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Abstract In this paper we present a preliminary simulation study of a method for

estimating the Fourier coefficients of the periodic parameters of a periodic autore-

gressive (PAR) sequence. For motivational and comparative purposes, we first exam-

ine the estimation of Fourier coefficients of a periodic function added to white noise.

The method is based on the numerical minimization of mean squared residuals, and

permits the fitting of PAR models when the period T equals the observation size N.

For this paper, algorithms and simulations were coded in MATLAB, but an imple-

mentation will be available in the R package, perARMA.

1 Introduction

There exist many natural random processes in which the probability structure has a

periodic rhythm, which, in the strict sense means that the probability law is invariant

under shifts of length T . To be precise, a process Xt(𝜔) ∶ 𝛺 ⟶ 𝐂 or 𝐑 is called

periodically stationary with period T if for every n, collection of times t1, t2, ..., tn in

𝐙 or 𝐑, collection of Borel sets A1,A2, ...,An of 𝐂 or 𝐑,

Pr[Xt1+T ∈ A1,Xt2+T ∈ A2, ...,Xtn+T ∈ An]
= Pr[Xt1 ∈ A1,Xt2 ∈ A2, ...,Xtn ∈ An]. (1)

and there are no smaller values of T > 0 for which (1) holds. Synonyms for peri-
odically stationary include periodically non-stationary, cyclostationary (think of

cyclically stationary [1]), processes with periodic structure [6], and a few others.

If T = 1, the process is strictly stationary.

When the process is of second order, Xt ∈ L2(𝛺,F ,P) with t ∈ 𝐙, it is called

periodically correlated [2] (PC), or wide-sense cyclostationary with period T if
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m(t) = E{Xt} = m(t + T)∀t, and (2)

R(s, t) = E{XsXt} = R(s + T , t + T)∀s, t ∈ 𝐙 (3)

and there are no smaller values of T > 0 for which (2) and (3) hold. If T = 1, the

process is weakly (or wide-sense) stationary.

A second order stochastic sequence Xt is called PARMA (p, q) with period T if it

satisfies, for all t ∈ 𝐙,

p∑

j=0
𝜙j(t)Xt−j =

q∑

k=1
𝜃k(t)𝜉t−k + 𝜎(t)𝜀t (4)

where 𝜀t is a real valued orthogonal process and real parameters, 𝜙j(t) = 𝜙j(t +
T), 𝜃k(t) = 𝜃k(t + T) and 𝜎(t) = 𝜎(t + T) for every appropriate j, k. Sometimes we

write 𝜃0(t) = 𝜎(t). Under certain constraints of the parameters, expressed by (8)

below, these sequences are PC.

Here we will concentrate on the special case of periodic autoregressive (PAR)

sequences, for which
p∑

j=0
𝜙j(t)Xt−j = 𝜎(t)𝜀t t ∈ 𝐙, (5)

where 𝜀t is an orthogonal process, 𝜙0(t) ≡ 1, 𝜙j(t) = 𝜙j(t + T), and 𝜎(t) = 𝜎(t + T)
for every appropriate j. Although Pagano [8] initiated the recent notation and stream

of effort on PAR sequences, it is clear that Hannan [3] was aware of them.

Essential information may be obtained by blocking Xt into vectors 𝐗n of length

T as prescribed by Gladyshev [2]; then (5) becomes

L𝐗n −
p′∑

j=1
Uj𝐗n−j = 𝛤𝜀n (6)

where L has the form

L =

⎡
⎢
⎢
⎢
⎢⎣

1 0 0 … 0
−𝜙1(1) 1 0 … 0
−𝜙2(2) −𝜙1(2) 1 … 0
⋮ ⋮ ⋮ ⋮ ⋮
−𝜙T−1(T − 1) −𝜙T−2(T − 1) −𝜙T−3(T − 1) … 1

⎤
⎥
⎥
⎥
⎥⎦

, (7)

[Uj]nn′ = 𝜙jT+n−n′ (n),

and 𝜀n = [𝜀nT , 𝜀nT+1,… 𝜀nT+T−1]′. The matrix 𝛤 is similarly arranged as L except the

diagonal is {𝜎(0), 𝜎(1),… , 𝜎(T − 1)} and the condition for Xt to be PC is identical

to the condition for the vector sequence 𝐗n to be stationary, namely that
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det

[
L −

p′∑

j=1
Uj𝜆

j

]
≠ 0, |𝜆| ≤ 1 (8)

The condition (8) was expressed first by Pagano [8] for PAR, and then by Vecchia

[9] for general PARMA.

