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Abstract. There has been a rising interest in experimental exact algorithms for
the maximum clique problem because the gap between the expected theoretical
performance and the reported results in practice is becoming surprisingly
large. One reason for this is the family of bounding functions denoted as infra-
chromatic because they produce bounds which can be lower than the chromatic
number of the bounded subgraph. In this paper we describe a way to enhance
exact solvers with an additional infra-chromatic bounding function and report
performance over a number of graphs from well known data sets. Moreover, the
reported results show that the new enhanced procedure significantly outperforms
state-of-the-art.
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1 Introduction

Given a simple undirected graph G ¼ ðV ;EÞ, with n vertices and m edges, NðvÞ refers
to the neighbor set of vertices adjacent to a vertex v 2 V and G½U� to the subgraph
induced by a vertex set U�V . A complete subgraph (or clique) is an induced subgraph
such that all its vertices are pairwise adjacent, and the maximum clique problem
(MCP) consists in finding a clique of maximum cardinality. The MCP is a theoretical
deeply studied NP-hard problem which has also found many applications [1]. Exam-
ples of clique search appear in network analysis, coding theory, fingerprint matching,
bioinformatics [2], robotics [3, 4] and computer vision [5].

In the last decade there has been rising interest in the exact solving of the MCP.
At present, almost all successful algorithms are branch-and-bound and use a greedy
vertex coloring procedure as bound [6–15]. Interestingly, the reports provided by these
practical algorithms average a much better performance than is to be expected by the
theoretical algorithms alone. A brief overview of theoretical results now follows:
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– The MCP is NP-hard and can not even be approximated in polynomial time within a

factor of jV j1=3�e, for any e[ 0(unless P ¼ NP) [16].
– There can be as much as 3n=3 distinct maximal cliques to enumerate in a graph of

size n [17], which is an upper bound for all enumerative solvers.
– Branch-and-bound solvers do not need to explore all the maximal cliques. An

important number of them may be discarded when, during construction, it is shown
that they cannot improve the current incumbent clique. In [18], the worst case
running time was set to Oð2n=3Þ and, at present, the value of this bound is Oð2n=4Þ
[19], in both cases with exponential space consumption. We note that these algo-
rithms have not been implemented in practice and literature provides no experi-
mental evaluation.

– An interesting recent work is [20] which is concerned with the family of
branch-and-bound solvers which use coloring as bounding function; these are also
the reference algorithms for this work. [20] sets Xð2n=5Þ as lower bound for this
family of solvers.

The latter result is especially relevant because it is related to state-of-the-art exact
algorithms and, as far as we are aware, the gap between the good performances shown
by the experimental algorithms and the theoretical result remains to be explained.
Motivated by this fact, this work contributes with an empirical study of cutting-edge
infra-chromatic bounding functions which have recently been described for the
MCP. These functions are able to bind the clique number of a given subproblem below
its chromatic number by additional computational effort. More precisely, this implies
that the theoretical Xð2n=5Þ bound does not hold for these algorithms.

Leading infra-chromatic experimental algorithms for the MCP at present are
MaxCLQ [14], and its improved variant IncMaxCLQ [15], as well as bit-parallel
BBMCX [11]— see recent comparison surveys [21, 22]. The contribution of this work
is experimental. First we describe a way to enhance BBMCX with an additional
infra-chromatic bounding function closely related to the one described in MaxCLQ.
This bounding function can also be applied to earlier BBMC variants [8–10]. The paper
reports performances of two enhanced variants (including BBMCX), together with
IncMaxCLQ.

The remaining part of this work is structured in the following way: Sects. 2 and 3
cover prior related algorithms. The new bounding function for exact maximum clique
is described in Sect. 4 and validated empirically in Sect. 5. Finally, Sect. 6 briefly
discusses the reported results and Sect. 7 presents some conclusions.

2 Related Bounding Functions for the MCP

In the last decade, greedy sequential vertex coloring (SEQ) has proved to be a good
bounding function for exact branch-and-bound solvers for the MCP. SEQ is an Oðn2Þ
worst-case bounded procedure which iteratively assigns the lowest possible color
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number to each vertex that is consistent with the current partial coloring. The first
maximum clique algorithm of this type described in literature is Fahle’s [6]. Since then,
much research has been devoted to improve the basic SEQ bounding function.

We denote by CðGÞ ¼ C1;C2; . . .;Ckf g a k-coloring of graph G, where Ci refers to
the (color) set which contains vertices assigned color number i. For a given k-coloring
CðGÞ, maximum clique solvers use a recoloring bounding function to lower the color
number k of a vertex v1 2 Ck by a swap movement with two already colored vertices
v2 2 Ci and v3 2 Cj where i\j\k. A successful recoloring leads to the new coloring
v1 2 Ci and v2; v3 2 Cj . In practice, recoloring can be applied to every vertex of the
SEQ coloring, as described originally for algorithm MCS [12], or relaxed to a particular
subset, as in BBMCR [9].

