
Interactive Mobile Applications
Development Using Adapting Component
Model

Haeng-Kon Kim and Roger Y. Lee

Abstract In the reason of the variability which characterizes the context of such
environments, it is important that mobile applications are developed so that they can
dynamically adapt their extra functional behavior, in order to optimize the expe-
rience perceived by their users. In this paper we discuss some of the problems of the
current mobile based human management applications and show how the intro-
duction of adaptive CBD (Component Based Development) model provides flex-
ible and extensible solutions to mobile applications. Mobile applications resources
become encapsulated as components, with well-defined interfaces through which all
interactions occur. Builders of components can inherit the interfaces and their
implementations, and methods (operations) can be redefined to better suit the
component. New characteristics, such as concurrency control and persistence, can
be obtained by inheriting from suitable base classes, without necessarily requiring
any changes to users of these resources. We describe the mobile applications
frameworks and adaptive component model, which we have developed, based upon
these ideas, and show, through a prototype implementation, how we have used the
model to address the problems of referential integrity and transparent component
(resource) migration. We will show the prototyping applications using our
approaches. We also give indications of future work.

Keywords Mobile applications ⋅ Frameworks ⋅ Adaptive component-based
development model ⋅ Referential integrity ⋅ Mobility ⋅ Distributed systems

H.-K. Kim (✉)
School of Information Technology, Catholic University of Daegu, Daegu, Korea
e-mail: hangkon@cu.ac.kr

R.Y. Lee (✉)
Department of Computer Science, Central Michigan University, Mount Pleasant, USA
e-mail: lee@cps.cmich.edu

© Springer International Publishing AG 2017
R. Lee (ed.), Applied Computing and Information Technology,
Studies in Computational Intelligence 695,
DOI 10.1007/978-3-319-51472-7_5

63



1 Introduction

Typically, mobile computing is defined as the use of distributed systems, com-
prising a mixed set of static and mobile clients [1]. More refined and componen-
tized approaches have also been proposed with new mobile development paradigms
[2]. It is widely accepted that building in safety early in the development process is
more cost-effective and results in more robust design [3]. Safety requirements result
from safety analysis—a range of techniques devoted to identifying hazards asso-
ciated with a system and techniques to eliminate or mitigate them [3, 4]. Safety
analysis is conducted throughout the whole development process from the
requirements conception phase to decommissioning. However, currently the
approaches for incorporating safety analysis into use case modeling are scarce. The
Unifying Modeling Language (UML) [5] is gaining increasing popularity and has
become de facto industry standard for modeling various systems many of which are
safety-critical. UML promotes use case driven development process [5] meaning
that use cases are the primary artifacts for establishing the desired behavior of the
system, verifying and validating it. Elicitation and integration of safety require-
ments play a paramount role in development of safety-critical systems. Hence there
is a high demand on methods for addressing safety in use case modeling. Naturally,
the development of software applications featuring such a sophisticated behavior is
not easy. It has been suggested that while researchers have made tremendous
progress in almost every aspect of mobile computing, still not enough has been
achieved in dealing with the complexity which characterizes their development [6].
We will show how making the change to a component-based Development system
can yield an extensible infrastructure that is capable of supporting existing func-
tionality and allows the seamless integration of more complex resources and ser-
vices. We aim to use proven technical solutions from the distributed
component-based Development community to show how many of the current
problems with the Web can be addressed within the proposed model. In the next
section, a critique of the current Web is presented, highlighting existing problems in
serving standard resources and the current approach for incorporating nonstandard
resources. The section entitled the mobile applications frameworks and adaptive
component model component design, its aims, component model, and system
architecture. The Illustrations section gives an example, describing how particular
Web shortcomings can be addressed within the proposed architecture. The
remaining sections describe our implementation progress, plans for further work
and concluding remarks.

