
Economic Lot-Sizing Problem
with Remanufacturing Option: Complexity

and Algorithms

Kerem Akartunalı and Ashwin Arulselvan(B)

Department of Management Science, University of Strathclyde, 130 Rottenrow,
Glasgow G4 0GE, UK

{kerem.akartunali,ashwin.arulselvan}@strath.ac.uk

Abstract. In a single item dynamic lot-sizing problem, we are given
a time horizon and demand for a single item in every time period. The
problem seeks a solution that determines how much to produce and carry
at each time period, so that we will incur the least amount of produc-
tion and inventory cost. When the remanufacturing option is included,
the input comprises of number of returned products at each time period
that can be potentially remanufactured to satisfy the demands, where
remanufacturing and inventory costs are applicable. For this problem,
we first show that it cannot have a fully polynomial time approximation
scheme (FPTAS). We then provide a pseudo-polynomial algorithm to
solve the problem and show how this algorithm can be adapted to solve
it in polynomial time, when we make certain realistic assumptions on the
cost structure. We finally give a computational study for the capacitated
version of the problem and provide some valid inequalities and compu-
tational results that indicate that they significantly improve the lower
bound for a certain class of instances.

1 Introduction

Remanufacturing is the process of recovering used products by repairing and
replacing worn out components so that a product is created at the same quality
level as a newly manufactured product saving tonnes of landfill every year by
providing an environmentally friendlier alternative to classical manufacturing.
It also offers industries the potential to significantly save money by exploit-
ing used product inventories and reusing many precious raw materials that are
becoming increasingly scarcer. With this motivation, we study the single item
production planning problem over a finite horizon with the option of reman-
ufacturing. Like in classical lot-sizing problem, the problem is defined over a
finite planning horizon, where demand in each time period is provided as input.
With the remanufacturing option, the demand can be satisfied either by manu-
facturing new items or remanufacturing returned items, which are also provided
as input to the problem. The problem consists of separate inventory costs for
carrying remanufactured items and manufactured items (sometimes referred to
as serviceable inventory), and there is also a cost incurred for manufacturing or
remanufacturing.
c© Springer International Publishing AG 2016
P.M. Pardalos et al. (Eds.): MOD 2016, LNCS 10122, pp. 132–143, 2016.
DOI: 10.1007/978-3-319-51469-7 11

Economic Lot-Sizing Problem with Remanufacturing Option 133

The classical lot-sizing problem was introduced in [17] by Wagner and Whitin,
with a dynamic program that can solve the uncapacitated problem in polynomial
time. Various variants of it have been thoroughly studied over the last 6 decades,
see [1] for a recent review. Later, the capacitated version was introduced and the
problem was shown to be NP-hard, see [6]. A dynamic program was provided
in [5] which runs in polynomial time for unary encoding. A fully polynomial
time approximation scheme (FPTAS) was provided in [9]. The problem with
remanufacturing option was first studied in [8] and proved as NP-hard in [15].
A dynamic program with polynomial running time was provided for a special
case of when the cost involved are time invariant and there is a joint set-up cost
involved for both manufacturing and remanufacturing [14]. A polynomial time
algorithm was provided when all costs are linear by solving it as a flow problem
[8]. Since then, very little progress has been made for polynomial special cases.

We first show in Sect. 2 that the general case of this problem cannot have an
FPTAS unless P=NP. We refer the reader to [7] for concepts about NP-hardness
and [16] for concepts about FPTAS. We then provide a straightforward dynamic
program for the general case that runs in pseudopolynomial time in Sect. 3.
We use this dynamic program as an ingredient to design an algorithm that
runs in polynomial time to solve a special case, where the inventory cost of the
returned items is at least as much as the inventory cost of the manufactured
items. In addition, we assume that the concave costs involved in manufacturing
has a fixed cost and variable cost component. We also assume that the costs are
time invariant. The algorithm and the proof would work for time varying costs
but they need to increase over time. No other assumptions are required for the
polynomial solvability of this special case. Finally, in Sect. 4 we study the effects
of two families of valid inequalities for the capacitated version of the problem.
These are based on the well known flow cover cuts and they are NP-hard to
separate in general. We show that a class of polynomially separable cases of
these cuts are quite effective to close the gaps down for many instances. We test
them on several instances that were generated to have a gap. Creating these
instances are of interest, which have substantial gaps and hence are of concern
to improve performance on such instances, whereas instances with small gaps
will be handled effectively by standard optimization packages.