Of course the vector sequence 𝐗n could also be modeled by a vector AR, (VAR)

model, but we note that the number of real autoregressive parameters for a general

VAR(p) is on the order of pT2
because the autoregressive coefficients are T × T

matrices. But for PAR(p) the number is on the order of pT , which can still be sizable

when compared to the total length of the series available. See Pagano [8, p. 1316].

For a full PARMA given by (4) the parameter count is seen to be (p + q + 1)T . An

alternative parameterization of a PARMA system (see Jones and Breslford [6]) can

sometimes substantially reduce the number of parameters via representing the peri-

odically varying parameters by Fourier series. In the case of PAR we have

𝜙

Aj

j (t) = aj,1 +
[T∕2]∑

n=1
aj,2n cos(2𝜋nt∕T) + aj,2n+1 sin(2𝜋nt∕T) (9)

for t = 0, 1,… ,T − 1, j = 1,… , p. The inverse for the aj,n coefficients is given by

aj,1 =
1
T

T−1∑

t=0
𝜙j(t) (10)

aj,2n =
2
T

T−1∑

t=0
𝜙j(t) cos(2𝜋nt∕T)

aj,2n+1 =
2
T

T−1∑

t=0
𝜙j(t) sin(2𝜋nt∕T)

for n = 2,… , [T∕2], j = 1,… , p. We also denote

Aj = {aj,1, aj,2, aj,3,… , aj,2∗[T∕2]+1}′ (11)

to be a column vector.

When estimating the natural PAR coefficients {𝜙j(t), j = 1, 2,… , p, t = 0, 1,… ,T − 1 or

their Fourier coefficients, {Aj, j = 1, 2,… , p}, there is always an issue of the length of

the sample N relative to the period T . The two important cases are (1) N>>T and (2)

N = T . In the case N>>T , the usual method for estimating the coefficients is through

the Yule-Walker equations and the existence of multiple periods allows the sample

covariance to be estimated and used to solve for the unknown coefficients. In the case

of N = T , although the covariance of the sequence cannot be estimated in the usual

way, the Fourier coefficients can still be successfully estimated via ordinary least
squares (OLS) when the number of coefficients is small relative to N. In this note,
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for the purpose of background, we will briefly review the usual method for N>>T
and then, for N = T , present a simulation study that illustrates the effectiveness of

the OLS method. We also include, for the purpose of motivation and comparison,

results from application of the method to the estimation of Fourier coefficients of a

periodic function added to white noise.

The application of this idea to full PARMA models is of interest but not so

straightforward because of the way that the moving average parameters appear in

(4). Approaches to this problem are currently under study.

2 Determination of PAR Coefficients by Yule Walker
Method

The Yule-Walker method, which is based on minimizing mean square error of a linear

predictor, gives an important way for finding the coefficients {𝜙j(t) = 𝜙j(t + T), j =
1,… , p}.

For some fixed t, the linear predictor of Xt, based on {Xt−p,… ,Xt−1}, that mini-

mizes the MS error is given by the orthogonal projection of Xt onto M (t − 1; p) =
sp{Xs, s ∈ {t − p,… , t − 1}}. We denote

X̂t,t−1;p = (Xt|M (t − 1; p)), and set X̂t,t−1;0 = 0.

Specializing to real sequences we then need to determine the coefficients 𝛼
(t)
j,p in

X̂t,t−1;p =
p∑

j=1
𝛼
(t)
j,pXt−j.