64 H.-K. Kim and R.Y. Lee



2 Related Works

2.1 Adapting Component Based Mobile Applications
Development

Mobile applications modeling expertise requires both domain knowledge and
software knowledge. Mobile Applications modeling disciplines are rapidly accu-
mulating in terms of languages, codified expertise, reference models, and automated
tools. The areas where such technologies are extensively practiced, the quality
features re neither of main concern nor adequately tackled. It is a well-known truth
that CBD is important for large and complex systems but why it is important for
mobile device applications. It tackles vital concerns such as productivity, high level
of abstraction, partitioning of the system development process from the component
development process and reusability [5]. Reusability offers a number of advantages
to a software development team. An assembly of component assembly leads to a
70% reduction in development cycle time; an 84% reduction in project cost, and a
productivity index of 26.2, compared to an industry norm of 16.9. For the devel-
opment of mass mobile examination system, CBD is a smart method, but due to its
explicit requirements such as real time, safety, reliability, minimum memory and
CPU consumption, standard component models cannot be used [5]. Rather than, a
new CBD methodology is very much needed for the development of mobile mass
examination system to deal with its specific requirements.

Mobile applications frameworks development model in this paper is based on
component based software development. One of the principles of computer science
field to solve a problem is divide and conquer i.e., divide the bigger problem into
smaller chunks. This principle fits into component based development. The aim is
to build large computer systems from small pieces called a component that has
already been built instead of building complete system from scratch. Software
companies have used the same concept to develop software in standardized
parts/components. Software components are shipped with the libraries available
with software (Fig. 1).

While compositional adaptation is restricted to the middleware and application
layers, parameter tuning also applies to lower layers, such as the operating system,
protocols, and the hardware [11]. For example, at the protocol level, the TCP
dynamically adjusts its window to avoid or recover from network congestion. Also,
at the hardware layer, adaptations could target ergonomics (e.g., adjust the display
brightness), power management (e.g., turn idle network adapters off), etc. An
adaptive system can be abstracted by a number of layers. The hardware layer, which
includes all hardware devices, is right below the operating system and protocols
layer. These layers have the common characteristic that any changes in them affect
the whole device. For example, if the display brightness or the processor speed is
adjusted, all applications using them are affected. Similarly, changes at the oper-
ating system layer also affect the whole device. For example, the Windows Mobile
operating system allows the adjustment of the storage versus the program memory

Interactive Mobile Applications Development … 65



balance. Clearly, any change in this balance affects the device, and consequently all
applications running on it. On the other hand, changes performed at the layers of
components and component-based applications have a more limited scope. For
example, it is possible to replace a component implementation, or adjust one of its
parameters, without causing any direct effect to the applications that are not using it.
At the application layer, adaptations are typically achieved with dynamic recon-
figuration (classified as changes to the software implementation, composition, or
distribution [5]). Finally, besides being limited to these layers, adaptations can also
extend beyond the boundaries of a single hosting device. This type of adaptations,
which are quoted as distribution adaptations, is of particular interest to this paper. It
is argued that users can experience great enhancements in the quality they perceive
in their software services if the used devices are capable of synergistically sharing
services and components, thus better utilizing the available resources [8].

2.2 CBD Process for Mobile Applications

CBD promises cost-effective productivity assuring a high flexibility and mainte-
nance by assembling the components as independent business processing. The
parts. The CBD environment is divided into two Features according to process
evolution level. That is, we consider the CBD process as a supply process pro-
ducing and providing the commercial components into a repository, and consume
process supporting component utilization for constructing business solutions [14,
15]. The big picture represents essential works for realizing the CBD process,

Fig. 1 CBD driven mobile applications development

66 H.-K. Kim and R.Y. Lee



subjecting the basic principles for component reuse that is acquisition–
understanding-applying. CBD process looks different from a traditional one. The
development of components, and the composition of an application from the
components, are separated. Typically, the two process parts will be executed by
different organizations, the component manufacturer and the organization that
wants to license and reuse the manufactured components. We refer to these orga-
nizations as the component developer as reuse for component and the application
composer as reuse with component, respectively as in Fig. 2. Component devel-
opment is a traditional development process since all the usual lifecycle phases are
traversed. The main difference is that the end product is not a complete application.
This means that the product is comparatively small, which may make development
processes suited to small projects preferable. CBD has rapidly become substantial
and interesting field in business applications. Especially, since CBD is primarily
used as a way to assist in controlling the complexity and risks of large-scale system
development, providing an architecture-centric and reuse-centric approach at the
build and deployment phases of development. So now, many vendors and
researchers have tried to establish the CBD maturity by involving the following
strategies [16, 17]:

(1) Efficient building of individual components,
(2) Efficient building of development solutions of in a new domain effectively,
(3) Efficient adapting a existing solutions to new problems and efficient evolution

of sets of solutions.

