pC P

2
I

ˇ
ˇ
ˇ
ˇ

�

K .p;P/ :

An Upper Bound in Terms of Logarithm

We have the following inequality of interest for convex functions, see, for instance,
[2]:

Lemma 1 Let f W I � R ! R be a convex function on the interval I, a; b 2 VI; the
interior of I; with a < b and � 2 Œ0; 1� : Then

� .1 � �/ .b � a/
�
f 0C ..1 � �/ aC �b/� f 0� ..1 � �/ aC �b/

�
(58)

� .1 � �/ f .a/C �f .b/� f ..1 � �/ aC �b/

� � .1 � �/ .b � a/
�
f 0� .b/� f 0C .a/

�
:

In particular, we have

1

4
.b � a/

�

f 0C
�

aC b

2

�

� f 0�
�

aC b

2

��

(59)

� f .a/C f .b/

2
� f

�
aC b

2

�

� 1

4
.b � a/

�
f 0� .b/� f 0C .a/

�
:

The constant 1
4

is best possible in both inequalities from (59).

Proof The case � D 0 or � D 1 reduces to equality in (58).
Since f is convex on I it follows that the function is differentiable on VI except a

countably number of points, the lateral derivatives f 0̇ exist in each point of VI; they

are increasing on VI and f 0� � f 0C on VI:
For any x; y 2 VI we have for the Lebesgue integral

f .x/ D f .y/C
Z x

y
f 0 .s/ ds D f .y/C .x � y/

Z 1

0

f 0 ..1 � t/ yC tx/ dt: (60)
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Assume that a < b and � 2 .0; 1/ : By (60) we have

f ..1 � �/ aC �b/ (61)

D f .a/C � .b � a/
Z 1

0

f 0 ..1 � t/ aC t ..1 � �/ aC �b// dt

and

f ..1 � �/ aC �b/ (62)

D f .b/� .1 � �/ .b � a/
Z 1

0

f 0 ..1 � t/ bC t ..1 � �/ aC �b// dt:

If we multiply (61) by 1 � �, (61) by � and add the obtained equalities, then we get

f ..1 � �/ aC �b/ D .1 � �/ f .a/C �f .b/

C .1 � �/ � .b � a/
Z 1

0

f 0 ..1 � t/ aC t ..1 � �/ aC �b// dt

� .1 � �/ � .b� a/
Z 1

0

f 0 ..1 � t/ bC t ..1 � �/ aC �b// dt;

which is equivalent to

.1 � �/ f .a/C �f .b/� f ..1 � �/ aC �b/ (63)

D .1 � �/ � .b � a/

�
Z 1

0

�
f 0 ..1 � t/ bC t ..1 � �/ aC �b//� f 0 ..1 � t/ aC t ..1 � �/ aC �b//

�
dt:

That is an equality of interest in itself.
Since a < b and � 2 .0; 1/ ; then .1 � �/ aC �b 2 .a; b/ and

.1 � t/ aC t ..1 � �/ aC �b/ 2 Œa; .1 � �/ aC �b�

while

.1 � t/ bC t ..1 � �/ aC �b/ 2 Œ.1 � �/ aC �b; b�

for any t 2 Œ0; 1� :
By the monotonicity of the derivative we have

f 0C ..1 � �/ aC �b/ � f 0 ..1 � t/ bC t ..1 � �/ aC �b// � f 0� .b/ (64)
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and

f 0C .a/ � f 0 ..1 � t/ aC t ..1 � �/ aC �b// � f 0� ..1 � �/ aC �b/ (65)

for any t 2 Œ0; 1� :
By integrating the inequalities (64) and (65) we get

f 0C ..1 � �/ aC �b/ �
Z 1

0

f 0 ..1 � t/ bC t ..1 � �/ aC �b// dt � f 0� .b/

and

f 0C .a/ �
Z 1

0

f 0 ..1 � t/ aC t ..1 � �/ aC �b// dt � f 0� ..1 � �/ aC �b/ ;

which implies that

f 0C ..1 � �/ aC �b/� f 0� ..1 � �/ aC �b/

�
Z 1

0

f 0 ..1 � t/ bC t ..1 � �/ aC �b// dt

�
Z 1

0

f 0 ..1 � t/ aC t ..1 � �/ aC �b// dt

� f 0� .b/� f 0C .a/ :

Making use of the equality (63) we obtain the desired result (58).
If we consider the convex function f W Œa; b� ! R, f .x/ D ˇ

ˇx � aCb
2

ˇ
ˇ ; then we

have f 0C
�

aCb
2

� D 1; f 0�
�

aCb
2

� D �1 and by replacing in (59) we get in all terms
the same quantity 1

2
.b � a/ which show that the constant 1

4
is best possible in both

inequalities from (59).

We can state the following result:

Theorem 8 (Dragomir, 2015 [5]) Let A; B be two positive invertible operators
such that the condition (13) is valid, then we have

.0 �/ m ln m

M � m
.MA � B/C M ln M

M � m
.B � mA/C S .BjA/ (66)

� ln M � ln m

M � m
.B � mA/A�1 .MA � B/

� 1

4
.M � m/ .ln M � ln m/A:
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Proof If we consider the differentiable convex function f .t/ D t ln t; t > 0; then
f 0 .t/ D ln tC 1 and by (58) we have

0 � .1 � �/ a ln aC �b ln b � ..1 � �/ aC �b/ ln ..1 � �/ aC �b/ (67)

� � .1 � �/ .b � a/ .ln b � ln a/

for any a; b > 0 and � 2 Œ0; 1� :
On applying the inequality (67) on the interval Œm;M� and for � D x�m

M�m 2 Œ0; 1�
with x 2 Œm;M� then we get

0 � m ln m
M � x

M �m
CM ln M

x � m

M �m
� x ln x (68)

� .x � m/ .M � x/

M � m
.ln M � ln m/

� 1

4
.M � m/ .ln M � ln m/ :

Using the continuous functional calculus we have from (68) that

0 � m ln m
MI � X

M �m
CM ln M

X � mI

M � m
� X ln X (69)

� .ln M � ln m/
.X � mI/ .M � XI/

M � m

� 1

4
.M � m/ .ln M � ln m/ I

for any self-adjoint operator X with the property that mI � X � MI:
By replacing X by A�1=2BA�1=2 in (65) we get

0 � m ln m
MI � A�1=2BA�1=2

M � m
CM ln M

A�1=2BA�1=2 � mI

M �m
(70)

� A�1=2BA�1=2 ln.A�1=2BA�1=2/

� .ln M � ln m/

�
A�1=2BA�1=2 � mI

� �
MI � A�1=2BA�1=2

�

M � m

� 1

4
.M � m/ .ln M � ln m/ I:

Multiplying both sides of (70) by A1=2 we get the desired result (66).

Corollary 8 Assume that pI � C � PI for some p; P with 0 < p < P: Then we
have that
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.0 �/ p ln p

P � p
.PI � C/C P ln P

P � p
.C � pI/C � .C/ (71)

� ln P � ln p

P � p
.C � pI/ .PI � C/ � 1

4
.P � p/ .ln P � ln p/ :

Further Lower and Upper Bounds

We have the following result, see for instance [3]:

Lemma 2 Let f W I � R ! R be a twice differentiable function on the interval VI,
the interior of I. If there exists the constants d; D such that

d � f 00 .t/ � D for any t 2 VI; (72)

then

1

2
� .1 � �/ d .b � a/2 � .1 � �/ f .a/C �f .b/� f ..1 � �/ aC �b/ (73)

� 1

2
� .1 � �/D .b � a/2

for any a; b 2 VI and � 2 Œ0; 1� :
In particular, we have

1

8
.b � a/2 d � f .a/C f .b/

2
� f

�
aC b

2

�

� 1

8
.b � a/2 D; (74)

for any a; b 2 VI.
The constant 1

8
is best possible in both inequalities in (74).

Proof We consider the auxiliary function fD W I � R ! R defined by fD .x/ D
1
2
Dx2 � f .x/ : The function fD is differentiable on VI and f 00D .x/ D D � f 00 .x/ � 0;

showing that fD is a convex function on VI:
By the convexity of fD we have for any a; b 2 VI and � 2 Œ0; 1� that

0 � .1 � �/ fD .a/C �fD .b/� fD ..1 � �/ aC �b/

D .1 � �/
�
1

2
Da2 � f .a/

�

C �
�
1

2
Db2 � f .b/

�

�
�
1

2
D ..1 � �/ aC �b/2 � fD ..1 � �/ aC �b/

�
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D 1

2
D
h
.1 � �/ a2 C �b2 � ..1 � �/ aC �b/2

i

� .1 � �/ f .a/� �f .b/C fD ..1 � �/ aC �b/

D 1

2
� .1 � �/D .b � a/2 � .1 � �/ f .a/� �f .b/C fD ..1 � �/ aC �b/ ;

which implies the second inequality in (73).
The first inequality follows in a similar way by considering the auxiliary function

fd W I � R ! R defined by fD .x/ D f .x/ � 1
2
dx2 that is twice differentiable and

convex on VI.
If we take f .x/ D x2; then (13) holds with equality for d D D D 2 and (59)

reduces to an equality as well.

If D > 0; the second inequality in (73) is better than the corresponding inequality
obtained by Furuichi and Minculete in [11] by applying Lagrange’s theorem two
times. They had instead of 1

2
the constant 1. Our method also allowed to obtain, for

d > 0; a lower bound that cannot be established by Lagrange’s theorem method
employed in [11].

We can state the following result:

Theorem 9 (Dragomir, 2015 [5]) Let A; B be two positive invertible operators
such that the condition (13) is valid, then we have

.0 �/ 1

2M
.B � mA/A�1 .MA � B/ (75)

� m ln m

M � m
.MA � B/C M ln M

M � m
.B � mA/C S .BjA/

� 1

2m
.B �mA/A�1 .MA � B/ :

Proof If we consider the convex function f .t/ D t ln t; t > 0; then f 00 .t/ D 1
t and

by (73) we have

1

2
� .1 � �/ 1

max fa; bg .b � a/2 (76)

� .1 � �/ a ln aC �b ln b � ..1 � �/ aC �b/ ln ..1 � �/ aC �b/

� 1

2
� .1 � �/ 1

min fa; bg .b � a/2

for any a; b > 0 and � 2 Œ0; 1� :
On applying the inequality (76) on the interval Œm;M� and for � D x�m

M�m 2 Œ0; 1�
with x 2 Œm;M� then we get
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1

2M
.x �m/ .M � x/ � M � x

M � m
m ln mC x � m

M �m
M ln M � x ln x (77)

� 1

2m
.x �m/ .M � x/ :

Using the continuous functional calculus we have from (77) that

1

2M
.X �mI/ .M � XI/ � MI � X

M � m
m ln mC X � mI

M � m
M ln M � X ln X (78)

� 1

2m
.X �mI/ .M � XI/

for any self-adjoint operator X with the property that mI � X � MI:
Now, on using a similar argument to the one in the proof of Theorem 8 we deduce

the desired result (75).

Finally, we have

Corollary 9 Assume that pI � C � PI for some p; P with 0 < p < P: Then we
have the inequalities

.0 �/ 1
2P
.C � pI/ .PI � C/ (79)

� p ln p

P � p
.PI � C/C P ln P

P � p
.C � pI/C � .C/

� 1

2p
.C � pI/ .PI � C/ :

Applications for Trace Inequalities

If feigi2I is an orthonormal basis of H;we say that A 2 B .H/ is trace class provided

kAk1 WD
X

i2I

hjAj ei; eii <1: (80)

The definition of kAk1 does not depend on the choice of the orthonormal basis
feigi2I : We denote by B1 .H/ the set of trace class operators in B .H/.

The following properties are also well known:

(i) We have

kAk1 D kA�k1
for any A 2 B1 .H/;
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(ii) B1 .H/ is an operator ideal in B .H/ ; i.e.

B .H/B1 .H/B .H/ 	 B1 .H/I

(iii) .B1 .H/ ; k�k1/ is a Banach space.
We define the trace of a trace class operator A 2 B1 .H/ to be

tr .A/ WD
X

i2I

hAei; eii; (81)

where feigi2I is an orthonormal basis of H: Note that this coincides with the
usual definition of the trace if H is finite-dimensional. We observe that the
series (81) converges absolutely and it is independent from the choice of basis.

The following results collect some properties of the trace:

(i) If A 2 B1 .H/, then A� 2 B1 .H/ and

tr
�
A�
� D tr .A/I

(ii) If A 2 B1 .H/ and T 2 B .H/ ; then AT; TA 2 B1 .H/ and

tr .AT/ D tr .TA/ and jtr .AT/j � kAk1 kTkI (82)

(iii) tr .�/ is a bounded linear functional on B1 .H/ with ktrk D 1I
(iv) Bfin .H/ ; the space of operators of finite rank, is a dense subspace of B1 .H/ :

In the recent paper [4] we have showed amongst other that

.0 �/ S .AjB/� ln m

M �m
.MA � B/� ln M

M � m
.B �mA/ (83)

� ln S

�
M

m

�

A;

.0 �/ S .AjB/� ln m

M �m
.MA � B/� ln M

M � m
.B �mA/ (84)

� 4

.M � m/2

�

K

�
M

m

�

� 1
�

.B �mA/A�1 .MA � B/

and

1

2M2
.B �mA/A�1 .MA � B/ (85)

� S .AjB/� ln m

M � m
.MA � B/� ln M

M � m
.B �mA/
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� 1

2m2
.B � mA/A�1 .MA � B/

for positive invertible operators A and B that satisfy the condition (13).

Observe that, if A; B 2 B1 .H/ with tr .A/ D tr .B/ D 1 and satisfy (13), then we
must assume m � 1 � M and by trace properties we have

tr
�
.B � mA/A�1 .MA � B/

� D tr
�
.mCM/B � mMA � BA�1B

�

D mCM � mM � tr
�
A�1B2

�

D .M � 1/ .1 �m/ � $2 .B;A/ ;

where $2 .B;A/ DW tr �A�1B2�� 1 � 0:
We also have

ln m

M �m
.M � 1/C ln M

M � m
.1 � m/ D ln


m

M�1
M�m M

1�m
M�m

�
:

We can state the following result:

Proposition 1 (Dragomir, 2015 [5]) Let A; B 2 B1 .H/ with tr .A/ D tr .B/ D 1

that satisfy (13) for some m; M with 0 < m < 1 < M: Then we have the inequalities

.0 �/ tr S .AjB/� ln


m
M�1
M�m M

1�m
M�m

�
� ln S

�
M

m

�

; (86)

.0 �/ tr S .AjB/� ln


m
M�1
M�m M

1�m
M�m

�
(87)

� 4

.M �m/2

�

K

�
M

m

�

� 1
�
�
.M � 1/ .1 � m/� $2 .B;A/�

and

1

2M2

�
.M � 1/ .1 �m/� $2 .B;A/� (88)

� tr S .AjB/� ln


m
M�1
M�m M

1�m
M�m

�

� 1

2m2

�
.M � 1/ .1 �m/ � $2 .B;A/� :

Observe that

m ln m

M �m
.M � 1/C M ln M

M � m
.1 � m/ D ln


m

m.M�1/
M�m M

M.1�m/
M�m

�
;
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then by taking the trace in the inequalities (66) and (75) we can state the following
result as well:

Proposition 2 (Dragomir, 2015 [5]) Let A; B 2 B1 .H/ with tr .A/ D tr .B/ D 1

that satisfy (13) for some m; M with 0 < m < 1 < M: Then we have the inequalities

.0 �/ ln


m
m.M�1/

M�m M
M.1�m/

M�m

�
C tr S .BjA/ (89)

� ln M � ln m

M �m

�
.M � 1/ .1 �m/ � $2 .B;A/�

and

1

2M

�
.M � 1/ .1 �m/ � $2 .B;A/� (90)

� ln


m
m.M�1/

M�m M
M.1�m/

M�m

�
C tr S .BjA/

� 1

2m

�
.M � 1/ .1 � m/� $2 .B;A/� :
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On the Use of Elliptic Regularity Theory for
the Numerical Solution of Variational Problems

Axel Dreves, Joachim Gwinner, and Nina Ovcharova

Abstract In this article we show the crucial role of elliptic regularity theory for the
development of efficient numerical methods for the solution of some variational
problems. Here we focus on a class of elliptic multiobjective optimal control
problems that can be formulated as jointly convex generalized Nash equilibrium
problems (GNEPs) and on nonsmooth boundary value problems that stem from
contact mechanics leading to elliptic variational inequalities (VIs).

Keywords Complementarity problem • Dual mixed formulation • Elliptic
boundary value problem • Jointly convex generalized Nash equilibrium problem
• Lagrange multiplier • Multiobjective optimal control • Normalized Nash
equilibrium • Obstacle problem • Saddle point formulation • Signorini problem •
Smooth domain • Unilateral contact • Variational inequality
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Introduction

As noted in the survey paper [44], elliptic regularity theory is of essential
importance for the derivation of error estimates of the finite element method (FEM)
for the numerical solution of nonsmooth boundary value problems formulated as
variational inequalities. This is now well documented in the literature starting from
the pioneering work of Falk [18]. More recent examples of this research direction
are the paper [39] on the h-FEM treatment of unilateral crack problems and other
nonsmooth constraints and the paper [25] on hp-FEM convergence for unilateral
contact problems with Tresca friction in plane linear elastostatics.
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This article is concerned with other applications of elliptic regularity theory. First
we consider a class of elliptic multiobjective optimal control problems formulated
as jointly convex generalized Nash equilibrium problems. As will be detailed
below, a rather straightforward variational formulation of such a problem leads to
a generalized Nash equilibrium problem (GNEP), where however each player has
to satisfy different constraints that depend on the control of the other players. Thus
one obtains more involved quasi-variational inequalities, in contrast to variational
inequalities that can be obtained when considering normalized solutions of jointly
convex GNEPs as is shown in the recent paper [17], based on the regularity of the
underlying elliptic boundary value problem.

Then we turn to Signorini mixed boundary value problems, unilateral frictionless
contact problems and other nonsmooth boundary value problems that can be
formulated as variational inequalities with a coercive bilinear form. To get rid
of relatively complicated constraints as e.g., inequality constraints and to obtain
simpler nonnegativity constraints or box constraints one can introduce Lagrange
multipliers similar as in constrained optimization in finite dimensions. In addition
to simplification for better numerical treatment, there is also an intrinsic interest
in Lagrange multipliers as dual variables. Often in applications they have a clear
physical meaning and are more of interest than the primal variables; speaking in
the language of continuum mechanics, the engineer is often more interested in the
stresses and strains than in the displacements. This motivates multifield variational
formulations and multiple saddle point problem formulations, see [19, 26, 27].
While for linear elliptic boundary value problems the passage from the primal
variational formulation to a dual mixed formulation or a saddle point problem form
involving a Lagrange multiplier is a standard procedure and while there are the well-
established mixed finite element methods [4, 11] for their numerical treatment,
such a procedure for nonsmoothly constrained problems has to overcome several
difficulties. First, the standard approach to existence of Lagrange multipliers for
inequality constrained optimization in infinite dimensional spaces relies on the
Hahn–Banach separation theorem and needs an interior point condition (Slater
condition) with respect to the ordering cone in the image space. However, the
topological interior of such an ordering cone in standard function (Hilbert or
Banach) spaces, as e.g. the interior of the cone Lp

C of non-negative Lp functions
is empty. So one may resort to the nonempty quasirelative interior of Lp

C and one
may impose a Slater-like condition, that is, the existence of a feasible point that
lies in the quasirelative interior of Lp

C. However, as a counterexample of Daniele
and Giuffrè [13] shows, this condition is not sufficient, and extra more complicated
assumptions or related involved conditions that are actually equivalent are needed
to ensure the existence of a Lagrange multiplier, see [9, 13–15].

Therefore we proceed in another way and show how by a simple formula one
obtains a Lagrange multiplier in the dual of the preimage space thus even reducing
the variational inequality to a complementarity problem. By this simple approach,
the Lagrange multiplier lives in the dual of the Sobolev space of the variational
problem, thus at first, is a general measure which may be singular. Here regularity
theory comes into play to conclude that the Lagrange multiplier is indeed an
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Lp function. Thus from an inequality constraint, one finally obtains a Lagrange
multiplier in the cone Lp

C of non-negative Lp functions. This approach works also
with not necessarily symmetric bilinear forms, when the equivalence to convex
quadratic optimization is lost; it even works for nonlinear operators. Moreover, we
can combine such dual mixed formulations for variational problems with inequality
constraints via non-negative Lagrange multipliers with mixed formulations for
variational inequalities of second kind where the Lagrange multiplier is in a simple
box set. This applies to unilateral contact problems with Tresca friction.

The outline of this article is as follows. The next section provides a review
of elliptic regularity theory dealing with the linear Dirichlet problem, the scalar
unilateral boundary value problem (obstacle problem), and frictionless unilateral
contact of linear elastostatics. In section “From Elliptic Multiobjective Optimal
Control to Jointly Convex Generalized Nash Equilibria” we consider a class of
elliptic multiobjective optimal control problems and show following [17] how based
on elliptic regularity theory, these problems can be reformulated as so-called jointly
convex generalized Nash equilibria. In section “Lagrange Multipliers, Convex
Duality Theory, and Mixed Formulations of Nonsmooth Variational Problems” we
present a direct approach to mixed formulations of some nonsmooth variational
problems and of associated variational inequalities. The article ends with some
conclusions and an outlook to some open problems.

A Review of Elliptic Regularity Theory

In this section we review the elliptic regularity theory that is needed for the
understanding of the subsequent sections.

Regularity of Linear Scalar Dirichlet Problem

In this subsection we are concerned with the regularity of the solution of the
Dirichlet problem with a (scalar) linear second-order elliptic operator L; that is,
the operator L is of the form (summation convention employed)

Lu D Di.�aij.x/ Dju/C a.x/u;

where the coefficients aij .i; j D 1; : : : ; d/ and a are assumed to be bounded,
measurable functions on a domain ˝ � R

d and moreover, a is non-negative and
there exists a positive number ˛ such that

aij.x/ �i�j � ˛j�j2;8x 2 ˝; � 2 R
d:
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A simple example is L D ��, the negative Laplacian on R
d; on the other hand,

lower order terms involving Diu can easily be included in the definition of L. The
operator L above gives rise to the bilinear form

L .u; v/ D
Z

˝

Œaij.x/DjuDiv C a.x/uv� dx:

Let in addition f be (locally) integrable on ˝ and ' belong to H1.˝/, the Sobolev
space of all L2 functions on ˝ with weak L2 derivatives, see [1]. Then a function
u 2 H1.˝/ is called a weak solution of the Dirichlet problem:

Lu D f ; u D ' on @˝;

if u � ' 2 H1
0.˝/ and u satisfies

L .u; v/ D
Z

˝

fv dx; 8v 2 C1
0.˝/:

The following example of a domain with a reentrant corner taken from the book
of Braess [10] shows that even for smooth data f ; ' we cannot expect the solution
to be in H2.˝/, not to mention in C2.˝/, what is suggested by a classic treatment
of partial differential equations.

Example 1 Let

˝ D fx D .x1; x2/ 2 R
2 W jxj < 1; x1 < 0 or x2 > 0g:

Identify R
2 with C. Let z D x1 C ix2 D  exp.i�/ and consider

w.z/ D z2=3I u.x/ D Im w.z/ D 2=3 sin

�
2

3
�

�

:

So u is harmonic and u 2 H1.˝/ solves

�u D 0 in ˝I
u.exp.i�// D sin

�
2
3
�
�

for 0 � � � 3
2
�;

u D 0 elsewhere on @˝:

Since w0.z/ D 2
3

z� 1
3 , even the first derivatives of u are not bounded for z! 0.

There are two options for a domain to obtain regularity u 2 H2.˝/: smoothness
of the boundary @˝ or convexity of the domain. For the first let us recall from the
monograph of Gilbarg and Trudinger [20, Theorem 8.12]

Theorem 1 Suppose that @˝ is of class C2. Moreover assume the coefficients aij

are uniformly Lipschitz continuous in ˝ and for the data assume f 2 L2.˝/ and
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' 2 H2.˝/ such that u � ' 2 H1
0.˝/ with a weak solution u of the above Dirichlet

problem. Then also u 2 H2.˝/.

For such a regularity result and for its direct proof we can also refer to the
monograph of Aubin [3, Chap. 7, Sect. 1-8, Theorem 1-1] and to the monograph
of Kinderlehrer and Stampacchia [38, Chap. IV, Appendix A].

Regularity results for the Dirichlet problem for elliptic operators, respectively,
for the Laplacian on convex domains and on more general so-called semiconvex
domains (here a bounded domain is semiconvex, if for any x 2 @˝ there exists an
open ball Bx � R

d n N̋ with NBx \ N̋ D fxg) are established in the work of Kadlec
[35] and of Mitrea et al. [42]. Let us also mention the regularity results for solutions
of the equations of linear elasticity in convex plane polygonal domains by Bacuta
and Bramble [5].

Regularity of the Scalar Unilateral Boundary Value Problem

Let us turn to the regularity of scalar unilateral boundary value problems, in
particular of Signorini boundary value problems. We are also concerned with
the regularity of domain obstacle problems, since domain obstacle and boundary
obstacle (Signorini) problems are related as follows.

Let �D; �S be two disjoint smooth and open subset of @˝ such that @˝ D N�D [N�S. Let A be a linear elliptic operator defined by Au D �Dj.aijDiu/ with coefficients
aij as above giving the bilinear form

a.u; v/ D
Z

˝

aij.x/ Diu.x/ Djv.x/ dx:

Let  2 H1.˝/ with  � 0 on �S, let Q be the unique solution of the Dirichlet
problem

� Q D f in ˝; Q D  on @˝

and assume that Q 2 H2.˝/. Let

V D fv 2 H1.˝/ W v D 0 on �Dg

and define the closed convex subsets of V:

K D fv 2 V W v �  on �Sg;
QK D fv 2 V W v � Q in ˝; v D  on �Sg:

Then there holds the following
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Theorem 2 If u is the solution of the VI (domain obstacle problem)

u 2 QK; a.u; v � u/ �
Z

˝

f .v � u/ dx 8v 2 QK;

then u resolves the VI (Signorini problem)

u 2 K; a.u; v � u/ �
Z

˝

f .v � u/ dx 8v 2 K:

For its proof see the proof of Theorem 9.3 in [38, Chap. IV]. In virtue of Theorem 2
we can conclude from the regularity result [38, Chap. IV, Theorem 2.3] for the
domain obstacle problem the following regularity result for the Signorini problem
with A D ��:

Theorem 3 Suppose f 2 Ls.˝/ and max.�� Q � f ; 0/ 2 Ls.˝/ for some s > d.
Then the solution of the above Signorini problem with A D �� lies in H2;s.˝/ \
C1;�. N̋ /; � D 1 � .d=s/. Hence, �u 2 Ls.˝/.

There is a refinement concerning the regularity of the domain obstacle problem
at the boundary by Jensen [33]. He has proven the local regularity W2;1 of the
solution at boundary points. However, Kinderlehrer [37] has provided the following
example of a scalar Signorini problem with a solution that fails to be in H2.˝/. Here
even the boundary obstacle is zero, but @�D \ @�S 6D ; with the Dirichlet part �D

and the Signorini part �S.

Example 2 Let

˝ D fx D .x1; x2/ 2 R
2 j jxj < 1; x2 > 0g

with the mutually disjoint, open boundary parts

�S D fx D .x1; 0/ j � 1 < x1 < 0g;
�N D fx D .x1; 0/ j 0 < x1 < 1g;
�D D fx D .x1; x2/ j jxj D 1; x2 > 0g:

Let z D x1 C ix2 D  exp.i�/ and consider

u.x/ D �Re z1=2 D �1=2 cos.�=2/:

So u is harmonic and u.x/ D 0 for x1 < 0, x2 D 0. By the Cauchy–Riemann
differential equations,

@

@�
u.x1; 0/ D � @

@x2
u.x1; 0/ D � @

@x1
Im z1=2 D

8
<

:

0 if x1 > 0; x2 D 0
1

2
jx1j� 12 if x1 < 0; x2 D 0:
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Hence, u 2 H1.˝/ satisfies��u D 0 in˝ and the Neumann, respectively, Dirichlet
boundary conditions

@u

@�
D 0 on �N ; u D � cos

�

2
on �D;

and the Signorini boundary conditions

u
@u

@�
D 0; u � 0; @u

@�
� 0 on �S:

Thus u solves the VI

u 2 K;
Z

˝

ru � r.v � u/ dx � 0; 8v 2 K;

where

K D fv 2 H1.˝/ j v � 0 on �S; v D � cos
�

2
on �Dg:

Note that
@2

@x21
D cos2 �

@2

@2
C : : :, @

2

@x22
D sin2 �

@2

@2
C : : :,

ZZ

˝

juj2 dx D .1=16/
Z �

0

Z 1

0

�3  cos2.�=2/d d� I
Z 1

0

�2 d D 1

so u cannot lie in H2.˝/.

Variational Formulation of Frictionless Unilateral Contact
Problem of Linear Elastostatics

Before we continue our review of elliptic regularity theory addressing frictionless
unilateral contact problems we introduce some notation from continuum mechanics
and describe the variational form of unilateral contact problems as variational
inequalities (of first kind, following the terminology of [21]).

Let us assume Hooke’s law and small deformations of a non-homogeneous,
anisotropic body. For notational simplicity we focus on the case of plane elasticity;
the three-dimensional case poses no additional difficulty in deriving the variational
formulation. So let ˝ � R

2 be a bounded plane domain with Lipschitz boundary
� (� 2 C0;1), occupied by an elastic body, and let x D .x1; x2/ be a Cartesian
coordinate system. Then n D .n1; n2/, the unit outward normal to � , exists almost
everywhere and n 2 ŒL1.� /�2, see, e.g., [36, Theorem 5.4].
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With the displacement vector v D .v1; v2/ to lie in the Sobolev space ŒH1.˝/�2

the linearized strains are given by

"ij.v/ D 1

2

�
@vi

@xj
C @vj

@xi

�

.i; j D 1; 2/ (1)

and Hooke’s law relating strains and stresses reads

�ij D Eijkl "kl .i; j D 1; 2/ ; (2)

where we use the summation convention over a repeated index within the range 1; 2
and where the elasticity coefficients Eijkl 2 L1.˝/ satisfy

Eijkl D Eklij D Ejikl I
9c0 > 0 W Eijkl "ij "kl � c0 "ij "ij 8 "ij D "ji : (3)

With the given vector F D .F1;F2/ 2 ŒL2.˝/�2 the stress field has to satisfy the
equilibrium equations

@�ij

@xj
C Fi D 0 .i D 1; 2/ : (4)

The traction vector b on the boundary, where

bi D �ij nj

can be decomposed into the normal component

bn D bi ni D �ij ni ni

and the tangential component

bt D bi ti D �ij ti nj ;

where t D .t1; t2/ D .�n2; n1/ is the unit tangential vector. Likewise the
displacement v can be decomposed (see [36, Chap. 5], [16] for the relevant trace
theorems):

vn D vini ; vt D viti :

To describe the boundary conditions, let � D � D [ � N [ � S, where the open
parts �D; �N ; and �S are mutually disjoint. Eventually nonzero displacements D 2
ŒH1.�D/�

2, respectively, tractions T 2 ŒL2.�N/�
2 are prescribed on �D, resp. �N , i.e.,
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vi D Di on �D ; (5)

bi D Ti on �N ; (6)

whereas on �S the frictionless unilateral contact conditions (Signorini’s conditions
for vn and bn)

vn � g; bn � 0; .vn � g/ bn D 0; bt D 0 (7)

with a given gap function g 2 L2.�S/ are imposed. To make the contact problem
meaningful we assume meas.�S/ > 0. Here we also require meas.�D/ > 0, hence
rigid body motions are excluded and the variational problem becomes coercive.

Now the problem (1), (2), (4)–(7) can be formulated as the following variational
inequality (VI): Find u 2 K such that

ˇ.u; v � u/ � �.v � u/ 8v 2 K ; (8)

where we introduce the bilinear form, respectively the linear form

ˇ.v;w/ D
Z

˝

Eijkl "ij.v/ "kl.w/ dx ;

�.v/ D
Z

˝

Fivi dxC
Z

�N

Tivi ds

on the function space

V D ˚v 2 ŒH1.˝/�2 j v D 0 on �D
	

and the convex closed subset

K D fv 2 V j vi D Di on �DI vn � g on �Sg :

One may reduce the inhomogeneous inequality constraint vn D vini � g to
the homogeneous inequality constraint Qvn D Qvini � 0, thus simplify to a convex
cone constraint by subtraction of some appropriate extension g of g 2 L2.�S/ to
ŒH1.˝/�2. However, this simple reduction for unilateral constraints does not work
with more general bilateral constraints of the form ga � vn D vini � gb, when the
extended real-valued boundary obstacles have domains that intersect, i.e., dom ga\
dom gb 6D ;, in particular in a three-dimensional situation.
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Regularity of Frictionless Unilateral Contact Problem of Linear
Elastostatics

In view of his example given above Kinderlehrer [37] could prove by a difference
quotient technique that the solution u of the Signorini problem is in H2 except
perhaps near points of @�S [ @�N [ @�D � ˝ , more precisely the following result
for the d�dimensional mixed Signorini boundary value problem in the case g D 0,
what is by the remark above, no loss of generality concerning regularity.

Theorem 4 ([37, Theorem 2.2]) Suppose for the data F 2 ŒL2.˝/�d, T 2
ŒH1.�D/�

d, D 2 ŒH2.�D/�
d. Set ˝ı D fx 2 ˝ j dist .x; @�S [ @�N [ @�D/ > ıg

for ı > 0. Then for each ı > 0 there hold u 2 .H2.˝ı//
d and the Signorini

conditions (7) pointwise a.e. on �S.

Sobolev imbedding of H2 in spaces of Hölder continuous functions implies the

Corollary 1 Under the assumptions of the data as in the above theorem, there holds

for d D 2; u 2 ŒC0;˛. N̋ ı/�2 for some 0 < ˛ < 1;

and for d D 3; u 2 ŒC0; 12 . N̋ ı/�2:

By the theory of pseudodifferential operators Schumann [47] extended the latter
result to ŒC1;˛.˝ [ � /�2 regularity of the solution u; the precise value of ˛ is not
known. To conclude this section, we refer to the survey [48] of Schumann who
gives an excellent overview of the mathematical methods to prove regularity results
for variational inequalities and unilateral problems in elasticity.

From Elliptic Multiobjective Optimal Control to Jointly
Convex Generalized Nash Equilibria

In this section we consider a class of elliptic multiobjective optimal control
problems and show following [17] how based on elliptic regularity theory,
these problems can be reformulated as so-called jointly convex generalized Nash
equilibria.

The Concept of Jointly Convex Generalized Nash Equilibrium
Problems

Let V�; � D 1; : : : ;N be real separable Hilbert spaces or more general reflexive,
separable Banach spaces endowed with norms k � k�; and define V WD V1� : : :�VN :

Further, let X be a nonempty, closed, and convex subset of V and assume that the
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objective functions �� W V1 � : : : � VN ! R; ��.�; x��/ W V� ! R are convex
for any fixed x�� ; where we use the notation x D .x1; : : : ; xN/ D .x�; x��/ to
emphasize the role of the variable x� , but this notation does not mean a permutation.
In this setting the infinite dimensional jointly convex generalized Nash equilibrium
problem (GNEP for short) has the following form

min
x�
��.x

�; x��/ subject to .s:t:/ .x�; x��/ 2 X (9)

for all � D 1; : : : ;N: The reason for calling this problem jointly convex is that the
strategies must belong to a common convex set X; instead of each player having
his own strategy set X�.x��/ depending on the rivals’ strategy x��: We call Nx a
generalized Nash equilibrium, if Nx 2 X satisfies

��.Nx�; Nx��/ � ��.x�; Nx��/ ; 8.x�; Nx��/ 2 X

for all � D 1; : : : ;N: Note that the concept of GNEPs goes back to the 1954 paper
[2] of Arrow and Debreu.

Next let us introduce the Nikaido–Isoda function

�.x; y/ WD
NX

�D1
Œ��.x

�; x��/ � ��.y�; x��/� ;

see the 1955 paper [43] of Nikaido and Isoda, to define normalized solutions of a
jointly convex GNEP. The point Nx 2 X is called a normalized Nash equilibrium, or
a normalized solution of the jointly convex GNEP if

�.Nx; y/ � 0; 8y 2 X:

Thus we get a characterization of some solutions, namely the normalized solutions
of jointly convex GNEPs via a variational inequality in contrast to more involved
quasi-variational inequalities that characterize the solutions of GNEPs in general
form, necessarily jointly convex. Therefore, computing normalized solutions of
jointly-convex GNEPs is typically much easier than obtaining solutions of GNEPs
in general form. Since for a normalized Nash equilibrium Nx we have for all � D
1; : : : ;N and all .y�; Nx��/ 2 X

��.Nx�; Nx��/� ��.y�; Nx��/ D �.Nx; .y�; Nx��// � sup
y2X

�.Nx; y/ � 0;

every normalized solution is also a generalized Nash equilibrium, i.e., for all � D
1; : : : ;N it holds that

��.Nx�; Nx��/ � ��.y�; Nx��/ 8.y�; Nx��/ 2 X I

however, the converse is not true.
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Primal Formulation of Elliptic Multiobjective Optimal Control
Problems

Let ˝ � R
d .d D 2; 3/ be a bounded Lipschitz domain and let V WD H1

0.˝/

denote the Sobolev space of all L2 functions on ˝ with weak L2 derivatives and
zero boundary values. Let U� WD L2.˝/ be the space for the controls u� for all � D
1; : : : ;N: We have the weights �� > 0; ˇ� > 0, the given data f ; g� 2 L2.˝/; .� D
1; : : : ;N/I a�; b� 2 R with a� � b� (� D 1; : : : ;N), a0; b0 2 H1.˝/ with a0.x/ <
b0.x/ and some continuous, compact, and linear operators $� W V ! L2.˝/ (� D
1; : : : ;N). Then we consider the following problem

.I/ min
y;u�

1

2
k$�y � g�k2L2.˝/ C

��

2
ku�k2L2.˝/

s:t: Ly D
NX

�D1
ˇ�u� C f ; yj@˝ D 0;

a0.x/ � y.x/ � b0.x/; a:e: in ˝;

a� � u�.x/ � b�; a:e: in ˝;

for all � D 1; : : : ;N: In this problem every player � minimizes his own cost function
through his individual control variable u� and the common state variable y. The state
is determined by the controls of all players via a partial differential equation (pde)
given by a linear elliptic partial differential operator L of second order as introduced
in the previous section.

To provide a functional analytic meaning we can write the above pde constraint
in variational form as

y 2 V W L .y;w/ D h
NX

�D1
ˇ�u� C f ;wiL2.˝/; 8w 2 V :

Using the continuous embedding from H1
0.˝/ in L2.˝/; the state constraints a0 �

y � b0 are to be understood in the L2 sense as the control constraints a� � u� � b�;
which imply that the controls are actually L1 functions, since a�; b� 2 R.

The elliptic multiobjective optimal control problem .I/ is, however, not a GNEP,
since the state y is a common optimization variable for all players. If we introduce
different state variables y� for each player � 2 f1; : : : ;Ng; and if we could guarantee
that all the states are equal, we get a GNEP. But we do not get a jointly convex
GNEP, since the players then have different constraints Ly� D PN

�D1 ˇ�u� C f ;
depending on the controls of the other players. For the numerical solution of these
GNEPs in general form one can use its optimality conditions that are equivalent
to quasi-variational inequalities, and are much harder to solve than VIs. Also the
number of algorithms for the solution of quasi-variational inequalities is rather
limited. Therefore our next aim is to develop a jointly convex reformulation.
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Reduced Multicontrol Formulation of the Elliptic Multiobjective
Optimal Control Problems

Since by the Lax–Milgram theorem L W H1
0.˝/ ! H�1.˝/ is an isomorphism, we

can use the inverse L�1 W H�1.˝/! H1
0.˝/ to define the multicontrol to state map

S.u/ WD L�1
0

@
NX

�D1
ˇ�u� C f

1

A ;

and this is a continuous map affine linearly dependent on .u1; : : : ; uN/: Since L2.˝/
is compactly embedded in H�1.˝/; see [1], this is even a completely continuous
map from ŒL2.˝/�N to H1

0.˝/: Hence, we obtain the equivalent reduced problem

.II/ min
u�

1

2
k$�S.u�; u��/� g�k2L2.˝/ C

��

2
ku�k2L2.˝/

s:t: a0.x/ � S.u�; u��/.x/ � b0.x/; a:e: in ˝;

a� � u�.x/ � b�; a:e: in ˝;

for all � D 1; : : : ;N; which is a jointly convex GNEP. A similar problem was first
considered in [30] as a GNEP and using a penalty approach and a strict uniform
feasible response assumption, the existence of a solution was shown. Further, using
the Nikaido–Isoda function, this reformulation (II) was used in [31] to show
existence of a Nash equilibrium for the equivalent problem (I). Moreover it was
shown that one can solve these reformulations (II) (even for parabolic and not only
elliptic pdes) via a primal–dual path-following method based on the Nikaido–Isoda
function.

Let us stress that (II) is already a jointly convex GNEP. However, every evaluation
of S.u�; u��/ requires the solution of the pde. To avoid this we give a third equivalent
formulation to (I).

A Multistate Formulation of the Elliptic Multiobjective Optimal
Control Problems

Now we assume that @˝ is of class C2 or ˝ is convex. Then regularity theory for
elliptic equations with Dirichlet boundary conditions, as exposed in the previous
section, guarantees that the solution S.u/ is even in H2.˝/. Therefore,

w� WD L�1 .ˇ�u�/ 2 H1
0.˝/\ H2.˝/ DW W
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for all � D 1; : : : ;N: These w� will become our new optimization variables. Indeed
we now have

y D S.u/ D L�1f C
NX

�D1
w�; (10)

and, since Lw� 2 L2.˝/, the equation

u� D � 1
ˇ�

Lw� (11)

holds in L2.˝/ for all � D 1; : : : ;N: Thus we arrive at the equivalent problem

.III/ min
w�2W

1

2

�
�
�
�
�
�
$�

0

@
NX

�D1
w�

1

AC $�L�1f � g�

�
�
�
�
�
�

2

L2.˝/

C ��

2ˇ2�
kLw�k2L2.˝/

s:t: a0.x/ �
0

@L�1f C
NX

�D1
w�

1

A .x/ � b0.x/; a:e: in ˝;

a�ˇ� � .Lw�/ .x/ � b�ˇ�; a:e: in ˝;

for all � D 1; : : : ;N: Now, defining the common feasible set

eW WD
(

.w1; : : : ;wN/ 2 WN

ˇ
ˇ
ˇ
ˇ
ˇ

a�ˇ� � .Lw�/ .x/ � b�ˇ� .8� D 1; : : : ;N/;

a0.x/ �
0

@L�1f C
NX

�D1
w�

1

A .x/ � b0.x/ a:e: in ˝

)

;

and the cost functions

��.w
�;w��/ WD 1

2

�
�
�
�
�
�
$�

0

@
NX

�D1
w�

1

AC $�L�1f � g�

�
�
�
�
�
�

2

L2.˝/

C ��

2ˇ2�
kLw�k2L2.˝/ ;

our elliptic multiobjective optimal control problem in the novel formulation .III/
writes as the jointly convex GNEP:

min
w�
��.w

�;w��/ s:t: .w�;w��/ 2 eW
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for all � D 1; : : : ;N. Solving this jointly convex GNEP gives us .w1; : : :wN/

from which we can easily compute the state variable y via (10) and the controls
.u1; : : : ; uN/ via (11), thus gaining the complete solution of our original problem
(I). It was demonstrated in [17] that one can solve this reformulation (III) using a
relaxation method that computes a best-response function and performs a line search
exploiting a merit function, again based on the Nikaido–Isoda function.

Lagrange Multipliers, Convex Duality Theory, and Mixed
Formulations of Nonsmooth Variational Problems

In this section we provide mixed formulations of some nonsmooth variational
problems and of associated variational inequalities. To achieve this goal we pursue
a direct relatively simple approach to Lagrange multipliers that, however, heavily
hinges on elliptic regularity theory. To put this approach in perspective we first
shortly review the standard approach to Lagrange multipliers in convex duality
theory that is based on the Hahn–Banach separation theorem.

A Short Review of Convex Infinite Dimensional Duality Theory
in Function Spaces

The standard approach to prove existence of Lagrange multipliers for inequality
constrained optimization problems in infinite dimensional spaces is based on the
Hahn–Banach separation theorem and thus needs interior point conditions, in
particular a nonvoid interior of the ordering cone associated with the inequality
constraint. In function spaces of continuous functions endowed with the maximum
norm with applications, e.g., to Chebychev approximation one can work with the
topological interior of the ordering cone, see, e.g., [32]. However, the cone of non-
negative Lp functions and hence the ordering cone in the Sobolev spaces—relevant
for pde constrained optimization—have empty topological interior. To overcome
this difficulty one can resort to the concept of the so-called quasi-relative interior
of a convex set introduced by Borwein and Lewis [8]. Therefore next we give
the definition of this concept and a short review of corresponding recent results
on Lagrangian duality.

Let C be a nonvoid subset of a real normed space X. Let cl C, co C, cone C
denote the topological closure, convex hull, conical hull of C, respectively. Then for
a given point x 2 C, the set

TC.x/ D fy 2 X W y D lim
n!1 tn.xn � x/; tn > 0; xn 2 C .8n 2 N/; lim

n!1 xn D xg
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is called the tangent cone (contingent cone) to C at x. If C is convex, then TC.x/ D
cl cone .C � x/. With the dual space X� and the duality form .:; :/, the normal cone
to C at x 2 C is defined by

NC.x/ D fx� 2 X� W .x�; y � x/ � 0; 8y 2 Cg:

Now the quasi-interior of a convex subset C of X is the set

qi C D fx 2 C W cl cone .C � x/ D Xg

and there holds the characterization, see [14], for x in the convex set C:

x 2 qi C, NC.x/ D f 0X�g:

Due to Borwein and Lewis [8] is the following refinement of the notion of the
quasi-interior: The quasirelative interior of a convex subset C of X is the set

qri C D fx 2 C W cl cone .C � x/ is a linear subspace of Xg

and there holds the characterization, see [14], for x in the convex set C:

Tx 2 qri C, NC.x/ is a linear subspace of X�:

These are useful concepts in Lp function spaces and thus in Sobolev spaces as
shown by the following example.

Example 3 Consider the Banach space X D L2.T; �/ with 1 � p < 1 on a
measure space .T; �/ and the closed convex cone C D fz 2 X W z.t/ � 0 ��a:e:g.
Then the characteristic function of T, 1 D 1T lies in qi C, hence in qri C. Indeed, by
Lebesgue’s theorem of majorized convergence, any x 2 X can be approximated by
the sequence fxng of truncations,

xn.t/ D
�

x.t/ if x.t/ � �n a:e:I
�n elsewhere;

and clearly xn 2 n.C � 1/.
Now let us turn to inequality constrained convex optimization and Lagrangian

duality theory. Consider the following primal optimization problem:

.P/ inf
x2R

f .x/;

where

R D fx 2 S W g.x/ 2 �Cg;
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is assumed to be nonempty and S a nonempty subset of X; Y is another normed
space partially ordered by a convex cone C; f W S! R and g W S! Y are two maps
such that the map .f ; g/ W S! R � Y, defined by .f ; g/.x/ D .f .x/; g.x//;8x 2 S is
convex-like with respect to the cone RC�C � R�Y, that is the set .f ; g/SCRC�C
is convex. Then the Lagrangian is

L.x; `/ D f .x/C .`; g.x//; x 2 S; ` 2 C�

and the Lagrange dual problem to (P) reads

.D/ sup
`2C�

inf
x2S
Œf .x/C .`; g.x//�;

where C� D fx� 2 X� W .x�; x/ � 0;8x 2 Cg is the dual cone to C. While for
the optimal values of (P) and (D), inf .P/ D infx sup` L.x; `/ � sup` infx L.x; `/ D
sup .D/ trivially holds, one is interested in the equality of these optimal values and
moreover in the existence of a Lagrange multiplier, that is, an optimal solution `
in (D). This is called strong duality.

