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This chapter introduces the architectures

implementing the digital processing platforms

and control for Internet of things applications. It

will provide a review of the state of the art Ultra-

Low-Power (ULP) micro-controllers architec-

ture, highlighting the main challenges and

perspectives, and introducing the potential of

exploiting parallelism in this field currently

dominated by single issue processors.

3.1 Definitions and Motivations

The last years have seen an explosive growth of

small, battery powered devices that sense the

environment and communicate wirelessly the

sensed data after some data processing, recogni-

tion, or classification. Collectively referred to as

the Internet of Things (IoT), all these devices

share the need for extreme energy efficiency

and power envelopes of few milliwatts. From a

system level perspective, in architectures

targeting such applications, the data acquisition

part is implemented by a sensing subsystem,

realized with low-power sensors such as visual

imagers, microphone arrays, Micro Electro-

Mechanical Systems (MEMS), or bioelectrical

sensors. Sensed data is then digitally processed

with low-power microcontrollers (MCUs), and

transmitted through a wireless communication

subsystem consisting of low-energy TX/RX

radio transceivers implementing low-energy

stacks. While these three subsystem are some-

times split over more than one chip, the market is

trending toward fully-integrated single-chip

solution. The entire IoT node is powered by

harvesters or small form factor batteries (power

supply/conversion subsystem). Despite of an

almost 10x reduction of the transceiver power

in just a few years, its share in the overall

power budget of most wireless sensor nodes and

wearables remains dominant (De Groot 2015). In

this scenario, a high-potential approach to reduce

the system energy is to increase the complexity

of near-sensor data analysis and filtering by

providing more computational power to the

processing sub-system. This approach can dra-

matically reduce the amount of wireless data

transmitted, that could be reduced to a class, a

signature, or even just a simple event. For this

reason, the availability of powerful, flexible and

energy-efficient digital processing hardware in

close proximity to sensors plays a key role in

the internet of things revolution. The aim of this

chapter is to review the state of the art of
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ultra-low power computing platforms for near-

sensor processing, and highlight the main

challenges and perspectives related to these

architectures.

Most of low-power commercial microcon-

trollers cannot provide the required performance

levels for several applications within the power

budgets offered by small form factor coin

batteries and energy harvesters. A promising

approach to achieve up to one order of magnitude

of improvement in energy efficiency of

integrated circuits with respect to “business as

usual” CMOS in strong inversion is ultra-low

voltage, near-threshold computing. The key

idea is to lower the supply voltage of chips to a

value only slightly higher than the threshold

voltage. Aggressive voltage scaling has been

extensively analyzed in the literature, including

its limitations and disadvantages (Dreslinski

et al. 2010). One of the main issues with

low-voltage operation is performance degrada-

tion, which can limit the degree of use of

voltage-scaling for a given processing

requirement.

A commonly adopted approach to overcome

the performance loss in ultra-low voltage devices

on hardwired functions implemented in Applica-
tion Specific Integrated Circuits (ASICs). By

exploiting dedicated circuits, digital processing

systems are able to match the performance

requirements of applications, even at a very low

operating voltage, with frequencies of tens to

hundreds of KHz and power consumptions in

the range of few μW to hundreds μW. In some

cases, these dedicated systems, implemented as

System-On-Chip (SoC) or System-In-Package
(SiP), integrate digital signal processing circuits,

analog front end, analog signal processing

circuits, and power supply circuits (batteries,

harvester or both) leading to extremely compact

form factors.

The dedicated ASIC approach has been exten-

sively used in traditional fields of applications of

ultra-low power devices, such as wearable or

implantable sensors for health monitoring

(Zhang et al. 2012; Yoo et al. 2012; Yakovlev

et al. 2012). Although these devices minimize

power consumption, they are not flexible as

their function is limited to the specific purpose

for which they are designed. Also, their perfor-

mance is not scalable as they are designed with a

specific use case in mind. While adoption of

dedicated circuits is attractive to tackle the strin-

gent constraints of implantable applications for

health monitoring (tens of microwatts), these two

important aspects limit the exploitation of dedi-

cated circuits for the majority of IoT applications

since the Non Recurrent Engineering (NRE)

costs required for their development cannot be

amortized over large volume products.

When the targeted algorithms are more

generic, so that can they be re-utilized for more

than a single application, the above described

restrictions can be relaxed by providing some

run-time configurability to the integrated

circuits, and by increasing the operating range

via voltage and frequency scaling. As this

approach has mainly been applied to the signal

processing field, this class of computing devices

is usually referred as Application (or domain)

Specific Signal Processors (ASSPs). Several

examples of this class of devices apply to visual

sensors, where several basic functions

implemented with dedicated accelerators or

specialized processors can be shared among dif-

ferent applications (Park et al. 2013; Hsu et al.

2012; Jeon et al. 2013).

The ultimate step toward flexibility is given

by the exploitation of the software

programmability of instruction processors. In

last few years some instruction processors work-

ing in the near-threshold or sub-threshold

operating region have been presented from both

industry (Ambiq 2015) and research (Bol et al.

2013). Some of the proposed devices are also

able to work on a wide range of operating points,

as the low voltage operation might not be always

suitable to match the requirements of the appli-

cation targets (Gammie et al. 2011). Again, when

operating at low voltage, sequential instruction

execution coupled with very slow operating fre-

quency may lead to insufficient performance for

the application requirements. Explored solutions

to improve performance of ultra-low power

processors while maintain a high degree of

flexibility also rely on the exploitation of
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software parallelism. The exploitation of multi

core platforms can provide benefits with respect

to single processor cores for high application

workloads as it has been demonstrated that par-

allel computing at low voltage can be more

energy efficient than sequential computing at a

higher voltage under certain assumptions (Dogan

et al. 2011). This concept has been extensively

exploited for high-end embedded applications,

where multi-core architecture has become the

de-facto standard. On the other hand, when the

application workload is low, or when the

workloads are not easily parallelizable, the

introduced multi-core platforms suffer from

energy efficiency losses with respect to single

core platforms, mainly caused by static (primar-

ily leakage-induced) power consumption, due to

the larger area and architectural overheads.

Hence, while multi-core platforms are starting

to be seen with interest in the world of ultra-

low-power applications, a great effort still needs

to be done to target the applications driving the

IoT domain.

The rest of the chapter is organized as follow:

Section 3.1 describes the architecture of off-the-

shelf microcontrollers typically employed in IoT

applications. Section 3.2 describes the main

challenges of IoT computing platforms, mainly

related to the exploitation of performance scal-

ability exploiting parallel processing. Section 3.3

provides an example of research Parallel Ultra-

Low-Power computing platform (PULP).

Finally, Sect. 3.4 provides some concluding

remarks, and highlights challenges and

perspectives.

3.2 Ultra-Low-Power
Microcontroller Architectures

The applications targeted by current off-the-shelf

microcontroller (MCUs) architectures require to

periodically fetch environmental information

from a wide variety of sensors, which is then

transmitted via wireless through low-power

antennas after a limited amount of processing.

In this scenario, to maximize the power effi-

ciency of the system, the data processing hard-

ware should be active only for the small amount

of time required to read, process and transmit the

information, while it is idle for the rest of the

time. It is usual to refer to this mechanism as duty
cycling. Figure 3.1 shows the typical power con-

sumption pattern of a microcontroller employed

for a generic IoT application. For most of the

time, the MCU is in a deep sleep state where it

is waiting for an event to wake up, triggered by

an internal timer or by an external event

generated by one of the sensors. Once the event

is captured the device restores the power supply

and restarts clocks (wake-up), restores the state

of the CPU (stack, data etc.) and then can start

fetching new data from I/Os, process and trans-

mit it. Once done with the processing, it can save

the state and go back to sleep.