But, by the lack of standardization and clearness for the CBD approach method,
we can’t expect a practice benefits in business solutions. So, we need the approach
techniques in each step for organizing and practicing the CBD process like a Fig. 3
[6].

Fig. 2 Basis techniques for mobile applications development using CBD process

Interactive Mobile Applications Development … 67



2.2.1 Component Interfaces

In an ideal situation, component interfaces would be formally specified, and a CBD
would perform formal reasoning to ensure the semantic compatibility of component
implementations with their interfaces. However, such reasoning tools are still not
widely available or widely used by practitioners, and most commercial components
do not have formally specified interfaces. A global namespace of interfaces partly
solves the problem of how a CBD will ensure consistency between the semantics of
a provided component and the semantics required of the component [18, 19].

While there may be different interfaces providing the same functionality in a
global namespace of interfaces, two interfaces with the same name are intended to
be functionally equivalent. On a fundamental level, this greatly simplifies the
problem of matching provided components to required semantics, since the problem
is reduced to name equality. Only when components do not match at the interface
level is human intervention required: Either they are truly incompatible (i.e.,
incompatible on a semantic level), or the incompatibility is only syntactic, so that
they can be matched by simple manual adaptation (for example by wrapping one of
them). Of course, mechanisms are still needed to ensure that a component correctly
implements the semantics promised by its interfaces, but this problem already
existed along-side the component matching problem.

3 Design of Interactive Mobile Applications Development
Using Adapting Component Model

The primary componentize of our research is to develop an extensible adapting
component model with interactive mobile applications development infrastructure
which is able to support a wide range of resources and services. Our model makes
extensive use of the concepts of component-orientation to achieve the necessary

Fig. 3 Illustration of using the adapting component model with interactive mobile applications
development component model

68 H.-K. Kim and R.Y. Lee



extensibility characteristics. Within this component-Based Development frame-
work, proven concepts from the distributed component-Based Development com-
munity will be applied to the problems currently facing the AHMS. The interactions
between the system components are described in the section entitled “System
Architecture,” which is followed by a section entitled “Adapting component model
with interactive mobile applications development component properties” which
classifies and describes a collection of properties applicable to different classes of
Adapting component model with interactive mobile applications development
Component.

3.1 Interactive Mobile Applications Development Using
Adapting Component Model

In common with the current Web, the proposed adapting component model with
interactive mobile applications development component architecture consists of
three basic entity types, namely, clients, servers, and published components.

In the current Web and mobile environment, these three types correspond to
Web browsers (e.g., mosaic), Web daemons (e.g., CERN HTTPD), and docu-
mentation resources (e.g., HTML documents) respectively. Our architecture sup-
ports both client-component (client-server), and inter component (peer-to-peer)
communication.

Figure 3, illustrates the logical view of client-component interactions within the
Adapting component model with interactive mobile applications development
component architecture. A single server process is shown, managing a single
Adapting component model with interactive mobile applications development
component (although servers are capable of managing multiple components of
different types), which is being accessed via two different clients, a standard Web
browser, and a dedicated bespoke application. This diagram highlights interoper-
ability as one of the key concepts of the architecture, that is, the support for
component accessibility via different applications using multiple protocols. As
stated earlier, Adapting component model with interactive mobile applications
development components are encapsulated, meaning that they are responsible for
managing their own properties (e.g., security, persistence, concurrency control etc.)
rather than the application accessing the component. For example, in the case of
concurrency, the component manages its own access control, based upon its internal
policy, irrespective of which application method invocations originate from. The
local representation of a component, together with the available operations, may
vary depending upon the particular type of client accessing it (Fig. 4).

Although, it has been already stated that we believe CGI to be too low-level for
direct programming, CGI interfaces to remote components can be automatically
created using stub-generation tools. We have implemented a basic stub-generator,
which uses an abstract definition of the remote component, and ANSA have

Interactive Mobile Applications Development … 69



recently released a more complete tool based on CORBA IDL. Recent develop-
ments using interpreted languages within the Web, including Java and SafeTcl are
potentially very useful for developing client-side interfaces to Adapting component
model with interactive mobile applications development Components. Using such
languages, complex, architecture-neutral, front-ends dedicated to a particular
Adapting component model with interactive mobile applications development
component class can be developed, supporting rich sets of operations.