In the favorable situation when the topological interior of the ordering cone,
int C, is not empty, the approach to strong duality in infinite dimensions via the
Hahn–Banach separation theorem requires the easily verifiable Slater condition as
a constraint qualification (see the important paper of Jeyakumar and Wolkowicz
[34]), that is, the existence of a feasible point Qx 2 R such that g.Qx/ 2 �int C.

Thus one may be inclined to transfer this approach to the situation when the
topological interior of C is empty by replacing “int” by “qri.” However, this fails, as
the following example due to Daniele and Giuffrè [13] shows.

Example 4 Let X D S D Y D l2; the Hilbert space of all real sequences x D
.xn/n2N with

P1
nD1 x2n < 1 and C D l2C the cone of all non-negative sequences

in l2. Define f W l2 ! R and g W l2 ! l2, respectively, by

f .x/ D
1X

nD1

xn

n
; .g.x//n D � xn

2n
; 8n 2 N:

Then the feasible set T D fx 2 l2 j � g.x/ 2 l2Cg D l2C. One has cl.l2C � l2C/ D
l2; l2CC WD qri l2C D fx 2 l2 W xn > 0;8n 2 Ng 6D ;. Take Qx 2 l2C, Qxn D 1

n ,
then �.g.Qx//n D 1

n2n , �g.Qx/ 2 l2CC. Further, inf .P/ D 0 and x D 0l2 is the optimal
solution of (P). On the other hand, for ` 2 l2C we have

inf
x2l2
Œf .x/C .`; g.x//� D inf

x2l2

" 1X

nD1

xn

n
�
1X

nD1
`n

xn

2n

#

D inf
x2l2

1X

nD1

�
1

n
� `n

2n

�

xn
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D
8
<

:
0 if `n D 2n

n
8n 2 N;

�1 otherwise:

However, ` with `n D 2n

n does not belong to l2. Hence, sup .D/ D �1 and the
optimal values do not coincide.

This example can also be given in a function space using the well-known
isometry of l2 and L2.0; 2�/ based on Fourier expansion.

So in addition to a qri Slater-like condition one needs extra conditions to ensure
strong duality. To this aim Boţ, Csetnek, and Moldovan [9] introduce the following
conic extension of (P) in the image space:

Einf .P/ D f.inf .P/ � f .x/ � r;�g.x/ � y/ W x 2 S; r � 0; y 2 Cg
D .inf .P/; 0Y/� .f ; g/ S � RC � C;

where as in classic convex duality theory only inf .P/ 2 R is required, but not the
existence of an optimal solution to (P). Note that by feasibility of (P), R 6D ; implies
inf .P/ <1 and in the case inf .P/ D �1 strong duality trivially holds.

In this way Boţ, Csetnek, and Moldovan [9] could prove the following strong
duality result.

Theorem 5 ( [9, Theorem 4.1]) Suppose that cl.C�C/ D Y and there exists some
Qx 2 S such that g.Qx/ 2 �qri C. If

.0; 0Y/ … qri coŒEinf .P/ [ f.0; 0Y/g�; (12)

then strong duality holds.

A Direct Approach to Lagrange Multipliers and Dual Mixed
Formulations of Inequality Constrained Optimization and of VIs
of the First Kind

We start with convex quadratic optimization in infinite dimensional spaces. Let V be
a real Hilbert space and let Q be another real Hilbert space (for simplicity identified
with its dual Q0). Let A 2 L .V;V 0/with A D A0;A � 0 (i.e., hAv; vi � 0;8v 2 V).
Further, let B 2 L .V;Q/ and let f 2 V 0; g 2 Q be fixed elements. Moreover let an
order � defined in Q via a convex closed cone C � Q via q � 0, iff q 2 C. With
these data consider the convex quadratic optimization problem

.CQP/

�
minimize f .v/ D 1

2
hAv; vi � hf ; vi

subject to Bv � g :
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This gives rise to the bilinear form a.u; v/ WD hAu; vi and the convex closed set

K.g/ WD fv 2 V j Bv � gg;

which is translated from the cone

K0 WD fv 2 V j Bv � 0g:

As is well known, a solution u of .CQP/ is characterized by the following VI of
the first kind—following the terminology in [21]:

.VI � 1/ u 2 K.g/; a.u; v � u/ � hf ; v � ui; 8v 2 K.g/:

Here we present a simple approach—different from the approach reviewed
above—to Lagrange multipliers. Assume that there exists a preimage of g under
B, BQg D g. This allows to work with the duality on V � V 0, obtain readily the
existence of a Lagrange multiplier in the dual cone

KC0 D f� 2 V 0 W h�;wi � 0; 8w 2 K0g

and arrive at the following characterization.

Proposition 1 Let u 2 K.g/. Then u solves the above .VI � 1/, iff there exists
� 2 KC0 such that .u; �/ 2 V � V 0 solves the mixed system

.MP � 1/
(

a.u; v/ D h�; vi C hf ; vi
h� � �; u � Qgi � 0 ;

for all v 2 V; � 2 KC0 . Further, there holds the complementarity condition

h�; u � Qgi D 0:

Proof Let u 2 K.g/ solve the .VI � 1/: a.u; v� u/ � hf ; v� ui; 8v 2 K.g/. Define
� 2 V 0 by �.v/ D a.u; v/ � f .v/. Then .MP � 1/1 holds. Further, for any v 2 K0,
Qv WD v C u lies in K.g/ and hence,

�.v/ D a.u; Qv � u/� f . Qv � u/ � 0:

Thus � 2 KC0 . Since Qg 2 K.g/; u � Qg 2 K0,

h�� �; u � Qgi D h�; u � Qgi � Œa.u; u � Qg/� f .u � Qg/� � 0

for any � 2 KC0 and therefore .MP � 1/ holds. The complementarity condition
follows from .MP � 1/2 by the choices � D 2�, � D 0.
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Vice versa, let v 2 K.g/, hence v� Qg 2 K0. This implies by the complementarity
condition

h�; v � ui D h�; v � Qgi � h�; u � Qgi � 0:

Hence, we arrive at

a.u; v � u/ D .f C �/.v � u/ � f .v � u/: ut
By the proof above it is clear that .MP � 1/ is equivalent to the following
complementarity problem: Find .u; �/ 2 V � V 0 such that

.CP � 1/
8
<

:

� D Au � f
� 2 KC0 ; u � Qg 2 K0
h�; u � Qgi D 0 :

Moreover the proof shows that the characterization above holds also with not
necessarily symmetric bilinear forms, when the equivalence to convex quadratic
optimization is lost; it even holds for nonlinear operators A mapping a Banach space
V to its dual V 0.

This approach applies to domain obstacle problems, where the linear map B is the
imbedding map [1], say from H1.˝/ to L2.˝/ for linear scalar elliptic operators
L or more generally from Wm;p.˝/ to some Lq.˝/. It also applies to boundary
obstacle problems or unilateral contact problems with the Signorini condition on
some boundary part �c in appropriate function spaces, where the linear map B is the
trace map � [16] to the boundary part �c. By this simple approach, the Lagrange
multiplier lives in the dual of the Sobolev space of the variational problem, thus at
first, is a general measure which may be singular. Here regularity theory—see the
review in the second section of this paper—comes into play to conclude that the
Lagrange multiplier is indeed a Lp function. Thus from an inequality constraint, one
finally obtains a Lagrange multiplier � in the cone Lp

C of non-negative Lp functions
on the domain ˝ . Thus we obtain the recent result [15, Theorem 3.3] of Daniele,
Giuffrè, Maugeri, and Raciti. When in the (scalar) mixed Signorini problem with a
linear elliptic pde, there exists a multiplier ` to the inequality constraint �v � g,
vj�c � g a.e. that lives in the dual Q0 to the image space Q D L2.�c/, thus lies in
L2C.�c/, then the multipliers ` and � are related by � D ��`, where �� denotes the
adjoint of the trace map � W H1.˝/! L2.�c/.

Indeed, this direct simple approach to Lagrange multipliers and mixed formu-
lations is used in an efficient numerical treatment of domain obstacle problems.
Based on such mixed formulations the very effective biorthogonal basis functions
with local support, due to Lamichhane and Wohlmuth [41], can be employed
for approximation of the Lagrange multipliers in the hp-adaptive FEM for elliptic
obstacle problems, see the recent paper [6] of Banz and Schröder.
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A Direct Approach to Lagrange Multipliers for VIs of Second
Kind

Here we consider nonsmooth optimization problems of the form

.NOP/ min
v2V

f .v/ D 1

2
hAv; vi � hf ; vi C '.v/;

where ' is convex, even positively homogeneous on V , but not differentiable in
the classic sense. A prominent example encountered with given friction or Tresca
friction in solid mechanics is

'g.v/ D
Z

�c

gjvj ds .g 2 L1.�c/; g > 0/ :

An optimal solution of .NOP/ is characterized as a solution of the VI of the second
kind:

.VI � 2/ u 2 V; hAu; v � ui C '.v/ � '.u/ � f .v � u/; 8v 2 V:

For the above example of 'g use

'g.v/ D
Z

�

g jvj d� D sup

8
<

:

Z

�

g v � d�
ˇ
ˇ
ˇ � 2 L2.� /; j�j � 1

9
=

;
;

where sup is attained by � D sign v, set

M WD f� 2 L2.� /; j�j � 1g

and arrive—as it is shown in more general terms in Proposition 2 below—at the
mixed problem:

Find u 2 V D H1.˝/; � 2 M such that for all v 2 V; � 2 M

8
<̂

:̂

hAu; vi C R
�

g v � d� D hf ; vi;
R

�

g u .� � �/ d� � 0:

To reveal the duality structure, introduce

M.g/ D f� 2 L2.� /; j�j � g a:e:g:
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Although, with g 2 L1.� /, this set is clearly contained in L1.� /, we stick to
the easier treatable L2 duality. Thus .VI � 2/ is equivalent—as it is shown in more
general terms in Proposition 2 below—to the mixed problem:

Find u 2 V D H1.˝/; � 2 M.g/ such that for all v 2 V; � 2 M.g/

( hAu; viV��V C h�; viL2.� / D hf ; viV��V ;

hu; �� �iL2.� / � 0:

Indeed, in the more general setting of a reflexive Banach space V , a map A W
V ! V�; f 2 V� and a sublinear functional ' W V ! R, we have the following
result using the convex weakly -compact subdifferential

P WD @'.0/ D fq 2 V�; hq; vi � '.v/;8v 2 Vg:

Proposition 2 u 2 V solves the above .VI � 2/, iff there exists p 2 P such that
.u; p/ 2 V � V� solves the mixed system

.MP � 2/
(
hAu; vi C hp; vi D hf ; vi
hp� q; ui � 0 ;

for all v 2 V; q 2 P.

Proof Let u 2 V solve .VI � 2/. Then the choice v D 0 gives

hAu; ui C '.u/ � f .u/; (13)

whereas the choice v D tw;w 2 V; t > 0; t!1 gives for all w 2 V ,

hAu;wi C '.w/ � f .w/; (14)

hence, from (13) and (14) we get

hAu; ui C '.u/ D f .u/: (15)

Note that (15) and (14) imply .VI � 2/, hence these assertions are equivalent to
.VI � 2/.

Define p 2 V� by p D f �Au. Then .MP�2/1 trivially holds. Further, from (14),
for any w 2 V , '.v/ � hp;wi, hence p lies in @'.0/ D P. Finally from (15),
'.u/ D hp; ui, hence .MP � 2/2 follows.

Vice versa, .MP � 2/2 implies '.u/ D hp; ui, hence together with .MP � 2/1
and the choice v D u gives (15). Since '.v/ � hp; vi, from .MP � 2/1 we arrive
at (14). ut
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Similarly as discussed in the previous subsection, the regularity of the multiplier
p hinges on the regularity of the datum f and in particular on the regularity of the
solution u of the .VI � 2/ via the map A.

To apply the above general result to the friction-type functional 'g we only have
to set V D H1.˝/; ' D 'g ı� with the linear continuous trace operator � that maps

H1.˝/ onto H
1
2 .� / dense in L2.� / and use the subdifferential chain rule [46]

@' D @.'g ı �/ D ��@'g�:

Note that this chain rule holds as an equality, since 'g is real-valued and so the
constraint qualification 0 2 int .range � � dom '/ is trivially satisfied.

To conclude this subsection let us mention other duality relations and mixed
formulations useful in numerical treatment of variational inequalities of the second
kind. By .L1;L1/ duality and density one obtains

'g.v/ D
Z

�c

gjvj ds D sup

�Z

�c

g v � ds
ˇ
ˇ
ˇ � 2 C. � /; j�j � 1




:

This is used in convergence proof of Finite Element Methods and Boundary Element
Methods, see [24, 25].

Another way to cope with the nondifferentiable functional 'g is to decompose
the modulus function jj D C C � with the positive part C D max.; 0/ � 0
and the negative part � D max.�; 0/ � 0. This leads to inequality constrained
problems considered in the previous subsection what is not elaborated here further.

A Direct Approach to Lagrange Multipliers for More
General VIs

To conclude this section we deal with the more general

.VI � 3/ u 2 K; hA.u/; v � ui C '.v/� '.u/ � f .v � u/; 8v 2 K ;

where as above f 2 V�, ' W V ! R is sublinear and now K � V is a convex
closed cone with vertex at zero. A VI of this form occurs in unilateral contact
of a linear elastic body with a rigid foundation under the Tresca friction law, if
the initial gap between body and foundation is zero, see [25]. The more general
setting, in particular for non-zero gap, with K and ' convex would encompass also
the VIs of first kind studied before, but needs additional arguments. Therefore we
prefer this simpler homogeneous setting to elucidate the direct approach to Lagrange
multipliers. In this setting we have the following result in a general locally convex
topological vector space V for a not necessarily linear operator A W V ! V�.
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Theorem 6 Let u 2 K. Then u solves the above .VI � 3/, iff there exist p 2 P D
@'.0/ and � 2 K� such that the complementarity condition h�; ui D 0 holds and
.u; p; �/ 2 V � V� � V� solves the mixed system

.MP � 3/
(
hA.u/; vi C hpC �; vi D hf ; vi
hp � q; ui � 0 ;

for all v 2 V; q 2 P.

Proof Let u 2 K solve .VI � 3/. Then we first proceed as in the proof of
Proposition 2. The choice v D 0 gives

hA.u/; ui C '.u/ � f .u/; (16)

whereas the choice v D tw;w 2 K; t > 0; t!1 gives for all w 2 K,

hA.u/;wi C '.w/ � f .w/; (17)

hence from (16) and (17) we get

hA.u/; ui C '.u/ D f .u/: (18)

Note that (18) and (17) imply .VI � 3/, hence these assertions are equivalent to
.VI � 3/.

Define ` 2 V� by ` D f � A.u/. From (17) we find

'.v/ � h`;wi ; 8w 2 K: (19)

Now we claim that ` 2 K�CP and that hence, .MP� 3/1 holds. Note that both K�
and P are convex closed sets, moreover P is weakly* compact in V�. So the claim
can be shown by an indirect argument employing the separation theorem. Here we
use that

'.w/ D max
q2P
hq;wi

and thus (19) means that for any w 2 K there exists q 2 P such that hq;wi � h`;wi.
Therefore by the extension lemma [23, Theorem 2.2] (which is a refined version
of the famous Fan–Glicksberg–Hoffman theorem of alternative and is proved from
a fixed point theorem or from the separation theorem) there exists p 2 P such that
hq;wi � h`;wi holds for all w 2 K. Now define � D ` � p, hence � 2 K� and
` D �C p 2 K� C P as claimed.

From (18) we obtain

hp; ui � '.u/ D h�C p; ui;
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hence, h�; ui � 0. Since u 2 K; � 2 K�, the complementarity condition h�; ui D 0
follows. This gives with (18) that '.u/ D hp; ui, hence we arrive at .MP � 3/2.

Vice versa, .MP � 3/1 implies together with the complementarity condition and
.MP � 3/2

hf � A.u/; ui D h�C p; ui D hp; ui D '.u/ ;

hence (18). In view of � 2 K� we conclude from .MP � 3/1 that for any w 2 K,

hf � A.u/;wi D h�C p;wi � hp;wi � '.w/ ;

hence (17). ut

Conclusions and Outlook

We have seen the crucial role of elliptic regularity theory in two instances. First
with elliptic multiobjective optimal control formulated as jointly convex GNEP
the regularity of the solution of the underlying pde was needed to arrive at a
reformulation that was the basis for an efficient numerical solution method. In this
approach we had to require that the domain where the elliptic pde lives is convex
or sufficiently smooth. On the other hand, real-world domains may have reentrant
corners or are only piecewise smooth. This leads to the question how this approach
can be refined using the well-known elliptic theory in nonsmooth domains [22],
abandoning classic Sobolev spaces, and working instead with weighted Sobolev
spaces [40].

Then we have presented a direct approach to Lagrange multipliers in inequality
constrained and related nonsmooth boundary value problems which gives an
immediate link between the regularity of the Lagrange multiplier and the regularity
of the solution of the problem. As already the one-dimensional obstacle problem
demonstrates, there is a threshold of smoothness, however, that in general cannot
be overstepped even if the data are arbitrarily smooth. The regularity theory for
frictionless unilateral contact reported from the work [37] has shown the influence
of the switching points, where the boundary conditions change, on the smoothness
of the solution. So one may be interested in a more detailed analysis in weighted
Sobolev spaces [40] that takes the switching points in account.

Finally let us point out that we have here considered frictionless monotone
unilateral contact problems. Nonmonotone contact problems can be put in primal
form as hemivariational inequalities (HVIs). While the theory of HVIs is well
developed, the numerical solution of these problems is in its infancy; here, we can
refer to [7, 12, 28, 29, 45, 49] (ordered according to publication date). So one may
ask for mixed formulations with appropriate Lagrange multipliers that would allow
the development of mixed finite element procedures for the efficient solution of
these nonconvex variational problems.
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Introduction

Convexity is one of the fundamental concepts, being used in formulation of the
basic mathematical principles as well as in numerous applications in optimization,
theory of games, economics, engineering, design, and in other fields of science
and technology. In particular, convexity stands as the main hypothesis in various
mathematical statements, numerical algorithms, etc. However, in the second half
of the twentieth century many attempts to weaken this hypothesis were made in
order to extend well-known results. For instance, the concept of paraconvexity (see
section “Weakly Convex Sets” for the exact definition) was introduced in 1958 by
Michael [48] as an adequate substitution of the traditional convexity in continuous
selections theorems.

On the other hand, in the same year very fruitful generalization of convexity
was given by Federer (see [31]) who defined and studied properties of so named
sets with positive reach in finite dimensions. The idea of such extension is based
on the fact that a convex closed set A � R

n is completely characterized by the
Chebyshev property: each point x 2 R

n admits a unique metric projection onto A.
So, Federer introduced the characteristics reach .A; a/ of a closed set A � R

n as
the maximal radius of a ball centered at a 2 A such that every point from this ball
admits a unique metric projection onto A, and considered the class of sets A with
reach .A; a/ > 0, a 2 A. In other terms this property can be expressed through
a weakened variational inequality (which is equivalent to the “quasimonotonicity”
of the normal cone) or through regularity of the distance function near the set A.
For the first time the various features of the closed sets with positive reach were
collected in [31, Theorem 4.8]. Let us observe that the paraconvexity by Michael
and the generalized convexity considered by Federer are completely different even
in R

2. Indeed, the sets having form of the letters V, X, Y, or Z are paraconvex
but have no positive reach due to angles, while the (very smooth) letter U is of
positive reach but not paraconvex (see [31, Examples 1.1 and 1.2]). Notice that the
positive reach property is very similar to (but does not coincide with) the so-called
exterior sphere condition known from Differential Geometry and having a lot of
applications in various fields of Partial Differential Equations, Optimal Control, etc.
Roughly speaking, it means that a set can be continuously rolled outside by some
ball with (fixed or variable) positive radius. Apparently, for the first time the sets
(in particular, convex surfaces in R

n) with such property were considered a little bit
earlier by Reshetnyak (see [59]).

Some decades later, in the series of works by De Giorgi et al. (see, e.g., [27, 28])
a generalization of convex functions is appeared as a suitable tool to study evolution
equations. So, a new class of so-called '-convex functions was introduced. The
name is due to the fact that for a '-convex function f .�/ the slope of its proximal
gradients is controlled by a continuous real nonnegative function ' (this slope is
equal to 0 whenever the function f .�/ is convex, and the proximal subdifferential is
reduced to subdifferential in the sense of Convex Analysis). Afterwards, the closed
sets whose indicator functions are '-convex, naturally called '-convex (or p-convex)
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sets, were considered in Hilbert setting for various goals, e.g., for studying geodesics
(see [16, 17]). It turned out that the notions of '-convex sets and sets with positive
reach according to Federer essentially coincide even in infinite dimensional Hilbert
spaces. Namely, the equivalence of three main properties (variational inequality
with a continuous function '.�/; existence, uniqueness, and continuity of the metric
projection in a neighborhood of the set; differentiability of the distance function near
the set) was established for the first time by Clarke et al. (see [18]) in a particular
case when ' � const (equivalently, when an open neighborhood around the set
admits the form of uniform tube). General case instead was treated subsequently in
the works [19, 53] and others. In particular, proving that the proximal smoothness
of the distance function implies '-convexity of the set, Colombo used in [19] a nice
argument involving solutions of a differential inclusion with maximally monotone
operator that extends to infinite dimensions the original idea by Federer (he used
Peano’s Theorem for ordinary differential equations). Furthermore, it was proved
that '-convexity is equivalent to very clear geometric property: given Nx 2 A for any
x; y 2 A close to Nx a convex combination �xC .1 � �/ y, � 2 �0; 1Œ, must be distant

from the set A not more than of the order O

kx � yk2

�
. Notice that the necessity

of this condition was proved much earlier in [16]. Let us pay a special attention to
the fact that in infinite dimensions for '-convexity it is not enough to require the
(local) existence and uniqueness of the metric projection, but this projection should
be continuous. The question whether (local or global) Chebyshev property implies
continuity of the projection due to authors’ knowledge remains open up to now.

Summarizing everything said above we have a class of closed sets larger than the
family of convex ones, which can be named by the different ways (emphasizing one
of their properties): '-convex (or p-convex), proximally convex, proximally smooth,
prox-regular sets, O.2/-convex sets (the last term is due to Shapiro [60]), and so on.
We refer the reader also to the nice survey [21] on theory and applications of prox-
regular sets.

Independently, also in 1950s (like Michael and Federer) the soviet mathemati-
cians Efimov and Stechkin had introduced in [30] another geometric concept
of generalized convexity even in Banach setting. Their definition refers to the
representation of a convex closed set as intersection of a family of (closed)
semispaces. But in the place of semispaces they considered the complements of
(open) balls of the fixed radius. Two decades later Vial defined one more geometric
concept of weak convexity (see [63]) employing a generalization of the (straight
line) segment joining two points. In fact, given x; y 2 A, and a real number R > 0

the intersection of all closed balls of the radius R (if any), which contain both x and
y, is called R-strong (or R-spherical) segment joining these points. In what follows
we denote it by DR .x; y/. So, a set A is said to be weakly convex (by Vial) if there
exists R > 0 such that given x; y 2 A with 0 < kx � yk < 2R the intersection
DR .x; y/ \ A contains a point different from both x and y.

Observe that the Vial’s definition of weak convexity allows to formulate its strong
counterpart. Namely, a set A � H (H is a normed space, which will be assumed
Hilbert everywhere in our paper if nothing said in contrary) is called strongly convex
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(by Vial) if there exists R > 0 such that given x; y 2 A with kx � yk � 2R one has
DR .x; y/ � A. In what follows we will see that this definition of strong convexity is
equivalent to a lot of other geometric as well as analytic properties. For instance, one
of them written in terms of variational inequality (see Theorem 2.1 .g/ below) was
introduced by Pliś as early as the 1970s (see [52]). Later on various applications
of this property were given (see, e.g., [22]). Among equivalent characterizations of
strongly convex sets let us emphasize the following: a set A � H is strongly convex
iff it can be represented as intersection of a family of closed balls of given radius
R > 0. Such equivalence recalls the duality between two approaches in definition
of convex sets: on one hand, a set A is convex whenever for each x; y 2 A it contains
the entire segment

Œx; y� WD f�xC .1 � �/ y W 0 � � � 1g

(the direct approach) while, on the other hand, A is convex iff it can be represented
as the intersection of a family of semispaces (the dual approach). Notice that a
semispace can be seen as a ball of the radius R D C1. Furthermore, the geometric
definition by Efimov and Stechkin [30] (see above) can be considered as a version
of the dual approach to the weak convexity introduced by Vial in [63], although
there is no total equivalence between them (the weak convexity by Vial implies the
generalized convexity by Efimov and Stechkin at least in Hilbert spaces while vice
versa is not true).

Let us mention that already at the beginning of 1960s Danzer et al. introduced
in [24] an abstract convexity by means of intersection of a certain family of
“elementary” sets (from some class M), or, equivalently, through separation of
points from a set by elements of the class M. However, the cases when M is the
family of (closed) semispaces (usual convexity) or the class of closed balls of fixed
radius (strong convexity) seem to be more productive. We do not touch also the
variety of other abstract as well as axiomatic concepts of convexity, which can be
introduced in sets endowed with different structures. For details we refer to the book
[61] and to the ample bibliography therein.

Returning to our matter, let us notice that the theories of '-convex (more
traditionally proximally smooth or prox-regular) and weakly convex (by Vial) sets
have been developed independently for a long time. Besides the works mentioned
above let us emphasize the contribution by Polovinkin, Balashov, and by the
authors (see [3–12, 19, 20, 33, 34, 37–44, 54–56], etc.). A lot of applications of
these classes of sets (and of strongly convex sets as well) was found in various
fields of Nonlinear and Multivalued Analysis, Differential Equations, Numerical
Calculus, Optimization, Theory of Games, etc. However, it was proved that the
weak convexity by Vial is nothing else than the uniform prox-regularity, i.e., the
smoothness of the distance function in an uniform tube of a radius R > 0 around the
set (in other terms, '-convexity with the function ' .x/ � const D 1

2R ).
Let us note that the Vial’s definitions allow to emphasize better geometrical and

topological properties of closed sets. In particular, the symmetry between weak and
strong convexity has very nice and clear theoretical consequences as well as fruitful
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applications. However, this approach is essentially uniform and does not permit
to study the local properties of weakly convex closed sets. To this objective the
prox-regularity approach, enlarging a little bit of the weak convexity notion, seems
to be more appropriate. Moreover, following the same logic (based on variational
inequalities and proximal normals) one can define the strong convexity concepts
(roughly speaking, localize the Vial’s strong convexity). The recently introduced
metric curvatures for convex closed (solid) sets in a Hilbert space (see [33]) partially
fulfill this task.

In what follows we will consider mainly subsets of a Hilbert space, though
recently the works on weak convexity (prox-regularity) appeared in Banach setting
as well (see, e.g., [13, 14, 43]).

The paper is organized as follows. The next section “Strongly Convex Sets” is
devoted to the main notions and results concerning strongly convex sets, while in
section “Weakly Convex Sets” the authors give a symmetric sketch of theory of
weakly convex sets. Furthermore, each of these sections is divided into two parts:
in the first one the uniform (strong or weak) convexity is studied, equivalence
of various characterizations is proved and the related questions are discussed; in
the second part instead some local (and pointwise) constructions are introduced,
and the connections with uniform concepts are established. Finally, in the last
section “Balance between Weak and Strong Convexity” some applications of strong
and weak convexity to the geometry of Hilbert spaces, to multivalued mappings
and their continuous selections, and to a minimum time control problem are given.
Notice that in all the applications two kinds of sets are involved, and the weak
convexity of one set is somehow balanced by the strong convexity of another.

Strongly Convex Sets

Let H be a real Hilbert space with the inner product h�; �i and the norm k�k. Given
R > 0 and c 2 H we denote by BR .c/ the closed ball of the radius R centered at
the point c. By int A, A, and @A we mean as usual the interior, the closure, and the
boundary of A � H. For a closed set A � H let us give the list of main notations
being used in the paper.

• diam A WD sup
x;y2A
kx � yk is the diameter of A.

• �.p;A/ WD supa2A hp; ai, p 2 H, is the support function of A:
• N.a;A/ WD fp 2 H W hp; ai D �.p;A/g is the normal cone to A at a point a 2 A

(whenever the set A is convex).
• dA.x/ WD inf

a2A
kx � ak is the distance from a point x 2 H to A.

• UA.r/ WD fx 2 H W dA.x/ < rg is the (open) neighborhood of radius r > 0

around A.
• PA.x/ WD fa 2 A W kx � ak D dA.x/g is the metric projection of a point x 2 H

onto A.
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Besides the distance and the metric projection onto a closed set we will consider
also the so-called antidistance

fA.x/ WD sup
a2A
kx � ak

from a point x 2 H to A � H, antineighborhood of radius r > 0

aUA.r/ WD fa 2 H W fA.a/ > rg
and antiprojection (the set of farthest points)

aPA.x/ WD fa 2 A W kx � ak D fA.x/g ;
x 2 H.

In what follows we use the Minkowski operations (sum and difference) between
sets A;B � H defined as

AC B WD faC b W a 2 A; b 2 Bg ; A � B WD fx 2 H W xC B � Ag (1)

and the Hausdorff (or Hausdorff-Pompeiu) distance

h.A;B/ WD max

�

sup
a2A

dB.a/; sup
b2B

dA.b/




: (2)

Notice that obviously UA.r/ D AC int Br.x/, while aUA.r/ D .H n Br.x//C A (the
latter equality was proved in [6]).

Let us associate to a closed convex set A � H the modulus of convexity ıA W
Œ0; diam A/! Œ0;C1/ due to Polyak (see [57]):

ıA ."/ WD

sup

�

ı > 0 W Bı
�

a1 C a2
2

�

� A 8a1; a2 2 A; ka1 � a2k D "



: (3)

It characterizes degree of the uniform strict convexity (rotundity) of the set A and
equals zero whenever the boundary of A has at least one affine piece. In particular,
for A D BR .c/, R > 0, c 2 H, by the simple geometric reasoning we immediately
obtain

ıA ."/ D R �
r

R2 � "
2

4
; 0 � " � 2R:

In the second part of this section we consider another modulus of convexity
(rotundity), which characterizes the strict convexity of a set locally while now let us
introduce the basic uniform concepts and prove the equivalent assertions regarded
to the strongly convex sets.
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Uniform Strong Convexity

Definition 2.1 A subset A � H is said to be strongly convex if there exist R > 0

(called radius of strong convexity) and a set C � H such that

A D
\

c2C

BR .c/ :

In particular, the R-strongly convex segment with endpoints x; y 2 H, kx � yk �
2R, is defined as the intersection of all balls BR .c/, c 2 H, containing x and y, and
is denoted by DR .x; y/.

Remark 2.1 If subset A � H is strongly convex, then it is closed convex and
bounded.

Theorem 2.1 (Equivalent Characterizations of a Strongly Convex Set) Given
a nonempty closed convex bounded set A � H and a number R > 0 the following
assertions are equivalent:

(a) A is strongly convex with radius R;
(b) diam A � 2R and DR.a1; a2/ � A for all a1; a2 � A;
(c) for each two-dimensional affine subspace L � H the set A \ L is either empty

or strongly convex in the space L with radius R;
(d) diam A � 2R and ! � A for each circumference arc ! of radius R with length
� �R and with the endpoints belonging to A;

(e) (support principle) for all a 2 @A and p 2 N.a;A/, kpk D 1, the inclusion

A � BR.a � Rp/

holds;
(f) there exists a closed convex set A1 � H with AC A1 D BR .0/;
(g) given a1 2 @A and p1 2 N .a1;A/, kp1k D 1, the inequality

hp1; a1 � a2i � 1

2R
ka1 � a2k2

holds for all a2 2 A;
(h) for all ai 2 @A, pi 2 N .ai;A/, kpik D 1, i D 1; 2, one has

hp1 � p2; a1 � a2i � 1

R
ka1 � a2k2 I

(i) for all ai 2 @A, pi 2 N .ai;A/, kpik D 1, i D 1; 2, one has

ka1 � a2k � R kp1 � p2k
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or, in other terms, the support function � .�;A/ is Fréchet differentiable on the
unit sphere and its gradient r� .�;A/ satisfies the Lipschitz condition

kr� .p1;A/� r� .p2;A/k � R kp1 � p2k 8p1; p2 2 @B1 .0/ I

(j) for all ai 2 @A, pi 2 N .ai;A/, kpik D 1, i D 1; 2, one has

hp1 � p2; a1 � a2i � R kp1 � p2k2 I

(k) for any a 2 @A there exists " 2 .0;R/ such that the set A \ B" .a/ is strongly
convex with the radius R;

(l) (local support principle) for any a 2 @A there exist " 2 .0;R/ and p 2 H,
kpk D 1, such that A \ B" .a/ � BR.a� Rp/;

(m) diam A � 2R and

ıA ."/ � R �
r

R2 � "
2

4
; 0 < " < diam AI

(n) the inequality

lim inf
"!0C

ıA ."/

"2
� 1

8R

holds;
(o) for each R1 > R the antidistance function fA.�/ is Fréchet differentiable on the

antineighborhood aUA .R1/;
(p) for each R1 > R the antiprojection operator x 7! aPA .x/ is single-valued and

continuous on the antineighborhood aUA .R1/;
(q) for each R1 > R

kb1 � b2k � R

R1 � R
kx1 � x2k 8bi 2 aPA .xi/ ;

8xi 2 aUA .R1/ ; i D 1; 2I (4)

(r) there exists R1 > R such that (4) holds;
(s) for all xi 2 H, ai 2 PA .xi/, i D 1; 2, one has

ka1 � a2k � R
p
.RC dA .x1// .RC dA .x2//

�
q

kx1 � x2k2 � .dA .x1/ � dA .x2//
2:
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Proof We prove the equivalence by the following scheme:
.q/ .r/ .s/ .k/ .l/

&- l %. l %.
.o/ $ .a/ ! ! ! .b/  ! .m/
l " & # &-
.p/ " .c/ ! .d/ .n/

" #
.f /    .e/ ! .g/ ! .h/

" #
.j/    .i/

.a/ ) .b/ follows directly from the definitions of strongly convex set and
strongly convex segment.
.b/) .d/ Let ! be an arc of a circumference of radius R with the length � �R

and the endpoints a1; a2 2 A. Then by the definition of strongly convex segment and
by the statement .b/ we get ! � DR.a1; a2/ � A;
.a/ ) .c/ Let A D T

x2C BR.x/. Then A \ L D T
x2C.BR.x/ \ L/. If the set

BR.x/ \ L is nonempty, then it is either a point, or a disc with radius � R. So,
BR.x/ \ L can be represented as an intersection of discs (balls in L) with radius R.
.c/) .d/ follows from the planarity of an arc.
.d/) .e/ (See Fig. 1). Fix any a 2 @A and p 2 N.a;A/, kpk D 1. Suppose that

there exists a point a2 2 A n BR.a � Rp/. Let L be the affine hull of the vectors a2,
a, and a � Rp. Take a point q 2 L � a such that hp; qi D 0 and hq; a2 � ai � 0.
By the assertion .d/ we, in particular, have ka2 � ak � 2R. Furthermore, a2 ¤ a
since a2 62 BR.a � Rp/. Let a1 be a point of the circumference .@BR.a � Rp// \ L

Fig. 1 Proof of the implication (d)) (e) in Theorem 2.1
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with ka � a1k D ka � a2k and hq; a1 � ai � 0. Denote by ' the angle between the
vectors a2 � a and a1 � a. Then ' 2 �0; �

2

�
due to the fact that hp; a1 � ai � 0,

hp; a2 � ai � 0 (remind that a1 2 @BR.a � Rp/ and p 2 N.a;A/, a2 2 A) and that
hq; a1 � ai � 0; hq; a2 � ai � 0 by our construction. Observe that ' ¤ 0 because
a2 ¤ a1. Let us denote by !1 the shortest arc of the circumference .@BR.a�Rp//\L
with endpoints a and a1 and consider the rotation of the plane L�a around the point
a on the angle ' in the direction from q to p. This rotation maps the point a1 to
a2 and the arc !1 to some arc connecting a and a2 (let !2). Then the image q2 of
q is tangent to !2 at the point a similarly as q is tangent to !1. Moreover, q2 is
directed from a towards a2. By the assertion .d/ we get !2 � A, and it follows from
p 2 N.a;A/ that hp; x � ai � 0 for all x 2 !2. Consequently, hp; q2i � 0 since the
vector q2 (being tangent to !2) is limit of secants passing through points satisfying
the same inequality. On the other hand, q is perpendicular to p while q2 is obtained
by rotation from q to p on the angle ' 2 �0; �

2

�
. So, the angle between q2 and p is

acute, which is contradiction.
.e/) .f / Set A1 WD BR.0/ � A. By the definition of the Minkowski difference

AC A1 � BR.0/. Suppose that the inverse inclusion is false, i.e., there exists a point
x 2 BR.0/ such that x 62 A1 C A. Since the set A1 C A is convex and closed (by the
weak compactness) it follows by Hahn–Banach separation theorem that there exists
a vector p with kpk D 1 such that �.p;A1/C�.p;A/ < hp; xi � R. Due to the weak
compactness of A we can associate to p a point a 2 A with � .p;A/ D hp; ai. By the
statement .e/ we have A � BR.a � Rp/. Hence, by the definition of the Minkowski
difference, Rp � a 2 BR.0/ � A D A1. Consequently, hp;Rp � ai � �.p;A1/.
So, R � �.p;A1/ C hp; ai D �.p;A1/ C �.p;A/. This contradicts the inequality
�.p;A1/C �.p;A/ < R above.
.f /) .a/ Let A1 be closed convex set from the assertion .f /. Then by applying

Hahn–Banach separation theorem and the definition of the Minkowski operations
we have AC A1 � A1 D A, i.e., A D BR.0/ � A1 DTc2�A1

BR.c/.
.e/ ) .g/ Fix arbitrary a1 2 @A, p1 2 N.a1;A/, kp1k D 1, and a2 2 A. By the

statement .e/ we have a2 2 BR.a1 � Rp1/, i.e.,

ka1 � Rp1 � a2k2 D ka1 � a2k2 � 2R hp1; a1 � a2i C R2 � R2;

which yields .g/.
.g/ ) .h/ Let us fix ai 2 @A, pi 2 N.ai;A/, kpik D 1, i D 1; 2. From .g/ we

have

2Rhp1; a1 � a2i � ka1 � a2k2; 2Rhp2; a2 � a1i � ka1 � a2k2:

Adding the above inequalities, we obtain the desired result.
The implications .h/) .i/ and .i/) .j/ follow successively from the Cauchy–

Schwarz inequality.
.j/ ) .e/ Fix arbitrary a 2 A and p 2 N.a;A/, kpk D 1, and put c D a � Rp.

We should prove that A � BR.c/. Let us denote R0 WD supa2A ka � ck. Then the
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desired inclusion holds true iff R0 � R. Suppose that R0 > R and choose a sequence
fxkg � A such that R < kxk � ck ! R0 as k!1. For all k 2 N let us define

pk D xk � c

kxk � ck ;

and ak 2 A be such that � .pk;A/ D hpk; aki. Since pk 2 N.ak;A/ and kpkk D 1,
from the statement .j/ it follows that

hpk � p; ak � ai � Rkpk � pk2 8k 2 N: (5)

On the other hand, by the choice of ak we have hpk; xki � hpk; aki. Consequently,
passing to the limits,

lim inf
k!1 hpk; ak � ci � lim inf

k!1 hpk; xk � ci D lim inf
k!1 kxk � ck D R0

and

lim sup
k!1

kak � c � R0pkk2 � lim sup
k!1

�
2R20 � 2R0hpk; ak � ci� � 0:

It means that

"k WD kak � c � R0pkk ! 0; k!1: (6)

Since

hpk � p; ak � ai � hpk � p; cC R0pk � ai � kpk � pk � kak � c � R0pkk
� hpk � p;R0pk � Rpi � 2"k

D .R0 C R/.1� hp; pki/� 2"k

D R0 C R

2
kpk � pk2 � 2"k;

by (5) we obtain

R0 C R

2
kpk � pk2 � 2"k � Rkpk � pk2:

Thus, .R0�R/kpk�pk2 � 4"k ! 0 as k!1 (see (6)), and we deduce that pk ! p
as k!1 (recall that R0 > R). Then

hp; a� xki D hp;RpC c � xki D R � kxk � ckhp; pki ! R � R0 < 0;

contradicting the fact that p 2 N.a;A/ and xk 2 A.
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For the further equivalences .b/ , .k/, .b/ , .l/, .b/ , .m/, .b/ , .n/,
.a/ , .o/, .o/ , .p/, .a/ , .q/, .a/ , .r/, and .a/ , .s/ we refer,
respectively, to [64, Theorem 1.1], [64, Theorem 1.2], [12, Theorem 2.1], [12,
Theorem 2.1] (see also [64, Proposition 5.2]), to [40, Theorem 1], [40, Remark 5],
[7, Theorems 2, 5], [4, Theorem 2.2], and to [5, Theorem 2.2]. �
Remark 2.2 Observe that we need the boundedness assumption in Theorem 2.1
because the item .j/ doesn’t imply that the set A is bounded [e.g., each affine
subspace of H satisfies .j/] while the boundedness immediately follows from each
of the variational inequalities .g/–.i/. On the other hand, from Theorem 2.1 .m/ one
immediately deduces that each strongly convex set A � H has nonempty interior
unless it is not singleton.

Remark 2.3 The estimations in the statements .g/–.j/, .m/, .n/, .q/, .s/ are exact.
Namely, they become equalities whenever A � H is a ball of the radius R.

Remark 2.4 If a set A � H is strongly convex with the radius R > 0, then it is
strongly convex with any radius R1 > R as well. Vice versa, if A � H is strongly
convex with each radius R1 > R (R > 0 is fixed), then A is strongly convex with the
radius R. It follows from the statement .e/ of Theorem 2.1.

Remark 2.4 implies that for any strongly convex A � H there exists the minimal
(or sharp) radius of the strong convexity.

Theorem 2.2 Given a closed convex bounded set A � H and a number R > 0 the
following assertions are equivalent:

(a) R is the minimal radius of strong convexity of A;
(b)

lim
"!C0

ıA ."/

"2
D 1

8R
I

(c) there exists R1 > R such that R
R1�R is the minimal Lipschitz constant for the

antiprojection operator aPA .�/ on the antineighborhood aUA .R1/;
(d) for each R1 > 0 the metric projection operator PA .�/ is Lipschitz continuous

with the minimal constant R
RCR1

on the set H nUA .R1/.

Proof The equivalences .a/ , .b/, .a/ , .c/, and .a/ , .d/ were proved,
respectively, in [12, Theorem 2.1], [4, Corollary 2.3], and in [5, Theorem 2.1
and Corollary 2.1]. �
Theorem 2.3 (Hölderian Dependence of the Metric Projection and the Antipro-
jection Upon the Set) Let A1 � H be a strongly convex set with the radius R > 0;
A2 � H be an arbitrary (may be nonconvex) set; h WD h .A1;A2/ be the Hausdorff-
Pompeiu distance between these sets, and x 2 H be an arbitrary point. Then
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(a) for the metric projections ai 2 PAi .x/ (i D 1; 2) one has

ka1 � a2k �
r
4Rhd

RC d
C h2

where d WD dA1 .x/;
(b) if R1 WD fA1 .x/ > R, then the antiprojections bi 2 aPAi .x/ (i D 1; 2) satisfy the

inequality

kb1 � b2k �
s
4RR1h

R1 � R
C h2:

Proof .a/ If d D 0, then the desired inequality is obvious. Assume that d > 0. Since
p WD x�a1

d 2 N.a1;A1/ and kpk D 1, by the assertion .e/ of Theorem 2.1 we have
A1 � BR.a1�Rp/. Consequently, a2 2 A2 � BRCh.a1�Rp/, i.e., ka1 �Rp� a2k �
RC h. Squaring this inequality and reducing similar terms give

ka1 � a2k2 � 2Rhp; a1 � a2i � 2RhC h2: (7)

On the other hand, writing the inequality dA2.x/ � dA1.x/C h D dC h as kx� a1C
a1 � a2k D kx � a2k � d C h, by the same reasoning as above, we obtain

2hx � a1; a1 � a2i C ka1 � a2k2 � 2dhC h2;

or, after multiplying by R
d ,

2Rhp; a1 � a2i C R

d
ka1 � a2k2 � 2RhC R

d
h2:

Summing the latter inequality and (7) we arrive at
�

1C R

d

�

ka1 � a2k � 4RhC
�

1C R

d

�

h2

that completes proving of the assertion .a/. Proof of the statement .b/ is analo-
gous. �
Remark 2.5 The estimations of Theorem 2.3 are exact in the sense that there exist
sets and points satisfying the assumptions of the theorem such that the inequalities
become equalities.

Local Strong Convexity

For the sake of simplicity of the further constructions let us associate to a convex
closed bounded set A � H the Minkowski functional (or gauge function)

A .x/ WD inf
˚
� > 0 W ��1x 2 A

	
; x 2 H; (8)
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which is somehow dual to the support function. Namely, A .x/ D �
�
x;A0

�
, x 2 H,

where

A0 WD fp 2 H W hp; xi � 1 8x 2 Ag
is the polar set for A. Observe also that A .x/ < C1 8x 2 H iff 0 2 int A (or,
equivalently, A0 is bounded). In what follows to avoid confusion we will assume that
0 2 int A although the results concerning localization of the strong convexity remain
true without this assumption as well (it is enough to require only that int A ¤ ; and
make some translation).

There are various ways to measure the strict convexity of a set and, respectively,
various “moduli of strict convexity.” One of them is given by the formula (3) and
essentially uniform. “Localizing” this modulus we can consider the deviation of the
(sublinear) gauge function from a linear one near a fixed point (see, for instance,
[25]), namely

OıA ."; a/ WD inf fA .a/C A .b/� A .aC b/ W b 2 @A; ka � bk � "g

D 2 inf

�

1 � A

�
aC b

2

�

W b 2 @A; ka � bk � "



; a 2 @A:

Notice that this modulus is strongly related with the modulus (3). In particular, if
Br.0/ � A � BR.0/, then

2

R
ıA."/ � inf

a2@A
OıA ."; a/ � 2

r
ıA."/; " > 0:

For our objectives instead the following modulus of rotundity is more convenient:

CA ."; a; p/ WD inf fhp; a � bi W b 2 A; ka � bk D "g ;" > 0: (9)

Here a 2 @A, and p 2 N .a;A/ is normalized by such a way that p 2 @A0. This
normalization for p (in the place of the condition kpk D 1) is chosen to emphasize
the duality between the geometric properties of the sets A and A0. Observe that
the condition p 2 N.a;A/ is equivalent to hp; ai D 1 provided that a 2 @A,
p 2 @A0. Furthermore, it is convenient to consider the so-called duality mapping
JA W @A0 ! @A,

JA .p/ WD fa 2 @A W hp; ai D 1g ; p 2 @A0;

which is “autoreverse” in the sense that J�1A .a/ D JA0 .a/ for all a 2 @A. For
instance, if B D BR .0/, then given a 2 @B the unique element p 2 @B0 with
a 2 JB .p/ is a

R2
and

CB ."; a; p/ D "2

2R2
;

which is strictly larger than OıB ."; a/ D ıB ."/, " > 0.
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By using the modulus (9) we can define the “first order strengthening” of the
usual convexity.

Definition 2.2 Given a 2 @A and p 2 JA0 .a/ we say that the set A is (locally)
strictly convex at the point a with respect to (w.r.t.) the direction p if CB ."; a; p/ > 0
for all " > 0.