Today microcontrollers (MCUs) feature sev-

eral power modes to deal with different applica-

tion scenarios where the various states may have

a very different duration, duty cycles and perfor-

mance requirements. For example if an applica-

tion has to deal with frequent wake-ups, paying

at each wake-up the price of saving and restoring
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Fig. 3.1 Typical power profile of IoT applications
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its full state is highly inefficient and a power

mode with higher off current but with state reten-

tion in this case is much more valuable.

3.2.1 Power Management

Having an efficient off and idle states is a key

requirements for micro controllers. In many IoT

applications sleep-mode current is the biggest

contributor to the overall power consumption.

When considering sleep-mode current we should

consider also the current required to reactivate

the circuit. Wakeup currents have a big impact on

the choice of the sleep mode. There are many

different techniques to reduce the power con-

sumption when idle (Sect. 10).

The simplest approach is clock gating, which

only implies stopping the clock. In this mode

dynamic power is cut and only leakage current

is flowing. This mode is state retentive and

requires no time to go back to active if the

clock generator is still running. Clock gating

usually has a very fine grained granularity,

mostly all blocks in the system can be put in

idle mode independently since it does not have

any overhead at circuit level. Wakeup time after

an idle state is dependent only on the status of the

clock generator. If the clock generator is kept on,

the wakeup time is negligible; but the clock

generator has also been stopped for more aggres-

sive power savings. The wake-up time is strongly

impacted by the type of clock generator. In

today’s microcontrollers there are different

types of clock generation unit to deal with the

different operating corners that always guarantee

the maximum efficiency. A good example of

state of the art clocking offer in microcontrollers

is the latest STM32L4 family. In the micro of the

L4 family there are five available clock sources

(see Fig. 3.2). There are two low speed

generators that generate a 32 kHz frequency:

one oscillator using an external quartz (LSE)

and another one using an internal RC oscillator

(LSI), which is more power-efficient but less

precise. The same is done for the faster 48 MHz

clock, where there is an oscillator using an exter-

nal clock (HSE) and an internal configurable RC

oscillator (MSI). The fifth clock source is a fixed

16 MHz internal RC oscillator. The L4 has also

three PLLs capable of multiplying the frequency

and reaching up to 180 MHz (Microelectronics

Fig. 3.2 Example of state of the art clock distribution
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2016). Sleep mode turns the clocks to the core

off, but the user has the option to leave on the

peripherals’ clocks. The power in this mode is

not just leakage but dynamic current of the

peripherals that are left on. In this mode data

can be still received, and the core retains its

state and continues operation when required.

All clocks to the digital logic are turned off and

the analog sub-systems can be controlled to have

flexible wake up times depending on the applica-

tion requirements. The lowest power mode is

when all the analog clocking elements are turned

off. Wake up time is determined by the selection

of the wake up clock source. The fastest time is

from the low-power oscillator and the slowest

time is from the crystal oscillator and the PLL.

To reduce leakage in idle mode, clock gating

is used in conjunction with voltage scaling.

When the clock is stopped we can afford to

lower the voltage as low as the retention voltage

for the memory elements. The cost of this at

circuit level is the required flexibility in the

power supply. The effect on the application is

that we require more time to exit the idle mode

due to the settling time of the power supply.

Further reduction can be obtained by not only

lowering the voltage but also applying a reverse

body biasing to increase the threshold voltage of

the devices (Rossi et al. 2016a).

The lowest leakage is obtainable only with

power gating, where the power supply is turned

off. All microcontrollers available today feature

a deep-sleep mode where the device power sup-

ply is disconnected and only a small always-on

part of the chip controlling the wake up is kept

alive. Always-on domain usually have an RTC to

have the possibility to wake up the system after a

certain amount of time and have a set of memory

elements (flops or SRAMs) to keep track of the

previous state. The amount of features active on

the always-on domain is usually selectable by the

user to give maximum flexibility depending on

the application requirements. The startup behav-

ior of the analog modules can have a major

impact on the amount of time spent in active

mode; voltage regulators or references utilizing

external decoupling caps can take milliseconds

to settle. Therefore, it is important for a systems

designer to analyze the overall wake-up and

settling time for both the digital and analog cir-

cuitry to factor in the true cost of this wasted

energy. State of the art devices as the Ambiq

Apollo have deep sleep currents as low as

100 nA with RTC on (Ambiq 2015).

3.2.2 IO Architecture

Peripheral subsystems in microcontrollers

include an extensive set of peripherals needed

to connect to the wide variety of sensors avail-

able on the market. Although MCUs traditionally

feature low bandwidth interfaces like UART,

I2C, I2S or standard SPI, they lately include

also higher bandwidth peripherals like USB or

camera and display interfaces. Low bandwidth

peripherals are usually attached to a shared bus

and high bandwidth peripherals are usually

connected to the system bus. Traditionally, the

I/O was constantly supervised by the CPU and

the CPU was responsible of handling peripherals

events and regulate data transfer to/from periph-

eral and memory. Recent MCUs have increased

the complexity of the I/O subsystem to support

more power modes to be able to selectively turn

on peripherals only when needed (Figure 3.3).

Further reduction in power can be obtained by

increasing the intelligence of the peripherals and

have they run without CPU supervision while the

CPU is in sleep mode. The “smart peripheral”

approach is used more and more in the most

advanced MCUs. It has many variants with dif-

ferent names, but the general idea is the same.

For example ATMEL “SleepWalking” features

in the latest SAM-L2 family enable events to

wake up peripherals and put them back to idle

when data transfer is done without any CPU

intervention for instance using a DMA (Atmel

2015). Another example is the Renesas’ RL78

which has a “snooze mode” where the analog-to-

digital converter (ADC) operates while the pro-

cessor is asleep. An I2C slave or CAN controller

can watch for an address before it captures

incoming data and then wakes up the CPU

(Renesas 2014). Cypress Semiconductor’s

PSoC flexible family was one of the pioneers
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with their configurable digital and analog

peripherals. Part of the configuration is the abil-

ity to link peripherals together without the CPU

being involved. The company’s latest PSoC

4 BLE (Bluetooth Low Energy) can operate the

BLE radio while the CPU is idle (Cypress et al.

2016). Microchip’s Configurable Logic Cell

(CLC) highlights the more conventional

approach to configurable peripherals. A micro-

controller may have one or more CLC blocks.

Each block has a selectable set of inputs and

outputs with limited logic capability so the out-

put of one peripheral can be fed to another. As

with the PSoC, linked peripherals can often han-

dle simple algorithms faster than the CPU. ST

Microelectronics’ STM32 has “autonomous

peripherals” that use a “peripheral interconnect

matrix” to link peripherals together. Timers,

DMAs, ADCs, and DACs can be linked together.

Or with their latest “Analog Chain” where

comparators, references, DACs and ADCs can

be interconnected to generate complex triggers

(Microelectronics 2016). The trend towards more

functionality and complexity is highlighted by

Microchip’s PIC16F18877 family. It has a

10-ADC tied to a computational unit that can

do accumulation and averaging. It can even do

low-pass filter calculations in hardware. The

CPU can sleep until a filtered result exceeds

programmed limits (Microchip 2016).

3.2.3 Data Processing

Reduction of energy consumption for the data

processing part should be improved under differ-

ent aspects, by improving the micro-architecture

of the CPU increasing the amount of data that can

be processed per cycle, or by optimizing the

circuit design to reduce the power consumed

per cycle.

The Architecture of CPUs used in MCUs has

rapidly evolved in the last years, moving quickly

from the 8 bit architectures to the now wide-

spread 32 bit ARM Cortex-M architectures. The

architectural evolutions are driven by the con-

stantly increasing demand for performance for

the always more complex applications. The vast

majority of CPUs used in microcontrollers are

single issue machine in which instructions are

executed in order. The only exception today is

the Cortex-M7 recently released by ARM which

has a dual-issue pipeline. The choice of simple

single issue micro-architecture is mainly dictated

by energy efficiency for the target performance.

We are not yet in the performance range to

justify multiple-issue superscalar architectures.

