
A Replicated Study on Relationship Between
Code Quality and Method Comments

Yuto Miyake, Sousuke Amasaki, Hirohisa Aman and Tomoyuki Yokogawa

Abstract Context: Recent studies empirically revealed a relationship between

source code comments and code quality. Some studies showed well-written source

code comments could be a sign of problematic methods. Other studies also show that

source code files with comments confessing a technical debt (called self-admitted

technical debt, SATD) could be fixed more times. The former studies only consid-

ered the amount of comments, and their findings might be due to a specific type of

comments, namely, SATD comments used in the latter studies. Objective: To clarify

the relationship between comments other than SATD comments and code quality.

Method: Replicate a part of the latter studies with such comments of methods on

four OSS projects. Results: At both the file-level and the method-level, the presence

of comments could be related to more code fixings even if the comments were not

SATD comments. However, SATD comments were more effective to spot fix-prone

files and methods than the non-SATD comments. Conclusions: Source code com-

ments other than SATD comments could still be a sign of problematic code. This

study demonstrates a need for further analysis on the contents of comments and its

relation to code quality.

Keywords Source code comment ⋅ Software quality ⋅ Self-admitted technical debt

Y. Miyake ⋅ S. Amasaki (✉) ⋅ T. Yokogawa

Faculty of Computer Science and Systems Engineering,

Okayama Prefectural University, Soja 719-1197, Japan

e-mail: amasaki@cse.oka-pu.ac.jp

Y. Miyake

e-mail: cd28043k@cse.oka-pu.ac.jp

T. Yokogawa

e-mail: t-yokoga@cse.oka-pu.ac.jp

H. Aman

Center for Information Technology, Ehime University, Matsuyama 790-8577, Japan

e-mail: aman@ehime-u.ac.jp

© Springer International Publishing AG 2017

R. Lee (ed.), Applied Computing and Information Technology,

Studies in Computational Intelligence 695,

DOI 10.1007/978-3-319-51472-7_2

17

18 Y. Miyake et al.

1 Introduction

The success of software development depends on many factors. The quality manage-

ment of source code is one of the crucial activities to the success. Software devel-

opers dedicate much effort to retain the quality of source code from a spectrum of

perspectives.

The comprehensibility of source code is essential for software developers working

for a project where they maintain and evolve the source code cooperatively. For this

purpose, the coding standards such as MISRA C [11] and Google Java Style [7] help

to read source code and to prevent from faults though they provide no guide for code

construction.

Comments in source code are useful documentation for developers and help their

comprehension for the logic, architecture, and limitations of the code nearby. In fact,

comments are widely known as effective entities [4, 14]. On the other hand, Fowler’s

book on refactoring [6] indicated that the presence of many comments is one of “code

smells.” Code smells are typical signs of poor design (poor quality parts of the code)

to be refactored. Comments themselves have no direct effect on the design, but they

often work as deodorants for smells. From a view of refactoring, comments thus

play dual roles: well-written comments increase readability of programs, but they

can also be signs of poor quality code.

Recent studies empirically revealed a relationship between source code comments

and code quality. Comments themselves are harmless to code. Nevertheless, those

studies both indicated some types of comments might be a useful sign for code qual-

ity improvement. Aman et al. focused on the relationship between the amount of

code comments and code quality [1–3]. These analyses reported that well-written

comments in a method body could be a sign of its fault-proneness. The relationship

between the content of code comments and code quality was also studied [12, 13,

18]. These analyses focused on specific comments called self-admitted technical debt
(SATD). SATD is an apparent quality risk confessed in code comments by develop-

ers. They first conducted manual examination for SATD [12, 13], and then revealed

that SATD-related changes were difficult [18].

The studies [1–3] focused on the amount of comments and did not look into the

contents of comments. The comments they analyzed contain the SATD comments,

and it has been unknown that how much the SATD comments affected their results. A

question thus arises whether the relationship between comments and code quality is

viable for comments other than SATD comments. On the other side, the studies [12,

13, 18] were conducted on a bit rough-grained units, namely, source files. Comments

usually help to understand a code fragment close to them, and a finer grained empir-

ical study at the method level can show a detailed relationship between SATD and

code quality.

