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Introduction

It is our pleasure to present already third volume (time flies!) of the series dedicated
to the cyclostationarity and applications. In recent years, there is a growing interest
in modelling nonstationary signals and processes with cyclic patterns and our book
is a response to that. As in the previous two volumes, we have included a wide
range of papers: from quite theoretical dedicated to cyclostationary models to very
applied papers studying various mechanical cyclical signals.

More theoretically oriented papers are dedicated to such topics as: heavy tailed
time series and processes, PAR models, rational spectra for PARMA processes,
covariance invariant analysis, change point problems, subsampling for time series,
fraction-of-time approach, GARMA models and weak dependence. In the present
volume, there are published fifteen papers that can be divided into three groups. It
should be mentioned that the groups are not separable and some articles could be
classified to two or even three classes. The first group is devoted to strictly peri-
odically correlated processes and time series. The reader can find theoretical
investigations of PC models as well as their possible applications in mechanical
systems. The special attention is paid to periodically autoregressive model
(PARMA) and their special case PAR systems (A. Makagon and H. Hurd);
however, one can find also the papers related to other processes which exhibit
periodically correlated behaviour, like vectorial PC processes (I. Javors’Kyj et al.).
To this group, we also include the application-oriented articles where PC
methodology is taken under consideration (A. Parey et al.). In the second group of
papers, the reader can find the analysis of general class of stochastic processes and
methods dedicated to them. In two papers, authors consider the heteroscedastic
models (A. Wylomanska et al., P. Doukhan et al.); in the paper of B. Silveira de
Andrade et al., the reader can find the examination of generalized autoregressive
model (GARMA) with the inverse Gaussian distribution, while in M. Polak et al.
paper, the autoregressive model is used in the de-noising process for seismic sig-
nals. The next two papers which belong to the second group contain statistical
methods used in the analysis of nonstationary processes (J. Leskow et al.,
E. Gajecka-Mirek et al.). The third group includes applied studies of various
mechanical systems by using stochastic and statistical methods, especially in the

vii



context of damage detection. We highlight here the analysis of vibration signals
(P. Kruczek et al., R. Burdzik et al., L. Konieczny et al.) and temperature data
analysis (P. Kruczek, J. Sokolowski et al., J. Wodecki et al.). The number of papers
dedicated to methods (8) and the number of papers dedicated to applications
(7) represent a perfect balance we attempt to maintain throughout our meetings.

Our annual meetings in a lovely small town of Grodek (80 km south-east from
Krakow, Poland) are usually organized around two main topics: methods and
applications. The meetings are attended by specialists that come from various
countries and continents. In this volume, we present results of researchers from
Europe (Poland, Ukraine and France), India, USA and Brazil.

In our opinion, our series on cyclostationarity and applications is quite unique.
We have succeeded in putting together mathematicians, statisticians and engineers
working on cyclostationary models. And it works! We have been able to develop
common language, similar approaches, complementary models and interesting
applications. We hope that the reader will share our views and enthusiasm for that
kind of an approach.

viii Introduction



Weak Dependence: An Introduction Through
Asymmetric ARCH Models

P. Doukhan and N. Mtibaa

Abstract With the simple example of an asymmetric ARCH(1) model as a pretext,

we introduce some of the main tools for weak dependence conditions introduced in

[7]. The power of weak dependence is shown up for this very elementary model.

This a special case of the infinite memory models in [8]. Asymptotic properties of

a moment based parametric estimation do not need any regularity assumption over

innovations. In a last section we address a subsequent estimation of residuals: then

model based bootstrap is rapidly derived as well as the estimation of innovations

density based on those fitted innovations.

Keywords AMS 2010 classification ⋅ 60J05 Discrete-time Markov processes on

general state spaces ⋅ 62M05 Markov processes: estimation ⋅ 62G20 Asymptotic

properties ⋅ 62D05 Sampling theory ⋅ Sample surveys

1 Introduction

The paper presents some basic concepts related with weak dependence. We use a

simple model in order to demonstrate the efficiency of those techniques.

Namely we consider the equation

Xt =
√

(aXt−1 + b)2 + c2 ⋅ 𝜉t, a > 0 (1)

The innovations (𝜉t) constitute an independent and identically distributed (iid)

sequence. In the following we thus assume that 𝜉t is independent of Xt−1. The prop-

erties and the estimation of the parameters in the above model will rely on the obser-

vation of a sample from a stationary solution of Eq. (1).
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2 P. Doukhan and N. Mtibaa

This is a very special case of the model with infinite memory

Xt = F(Xt−1,Xt−2,…; 𝜉t) (2)

introduced in [8].

The paper is organized as follows. The following section recalls some definitions

of weak dependence conditions and we especially point out their heredity properties

which are not immediate, as this the case for the standard mixing properties (see [4]).

After this, a section addresses stationarity conditions and the dependence structure

of infinite memory models.

We then specialize to the case of asymmetric ARCH(1) models.

A first section makes precise the stationarity and the dependence structure for this

case.

The parametric moment estimators are detailed in a following section.

Finally we point out the asymptotic properties of fitted residuals with applications

to bootstrap, in a last section; we especially focus on the estimation of the density

of residuals providing a weak version of [9] results (which dedicates to functional

autoregressive models).

2 Weak Dependence

The whole material of this section is a selection from the lecture notes [2], readers

should refer to this volume for complements and details.

Definition 2.1 [7] Assume that there exist classes of functions

 , ∶
⋃
u≥1

ℝu → ℝ,

and a function 𝜓 ∶  ×  → ℝ (which depends on f , g and on the number of their

arguments (u, v) and a sequence 𝜖r ↓ 0 as r ↑ ∞.

A random process (Xt)t∈ℤ is said to be ( ,, 𝜓, 𝜖)—weakly dependent in case

|||Cov
(
f (Xi1 ,… ,Xiu ), g(Xj1 ,… ,Xjv )

)||| ≤ 𝜖r𝜓(u, v, f , g) (3)

for functions f , g belonging respectively to classes  ,, and

i1 ≤ ⋯ ≤ iu ≤ j1 − r ≤ j1 ≤ ⋯ ≤ jv.

Remark 2.1 The definition above deals with real valued models for simplicity, any-

way nothing needs to be changed in case ℝ is replaced by any Banach space, and in

fact a Polish space is even enough in order to define Lipschitz conditions with very

simple changes.
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The index set is also a matter of simplicity since any (unbounded) metric space

(𝕋 , d) may replace the set ℤ of integers leading either to discrete random fields 𝕋 =
ℤd

or random processes 𝕋 = ℝd
, and so on. . .

Example 2.1 (some coefficients). References [1, 7] suggest:

∙ 𝜃—weak dependence coefficients 𝜃r = 𝜖r which correspond to

𝜓(f , g) = vLip g‖f‖∞.

∙ 𝜂—weak dependence coefficients 𝜂r = 𝜖r, here

𝜓(f , g) = uLip f‖g‖∞ + vLip g‖f‖∞.

∙ 𝜅—weak dependence coefficients 𝜅r = 𝜖r, here

𝜓(f , g) = uvLip f ⋅ Lip g.

∙ 𝜆—weak dependence coefficients 𝜆r = 𝜖r, now

𝜓(f , g) = uLip f‖g‖∞ + vLip g‖f‖∞ + uvLip f ⋅ Lip g.

Remark 2.2 (Heredity under non-Lipschitz functions) Here (Xn)n∈ℕ and we denote

Yn = h(Xn), for some function h.

Then heredity of weak dependence for (Yn)n∈ℤ is simple in case of a Lipschitz

function h.

We consider useful cases for which h is not Lipschitz.

∙ Polynomial functions

Lemma 2.1 Let (Xn)n∈ℤ be a sequence of ℝk-valued random variables. Let p > 1.
We assume that there exists some constant C > 0 such that max1≤i≤k ‖Xi‖p ≤ C. Let
h be a function from ℝk to ℝ such that h(0) = 0 and for x, y ∈ ℝk, there exist a in
[1, p[ and c > 0 such that

|h(x) − h(y)| ≤ c|x − y|(|x|a−1 + |y|a−1) .

Then,

∙ if (Xn)n∈ℤ is 𝜂-weakly dependent, then (Yn)n∈ℤ also, and

𝜂Y (r) = 

(
𝜂(r)

p−a
p−1

)
;

∙ if (Xn)n∈ℤ is 𝜆-weakly dependent, then (Yn)n∈ℤ also, and

𝜆Y (r) = 

(
𝜆(r)

p−a
p+a−2

)
.
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∙ Discontinuous functions (indicator functions)

The empirical cumulative distribution needs ht(x) = I1{x≤t} and this case extends to:

Lemma 2.2 Let (Xn)n∈ℕ be a sequence of r.v’s. We assume that h is a step-function
with finitely many steps on ℝ Suppose that, for some positive real constants C, 𝛼, 𝜆

sup
x∈ℝ

sup
i∈ℕ

ℙ
(
x ≤ Xi ≤ x + 𝜆

)
≤ C𝜆𝛼. (4)

(i) If the sequence (Xn) is 𝜂-dependent, then (Yn)n∈ℕ is (, c)-dependent with 𝜖(r) =
𝜂(r)

𝛼

1+𝛼 , c(u, v) = 2(8C)
1

1+𝛼 (u + v)
(ii) If the sequence (Xn) is 𝜅-dependent, then (Yn)n∈ℕ is (, c)-dependent with

𝜖(r) = 𝜅(r)
𝛼

2+𝛼 , c(u, v) = 2(8C)
2

2+𝛼 (u + v)
2(1+𝛼)
2+𝛼

(iii) If the sequence (Xn) is 𝜃-dependent, then (Yn)n∈ℕ is (, c)-dependent with

𝜖(r) = 𝜃(r)
𝛼

1+𝛼 , c(u, v) = 2(8C)
1

1+𝛼 (u + v)
1

1+𝛼

(iv) If the sequence (Xn) is 𝜆-dependent (with 𝜆(r) ≤ 1), then (Yn)n∈ℕ is (, c)-
dependent with

c(u, v) = 2
(
(8C)

1
1+𝛼 + (8C)

2
2+𝛼
)
(u + v)

2+2𝛼
2+𝛼 , 𝜖(r) = 𝜆(r)

𝛼

2+𝛼

An appropriate notion of weak dependence for the model (2) was introduced in [3].

It is based on the concept of the coefficient 𝜏 defined below. Let (Ω,,ℙ) be a prob-

ability space,  a 𝜎-subalgebra of  and X a random variable with values in E.

Assume that ‖X‖1 < ∞ and define the coefficient 𝜏 as

𝜏(,X) =
‖‖‖‖‖

sup
f∈Λ1(E)

{||||∫ f (x)ℙX|(dx) −
∫

f (x)ℙX(dx)
}‖‖‖‖‖1

.

An easy way to bound this coefficient is based on a coupling argument:

𝜏(,X) ≤ ‖X − Y‖1
for any Y with the same distribution as X and independent of . Moreover, if

the probability space (Ω,,ℙ) is rich enough (we always assume so in the sequel)

there exists an X∗
such that 𝜏(,X) = ‖X − X∗‖1. Using the definition of 𝜏, the

dependence between the past of the sequence (Xt)t∈ℤ and its future k-tuples may

be assessed: Consider the norm ‖x − y‖ = ‖x1 − y1‖ +⋯ + ‖xk − yk‖ on Ek
, set

p = 𝜎(Xt, t ≤ p) and define
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𝜏k(r) = max
1≤l≤k

1
l
sup
{
𝜏(p, (Xj1 ,… ,Xjl ))| p + r ≤ j1 < ⋯ < jl

}
,

𝜏∞(r) = sup
k>0

𝜏k(r).

For the sake of simplicity, 𝜏∞(r) is denoted by 𝜏(r). Finally, the time series (Xt)t∈ℤ
is 𝜏-weakly dependent when its coefficients 𝜏(r) tend to 0 as r tends to infinity.

3 Models with Infinite Memory

This section refers to results from [8].

3.1 Assumptions

The existence of a solution to (2) is proved under a Lipschitz-type condition. It is

expressed in terms of Orlicz functions in order to handle general moments functions,

see Theorem 3.1. These moments will be needed to establish the asymptotic results

of Theorem 3.2.

Assume some Orlicz function Φ is such that for x, y ∈ Eℕ
:

‖‖F(x; 𝜉0) − F(y; 𝜉0)‖‖Φ ≤

∞∑
j=1

aj‖xj − yj‖, (5)

with (aj)j≥1 a sequence of nonnegative real numbers such that

a =
∞∑
j=1

aj < 1, (6)

𝜇Φ = ‖‖F(0, 0,…; 𝜉0)‖‖Φ < ∞. (7)

The Lipschitz property of F and the moment assumption (7) induce that

‖F(c; 𝜉0)‖Φ < ∞ for any constant c ∈ Eℕ
. We set c = (0, 0, 0,…) in condition (7)

for convenience.

As a reminder, Orlicz spaces are convenient extentions of the classical 𝕃m
-spaces.

LetΦ be an Orlicz function, defined onℝ+
, convex, increasing and satisfyingΦ(0) =

0. For any E-valued random variable X, the norm ‖X‖Φ is defined by the equation

‖X‖Φ = inf
{
u > 0, 𝔼Φ

(‖X‖
u

)
≤ 1
}

,

𝕃Φ =
{
E-valued random variables X such that ‖X‖Φ < ∞

}
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is a Banach space equipped with the norm ‖ ⋅ ‖Φ. For m ≥ 1 and Φ(x) = xm, notice

that 𝕃Φ
is the usual 𝕃m

-space. Recall:

Lemma 3.1 if the Orlicz function Φ satisfies Φ(xy) ≤ Φ(x)Φ(y), ∀x, y ∈ ℝ+ then
‖X‖1 ≤ ‖X‖Φ for any E-valued random variable.

3.2 Properties of the Stationary Solution

The following theorem settles the existence of a solution to (2). It also states that the

Φ-th moment of this solution is finite.

Theorem 3.1 Assume that conditions (6) and (7) hold for some Orlicz function Φ
satisfyingΦ(xy) ≤ Φ(x)Φ(y) ∀x, y ∈ ℝ+. Then there exists a 𝜏-weakly dependent sta-
tionary solution (Xt)t∈ℤ of (2) such that ‖X0‖Φ < ∞ and

𝜏(r) ≤ 2
𝜇1

1 − a
inf

1≤p≤r

(
ar∕p + 1

1 − a

∞∑
k=p+1

ak

)
→ 0 as r → ∞.

Remark 3.1 This is also proved that there exists some measurable function H such

that Xt = H(𝜉t, 𝜉t−1,…). The process (Xt)t∈ℤ is thus a causal Bernoulli shift. For

those processes, conditions (6) and (7) together imply the Dobrushin uniqueness

condition. Thus (Xt)t∈ℤ is the unique causal Bernoulli shift solution to (2). More-

over, as a causal Bernoulli shift, the solution (Xt)t∈ℤ is automatically an ergodic

process. Under the conditions of Theorem 3.1, the solution to (2) has finite Φ-th

moment. From Lemma 3.1, (Xt)t∈ℤ has also finite first order moments. The ergodic

theorem yields the SLLN for any chain with infinite memory under the assumptions

of Theorem 3.1.

Corollary 3.1 [8] Under the assumptions of Theorem 3.1, and in case aj = 0 for
j > p there exists a 𝜏-weakly dependent stationary solution (Xt)t∈ℤ to (2) such that
‖X0‖Φ < ∞ and 𝜏(r) ≤ 2𝜇1(1 − a)−1 ar∕p for r ≥ p.

Dedecker and Prieur [3] stated that there exists 0 < 𝜌 < 1 and C > 0 such that 𝜏(r) ≤
C𝜌r. Applying Corollary 3.1, we get the bound 𝜌 ≤ a1∕p. The bounds of the weak

dependence coefficients in Theorem 3.1 come from an approximation with Markov

chains of order p and from the result of Corollary 3.1.

In Theorem 3.1, the 𝜏-weak dependence property is linked to the choice of the

parameter p and then to the rate of decay of the Lipschitz coefficients aj. For example,

if aj ≤ ce−𝛽j, we choose p as the largest integer smaller than

√
− ln(a)r∕𝛽 to derive

the bound 𝜏(r) ≤ Ce−
√
− ln(a)𝛽r

for some suitable constant C > 0. If aj ≤ cj−𝛽 , we

choose the largest integer p such that p ln p(1 − 𝛽)∕ ln a ≤ r. Then there exists C > 0
such that 𝜏(r) ≤ Cp1−𝛽 . Notice that ln r is smaller than ln p + ln ln p up to a constant

and that ln r∕r is proportional to 1∕p(1 + ln ln p∕ ln p) and then equivalent to 1∕p
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as p tends to infinity with r. From these equivalences, we achieve thus there exists

C > 0 such that 𝜏(r) ≤ C (ln r∕r)𝛽−1.

3.3 Asymptotic Results

In this section E = ℝ and conditions (8a, 8b) yield the results proved in [1, 3].

Theorem 3.2 Assume that conditions (6) and (7) hold for some Orlicz function Φ
with Φ(xy) ≤ Φ(x)Φ(y),∀x, y ∈ ℝ+, and assume that there exists c0 > 0 such that

∑
k≥1

akΦ̃q(c0k) < ∞ if
∑
j>p

aj = 0 for some p ≥ 1, (8a)

∑
k≥1

akΦ̃q

(
−c0k ln

(∑
j≥k

aj
))

< ∞ otherwise, (8b)

where Φ̃q is defined by Φ̃q(x) = supy>0{(xy)q−1 − Φ(y)∕y}.
Then:

SLLN If q ∈]1, 2[ then: n−1∕q
n∑
i=1

(Xi − 𝔼X0) →n→∞ 0, a.s.

CLT If q = 2, then: 1√
n

[nt]∑
i=1

(Xi − 𝔼X0)
D[0,1]
⟶ 𝜎W(t) as n → ∞, where 𝜎2 =

∞∑
i=−∞

Cov (X0,Xi) is finite and W(t) is the standard Wiener process.
SIP If q = 2 and if the underlying probability space is rich enough then there exist

independent  (0, 𝜎2)-distributed random variables (Yi)i≥1 such that

n∑
i=1

(Xi − Yi) = o(
√
n ln ln n) a.s. (9)

Note that x2 ln(1 + x)-th moments are necessary to get the CLT for such weakly

dependent processes. Note also that approximations by martingale difference or pro-

jective criterion and yields the CLT under weaker assumptions.

Condition (8a) is relevant for the Markov solution (Xt)t∈ℤ to (2) i.e. when
∑

j>p
aj = 0. For the other cases, we rewrite assumption (8b) for various rates of decay

of the Lipschitz coefficients aj. Let a, b, c be some positive real numbers then there

exists c0 > 0 such that if

ak ≤ ck−a, then

∑
k≥1

akΦ̃q
(
c0k ln k

)
< ∞, (8a′)

ak ≤ ce−akb , then

∑
k≥1

akΦ̃q
(
c0k1+b

)
< ∞. (8a′′)
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For instance, condition (8a
′
) holds if Φ(x) = xm for m > q and a > 1 +

(q − 1)(m − 1)(m − q)−1. Condition (8a
′′

) holds forΦ(x) = xq(1 + ln(1 + x))(1+b)(q−1).
Applying Theorem 3.2, the CLT and the SIP (9) both hold for sub-geometric rates of

decay of the Lipschitz coefficients as in (8a
′′

) under the existence of x2(1 + ln(1 +
x))1+b-moment.

4 Asymmetric ARCH(1)-model

General variants of those models, ARCH(∞) are carefully studied in [6] and even

give rise to long range memory models. This section derive specific properties of

such very simple models.

4.1 Existence of a Stationary Solution

This is easy to derive from the above results that a ⋅ ‖𝜉0‖p < 1 for p ≥ 1, is the con-

dition for the existence of a stationary solution in 𝕃p
, moreover:

Lemma 4.1 for each 𝛼 ∈]0, 1[, and x ∈ ℝ, there exists A > 0 such that

|(ax + b)2 + c2| p2 ≥ (1 − 𝛼)|ax|p − A.

Proof Write

ax = (1 − 𝜖)ax + b
1 − 𝜖

+ 𝜖
−b
𝜖
, for each 𝜖 ∈]0, 1[,

then as p ≥ 1 the function x ↦ |x|p is convex, thus

|ax|p ≤ (1 − 𝜖)
(|ax + b|

1 − 𝜖

)p

+ 𝜖

(|b|
𝜖

)p

(1 − 𝜖)p−1|ax|p ≤ |ax + b|p +
(1
𝜖
− 1
)p−1
|b|p

≤ |(ax + b)2 + c2| p2 +
(1
𝜖
− 1
)p−1
|b|p

The required inequality holds with:

𝛼 = 1 − (1 − 𝜖)p−1, A =
(1
𝜖
− 1
)p−1
|b|p. □

Proposition 4.1 Let 1 ≤ q < p. If a ⋅ ‖𝜉0‖p > 1 and a ⋅ ‖𝜉0‖q < 1, then the 𝕃q-
stationary solution is not in 𝕃p.