3.2 Components and Variation Points

A prototype component framework has been implemented, using the Java language
[8]. The components are defined as classes, annotated with both required and
optional metadata. Furthermore, the framework implements standardized compo-
nent containers [3], providing runtime support for dynamic adaptations and life-
cycle management. Similarly to the majority of industrial component models (e.g.,
CCM, COM and EJB), the components are considered as similar to object-oriented
classes in the sense that they are instantiated and their instances can be stateful.
Supporting dynamic compositional adaptations (i.e., through dynamic reconfigu-
rations) is a major research area itself. Kramer and Magee have detected a number
of important issues for dynamic reconfigurations, most notably the requirement for
quiescence [8]. The component framework defines a set of metadata which are
required to enable dynamic adaptations. These metadata are defined inline with the
code using annotations. The attached metadata define information such as a unique
identifier, a list of roles they implement and a list of roles they export.

The annotation-based mechanisms are used for specifying both the offered and
the required roles of components. These roles are then used to facilitate the dynamic
composition of applications. The framework achieves dynamic composition by
dynamically adding and removing bindings between components, thus enabling the
dynamic configuration and reconfiguration of component-based applications.

In this manner, the framework acts as a broker, managing the available and the
required roles. Different composition plans are formed by matching required

Fig. 4 Client-component interactions for adapting component model with interactive mobile
applications development

70 H.-K. Kim and R.Y. Lee



services to offered ones. The actual binding of the components is achieved with the
use of reflection, which is a standard feature of Java. With the use of the annotation
mechanisms, the components expose both their required and their offered roles.
Using these metadata, the components can be connected to each other to form a
composition.

Furthermore, hierarchical composition is achieved by implementing the external
view of a component through another composition. One of the main advantages of
this framework is that it allows the dynamic planning of compositions, as opposed
to frameworks which require a predefined set of possible adaptations. While this
paper focuses on compositional adaptation, further adaptivity (e.g., at the hardware
layer) is also possible (i.e., parameter tuning) [8].

3.3 Adapting Component Model with Interactive Mobile
Applications Development

In order to construct adaptive applications, the developers specify how an appli-
cation should be composed, and when. The first part is achieved with the con-
struction of components with the use of roles and variation points. The latter also
requires a mechanism to reason on the context and to select variations. Naturally,
these two requirements separate the development phase in two parts: developing the
application logic and defining the adaptive behavior. An apparent advantage of this
approach is that the same components can be reused for the development of
additional, adaptive applications (naturally inherited from the component-oriented
approach). Furthermore, the same adaptation strategies can be reused in the context
of different applications. For example, a strategy which monitors the network
requirements of an application, as a function of its components, can be reused for
different applications as well.

Finally, because of the high variability which characterizes mobile environ-
ments, it is important that the adaptations can be decided and implemented in a
quick and efficient manner (i.e. to cope with frequent and unpredicted disconnec-
tions). The following paragraphs describe the two required phases. In addition to
client-component communication, our architecture also supports inter-component
communication, regardless of the components’ location. In effect, the architecture
may be viewed as a single distributed service, partitioned over different hosts as
illustrated in Fig. 5. Inter-component communication is used for a variety of pur-
poses, including referencing, migration, caching, and replication. In addition to
Adapting component model with interactive mobile applications development
Components, servers may contain Adapting component model with interactive
mobile applications development component stubs, or aliases, which are named
components that simply forward operation invocations to another component,
transparently to clients. One particular use of aliases is in implementation of
name-servers, since a name-server may be viewed simply as a collection of named

Interactive Mobile Applications Development … 71



components which alias other components with alternative names (server S1 in
diagram). Components may also contain stubs to other components (shown in S2 in
diagram). This feature is used in our implementation of referencing, which is
described further in the “Illustrations” section.

One method of interfacing with multiple servers is to make use of an HTTP
Gateway, which uses stub components to forward component invocations through
to the appropriate server. The gateway is transparent to clients accessing the
components; incoming requests are simply forwarded to the destination component,
which parses the request and replies accordingly. This is illustrated in Fig. 6, in
which server S1 manages a number of different types of component (illustrated by
different shapes) and server S2 manages components of a single type. As the
processing of operations is entirely the responsibility of the individual component,
the introduction of new component types is transparent to the gateway.