A bounding function that could produce bounds below the chromatic number of the
bounded subproblem was first described in algorithm MaxCLQ [14], and later
improved in IncMaxCLQ [15]. It was defined in terms of a reduction of the MCP over a
colored graph to a partial maximum satisfiability problem (PMAX-SAT) as follows:
(I) Each vertex of the graph maps to a logical variable. (II) Each PMAX-SAT hard
clause consists of two negated literals and represents a non-adjacency relation between
the pair of corresponding vertices. (III) Each PMAX-SAT soft clause represents a
distinct color set and contains the corresponding positive literals that map to vertices of
the set.

Figure 1 provides a simple example of the reduction when applied to an odd-cycle:

The PMAX-SAT problem’s equivalence to the MCP consists in finding an
assignment of literals which satisfy the maximum number of soft clauses (the color
sets) and all hard clauses (the graph structure) — see [14, 15] for a more detailed
description. The cleverness of this reduction for branch-and-bound exact MCP solvers

h1 = 1 3x x∨
h2 = 1 4x x∨
h3 = 2 4x x∨
h4 = 2 5x x∨
h5 = 3 5x x∨

s1 = 1 3x x∨
s2 = 2 4x x∨
s3 = 5x

χ(G) = 3, ω(G) = 2 hard clauses so  clauses

Fig. 1. An example of an MCP reduction to PMAX-SAT. (Color figure online)
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is that well-known pruning strategies for PMAX_SAT may be used as bounding
functions for the MCP. The main inference is based on propagating literal assignments
of unit soft clauses (singleton color sets) until an empty clause is reached. When this
occurs, the soft clauses (color sets) that make part of the reasoning are said to be
inconsistent. Intuitively, the subgraph induced by an inconsistent set of k colors cannot
contain a clique of size k or bigger, so the bound provided by the number of colors in
the original coloring may be decremented by one for each inconsistent set of colors
found.

In the example of Fig. 1, one such inconsistent set of soft clauses is s1; s2; s3f g,
which can be obtained by the following inference: (I) x5  TRUE since s3 is a
unit clause. (II) Propagating x5  TRUE value leads to s2 ¼ x4, according to hard
clause h4, and s1 ¼ x1, according to hard clause h5. (III) x4  TRUE, since s2 is a unit
clause. IV) Propagating x4  TRUE leads to the empty clause s1 ¼ ;, according to the
hard clause h2. Consequently, the original color bound of the graph, 3, can be reduced
to 2. Note that the chromatic number of the graph vðGÞ ¼ 3 is higher than the new
bound.

The term infra-chromatic describing bounding functions for the MCP was first
employed in the bit-parallel BBMCX algorithm. There, the authors propose an infer-
ence procedure in terms of color sets which integrates well with the bitstring encoding
and branching of the family of BBMC algorithms [8–11]. More precisely, BBMCX
looks for triplets of color sets Cx;Cy;Cz

� �
such that Cxj j ¼ 1 and no triangles exist in

the induced graph G½Cx [Cy [Cz�. The reported results show that this particular case of
inconsistency can be computed very efficiently achieving a very good tradeoff between
pruning ability and computational effort.

3 The Prior Infra-Chromatic Procedure

Rising interest in exact maximum clique search combines exhaustive enumeration of
maximal cliques with a bounding function based on approximate coloring. A step of
the search (typically a recursive call to the algorithm) branches on a vertex to enlarge a
clique, and a branch of the search tree corresponds to a maximal clique. The solution to
the MCP is any leaf node of maximum cardinality.

In this work we borrow the notation for sets employed in BBMCX [11]. More
specifically:

– S denotes the clique to be enlarged at any point during search.
– Smax is the largest clique found at any point during search.
– U denotes the set of vertices of the current subproblem.
– Uv denotes the set of vertices of the child subproblem resulting from branching on

vertex v 2 U.
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– Gv ¼ G½Uv� refers to the induced graph subproblem which results from branching
on vertex v.

– F is a set of (forbidden) color numbers employed in the infra-chromatic bounding
function described in BBMCX.

Of interest to this work is the bounding function called for each subproblem
U during search. Algorithm 1 outlines the bounding procedure which roughly corre-
sponds with the one described in BBMCX. Procedure UPPERBOUND computes the
SEQ coloring of the subproblem G½Uv� in the main loop (steps 1 to 12), by enlarging
one color set at a time. Once all color sets below a certain pruning threshold kmin have
been constructed, each selected vertex goes through the infra-chromatic filter
INFRACHROM_I described in Algorithm 2.

The filter function looks for pairs of distinct color classes (i, j) such that vertex v is
adjacent to exactly just one vertex w in color i and color j contains no common
neighbors to both v and w. If the filter succeeds (and returns SUCCESS) the vertex is
removed from the original coloring and the other two inconsistent color sets are tagged
as forbidden, so that they do not take part in further inferences. We refer the reader to
[11] for additional design and implementation details.
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4 The Enhanced Infra-Chromatic Procedure

We enhance the previously described bounding function with another infra-chromatic
bound which employs unit clause propagation described in PMAX-SAT based solvers.
Algorithms 3 and 4 describe the general outline of the new enhanced function.
The coloring C obtained after applying INFRACHROM_I to SEQ is now filtered again
by new INFRACHROM_II. The function searches for inconsistent color sets using unit
clause inferences and returns the number of conflicts found. As explained in the
introductory section, the resulting new bound is the difference between the previous
bound (the size of the coloring) and the number of conflicts outputted by
INFRACHROM_II.