Taking into account that the local strict convexity of A at a 2 @A w.r.t. p implies
that a is an exposed point of A, and the vector p exposes a (i.e., the hyperplane
fx 2 H W hp; xi D � .p;A/ D 1g touches A at the point a only), we have JA .p/ D
fag. So, one can speak just about the strict convexity w.r.t. the direction p (do not
referring to the unique a 2 JA .p/). Moreover, the strict convexity as defined here is
equivalent to the fact that a is a strongly exposed point of A w.r.t. the direction p, i.e.,
both a is exposed one and each sequence fxng � A with hp; xni ! hp; ai, n ! 1,
converges to a.

Theorem 2.4 (Equivalent Characterizations of a Locally Strictly Convex Set)
Let A � H be a closed convex bounded set containing the origin in the interior.
Then the following assertions are equivalent:

(a) A is strictly convex at a 2 @A w.r.t. a direction p 2 @A0;
(b) a is a strongly exposed point of A w.r.t. p;
(c) the duality mapping JA W @A0 ! @A is Hausdorff continuous at p with JA .p/ D
fag, a 2 @A;

(d) the support function � .�;A/ is Fréchet differentiable at p, and r� .p;A/ D a
(compare with the second part of the assertion .i/ of Theorem 2.1).

Proof .a/, .b/ follows immediately from the definitions.
For proof of the equivalences .b/, .d/ and .d/, .c/ we refer, respectively, to

[51, Proposition 5.11] and to [2, Corollary 2, p. 460]. �
The “second order” strict convexity is given by the following definition:

Definition 2.3 Fix p 2 @A0 and let a 2 @A be an unique element of JA .p/. The set
A is said to be strongly convex (or rotund) with respect to p (at the point a) if

κA .a; p/ WD 1

kpk lim inf
.";x;v/!.0C;a;p/
x2JA.v/; v2@A0

CA ."; x; v/

"2
> 0: (10)

It follows directly from the definitions that the strong convexity at the point a
w.r.t. p implies the strict convexity in the sense of Definition 2.2. Due to Theorem 2.4
.c/ in (10) as well as in similar formulas below it is enough to require only
the convergence of normals v ! p while the convergence of points x ! a
holds automatically. The positive quantity κA .a; p/ (which can be equal to C1)
characterizes degree of the rotundity of the set A close to the point a in the direction
p. The following geometric representation of κA .a; p/ implies, in particular, that it
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is invariant w.r.t. translations of A (in other words, it does not depend on location of
the origin inside A). So, we call κA .a; p/ the (scalar) metric curvature of the set A
w.r.t. p 2 @A0 (at the point a 2 @A).

Theorem 2.5 Let A be a convex closed bounded set with 0 2 int A, which is,
moreover, strongly convex w.r.t. p 2 @A0, and a 2 @A be a unique element of JA .p/.
Then

RA .a; p/ WD 1

2 kpkκA .a; p/

D lim sup
.";x;v/!.0C;a;p/
x2JA.v/; v2@A0

inf
˚
r > 0 W A \ B" .x/ � Brkvk .x � rv/

	
: (11)

Proof Let us denote by R the right-hand side of the equality (11), assume that
R < C1 and prove that RA .a; p/ � R. Given any  > R, by the definition of
R, for each " > 0 small enough and for each dual pair .x; v/ close to .a; p/ we have
the inclusion

A \ B" .x/ � Bkvk .x � v/ :

Hence, in particular, ky � xC vk2 � 2 kvk2 for all y 2 A with kx � yk D ". After
the simple transformations we arrive at

hv; x � yi � "2

2
: (12)

Passing then to infimum in y, we obtain (see (9))

1

2
� CA ."; x; v/

"2
:

The first part of theorem will be proved if we pass in the latter inequality to lower
limit as ."; x; v/! .0C; a; p/ and then to limit as ! RC.

In order to show the opposite inequality let us assume that R > 0 and take an
arbitrary  2 .0;R/. By definition of the upper limit there exist " > 0 small enough
and a dual pair .x; v/ enough close to .a; p/ such that r >  whenever A \ B" .x/ �
Brkvk .x � rv/. In particular, the latter inclusion fails for r D . Therefore, for some
y 2 A, 0 < kx � yk � ", we have ky � xC vk2 > 2 kvk2, or, in other form,

hv; x � yi < kx � yk2
2

:
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Setting r D r ."/ WD kx � yk > 0 we deduce from (9) that

CA .r; x; v/

r2
<

1

2

and, passing to lower limit as "! 0C, .x; v/ ! .a; p/ and to limit as  ! R� we
arrive at the required inequality. �

Due to Theorem 2.5 the number RA .a; p/ � 0 can be naturally named the
curvature radius of A at a 2 @A in the direction p.

Besides the above constructions, which characterize just the local structure of the
set close to a fixed boundary point (w.r.t. some direction), for p 2 @A0, a 2 JA .p/
one can consider the so-called scaled curvature

QκA .a; p/ WD 1

kpk lim inf
.x;v/!.a;p/

x2JA.v/; v2@A0

inf
">0

CA ."; x; v/

"2
(13)

and, respectively, scaled curvature radius

QRA .a; p/ WD 1

2 kpk QκA .a; p/
D

lim sup
.x;v/!.a;p/

x2JA.v/; v2@A0

inf
˚
r > 0 W A � Brkvk .x � rv/

	
: (14)

They are also invariant w.r.t. translations of the set A, but unlike the local
constructions (10) and (11) depend also on the size of A. In particular, the curvature
QκA .a; p/ cannot be too large, namely QRA .a; p/ is not smaller than the Chebyshev
radius of the set A.

Notice that in above constructions we involve the limit passage in .x; v/ in
order to guarantee the lower semicontinuity of curvatures (respectively, upper
semicontinuity of curvature radii), which is important for applications.

The connection of the curvatures with the definitions of section “Uniform Strong
Convexity” is given by the following statement.

Theorem 2.6 Let A � H be a convex closed bounded set with 0 2 int A and R > 0.
Then the following assertions are equivalent:

(a) the set A is strongly convex with the radius R;
(b) QκA .a; p/ � 1

2R for each a 2 @A and p 2 JA0 .a/;
(c) κA .a; p/ � 1

2R for each a 2 @A and p 2 JA0 .a/.
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Proof The proving is essentially based on the local support principle (see Theo-
rem 2.1 .l/) and on the formulas (11) and (14).

The inequalities in .b/ and .c/ can be rewritten as kpk QRA .a; p/ � R and
kpkRA .a; p/ � R, respectively. So, the implication .a/ ) .b/ follows from
both (14) and Theorem 2.1 .e/. By comparing formulas (11) and (14), we see that
RA .a; p/ � QRA .a; p/, and the implication .b/) .c/ follows.

In order to prove .c/) .a/ let us fix any R1 > R and a 2 @A. Take an arbitrary
q 2 N.a;A/, kqk D 1, and set p WD q

A0 .q/
2 @A0. We have a 2 JA.p/, and by virtue

of the assertion .c/ the inequality R1kpk > RA .a; p/ holds. By using (11), we get

R1
kpk > lim sup

"!0C
inf
˚
r > 0 W A \ B" .a/ � Brkpk .a � rp/

	
:

Consequently, there exists " > 0 such that A \ B" .a/ � BR1


a � R1

p
kpk
�
D

BR1 .a � R1q/. It means that the assertion .l/ of Theorem 2.1 holds and hence the
set A is strongly convex with radius R1. Since R1 > R is arbitrary, we conclude (see
Remark 2.4) that A is strongly convex with the radius R, and theorem is proved. �

Up to changing the notations Theorems 2.4–2.6 hold also true if the condition
0 2 int A is substituted by int A ¤ ;. The latter hypothesis instead is very natural
(see Remark 2.2).

Concluding this section we give a duality result between the (local) strong
convexity and “strong” smoothness. To this end let us define two more moduli of
rotundity, which are equivalent to (9) but have no a clear geometrical interpretation
as (11). Namely, given convex closed bounded A � H, 0 2 int A, and a dual pair
.a; p/ 2 @A � @A0, p 2 JA0 .a/, we set

C�A ."; a; p/ WD inf fhp; a � bi W b 2 A;A .a � b/ D "g

and

CCA ."; a; p/ WD inf fhp; a � bi W b 2 A;A .b � a/ D "g :
Denoting by kAk and

�
�A0

�
� the radii of the spheres circumscribed around A and

inscribed into A, respectively, we always have

CȦ

�
"

kAk ; a; p
�

� CA ."; a; p/ � CȦ

�
"
�
�A0

�
� ; a; p

�
;" > 0:

So, the set A is strongly convex w.r.t. p at a 2 @A iff

κȦ .a; p/ WD
1

kpk lim inf
.";x;v/!.0C;a;p/
x2JA.v/; v2@A0

CȦ ."; x; v/

"2
> 0:



Strong and Weak Convexity of Closed Sets in a Hilbert Space 277

Observe that κȦ .a; p/ are not “true” curvatures of A, because they depend on the
structure of the set A “in large” (not only close to a). In particular, the invariantness
w.r.t. translations fails, and κȦ .a; p/ depend on location of the origin inside A.

Example 2.1 Fix a 2 H with kak < 1 and consider the unit ball B D B1 .a/,
containing the origin as an interior point. Let x and y be the points of intersection of

the sphere @B with the line f�a W � 2 Rg such that the vector
�!
Ox has the same

direction as a, while
�!
Oy has the opposite direction. If p and q are the (unique)

normals to B at the points x and y, respectively, normalized so that p; q 2 @B0,
then we have

κȦ .x; p/ D
1 � kak
2.1C kak/ and κȦ .y; q/ D

1C kak
2.1� kak/ ;

while the “true” curvature κA in both points (as well as in all x 2 @B) is equal to 1=2
(the curvature radiusD 1).

To treat the differentiability properties of the boundary @A one uses the so-called
modulus of smoothness

SA .t; a; p/ WD sup fA .aC tz/ � A .a/� t hp; zi W z 2 Ag ;t 2 R; (15)

where as usual .a; p/ is a dual pair, a 2 @A, p 2 JA0 .a/. A convex closed bounded
set A � H with 0 2 int A is said to be smooth at a 2 @A if there exists unique vector
p 2 JA0 .a/ such that

lim
t!0

SA .t; a; p/

t
D 0:

Recalling Theorem 2.4 (.a/ , .d/) we see that A � H is strictly convex w.r.t.
p 2 @A0 (at the unique a 2 JA .p/) iff the polar set A0 is smooth at p (w.r.t. unique
vector a 2 @A, which is nothing else than the Fréchet gradient r� .p;A/).

The refinement of the smoothness property above is obtained through the duality
formula between the rotundity and smoothness moduli. Such kind a formula was
obtained first by Lindenstrauss in 1963 (see [46, Theorem 1]) to lighten the duality
between the norms in conjugate Banach spaces. We give a nonsymmetric version of
this formula.

Theorem 2.7 (Lindenstrauss Formula) Let A � H be a convex closed bounded
set with 0 2 int A, and .a; p/ 2 @A � @A0 be such that hp; ai D 1. Then for each
t > 0

SA0 .˙t; p; a/ D sup
˚
"t � CȦ ."; a; p/ W " > 0

	
: (16)

Proof Let us prove only one of the equalities (16), namely for CCA ."; a; p/, since
proving of the second is similar.
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Fix t > 0. Then by the definition of the modulus of smoothness (see (15)) and
taking into account that A0 .�/ D � .�;A/ we can associate to each � > 0 some
points x 2 A and v 2 A0 with

SA0 .t; p; a/ � hpC tv; xi � hp; ai � t hv; ai C �
� hp; x � ai C tA .x � a/C �
� sup

y2A
ftA .y � a/� hp; a� yig C �

� sup
">0

sup
y2A; A.y�a/D"

f"t � hp; a � yig C �

� sup
">0

˚
"t � CCA ."; a; p/

	C �;

and the inequality “�” in (16) follows. Reversing the reasoning one easily shows
the opposite inequality as well. �

Thus the modulus of smoothness (15) is nothing else than the Legendre-Fenchel
transform of the function defined as

8
<

:

C�A .�"; a; p/ if " < 0;
0 if " D 0;

CCA ."; a; p/ if " > 0:

For the proofs of the following two statements we refer to [33, Propositions 4.3
and 4.4].

Theorem 2.8 Let a set A � H and a dual pair .a; p/ be such as in Theorem 2.7.
Then

lim sup
.t;x;v/!.0˙;a;p/
x2JA.v/; v2@A0

SA0 .t; v; x/

t2
D 1

4 kpkκȦ .a; p/
: (17)

So, if A is strongly convex w.r.t. p 2 @A0 (at unique point a 2 @A), then the upper
limit (17) is finite, and we say that the polar set A0 is strongly smooth at p.

Theorem 2.9 In addition to the hypotheses of Theorem 2.8 assume that the
boundary of A0 is of class C2 near the point p 2 @A0, and a D r� .p;A/. Then
the set A is strongly convex w.r.t. p (at the point a), κ

C
A .a; p/ D κ

�
A .a; p/, and

sup
v2A0

˝r2� .p;A/ v; v˛ D 1

2 kpkκȦ .a; p/
:
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Weakly Convex Sets

For a nonempty closed (not necessarily convex) set A � H in addition to notions of
section “Strongly Convex Sets” in what follows we’ll use also

• the proximal normal cone to A at a 2 A,

NP.a;A/ WD fp 2 H W there exists � > 0

such that hp; x � ai � �kx � ak2 for all x 2 A
	

D fp 2 H W there exists t > 0 with a 2 PA.aC tp/gI

• modulus of nonconvexity defined in [11] as

�A."/ WD inf

�

� � 0 W B�
�

a1 C a2
2

�

\ A ¤ ;

for all a1; a2 2 A with ka1 � a2k � "g : (18)

By curve in H we mean any continuous mapping 
 W Œ0; 1� ! H, saying that
the curve 
 connects points 
.0/ and 
.1/. The image of 
 is the set 
.Œ0; 1�/ D
f
.t/ W t 2 Œ0; 1�g. We say also that the curve 
 lies in a set A � H and write 
 � A
if 
.Œ0; 1�/ � A. The length of 
 is defined as

j
j D sup
IX

iD1
k
.ti/ � 
.ti�1/k;

where the supremum is taken over all partitions 0 D t0 < t1 < : : : < tI D 1 of the
segment Œ0; 1�. Given a subset A � H and points x; y 2 A, a curve 
 W Œ0; 1� ! A,

 .0/ D x, 
 .1/ D y, is called the shortest curve in A connecting x and y if the
length of 
 is minimal among all curves with the same properties.

Let us recall two well-known notions, which will be used in sequel.
A set A � H is said to be ˛-paraconvex, ˛ 2 Œ0; 1�, if for each r > 0 and

x 2 H with dA .x/ < r the convex hull of A \ int Br .x/ is contained in the
closed neighborhood UA .˛r/. So, each convex set is 0-paraconvex while the class
of 1 -paraconvex sets is too large covering all the sets in a Hilbert space (see [45]).
In terminology of Michael (see [48]) a set A is said to be paraconvex if it is
˛-paraconvex with some 0 � ˛ < 1.

A set A � H is called contractible if there exist a point x0 2 A and a continuous
function � W A � Œ0; 1�! A such that � .x; 0/ D x and � .x; 1/ D x0 for all x 2 A.

Now we pass to the class of closed sets with the properties somehow symmetric
to those studied in section “Strongly Convex Sets.”
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Uniform Weak Convexity

Definition 3.1 A subset A � H is said to be weakly convex if there exists R > 0

(called radius of weak convexity) such that for all x; y 2 A with 0 < kx � yk < 2R
the strongly convex segment DR.x; y/ contains a point a 2 A different from both x
and y.

Notice that a subset A � H is convex iff it is weakly convex with every radius
R > 0.

Our objective now is to establish some properties equivalent to the weak
convexity similarly as it was done for the strong convexity (see Theorem 2.1).
Although the equivalence of majority of the statements below is well known (see,
e.g., [18, Theorems 4.1, 4.8]), the proofs placed here are new and based on density
of the set of points admitting unique projection onto a given closed set. For the first
time the latter result was obtained by Stechkin in [62] in uniformly convex Banach
spaces (see also [29]).

Theorem 3.1 (Equivalent Characterizations of a Weakly Convex Set) Given
a nonempty closed set A � H and a number R > 0 the following assertions are
equivalent:

(a) A is weakly convex with the radius R;
(b) for all a 2 @A and p 2 NP.a;A/, kpk D 1, one has

A \ int BR.aC Rp/ D ;I (19)

(c) given a1 2 @A and p1 2 NP.a1;A/, kp1k D 1, the inequality

hp1; a1 � a2i � � 1

2R
ka1 � a2k2 (20)

holds for all a2 2 A;
(d) for all ai 2 @A, pi 2 NP.ai;A/, kpik � 1, i D 1; 2, the inequality

hp1 � p2; a1 � a2i � � 1
R
ka1 � a2k2

holds;
(e) if x 2 UA.R/ and a sequence fakg � A satisfies the minimization condition
kx � akk ! dA.x/, then fakg converges;

(f) the metric projection operator x 7! PA.x/ is single-valued and continuous on
the neighborhood UA.R/;

(g) the distance function dA.�/ is continuously differentiable on UA.R/ n A;
(h) the distance function dA.�/ is Fréchet differentiable on UA.R/ n A;
(i) for all xi 2 UA.R/ and ai 2 PA.xi/, i D 1; 2, one has

ka1 � a2k � R

R �maxfdA.x1/; dA.x2/gkx1 � x2kI (21)
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(j) �A."/ � R �
q

R2 � "2

4
for all " 2 .0;R/;

(k) for any x; y 2 A with 0 < kx � yk < 2R there exists a unique shortest curve 

in A, connecting points x and y, moreover 
 � DR.x; y/;

(l) for any x; y 2 A with 0 < kx � yk < 2R there exists a curve 
 lying in A,
connecting points x and y and such that

j
j � 2R arcsin

�kx � yk
2R

�

:

Proof We prove the equivalence by the following scheme:
.j/ $ .a/ $ .b/ ! .e/  .h/

%. . " - # "
.k/ .c/ ! .d/ .f / ! .g/
l # %
.l/ .i/
.b/) .c/ Fix arbitrary a1 2 @A, p1 2 NP.a1;A/, kp1k D 1, and a2 2 A. By the

statement .b/ we have a2 62 int BR.a1 C Rp1/, i.e.,

R2 � ka1 C Rp1 � a2k2 D R2 C 2Rhp1; a1 � a2i C ka1 � a2k2;

which yields the inequality (20).
.c/ ) .d/ Let us fix ai 2 @A, pi 2 NP.ai;A/, kpik � 1, i D 1; 2. From .c/ we

have

2Rhp1; a1 � a2i C ka1 � a2k2 � 0; 2Rhp2; a2 � a1i C ka2 � a1k2 � 0:

Adding the above inequalities, we obtain the desired result.
.d/ ) .b/ Let a 2 @A and p 2 NP.a;A/, kpk D 1. By the definition of the

proximal normal cone the number

� WD supft 2 .0;R� W a 2 PA.aC tp/g (22)

is positive. We have

A \ int B� .aC �p/ D ;: (23)

Let us prove that � D R, in which case the equality (19) holds. Indeed, suppose that
� < R and choose r 2 .�;minf2�;Rg/. We denote x0 WD aC rp and d0 WD dA.x0/.
Since kaC �p � x0k D r � � < � , it follows that x0 2 int B� .aC �p/, and by (23)
we get x0 62 A. Consequently, d0 > 0. The inequality r > � together with (22)
imply that a 62 PA.a C rp/, i.e., d0 < r. By Stechkin’s theorem [62] there exist
sequences fxkg and fakg with xk ! x0 and PA.xk/ D fakg for all k 2 N. Bearing in
mind that dA.xk/! dA.x0/ D d0 2 .0; r/, we assume without loss of generality that
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dA.xk/ 2 .0; r/ for all k 2 N. Denote dk WD dA.xk/, pk WD xk�ak
dk

, and bk WD ak � a,

k 2 N. Since p 2 NP.a;A/ and pk 2 NP.ak;A/, it follows from the assertion .d/ that
Rhpk � p; ak � ai C kak � ak2 � 0. Multiplying by dk after simple transformations
we arrive at

Rhxk � x0 � bk C .r � dk/p; bki C dkkbkk2 � 0 8k 2 N: (24)

On the other hand, it follows from (23) that kaC �p� akk � � because ak 2 A, i.e.,

hp; bki � kbkk2
2�
� kbkk2

r . Combining this with (24), we obtain

Rhxk � x0; bki � .R � r/dk

r
kbkk2 8k 2 N: (25)

Taking into account that kbkk D kak � ak � kx0 � ak � kxk � x0k � kak � xkk D
r�dk�kxk�x0k and passing to the limit in (25), we arrive at 0 � .R�r/d0

r .r�d0/ > 0,
which is a contradiction.
.b/ ) .e/ Let x 2 UA.R/ and a sequence fakg � A satisfy the minimization

condition kx � akk ! dA.x/. We assume that x 62 A, since otherwise it is nothing to
prove. By Stechkin’s theorem [62] there exist sequences fxkg and fbkg with xk ! x
and PA.xk/ D fbkg for all k 2 N. Let us denote d WD dA.x/, dk WD dA.xk/. Since dk !
d > 0, we assume without loss of generality that dk > 0 for all k 2 N. Denoting
pk WD xk�bk

dk
, by .b/ we get A\ int BR.bkCRpk/ D ;. Hence kbkCRpk�ajk � R or,

in other terms, kxk�ajC.R�dk/pkk � R for all j; k 2 N. Let us denote qj WD x�aj

kx�ajk .
Bearing in mind that xk ! x, dk ! d and kx � akk ! d, we get

lim inf
k;j!1 kdqj C .R � d/pkk � R: (26)

Taking into account that kqjk D kpkk D 1, we have

kdqjC .R�d/pkk2 D d2C .R�d/2C2d.R�d/hpk; qji D R2�d.R�d/kpk�qjk2:

Thus, it follows from (26) that lim supk;j!1 kpk�qjk � 0 because d < R (recall that
x 2 UA .R/). Consequently, limk;j!1 kqk � qjk D 0. So, fqkg is a Cauchy sequence
and therefore converges. Hence fakg converges as well.
.e/) .f / Fix any x0 2 UA.R/. Choose a sequence fakg � A with kx0 � akk !

dA.x0/. By the assertion .e/ it converges to some a0 2 H. Then clearly a0 2 PA.x0/.
If a 2 A is another projection of x onto A, then again by the assertion .e/ we deduce
that a D a0. So, PA.x0/ D fa0g, i.e., the metric projection operator is single-valued
on UA.R/. Suppose that xk ! x0 2 UA.R/, PA.xk/ D fakg for all k 2 N. We have
kxk � akk D dA.xk/! dA.x0/ and hence kx0 � akk ! dA.x0/. According to .e/ we
obtain ak ! a0, i.e., the metric projection operator is continuous on UA.R/.
.f / ) .b/ Let us prove first an auxiliary statement. Namely, suppose that x 2

UA.R/ n A, a 2 PA.x/ and v 2 H is such that hx � a; vi > 0. Then

dA.xC tv/ > dA.x/ (27)
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for all sufficiently small t > 0. Indeed, the assertion .f / implies that for t > 0 small
enough there exists at 2 A, at ! a as t ! 0C, such that PA.x C tv/ D fatg.
Consequently,

dA.xC tv/ � dA.x/ � kxC tv � atk � kx � atk D t

�
x � at

kx � atk ; v
�

C o.t/

D t

�
x � a

kx � ak ; v
�

C o.t/; t! 0C :

Taking into account that hx� a; vi > 0, we have the inequality (27) whenever t > 0
is sufficiently small.

To prove .b/ let us fix a 2 @A and p 2 NP.a;A/, kpk D 1. By the definition of
the proximal normal cone

� WD supft > 0 W a 2 PA.aC tp/g > 0: (28)

If � � R, then (19) obviously holds. Suppose that � < R and set y0 WD aC �p … A.
Passing to limit in the equality dA.aC tp/ D t as t! ��, we arrive at dA.aC�p/ D
� , i.e., a 2 PA.y0/. Then, due to (27) it follows that dA.y0 C t�p/ > dA.y0/ D � for
all sufficiently small t� > 0. One can choose t� > 0 so small that t� < � and

� < dA.y0 C t�p/ < R: (29)

Denote r WD dA.y0 C t�p/ 2 .�;R/ and consider the nonempty closed set

C WD fx 2 H W dA.x/ � rg:

Let us fix now y 2 UA.r/ n A, c 2 PC.y/ with kc � yk < r and a 2 PA.c/. We claim
that

y 2 Œa; c�: (30)

Indeed, denote q1 D c�a
kc�ak , q2 D c�y

kc�yk and assume that q1 ¤ q2 (otherwise (30),
clearly, holds). Notice that 0 < kc � yk < r D kc � ak. Let us set v WD q1 � q2.
Since hc � a; vi D rhq1; q1 � q2i D r.1 � hq1; q2i/ > 0, it follows from (27) that
dA.c C tv/ > dA.c/ D r and, therefore, c C tv 2 C for sufficiently small t > 0.
Taking into account that c 2 PC.y/, we arrive at kc C tv � yk � kc � yk for t > 0

small enough. Squaring this inequality and passing to limit as t ! 0C we have
hc � y; vi � 0, i.e., 0 � hq2; q1 � q2i D hq2; q1i � 1 < 0. The contradiction
completes the proof of (30).

By Stechkin’s theorem [62] there exist sequences fykg and fckgwith yk ! y0 and
PC.yk/ D fckg for all k 2 N. Since kck�ykk D dC.yk/! dC.y0/ � ky0Ct�p�y0k D
t� < � < r (see (29) and the definition of r above), we suppose without loss of
generality that kck � ykk < r for all k 2 N. Due to the assertion .f / we have
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PA.ck/ D fakg for some ak 2 A, k 2 N. According to (30) yk 2 Œak; ck� and hence
PA.yk/ D fakg, k 2 N. Using once more the assertion .f / and bearing in mind that
PA.y0/ D fag, we have ak ! a, k!1. Since yk 2 Œak; ck�, kck � akk D r, yk ! y0
and kyk�akk ! ky0�ak D dA.y0/ D � , it follows that ck ! c0 WD aC r

�
.y0�a/, and

due to .f / we arrive at PA.c0/ D fag. Consequently, supft > 0 W a 2 PA.aC tp/g �
r > � , which contradicts (28).
.f / ) .g/ According to the assertion .f / there exists a continuous function a W

UA.R/ ! A such that PA.x/ D fa.x/g for all x 2 UA.R/. Let us show that p.x/ D
x�a.x/
kx�a.x/k is the Fréchet derivative of the distance function dA.�/ at each x 2 UA.R/nA.
To this end fix arbitrary x0 2 UA.R/ n A. By definition of the distance, for all x 2
UA.R/ the inequalities

kx � a .x/k � kx0 � a .x/k � dA.x/ � dA.x0/

� kx � a .x0/k � kx0 � a .x0/k (31)

take place. On the other hand, due to the uniform differentiability of the norm in a
Hilbert space out of zero, for any ı > 0 we have

lim
x!x0

sup
a2H; kx0�ak�ı

ˇ
ˇ
ˇkx � ak � kx0 � ak �

D
x0�a
kx0�ak ; x � x0

Eˇ
ˇ
ˇ

kx � x0k D 0: (32)

Combining (31) and (32), by continuity of the function a.�/, we deduce that

lim
x!x0

dA.x/ � dA.x0/ � hp.x0/; x � x0i
kx � x0k D 0:

So, p.x0/ is the Fréchet derivative of the distance function at x0. Since p.�/ is
continuous on UA.R/ n A, the function dA .�/ is continuously differentiable on this
set.
.g/) .h/ is immediate.
.h/ ) .e/ Let p 2 H be the Fréchet derivative of the distance function dA.�/

at x0 2 UA.R/ n A. Denote d0 WD dA.x0/. Let a sequence fakg � A satisfy the
minimization condition limk!1 kx0 � akk D d0. For each k 2 N we set tk WD
max

npkx0 � akk � d0; 1k

o
. Since tk ! 0, there is no loss of generality to assume

that tk < 1. The definition of the Fréchet derivative implies that

lim
k!1

dA.x0 C tk.ak � x0//� d0 � tkhp; ak � x0i
tk

D 0:

On the other hand, recalling that ak 2 A we have

dA.x0 C tk.ak � x0// � kx0 C tk.ak � x0/� akk � .1 � tk/.d0 C t2k/:
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Hence, comparing the latter relations, we write

lim inf
k!1 hp; x0 � aki � lim

k!1
d0 � .1 � tk/.d0 C t2k/

tk
D d0:

Taking into account that limk!1 kx0 � akk D d0, we arrive at

lim inf
k!1

�

p;
x0 � ak

kx0 � akk
�

� 1:

Consequently,

lim sup
k!1

�
�
�
�p � x0 � ak

kx0 � akk
�
�
�
�

2

D 2 � 2 lim inf
k!1

�

p;
x0 � ak

kx0 � akk
�

� 0:

So, limk!1 x0�akkx0�akk D p, and fakg converges to x0 � d0p. Thus .e/ is proved.
.d/ ) .i/ Let xi 2 UA.R/ and ai 2 PA.xi/, i D 1; 2. Denote r WD

maxfdA.x1/; dA.x2/g, pi WD xi�ai
r , i D 1; 2. Then pi 2 NP.ai;A/ and kpik � 1.

The assertion .d/ implies that Rhp1 � p2; a1 � a2i C ka1 � a2k2 � 0. Consequently,

.R � r/ka1 � a2k2 � Rhx1 � x2; a1 � a2i � Rkx1 � x2kka1 � a2k;

which yields .i/.
.i/) .f / Fix x 2 UA.R/. By Stechkin’s theorem [62] there exist sequences fxkg

and fakg with xk ! x and PA.xk/ D fakg for all k 2 N. The assertion .i/ implies
that fakg is a Cauchy sequence and, therefore, converges to some a 2 A. Passing
to the limit in dA.xk/ D kxk � akk, we arrive at dA.x/ D kx � ak, i.e., a 2 PA.x/.
Using .i/ once more, we deduce that PA.x/ is a singleton depending continuously
upon x 2 UA.R/.

For the further equivalences .a/ , .b/, .a/ , .j/, and .a/ , .k/ , .l/ we
refer the reader, respectively, to [37, Theorem 6.1], [39, Lemma 1.5.3], and to [39,
Theorem 1.14.2]. �

Similarly to the strongly convex sets (see Remark 2.3) the estimations in the
statements .c/, .d/, .i/, .j/, .l/ are exact. Namely, they become equalities whenever
A is the complement of an (open) ball of the radius R.

Remark 3.1 For a closed weakly convex set A � H and any point a 2 @A the
proximal normal con NP .a;A/ coincides, in fact, with other normal cones such as
limiting (Mordukhovich), Fréchet, Dini, Clarke ones (see, e.g., [53, Corollary 2.2]
and [15, Sect. 6]). Consequently, in such case, NP .a;A/ is closed and convex.

Remark 3.2 If for a closed subset A � H and a number R > 0 there exist r 2 .0;R/
such that inequality (21) holds for every xi 2 UA.r/ and ai 2 PA.xi/, i D 1; 2, then
A is weakly convex with radius R (see [3, Theorem 2.1]).

There is also a symmetric version of Remark 2.4.
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Remark 3.3 If a set A � H is weakly convex with the radius R > 0, then it is weakly
convex with any radius R1 < R as well. Vice versa, if A � H is closed and weakly
convex with each radius R1 < R (R > 0 is fixed), then A is weakly convex with the
radius R. It follows from the statement .b/ of Theorem 3.1.

So, for any closed weakly convex set A � H there exists the maximal (or sharp)
radius of the weak convexity, which possesses some equivalent properties.

Theorem 3.2 Let A � H be closed and connected with diam A < 2R. Then the
following assertions are equivalent:

(a) R is the maximal radius of weak convexity of A;
(b)

lim
"!0C

�A."/

"2
D 1

8R
I

(c) for each R1 2 .0;R/ the metric projection operator PA.�/ is Lipschitz continuous
with the minimal constant R

R�R1
on the neighborhood UA.R1/.

By the similar reasoning as in proof of Theorem 2.3, using equivalence .a/ ,
.b/ of Theorem 3.1, we obtain the following result, analogous to [8, Theorem 2].

Theorem 3.3 (Hölderian Dependence of the Metric Projection Upon the Set)
Let A1 � H be a weakly convex set with radius R > 0; A2 � H be an arbitrary
nonempty set; h WD h .A1;A2/ be the Hausdorff-Pompeiu distance between these
sets and x 2 UA1.R/, d WD dA1 .x/. Then for the metric projections ai 2 PAi .x/
(i D 1; 2) one has

ka1 � a2k �
r
4Rhd

R � d
C h2:

Let us give two more properties of (uniformly) weakly convex sets.

Theorem 3.4 ([39, Theorem 1.15.2]) Let A � H be closed and weakly convex with
radius R > 0. If, moreover, diam A < 2R, then A is contractible.

Theorem 3.5 ([39, Theorem 3.3.2]) Let A � H be closed and weakly convex with
radius R > 0. Assume that A � Br.c/ with some c 2 H and r 2 .0;R/. Then A is
˛-paraconvex with ˛ D r

R .

The latter property shows that under some supplementary hypothesis a weekly
convex set may be paraconvex (compare with [31, Example 1.2]).

There is also a connection with the smoothness of the boundary of a closed set
(see [37, Theorem 7.2] and [38, Theorem 3]).

Definition 3.2 We say that a closed (nonconvex, in general) set A � H is smooth
with constant L > 0 if A D int A and

kp1 � p2k � Lka1 � a2k 8a1; a2 2 @A; pi 2 NP.ai;A/; kpik D 1; i D 1; 2:
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So, the smoothness means uniqueness of the (unit) proximal normal and its
lipschitzianity (with a constant L). For convex bounded sets with nonempty interior
the latter property specifies the smoothness introduced in section “Local Strong
Convexity.”

Theorem 3.6 Let a proper subset A � H be such that A D int A, R > 0. Then the
following assertions are equivalent:

(a) A is smooth with constant 1=R;
(b) both sets A and H n int A are weakly convex with radius R.

Local Weak Convexity

Let us localize first the notion of the (uniform) weak convexity introduced above.

Definition 3.3 A set A � H is said to be locally weakly convex with radius R > 0
if for any point a 2 @A there exists ı > 0 such that A\Bı.a/ is weakly convex with
radius R.

Due to the following statement any weakly convex set A � H is locally weakly
convex with the same radius.

Lemma 3.7 Let A � H be weakly convex with radius R > 0 and C � H be strongly
convex with the same radius. Then the intersection A \ C is weakly convex with the
radius R.

Proof Fix any x; y 2 A\C with 0 < kx� yk < 2R. According to Definition 3.1 one
can find a point a 2 A\DR.x; y/ different from both x and y. Using the assertion .b/
of Theorem 2.1, we get DR.x; y/ � C. So, a 2 A \ C \ DR.x; y/, and the set A \ C
is weakly convex with the radius R by definition. �

In some cases the reverse implication also holds true.

Theorem 3.8 ([39, Theorem 1.16.1]) Let A � H be closed, connected, and locally
weakly convex with radius R > 0. If, moreover, diam A < 2R, then A is weakly
convex with the radius R.

Observe that the assumption diam A < 2R is essential in Theorem 3.8. For
instance, an arc A D f.cos'; sin'/ W ' 2 Œ0; 2� � ı�g, ı 2 .0; �/ is locally
weakly convex with the radius R D 1 being not weakly convex with this radius.

Let us give one more result on local weak convexity.

Theorem 3.9 ( [39, Theorem 1.16.2]) Let A � H be compact and locally weakly
convex with radius R > 0. Then A is weakly convex (with a possibly smaller radius).

The same pointwise constructions as in section “Local Strong Convexity” can be
introduced for closed not necessarily convex sets taking just in mind that in such
a case there is no duality between boundary points and the (proximal) normals.
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In other words, in the definition of the rotundity modulus CA ."; a; p/ [see (9)] a
vector p should be normalized by another way, say kpk D 1. So, using the same
notions of the modulus of rotundity and of the scalar curvature as in section “Local
Strong Convexity” (see (9) and (10)) and allowing κA .a; p/ to have negative values,
we arrive at the following definition (we believe that the assumption of boundedness
of A and of nonemptiness of its interior are not relevant in this context).

Definition 3.4 Let A � H be a nonempty closed set, a 2 @A and p 2 NP .a;A/,
kpk D 1. We say that A is weakly convex at the point a w.r.t. the vector p if
κA .a; p/ > �1.

Let us give also a geometric interpretation of the (negative) curvature, which is
similar to Theorem 2.5.

Theorem 3.10 Under the assumptions above let us suppose that κA .a; p/ < 0.
Then

R�A .a; p/ WD �
1

2κA .a; p/
D

lim inf
.";x;v/!.0C;a;p/

x2@A
v2NP.x;A/\@B1.0/

sup fr > 0 W A \ B" .x/\ int Br .xC rv/ D ;g : (33)

The proof is similar to that of Theorem 2.5, and we omit it.
Notice that the scaled constructions QκA .a; p/ (see (13)) and

QR�A .a; p/ WD �
1

2 QκA .a; p/
(34)

have a sense also in negative case. Modifying a little bit the proof we arrive at the
formula

QR�A .a; p/ D
lim inf

.x;v/!.a;p/
x2@A; v2NP.x;A/\@B1.0/

sup fr > 0 W A \ int Br .xC rv/ D ;g : (35)

Remark 3.4 It is easy to see the difference between two radii R�A .a; p/ and
QR�A .a; p/. Let, for instance,

A D
(

.x; y/ 2 R
2 W
 x

˛

�2 C
�

y

ˇ

�2
� 1

)

where ˛ > ˇ, and a D .0; ˇ/. Then, obviously, there is a unique normal direction
to A at the point a (namely, p D .0;�1/), and for each 0 < r < ˇ there exists
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" > 0 such that for every x 2 B".a/ \ @A and v 2 NP.x;A/, kvk D 1, one has A \
int Br .xC rv/ D ;, whereas this is not true for r > ˇ. Consequently, QR�A .a; p/ D ˇ
(hence QκA .a; p/ D � 1

2ˇ
). On the other hand, the real (negative) curvature of A at

the point a is larger. In fact, simple calculations give κA .a; p/ D � ˇ

2˛2
.

Notice, however, that κA .a; p/ > �1 iff QκA .a; p/ > �1 provided κA .a; p/ <
0, so the weak convexity at the point a can be defined by means of QκA .a; p/ or by
means of the radius (35) as well. To see this it is enough to show that R�A .a; p/ > 0
implies QR�A .a; p/ > 0. Indeed, assuming the contrary we can choose " > 0 and
ı > 0 such that for each x 2 B" .a/ and v 2 B" .p/\ NP .x;A/, kvk D 1,

A \ B" .x/ \ int Bı .xC ıv/ D ;; (36)

and, on the other hand, there exist sequences fxng � @A, fvng � @B1.0/, fyng � A
with vn 2 NP.xn;A/, xn ! a, vn ! p, yn 2 B1=n

�
xn C 1

nvn
�
. Thus, kxn � ynk �

kxn C 1
nvn � ynk C 1

n � 2
n ! 0 as n ! 1. So, for sufficiently large n one has

yn 2 A \ B" .xn/ \ int Bı .xn C ıvn/, xn 2 B".a/, vn 2 B".p/, which contradicts the
equality (36).

Let us express the property of the (uniform) weak convexity in the sense of
Definition 3.1 in terms of the curvatures (compare with Theorem 2.6).

Theorem 3.11 Let A � H be a closed (not necessarily convex, nor bounded) set
and R > 0. Consider the following assertions:

(a) the set A is weakly convex with the radius R;
(b) QκA .a; p/ � � 1

2R for each a 2 @A and p 2 NP .a;A/, kpk D 1;
(c) κA .a; p/ � � 1

2R for each a 2 @A and p 2 NP .a;A/, kpk D 1.

Then .a/, .b/) .c/.

Proof .a/ ) .b/ Assuming that there exist a 2 @A and p 2 NP .a;A/, kpk D 1,
with QκA .a; p/ < � 1

2R (equivalently, QR�A .a; p/ < R) due to (35) we find a pair
.x; v/, x 2 @A, v 2 NP .x;A/, kvk D 1, close to .a; p/ such that the relation A \
int Br .xC rv/ D ; implies r < R. Thus A \ int BR .xC Rv/ ¤ ; contradicting the
weak convexity of A with the radius R (see Theorem 3.1 .b/).
.b/) .c/ is obvious.
.b/) .a/ Fix a 2 @A and p 2 NP .a;A/, kpk D 1, and consider two cases.
Case 1. QκA .a; p/ � 0. From (13) and (9) we easily obtain that hp; a � yi � 0

8y 2 A. In other words, the set A is contained in the closed semispace P with the
normal vector p whereas each ball int Br .aC rp/, r > 0, is contained in the open
semispace H n P. In particular, A \ int BR1 .aC R1p/ D ; for each R1 < R.

Case 2. � 1
2R � QκA .a; p/ < 0. According to (34) this is equivalent to the

inequality QR�A .a; p/ � R. Let us fix arbitrary R1 < R. Then by (35) we easily
deduce that

sup fr > 0 W A \ int Br .aC rp/ D ;g > R1:

Hence, there exists r > R1 with A \ int Br .aC rp/ D ;, and, consequently, A \
int BR1 .aC R1p/ D ;.
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Joining together the cases 1 and 2 we conclude (see Theorem 3.1 .b/) that the set
A is weakly convex with the radius R1. Finally, by using Remark 3.3 we arrive at the
assertion .a/. �

Observe that the reverse implication .b/ ( .c/ is not true in general. This
can be illustrated by the following simple example. Given R > 0 let us define
the closed (connected) set A as the complement of the union of two (open) circles
int B2R .�R; 0/ and int B2R .R; 0/. Then A is weakly convex with the maximal radiusp
3R (it is realized at the points x D


0;˙p3R

�
w.r.t. the normal vectors v D

.0;�1/) while R�A .a; p/ � 2R (see (33)) for all a 2 @A and p 2 NP .a;A/, kpk D 1.
Combining the definitions of the scaled curvature (13) and of the modulus of

rotundity (9) we write

� QκA .a; p/ D lim sup
.x;v/!.a;p/

x2@A;v2NP.a;A/\@B1.0/

sup
y2A

hv; y � xi
ky � xk2 : (37)

Let now a subset A � H be nonempty closed and weakly convex at each a 2 @A
w.r.t. each unit normal vector p (see Definition 3.4). Then, bearing in mind that
.a; p/ 7! � QκA .a; p/ is upper semicontinuous real function (see (37)), by Michael’s
selections theorem [47] there exists a continuous nonnegative real function A such
that � QκA .a; p/ �  A .a; p/ for all a 2 @A and p 2 NP .a;A/, kpk D 1. Thus, the
inequality

hv; b � ai �  A .a; p/ kb � ak2

holds for all a; b 2 @A and p 2 NP .a;A/, kpk D 1. This property is equivalent, in
fact, to the pointwise weak convexity.

In other words, A is weakly convex at each a 2 @A w.r.t. each normal p 2
NP .a;A/, kpk D 1, iff there exists a ball centered on the semiline aC�p, � > 0, with
a radius continuously depending on a and p, which touches A at the point a only.
This is nothing else than the exterior sphere condition (see section “Introduction”).

If, in particular,  A .a; p/ is majorized by a continuous function ' .�/ depending
only on a 2 @A, then we arrive at the '-convexity, or, in other terminology (not
uniform) prox-regularity, proximal smoothness, etc., which was studied by many
authors (see section “Introduction”). In particular, a series of equivalencies of
Theorem 3.1 in such nonuniform case was proved in [53, Theorem 4.1] and in [19,
Theorem 6.3]. The lack of uniformity here is due to the fact that well-posedness of
the metric projection as well as (continuous) differentiability of the distance function
take place not in some tube UA .R/ around the set A but in an open neighborhood
U � A of arbitrary shape.
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Balance between Weak and Strong Convexity

In this section we present some results, in which both weakly and strongly convex
sets are involved. In such cases nonconvexity of a weakly convex set is compensated
with the strong convexity of another one. The balance between radii of the weak and
strong convexity here is relevant.

Separation of Sets with a Sphere and the Related Questions

We say that sets A;C � H may be separated with a sphere of radius  > 0 if there
exists a point x 2 H such that A \ int B.x/ D ; while C � B.x/.

Given A;C � H let us consider the so-called nearest points problem: to find
points a 2 A and c 2 C with the minimal distance ka � ck. This problem is said
to be well posed if any sequences fakg � A and fckg � C with kak � ckk !
infa2A; c2C ka � ck converge. Note that if the nearest points problem is well posed
and the sets A and C are closed, then the minimum mina2A; c2C ka� ck is attained in
a unique pair .a0; c0/ with a0 2 A and c0 2 C.

Theorem 4.1 Given nonempty closed sets A;C � H let us assume that C is strongly
convex with a radius r > 0, and A � H is weakly convex with a radius R > r. If,
moreover, int C ¤ ; (equivalently, C is not a singleton, see Remark 2.2), then

(a) the Minkowski sum AC C is closed and weakly convex with the radius R � r;
(b) the sets A and C may be separated with a sphere of any radius  2 Œr;R�

whenever A \ int C D ;;
(c) the nearest points problem for sets A and C is well posed whenever

infa2A; c2C ka � ck < R � r.

The assertions .a/ and .b/ of Theorem 4.1 are proved in [39, Theorems 1.12.3,
1.12.4, 1.18.2] while .c/ is obtained in [44, Theorem 4.2].

Let us give also a commutative equality for the Minkowski operations that can be
treated as a kind of minimax property implying some results for saddle points and
differential games (see [38, Theorems 5, 6]).

Theorem 4.2 ( [38, Theorem 4]) Let a proper set A � H with A D int A be
weakly convex with a radius R1 > 0 and such that H n int A is weakly convex with
a radius R2 > 0. If Ci � H, i D 1; 2, are strongly convex sets with respective radii
ri 2 .0;Ri/, then

AC C1 � C2 D A � C2 C C1:
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Continuity and Selections of the Intersection Mapping

Given a metric space .T; T / and a Banach space E let us consider two multivalued
mappings A W T ⇒ E and C W T ⇒ E continuous w.r.t. the Hausdorff metric (2) and
such that A.t/ \ C.t/ ¤ ; for all t 2 T. The question is:

under which hypotheses

the intersection mapping

t 7! F.t/ WD A.t/\ C.t/ (38)

will keep the continuity‹

There are simple examples showing that the multifunction F .�/ may fail to be
continuous even if both mappings A and C admit compact convex values in E D R

2

and one of them is constant.
On the other hand, the problems concerned with continuity of the intersection

mapping (as well as with existence of its continuous selection, i.e., of a continuous
function f W T ! E such that f .t/ 2 F .t/, t 2 T) arise in various fields such as
theory of dynamic systems including phase constraints and relaxation, differential
inclusions, set-valued analysis, and optimal control theory. These and akin questions
for mappings with convex values were investigated by Moreau [49], De Blasi and
Pianigiani [26], Penot [50], and others. In particular, it was shown that in order
to have the continuity of F.�/ (in fact, the lower semicontinuity because the upper
semicontinuity holds gratis) one can assume, in addition, that F.t/ has nonempty
interior for all t 2 T. Assuming that one of the mappings (say C .�/) admits uniformly
convex values (see [57]) it is possible to avoid the latter hypothesis, which seems to
be too hard. This was done by Balashov and Repovš in [10] where they proved
also existence of an uniformly continuous selection of F .�/ (under the uniform
continuity hypotheses for both A .�/ and C .�/). The same authors in [11] reduced
the convexity hypothesis for values of A.�/ to some conditions in terms of the
modulus of nonconvexity. Furthermore, it turns out that the affirmative answer to
the question (38) can be given whenever the sets A .t/, t 2 T, are weakly convex,
and C .t/, t 2 T, are strongly convex (or vice versa). The first version of this result in
a Hilbert space was proved in [39, Theorem 3.2.4] while recently it was generalized
for Banach setting (see [41, Theorem 4.3]). Let us give the exact formulation of the
Hilbert version. Here as usual .T; T / is an arbitrary metric space and H is a Hilbert
one.