Engineers focused more on optimization to the

micro architecture to improve as much as possi-

ble the IPC (instruction per cycle) and the data

level parallelism.
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The most common improvements include for

example hardware loops to speed up loops on

tiny kernels typical of most DSP applications. It

is usually done with one or more instructions that

setup a dedicated logic which controls the num-

ber of interactions of a loop and the fetch stage,

with the benefit of reducing the amount of cycles

needed to compare and jump back at the end of a

loop. The benefit is huge when small kernels are

considered (Gautschi et al. 2015).

Other non DSP-specific improvements are

loads and stores with pre- and post-increment

whose main usage is to reduce the number of

instructions needed to access consecutive mem-

ory locations.

More on the DSP optimizations we have for

example the use of SIMD (Single instruction

Multiple Data) where a single arithmetic instruc-

tion can operate on multiple data. On high-end

CPUs this is often coupled with wider access to

memory to handle multiple data at the data path

width. On microcontrollers it is much more com-

mon to use their less power hungry version based

on data size lower than the data path width. It is

common to have the possibility to process 2 half-

words or 4 chars with a single 32bit instruction.

Good examples are the DSP extensions

introduced in the Cortex-M4 (ARM 2010).

Architectural optimization to support single

cycle multiplications and dedicated instructions

for MACs, as well as hardware support for satu-

ration arithmetic to better handle fixed point

arithmetic, are other examples of how CPUs are

extended to increase energy efficiency during the

execution of DSP algorithms.

Those were the optimizations for the data

and control logic but with the introduction of

the ARM cores we also saw improvements on

the instruction side. The ARM7TDMI ARM

introduced the THUMB instructions, which

allows some instructions to be coded using

16-bit instead of 32-bit, reducing the pressure

on the instruction memory, the overall code

size and instruction memory requirements.

Table 3.1 summarizes the main features of few

MCUs widely used for ultra-low-power

applications, while Figure 3.4 shows their typical

architecture.

Table 3.1 Summary of commercial low power MCUs

MCU 16 F1503 MSP430FR6x SAML21x

Kinetis

KL17

EMF32

Pearl

Gecko Apollo STM32F745xx

Instruction set

architecture

PIC MSP430 ARM

Cortex M0

+

ARM

Cortex M0

+

ARM

Cortex

M4

ARM

Cortex

M4

ARM Cortex

M7

Datapath 8-bit 16-bit 32-bit 32-bit 32-

bit + FPU

32-

bit + FPU

32-bit + FPU

(dual issue)

Memory I: 2 bB

SRAM

128 kB

FRAM

256 kB

FLASH

256 kB

FLASH

256 kB

FLASH

512 kB

FLASH

1 MB FLASH

D: 128 B

SRAM

64 kB

SRAM

32 kB

SRAM

32 kB

SRAM

64 kB

SRAM

340 kB SRAM

Max Freq.

(MHz)

20 16 48 48 40 24 216

Current (μA/
MHz)

30 100 35 54 60 34 700

Deep sleep

current (μA)
0.02 0.02 0.2 0.28 0.02 0.12 2

State-retentive

current (μA)
NA 0.02 1.3 1.96 1.4 0.193 2.75

Retentive deep

sleep

No Yes No No No No No

3 Ultra-Low-Power Digital Architectures for the Internet of Things 75



3.2.4 Non-volatile Memories

As briefly mentioned, before energy spent to save

and restore the state before and after a deep sleep

state has a deep impact on how often and for how

long a deep sleep state could be used. Such cost

depends almost entirely on the type of memory

used for the storage. Embedded flash memories

are the most common type of non-volatile mem-

ory used but, due to their high write energy and

low endurance, they are not suitable to be used

for state retention during frequent power cycles

(Chap. 6). In today microcontrollers, state reten-

tion is implemented by keeping active part of the

circuit, with the consequent reduction of the

effectiveness of the deep sleep state.

Recent developments in non-volatile

memories show many possible solution to this

problem. Texas Instruments has recently

included in their MSP430 family some

microcontrollers based on FeRAM (Texas

2011). FeRAM have a structure very similar to

DRAM where a bit cell is made of one transistor

and one capacitor and they share with DRAM the

high speed. The capacitor is implemented by

using a ferroelectric material (usually PZT lead-

zirconate-titanate) which is polarized in two pos-

sible states that are kept without requiring any

refresh. Other types of memory currently under

study and close to commercial applications are

MRAM, STT-MRAM, and PCRAM. Magnetic

RAM (MRAM) are based on memory cells

constituted of two magnetic storage elements,

one with fixed polarity and one with switchable

polarity. Depending on the state of the switch-

able element the resistance of the overall cell

changes and that is what is sensed by the read

circuitry. STT-MRAM is a particular implemen-

tation of MRAMs more suitable for scaled tech-

nology. It uses spin-polarized currents enabling

smaller and less power demanding bit cells. Cur-

rently, STT-RAM is being developed in various

companies including Everspin, Grandis, Hynix,

IBM, Samsung, TDK, and Toshiba. Due to its

easy integration in the CMOS process as well as

its performance, power and scalability properties,
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it is one of the most appealing solutions.

Chapter 7 will present a detailed explanation.

Another example of NVM currently investigated

by the industry is the Phase Change RAM

(PCRAM) in which the bit cell is made of

materials that can exist in two phases (e.g., crys-

talline and amorphous) and result in different

resistance. A more detailed description of NVM

memories in the context of IoT architectures is

presented in Chaps. 6 and 7.

3.2.5 A Step Forward:
Near-Threshold MCU
Architectures

Today’s low-power MCU architectures operate

in the super-threshold domain during active

phases of computation, relying on duty cycling

and heavily optimized deep sleep modes to

improve energy consumption. For example,

some commercial devices, such as Ambiq Apollo

(Ambiq 2015) provides a sub-threshold RTC to

minimize deep-sleep power (~300 nW), but it

operates at 0.9 V, which is only 100 mV below

the nominal operating voltage for the 90 nm pro-

cess technology utilized for its implementation,

providing active power efficiency similar to other

commercial MCUs. Although this approach

provides a very low power for applications

requiring low computational workloads (e.g., a

temperature sensor wakes up the microcontroller

once per minute to transmit sensed data) the

situation drastically changes when the appli-

cations require nearly always-active operation.

In this scenario, the energy consumption of a

microcontroller can increase by up to three orders

of magnitude (i.e., from tens of μW to tens of

mW, on average). Near threshold computing is

emerging as a promising approach to achieve

major energy efficiency improvements of ultra-

low-power digital architectures (Dreslinski et al.

2010). However, this comes at the cost of perfor-

mance degradation and increased sensitivity with

respect to process, voltage and temperature

(PVT) variations. While the performance degra-

dation can be managed by adjusting the operating

voltage of the device according to the required

performance target, compensation of PVT

variations has to be achieved in a transparent

way with respect to the end user, which cannot

be aware of the operating conditions of the

device.

3.2.6 Compensation of Process
and Environmental Variations
in Near-Threshold

The variability of ultra-low-power devices

operating at low voltage has been extensively

analyzed in the last few years from the research

community (Alioto 2012). Some of the

approaches leverage design-time techniques to

improve resiliency of the circuits with respect to

process and temperature variations, including

standard-cell design, clock tree optimization,

and automatic synthesis. All these techniques

are extensively analyzed in Chap. 4. On top of

design level techniques to mitigate the impact of

variations, their compensation is usually

addressed at the architectural level, integrating

mechanisms able to probe the PVT conditions

of the circuit and aging, and provide a feedback

to knobs exposed at system level that allow to

compensate the variations by adjusting the sup-

ply voltage of the circuit.

Widely explored approaches to implement the

probing circuits to adapt the supply voltage are

process monitoring blocks (PMBs), canary

circuits, or razor flip-flops (Ernst et al. 2005).