Proof First quote that 0 is not solution the above equation. Choose 𝛼 small enough

so that 𝛽 = (1 − 𝛼)ap𝔼|𝜉0|p > 1, we derive:
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𝔼|X1|p = 𝔼|𝜉1|p(𝔼(aX0 + b)2 + c2)
p
2

≥ 𝛽𝔼|X0|p − A𝔼|𝜉1|p

Then 𝔼|X1|p − B ≥ 𝛽(𝔼|X0|p − B), for B = A𝔼|𝜉1|p∕(𝛽 − 1).
So that if we suppose that the 𝕃q

-stationary solution is also in 𝕃p
we derive

𝔼|X0|p = 0. This contradiction proves the result.

An alternative proof follows. Set 𝛾t = 𝔼|Xt|p − B, the above inequalities yield 𝛾t ≥

𝛽𝛾t−1 and thus 𝛾t ≥ 𝛽 t𝛾0 thus 𝛾t = +∞ if 𝔼|X0|p ≠ 0 leading again to a

contradiction. □

5 Moment Estimators

5.1 Explicit Moments

Proposition 5.1 Assume that p ≥ 1 then the previous stationary solution satisfies
𝔼X0 = 0. If p ≥ 2, 𝔼𝜉0 = 0, and 𝔼𝜉20 = 1, then

𝔼X2
0 = b2 + c2

1 − a2
.

Proof The first part follows from the independence of 𝜉t and Xt−1. For the second

part squaring the ARCH equation, quote that M = 𝔼X2
0 satisfies: M = a2M + b2 +

c2. □

Proposition 5.2 In case p = 2 and a2 ⋅ 𝔼|𝜉0|2 = 1, and a‖𝜉0‖q < 1 for some q < 2,
then 𝔼X2

0 = ∞, if moreover b2 + c2 ≠ 0.

Proof In case p = 2 and a2𝔼|𝜉0|2 = 1, we have

𝔼|X1|2 = 𝔼|𝜉1|2(𝔼(aX0 + b)2 + c2) = 𝔼|X1|2 + 𝔼|𝜉1|2(b2 + c2)

Hence b2 + c2 > 0 entails 𝔼X2
0 = ∞. □

Remark 5.1 Hence this again proves that Proposition 4.1 is essentially tight.

Proposition 5.3 If p = 3 and 𝜉0 admits a symmetric distribution, then 𝔼X3
1 = 0.

Proof If p = 3 and 𝔼𝜉0 = 0, we derive

𝔼X3
1 = 𝔼𝜉31𝔼((aX0 + b)2 + c2)

3
2 .

Thus 𝔼X3
0 = 0 since 𝔼𝜉30 = 0. □
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Proposition 5.4 Set 𝓁t = Cov (X0,X2
t ), the leverage for t > 0. It measures the asym-

metry properties of a random process. If again p = 3 and if 𝜉0 admits a symmetric
distribution with 𝔼𝜉20 = 1, then for t ≥ 1:

𝓁t =
2a2t−1b(b2 + c2)

1 − a2
.

Proof Here 𝔼𝜉30 = 0, thus 𝔼X3
0 = 0, and

𝓁1 = Cov (X0,X2
1) = a2𝔼X3

0 +
2ab(b2 + c2)

1 − a2
= 2ab(b2 + c2)

1 − a2

Taking into account that 𝔼𝜉20 = 1 and 𝔼X0 = 0 yields

𝓁2 = 𝔼X0X2
2 = 𝔼X0((aX1 + b)2 + c2)

= a2𝔼X0X2
1 + 2ab𝔼X0X1 = 2a3b(b2 + c2)

1 − a2

Then a recursion entails:

𝓁t = 𝔼X0X2
t = 𝔼X0((aXt−1 + b)2 + c2)
= a2𝔼X0X2

t−1 + 2ab𝔼X0Xt−1 + c2𝔼X0

= a2𝔼X0X2
t−1

= 2a2t−1b(b2 + c2)
1 − a2

.

□

5.2 Moment Based Estimation

The previous triplet writes (M,𝓁1,𝓁2) = F(a, b, c). From those relations 𝓁2∕𝓁1 =
a2 and 𝓁1 = 2abM imply a =

√
𝓁2∕𝓁1, b = 𝓁3∕2

1 ∕2M𝓁1∕2
2 . Finally c2 = M(1 − a2) −

b2 = M(1 − 𝓁2∕𝓁1) − 𝓁3
1∕4M

2𝓁2.

This writes

(a, b, c) =
⎛
⎜⎜⎜⎝

√
𝓁2
𝓁1

,

√
𝓁3
1

2M
√
𝓁2

,

√
M
(
1 −

𝓁2
𝓁1

)
−

𝓁3
1

4M2𝓁2

⎞
⎟⎟⎟⎠

(10)

Since the above relation defines the inverse of the function F, an accurate estimate

of the model writes:
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(â, b̂, ĉ) = F−1
(
M̂,𝓁1,𝓁2

)

Here we consider the standard empirical estimates:

M̂ = 1
n

n∑
i=1

X2
i ,

𝓁1 =
1

n − 1

n−1∑
i=1

XiX2
i+1,

𝓁2 =
1

n − 2

n−2∑
i=1

XiX2
i+2.

Quote that the above (𝓁1,𝓁2)-based estimators may be replaced by (𝓁i,𝓁j)-based

estimators for 0 < i < j, but even considering all of them by aggregation would not

improve on convergence rates.

5.3 Asymptotic Considerations

By using the previous transforms the only asymptotic to be considered is for empir-

ical estimates of M,𝓁1,𝓁2. The a.s. consistency of those estimates follows from

the ergodic theorem. Geometric 𝜃-weak dependence holds. Now in order to get all

asymptotic results assume the moment condition a‖𝜉0‖6+𝜖 < 1, for some 𝜖 > 0 (
1
).

Denote 𝛼 = (â, b̂, ĉ), then

√
n(𝛼 − 𝛼) →

n→∞  (0,Σ𝛼),

yielding asymptotic confidence intervals.

1
In fact (Xi) only needs general moments with Φ(x) = x6 log3 x, unfortunately the conditions in

Sect. 3.2 do not write simply in this case.
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Now (9) applies with X̄i = X2
i ,XiX2

i+1 and XiX2
i+2 since the heredity Lemma 2.1

holds here. We thus also conclude that 𝛼 is a strongly consistent estimator for 𝛼 and

fulfills a LIL. More precisely this implies that whatever is the norm ‖ ⋅ ‖ on ℝ3
:

lim sup
n→∞

√
n

ln ln(n)
⋅ ‖𝛼 − 𝛼‖ < ∞, a.s. (11)

6 Estimating the Density of the Residuals

We shall write for simplicity

Xt = 𝜎(Xt−1) ⋅ 𝜉t, with 𝜎(x) =
√
(ax + b)2 + c2.

The previous section is devoted to fit 𝛼 = (a, b, c), when a n-sample is observed. We

now let 𝜎(x) =
√

(âx + b̂)2 + ĉ2.

We estimate the density f of the (non-observed) residuals 𝜉i. For this assume that

this density exists and that it is bounded. We want to estimate the density f by means

of the data Xi+1,… ,Xi+N for some convenient i. A main problem is that we do not

observe the residuals 𝜉i. It is addressed below.

6.1 Fitted Residuals

Above we conducted the estimation of the function 𝜎 by using a sample X1,… ,Xn,

in order to fit N residuals (𝜉i)i∈AN
we shall let n = n(N) ↑ ∞ as N ↑ ∞, depend on

N ↑ ∞. Now we need to make the sample (Xi)i∈AN
asymptotically independent of

the sample X1,… ,Xn thus we introduce another sequence k = k(N) ↑ ∞ as N ↑ ∞
so that AN = {i, 1 ≤ i ≤ n + k + N}.

Below we assume that a sample (Xi)1≤i≤n0 is observed and we thus separate into

3 parts, the first part is devoted to parametric estimation of the coefficients, then k-

random variables are discarded in order to infer asymptotic independence, the last

part of the sample is dedicated to fit the residuals and then the density of innovations,

and n0 = n + k + N.

We assume for simplicity that k(N) = [N𝜖] for some 0 < 𝜖 < 1.

Theorem 6.1 Set

ΔN = 1
N
∑
i∈AN

|𝜉i − 𝜉i|, with 𝜉i =
Xi

𝜎(Xi−1)
.
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Then under the above assumptions

lim sup
N→∞

√
N

ln ln n(N) ⋅ ln lnN
⋅ ΔN < ∞, a.s.

Proof First assume that the set AN is such that 𝜎 ⟂⟂ (Xi, i ∈ AN) is independent of

the estimation sample, then the SIP entails

ΔN = a.s

(√
ln ln n ⋅ ln lnN

n

)

Write 𝜎(𝛼, x) =
√
(ax + b)2 + c2 then its differential writes

D𝛼𝜎(𝛼, x)(u, v,w) =
1

𝜎(𝛼, x)
⋅ (uax2 + vb + wc),

so that

|𝜎(x) − 𝜎(x)| ≤ 1
𝜎(x)

⋅ (|a − â||a|x2 + |b − b̂||b| + |c − ĉ||c|),

and |𝜎(x) − 𝜎(x)| ≤ cst.

√
ln ln(n)

n
(x2 + 1) from (11). Thus 𝜎(x) is differentiable as a

function of 𝛼 with partial derivatives (x2 + 1). Hence

|𝜉i − 𝜉i| =
|Xi|

𝜎(Xi−1)
(𝜎(Xi−1) − 𝜎(Xi−1))

≤ cst.

|Xi|(X2
i−1 + 1)
cĉ

max{|â − a|, |b̂ − b|, |̂c − c|}

= a.s

(√
ln ln(n)

n

)
|Xi|(X2

i−1 + 1)

The SIP (9) for Xi(X2
i−1 + 1) and an independence argument together entail the

result in this case since Yi = |Xi|(X2
i−1 + 1) satisfies SIP thus LIL entails

∑N
i=1 Yi =

a.s(N ln lnN).
We use the coupling argument in [3] under 𝜏-weak dependence in the general case:

𝔼|Xi − X∗
i | ≤ 𝜏(k)

where X∗
i ⟂⟂  ((𝜉i)1≤i≤n) and where 𝜏(k) = 𝜏(k(N)) is here a geometrically decaying

sequence. We obtain 𝜉∗i from X∗
i and now ΔN ≤ Δ∗

N + 𝛿N for 𝛿N ≥ 0 with 𝔼𝛿N ≤

𝜏(k), thus: ℙ(𝛿N ≥ t) ≤ 𝜏(k(N))
t

implies 𝛿N = a.s(1∕n) (from Borel-Cantelli lemma
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and from the geometric decay of the sequence N ↦ 𝜏(k(N))) and we obtained above

(case (Xi)1≤i≤n ⟂⟂ (Xi)j∈AN
)

Δ∗
N = a.s(1)

√
ln ln(n) ⋅ ln ln(N)

n

The result follows. □

Remark 6.1 (Bootstrap) Consider the discrete measure

𝜈∗ = 1
N
∑
j∈AN

𝛿
𝜉i
, 𝜉i = 𝜉i −

1
N
∑
j∈AN

𝜉j

then a bootstrapped version of our ARCH(1) models is the solution of the equation

X∗
t = 𝜎(X∗

t−1) ⋅ 𝜉
∗
i for an iid sequence 𝜉∗i ∼ 𝜈∗.

Quote that the above distribution is centered conditionally wrt observations. The

attractive feature of weak dependence conditions relies on the fact that the 𝕃p
-

stationarity of the above solution only relies on a ⋅ ‖𝜉0‖p < 1. Indeed the empirical

counterpart of the above expression again satisfies â ⋅ ‖𝜉∗0‖p < 1 for N large enough.

6.2 Density Estimation

On the basis of the estimator 𝛼, we compute the estimated residuals 𝜉i for i ∈ AN . As

suggested in [9] the density f is estimated by the kernel estimator f̃N :

f̃N(x) =
1

Nb(N)
∑
i∈AN

K

(
𝜉i − x
b(n)

)
, ∀x ∈ ℝ.

Suppose that the bandwidth b(n) satisfies limN→∞ b(N) = 0. We assume that for

some integer r ≥ 2 the kernel fulfills the following condition:

CONDITION K(r) : K is a symmetric Lipschitz function which vanishes outside

the interval [−1, 1]. Assume ∫
1
−1 K(t)dt = 1 and

∫

1

−1
trK(t)dt ≠ 0,

∫

1

−1
tkK(t)dt = 0, for each integer 0 < k < r.

A standard literature for density estimation of the iid sequence (𝜉i) is e.g. the nice

monograph, [10], see also [5]. Relying on ideas from [9] we derive:

Theorem 6.2 Suppose that, for some even integer r ≥ 2, the derivative f (r) exists
and is continuous onℝ. Let D ⊂ ℝ be some compact interval we assume that b(N) =
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C(N∕ lnN)−𝛽 , k(N) = N𝜖 and n(N) = N𝛾 for 0 < 𝛽 < 1, 0 < 𝜖 < 1 and 𝛾 > 4𝛽. Then,
under the assumption K(r), we have

sup
x∈D
|̃fN(x) − f (x)| = a.s(

√
ln(N)N−1∕2b(N)−1∕2 + br(N))

Optimizing those expressions yields

sup
x∈D
|̃fN(x) − f (x)| = a.s((ln(N)∕N)r∕(2r+1)),

if b(N) = C1 ⋅ (ln(N)∕N)1∕(2r+1) and 𝛾 > 4∕(2r + 1).

Theorem 6.3 Assume that f is Lipschitz continuous in a neighborhood of x ∈ ℝ and
f (x) > 0. Then under the assumptions in Theorem 6.2 with now b(N) = CN−𝛽 , and
𝛾 > 1 + 3𝛽, and under the assumptions K(r):

√
Nb(N)(̃fN(x) − 𝔼f̂N(x)) →

 (0, 𝜎2(x))

where 𝜎2(x) = f (x) ∫ 1
−1 K

2(t)dt.

Corollary 6.1 Assume that b(N) = C2 ⋅ N−1∕(2r+1) for some positive constant C2, if
f (r) exists and is continuous at x ∈ ℝ for some even r ≥ 2. Suppose that f (x) > 0
then, under the assumptions K(r):

√
Nb(N)(̂fn(x) − f (x)) →

 (𝜇(x), 𝜎2(x))

with 𝜇(x) = Cr+1∕2
2
r!

∫
1
−1 t

rK(t)dt ⋅ f (r)(x).

Remark 6.2 Among others conditions [9] also assumes that the second deriva-

tive K′′
exists on [−1, 1] and moreover assume that C2 = supt∈[−1,1] |K′′(t)| < +∞.

His proof is really technical and relies on a second order Taylor expansion. How-

ever he does not assume any restriction on n(N) and he chooses n(N) = N and

AN = {1,… ,N}. The frame is thus much more restrictive.

In our case we assume n ∼ N𝛾
and we need 𝛾 > 4𝛽 for the uniform law of large

numbers (Theorem 6.2; this is not a really restrictive condition since the right expo-

nent is 𝛽 = 1∕(2r + 1), and the condition reduces to 𝛾 > 4∕5 and includes 𝛾 = 1 as in

[9]. For very large values this is a weak assumption 𝛾 > 4∕(2r + 1) ↓ 0 as r ↑ ∞. The

central limit Theorem 6.3 needs 𝛾 > 1 + 3𝛽 which is always more than 1 (essentially

𝛾 > 1 for high order differentiable densities f ). The latter condition is more restric-

tive.

Proof If (𝜉i)1≤i≤n are observed, then the standard kernel density estimator of f writes

f̂N(x) =
1

Nb(N)
∑
i∈AN

K
(
𝜉i − x
b(n)

)
, ∀x ∈ ℝ.
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we have classically

𝔼f̂ (x) − f (x) ∼ br ⋅
f (r)(x)
r! ∫

1

−1
trK(t)dt

Since ln u = o(u) as u ↑ ∞ the powers of ln ln’s are (lnN).

Now using the above Theorem 6.1 and assumptions a Lipschitz argument entails

|̃f (x) − f̂ (x)| ≤ ΔN
Lip K
b(N)2

= a.s(lnN ⋅ N2𝛽−𝛾∕2)

In order to make the substitution 𝜉i by 𝜉i negligible, we assume 𝛾 > 4𝛽 in order

to derive Theorem 6.2. For the optimized case this means 𝛽 = 1∕(2r + 1) and thus

𝛾 > 4∕(2r + 1) (for r = 2 this is only 𝛾 > 4∕5 and for large values of r this essen-

tially means 𝛾 > 0).

Theorem 6.3 thus needs limN
√
Nb(N)ΔNLip K∕b(N)2 = 0. Quote that

√
Nb(N)

ΔN∕b(N)2 = a.s(lnN ⋅ N1∕2+3𝛽∕2−𝛾∕2) and we need here 𝛾 > 1 + 3𝛽. □
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Subsampling for Non-stationary Time Series
with Long Memory and Heavy Tails Using
Weak Dependence Condition

Elżbieta Gajecka-Mirek and Oskar Knapik

Abstract Statistical inference for unknown distributions of statistics or estimators

may be based on asymptotic distributions. Unfortunately, in the case of dependent

data the structure of such statistical procedures is often ineffective. In the last three

decades we can observe an intensive development the of so-called resampling meth-

ods. Using these methods, it is possible to directly approximate the unknown distrib-

utions of statistics and estimators. A problem that needs to be solved during the study

of the resampling procedures is the consistency. Their consistency for independent

or stationary observations has been extensively studied. Resampling for time series

with a specific non-stationarity, i.e. the periodic and almost periodic strong mixing

dependence structure also been the subject of research. Recent research on resam-

pling methods focus mainly on the time series with the weak dependence structure,

defined by Paul Doukhan, Louhichi et al. and simultaneously Bickel and Bühlmann.

In the article a time series model with specific features i.e.: long memory, heavy tails

(with at least a fourth moment, e.g.: GED, t-Student), weak dependence and periodic

structure is presented. and the estimator of the mean function in the above-mentioned

time series is investigated. In the article the necessary central limit theorems and

consistency theorems for the mean function estimator (for one of the resampling

techniques—the subsampling) are proven.
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1 Introduction

Possibility to construct sampling distributions of estimators for time series is very

important in statistical studies. Traditional statistical inference based on asymptotic

distributions does not always lead to effective statistical procedures. There are several

reasons for this, e.g.:

∙ the convergence of the estimator to the asymptotic distribution is slow and often

requires a large collection of observations. In practice, there is not always the pos-

sibility to receive enough data because of the costs or technical restrictions.

∙ The asymptotic distribution is often very complicated and depends on the unknown

parameters, which in the case of dependent data is difficult to estimate.

In such situations, the so-called resampling methods (Efron [14]) are helpful.

Moreover, in many cases these methods are the only effective technique. These meth-

ods allow us to approximate the unknown distributions (or characteristics) of the

statistics and estimators without a reference to the form of the distribution. These

approximations are used to construct the confidence intervals for the parameters and

testing statistical hypothesis. (One can compute the confidence intervals and critical

values from the resampling distributions instead of the asymptotic distributions.)

In the nineties of the last century the research was focused on stationary time

series. At the present time, the efforts of researchers are concentrated on the non-

stationary series, with discrete and continuous time. See, e.g. [13, 16, 26, 29] or

[35] among many others.

One of the specific form of non-stationarity is periodicity. Gladyshev [18] initi-

ated the development of research on periodicity in time series and stochastic process.

In 2006 Gardner et al. [17] have provided a general overview of research on peri-

odicity and time series, considering over 1500 published papers on the topic. It was

shown that the models with periodic structure are widely applicable e.g. in commu-

nication, signal processing, vibromechanics, econometrics, climatology and biology.

The resampling methods for periodic time series is an open research area, where

many fundamental properties have yet to be proven.

In the article, we will deal only with one form of resampling—subsampling, since

we will work with long memory time series.

The attention will be focused on the class of time series which simultaneously

deals with three features: periodic structure, heavy tails (finite at least fourth moment)

and long memory.

The heavy-tailed random variables are variables with distributions whose extreme

values are “more probable than normal”. Examples of such distributions are the Gen-

eralized Error Distribution (GED) distributions or stable distributions. Both classes

will be discussed in this thesis. Additionally, in real data sets one has to deal with

long range dependence as well.

The presence of long range dependence in time series means that there exists

dependence between observations which are distant in time from each other.

It is obvious that among the observations of the time series there is a relationship—

the dependence. Over the years, the most popular way for studying this dependence
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have been the mixing conditions. The fact is that under natural restrictions on the

process parameters, many processes of interest fulfill mixing conditions [11]. On

the other hand, there is a large class of processes for which mixing properties do not

hold.

Simple example of such a time series is a stationary AR(1) process:

Xt = aXt−1 + 𝜀t,

where the innovations are independent with P(𝜀t = 1) = P(𝜀t = −1) = 1∕2 and 0 <

|a| ≤ 1∕2.
This process has a stationary distribution on [−2, 2] and Xt has always the same

sign as 𝜀t. It is possible to recover Xt−1,Xt−2,… from Xt, it means that the process

{Xt}t∈ℤ is purely deterministic going backwards in time, so it cannot be strong mix-

ing (proof is given in [1]).

More examples of weakly dependence sequences can be found in the research of

Doukhan et al. [8, 21].