In the single item economic lot-sizing problem with remanufacturing option
(ELSR), we are given a time horizon T . For each time period t = 1 . . . T , we are
given a demand Dt, and the amount of returned products Rt that is available
for remanufacturing. W.l.o.g., we assume that manufacturing and remanufac-
turing can be both completed for an item in a single period. We also define
the following cost functions for each time period t = 1 . . . T : (1) manufactur-
ing cost fm

t : T → R≥0, (2) remanufacturing cost fr
t : T → R≥0, (3) holding

cost of manufactured items hm
t : T → R≥0, and (4) holding cost of returned

items hr
t : T → R≥0. We will assume that cost could be time variant but

we have a linear inventory cost and the concave cost structure associated with
remanufacturing and manufacturing involves in a fixed cost and linear vari-
able cost component, i.e., f i

t (x) = f i
t + lit(x), when x > 0 and 0 otherwise, for

134 K. Akartunalı and A. Arulselvan

i = r,m. fr
t , fm

t (lrt , l
m
t) are the fixed costs (variable costs) incurred in period t

for remanufacturing and manufacturing respectively. We slightly abuse the nota-
tion here to denote both the fixed cost component and the function by the same
notation, but this is easy to distinguish from the context. In each time period,
we have the option to remanufacture the returned item, manufacture the item
new, or use serviceable inventory from previous period to satisfy the demand.
The problem aims to generate a production plan that details the amount of
products to be manufactured pm

t , remanufactured pr
t , the returned items carried

in inventory qr
t , and manufactured items carried in the inventory qm

t , for each
time period t = 1, . . . , T such that the demand is met in each time period and
we minimize the total cost incurred.

2 Complexity

The problem is known to be NP-hard in general [15]. We extend the reduction
provided in [15] to show the following theorem.

Theorem 1. ELSR does not have FPTAS unless P=NP.

Proof. We will show this through a reduction from a variation of the partition
problem, wherein we are given 2n integer a1, a2, . . . , a2n such that

∑2n
i=1 ai =

2A and for all i = 1, . . . , 2n, we have A
n+1 < ai < A

n−1 . We can also assume
ai ≥ 2, i = 1, . . . , 2n. We are asked the question, whether there is a subset of
these integers that add to A. Even with this restriction, the partition problem
is NP-hard (see [10]). Also note that, if there exists a subset that adds up to
exactly A, then such a subset must have exactly n items due to the assumption
we made on the integers.

In our reduction, we first take the time horizon T = 2n and the demand for
each time period i = 1, . . . , T = 2n as ai. We incur a fixed cost of 1 for both
manufacturing and remanufacturing. While the remanufacturing does not incur
a variable cost, manufacturing incurs a variable cost of k

n for some constant k.
The inventory cost of the manufactured items is some big M and for returned
items is 0. The amount of returns in period 1 is R1 = A and there are no returns
for all other time periods, Ri = 0, i = 2, . . . , 2n. If there is a solution to the
partition problem, then it is easy to see that the optimal solution to ELSR is
less than 2n+k. Otherwise, the optimal solution to ELSR is at least 2n+k + k

n .
In order to see this case, note that all subsets of n items either add up to at
least A + 1 or at most A − 1. If we choose to use the A returned products to
satisfy a subset of n demands that add up to A + 1 or more, then we need to
manufacture for the remaining n periods and at least in one of the n periods
in which we used remanufactured goods to satisfy demands (as they could only
satisfy a total demand of A). In this case, we incur a cost of at least 2n+k+ k

n +1.
In the event we use the remanufactured goods to satisfy some n items that add
up to A − 1 or less, then the remaining n items that add up to A + 1 or more
needs to come from manufacturing in all n periods (in addition to the possibly
remanufacturing of the residual return goods). In this case, we incur a cost of