Theorem 4.3 Suppose that multifunctions A W T ⇒ H and C W T ⇒ H with closed
values are both continuous (uniformly continuous) w.r.t. the Hausdorff distance and
such that for each t 2 T the set C.t/ is strongly convex with a radius r > 0while A.t/
is weakly convex with a radius R > r. If, moreover, F.t/ WD A.t/ \ C.t/ ¤ ;, t 2 T,
then the mapping F W T ⇒ H is continuous (uniformly continuous) and admits a
continuous (respectively, uniformly continuous) selection f .t/ 2 F .t/, t 2 T.



Strong and Weak Convexity of Closed Sets in a Hilbert Space 293

An interesting application of the above result is the so-called splitting problem
introduced by Repovš and Semenov in [58]. Given two nonempty sets A;C � H
let us consider their Minkowski sum X D A C C. The question is: under which
hypotheses do there necessarily exist continuous functions a W X ! A and
c W X ! C such that a.x/Cc.x/ D x for all x 2 X? As was shown in [9] the answer
to this question is, in general, negative even for convex closed sets. However, in
[11, Example 4.1] the authors proposed some hypotheses on the sets A and C (one
of them may be just weakly convex) guaranteeing (uniformly) continuous splitting.
These hypotheses involve rather complicate relation between the moduli ıA ."/ and
�C ."/ (see (3) and (18), respectively). Nevertheless, a simplified version of their
result can be immediately deduced from Theorem 4.3.

Theorem 4.4 (On the Splitting Problem) Let C � H be strongly convex with a
radius r > 0 and A � H be closed and weakly convex with a radius R > r. Then for
X WD AC B there exist uniformly continuous functions a W X ! A and c W X ! C
such that a.x/C c.x/ D x for all x 2 X.

Proof It suffices to apply Theorem 4.3 to the multifunctions A.x/ WD A and C.x/ WD
x � C. �

Notice that apparently first continuous selections result for continuous multifunc-
tions with weakly convex values appeared in [20, Theorem 3.1].

Recall finally that some investigations in past of continuous selections of
mappings with values in spaces of integrable functions adjoin to our subject. For
instance, in [35, 36] the authors proved existence of a continuous selection of
the intersection of (a finite number of) multifunctions when one of them admits
decomposable values (see [32]) while others are closed tubes w.r.t. some suitable
seminorms around lower semicontinuous decomposable mappings. A generalization
for a larger class of multifunctions (defined, moreover, on a paracompact space) was
obtained later in [1].

Minimum Time Problem with a Constant Dynamics

In conclusion let us give one more application to well-posedness and regularity in
a time-minimum control problem governed by some constant convex dynamics in
a Hilbert space H. Namely, given a nonempty closed (not necessarily convex) set
A � H and a convex closed bounded set F � H with 0 2 int F we are interested in
minimization of time � > 0 necessary to reach A from a point a 2 H by trajectories
of the differential inclusion

Px .t/ 2 F:

Since due to the assumption 0 2 int F the set A can be achieved in some finite time
� > 0, denoting by TF

A .a/ the infimum of such instants, we see that TF
A .a/ < C1
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for all a 2 H while TF
A .a/ D 0 iff a 2 A. This value function (or time-minimum

function) can be represented as

TF
A .a/ D inf ft > 0 W .aC tF/\ A ¤ ;g

D inf
x2A
F .x � a/ ;

where F .�/ is the Minkowski functional associated with the set F (see (8)). Consider
also the set of (boundary) points of A, which are attainable for the minimal time, i.e.,

PF
A .a/ WD

˚
x 2 A W TF

A .a/ D F .x � a/
	
:

In a particular case F D B1 .0/ the function TF
A .�/ and the set PF

A .a/ are, clearly,
usual distance dA .�/ and the metric projection PA .a/, respectively. We want to
find conditions guaranteeing that the set PF

A .a/ is a continuous singleton for all
a from a neighborhood of A, and the function TF

A .�/ is sufficiently regular close to
A (compare with Theorem 3.1 .f /–.h/). The first (uniform) result in this direction
can be formulated in terms of strong and weak convexity. For details we refer to the
proof of Theorem 6.1 (case 2) in [33, pp. 19–21] and to [34, Theorem 3.3].

Theorem 4.5 Under all the standing assumptions above let us suppose the set A to
be weakly convex with a radius r > 0 and the gauge F to be strongly convex with a
radius R > 0. Then PF

A .a/ is a singleton for all a belonging to the generalized tube

UF
A

 r

R

�
WD
n
a 2 H W TF

A .a/ <
r

R

o
: (39)

Moreover, the mapping a 7! PF
A .a/ is Hölder continuous on (39) with the exponent

1=2.

Recently [42] the result of Theorem 4.5 was extended for Banach setting.
The Fréchet differentiability of the value function strongly depends on the fact

that the “time-minimum projection” PF
A .a/ is nonempty and single-valued. This

question was studied in Banach setting, e.g., in [23]. In terms of a balance between
strong and weak convexity we arrive at the following statement, which supplements
Theorem 4.5.

Theorem 4.6 In addition to the assumptions of Theorem 4.5, let us suppose that
either the gradient rF .�/ is Hölder continuous on the boundary of F with an
exponent 0 < ˛ � 1, or the (unit) normal vector to the set A at boundary points is
Hölder continuous with an exponent 0 < ˛ � 1 (compare with Definition 3.2 where
˛ D 1). Then the value function TF

A .�/ is Fréchet differentiable on UF
A

�
r
R

�
and its

derivative is Hölder continuous with the exponent ˛
2�˛ .

This is a particular case of [34, Theorem 5.7], where the assumptions on weak
and strong convexity are local as well as the regularity hypotheses on A and F can
be mixed (switching from one boundary point of A to another).
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Remark 4.1 Assuming in the framework of Theorem 4.5 the Hölder regularity of
either F or A like in Theorem 4.6 with an exponent 0 < ˛ < 1 increases the
Hölder continuity of the mapping a 7! PF

A .a/ up to the exponent 1
2�˛ (see [34,

Theorem 3.8]).

By using local and pointwise constructions of sections “Local Strong Convexity”
and “Local Weak Convexity” one can obtain global versions of the above results.
For instance, let us formulate the following well-posedness statement in finite
dimensional setting.

Theorem 4.7 Assume that a nonempty closed set A � R
n is weakly convex at each

point x 2 @A w.r.t. each p 2 NP .A; x/, kpk D 1, and a closed bounded set F,
0 2 int F, is strongly convex at each v 2 @F w.r.t. each q 2 JF0 .v/. Then the
mapping a 7! PF

A .a/ is single-valued and continuous on an open neighborhood
A .A/ of A given by

A .A/ WD
�

a 2 H W lim inf

�

QκF .v; q/C TF
A .a/ QκA

�

x;
p

kpk
��

> 0




;

where the lower limit is taken in all the variables x, p, v, and q such that x 2 @A,
p 2 NP .A; x/, F .x � a/! TF

A .a/, �p; q 2 @F0, pC q! 0, and v 2 JF .q/.

For details we refer to Theorem 6.2 in [33], to its proof and to remarks after that.

Acknowledgements Vladimir V. Goncharov financially supported by National Funds of Por-
tugal through FCT—Fundação para a Ciência e a Tecnologia in the framework of the Project
“UID/Mat/04674/2013 (CIMA).” Grigorii E. Ivanov supported by the Russian Foundation for basic
research, project 16-01-00259-a.

References

1. S.M. Ageev, D. Repovš, On selection theorems with decomposable values. Topol. Meth.
Nonlinear Anal. 15, 385–399 (2000)

2. E. Asplund, R.T. Rockafellar, Gradients of convex functions. Trans. Am. Math. Soc. 139,
443–467 (1969)

3. M.V. Balashov, Proximal smoothness of a set with the Lipschitz metric projection. J. Math.
Anal. Appl. 406, 360–363 (2013)

4. M.V. Balashov, Antidistance and antiprojection in the Hilbert space. J. Convex Anal. 22,
521–536 (2015)

5. M.V. Balashov, M.O. Golubev, About the Lipschitz property of the metric projection in the
Hilbert space. J. Math. Anal. Appl. 394, 545–551 (2012)

6. M.V. Balashov, M.O. Golubev, Weak concavity of the antidistance function. J. Convex Anal.
21, 951–964 (2014)

7. M.V. Balashov, G.E. Ivanov, On farthest points of sets. Math. Notes 80, 163–170 (2006)
8. M.V. Balashov, G.E. Ivanov, Properties of the metric projection on weakly vial-convex sets and

parametrization of set-valued mappings with weakly convex images. Math. Notes 80, 461–467
(2006)



296 V.V. Goncharov and G.E. Ivanov

9. M.V. Balashov, D. Repovš, On the splitting problem for selections. J. Math. Anal. Appl. 355,
277–287 (2009)

10. M.V. Balashov, D. Repovš, Uniform convexity and the splitting problem for selections. J. Math.
Anal. Appl. 360, 307–316 (2009)

11. M.V. Balashov, D. Repovš, Weakly convex sets and modulus of nonconvexity. J. Math. Anal.
Appl. 371, 113–127 (2010)

12. M.V. Balashov, D. Repovš, Uniformly convex subsets of the Hilbert space with modulus of
convexity of the second order. J. Math. Anal. Appl. 377, 754–761 (2011)

13. F. Bernard, L. Thibault, N. Zlateva, Characterization of proximal regular sets in super reflexive
Banach spaces. J. Convex Anal. 13, 525–559 (2006)

14. F. Bernard, L. Thibault, N. Zlateva, Prox-regular sets and epigraphs in uniformly convex
Banach spaces: various regularity and other properties. Trans. Am. Math. Soc. 363, 2211–2247
(2011)

15. M. Bounkhel, L. Thibault, On various notions of regularity of sets in nonsmooth analysis.
Nonlinear Anal. 48, 223–246 (2002)

16. A. Canino, On p-convex sets and geodesics. J. Differ. Equ. 75, 118–157 (1988)
17. A. Canino, Local properties of geodesics on p-convex sets. Ann. Mat. Pura Appl. 159, 17–44

(1991)
18. F.H. Clarke, R.J. Stern, P.R. Wolenski, Proximal smoothness and the lower-C2 property. J.

Convex Anal. 2, 117–144 (1995)
19. G. Colombo, V.V. Goncharov, Variational inequalities and regularity properties of closed sets

in Hilbert spaces. J. Convex Anal. 8, 197–221 (2001)
20. G. Colombo, V.V. Goncharov, Continuous selections via geodesics. Topol. Meth. Nonlinear

Anal. 18, 171–182 (2001)
21. G. Colombo, L. Thibault, Prox-regular sets and applications, in Handbook of Nonconvex

Analysis, ed. by D.Y. Gao, D. Motreanu (International Press, Somerville, MA, 2010)
22. G. Colombo, P. Wolenski, Variational analysis for a class of minimal time functions in a Hilbert

space. J. Convex Anal. 11, 335–361 (2004)
23. G. Colombo, V.V. Goncharov, B.S. Mordukhovich, Well-posedness of minimal time problems

with constant dynamics in Banach spaces. Set-Valued Var. Anal. 18, 349–372 (2010)
24. L. Danzer, B. Grünbaum, V. Klee, Helly’s theorem and its relatives, in Convexity, ed. by V.

Klee. Proceedings of Symposia in Pure Mathematics, vol. 7 (American Mathematical Society,
Providence, RI, 1963), pp. 101–180

25. F.S. De Blasi, J. Myjak, On a generalized best approximation problem. J. Approx. Theory 94,
54–72 (1998)

26. F.S. De Blasi, G. Pianigiani, Remarks on Hausdorff continuous multifunction and selections.
Comment. Math. Univ. Carol. 24, 553–561 (1983)

27. E. De Giorgi, M. Degiovanni, A. Marino, M. Tosques, Evolution equations for a class of
nonlinear operators. Atti Acad. Naz. Lincei Red. Cl. Sci. Fiz. Mat. Natur. 75, 1–8 (1983)

28. M. Degiovanni, A. Marino, M. Tosques, Evolution equations with lack of convexity. Nonlinear
Anal. 9, 1401–1443 (1985)

29. M. Edelstein, On nearest points of sets in uniformly convex Banach spaces. J. Lond. Math.
Soc. 43, 375–377 (1968)

30. N.V. Efimov, S.B. Stechkin, Support properties of sets in Banach spaces and Chebyshev sets.
Doklady Acad. Sci. USSR 127, 254–257 (1959)

31. H. Federer, Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)
32. A. Fryszkowski, Continuous selections for a class of non-convex multivalued maps. Stud.

Math. 76, 163–174 (1983)
33. V.V. Goncharov, F.F. Pereira, Neighbourhood retractions of nonconvex sets in a Hilbert space

via sublinear functionals. J. Convex Anal. 18, 1–36 (2011)
34. V.V. Goncharov, F.F. Pereira, Geometric conditions for regularity in a time-minimum problem

with constant dynamics. J. Convex Anal. 19, 631–669 (2012)
35. V.V. Goncharov, A.A. Tolstonogov, Joint continuous selections of multivalued mappings with

nonconvex values, and their applications. Math. USSR Sb. 73, 319–339 (1992)



Strong and Weak Convexity of Closed Sets in a Hilbert Space 297

36. V.V. Goncharov, A.A. Tolstonogov, Continuous selections of the family of nonconvex-valued
mappings with a noncompact domain. Sib. Math. J. 35, 479–494 (1994)

37. G.E. Ivanov, Weak convexity in the senses of Vial and Efimov-Stechkin. Izv. RAN. Ser. Mat.
69, 35–60 (2005)

38. G.E. Ivanov, Weakly convex sets and their properties. Mat. Zametki 79, 60–86 (2006)
39. G.E. Ivanov, Weakly Convex Sets and Functions: Theory and Applications (Fizmatlit, Moscow,

2006) (in Russian)
40. G.E. Ivanov, Farthest points and strong convexity of sets. Math. Notes 87, 355–366 (2010)
41. G.E. Ivanov, Continuity and selections of the intersection operator applied to nonconvex sets.

J. Convex Anal. 22, 939–962 (2015)
42. G.E. Ivanov, Sharp estimates for the moduli of continuity of metric projections onto weakly

convex sets. Izvestiya Math. 79, 668–697 (2015)
43. G.E. Ivanov, Weak convexity of sets and functions in a Banach space. J. Convex Anal. 22,

365–398 (2015)
44. G.E. Ivanov, M.S. Lopushanski, Well-posedness of approximation and optimization problems

for weakly convex sets and functions. J. Math. Sci. 209, 66–87 (2015)
45. V. Klee, Circumspheres and inner products. Math. Scand. 8, 363–370 (1960)
46. J. Lindenstrauss, On the modulus on smoothness and divergent series in Banach spaces. Mich.

Math. J. 10, 241–252 (1963)
47. E. Michael, Continuous selections. I. Ann. Math. 63, 361–382 (1956)
48. E. Michael, Paraconvex sets. Math. Scand. 7, 372–376 (1959)
49. J.J. Moreau, Intersection of moving convex sets in a normed space. Math. Scand. 36, 159–173

(1975)
50. J.-P. Penot, Preservation of persistence and stability under intersections and operations. I.

Persistence. J. Optim. Theory Appl. 79, 525–550 (1993)
51. R.R. Phelps, Convex functions, monotone operators and differentiability. Lecture Notes in

Mathematics, vol. 1364 (Springer, Berlin, 1989)
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Non-equilibrium Solutions of Dynamic
Networks: A Hybrid System Approach

Scott Greenhalgh and Monica-Gabriela Cojocaru

Abstract Many dynamic networks can be analyzed through the framework of
equilibrium problems. While traditionally, the study of equilibrium problems is
solely concerned with obtaining or approximating equilibrium solutions, the study
of equilibrium problems not in equilibrium provides valuable information into
dynamic network behavior. One approach to study such non-equilibrium solutions
stems from a connection between equilibrium problems and a class of parametrized
projected differential equations. However, there is a drawback of this approach:
the requirement of observing distributions of demands and costs. To address this
problem we develop a hybrid system framework to model non-equilibrium solutions
of dynamic networks, which only requires point observations. We demonstrate
stability properties of the hybrid system framework and illustrate the novelty of
our approach with a dynamic traffic network example.

Keywords Dynamic networks • Hybrid systems • Variational inequalities •
Equilibrium problems

Introduction

Equilibrium problems are vastly applicable to many networks and their formulation
has become fairly complex. To date, most studies of networks formulated as
equilibrium problems are concerned with equilibrium solutions, where equilib-
rium is defined depending on the context of the problem (Wardrop [12–14],
Nash/Cournot [10, 11, 16], market [3, 20], and physical/mathematical equilibrium
[18, 19]). However, the study of equilibrium problems not in equilibrium provides
information absent from the analysis of equilibrium solutions. For instance, in a
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classic dynamic traffic network equilibrium problem, non-equilibrium solutions
describe the adjustment of flows on a network in response to disturbances (like lane
closures, accidents, or road construction) in link costs or demand.

One approach to study non-equilibrium solutions is through a class of
parametrized projected differential equations, called double layered dynamics
(DLD), [5, 10, 11] which tracks the adjustment of demands over time. To do this,
DLD requires observing distributions of network information at all times, which
in reality may be difficult or impossible to obtain. To overcome this obstacle,
we develop a hybrid system framework to model non-equilibrium solutions.
Through the hybrid system framework we extend the association between dynamic
networks and projected differential equations, through their common connection
with variational inequalities (VI). The result is a hybrid system version of non-
equilibrium solutions of dynamic networks, which advantageously require only an
observed point of network information.

Preliminaries

To begin, we present the foundations for modeling non-equilibrium solutions. We
define the frameworks of equilibrium problems for static networks, as described
by VI and projected differential equations (PrDE). Next, we provide analogous
definitions for the frameworks of equilibrium problems for dynamic networks, as
defined by evolutionary variational inequalities (EVI) and DLD.

Equilibrium Problems: Variational Inequalities and Projected
Differential Equations

Since their introduction in the 60s [18, 19], VI problems have been extensively
used in the study of Wardrop, Nash, Walras, Cournot and mathematical physics
equilibrium problems [2, 9, 12, 13]. As such, we consider a VI on a Euclidean
space of arbitrary dimension X, with a non-empty, closed, and convex set K � X,
and a mapping F W K ! X is given by:

Definition 1 Variational inequality problem [22].

find x� 2 K so that hF.x�/; y � x�i � 0; 8y 2 K

The set of points x� 2 K satisfying the inequality above is called the solution set of
the VI, which we denote by SOLVI.F;K/.

There is an important connection between VI and PrDE [1, 7, 21], where a PrDE
on a non-empty, closed, and convex set K � X, with a Lipschitz continuous mapping
F W K ! X is defined as:
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Definition 2 Projected differential equation [7].

dx.�/

d�
D PTK .x.�//.�F.x.�///; x.0/ 2 K; (1)

where the set TK.x/ D S
ı>0

1
ı
.K � x/ represents the tangent cone at the point x

to K and the mapping PTK .x/.�/ is the closest element mapping from X to the set
TK.x/ 2 X.

The important connection between a VI defined by Definition 1 and a PrDE
defined by Definition 2 is the correspondence between solutions x� 2 SOLVI.F;K/
and the critical points PTK .x�/.�F.x�// D 0. As such, when some mild conditions
are satisfied [5, 9], it follows that

x� 2 SOLVI.F;K/ if and only if PTK .x�/.�F.x�// D 0:

Dynamic Equilibrium Problems: Evolutionary Variational
Inequality and Double Layered Dynamics Problems

Akin to the relationship between VI and PrDEs, there is a similar connection
between an EVI [3, 14, 15] and DLD. In essence, an EVI represents a dynamic
network, or an equilibrium problem that evolves with time, and can be viewed as
an infinite dimensional VI. A similar view can also be taken with the connection
between PrDE and DLD.

Formally, we take an EVI to be defined on a Hilbert space of arbitrary dimension
X WD L2.Œ0;T�;Rq/ to be given by:

Definition 3 Evolutionary Variational Inequality [4, 6].

find x� 2 K so that
Z T

0

hF.x�.t//; v.t/ � x�.t/idt � 0; 8v 2 K; (2)

where� �; x�WD
Z T

0

h�.x/.t/; x.t/idt is the Hilbert space inner-product, with �

and x 2 X and F W K ! X is a Lipschitz continuous mapping. The set of points
x� 2 K that satisfy the EVI is called the solution set of the inequality, which we
denote as SOLEVI.F;K/.

For simplicity, the constraint (feasible) set K � X of an EVI is taken to be

K D
n
x 2 X j �.t/ � x.t/ � �.t/; A.t/x.t/ D .t/; for a:a:t 2 Œ0;T�

o
; (3)
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where �;� 2 L2.Œ0;T�;Rq/, A 2 L2.Œ0;T�;Rl�q/ and  2 L2.Œ0;T�;Rl/. Such
a set is typically assumed to be closed, convex, and bounded in L2.Œ0;T�;Rq/, and
therefore appropriate convexity conditions on the functions�;�; and  are required.

Definition 4 Double layered dynamic [5, 9]. Let F W K ! X be a Lipschitz
continuous mapping, where K is given by (3). Then a double layered dynamic is
given by:

dx.�; �/
d�

D PTK.x.�;�//.�F.x.�; �///;with x.�; 0/ 2 K � X; (4)

where x 2 AC.Œ0;1/;K/.
Similar to a VI and PrDE, there is a connection between the solution set of an

EVI defined by Definition 3 and the critical points of a DLD defined by Definition 4.
That is [8, 9],

x�.�/ 2 SOLEVI.F;K/if and only if PTK.x�.�//.�F.x�.�/// D 0:

Hybrid Systems

A hybrid system is a dynamical system composed of continuous and discrete
dynamics [23]. Often, hybrid systems combine multiple systems of differential
equations (the continuous dynamic) through a series of jump rules (the discrete
dynamic), which take place at time instances called event-times [23]. To construct
the trajectory of a hybrid system from the continuous and discrete dynamics, one
starts from an initial point and continuously evolves in accordance with a system
of differential equations until an event-time occurs. At the first event-time the
continuous evolution of the hybrid system temporarily pauses, and the model states
and parameters are updated according to the specified jump rule. After updating the
model states and parameters, the hybrid system starts to continuously evolve again
according to the (potentially new) system of differential equations, and proceeds
until the next event-time occurs. This process repeats itself until a desired time is
reached.

Any differential equation can be used to describe the continuous dynamic of
a hybrid system. For a hybrid system composed of states, .x1; x2; : : : ; xn/ WD x,
parameters .�1; �2; : : : ; �m/ WD � , and a function F W R � R

n ! R
n, the continuous

dynamic can be stated as:

Definition 5 The continuous dynamic.

dx

dt
D F.t; xI �/;with x0 D x.t0/ 2 R

n: (5)
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The discrete dynamic of a hybrid system is a jump rule [23] that updates the
model’s states, and parameter values and functional structure upon the occurrence
of an event-time. Consequently, at event-times tj, in accordance with the jump rules
Gj W R �R

n �R
m ! R

n (for the model’s states), and Hj W R �R
n � R

m ! R
m (for

the model’s parameter values), we determine new states and parameter values of the
model. Thus the discrete dynamic can be stated as:

Definition 6 The discrete dynamic.

Gj.t
�
j ; x.t

�
j /; �/! x.tCj /; (6)

and

Hj.t
�
j ; x.t

�
j /; �

j/! � jC1: (7)

Note the � and C superscripts are used to distinguish between model states at pre
and post event-times.

Given the continuous dynamic (5) and discrete dynamic (6)–(7) we now construct
the hybrid system. To construct the hybrid system, as with a standard system of
differential equations, we require an initial (observed) point of information x.0/
as well as initial parameter values �1 and a time interval Œ0;T�. From the initial
conditions, parameter values, and corresponding continuous dynamic, we proceed
to compute the evolution of model states through

dx

dt
D F1.t; xI �1/; x0 D x.t0/ 2 R

n; t 2 Œt; t�1 �;

up until the first event-time t1. At the first event-time we stop the continuous
evolution of the model. The model, in accordance with the jump rule (6)–(7)
undergoes a change in state and an update of parameters:

G1.t
�
1 ; x.t

�
1 /; �

1/! x.tC1 /;

and

H1.t
�
1 ; x.t

�
1 /; �

1/! �2:

With the state, parameter values, and functional structure updated, the evolution of
the continuous dynamic starts again. The continuous dynamic

dx

dt
D F2.t; xI �2/; x0 D x.tC1 / 2 R

n; t 2 ŒtC1 ; t�2 �

is followed until the next event-time t2, where we then once again undergo an update
in model states G2, parameters H2, and functional structure F3. This procedure is
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repeated until the end of the time interval Œ0;T� is reached. Formally, we have that a
hybrid system is given by the following:

Definition 7 Hybrid systems. For a given uniform partition of Œ0;T� into segments
Œtj; tjC1�, we have that for t 2 ŒtCj ; t�jC1/ we evolve according too

dx

dt
D Fj.t; xI � j/;with x0 D x.tCj / 2 KjC1; (8)

and when t D t�j ,

x.tCj / W CGj.t
�
j ; x.t

�
j /; �

j/; (9)

and

� jC1 WD Hj.t
�
j ; x.t

�
j /; �

j/ (10)

where, once again the � and C superscripts are used to distinguish between model
states at pre and post event-times.

Non-equilibrium Solutions of Dynamic Networks

The difference in approach between DLD and hybrid system non-equilibrium
solutions of dynamic networks is evident under the context of a dynamic traffic
network problem:

1. A DLD non-equilibrium solution can be seen as an external view of the entire
traffic network, where observed information on the evolution of the entire traffic
flow across all links can be provided.

2. A hybrid system non-equilibrium solution can be seen as an internal view of
the traffic network, with knowledge of the network structure (links, nodes and
equilibrium), but only current information about immediately viewable traffic
(point observations) can be provided.

Definition 8 DLD non-equilibrium solutions. From the association between
SOLEVI.F;K/ and the critical points of a DLD, a DLD non-equilibrium solution is
given by

dx.�; �/
d�

D PTK.x.�;�//.�F.x.�; �///;with x.�; 0/ 2 K � L2.Œ0;T�;Rq/; (11)

where the mapping F and constraint set K are taken as in Definition 3 and Eq. (3),
respectively, and x.�; �/ ¤ x�.
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Definition 9 Hybrid system non-equilibrium solutions. To construct a non-
equilibrium solution from a hybrid system, we define the continuous and discrete
dynamic related to the dynamic equilibrium problem. We consider a hybrid system
non-equilibrium solution to be composed of a series of jump rules that connect
a series of projected differential equation. Each projected differential equation is
defined on the set Kj, where

Kj D Kjtj for each event-time tj: (12)

Thus, the continuous dynamic for t 2 Œtj�1; t�j / of the hybrid system is

dx

dt
D F.t; xI �/ WD PTKjC1

.x/.�F.x//; ; x.t�j / 2 Kj;

and the discrete dynamic is

x.tCj�1/ D Gj.t
�
j�1; x.t�j�1// where Gj W R � Kj�1 ! Kj:

To analyze the stability properties of hybrid system non-equilibrium solutions we
define the following:

Definition 10 Hybrid system trajectory. For a uniform division� of Œ0;T�, a hybrid
system trajectory HSı W Œ0;T�! R is defined as:

HSı.t/ D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

x0.0�/ t D 0�;
x0.0C/ D G1.0

�; x0.0�// t D 0C;
x.t/ t 2 ŒtC0 ; t�1 /;

x.tC1 / D G2.t�1 ; x.t�1 // t D tC1 ;
:::

:::

x.t/ t 2 ŒtCN�1;T/:

where N D T
ı

.

Definition 11 The sequence of hybrid system trajectories. For all t 2 Œ0;T� we
denote fHSımgm as the sequence of hybrid trajectories with uniform division �m

that consist of m divisions of length T
ım

.

Definition 12 The feasible sets of hybrid system trajectories. For all t 2 Œ0;T� and
uniform divisions�, we denote the feasible set of hybrid trajectories as:

Kı.t/ D

8
ˆ̂
<̂

ˆ̂
:̂

K0 t D 0�;
K1 t 2 Œ0C; t�1 /;
:::

:::

KN t 2 ŒtCN�1;T�:
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where N D T
ı

.

From these definitions, for almost all t 2 Œ0;T�, it follows that

Kı.t/ D f�ı.t/ � x.t/ � �ı;Aı.t/x.t/ D ı.t/g;

where

�ı.t/ D

8
ˆ̂
<̂

ˆ̂
:̂

�j0� t D 0�
�jt1 t 2 ŒtC0 ; t�1 /
:::

:::

�jT t 2 ŒtCN�1;T�
; �ı D

8
ˆ̂
<̂

ˆ̂
:̂

�j0� t D 0�
�jt1 t 2 ŒtC0 ; t�1 /
:::

:::

�jT t 2 ŒtCN�1;T�
;

Aı D

8
ˆ̂
<̂

ˆ̂
:̂

Aj0� t D 0�
Ajt1 t 2 ŒtC0 ; t�1 /
:::

:::

AjT t 2 ŒtCN�1;T�
; and ı D

8
ˆ̂
<̂

ˆ̂
:̂

j0� t D 0�
jt1 t 2 ŒtC0 ; t�1 /
:::

:::

jT t 2 ŒtCN�1;T�
:

While there are many possible jump rules, imposing some physical properties on
the jump rule will ensure that the discrete dynamic does not destabilize the system.
As such, we consider jump rules that satisfy the following properties:

1. Jump rules Gj map equilibrium points to equilibrium points,

Gj.t
�
j ; x
�.tj// D x�.tjC1/; (13)

and
2. jump rules do not increase the distance from equilibrium points,

kx.t�j /� x�.tj/k � kGj.t
�
j ; x.t

�
j //�Gj.t

�
j ; x
�.tj//k D kx.tCj /� x�.tjC1/k: (14)

From the definition of the feasible set of a hybrid trajectory, it follows that
on any sub-interval ŒtCj ; t�jC1/ that the critical point of the continuous dynamic
x� 2 SOLVI.F;Kj/. Thus, with the conditions (13)–(14), we can approximate the
equilibrium curve with

x�ım
D

8
ˆ̂
<̂

ˆ̂
:̂

x  .0/j0� t D 0�;
x  .t1/jt1 t 2 Œ0C; t�1 /;

:::
:::

x  .tN/ t 2 ŒtCN�1;T�:

Given the definitions on hybrid system non-equilibrium solutions, we can now state
the following stability result:
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Theorem 1 Stability of the hybrid systems non-equilibrium solution. If the mapping
F from a hybrid system non-equilibrium solution is strongly pseudomonotone of
degree ˛ < 2 with constant � (Appendix 1), and the jump rules are given by

Gi.t
�
i ; xı.t

�
jC1// D PKjC1

.xı.t
�
jC1/� x�ı .t�j /C x�ı .t�jC1//;

then ı can be selected so that for some time t� 2 Œ0;T�,
kxı � x�ı kL2.Œt�;T�;Rq/ < � for any � > 0:

Furthermore, ı can be selected so that the hybrid system trajectory will converge to
a curve arbitrarily close to the equilibrium curve after time t�, where

t� � 2

.2 � ˛/�/kxı.0
�/� x�ı .0/k2�˛:

For the proof see Appendix 3.

A Dynamic Traffic Network Example

To illustrate the DLD and hybrid system non-equilibrium solutions we consider a
dynamic traffic network consisting of a single O/D pair of nodes with two direct
links. The feasible set of the dynamic traffic network is taken to be

K D fx 2 L2.Œ0; 110�;R2/j0 � x1 � 120; 0 � x2 � 120; x1 C x2 D g;

and the travel demand function,

 D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

61� 1
4
t.15 � t/ 0 � t � 15;
61 15 < t � 20;

3tC 1 20 < t � 40;
121 40 < t � 91;

212� t 91 < t � 110:

The user cost function on the links is taken as

F.x/ D .2
q

x1 � x�1 C x2 � x�2 ; x2 � x�2 /T ;

where the equilibrium flows are given by

x�1 .t/ D
8
<

:

1
2
. � 91/ if0 � 1

2
. � 91/ and 1

2
.C 91/ � 100;

0 o:w:
;
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and

x�2 .t/ D
8
<

:

1
2
.C 91/ if0 � 1

2
. � 91/ and 1

2
.C 91/ � 100;

 o:w:
:

DLD Non-equilibrium Solution

With initial distributions of travel demand across the links given by

x1.t; 0/ D 4

5
; and x2.t; 0/ D 1

5
;

user cost function F and constraint set K, the DLD non-equilibrium solutions
gradually converge to the equilibrium (Fig. 1). Importantly, the convergence to the
equilibrium is a result of the mapping F being strongly pseudomonotone of degree
˛ D 3

2
with constant � D 21=4 (Appendix 2). This property of F ensures the stability

of the dynamic traffic network, as it implies that any disturbance eventually dampens
out by time [10],

�� � kx.�; 0/� x�k2�˛
.2 � ˛/� � 17:3:

Fig. 1 Non-equilibrium solutions adjusting back to the traffic network equilibrium in a finite
duration of time. For the demand on each link, the DLD non-equilibrium solutions consist of the
red, green, blue, yellow and violet curves, the hybrid system non-equilibrium solution are the black
dotted curves, and equilibrium solutions are the grey curves
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HS Non-equilibrium Solution

For hybrid system non-equilibrium solutions we consider the initial conditions
x1.0/ D 4

5
.0/ D 48:8; x2.0/ D 1

5
.0/ D 12:2, together with a uniform partition

of the interval Œ0;T� into segments Œtj; tjC1/ such that jtjC1 � tjj D ı. In addition, we
require the definition of jump rules Gj, which are taken as

Gi.t
�
i ; xı.t

�
jC1// D PKjC1

.xı.t
�
jC1/� x�ı .t�j /C x�ı .t�jC1//; (15)

where the constraint sets Kj are defined by (12).
From this construction, an interpretation of hybrid system non-equilibrium

solution is that of a non-equilibrium solution that crosses (or travels along) the DLD
non-equilibrium solutions (Fig. 1). With this in mind, it is possible to show that both
frameworks share desirable properties.

As such, the hybrid system non-equilibrium solution can converge to x�ı by
t� � 13:9 due to the strongly pseudomonotone of degree 3

2
of F (Theorem 1).

Consequently, it follows that one can select ı sufficiently small so that the hybrid
system non-equilibrium solution converges arbitrarily close to the equilibrium of
the dynamic traffic network on Œt�;T� (Figs. 2 and 3). In other words, hybrid system
non-equilibrium solutions, like their DLD non-equilibrium solution counterparts,
will eventually dampen out any disturbance.

Fig. 2 HS non-equilibrium solutions with 10 jumps (red), 20 jumps (blue), 40 jumps (green), 80
jumps (yellow), 160 jumps (violet), and 320 jumps (grey) for link 1 (left) and link 2 (right)
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Fig. 3 Euclidean distance of HS non-equilibrium solution from the equilibrium solution with 10
jumps (red), 20 jumps (blue), 40 jumps (green), 80 jumps (yellow), 160 jumps (violet), and 320
jumps (grey)

Discussion

We developed a hybrid system framework for modeling non-equilibrium solutions
of dynamic networks. Our framework provides an alternative approach to model the
adjustment of dynamic networks in response to disturbances. The primary advantage
of hybrid system non-equilibrium solutions, in comparison to DLD non-equilibrium
solutions, is the reduction of the requirement to track distributions of information
across the entire network to that of point observations.

We illustrated the validity of our approach by comparing it to DLD non-
equilibrium solutions of a dynamic traffic network. In particular, we show that
if the cost function F is strongly pseudomonotone of degree ˛ < 2, then there
are similar stability behaviors in both the hybrid system framework and the DLD
framework. More specifically, if F is strongly pseudomonotone of degree ˛ < 2,
then disturbances completely dampen out in a finite amount of time for both
frameworks.

While there are numerous benefits to using hybrid system non-equilibrium
solutions, there is a cost in reducing the requirement of tracking entire distributions
of information. Namely, a pre-defined jump rule is required. Fortunately, such a
rule could be based on previously known information as supposed to the current
information requirement of DLD non-equilibrium solutions.

A particularly interesting avenue for future investigation is combining DLD
and HS frameworks to model non-equilibrium solutions of dynamic networks
that have partial point information and partial distribution information. Such a
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merger of frameworks would provide an interesting way to maximize the use of all
possible information in modeling non-equilibrium solutions of dynamic networks.
In addition, incorporating network delays, or stochastic disturbances would also
further strengthen the applicability of the HS framework to model non-equilibrium
solutions of dynamic networks.

Overall, the hybrid system non-equilibrium solutions are directly applicable to
many dynamic networks, including traffic networks, oligopolistic market problems
and noncooperative Nash games. Advantageously, the hybrid system framework can
be applied to any dynamic network modeled by DLD non-equilibrium solutions,
starting from any point on a DLD non-equilibrium solution.
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Appendix 1: Common Definitions and Theorems for VI, EVI,
and PrDE

Definition 13 Some classifications of the mapping F [17]. Given that X is a Hilbert
space of arbitrary dimension, K � X is a non-empty, closed, and convex set, then a
mapping F W K! X is said to be

1. Pseudomonotone on K if

hF.x/; y � xi � 0) hF.y/; y � xi � 0 8x; y 2 K

2. Strictly pseudomonotone on K if

hF.x/; y� xi � 0) hF.y/; y � xi > 0 8x ¤ y 2 K

3. Strongly pseudomonotone of degree ˛ on K if for some � > 0,

hF.x/; y� xi � 0) hF.y/; y� xi � �kx � yk˛ 8x; y 2 K

Definition 14 Monotone attractor. Let X be a Hilbert space of arbitrary dimension,
K � X be a non-empty, closed, and convex set, and F W K ! X a Lipschitz
continuous mapping. Then

1. A point x� 2 K is a local monotone attractor for a PrDE if there exists a
neighborhood V of x� such that the function �.�/ WD kx.�/ � x�kX is non-
increasing with respect to � for any solution x.�/ of a PrDE starting in V .

2. A point x� 2 K is a global monotone attractor for a PrDE if condition X is
satisfied for any x.�/ 2 K.
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Definition 15 Stability of equilibria. Let X be a Hilbert space of arbitrary dimen-
sion, K � X be a non-empty, closed, and convex set, and F W K ! X a Lipschitz
continuous mapping. If x� � K is an equilibrium of a PrDE, B.x; r/ is a ball of
radius r centered on x W RC ! K (a non-equilibrium solution to a PrDE), then

1. The point x� is exponentially stable if there exists � > 0 and � > 0 such that
8x 2 B.x�; �/ and 8� � 0, we have that kx.�/� x�kX � kx.0/� x�kXexp.���/.

2. The point x� is a finite-time attractor if there exists � > 0 such that 8x 2 B.x�; �/
and 8� � 0, there exists T WD T.x/ <1, where x.�/ D x� for all � � T.

3. The point x� is globally exponentially stable, or a global finite-time attractor if
X, or respectively Y hold for any x 2 K.

Theorem 2 Let K � X be a non-empty, closed, and convex set, F W K ! X a
Lipschitz continuous mapping, and x� an equilibrium of a PrDE.

1. If F is locally (strictly) pseudomonotone around x�, then x� is a local (strictly)
monotone attractor.

2. If F is (strictly) pseudomonotone on K, then x� is a global (strictly) monotone
attractor.

Theorem 3 Let K � X be a non-empty, closed, and convex set, F W K ! X a
Lipschitz continuous mapping, and x� an equilibrium of a PrDE.

1. If F is strongly pseudomonotone around x�, then x� is a locally exponentially
stable.

2. If F is strongly pseudomonotone with degree ˛ < 2 around x�, then x� is a local
finite-time attractor.

3. If F is strongly pseudomonotone on K, then x� is a globally exponentially stable.
4. If F is strongly pseudomonotone with degree ˛ < 2 on K,around x�, then x� is a

global finite-time attractor.

Appendix 2: Strongly Pseudomonotone of Degree ’ < 2

Here we show that the mapping F from the example in section “A Dynamic Traffic
Network Example” is strongly pseudomonotone of degree 3

2
.

Proof To begin, recall that

F.x/ D .2
q

x1 � x�1 C x2 � x�2 ; x2 � x�2 /T

with the constraint set,

K D fx 2 L2.Œ0; 110�;R2/j0 � xi � 100; x1 C x2 D g:

To show F is strongly pseudomonotone of degree 3
2
, we use the following identity:

x1 � y1 D �.x2 � y2/ for all x; y 2 K:
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It follows that

hF.x/�F.y/; x�yi D .2
q

x1 � x�1Cx2�2
q

y1 � x�1�y2/.x1�y1/C.x2�y2/.x2�y2/:

Equivalently, replacing x2 � y2 through the identity above, we have that

hF.x/�F.y/; x�yi D .2
q

x1 � x�1�2
q

y1 � x�1�.x1�y1//.x1�y1/C.x1�y1/.x1�y1/;

and

hF.x/� F.y/; x � yi D .2
q

x1 � x�1 � 2
q

y1 � x�1 /.x1 � y1/:

Because the square root function is subadditive, it follows that

hF.x/� F.y/; x � yi � .2px1 � y1/.x1 � y1/ D 2.x1 � y1/
3
2 :

Finally, the proof is complete upon noting that

�kx � yk˛ D �
p
.x1 � y1/2 � .x2 � y2/2

˛ D �p2˛.x1 � y1/
˛:

Thus, we have that F is strongly pseudomonotone of degree˛ D 3
2

with � D p22�˛ .

Appendix 3: Stability of a Hybrid System Non-equilibrium
Solution

To demonstrate the stability properties of a hybrid system non-equilibrium solution,
consider a mapping F that is strongly pseudomonotone of degree ˛ < 2 with
constant �, and the jump rules:

Gj.t
�
j ; xı.t

�
j // D PKjC1

.xı.t
�
j / � x�ı .t�j /C x�ı .t�j //

and

Hj.�j/ D � j:

It follows that ı can be selected sufficiently small so that for some t� 2 Œ0;T�,

kxı � x�kL2.Œt�;T�;Rq/ < � for any � > 0:

Proof The proof here follows the same approach for showing finite time attraction
to an equilibrium of a projected differential equation [9, 21]. To begin, let� WD �m
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be a uniform division of Œ0;T� for some fixed m, with division points tj, so that
jtjC1 � tjj D ı. Taking t > tj we have that

kxı.t/ � x�.tjC1/k2�˛Rq � kxı.tj/� x�.tjC1/k2�˛Rq � .2 � ˛/�2 .t � tj/: (16)

From the jump rule defined by (15), we have that

kxı.tj/ � x�.tjC1/kRq � kxı.t�j /� x�.tj/kRq : (17)

Since 2 � ˛ > 0 and the power function is increasing we get

kxı.t/ � x�.tjC1/k2�˛Rq � kxı.t�j /� x�.tj/k2�˛Rq � .2 � ˛/�2 .t � tj/;

� kxı.tj�1/� x�.tj/k2�˛Rq � .2 � ˛/�2 .t � tj�1/:
(18)

Continuing in this fashion, we finally arrive at

kxı.t/ � x�.tjC1/kRq � �kxı.0�/� x�.0/k2�˛
Rq � .2 � ˛/�2 t

� 1
2�˛ : (19)

Thus t� is taken such that:

t� � 1

.2 � ˛/�
2

kxı.0�/� x�.0/k2�˛
Rq : (20)

Thus on the subinterval Œtk; tkC1� that contains t�, we have necessarily that

kxı.t/ � x�.tkC1/kRq D 0 for t � t�: (21)

Furthermore, since the jump rule maps x�.tj/! x�.tjC1/ for all j,

kxı.t/ � x�.tiC1/kRq D 0; (22)

for all t � t� on each interval Œti; tiC1� 8i > k. Thus by Lebesgue’s dominated
convergence theorem, we have that ı can be selected so that

kxı � x�kL2.Œt�;T�;Rq/ � �; (23)

for any � > 0.
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Measuring Ballistic Dispersion for the Purpose
of Ammunition Quality Assurance

W.J. Hurley, Jack Brimberg, and Andrey Pavlov

Abstract There are a variety of measures of ballistic dispersion. We examine which
is best in the context of quality assurance for ammunition. It has been shown that the
measure of ballistic dispersion currently used by the US and Canadian militaries for
the purpose of ammunition quality assurance is not the most powerful in the case
where the fall of shot follows a circular normal distribution. Here we consider the
more general case of a general bivariate normal with unequal component variances.

Keywords Ballistic dispersion • Ammunition • Quality assurance testing
• Bivariate normal

Introduction

Measuring ballistic dispersion is fundamental to military operations research.
Whether it’s for constructing artillery range tables, or comparing ballistic weapons
effects, or for ammunition quality assurance testing, dispersion must be measured
properly. The difficulty is that, in practise and theory, a variety of measures have
been suggested and used. This begs the question which is best. In this paper, we
tackle that question in the context of ammunition quality assurance.

While it is true that modern militaries, particularly the US military, have begun to
include “smart” weapon systems in their force structures, ballistic systems continue
to play a significant role and are expected to do so for the foreseeable future. One of
the primary concerns for ballistic systems is that variation in where rounds fall be as
low as possible. This principle applies to all ballistic rounds ranging from artillery
systems that have ranges measured in the tens of kilometers to direct-fire personal
weapons that are employed at close range. In the case of ballistic ammunition, each
lot of ammunition is subjected to a battery of quality assurance tests. One of these
is a test for ballistic dispersion.
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Empirical tests over many years have found that the fall of shot for most ballistic
rounds is well described by a bivariate normal distribution. Let us suppose that the
parameters characterizing variation for this family of distributions are �x and �y.
For artillery rounds, the range error, �x; is larger than the deflection error, �y: But
for other rounds, such as 25mm rounds, �x D �y. For these rounds, the distribution
is circular normal, a special case of the bivariate normal.

In practise, tests for dispersion require that a random sample of rounds from a
lot be fired and the locations recorded. Using this sample data, a sample mean point
of impact and component sample standard deviations, sx and sy; are calculated. We
will give the details of this calculation in a subsequent section. Both the Canadian
Forces (CF) and US Army Ordnance Corp (AOC) use these component standard
deviations when testing for dispersion. The critical region for these tests takes the
form

max.sx; sy/ � �0: (1)

That is, if one of the component standard deviations is too high, the lot is rejected.
But in the case where the fall of shot follows a circular normal distribution, [1] has
shown that a uniformly most powerful test results in a critical region of the form

s2x C s2y
2
� �0: (2)

That is, the lot is rejected if the average of the component sample variances is
high enough. Equivalently, the lot is rejected if the sum of the component sample
variances is sufficiently high:

s2x C s2y � � 00: (3)

So, an obvious and important question arises: In Canada and the USA, is the current
practise of using the statistic max.sx; sy/ the best in the case of the general bivariate
normal distribution when �x ¤ �y, or is there a better one? This is the problem we
study in this paper.

Our main result is that a uniformly most powerful test for the general case
�x ¤ �y does not exist. However, in considering tests where a fixed value of
dispersion is specified in the alternative hypothesis, we are able to partition the
.sx; sy/ space into regions where the test statistics given in (1) or (2) are best. More
particularly if �x and �y are close enough, then (2) is best; otherwise (1) is best.
In the case where a significant covariance component occurs, we propose a third
statistic that works best. These results clearly demonstrate that there is not a single
correct measure of dispersion when it comes to ammunition quality assurance.