In 1999 Doukhan and Louhichi [12] and simultaneously Bickel and Bühlmann

[6] proposed an alternative condition for the dependence in time series called weak

dependence and 𝜈-dependence, respectively.

The definition of weak dependence in comparison to, for example, mixing is very

general. It includes very general data sets and models like causal, non causal linear,

bilinear, strong mixing processes, dynamical systems or Markov processes driven by

discrete innovations.

The main objective of this article is to introduce the theoretical and practical

results describing the consistency of subsampling method and to show how to use

them in statistical inference for time series with periodic behavior.

Three specific features of time series will be studied: heavy tails, long memory

and periodic behavior. The construction of described in the thesis process entails the

weak dependence property.

The central limit theorem for the mean estimator will be given. The subsampling

method to estimate the mean vector will be presented and the applications of the

central limit theorem to prove the consistency of subsampling method will be shown.

The structure of the article is as follows. In the second section the definitions,

the examples and the main ideas will be introduced. The third section contains the

construction of long memory, heavy tailed and periodically stationary model and its

properties. The fourth section contains the central limit theorems. In the next section

the consistency of the subsampling is shown.

2 Basic Concepts and Definitions

In this section the basic concepts and definitions will be presented. Some of them

will be illustrated by examples.
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Many real life phenomena are characterized by a seasonal behavior which, obvi-

ously, is not non-stationary. Seasonal data appear in such fields as: economics, biol-

ogy, climatology, telecommunications and many others. If seasonality is not easily

removable it means that we are dealing with a particular type of non-stationarity,

for example the periodic structure. In such cases it is not just the mean that has a

periodic rhythm. A periodic rhythm also describes the behavior of covariance.

Popular models used for describing such phenomena are periodically nonstation-

ary processes.

Below are introduced the formal definitions of periodicity of the time series.

For the time series {Xt}t∈ℤ we define the autocovariance of the pair (Xt,Xt+h) to

be

𝛾X(t, h) = Cov(Xt,Xt+h).

Definition 1 ([25], p. 5) Time series {Xt}t∈ℤ is periodically correlated (PC) in

Gladyshev sense, if the mean 𝜇X(t) is periodic (𝜇X(t) = 𝜇X(t + T)) and the autoco-

variance function 𝛾X(t, h) is periodic in t for all h ∈ ℤ (𝛾X(t, h) = 𝛾X(t + T , h)).

If there is no ambiguity, we will write 𝛾(t, h) (or 𝛾(h) if we deal with classical

weak stationarity) instead of 𝛾X(t, h) for the autocovariance function of time series

{Xt}t∈ℤ.

In many periodic phenomena the existence of the long range dependence is

observed [5, 24, 31]. The presence of long range dependence in time series means

that there exists a relationship between observations which are far away from each

other in time. Long memory occurs in the sense that a hyperbolic behavior of the

autocorrelations holds for almost all lags and frequencies respectively.

The long range dependence can be defined as long memory. Note that the defini-

tion of long memory introduced below is one of many possible definitions.

Definition 2 ([7], p. 520) A stationary, time series {Xt}t∈ℤ has long memory if its

autocovariance function 𝛾 satisfies the following formulas:

∑
0<|h|<n

𝛾(h) ∼ Cn𝛽

where 𝛽 ∈ [0, 1), and C ≠ 0.

Definition 3 A PC time series {Xt}t∈ℤ has a long memory if the autocovariance

function 𝛾(s)(h) = Cov(Xs+qT ,Xs+(q+h)T ) for each q ∈ ℤ satisfies the following for-

mula ∑
0<|h|<n

𝛾(s)(h) ∼ C(s)n𝛽 , s ∈ {1,… ,T}

where 𝛽 ∈ [0, 1). For each s ∈ {0,… ,T − 1} C(s) is the finite constant such that
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C(s) = 2 ⋅ lim
n→∞

∑n−1
h=1 𝛾(s)(h)

n𝛽
> 0.

Let us assume that the notation for the long memory with parameter 𝛽 ∈ [0, 1)
will be LM(𝛽).

Suitable tool to describe the long memory behavior are so-called Gegenbauer

processes [15, 23]. This kind of process will be used in modeling the long range

dependence in this article.

Definition 4 ([19]) Let us assume that 𝜀t is i.i.d. innovation process. The process

{Gt}t∈ℤ defined by the equation:

𝛱1≤i≤k(I − 2𝜈iB + B2)di Gt = 𝜀t, (1)

is the k-factor Gegenbauer process.

0 < di < 1∕2 if |𝜈i| < 1 or 0 < di < 1∕4 if |𝜈i| = 1 for i = 1, ..., k and I is identity

operator, B is backshift operator.

Theorem 1 ([21]) Process defined by the Definition 4 is long memory, stationary,
causal and invertible and has a moving average representation:

Gt =
∑
j≥0

𝜓j(d, 𝜈)𝜀t−j,

with
∑∞

j=0 𝜓
2
j (d, 𝜈) < ∞, where 𝜓j(d, 𝜈), j ≥ 0, is defined by:

𝜓j(d, 𝜈) =
∑

0 ≤ l1, ..., ln ≤ j
l1 + ... + ln = j

Cl1 (d1, 𝜈1) ⋅ ... ⋅ Clk (dk, 𝜈k),

where Cli (di, 𝜈i) are the Gegenbauer polynomials defined as follows:

(1 − 2𝜈z + z2)−d =
∑
j≥0

Cj(d, 𝜈)zj, |z| ≤ 1, |𝜈| ≤ 1.

Moreover, if {𝜀t}t∈ℤ in the Definition 4 is the Gaussian white noise, then {Gt}t∈ℤ
is Gaussian time series.

The Gegenbauer processes are stationary, seasonal fractional models; see: [19,

20]. The form of the 𝜓j(d, 𝜈) also can be found in [19, 20].

The time series is a sequence of dependent observations. In 1999 Doukhan and

Louhichi [12] and simultaneously Bickel and Bühlmann [6] introduced a new way

of describing data—the weak dependence.

Below, the definition of weak dependence is introduced.
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Let (E, ∥ ⋅ ∥) be a normed space and u ∈ ℕ∗. We assume that a function h ∶
Eu ⟶ ℝ belongs to the class L = {h ∶ Eu → ℝ, ∥ h ∥∞≤ 1,Lip(h) < ∞}, where

Lip(h) = supx≠y
∣h(x)−h(y)∣
∥x−y∥1

and ∥ x ∥1=
∑u

i=1 ∥ xi ∥.

Definition 5 ([4]) A sequence {Xt}t∈ℤ of random variables taking values in E =
ℝd

(d ∈ ℕ∗ = ℕ ⧵ {0}) is (𝜀,L , 𝛹 )-weakly dependent if there exists 𝛹 ∶ L ×L ×
ℕ∗ × ℕ∗ → ℝ and a sequence {𝜀r}r∈ℕ (𝜀r → 0) such that for any (f , g) ∈ L ×L ,

and (u, v, r) ∈ ℕ∗2 × ℕ

|Cov(f (Xi1 , ...,Xiu ), g(Xj1 , ...,Xjv ))| ≤ 𝛹 (f , g, u, v)𝜀r

whenever i1 < i2 < ... < iu ≤ r + iu ≤ j1 < j2 < ... < jv.

The weak dependence notions are related to the initial time series and are mea-

sured in terms of covariance of the functions.

The asymptotic behavior of the covariance shows us the independence between

“past” and “future”. Intuitively, the weak dependence is “forgetting” in time series.

There are several concepts of weakly dependent processes e.g.:. 𝜆-, 𝜃-, 𝜂-weak

dependence. The form of the 𝛹 function corresponds to particular cases of weak

dependence.

The coefficient 𝜆 corresponds to:

𝛹 (f , g, u, v) = uvLip(f )Lip(g) + uLip(f ) + vLip(g),

the coefficient 𝜂 corresponds to:

𝛹 (f , g, u, v) = uLip(f ) + vLip(g),

the coefficient 𝜃 corresponds to:

𝛹 (f , g, u, v) = vLip(g).

Note there are other cases of weakly dependent, that are not quoted here.

In the definition of weak dependence we denote respectively 𝜆r, 𝜂r or 𝜃r instead

of 𝜀r.

The heavy-tailed random variables are variables with distributions whose extreme

values are “more probable than normal”. The heavy tail phenomena occur frequently

in real life. In contradiction to Gaussian phenomena which do not allow for large fluc-

tuations, “heavy tails” can be used to describe high variability. The data with “heavy

tails” appear in such different fields as economics, telecommunications, meteorol-

ogy, physics and signal processing.

If we define kurtosis as 𝜇4∕𝜎4
and 𝜇4 is the fourth central moment (if it exists),

while 𝜎 is the standard deviation then we can say that heavy-tailed variables are those
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with kurtosis greater than three, and whose tails go to zero slower than in the normal

distribution.

One of the example of heavy tailed distributed random variables are GED—

random variables.

The Generalized Error Distribution (GED) is a parametric model of a heavy tailed

distribution. All moments of the GED are finite and the GED has a relatively simple

form of a probability density function.

The Generalized Error Distribution is a symmetric unimodal member of the expo-

nential family. The domain of the probability distribution function is (−∞,∞).
The original concept of the GED was introduced by Subbotin in 1923 [34], so

it is known as “Subbotin’s family of distributions”. However, Subbotin proposed a

two-parameters GED model:

f (x; h,m) = mh
2𝛤 (1∕m)

exp{−hm|x|m}, (2)

where x ∈ ℝ and h > 0 and m ≥ 1 are scale and shape parameters, respectively.

In 1963 Lunetta ([30]) has defined a three-parameters GED class, as follows:

f (x;𝜇, 𝜎, 𝛼) = 1
2𝜎𝛼1∕𝛼𝛤 (1 + 1∕𝛼)

exp{−1
2
|x − 𝜇

𝜎
|𝛼}, (3)

where 𝜇 ∈ ℝ is the location parameter, 𝜏 > 0 is the scale and 𝛼 > 0 is the shape

(power).

Of course, the m in the Eq. (2) is equal to the 𝛼 in the Eq. (3) while h = (𝛼1∕𝛼𝜏)−1.
Taking into account the fact that the Euler gamma function 𝛤 satisfies the formula

r𝛤 (r) = 𝛤 (r + 1), the Eqs. (2) and (3) are equivalent, whenever the location para-

meter 𝜇 in (3) is equal to zero.

The GED is also called the generalized normal class. The reason is that for the

random variable X with density function as in the formula (3) we have the following

equation:

𝜏 = {E|X − 𝜇|𝛼}1∕𝛼,

which for 𝛼 = 2, gives the standard deviation in the normal case. Note that if 𝛼 ≠ 2,
𝜏 must not be confused with the standard deviation of X.

Below we give the definition in which 𝜏 stands for the standard deviation:

Definition 6 ([36]) The random variable X has GED distribution (X ∼ G(𝜇, 𝜏, 𝛼))
if the density function, f (x), of X is given by the equation:

f (x;𝜇, 𝜏, 𝛼) = (2𝛤 (1 + 1∕𝛼)A(𝜏, 𝛼))−1exp{−| x − 𝜇

A(𝜏, 𝛼)
|𝛼} (4)

with A(𝜏, 𝛼) = 𝜏
√
𝛤 (1∕𝛼)∕𝛤 (3∕𝛼).
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In the sequel of this dissertation it is enough to consider the case 𝜏 = 1 in the Eq.

(4). Therefore, we will be considering the density function

f (x;𝜇, 𝛼) = 𝛼

2A(𝛼)𝛤 (1∕𝛼)
exp{−|x − 𝜇

A(𝛼)
|𝛼}, (5)

where A(𝛼) =
√
𝛤 (1∕𝛼)∕𝛤 (3∕𝛼), 𝛼 > 0, 𝜇 ∈ (−∞,∞), and x ∈ ℝ.

Our definition of the GED is as follows:

Definition 7 The random variable X has a GED distribution X ∼ G(𝜇, 1, 𝛼) if the

density function, f (x), of X follows the Eq. (5).

The rth central moment of a random variable X ∼ G(𝜇, 1, 𝛼) can be calculated as

E(X − EX)r = 1√
𝛤 (1∕𝛼)∕𝛤 (3∕𝛼)𝛤 (1 + 1∕𝛼) ∫

∞

−∞
(x − EX)re−

1
2 |x−EX|𝛼dx,

where r ∈ ℕ. When r is odd then the rth moments are equal to zero, by symmetry.

For r even the rth moments are as follow:

EXr = (
√
𝛤 (1∕𝛼)∕𝛤 (3∕𝛼))r

𝛤 (1∕𝛼(r + 1))
𝛤 (1∕𝛼)

.

Notice that in the consequence of the Definition 7 the first four moments of GED

distribution are: mean = 𝜇, variance = 1, skewness = 0, kurtosis = 𝛤 (5∕𝛼)𝛤 (1∕𝛼)
𝛤 2(3∕𝛼)

.

Recall that the GED distribution has heavy tails, if 𝛼 < 2. When 𝛼 > 2 we get

tails lighter than normal.

It is clear to see that the normal distribution is GED with 𝛼 = 2. Below are other

examples of the GED distribution.

Example 1 If we choose 𝛼 = 1 in the Definition 6 then the GED distribution is so-

called Double Exponential, or Laplace, distribution, i.e. G(𝜇, 𝜏2, 1) = L(𝜇, 4𝜏2).

Note that the Subbotin’s model (2) does not allow for the tails heavier than those

in the Laplace distribution. Unlike the formula (3), where the tails heavier than those

in the Laplace distribution are allowed.

Example 2 If we consider the Definition 6 and 𝛼 → ∞, then the GED distribution

tends to the uniform distribution U(𝜇 − 𝜏, 𝜇 + 𝜏).

3 The Model and Its Properties

In many applications of time series analysis one is confronted separately with heavy

tailed and long memory behavior. The non-stationarity of the time series, and its

special case—the periodicity is also a feature that researchers are dealing with.
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Below we present a model which will simultaneously be dealing with three fea-

tures: periodicity, long memory and heavy tails. We build it by adjusting a long

memory and a heavy tailed stationary model to the T-variate process.

Let the time series {Xt}t∈ℤ be defined as:

Xt = 𝜎tGGt + 𝜂t, (6)

where

A1 The volatility time series 𝜎t and the Gaussian-Gegenbauer time series GGt are

independent

A2 The sequence of random variables 𝜎t is i.i.d and its marginal distribution comes

from a heavy tail family, with finite at least fourth moment, for example.

A3 GGt is periodic Gaussian-Gegenbauer time series. We put that

GGt = ft ⋅ Gt, where Gt is Gaussian-Gegenbauer mean zero time series with k =
1, ∣ 𝜈 ∣≤ 1, LM(𝛽) with 𝛽 ∈ [0, 1). The function ft is a periodic, deterministic,

bounded with a known period T. The autocovariance of Gt is 𝛾G.

A4 The deterministic function 𝜂t is periodic with the same period T as ft.

𝛽 = 2d, where d is a memory parameter from the Definition 4.

Properties of the model

Lemma 1 The process {Xt}i∈ℤ defined by the Eq. (6) is a long memory process in
the sense of Definition 3, with 𝛽 ∈ [0, 1).

Proof ∑
0<|h|<n

𝛾(s)(h) =
∑

0<|h|<n
(E𝜎)2f 2h 𝛾G(h) ∼ C(s)n𝛽 .

The last asymptotic equivalence follows from Theorem 2 [10]. □

Moreover:

Lemma 2 ([21], Theorem 2—[11]) The long memory stationary Gaussian-
Gegenbauer time series is not strong mixing.

Lemma 3 Assume A1 through A4. Then Xt defined by the Eq. (6) is 𝜆-weakly depen-
dent.

Proof It follows from Lemma 2 that the Gaussian-Gegenbauer time series Gt∈ℤ, is

not strong mixing.

We already know that Gegenbauer (in the sense of the Definition 4) time series

has a long memory. And from the [4], p. 8 follows that the stationary Gaussian long

memory time series has the 𝜆-weak dependence properties.

Finally the 𝜆-weak dependence of Xt is implied from the Proposition 1 in [27].
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Lemma 4 Assume A1 through A4. Then the weak dependence coefficients of the
model defined by the Eq. (6) satisfy the following relationship:

𝜆r = O(r𝛽−1), 𝛽 ∈ [0, 1).

Proof of above lemma follows from the Lemma 4 [9].

The Lemma 3 provide clear motivation to study weakly dependent structures.

GED volatility or other heavy tailed distribution with finite at least fourth
moment
Assume that the volatility process 𝜎t in the model (6) comes from a GED distribution,

as in Definition 7, i.e. 𝜎t ∼ G(𝜇, 1, 𝛼)).
The following fact provides the information about the heaviness of Xt tails in the

GED case:

Lemma 5 Assume A1 through A4. Then Xt defined by the Eq. (6) has a heavy tailed
marginal distribution for 𝛼 > 0.

We do not have information about the marginal distribution of Xt, but since all

the moments of both distribution GGt and 𝜎t exist the model Xt is (2 + 𝛿)-order, with

𝛿 > 0.
In particular Xt is second-order, so it is periodically correlated in the sense of

Gladyshev. The formalization of this statement is as follows:

Lemma 6 Xt defined by the Eq. (6) with 𝜎t coming from the GED has a periodic
mean, a periodic variance and a periodic autocovariance. Moreover, the autoco-
variance of Xt has a form:

𝛾(t, h) = (Cov(𝜎t, 𝜎t+h) + 𝜑2)|ft||ft+h|𝛾G(h).

The estimator and its properties
For the model defined by the Eq. (6) one of the resampling method—subsampling—

is considered to approximate an asymptotic distribution of the seasonal trend com-

ponents, the overall mean and the vector of the seasonal trend components.

We start with the definition.

Definition 8 We define the estimator of the seasonal trend components 𝜂(s) as fol-

lows:

𝜂̂N(s) =
1
N

N−1∑
p=0

Xs+pT , s = 1, 2,… ,T , (7)

where T is the known period.
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Definition 9 We define the estimator of the overall mean 𝜂̄ = 1
T

∑T
s=1 𝜂(s) as fol-

lows:

̂̄𝜂 = 1
T

T∑
s=1

𝜂̂N(s) (8)

where T is the known period.

4 Central Limit Theorems in the GED Case

In this subsection, the central limit theorems for the seasonal and overall mean for

the variables from the GED are introduced.

Let us define 𝛴s = Var(Xs). In the GED case 𝛴s = |fs|2𝛾G(h), s = 1, ...,T .
Let us define:

BN(s) = N1∕2(𝜂̂N(s) − 𝜂(s)).

For a sequence {mN}N∈ℕ such that mN → ∞, if N → ∞ let us define {kN}N∈ℕ
such that

kN = [ N
mN

] → ∞, if N → ∞

and for 𝜆-weakly dependent model {Xt}t∈ℤ defined by the Eq. (6) following condition

holds

𝜆mN
k

3
2
N → 0, N → ∞.

Let us consider a subsample (XmN
,… ,XkN mN

) of (Xs,… ,Xs+(N−1)T ).

Theorem 2 (Central Limit Theorem—for the seasonal means) Assume A1 through
A4 and the volatility process 𝜎t is as in the Definition 7. Then, for a sequence
{mN}N∈ℕ such that mN → ∞ and kN = [ N

mN
] → ∞, if N → ∞ and for each s =

1,… ,T following convergence holds:

BkN
(s) → N (0, 𝛴s), N → ∞.

The proof follows from Proposition 4.1, [4].

Since the model defined by the Eq. (6) satisfies property LM(𝛽) (Definition 2), for

𝛽 ∈ [0, 1) the time series Xt defined by the Eq. (6) does not satisfy any known Central

Limit Theorem. The reason for this fact is that it has the long memory property.

But the Central Limit Theorem will be satisfied if we choose a subsample of the

observation with the appropriate asymptotic step of sampling. In the model (6) the

subsampled time series {YsmN
= XsmN

− 𝜂smN
}, with a “subsampling” step mN such

that
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o(mN) = N3∕(2𝛽+1), (9)

satisfies the Central Limit Theorem with a convergence rate o(N(1−𝛽)∕(4𝛽+2)).
The Eq. (9) gives us the restriction for 𝛽 it means: 𝛽 ∈ (0, 1∕2).
Following [4] there are objections to this “subsampling” method: only a part of the

sample is used and the choice of the convergence rate of the “subsampling” implies

the knowledge of the convergence rate of 𝜆r. But the convergence rate of 𝜆r, in long

memory processes is connected with the the long memory parameter 𝛽. It could give

us a step of “subsampling”.

Let us define:

BkN ,N = k1∕2N (𝜂̂ − 𝜂).

Theorem 3 (Central Limit Theorem—for the vector of the means) Assume A1
through A4. Moreover, assume that

𝜆mN
k

3
2
N → 0, N → ∞.

Let ZN = (Ys+pT , ...,Ys+(p+1)T ), p = 0, ...,N − 1 be a sequence of zero mean ran-
dom variables with values in ℝT , where T is the period. Then, for a sequence
{mN}N∈ℕ such that mN → ∞ and kN = [ N

mN
] → ∞, if N → ∞

BkN ,N = 1√
kN

kN∑
i=1

ZimN
→ NT (0,Cov(X0)), N → ∞.