Based on critiques of the current mobile by ourselves and others [10], and also
our experience with distributed systems in general, we have attempted to identify
the set of properties that are required by Adapting component model with inter-
active mobile applications development Components. We have classified these
properties into three categories: core properties, common properties, and

Fig. 5 Inter-component interactions

Fig. 6 Client-component communication through gateway

72 H.-K. Kim and R.Y. Lee



class-specific properties. In this section we shall present what we believe to be the
core properties required by all Adapting component model with interactive mobile
applications development Components and give examples of some common
properties.

Four properties have been identified as being the core requirements for adapting
component model with interactive mobile applications development components:
Naming, Sharing, Mobility, and Referencing. The implementation of these prop-
erties is divided between the components themselves and the supporting infras-
tructure, which manages the components. Each property will be considered in turn.

Naming: One of the fundamental concepts of the component-Based Develop-
ment paradigm is identity. The ability to name a component is required in order to
unambiguously communicate with and about it. Context-relative naming is an
essential feature of our environment so as to support interoperability and scalability.
As mentioned previously, different clients may use different local representations of
a remote component (URLs, client-stub components, etc.). Since it is impractical to
impose new naming conventions on existing systems, we require the ability to
translate names between system-boundaries. Furthermore, for extensibility, we need
to be able to incorporate new naming systems. Within our design, naming is pro-
vided via the component infrastructure.

3.4 Implementation of Adapting Component Model
with Interactive Mobile Applications Development

Having described our model in the previous sections, we shall now illustrate how
two of the core properties, referencing and mobility, are implemented within the
model. Our aim is to address the current problem of broken links and provide
transparent component migration.

In our model Web resources are represented as Adapting component model with
interactive mobile applications development Components and may be referenced
from some root, either directly, via Adapting component model with interactive
mobile applications development component stubs, or by being contained within
another Adapting component model with interactive mobile applications develop-
ment component (note that Adapting component model with interactive mobile
applications development component stubs are themselves Adapting component
model with interactive mobile applications development Components). This is
illustrated in Fig. 7, which shows a number of components, all of which are
reachable from some roots. Our service maintains the distributed referencing graph
and uses reference counting to detect unreferenced components. Stubs, when cre-
ated, perform an explicit bind operation on the component they refer to (thereby
incrementing the component’s reference count) and perform an unbind operation
whenever the stub is deleted (thereby decrementing the count).

Interactive Mobile Applications Development … 73



3.5 Dynamic Composition

At this point, the developer has specified a number of component implementations,
along with a set of specifications about the roles they offer and the roles they
require. Given these, the framework can plan a set of valid compositions, as
illustrated by Fig. 8.

So far, in this phase the developers have defined the set of components, along
with their offered and required roles. These artifacts however, cannot result to an
adaptive application until the framework is instructed on how and when each
composition is selected. As it has been argued already, the task of defining how the
application is adapted is a different concern, which should be kept as independent as

(Translated in English)

Log-in

Log-out

Confirmation

Managing
Address

Resume

Registration 
Announcement

Recruiter

One’s 
Information

Handicaps’
Job 

Information

Counseling 
about job 

information

Employment 
Condition Counseling 

about job 
seeking

Consultatnt

Seeker

Recruiter

Fig. 7 Adapting component model with interactive mobile applications development modeling
using UML

Fig. 8 Possible compositions for the schedule manager application

74 H.-K. Kim and R.Y. Lee



possible from the task of defining the core application logic. In this respect, it is the
responsibility of the second phase to define which composition is more suitable for
each context in an independent and reusable manner. The actual evaluation of the
utility functions takes place when relevant context changes occur. At that point, the
framework evaluates the utility as a function of the new context and properties, and
decides whether a new composition can improve on the existing one.

4 Conclusions

The Adapting component model with interactive mobile applications development
component model, presented in this paper, is intended to provide a flexible and
extensible way of building Web and mobile applications, where Web resources are
encapsulated as components with well-defined interfaces. Components inherit
desirable characteristics, redefining operations as is appropriate; users interact with
these components in a uniform manner. We have identified three categories of
component properties: core, common, and specific, and have described an imple-
mentation using the core properties which addresses what we believe to be one of
the most significant problems facing the current mobile that of referential integrity.
A key feature of our design is support for interoperability; for example, in addition
to sophisticated clients which may use the rich component inter faces that our
model provides, our implementation will also allow Adapting component model
with interactive mobile applications development Components to continue to be
accessed using existing mobile browsers.