The normal equations arising from the orthogonal projection are

E{[Xt − X̂t,t−1;p]Xs} = 0, s = t − p,… , t − 1

or in matrix form

⎡
⎢
⎢⎣

R(t, t − 1)
⋮

R(t, t − p)

⎤
⎥
⎥⎦
=
⎡
⎢
⎢
⎢⎣

R(t − 1, t − 1) ⋯ R(t − p, t − 1)
R(t − 1, t − 2) ⋯ R(t − p, t − 2)

⋮ ⋮ ⋮
R(t, t − p) ⋯ R(t − p, t − p)

⎤
⎥
⎥
⎥⎦

⎡
⎢
⎢
⎢
⎢⎣

𝛼
(t)
1,p

𝛼
(t)
2,p
⋮
𝛼
(t)
p,p

⎤
⎥
⎥
⎥
⎥⎦

and in a shorter notation

𝐫t,t−1∶t−p = 𝐑t−1,p𝜶
(t)
p . (12)
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Any 𝜶
(t)
p = [𝛼(t)

1,p𝛼
(t)
2,p … 𝛼

(t)
p,p]

′
that solves (12) (the normal equations) implements

the projection. If 𝐑t−1,p is invertible, the solution is unique but if not, then any

pseudo-inverse still yields a predictor that minimizes MS error. Other results using

this notation may be found in [4, 5].

Since for PC-T processes the covariances are invariant (see (3)) under shifts of

length T , then the prediction coefficients will be periodic in t with period T . So

for a sample of length KT , there are multiple occurrences (order of K) of products

Xt1+kTXt2+kT from which we estimate the covariances 𝐫t,t−1∶t−p and 𝐑t−1,p appearing

in (12). Specifically,

R̂K(t1, t2) =
1
K

K−1∑

k=0
[Xt1+kT − m̂t1,N][Xt2+kT − m̂t2,N] (13)

is the estimator for some entry R(t1, t2).
Then the estimator 𝜶̂

(t)
p is obtained by solving 𝐫̂t,t−1∶t−p = ̂𝐑t−1,p𝜶̂

(t)
p and estimates

for the Fourier coefficients Aj are obtained via (11). But to estimate R(t1, t2) in this

manner requires K to be of nontrivial size, some say at least 40. Here we seek a

methodology to estimate theAj when the number of periodsK available in the sample

is small, say K = 1.

3 OLS Fit for Periodic Function with Additive Noise

In order to develop some intuition for the PAR estimation problem, we first examine

the simpler case of estimating the Fourier coefficients of a periodic function added

to white noise. Given a trajectory of observations {X0,X2,… ,XN−1}, we wish to

minimize

Q(𝐀) =
N∑

t=1

[
Xt −

{
a1 +

[T∕2]∑

n=1
a2n cos(2𝜋nt∕T) + a2n+1 sin(2𝜋nt∕T)

}]2

(14)

where {a1, a2, ...} = 𝐀. Although there is a closed form solution due to the mutual

orthogonality of the set of sines and cosines, we do the minimization numerically to

prepare for the application to PAR, for which there is no closed form solution.

To see the idea in very simple example, suppose we wish to fit just the cos(2𝜋t∕T)
term toXt using ordinary least squares (OLS). The OLS estimate for a2 is well known

to be â2 =
2
T

∑T−1
t=0 Xt cos(2𝜋t∕T) and more generally

â2n =
2
T

T−1∑

t=0
Xt cos(2𝜋nt∕T) â2n+1 =

2
T

T−1∑

t=0
Xt sin(2𝜋nt∕T). (15)
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IfXt = 𝜁t + ft for t ∈ {0, 1,… ,N − 1}, where 𝜁t is Gaussian white noise with zero

mean and variance 𝜎
2
noise, and ft = A cos(2𝜋t∕T), with T = N, then it is easy to see

that â2n and â2n+1 are Gaussian and that

E{â2} = A, E{â3} = 0, Var {â2} = Var {â3} =
𝜎
2
noise

T
(16)

and

E{â2â3} = 4
T2

T−1∑

t=0

T−1∑

t′=0
cos(2𝜋t∕T) sin(2𝜋t′∕T)E{ZtZt′ }

= 4
T2

T−1∑

t=0
cos(2𝜋t∕T) sin(2𝜋t∕T) = 0. (17)

Simulated series of Xt for T = N = 1024, 𝜎noise = 1 and A = 0, 0.2, 0.4, 1.0 were

produced; note the coefficients of the Fourier series in (14) are therefore a1 = 0, a2 =
A and aj = 0, j ≥ 3.

These simulated series were processed by a MATLAB script that implements

the minimization with respect to 𝐀 of Q(𝐀), where the single trajectory

{X0,X2,… ,XN−1} is treated as fixed. Figure 1 (top panel) shows the signal ft =
A cos(2𝜋t∕T) with A = 1 in red, the sum Xt in blue and the estimated signal f̂t =
Â cos(2𝜋t∕T) in green. Although both are present, the difference between the red

and green curves is nearly imperceptible on the scale used.