The proof of Theorem 3 implies from the Proposition 4.1, [4], but applied to the

vectors.

Theorem 4 (Central Limit Theorem—for the overall mean) Assume A1 through
A4. Moreover assume that

𝜆mN
k

3
2
N → 0, N → ∞.

Then, for a sequence {mN}N∈ℕ such that mN → ∞ and kN = [ N
mN

] → ∞, if
N → ∞

B = 1√
kNT

T∑
s=1

(
kN−1∑
p=0

(XsmN+pT − 𝜂(s))) → N (0, 𝛴), N → ∞.

The proof of the Theorem 4 implies from the Proposition 4.1, [4] for the vectors

and the Cramer–Wald theorem.
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5 Consistency of the Subsampling Method for the Mean

From research of Hall and Lahiri [22, 28] we know that, for long-range dependent

process, the bootstrap (MBB, CBB, PBB, SBB, GSBB) do not work, whereas sub-

sampling still works asymptotically.

All we need to know to use subsampling is if there exists a non-degenerated

asymptotic distribution of the statistic (we do not have to know the form of the

asymptotic distribution)—we need to have the Central Limit Theorem.

Recall that our sample size n is equal n = NT .

The idea of subsampling in our model for the seasonal components is as follows:

1. For each s = 1,… ,T the estimator 𝜂̂N(s) is recomputed from the

(Xs,… ,Xs+(N−1)T ) over “short” overlapping blocks of length bs (bs depends on

N-the length of the sample)

2. From Step 1 N − bs + 1 statistics are obtained for each s. In our context those will

be abs
(𝜂̂N,bs,i(s) − 𝜂̂N(s)) where 𝜂̂N,bs,i(s) is subsampling version of the estimator

𝜂̂N(s) and abs
is the normalize sequence.

3. then the empirical distributions:

LN,bs
(x, s) = 1

N − bs + 1

N−bs+1∑
i=1

1{abs (𝜂̂N,bs ,i(s)−𝜂̂N (s))≤x}

are used to approximate the asymptotic distribution L(s)(x) of the estimator

aN(𝜂̂N(s) − 𝜂(s)).

The idea of subsampling in our model for the vector of seasonal components is as

follows:

1. For each s = 1,… ,T the estimator 𝜂N is recomputed from the (X1,… ,XN),where

Xi = (X1+(i−1)T , ...,XiT ) over “short” overlapping blocks of length b (b depends on

N-the length of the sample)

2. From Step 1 N − b + 1 statistics are obtained. In our context those will be

ab(𝜂̂N,b − 𝜂̂N) where 𝜂̂N,b is subsampling version of the estimator 𝜂̂N and ab is

the normalizing sequence.

3. then the empirical distributions: LN,b(x) =
1

N−b+1
∑N−b+1

i=1 1{ab(𝜂̂N,b−𝜂̂N )≤x} are used

to approximate the asymptotic distribution L(x) of the estimator aN(𝜂̂N − 𝜂N).

The main problem with the subsampling procedure is its consistency. We need

to prove that the finite sample quantiles generated by the subsampling procedure

converge asymptotically (N → ∞) to the quantiles of the asymptotic distribution.

Now we consider the problem of consistency of the Subsampling.

To prove the consistency of the subsampling procedure we need to know if there

exists a non-degenerated asymptotic distribution of the statistic which means that we

need to have the central limit theorem.

In both the stable and the GED case we have obtained a weakly convergence to

the limit random variables.
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Denote the cumulative distribution functions of this limit random variables by

L(s) and L for the seasonal means and vector of the seasonal means, respectively.

To fulfill the Step 3 of the subsampling procedure the empirical distribution func-

tions LN(s)(x) = P(PN(s) ≤ x) are computed from the subsamples (Xs, ...,Xs+(N−1)T ),
for each s = 1,… ,T where Xt is defined by the Eq. (6).

The conclusion from the central limit theorems is that the empirical distribution

functions converge weakly to the cumulative distribution functions of the limit ran-

dom variables

LN(s)(x) → L(s)(x) if N → ∞, s = 1,… ,T .

Denote the density of the limit distribution by L′(s). It is obvious that in the GED

case ∥ L′(s) ∥∞< ∞.

Theorem 5 (Consistency theorem for seasonal means in GED cases) Assume that
CLT holds and assume A1 through A4, then consistency of the subsampling method
holds for the “subsampling” step (9):

1. If x is the point of the continuity of L(s), then LkN ,bs
(s)(x)

P
⟶ L(s)(x).

2. If L is continuous then supx |LkN ,bs
(s)(x) − L(s)(x)| P

⟶ 0.
3. If L(s) is continuous in c(1 − q) (where c(1 − q) is a q-quantile) then if kN → ∞

P[k−1∕2N (𝜂̂kN
(s) − 𝜂(s)) ≤ ckN ,b(1 − q)] → 1 − q

in GED case.

Where 𝛼 ∈ (0, 1) and

ckN ,b(1 − 𝛼) = inf {x ∶ LkN ,b(s)(x) ≥ 1 − 𝛼},

c(1 − 𝛼) = inf {x ∶ L(s)(x) ≥ 1 − 𝛼}.

The
P

⟶ denotes convergence in probability.

Theorem 6 (Consistency theorem for vector of the seasonal means in GED cases)

Assume that CLT holds and assume A1 through A4, then consistency of the subsam-
pling method holds for the subsequence (9):

1. If x is the point of the continuity of L, then LkN ,b(x)
p

⟶ L(x).
2. If L is continuous then supx |LkN ,b(x) − L(x)| p

⟶ 0.
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6 Conclusions

In the paper the model of the periodically correlated, long memory and heavy tailed

time series was described. Estimator of the vector sample means of this particular

model was introduced and Central Limit Theorem was proved. Furthermore, con-

sistency of chosen method of estimation, the subsampling, was investigated. The

question to be answered in further research is the extension of the model (6) to the

class almost periodically correlated processes.

Appendix

In the appendix the proofs of some results are presented.

Proof Lemma 5

From direct calculations we can obtain the strict formula for the kurtosis of the model

Xt, which is:

E(Xt − EXt)4

(E(Xt − EXt)2)2
=

E𝜎4
t EG4

t

(E𝜎2
t )2(EG2

t )2
= 3

𝛤 (5∕𝛼)𝛤 (1∕𝛼)
𝛤 2(3∕𝛼)

.

If we use the Stirling’s formula for 𝛤 function we will obtain the approximation

as follows:

kurtosis ≈ 3 ⋅ 1.4 ⋅ 4.31∕𝛼.

The kurtosis is more than 3 for all 𝛼 > 0. □

Proof Lemma 6

The mean of Xt is 𝜂t, so it is periodic. The variance is periodic:

𝛾(t + T , 0) = (ft+T )2(1 + 𝜑2)𝛾G(t + T , 0) =

= (ft+T )2(1 + 𝜑2)𝛾G(0) = (ft)2(1 + 𝜑2)𝛾G(t, 0) = 𝛾(t, 0).

The autocovariance also:

𝛾(t + T , h) = |ft+T ft+T+h|𝜑2𝛾G(t + T , h) =

= |ft+T ft+T+h|𝜑2𝛾G(h) = |ftft+h|𝜑2𝛾G(t, h) = 𝛾(t, h).

The form of the variance and autocovariance follows from the form of the variance

of variable with the GED distribution. □
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Proof Theorem 5

Let us consider a sequence of statistics BkN
(s), for fixed s = 1, 2, ...,T and kN as in

the Theorem 2.

LkN
(s)(x) = P(BkN

(s) ≤ x) is cumulative distribution function of BkN
(s).

From the assumptions

supx∈ℝ|LkN
(s)(x) − L(s)(x)| ⟶ 0, kN → ∞

For overlapping samples the number of subsamples:

Yb,q(s) = (Xs+qT ,Xs+(q+1)T ...,Xs+(q+b−1)T ), q = 0, 1, ..., kN − b and the number of

subsampling statistics:

BkN ,b,q(s) =
√

b(𝜂̂kN ,b,q(s) − 𝜂̂kN
(s)) is kN − b + 1.

Above statistics are used to approximate the distributions LkN
(s)(x) by empirical

distribution functions: LkN ,b,q(s)(x) =
1

kN−b+1
∑kN−b

q=0 𝕀{BkN ,b,q(s)≤x}.

Let us define subsampled distribution:

UkN ,b,q(s)(x) =
1

kN − b + 1

kN−b∑
q=0

𝜑(
√

b(𝜂̂kN ,b,q(s) − 𝜂kN
(s))𝜀n).

The sequence 𝜀n is decreasing to zero and 𝜑 is the non-increasing continuous

function such that 𝜑 = 1 or 0 according to x ≤ 0 or x ≥ 1 and which is affine between

0 and 1.

From [32] it is known that

∀x ∈ ℝ |LkN ,b,q(s)(x) − UkN ,b,q(s)(x)|
p

⟶ 0.

It follows that it is enough to investigate only the variance of UkN ,b,q(s), s = 1, ...,T
It is enough to investigate the variance of UkN ,bs,p(s), s = 1, ...,T (Theorem 3.2.1

([32])).

VarUkN ,bs,p(s)(x) = (kN − bs + 1)−2(
∑

|h|<kN−bs+1
(kN − bs + 1 − |h|)𝛾(h))

here 𝛾(h) = Cov(𝜑(BkN ,b,p(s)∕𝜀n), 𝜑(BkN ,b,p+h(s)∕𝜀n)).
From the assumption that we have 𝜆-weak dependence and under condition A1

through A4 and the Lemma 3.1 in ([2])

Cov(𝜑(BkN ,b,p(s)∕𝜀n), 𝜑(BkN ,b,p+h(s)∕𝜀n)) ≤
√

bs𝜆h−b+1∕𝜀n

It implies that Var(UkN ,bs,p(s)(x)) tends to zero, it proves point 1. of the

Theorem 5.
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The proof of point 2. and 3. if the 1. holds and under assumption of the model (6)

is the same as the proof of 3. in the Theorem 3.2.1 ([32]). □

Proof Theorem 6

For any vector of constants c ∈ ℝT
we have the equation for the subsampling version

of the characteristic functions of the distributions:

𝜙∗
BkN ,b,q

(c) = 𝜙∗
cT BkN ,b,q

(1) in GED case

Let Zs+pT = csXs+pT , where p = 0,… , kN − 1 and s = 1,… ,T . The series {Zt}
fulfills the assumptions of Theorem 6, which means that subsampling is consistent

for the mean (𝜂N)Z . By Theorem A in Athreya [3] we have:

in GED case

𝜙∗
cT BkN ,b,q

(1)
p
→ 𝜙kN (𝜂,cT𝛴c)(1) = 𝜙kN (𝜂,𝛴)(c).

Moreover

P∗(BkN ,b,q ≤ x)
p
→ FkN (𝜂,𝛴)(x),

for any x ∈ ℝT , where FkN (𝜂,𝛴)(x) is the cumulative distribution function of kN(𝜂, 𝛴).
The second point of the thesis of the Theorem 6 follows then from Pólya’s theorem

([33], p. 447). □
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Change-Point Problem
in the Fraction-Of-Time Approach

Jacek Leśkow and Bartosz Stawiarski

Abstract We examine the applicationally vital change-point problem using the

Fraction-of-Time (FOT) approach. Specifically, in our extensive simulations, two

techniques are proposed in order to estimate an unknown (possibly multiple) time

𝜏, at which the dynamics of a given process undergoes an abrupt, structural change.

Both the 3-D empirical FOT distribution profile calculated upon a moving time win-

dow, and differenced quantile process detect the change-points satisfactorily well in

case of simulated as well as real time series. The paper lays the foundations for tack-

ling the problem numerically in the nonstochastic framework, whereas some future

research concerning theory helpful in optimizing the proposed techniques calls for

separate development.

Keywords Fraction-Of-Time ⋅ Change-point detection ⋅ Structural breaks ⋅
Empirical distribution

1 Introduction

Quite frequently real-life data stemming from mechanical, environmental, financial,

medical sciences, exhibit some peculiar nonstationary types of behavior. One of such

vital nonstationarity patterns is a sudden change in the recorded quantity dynamics

at an unknown moment 𝜏 after which the signal (treated as a stochastic process) is
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driven by another regime. The nature of these dynamics shifts can vary, e.g. change

in mean (location), regression slope, structural breaks in variance, sudden change

of coefficients in the underlying model—to name just a few. Change-point analysis

in the stochastic framework has been an object of research for several decades in a

variety of contexts. Throughout this time-span vast scope of models featuring such

change-point(s) has been proposed, allowing for either sudden change or so-called

smooth transition. Beside proposing appropriate models, multitude of detection tech-

niques and statistical tests has been developed.

Stochastic approach is however invariably associated with underlying distribu-

tions of processes in question, which can be highly complicated. Adding dependency

within the data and accompanying measures of dependence (mixing, weak depen-

dence) the task becomes extremely challenging. Moreover, in practice, we have just

one past record of a given phenomenon. These adversities motivated establishing

alternative insight into the data at hand, namely from a nonstochastic perspective. In

early 2000s, Leśkow and Napolitano proposed a so-called Fraction-Of-Time (FOT)

approach [2], allowing to infer from single signal record without resorting to stochas-

tic calculus. In following years further results have been derived, including versions

of limit theorems.

The paper is organized as follows. In Sect. 2 we first recall basic concept of FOT

and elementary definitions used in the sequel, then propose two techniques employed

for change-point detection in this set-up. Section 3 contains description of data sets

(three simulated signals and one real financial time series) and immediately after-

wards extensive simulation study concerning the change-point detection is provided.

Final conclusions are drawn in Sect. 4, which is followed by References.

2 Change-Point Problem in the FOT Approach

2.1 The Nonstochastic Idea of FOT

First, recall basic concepts of the Fraction-Of-Time approach. Given a real function

x(u), defined on an interval [t, t + T] with a measure 𝜇 (here Lebesgue), we study the

fraction of time during which the function does not exceed a certain barrier 𝜉 over

the given interval, namely

FT ,x(t, 𝜉) =
𝜇(u ∈ [t, t + T] ∶ x(u) ≤ 𝜉)

𝜇(u ∈ [t, t + T])
= 1

T ∫

t+T

t
1{x(u)≤𝜉}du (1)

The above time-averaging is locally associated with the time location t therefore

further theoretical research of (1) focused on asymptotics. In the early papers, the

behavior of FT with T growing to ∞ had been of crucial interest:
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lim
T→∞

FT ,x(t, 𝜉) = lim
T→∞

1
T ∫

t+T

t
1{x(u)≤𝜉}du (2)

It was shown by Leśkow and Napolitano [2] that the limit in (2) exists for a wide

class of functions, called relatively measurable (RM), and in that case it is inde-

pendent of t. For further details and theory concerning e.g. RM sets, FOT versions

of central limit theorems and constructing asymptotic confidence intervals for the

functions in question see [2], [3].

In empirical practice, the quantity in (1) is estimated from a discrete sample of the

function x, represented as an input signal {x(ui) ∶ i = 1,… ,N} for t ≤ ui ≤ t + T .

Then, quite intuitively, like in the stochastic approach, we can define an empirical

FOT distribution as

F̂N,x(𝜉) =
card{i ∈ {1, 2,… ,N} ∶ x(ui) ≤ 𝜉}

N
(3)

Let us state here that for a RM function x(u) the empirical distribution consistently

estimates the limiting F(𝜉). Henceforward, we will simplify the notation, defining

just ui = i for 1 ≤ i ≤ N so that the signal x is recorded N times in equidistant, pre-

specified time units (daily, hourly, etc.).

2.2 Change-Point Detection Methodology

Let us now focus on the change-point detection problem within the signal x. There-

fore we are rather interested in local behavior of FN given by (3) under fixed N. We

need to have more counterparts of FN to carry out detection procedures. These quasi-

replications can be obtained by estimating sample FOT distributions over a moving

window {t, t + 1,… , t + T − 1}, for the window size T considerably smaller than N,

where 1 ≤ t ≤ N − T + 1:

F̂T ,N,x(t, 𝜉) =
card{i ∈ {t, t + 1,… , t + T − 1} ∶ x(i) ≤ 𝜉}

T
(4)

which yields N − T + 1 empirical distributions based on the subsamples. Notice that

now T denotes the length of the subsample extracted from the whole N-element

signal at hand.

For further convenience, denote the empirical quantity in (4) by FT ,N . One can

expect that it will exhibit systemic downward or upside movement whenever the

moving window encompasses a change-point 𝜏, provided the signal values change

substantially from then on. In the estimation process the choice of an individual 𝜉 is

vital for the evolution of FT ,N with t. For 𝜉 chosen too large, the distribution would be

near 1, whereas for 𝜉 too small, the distribution would reach near-zero values. In both

cases results do not have any explanatory value. Therefore to handle this deficiency,

we admit 𝜉 to change within a prespecified interval [𝜉L, 𝜉U] which enables us to
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obtain a three-dimensional profile of F̂T ,N,x(t, 𝜉). In the simulations below, lower and

upper quartile, Q1,Q3, of the whole signal x were proposed. In many situations, the

change-point moment 𝜏 can be accurately estimated in two ways: either in advance

or post-hoc with respect to t. In case of lasting, structural upward change within the

signal the profile starts to decline with increasing t on the substantial portion of the

admissible scope [𝜉L, 𝜉U] whenever the moving window {t, t + 1,… , t + T − 1} in

(4) starts to contain 𝜏. This occurs around T moments in advance. The descent con-

tinues until 𝜏 drops out of the moving window. The moment the gradient alongside

the time axis flattens out can be defined as an estimator of 𝜏. In case of a down-

ward regime-shift symmetric behavior can be observed: ascending profile in advance

(T time units prior to 𝜏) followed by its plateau-type stabilization post-hoc. The tech-

nique is suitable for detecting multiple change-points, provided the width T exceeds

the distance between successive change-point moments. Less pronounced changes

translate into rather fuzzy evolutions of the 3-D profile and have to be examined more

carefully otherwise.

Alternative and more rigid change-point detection procedure can be carried out

using an empirical quantile processes. For 1 ≤ t ≤ N − T + 1 define a quantile

process of order q ∈ (0, 1)
𝜙q(t) = Y (t)

[qT]∶T (5)

where Y (t) = {x(t),… , x(t + T − 1)} is the moving T-subsample of the original sig-

nal x, Y (t)
[qT]∶T denotes the q-th order sample quantile of Y (t)

and [w] stands for the

integer part of w. The quantile process itself somehow mimics the behavior of the

signal, but only to an extent allowed by robustness of quantile estimators. Insensi-

tivity to outliers is helpful here as it prevents the procedure from false labeling these

outliers as change-points. Using (5) we construct a differenced quantile process:

∇𝜙q(t) = 𝜙q(t) − 𝜙q(t − 1). This process will enable more precise inference about

𝜏, namely sudden and sharp spikes of ∇𝜙q(t) can serve as a preliminary estimator of

the change-point moment. Due to the quantile process properties, this preliminary

estimator has to be corrected adequately to the quantile order q, providing the appro-

priate estimator of 𝜏. Indeed, 𝜙q(t) reacts to the change-point at an earlier moment

𝜏∗, roughly [(1 − q)T] time units prior to 𝜏. Therefore, both 𝜙q(t) and ∇𝜙q(t) behave

like leading indicators for the change-point moment, which will be shown later in

simulations. Below, with no detriment to the general case, we will focus on medi-

ans, setting q = 0.5.

Several words of comment need to be added about the choice of T . It should not

be too small because in that case Y (t)
[qT]∶T would be unduly volatile and chaotic (due

to small subsample size), which could lead to numerous erroneous signals. It should

not be too large, either, to avoid the oversmoothing risk that might cause blindness

to real change-points. Therefore, some kind of data-driven thumb rule should be

developed in further research, eg. T ∼ Nr
for some r ∈ (0, 1). Data-driven means

it would also be desirable to incorporate the nonstationarity type of the data (e.g.:

multiple level-shifts, polynomial spline trends, cyclostationarity or structural breaks

in volatility) into the selection procedure for T .
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3 Simulation Study

3.1 Data Sets Description

Now we proceed to the simulational part, in which we will employ the introduced

change-point detection techniques based on sample FOT’s. First, let us describe

the signals (data sets) subject to our change-point analysis. We will consider three

different, simulated data-generating processes: one exhibiting single change-point,

another with multiple change-points and the third one with no change-point but with

transient regimes modeled as short-lasting heavy-tailed clusters. In these three cases

throughout the simulations we set N = 1000. The last signal will be a real finan-

cial time series, describing daily quotes of a tradable asset measuring volatility of

S&P500 stock index, consisting of 1006 points.

Model 1
A shift-in-mean model noised with a lower-order ARMA sequence

Xt =
{

25 + 𝜀t, 1 ≤ t < 𝜏

40 + 𝜀t, 𝜏 ≤ t ≤ N (6)

where 𝜀t follows a zero-mean ARMA(1,1) model 𝜀t = 𝛼𝜀t−1 + 𝛽𝜂t−1 + 𝜂t with 𝛼 =
0.2, 𝛽 = 0.3 and iid gaussian noise 𝜂t ∼ N(0, 52). The single change-point fixed at

𝜏 = 500.