The literature on acceptance sampling is large; for example, see the text by [3] or
just about any operations management or statistics textbook. However, these sources
do not usually concern themselves with specialized tests as occurs in the case of
ballistic dispersion. Our intention is to help fill this particular gap.
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The paper is in three sections. In the next section, we discuss approaches to the
measurement of ballistic dispersion. Following that and for completeness, we review
the argument for a uniformly most powerful test of dispersion in the case of a
circular normal distribution as presented in [1]. In a final section we develop testing
procedures for the general bivariate normal distribution.

Measuring Ballistic Dispersion

By way of example, consider a lot of 25mm rounds fired from the main primary
armament of the Canadian Forces’ LAV III armoured vehicle. The Department of
National Defence buys these rounds in lots of 5,000 and 10,000 units. To test for
dispersion, a random sample of rounds is first drawn and then fired from a fixed-
mount Mann barrel at a target 300 meters away. The purpose for using a fixed-mount
barrel is to remove, as much as possible, the various sources of error that a gun
would be subjected to in an operational setting. The locations of these rounds on the
target are recorded electronically. Figure 1 shows a sample “cloud.” Note that two
axes have been drawn by first inserting a y-axis through the point furthest to the left
of the cloud and then an orthogonal x-axis through the point furthest down.

Let the set of point locations be

L D f.x1; y1/; .x2; y2/; : : : ; .xn; yn/g :

The Sample Mean Point of Impact (sMPI) is calculated by taking the averages of
the x and y components of the round locations:

x D 1

n

X
xi ; y D 1

n

X
yi: (4)

Fig. 1 Ballistic footprint with x and y axes
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There are other possibilities to estimate the “center” of the cloud. For example, we
could use the median point .x�; y�/ that solves

min
x;y

nX

iD1

p
.xi � x/2 C .yi � y/2: (5)

In this paper, we have chosen to use the sMPI for the following reason. We are going
to model the fall of shot as a random drawing from a probability distribution. For
instance, 25mm rounds follow a circular normal distribution

fC.x; y/ D 1

2��
exp

�

� .x � �x/
2 C .y � �y/

2

2�

�

; (6)

where �x and �y are location parameters and � is a dispersion parameter. Given a
sample fall of shot, a rational approach to estimate the location parameters would
be with their maximum likelihood estimators, which in this case, are the sample
means, x and y. Hence, the sample MPI will be used here to estimate �x and �y, the
coordinates of some hypothetical point of aim. We will argue what the estimator of
� should be below.

The CF and AOC measures of dispersion are

sx D
r
1

n

X
.xi � x/2 and sy D

r
1

n

X
.yi � y/2: (7)

These are just the sample standard deviations in each component direction. Two
useful properties are noted:

Property 1 sx and sy are invariant to a translation of the axes.
To see this, note that, for the transformation x0i D bC xi; i D 1; : : : ; n, we have

that x0 D bC x and

sx0 D
r
1

n

X
.bC xi � .bC x//2 D sx (8)

Similarly, sy is invariant to a translation of the axes.

Property 2 Consider the dataset L and suppose we use the translation

x0i D xi � x
y0i D yi � y

for i D 1; 2; : : : ; n: (9)

Then the sMPI is .0; 0/ and the sample dispersions are sx0 D sx and sy0 D sy:
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To see this property, note that

x0 D 1

n

X
.xi � x/ D 1

n

X
xi � 1

n

X
x D x � x D 0 (10)

and, by the same argument, y0 D 0. That the component sample standard deviations
are unchanged follows directly from Property 1.

Quality Assurance in the Case of a Circular Normal
Distribution

Suppose the fall of shot is consistent with a circular normal distribution as shown
in (6) where the point of aim is .�x; �y/ and the variance is �: Clearly dispersion is
governed by the parameter �: Suppose that we have a random sample of n rounds
from a lot resulting in the locations given in L, and this dataset yields the sample
standard deviations sx and sy.

We are interested in testing the null hypothesis

H0W � D �� (11)

against the alternative

H1W � > ��; (12)

where �� is some maximum allowable dispersion identified by defence scientists.
Assuming that the sMPI, .x; y/; may replace the unknown point of aim .�x; �y/

without significant error, as in the case of a large sample, and applying Property 2,
we set x D y D 0 by an appropriate translation of the axes so that the underlying
distribution becomes:

fC0 .x; y/ D
1

2��
exp

�

�x2 C y2

2�

�

: (13)

The joint distribution of the sample, then, is

J.� I.x1; y1/; : : : ; .xn; yn// D
�

1

2��

�n

exp

"

� 1
2�

 
nX

iD1
x2i C

nX

iD1
y2i

!#

: (14)

Now consider testing

H0W � D �� (15)
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against the simple alternative

H1W � D ��� (16)

where ��� > ��: By the Neyman-Pearson lemma, a best critical region for this test
is obtained by solving

J.��I.x1; y1/; : : : ; .xn; yn//

J.���I.x1; y1/; : : : ; .xn; yn//
� a (17)

for some a > 0. The ratio on the left-hand side simplifies to

J.��/
J.���/

D
�
���

��

�n

exp

"

�1
2

�
��� � ��
�����

� nX

iD1
x2i C

nX

iD1
y2i

!#

: (18)

Taking the ln of both sides of J.��/=J.���/ � a gives the critical region

nX

iD1
x2i C

nX

iD1
y2i � b; (19)

where

b D 2�����

��� � ��
�

n ln

�
���

��

�

� ln.a/

�

: (20)

But given that the sMPI is the origin of the coordinate system, we can rewrite (19) as

s2x C s2y � b=n: (21)

Under the assumption of the circular normal distribution in (13), it is well known
that the marginal densities in the coordinate directions are normal (e.g., [2, pp.
158–159]). That is, the density in the x direction is

f .x/ D 1p
2��

exp

�

� x2

2�

�

(22)

and the density in the y direction is

g.y/ D 1p
2��

exp

�

� y2

2�

�

: (23)

Using this result, we conclude that both
Pn

iD1 X2i =� and
Pn

iD1 Y2i =� are chi-square
random variables with n degrees of freedom. Hence,
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n

�

�
S2x C S2y

� D 1

�

 
nX

iD1
X2i C

nX

iD1
Y2i

!

(24)

has a chi-square distribution with nC n D 2n degrees of freedom. For a given level
of significance, ˛, we can calculate the value of b=� using

˛ D Pr

 
1

�

 
nX

iD1
X2i C

nX

iD1
Y2i

!

� b

�
IH0

!

(25)

and then get b which we denote b˛: Hence the critical region of size ˛ is

s2x C s2y � b˛=n: (26)

Continuing the argument, there is nothing special about the value ���: The
argument above is true for any value of ��� > ��. Consequently, we conclude
that (26) is a uniformly most powerful critical region of size ˛ for testing H0: � D ��
against the alternative H1: � > ��.

Therefore, the appropriate statistic for a uniformly most powerful test of
dispersion in the case of the circular normal distribution is not max.sx; sy/ but rather
the sum of the component sample variances, or equivalently, the average of the
component variances.

In the next section, we examine the more general case of a bivariate normal
distribution with unequal variances.

Testing Dispersion for a Bivariate Normal Distribution

Let ZT D .X;Y/ be a random vector having a bivariate normal distribution with
mean at the origin (i.e., .�x; �y/ D .0; 0/) and a non-degenerate but otherwise
arbitrary covariance matrix

† D
 

�2x �x�y

�x�y �2y

!

(27)

where �x and �y are the standard deviations along the x and y axes, and  is
the correlation coefficient. We consider a sample drawn from this distribution.
Generally speaking, the data is mostly spread along the large axis of the ellipse.
More precisely, we define a dispersion measure D to be the largest variance observed
in all possible directions:

D D sup
khkD1

Var.hTZ/: (28)

Here, the supremum is taken over all two-dimensional vectors h of Euclidean
length 1.
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To calculate the right-hand side, recall that the covariance matrix can be factored
into the product of a symmetric square-root matrix with itself:

† D †1=2†1=2: (29)

This enables us to derive that

Var.hTZ/ D E.hTZ/.hTZ/T

D hTE.ZZT/h

D hT†h

D .hT†1=2/.hT†1=2/T

D �
�hT†1=2

�
�2 (30)

which is the squared length of the vector hT†1=2. Hence D can be expressed as

D D sup
khkD1

�
�hT†1=2

�
�2 : (31)

It is well known that the Euclidean matrix norm coincides with the spectral norm
which, in turn, is equal to the largest eigenvalue of †1=2†1=2 or just the covariance
matrix, †. To find the largest eigenvalue, we solve the characteristic equation
j† � �Ij D 0; or

ˇ
ˇ
ˇ
ˇ
�2x � � �x�y

�x�y �
2
y � �

ˇ
ˇ
ˇ
ˇ D 0: (32)

This equation has two real solutions, the largest yielding D:

D D 1

2

�

�2x C �2y C
q�
�2x � �2y

�2 C 42�2x �2y
�

: (33)

Result 1 D � max.�2x ; �
2
y / with equality occurring only if the correlation coeffi-

cient  D 0:
Proof Clearly

D � 1

2

�

�2x C �2y C
q�
�2x � �2y

�2
�

D 1

2

�
�2x C �2y C

ˇ
ˇ�2x � �2y

ˇ
ˇ
�

D 1

2

�
�2x C �2y Cmax.�2x ; �

2
y /�min.�2x ; �

2
y /
�

D max.�2x ; �
2
y /

with equality in the first line only if  D 0:
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So the dispersion measure, D, of a tilted ellipse is at least as large as each of the
component variances.

Our primary interest lies in testing whether D exceeds a certain critical value, say
D�, given a sample of n independent draws. Hence the null hypothesis is given by

H0WD � D�: (34)

We now argue that this is equivalent to testing

H0WD � 1 (35)

with a suitable rescaling of the data. Consider the transformation

ui D xi=
p

a; i D 1; 2; : : : ; n;
vi D yi=

p
a; i D 1; 2; : : : ; n; (36)

where a > 0: Note that

�2u D �2x =a (37)

and

�2v D �2y =a: (38)

We now consider the calculation of D in uv-space:

Duv D 1

2

�

�2u C �2v C
q
�
�2u � �2v

�2 C 42�2u�2v
�

D 1

2

0

@1

a
�2x C

1

a
�2y C

s
�
1

a
�2x �

1

a
�2y

�2
C 42 1

a
�2x
1

a
�2y

1

A

D 1

a

�
1

2

�

�2x C �2y C
q�
�2x � �2y

�2 C 42�2x �2y
��

D D=a: (39)

Considering the hypothesis

D � D�; (40)

we note that it is equivalent to

1

D�
D � 1 (41)
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or, using (39) with a D D�;

Duv � 1: (42)

Hence a rescaling of the data will always give the null, H0: D � 1:
So without loss of generality, we assume that the critical value is 1, and consider

the null

H0WD � 1 (43)

versus the alternative H1: D > 1.
In terms of the model parameters, H0 defines a closed set in the 3-dimensional

space
�
�2x ; �

2
y ; 

2
�
: We also know that this set is a subset of a unit cube for  � 0

or � 0 through the inequality in Result 1 and the bound on correlation. A few of its
-sections are shown in Fig. 2. These range from the full square for  D 0 to the
unit quarter circle for  D ˙1:

We are going to examine three tests of H0 based on the sample quantities
sx; sy; and

sxy D 1

n

X

i

.xi � x/.yi � y/W

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

0.0 0.0

r=0
r=0.4
r=0.8
r=1

0.4 0.6
Sigma−x

Null set border

S
ig

m
a−

y

0.8 1.0

Fig. 2 -sections of the parameter space defined by the null hypothesis
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T1. Reject H0 if t1 D .s2x C s2y/=2 > B1.˛/
T2. Reject H0 if t2 D max.sx; sy/ > B2.˛/

T3. Reject H0 if t3 D
�

s2x C s2y C
q�

s2x � s2y
�2 C 4s2xy

�

=2 > B3.˛/

where the Bi.˛/ values are chosen to maintain the probability of Type I error:

sup
H0

P.Ti > Bi.˛// D ˛: (44)

Our calculations are simplified due to a well-known fact that the supremum
generally occurs on the boundary of H0. This is explained intuitively in our case
by noting that the set D D 1 is a collection of the “worst” points, the points that
are most difficult to distinguish from those with D > 1. We give the result formally
without proof.

Result 2 The supremum of P.Ti > Bi.˛// over H0 satisfies D D 1.

That the supremum occurs on the boundary is important because we can now
execute a constrained two-dimensional search to find it. The following algorithm
can be used:

Step 1. Simulate two independent sequences, X�kj and Y�kj, of standard normal
random variates where k D 1; 2; : : : ; n and j D 1; 2; : : : ;N: N is the number
of Monte Carlo iterations and should be large.

Step 2. Let
�
�2x ; 

2
�

be chosen, and �2y determined so that D D 1. Then calculate
the standard transformation to get bivariate normal drawings:

Xkj D �xX�kj

Ykj D �y


X�kj C

p
1 � 2Y�kj

�
(45)

Zkj D .Xkj;Ykj/

Step 3. Compute statistics Ti;j from the sample Z1j;Z2j; : : : ;Znj for i D 1; 2; 3 and
j D 1; 2; : : : ;N:

Step 4. Determine Bi.˛/ as the .1� ˛/-th quantile. That is, take the ŒN.1� ˛/�-th
order statistic among Ti;j; j D 1; 2; : : : ;N:

Step 5. Repeat Steps 2–4 to maximize Bi.˛/ with respect to
�
�2x ; 

2
�
. (We assume

the algorithm terminates when a standard stopping criterion has been satisfied.)

Thus, critical values can be determined for any sample size n by applying steps 1–4
of the algorithm. For n D 20, the following critical values have been obtained:

B1.0:05/ D 1:33
B2.0:05/ D 1:64 (46)

B3.0:05/ D 1:78
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The three tests are compared by studying their powers for various alternatives.
Any alternative can be specified by a subset in the space .�2x ; �

2
y ; 

2/. From a
practical point of view, a reasonable alternative would be formulated in terms of
D. For example, it could be, say, “D exceeds the critical value by 50%.” With our
convention, this reduces to D D 1:5. This set is a two-dimensional manifold and
is best described by the parameters 2 and � D �x=�y: Indeed, due to the scaling
property described above, all tests should be equally sensitive to a simultaneous
increase or decrease of �x and �y by the same factor. It is therefore their ratio, � ,
that matters when comparing power. Furthermore, X and Y can be relabelled without
changing any of the three statistics. Thus it suffices to consider � � 1:

To determine power, we use an algorithm similar to what we used above for
determining critical values:

Step 1. Simulate two independent sequences, X�kj and Y�kj, of standard normal
random variates where k D 1; 2; : : : ; n and j D 1; 2; : : : ;N: N is the number
of Monte Carlo iterations and should be large.

Step 2. Let
�
�; 2

�
be chosen and �2y determined so that D D 1:5 and �2x D �2�2y .

Then put

Xkj D �xX�kj

Ykj D �y


X�kj C

p
1 � 2Y�kj

�
(47)

Zkj D .Xkj;Ykj/

Step 3. Compute statistics Ti;j from the sample Z1j;Z2j; : : : ;Znj for i D 1; 2; 3 and
j D 1; 2; : : : ;N:

Step 4. Determine power ˇi.˛/ as the proportion of statistics Ti;j; j D 1; 2; : : : ;N;
which exceed the critical level Bi.˛/:

For given values of � and ; there is an ordering of the three tests by power.
In Fig. 3 we have plotted the three regions where each of T1, T2, and T3 is best.
Consider first the case where  D 0 (i.e., along the horizontal axis). For � D 1;T1
is best which is consistent with what [1] derived. As � increases, note that there is a
crossover point where T2 is best. We judge this crossover point to be approximately
� D 1:19. Keep in mind these results are for the case n D 20 and the alternative
hypothesis D D 1:5: Obviously the crossover point will depend on the specific
values used for these parameters. In Table 1 we show the power of the three tests for
various values of � . The conclusion is that for ammunition types where  happens to
be 0 and � > 1, one must choose the correct test statistic carefully. The Monte Carlo
algorithms specified above can be used to calculate critical values and the power for
given values of n and specific alternative hypotheses.

In the case where  is non-zero (the cloud exhibits correlation), care must be
taken. With ballistic rounds, correlation in the cloud usually is an indication of a
more fundamental problem with the ammunition. For instance, rounds leaving the
barrel with significant yaw can lead to correlation in the cloud. So a lot exhibiting
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Table 1 Power for each of the
tests for various values of �
when  D 0, n D 20 and the
alternative hypothesis is D D
1:5

� T1 T2 T3

1:0 0:582 0:500 0:504

1:1 0:426 0:375 0:377

1:5 0:119 0:293 0:237

2:0 0:049 0:293 0:219

such correlation is unlikely to pass the complete bank of tests that an ammunition
lot is put through. Nonetheless, to assess dispersion when  is non-zero, the test T3
is robust to correlation and should be used if the tilt in the cloud is sufficiently high.

Conclusions

Various statistical tests are examined for determining whether the ballistic disper-
sion of an ammunition lot is sufficiently low in the case where the fall of shot
follows a general bivariate normal distribution. Monte Carlo procedures are derived
to calculate the critical values and the powers for three tests. For the case of zero
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correlation, and the bivariate normal distribution is circular or almost circular, the
statistic .S2xCS2y/=2 (or equivalently S2xCS2y) should be used; otherwise max.Sx; Sy/

is best. The precise indifference point will depend on the number of rounds sampled
and the specific alternative hypothesis. A third statistic is recommended when the
correlation is sufficiently large.

What is perhaps most clear is that there is not a single measure of ballistic
dispersion that fits all purposes. Indeed, the choice of ballistic measure for ammu-
nition quality assurance depends primarily on the relative sizes of the component
variances and the covariance. Future efforts will focus on finding a clear set of
guidelines through an intensive simulation study.
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Konstantinos A. Raftopoulos, Nikolaos Papadakis, Klimis S. Ntalianis,
Paraskevi Tzouveli, Georgios Goudelis, and Stefanos D. Kollias

Abstract Plain rotation, scaling, and/or translation (RST) of an image can lead
to loss of watermark synchronization and thus authentication failure with stan-
dard techniques. The block-based approaches in particular, albeit strong against
frequency and cropping attacks, are sensitive to geometric distortions due to the
need for repositioning the blocks’ rectangular grid of reference. In this paper, we
propose a block-based approach for watermarking image objects in a way that is
invariant to RST distortions. With the term image object we refer to semantically
contiguous parts of images that have a specific contour boundary. The proposed
approach is based on shape information since the watermark is embedded in image
blocks, the location and orientation of which are defined by Eulerian tours that are
appropriately arranged in layers, around the object’s robust skeleton. The object’s
robust skeleton is derived by its boundary after applying an extraction technique
and not only is invariant to RST transformations but also to cropping, clipping,
and other common deformation attacks, difficult to defend with current methods.
Experiments using standard benchmark datasets demonstrate the advantages of the
proposed scheme in comparison to alternative state-of-the-art methods.

K.A. Raftopoulos (�)
National Technical University of Athens, Zografou, Greece

The American College of Greece, Agia Paraskevi, Greece
e-mail: craftopoulos@acg.edu; raftop@image.ntua.gr

N. Papadakis
Hellenic Military Academy, Vari Attikis, Greece
e-mail: npapadakis@sse.gr

K.S. Ntalianis
Technical Educational Institute of Athens, Egaleo, Greece
e-mail: kntal@teiath.gr

P. Tzouveli • G. Goudelis • S.D. Kollias
National Technical University of Athens, Zografou, Greece
e-mail: tpar@image.ntua.gr; gg@image.ntua.gr; stefanos@cs.ntua.gr

© Springer International Publishing AG 2017
N.J. Daras, T.M. Rassias (eds.), Operations Research, Engineering,
and Cyber Security, Springer Optimization and Its Applications 113,
DOI 10.1007/978-3-319-51500-7_15

331

mailto:craftopoulos@acg.edu
mailto:raftop@image.ntua.gr
mailto:npapadakis@sse.gr
mailto:kntal@teiath.gr
mailto:tpar@image.ntua.gr
mailto:gg@image.ntua.gr
mailto:stefanos@cs.ntua.gr


332 K.A. Raftopoulos et al.

Keywords Image watermarking • Intellectual property protection • Invariant
watermarking • Region-based watermarking

AMS Subject Classification Numbers: 65D18, 68U10, 94A08, 68P25

Introduction to Image Watermarking and the Problem
of Geometric Distortions

Even though several watermarking techniques have been proposed in the literature
[1–4], most of them are not designed for image objects and they are not resistant
to the geometric attacks of rotation, scaling, and translation (RST). Watermark
synchronization may thus be lost and in such a case, copyright cannot be automati-
cally claimed. The early papers (e.g., [3]) assumed that the undergone distortion
was known at the detection phase, thus only checking whether the embedded
message could still be recovered after a distort-restore process was enough. In other
schemes, called non-blind or non-oblivious, watermarking relies on information
about the original content. In order to recover synchronization, one uses the original
undistorted content to establish correspondence between both signals. Among
the proposed registration techniques are both area-based [5] and feature-based
methods [6].

Another group of approaches is based on exhaustive search. These techniques
consider all possible deformations, performing the respective inverse transfor-
mations for detection. In these cases, the embedded watermark is extracted by
choosing the best detection confidence value, which is above an appropriate
threshold. Besides computational constraints, one must carefully study false positive
probability as it increases with the size of the search [7]. Strong hypotheses
can be made on the relative continuity or smoothness of the deformation, further
reducing the search space [8]. Another means to reduce the search space is to
use periodically structured watermarks [9] so that search for synchronization is
limited over one repetition period. Additionally, training (pilot) signals, which are
known and easy-to-detect features, are used in digital communications to identify
channel characteristics. In the watermarking domain, pilot signals should survive
distortions. Distortion estimation requires an exhaustive search to register detected
features with reference pilots and several such approaches exist [10, 11]. Others
design a reference signal (template) with strong spectral characteristics, and embed
it in a Fourier related or other domains [12, 13]. Associated reference marks
can be detected in the Fourier magnitude spectrum [14] or by using the signal
autocorrelation function.

Another set of methods considers transformed domains such as log-polar and
Fourier-Mellin. These approaches rely on the properties of the Fourier transform
to be insensitive to translation at its magnitude spectrum, scaling produces inverse
scaling and image rotation yields identical rotation on the spectrum. Performing
log-polar mapping of the Fourier domain, rotation and scaling of the image reduce
to plain translations. By combining both transforms one can design the Fourier-
Mellin domain, which is insensitive to rigid RST deformations. Several authors
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focus on these transforms [15, 16]. Performing log–log mapping of the Fourier
domain provides a representation insensitive to cropping, scaling, and modification
of aspect ratio [17]. However, discrete implementation of such transforms is not
straightforward, the most recent approaches introduce significant complexity, while
confronting accuracy problems.

Another deficiency of the majority of existing techniques is that they are frame-
based and thus semantic regions such as humans, buildings, and cars are not
considered explicitly. These regions may need better protection or depending on the
specific application, can be the only regions that need protection (e.g., versus the
background). Even though a limited number of region watermarking schemes have
also been proposed [18–20], the literature still lacks efficient algorithms for content
authentication especially in the case of copy-paste attack. In this kind of attack, a
copyrighted image is cropped and a part or parts of the image (e.g., semantically
meaningful objects) appear inside a different content (another image) after some
usually minor modifications. The new content is then distributed as a new creation.

Few methods can confront such a treatment. The proposed system protect against
this by embedding the watermark around the object’s robust skeleton. Robust
skeleton is defined as a certain MAT transform that is insensitive to high frequency
perturbations at the object’s boundary. Compared to alternative RST block-based
approaches, the proposed method exhibits performance advantages. The position
and orientation of the watermarked blocks are readily inferred from appropriate
Eulerian tours around the robust skeleton. In comparison, the Fourier-Mellin
transform relies to tedious transformations that require re-sampling in the frequency
domain or/and expensive searches for possible rotations of rectangular block grids.

In the proposed method, the skeleton of each host image object is initially
extracted. Starting from a specific point on the skeleton (see section “The Proposed
Approach: Invariant Watermarking of Image Regions” for details on choosing this
point), the pseudo-random watermark sequence is embedded in the DCT domain
of non-overlapping blocks along the skeleton’s Eulerian tour. The Eulerian tour
is extended outwards, in consecutive layers towards the object’s boundary, until
the watermark sequence is spread to the whole image object. The length of the
watermark is calculated based on the length of the extended Eulerian tour, so that
it is statistically undetectable. During watermark detection, initially the skeleton of
the candidate object is extracted and the potentially watermarked blocks that are
located along the extended Eulerian tour are matched against the respective blocks
of the initial skeleton. The respective extended Eulerian tour is traversed until either
the object is authenticated or the object boundary is reached. For each Eulerian
tour, the extracted sequence is correlated to the embedded pseudo-random sequence.
Experimental results with objects from the Caltech and Kimia datasets show that
the proposed approach re-gains synchronization in cases of RST attacks, mixed
attacks, and the copy-paste attack. The method has also been presented in [21]
but new experiments on the robustness of the skeleton using the benchmark datasets,
comparisons with state of the art, and new attack/retrieval scenarios have been added
here. The rest of this paper is organized as follows: in Sect. The Proposed Approach:
Invariant Watermarking of Image Regions the proposed approach is presented while
in Sect. Experimental Results: Proposed Method vs State of the Art experiments
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are performed to indicate the superiority of the proposed system. A conclusion
in Sect. Synopsis: A Geometric Invariant Watermarking Scheme for Image Regions
closes this contribution.

The Proposed Approach: Invariant Watermarking of Image
Regions

Watermarking approaches using spread spectrum modulation of pseudo-random
signals, even though successfully improve watermark resistance to various attacks,
cannot withstand rotation because the rectangular grid arrangement is changed and
thus synchronization is lost. A reference point for placing the rectangular block
grid for watermark recovery is not easy to obtain after image/object rotation,
if no a priori registration information is available. The situation is illustrated
in [22] where elaborate methods of high complexity are proposed to alleviate
this problem. The main contribution in this paper is that it incorporates shape
information during the block-based watermark embedding process in such a way
that the watermarked blocks’ location is readily identifiable at the retrieval phase,
even after RST transformations. The Medial Axis Transform (MAT) possesses
significant advantages with respect to object boundary distortion and general object
deformation, since a significant portion of the MAT skeleton is invariant to most
of the typical watermarking deformation attacks on objects. Even though the
MAT is sensitive to boundary details, it is possible to extract a main medial axis
which represents the most salient features of the underlying shape [23]. Such
regularization methods establish a robust skeletal representation of a shape, the
most important advantage of which is that it can capture the main characteristics of
shapes with a significantly distorted, jagged boundary. Local boundary deformations
affect only the local skeleton structure whereas global deformation, boundary
perturbation, cropping, or articulation attacks have no significant or at most local
effect on the object’s skeleton.

The key idea in this paper is that, instead of using a rectangular block grid with
no obvious connection to the objects shape, we let the Eulerian tour [24] (see Fig. 1)
around the object’s skeleton to define the position, rotation, and sequencing of the
watermarked blocks. The proposed method receives an image object as input and
computes its skeleton. From a starting point on the skeleton and by traversing the
extended Eulerian tour clockwise, we embed the watermark in the blocks defined
along this tour, using a standard block-based DCT approach [1]. The blocks are
chosen to be adjacent but not overlapping. The watermark is created using a pseudo-
random number generator (PRNG) [25]. The PRNG starts from an arbitrary state
using a seed state, which in our method is the authorization key k. Using a specific
key as input to the PRNG, the same sequence N is always produced in the output of
the PRNG.

The maximum length of the sequence is determined by the size of the key k
and it is measured in bits. This sequence N is the watermark, which is embedded
to the computed DC coefficient of each block along the corresponding Eulerian
tours. After a complete Eulerian tour around the skeleton (Fig. 2), returning to the
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Terminating Condition Starting Point

Inner Eulerian Tours

Alternative Staring Points

Outermost Eulerian Tour

Robust Skeleton

Fig. 1 The proposed block-based watermarking method along the extended Eulerian tour

Fig. 2 Eulerian tour traverse

starting point, we continue with another complete Eulerian tour that extends one
layer outwards, towards the object’s boundary, (see Fig. 1) and we keep extending
the Eulerian tour outwards until we reach the boundary. The process ends when the
whole interior of the object has been covered with blocks this way. It is possible to
meet the boundary at various points before the whole shape has been covered with
watermarked blocks (e.g., at a narrow bottleneck type of boundary formation). In
such a case we don’t break the path, we just continue until we are in the interior
again but we watermark only the blocks in the interior of the shape as in the bird’s
feet in Fig. 1.

In Fig. 1 we can see how the Eulerian tours are formed beginning from around
the skeleton and extending to the outermost Eulerian tour, marked as such in the
figure, where the terminating condition of covering the whole shape has been met.
The watermark is embedded redundantly several times along the Eulerian tours,
the length of the key being a tradeoff between the strength against key recovery
attacks and the watermark resistance to cropping attacks, thus the length of the key is
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chosen as a parameter depending on the total length of the Eulerian tours. Finally, by
applying the IDCT to each interior block, the watermarked object is produced. The
extraction module receives a candidate object at its input, with the purpose to define
this object’s intellectual rights source. The algorithm, similarly to the embedding
phase, initially computes the object’s skeleton and corresponding Eulerian tours and
then defines the non-overlapping blocks, for which the DCT is computed.

Since the same procedure is followed for the original object, the DC values of
both the original and test objects are available to the authentication mechanism.
Object’s originality is thus decided based on the correlation between the original
and retrieved watermarks. The proposed approach has many advantages, mainly
due to the robust skeleton and the uniqueness of the extended Eulerian tours. With
regard to initialization, the choice of the starting point on the Eulerian tour is critical
for the method’s performance, since a random choice would demand an exhaustive
search of all the possible matching combinations at the retrieval phase.

Fortunately, the robust skeleton provides uniquely identifiable points that can
be used to restrict the exhaustive search; these are the end points of the skeleton,
which are marked with big dots on the boundary (see Fig. 1). By choosing one of
these points as a starting point during watermark embedding, we restrict the possible
matches of starting points at the retrieval phase to the number of the robust skeleton
end points. In the next section the performance of the proposed scheme against
traditional attacks is exhibited.

Experimental Results: Proposed Method vs State of the Art

The first step of the proposed method is the extraction of the object’s skeleton.
Research in this area can be found at [26, 27] leading to popular methods like
Fast Marching [28]. The skeletonization algorithm presented here has to be robust
against reasonable deformations on the boundary and of course invariant to RST
transformations. To assess the proposed skeletonization approach against noise and
deformation effects we conduct experiments using the KIMIA benchmark dataset.
Results are presented in Figs. 3 and 4 and discussed in subsequent sections.

Fig. 3 Different samples from Kimia-99 dataset having skeletons extracted and circles/lines
sequence embedded
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Fig. 4 Sample line and circles embedded in a single square (left) and its Radon transform (right).
The arrow indicates the internal line position. In this example, a line is found at zero degrees

Proposed Approach: Testing Blocks’ Location After Geometric
Transformations

In this experiment, the robustness of the skeletal approach, in localizing the
rectangular blocks, when different deformation scenarios are applied, is evaluated.
For this purpose a series of random rigid transforms (scale/rotation) was applied to
the Kimia-99 [29] database (Fig. 3). The Kimia-99 dataset consists of 99 shapes
grouped in 9 classes with 11 shapes in each class. The database has a fair amount of
visual transformations (occlusion articulation and deformation of parts). To assess
the ability of the proposed method to perform efficiently under the above scenarios
the following experimental setup is adopted; after the skeleton of each image object
was extracted, a series of circles and lines with special properties are embedded
along the skeleton’s Eulerian tour.

More specifically, each block contained two concentric circles and one line
passing through their center. The specific line rotates from square to square by an
angle of 25 degrees (Figs. 4 and 5). The aim was to retrieve the same proportion of
square side versus circle radius, as well as the same angle of the embedded line for
the whole helical sequence of compared squares (when comparing original versus
transformed). To retrieve the embedded circles and lines, we used two well known
for their efficiency methods, namely the Radon [30] and the Hough transform [31].
We randomly rotated, shrunk, or enlarged the samples and thereafter attempted
to retrieve the embedded sequences. As mentioned above, the purpose of this
experiment is to show that the same sequence of rotated lines and circles (having the
same square side/radius proportion) is preserved in the transformed image. Circles
are detected by the Hough transform while lines inside the circles are detected by
the Radon transform (Fig. 5). Examples of Hough transform for a small sequence
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Fig. 5 Extracted Radon (b) and Hough (c) transforms for a short sequence of squares (a). For
illustration purposes, the embedded line retrieved was marked with a circle. The degrees of the line
found by the Radon transform, as well as the circles found by Hough transform (c) are shown

Fig. 6 A normal (left) and a deformed (right, rotated and scaled) sample from Kimia-99 dataset.
The magnification illustrates how a random sequence is preserved in the attacked image

are shown in Fig. 5c. The results show a very robust behavior (Fig. 6). Comparing
the sequences retrieved from all of Kimia-99 images resulted in a total of 26,730
squares, where 99.7% were matched.
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Proposed Approach: Testing Watermark Retrieval Under
Common Attacks

In this section, the robustness of the proposed method is investigated under
typical attacks. The object database which is used for this purpose is the Caltech
database, which contains 101 categories of objects and where object boundaries
are readily available. Even though the proposed method is better suited for an
authentication/integrity scenario, the case of tracking can also be considered with
the difference that the object’s boundary may need to be extracted before the MAT
transformation can be applied. In such a case, techniques like Graph Cuts [32]
or Snakes [33] can be utilized with great success. The steps of the watermark
embedding procedure are:

1. Find the robust skeleton from the boundary and save it as a binary image.
2. Find the Eulerian tour around the skeleton as the contour of the skeleton image.
3. Re-sample the Eulerian tour to the desired equally spaced number of points.
4. For every pair of points on the Eulerian tour calculate the rotated rectangular

block that has lower left and right corners on these points.
5. Calculate the next outward Eulerian tour from the upper left and right corners of

the blocks, calculated in the previous step.
6. Keep calculating new Eulerian tours by extending outwards towards the object’s

boundary, until the whole object’s region is covered.
7. Embed the watermark in the positions of the above calculated blocks, starting

from a skeleton end point and following the clockwise/outwards direction of the
combined Euler tours.

Since blocks’ locations and sequencing are defined in step 4 of the above procedure,
the watermark values are embedded in the DC coefficients of these blocks. The
important is that under our approach the location of the watermarked blocks is now
scale and rotation invariant.

During watermark extraction, the authentication module extracts a sequence
of values from the DC coefficients of appropriate blocks. In this sequence the
watermark is repeated more than once. Then, during the correlation phase this
sequence is split into non-repetitive parts that correspond to the initial watermark.
Having partitioned the sequence into non-repetitive parts, the original watermark is
correlated to each part and the object is authenticated even for a single correlation
value over the threshold.

In the experiments that follow, the proposed approach is tested under vari-
ous attacks and different combinations. For this purpose, in each sample of all
Caltech’s categories, we apply geometric distortions to the watermarked objects,
such as rotation (30ı; 45ı; 60ı; 90ı) and scaling (40%, 60%, 80%, 120%), filtering
(Gaussian filtering with mean value (m=0) and standard deviations � (0.05, 0.50,
1) as well as median filtering with windows (3x3, 5x5, 7x7)) and compression
(JPEG compression (30%, 60%,100%). To evaluate the overall system performance,
we compare to the Fourier-Mellin approach, one of the few and most prominent
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Table 1 Precision-recall comparisons after different geometric, frequency, and domain related
attacks

Category Airplanes (801 samples) Motorbikes (798 samples)

Proposed Fourier-Mellin Proposed Fourier-Mellin

Method Precision Recall Precision Recall Precision Recall Precision Recall

Rotation 30ı 0:99 0:99 0:99 0:98 1 0:99 0:99 0:97

45ı 0:99 0:99 0:98 0:97 0:99 0:99 0:98 0:97

60ı 0:99 0:98 0:97 0:96 0:99 0:98 0:98 0:96

90ı 0:99 0:97 0:97 0:95 0:99 0:98 0:97 0:96

Scaling 40% 0:99 0:98 0:98 0:97 0:99 0:98 0:98 0:97

60% 0:99 0:98 0:98 0:97 0:99 0:98 0:98 0:97

80% 0:99 0:99 0:99 0:98 0:99 0:99 0:99 0:98

120% 0:99 0:99 0:99 0:98 0:99 0:99 0:99 0:98

Gaussian
filtering
m=0

� D 0:05 0:98 0:97 0:97 0:95 0:98 0:96 0:96 0:94

� D 0:50 0:96 0:94 0:95 0:91 0:97 0:95 0:93 0:90

� D 1:00 0:93 0:88 0:89 0:81 0:94 0:92 0:90 0:88

Median fil-
tering

3� 3 0:98 0:96 0:97 0:94 0:98 0:95 0:97 0:92

5� 5 0:97 0:94 0:94 0:89 0:96 0:93 0:95 0:90

7� 7 0:95 0:92 0:92 0:84 0:94 0:90 0:93 0:89

JPEG
compre-
ssion

30% 0:91 0:87 0:85 0:79 0:92 0:89 0:87 0:82

60% 0:95 0:92 0:87 0:81 0:96 0:94 0:89 0:85

100% 0:96 0:95 0:92 0:86 0:96 0:95 0:93 0:89

The proposed method is evaluated against the Fourier-Mellin technique, using two typical object classes
from the Caltech database

methods in the literature that provides RST invariance to block-based approaches.
The comparison is performed by means of precision and recall rates. The recall is
the ratio of the correctly extracted to the total objects in the class. The precision is
the ratio of the correctly extracted to the total that have been tested. In Table 1 the
results of the comparison are reported. Our implementation of the Fourier-Mellin
algorithm was as follows:

1. Apply a Fourier transform (FT), to the extracted object of the initial image, this
provides the translation invariance.

2. Perform a conversion of FT to log-polar coordinates. This converts the scale and
rotation differences to vertical and horizontal offsets which can be measured.

3. Perform a second FFT, called the Mellin transform (MT). This gives a trans-
formed object that is invariant to translation, rotation, and scale.

4. Insert the watermark at the values of this transform-space object.
5. Perform the inverse procedure to produce the watermarked object.

The comparison between the two methods of Table 1 leads to the following
conclusions: (a) as far as rotation and scaling transformations are concerned, the
FMT could be robust enough during watermark extraction and (b) the proposed
method is more robust not only to RST transformation but also to filtering and



Region-Based Watermarking for Images 341

Watermarked
Image

Watermarked
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Fig. 7 Correlation measurements under cropping attacks

compression attacks, where the FMT fails. As far as the performance of the
embedding method is concerned, the FMT method’s response is 15 s on a typical PC
(Core 2 CPU in 2.13 GHz, 2 GB RAM) while the proposed method’s response on
the same PC is 8 s. The proposed method efficiently confronts the copy-paste attack,
since each candidate object passes through the watermark extraction procedure
which is robust to cropping inaccuracies. As already mentioned, the watermark is
redundantly embedded along the extended Eulerian tour. A single non-repetitive part
is adequate to provide object authentication. Results of cropping inaccuracies are
given in Fig. 7, using a watermarked water lily flower from the Caltech collection.

We compute correlation values for the watermark sequences extracted from
the cropped and original objects. Even for 50% cropping the proposed system
successfully authenticates the watermarked object. However, for cropping values
over 70%, the authentication module fails. Nevertheless, in these cases the distortion
is so severe that the resulting objects may not qualify as originals and thus protection
is not necessary.

Synopsis: A Geometric Invariant Watermarking Scheme for
Image Regions

A robust watermarking scheme for image objects has been proposed. The motivation
for this approach lies in the inability of current frame-oriented schemes to protect
semantic content. A watermark sequence is produced by a pseudo-random number
generator and it is redundantly embedded into the object along Eulerian tours
around a robust skeleton. During extraction, object authentication is achieved by
splitting the extracted sequence into non-repetitive parts that correspond to the
initial watermark. The original watermark is correlated to each part and the object
is authenticated by means of correlation values over the threshold. The success of
the proposed method stems from the robustness of the specific skeleton approach
in relation to both RST and cropping attacks. Experimental results, involving
benchmark datasets, illustrate the advantages of the proposed method over the state
of the art with respect to various signal distortions, mixed processing, and copy-
paste attacks.
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Abstract This paper aims to put forward a general framework for derivation of
optimal control policies for inventory systems with time varying demand over a
finite planning horizon. This permits the treatment of a large number of known
inventory problems in a unified manner. As decision variables are considered the
number of cycles and the times that each cycle starts and ends, where the term cycle
can be used to represent various operational activities in inventory control. If the
objective function, for a fixed number of cycles, passes successfully a couple of
tests, then existence and uniqueness of a solution of the corresponding optimization
problem is guaranteed. In this case, the search for the optimal solution reduces to
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Introduction

It is well known that inventory models with time varying demand encompass a
broad range of practical situations including multiechelon assembly operations,
production to contract, products with seasonal demand, etc. (Silver et al. [1]). The
optimal inventory policy for such models consists of determining the number of
orders and the ordering times.

The finite horizon deterministic lot size problem with constant demand is found
in Carr and Howe [2]. The linearly time varying demand rate is treated in Resh
et al. [3] and Donaldson [4]. Barbosa and Friedman [5] examined inventory
models with power form of time demand function. The general time varying demand
lot sizing model was examined in Henery [6] where he showed that for a given
number of orders, an optimal unique timing of the ordering exists and is unique.
Friedman [7] showed, under the assumption of uniqueness of the ordering times, the
corresponding optimal cost function is convex in the number of orders. It turns out
that the convexity result can be obtained under very general conditions on the cost
function generated between orders, see Denardo et al. [8]. A fundamental general
result which appears to have attract little attention in the inventory literature. Yao
and Klein [9] extended the result of Denardo et al. [8] to economic lot size models
with backlogging.

Models with finite replenishment rates were considered in Friedman [10].
A model with finite replenishment rate is a generalization of the EPQ model to
finite horizon and it is also called batching model. Hill [11] examined the issue of
finding batching policies for linear increasing demand. Hill et al. [12] suggested a
dynamic programming formulation for the model. Omar and Smith [13] studied the
model to allow for the integration of raw materials with that of production in certain
manufacturing systems. Rau and Ou Yang [14] derived the optimal inventory policy
for Omar and Smith’s model. This was later extended in Al-Khamis et al. [15] to
the case when demand is log-concave.

The present chapter aims to provide a tool in order the optimization problems,
which follows from the inventory models mentioned above (and others models,
which will be presented later on), to be faced in a unified way, using a theory
developed in Benkherouf and Gilding [16]. The result in [16] ensures the existence
of a unique optimal replenishment schedule, that specifies the number of cycles
(number of orders/setups) and the times that a cycle starts and ends (timing of
order/setup). As a matter of fact, the results in [16] were motivated by lot sizing
type inventory models. Applications of those results to EPQ models and others
are found a later time. The results presented in this paper are stated without proof.
Interested readers may consult [16] for the initial main results and the corresponding
references for their required modifications in order to be applicable in more complex
inventory problems.

The next section contains a specific optimization problem together with condi-
tions that ensures the existence and the uniqueness of its solution. This optimization
problem is used as prototype problem for the search for optimal inventory policies
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for a number of inventory systems with finite planning horizon. Then, these
inventory systems are reviewed. The conclusions with some general remarks are
found in last section.

A Specific Optimization Problem

The optimization problem, which is considered below, will serve as a prototype
formulation for all inventory models that are examined in this paper. Let

P1 W min
.t1;t2;:::;tn ;n/

vnc0 C
nX

iD1
Ri.ti�1; ti/

subject to

0 D t0 � t1 � : : : � tn D H;

n integer;

where c0 > 0, H > 0 and known. Also, vn is a function of n and for 1 � i � n, Ri is
a function defined on some subset ˝ � R with

˝ D f.x; y/ W 0 � x < y � Hg:

For the solution of the above class of problems a general theory for the existence
of unique optimal solution has been proposed by Benkherouf and Gilding [16]
under two hypotheses:

Let

@x W The partial derivative of a bivariate function with respect to the first variable.
@y W The partial derivative of a bivariate function with respect to the second
variable.
@2x W The second derivative of a bivariate function with respect to the first variable.
@2y W The second derivative of a bivariate function with respect to the second
variable.
@x@y W The cross partial derivatives of a bivariate function.

Hypothesis 1 For every i � 1 the function Ri 2 C1. N̋ /\ C2.˝/ is such that

(1) Ri > 0

(2) Ri D 0, on ˝n N̋
(3) @xRi < 0 < @yRi in ˝
(4) @x@yRi < 0 in ˝
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Hypothesis 2 For all 1 � i � n � 1 there hold

(1) @yRi C @xRiC1 on ˝n N̋ D 0
(2) there exits a function f 2 C.0;H/ such that LxRiC1 � 0 and LyRi � 0 in ˝

where

Lxz WD @2xzC @x@yzC f .x/@xz

Lyz WD @2yzC @x@yzC f .y/@xz:

It is worth noting that part (4) in Hypothesis 1 is key in the analysis of finite horizon
models. It is equivalent for the requirement that Ri is submodular in˝ for functions
that are twice differentiable. This condition has been used successfully in [8] and
[9] to show convexity of some value function with respect to the number of orders.
A useful property for deriving the optimal frequency of orders.

The main results of the theory found in [16] are briefly outlined below:
Let

Sn.t1; t2; : : : ; tn/ D
nX

iD1
Ri.ti�1; ti/ (1)

Theorem 1 For fixed n and under Hypotheses 1 and 2 the function Sn has a unique
minimum satisfying 0 D t0 � t1 � : : : � tn D H. The solution is found by setting

rSn D 0:
Theorem 2 Let sn denotes the minimum value of Sn with respect to t0, t1,. . . , tn
satisfying 0 D t0 � t1 � : : : � tn D H.

(i) Then sn is a strictly decreasing function of n � 1.
(ii) If there exists an integer p � 1 such that RjCp D Rj for all j � 1, then sn � snCp

is a strictly decreasing function of n � 1.

Note that for p D 1 the Theorem 2, (ii) is equivalent to the convexity of sn in n. The
cases p D 1 and p D 2 can be found in [8] and [9], respectively, without the need
for uniqueness result of Theorem 1. Moreover, strictly speaking existence of the
optimal solution and Theorem 2 apply under Hypothesis 1. Hypothesis 2 guarantees
uniqueness of the optimal solution. It also turns out that in general it is the hardest
hypothesis to check. We shall comment on the applicability of these hypothesis in
the next section when specific models are discussed.

Inventory Models with Time Varying Demand Over
Finite Horizon

In this section, inventory models with time varying demand over finite horizon
will be examined and they will be treated using Problem P1. Models with infinite
replenishment rate (ELS models) are discussed first followed by finite replenishment
rate models (EPQ models).
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Assumptions

The common assumptions behind existing models are the following:

(1) The planning horizon of the system is finite and is taken as H time units, H > 0.
The initial and the final inventory levels are both zero.

(2) The demand rate at time t is given by a continuous function D, D.t/ W Œ0;H�!
.0;1/.

(3) The cost structure is (a) a fixed order/setup cost per order/setup, c0, (b) a holding
cost per unit in stock per unit of time ch, (c) a purchasing cost per unit cp.

(4) The lead time is zero.

Inventory Models with Infinite Replenishment Rate

In this section inventory models with infinite replenishment rate will be presented.
In Fig. 1 a possible representation of the inventory level during the planning horizon
is given. The symbol n denotes the number of cycles (orders) and ti the time at
which the inventory level, I.t/, reaches zero for cycle i, say, with t0 D 0 and tn D H,
i D 1,. . . n.

During the time interval Œti�1; ti� (cycle i), the level of stock is described by the
following equation:

dI.t/

dt
D �D.t/; ti�1 � t � ti; I.ti/ D 0 (2)

The problem of finding the optimal replenishment schedule reduces to solving the
mixed integer non-linear program P1, where
vn D n (number for cycles) and

Ri.ti�1; ti/ WD Rh.ti�1; ti/ D cp

Z ti

ti�1

D.t/dtC ch

Z ti

ti�1

.t � ti�1/D.t/dt (3)

I(t)

-D(t)

timetn-1t1 t2 tn=H0

Fig. 1 A finite horizon inventory model with infinite replenishment rate
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Here Ri represents the inventory costs (purchase+holding) in period i. It is also clear
that the subscript i in the function Ri in (2) can be dropped from the notation.