We also describe the mobile applications frameworks and adaptive component
model, which we have developed, based upon these ideas, and show, through a
prototype implementation, how we have used the model to address the problems of
referential integrity and transparent component (resource) migration. We will show
the prototyping applications using our approaches. Indications were given on future
work.

Acknowledgements This research was Supported by the MSIP (Ministry of Science, ICT and
Future Planning), Korea, under the C-ITRC (Convergence Information Technology Research
Center) support program (IITP-2016-H8601-16-1007) supervised by the IITP (Institute for
Information & communication Technology Promotion).
This research was also supported by the International Research & Development Pro-gram of the

National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future
Planning (Grant number: K 2014075112).

References

1. Satyanarayanan, M.: Pervasive Computing: Vision and Challenges, IEEE Personal Commu-
nications, vol. 8, no. 4, pp. 44–49, (2001) August.

Interactive Mobile Applications Development … 75



2. Czyperski, C.: Component Software: Beyond Object-Oriented Programming, ACM
Press/Addison-Wesley, (2008).

3. OMG, Common Component Request Broker Architecture and Specification, OMG Document
Number 91.12.1

4. Ogbuji, U.: The Past, Present and Future of Mobile Services, http://www.Mobile services.
org/index.php/article/articleview/663/4/61/, (2004).

5. Barnawi, A., Qureshi, M. R. J., Khan, A. I.: A Framework for Next Generation Mobile and
Wireless Networks Application Development using Hybrid Component Based Development
Model”, International Journal of Research and Reviews in Next Generation Networks
(IJRRNGN), vol. 1, no. 2, pp. 51–58, December (2011).

6. Litoiu, M.: Migrating to Mobile Services-latency and scalability, Proceedings of Fourth
International Workshop on Mobile Site Evolution, pp. 13–20, October (2002). URL: http://
www.tigris.org/

7. Brown, A.: Using service-oriented architecture and component-based development to build
Mobile service applications,” Rational Software white paper from IBM, (2002). 4.

8. Paspallis, N., Papadopoulos, G. A.: An Approach for Developing Adaptive, Mobile
Applications with Separation of Concerns, Proceedings of the 30th Annual COMPSAC’06,
(2006).

9. Soley, R. and OMG Staff Strategy Group.: Model Driven Architecture, OMG Whit Paper
Draft 3.2, at URL: http://www.omg.org/∼soley/mda.html, (2000).

10. Poole, J. D.: Model Driven Architecture: Vision, Standards and Emerging Technologies,”
European Conference on Object-Oriented Programming, at URL: http://www.omg.org/mda/
mda_files/Model-Driven_Architecture.pdf, (2004). 4.

11. Qureshi, M. R. J.: Reuse and Component Based Development,” in Proc. of Int. Conf.
Software Engineering Research and Practice (SERP’06 Las Vegas, USA), pp. 146–150, 26-29
June (2006).

12. Champion, M., Ferris, C., Newcomer, E., Iona, Orchard, D.: Mobile Services Architecture:
W3C Working Draft,” http://www.w3.org/TR/ws-arch/, (2002).

76 H.-K. Kim and R.Y. Lee

http://www.Mobile
http://www.tigris.org/
http://www.tigris.org/
http://www.omg.org/%7esoley/mda.html
http://www.omg.org/mda/mda_files/Model-Driven_Architecture.pdf
http://www.omg.org/mda/mda_files/Model-Driven_Architecture.pdf
http://www.w3.org/TR/ws-arch/

	5 Interactive Mobile Applications Development Using Adapting Component Model
	Abstract
	1 Introduction
	2 Related Works
	2.1 Adapting Component Based Mobile Applications Development
	2.2 CBD Process for Mobile Applications
	2.2.1 Component Interfaces


	3 Design of Interactive Mobile Applications Development Using Adapting Component Model
	3.1 Interactive Mobile Applications Development Using Adapting Component Model
	3.2 Components and Variation Points
	3.3 Adapting Component Model with Interactive Mobile Applications Development
	3.4 Implementation of Adapting Component Model with Interactive Mobile Applications Development
	3.5 Dynamic Composition

	4 Conclusions
	Acknowledgements
	References