Model 2
Second model we consider is a multiple change-point model at three moments 𝜏1 <

𝜏2 < 𝜏3 with static ARMA(1, 1) noise 𝜀t as in Model 1.

Xt =
⎧
⎪⎨⎪⎩

50 + 𝜀t, 1 ≤ t < 𝜏1
35 + 𝜀t, 𝜏1 ≤ t < 𝜏2
25 + 𝜀t, 𝜏2 ≤ t < 𝜏3
45 + 𝜀t, 𝜏3 ≤ t ≤ N

(7)

Here the location change-point moments are 𝜏1 = 200, 𝜏2 = 500, 𝜏3 = 750.

Model 3
Another time series we will study has no lasting change-point but instead exhibits

two transient regimes modelled by heavy-tailed clusters. The first one follows t3
distribution with quadrupled variance, and encompasses 10 time units, starting at

250. The second cluster follows Laplace distribution (symmetrized exponential with

𝜆 = 1) with time-span 20, starting at 600. Specifically,
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Xt =

⎧
⎪⎪⎨⎪⎪⎩

iid N(0, 42), 1 ≤ t < 250
iid 2 ∗ t3, 250 ≤ t < 259
iid N(0, 42), 260 ≤ t < 599
iid Laplace, 600 ≤ t < 619
iid N(0, 42), 620 ≤ t ≤ N

(8)

where 𝜀t is again ARMA(1, 1) noise as in Model 1.

Real Data Set
The real signal we deal with contains daily VIX index quotes. This is a synthetic

asset measuring the annualized volatility of the S&P500 stock index, calculated from

implied volatilities of several call and put European options on S&P500, expiring

within about one month. For further details see [1]. The considered series consists

ofN = 1006 entries, starting on 1st Sept 2006 through 31st Aug 2010, encompassing

the 2008 market crash.

3.2 Change-Point Detection—Simulations Results

In all four cases we chose T = 100 which equals roughly N2∕3
(optimized, data-

driven choice of T as a function of N is not addressed here in detail, cf. brief dis-

cussion in Sect. 2.2). We discuss the results separately for successive data sets and

present accompanying figures.

Model 1
Figure 1 shows a simulated trajectory of the model in question. Structural change-

in-mean moment is clearly visible half way through. The estimated quartile bounds

for 𝜉 range are 𝜉L = Q1 = 20.21, 𝜉U = Q3 = 40.38.

The 3-dimensional empirical FOT profile is presented in Fig. 2 togehter with the

true 𝜏. Substantial trend emerges T moments prior to 𝜏, i.e. around 400, which is

followed by a plateau quite uniformly over the scope of 𝜉, starting from ca. 500. This

provides an accurate change-point detection as by that moment the effect of regime-

change has been fully incorporated into FN,T . We also present the bird’s eye view

of this profile to get a better insight into gradients behavior alongside time axis, see

Fig. 3. Rapid slopes suggesting the change-point occurence can be distinctly spotted.

Turning now to the FOT-quantile-based detection technique, Fig. 4 shows the

empirical median process and Fig. 5 presents the differenced median process. We

denote the moment when the huge peak occurs as 𝜏∗ and hence the change-point

estimator is 𝜏 = 𝜏∗ + [T∕2] + 1, cf. discussion at the end of Sect. 2. Adding a single

time-unit accounts for differencing, so in this case finally 𝜏 = 504. We missed the

true change-point just by 4 time units which corresponds to 2% error.
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Fig. 1 Model 1 trajectory with one change-point

Fig. 2 3-D FOT empirical distribution profile for Model 1

Model 2
The trajectory of the model with multiple change-points is presented in Fig. 6, where

distinct level-shifts are evident. Here sample quartiles are 𝜉L = Q1 = 29.81, 𝜉U =
Q3 = 46.73.

The magnitude of respective change-points was deliberately made variable so as

to show the sensitivity of our detection techniques with respect to the intensity of

level jumps. With the passage of time t plateaus and valleys alternately appear on
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Fig. 3 3-dimensional FOT empirical profile for Model 1—bird’s eye view

Fig. 4 FOT median process—Model 1
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Fig. 5 Differenced FOT median process—Model 1

Fig. 6 Model 2 trajectory—multiple change-points
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Fig. 7 3-D FOT empirical distribution profile for Model 2

Fig. 8 3-D FOT empirical profile for Model 2—bird’s eye view

3-D FOT profiles, indicating at possible change-points as can be seen in Figs. 7 and

8. Recall that every 𝜏j can be signaled either in advance or post-hoc, hence six distinct

gradient changes are present.

As we had stated previously, the median process to some extent mimics the behav-

ior of the signal itself, so rapid upward and downward trends are visible in Fig. 9.
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Fig. 9 FOT median process—Model 2

Fig. 10 Differenced FOT median process—Model 2

Differenced process plotted on Fig. 10 shows less or more pronounced peaks, the

magnitude of which corresponds with respective level change intensities. The true

change-point moments 𝜏j together with their leading versions 𝜏∗j are also marked.
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Fig. 11 Model 3 trajectory—transient clusters instead of change-points

Two large spikes show that the change-point moments 𝜏1 and 𝜏3 have been dis-

tinctly recorded, whereas 𝜏2 passed nearly unnoticed. Their respective estimators

are 𝜏1 = 𝜏∗1 + 50 + 1 = 204, 𝜏2 = 𝜏∗2 + 50 + 1 = 529, 𝜏3 = 𝜏∗3 + 50 + 1 = 753. The

errors are therefore: 4, 29 and 3, respectively.

Model 3
The signal following this model is plotted in Fig. 11 with the two short-lasting clus-

ters denoted and clearly visible. The sample quartile bounds here are 𝜉L = Q1 =
−0.62, 𝜉U = Q3 = 0.715. Similar patterns can be found in logreturns of stock quotes,

where calm market is sometimes disturbed by (usually transient) nervous episodes

identified as clusters (Fig. 11).

As the 3-D profile suggests, the two short-lasting regimes correctly have not been

classified as structural change-points (Fig. 12). Neither this device, nor the differ-

enced quantile process, looking just noisy—see Fig. 13—detects any change-points.

This proves the robustness of our detection techniques against outliers.

Real Data Set
The VIX historical daily quotes we consider span over 4 years’ horizon and are plot-

ted on Fig. 14. Throughout that period we have 𝜉L = Q1 = 17.58, 𝜉U = Q3 = 28.46
however one huge volatility spike appears roughly in mid-time, which coincides with

the 2008 financial crash. In the following weeks the spike tapers off with VIX trend-

ing downwards. One more spike of smaller magnitude occurs towards the end of the

time scope, which accounts for the spring 2010 mini-crash.

The 3-D FOT distribution profile (see Fig. 15) seems to indicate that regime

changes occur at least on these three aforementioned occasions. This is confirmed

by behavior of the differenced quantile process in Fig. 16. First, huge spike occurs
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Fig. 12 3-D FOT empirical profile for Model 3—bird’s eye view

Fig. 13 Differenced FOT median process—Model 3

at 𝜏∗1 = 474 which gives 𝜏1 = 𝜏∗1 + 50 + 1 = 525. Next, after the crash volatility

reverses downwards and this regime-change is detected at 𝜏∗2 = 530 so that 𝜏2 = 581.

Minor volatility spike is detected also in spring 2010 and in that case we have

𝜏∗3 = 873 and accordingly 𝜏3 = 924. Looking at the VIX trajectory we can argue

that these major shifts have been captured with a satisfactory accuracy.
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Fig. 14 Historical VIX daily quotes between Sept 1, 2006 and Aug 31, 2010

Fig. 15 3-D FOT empirical profile for VIX quotes—bird’s eye view

4 Final Conclusions

In this paper we presented two change-point detection techniques within the non-

stochastic Fraction-Of-Time framework. One technique is based on empirical FOT

profiles considered as 3-dimensional surfaces evolving with t and 𝜉 and the other uses
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Fig. 16 Differenced FOT median process for VIX quotes

differenced median processes based on the empirical FOT distribution. For the three

simulated models and one real data set the results look convincing. The true change

point moments have been detected rather accurately (Model 1 and 2), whereas clus-

ters and outliers have been correctly ignored in the sense that no change-point has

been reported. The techniques have proved also useful in analyzing real data, here

the daily VIX quotes. Within the considered 4-year time span three major change-

points have been detected. Overall, further research focuses on optimizing the choice

of the window width T depending on the sample size N as well as on applications

for mechanical—possibly cyclostationary—signals.
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Seismic Signal Enhancement via AR
Filtering and Spatial Time-Frequency
Denoising

Marta Polak, Jakub Obuchowski, Agnieszka Wyłomańska
and Radosław Zimroz

Abstract In this paper two-step algorithm based on autoregressive filtering and
spatial time-frequency denoising is proposed. Firstly, we remove the discrete-
spectrum components that contaminate the seismic signals using autoregressive
(AR) filter. In contrast to widely used notch filter, the proposed scheme does not
need to specify frequency of each component found as contamination. AR filter
requires only order of model to enhance the signal. In the second step of the
algorithm we remove the background noise of the AR model residuals using a filter
based on the Short-Time Fourier Transform (STFT). Specifically, STFT amplitudes
lower than specified cutoff are removed. We motivate our analysis by seismic
signals analysis acquired using a seismic monitoring network in a copper-ore mine.

Keywords Seismic signals denoising ⋅ Autoregressive filter ⋅ Time-varying
filter ⋅ Short-Time fourier transform

1 Introduction

Monitoring of seismic events induced by mining activity is a crucial issue in terms
of safety in an underground mine. Moreover, seismic activity is one of the key
factors taken into account during excavation planning. The most basic parameters
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monitored in underground mines include location and energy of seismic events.
More advanced analysis include determination of source size, stress drop, seismic
moment tensor, focal mechanism (normal fault, strike-slip, thrust), etc. [1, 2]. One
can also discriminate seismic events using several other features based on P and S
waveforms and their spectra, instantaneous frequency, group delay, correlation
coefficient, etc. that might be found in the literature [3–7]. Such parameters might
be further classified using neutral networks, Fisher classifiers, support vector
machines or statistical methods [3, 8–10]. The classification error might be
increased by choice of inappropriate feature, weak classifier or noise that con-
taminates seismic signals. In this paper we investigate the issue of seismic signal
denoising. The signals are acquired by a seismic network installed in an under-
ground mine. The noise that contaminates these signals is of two natures. One
source of the noise is a wideband additive noise which is common also in fields
other than seismic. Another kind of the noise is related to transmission from seismic
sensors to the database and its spectrum is rather discrete. Such noise might
influence seismic signal features based on the spectrum, thus denoising is a crucial
preprocessing step for clustering. Moreover, noise might cause difficulties in
P-wave picking, which affects accuracy of localization [11–13].

Classic method for removing discrete-spectrum component from the signal is a
notch filter, which belongs to a group of stop-band filters [14]. Its characteristic
property is narrow stopband, thus we can remove specific component from the
signal. In order to use the notch filter the frequency band that contains interfering
signal component should be specified. That is a significant disadvantage, especially
in case of real seismic data where two or more discrete-spectrum components are
present. Firstly one should specify each of the frequency band to filter it out, based
on time-frequency representation of the signal (e.g. spectrogram or ARgram) and
next apply set of notch filters.

The motivation of research on discrete-spectrum component removal is occur-
rence of this kind of noise in real seismic signals from a copper-ore mine. Noise
which is visible through the entire length of seismogram might be also noticed on
the spectrogram as high-amplitude ridges remaining throughout duration of the
seismic signal. Moreover, the components responsible for noise have similar
amplitude as the seismic event. Hence, there is need to apply an algorithm which
reduces noise without elimination important information of the signal. In simple
methods such as a high-pass filter the main difficulty is to choose the appropriate
cutoff frequency to remove noise and leave seismic event without significant
modification.

In this article we propose a method for removing one or more discrete-spectrum
components without a priori specification of each frequency responsible for noise in
the registered signal. Such a method is autoregressive model based filtering. It
requires only order of model to delete noise in examined signals automatically, even
for seismic recording contaminated by series of narrowband components.
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The model’s parameters estimation is based on initial part of signal which contains
noise only, thus the process does not need additional time-frequency analysis.

In the next step the signal is denoised using a time-varying filter designed upon a
spectrogram. Such a filter minimizes level of the background noise. As a result, it is
easier to notice arrival of the signal related to the seismic event. Moreover proposed
method of denoising can be useful in seismic signal segmentation [15] or clustering
process [16] as pre-processing of examined data.

The paper is organized as follows. The algorithm of signal enhancement via
autoregressive filter and spatial time-frequency denoising is described in Sect. 2.
Evaluation of proposed method on simulated signals is presented in Sect. 3. Sec-
tion 4 contains results of algorithm applied to the real data. Summary of the
research is included in Sect. 5.

2 Methodology

In this section the algorithm of enhancement via AR filtering and spatial
time-frequency denoising is introduced. It is suitable for the denoising problem
when the entire seismic recording is contaminated by discrete-spectrum compo-
nents (with amplitudes constant in time) and signal contains a few hundred samples
before the first break phase (seismic signal arrival). Moreover the energy, carrier
frequency and the number of narrowband components contaminating the entire
signal is unknown and there is an additive noise with spectral amplitudes lower than
these of pure seismic signal related to the seismic event.

First part of this Sect. 2.1 concerns the basic definitions related to time series
analysis and ARMA modeling. Then motivation of using autoregressive filter will
be presented in Sect. 2.2. The proposed algorithm consists of two steps. In the first
one the autoregressive model is fitted to the reference noise. Then, the inverse filter
is applied to the signal in order to remove discrete-spectrum component of noise.
After preliminary noise reduction we use spatial time-frequency denoising in
Sect. 2.3. Section 2.4 contains discussion on algorithm’s parameters calibration.

2.1 Autoregressive Filter

Definition 1 [17] ARMA(p, q) (autoregressive—moving-average) model of orders
p and q is defined as

Xt = εt + ∑
p

i=1
aiXt− i + ∑

q

j=1
bjεt− j, ð1Þ
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where a1, . . . , ap are parameters of autoregressive model of order p, b1, . . . , bq are
parameters of moving-average model of order q and {εt} is white noise [17].
ARMA model can be interpreted as infinite impulse response filter (IIR). The
transfer function for IIR filter is defined as:

H zð Þ= YðzÞ
XðzÞ =

∑q
j=0 bjz

− j

1+ ∑p
i=1 aiz− i , ð2Þ

where X(z)—z-transform of input signal and Y(z)—z-transform of output signal, q—
order of moving average model for input, p—order of autoregressive model for
output, {ai}—coefficients for autoregressive model, {bi}—coefficients for moving
average model and z−i is time-shifting operator.

In this paper we concentrate only on the autoregressive model, i.e. model defined
as

Xt = ∑
p

i=1
aiXt− i + εt. ð3Þ

In terms of the transfer function for AR(p), the numerator in Eq. (2) reduces to 1.

2.2 Algorithm of Enhancement via AR Filtering

After analysis of the spectrogram of the real signal we noticed that there are some
characteristic high–value ridges during all the record at specific frequency bins.
Moreover, at the beginning of the seismogram there is no seismic event. In view of
that first n-samples of signal might be treated as a reference noise, however the
noise is not considered as the sequence of independent identically distributed
random variables, in contrast to [18]. In order to select the appropriate model, the
autocorrelation (ACF) and partial autocorrelation function (PACF) [17, 19]
were examined (Fig. 1). Moreover the assumption of the stationarity is fulfilled,
since the amplitude spectrum of the reference noise can be considered as constant.
Therefore we can fit coefficients of the autoregressive model of order p to the
reference noise. For estimation of AR model coefficients the standard method based
on Yule-Walker equations [17] was applied. The coefficients received due to model
fitting will be used to create the autoregressive filter which removes discrete-
spectrum components present in the entire signal. Filter was applied not only to first
n-samples (i.e. reference noise), but also to the rest of the record. Thus, the expected
residual signal should not contain discrete–spectrum components which contami-
nate the signal.
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2.3 Algorithm of Spatial Time-Frequency Denoising

Second step of the proposed algorithm is spatial time-frequency denoising.
After AR filtering we calculate the Short-Time Fourier Transform from the filtered
signal.

Definition 2 [20] Discrete Short-Time Fourier Transform (STFT) for observations
X1, . . .XN is defined as:

STFT t, fð Þ= ∑
N − 1

k=0
Xkw t− kð Þe− 2jπfk

N , t∈ T , f ∈F, ð4Þ

where t—time point, f—frequency, Xt—input signal and w(t − k)—shifted window.

Definition 3 [20] Squared magnitude of the STFT is defined as the spectrogram:

spect t, f½ �= STFT t, f½ �j j2, ð5Þ

where t—time and f—frequency.
Detailed algorithm of spatial time-frequency denoising is presented below. The

cutoff level for each frequency ðcfiÞ is determined as q-quantile of absolute value of
STFT for reference noise only (tref). The formula for cutoff level is described as:

Fig. 1 PACF and ACF for a simulated and b real signal
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cfi =quantile STFT t, fi½ �j j, qð Þ, fi ∈F, t∈ 1, . . . , tref
� �

, ð6Þ

The algorithm puts 0 to values less than the cutoff and creates denoised STFT
described by equation:

STFTd t, fi½ �= STFT t, fi½ � if STFT t, fi½ �j j> cfi
0 if STFT t, fi½ �j j≤ cfi ,

�
ð7Þ

where fi ∈F—frequency,t∈ 1, . . . , tNf g—time and N—length of the signal.
Last step of the algorithm uses Inverse Short-Time Fourier Transform for

recovering signal from denoised STFT:

STFT− 1 STFTd t, fi½ �ð Þ fi ∈F, t∈ 1, . . . , tref
� �

, ð8Þ

where tref—length of the reference noise.
In implementation of STFT and STFT−1 one can use overlap–add method

(OLA) [21]. All steps of the proposed algorithm are presented in block diagram in
Fig. 2.

Fig. 2 Block diagram of the algorithm of enhancement via AR filtering (green blocks) and spatial
time-frequency denoising (blue blocks)
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2.4 AR Order and Reference Noise Length Selection Based
on AIC

In this section a detailed methodology of choosing length of reference noise and
order of autoregressive model will be described. As it was mentioned, first step of
removing discrete-spectrum component is to fit an autoregressive model to refer-
ence noise. We can examine model’s goodness of fit using Akaike Information
Criterion (AIC), which for AR(p) is defined as:

AIC pð Þ= − 2L θjxð Þ+2p, ð9Þ

where p—model order, L θjxð Þ—log-likelihood function. In our analysis we assume
the εt in Eq. (1) is Gaussian then the log-likelihood function is based on the density
of multidimensional Gaussian distribution. The best model in set of different AR
models is that which minimizes AIC with respect to the order.

An autoregressive model is fitted to reference noise of different length. For each
of them we examine models of order in range from 2 up to 60 and their goodness of
fit. Figure 3a shows relation between AIC values and order of autoregressive model
for simulated seismic signal from Fig. 6. Colors correspond to different lengths of
reference noise, which are also marked at the seismogram of the signal in Fig. 3b.
The longer the reference noise is, the more information contains. The character of
the signal is reflected in order of the best AR model, which was indicated by AIC.

It should be mentioned that during the selection of length of reference noise we
should be careful not to take too many samples which will contain information of
the event additionally. Thus choice of the reference noise should be preceded by
detailed analysis of signal’s seismogram.

Fig. 3 a Relationship between order of autoregressive model and Akaike Information Criterion
for different length of reference noise for simulated seismic signal (corresponding to colors of
lines), b simulated signal with marked different length of reference noise
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3 Simulation Results

In this section we will apply our denoising algorithm to simulated signal. In this
situation we can control signal and character of additive noise. In Fig. 4 we can see
each component of the noisy signal (Fig. 4c): pure signal (Fig. 4a) and noise
(Fig. 4b). We simulate noise similar to one, which can be found in real seismic
signals what can be noticed at the signal’s spectrogram (Fig. 5).

First step of the proposed algorithm is enhancement via AR filtering. As it was
described in Sect. 2.4 we select order of autoregressive model and length of the
reference noise using AIC. Different lengths of the reference noise are presented on
the seismogram of the simulated signal (Fig. 5). AIC is minimized for value 12 of

Fig. 4 Simulations of the seismic signal (a), noise (b) and noisy signal (c)

Fig. 5 Spectrogram of the simulated noisy signal
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AR order for lengths of reference noise equal 150, 200, 250 and 300 (Fig. 3a). For
the further analysis we take the reference noise of length 150. That choice will be
concluded at the end of this section.

After choice of length of reference noise and order of AR filter, we apply the first
step of the algorithm, namely enhancement. To notice changes in properties of the
record we should examined time-frequency structure of signal. As an alternative to
classical spectrogram we use more precise time-frequency map called ARgram
[22, 23].

Definition 4 [23] The gliding power spectrum density of AR model (ARgram) of
signal x(t) is defined as

SARðt, f Þ= Pw

1+ ∑p
k=1 ak, te− 2iπfk

�� ��2 , ð10Þ

where Pw—power of the white noise, p—model order and ak,t are coefficients of
model for part of signal in consecutive, overlapping window began at time t.

