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Abstract. As the complexity of a prediction problem grows, simple lin-
ear approaches tend to fail which has led to the development of algo-
rithms to make complicated, nonlinear problems solvable both quickly
and inexpensively. Fastfood, one of such algorithms, has been shown to
generate reliable models, but its current state does not offer feature selec-
tion that is useful in solving a wide array of complex real-world problems
that spans from cancer prediction to financial analysis.

The aim of this research is to extend Fastfood with variable impor-
tance by integrating with Elastic net. Elastic net offers feature selection,
but is only capable of producing linear models. We show that in com-
bining the two, it is possible to retain the feature selection offered by
the Elastic net and the nonlinearity produced by Fastfood. Models con-
structed with the Fastfood enhanced Elastic net are relatively quick and
inexpensive to compute and are also quite powerful in their ability to
make accurate predictions.

Keywords: Kernel methods · Data mining · Algorithms and program-
ming techniques for big data processing

1 Introduction

The value of effective prediction methods is self-evident: being able to predict
future outcomes can be applied to nearly any field. The methods and algorithms
that are used to generate these predictive models continue to evolve to handle
large, complicated real-world datasets that have high dimensionality and large
sample sizes. The fields that these datasets come from range from stock mar-
ket and financial analysis to disease screening to weather prediction. For such
datasets, many of the machine learning techniques that are commonly used to
generate models either fail or are too expensive in either their required storage
space or their runtime, rendering them inefficient.

More data offers the ability to train better, more realistic models, but the
cost of generating these models is often computationally intractable because of
the scope of the mathematical operations that a computer must perform during
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training. As a result, these more sophisticated models often cannot be computed
in real-time, rendering them useless in many disciplines. Storage space is another
concern. While the computer running the algorithms may be able to hold ter-
abytes of data, it cannot hold a square matrix of corresponding dimensions. Thus,
even in the rare cases when time is plentiful, the required computing resources
to generate models from large datasets is unavailable to many researchers.

Linear techniques, such as Elastic net [6], tend not to succumb to these pitfalls
because of their relative simplicity. However, complex datasets with hundreds, if
not thousands, of features are unlikely to have linear decision boundaries. As a
result, the linear models produced by these techniques are quite often unreliable
or inaccurate.

One of the simpler methods for finding nonlinear decision boundaries is the
kernel trick. The kernel trick transforms the data by implicitly mapping the
features into a higher, possibly infinite, dimension and from there calculating
a linear decision boundary [6]. For instance, if a dataset is not linearly separa-
ble in two dimensions, it can be transformed into a higher dimensional space.
Depending on the function used to transform the data, it may be possible to find
a linear decision boundary in this new feature space. The trick to this technique
lies in the fact that the mapping function (φ) need never be explicitly defined.
Rather, the individual points can be transformed by taking their dot product
with a known kernel function (k), like the sigmoid function or the radial basis
function [3]. The relationship between φ and k is as follows:

〈φ(x), φ(y)〉 = k(x, y) (1)

f(x) = 〈w, φ(x)〉 =
N∑

i=1

aik(xi, x) (2)

Unfortunately, the kernel trick may also become intractable to compute as the
computation and storage requirements for the kernel matrix are exponentially
proportional to the number of samples in the dataset [3]. However, the Random
Kitchen Sinks (RKS) algorithm chooses to approximate the kernel function more
effectively by randomizing features instead of optimizing them [5]. It does this
by randomly selecting these features from a known distribution. The authors
show that with this method shallow neural nets achieve comparable accuracy to
AdaBoost, a popular ensemble method which adjusts weak learners in favor of
instances misclassified by previous classifiers [2]. Overall, RKS has comparable
predictive ability to the commonly used AdaBoost, but does not require the same
level of rigor on the part of the computer during training. However, RKS makes
use of dense Gaussian random matrix multiplications which are computationally
expensive. Le and Smola mitigate this problem by replacing these multiplications
by multiplying several diagonal matrices in their algorithm: Fastfood [3].

Like Fastfood, Elastic net can be combined with machine learning techniques.
One implementation of Elastic net combines it with support vector machines
(SVMs) yielding a substantial performance improvement without sacrificing
accuracy [6]. Our work builds directly upon the Fastfood algorithm, which while
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capable of generating models quickly does not provide a variable importance
measure or feature section. Herein, we describe our research into developing a
computationally efficient variable importance measure for Fastfood by leveraging
the built-in feature selection of Elastic net [6]. Our results indicate that models
generated with our improved variation of Fastfood retains the benefits of the
Fastfood while also providing variable importance, which is not available in the
standard Fastfood algorithm.

2 Methods

In order to generate nonlinear models with feature selection, we combine two
existing algorithms: Fastfood and Elastic net. Our method, Fastfood Elastic Net
(FFEN) retains the nonlinearity of Fastfood while incorporating feature selection
of Elastic net to provide a variable importance measurement.

To reduce the already quick run-time complexity of RKS, Fastfood combines
Hadamard matrices with Gaussian scaling matrices [3]. The algorithm replaces
the Gaussian random matrices in RKS with this combination. Because of the
relative ease of these computations in contrast multiplying to Gaussian random
matrices, the complexity of the runtime is reduced from O(nd) to O(n log d) [3].
This allows Fastfood to approximate the kernel feature map quickly. The main
takeaway from this is that unlike in the kernel trick where φ is never defined, in
Fastfood (and RKS) it is approximated.