PMBs are generic structures implementing ring

oscillators with different characteristics (e.g.,

PMOS only, NMOS only, inverters with long

wires). Depending on the specific oscillator

probed from a PMB it is possible to acquire

specific information about the process condition

of PMOS and NMOS, temperature, or voltage.

Although this approach is generic, as it does not

require design of specific hardware for each chip,

some additional logic (e.g., a lookup table) or

software processing is required to merge the

data and provide a feedback to the actuator. A

canary circuit is a replica of the critical path plus

some delay element, often programmable, which

makes the monitor super-critical (Calhoun and
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Chandrakasan 2004). As canary circuits are

designed to clone a specific critical path, they

are not generic components, but they provide a

more direct information on the criticality of the

operating point. The global process variations as

well the environmental conditions can be moni-

tored with both PMBs and canary circuits, and

the supply voltage can be adapted according to

these conditions. However, there are still consid-

erable margins to be assumed to ensure a reliable

operation of the circuit. For example, local pro-

cess variations and IR drop cannot be covered, as

the monitor circuit is a copy of the critical path

placed in a different location. A yet more direct

approach is to use the speed monitor within the

respective circuit block. The razor concept (Ernst

et al. 2003; Blaauw et al. 2008) provides energy

reduction guaranteeing reliable operation by

lowering the supply voltage to the point of first

failure. Timing failures are detected by shadow

latches placed on the critical path of the design

controlled using a delayed clock, eliminating all

margins due to global and local PVT variations.

By comparing the values latched by the flip-flop

and the shadow latch, a delay error in the main

flip-flop is detected. The value in the shadow

latch, which is guaranteed to be correct, is then

used to correct the delay failure. The main draw-

back of the razor approach is that is very design

specific, requiring major manual adjustments to

the microarchitecture of the SoC, as no automatic

razor flops mechanism is available in commer-

cial synthesis tools. This makes the adoption of

this approach very challenging for a wide set of

designs, and impossible when the IP cores are

provided as hard macros or encrypted netlist by

processors or IPs providers.

Although the most traditional way of com-

pensation for PVT variations leads to adjust the

supply voltage of the circuits, other approaches

have been explored at the architectural level:

clock gating the specific pipeline stage where a

fault is detected (Ernst et al. 2003), using

counter flow pipelining (Charles et al. 1994),

through architectural replay (Blaauw et al.

2008), or through insertion of reconfigurable

pipeline stages (Bortolotti et al. 2013). The

main benefit of the architectural compensation

or error recovery mechanism is that they can

react in a single clock cycle to the detection of

a fault or a critical situation. On the other hand,

once again, they are very invasive from the

micro-architectural viewpoint. Alternative

approaches to compensate for PVT variations

rely on the adoption of adaptive body biasing

(Tschanz et al. 2002, 2007). This approach has

several advantages with respect to modulation

through supply voltage. First of all, dynamically

adapting threshold voltage of transistors only

increases leakage power of the circuit, while

adaptation of supply voltage has an impact on

both leakage and dynamic power. With body

biasing it is possible to apply independent polar-

ization to PMOS and NMOS. Hence, it is possi-

ble to optimize the leakage power consumption

of a circuit by applying asymmetric body bias-

ing. Moreover, body biasing is very effective

when the device operates in near-threshold, as

in this operating region small changes of the

threshold voltage of transistor provide signifi-

cant increase (or reduction) of the operating

frequency (Rossi et al. 2016a). Finally, since

the polarization of the PWELL and NWELL

only requires transient currents, modulation of

body biasing can be implemented with simple

and energy efficient circuits (e.g., charge

pumps), as opposed to supply voltage control,

which requires the adoption of DC/DC or volt-

age regulators. As a drawback, the adoption of

body biasing to address large PVT variations is

somehow challenging due to the limited

capabilities of bulk technology to provide

extended body bias ranges. For this reason, join-

ing the degrees of freedom provided by voltage

scaling and adaptive body biasing appear as a

suitable solution to compensate for PVT

variations while tracking the best energy

operation.

3.3 From Single Core to Multi Core

The trend to develop multicore-systems is a gen-

eral tendency for several high-end embedded,

desktop and server platforms. Energy efficiency

requirements have forced processor developers

to add multi-core capabilities instead of increas-

ing the system clock frequency in single-core
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systems (Parkhurst et al. 2006). Cache coherency

and memory bandwidth determine the architec-

ture of such multi-core systems, and when pri-

vate caches are involved, support for cache

coherency across the entire multi-core system is

desired, as it enables the software running on

embedded processing system to balance load

and allocate tasks seamlessly between cores.

Cache coherence protocols must react imme-

diately to writes, and invalidate all cached read

copies in the private cache banks, and this is

source of significant complexity. Complexity

translates into cost, both from silicon and energy

perspective (Martin et al. 2012). Data synchroni-

zation in multi-core systems prevents data from

being invalidated by parallel access whereas

event synchronization coordinates concurrent

execution. One common mechanism to achieve

data synchronization is a lock. Event synchroni-

zation forces processes to join at a certain point

of execution. Barriers can be used to separate

distinct phases of computation and they are nor-

mally implemented without special hardware

using locks and shared memory (Culler and

Singh 1999). Efficient data transfer between

cores in a multi-core system is critical for bal-

anced system performance. A multi-core envi-

ronment introduces high demands on the

interconnect infrastructure and the interconnect

needs to be able to handle multiple streams

simultaneously. Complex interconnect are

widely used to sustain bandwidth and QoS

requirements (e.g., AXI ACE), and again com-

plexity is translated into cost.

On the other side, micro-controller systems

can take benefits of lean a simple architecture

with respect to high-end single/multi-core

systems. For this reason, they are much more

attractive for a wide category of IoT devices.

For instance basic micro-controllers typically

have no data/instruction caches, while multicores

needs complex memory hierarchies to sustain

bandwidth and computational power require-

ments. But the current trend in IoT devices is

that, modern use cases are demanding more and

more computational power (eg. speech and

image recognition, surveillance etc.). To achieve

this target with a prefixed energy budget, stan-

dard micro-controllers are not sufficient to

provide this amount of computational power,

and the trend is to migrate from a single-core to

a multi-core architecture, while maintaining low

the complexity of the memory hierarchy to target

high energy efficiency.

For this reason, multi-core architectures are

beginning to penetrate the microcontroller busi-

ness segment: recently, a new class of heteroge-

neous dual-core MCU products appeared in the

market. These devices have cores with different

instruction set architectures (i.e., Cortex M0 and

Cortex M4) (NXP Semiconductors 2015) and

rely on the architectural heterogeneity to achieve

energy efficiency with a principle similar to the

mid-to-high-end big-little multi-cores (Peter

2011). In these architectures, the little core is

mainly meant for control of peripherals and low

workload tasks, while the big processor perform

heavy data processing tasks. The main advantage

of these architectures is that cores are completely

decoupled, easing the partial shut-down of the

platform when one of the cores is not used. On

the other hand, this decoupled architecture,

where each core has its own binary and process

data on private memories, doesn’t allow for easy

and fair workload distribution among cores, and

requires to keep private copies of data-buffers,

which dramatically reduces the computational

efficiency of the platform when true data level

parallelism has to be exploited.