In this study, we focused on a relationship between code quality and comments of

methods. We extracted methods of classes and compared fix-proneness between the

methods with comments other than SATD comments and those without any com-

A Replicated Study on Relationship Between Code Quality . . . 19

ments. We also conducted comparisons of fix-proneness between the methods with

SATD comments and the other methods.

This paper is organized as follows. In Sect. 2, we present the design of our exper-

iments. In Sect. 3, we show the results and their discussion. Related work is shown

in Sect. 4. We conclude the paper in Sect. 5.

2 Methodology

2.1 Self-Admitted Technical Debt

Technical debts are introduced into source code by developers. Some technical debts

are intentionally buried due to several reasons such as time pressure. A part of inten-

tional technical debts are admitted in source code comments. Such technical debts

are called Self-Admitted Technical Debt (SATD) [12]. An example of such comments

is as follows:

if (implementation == null) {

// No proper implementation
// FIXME: We should log a warning, shouldn’t we ?
implementation = new AnyLanguage(language);

}

Here, a developer used a typical SATD keyword FIXME to share anxiety for logging

option. In [18], such SATD keywords were used for specify SATDs.

2.2 Research Questions

This study aims at clarifying the relationship between comments other than SATD

comments and code quality. SATD comments were rarely found in comments, and it

was difficult to use its amount for experiments. Therefore, we decided to investigate

a relationship between the presence of comments other than SATD comments and

code quality. We used the fix-proneness to measure code quality as well as the studies

[2, 18].

The studies [2, 18] conducted at different module levels: method and class. Com-

ments usually describe a code fragment close to them, and the presence of a prob-

lematic fragment would also be signified by a comment near to it. This study thus

focused on comments of methods but compared the fix-proneness at both the file

level and the method level.

20 Y. Miyake et al.

Table 1 OSS projects analyzed in the empirical work

Project HEAD KLOC # of files # of methods # of commits

PMD 4e5e0187 90852 1048 6828 8698

SQuirreL

SQL Client

7d867694 367732 2293 17802 7340

FreeMind cc9cca40 113275 519 5631 1061

Hibernate

ORM

ef46293c 453556 3326 28460 7083

We designed our empirical research on the following two research questions:

RQ1: Are files containing comments other than SATD comments more fix-prone

than files without any comments?

RQ2: Are methods containing SATD comments more fix-prone than the other

methods? Are methods containing comments other than SATD comments

more fix-prone than methods without any comments?

2.3 Datasets

Our experiments required projects managed by a version control system because

the fix-proneness required access to change histories of files. This study was con-

ducted on four OSS projects: PMD,
1

SQuirreL SQL Client,
2

FreeMind,
3

and Hiber-

nate ORM.
4

They all ranked in the top 50 popular Java products at SourceForge.net,

are developed in Java, and their source files are maintained with Git. These projects

were used in the past studies [2, 3]. Analyses on projects used in [18] are future

work.

We selected Java files and focused on source code comments. The other files

like XML were excluded from this study. Furthermore, our experiments compared

the fix-proneness at two levels of source code, namely, file-level and method-level.

Therefore, files not having any method were also excluded to keep the same files

among experiments on the two levels.

Table 1 summarizes some statistics of project characteristics. The number of files

counts the number of Java source code files which have at least one method. Table 1

shows a variety of projects in code size and the number of methods.

1
http://pmd.sourceforge.net.

2
http://squirrel-sql.sourceforge.net.

3
http://freemind.sourceforge.net/wiki/index.php/Main_Page.

4
http://hibernate.org/orm.

http://pmd.sourceforge.net
http://squirrel-sql.sourceforge.net
http://freemind.sourceforge.net/wiki/index.php/Main_Page
http://hibernate.org/orm

A Replicated Study on Relationship Between Code Quality . . . 21

2.4 Target Comment Types

There are various types of comments described in source code [16]. This study

includes experiments on the relationship between comments and code quality at the

method-level, and we focused on comments related to methods: member comment

and inline comment.