Economic Lot-Sizing Problem with Remanufacturing Option 135

at least 2n + k + k
n . This also rules out an FPTAS for the problem, since we

can choose ε = k
n(2n+k) and an algorithm that runs in O(f(n, 1

ε)), f(n, 1
ε) being

a polynomial function in n and 1
ε , to obtain an (1 + ε)-approximation for the

ELSR can then distinguish YES and NO instances of the partition problem in
polynomial time. ��

3 Dynamic Program for the General Case

We now provide a dynamic program that runs in pseudopolynomial time to solve
the general case exactly. This is an extension of Wagner and Whitin’s solution
that incorporates the remanfacturing option, and we present it here as we will be
needing it as an ingredient of our special case. We define the following function
Wt(p, q) as the minimum cost of obtaining an inventory level of p for the returned
products and q for the manufactured products at the end of period t, such that
all demands are met for the periods i = 0, . . . , t either through manufacturing
new items or remanufacturing returns. We define for t = 1, . . . , T , Dt =

∑t
i=1 Di

and Rt =
∑t

i=1 Ri. We will now do a forward recursion. It is easy to compute
the value for W1(p, q), p = 0, . . . R1, q = 0, . . . ,DT − D1. For a specific value
of p and q, there is exactly one way of obtaining the solution, so it is easy to
compute W1(p, q) for all possible values of p and q. For infeasible solutions, we
set W1(p, q) = ∞. Then, the recursive function is:

Wt(p, q) = min
0≤p̃≤Rt−1

0≤q̃≤DT −Dt−1

[Wt−1(p̃, q̃) + fr
t (p − Rt − p̃)+

fm
t (Dt + q − q̃ − (p − Rt − p̃)) + hr

t (p̃) + hm
t (q̃))]

The size of the state space of the problem is T · DT · RT , making the above
algorithm pseudopolynomial in running time.

Theorem 2. Wt(p, q) is the optimal value of the ELSR problem for periods
1, . . . , t, when we need p (q) as the return (manufacturing) inventory level at the
end of time period t

The proof is omitted as it is a straightforward extension from Wagner and
Whitin [17] for the dynamic lot-sizing problem. We will provide it in the full
version of the paper. As a consequence of Theorem 2, we get the following result.

Corollary 3. maxp,q WT (p, q) is the optimal solution to ELSR.

3.1 Dynamic Program for the Special Case: Return Inventory Cost
Is Higher Than Serviceable Inventory Cost

We now investigate the special case where hr(p) ≥ hm(p), for all p ∈ R≥0. This
is a reasonable assumption in practice, where the value of the returned products
depreciate faster than a newly manufactured product and in terms of storage

136 K. Akartunalı and A. Arulselvan

space, there is no difference between a returned or a manufactured product.
Note that we also omitted the time index as we are assuming the costs are time
invariant. If the cost are time variant, the algorithm requires that cost (both
set up and variable costs) increases over time, and all arguments in the proof
remain valid. In practice, this assumption is also realistic. For this special case,
we now provide a dynamic program that runs in polynomial time. The following
three lemmas help us reduce the state space for this special case. Remember the
possible values of p and q in our function Wt(p, q) are 0, . . . ,Rt and 0, . . . ,DT −Dt

respectively. Let t∗ be the last time period in an optimal solution where we use
the returned products to satisfy demand and for all t > t∗ we only manufacture
new items or use inventory of serviceable goods to satisfy the demands and let
(p∗,q∗) be the corresponding optimal solution. We define the following notation
for compactness: (a − b)+ := max{a − b, 0}.

Lemma 1. For the optimal solution p∗,q∗, let us say we have R̃t of returned
goods available for some time period t < t∗, then there is an optimal solution
(by possibly re-writing the solution p∗,q∗ from time t and onwards) in which
the amount of remanufactured items in time t will only be from the set {0, R̃t}.
If such a choice of return inventory is not possible, then we can create a new
optimal solution with t being the last remanufactured period.

Proof is provided in AppendixA

Lemma 2. For each time period t < t∗, there exists an optimal solution for
ELSR where the possible inventory level of the returned products right after period
t takes a value only from the set {0, Rt,

⋃t
i=1{Rt − Ri}}, where t∗ is the last

time period of remanufacturing in that optimal solution.