A more convenient approach to the design of

parallel low-power architectures is a tightly cou-

pled clusters sharing, similarly to what happens

in GPGPUs, a multi-banked L1 memory. With

respect to traditional architectures featuring

per-core private data memory, where data buffers

are processed on the local, low-latency L1 mem-

ory, and shared with the other cores through a

higher high-latency L2 memory, the tightly cou-

pled data memory approach significantly reduces

the data-sharing overhead, as the memory banks

can be accessed by all cores with a fixed latency

(usually one cycle). This way allows to effi-

ciently exploit both data and task parallelism, as

opposed to more traditional private L1 memory

scheme that allows to run efficiently only task

parallel applications, enabling better perfor-

mance scalability when the required workloads

allow for true data-level parallelism.
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3.3.1 Energy Benefits and Challenges
for Parallel ULP Processors

Figure 3.5 shows the tradeoff for multi-core vs. -

single-core systems, under different workload

conditions. Each workload represents a specific

voltage-frequency pair that exploits the required

computation power. Under high workload

requirements the single-core is less energy effi-

cient when compared to multi-core due to the

quadratic dependency of supply voltage with

dynamic power (Dogan et al. 2011). Indeed, to

achieve the same throughput the single-core

needs to operate with a supply voltage much

higher than that of the multi-core, where CMOS

devices are far from their maximum energy effi-

ciency point. However, when the voltage is close

to the threshold, leakage become dominant and

circuit slowdown increases, so from an energy

perspective, single core is much more efficient,

therefore, this region is not interesting for

always-on parallel computing over multiple

cores (Fig. 3.5).

On the other hand, when we introduce a deep-

sleep mode typical of the MCU domain, under

low workloads, the multicore solution is still

attractive. In Fig. 3.6, in case of a single core

execution, energy is consumed in the whole

active period, then when computation is done,

the system is put in deep-sleep. In the active

period, the energy drained by the core is given

by the sum of core and system energy. Assuming

to run the same application on a multi-core plat-

form, then the application runtime (active region)

will decrease (in the ideal case, will be N times

smaller, where N is the number of cores). In this

region, we have multiple cores and the system

draining energy from the power supply, and

assuming that the system power is the same in

both cases, and that core energy is the same, by

reducing the active period, some amount of

energy is saved, thus better energy efficiency is

achieved.

This scenario highlights the importance of a

power management strategy at the system-level

to develop efficient shutdown policies of unused

cores and workload consolidation policies for

minimizing the dynamic and leakage power con-

sumption for the idle cores (Rossi et al. 2016a).

An effective strategy to eliminate dynamic

power of unused processors during the execution

of sequential portions of code is architectural

clock gating. Indeed, joining hardware support

for synchronization mechanism with architec-

tural clock gating of cores provides significant

energy savings during execution of sequential or

not perfectly balance code, while minimizing the

synchronization overhead, not present in single-

core platforms. However, even at low speed

levels a processor consumes a significant amount
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of static energy, caused, for example, by leakage

current. A possible alternative to reduce both

leakage and dynamic power consumption of

multi-core platform is per-core DVFS.

Exploiting a per-core DVFS scheme, each core

is allowed to operate with and independent volt-

age and frequency, thus theoretically achieving

the best possible energy efficiency for each given

workload, and can be shut down when idle. How-

ever, this comes with level shifters and dual-

clock FIFOs at the boundaries of every core

introducing significant data sharing overhead,

due to the handshaking required to implement

the clock domain crossing between the

processors and the data memory. Moreover, the

small form factor of processors typically adopted

in this domain might not justify the costs of a so

complex solution (i.e., per-core DC/DC

converters or LDOs are required). A simpler but

effective approach to reduce leakage power of

unused cores lies in per-core power gating.

Exploiting a per-core power gating architecture

all the cores belong to the same frequency

domain, and operate at the same voltage when

active, eliminating clock synchronization and

level shifting overhead, but they are able to shut

down independently when idle. Although this

approach is effective as it can reduce leakage

power by several orders of magnitude, it requires

a ring of PMOS transistors around each core to

implement the power gating. This significantly

increases the area of the cores, and most impor-

tant significantly degrades the performance of the

circuits when operating at low voltage. Indeed,

the presence of one additional PMOS stacked

over the pull-up network of standard cells has

been shown to lead significant performance deg-

radation in the near threshold operating region

(Alioto 2012). Finally, power gating does not

allow for state retention, as during the idle

phases all the cells within a gated region are not

supplied. In this context, implementing a state

retention mechanism requires more complex

state-retentive memories and flip-flops, with the

associated overheads in terms of area, power, and

additional routing required to bring to all these

components the retention voltage. Another alter-

native to manage leakage power of idle cores is

reverse body biasing (RBB). RBB can reduce

leakage power by up to one order of magnitude

(Rossi et al. 2016a). Although this is not enough

for implementing deep-sleep modes typical of

MCUs, it provides an effective and fast (less

than 100 ns settling time) way to reduce the

leakage power of idle cores in a ULP parallel

architecture. Indeed, in contrast to multiple volt-

age domains and power gating approaches, this

architecture has minimal overhead in term of

isolation, as it usually requires a small ring of

deep N-well around the region to isolate P-wells

Fig. 3.6 Energy efficiency Multi-core vs Single core on parallel application
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and N-wells in a typical triple well process.

Moreover, it does not require level shifters and

isolation with power gating transistors, since all

the regions belong to the same voltage domain.

Finally, employing leakage reduction through

body biasing allows standard registers to main-

tain the state during the sleep phases, thus

avoiding the usage of more complex state-

retentive flip-flops and the related overhead in

terms of power routing and area.

3.3.2 Memory Hierarchy for Parallel
ULP Processors

IoT is a network of physical objects that can refer

to a wide variety of devices. In such scenario it is

not possible to derive a single architecture that

fits all the possible cases, hence the device archi-

tecture is tailored upon the computation

requirements of the use case, and energy

constraints. The memory hierarchy of such

architectures plays a dominant role in the perfor-

mance/energy metrics: for example, in real time

systems caches would never exist for the fact that

different layers of memory hierarchy have such

different access/speed characteristics, and the

global access time, e.g., in case of miss, is not

predictable, and may lead to deadline violations

and system failures (safety issues). Moreover, it

is hard for the software to explicitly control and

optimize data locality and transfers (Kalokerinos

et al. 2009). Scalability issues are real in multi-

core system, where the cache coherency com-

plexity puts a limit to the number of cores that

can be integrated in the chip.

Data Scratch-Pad Memories (SPMs on

Fig. 3.7a) are a valid alternative to caches for

on-chip data memories. SPM is small on-chip

memory bank (e.g., SRAM) mapped into the

processor’s address space, and tightly coupled

with the processor pipeline. SPMs are faster and

consume less energy with respect to larger or

off-chip memories, and their inherent predictabil-

ity have made them popular in real-time systems

for instance. SPM also offer better scalability by

allowing explicit control and optimization of data

placement and transfers. These systems, then

employ specialized data memories hierarchies

for better efficiency for targeted data. However

these memory structures need a mechanism to

move data from the different levels of the mem-

ory hierarchy to the SPM, and transferring data

to/from this address space (explicit communica-

tion) may lead to inefficiencies that can vanish the

benefits of specialization. Remote direct memory

accesses (RDMA) is a wide used technique to

move data from/to the SPM from the different

levels of the memory hierarchy. This technique

is efficient if the programming overhead to trigger

the DMA transfer is minimized, and it is afford-

able in the cases when the producer knows who

the consumers will be, or when the consumer

knows its input data set ahead of time. Moreover,
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SPMs can replace data caches only if they are

supported by an effective compiler. The mapping

of memory elements of the application

benchmarks to the SPM is done mostly for data,

since for instructions there are no coherency

issues, therefore having a cache is highly desir-

able on this side. However, the major benefit to

adopt SPMs vs. on-chip caches is the better

energy efficiency, better access timing, and better

silicon area usage. Caches using static RAM con-

sume power in the range of 25–45% of the total

chip power, and energy can be reduced by 40% if

replaced by SPM (Banakar et al. 2002). TheArea-

Time product metric can be reduced to 46% in

favor of the SPM.

3.3.3 SPMs in the Near-Threshold
Region

On the other side, with the introduction of near-

threshold or even sub-threshold operation to dig-

ital circuits, memory design has gained renewed

attention as being more susceptible to the side

effects of low voltage operation.

A classic SRAM cell is a ratioed circuit relying

on the relative drive strength of the transistors

involved, and parametric variations of the indi-

vidual devices can lead to functional failures of

the cell. Low-voltage SRAMs use different sup-

ply voltages for the digital domain and memories.