According to [16], member comments describe the functionality of method/field,

being located either before or in the same line as the member definition. In our case,

member comments are ones located ahead of a method. Member comments for fields

were ignored. Member comments help developers understanding a usage or a speci-

fication of the method. Although Javadoc is a typical member comment, we analyzed

member comments other than Javadoc. Because Javadoc rarely gives quality related

descriptions and often ignored [3, 13].

Inline comments are located within a method body. Inline comments often

describe code fragments nearby. Implementation decisions are also described by

inline comments [16], they were candidates for a deodorant of code smells [3]. Some-

times code comments (commented-out code) were found within a method body. The

code comments were irrelevant to our scope and ignored as well as the past studies.

2.5 Comments Extraction and Labeling

For each OSS project, we cloned the git repository. Table 1 shows HEAD sha of the

projects. We then extracted methods and comments of them. For this purpose, we

made a tool with Eclipse Java development tools (JDT).
5

We first selected target files to be analyzed. The target files were source code writ-

ten in Java. Files related to testing were excluded. The tool was applied to extract

member and inline comments from the target files in each project. The tool also

extracted method signatures and the range of method bodies. According to that infor-

mation, the extracted comments were linked to the methods and classified into mem-

ber comments, inline comments, and the others. Only the methods having member

comments or inline comments were supplied for experiments.

For analyzing a relationship between comments and code quality, we have two

options. The first one is to use the number of comment lines as well as Aman et

al. [1–3]. The other is to use the presence of comments. This study focused on SATD

comments and comments other than the SATD comments, and SATD studies [12,

13, 18] only considered the presence of SATD. Furthermore, SATD comments were

rarely found in comments and it was difficult to use its amount for experiments. In

this study, we thus decided to use the presence of SATD comments and the other

comments for simplicity.

5
http://www.eclipse.org/jdt.

http://www.eclipse.org/jdt

22 Y. Miyake et al.

Following [18], we first labeled the extracted methods as SATD or non-SATD

with keyword matching. The keywords provided online by [12, 18] were used for the

labeling. A method was labeled as SATD if any of the keywords appeared in member

or inline comments of the method. Otherwise, the method was labeled as non-SATD.

The non-SATD methods may contain comments other than SATD comments. A file

was labeled as SATD if any of its methods were SATD.

We then labeled the non-SATD methods according to the presence of comments.

A method was labeled as commented if the method has any comments. Note that

no SATD keyword appeared in these comments. A file was commented if any of its

methods were commented.

2.6 Fix-Proneness Identification

The fix-proneness were considered as a valuable measure for assessing code quality

and maturity level [2, 18]. This study thus adopted the fix-proneness as code quality.

The definition of the fix-proneness defined as follows:

of fix commits

of commits

For each target file, all commits related to the file were obtained from a git reposi-

tory. A commit was considered as a fix commit if any of bug-fixing-related keywords

were found in a summary or a message of the commit. We used the following key-

words shown in [18]: fixed issue #ID, bug ID, fix, defect, patch, crash, freeze, breaks,

wrong, glitch, proper. All commits related to the target file were traversed, and the

fix-proneness of the file was recorded.

The commits were then mapped to methods. We used git diff to identify

lines added, modified, and deleted of a file. Matched the lines against the range of

methods in the file, we identified methods changed by the commit. The fix-proneness

of methods was obtained from the matching results.

3 Results

3.1 Are Files Containing Comments Other Than SATD
Comments More Fix-Prone Than Files Without Any
Comments?

Figure 1 shows boxplots of the percentage of defect fixing changes between files

having and not having SATD methods for the four projects. This comparison works

as a sanity check for [18] under a slightly different definition for SATD files and target

A Replicated Study on Relationship Between Code Quality . . . 23

NSATD SATD

0
20

40
60

PMD
D

ef
ec

t F
ix

in
g

C
ha

ng
es

 (
%

)

(a) PMD

NSATD SATD

0
20

40
60

80
10

0

80

10
0

SQuirrel

D
ef

ec
t F

ix
in

g
C

ha
ng

es
 (

%
)