As we can see in Fig. 6a there is clearly visible ridge caused by discrete-
spectrum component. During the enhancement via AR filtering the ridge is removed
what one can notice in Fig. 7b. Reduction of noise is visible also at the seismogram
of the signal (compare Figs. 6a and 7a), but still noise is not removed from the
record.

Second step of the proposed algorithm should clean off rest of the noise. The
order of quantile for each frequency component was set to 0.95. Results of spatial

Fig. 6 Seismogram of simulated noisy signal (a), its spectrogram (b) and ARgram (c)
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time-frequency denoising can be found in Fig. 8. We can notice noise cancellation
at the beginning and the end of the signal. Moreover amplitude of the noisy area in
the middle of the record is decreased, but seismic event does not change the
structure.

For comparison, in Fig. 9 we present results of spatial time-frequency denoising
without prior AR filtering. It is worth noting that there are residues of
discrete-spectrum component (marked in Fig. 9b). This proves that for seismic
signal with discrete-spectrum component only cut off values below specific level at
the |STFT| are not sufficient. In view of that we should apply two-step algorithm of
denoising for this kind of records.

In case where we control component of pure signal and noise we can check
effectiveness of proposed algorithm of enhancement via AR filtering and spatial
time-frequency denoising by analysis of Signal-to-Noise Ratio.

Definition 5 [24, 25] Signal-to-Noise Ratio (SNR) is defined as:

SNR=
Psignal

Pnoise
=

Asignal

Anoise

� �2

, ð11Þ

where Psignal—power of a signal, Pnoise—power of noise, Asignal—root mean square
of the signal amplitude, Anoise—root mean square of the noise amplitude.

Fig. 7 Seismogram of simulated signal after enhancement via AR filtering (a), its spectrogram
(b) and ARgram (c)
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Fig. 8 Seismogram of simulated signal after enhancement via AR filtering and spatial
time-frequency denoising (a), its spectrogram (b) and ARgram (c)

(a)

(b)

(c)

Fig. 9 Seismogram of simulated signal after just spatial time-frequency denoising (a), its
spectrogram (b) and ARgram (c)
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Firstly we present results of SNR analysis just after enhancement via AR
filtering for simulated seismic signal (Fig. 10). For the initial components of noisy
signal we can calculate reference SNR which is marked in Figs. 10 and 11 by gray
dashed line. Other lines in Fig. 10 correspond to different lengths of reference noise
taken for algorithm of enhancement via AR filtering. Analysis were carried out
for different orders of autoregressive model. We can see that removing of

Fig. 10 Signal-to-Noise Ratio for simulated signal after enhancement via AR filtering for
different AR order and different length of reference noise (corresponding to colors of lines)

Fig. 11 Signal-to-Noise Ratio for simulated signal after enhancement via AR filtering and spatial
time-frequency denoising for different AR order and different length of reference noise
(corresponding to colors of lines)
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discrete-spectrum component from the signal does not suppress all noise in
examined record (what can be observed also at seismogram of the signal in Fig. 7),
because values of SNR are not close to the reference SNR.

After applying second step of the algorithm which was spatial time-frequency
denoising we also analyzed behavior of SNR (Fig. 11). Comparing plots in Figs. 10
and 11 we noticed decrease of SNR which means that noise which we removed
from signal is larger when we applied both steps of the algorithm. However we
should notice that in case when SNR for specific parameters is smaller than ref-
erence SNR we could remove information of seismic event simultaneously with
noise cancellation. The best approximation of reference SNR is observed in case
when we use 150-samples reference noise and autoregressive filter with order in the
range 10-20. For longer reference noise SNR is smaller than reference SNR, what
indicates that signal is denoised “too much”. It is explanation why 150-samples
reference noise was taken for the analysis.

4 Real Data Results

This section contains results of two-step denoising algorithm applying for real
seismic signals, which was registered in copper-ore mine. In Fig. 13 it is presented
the seismogram and ARgram of the exemplary record, which we examined in this
paper. One can found two ridges at the ARgram, which are responsible for noise in
analyzed seismic signal.

In real data the level of noise is unknown thus we cannot use SNR as indicator of
appropriate length of reference noise. In Fig. 12a we can see that for the reference

Fig. 12 a relationship between order of autoregressive model and Akaike Information Criterion
for different length of reference noise for real seismic signal presented in Fig. 13, b real signal with
marked different length of reference noise
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noise of length 100 the AIC indicates AR(4). From analysis of amplitude spectrum
structure of the signal we should reject such a low order of model, because it does
not correspond to local maxima of the amplitude spectrum. In view of that we chose
the longest reference noise which minimized AIC to better estimation of autore-
gressive coefficients. For the longer reference noises (for example of length 200–
500 samples) Akaike Information Criterion is minimized for the same order of
autoregressive model and returns AR(32). Parameters of autoregressive model are
more accurate if estimation is basing on larger number of samples. In view of that
we take longer reference noise for the analysis in case when the same AR order was
indicated by AIC. Summarizing, further analysis was carried out for filter AR
(32) and 500-samples reference noise.

As we can see on the ARgram (Fig. 14b) AR filtering removed discrete-
spectrum components from the signal, but still (as in case of simulated signal)
vibrations disrupted signal are visible on the seismogram. After applying second
step of algorithm, the noise is dumped (Fig. 15). Application of the proposed
algorithm to real seismic signals gives satisfying results, which are better than
denoising only by spatial time-frequency denoising without enhancement via AR
filtering. Comparing ARgrams in Figs. 15b and 16b one can found the remains of
the ridges.

Fig. 13 Seismogram of real noisy signal (a), its spectrogram (b) and ARgram (c)
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Fig. 14 Seismogram of real signal after enhancement via AR filtering (a), its spectrogram (b) and
ARgram (c)

Fig. 15 Seismogram of real signal after enhancement via AR filtering and spatial time-frequency
denoising (a), its spectrogram (b) and ARgram (c)
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5 Conclusions

In this paper we considered the problem of denoising of seismic signals from
discrete-spectrum component noise. The proposed two-step algorithm using
autoregressive filtering and spatial time-frequency transform of STFT was applied
to the simulated and real seismic signals. In each case the high value ridges on the
ARgram (responsible for the noise) were disappeared, what verify the effectiveness
of the proposed method. The choice of parameters of the AR filter (model order and
length of the reference noise) is crucial, thus they were selected based on Akaike
Information Criterion, which is classic measure of goodness-of-fit for autoregres-
sive models. Moreover in case of simulated data the Signal-to-Noise-Ratio was
examined to evaluate the effectiveness of denoising. The results of analysis proved
that seismic signal enhancement via AR filtering before spatial time-frequency
denoising has positive influence for removing discrete-spectrum components from
the noisy signal.

(a)

(b)

(c)

Fig. 16 Seismogram of real signal after just spatial time-frequency denoising (a), its spectrogram
(b) and ARgram (c)
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Transformed GARMA Model
with the Inverse Gaussian Distribution

Breno Silveira de Andrade, Jacek Leśkow and Marinho G. Andrade

Abstract We propose an extension of our previous work [10] regarding GARMA

models. The task of this paper is to study transformations leading to GARMA mod-

els. We present a simulation study and real data analysis using the Transformed

GARMA (TGARMA) models with the inverse Gaussian distribution. We assume

the same properties as in [10] however we apply to the inverse Gaussian distribu-

tion. We show an application to a real data related to number of hypertension cases

in São Paulo.

Keywords Generalized ARMA model ⋅Box Cox transformation ⋅ Inverse Gaussian

distribution

1 Introduction

In our previous paper [10] we have proposed a model that is based on Box Cox

transformation and, subsequently, on the GARMA model. Thus we have obtained

TGARMA model. Therefore, the proposed model was TGARMA (Transformed

Generalized Autoregressive Moving Average). The simulation study and real data

analysis presented in that paper was related to the gamma distribution. This work

focused in the inverse Gaussian distribution which is positive asymmetric and can

be used when the gamma distribution cannot be fitted to data. Therefore, the novelty

of our paper as compared to the previous paper [10] is in using the inverse Gaussian

distribution. The inverse Gaussian distribution is also a positive asymmetric distrib-

ution that can be useful when gamma distribution cannot be fitted to the data.
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The inverse Gaussian distribution is an useful alternative for non-negatives time

series, this distribution can reach up high values and admit some extreme values. The

inverse Gaussian distribution allows maximum likelihood estimation of the parame-

ter, facilitating the incorporation of the autoregressive and moving average terms.

An alternative distribution with this general shape is the three parameter Weibull

distribution, which is more difficult to estimate.

The use of transformations have been shown a good alternative to reduce

these kind of problems. Hamasaki and Kim [13] described a Box and Cox power-

transformation to confined and censored nonnormal responses in regression. da Silva

et al. [9] proposed the use of Box-Cox transformation and regression models to deal

with fecal egg count data. Gillard [12] presented a study using Box-Cox family of

transformations, the paper comment about problems with asymmetry in the trans-

formed data. [5] commented about many fields where the Box-Cox transformation

can be used, and also proposed a method to improve the foresting models. Ahmad

et al. [1] combined Box-Cox and bootstrapping idea in one algorithm, the Box-Cox

is to ensure the data is normally distributed and bootstrap to deal with small and

limited sample size data.

The Box Cox transformation parameter 𝜆 is estimated using the profile likelihood

(PL). The method was introduced by Cox [7] and is based entirely on the condi-

tional distribution of the current response, given past responses, and past covariates

information and functions thereof can be used for inference. Zhu and Ghodsi [20]

presented a procedure to dimensionally selection maximizing a profile likelihood

function. Huang et al. [14] proposed an efficient equation for estimating the index

parameter and unknown link function using Adaptive profile-empirical-likelihood

inferences. Cole et al. [6] provide a primer on maximum likelihood, Profile Likeli-

hood and Penalized Likelihood which have proven useful in epidemiologic research.

Our paper is organized as follows. In Sect. 2 we provide the idea of transfor-

mations that constitute an important motivation to introduce TGARMA model and

resampling techniques. Section 3 defines the TGARMA model in general and with

continuous distributions. This section also contains the model fitting for TGARMA

models present Likelihood estimate and Partial Likelihood. Section 4 describes all

the simulation study. The software [19] was used to the simulation study. The real

data application was presented in Sect. 5 applying the methodology on number of

hypertension cases in São Paulo data. Section 6 gives concluding remarks.

2 Transformations

Box and Cox [4] commented that many important results in statistical analysis fol-

low from the assumption that the population being sampled or investigated is nor-

mally distributed with a common variance and additive error structure. For this rea-

son, these authors presented a transformation called Box-Cox power transformation

that has generated a great deal of interests, both in theoretical work and in practical

applications.
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This family has been modified [8] to take account of the discontinuity at 𝜆 = 0,

such that

y(𝜆)t =

{
(Y𝜆

t −1)
𝜆

; 𝜆 ≠ 0
log(Yt); 𝜆 = 0

Draper and Cox [11], Manly [17], Sakia [18] discuss others transformations which

have the same aim, reduce anomalies in the data. The literature recommend the use of

Box-Cox power transformation as a general transformation. The next section present

the TGARMA approach using the Box-Cox power transformation.

3 TGARMA Model Fitting

3.1 Model Definition

The TGARMA model specifies the conditional distribution of each transformed

observation y(𝜆)t , for t = 1,… , n given the previous information set, defined by

F(𝜆)
t−1 = (y(𝜆)1 ,… , y(𝜆)t−1, 𝜇1,… , 𝜇t−1). The conditional density belongs to exponential

family and is given by

f (y(𝜆)t |F(𝜆)
t−1) = exp

(
y(𝜆)t 𝛼t − b(𝛼t)

𝜑
+ d(y(𝜆)t , 𝜑)

)
, (3.1)

where 𝛼t and 𝜑 are canonical and scale parameters, respectively. Moreover b(⋅) and

d(⋅) are specific functions that define the particular exponential family. The condi-

tional mean and conditional variance of yt given F(𝜆)
t−1 are represented as:

𝜇t = b′(𝛼t) = E(y(𝜆)t |F(𝜆)
t−1) (3.2)

Var(y(𝜆)t |F(𝜆)
t−1) = 𝜑b′′(𝛼t),

with t = 1,… , n.

Following the Generalized Linear Models (GLM) approach the parameter 𝜇t is

related to the predictor 𝜂t by a twice differentiable one-to-one monotonic function

g, called link function. In general, we can also include set of covariates x into our

model. Moreover, we can we add an additional component allowing autoregressive

moving average terms to be included. In such a case our model will have a form:

g(𝜇t) = 𝜂t = x′t𝛽 +
p∑
j=1

𝜙j{g(y
(𝜆)
t−j) − x′t−j𝛽} +

q∑
j=1

𝜃j{g(y
(𝜆)
t−j) − 𝜂t−j}. (3.3)
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The parameters p and q are identified using the classical BIC or AIC criteria. For

more information the reader is referred to [15, 16].

The TGARMA(p,q) model is defined by the Eqs. (3.1) and (3.3). For certain func-

tions g, it may be necessary to replace y(𝜆)t with y(𝜆
new)

t in (3.3) to avoid the non-

existence of g(y(𝜆)t ) for certain values of yt. The form y(𝜆
new)

t depends on the particular

function g and is defined for specific cases later.

In our approach we will not include covariates. We will consider two important

continuous GARMA models: gamma and inverse Gaussian. We will present each

one with a density and a respective predictor. The simulation study and real data

analysis were done for each of the distributions.

3.2 Inverse Gaussian TGARMA Model

Suppose that y(𝜆)t |F(𝜆)
t−1 follows a inverse Gaussian distribution with the mean 𝜇t, thus

f (y(𝜆)t |F(𝜆)
t−1) = exp

{
1
𝜎2

[
−
2y(𝜆)t

𝜇2
t

+ 1
𝜇t

]
− 1

2
log(2𝜋𝜎2y(𝜆)t

3
) − 1

2𝜎2y(𝜆)t

}
. (3.4)

The canonical link function for this model is the logarithmic function. The linear

predictor is given by

log(𝜇t) = 𝛽0 +
p∑
j=1

𝜙j

{
log(y(𝜆)t−j)

}
+

q∑
j=1

𝜃j(log(y
(𝜆)
t−j) − log(𝜇t−j)), (3.5)

The inverse Gaussian TGARMA model is defined by the Eqs. (3.4) and (3.5).

3.3 Model Fitting

The TGARMA model-fitting procedure described herein performs the maximum

likelihood estimation (see [3]). The estimation method is based on the standard

GLM.

Let {y(𝜆)t } be a time series where the Eqs. (3.1) and (3.3) are satisfied. The para-

meter vector is 𝛾 ′ = (𝛽′, 𝜙′, 𝜃′), where 𝛽 = (𝛽0 … 𝛽m)′, 𝜙 = (𝜙1 …𝜙p)′ and also

𝜃 = (𝜃1 … 𝜃q)′. For the estimation procedure the conditional likelihood function is

used where theF(𝜆)
r = {y(𝜆)1 … y(𝜆)r }, for r =max(p, q). The partial likelihood function

can be constructed considering that y(𝜆)t−1 and y(𝜆)t are conditionally independent. Thus
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L(𝛽, 𝜙, 𝜃|F(𝜆)
n ) ∝

n∏
t=r+1

f (y(𝜆)t |F(𝜆)
t )

∝
n∏

t=r+1
exp

{
y(𝜆)t g(𝜇t) − b(g−1(𝜇t))

𝜑
+ d(y(𝜆)t , 𝜑)

}
, (3.6)

where g(𝜇t) is the link function given by

g(𝜇t) = x′t𝛽 +
p∑
j=1

𝜙j{g(y
(𝜆)
t−j) − x′t−j} +

q∑
j=1

𝜃j{g(y
(𝜆)
t−j) − g(𝜇t−j)}. (3.7)

In the above equations t = r + 1,… , n. The Eqs. (3.6) and (3.7) do not have a

closed form solution therefore a numerical optimization routine will be used. Due

to the results of [3] the asymptotic distribution of the partial likelihood estimator

is known. However, the information matrix of the corresponding asymptotic nor-

mal law is quite difficult to estimate. This gives us a strong motivation to con-

sider resampling techniques in the GARMA models. As it also known, resampling

techniques provide a better alternative to construct confidence intervals in the time

series field [2].

The profile likelihood for the parameter vector 𝛾 and scalars 𝜙 and 𝜆 is expressed

in terms of the transformed series y(𝜆) = (y(𝜆)r+1, … , y(𝜆)n )T conditioned on the first r
transformed observations, where r = max{p, q}, is

PL(𝛽, 𝜙, 𝜃, 𝜆) =
n∏

t=r+1
L(𝛽, 𝜙, 𝜃|F(𝜆)

t )J(𝜆, yt), (3.8)

where J(𝜆, yt) is the Jacobian of the transformation from yt to y(𝜆)t . The inference

method is made selecting a range 𝜆(1),… , 𝜆(k), and evaluating the profile likelihood

on each 𝜆(i), i = 1,… , k.

𝜆̂ = max
(
PL(𝛾̂ (𝜆i), 𝜙(𝜆i), 𝜆i)

)
, i = 1,… , k (3.9)

The profile likelihood depends on the Jacobian of the transformation, so different

transformation provide different profiles likelihood. The Box-Cox power transfor-

mation was used, thus

J(𝜆, yt) =
{∑n

i=1
{
(𝜆 − 1) log(yi)

}
; 𝜆 ≠ 0∑n

i=1
{
− log(yi)

}
; 𝜆 = 0
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4 Simulation Study

The performance of the Maximum Likelihood estimation was evaluated using two

metrics: the corrected bias (CB), the corrected error (CE). These metrics are

defined as,

CB = 1
m

m∑
i=1

|||||
𝜃 − 𝜃̂(i)

𝜃

|||||
,

CE2 = 1
Var

1
m

m∑
i=1

(𝜃̂(i) − 𝜃)2

Table 1 Inverse Gaussian GARMA(p,q) real values

Order 𝛽0 𝜙1 𝜙2 𝜃1 𝜃2 𝛾

(1,1) 0.70 0.50 – 0.30 – 0.5

(1,2) −0.10 0.50 – 0.20 −0.30 2

(2,1) −0.10 0.50 0.30 −0.40 – 0.5

(2,2) −0.10 −0.30 0.20 0.25 −0.35 2

Table 2 TGARMA(1,1) with inverse Gaussian distribution and Box-Cox power transformation

Parameter (𝜆 = 0.3) CB CE Coverage

𝛾 0.0464 0.9407 0.9662

𝛽0 0.1611 1.1144 0.9226

𝜙1 0.0868 1.0896 0.9274

𝜃1 0.0636 0.9431 0.9560

Parameter (𝜆 = 0.5) CB CE Coverage

𝛾 0.0506 1.0143 0.9538

𝛽0 0.1588 1.0988 0.9242

𝜙1 0.0844 1.0671 0.9290

𝜃1 0.0610 0.8985 0.9632

Parameter (𝜆 = 0.7) CB CE Coverage

𝛾 0.0522 1.0524 0.9488

𝛽0 0.1627 1.1269 0.9154

𝜙1 0.0844 1.0759 0.9312

𝜃1 0.0600 0.8725 0.9678

Parameter (𝜆 = 0.9) CB CE Coverage

𝛾 0.0584 1.1635 0.9260

𝛽0 0.1722 1.1897 0.9026

𝜙1 0.0874 1.1000 0.9296

𝜃1 0.0586 0.8403 0.9766
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Table 3 Proportions of correct model using BIC with inverse Gaussian TGARMA(p,q) model

𝜆 = 0.3
Size TGARMA(1,1) TGARMA(1,2) TGARMA(2,1) TGARMA(2,2)

200 0.6929 0.2881 0.4110 0.4041

500 0.7312 0.3372 0.5144 0.4251

1000 0.7815 0.3515 0.5752 0.4554

𝜆 = 0.5
Size TGARMA(1,1) TGARMA(1,2) TGARMA(2,1) TGARMA(2,2)

200 0.6963 0.3174 0.3549 0.4450

500 0.7155 0.3615 0.3882 0.4672

1000 0.7469 0.3855 0.4398 0.4740

𝜆 = 0.7
Size TGARMA(1,1) TGARMA(1,2) TGARMA(2,1) TGARMA(2,2)

200 0.6404 0.3730 0.3260 0.4462

500 0.6980 0.4016 0.3955 0.4593

1000 0.7088 0.4222 0.4439 0.4737

𝜆 = 0.9
Size TGARMA(1,1) TGARMA(1,2) TGARMA(2,1) TGARMA(2,2)

200 0.6981 0.2735 0.3894 0.4198

500 0.7430 0.2912 0.4341 0.4321

1000 0.7775 0.3176 0.4707 0.4437

where 𝜃̂(i) are the estimate of parameter 𝜃 for the i-th replication, i = 1,… ,m. The

variance term (Var) that appears in the definition of CE is the sample variance of

𝜃̂(1),… , 𝜃̂(m). Also the Coverage was presented that represent the proportion of sim-

ulated series where the confidence intervals contain the true simulated value.