This approach entails additional complexity on

system level (level shifters and power distribu-

tion). Other approaches for designing

low-voltage SRAMs include design of 7 T, 8 T,

or 10 T bit-cells, decoupled read/write operations,

read and write assist techniques, and adaptive and

resilient SRAMs design (Chap. 5).

One important factor is given by the leakage

power, which is proportional to the chip area,

which generally is dominated by memories. Scal-

ing the voltage in the NTC area can leverage to

10X better static power consumption, which in

IoT devices can lead to huge power improvement

since those devices are most of the time in

standby. If, from one side, scaling the voltage

can lead to some power benefit, on the other

side, SRAMs become slower and slower and

more susceptible to process variation, leading to

failures when the voltage is below 0.6 V in a

28 nm process (Teman et al. 2015).

Figure 3.8 shows the power breakdown for a

multicore system, a cluster of four RISC

processors, equipped with private instruction
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caches, based on SRAM memories (TAG and

DATA). As shown in the figure, private I$ are

responsible for more than 50% of the power bud-

get. One of the alternatives that has been proposed

in recent years to overcome some of these

shortcomings is to synthesize memories from

standard cells. Standard Cell Memories (SCMs)

are soft-digital blocks, described in a hardware

description language (HDL) at register-transfer

level (RTL), and mapped to Standard Cell

(SC) libraries. By using SCMs instead of

SRAMs, designers can define each memory

block according to the specific needs of each

component and achieve the specifications

required by their design as part of the standard

digital design implementation flow. One of the

primary advantages that SCMs have over tradi-

tional SRAM is their robustness, especially at

low-voltages. Since SCMs are constructed exclu-

sively from SCs, they scale along with the core

digital logic, and continue to operate well below

the limit of standard 6 T SRAM arrays

(�600–700 mV). This advantage is accompanied

by a loss of memory density, since the basic SCM

storage cell is much larger than a standard 6 T

SRAMbitcell. However, this trade-off is common

to all low-voltage SRAM solutions (Teman et al.

2015). SCM offers better energy efficiency with

respect to SRAM based SPMs In the application

example provided in (Meinerzhagen et al. 2010) it

was shown that the use of the considered SCM

architecture reduces the power consumption 37%

compared to the use of SRAM.

3.3.4 Architecture of Memory
Subsystem for Parallel ULP
Processors

The conventional memory hierarchy for

low-power multi-core architectures is generally

composed by a private L1 subsystem and a

shared L2 level (as depicted in Fig. 3.7a). In the

private L1 subsystem, local data keeps a copy of

the accessed data, potentially replicating the

same data in the different private local memory

subsystem. If the L1 is based on data caches, and

cores are working on the same dataset, then all

those access patterns are cached locally, leading

to data replication, which results in reduced

effective memory capacity, and poor energy effi-

ciency. Secondly, L1 private cache need to be

coherent, and as highlighted in the previous sec-

tion, cache coherency pose serious limit to multi-

core scalability, and it brings a not negligible

intrinsic cost (power).

Moreover, for each processor, the available

memory capacity is limited by its local memory

size, and each inter-core communication is

expensive because is done though message-

passing mechanism (mailbox etc.). The major

benefit of the private caching scheme is a lower

cache hit latency.

On the other hand, the shared caching scheme

always maps data to a fixed location. Because

there is no replication of data, this scheme

achieves a lower on-chip miss rate than private

caching (because of large aggregate cache capac-

ity), and simple and efficient mechanism for

inter-core communication, and finally no coher-

ency issues (at L1 level). However, the average

cache hit latency is larger, because cache blocks

are simply distributed to all available cache slices.

To mitigate this penalty, several architectural

solutions have been proposed (e.g., victim cache).

However, both in case of shared or private

scenarios, the data cache is not attractive for an

energetic point of view. Secondly a wide range of

applications from image and video processing

domains have significant data storage

requirements in addition to their computational

requirements and recent and studies (Benini et al.

2000) have shown that regular data access

patterns found in array-dominated applications

can be better captured if SPM is employed,

instead of a more traditional data cache.

Based on the assumption discussed before, in

ultra-low-power multi-core systems, the data-

cache is replaced by several SPM blocks

(Fig. 3.7b) that are linked together in a multi-

banked shared data memory, and referred as

Tightly Coupled Data Memory (TCDM).

TCDM is tightly integrated on the processors

load/store unit interface, and shared through a

lean, fast and thin distributed crossbar, that

provides shared access to several SPM banks.
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The TCDM therefore implements a multi-

ported multi-banked shared data memory,

where each processor load/store interface is

plugged directly on one master port of the

TCDM, while the SPM memory banks are

connected on the slave side. The internal arbiter

handles routing and flow control of request com-

ing from different processors and directed to the

same SPM bank. Memory banks are mapped on

the global address space, and are accessible from

each master port with a simple flow control pro-

tocol (req/grant). To reduce the collision proba-

bility, those banks are mapped with a word level

interleaving scheme, meaning that adjacent

addresses are mapped on adjacent banks, with a

typical granularity of 32 bits (same as the proces-

sor architecture). To further decrease the pres-

sure on memory side, the number of SPM banks

are doubled with respect the number of

processors. Since TCDM is a shared architecture,

it loses the determinist latency feature of private

SPM, but on the other side, the embedded cross-

bar ensures a maximum worst case latency (with

round robin arbitration, the maximum latency for

the worst case is equal to the number of cores).

To make this approach affordable, shared and

private SPM schemesmust behave in the sameway

in the case of best case (no collision on shared

accesses). The processor load/store interface

requires to be carefully optimized, since SPM are

now shared, and there is the crossbar logic in

between processor pipeline and SPM. Second, in

case of conflicts (e.g., two or more processors

making a request on the same shared memory

bank) the processor pipeline must be frozen until

the request is granted, therefore and additional stall

must is added in the processor pipeline architecture.

Private instruction caches are usually able to

achieve higher speed, due to their simpler design

(deep integration with processor pipeline), but

similarly to private data cache, the reduced

capacity (vs. the aggregate capacity of shared

instruction cache) lead to an increase in the

miss ratio. Although large private instruction

caches can significantly improve performance,

they have the potential to increase power con-

sumption, therefore are not affordable for ultra-

low-power multicore systems.

The optimal solution from a point of view of

the energy saving is the shared instruction cache
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(Fig. 3.9). This approach can is an attractive

solution to improve performance and energy effi-

ciency while reducing the footprint area of the

chip, since the total capacity seen by each pro-

cessor is given by the aggregate capacity of the

whole shared instruction cache (Loi et al. 2015).

The shared instruction cache has no coherency

issues (cache is read only), and it is implemented

as multi-banked, multi ported read-only cache.

Each cache bank is shared through a thin, fast

read-only interconnect (which arbitrates the fetch

request among the available cores), and mapped

at cache line level address interleaving to better

distribute accesses in all available cache banks

(to reduce the collision rate). Similarly to the

TCDM, the latency is not deterministic because

both hot/miss and local collision may happen.

Local contention may lower the instruction per

cycle metric (IPC) in each core, so some addi-

tional features are required to reduce perfor-

mance degradations.

Adding a pre-fetcher in between the shared

instruction cache and processor instruction-fetch

interface, with the capability to fetch one cache

line in a single cycle (wide interface) further

reduce the local collision rate at cache bank

level, leading to reduce the IPC, very close to

1. With these optimizations the shared cache can

be considered a valid alternative to private cache

subsystem, with a negligible overhead due addi-

tional resources, but with the big advantage of an

increased memory capacity which finally leads to

improve hit ratio and less refills though the L2

level hierarchy (with a sensible improvement of

energy/power consumption).

Both shared TCDM and Shared instruction

cache, can be implemented using SCM, making

these architecture suitable even in the Near

Threshold region, where ultra-low-power

requirements are mandatory, and where SRAM

based memory are not operative.