(b) SQuirreL

NSATD SATD

0
20

40
60

80
10

0

FreeMind

D
ef

ec
t F

ix
in

g
C

ha
ng

es
 (

%
)

(c) FreeMind

NSATD SATD

0
20

40
60

80
10

0
Hibernate

D
ef

ec
t F

ix
in

g
C

ha
ng

es
 (

%
)

(d) Hibernate

Fig. 1 Percentage of defect fixing changes for SATD and NSATD files

projects. All projects except for Hibernate (Fig. 1d) show that files having SATD

methods have a higher percentage of defect fixing changes. This result was consistent

to [18] somewhat where files having SATD comments were more fixed in four out

of the five projects they used.

Figure 2 shows boxplots of the percentage of defect fixing changes between files

having comments other than SATD comments and files having no comment for the

four projects. As same as the previous results, all projects but Hibernate (Fig. 2d)

show that files having comments other than SATD comments have a higher percent-

age of defect fixing changes.

Those differences were tested by Man-Whitney test [10] and quantified by the

effect size with Cliff’s delta [5] as well as [18]. All differences were statistically

24 Y. Miyake et al.

NCMT CMT

0
20

40
60

PMD
D

ef
ec

t F
ix

in
g

C
ha

ng
es

 (
%

)

(a) PMD

NCMT CMT

0
20

40
60

SQuirrel

D
ef

ec
t F

ix
in

g
C

ha
ng

es
 (

%
)

(b) SQuirreL

NCMT CMT

0
20

40
60

FreeMind

D
ef

ec
t F

ix
in

g
C

ha
ng

es
 (

%
)

(c) FreeMind

NCMT CMT

0
20

40
60

80
10

0

80
10

0

80
10

0

80
10

0
Hibernate

D
ef

ec
t F

ix
in

g
C

ha
ng

es
 (

%
)

(d) Hibernate

Fig. 2 Percentage of defect fixing changes for Commented (non-SATD) and non-Commented files

significant at 𝛼 = 0.05. Table 2 shows the effect-size for the four projects. Cliff’s

Delta ranges in the interval [-1, 1] and is considered negligible for ‖d‖ < 0.147,

small for 0.147 ≤ ‖d‖ < 0.33, medium for 0.33 ≤ ‖d‖ < 0.474, and large for ‖d‖ ≥

0.474. The criteria indicate that the differences between SATD and non-SATD were

medium or large for PMD, SQuirreL, and FreeMind. Only the difference on Hiber-

nate was small. The differences between commented and non-commented files were

all considered small.

A Replicated Study on Relationship Between Code Quality . . . 25

Table 2 Cliff’s Delta for SATD versus NSATD and Commented versus non-Commented files

Project SATD versus NSATD CMT versus NCMT

PMD 0.403 0.327

SQuirreL SQL Client 0.737 0.281

FreeMind 0.384 0.197

Hibernate ORM −0.308 −0.192

These observations lead the following answer for RQ1:

∙ Where the presence of SATD comments increases defect fixing changes, the pres-

ence of comments other than SATD comments also increases defect fixing changes

∙ The difference of fix-proneness between commented and non-commented files

was statistically significant but smaller than that between SATD and non-SATD

files

3.2 Are Methods Containing SATD Comments More
Fix-Prone Than the Other Methods? Are Methods
Containing Comments Other Than SATD Comments
More Fix-Prone Than Methods Without Any Comments?

Figure 3 shows boxplots of the percentage of defect fixing changes in SATD and

non-SATD files for the four projects. This comparison shows a detailed relationship

between SATD and code quality at the method level. Figure 3 shows that the fix-

proneness was higher if methods had SATD comments for PMD and SQuirreL. This

result was similar to the comparison at the file-level shown in Fig. 1. Contrastingly,

the differences of the fix-proneness were less clear for FreeMind and Hibernate.

Figure 4 shows boxplots of the percentage of defect fixing changes in commented

and non-commented methods for the four projects. As same as the results for SATD

methods, commented files have a higher percentage of defect fixing changes for PMD

and SQuirreL; the differences of the fix-proneness were less clear for Hibernate. For

FreeMind, the difference could not be observed from Fig. 4c.