The estimation results appear in Tables 2 and 4 where the aforementioned metrics

are shown for each model and parameter. These results indicate good properties with

relatively small values of the corrected bias (CB), values of the corrected error (CE)

around 1 and also coverage around 95%.

In Table 3 we present results for the simulation experiment that was checking

proportion of times when the correct model was selected. The BIC criterion was used

to select the best model, the criterion was used also with different sizes of series.

The experiment was repeated 5000 times for each value of 𝜆, with 500 observa-

tions in each of artificial time series. The simulation study for TGARMA models

was conducted with Gamma with the orders (1,1), (2,1), (1,2) and (2,2). The results

of the orders (1,2) and (2,1) was omitted, but is very similar of the results of orders

(1,1) and (2,2) that follow.

The simulation study was carried out to verify the influence of selecting the value

of 𝜆 on the TGARMA model estimates. Table 2 presents results for the TGARMA

model with one autoregressive and one moving average terms, the metrics proposed

above showed that for different values of 𝜆, the CB, CE and coverage still indicating

good properties. Table 3 presents the proportions of correct model selected by using
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Table 4 TGARMA(2,2) with inverse Gaussian distribution and Box-Cox power transformation

Parameter (𝜆 = 0.3) CB CE Coverage

𝛾 0.0129 1.0424 0.9437

𝛽0 1.2730 1.2350 0.8851

𝜙1 0.3920 1.0544 0.9155

𝜙2 0.3540 1.0315 0.9292

𝜃1 0.4504 1.0254 0.9250

𝜃2 0.1868 1.0323 0.9300

Parameter (𝜆 = 0.5) CB CE Coverage

𝛾 0.0132 1.0560 0.9477

𝛽0 1.3470 1.2749 0.8819

𝜙1 0.3980 1.0688 0.9155

𝜙2 0.3465 1.0273 0.9283

𝜃1 0.4576 1.0444 0.9141

𝜃2 0.1920 1.0487 0.9247

Parameter (𝜆 = 0.7) CB CE Coverage

𝛾 0.0143 1.1206 0.9378

𝛽0 1.3070 1.2363 0.9205

𝜙1 0.3863 1.0248 0.9234

𝜙2 0.3345 0.9841 0.9401

𝜃1 0.4520 1.0016 0.9279

𝜃2 0.1908 1.0246 0.9327

Parameter (𝜆 = 0.9) CB CE Coverage

𝛾 0.0135 1.0535 0.9513

𝛽0 1.3920 1.3200 0.8893

𝜙1 0.4070 1.1115 0.8936

𝜙2 0.3545 1.0292 0.9179

𝜃1 0.4688 1.0767 0.8996

𝜃2 0.2028 1.1007 0.9270

the BIC criterion, four different models were proposed, (1,1), (2,1), (1,2) and (2,2).

The results presented on Table 2 shows that the higher proportions indicate the cor-

rected model, unrelated to the 𝜆 value. The Table 4 presents results for the TGARMA

model with two autoregressive and two moving average terms, the results follow the

same aspect of the Table 1.

5 Real Data Analysis

Hypertension (HTN or HT), also known as high blood pressure, is a long term

medical condition in which the blood pressure in the arteries is persistently ele-

vated. High blood pressure usually does not cause symptoms. Long term high blood
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pressure; however, is a major risk factor for coronary artery disease, stroke, heart

failure, peripheral vascular disease, vision loss, and chronic kidney disease.

The dataset presents the number of hypertension cases in São Paulo, one of the

most important cities in South America. The original series was divided by 1000

reducing the order of the data. The data presents monthly number of hypertension

cases between December of 2003 until January of 2013. The data divided by 1000

presents non-negatives values and possible extreme values, thus the inverse Gaussian

is a good option to adequate the data (Figs. 1, 2 and Table 5).

The range of the transformation parameter 𝜆 was selected from 0 ≤ 𝜆 < 1, with

step 0.001. The Partial Likelihood selected the value 𝜆̂ = 0.0530 (Table 6).
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Table 5 Criterion selection using number of hypertension in Sao Paulo

Inverse Gaussian TGARMA(1,1) TGARMA(1,2) TGARMA(2,1) TGARMA(2,2)
AIC 232.23 132.60 141.84 129.46
BIC 224.16 121.83 131.08 116.01

Table 6 Estimates of number of hypertension in Sao Paulo series with TGARMA(2,2) inverse

Gaussian

Parameter Estimate Inferior bound Superior bound

𝛽0 −0.0945 −0.2180 0.0598

𝜙1 0.6223 −0.6299 1.6096

𝜙2 0.5014 −0.5358 1.7646

𝜃1 −0.2514 −1.3361 1.0464

𝜃2 −0.1847 −0.9962 0.5095

𝜈 12.3145 8.2165 14.1992
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Fig. 3 Graph of true values versus the estimated values of the residuals of rate of number of

hypertension in Sao Paulo series

The goodness of fit can be checked using the graph of true values versus the

estimated values (Fig. 3).

The Fig. 3 presents a quantile plot with the true values on x axis and the esti-

mated values on y axis. The line represents the perfect model with real values on axis

x and y.

Quantile residuals are based on the idea of inverting the estimated distribution

function for each observation to obtain exactly standard normal residuals. In the case

of discrete distributions, such as the binomial, negative binomial and Poisson, some

randomization is introduced to produce continuous normal residuals. The residuals

is given by rt = Φ−1(Fyt (yt|Ft−1)) where Fyt represent the cumulative distribution

function for the respective density (Fig. 4).
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Fig. 4 Autocorrelation function and partial autocorrelation function of the residuals of rate of

number of hypertension in Sao Paulo rates series
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Fig. 5 Original predictions with GARMA(2,2) Inverse Gaussian model with number of hyperten-

sion in Sao Paulo series

The prediction were made by the median. Only the fist term of Taylor expansion

were used. Using the estimate, predictions of 6 steps ahead of the original series can

be made. The 6 last values of the series were removed and fitted the model without

them. Prediction one step ahead for 6 months values, thus the predicted value be

compared with the true value. The MAPE was calculated to quantify the quality of

predictions (Fig. 5).
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6 Conclusion

The model under study is a GARMA model that was recently introduced by

Benjamin et al. [3]. There are many potential uses of GARMA model in time series

analysis. For example, while analyzing discrete time series, GARMA structures

allow embedding continuous type ARMA model in the parametrization of the dis-

crete distribution (see [2]). Due to increased popularity of GARMA models, there

is a need to find transformations letting the model correspond to data more flexibly.

We propose Box-Cox transformation. Our research shows that the Partial Likelihood

method can be successfully applied in finding optimal value of 𝜆 for the Box-Cox

transformation. Such value, say 𝜆̂, can then be used to transform the data and use the

GARMA model for statistical inference. Jointly with [10] work good properties can

be evaluated from the TGARMA models, showing a useful class of models.
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GARCH Process with GED Distribution

Małgorzata Wiśniewska and Agnieszka Wyłomańska

Abstract Analysis of volatility is a key problem especially in economics and related

issues. The volatility can help to measure the risk or the error sizes obtained in

modeling several financial variables. But many financial models assume the volatil-

ity is constant over time, which contradicts the reality. Therefore in this paper we

consider two models that were proposed as a description of real time series with

heteroscedastic behavior, namely ARCH and GARCH systems. Moreover, because

many observed phenomena do not exhibit Gaussian law therefore we extend the clas-

sical econometric models to the case with non-Gaussian distribution. As the exten-

sion we propose to use the Generalized Error distribution that is more adequate to

examined time series. In this paper we give the main properties of considered mod-

els and present testing and estimation procedures. We illustrate the theoretical results

with real financial data analysis and simulation study.

Keywords ARCH model ⋅ GARCH model ⋅ Generalized error distribution ⋅
Testing ⋅ Prediction ⋅ Calibration

1 Introduction

Volatility is one of the most important parameter used in economics. It can help

to measure the risk or the error sizes obtained in modeling several financial vari-

ables. Furthermore, it is essential for making forecasts. Very often, approaches to

data modeling are based on the assumption that the volatility is homoscedastic (i.e.

it is constant in time). However, it was observed that in many cases the average size of

volatility fluctuates over time. Moreover, it still can be predictable, provided that the

accurate model was chosen. The classical models, such as ARMA (autoregressive
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moving average) process, assume the homoscedasticity of the variance and hence

they are not useful in modeling those economic phenomena characterized by the

heteroscedastic nature of the volatility.

In this paper we concentrate on the heteroscedastic approach in the modeling

issue. More precisely, we analyze the Autoregressive Conditional Heteroscedasticity

(ARCH) process which was first introduced by Engle in 1982 [6] and its extension

i.e. the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) that

Bollerslev [2] proposed in 1986. Those processes have been successfully applied to

model, among others, interest rates, exchange rates, stock returns. Moreover, they

were used in VaR calculation or option pricing, [7, 24]. Apart from heteroscedas-

ticity, the original idea is based on the normality of the unconditional distribution

of the innovation terms. However this assumption can be generalized since the dis-

tribution of the financial asset returns are not always consistent with Gaussian law.

We can make such conclusion for example by simply examining the empirical dis-

tribution of the asset returns which very often exhibit thicker tails than those from a

normal distribution. That is why, we consider conditionally non-Gaussian (G)ARCH

models, namely with Generalized Error innovations, [8, 16, 19].

The paper is organized as follows. In the Sect. 2 some basic notations and defin-

itions with remarks concerning classical ARCH and GARCH models are provided.

We also indicate at the strong relation between examined processes and classical

ARMA models. Moreover we discuss the main properties of the Generalized Error

distribution that is taken into account as the candidate for the distribution of innova-

tions.

Next, in the Sect. 3, some well-known tests like Engle ARCH or Ljung-Box are

mentioned in order to examine the correlations between data. Then we go through

the theory of parameter estimation based on the maximizing the likelihood function

corresponding to Generalized Error distribution.

In Sect. 4 we evaluate the analytical forecast simultaneously with empirical meth-

ods of prediction, i.e. Monte Carlo and bootstrap.

The Sect. 5 concerns the analysis of real data from Polish financial market, i.e. the

closing prices of PKN stocks. Moreover we check the efficiency of the proposed esti-

mation and testing methods by using Monte Carlo simulations. Last section contains

conclusions.

2 Theory

As it was mentioned, there are strong arguments for using Autoregressive Condi-

tionally Heteroscedastic models in describing financial time series. The main reason

for the success of ARCH/GARCH is that they take into account many observed fea-

tures of the data that classical models cannot capture. Namely, many time series

exhibit some well-known characteristics that can be called the ARCH effects. The

reader can find in [24] some stylized facts concerning financial data. First, we deal

with heteroscedasticity which has been already introduced at the beginning. Another
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significant feature is volatility clustering. According to the Mandelbrot [15] that

means situation when “the large changes tend to be followed by large changes and

small changes tend to be followed by small changes” or in other words when the

volatility tends to form clusters. Moreover, many economic series display time vary-

ing volatility in such a way that the variance of the process can be modeled by AR

or ARMA. Although ARCH/GARCH successfully model all above properties, they

however have problems with capturing leptokurticity. More precisely, when data are

leptokurtic then we can observe that its returns have fat tails. What is more, this phe-

nomenon is commonly observed in many financial time series concerning prices,

rates or returns. In particular, this implies the higher probability for extreme events

than in normally distributed variables. This motivated seeking for distributions that

would better model the fat-tailed property of the data.

In this section we recall the definitions of ARCH and GARCH models as well

as their relation with classical ARMA systems. Moreover we also consider non-

Gaussian versions of the classical models.

Definition 1 [6] Process {𝜀t}t∈ℤ is called the ARCH process of order p if

E(𝜀t|t−1) = 0,
Var(𝜀t|t−1) = 𝜎2

t ,

𝜎2
t = 𝜔 +

p∑
i=1

𝛼i𝜀
2
t−i = 𝜔 + A(L)𝜀2t ,

where t−1 is the 𝜎-field generated by the {𝜀t−j, j ≥ 1} and in order to ensure the non-

negativity of the variance it is assumed that 𝜔 > 0, 𝛼i ≥ 0 for i = 1,… , p, A(z) =∑p
i=1 𝛼iz

i
and L is a backward shift operator.

The very important property of the ARCH process if the fact that under some restric-

tions it is weak stationary. Namely, if

𝛼1 +⋯ + 𝛼p < 1,

then the ARCH(p) process {𝜀t}t∈ℤ is weakly (covariance) stationary, [6]. Moreover

it can be shown that in this case the autocovariance function (ACVF) of the ARCH

process is given by:

𝛾(t, t + h) = cov(𝜀t, 𝜀t+h) =
{

𝜎2, h = 0
0, h ≠ 0, (1)

where 𝜎2
is the unconditional variance of {𝜀t}t∈ℤ given by the following relation:

𝜎2 = 𝜔

1 −
∑p

i=1 𝛼i
.
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The second important property is related to the fact that there is a strong relation

between the ARCH models and ARMA systems, namely:

Remark 1 [24] Let {𝜀t}t∈ℤ ∼ ARCH(p) with conditional variance at time t given by

𝜎2
t . After introducing the squared innovations process {ut}

ut = 𝜀2t − E(𝜀2t |t−1) = 𝜀2t − 𝜎2
t

we can obtain the AR representation of {𝜀2t } as:

𝜀2t = 𝜔 +
p∑
i=1

𝛼i𝜀
2
t−i + ut.

with noise {ut}.

Four years after Engle’s [6] introduction of the ARCH process, in 1986 Bollerslev

in [2] proposed the Generalized ARCH (GARCH) model as a natural solution to the

problem with the high ARCH orders. Although, GARCH exhibits almost the same

properties as ARCH model, it has one crucial advantage. Namely, the possibility

to significantly reduce the number of parameters in the model. In GARCH model

the conditional variance is a linear function of past squared innovations and past

conditional variances.

Definition 2 [2] The process {𝜀t}t∈ℤ is called the GARCH process of order p and

q if

E(𝜀t|t−1) = 0, (2)

Var(𝜀t|t−1) = 𝜎2
t , (3)

𝜎2
t = 𝜔 +

p∑
i=1

𝛼i𝜀
2
t−i +

q∑
j=1

𝛽j𝜎
2
t−j = 𝜔 + A(L)𝜀2t + B(L)𝜎2

t , (4)

where t−1 is the 𝜎-field generated by the {𝜀t−j, j ≥ 1}, 𝜔 > 0, 𝛼i ≥ 0 for i = 1,… , p
and 𝛽j ≥ 0 for j = 1,… , q. Moreover, B(z) =

∑q
j=1 𝛽jz

j
.

Formally, rewriting (4) as

𝜎2
t = 𝜔

1 − B(1)
+
( A
1 − B

)
(L)𝜀2t = 𝜙0 +

∞∑
i=1

𝜙i𝜀
2
t−i,

we see that (at least at a formal level) a GARCH(p, q) process is in fact an ARCH(∞)
process. Similar, as in case of ARCH system, we can show that under similarly

restricted parameters, the GARCH model is weakly stationary. Moreover, the vari-

ance of GARCH(p, q) model is given by:



GARCH Process with GED Distribution 87

Var(𝜀t) = 𝜎2 = 𝜔

1 −
∑m

i=1(𝛼i + 𝛽i)
,

where
∑m

i=1(𝛼i + 𝛽i) < 1, (m = max(p, q)) in order to ensure the non-negativity of the

variance. Moreover it can be shown that squared GARCH(p, q) model has ARMA

representation, namely if {𝜀t}t∈ℤ is a GARCH(p, q) process, then the following rela-

tion holds:

𝜀2t = 𝜎2
t + ut = 𝜔 +

p∑
i=1

𝛼i𝜀
2
t−i +

q∑
j=1

𝛽j𝜎
2
t−j + ut

=𝜔 +
max(p,q)∑

i=1
(𝛼i + 𝛽i)𝜀2t−i −

q∑
i=1

𝛽i(𝜀2t−i − 𝜎2
t−i) + ut

=𝜔 +
m=max(p,q)∑

i=1
(𝛼i + 𝛽i)𝜀2t−i −

q∑
i=1

𝛽iut−i + ut,

where 𝛼i = 0 ∀i>p and 𝛽i = 0 ∀i>q and ut = 𝜀2t − 𝜎2
t . Because {ut} has mean zero and

is serially uncorrelated, and hence is a white noise, therefore the given representation

of 𝜀2t is in fact the ARMA(p, q).
Although in the classical definition it is assumed that the standardized residuals

{zt} of ARCH/GARCH are Gaussian random variables, in practice it turns out that

this assumption weakly corresponds to the reality. Especially financial data exhibit

leptokurticity, which is a strong evidence against normality. For example Bollerslev

[3] in 1987 suggested the conditional distribution of innovations to be Student’s-

t instead of normal. On the other hand, Nelson [16] in 1991 proposed to use the

Generalized Error distribution (GED) to capture the fat tails usually observed in

the distribution of financial times series. In this paper we concentrate on the GED

distribution.

Definition 3 (Generalized Error Distribution—GED, [8]) The random variable X is

GED—distributed, i.e. X ∼ G(𝜇, 𝜆, 𝜅) or X ∼ G(𝜇, 𝜆, a) if it has the following prob-

ability density function:

f (t;𝜇, 𝜆, 𝜅) =
exp

(
−1

2
|||
x−𝜇
𝜆

|||
1
𝜅

)

2𝜅+1𝜆𝛤 (𝜅 + 1)
(5)

or equivalently with parametrization a = 1
𝜅

f (t;𝜇, 𝜆, a) =
a exp

(
−1

2
|||
t−𝜇
𝜆

|||
a)

21+
1
a 𝜆𝛤

(
1
a

) , (6)
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which is described by the three parameters

∙ 𝜇 ∈ (−∞,∞)—locates the mode of the distribution (location parameter),

∙ 𝜆 ∈ (0,∞)—defines the dispersion of the distribution (scale parameter),

∙ 𝜅 or a = 1
𝜅
∈ (0,∞)—corresponds to the kurtosis of the distribution (shape para-

meter).

Remark 2 Let us assume that X ∼ G(𝜇, 𝜆, 𝜅) with probability density function f
given in (5), then we have [8]:

∙ mean, median and mode of the distribution is given by 𝜇,

𝜆

𝜅

(
exp

(
𝜅2

2

)
− 1

)
= 𝜇 − a𝜆

(
exp

( 1
2a2

)
− 1

)
,

∙ if we denote the variance of GED distribution as 𝜎2
then we have the following

relationship

𝜆 =
(
2−2𝜅𝛤 (𝜅)𝜎2

𝛤 (3𝜅)

) 1
2

=
⎛
⎜⎜⎝

2−2
1
a𝛤 ( 1

a
)𝜎2

𝛤 (3 1
a
)

⎞
⎟⎟⎠

1
2

∶= 𝜆̃𝜎 (7)

which leads to the alternative density representation:

f (t;𝜇, 𝜆, a) =
a exp

(
−1

2
|||
t−𝜇
𝜆̃𝜎

|||
a)

21+
1
a 𝜆̃𝜎𝛤

(
1
a

) , (8)

∙ kurtosis of the GED distribution depends only on the shape parameter and is given

by

Kurt(X) = 𝛤 (5𝜅)𝛤 (𝜅)
(𝛤 (3𝜅))2

=
𝛤

(
51
a

)
𝛤

(
1
a

)

(
𝛤

(
31
a

))2 , (9)

∙ for 𝜅 = 1
2

(a = 2) put in (5) we obtain the normal distribution  (𝜇, 𝜆2) since

f (t;𝜇, 𝜆, a) =
exp

(
− 1

2
|||
x−𝜇
𝜆

|||
2
)

2
1
2 +1𝜆𝛤 ( 12 +1)

=
exp

(
− 1

2

(
x−𝜇
𝜆

)2
)

√
23𝜆 1

2

√
𝜋

= 1
𝜆
√
2𝜋

exp
(
−1

2

(
x−𝜇
𝜆

)2
)

∙ for 𝜅 = 1 (a = 1) we obtain the Laplace or Double Exponential distribution with

density
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Fig. 1 Comparison of trajectories for GARCH(1, 1) with Gaussian and GED with shape a =
1.5945 innovations and parameters 𝜔 ≈ 0, 𝛼 = 0.04991, 𝛽 = 0.93224

f (t;𝜇, 𝜆, a = 1) = 1
4𝜆

exp
(
−1
2
||||
x − 𝜇

𝜆

||||
)
.

In particular, if one wants to consider GED distribution with unit variance and unit

shape parameter (so Laplace distribution with unit variance) then

𝜆 =
(
2−2𝛤 (1)
𝛤 (3)

) 1
2

=

√
1
4
2
=
√

1
8
= 1

2
√
2
.

In Fig. 1 we present GARCH trajectories with various innovations.

3 Testing and Estimation

3.1 Correlation Testing

At the beginning of every time series data analysis, among others, it is always desir-

able to check if the observed data exhibits relations expressed in the language of

correlation function. In this situation the very useful tool is a plot of empirical auto-
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correlation function. There are also many statistical tests that can be performed in

order to capture autocorrelations. But one should also examine the behavior of the

volatility of the data whether is varying in time with tendency to clustering, or in

other words, if we are dealing with ARCH effects. It is very important since ignor-

ing existence of these effects may lead to the model misspecification and inappro-

priate conclusions. That is why in applications we used statistical tests evaluating

correlations and ARCH effects.