3.4 Design Example: The PULP
Platform

PULP is a multi-core platform achieving leading-

edge energy efficiency and featuring tunable

performance across a wide range of workloads

(Rossi et al. 2016a; Rossi et al. 2016b). The aim

of PULP is to satisfy the computational demands

of IoT applications requiring flexible processing

of data streams generated by multiple sensors,

such as accelerometers, low-resolution cameras,

microphone arrays, vital signs monitors. As

opposed to single-core MCUs, a parallel ultra-

low-power programmable accelerator allows to

meet the computational requirements of these

applications, without exceeding the power enve-

lope of a few mW typical of miniaturized,

battery-powered systems.

3.4.1 SoC Architecture

The compute engine is a cluster with a

parametric number (2–16) of cores (Fig. 3.10).

Cores are based on a power-optimized micro-

architecture implementing the OpenRISC ISA.

Pipeline depth is optimized at four balanced

stages, enabling full forwarding with single stalls

only on load-use and mis-predicted branches.

Further pipelining would not improve near-

threshold energy-efficiency because L1 memory

access time dominates cycle time, while register

and clocking overhead increase power (Gautschi

et al. 2014). The original OpenRISC ISA and the

core micro-architecture is extended for energy

efficient digital signal processing, supporting

zero-overhead hardware loops with L0 I-buffer,

load and store operations embedding pointer

arithmetic, SIMD vector instructions and power

management instructions (Gautschi et al. 2015).

The cluster can be configured with either private

or shared instruction cache with instruction

broadcasting support. By coupling the shared

I-cache with L0 buffers, it is possible to greatly

reduce cache pressure, resulting in a much higher

energy efficiency (Loi et al. 2015). The cores do

not have private data caches, avoiding memory

coherency overhead and greatly increasing leak-

age and area efficiency for data memory. A L1

multi-banked Tightly Coupled Data Memory

(TCDM) acts as a software-managed shared

data scratchpad. The TCDM features a

parametric number of word-level interleaved
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banks connected to the processors through a

non-blocking interconnect to minimize banking

conflicts (Rahimi et al. 2011). Each logical bank

is implemented as a heterogeneous memory,

composed of a mix of SRAMs and latch-based

Standard Cell Memory (SCM) banks. Instruction

caches can also be implemented using SCMs.

While SRAMs achieve a higher density than

SCMs (3x-4x), SCMs are able to work over the

same voltage range as logic, extending the

operating range of the whole cluster to the very

limit of the technology; moreover, their energy/

access is lower than that of SRAMs for the small

cuts needed in L1 (Teman et al. 2015).

Depending on the availability of low-voltage

memories in the targeted implementation tech-

nology, different ratios of SCM and SRAM

memory can be instantiated at design time.

Reconfigurable pipeline stages, controlled by

the processors through a memory mapped inter-

face, can be optionally added to the TCDM inter-

connect to deal with the performance

degradation and variability of SRAMs at low

voltage.

The cluster has AXI4-compliant interfaces.

Off-cluster (L2) memory and peripheral access

latency is managed by a tightly coupled DMA

optimized for low power with just ten cycles

programming latency, up to 16 outstanding

transactions and a private physical channel for

DMA control for each core. Various peripherals

are available for PULP SoCs, including SPI

interfaces with streaming support, I2C, I2S, a

camera interface, GPIOs, a bootup ROM and a

JTAG interface for debug and test purposes. SPI

interfaces can be configured in master/slave sin-

gle or quad mode. PULP SoCs can operate stand-

alone or as a slave accelerator of a standard host

processor (e.g., an ARMCortex-Mmicrocontrol-

ler). To reduce the overall number of pads, and

make low-cost wire bonding packaging of the

SoC suitable for IoT applications, the IO

interfaces can be multiplexed.

3.4.2 Power Management
Architecture

To provide high energy efficiency across a wide

range of workloads, the PULP cluster and the rest

of the SoC are in different power and clock

domains. Fine-grained tuning of the SoC and

cluster frequencies is achieved through two

FLLs (Frequency-Locked Loops) (Miro-Panades

Fig. 3.10 PULP platform architecture
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et al. 2014). Each processor within the cluster, as

well as other data transfer, and memory resources

can be separately disabled, clock-gated and

reverse body biased when idle. The concept of

fine-grain power management is shown in

Fig. 3.11. In the PULP platform, the body-bias

multiplexers allow to dynamically select the

back-bias voltage of each processor, enabling

ultra-fast transitions between the active mode

and the sleep mode. Although the same concept

applies also to leakage management with power

gating, in the context of a near-threshold proces-

sor body biasing offers two key advantages for

partial shut-down of small blocks. First it is

intrinsically state-retentive, and does not require

to increase the complexity of flip flops and

memories with additional supply rails. Second,

power gating requires a ring of transistors around

the digital area to me managed, causing a rele-

vant overhead for small blocks, and add a PMOS

to the pull-up network of the digital logic, which

degrades the performance in near-threshold.

Depending on the required workload, the cluster

is able to keep active an arbitrary number of

processing elements, while the others consume

zero dynamic power and up to 10x less leakage

power. An event unit automatically manages

transitions of the cores between the active and

idle states. Processors can be put in idle state

with a write operation on a memory mapped

control register. After going in sleep mode, a

core remains idle until a configurable event is

triggered. Events can be issued by all IO

peripherals, the DMA, and timers. Emergency

and general-purpose events are also supported.

The same approach is replicated hierarchically at

cluster and SoC level. A power manager based in

a safe domain controls the state of the SoC and

cluster domains, managing dynamic and leakage

power during sleep states and generating wake-

up sequence when a termination event is

received, for example due to the completion of

a transfer from an IO peripheral to the L2 mem-

ory. This mechanism allows to minimize the

intrinsic overheads of a relatively complex paral-

lel computing platform, guaranteeing that only

Fig. 3.11 Power management architecture
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the strictly necessary blocks are active during the

phases of parallel or sequential computation, and

data transfer. On the other hand, power gating is

more effective to implement system-level deep-

sleep modes of heavily duty-cycled applications,

where the whole system needs to be managed for

longer periods (tens to hundreds micro seconds)

and leakage power needs to be reduced by sev-

eral orders of magnitudes (100 nW–10 μW).

3.4.3 Programming PULP

OpenMP, OpenCL and OpenVX programming

models are available for PULP, as they are

well-known standards for shared memory pro-

gramming, and widely adopted in embedded

MPSoCs (Stotzer et al. 2013). GCC- and

LLVM-based tool-chains and light-weight

implementations of all these environments have

been tailored to PULP’s explicitly managed,

scratchpad-based memory hierarchy. To achieve

energy efficiency, however, it is necessary that

the implementation of the different execution

models efficiently exploits the ULP features of

the hardware. The alternance of sequential and

parallel code parts is inherent to all the program-

ming paradigms based on the fork-join model.

While minimizing the impact of Amdahl’s law

by extracting the maximum degree of concur-

rency in applications is paramount for every par-

allel system, for ULP parallel system the way

idleness is implemented is key to achieve energy

efficiency. Idle power of unused cores might be

significant, causing huge energy efficiency drop.

To this end, special hardware for accelerating

key software patterns has been developed. The

PULP software runtime integrates a clock-gating

based thread docking scheme to eliminate

dynamic power, coupled with Reverse Body

Bias (RBB) to reduce leakage, when worker

threads are idling (e.g., in sequential regions of

the program). In addition, the key operations

required in fork/join thread management are

HW-accelerated, dramatically increasing the per-

formance with respect to polling or event-based

synchronization.