Those differences were tested by Man-Whitney test and quantified by the effect

size with Cliff’s delta. Regarding SATD methods, all differences except for Hiber-

nate were statistically significant at 𝛼 = 0.05. Regarding commented methods, all

differences including Hibernate were statistically significant at 𝛼 = 0.05.

Table 3 shows the effect-size for the four projects. The criteria indicate that the

differences between SATD and NSATD were medium or large for PMD and SQuir-

reL. The difference for FreeMind was small, and that for Hibernate was negligible.

The effect sizes at the method-level were smaller than those at the file-level.

26 Y. Miyake et al.

NSATD SATD

0
20

40
60

PMD
D

ef
ec

t F
ix

in
g

C
ha

ng
es

 (
%

)

(a) PMD

NSATD SATD

0
20

40
60

SQuirrel

D
ef

ec
t F

ix
in

g
C

ha
ng

es
 (

%
)

(b) SQuirreL

NSATD SATD

0
20

40
60

FreeMind

D
ef

ec
t F

ix
in

g
C

ha
ng

es
 (

%
)

(c) FreeMind

NSATD SATD

0
20

40
60

80
10

0

80
10

0

80
10

0

80
10

0

Hibernate

D
ef

ec
t F

ix
in

g
C

ha
ng

es
 (

%
)

(d) Hibernate

Fig. 3 Percentage of defect fixing changes for SATD and NSATD methods

The differences between commented and non-commented files were small for

PMD and SQuirreL. The differences for FreeMind and Hibernate were negligible.

These effect sizes were smaller than those on SATD methods. The effect sizes at the

method-level were smaller than those at the file-level.

These observations lead the following answer for RQ2:

∙ Where the presence of SATD comments increases defect fixing changes at the

file-level, defect fixing changes are also increased at the method-level

∙ Where the presence of SATD comments increases defect fixing changes at the

method-level, the presence of comments other than SATD comments also increases

defect fixing changes at the method-level

A Replicated Study on Relationship Between Code Quality . . . 27

NCMT CMT

0
20

40
60

PMD
D

ef
ec

t F
ix

in
g

C
ha

ng
es

 (
%

)

(a) PMD

NCMT CMT

0
20

40
60

SQuirrel

D
ef

ec
t F

ix
in

g
C

ha
ng

es
 (

%
)

(b) SQuirreL

NCMT CMT

0
20

40
60

FreeMind

D
ef

ec
t F

ix
in

g
C

ha
ng

es
 (

%
)

(c) FreeMind

NCMT CMT

0
20

40
60

80
10

0

80
10

0

80
10

0

80
10

0

Hibernate

D
ef

ec
t F

ix
in

g
C

ha
ng

es
 (

%
)

(d) Hibernate

Fig. 4 Percentage of defect fixing changes for Commented and non-Commented methods

∙ The difference of fix-proneness between commented and non-commented meth-

ods was statistically significant but smaller than that between SATD and non-

SATD methods

3.3 Threats to Validity

This study leaves some threats to validity as well as the past related studies.

28 Y. Miyake et al.

Table 3 Cliff’s Delta for SATD versus NSATD and Commented versus non-Commented methods

Project SATD versus NSATD CMT versus NCMT

PMD 0.381 0.273

SQuirreL SQL Client 0.514 0.156

FreeMind 0.170 0.096

Hibernate ORM −0.03 −0.102

Regarding internal validity, we classified fix commits and SATD comments by

keyword matching. While the keyword matching is simple and scalable, it might

overlook the fix commits and SATD comments. However, this approach worked

effectively in not a few studies [8, 15, 20]. Manual classification is labor-intensive

for large projects in practice, and this is a realistic approach.

Regarding external validity, our target projects were limited in number and pro-

gramming language. Therefore, the observations in this study might not hold in other

projects using other programming language. However, the target projects were col-

lected from various application areas, and most of popular programming languages

are based on imperative manner and provide function or method constructs as a basis

of development. Therefore, those differences are not critical for the generality of our

contribution. Our future work includes experiments on such projects.