Note that depending on function of the demand rate D.t/ in (3), various existing
models can be recovered: the model of Donaldson [4] if D.t/ is linear in t, the model
of Henery [6] if the demand rate is log-concave in t.

Problem P1 and the corresponding theoretical results can also be used if shortages
are allowed, by setting vn D n=2 and modifying appropriately the functions Ri.
Specifically, the functions Ri is equal to (3) for odd i and

Ri.ti�1; ti/ D Rs.ti�1; ti/ D cs

Z ti

ti�1

.ti � t/D.t/dt (4)

for even i, where cs refers to the shortages cost per unit of unsatisfied demand per
unit of time. If the demand rate in (3) and (4) is linear in t, then the model of Goyal
et al. [17] and Bhounia and Maiti [18] is obtained.

We shall next comment briefly on the extent to which Hypotheses 1 and 2 are
satisfied by the general model with shortages.

It is easy to check that Hypothesis 1 is satisfied. If i is odd then

Ri.x; y/ D cp

Z y

x
D.t/dtC ch

Z y

x
.t � x/D.t/dt:

Indeed, on ˝ , Ri.x; y/ > 0, @xRi.x; y/ D �cpD.x/ � ch
R y

x D.t/dt < 0, @yRi.x; y/ D
cpD.x/C ch.y � x/D.y/ > 0, @x@yRi D �chD.y/ < 0. Also, Ri.x; x/ D 0. Likewise,
the case i even can be checked in a similar fashion. Therefore, Hypothesis 1 is
satisfied. This means that at this stage we can safely assert that an optimal inventory
policy exists. Also, Theorem 2 applies.

Part (1) of Hypothesis 1 can easily be checked. Let f .t/ D �D0.t/=D.t/, then it
can be shown that for i odd LyRi.x; y/ D 0, and

LxRi.x; y/ D ch

�
D0.x/
D.x/

Z y

x
D.t/dt � fD.y/� D.x/g

�

:

The expression LxRi.x; y/ can be shown to be � 0 if D is log-concave. For more
details see: [6] and [16]. Hence Theorems 1 and 2 apply.

The models with infinite replenishment rate below (and their extensions) have
objective functions, corresponding to the optimal inventory policy, which satisfy
the submodularity condition of Hypothesis 1. Therefore, an optimal inventory policy
exists and Theorem 2 holds.

Relations (3) and (4) can be modified to cater for various existing inventory
systems to be considered. For example, in order to model systems with time varying
deterioration rate and partial backlogging of unsatisfied demand, set vn D n=2 and
let Ri.ti�1; ti/ be defined by:
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Ri.ti�1; ti/ D Rh.ti�1; ti/ D cp

Z ti

ti�1

eı.u/�ı.ti�1/D.t/dt

C ch

Z ti

ti�1

Z ti

t
eı.u/�ı.t/D.u/dudt (5)

for odd i, and where

ı.t/ D
Z t

0

�.u/du;

and �.u/ the deterioration rate. Also,

Ri.ti�1; ti/ D Rs.ti�1; ti/ D cp

Z ti

ti�1

ˇ.ti � t/D.t/dt

C cs

Z ti

ti�1

.ti � t/ˇ.ti � t/D.t/dt C cl

Z ti

ti�1

.1 � ˇ.ti � t//D.t/dt (6)

for even i and vn D n=2, where cl is the lost sales cost per unit time
Note that relations (5) and (6) can be interchanged for odd and even i leading

to different classes of policies (see Skouri and Papachristos [19] and [16]). Now,
by assuming specific functions for demand, deterioration and backlogging rates,
several inventory models can be obtained as those found, for example, in: Barbosa
and Friedman [20], Dave [21], Teng [22], Teng [23], Chakrabarti and Chaudhuri
[24], Chakrabarti et al. [25], Chang and Dye [26], Teng et al. [27], Wee and Mercan
[28], Papachristos and Skouri [29], Teng et al. [30], Skouri and Papachristos [31].

It is worth noting that the extension of the above model by considering inflation
has a drastic effect on the solution of the optimization problem as Gilding [32]
point out. Gilding [32] proved that under equitable hypotheses when the number
of replenishment cycles is sufficiently large, the optimal solution involves the
placement of token orders at the end of the planning period. Then by assuming
specific function for the involved parameters of the systems various existing models
can be obtained (i.e. Bose et al. [33], Chandra and Bahner [34], Chern et al. [35],
Chung et al. [36], Datta and Pal [37], Dye and Hsieh [38], Hariga [39], Hsieh and
Dye [40], Moon et al. [41], Yang et al. [42], Yang et al. [43]).

Problem P1 can also be used to model vendor-buyer coordination problems.
Assuming a single production run for the vendor and multiple replenishment for
buyer, the functions Ri.ti�1; ti/ are modified as (see Benkherouf and Omar [44]):

R1.ti�1; ti/ D
Z t1

0

.h2tC h1.t1 � t/D.t/dt (7)
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and

Ri.ti�1; ti/ D
Z ti

ti�1

.h2 � h1/.t � ti�1/D.t/dt (8)

for i � 2,
where h1 the holding cost for the vendor and h2 the holding cost for the buyer. By
assuming D.t/ to be linear decreasing in t then the model of Omar [45] is obtained.

Inventory Models with Finite Replenishment Rate

In this section the problem P1 is shown that it can also be used for modeling
inventory models with finite replenishment. In Fig. 2 a possible representation of
the inventory level during the planning horizon is given.

In a cycle i, say, i.e. during the time interval Œti�1; ti�, the level of stock is
described by the following differential equations:

dI.t/

dt
D p �D.t/; ti�1 � t � tp

i ; with I.ti�1/ D 0; (9)

dI.t/

dt
D �D.t/; tp

i � t � ti; with I.ti/ D 0 (10)

Then, using the continuity of the inventory level at tp
i , the function Ri becomes:

Ri.ti�1; ti/ WD Rp.ti�1; ti/

D cp

�Z ti

ti�1

D.t/dt


 2
C ch

"Z ti

ti�1

.t � ti�1/D.t/dt � 1

2p

�Z ti

ti�1

D.t/dt


 2
#

(11)

I(t)

p-D(t) -D(t)

p
nt2

pt1
pt tn=Htn-1t2t10

time

Fig. 2 A finite horizon inventory model with finite replenishment rate
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It is an easy exercise to see that the function Ri defined in (11) passes the tests for
Hypothesis 1. Hypothesis 2 requires slightly more effort but is doable under some
technical conditions which includes the log-concavity of the demand rate function
(see Al-Khamis at al. [15]). The case when D.t/ is linear in t, the model of Hill [11]
is recovered.

Production–inventory models with time varying demand and finite planning
horizon have been developed for deteriorating items. Specifically, Balkhi [46]
studied a production-inventory system assuming that production, demand and
deteriorating rates are continuous function of time. Sana et al. [47] presented a
model with constant production and deterioration rates and linear time dependent
demand rate. Yang [48] extended the model of [46] assuming partial backlogging.
Benkherouf and Boushehri [49] considered a model with constant deterioration rate
with time varying demand rate.

The corresponding objective of P1 for models with deteriorating rates is complex.
Hypothesis 1 is easily checked. However, for Hypothesis 2 to be satisfied more
elaborate technical conditions (other than the usual log-concavity condition) need
to be imposed: see [49]. Again, existence of an optimal inventory policy is easily
established, and Theorem 2 applies.

The above basic production–inventory model can be used as a basis for handling
more complex inventory production problems under rework or remanufacturing
options. Benkherouf et al. [50] studied a recovery inventory system. The reman-
ufacturing process brings used products up to quality standards that are as rigorous
as those of new products. The demand is satisfied either by new produced items
or by the used items that are repaired back to an “as new” condition, before being
sold again. At the beginning of the planning horizon, the demand is satisfied by
new manufacturing lots. When the production stops, the demand is satisfied by
remanufacturing lots. The solution of this problem requires the determination of the
newly produced and remanufactured quantities that minimize the total cost over the
planning horizon. To this end, two sub-problems should be solved and the optimal
time point, �0, of switching from a manufacturing activity to a remanufacturing one
should be determined. The two sub-problems, which evidently conform to the above
problem P1, are:

Sub-problem 1

min nc0;1 C h1

nX

iD1

"Z ti

ti�1

.t � ti�1/D.t/dt � 1

2p

�Z ti

ti�1

D.t/dt

�2
#

C h2

Z �0

0

.�0 � t/�D.t/dt (12)

subject to

0 D t0 < t1 < : : : : < tn D �0;

with n � 1 and integer.
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Sub-problem 2

min .m � 1/c0;2

C .h1 � h2/
m�1X

jD1

2

4
Z �j

�j�1

.t � �j�1/D.t/dt � 1

2r

 Z �j

�j�1

D.t/dt

!2
3

5 (13)

subject to

�0 < �1 < : : : : < �m D H;

with m � 2, and integer. Here

r is the remanufacturing rate,
h1 is the holding cost for the serviceable items,
h2 is the holding cost for the used (recoverable) items,
c0;1 is the production setup cost,
c0;2 is the remanufacturing setup cost,
n is the number of production runs,
m is the number of remanufacturing runs,
ti�1 is the production starting time, i D 1; : : : ; n with t0 D 0,
�j�1 is the remanufacturing starting time, j D 1; : : : ;m with �0 D tn.

It is not surprising that both Sub-problems 1 and 2 conform to Hypothesis 1
without no extra assumptions on the model. Hypothesis 2 needs some extra effort:
see [50].

Benkherouf et al. [51] studied an inventory system with production, remanufac-
turing and refurbishing activities. Used products are returned by customers and after
inspection they can be classified either as “remanufacturable” or as “refurbishable”
items. The remanufacturing process brings “remanufacturable” items up to quality
standards that are as rigorous as those of new items. The refurbished items are sold
to a secondary market at a reduced price. In order to control the system, two types
of policies are considered, namely P.1; n2/ and P.n1; 1/. According to P.1; n2/
policy, one remanufacturing batch and n2 orders for new items are considered.
According to P.n1; 1/ policy it is assumed n1 batches of remanufacturing and one
batch of new items that ordered at time 0. For these two policies, the order and
remanufacturing quantities and the inventory level of returned (used) items at the
start of the inspection and recovery processes, which minimize the total cost, should
be determined.

In order this problem to be solved the following optimization problems should
be solved. The optimization problem that corresponds to P.1; n2/ is:

min

"

n2SC h2

n2X

iD1

Z ti

ti�1

.t � ti�1/D.t/dt

#
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subject to

0 D t0 � � � � � tn2 D �0;

where n2 � 0; and integer.
The optimization problem that corresponds to P.n1; 1/ is:

min

"

.RCW/.n1 � 1/C '2h1 .1 � q/q

2p

n1�1X

iD1

�Z ti

ti�1

D.t/dt


 2
#

C '.h1 � .1 � q/h2/
n1�1X

iD1

"Z ti

ti�1

.ti � t/D.t/dt � ' 1 � q

2p

�Z ti

ti�1

D.t/dt


 2
#

subject to

0 D t0 � t1 � : : : tn1�1 D �;

where n1 � 0 and integer, and

' is the return factor
p: is the remanufacturing rate
R: is remanufacturing setup cost
S: is the ordering cost of a batch of new items
W: is the fixed inspection and sorting charge
h1: is the holding cost of used/refurbished items
h2: is the holding cost of serviceable items
q: is the percentage of used items classified as refurbished

The same remarks made about the models treated in [50] apply here.

Conclusions

The objective of the present paper is to provide a unified treatment for the search for
optimal inventory policies in deterministic inventory problems with time varying
demand in a finite planning horizon. Keys in the analysis are two hypotheses
called Hypotheses 1 and 2. The crucial element in Hypothesis 1 is a submodularity
requirement. The treatment was illustrated with inventory models with finite and
infinite replenishment rates where the submodularity requirement is satisfied with
minimal assumptions on the models. As a matter of fact, Hypothesis 1 alone
ensures existence of the optimal inventory policy together with the crucial property:
Theorem 2. Hypothesis 2 checks the uniqueness of the optimal inventory policy.
This hypothesis reduces for the basic Economic Lot Size model to requiring that the
demand rate for the item be log-concave.
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As a future research direction, it would be of interest to find new inventory
models with optimal policies which can be cast in the optimization form of Problem
P1. Also, we believe that checking Hypothesis 2 in certain models may be technical.
This could possibly be handicap for its applicability. May be a search for an
alternative simpler requirement is worth pursuing.
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Metrical Pareto Efficiency and Monotone EVP

Mihai Turinici

Abstract A uniform version is established for normed Pareto efficient point results
in Isac [Comb. Global Optim., pp. 133–144, World Sci. Publ., 2002]. Its basic tool
is the monotone variant of Ekeland’s variational principle obtained in Turinici [An.
Şt. UAIC Iaşi, 36 (1990), 329–352].

Keywords Inf-proper lsc function • Dependent Choice • Monotone variational
principle • Generalized metric/uniform space • Pareto efficiency • Super-additive
function

Introduction

Let .M; d/ be a metric space; and ' 2 F .M;R [ f1g/ be some function with

(a01) ' is inf-proper (Dom.'/ ¤ ; and infŒ'.M/� > �1)

(a02) ' is d-lsc: lim infn '.xn/ � '.x/, whenever xn
d�! x;

or, equivalently:
Œ' � t� WD fx 2 MI'.x/ � tg is closed (modulo d), for each t 2 R.

(Here, for each couple A;B of nonempty sets, F .A;B/ stands for the class of all
functions from A to B; in particular, if A D B, we write F .A/ in place of F .A;A/).

The following 1979 statement in Ekeland [16] (referred to as Ekeland’s
variational principle; in short: EVP) is our starting point.

Theorem 1 Let the precise conditions hold. In addition, suppose that .M; d/ is
complete. Then, for each u 2 Dom.'/ there exists v D v.u/ 2 Dom.'/ with

(11-a) d.u; v/ � '.u/� '.v/ (hence '.u/ � '.v/)
(11-b) x 2 M, d.v; x/ � '.v/ � '.x/ imply v D x.
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This principle found some basic applications to control and optimization,
generalized differential calculus, critical point theory, and global analysis; we refer
to the quoted (survey) paper for details. So, it cannot be surprising that, soon
after its formulation, many extensions of (EVP) were proposed. For example, the
dimensional way of extension refers to the ambient space (R) of '.M/ being
substituted by a (topological or not) vector space. An account of the results in
this area is to be found in the 2003 monograph by Goepfert et al. [21, Chap. 3].
Further, the (pseudo) metrical one consists in conditions imposed to the ambient
metric over M being relaxed. The basic result in this direction was obtained in 1992
by Tataru [42], via Ekeland type techniques; subsequent extensions of it may be
found in the 1996 paper by Kada et al. [30]. Finally, another way of extending
(EVP) is the quasi-order one, proposed in the 1990 paper by Turinici [45] (cf.
section “Monotone EVP”). As we shall see, it is a handy tool for the study of
Pareto efficiency over metric and uniform spaces. The metric/normed case will
be discussed in section “Metrical Efficiency”; note that, by our precise methods,
one gets a completion of the result in Isac [27] established for normed structures.
The uniform version of it is given in section “Uniform Pareto Efficiency” (after
some preliminaries in section “Fang Spaces”); precisely, we show that a related
statement in Isac [27] is reducible to such metrical methods. Finally (after some
preliminaries in section “Semigroup Anti-Measures”) the semigroup versions of
the metric/normed developments above are treated in section “Semigroup Pareto
Efficiency”; in particular, this yields the result in Goepfert and Tammer [19],
proved via different techniques. Finally, section “Preliminaries” has an introductory
character. Further aspects will be discussed elsewhere.

Preliminaries

Throughout this exposition, the working axiomatic system is Zermelo-Fraenkel’s
(abbreviated: ZF), as described in Cohen [11, Chap. 2, Sect. 3]. The notations and
basic facts about these are standard. Some important ones are given below.

(A) Let X be a nonempty set. By a relation over it, we mean any (nonempty) part
R of X � X; in this case, .X;R/ is called a relational structure. As usual, we may
regard R as a mapping from X to 2X (=the class of all subsets in X). Precisely, for
each x 2 X, denote

X.x;R/ D fy 2 XI xRyg (the section of R through x);

then, the mapping in question is

R.x/ D X.x;R/, x 2 X.

Call R, proper when

R.x/ is nonempty, for each x 2 X;
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note that, in such a case, R appears as a mapping between X and .2/X (=the class
of all nonempty parts in X). This will be also referred to as: .X;R/ is a proper
relational structure.

By a sequence in X, we mean any mapping x W N ! X; where N WD f0; 1; : : :g
is the set of natural numbers. For simplicity reasons, it will be useful to denote
it as .x.n/I n � 0/, or .xnI n � 0/; moreover, when no confusion can arise, we
further simplify this notation as .x.n// or .xn/, respectively. Also, any sequence
.yn WD xi.n/I n � 0/ with

.i.n/I n � 0/ is divergent: i.n/!1 as n!1,

will be referred to as a subsequence of .xnI n � 0/.
(B) Remember that, an outstanding part of (ZF) is the Axiom of Choice

(abbreviated: AC); which, in a convenient manner, may be written as

(AC) For each nonempty set X, there exists a (selective) function
f W .2/X ! X, with f .Y/ 2 Y, for all Y 2 .2/X .

Sometimes, when the ambient set X is endowed with countable type structures,
it will suffice using—in our choice procedures—a weaker form of (AC), called:
Dependent Choice Principle (in short: DC). Some preliminaries are needed. Let X
be a nonempty set. For each natural number k � 1, call the map F W N.k; >/ ! X,
a k-sequence; if k � 1 is generic, we talk about a finite sequence. The following
local result is available in the strongly reduced Zermelo-Fraenkel system (ZF-AC).
Given a 2 X, call the k-sequence F W N.k; >/ ! X (where k � 2), .a;R/-iterative
provided it fulfills

F.0/ D a and F.i/RF.iC 1/, for all i 2 N.k � 1;>/.
Proposition 1 Let the relational structure .X;R/ be proper. Then, for each k � 2,
the following property holds:

(�.k/) for each a 2 X, there exists an .a;R/-iterative k-sequence.

Proof Clearly, .�.2// is true; just take b 2 R.a/ and define F W N.2;>/ ! X
as: F.0/ D a, F.1/ D b. Assume that .�.k// is valid, for some k � 2; we claim
that .�.k C 1// is true as well. In fact, let F W N.k; >/ ! X be an .a;R/-iterative
k-sequence, assured by hypothesis. As R is proper, R.F.k � 1// is nonempty; let u
be some element of it. The map G W N.kC 1;>/! X introduced as

G.i/ D F.i/; i 2 N.k; >/; G.k/ D u

is an .a;R/-iterative .kC 1/-sequence; and then, we are done.

By definition, for each k � 2, the local property (�.k// we just described is
called the k-finite Dependent Choice property (in short: (DC-k)); and, if k � 2

is generic, the obtained global property .�.k/I k � 2/ will be referred to as the
Finite Dependent Choice property (in short: (DC-fin)). Now, it is natural to see what
happens when k “tends to infinity” in the property .�.k// of (DC-k). A formal result
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of this process is the so-called Dependent Choice Principle (in short: DC). Given
a 2 X, call the sequence .xnI n � 0/ in X, .aIR/-iterative provided

x0 D a; xnC1 2 R.xn/, 8n.

Proposition 2 Let the relational structure .X;R/ be proper. Then, for each a 2 X
there is an .a;R/-iterative sequence in X.

At a first glance, (DC) seems to be obtainable in (ZF-AC) from such a “limit”
process upon ..DC � k/I k � 2/. However, this is just an illusion; because—from
a technical perspective—the limit process in question does not work in (ZF-AC);
whence, (DC) is not obtainable from the axioms of our strongly reduced system. On
the other hand, this principle—proposed, independently, by Bernays [3] and Tarski
[41]—is deductible from (AC), but not conversely; cf. Wolk [50]. Moreover, by
the developments in Blair [4], Goldblatt [22], Moskhovakis [35, Chap. 8], and
Schechter [39, Chap. 6], the reduced system (ZF-AC+DC) is large enough so as to
cover the “usual” mathematics; see also Moore [34, Appendix 2, Table 4].

Let .RnI n � 0/ be a sequence of relations on X. Given a 2 X, let us say that the
sequence .xnI n � 0/ in X is .aI .RnI n � 0//-iterative, provided

x0 D a; xnC1 2 Rn.xn/, 8n.

The following Diagonal Dependent Choice Principle (in short: (DDC)) is also taken
into consideration for technical purposes.

Proposition 3 Let .RnI n � 0/ be a sequence of proper relations on X. Then, for
each a 2 X, there exists at least one .aI .RnI n � 0//-iterative sequence in X.

Clearly, (DDC) includes (DC); to which it reduces when .RnI n � 0/ is constant.
The reciprocal of this is also true. In fact, letting the premises of (DDC) hold, put
P D N � X; and let S be the relation over P introduced as

S .i; x/ D fiC 1g �Ri.x/, .i; x/ 2 P.

It will suffice applying (DC) to .P;S / and b WD .0; a/ 2 P to get the conclusion in
our statement; we do not give details.

(C) A basic maximal statement in (ZF-AC+DC) to be used further is an
asymptotic version of the 1976 Brezis-Browder ordering principle [6] (in short:
BB). Let M be a nonempty set. Take a quasi-order .�/ (i.e.: reflexive and transitive
relation) over it; and a function x 7! .x/ from M to RC [ f1g D Œ0;1�. Define
the .�; /-maximal property of some z 2 M as

z � w 2 M implies .z/ D .w/; i.e.: .M.z;�// D f.z/g.
The following “asymptotic functional” variant of (BB) (denoted as: (BB-af)) is our
starting point.

Theorem 2 Assume that the conditions below hold:

(b01) .M;�/ is sequentially inductive (modulo ): each ascending
sequence .xn/ with .xn/! 0 has an upper bound (modulo .�/)
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(b02) .M;�/ is almost regular (modulo ):
8x 2 M, 8" > 0, 9y D y.x; "/ � x, such that .y/ � "
(b03) .:/ is .�/-decreasing (x � y implies .x/ � .y/).

Then, for each u 2 M there exists v 2 M with

(21-a) u � v (or, equivalently: v 2 M.u;�/)
(21-b) .v/ D 0 (hence v is .�; /-maximal).

Proof For each " > 0, let R."/ denote the relation (over M):

xR."/y iff x � y and .y/ � ";
note that, from the almost regular property, we have

M.c;R."// ¤ ;; for all c 2 M and all " > 0:

Now, let ."n/ be a strictly descending sequence in �0;1Œ, with "n ! 0 as n ! 1.
From the above obtained fact, the sequence .Rn WD R."n/I n � 0/ consists of proper
relations. So, by (DDC), there must be a sequence .un/ in M with u0 D u and

un � unC1; .unC1/ � "n; for all n:

This sequence is therefore .�/-ascending and .un/ ! 0 as n ! 1; wherefrom,
by the sequentially inductive (modulo ) condition, .un/ has an upper bound
(modulo .�/):

un � v, for all n � 0 and some v 2 M.

Combining with (=decreasing) yields (.v/ � "n, 8n); so that, .v/ D 0.

A basic particular case of these facts corresponds to the construction below. By a
(generalized) pseudometric over M we shall mean any map d W M�M! RC[f1g,
with the property

d is reflexive: d.x; x/ D 0;8x 2 M.

Call z 2 M, .�; d/-maximal, if

u; v 2 M and z � u � v imply d.u; v/ D 0.

Note that, if in addition

d is sufficient: d.x; y/ D 0 H) x D y,

this maximal property becomes

z � w 2 M H) z D w (called: z is strongly .�/-maximal).

So, existence results involving such points are “metrical” versions of the Zorn-
Bourbaki maximal principle (cf. Moore [34, Chap. 4, Sect. 4]). Returning to the
general case, we stress that, in terms of the associated function (from M to
RC [ f1g)
d.x/ D supfd.u; v/I x � u � vg; x 2 M,
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this property may be characterized as: d.z/ D 0. So, a basic source for determining
such elements is the maximal principle (BB-af) above, applied to d. In this
direction, we note that d is .�/-decreasing. Concerning the remaining properties,
some conventions are needed. Given the (ascending) sequence .xn/, define the
property

.xn/ is strongly .�; d/-Cauchy: d.xn/! 0 as n!1;

and then, let us consider the associated condition

(si-d) .M;�I d/ is sequentially inductive (modulo d):
each ascending strongly .�; d/-Cauchy sequence has an upper bound;

it is nothing else than

.M;�/ is sequentially inductive (modulo d).

On the other hand, let us consider the condition

(reg-w) .M;�I d/ is weakly regular (modulo d):
8x 2 M;8" > 0, 9y D y.x; "/ � x: y � u � v H) d.u; v/ � ";

clearly, it is nothing else than (see above)

.M;�/ is almost regular (modulo d).

Putting these together, it results (via (BB-af)) the following maximality statement
(referred to as the “asymptotic pseudometric” variant of the Brezis-Browder
ordering principle; in short: (BB-ap)).

Theorem 3 Assume that .M;�I d/ is sequentially inductive (modulo d) and weakly
regular (modulo d). Then, for each u 2 M there exists a .�; d/-maximal v 2 M with
the property u � v.

To discuss the former of these conditions, define the d-Cauchy property of an
(ascending) sequence .xn/ in X as

for each " > 0, there exists n."/, such that
n."/ � p � q H) d.xp; xq/ � ".

Clearly, the following (generic) property holds

(for each (ascending) sequence in X):
strongly .�; d/-CauchyH) d-Cauchy.

Hence, the sequentially inductive (modulo d) condition we just imposed holds
under

(si-c) .M;�I d/ is d-Cauchy sequentially inductive:
each ascending d-Cauchy sequence has an upper bound.

To discuss concrete circumstances under which this condition is to be assured, two
main strategies may be followed.
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Strategy 1 The former of these directions is based on sequential convergence

methods. Precisely, let .
d�!/ stand for the property:

xn
d�! x iff d.xn; x/! 0 as n!1.

This will be also referred to as: x is the d-limit of .xn/; if such elements x exist, we
shall say that .xn/ is d-convergent. Concerning the basic properties of this object,
we have (by the reflexivity of d)

(conv-1) .
d�!/ is reflexive:

.xn D uI n � 0/ implies xn
d�! u;

as well as (by definition)

(conv-2) .
d�!/ is hereditary:

xn
d�! x implies yn

d�! x, for each subsequence .yn/ of .xn/.

In other words, .
d�!/ is a convergence structure on M, under Kasahara’s terminol-

ogy [32]. Note that, by the arbitrary character of d, no connection is to be deduced
between the convergence property of an (ascending) sequence and the d-Cauchy of
the same.

Having these precise, let us consider the couple of conditions

(o-com) d is .�/-complete:
each ascending d-Cauchy sequence is d-convergent
(self-c) .�/ is self-closed:
the d-limit of each ascending sequence is an upper bound of it.

It is now clear that

.o � com/C .self � c/ H) .si� c/ H) .si � d/:

From (BB-ap), we then have the following Granas-Horvath version of (BB) (in
short: (BB-GH)).

Theorem 4 Let .M;�I d/ be weakly regular (modulo d); and one of conditions
below be admitted;

(i) .M;�I d/ is d-Cauchy sequentially inductive
(ii) d is .�/-complete and .�/ is self-closed.

Then, for each u 2 M there exists a .�; d/-maximal element v 2 M with the property
u � v.

Now, evidently, (o-com) holds under

(com) d is complete (each d-Cauchy sequence is convergent);
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and (self-c) is valid under the restrictive condition (due to Nachbin [36,
Appendix])

(semi-c) .�/ is semi-closed (M.x;�/ is closed, 8x 2 M).

Note that, the corresponding variants of (BB-GH) include a lot of results in Granas
and Horvath [23]; this, in particular, motivates the notational convention for our
principle. Further aspects may be found in Altman [1]; see also Kang and Park
[31].

Strategy 2 The second of these directions is being founded on (metric) regularity
methods.

Let .xn/ be an ascending sequence in M. Remember that the d-Cauchy property
for it is introduced as:

8" > 0; 9n."/, such that n."/ � p � q H) d.xp; xq/ � ".
Also, call this sequence d-asymptotic, when

d.xn; xnC1/! 0, as n!1.

Let us now attach them the global conditions

(reg-C) each ascending sequence is d-Cauchy
(reg-A) each ascending sequence is d-asymptotic.

Proposition 4 Under these conventions, we have

(reg-A)H) (reg-C); hence, (reg-A)() (reg-C).

Proof Suppose by absurd that (reg-A) holds; but .xn/ is not entitled with the d-
Cauchy property:

9" > 0, such that: 8n, 9.p; q/, with n � p � q; d.xp; xq/ > ".

As a consequence, we have that, for each n, the subset Rn 	 N�N introduced as

Rn D f.p; q/ 2 N � NI n � p � q; d.xp; xq/ > "g
is a nonempty relation over N. Denote, for each n

p.n/ D min.Dom.Rn//, q.n/ D min.Rn.p.n///;

clearly, by the reflexivity of d, we must have

n � p.n/ < q.n/; for all n:

Now, fix some rank i.0/. By the above working assumption, there may be deter-
mined [in a precise way—not related to choice procedures] a couple .i.1/; i.2// D
.p.i.0//; q.i.0///, with

i.0/ � i.1/ < i.2/, d.xi.1/; xi.2// > ".
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Further, given the rank i.2/, there may be determined [again in a precise way—not
related to choice procedures] a couple .i.3/; i.4// D .p.i.2//; q.i.2///, with

i.2/ � i.3/ < i.4/, d.xi.3/; xi.4// > ".

By induction, we therefore get a subsequence .yn D xi.n// of .xn/, with

d.y2nC1; y2nC2/ > ", for all n.

This, however, contradicts (reg-A); hence, the underlying working assumption
cannot be true; and the claim follows.

By definition, either of these conditions (reg-C) and (reg-A) will be referred to
as .M;�I d/ is regular (modulo d).

Concerning the relationship with our weakly regular concept, one has

Proposition 5 The generic inclusion is valid, over the class of pseudometric quasi-
ordered structures .M;�I d/:

(DC) and regular (modulo d) H) weakly regular (modulo d), in (ZF-AC);
or, equivalently,
regular (modulo d) H) weakly regular (modulo d), in (ZF-AC+DC).

Proof Suppose—under (DC)—that .M;�I d/ is regular (modulo d); i.e. (see above)
one of the (equivalent) global conditions (reg-C) and (reg-A) is holding. We have to
establish that .M;�I d/ is weakly regular (modulo d); i.e.,

(reg-w) 8x 2 M, 8" > 0, 9y D y.x; "/ � x, such that
y � u � v H) d.u; v/ � ".

Suppose that this property fails; i.e., for some c 2 M, " > 0,

for each y � c, there exist u; v 2 X such that y � u � v, d.u; v/ > ".

Let gr.�I c/ WD f.a; b/ 2 X � XI c � a � bg stand for the c-section of the graph
attached to .�/. We introduce a relation R over gr.�I c/, according to

.x; y/R.u; v/ iff y � u, d.u; v/ > ".

Clearly, .gr.�I c/;R/ is a proper relational structure. Hence, from the Dependent
Choice Principle (DC), it follows that, given .x0; y0/ 2 gr.�I c/, there must be a
sequence ..xn; yn/I n � 0/ in gr.�I c/, with

.xn; yn/R.xnC1; ynC1/; 8nI

or, equivalently (by definition)

yn � xnC1; d.xnC1; ynC1/ > "; 8n:
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The sequence .znI n � 0/ in M introduced as .z2n D xn; z2nC1 D ynI n � 0/ is
ascending and

d.z2nC2; z2nC3/ > "; 8nI

hence, .zn/ is not d-asymptotic. This contradicts the regularity (modulo d) of so that,
the working hypothesis above cannot hold. The proof is complete.

Further, note that the condition

(si) .M;�/ is sequentially inductive:
each ascending sequence has an upper bound (modulo .�/)

is a sufficient one for

(si-c) .M;�I d/ is d-Cauchy sequentially inductive:
each ascending d-Cauchy sequence has an upper bound.

The reciprocal holds as well, in a regular setting; i.e.,

.M;�I d/ is regular (modulo d) and .M;�I d/ is d-Cauchy sequentially inductive
imply .M;�/ is sequentially inductive.

Combining with our preceding developments, the following Conserva-Rizzo version
of (BB) (denoted as: (BB-CR)) is available over (ZF-AC+DC):

Theorem 5 Let the pseudometric quasi-ordered structure .M;�I d/ be such that
.M;�I d/ is regular (modulo d), and one of the conditions below is holding

(j) .M;�I d/ is d-Cauchy sequentially inductive
(jj) .M;�/ is sequentially inductive

(jjj) d is .�/-complete and .�/ is self-closed.

Then, for each u 2 M there exists a .�; d/-maximal v 2 M with u � v.

Proof (Sketch) By the former condition, .M;�I d/ is weakly regular (modulo d).
Hence, (BB-GH) applies to these data; wherefrom, all is clear.

Finally, note that the sequential inductive part of our maximal principle above
is nothing else than the related statement in Conserva and Rizzo [12]; this, among
others, motivates our convention. Further aspects of the problem were discussed in
the paper by Turinici [44].

(C) A basic maximal statement in (ZF-AC+DC) deductible via these develop-
ments is the 1976 Brezis-Browder ordering principle [6] (in short: BB). Let M be
a nonempty set. Take a quasi-order .�/ (i.e.: reflexive and transitive relation) over
it; and a function x 7!  .x/ from M to RC WD Œ0;1Œ. Call z 2 M, .�;  /-maximal
when:

z � w 2 M implies  .z/ D  .w/.
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Theorem 6 Suppose that

(b04) .M;�/ is sequentially inductive:
each ascending sequence has an upper bound (modulo .�/)
(b05)  is .�/-decreasing (x � y H)  .x/ �  .y/).

Then, for each u 2 M there exists a .�;  /-maximal v 2 M with u � v.

This statement includes (as we shall see) Ekeland’s Variational Principle [16]
(in short: EVP); and found some useful applications to convex and non-convex
analysis. So, it was the subject of many extensions; see, for instance, Hyers et al.
[26, Chap. 5]. These are interesting from a technical perspective; but, in all concrete
situations when a variational principle of this type [(VP), say] is to be applied, a
substitution by the Brezis-Browder’s is always possible. This raises the question as
to what extent are the logical inclusions (VP) H) (BB) H) (EVP) effective. As
a result of the developments below, the former inclusion is sometimes reversible;
i.e., many statements (VP) including (BB) are but logical equivalents of (BB).
Concerning the latter inclusion, we show that (BB) is deductible from (DC). So,
to close the circle between these, it will suffice proving that (EVP) includes (DC).
An early result of this type was provided in 1987 by Brunner [9]; a refinement of it
was provided in the 2011 paper in Turinici [48]. Summing up, (BB) and (EVP) are
both equivalent with (DC); and, as such, mutually equivalent. This tells us that all
variational statements (VP) with

(DC) H) (VP) H) (BB) and/or (DC) H) (VP) H) (EVP)

are equivalent to each other.

Proof (BB) For technical reasons, we shall provide an argument for (BB) above
being reducible to either (BB-GH) or (BB-CR).

Define the function ˇ W M ! RC as:

ˇ.v/ WD infŒ .M.v;�//�, v 2 M;

clearly, ˇ is increasing and

 .v/ � ˇ.v/; for all v 2 M:

Further, the decreasing property of  gives a characterization like

v is .�;  /�maximal iff  .v/ D ˇ.v/:

Now, assume by contradiction that the conclusion in this statement is false; i.e. [in
combination with the above], there must be some u 2 M such that:

for each v 2 Mu WD M.u;�/, one has  .v/ > ˇ.v/.
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We intend to show that a contradiction is to be reached with respect to either (BB-
GH) or (BB-CR). To this end, let us introduce the mapping (on M)

d.x; y/ D j .x/ �  .y/j, x; y 2 M.

Clearly, d is reflexive; hence, it is a pseudometric on M. In addition,

d is triangular: d.x; z/ � d.x; y/C d.y; z/, 8x; y; z 2 M
d is symmetric: d.x; y/ D d.y; x/, 8x; y 2 M;

hence, d is a semimetric on M.
I) Let .xn/ be an ascending sequence in Mu. By the decreasing property, . .un//

is descending in RC; hence, a Cauchy sequence. This tells us that .xn/ is d-Cauchy;
wherefrom (by the arbitrariness of this object) .Mu;�I d/ is regular (modulo d). On
the other hand, by the sequential inductivity, .xn/ is bounded from above in M:

there exists v 2 M such that xn � v, 8n (hence, v 2 Mu);

and this (along with the arbitrariness of our sequence) tells us that .Mu;�/ is
sequentially inductive. Taking (BB-CR) into account, we get a .�;  /-maximal
element v 2 Mu; in contradiction with our working hypothesis.

II) Let x 2 Mu be arbitrary fixed; hence,  .x/ > ˇ.x/. Further, let " > 0 be
arbitrary fixed. By definition, there exists some point y 2 M.x;�/ with

ˇ.x/ �  .y/ < ˇ.x/C " (hence, 0 �  .y/ � ˇ.x/ < ").
This means that y 2 Mu; and, moreover (as  =decreasing)

x � y � u � v H)  .y/ �  .u/ �  .v/ � ˇ.v/ � ˇ.u/ � ˇ.y/ � ˇ.x/I

wherefrom (by our conventions)

y � u � v H) d.u; v/ < "I

which tells us that .Mu;�/ is weakly regular (modulo d). Combining with the
sequential inductivity of .Mu;�/ we just established, it results that (BB-GH) applies
to our data; wherefrom it must be at least one .�;  /-maximal element v 2 Mu; in
contradiction with the same working hypothesis.

Note that, by the same procedure, one gets a slight extension of this result, due to
Cârjă et al. [10, Chap. 2, Sect. 2.1]. Further metrical versions of (BB) may be found
in Turinici [46].
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Monotone EVP

A basic application of these facts is to “monotone” variational principles.
(A) Let X be a nonempty set; and .�/ be some quasi-order on it. By a generalized

metric over X we mean, as in Luxemburg [33] and Jung [29], any map .x; y/ 7!
d.x; y/ from X�X to RC[f1g D Œ0;1�, endowed with all properties of a standard
metric (over this extended half-axis):

d is triangular: d.x; z/ � d.x; y/C d.y; z/, 8x; y; z 2 X
d is reflexive-sufficient: d.x; y/ D 0 iff x D y
d is symmetric: d.x; y/ D d.y; x/, 8x; y 2 X.

Suppose that we fixed such an object in the sequel. Call the subset Z of X, .�/-closed
(modulo d) when

the limit of each ascending (modulo .�/) sequence in Z belongs to Z.

Clearly, any closed (modulo d) part of X is .�/-closed (modulo d) too. The converse
is not in general true: just take X D R (endowed with the usual order/metric) and
Z D�0; 1�. Further, call the quasi-order .�/, self-closed (modulo d) provided

X.x;�/ is .�/-closed (modulo d), for each x 2 X;
or, equivalently:
the limit of each ascending sequence is an upper bound of it (modulo .�/).

For example, this is the case when (cf. Nachbin [36, Appendix])

.�/ is semi-closed (modulo d):
X.x;�/ is closed (modulo d), for each x 2 X.

Finally, call the ambient metric d, .�/-complete provided

each ascending (modulo .�/) d-Cauchy sequence (in X) is d-convergent.

As before, if d is complete, then it is .�/-complete too. The reciprocal is not in
general true; take X D�0; 1� endowed with the standard order and metric.

We are now in position to state the announced result. Let the quasi-order .�/ and
the generalized metric d W X � X ! RC [ f1g over X be such that

(c01) .�/ is self-closed (modulo d)
(c02) d is .�/-complete (over X).

Further, take a function ' W X ! R [ f1g, fulfilling

(c03) ' is inf-proper (Dom.'/ ¤ ; and infŒ'.X/� > �1)
(c04) ' is .�; d/-lsc: lim infn '.xn/ � '.x/,
whenever .xn/ is ascending (modulo .�/) and xn

d�! x;
or, equivalently:
Œ' � t� WD fx 2 XI'.x/ � tg is .�/-closed (modulo d), for each t 2 R.
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Theorem 7 Let the prescribed conditions be admitted. Then, for each u 2 Dom.'/
there exists v 2 Dom.'/, with

(31-a) u � v; d.u; v/ � '.u/� '.v/ (hence '.u/ � '.v/)
(31-b) x 2 X, v � x and d.v; x/ � '.v/� '.x/ imply v D x.

Proof Let .�/ stand for the relation (over X)

.x; y 2 X/ W x � y iff x � y; d.x; y/C '.y/ � '.x/:

It is not hard to see that .�/ acts as an order (antisymmetric quasi-order) on
Dom.'/. Further, denote

Xu WD X.u;�/ (i.e.: Xu D fx 2 XI u � xg).
Clearly, ; ¤ Xu 	 Dom.'/; moreover (by the admitted conditions)

Xu is.�/�closed .modulo d/I hence d is .�/�complete on Xu:

We claim that conditions of Brezis-Browder ordering principle (BB) are fulfilled
on the ordered structure .Xu;�/. In fact, let .xn/ be an ascending (modulo .�/)
sequence in Xu:

xn � xm and d.xn; xm/ � '.xn/ � '.xm/, if n � m.

The sequence .'.xn// is descending and bounded from below; hence a Cauchy one.
This, along with the working relation, shows that .xn/ is an ascending (modulo
.�/) d-Cauchy sequence; wherefrom .Xu;�/ is regular (modulo d). Moreover, the

obtained properties give us (by the properties of Xu) some y 2 Xu with xn
d�! y.

Combining with our working hypothesis, one derives

xn � y; d.xn; y/ � '.xn/ � '.y/; .i:e: W xn � y/; for all n:

In other words, y 2 Xu is an upper bound (modulo .�/) of .xn/; and this shows that
.Xu;�/ is sequentially inductive. On the other hand, ' (restricted to Xu) is strictly
decreasing:

x; y 2 Xu, x � y, x ¤ y implies '.x/ > '.y/;

or, equivalently,

x; y 2 Xu, x � y, and '.x/ D '.y/ imply x D y.

Hence, (BB) is indeed applicable to our data. As a consequence of this, it then
follows that, for the starting u 2 Xu, there exists some v 2 Xu with

(31-c) u � v (whence: u � v, d.u; v/ � '.u/� '.v/)
(31-d) v is .�; '/-maximal in Xu

(i.e.: x 2 Xu, v � x, d.v; x/ � '.v/ � '.x/ H) '.v/ D '.x/).



Metrical Pareto Efficiency 373

The former of these is just the first conclusion of the statement. And the latter one
gives at once the second conclusion of the same. In fact, assume by contradiction
that there would be some x 2 X n fvg, with

v � x and d.v; x/ � '.v/ � '.x/; hence, v � x.

As u � v, we must have u � x; i.e.: x 2 Xu; so, combining with the above

x 2 Xu n fvg, v � x and d.v; x/ � '.v/� '.x/.
Note that, a direct consequence of this relation is

'.v/ > '.x/ (since d.v; x/ > 0).

On the other hand, the same premises give

'.v/ D '.x/ (as v is .�; d-maximal in Xu).

The contradiction at which we arrived shows that our working assumption cannot
be accepted; and this establishes our claim. The proof is thereby complete.

A basic particular case of this variational result (established—with a different
proof—in Turinici [45]) corresponds to the choice

.�/ D X � X (=the trivial quasi-order on X).

The regularity condition (c04) may then be written as

' is d-lsc: lim infn '.xn/ � '.x/, whenever xn
d�! x;

or, equivalently:
Œ' � t� is closed (modulo d), for each t 2 R;

and Theorem 7 is nothing but Ekeland’s variational principle (EVP). On the other
hand, the same requirement holds under

.�/ is self-closed (modulo d) and ' is decreasing (modulo .�/);
[The proof is immediate; so, we do not give details]. For this reason, Theorem 7
will be called the monotone version of (EVP) (in short: (EVPm)). Note that, by the
remarks above, it may be also derived from either of the maximal principles (BB-
GH) and (BB-CR); we do not give further details.

(B) From the developments above, we have the implications:

(DC) H) (BB-af) H) (BB-ap)H) (BB-GH) H) (BB)
(DC) H) (BB-CR) H) (BB) H) (EVPm).

So, it is natural asking whether these may be reversed. Clearly, the natural setting
for solving this problem is the strongly reduced Zermelo-Fraenkel system (ZF-AC).
To state a basic result in this direction, some preliminaries are needed.

Let .X;�/ be a partially ordered structure. We say that .�/ has the inf-lattice
property, provided:

x ^ y WD inf.x; y/ exists, for all x; y 2 X.
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Further, call z 2 X, .�/-maximal if X.z;�/ D fzg; the class of all these points will
be denoted as max.X;�/. In this case, .�/ is termed a Zorn order when

max.X;�/ is nonempty and cofinal in X:
for each u 2 X there exists a .�/-maximal v 2 X with u � v.

Further aspects are to be described in a metrical setting. Let d W X � X ! RC be a
metric over X; and ' W X ! RC be some function. Then, the natural choice for .�/
above is

x �.d;'/ y iff d.x; y/ � '.x/� '.y/;
referred to as the Brøndsted order [8] attached to .d; '/. Denote

X.x; / D fu 2 XI d.x; u/ < g, x 2 X,  > 0
(the open sphere with center x and radius ).

Call the ambient metric space .X; d/, discrete when

for each x 2 X there exists  D .x/ > 0 such that X.x; / D fxg.
Note that, under such a hypothesis, any function  W X ! R is continuous over X.
However, the stronger property of this object

j .x/ �  .y/j � Ld.x; y/, x; y 2 X (for some L > 0)

cannot be assured, in general. This will be referred to as:  is .L; d/-Lipschitz; when
L D 1 we then say that  is d-nonexpansive.

Now, let X be a nonempty set, d W X � X ! RC be a metric over X and ' W X !
RC be a function. Remember that d is called .�.d;'//-complete, provided

each ascending (modulo .�.d;'//) d-Cauchy sequence is d-convergent.

An apparently stronger version of this is the following: call the ambient metric d,
.�.d;'//-strongly-complete provided

each ascending (modulo .�.d;'//) sequence is d-convergent.

In fact, these conventions are equivalent to each other, as results from

Proposition 6 Suppose (under these conventions) that d is .�.d;'//-complete. Then,
d is .�.d;'//-strongly-complete.

Proof Let .xn/ be an ascending (modulo .�.d;'//) sequence in X:

d.xn; xm/ � '.xn/� '.xm/, if n � m.

The sequence .'.xn// is descending and bounded from below; hence a Cauchy one.
This, along with the working relation, shows that .xn/ is an ascending (modulo
.�.d;'//) d-Cauchy sequence; and then, by completeness, all is clear.

We may now pass to the basic part of our developments. The statement below is
a particular case of our monotone variational principle (EVPm).
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Theorem 8 Let the nonempty set X, the metric d over X and the function ' W X !
RC be such that

(c05) .X; d/ is discrete and bounded
(c06) .�.d;'// has the inf-lattice property
(c07) d is .�.d;'//-complete
(or, equivalently: d is .�.d;'//-strongly-complete)
(c08) ' is d-nonexpansive and '.X/ is countable.

Then, .�.d;'// is a Zorn order.

Proof (Sketch) As ' is in particular d-continuous, the (partial) order .�.d;'// is
semi-closed; hence, all the more, self-closed. Moreover, again by the continuous
property, ' is necessarily d-lsc; hence, .�.d;'/; d/-lsc. Summing up, (EVPm) is
indeed applicable to our context; and from this, the conclusion follows.