The middle panel of Fig. 1 is the residual Zt of the OLS fit and the bottom panel is

the sample Fourier transform (computed via FFT) of the residual, showing no clear

residual periodic component.

Some questions that we can address by simulation: (1) Sample distribution of

parameter estimates; (2) Variance of estimates as function of N = T; (3) Variance of

estimates as function of number of frequencies searched.

Figures 2 and 3 are the sample histograms of â2 and â3 when the true values are

a2 = 0.2 and a3 = 0.0; in each, 𝜎noise = 1, N = T = 4096. These histograms were

produced by NSAMP = 500 replicates of the simulation-estimation process. In both

of these histograms the p-value of a Lilliefors test for normality were both ≥ 0.5,

indicating no evidence for rejection of normality. The Lilliefors test is a Kolmogorov-

Smirnov type of test for normality in which the null is normal with parameters esti-

mated from the data [7]; thus a large pL indicates the normality of the sample distri-

bution cannot be rejected.

The sample variances were 0.023 and 0.022, whereas the values computed via

(16) were 0.0221.

For each parameter, the empirical dependence of 𝜎̂ on N = T can be seen by

the least squares fit of a straight line, y = mx + b, to the pairs (N, 𝜎̂), where both N
and 𝜎̂ are transformed to a log scale, so the expected T−1∕2

dependence becomes

m = −1∕2.
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Fig. 1 Top panel red is true signal ft = A cos(2𝜋t∕T) with A = 1, blue is signal plus noise, green
is estimated signal where Â = 0.947 is determined by minimizing Q(𝐀) in (14). Middle panel is

residual series Zt = Xt − Â cos(2𝜋t∕T); bottom is FFT of Zt

Fig. 2 Estimates â2 with

a2 = 0.2, N = T = 4096,

𝜎noise = 1, 𝜇̂2 = 0.199,

𝜎̂2 = 0.023
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Fig. 3 Estimates â3 with

a2 = 0, N = T = 4096,

𝜎noise = 1, 𝜇̂3 = 0.001
𝜎̂3 = 0.022

−0.1 −0.05 0 0.05 0.1
0
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70

Fig. 4 Estimating a2 where

𝜎noise = 1, a2 = A = 0.4,

slope = −0.512
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log10(Tvals)

lo
g1

0(
si
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Fig. 5 Estimating a3 where

𝜎noise = 1, a2 = A = 0.4,

slope = −0.483

2.6 2.8 3 3.2 3.4 3.6
−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

log10(Tvals)

lo
g1

0(
si

gm
a)

Figures 4 and 5 illustrate this fitting for parameters {a2, a3}, where for each para-

meter the values A = 0.4, N = {512, 1024, 2048, 4096} are used. The resulting slope

estimates arem = {−0.512,−0.483}, where blue lines connect the observed data and

the red lines are the least squares fit to the pairs (N, 𝜎̂).
In order to show the variability of parameter estimates when parameter values

are zero, we set parameters a1 through a17 to be active whereas only a2 = A = 0.4
was nonzero. Figure 6 shows the boxplots, based on 500 replicates, of all 17 para-

meters estimated. Box vertical boundaries are 25th and 75th percentiles and red line

is median. The ability to perceive non-nullity of parameters is visually clear. In the

next section we use the t-test for testing for this non-nullity.



A Residual Based Method for Fitting PAR Models . . . 113

−0.1

0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Column of BOOTSAMP

Boxplots for FS_NLFIT_SIM_BIGT_4096_run5

Fig. 6 Active parameters are {a1, a2,… , a17} with A = 0.4, N = 4096. Boxplots of parameter

estimates are based on 500 replicates

4 OLS fit of a Fourier Series Parametrization of a PAR
Model

For a PAR model as in (5), we designate the following estimating procedure as

parmsef. First we minimize the objective function

Q(𝐀) = 1
N − p

N∑

t=p+1

[
Xt −

p∑

j=1
𝜙
𝐀
j (t)Xt−j

]2

(18)

where

𝜙
𝐀
j (t) = aj,1 +

[T∕2]∑

n=1
aj,2 cos(2𝜋nt∕T) + aj,2n+1 sin(2𝜋nt∕T)

and we set N = T .