Proof Sketch: The proof can be easily obtained through induction by invoking
Lemma 1 and the induction hypothesis. ��

An alternative way of interpreting the above lemma is that whenever we
choose to remanufacture at time t, we remanufacture all return inventory avail-
able or nothing. This fact also helps us bound the serviceable goods inventory
level up until a certain point. Just like we guess the last time period of reman-
ufacturing, we will also make a guess on the last time period of manufacturing
before time t∗ in an optimal solution and we shall denote it by �∗. We can now
bound the state space of the serviceable goods inventory level for all time period
t ≤ �∗, where �∗ ≤ t∗.

Lemma 3. There exists an optimal solution, where the inventory level of the
manufactured goods in time period t < �∗ is in the set {0,

⋃T
i=t+1{

∑i
k=t+1 Dk},

⋃�∗

i=t+1

⋃i
j=t+1{(

∑i
k=t+1 Dk −

∑j
k=t+1 Rk)+},

⋃t
i=1{(

∑i
k=1 Rk − Dt)+}}.

Proof provided in AppendixB.

Now that we have bounded the size of the state space for all our time periods
before t∗, we are ready to provide our algorithm. Since we can make all possible

Economic Lot-Sizing Problem with Remanufacturing Option 137

guesses for our �∗ and t∗, we will be providing the algorithm assuming that we
made the correct guess. We just need to repeat the algorithm for all possible
guesses and pick the guess with the cheapest solution.

Definition 4 (Uncapacitated minimum concave cost flow problem (UMCCF)).
We are given a directed network G(V,A) and a demand function d : V → Q,
such that

∑
i∈V di = 0 and a concave cost function c : A → Q+. Find a set

of assignment of flows f : A → Q+, such that for each node i ∈ V , we have∑
(i,j)∈A fij + di =

∑
(j,i)∈A fji and

∑
(i,j)∈A cij(fij) is minimised.

For the UMCCF problem defined on a planar graph, a send-and-split (SAS)
dynamic program was provided in [4] which runs in a time which is exponential
in the number of distinct faces in which the terminal (source and supply) nodes
lie. If the number of distinct faces on which the terminal nodes lie is bounded,
then the algorithm has a polynomial time complexity.

Algorithm DP-SAS

– Run the dynamic program for the general case provided in Sect. 3 until �∗

using the reduced state space.
– Set up a minimum concave cost flow for planar problem from time period �∗

and onwards, where all the demand nodes lie on exactly two different faces
and solve the problem for all possible input inventory levels at �∗ (to solve
this problem in polytime use the SAS algorithm in [4], where the algorithm
runs in a time that is an exponential in the number of distinct faces on which
all the terminal nodes are lying).

The Algorithm DP-SAS has to guess the values of �∗ and t∗ and for every
possible guess, all possible inventory levels entering period �∗ are enumerated.
For each such level, we set up a minumum concave cost flow problem by first
creating two source nodes, one for manufactured products and one for return
products, with the corresponding inventory levels as their surplus flow values
and the demand and return values occuring after time �∗ are taken as the rest
of terminal nodes (acting as sink and source nodes respectively). Since we know
from assumption that there is no manufacturing between periods �∗ and t∗ and
there is no remanufacturing after t∗, all terminal nodes lie on at most three
distinct faces. This along with Lemmas 2 and 3 guarantees polynomial running
time of DP-SAS. We would like to point out that this is a highly impractical
algorithm as we are running the SAS algorithm (which runs in a time that is
a cubic function of T) for every possible guess of �∗ and t∗ and for all possible
inventory levels for the corresponding guesses. We are mainly interested in the
answering the question of tractability. Designing a faster algorithm or improving
upon the above algorithm to solve this special case will be a good research
question for the future. We will now focus on a more practical exact algorithm
for solving the general version of the problem in the following section.