In the current implementation of INFRACHROM_II, the forbidden color set F and
the color and neighbor sets are encoded as bitsets. The main inference is the set
intersection operation in step 7 which benefits from bit-masking, as well as the initial
step 1. The procedure runs in Oð Vj j2Þ in the worst-case. In the current implementation,
we obtain the best performance when color sets are examined in non-increasing order.
This strategy tends to find conflicts earlier because the highest color sets of the SEQ
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coloring are expected to have a small size. We note that it is easy to envisage more
greedy variants of Algorithm 4 by filtering out color sets from the reasoning with
additional constraints. It is also worth noting that the integration of INFRACHROM_II
in the prior bounding function (see Algorithm 3) is not restricted to BBMCX, and may
also make part of other exact approximate-color exact solvers such as MCS, BBMC,
BBMCR and other published BBMC variants.

5 Experiments

To evaluate the new proposed infra-chromatic bounding function we have considered
the following algorithms in this research:

1. BBMC [8, 9]: The original bit-parallel algorithm for the MCP, which uses only the
SEQ color bound.

2. BBMC+I: BBMC enhanced with the new PMAX-SAT based infra-chromatic
bound described in Algorithm 3.
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3. BBMCR [9]+I: The BBMC recoloring variant enhanced with the new
infra-chromatic bound.

4. BBMCX [11]+I: The BBMC infra-chromatic variant enhanced with the new
infra-chromatic bound.

5. IncMaxCLQ [15]: The latest PMAX-SAT based algorithm, as provided by its main
developer.

All the algorithms were tested over a big number of structured graphs from public
datasets which may be found in other maximum clique reports elsewhere. The majority
of structured instances were presented at the Second DIMACS Implementation
Challenge1. The rest are taken from the BHOSHLIB benchmark2 (more specifically,
the frb30-15 collection). The algorithms were also run against uniform random graphs,
with sizes ranging from 150 to 15000 vertices and varying densities.

The hardware used in the experiments was a 20 core XEON with 64 GB of RAM
running a Linux OS and all algorithms considered were run on a single core of this
machine. With respect to initial configurations, the enhanced BBMC infra-chromatic
variants use the more recent preprocessing ideas, that is, the initial sorting of vertices
described in IncMaxCLQ, and a strong initial solution computed by a state-of-the-art
heuristic, as recommended in [13].

Due to space constraints we report in this manuscript the performance of algorithms
BBMCR+I, BBMCX+I and IncMaxCLQ against 37 representative structured graphs
— solved in more than 0.01 s by at least one algorithm.

6 Discussion

Table 1 reports the performance of the enhanced algorithms BBMCR+I, BBMCX+I as
well as IncMaxCLQ. Interestingly, out of the 37 instances reported, BBMCR+I is faster
than BBMCX+I in 25 of them. This would indicate that recoloring (BBMCR), fol-
lowed by a single infra-chromatic filter, is more appropriate than the double
infra-chromatic filter of BBMCX+I. This is corroborated by the number of steps taken
by both algorithms.

In relation to IncMaxCLQ, the enhanced algorithms perform better in 27 of the 37
instances. Worth noting is that IncMaxCLQ clearly outperforms the latter in keller5 and
C250.9. Overall, IncMaxCLQ produces smaller search trees but with higher compu-
tational cost, the tradeoff being favorable only in very dense graphs (that is, p� 0:9)
with the exception of keller5. It is also worth noting that the number of steps taken by
both enhanced algorithms are much less, on average, than those reported for BBMCX
in [11].

1 http://cs.hbg.psu.edu/txn131/clique.html.
2 http://www.nlsde.buaa.edu.cn/*kexu/benchmarks/graph-benchmarks.htm.
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7 Conclusions

This work describes a simple way to enhance a leading bit-parallel infra-chromatic
solver for the maximum clique problem with a PMAX-SAT based infra-chromatic
filter, and compares the performance of two enhanced published solvers with another
state-of-the-art algorithm. The contribution is a step forward in the search of an ade-
quate explanation for the gap between theoretical results and the excellent performance
shown by experimental algorithms for this problem. Moreover, the enhanced algo-
rithms show some of the best times published, to the best of our knowledge, for a
number of structured graphs from well known public data sets.

Table 1. A comparison of different infra-chromatic exact maximum clique algorithms. Time is
measured in seconds with precision of milliseconds. Header Inc/BBMC compares performance as
a ratio. Header p refers to uniform density and header x is the size of the maximum clique. Cells in
bold show the best times in each row. A step is a recursive call in the BBMC enhanced algorithms.
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