We shall refer to this statement as: the discrete Lipschitz countable version
of (EVPm) (in short: (EVPm-dLc)). By the above developments, (EVPm) H)
(EVPm-dLc). The remarkable fact to be added is that this last principle yields (DC);
so, it completes the circle between all these.

Proposition 7 We have

(EVPm-dLc)H) (DC), in (ZF-AC).

So, the maximal/variational principles (BB-af), (BB-ap), (BB-GH), (BB-CR), (BB)
and (EVPm) are all equivalent with (DC); hence, mutually equivalent.

Proof Let M be a nonempty set; and R stand for some proper relation over it. Fix
in the following a 2 M, b 2 M.a;R/. For each p � 2 in N (= the set of natural
numbers), let N.p; >/ WD f0; : : : ; p� 1g stand for the initial segment determined by
p. Denote, for simplicity

Xp = the class of all finite sequences x W N.p; >/! M with:
x.0/ D a, x.1/ D b, and x.n/Rx.nC 1/ for 0 � n � p � 2.

In this case, N.p; >/ is just Dom.x/ (the domain of x); and p D card.N.p; >// will
be referred to as the order of x [denoted as !.x/]. Concerning the effectiveness of
this construction, we have (by the Finite Dependent Choice property)

Xp is nonempty; for each p � 2:

As a consequence of this, X D [fXnI n � 2g (is well defined and) nonempty. Let
.�/ stand for the partial order (on X)

x � y iff Dom.x/ 	 Dom.y/ and x D yjDom.x/;

and .�/ denote its associated strict order:

x � y iff x � y and x ¤ y.

The following auxiliary fact is to be noted.
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Lemma 1 Under these conventions,

i) The mapping x 7! !.x/ is increasing:

x � y implies !.x/ � !.y/.
ii) The mapping x 7! !.x/ is strictly increasing:

x � y implies !.x/ < !.y/.

Proof i): By definition, x � y implies Dom.x/ 	 Dom.y/; which means !.x/ �
!.y/.

ii): Suppose that x � y but !.x/ D !.y/; i.e.: Dom.x/ D Dom.y/. As x � y, we
must have

x D yjDom.x/ D yjDom.y/ D yI

in contradiction with x ¤ y. Hence, !.x/ < !.y/; and conclusion follows.

The following auxiliary fact gives a natural way of obtaining the .a;R/-iterative
sequences in M we are looking for.

Lemma 2 Suppose that .X;�/ admits strictly ascending sequences. Then, neces-
sarily, M admits .a;R/-iterative sequences.

Proof Suppose that there exists a sequence .znI n � 0/ in X, endowed with the strict
ascending property:

i < j implies zi � zj; hence, !.zi/ < !.zj/.

The natural sequence .pn WD !.zn/I n � 0/ is therefore strictly ascending, with

p0 � 2I hence; pn � 2C n; n � 0:

This tells us that the sequence .cn D zn.n/I n � 0/ is well defined in M; and, by the
choice of .znI n � 0/,

c0 D a; cnRcnC1; for all nI

whence, .cnI n � 0/ is .a;R/-iterative.

(C) As a consequence of this, it will suffice proving that .X;�/ has strictly
ascending sequences, to end our argument. To get such a conclusion, we need some
conventions and auxiliary facts taken from Turinici [48].

(C1) Let x; y 2 X be arbitrary fixed. Denote

K.x; y/ WD fn 2 Dom.x/\ Dom.y/I x.n/ ¤ y.n/g.
If x and y are comparable (i.e.: either x � y or y � x; written as: x <> y), then
K.x; y/ D ;. Conversely, if K.x; y/ D ;, then x � y if Dom.x/ 	 Dom.y/ and y � x
if Dom.y/ 	 Dom.x/; hence x <> y. Summing up,
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.x; y 2 X/ W x <> y if and only if K.x; y/ D ;:

The negation of this property means: x and y are not comparable (denoted as:
xjjy). By the characterization above, it is equivalent with K.x; y/ ¤ ;. Note that,
in such a case, k.x; y/ WD min.K.x; y// is well defined as an element of N.2;�/; and
N.k.x; y/; >/ is the largest initial interval of Dom.x/ \ Dom.y/ where x and y are
identical.

Lemma 3 The partial order .�/ has the inf-lattice property. Moreover,

2 � !.x ^ y/ � minf!.x/ � 1; !.y/ � 1g; whenever xjjy:

Proof i) Let x; y 2 X be arbitrary fixed. The case x <> y is clear; so, without
loss, one may assume that xjjy. Note that, by the remark above, K.x; y/ ¤ ; and
k WD k.x; y/ exists as an element of N.2;�/. Let the finite sequence z 2 Xk be
introduced as z D xjN.k;>/ D yjN.k;>/. For the moment z � x and z � y. Suppose that
w 2 Xh (where h � 2) fulfills the same properties. Then, the restrictions of x and y
to N.h; >/ are identical; wherefrom (see above) h � k and w � z.

ii) As xjjy, we must have !.x/; !.y/ � 3 and !.x ^ y/ D k.x; y/ � 2. This and
k.x; y/ 2 Dom.x/ \ Dom.y/ give the desired relation.

(C2) Our next objective is to introduce a metrical structure as well as an
associated objective function over X, which should have “many” properties required
by (EVPm-dLc). Put

'.x/ D 3�!.x/, x 2 X;

and note that '.X/ D f3�nI n � 2g (hence, ' has countable many strictly positive
values). Then, define

d.x; y/ D j'.x/� '.y/j, if x <> y; d.x; y/ D '.x ^ y/, when xjjy.

Lemma 4 The mapping .x; y/ 7! d.x; y/ is a metric on X.

Proof Clearly, d is reflexive and symmetric [d.x; y/ D d.y; x/; x; y 2 X]. On the
other hand, d is sufficient. In fact, assume d.x; y/ D 0. By a previous evaluation of
'.X/, it results that x and y are comparable and !.x/ D !.y/; wherefrom, x D y.
Finally, let us verify the triangular property:

d.x; z/ � d.x; y/C d.y; z/, for all x; y; z 2 X.

Two alternatives are open before us.
a) The points x and z are comparable (x <> z). We start from the obvious relation

j'.s/� '.t/j � maxf'.s/; '.t/g � '.s ^ t/; s; t 2 X:

Combining with

d.x; z/ D j'.x/ � '.z/j � j'.x/� '.y/j C j'.y/� '.z/j
yields the desired fact, for all possible cases concerning .x; y/ and .y; z/.
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b) The points x and z are not comparable (xjjz). Four sub-cases appear:
Sub-case b1): Suppose that x <> y, y <> z. The alternatives [x � y, y � z] and

[y � x, z � y] give x <> z; contradiction. So, it remains to discuss the alternatives:
b11) x � y, z � y. Then, x and z are the restrictions of y to Dom.x/ and Dom.z/,

respectively; wherefrom x <> z, contradiction.
b12) y � x, y � z. We start from a direct consequence of our previous evaluation

3maxf'.s/; '.t/g � '.s ^ t/ � 3�2; s; t 2 X; sjjt:

The relation to be checked becomes

'.x ^ z/ � 2'.y/� '.x/ � '.z/:

By the imposed conditions, y � x ^ z; wherefrom '.y/ � '.x ^ z/. A sufficient
condition for the desired relation to be true is

'.x ^ z/ � 2'.x ^ z/� '.x/� '.z/I i:e: W '.x/C '.z/ � '.x ^ z/I

evident, by the precise consequence.
Sub-case b2): Suppose that xjjy, y <> z. Two logical possibilities occur:
b21) xjjy, y � z. We have to establish that: '.x ^ z/ � '.x ^ y/ C '.y/ � '.z/.

But, evidently, x ^ z � x ^ y; wherefrom '.x ^ z/ � '.x ^ y/; and then, all is clear.
b22) xjjy, z � y (or, equivalently: z � y, yjjx). The desired relation becomes:

'.x ^ z/ � '.x ^ y/C '.z/� '.y/:

For the moment, x ^ z � x ^ y. If x ^ z � x ^ y, we must get

q WD !.x ^ z/ < !.x ^ y/I

so (by definition) x.q/ D y.q/. As z D yjDom.z/ and q 2 Dom.x/ \ Dom.z/, this
yields y.q/ D z.q/; hence x.q/ D z.q/, contradiction. Consequently, x ^ z D x ^ y;
and conclusion follows.

Sub-case b3): x <> y, yjjz. As before, two logical possibilities occur:
b31) y � x, yjjz (or, equivalently: zjjy, y � x). This is just alternative b21), with

.z; y; x/ in place of .x; y; z/.
b32) x � y, yjjz. This is just alternative b22), with .x; y; z/ in place of .z; y; x/.
Sub-case b4): xjjy, yjjz. We have to establish that: '.x^ z/ � '.x^y/C'.y^ z/.

As before, the alternative

!.x ^ z/ � !.x ^ y/ or !.x ^ z/ � !.y ^ z/

gives the desired fact. On the other hand, the alternative

q WD !.x ^ z/ < minf!.x ^ y/; !.y ^ z/g
yields x.q/ D y.q/, y.q/ D z.q/; hence x.q/ D z.q/, contradiction.
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Having discussed all possible cases, the conclusion follows.

(C3) Note that, by a previous remark involving '.X/, one has diam.X/ � 3�2.
Further properties of the triplet .X; dI'/ are contained in

Lemma 5 Under the notations above, one has (for each m � 2)

x; y 2 X; !.x/ � m; d.x; y/ < 2 � 3�m�1 H) x D yI

so that, the metric space .X; d/ is discrete.

Proof Assume that x ¤ y. We show that this cannot be in agreement with our
hypothesis. Two cases are open before us:

i) Let x and y be comparable: either x � y or y � x. If x � y, we have !.x/C 1 �
!.y/; and then .1=3/'.x/ � '.y/; hence (by definition)

d.x; y/ D '.x/ � '.y/ � .2=3/'.x/ � 2 � 3�m�1;

contradiction. If y � x, then (by the same way as before)

d.x; y/ � .2=3/'.y/ � .2=3/'.x/ � 2 � 3�m�1;

again a contradiction.
ii) Suppose that x and y are not comparable. Then (by definition)

d.x; y/ D '.x ^ y/ � '.x/ � 3 � 3�m�1;

contrary to the hypothesis.

Lemma 6 Under the same notations above,

j'.x/� '.y/j � d.x; y/; 8x; y 2 XI

so, the objective function ' is d-nonexpansive.

Proof If x and y are comparable, then d.x; y/ D j'.x/ � '.y/j; and we are done. If
x and y are not comparable then, without loss, one may assume !.x/ � !.y/; hence
'.x/ � '.y/. As x ^ y � x, we have

d.x; y/ D '.x ^ y/ � '.x/ � '.x/� '.y/ D j'.x/� '.y/jI

and conclusion follows.

(C4) Given the couple .d; '/ as before, let .�.d;'// stand for the Brøndsted order
on X; also denoted as .�/, for simplicity. It is natural to ask which is the relationship
between it and the initial order .�/ on X.
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Lemma 7 We necessarily have (under these conventions)

x � y if and only if x � y:

That is: these partial orders coincide over X.

Proof Clearly, x � y gives !.x/ � !.y/; wherefrom d.x; y/ D '.x/ � '.y/; i.e.,
x � y. Conversely, assume that x � y. For the moment, x and y are comparable;
since, otherwise, the imposed condition gives

'.x ^ y/ � '.x/� '.y/ � '.x/ Œhence !.x ^ y/ � !.x/�I

in contradiction with a previous relation involving these data. The alternative y � x
yields (by the first part) y � x; wherefrom (as .�/ is order) x D y. Hence, anyway
x � y; and conclusion follows.

(D) We are now in position to complete the argument. As .M;R/ is a proper
structure, we necessarily have

max.X;�/ D ;I i:e: W for each x 2 X there exists y 2 X with x � y:

This, along with (EVPm-dLc), tells us that (cf. a previous characterization)

d is not .�/-strongly-complete: there is an ascending (modulo .�/)
sequence .xn/ in X, that is not d-convergent.

By the above equivalence property, .xn/ is ascending (modulo .�/); hence,

.!.xn/I n � 0/ is ascending: i � j implies !.xi/ � !.xj/.

Two alternatives are under discussion.
Case 1. Suppose that there exists some index k � 0 such that

xk D xn, (hence, !.xk/ D !.xn/), for all n � k.

In this case, by definition, xn
d�! xk; in contradiction with the initial choice of our

sequence.
Case 2. Suppose that

for each rank p, there exists a rank q > p, such that xp � xq.

This tells us that

B.h/ WD fn 2 N.h; </I xn 
 xhg ¤ ;, for all h 2 N.

As a consequence of this, the self-map (of N) .F.n/ D min B.n/I n � 0/ is well
defined (without any use of DC); in addition, by the very definition above,

F.h/ > h; xF.h/ 
 xh; for all h 2 N:
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By the first half of this relation, .p.n/ WD Fn.0/I n � 0/ is strictly ascending, with
p.0/ D 0; hence, p.n/ � n, for all n. It therefore generates a subsequence .yn WD
xp.n/I n � 0/ of .xn/ with the supplementary property

i < j implies yi � yj .hence; !.yi/ < !.yj//:

Note that, as a consequence of this,

!.y0/ � 2I hence; !.yn/ � nC 2; n 2 N:

The sequence .cn WD yn.n/I n � 0/ is therefore well defined in M; moreover, by
this ascending property, c0 D a and cnRcnC1, for all n. This gives us the desired
conclusion; and completes the argument.

In particular, when the specific assumptions (c06) and (c07) are ignored in
Theorem 8, Proposition 7 is comparable with the one in Brunner [9]. For a different
perspective about this problem, we refer to Dodu and Morillon [15].

Note finally that—by the developments in Turinici [48] we already quoted—the
obtained equivalencies comprise the maximal principles in Bae et al. [2], Brøndsted
[7], Dancs et al. [14], Ekeland [16], Szaz [40], and Turinici [43]. Moreover, these
include as well some basic statements in Zhu and Li [51], obtainable via separable
techniques; we do not give details.

Metrical Efficiency

Let X be a nonempty set. Remember that, by a generalized metric over X we mean,
as in Luxemburg [33] and Jung [29], any map .x; y/ 7! d.x; y/ from X � X to
RC [ f1g D Œ0;1�, endowed with the properties

d is triangular: d.x; z/ � d.x; y/C d.y; z/, 8x; y; z 2 X
d is reflexive-sufficient: d.x; y/ D 0 iff x D y
d is symmetric: d.x; y/ D d.y; x/, 8x; y 2 X;

in this case, .X; d/ will be referred to as a generalized metric space. Assume that we

fixed such a structure in the sequel. The sequential convergence .
d�!/ attached to d

is defined as in the standard metrical case:

xn
d�! x iff d.xn; x/! 0 as n!1;

and reads: x is a d-limit of .xn/; when such elements x exist, we say that .xn/ is
d-convergent. Further, the d-Cauchy property of a sequence is also introduced as in
the standard metrical case:

d.xn; xm/! 0, as n;m!1.
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Finally, let .�/ be some quasi-order on X. Each ascending (modulo .�/) d-
convergent sequence is d-Cauchy too; when the reciprocal is also true, we say that
d is .�/-complete. Remember that the part M of X is called .�/-closed (modulo d),
provided

the limit of each ascending (modulo .�/) sequence in M belongs to M.

In the same context, we say that .�/ is self-closed (modulo d), provided

X.u;�/ is .�/-closed (modulo d), for each u 2 X.

(A) Having these precise, we may now pass to the effective part of our
developments. Let .X; d/ be a generalized metric space; and .�/ some quasi-order
on it. Further, let A be some nonempty part of X. We say that z 2 A is Pareto .�/-
efficient when

A.z;�/ D fzg [i.e.: x 2 A; z � x H) z D x].

The class of all these will be denoted Eff.AI �/. To get sufficient conditions for the
existence of such points, the monotone Ekeland Variational Principle (EVPm) will
be used. This will be done under the basic regularity conditions upon our data

(d01) .�/ is self-closed and A is .�/-closed (modulo d)
(d02) d is .�/-complete (see above).

The specific concept to be considered is being constructed with the aid of certain
pairs .u; g/; where u is an element of A and .x; y/ 7! g.x; y/ is a function from
gr.�/ WD f.x; y/ 2 X � XI x � yg to RC [ f1g. Precisely, let us say that u 2 A is
starting (modulo .dI �IA; g/), when

(d03) g is subordinated to .dI �IA; u/:
x; y 2 A.u;�/, x � y H) d.x; y/ � g.x; y/
(d04) g is .�IA; u/-antitriangular:
g.x; z/ � g.x; y/C g.y; z/, if x; y; z 2 A.u;�/, x � y � z
(d05) x 7! '.x/ WD g.u; x/ is bounded above on A.u;�/.

We are now in position to state our first main result in this exposition.

Theorem 9 Let the general conditions (d01)+(d02) be admitted. Then, for each
starting (modulo .dI �IA; g/) u 2 A, there exists v D v.u/ 2 A, with

(41-a) u � v, d.u; v/ � g.u; v/� g.u; u/
(41-b) v is Pareto .�/-efficient (see above).

Proof Denote M D A.u;�/.D A \ X.u;�//. By (d01), M .�/ is self-closed
(modulo d) and d is .�/-complete over M. Wherefrom (taking (d02) into account)

.�/ is self � closed .modulo d/ and d is .�/�complete overM:

Let x; y 2 M be arbitrary fixed with x � y. From (d03), d.x; y/ � g.x; y/. On the
other hand, (d04) yields (with .u; x; y/ in place of .x; y; z/)

g.u; y/ � g.u; x/C g.x; y/I
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so, combining with the above,

.x; y 2 M/ W x � y H) d.x; y/ � '.y/� '.x/ .hence '.y/ � '.x//:

Finally, (d05) yields

0 � '.x/ D g.u; x/ <1, 8x 2 M.

Summing up, (EVPm) applies in .M; d/ and .�;�'/ (under its “purely” monotone
version). So, for the point u 2 M there must be another one v 2 M with

(41-c) u � v, d.u; v/ � '.v/ � '.u/
(41-d) x 2 M, v � x, d.v; x/ � '.x/� '.v/ H) v D x.

The former of these yields the first half of our conclusions, by the very definition
of '. And the latter one gives at once v 2 Eff.AI �/; because, in view of v 2 M
(hence, u � v 2 A) we have (by a previous relation)

v � x 2 A H) v � x 2 M H) d.v; x/ � '.x/� '.v/I

whence (by this choice) v D x. The proof is thereby complete.

(B) A linear normed version of this result may be given as follows. Let X be a
real linear space. By a generalized norm over X we shall mean any map jj:jj W X !
RC [ f1g, endowed with

jj:jj is subadditive: jjxC yjj � jjxjj C jjyjj, 8x; y 2 X
jj:jj is absolutely homogeneous: jj�xjj D j� j � jjxjj, 8� 2 R n f0g, 8x 2 X
jj:jj is reflexive sufficient: jjxjj D 0() x D 0.

In this case, its associated function d W X � X ! RC [ f1g, introduced as:

d.x; y/ D jjx � yjj, x; y 2 X

is a generalized metric (on X); compatible with the linear structure of X

d.xC a; yC a/ D d.x; y/; d.�x; �y/ D j�jd.x; y/; 8x; y; a 2 X; 8� 2 R n f0g:

All notions related to d may be now interpreted as jj:jj-notions. For example, the

sequential convergence .
d�!/ attached to d will be also written as .

jj:jj�!/; because

xn
jj:jj�! x iff jjxn � xjj ! 0 as n!1;

when such elements x exist, we say that .xn/ is jj:jj-convergent. Likewise, the
d-Cauchy property of the sequence .xn/ will be also referred to as jj:jj-Cauchy;
because it is characterized as

jjxn � xmjj ! 0, as n;m!1.
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Finally, let .�/ be some quasi-order on X. Each ascending (modulo .�/) jj:jj-
convergent sequence is jj:jj-Cauchy; when the reciprocal is also true, we say that
jj:jj is .�/-complete. For each part M of X, its .�/-closedness (modulo d) will be
also referred to as .�/-closedness (modulo jj:jj). In particular, the self-closedness
(modulo d) of .�/ is to be viewed as a self-closedness (modulo jj:jj); and means:

X.u;�/ is .�/-closed (modulo jj:jj), for each u 2 X.

Now, let .X; jj:jj/ be taken as above. By an additive cone in X we shall understand
any part K of X, with

K is additive [K C K 	 K], and pointed [0 2 K].

Let .�/ stand for the induced quasi-order

(x; y 2 X) x � y iff y � x 2 K.

All notions related to it may be also viewed as K-notions; the list of these is the one
we just described. Let A be some nonempty part of X. The concept of Pareto .�/-
efficient point was already introduced; it will be referred to as a Pareto K-efficient
point. The class of all these will be denoted Eff.AI �/; or, equivalently, Eff.AIK/.
To get sufficient conditions for the existence of such points in this linear setting,
some general and specific hypotheses must be accepted. The general ones may be
written as (see above)

(d06) K and A are K-closed (modulo jj:jj)
(d07) jj:jj is K-complete (see above).

The specific ones are being expressed in terms of a certain function  W K !
RC [ f1g. Precisely, assume that

(d08)  is subordinated to .jj:jjIK/: x 2 K H) jjxjj �  .x/
(d09)  is super-additive on K:  .xC y/ �  .x/C  .y/;8x; y 2 K.

Further, call u 2 A, (normed) admissible (modulo  ) if

(n-ad) x 7! '.x/ WD  .x � u/ is bounded above on A \ .uC K/.

Note that, as a consequence of this,

 .0/ D 0; hence, 0 2 Dom. /.

In fact, by the (normed) admissible condition,

'.x/ <1, for some x 2 A \ .uC K/;
so that,  .z/ <1, where z WD x � u 2 K.

On the other hand, by the super-additive property,

 .z/ D  .zC 0/ �  .z/C  .0/ (whence,  .0/ � 0);

and, from this, we are done.
The following “normed” efficiency result is valid.
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Theorem 10 Let the general conditions (d06)+(d07) be admitted; as well as the
specific ones (d08)+(d09). Then, for each admissible (modulo ) point u 2 A, there
exists v D v.u/ 2 A, such that

(42-a) u � v, jju� vjj �  .v � u/
(42-b) v is Pareto K-efficient (see above).

Proof Let the function g W gr.�/! RC [ f1g be defined as:

g.x; y/ D  .y � x/, .x; y/ 2 gr.�/.
We claim that the conditions of Theorem 9 are fulfilled by .d;�/ and .u; g/ over A.
This is evident—via (d06)+(d07)—for the couple (d01)+(d02); so, we only have to
show that—under (d08)+(d09)—the admissible (modulo  ) point u 2 A is starting
(modulo .dI �IA; g/); i.e.: the requirements (d03)-(d05) are fulfilled here. To do this,
note that (d03) follows from (d08); and (d05) is a direct consequence of admissible
property (if we remember the definition of g). Finally, let x; y; z 2 A.u;�/ be such
that x � y � z. By definition, y� z 2 K, z� y 2 K (hence z� x 2 K); and this, along
with (d09) yields

g.x; z/ D  .z � x/ �  .y � x/C  .z � y/ D g.x; y/C g.y; z/I

hence (d04) follows as well. The proof is thereby complete.

This result includes the one in Isac [27, Theorem 3], obtained (with our
notations) under the stronger form of (normed) admissible condition

(n-ad-s) x 7!  .x � u/ is bounded above continuous on A \ .uC K/.

Hence, the continuity condition may be removed; this is also true for the condition

K is strongly pointed: K \ .�K/ D f0g;
we do not give details.

Finally, note that the multiplicative properties of our linear space are not used; so,
this result is extendable to the case of X being a topological Abelian group. Further
aspects may be found in Isac and Tammer [28].

Fang Spaces

Let X be some nonempty set. By a generalized pseudometric over X we shall mean
any map d W X � X ! RC [ f1g, fulfilling

d is reflexive: d.x; x/ D 0;8x 2 X;

if in addition

d is symmetric: d.x; y/ D d.y; x/;8x; y 2 X

then d is referred to as a generalized s-pseudometric.
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(A) Let .ƒ;�/ be some directed quasi-ordered structure without maximal
element. We say that the family D D .d�I� 2 ƒ/ of generalized s-pseudometrics
over X is ƒ-admissible, when

(e01) (d�.x; y/ � d�.x; y/;8x; y 2 X), if � � � [D is ƒ-monotone]
(e02) 8� 2 ƒ; 9� 2 ƒ.�;�/, with
d�.x; z/ � d�.x; y/C d�.y; z/;8x; y; z 2 X [D is ƒ-triangular].

Assume that we fixed such a family; with, in addition

(e03) (d�.x; y/ D 0;8� 2 ƒ) imply x D y [D is sufficient].

Its associated family of relations V D fV.�; r/I� 2 ƒ; r > 0g, where

V.�; r/ D f.x; y/ 2 X � XI d�.x; y/ < rg, � 2 ƒ; r > 0
is a fundamental system of entourages for a uniform structure U D U .D/ over
X (cf. Bourbaki [5, Chap. 2, Sect. 1]). This structure, introduced in 1996 by Fang
[17], became a very useful instrument in the probabilistic and fuzzy metric spaces
theory. As a rule, the “uniform” terminology refers to it. However (as results directly
by definition), all U -notions are in fact V -notions; so, we shall work with V in
place of U . Moreover, all these V -notions may be translated in terms of D ; so, the
initial uniform structure .X;V / may be written as .X;D/; and referred to as a Fang
uniform space. To motivate our assertion, remember that the associated (sequential)
convergence structure .V / on X may be described as

xn
.V /�! x iff 8V 2 V ; 9n.V/ W n � n.V/ H) .xn; x/ 2 V .

For simplicity, it will be referred to as: x is the V -limit of .xn/; if such elements x
exist, we shall say that .xn/ is V -convergent. Likewise, the V -Cauchy property for
a sequence .xn/ in X may be introduced as

8V 2 V ; 9n.V/ W n.V/ � p � q H) .xp; xq/ 2 V .

Now, both these notions may be translated in terms of D . In fact, the convergence

relation xn
.V /�! x means:

xn
d��! x, for each � 2 ƒ; written as: xn

D�! x.

This, by convention, reads: x is a D-limit of .xn/; when such elements x exist, we say
that .xn/ is D-convergent. On the other hand, the V -Cauchy property of a sequence
.xn/ in X amounts to:

.xn/ is d�-Cauchy, for each � 2 ƒ; referred to as: .xn/ is D-Cauchy.

Putting these together, proves our assertion.
Finally, let .�/ be some quasi-order on X. Each ascending (modulo .�/) D-

convergent sequence is D-Cauchy; when the reciprocal holds too, we say that D is
sequentially .�/-complete. Given the (nonempty) part M of X, call it sequentially
.�/-closed (modulo D), provided:
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the D-limit of each ascending (modulo .�/) sequence in M belongs to M.

In particular, .�/will be referred to as sequentially self-closed (moduloD), when

X.u;�/ is sequentially .�/-closed (modulo D), for each u 2 X.

Technically speaking, the uniformity U D U .D/ is not in general metrizable;
i.e., it is not generated by a standard metric. But, from a generalized perspective,
this is possible. Precisely, define the mapping& W X � X ! RC [ f1g as

&.x; y/ D supfd�.x; y/I� 2 ƒg, x; y 2 X.

By the imposed properties of D (andƒ), it follows that

& is triangular:&.x; z/ � &.x; y/C&.y; z/, 8x; y; z 2 X
& is reflexive-sufficient:&.x; y/ D 0 iff x D y
& is symmetric: &.x; y/ D &.y; x/, 8x; y 2 X.

In other words, & is a generalized metric over X, as in Luxemburg [33] and Jung
[29]. Its associated uniform structure (U D U .&/) is the one for which the family
of relations V D fV."/I " > 0g, where

V."/ D f.x; y 2 X � XI&.x; y/ < "g, " > 0
is a fundamental system of entourages. This, in turn, gives us the associated

(sequential) convergence .
&�!/ and Cauchy structure. The natural question to be

posed is that of clarifying the relationships between these and the ones attached to
the family D D .d�I� 2 ƒ/.
Proposition 8 The generic local inclusions hold:

(51-1) .8.xn/;8x/ [xn
��! x] H) [xn

D�! x]
(51-2) (8 sequence) �-CauchyH) D-Cauchy.

As a consequence of this, we have the generic implication (for M 2 .2/X)

(51-3) sequentially .�/-closed (modulo D) H) .�/-closed (modulo�).

The proof is immediate, by the involved conventions; we do not give details.
Note that the reciprocal of these is not in general true; because the uniform structure
attached to D is strictly finer (in general) than the one induced by the generalized
metric &.

Proposition 9 Under these notations,

(52-1) (8.xn/;8x) [.xn/ is �-Cauchy] and Œxn
D�! x� imply Œxn

��! x�
(52-2) D is sequentially .�/-completeH) � is .�/-complete.

Proof The second part in the statement follows at once from the first part of the
same; so, it will suffice proving that the first part of our statement holds. Let .xn/ be
some &-Cauchy sequence in X, so as (for some x 2 X)

xn
D�! x (hence d�.xn; x/! 0, for each � 2 ƒ).
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By definition, for each ˇ > 0 there exists some rank n.ˇ/ in such a way that

(d�.xi; xj/ � ˇ, 8� 2 ƒ), whenever n.ˇ/ � i � j.

Let the rank i � n.ˇ/ be arbitrary fixed; and, for each � 2 ƒ, let � 2 ƒ.�;�/ be
the index assured by the ƒ-triangular property of D . From the above relation we
then have, for all such .�; �/,

d�.xi; x/ � d�.xi; xj/C d�.xj; x/ � ˇ C d�.xj; x/; 8j � i:

Passing to limit upon j gives (for all such i)

d�.xi; x/ � ˇ; 8� 2 ƒ .hence &.xi; x/ � ˇ/:

This, by the arbitrariness of ˇ, gives xn
&�! x; as claimed.

(B) A linear (locally convex) version of this result may be given as follows. Let
X be a real linear space. By a (generalized) seminorm on X we mean any function
j:j W X � X ! RC [ f1g, endowed with the properties

j:j is subadditive: jxC yj � jxj C jyj;8x; y 2 X
j:j is absolutely homogeneous: j�xj D j� j � jxj;8� 2 R n f0g;8x 2 X
j:j is reflexive: j0j D 0.

In this case, its associated function d W X � X ! RC [ f1g introduced as:

d.x; y/ D jx � yj, x; y 2 X

is a generalized semimetric over X; which, in addition, is compatible with the linear
structure of X. All notions related to d may be now interpreted as j:j-notions. For

example, the sequential convergence .
d�!/ will be also written as .

j:j�!/; because

xn
j:j�! x iff jxn � xj ! 0 as n!1;

when such elements x exist, we say that .xn/ is j:j-convergent. Likewise, the d-
Cauchy property of a sequence will be also referred to as j:j-Cauchy, in view of

.xn/ is d-Cauchy iff jxn � xmj ! 0 as n;m!1.

Finally, let .�/ be some quasi-order on X. Clearly, each ascending (modulo .�/)
j:j-convergent sequence is j:j-Cauchy; when the reciprocal is also true, we say that
j:j is .�/-complete. For each part M of X, its .�/-closedness (modulo d) will be also
referred to as .�/-closedness (modulo j:j). In particular, the self-closedness (modulo
d) of .�/ is to be viewed as a self-closedness (modulo j:j) of .�/.

Now, let .ƒ;�/ be a directed set without maximal element; and P D fj:j�I� 2
ƒg be a family of generalized seminorms over X, with

(e04) � � � H) j:j� � j:j� [P is ƒ-monotone]
(e05) (jxj� D 0;8� 2 ƒ/ H) x D 0. [P is separated].
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[Note that there is a natural possibility of getting such families, by starting from
each (infinite) directed separated family of (generalized) seminorms. In fact, let I be
an infinite (index) set; and Q D fjj:jjiI i 2 Ig be a family of generalized seminorms
over X; supposed to be separated (see above) and directed:

(e06) 8i; j 2 I, 9k 2 I, such that maxfjj:jji; jj:jjjg � jj:jjk.

Denote by ƒ the class of all (nonempty) finite parts of I; and let the quasi-order
.�/ over it be the usual inclusion; clearly, .ƒ;�/ is directed and has no maximal
elements. For each � 2 ƒ, define the generalized seminorm: j:j� D maxfjj:jjiI i 2
�g. The family P D fj:j�I� 2 ƒg of all such objects fulfills (e04)+(e05), as it can
be directly seen. In addition, (e06) tells us that it is equivalent with the family Q; see,
for instance, Precupanu [38, Chap. 3, Sect. 3.1]; and this proves the claim]. Now,
for each � 2 ƒ, let d� stand for the associated generalized semimetric (see above).
As a consequence, the family D D fd�I� 2 ƒg is ƒ-admissible and separated; so,
it induces a uniform structure U D U .D/ over X by means of the fundamental
system of entourages V D fV.�; �/I� 2 ƒ; � > 0g, we just described. In addition,
it is separated by (e05); see Bourbaki [5, Chap. 2, Sect. 1.2] for details. On the other
hand, the family of subsets Z D fZ.�; r/I� 2 ƒ; r > 0g, where

Z.�; r/ D fx 2 XI jxj� < rg, � 2 ƒ, r > 0,

is a fundamental system of convex zero neighborhoods for a linear topology T D
T .P/ over X; referred to as the locally convex topology induced by P; note that,
by (e05) again, T is separated. Concerning the relationships between these, the
uniformity U over X is just the one induced by T via the canonical map Z.�; r/ 7!
V.�; r/; conversely, the locally convex topology T over X is just the one induced
by U , by means of the canonical map V.�; r/ 7! Z.�; r/; we do not give details. As
a consequence of this, any concept related to D may be interpreted as a P-concept.

For example, the associated sequential convergence structure .
D�!/ will be denoted

as .
P�!/; and means

xn
P�! x iff xn

j:j��! x, for each � 2 ƒ;

and reads: x is a P-limit of .xn/; if such elements x exist, we say that .xn/ is P-
convergent. Also, the D-Cauchy property of a sequence .xn/ be denoted as: .xn/ is
P-Cauchy; and means

.xn/ is j:j�-Cauchy, for each � 2 ƒ.

Finally, let .�/ be some quasi-order on X. Each ascending (modulo .�/) P-
convergent sequence is P-Cauchy; when the reciprocal holds too, we say that P
is sequentially .�/-complete. For each part M of X, its sequential .�/-closedness
(modulo D) will be also referred to as a sequential .�/-closedness (modulo P);
and means:

the P-limit of each ascending (modulo .�/) sequence in M belongs to M.
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In particular, the sequential self-closedness (modulo D) of .�/ is to be viewed as a
sequential self-closedness (modulo P) of .�/; and may be characterized as:

X.u;�/ is sequentially .�/-closed (modulo P), for each u 2 X.

(C) Technically speaking, the locally convex topology T D T .P/ is not
in general normable; i.e., it is not generated by a standard norm. But, from a
generalized perspective, this is possible. Precisely, denote

(jj:jj W X ! RC [ f1g): jjxjj D supfjxj�I� 2 �g, x 2 X.

This map is a generalized seminorm on X; and, by (e05), it is also sufficient; hence,
jj:jj is a generalized norm on X. Its associated map

(& W X � X ! RC [ f1g):&.x; y/ D jjx � yjj; x; y 2 X

is therefore a generalized metric on X; which is also compatible with the linear
structure of X. As before, all notions related to&may be also viewed as jj:jj-notions;
we do not give details.

Summing up, we have two “parallel” structures over X induced by P D
fj:j�I� 2 ƒg and jj:jj, respectively. So, it would be useful to establish a lot of
relationships between the associated concepts we just introduced.

Proposition 10 The generic local inclusions hold:

(53-1) .8.xn/;8x/ Œxn
jj:jj�! x� H) Œxn

P�! x�
(53-2) (8 sequence) jj:jj-CauchyH)P-Cauchy.

As a consequence of this, we have the generic implication (for M 2 .2/X)

(53-3) sequentially .�/-closed (modulo P) H) .�/-closed (modulo jj:jj).
The reciprocal of these is not in general true; because the locally convex structure

attached to P is strictly finer (in general) than the one induced by the generalized
norm jj:jj.
Proposition 11 Under these notations,

(54-1) (8.xn/;8x) [.xn/ is jj:jj-Cauchy] and Œxn
P�! x� imply Œxn

jj:jj�! x�
(54-2) P is sequentially .�/-completeH) jj:jj is .�/-complete.

The proof of these statements is the linear version of the (uniform) one above;
so, we do not give details.

Uniform Pareto Efficiency

In the following, a uniform variant is given for the metrical type results involving
Pareto efficient points.
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(A) Let X be a nonempty set. Take some directed quasi-ordered structure .ƒ;�/
without maximal element; as well as a family D D .d�I� 2 ƒ/ of s-pseudometrics
over X; supposed to be ƒ-admissible and sufficient (see above). Further, let .�/ be
a quasi-order on X; and A be some nonempty part of X. The notion of Pareto .�/-
efficiency is the described one: we say that z 2 A is Pareto .�/-efficient, when

A.z;�/ D fzg [i.e.: x 2 A; z � x H) z D x].

To establish an existence result (involving such points) in our extended setting, we
start from the basic conditions

(f01) .�/ is sequentially self-closed and A is sequentially .�/-closed
(modulo D)
(f02) D is sequentially .�/-complete.

The specific ones are being expressed in terms of a certain pair .u; g/; where u is an
element of A and g W gr.�/ ! RC [ f1g is a function. Precisely, let us say that
u 2 A is starting (modulo .D I �IA; g/), when

(f03) g is subordinated to .D I �IA; u/:
x; y 2 A.u;�/, x � y H) d�.x; y/ � g.x; y/, for all � 2 ƒ
(f04) g is .�IA; u/-antitriangular:
x; y; z 2 A.u;�/, x � y � z H) g.x; z/ � g.x; y/C g.y; z/
(f05) x 7! '.x/ WD g.u; x/ is bounded above on A.u;�/.
We are now in position to state an appropriate answer to our question.

Theorem 11 Let the general conditions (f01)+(f02) be admitted. Then, for each
starting (modulo .D I �IA; g/) point u 2 A, there exists v D v.u/ 2 A, in such a
way that

(61-a) u � v; d�.u; v/ � g.u; v/� g.u; u/;8� 2 �
(61-b) v is Pareto .�/-efficient (see above).

Proof Let & stand for the generalized metric on X attached to D . From our general
results involving such structures, it follows that (by means of imposed conditions)

(f06) .�/ is self-closed and A is .�/-closed (modulo&)
(f07) & is .�/-complete (see above)
(f08) g is subordinated to .&I �IA; u/:
x; y 2 A.u;�/, x � y H) &.x; y/ � g.x; y/.

This, along with (f04)+(f05), tells us that Theorem 9 is applicable to these data.
It gives us, for the starting point u 2 A, some other point v D v.u/ 2 A, with the
properties described in the quoted statement. But, from this, our desired conclusions
are clear. The proof is complete.

From the argument above, it follows that Theorem 11 is deductible from
Theorem 9. The reciprocal is also true; just takeƒ (hence D as well) as a singleton.
Hence, these two results are equivalent to each other. Some related aspects may be
found in Hamel [25].
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(B) In the following, a linear version of the result above is established. Let X be
a (real) linear space, .ƒ;�/ be a directed structure without maximal element, and
P D fj:j�I� 2 ƒg be a ƒ-monotone separated family of generalized seminorms
(see above). Further, let K be an additive pointed cone in X; and let .�/ stand
for its induced quasi-order. Finally, take some part A of X. The notion of Pareto
.�/-efficient (or, equivalently, K-efficient) point is the already precise one. To get
sufficient conditions for the existence of such points, some general and specific
hypotheses must be accepted. The general ones may be written as

(f09) K and A are sequentially K-closed (modulo P)
(f10) P is sequentially K-complete.

The specific ones are being expressed in terms of a certain function  W K !
RC [ f1g. Precisely, assume that

(f11)  is subordinated to .PIK/: x 2 K H) jxj� �  .x/, 8� 2 ƒ
(f12)  is super-additive on K:  .xC y/ �  .x/C  .y/;8x; y 2 K.

Finally, call u 2 A, admissible (modulo  ) if

(lc-ad) x 7! '.x/ WD  .x � u/ is bounded above on A \ .uC K/.

The following “locally convex” efficiency result is valid.

Theorem 12 Let the general conditions (f09)+(f10) be admitted; as well as the
specific ones (f11)+(f12). Then, for each admissible (modulo  ) u 2 A, there exists
v D v.u/ 2 A, in such a way that

(62-a) u � v; ju � vj� �  .v � u/;8� 2 �
(62-b) v is Pareto K-efficient (see above).

Proof For each � 2 ƒ, let d� stand for the generalized semimetric attached to j:j�;
and D D fd�I� 2 ƒg stand for the family of all these. Further, let the function
g W gr.�/! R [ f1g be defined as:

g.x; y/ D  .y � x/, .x; y/ 2 gr.�/.
It is not hard to see that conditions of the preceding statement hold for these data;
and, from this, we are done.

(C) Note that an alternate proof of this result is available, by reducing it to
the normed Pareto efficient point statement we already established. In fact, let jj:jj
stand for the generalized norm on X attached to P (see above). By our general
developments, all conditions in the quoted statement are fulfilled; and then, by its
conclusions, one gets all desired facts.

In particular, the regularity condition (lc-ad) holds under

(lc-ad-c) x 7! '.x/ WD  .x � u/ is bounded above and
sequentially continuous on A \ .uC K/.
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Note that in such a case, our locally convex result includes a related statement in
Isac [27, Theorem 6]. Hence, the continuity condition may be removed; this is also
true for the condition

K is strongly pointed: K \ .�K/ D f0g;
we do not give details.

Further, whenƒ reduces to a single point, the obtained result is nothing else than
Theorem 10. The reciprocal is also true (by the proposed proof). Hence Theorem 12
is equivalent with its normed variant.

Finally, note that the multiplicative properties of our linear space are not used; so,
this result is extendable to the case of X being a topological Abelian group. Further
aspects will be discussed elsewhere.

Semigroup Anti-Measures

In what follows, the concept of semigroup anti-measure is introduced; and some
basic properties of it are discussed.

(A) Let .X;�/ be some quasi-ordered structure. By a semigroup over X we shall
mean any map .t; x/ 7! S.t/x, from RC � X to X, with

(g01) S.0/x D x, 8t � 0, 8x 2 X
(g02) S.tC s/x D S.t/.S.s/x/, 8t; s � 0, 8x 2 X.

Assume that we fixed such an object; which, in addition, is monotone:

(g03) t � s, x � y H) S.t/x � S.s/y.

Denote in the following, for .x; u/ 2 gr.�/,
�.�; SI x; u/ D ft 2 RCI S.t/x � ug, �.�; SI x; u/ D sup�.�; SI x; u/.

This yields a couple of functions �.:; :/ WD �.�; SI :; :/ and �.:; :/ WD �.�; SI :; :/
from gr.�/ to .2/RC (=the class of all nonempty subsets of RC) and RC [ f1g,
respectively; the latter of these will be referred to as the anti-measure attached to
.�; S/. Technically speaking, this construction may be related to the one in Turinici
[47]; but we must say that our setting is rather different from the quoted one. A
motivation for our terminology will be offered later. For the moment, we shall be
interested in giving some basic properties of these maps, to be used further.

(i) We start by noting that, for each .x; u/ 2 gr.�/,

�.x; u/ is hereditary W s 2 �.x; u/ H) Œ0; s� 	 �.x; u/I

so, it is a nonempty .RC/-initial interval Œ0; �Œ (where 0 < � � 1) or Œ0; �� (where
0 � � <1).
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(ii) Further, it would be useful to precise the behavior of .x; u/ 7! �.x; u/ with
respect to its variables. The following answer to this is valid:

x1 � x2 � u2 � u1 H) �.x1; u1/ � �.x2; u2/:

In other words: the map .x; u/ 7! �.x; u/ is decreasing in the first variable and
increasing in the second one. [Since the proof is immediate, we do not give details].

(iii) In a close connection with the preceding fact, we have the following
property:

Proposition 12 Let x1; x2; x3 2 X be such that x1 � x2 � x3. Then

�.x1; x3/ � �.x1; x2/C �.x2; x3/ .super � additivity/:

Proof Without loss, one may assume that �.x1; x2/ > 0, �.x2; x3/ > 0. Let t <
�.x1; x2/, s < �.x2; x3/ be arbitrary fixed. By definition, S.t/x1 � x2, S.s/x2 � x3;
wherefrom (by the semigroup properties)

S.tC s/x1 D S.s/.S.t/x1/ � S.s/x2 � x3I so; tC s 2 �.x1; x3/:

This, and the definition of the map � , ends the argument.

This relation motivates our terminology; because for a standard (subadditive)
measure of these order intervals (taken as in Halmos [24, Chap. 2, Sect. 9]) the
inequality in our statement above is written with the dual sign (�/.

(iv) Finally, a basic question about the map � is that of describing its finite/infinite
values. Call the pair .x; u/ in gr.�/, admissible (modulo �) when �.x; u/ <1. Note
that, by the interval monotonicity of � , one has the hereditary type property

if .x; u/ is admissible .modulo �/ and x � x0 � u0 � u
then .x0; u0/ is admissible too .modulo �/:

This tells us that the class of all such couples .x; u/ is large enough; we do not give
further details.

(B) In the following, a linear construction of this type is considered. Let X be a
(real) vector space. Take a convex cone H of X; i.e.

˛H C ˇH 	 H, for each ˛; ˇ 2 RC;

and let .�/ stand for its induced quasi-order. Further, choose some point k0 2 H n
.�H/; and put (for x 2 H)


.HI k0I x/ D fs 2 RCI k0s � xg; �.HI k0I x/ D sup
.HI k0I x/.
We therefore defined a couple of functions 
.:/ WD 
.HI k0I :/ and �.:/ WD
�.HI k0I :/ from H to .2/RC (=the class of all nonempty subsets in RC) and
RC [ f1g, respectively; the latter of these will be referred to as the gauge function
attached to .HI k0/. Such objects were introduced (in the normed context) by Gerth
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(Tammer) and Weidner [18]. Some refinements of these (to the locally convex
setting) were provided by Goepfert et al. [20]. The present developments may be
viewed as a non-topological extension of the quoted ones.

(j) We start by noting that, for each x 2 H,


.x/ is hereditary .s 2 
.x/ H) Œ0; s� 	 
.x//I

so, it is a nonempty RC-initial interval Œ0; ˛Œ (where 0 < ˛ � 1) or Œ0; ˛� (where
0 � ˛ <1).

(jj) An interesting question is that of1 2 �.H/ being or not valid. According to
Cristescu [13, Chap. 5, Sect. 1], let us say that H is Archimedean, provided

[h 2 X; v 2 H and 
.HI hI v/ D RC] imply h 2 �H.

Proposition 13 Assume that H is Archimedean. Then, for each x 2 H,

(72-1) �.x/ ¤1; hence, 0 � �.x/ <1
(72-2) �.x/ 2 � .x/; so that, � .x/ D Œ0; �.x/�.

Proof The first part is clear, by the choice of k0 (and Archimedean hypothesis).
For the second one, let x 2 H be arbitrary fixed. If �.x/ D 0, then 
.x/ D f0g D
Œ0; �.x/�; and we are done. If 0 < �.x/ <1, we have (by definition of supremum)

k0.�.x/� t/ � x, if 0 < t � �.x/; so, (k0�.x/� x/s � k0, 8s 2 RC;
wherefrom (cf. the above conventions): 
.HI k0�.x/� xI k0/ D RC.

This and the Archimedean property of H give the desired fact.