4 Related Work

Many studies focused on comments and its relation and effect to aspects of software

development.

While comments can be freely written, its main purpose is to help developers

comprehending the programs’ logic, architecture, and limitations. Tenny [17] and

Woodfield et al. [19] conducted experiments about program comprehensions, with

students and experienced programmers as their subject, respectively. In their experi-

ments, the subjects evaluated the ease of understanding some variations of a program

which were different in modular design and in commenting manner (with or without

comments.) Their experimental results showed that comments have a positive impact

on program comprehension. The results also implies that the quality of comments

also matters for program comprehension.

Steidl et al. [16] proposed a framework to evaluate the quality of comments. They

evaluated the coherence between member comments and the name of the corre-

sponding method. Their coherence evaluation presents whether the member com-

ments provide useful information about the method. They discussed the comments

written inside method bodies as well, and proposed to use short comments as indi-

cators of parts to be refactored. Moreover, they described that the existence of long

comments may infer a lack of external documents, so adding many comments was

not recommended. Lawrie et al. [9] also studied the correspondence of comments

A Replicated Study on Relationship Between Code Quality . . . 29

and code by using a natural language processing technique, for an automated quality

assessment.

Recent studies get focused on comments from the perspective of code quality.

Aman et al. conducted some empirical studies of the relationships between the

amount of comments and the fault-proneness [1, 3]. Their empirical results showed

that the presence of comments written inside method bodies (they called “inline

comments”) is correlated with the fault-proneness in the programs. Therefore, well-

written inline comments in a method body could be a sign of its fault-proneness as

indicated as code smells by Fowler et al [6]. They also showed that the amount of

comments contributed to explain the change proneness of programs [2].

The content of comments was also analyzed and related to the code quality. Potdar

and Shihab [12] used a certain type of comments to specify technical debts. They

called such commented technical debts as self-admitted technical debt (SATD). They

manually examined source code comments of OSS projects and showed detailed

statistics of SATD. Another study [13] regarding SATD classified SATD into five

debts and showed what types of debts were common among their target projects.

The relationship between SATD and code quality was examined in [18]. They used

typical SATD keywords found in the previous studies to determine SATD files. Then,

they related the presence and the introducing of SATD with defect inducing changes,

fix inducing changes, and difficulty of code changes.

Our study heavily relies on the studies focused on the relationships between com-

ments and code quality. While the studies by Aman et al. did not care about SATD,

this study analyzed the quality of code having non-SATD comments. While Wehaibi

et al. [18] considered the quality at the file-level, this study also focused on the qual-

ity at the method-level.

5 Conclusion

We replicated a study on the relationship between method comments and quality. The

results show that the presence of comments could be a sign of problem even when

the method comments did not contain SATD. We also revealed that the presence of

SATD comments could also be a sign of problem even at the method-level.

Our future work includes further analyses on the relationship from another per-

spective. Defect inducing change was one of popular quality measures in literature

including the past studies we replicated. The comparison of quality between pre-

and post- comment inducing has also remained as future work. With deeper under-

standing on comments, we can expect a system suggesting risky or smelled code at

writing comments.

Acknowledgements The authors would like to thank the anonymous reviewers for their thought-

ful comments and helpful suggestions on the first version of this paper. This work was partially

supported by JSPS KAKENHI Grant #16K00099.

30 Y. Miyake et al.

References

1. Aman, H.: An Empirical Analysis on Fault-Proneness of Well-Commented Modules. In:

Fourth International Workshop on Empirical Software Engineering in Practice (IWESEP).