Another appeal of Fastfood is that it has previously been combined with
other machine learning techniques, most notably neural nets. By implementing
the algorithm at each layer of the neural net, additional nonlinearity is added to
the training of the neural net and the training process is also sped up [1].

Despite the successes of Fastfood in making accurate predictions in loglinear
time, it is unable to inherently measure variable importance and perform variable
selection because it relies on kernel approximation and projection into a new
feature space. Elastic net, however, implicitly provides variable selection, but is
a linear technique characterized in Eq. 3 [6]. Thus, Elastic net in isolation is not
capable of creating a predictive model for complicated datasets with nonlinear
decision boundaries.

β̂ = arg min
β

(‖y − Xβ‖2 + λ‖β‖2 + α‖β‖1) (3)

where α and λ are parameters to be specified by the user, X is the data matrix, y
are the labels or dependent variable, and β is a vector of coefficients representing
the model.

Our method takes the original feature matrix (X) of size (n× d) and applies
Fastfood. This transforms the original features to a new feature matrix (F ) of
size (n × p), where p ≥ d. In this step, Fastfood approximates φ to transform X
into a higher dimensional space.

F
n×p

= X
n×d

× φ
d×p

(4)



430 S. Kopel et al.

Fig. 1. Process

Elastic net is applied to this new feature matrix to generate a model with vari-
able selection (L). Optimization of parameters λ and α within the Elastic Net
algorithm are also optimized throughout the process. To reduce back to the
original dimensionality, we calculate a correlation matrix (ρ) between the new
features and the original features. Finally, these correlations are aggregated to
reduce and relate the Elastic net coefficient vector of size (1 × p) to the original
feature space of size (1 × d). The overall process of FFEN is shown in Fig. 1.

O
1×d

= L
1×p

× ρ
p×d

(5)

This method can then be run iteratively to remove extraneous variables or
a single run can be used to integrate variable importance in the original dimen-
sional space with the kernel approximation basis space.

3 Results and Discussion

For evaluation, tests have been performed on both simulated linear datasets as
well as real datasets from the UCI machine learning repository [4]. The simulated
datasets had random variables masked, providing a known gold standard for
feature selection and variable importance. Our Fastfood enhanced Elastic net
(FFEN) was compared to lasso: a common implementation of Elastic net. To
keep the comparisons fair, parameters λ and α for lasso were optimized in the
same way as they were for FFEN. For the simulated linear data, the true β
values for each variable were known, so the primary metric that was used to
compare the FFEN model to lasso was average mean absolute error (MAE) for
all of the β values. Table 1 depicts the results for simulated datasets of differing
dimensions.

The results indicate that FFEN improves as the number of samples increases
and the number of dimensions decreases. To justify this, we repeated our sim-
ulation 20 times on datasets of varying size (see Table 1). The average MAE
for FFEN was 0.03097 as opposed to 0.0473 for lasso. Given the small standard
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Table 1. Simulated linear data

n d FFEN MAE Lasso MAE

400 100 0.2103 0.0401

1000 80 0.1162 0.0301

4000 10 0.0471 0.0300

5000 10 0.0234 0.0400

deviations, 0.007572 and 0.00725 respectively, we can with more than 99% cer-
tainty conclude that FFEN outperforms lasso on simulated linear datasets with
those dimensions which we confirmed by performing a paired T-Test.

To compare performance on real-world datasets, we generated 20 different
training and test sets, and ran both FFEN and lasso on each set. We then com-
pared R2 values and ran a paired T-Test to test to see which model was better.
Table 2 depicts the average R2 values for the 20 runs as well as the standard
deviations (σ) for these runs. FFEN performed slightly worse than lasso for the
KEGG Metabolic Reaction Network Dataset though the performance dropped
slightly from approximately 0.90 to 0.88. The high value of R2 for lasso indicates
that this is a linear dataset, and therefore, FFEN provides marginal benefits.
However, FFEN significant outperforms lasso on the Physicochemical Proper-
ties of Protein Tertiary Structure Dataset (Protein) and also outperformed lasso
on the UCI million song dataset. Because UCI provided a preferred training and
test set partition for the UCI million song dataset, only one run was needed to
generate the results. The R2 values for FFEN and lasso from this run are also
depicted in Table 2.

Table 2. Empirical data

Dataset n d FFEN R2 FFEN σ Lasso R2 Lasso σ

Protein 45729 9 0.3366 0.0268 0.2387 0.0038

KEGG 64608 27 0.8754 0.0120 0.8992 0.0023

Music 515345 90 0.2245 0.2098

In conclusion, FFEN has been shown to offer promising results. The mod-
els generated by our algorithm are comparable or better than those of Elastic
net on simulated linear datasets when measuring the accuracy of the resulting
coefficients. Further, FFEN shows improved accuracy when appropriate complex
nonlinear datasets while incorporating novel variable importance not available
in standard Fastfood. The use of Fastfood allows us to generate these models
both quickly and inexpensively.

In the future, we hope to adjust the algorithm more efficiently and accurately
perform feature selection. In addition, we are working on testing a wider range
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of datasets with varying sample sizes and dimensionality. Further, we would like
to compare the runtime of this algorithm to other runtime optimized machine
learning algorithms, such as Elastic net enhanced SVMs (SVEN).
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