138 K. Akartunalı and A. Arulselvan

4 Valid Inequalities and Numerical Computation

In this section, we consider a more general variation of the problem, wherein we
are given a capacity restriction of Cj on how much we can manufacture in each
time period j = 1, . . . , T . For this general version, we give an integer program-
ming formulation and provide two families of valid inequalities and demonstrate
the strength of these inequalities on some test instances. The inequalities are
based on the popular flow-cover cuts introduced in [12], which in turn can be
viewed as a generalisation of Dicuts introduced in [13] for uncapacitated fixed
charge flow problems. We follow the same line of Carnes and Shmoys [3], where
they introduce these inequalities for capacitated single item dynamic lot siz-
ing problem and show how these inequalities help in bounding the gap. In this
work, we also show how to tighten these inequalities. We will show the inequal-
ities’ validity and the special case where the separation time is polynomial. In
the general case, the separation problem is NP-hard, see [12]. We perform the
numerical computation only for the family of inequalities where the separation
time is polynomial and we will show through numerical computations that these
are enough to close most of the gap.

We will cast the whole problem as an uncapacitated fixed charge flow problem
and in order to balance the supply and demand, we will increase the planning
horizon by 1 and this last time period will have a demand of RT =

∑T
i=1 ri.

We will first give the following MIP formulation that will solve the ELSR. The
decision variables are:

– xi
jk: The percentage of dk satisfied by returns from i that was remanufactured

in j. Note by this definition, for xi
jk > 0, we need i ≤ j ≤ k.

– yjk: The percentage of dk satisfied by the order that was manufactured in
period k. Again, we need j ≤ k for yjk > 0

– uj : Binary variable indicating whether we remanufactured in period j
– vj : Binary variable indicating whether we manufactured in period j

We will re-write the cost functions in a more convenient format for our model:
gr

i,jk(x) :=
∑j

t=i hr
j(x) +

∑k
t=j hm

t (x) + lrj (x), gm
jk(x) :=

∑k
t=j hm

t (x) + lmj (x)

P1 : min
T∑

j=1

fr
j uj +

T∑

j=1

fm
j vj +

T∑

k=1

k∑

j=1

j∑

i=1

gr
i,jkdkxi

jk +
T∑

k=1

k∑

j=1

gm
jkdkyjk

k∑

j=1

j∑

i=1

xi
jk +

k∑

j=1

yjk ≥ 1, ∀k ∈ [T]

T∑

k=1

k∑

j=i

dkxi
jk ≤ ri, ∀i ∈ [T]

T∑

k=j

dkyjk ≤ Cj , ∀j ∈ [T]

Economic Lot-Sizing Problem with Remanufacturing Option 139

j∑

i=1

xi
jk ≤ uj , ∀k ∈ [T], j = 1, . . . , k

yjk ≤ vj , ∀k ∈ [T], j = 1, . . . , k

x,y ≥ 0

u,v ∈ {0, 1}T

For the subsets of return, demand and manufacturing periods A,B,C ⊆ [T]
respectively, we define d(A,B,C) as the demand in B that cannot be satisfied
by just the returns in A and the manufacturing capacity provided in periods
in C. This demand, d(A,B,C), needs to be satisfied by either manufacturing
in the periods C̄ = [T]\C or by using the returns in Ā = [T]\A. The value of
d(A,B,C) can be determined by solving the following LP.

LP-U:
∑

k∈B

dk −

⎛

⎝max
∑

k∈B

∑

i∈A

∑

j:i≤j≤k

dkxi
jk +

∑

j∈C

∑

k∈B

dkyjk

⎞

⎠

k∑

j=1

j∑

i=1

xi
jk +

k∑

j=1

yjk ≤ 1, ∀k ∈ [T]

k∑

j=i

T∑

k=j

dkxi
jk ≤ ri, ∀i ∈ [T]

T∑

k=j

dkyjk ≤ Cj , ∀j ∈ [T]

x,y ≥ 0

For j ∈ [T], we define wr
j (A,B,C) as the maximum amount of d(A,B,C)

that could be satisfied by returns in Ā, if they are allowed to be remanufactured
only during j. We calculate this value by setting up a suitable LP similar to LP-
U. For each j /∈ C, we define wm

j (A,B,C) := d(A,B,C)−d(A,B,C∪{j}) which
denotes the decrease in unsatisfiable demand in B by C if j were to be added to
C. Let TC be the set of all 2-tuple sets that partitions [T]\C for some set C and
and let T , be the set of all 2-tuple sets that partitions [T]. Let {Tm

1 , Tm
2 } ∈ TC

and {T r
1 , T r

2 } ∈ T . Now consider the following inequality.