The OLS estimate of 𝐀 is the value of 𝐀 that minimizes Q(𝐀) for 𝐀 ∈ 𝐒1, the

parameter search space, defined as 𝐒1 = sp{ej ∈ 𝐑N ∶ j ∈ I𝐀} where I𝐀 is the set

of indexes identifying the active 𝐀 parameters. If 𝐀∗
minimizes the mean square

residuals Q, then denoting Ẑt as the residual sequence Ẑt = Xt −
∑p

j=1 𝜙
A∗
j

j (t)Xt−j, we

then determine the OLS estimate of 𝜎(t) by minimization of

Q
𝜎
(𝐁) = 1

N − p

N∑

t=p+1

[
Ẑ2
t − 𝜎

2
B(t)

]2
, (19)
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using

𝜎B(t) =
∑

nj∈JB

b2nj cos(2𝜋njt∕T) + b2nj+1 sin(2𝜋njt∕T). (20)

The minimization is with respect to the active parameters bnj in the collection B =
{b0, b1, b2, b3,… , b2∗[T∕2]+1}.

To exercise this program we simulated a PAR(2) by specifying the coefficients

𝜙1(t) and 𝜙2(t), shown in Fig. 7 to be

𝜙1(t) = 1.1 + 0.6 cos 2𝜋t∕4096 (21)

𝜙2(t) = −0.3450 − 0.33 cos 2𝜋t∕4096 − 0.045 cos 4𝜋t∕4096 (22)

and 𝜎B(t) = 1.

Figure 8 is a simulated series of N = T = 4096 samples using 𝜙1(t) and 𝜙2(t)
given in (22) and illustrated in Fig. 7. Note the higher amplitudes and lower fre-

quency fluctuations at the beginning and end of the series in comparison to the mid-

dle section.

In the first experiment with the parmsef algorithm we set the seven autoregres-

sive parameters shown in Table 1 to be active where the true values, the sample mean

and standard deviations and the Lilliefors p-value, pL, are also given in the table.

The sample distributions for all seven of the estimated ajk parameters are found

to be consistent with the normal; six of these are shown in Fig. 9a–f. Additionally,

but not shown here, the sample distribution for the first few b parameters from (20)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.5

1

1.5

2
phi(:,1) for PAR2a run1

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−0.8

−0.6

−0.4

−0.2

0
phi(:,2) for PAR2a run1

Fig. 7 𝜙1(t) and 𝜙2(t) given in (22) for PAR2a run1, N = 4096
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Fig. 8 Sample series using

𝜙1(t) and 𝜙2(t) given in (22)

and illustrated in this figure

with N = 4096

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−20

−15

−10

−5

0

5

10

15

20

25
Sample series of PAR2a run1, N=4096

Table 1 Sample 𝜇 and 𝜎 with N = T = 4096 for selected Fourier coefficients estimated by

parmsef. Estimates are based on NSAMP = 100 replicates

Parameter Value 𝜇̂ 𝜎̂ pL t score p-value for

𝜇 = 0
a1,1 1.1 1.1 0.014 ≥0.5 785.7 0.0

a1,2 0.6 0.601 0.02 ≥0.5 300.5 0.0

a1,3 0.0 0.001 0.017 ≥0.5 0.588 0.721

a2,1 −0.345 −0.345 0.014 0.243 −246.4 0.0

a2,2 −0.330 −0.332 0.019 ≥0.5 −174.7 0.0

a2,3 0.0 −0.001 0.019 ≥0.5 0.526 0.701

a2,4 −0.45 −0.46 0.010 ≥0.5 −460 0.0

are consistent with normal and with sample variances similar to those of the a para-

meters. Finally, for the estimates of each parameter, we include the t-score and the

p-value of the t-test for 𝜇 = 0 based on NSAMP = 100 replicates. Although these

tests correctly differentiate the null from the nonnull parameters, we note that in the

usual time series analysis, there is only one sample available on which one can base

a test.