IEEE (2012)

2. Aman, H., Amasaki, S., Sasaki, T., Kawahara, M.: Empirical Analysis of Change-Proneness

in Methods Having Local Variables with Long Names and Comments. In: ACM IEEE Inter-

national Symposium on Empirical Software Engineering and Measurement (ESEM), pp. 1–4

(2015)

3. Aman, H., Amasaki, S., Sasaki, T., Kawahara, M.: Lines of Comments as a Noteworthy Metric

for Analyzing Fault-Proneness in Methods. IEICE - Transactions on Information and Systems

E98.D(12), 2218–2228 (2015)

4. Buse, R., Weimer, W.: Learning a Metric for Code Readability. IEEE Transactions on Software

Engineering 36(4), 546–558 (2010)

5. Cliff, N.: Ordinal Methods for Behavioral Data Analysis (1996)

6. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring. Improving the Design

of Existing Code. Addison-Wesley (2012)

7. Google: Google java style. http://google-styleguide.googlecode.com/svn/trunk/javaguide.html

8. Kim, S., Whitehead Jr., E.J., Zhang, Y.: Classifying Software Changes: Clean or Buggy? IEEE

Transactions on Software Engineering 34(2), 181–196 (2008)

9. Lawrie, D.J., Feild, H., Binkley, D.: Leveraged Quality Assessment using Information Retrieval

Techniques. In: the 14th IEEE International Conference on Program Comprehension (ICPC).

IEEE (2006)

10. Mann, H.B., Whitney, D.R.: On a Test of Whether one of Two Random Variables is Stochas-

tically Larger than the Other. The annals of mathematical statistics (1947)

11. MISRA: MISRA C. http://www.misra-c.com

12. Potdar, A., Shihab, E.: An Exploratory Study on Self-Admitted Technical Debt. In: IEEE Inter-

national Conference on Software Maintenance and Evolution (ICSME), pp. 91–100. IEEE

(2014)

13. da S. Maldonado, E., Shihab, E.: Detecting and quantifying different types of self-admitted

technical Debt. In: IEEE 7th International Workshop on Managing Technical Debt (MTD),

pp. 9–15. IEEE (2015)

14. Scanniello, G., Gravino, C., Risi, M., Tortora, G., Dodero, G.: Documenting Design-Pattern

Instances: A Family of Experiments on Source-Code Comprehensibility. ACM Transactions

on Software Engineering and Methodology 24(3) (2015)

15. Śliwerski, J., Zimmermann, T., Zeller, A.: When do changes induce fixes? In: International

Workshop on Mining Software Repositories (MSR), pp. 1–5. ACM (2005)

16. Steidl, D., Hummel, B., Juergens, E.: Quality analysis of source code comments. In: IEEE 21st

International Conference on Program Comprehension (ICPC), pp. 83–92. IEEE (2013)

17. Tenny, T.: Program Readability: Procedures Versus Comments. IEEE Transactions on Soft-

ware Engineering 14(9), 1271–1279 (1988)

18. Wehaibi, S., Shihab, E., Guerrouj, L.: Examining the Impact of Self-Admitted Technical Debt

on Software Quality. In: 2016 IEEE 23rd International Conference on Software Analysis, Evo-

lution and Reengineering (SANER), pp. 179–188. IEEE (2016)

19. Woodfield, S.N., Dunsmore, H.E., Shen, V.Y.: The effect of modularization and comments on

program comprehension. In: 5th international conference on Software engineering (ICSE), pp.

215–223. IEEE (1981)

20. Zimmermann, T., Premraj, R., Zeller, A.: Predicting Defects for Eclipse. In: International

Workshop on Predictor Models in Software Engineering (PROMISE). IEEE (2007)

http://google-styleguide.googlecode.com/svn/trunk/javaguide.html
http://www.misra-c.com

	A Replicated Study on Relationship Between Code Quality and Method Comments
	1 Introduction
	2 Methodology
	2.1 Self-Admitted Technical Debt
	2.2 Research Questions
	2.3 Datasets
	2.4 Target Comment Types
	2.5 Comments Extraction and Labeling
	2.6 Fix-Proneness Identification

	3 Results
	3.1 Are Files Containing Comments Other Than SATD Comments More Fix-Prone Than Files Without Any Comments?
	3.2 Are Methods Containing SATD Comments More Fix-Prone Than the Other Methods? Are Methods Containing Comments Other Than SATD Comments More Fix-Prone Than Methods Without Any Comments?
	3.3 Threats to Validity

	4 Related Work
	5 Conclusion
	References