∑

k∈B

∑

j∈T r
1

j∑

i/∈A

dkxi
jk +

∑

j∈T r
2

wr
j (A,B,C)uj +

∑

k∈B

∑

j∈Tm
1

dkyjk

+
∑

j∈Tm
2

wm
j (A,B,C)vj ≥ d(A,B,C),∀(T r

1 , T r
2) ∈ T , (Tm

1 , Tm
2) ∈ TC , B ⊆ [T]

(1)

For a fixed A,B and C it is pretty straightforward to realise that the separa-
tion problem is polynomially solvable. Note that, even for a fixed A,B and C we

140 K. Akartunalı and A. Arulselvan

have exponentially many constraints, as we need to enumerate all the partitions
of [T]. For a fixed A,B and C, and a given LP solution x̂, û, ŷ, v̂, the partition
could be determined in the following way

– If
∑

k∈B

∑j
i/∈A dkx̂i

jk ≥ wr
j (A,B,C)ûj then j ∈ T r

2 otherwise j ∈ T r
1 .

– Similarly, if
∑

k∈B dkŷjk ≥ wm
j (A,B,C)v̂j then j ∈ Tm

2 otherwise j ∈ Tm
1 .

Valid inequalities of type 1 are not very strong. We illustrate this through
the following example.

Example 5. We have uniform capacities C and our fixed sets are as follows:
A = {1, . . . , t}, B = {1, . . . , t}, C = ∅, for some t.

In Example 5, it is clear that d(A,B,C) ≥ max(Dt −Rt, 0). Our inequality 1 for
this example will be

C
t∑

i=1

ui ≥ d(A,B,C)

This gives us a straight forward mechanism to tighten it. We can divide by C
and round down the right hand side to obtain the valid inquality:

t∑

i=1

ui ≥
⌊d(A,B,C)

C
⌋

Drawing on this, from inequalities 1 we derive MIR inequalities. We briefly
describe MIR inqualities here. For the set {(x, y) ∈ R × Z : x + cy ≥ b, x ≥ 0},
it is easy to see that x + fy ≥ f b

c� is a valid inequality, where f = b − c� b
c�

(see [11] for more details).
The next set of inequalities are quite similar to the flow cut inequalities but

are given with respect to the returned products. Since the flows are balanced
in our network, we can reverse all arc orientations and take the nodes with
returns as the demand nodes with demands as the returns and write our flow
cuts based on these as sinks. In other words, it is a generalisation of the following
simple idea: For every i ∈ [T] with ri > 0, we need to have either ui ≥ 1 or∑

j≥i

∑
k≥j xi

jkdk ≥ ri. We then get the disjunctive inequality:

uiri +
∑

j≥i

∑

k≥j

xi
jkdk ≥ ri (2)

Once again for every partition (T1, T2) of {i, i + 1, . . . T}, we have the following
inequality:

∑

i′∈T1

ui′ri +
∑

j≥i
j∈T2

∑

k≥j

xi
jkdk ≥ ri (3)

The validity of the above inequality is straightforward and it is easy to see
that 2 is a special case of 3 with T1 = {i}.

Economic Lot-Sizing Problem with Remanufacturing Option 141

5 Experiments

The experiments were carried out on an Intel core i5-3320 @2.6Ghz CPU with
a 8GB RAM and the implementation was done in Gurobi 6.0.4 using Python
API. It was difficult to directly adapt the instances available for capaciated
lot sizing problem [2] to the remanufacturing setting in a way that the new
instances could have large root gaps. So we randomly generated instances with
special return and demand structures in order to create instances with gap. We
took the manufacturing capacities to be uniform. For varying cost and demand
structures we generated nine instances with 100 time periods and three instances
with 200 time periods. We implemented the cover and MIR cuts from 1 and as
we could see from Table 1, for the gap instances we generated, we were able
to close the gap at the root when all other Gurobi cuts were turned off. The
default settings of Gurobi could not solve the problem when we increased the
time horizon to 200 within 1000 s that we set as a time limit for all our test
runs. As one could see the new cuts proposed drastically reduced the running
time for solving these gap instances. In addition to that the lower bounds were
considerably improved at the root. As we moved on to larger instance (with time
horizon = 200), the problem was getting increasingly harder to solve with just
the default GUROBI settings.