(jjj) Returning to the general case, note that 
 and � are positively homogeneous:


.tx/ D t
.x/; �.tx/ D t�.x/; 8t 2 RC; 8x 2 H:

On the other hand, the choice of k0 yields

�.0/ D 0; �.k0/ D 1I hence �.k0t/ D t; 8t 2 RC:

Further information may be obtained from the increasing property of �

x1; x2 2 H; x1 � x2 implies �.x1/ � �.x2/:

In fact, as a consequence of this,

�.y/ � t; whenever y 2 H; y � k0tI

so, Dom.�/ WD fx 2 HI �.x/ <1g is “large” enough.
(jv) Some other useful properties of such objects are formulated in
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Proposition 14 The gauge function � is super-additive:

(73-1) �.x1 C x2/ � �.x1/C �.x2/, for each x1; x2 2 H.

As a consequence, � is subtractive:

(73-2) �.x1 � x2/ � �.x1/� �.x2/,
whenever x1; x2 2 H fulfill x1 � x2 and �.x1/ � �.x2/ exists.

Proof i): The case of 0 2 f�.x1/; �.x2/g is clear, via �=increasing; so, it remains to
discuss the case of �.x1/ > 0, �.x2/ > 0. By definition (and hereditary property),

x1 � k0t1; x2 � k0t2, whenever 0 � t1 < �.x1/; 0 � t2 < �.x2/;

and this yields (for all such .t1; t2/)

x1 C x2 � k0Œt1 C t2� (i.e.: �.x1 C x2/ � t1 C t2).

This, and the arbitrariness of the precise couple, ends the argument.
ii): By the previous relation, we have

�.x1/ D �.x1 � x2 C x2/ � �.x1 � x2/C �.x2/:

If �.x2/ D 1, then (by the relation we just obtained) �.x1/ D 1; in contradiction
with �.x1/ � �.x2/ being well defined. Hence, necessarily, 0 � �.x2/ < 1; and
then, conclusion follows in either case involving �.x1/.

In particular, we have the sup-translation property

�.yC k0t/ � �.y/C t; for each y 2 H; t 2 RCI

further aspects may be found in Turinici [46].
(C) The following remark about these developments is in effect for us. Let X be

a (real) linear space; and H, some convex cone of it (see above). Denote by .�/ the
induced quasi-order; and pick some k0 2 H n .�H/. The mapping (from RC � X
to X)

S.t/x D xC tk0; t 2 RC; x 2 X

is a monotone semigroup over X as it can be directly seen; we shall term it, the
semigroup attached to .H; k0/. Let .x; u/ 7! �.x; u/ stand for the anti-measure
attached to .�; S/; in fact, a natural position is to consider that it is attached to
.H; k0/. The study of this object is entirely reduced to the one generated by our
gauge function � (attached to .H; k0/); because

�.x; u/ D �.u� x/; for all .x; u/ 2 gr.�/:

As a consequence of this, all properties of the anti-measure � are obtainable from
the properties of the gauge function � . Clearly, this may be also used in the converse
way; because, from �.x/ D �.0; x/, x 2 H, all properties of � are obtainable from
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the ones in � . We however preferred to deduce them in a direct way, for technical
reasons. Further aspects may be found in Tataru [42].

(D) A non-trivial extension of our construction is to be performed under the lines
below. By a monotone almost semigroup on X we shall mean any map .t; x/ 7! T.t/x
from RC � X to X fulfilling

(mas-1) T.0/x D x, 8t � 0, 8x 2 X
(mas-2) T.t C s/x � T.t/.T.s/x//, 8t; s � 0, 8x 2 X
(mas-3) t � s, x � y H) T.t/x � T.s/y.

It is not hard to see that the construction of our couple .�; �/ is possible in this
relaxed setting; and the properties above remain true. Note that, such objects are,
in a certain sense, “complementary” to the ones introduced by S. Turinici and M.
Turinici [49]. A concrete example of monotone almost semigroup is that given as

T.t/x D S.'.t//x; t 2 RC; x 2 X;

where .t; x/ 7! S.t/x is a monotone semigroup and ' W RC ! RC is a function
with

'.0/ D 0, '.tC s/ � '.t/C '.s/; 8t; s � 0.

We shall discuss these facts elsewhere.

Semigroup Pareto Efficiency

In the following, a semigroup version of the Pareto efficient point results over
metric/normed structures is given, via introduced concepts.

(A) Let .X;�/ be a quasi-ordered structure; and d W X � X ! RC [ f1g be a
generalized metric over X. Given the nonempty part A of X, remember that z 2 A is
Pareto efficient when

A.z;�/ D fzg; i.e.: z � w 2 A implies z D w;

the class of all these will be denoted Eff.AI �/. As precise, sufficient conditions for
existence of such points are obtainable via monotone Ekeland Variational Principle
(EVPm). It is our aim in the following to show that such a procedure is valid as well
in a semigroup context. To do this, let the basic regularity conditions upon our data
be the standard ones

(h01) .�/ is self-closed and A is .�/-closed (modulo d)
(h02) d is .�/-complete (see above).

For the remaining (specific) ones, we need some conventions. Take a semigroup
.t; x/ 7! S.t/x over X; which in addition is monotone with respect to .�/; and let �
stand for its attached anti-measure. The relation .�/ over X introduced as

x1 � x2 iff x1 � x2, S.d.x1; x2//x1 � x2
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is reflexive and transitive; hence a quasi-order. In addition,

.�/ it is coarser than .�/: x1 � x2 H) x1 � x2.

Call the point u 2 A, .�; S/-starting when

(h03) x1; x2 2 A.u;�/, x1 � x2 H) S.d.x1; x2//x1 � x2
(h04) x 7! '.x/ WD �.u; x/ is bounded above on A.u;�/.

We are now in position to state our announced Pareto efficient point statement.

Theorem 13 Let the general conditions above (h01)+(h02) be accepted. Then,
for each .�; S/-starting point u 2 A, there exists some other point v 2 A, with

(81-a) u � v, d.u; v/ � �.u; v/� �.u; u/
(81-2) v is Pareto .�/-efficient (see above).

Proof Denote for simplicity M D A.u;�/. We claim that (EVPm) holds for .M; d/
and .�;�'/; and this will complete the argument. Let x1; x2 be points in M with
x1 � x2. By the starting condition and anti-triangular property of � , we have

d.x1; x2/ � �.x1; x2/ � '.x2/� '.x1/ .hence '.x1/ � '.x2//I

wherefrom, ' is .�/-increasing along M. Finally, (h04) yields

0 � '.x/ D �.u; x/ <1, 8x 2 M.

Summing up, (EVPm) is indeed applicable here; and, from its conclusions, we are
done.

(B) Let .X; jj:jj/ be a (real) Banach space. Take some convex cone H of X; with,
in addition,

H is closed (hence, Archimedean).

As usual, denote by .�/ the associated quasi-order. Fix k0 2 H n .�H/ and put

H.k0/ D fx 2 HI k0jjxjj � xg;
or, equivalently: H.k0/ D fx 2 HI jjxjj � �.x/g;

where � is the gauge function attached to .H; k0/. This is a closed convex cone of H
which “approximates” H when jjk0jj approaches zero; precisely

H."k0/ “tends00 to H as "! 0:

So, the efficient points relative to the convex cone K WD H.k0/ may be viewed
as a good approximation for the efficient points relative to H, when jjk0jj is small
enough. As we shall see, the problem of determining such points may be solved by
the Pareto efficient point results over normed structures.

Let .�/ stand for the quasi-order attached to K. Further, take some nonempty part
A of X. The general conditions above are assumed to hold, in our normed setting;
that is (via K=closed)
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(h05) A is K-closed (modulo jj:jj)
(h06) jj:jj is K-complete (see above).

And the specific ones are to be written in terms of the gauge function  WD � . In
this direction, note that

(subord) � is subordinated to .jj:jjIK/ (by definition)
(s-ad) � is super-additive on K (cf. the properties of gauge function).

So, the only condition to be added writes

(h07) u 2 A is admissible (modulo � ):
x 7! '.x/ WD �.x � u/ is bounded above on A \ .uC K/.

The following Pareto efficient point result is then available.

Theorem 14 Let the precise conditions be in use. Then, for each admissible
(modulo � ) u 2 A, there exists a Pareto K-efficient point v D v.u/ 2 A with u � v.

Proof By the remarks above, Theorem 10 is applicable to these data. In this case,
given u 2 A as before, there must be some v 2 Eff.A;K/, with

u � v; jju � vjj � �.v � u/:

This gives us all desired facts.

Some remarks are in order. A first proof of Theorem 14 was obtained by Goepfert
and Tammer [19], through an iterative procedure. Further, Isac [27] provided
another proof of the same, by means of a general constructive test. Note that, in both
cases, it was assumed that k0 2 int.H/; the present approach shows that this may
be replaced by the weaker condition k0 2 H n .�H/. Finally, note that an algebraic
counterpart of Theorem 14 is obtainable under the methods in Turinici [46]; we do
not give details. Further aspects may be found in Németh [37].
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Cuza” Iaşi (S. I-a: Mat) 36, 329–352 (1990)
46. M. Turinici, Minimal points in product spaces. An. Şt. Univ. “Ovidius” Constanţa (Ser. Math.)
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New Two-Slope Parameterized Achievement
Scalarizing Functions for Nonlinear
Multiobjective Optimization

Outi Wilppu, Marko M. Mäkelä, and Yury Nikulin

Abstract Most of the methods for multiobjective optimization utilize some scalar-
ization technique where several goals of the original multiobjective problem are
converted into a single-objective problem. One common scalarization technique
is to use the achievement scalarizing functions. In this paper, we introduce a
new family of two-slope parameterized achievement scalarizing functions for
multiobjective optimization. This family generalizes both parametrized ASF and
two-slope ASF. With these two-slope parameterized ASF, we can guarantee (weak)
Pareto optimality of the solutions produced, and every (weakly) Pareto optimal
solution can be obtained. The parameterization of this kind gives a systematic way
to produce different solutions from the same preference information. With two
weighting vectors depending on the achievability of the reference point, there is
no need for any assumptions about the reference point. In addition to theory, we
give graphical illustrations of two-slope parameterized ASF and analyze sparsity of
the solutions produced in convex and nonconvex testproblems.

Keywords Achievement scalarizing functions • Multiobjective optimization •
Parameterization • Pareto optimal solutions
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Introduction

In many applications, the aim is to optimize several objectives and to find a solution
which is as good as possible for every objective at the same time. Usually, these
objectives are conflicting, and due to that it is not possible to find a solution being
optimal for every objective simultaneously. That is why compromises between these
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conflicting objectives are needed. The compromise is optimal if none objective can
be improved without impairing at least one of the other objectives. The problem of
this kind is called a multiobjective optimization problem, and its optimal solution is
called Pareto optimal.

Usually, there are several mathematically equally good Pareto optimal solutions,
and someone needs to choose the best solution for a particular problem. This person
is called a decision maker. (S)he has an insight into the problem, and it is also
possible to obtain some additional information of the problem from the him/her.

As it was said, the problem setting of the multiobjective optimization problem
differs a lot from the single-objective optimization. Solving only one objective of the
multiobjective optimization problem with a single-objective method can lead to an
arbitrary bad solution with respect to other objectives for the original multiobjective
problem. Thus, different methods are needed in order to solve multiobjective
problems. Several methods are described in [2, 10, 17] and the references therein.
Most of the methods for the multiobjective optimization utilize a scalarization. In
scalarization, several goals of the original multiobjective problem are converted
into a single-objective, and then some suitable single-objective method is applied.
Several scalarization techniques are introduced and compared in [11].

One of the most common scalarization techniques is the use of achievement
scalarizing functions [4, 5, 10, 11, 15, 16, 18, 19]. In this approach, a reference point
is asked from the decision maker. After that, an achievement scalarizing function is
optimized in order to find a solution being the closest to the reference point. In [5],
an approach is proposed to generate the set of equivalent reference points producing
the same solutions, which can be used to assist the decision maker to select the
reference point.

Chebyshev type achievement scalarizing functions [19] are one of the most
popular achievement scalarizing functions. In Fig. 1, one example is given to
illustrate the Chebyshev type achievement scalarizing function in the objective
space with two different reference points. If the reference point is unachievable,
the distance from the reference point to the feasible objective region is minimized.
In Fig. 1a, the right-angled contours are increasing from the unachievable reference
point towards the feasible objective region. The optimal solution is the first point
from the feasible objective region touching the contour. On the other hand, if the
reference point is achievable, the maximum value of the negative difference between
the reference point and the nondominated set (i.e., the set of Pareto optimal solutions
in objective space) is minimized. In Fig. 1b, the optimal solution for scalarized
problem is the nondominated point touching the contour last.

The wide usage of Chebyshev type achievement scalarizing function is due to
its good mathematical properties. With this L1 metric, any weakly Pareto optimal
solution can be obtained. In addition, other type of metrics can be used: for example,
linear L1 metric. But unlike Chebyshev metric, with L1 metric not every weakly
Pareto optimal solution is necessarily obtained in the nonconvex case since there
might exist nonsupported solutions. To overcome this drawback, in [16] L1 based
metric is presented to ensure that every weakly Pareto optimal solution can be
obtained.
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(a) (b)

Fig. 1 Graphical illustration of Chebyshev type achievement scalarizing function. (a) Unachiev-
able reference point. (b) Achievable reference point

In this paper, we propose a new family of two-slope parameterized achievement
scalarizing functions (TSPASF). These functions are based on the parameterized
achievement scalarizing functions (PASF) introduced in [15]. By using parame-
terization, it is possible to utilize metrics varying in different combinations from
Chebyshev metric to the linear metric. We generalize the PASF by utilizing the idea
of two different weighting vectors depending on the achievability of the reference
point described in [4]. Thus, the new TSPASF is a generalization of both PASF and
two-slope ASF. In the case of the unachievable reference point, we get back to the
PASF. In the case of the linear metric, TSPASF is reduced to two-slope ASF. The
advantage of this new TSPASF is that any Pareto optimal solution can be found by
moving the reference point or changing the weighting vectors. Another advantage
compared with PASF is that we need neither assume anything about the reference
point nor test reference point achievability. This occurs since the formulation of the
problem guarantees that the right weighting vector is used in every case.

This paper is organized as follows: In section “Preliminaries”, we recall some
basic results of multiobjective optimization and describe the ideas of ASF and
PASF. Section “Two-Slope Parameterized Achievement Scalarizing Functions” is
dedicated to a new TSPASF, and a special case of the multiobjective problem with
three objectives is analyzed and illustrated in section “Case of Three Objectives”. In
section “Computational Experiments”, we give some numerical examples in convex
and nonconvex case. Section “Conclusion” contains some final remarks.

Preliminaries

We consider a multiobjective optimization problem where all the objectives are
minimized simultaneously. This problem is of the form
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min f .x/ D .f1.x/; : : : ; fm.x// (1)

s: t: x 2 X;

where the partial objective functions are defined fi W X ! R, i 2 Nm D f1; : : : ;mg
and they are assumed to be lower semicontinuous. A set X � R

n is a non-
empty compact set of feasible solutions. The image of this set X is called a
feasible objective region Z D f .X/. The objective functions are also assumed to
be conflicting. Thus, it is impossible to have a solution being minimal for every
objective function.

We recall some basic results from multiobjective optimization. For more details
we refer to [2, 10]. In the following we use notation x < y if xi < yi for all i 2 Nn

and notation x � y if xi � yi for all i 2 Nn.
A solution of problem (1) is called Pareto optimal if none objective can be

improved without deteriorating some other objective at the same time. We can
formally define that a solution x� 2 X of the problem (1) is Pareto optimal if there
exists no point x 2 X such that fi.x/ � fi.x�/ for all i 2 Nm and fj.x/ < fj.x�/ for
at least one index j 2 Nm. Under the assumptions of problem (1), Pareto optimal
solutions exist [17]. Usually, there exist many mathematically equally good Pareto
optimal solutions and a set of these Pareto optimal solutions is called the Pareto set.

We can also define a generalized concept where a solution x� 2 X is called
weakly Pareto optimal if there exists no another point x 2 X such that fi.x/ < fi.x�/
for all i 2 Nm. Note that the set of Pareto optimal solutions is a subset of the set of
weakly Pareto optimal solutions.

To get some information about Pareto optimal solutions, an ideal and a nadir
vector, f I and f N , can be calculated giving a lower and an upper bound for the range
of Pareto optimal solutions, respectively. The components of the ideal vector are
obtained by minimizing every objective separately. Thus, the i:th component of the
ideal vector can be defined by solving the problem minx2X fi.x/. The ideal vector
tells how good solutions can be found, but normally the ideal vector is not feasible.
If the ideal vector is feasible, then it will clearly be also an optimal solution of
problem (1).

The nadir vector relates the upper bound for Pareto optimal solutions repre-
senting the worst solution. The components of the nadir vector can be calculated
by maximizing objectives over the set of Pareto optimal solutions. Due to this
optimization over the Pareto set, it is usually difficult to obtain the nadir vector,
but it can be approximated [1, 2, 10].

A utopian vector gives a strictly better solution than any of the Pareto optimal
solutions and even better than the ideal vector. The components of the utopian vector
are of the form f U

i D f I
i � "i where "i > 0 is a sufficient small constant.

A point consisting of desirable values for objective functions is called a reference
point f R D .f R

i ; : : : ; f
R
m /. These desirable values have been provided by the decision

maker who tells what (s)he wishes to achieve. The reference point is said to be
achievable if f R 2 Z C R

mC where R
mC D fy 2 R

m j yi � 0 for i 2 Nmg. Otherwise
the reference point is said to be unachievable.
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In this paper, we are focusing on achievement scalarizing functions (ASF)
[18, 19] in order to scalarize multiobjective problem (1). This scalarized problem

is of the form

min
x2X

sR.f .x/;�/: (2)

One example of achievement scalarizing functions is Chebyshev type

sR.f .x/;�/ D max
i2Nm

˚
�i.fi.x/� f R

i /
	
; (3)

where the vector f R is a reference point and the value �i > 0 is a weighting
coefficient for the objective function fi specifying the direction of the projection
from the reference point to the Pareto frontier.

If the reference point is unachievable, then the ASF is minimizing the distance
from the reference point to the feasible set. On the other hand, if the reference point
is achievable, we are minimizing the maximum value of the negative difference
between the reference point and the nondominated set. By moving the reference
point or manipulating �, any (weakly) Pareto optimal solution can be obtained [10].

In order to guarantee that problem (2) generates Pareto optimal solutions, the
following properties of the ASF can be described.

Definition 1 ( [21]) An achievement scalarizing function sR W Rm � R
mC ! R is

said to be

1. increasing if for any y1, y2 2 R
m, y1 � y2, then sR.y1;�/ � sR.y2;�/.

2. strictly increasing if for any y1, y2 2 R
m, y1 < y2, then sR.y1;�/ < sR.y2;�/.

3. strongly increasing if for any y1, y2 2 R
m, y1 � y2 and y1 ¤ y2, then sR.y1;�/ <

sR.y2;�/.

Note that any strongly increasing ASF is also strictly increasing and any strictly
increasing ASF is also increasing. For example, a function of Chebyshev type (3) is
strictly increasing but not strongly increasing.

The following two theorems specify necessary and sufficient conditions to
(weak) Pareto optimality:

Theorem 1 ([20, 21]) The following two statements are true:

1. Let sR be strongly (strictly) increasing. If x� 2 X is an optimal solution of
problem (2), then x� is (weakly) Pareto optimal for problem (1).

2. If sR is increasing and the solution x� 2 X of problem (2) is unique, then x� is
Pareto optimal for problem (1).

Theorem 2 ([10]) If sR is strictly increasing and x� 2 X is weakly Pareto optimal
solution for problem (1), then it is a solution of problem (2) with f R D f .x�/ and the
optimal value of sR is zero for any weight vector � D .�1; : : : ; �m/, �i > 0 for all
i 2 Nm.
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A starting point for this paper is a parameterized achievement scalarizing func-
tion developed in [15] extending the ideas of an additive achievement scalarizing
function introduced in [16]. Let Iq be a subset of Nm of cardinality q. The
parameterized achievement scalarizing function (PASF) [15] is of the form

Qsq
R.f .x/;�/ D max

Iq	NmWjIqjDq

(
X

i2Iq

maxŒ�i.fi.x/� f R
i /; 0�

)

;

where q 2 Nm and � D .�1; : : : ; �m/, �i > 0, i 2 Nm. The problem to be solved is
then

min
x2X
Qsq

R.f .x/;�/: (4)

Due to the formation of PASF, the value of Qsq
R is always nonnegative. With dif-

ferent values of the parameter q, different metrics varying in different combinations
between L1 to L1 metrics are obtained. Extreme cases are L1 metric with q D m,
where m is the number of objectives, and L1 metric (3) with q D 1.

The following two properties were proven for Qsq
R in [15].

Theorem 3 ( [15]) Given problem (4), let f R be a reference point such that there
exists no feasible solution whose image strictly dominates f R and �i > 0 for all
i 2 Nm. Then any optimal solution of problem (4) is a weakly Pareto optimal solution
for problem (1).

Theorem 4 ([15]) Given problem (4), let f R be any reference point and �i > 0 for
all i 2 Nm. Then, among the optimal solutions of problem (4) there exists at least
one Pareto optimal solution for problem (1).

Theorem 4 implies that if x� is a unique solution of problem (4), then it is a
Pareto optimal solution for problem (1).

With the PASF, several Pareto optimal solutions can be found by moving
the reference point or by manipulating the weighting coefficients meanwhile the
reference point stays fixed. A limitation of the PASF is that the reference point
should not be strictly dominated by some feasible point. With the two-slope
parameterized ASF described in the next section, this limitation can be forgot.

Two-Slope Parameterized Achievement Scalarizing Functions

Next we introduce a new extended parameterized ASF taking achievability of the
reference point into account as in [4]. A two-slope parameterized ASF (TSPASF)
is defined as follows:
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Osq
R.f .x/;�

U ;�A/ D max
Iq	NmW jIqjDq

(
X

i2Iq

h
max

˚
�U

i .fi.x/� f R
i /; 0

	
(5)

Cmin
˚
�A

i .fi.x/ � f R
i /; 0

	 i
)

;

where q 2 Nm, �U D .�U
1 ; : : : ; �

U
m/ and �A D .�A

1 ; : : : ; �
A
m/, �

U
i ; �

A
i > 0, i 2 Nm.

Either of these two different weighting vectors �U , �A is used depending on whether
the reference point is unachievable or achievable, respectively. In the following, we
denote

Jq D fIq 	 Nm j jIqj D qg:

The problem to be solved is then

min
x2X
Osq

R.f .x/;�
U ;�A/: (6)

Notice that if q D 1, then Osq
R has the same formation than two-slope ASF

proposed in [4].
For the TSPASF, it is possible to prove similar result as Theorem 3. Note that

the assumption of nonexisting feasible solution which image strictly dominates f R

is not needed.

Theorem 5 Given problem (6), let �U
i ; �

A
i > 0 for all i 2 Nm. Then any optimal

solution of problem (6) is a weakly Pareto optimal solution for problem (1).

Proof Let x� be an optimal solution of problem (6). Assume that x� is not weakly
Pareto optimal. Then there exists a feasible solution x0 2 X such that fi.x0/ < fi.x�/
for all i 2 Nm.

For any x 2 X, denote Ix D
˚
i 2 Nm j f R

i � fi.x/
	

and Jx D fi 2 Nm j f R
i >

fi.x/g. Since Ix0 	 Ix� and Jx0 � Jx� , we obtain

Osq
R.f .x

0/;�U;�A/

D max
Iq2Jq

(
X

i2Iq

�
max

˚
�U

i .fi.x
0/ � f R

i /; 0
	Cmin

˚
�A

i .fi.x
0/ � f R

i /; 0
	�
)

D max
Iq2Jq

8
<

:

X

i2Iq
T

Ix0

�U
i .fi.x

0/� f R
i /C

X

i2Iq
T

Jx0

�A
i .fi.x

0/� f R
i /

9
=

;

< max
Iq2Jq

8
<

:

X

i2Iq
T

Ix0

�U
i .fi.x

�/� f R
i /C

X

i2Iq
T

Jx0

�A
i .fi.x

�/� f R
i /

9
=

;
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� max
Iq2Jq

8
<

:

X

i2Iq
T

Ix�

�U
i .fi.x

�/ � f R
i /C

X

i2Iq
T

Jx�

�A
i .fi.x

�/� f R
i /

9
=

;

D max
Iq2Jq

(
X

i2Iq

�
max

˚
�U

i .fi.x
�/� f R

i /; 0
	Cmin

˚
�A

i .fi.x
�/� f R

i /; 0
	�
)

D Osq
R.f .x

�/;�U;�A/:

Inequality Osq
R.f .x

0/;�U;�A/ < Osq
R.f .x

�/;�U;�A/ contradicts the assumption of x�
being an optimal solution of problem (6). This implies that x� is weakly Pareto
optimal. ut

In addition, the following result similar to Theorem 4 can be proven for the
TSPASF.

Theorem 6 Given problem (6), let �U
i ; �

A
i > 0 for all i 2 Nm. Then, among the

optimal solutions of problem (6) there exists at least one Pareto optimal solution for
problem (1).

Proof Let x� be an optimal solution of problem (6) but not a Pareto optimal solution
of problem (1). Then, according to the definition of Pareto optimality there exists
x0 2 X such that fi.x0/ � fi.x�/ for all i 2 Nm and fj.x0/ < fj.x�/ for at least one
index j 2 Nm. Now

Osq
R.f .x

0/;�U ;�A/

D max
Iq2Jq

(
X

i2Iq

�
max

˚
�U

i .fi.x
0/� f R

i /; 0
	Cmin

˚
�A

i .fi.x
0/� f R

i /; 0
	�
)

D max
Iq2Jq

8
<

:

X

i2Iq
T

Ix0

�U
i .fi.x

0/� f R
i /C

X

i2Iq
T

Jx0

�A
i .fi.x

0/� f R
i /

9
=

;

� max
Iq2Jq

8
<

:

X

i2Iq
T

Ix�

�U
i .fi.x

�/ � f R
i /C

X

i2Iq
T

Jx�

�A
i .fi.x

�/� f R
i /

9
=

;
(7)

D Osq
R.f .x

�/;�U;�A/:

This completes the proof since if the inequality (7) is strict this contradicts the
assumption that x� is an optimal solution for problem (6). If equality (7) holds,
then x0 is an optimal solution for problem (6) and Pareto optimal for problem (1).

ut
Theorem 6 implies the following corollary.
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Corollary 1 If an optimal solution of problem (6) is unique, then it is a Pareto
optimal solution for problem (1) for any �U

i ; �
A
i > 0, i 2 Nm.

Corollary 1 can be proven also in a different way. According to Theorem 1, if Osq
R

is increasing and the solution x� 2 X of problem (6) is unique, then x� is Pareto
optimal.

Now Osq
R is increasing according to Definition 1, since take x1 2 X and x2 2 X

with fi.x1/ < fi.x2/ for all i 2 Nm and �U
i ; �

A
i > 0 for all i 2 Nm. Then

Osq
R.f .x1/;�

U ;�A/

D max
Iq2Jq

(
X

i2Iq

�
max

˚
�U

i .fi.x1/� f R
i /; 0

	Cmin
˚
�A

i .fi.x1/� f R
i /; 0

	�
)

� max
Iq2Jq

(
X

i2Iq

�
max

˚
�U

i .fi.x2/ � f R
i /; 0

	Cmin
˚
�A

i .fi.x2/� f R
i /; 0

	�
)

D Osq
R.f .x2/;�

U;�A/:

The following result guarantees that with TSPASF it is possible to obtain every
weakly Pareto optimal solution.

Theorem 7 If x� is weakly Pareto optimal for problem (1), then it is a solution of
problem (6) with f R D f .x�/, and optimal value is zero for all �U

i ; �
A
i > 0, i 2 Nm.

Proof Theorem 2 implies this theorem if Osq
R is strictly increasing. Now we prove

that Osq
R indeed is strictly increasing.

Take x1 2 X and x2 2 X with fi.x1/ < fi.x2/ for all i 2 Nm. Since �U
i ; �

A
i > 0 for

all i 2 Nm, Ix1 	 Ix2 , and Jx1 � Jx2 , we obtain

Osq
R.f .x1/;�

U ;�A/

D max
Iq2Jq

(
X

i2Iq

�
max

˚
�U

i .fi.x1/� f R
i /; 0

	Cmin
˚
�A

i .fi.x1/� f R
i /; 0

	�
)

D max
Iq2Jq

8
<

:

X

i2Iq
T

Ix1

�U
i .fi.x1/ � f R

i /C
X

i2Iq
T

Jx1

�A
i .fi.x1/� f R

i /

9
=

;

< max
Iq2Jq

8
<

:

X

i2Iq
T

Ix2

�U
i .fi.x2/� f R

i /C
X

i2Iq
T

Jx2

�A
i .fi.x2/ � f R

i /

9
=

;

D max
Iq2Jq

(
X

i2Iq

�
max

˚
�U

i .fi.x2/� f R
i /; 0

	Cmin
˚
�A

i .fi.x2/� f R
i /; 0

	�
)

D Osq
R.f .x2/;�

U;�A/:

ut
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It is also possible to prove that the convexity of the original objective functions of
problem (1) is also preserving in Osq

R. However, this proof necessitates the following
lemma.

Lemma 1 Let functions fi be the objective functions of problem (1) and sets Ix and
Jx are defined by Ix D

˚
i 2 Nm j f R

i � fi.x/
	

and Jx D
˚
i 2 Nm j f R

i > fi.x/
	
. If all

the functions fi are convex and x 2 X, where X is a convex set, then

1. Ix � .Ix1

S
Ix2 /

2. Jx � .Jx1

T
Jx2 /,

where x D �x1 C .1 � �/x2 2 X, � 2 Œ0; 1�.
Proof Due to the convexity of the function fi, the following holds

fi.x/ � � fi.x1/C .1 � �/fi.x2/ for all i: (8)

In order to proof the first case, consider an index i such that i 2 Ix and i …
.Ix1

S
Ix2 /. Since i 2 Ix, then f R

i � fi.x/. Moreover, since i … .Ix1

S
Ix2 /, then

f R
i > fi.x1/ and f R

i > fi.x2/. The last implies the following:

f R
i D � f R

i C .1 � �/f R
i > � fi.x1/C .1 � �/fi.x2/: (9)

Since fi is convex, inequality (8) holds. From this, inequality (9) and the assumption
that i 2 Ix, it follows

f R
i � fi.x/ � � fi.x1/C .1 � �/fi.x2/ < f R

i ;

which contradicts the assumption that i … .Ix1

S
Ix2 / and thus i 2 .Ix1

S
Ix2 /. Same

holds for every index of i 2 Ix and thus Ix � .Ix1

S
Ix2 /.

In the second case, assume that an index i 2 .Jx1

T
Jx2 / and thus f R

i > fi.x1/ and
f R
i > fi.x2/. This property and the convexity of fi imply

f R
i D � f R

i C .1 � �/f R
i > � fi.x1/C .1� �/fi.x2/ � fi.x/:

Now f R
i > fi.x/ and thus i 2 Jx. Same holds for every index of i 2 .Jx1

T
Jx2 / and

thus Jx � .Jx1

T
Jx2 /. ut

Theorem 8 Let X be a convex set, and functions fi be the objective functions of
problem (1). If all the functions fi are convex, then Osq

R.f .x/;�
U ;�A/ is also convex

when x 2 X.
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Proof According to Lemma 1 we have Ix � .Ix1

S
Ix2 / and Jx � .Jx1

T
Jx2 /. Thus,

Osq
R.f .x/;�

U ;�A/

Dmax
Iq2Jq

(
X

i2Iq

�
max

˚
�U

i .fi.x/� f R
i /; 0

	Cmin
˚
�A

i .fi.x/� f R
i /; 0

	�
)

Dmax
Iq2Jq

8
<

:

X

i2Iq
T

Ix

�U
i .fi.x/� f R

i /C
X

i2Iq
T

Jx

�A
i .fi.x/� f R

i /

9
=

;
:

Now Osq
R.f .x/;�

U ;�A/ is a maximum of the convex functions and hence
Osq

R.f .x/;�
U ;�A/ is also convex function. Thus the convexity is preserved. The

proof with more details can be found in [22]. ut
Note that in order to guarantee Pareto optimality of the solution produced, we

can make the ASF strongly increasing by adding an augmented term [2, 10] to (5),
and the following augmented form

Osq
R C 

X

i2Nm

�i.fi.x/ � f R
i /;  > 0

is used in practice.
The advantages of TSPASF are that we always find at least a weakly Pareto

optimal solution, and the different weakly Pareto optimal solutions may be obtained
by changing the reference point, weighting vectors or the value of the parameter q.
Additionally, compared with PASF there are no restrictions for the location of the
reference point. Thus, there is no need for any tests of achievability of the reference
point since the formulation (5) uses always the right weighting coefficient.

The parameterization used in TSPASF and PASF gives a systematic way
to produce possible different (weakly) Pareto optimal solutions from the same
preference information with different metrics. The systematic way of this kind may
be useful in some interactive methods [10], for example synchronous NIMBUS
[12], using several ASF basing on the same preference information. In order to
find different (weakly) Pareto optimal solutions, problem (6) can be solved with all
values or just some values of the parameter q.

In problem (6), there exists a min-max term. Thus, the problem is nonsmooth
even if the objective functions of problem (1) are differentiable. Nonsmooth
problems can be solved efficiently with bundle methods [6]. Problem (6) can also
be turned into differentiable MINLP form as follows:
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min ˛ (10)

s: t: ˛ �
X

i2I
q
s

�
�U

i .1 � zs
i /.fi.x/ � f R

i /C zs
i�

A
i .fi.x/� f R

i /
�
; s D 1; : : : ;

 
m

q

!

f R
i � fi.x/ � zs

i M; i 2 Iq; s D 1; : : : ;
 

m

q

!

f R
i � fi.x/ � .zs

i � 1/M; i 2 Iq; s D 1; : : : ;
 

m

q

!

x 2 X; zs
i 2 f0; 1g; i 2 Nm; s D 1; : : : ;

 
m

q

!

;

where s enumerates a q-element subsets Iq
s of an m-element set Nm, zs

i is a binary
variable and M is a sufficiently large number to ensure that zs

i D 1 if and only if
f R
i � fi.x/ > 0 and zs

i D 0 if and only if f R
i � fi.x/ � 0. Due to the binary variable zs

i ,
some mixed-integer programming solver, for example generalized ˛ECP algorithm
[3], is needed.

According to Theorem 8, in the case where all the objectives fi are convex,
also Osq

R is convex, and thus the global optimum can be found. In general, if the
objectives fi are nonconvex, then problem (6) can be solved with a bundle method,
and problem (10) can be solved with ˛ECP algorithm, but only the local optimum
can be guaranteed. If the objectives are assumed to be f ı-pseudoconvex, then also
global optimum can be guaranteed with bundle [8] and ˛ECP [3] method.

Case of Three Objectives

In [4], there is given some graphical illustration of two-slope ASF with two
objectives. This illustration is valid also for TSPASF in the case when q D 1. In
order to illustrate the functioning of TSPASF and to compare it to parameterized
ASF, we consider the simplest non-trivial case, in other words the case where m D 3.
This represents Osq

R in the case of three objectives. Now (5) has the form

Osq
R.f .x/;�

U ;�A/ D max
Iq	f1;2;3gWjIqjDq

(
X

i2Iq

h
max

˚
�U

i .fi.x/ � f R
i /; 0

	

Cmin
˚
�A

i .fi.x/� f R
i /; 0

	 i
)

;

where q D 1; 2; 3, �U D .�U
1 ; �

U
2 ; �

U
3 / and �A D .�A

1 ; �
A
2 ; �

A
3 /, �

U
i ; �

A
i > 0, i 2 N3.

Now
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for q D 1:

Os1R.f .x/;�U ;�A/ D
max

n
max

˚
�U
1 .f1.x/ � f R

1 /; 0
	Cmin

˚
�A
1 .f1.x/� f R

1 /; 0
	 I

max
˚
�U
2 .f2.x/� f R

2 /; 0
	Cmin

˚
�A
2 .f2.x/ � f R

2 /; 0
	 I

max
˚
�U
3 .f3.x/� f R

3 /; 0
	Cmin

˚
�A
3 .f3.x/ � f R

3 /; 0
	 o

for q D 2:

Os2R.f .x/;�U;�A/ D
max

n
max

˚
�U
1 .f1.x/� f R

1 /; 0
	Cmin

˚
�A
1 .f1.x/ � f R

1 /; 0
	

Cmax
˚
�U
2 .f2.x/ � f R

2 /; 0
	Cmin

˚
�A
2 .f2.x/� f R

2 /; 0
	 I

max
˚
�U
1 .f1.x/ � f R

1 /; 0
	Cmin

˚
�A
1 .f1.x/� f R

1 /; 0
	

Cmax
˚
�U
3 .f3.x/ � f R

3 /; 0
	Cmin

˚
�A
3 .f3.x/� f R

3 /; 0
	 I

max
˚
�U
2 .f2.x/ � f R

2 /; 0
	Cmin

˚
�A
2 .f2.x/� f R

2 /; 0
	

Cmax
˚
�U
3 .f3.x/ � f R

3 /; 0
	Cmin

˚
�A
3 .f3.x/� f R

3 /; 0
	 o

for q D 3:

Os3R.f .x/;�U ;�A/ D
max

˚
�U
1 .f1.x/� f R

1 /; 0
	Cmin

˚
�A
1 .f1.x/� f R

1 /; 0
	

Cmax
˚
�U
2 .f2.x/� f R

2 /; 0
	Cmin

˚
�A
2 .f2.x/� f R

2 /; 0
	

Cmax
˚
�U
3 .f3.x/� f R

3 /; 0
	Cmin

˚
�A
3 .f3.x/� f R

3 /; 0
	
:

Next we give some graphical illustrations of 1-level sets (i.e., the set of points
for which the distance from the reference point equals 1 with respect to the
corresponding ASF) in 3-dimensional space for both PASF Qsq

R and TSPASF Osq
R to

see the difference between them. The algebraic form of Qs3R is given in [15]. The
view is restricted within a rectangular ff D .f1; f2; f3/T W �2 � fi � 1; i 2 N3g, and
the reference point is assumed to be f R D .0; 0; 0/T . All the objective functions are
assumed to be identity mappings fi.x/ D x, and all the weighting coefficients are
equal to one, �U

1 ; �
U
2 ; �

U
3 ; �

A
1 ; �

A
2 ; �

A
3 D 1. Figures 2a, 3a and 4a show 1-level set of

Qs1R, Qs2R, and Qs3R, respectively and Figs. 2b, 3b and 4b show 1-level set of Os1R, Os2R, and Os3R,
respectively.

Notice that the choice of the parameter q affects the shape of D-levels. These
D-levels may vary from sharp to flat. Those cases where faces are parallel to the
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Fig. 2 1-level sets for PASF and TSPASF with q D 1. (a) 1-level set for Qs1R.f .x/;�/. (b) 1-level
set for Os1R.f .x/;�U ;�A/
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Fig. 3 1-level sets for PASF and TSPASF with q D 2. (a) 1-level set for Qs2R.f .x/;�/. (b) 1-level
set for Os2R.f .x/;�U ;�A/

faces f1f2, f1f3, or f2f3 correspond to the situation then one of the maxima equals to
one and other two are less than one or zero. If sum of two maxima equals to one and
the third is less than one or zero, it corresponds the case where faces are sloped and
parallel to the coordinate rays. If all the three maxima are positive and sum of them
equals to one, we have either a flat face (see Fig. 4b) or a triangle pyramid with a
top vertex . 1

2
; 1
2
; 1
2
/ in Fig. 3b. These top vertices correspond to those cases when all

three maxima are participating.
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Fig. 4 1-level sets for PASF and TSPASF with q D 3. (a) 1-level set for Qs3R.f .x/;�/. (b) 1-level
set for Os3R.f .x/;�U ;�A/

Note that if the resulting optimal value of D-level set is positive in the case of
TSPASF, then it corresponds to the case of unachievable reference point. A negative
value signals about reference point achievability. In case of PASF, negative value of
D-level set is not possible.

Computational Experiments

In this section, we consider some computational experiments for TSPASF. Com-
pared with PASF in [15] and two-slope ASF in [4], TSPASF generalizes both of
them. Due to the theoretical properties of these functions, when the reference point
is unachievable, the both TSPASF and PASF give the same solution. In the case of
achievable reference point, PASF cannot be used. On the other hand, regardless of
the reference point, the same solution is obtained with two-slope ASF and TSPASF
when q D 1.

In order to explore the behavior of TSPASF, several test problems described
in [13] are used. The computational calculations are carried out by applying
multiobjective proximal bundle method [7, 9]. This method is designed for
nonconvex and constrained problems with possibly several objective functions.

The computational tests are divided into two groups based on their convexity. In
both cases twenty reference points between the ideal and nadir point are randomly
generated and the used weighting vectors �U, �A are of the form

�U D 1

f N � f R
; �A D 1

f R � f I

as suggested in [4].
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In these computational tests, we have concentrated on studying three aspects. The
first one is to guarantee that by changing the value of the parameter q we can indeed
obtain different solutions, not only in theory but also in practice. Another interesting
issue is a sparsity of the solutions produced or how much solutions differ. The last
aspect, which has been singled out and studied, is the computational time. Since the
computational time may vary a lot between convex and nonconvex problems, these
both cases are considered. In addition, the Pareto frontier is usually much nicer in
convex than in nonconvex case.

According to our results, most of the times the solutions obtained by varying the
value of the parameter q differ and the difference is significant both in the convex
and the nonconvex test problems. In the convex case, the solution times produced
with the different values of the parameter q are the same order whereas in the
nonconvex test problem q D 1 turns out to be clearly the most time-consuming value
of the parameter q. Thus, with TSPASF by varying metrics between Chebyshev
and linear metric, the different solutions with good sparsity are obtained without
growing computational efforts compared with the two-slope ASF [4] equaling the
case q D 1 in TSPASF.

In the following, the convex and the nonconvex test problems are analyzed closer.

Convex Case

We consider the following convex Chankong-Haimes test problem [13]

min f .x/ D ..x1 � 1/2 C .x2 � 1/2; .x1 � 2/2 C .x2 � 3/2;
.x1 � 4/2 C .x2 � 2/2/

s: t: x1 C 2x2 � 10
0 � x1 � 10
0 � x2 � 4;

with three objectives and two variables.
In the following, we refer to the cases where for one reference point a solution

is calculated with every value of the parameter q 2 N3. Thus, twenty cases are
considered due to the number of the generated reference points. Among these
randomly generated reference points, there are 40% of achievable reference points
and 60% of unachievable reference points.

In Table 1, the difference and the sparsity of the solutions are analyzed. Here
solutions with linear metric (q D 3) and Chebyshev metric (q D 1) are compared
with the case where q D 2 and the used metric is something between Chebyshev
and linear metric.
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Table 1 Differences of solutions

Convex case qD 1 q D 3

Cases where x� with q D 2 equals to x� with 15% 0%

Average relative distance between f .x�/ with q D 2 and 0.52065 0.31203

Nonconvex case qD 1 q D 3

Cases where x� with q D 2 equals to x� with 0% 10%

Average relative distance between f .x�/ with q D 2 and 201 203.24 0.15565

In Table 1, the first row presents the percentage value of cases where both values
q D 1 and q D 3 give the same solution as the solution obtained with value q D 2.
As Table 1 indicates, with values q D 3 and q D 2 we never obtain the same
solution, and with values q D 1 and q D 2 only 15% of cases the solutions were the
same. Thus, by varying the value of the parameter q, mostly different solutions are
obtained.

In the second row, the sparsity of the solutions is considered by calculating the
(relative) distances between solutions. Table 1 reports the averages of these distance
calculations. In the comparison of the distances between solutions obtained with
q D 1 and q D 2, the average distance in the objective space is 0.52065. By
excluding the cases where the same solution was obtained, every distance belongs to
the interval from 0.069274 to 1.59813 in the objective space. The average distance
with values q D 2 and q D 3 is 0.31203 in the objective space, and each of these
solutions belongs to the interval from 0.11194 to 0.70154 in the objective space.
Based on these calculations, it can be said that the differences between the solutions
are significant.

Since the solutions obtained by varying the value of the parameter q are actually
various solutions, it is also interesting to know what the price of the different
solutions is in terms of the number of the iterations. To explore this aspect, in Table 2
we describe the average number of the iterations and function calls needed when the
calculations are carried out with multiobjective proximal bundle method. In these
calculations, both the average number of the iterations and the function calls are
approximately on the same order regardless of the value of the parameter q.

Nonconvex Case

We scrutinize the following nonconvex water resources planning test problem [13]

min f .x/ D .e0:001x1x0:021 x22; 0:5x22; �e0:005x1x0:0011 x22/

s: t: 0:01 � x1 � 1:3
0:01 � x2 � 10;
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Table 2 Computational times

Convex case q D 1 qD 2 q D 3

Average number of iterations 12.20 16.95 6.00

Average number of function calls 15.10 22.80 8.10

Nonconvex case q D 1 qD 2 q D 3

Average number of iterations 30.9 7.45 5.85

Average number of function calls 53.3 15.45 13.6

with three objectives and two variables as were also in the example problem in
the convex case. Again, in this nonconvex case 20 different reference points are
generated randomly. There are now 35% of achievable and 65% of unachievable
reference points.

In Table 1, the sparsity of the solutions is analyzed also in the nonconvex case. As
Table 1 shows, with values q D 1 and q D 2 the same solution was never obtained
and with values q D 2 and q D 3 only 10% of cases the solutions produced are the
same. Thus, the different solutions are obtained by varying the parameter q also in
the nonconvex case. By comparing this with the convex case, we see that the total
number of the same solutions is now smaller. In addition, the same solutions are
produced only with values q D 2 and q D 3 whereas in the convex case the same
solutions are produced with values q D 1 and q D 2.

When we consider the (relative) distances between the solutions produced
described in Table 1, we see that in the nonconvex case the distances are significant
as was also in the convex example. The average distance between the solutions
obtained with q D 1 and q D 2 is 201,203.24 in the objective space and every
distance belongs to the interval from 0.0075685 to 762,114. The large end point of
the interval is the cause of the relative distance since the solution obtained in the
objective space in case q D 2 is so close to the zero vector. The distances between
the solutions obtained with q D 2 and q D 3 is 0.15565 in the objective space. By
excluding the cases where the same solution was obtained, every distance belongs
to the interval from 0.00067393 to 0.99999 in the objective space.

As said above, in Table 2, the computational times are described, and in the
convex case the value of the parameter q does not affect computational time signif-
icantly. In the nonconvex case, the most time-consuming value of the parameter q
is 1 representing Chebyshev type function. In this case, the number of the iterations
and the function calls are both significantly larger than the corresponding values for
other two values of the parameter q.

Conclusion

In this paper, we have presented a new family of achievement scalarizing functions
based on a parameterization utilizing two different weighting vectors depending on
whether the reference point is achievable or not. We have proven that we always find
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at least weakly Pareto optimal solution, and, if the solution is unique, it is Pareto
optimal. We have also proven that every weakly Pareto optimal solution can be
produced. Furthermore, we can find the different solutions by changing the value of
the parameter q, the reference point or the weighting vectors. Additionally, to use
TSPASF, there is no need for any assumptions about the reference point nor test the
reference point achievability.

We have also illustrated the shapes of the different D-levels, and the com-
putational tests have been performed for both convex and nonconvex problems.
These results have shown that the sparsity of the solutions produced is good. The
computational time does not grow with the different values of the parameter q in the
convex case, but in the nonconvex case, Chebyshev type function turns out the most
time-consuming value of the parameter q.

The presented TSPASF gives a systematic way to produce different (weakly)
Pareto optimal solutions from the same preference information with different
metrics. The property of this kind could be used, for example, in some interactive
methods. The different solutions can be calculated with all values of the parameter
q or just some of them. Thus, it is interesting to know more about how the value q
affects the shape of D-level.

In future, the one possible continuation of this work is to apply TSPASF in
synchronous decision making approach. For example, the water treatment facilities
design problem with four objectives [14] can be considered. Another possible future
research is the use of TSPASF in data envelopment analysis.
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