As in Figs. 4 and 5, for each estimated parameter the dependence of 𝜎̂ on the series

length T = N can be seen by fitting a straight line to the (N, 𝜎̂) as we did in Sect. 3 for

the OLS fit to a periodic function with additive noise. Values of 𝜎̂ were determined

for N = T = (512, 1024, 2048, 4096), and this fitting is illustrated in Fig. 10a, b for

parameters a11 and a14, producing values m = −0.524,−0.508 in the two cases; the

observed data are in blue and and the red line is the result of the OLS straight line

fit. The empirical dependence on N is slightly steeper than the expected m = −1∕2.
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Fig. 9 Sample distributions of parameter estimates with N = T = 4096 for selected Fourier coef-

ficients estimated by parmsef. Estimates are based on NSAMP = 100 replicates

As a check that the fit has successfully explained the correlation structure in the

simulated series, the empirical ACF and PACF were computed for the residual Ẑt
of the fit, resulting in the plots of Fig. 11. Both ACF and PACF are consistent with

uncorrelated noise.

Finally, to again see the effect of more coefficients with null values we made a

run in which parameters {a11,… , a19, a21,… , a28} (a total of 17) were estimated,

although only 5 had nonzero true values. Figure 12 illustrates the ability to visually

perceive the non zero values among the 17 from a sample of 100 simulations.

For each parameter, Table 2 presents true values and estimated means and stan-

dard deviations; in addition, the p-value of the Lilliefors test, pL, t-scores and

p-values for t-tests for 𝜇 = 0 are given. As in Table 1, the t-tests correctly differenti-

ate the null from the nonnull parameters, but the more important issue, not addressed
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Fig. 10 OLS fit (red) of y = mx + b to 𝜎̂ (blue) as function of N = T = (512, 1024, 2048, 4096)
using log10 scales
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Fig. 11 PAR2a run1 N = 4096, ACF, PACF of PARMSEF residuals from one realization
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Fig. 12 Boxplots for

PAR2a run1, N = T = 1024.

Active parameters are

{a11,… , a19, a21,… , a28}
(17 total), all null except

a11 = 1.1, a12 = 0.6, a21 =
−0.345, a22 = −0.33, a24 =
−0.045. Boxplots of

parameter estimates are

based on 100 replicates
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Table 2 Sample 𝜇 and 𝜎 for 17 selected Fourier coefficients estimated by parmsef. NSAMP =
100, N = T = 1024
Parameter Value 𝜇̂ 𝜎̂ pL t score pv for 𝜇 = 0
a11 1.10 1.09 0.03 ≥0.50 382.90 0.00

a12 0.60 0.60 0.03 ≥0.50 189.79 0.00

a13 0.00 0.00 0.04 ≥0.50 −0.77 0.44

a14 0.00 0.00 0.04 ≥0.50 0.15 0.89

a15 0.00 0.00 0.04 ≥0.50 0.016 0.99

a16 0.00 0.00 0.04 0.389 −0.83 0.41

a17 0.00 0.00 0.04 0.422 0.33 0.74

a18 0.00 0.00 0.04 0.440 −0.11 0.91

a19 0.00 0.00 0.02 ≥0.50 1.43 0.16

a21 −0.34 −0.35 0.03 ≥0.50 −128.00 0.00

a22 −0.33 −0.32 0.03 0.211 −93.63 0.00

a23 0.00 0.00 0.04 ≥0.50 0.85 0.40

a24 −0.04 −0.05 0.04 0.265 −11.44 0.00

a25 0.00 0.00 0.04 0.278 −0.46 0.65

a26 0.00 0.00 0.04 ≥0.50 0.22 0.83

a27 0.00 0.00 0.03 0.492 −0.03 0.97

a28 0.00 0.00 0.04 0.214 0.98 0.33

here, is the ability of these tests to detect non null parameters from only one sample.

Methods for accomplishing this may be based on (1) computed parameter variances

(2) estimates of parameter variances based on bootstrapping or simulation.
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5 Conclusions

We demonstrated the use of an OLS minimization to estimate the Fourier coefficients

of the periodic parameters in a periodic autoregressive model. This method is shown

to be effective even when the sample size N is small relative to the period T , say

N = T . Simulations show that the empirical distributions of parameter estimates are

typically normal and standard errors diminish as N−1∕2
as expected. Topics for future

research include (1) improvement of computational methods (2) direct (parametric)

computation of estimator standard errors to facilitate the identification of important

Fourier coefficients (3) use of simulation or bootstrapping to characterize empirical

distributions of parameter estimates (4) extension to PARMA.
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