Table 1. Gaps from test runs with Gurobi default setting and cover and MIR derived
from 3

Size Gurobi Cuts from 1

Root gap (%) Final gap (%) Time(s) Root gap (%) Final gap (%) Time (s)

1 100 14.28 0.5 341 0.5 0.5 26

2 100 14.20 0.5 350 0.5 0.5 29

3 100 9.81 0.5 330 0.5 0.5 24

4 100 12.89 0.5 294 0.5 0.5 27

5 100 14.26 0.5 330 0.5 0.5 23

6 100 15.11 0.5 416 0.5 0.5 697

7 100 21.24 0.5 612 0.74 0.74 1000

8 100 24.00 0.5 670 0.5 0.5 23

9 100 22.13 0.5 666 0.56 0.56 1000

10 200 17.20 17 1000 0.5 0.5 471

11 200 24.31 24.31 1000 0.5 0.5 613

12 200 23.32 23.32 1000 0.5 0.5 460

6 Conclusion and Open Problems

In this work, we studied the ELSR problem. We first provided a hardness proof
that rules out FPTAS for this problem. We then provided a dynamic pro-
gram with a pseudopolynomial running time to solve the general version of
the problem. We later showed how this can be used to design a polynomial
running time algorithm, when we make some assumptions on the cost structure.

142 K. Akartunalı and A. Arulselvan

We finally performed a computational study on the capacitated version of the
problem, where we introduced two families of valid inequalities and our pre-
liminary results were promising. Our future work would include obtaining an
approximation algorithm for the general version of the problem. In the negative
side, although we have ruled out a possibility of FPTAS, we have no proofs for
APX-hardness (see [16]) and this is still open. We are also interested in perform-
ing a more comprehensive experimental study of the capacitated version of the
problem. It will be interesting to verify whether the proofs presented above could
be extended to multiple items (taking the number of items to be a constant will
be a good starting point) and general concave functions.

A Proof of Lemma 1

Proof. Suppose in (p∗,q∗), we produce something not from this set {0, R̃t}.
Hence, some intermediate return stock of 0 < a < R̃t is carried, which also
means that we are remanufacturing at time t in the optimal solution. Since t < t∗,
there exist a time period after t in the optimal solution where we remanufacture.
Let the t̃ be the first time period after t, when we remanufacture in the optimal
solution. We are also carrying a non-zero return inventory until this time period.
If we remanufacture at least a in time t̃, then we could have remanufactured
this a in time t and carried a units of manufactured inventory until time t̃
with no additional cost, since return inventory cost is higher than manufactured
inventory cost. If we produced less than a in time t̃, say ã, then we could have
produced ã in time t and produced nothing in time t̃ and continue with our
argument. If t̃ = t∗ and ã < a, then we would have new optimal solution with t
being the last time period of remanufacturing. ��

B Proof of Lemma 3

Proof. We prove this lemma again through induction. For t = 1, the lemma’s
claim is that the inventory level of serviceable goods after time t = 1 will belong
to the set {0,

⋃T
i=2{

∑i
k=2 Dk},

⋃�∗

i=2

⋃i
j=2{(

∑i
k=2 Dk −

∑j
k=2 Rk)+}, (R1 −

D1)+}. In order to show this, we do a case analysis:

Case 1 Manufacturing takes place at t = 1: In this case, either remanufac-
turing does not take place or it does take place and we have R1 < D1,
otherwise we could manufacture everything we manufactured in time
period 1 in time period 2 and get a cheaper solution by saving on the
inventory cost. Let us take k, where 1 < k ≤ �∗, as the first time period
after time t = 1 when we manufacture again. Now the demand for all
the intermediate periods

∑k−1
i=2 Di needs to come from either the man-

ufactured goods in period 1 or the return products from periods 1 to
k − 1. From Lemma 2, we know that the only possible return inventory
levels between the time periods 2 to k − 1 are {0,

⋃k−1
i=2 {Ri − R1}} and

we know from lemma 1 that at any of these time periods, we either

Economic Lot-Sizing Problem with Remanufacturing Option 143

remanufacture all available inventory or none of them. The remaining
demand then needs to be manufactured at time period 1. This has to be
true for all values of k = 2 . . . �∗. So we get the claim.