3.4.4 Extending PULP

When the application requirements are so strict

that they cannot be matched by parallel execu-

tion on power-optimized processors, customiza-

tion of the cluster may be required. It is possible

to include hardware accelerators as an extension

of the baseline PULP cluster sharing L1 memory

(Dehyadegari et al. 2015). Integration of HW

accelerators in the PULP cluster is fully modular;

the IPs used to couple accelerators with the clus-

ter are parametric and support manually or

HLS-designed accelerators using either a stream-

ing dataflow model or a memory-mapped one. In

the context of high-performance computing,

deep learning (Memisevic 2015) and more spe-

cifically Convolutional Neural Network (CNN)

algorithms have rapidly grown since 2012 thanks

to their outstanding capabilities in the recogni-

tion (Hannun 2014), and classification

(Russakovsky 2014) fields. Being these

algorithms approximation tolerant, a new key

challenge is to exploit them as hardware

accelerators for deeply embedded applications

by replacing their native single- or double- preci-

sion implementations with integer or

approximated floating point arithmetic to

improve energy efficiency. Another advantage

of CNNs is their affinity to be rapidly adapted

to several application domains, such as embed-

ded audio and video processing (Wu et al. 2015).

In addition, the computational patterns typically

implemented by CNNs are very similar to those

of more traditional filters used in several deeply

embedded classification applications such as FIR

filtering or FFT. Hence, CNN hardware

accelerators join the typical advantages of appli-

cation specific computing (i.e., significant boost

in performance and energy efficiency with

respect to equivalent software implementations)

with generality, matching two of the key

requirements of IoT computing devices. Vision-

PULP is an extension of the basic platform ori-

ented to embedded vision that features a 2D

convolutional accelerator able to perform two

16-bit 5�5 convolutions per cycle (Conti et al.

2015). This improves energy efficiency by a
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factor of 40x or more in convolutional

workloads, reaching up to 80 GOPS of perfor-

mance and 3000 GOPS/W.

3.5 Trends and Perspectives

Table 3.2 provides a summary of recent single-

core and multi-core ultra-low-power and energy

efficient digital computing architectures

targeting the IoT application domain. Until last

few years, most IC design has mainly been

driven by performance and area to reduce the

cost production, while power consumption has

always been a secondary concern for optimiza-

tion. With the coming of for near-sensor

processing and IoT we are experiencing a shift

from a computation-driven to a data-driven envi-

ronment, requiring a radical change in the design

of the hardware platform architectures. In this

scenario data are generated by several sensors,

often asynchronously (event-based computing),

that activate the computational platform at

regular intervals, with long idle periods in

between. Hence, the computational platforms

have to be always-on, powered by harvester or

small coin batteries, and their life-time can be as

long as several years, as expected by their target

applications. As a consequence, both sleep

modes and active modes need to be carefully

optimized to reach the goal of zero-energy

sense, classify and transmit IoT systems.

In the next generation of IoT nodes energy

saving will have to be considered as a system-

wide concern. All the components within an IoT

node need to be optimized for power, including

sensor interfaces (Chaps. 12 and 13), digital

platforms (Chap. 9) and RX/TX transceivers

(Chap. 14), power supply and conversion subsys-

tem (Chaps. 10, 11, 15). Optimized software also

plays a crucial role system-wide to manage

power state of all the components forming the

IoT node. While DVFS joint with parallelism has

been demonstrated to be extremely effective in

reducing the energy of digital blocks, this tech-

nique can only be applied in a very limited way

Table 3.2 Summary of recent ultra-low-power and energy efficient processors and DSPs

SLEEP

WALKER

(Bol et al.

2013)

REISC

(Ickes

et al.

2011)

DSP

(Gammie

et al. 2011)

FRISBEE

(Wilson

et al. 2014)

CENTR

P3DE (Fick

et al. 2012)

PULP

(Rossi

et al.

2016a)

PULP2

(Rossi

et al.

2016b)

CPU MSP430 ReiSC TMS320C64x FRISBEE ARM

CortexM3

OpenRISC OpenRISC

Data format 16-bit 32-bit 32-bit VLIW 32-bit

VLIW

32-bit 32-bit 32-bit

Number of

cores

1 1 1 1 64 4 4

I$/D$/L2

(bytes)

16 k/2 k/n.a. 8 k/8 k/n.

a.

32 k/32 k/

128 k

4 k/4 k/n.a. 64 k/512 k/n.

a.

16 k/4 k/

16 k

16 k/4 k/

16 k

Technology CMOS CMOS CMOS FD-SOI CMOS FD-SOI FD-SOI

Node 65 nm GP 65 nm LP 28 nm LP 28 nm HP 130 nm 28 nm LP 28 nm HP

VDD range

(mem) [V]

0.4 (1.0) 0.54–1.2

(0.4–1.2)

0.6–1.0 0.4–1.3 0.65–1.15

(0.8–1.65)

0.44–1.2

(0.54–1.2)

0.32–1.2

(0.45–1.2)

Max freq.

(MHz)

25 82.5 331 2600 80 475 825

Power

dens.

(uW/MHz)

7.7 10.2 409 62 317 72 20.7

Best Perf.

(MOPS)

25 57.5 662 2600 1600 1800 3300

Energy eff.

(MOPS/

mW)

64.5 68.6 4.5 16 3.9 60 193
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and with some restrictions to analog blocks. For

example, memories are very critical IPs, and

often form a bottleneck for energy efficiency of

ultra-low-power platforms, since the bit-cells, as

well as some of the analog IPs in the periphery

requires higher voltages than the logic to be

operational in a reliable way. Although several

solutions has been proposed in research

(Chap. 5), silicon vendors still strive to provide

memory generators optimized for low-voltage

operation in production design kits.

An emerging trend for ultra-low-power

systems, supplied only with energy harvesters

or small batteries is that of energy-driven com-

putation. This computational paradigm, referred

as transient computing, can be applied to

applications with very low requirements in

terms of real-time constraints. For example a

sensor that collects and transmit environmental

conditions (e.g., temperature, pressure). When an

energy burst is captured and accumulated in

some energy storage (e.g., super-caps) by the

harvester the acquisition and computation can

start. When the energy on the accumulator—

monitored by the hardware platform—is going

to finish, the hardware platform goes into a deep-

sleep or even shut-down mode, after saving its

internal state and temporary data on a

non-volatile support. When a further energy

burst occurs, the hardware platform restores the

state from its non-volatile support and continues

acquisition, processing and transmission. This is

yet an example showing the new requirements in

terms of tighter system-level integration between

the MCU and the peripheral parts of the node

(e.g., batteries, sensors, transceivers) whose

power consumption need to be constantly moni-

tored and predicted to adopt power-management

and shut-down strategies, while guaranteeing to

always be able to recover processing from a

consistent state. In this scenario, a key role will

be played by non-volatile memories, which has

to be re-designed and optimized for their new

scope (Chaps. 6 and 7).

Most of today’s IoT systems are fairly low

volume, and intended for a cost conscious mar-

ket. Hence, computing devices for IoT are

implemented with very cheap and not scaled

technology nodes, ranging from 180 to 65 nm.

Advanced nodes such sub 20 nm, or FD-SOI,

would have advantages at the transistor level

but their mask set and wafer cost will only

be justified only with the expected increase of

IoT product volumes, that would reduce manu-

facturing costs as well. A big concern of scaled

technology nodes is the availability of embedded

Flash as today 40 nm is the most advanced node

featuring embedded Flash. Another issue that has

to be addressed deals with process and tempera-

ture variations. IoT systems are intrinsically sub-

ject to variations during their long lifetime due to

degradation of batteries and power supply net-

work lowering the supply voltage, or aging.

Usage of scaled technology magnifies variations

caused by process and temperature. More specif-

ically, scaled transistors operating at low voltage

are subject to thermal inversion phenomena,

which causes a strong dependency between the

ambient temperature and maximum operating

frequency. This issues will have to be tackled in

next generation of IoT commercial platforms

with advanced techniques to tolerate or compen-

sate these variations, such as in situ error detec-

tion and correction, adaptive voltage scaling, and

adaptive body biasing.
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