Case 2 Manufacturing does not take place at t = 1: This would mean
that R1 ≥ D1, otherwise, we would not have a feasible solution and the
possible inventory levels in this case is (R1 − D1)+.

In order to see that the lemma is true, we invoke the induction hypothesis and
do a similar case analysis as above. ��

References

1. Akartunalı, K., Miller, A.: A computational analysis of lower bounds for big bucket
production planning problems. Comput. Optim. Appl. 53(3), 729–753 (2012)

2. Atamtürk, A., Muñoz, J.C.: A study of the lot-sizing polytope. Math. Program.
99, 443–465 (2004)

3. Carnes, T., Shmoys, D.: Primal-dual schema for capacitated covering problems.
Math. Program. 153(2), 289–308 (2015)

4. Erickson, R., Monma, C., Veinott, J.A.F.: Send-and-split method for minimum-
concave-cost network flows. Math. Oper. Res. 12(4), 634–664 (1987)

5. Florian, M., Klein, M.: Deterministic production planning with concave costs and
capacity constraints. Manage. Sci. 18, 12–20 (1971)

6. Florian, M., Lenstra, J., Rinnooy Kan, H.: Deterministic production planning:
algorithms and complexity. Manag. Sci. 26(7), 669–679 (1980)

7. Garey, M., Johnson, D.: Computers and intractability: a guide to the theory of
NP-completeness. W. H. Freeman & Co., New York (1979)

8. Golany, B., Yang, J., Yu, G.: Economic lot-sizing with remanufacturing options.
IIE Trans. 33(11), 995–1003 (2001)

9. Hoesel, C.V., Wagelmans, A.: Fully polynomial approximation schemes for single-
item capacitated economic lot-sizing problems. Math. Oper. Res. 26, 339–357
(2001)

10. Korte, B., Schrader, R.: On the existence of fast approximation schemes. In: Mag-
asarian, S.R.O., Meyer, R. (eds.) Nonlinear Programming, vol. 4, pp. 415–437.
Academic Press, New York (1981)

11. Nemhauser, G., Wolsey, L.: Integer and Combinatorial Optimization. Wiley-
Interscience, New York (1988)

12. Padberg, M., van Roy, T., Wolsey, L.: Valid linear inequalities for fixed charge
problems. Oper. Res. 33(4), 842–861 (1985)

13. Rardin, R., Wolsey, L.: Valid inequalities and projecting the multicommodity
extended formulation for uncapacitated fixed charge network flow problems. Eur.
J. Oper. Res. 71(1), 95–109 (1993)

14. Teunter, R., Bayındır, Z., van den Heuvel, W.: Dynamic lot sizing with product
returns and remanufacturing. Int. J. Prod. Res. 44(20), 4377–4400 (2006)

15. van den Heuvel, W.: On the complexity of the economic lot-sizing problem
with remanufacturing options. Econometric Institute Research Papers EI 2004-46,
Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric
Institute (2004)

16. Vazirani, V.: Approximation Algorithms. Springer-Verlag New York, Inc., New
York (2001)

17. Wagner, H., Whitin, T.: Dynamic version of the economic lot size model. Manage.
Sci. 5, 89–96 (1958)

	Economic Lot-Sizing Problem with Remanufacturing Option: Complexity and Algorithms
	1 Introduction
	2 Complexity
	3 Dynamic Program for the General Case
	3.1 Dynamic Program for the Special Case: Return Inventory Cost Is Higher Than Serviceable Inventory Cost

	4 Valid Inequalities and Numerical Computation
	5 Experiments
	6 Conclusion and Open Problems
	A Proof of Lemma 1
	B Proof of Lemma 3
	References