The first test is an Engle ARCH test (or Engle test, ARCH test) presented by Engle

[6]. Note that there is no need to test directly for GARCH effects since if ARCH

effects exist, GARCH models can be also considered.

In order to investigate if among data there are statistically significant correlations,

we can apply the Ljung-Box test introduced in [14]. We chose this particular test

mainly because it has become quite popular in GARCH modeling.

3.1.1 Estimation

In the classical situation, when the variance is constant in time, Ordinary Least

Squares is the BLUE estimator (Best Linear Unbiased Estimator) so it is efficient

and unbiased. However, under assumption of heteroscedasticity, although the Least

Squares (LS) estimator has many advantages like being user-friendly with no opti-

mization requirements, it is relatively less efficient than the estimators based on the

likelihood methods. That is why the maximum likelihood methods are the most

popular in GARCH parameter estimation. For the Gaussian Maximum Likelihood

(Gaussian-ML) estimation we refer the reader to [10]. One should be aware that

the assumption of the conditional normality for the {𝜀t}t∈ℤ ∼ GARCH is difficult

to justify in many empirical applications and as a matter of fact is not always true.

However, since it was often observed that the Gaussian-ML method is robust against

the law misspecification we can try to apply it even when the conditional distribution

is non-Gaussian. If such situation appears we call it the Quasi or Pseudo Maximum

Likelihood method (QML). Namely, the QML estimator is obtained simply by max-

imizing the likelihood function in the same way as in the ML case although the true

probability is not normal. The asymptotic properties (like consistency or asymptotic

normality) of QML estimators for ARCH models are established in [23]. In this paper

however we consider method based on the GED likelihood function, i.e.

L(𝜃; 𝜀1,… , 𝜀n) =
n∏
i=1

f (𝜀i; 𝜃) (10)

with 𝜃 = (𝜔, 𝛼1,… , 𝛼p, 𝛽1,… , 𝛽q, a, 𝜆̃) and

f (𝜀i; 𝜃) =
a exp

(
−1

2
|||
𝜀i

𝜆̃𝜎i

|||
a)

21+
1
a 𝜆̃𝜎i𝛤

(
1
a

) ,
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where 𝜎2
i = 𝜎2

i (𝜃) = 𝜔 +
∑p

j=1 𝛼j𝜀
2
i−j +

∑q
j=1 𝛽j𝜎

2
i−j for GARCH(p, q) and 𝜎2

i = 𝜎2
i (𝜃) =

𝜔 + 𝛼𝜀2i−1 + 𝛽𝜎2
i−1 for GARCH(1, 1) process. We can formulate then the following

lemma:

Lemma 1 Assume that innovations {𝜀t}t∈ℤ ∼GARCH(1, 1) are conditionally GED
distributed with parameters 𝜇, 𝜆 = 𝜆̃𝜎 (see (7)) and a. Then the first order condi-
tions for existence of the maximum likelihood estimator of parameter vector 𝜃 =
(𝜔, 𝛼, 𝛽, a, 𝜆̃) are given by

𝜕l
𝜕𝜔

= 0 ⇔
a
4

n∑
i=1

(||||
𝜀i

𝜆̃

||||
a ||𝜎i||−a−2 − 1

2𝜎2
i

)
= 0,

𝜕l
𝜕𝛼

= 0 ⇔
a
4

n∑
i=1

(||||
𝜀i

𝜆̃

||||
a ||𝜎i||−a−2 𝜀2i−1 −

𝜀2i−1

2𝜎2
i

)
= 0,

𝜕l
𝜕𝛽

= 0 ⇔
a
4

n∑
i=1

(||||
𝜀i

𝜆̃

||||
a ||𝜎i||−a−2 𝜎2

i−1 −
𝜎2
i−1

2𝜎2
i

)
= 0,

𝜕l
𝜕a

= 0 ⇔
n
a
+ n ln 2

a2
+

n𝛤 ′( 1
a
)

a2𝛤 ( 1
a
)
− 1

2

n∑
i=1

ln

(|||||
𝜀i

𝜆̃|𝜎i|
|||||

) ||||
𝜀i

𝜆̃

||||
a ||𝜎i||a = 0,

𝜕l
𝜕𝜆̃

= 0 ⇔
a
2

n∑
i=1

|𝜆̃|−a−1|𝜀i|a|𝜎i|−a − n
𝜆̃
= 0.

Proof If we assume GED distribution defined by the probability density function in

(8) with location parameter 𝜇 = 0, shape parameter a and variance 𝜎2
t with 𝜆 = 𝜆̃𝜎t

then the log-likelihood function l is of the form

l(𝜃|𝜀1,… , 𝜀n) =
n∑
i=1

ln
a exp

(
−1

2
|||
𝜀i

𝜆̃𝜎i

|||
a)

21+
1
a 𝜆̃𝜎i𝛤

(
1
a

)

=
n∑
i=1

ln a − 1
2

|||||
𝜀i

𝜆̃𝜎i

|||||

a

− ln
(
21+

1
a 𝜆̃𝜎i𝛤

(1
a

))

=
n∑
i=1

−1
2

|||||
𝜀i

𝜆̃𝜎i

|||||

a

− ln 𝜎i

+ n
(
ln a −

(
1 + 1

a

)
ln 2 − ln

(
𝛤

(1
a

))
− ln 𝜆̃

)
.

First we compute the derivatives with respect to 𝜔, 𝛼 and 𝛽. We have
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𝜕l
𝜕𝜔

= a
4

n∑
i=1

||||
𝜀i

𝜆̃

||||
a |||𝜔 + 𝛼𝜀2i−1 + 𝛽𝜎2

i−1
|||
−a∕2−1

− 1
2(𝜔 + 𝛼𝜀2i−1 + 𝛽𝜎2

i−1)

= a
4

n∑
i=1

||||
𝜀i

𝜆̃

||||
a ||𝜎i||−a−2 − 1

2𝜎2
i

,

𝜕l
𝜕𝛼

= a
4

n∑
i=1

||||
𝜀i

𝜆̃

||||
a |||𝜔 + 𝛼𝜀2i−1 + 𝛽𝜎2

i−1
|||
−a∕2−1

𝜀2i−1 −
𝜀2i−1

2(𝜔 + 𝛼𝜀2i−1 + 𝛽𝜎2
i−1)

= a
4

n∑
i=1

||||
𝜀i

𝜆̃

||||
a ||𝜎i||−a−2 𝜀2i−1 −

𝜀2i−1

2𝜎2
i

.

𝜕l
𝜕𝛽

= a
4

n∑
i=1

||||
𝜀i

𝜆̃

||||
a |||𝜔 + 𝛼𝜀2i−1 + 𝛽𝜎2

i−1
|||
−a∕2−1

𝜀2i−1 −
𝜎2
i−1

2(𝜔 + 𝛼𝜀2i−1 + 𝛽𝜎2
i−1)

= a
4

n∑
i=1

||||
𝜀i

𝜆̃

||||
a ||𝜎i||−a−2 𝜀2i−1 −

𝜎2
i−1

2𝜎2
i

.

Now we pass to derivatives with respect to a and 𝜆̃,

𝜕l
𝜕a

= n
a
+ n ln 2

a2
+

n𝛤 ′( 1
a
)

a2𝛤 ( 1
a
)
− 1

2

n∑
i=1

ln

(|||||
𝜀i

𝜆̃|𝜔 + 𝛼𝜀2i−1 + 𝛽𝜎2
i−1|1∕2

|||||

) ||||
𝜀i

𝜆̃

||||
a |||𝜔 + 𝛼𝜀2i−1 + 𝛽𝜎2

i−1
|||
a∕2

= n
a
+ n ln 2

a2
+

n𝛤 ′( 1
a
)

a2𝛤 ( 1
a
)
− 1

2

n∑
i=1

ln

(|||||
𝜀i

𝜆̃|𝜎i|
|||||

) ||||
𝜀i

𝜆̃

||||
a ||𝜎i||a ,

𝜕l
𝜕𝜆̃

= a
2

n∑
i=1

|𝜆̃|−a−1|𝜀i|a|𝜔 + 𝛼𝜀2i−1 + 𝛽𝜎2
i−1|−a∕2 −

n
𝜆̃
= a

2

n∑
i=1

|𝜆̃|−a−1|𝜀i|a|𝜎i|−a − n
𝜆̃
.

□

4 Prediction

Prediction is one of the most important task in volatility modeling. Future value

of the financial time series and its conditional volatility can be used among others,

in Value at Risk calculations or option pricing as well. Since the squared GARCH

model has an ARMA representation, the forecast procedure will be also evaluated
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in similar way as in ARMA case. However, in ARCH/GARCH case we allow the

conditional variance to vary in time. Of course, we are not particularly interested in

forecasting future value of GARCH process itself since, by the definition, we know

that E𝜀t = 0 for t = 1, 2,…T and for every T + k forecast we obtain E(𝜀T+k) = 0,

k > 0, where

E(𝜀T+k|T ) =
{

E(𝜀T+1|T ), k = 1
E(E(𝜀T+k|T+k−1)|T ) = E(0|T ), k > 1.

But still, we can predict the future value of the squared process {𝜀2t }t∈ℤ or equiva-

lently the future conditional variance/volatility of {𝜀t}t∈ℤ. Consider the GARCH(1,

1) case with conditional variance given by

𝜎2
t = 𝜔 + 𝛼𝜀2t−1 + 𝛽𝜎2

t−1,

which has been already estimated in time points t = 1,… ,T . The time horizon T
is the moment when we are making the k-step ahead forecast of future volatility

𝜎2
T+k with k > 0. Let us first denote the conditional expectation as E

(
𝜀T |T

)
∶=

ET𝜀
2
T . Our goal is to calculate ET𝜀

2
T+k. By Ref. [9], we proceed recursively starting

with the forecast value at T + 1, which is simply

ET𝜎
2
T+1 = 𝜔 + 𝛼ET𝜀

2
T + 𝛽ET𝜎

2
T = 𝜔 + 𝛼𝜀2T + 𝛽𝜎2

T .

Using the fact that ET𝜀
2
T+1 = ET𝜎

2
T+1 we can perform the another step, namely the

forecast at T + 2

ET𝜎
2
T+2 = 𝜔 + 𝛼ET𝜀

2
T+1 + 𝛽ET𝜎

2
T+1 = 𝜔 + (𝛼 + 𝛽)ET𝜎

2
T+1.

After iterating above procedure we obtain the final equation for T + k future variance

forecast

ET𝜎
2
T+k = 𝜔

1 − (𝛼 + 𝛽)k

1 − (𝛼 + 𝛽)
+ (𝛼 + 𝛽)k−1(𝛼𝜀2T + 𝛽𝜎2

T ).

What is more, we observe that in the limit of forecast horizon the conditional variance

prediction reduces to the unconditional variance

lim
k→∞

ET𝜎
2
T+k = lim

k→∞
𝜔
1 − (𝛼 + 𝛽)k

1 − (𝛼 + 𝛽)
+ (𝛼 + 𝛽)k−1(𝛼𝜀2T + 𝛽𝜎2

T )

= 𝜔
1

1 − (𝛼 + 𝛽)
.

From the above we can also conclude that 𝛼 + 𝛽 part determines how quickly the

variance forecast converges to the unconditional variance. For the empirical meth-

ods of forecasting we refer the reader to [5, 17, 18]. In this paper we particularly
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are interested in methods based on the bootstrap replications which are more robust

in case of the distribution misspecification. We consider {𝜀t}t∈ℤ ∼GARCH(1, 1)
series observed in time points t = 1,… ,T with volatility process {𝜎t}. Then the

b−bootstrap replication of {𝜀1,… , 𝜀T} and {𝜎1,… , 𝜎T} is obtained by the follow-

ing procedure:

⎧
⎪⎪⎨⎪⎪⎩

z∗b1 ,… , z∗bT ∼ F̂{ẑt}
𝜎∗b 2
1 = 𝜎1

2

𝜀∗bt = z∗bt 𝜎∗b
t for t = 1,… ,T

𝜎∗b 2
t = 𝜔̂ + 𝛼̂𝜀∗b 2

t−1 + 𝛽𝜎∗b 2
t−1 for t = 2,… ,T

,

where F̂{ẑt} denotes the empirical distribution of estimated standardized

residuals {ẑt}. Having already this recipe we can proceed to the main algorithm of

GARCH(1, 1) k-step ahead forecast:

1. Estimate parameters 𝜔, 𝛼, 𝛽 on the basis of {𝜀1,… , 𝜀T}→ 𝜔̂, 𝛼̂, 𝛽.

2. Simulate bootstrap replications with respect to 𝜔̂, 𝛼̂, 𝛽 → {𝜀∗ b
1 ,… , 𝜀∗ b

T },

{𝜎∗ b
1 ,… , 𝜎∗ b

T }, b = 1,… ,B.

3. Re-estimate each b-bootstrap replication → 𝜔̂∗ b, 𝛼̂∗ b, 𝛽∗ b
, b = 1,… ,B.

4. For every b−bootstrap replication simulate k-period future b−bootstrap repli-

cation with respect to 𝜔̂∗ b, 𝛼̂∗ b, 𝛽∗ b → {𝜀∗ b
T+1,… , 𝜀∗ b

T+k}, {𝜎∗ b
T+1,… , 𝜎∗ b

T+k}, b =
1,… ,B.

5. Calculate T + j prediction value of the process and volatility as an average of

{𝜀∗ 1
T+j,… , 𝜀∗ B

T+j} and {𝜎∗ 1
T+j,… , 𝜎∗ B

T+j} respectively, j = 1,… , k.

6. Compute (1 − 𝛾)% prediction intervals

[L𝜀T+j , U𝜀T+j
] =

[
q𝜀T+j

(1 − 𝛼

2

)
, q𝜀T+j

(1 + 𝛼

2

)]
,

[L𝜎T+j,i, U𝜎T+j
] =

[
q𝜎T+j

(1 − 𝛼

2

)
, q𝜎T+j

(1 + 𝛼

2

)]
,

where q𝜀T+j (𝛾), q𝜎T+j (𝛾) are empirical 𝛾-quantiles of {𝜀∗ 1
T+j,… , 𝜀∗ B

T+j} and

{𝜎∗ 1
T+j,… , 𝜎∗ B

T+j} respectively, j = 1,… , k.

We mention, the problem of consistency of bootstrap for dependent and heavy-tailed

data is discussed in [13].

5 Applications

In this section we consider real time series from the Polish financial market, i.e.

PKN ORLEN (PKN) stocks quoted between 1999-11-26 and 2012-05-11 since the

the company has been quoted on the Warsaw Stock Exchange. More precisely, data
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Fig. 2 Data taken from the PKN shares with n = 3125 observations

consists of n = 3251 daily close prices (Fig. 2a). To the analysis we take daily log

returns of a given time series—see Fig. 2b. Before we proceed to the more advanced

methods, let us first look at the general summary statistics of the calculated log

returns Rt of PKN shares. We can see that the average values of our data are very

close to zero (mean = 0.00017302, median = 0.00) and its probability distribution

function is little bit skewed to the right (skewness = −0.046782) with rather spiky

shape (kurtosis = 4.9792).

We can also presume that data cannot be normally distributed since the excess

kurtosis is 1.9792 while for normal distribution it should be close zero. Therefore in

this case we can not use the classical ARCH/GARCH process introduced by Engle

[6] and Bollerslev [2]. On the other hand, if we look at the plot of the daily log-

returns (Fig. 2b) we can notice some volatility clustering in particular time periods.

Although sample ACF of daily log-returns (Fig. 3a) shows little correlations, the fur-

ther evidence of volatility clustering can be seen in the sample significant ACF of the

squares time series are visible in Fig. 3b. It is worth noting that the similar situation,

i.e. exhibition of correlation of squares is observable in ARCH/GARCH autocorre-

lation function. That is why in order to model the log returns one needs a stochastic

process with a nonconstant conditional variance. Fortunately, we know the class of

processes that take into account heteroscedasticity. Among others, GARCH models

have this property. It is important to investigate whether in our case the GARCH

model is a proper choice.

First of all, the Engle test has to be performed in order to check whether log

returns Rt exhibits the ARCH effect. We additionally apply the Ljung-Box test as the

auxiliary evidence of the autocorrelation presence (but simultaneously keeping in
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Fig. 3 Sample ACF of the PKN daily log returns

   1            1               0          31.986          3.8415
   5            1               0          207.55          11.07
  10           1               0          259.19          18.307

Lags Decision p-value critical valueTest stat.

(a) Engle test

   1            1               0                    3.841532.024
   5            1               0                    11.07290.95
  10           1               0                    18.307513.55

Lags Decision p-value critical valueTest stat.

(b) Ljung-Box test

Fig. 4 Results of testing autocorrelations for PKN log returns with significance level 𝛼 = 0.05,

the Decision = 1 denotes the rejection of H0 hypothesis (there is no correlation inside the analyzed

time series)

mind fact that these tests are mainly applied on the estimated standardized residuals

obtained from the fitted model). Results are presented in Fig. 4. It is clearly seen that

our data exhibit the ARCH effects in each of the 1–10 lags (all of the p-values are

equal to zero and also test statistics exceed the critical values). But this is not enough

to determine the GARCH order p, q.

Since we already know that GARCH model is a good choice to describe our data,

the next step is to determine the proper distribution of GARCH innovations and

p, q orders as well. We perform the maximum likelihood estimation assuming that

innovations are GED and Gaussian distributed. We also compare different orders of

the GARCH model, i.e. p = 1,… , 4 and q = 0,… , 4. There is no need to examine

higher p, q orders since it may only lead to the unnecessarily complicated models.

For each instance we calculate the maximum values for corresponding loglikelihood

function (LLF), Akaike Information Criterion (AIC, [1]), Bayesian Information Cri-

terion (BIC, [20]) and Hannan-Quinn Information Criterion (HQIC, [11]). The best

model should minimize AIC, BIC, HQIC and maximize LLF. In particular, if we

consider the models with equal number of parameters then it is enough to compare

only the maximum values of their log-likelihood functions. But, when we deal with

models of different orders for p and q then we use the information criterions (AIC,

BIC, HQIC) that make adjustment to the log-likelihood function to take into account

the number of parameters. The results for selecting ARCH/GARCH orders for PKN

daily log-returns are presented in Fig. 5. According to our approach, first we com-

pare maximized LLF for models with the same orders but different distributions.

It is easy to notice that for every pair (p, q), p = 1, 2, 3, 4 and q = 0, 1, 2, 3, 4, the

higher values for LLF occur with GED distributed innovations. On the other hand,
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Fig. 5 Information criteria with maximized LLF value

when we search for the minimal value among all models with respect to AIC, BIC

and HQIC, then in each case of information criterion we arrive to the GARCH(1, 1)

and GED distribution. As a result, for final estimation of PKN daily log-returns we

should choose the GARCH(1, 1) process with GED distributed innovations. In the

next step we can estimate the parameters of the selected model by using the Max-

imum Likelihood Estimation (MLE) with loglikelihood function corresponding to

the GED distribution (presented in the previous Section). We obtain the following

estimates for GARCH parameters𝜔, 𝛼, 𝛽 and shape parameter a of GED distribution:

𝜔̂ = 8.207805e−6
𝛼̂ = 0.04991
𝛽 = 0.93224
â = 1.5945

Moreover, in Fig. 6 we present the estimates of innovations of the {𝜀t}t∈ℤ process

and corresponding conditional standard deviations 𝜎t.

Standardized residuals {zt} have been also evaluated and according to GARCH

definition should exhibit no correlations since they are IID random variables. That is
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Fig. 6 Estimated innovations and conditional standard deviations together with original PKN daily

log returns after Maximum Likelihood estimation
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Fig. 7 Sample ACF of the estimated standardized residuals {ẑt} of PKN daily log returns

why, we plot the ACF of estimated standardized residuals ẑt (Fig. 7a) and its squares

ẑ2t (Fig. 7b).

However, if the model is correctly specified, then {ẑt} should be not only uncor-

related but also should behave like a GED random variables with zero scale and unit

variance in order to satisfy our assumptions. Hence, the histogram has been plotted

together with normal  (0, 1) density plot and GED density with unit variance and

estimated shape parameter a = 1.5945 (Fig. 8a). We observe that GED with shape

parameter a indeed fits better to estimated standardized residuals than Gaussian dis-

tribution. Let us check this statement by applying statistical tests. Namely, Jarque-

Bera (JB, [12]), Shapiro-Wilk (SW, [21]) and Kolmogorov-Smirnov (KS, [4]) have

been performed for evaluating normality of ẑt (Fig. 8b) and Chi-square (Chi2, [22])

and once again Kolmogorov-Smirnov (KS) for testing GED distribution (Fig. 8c).

Results are just as we expected, i.e. all tests reject the null hypothesis stating



GARCH Process with GED Distribution 99

parameter 
a=1.595

-4 -2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

 unit variance  
and shape

histogram of  z t
normal N(0,1) pdf
GED pdf with 

ˆ

(a) Histogram of {ẑt} together with specified
theoretical probability density functions

0.0437       0.0247
0.0010     113.7042

6499.090-e78.2

    JB             1        
    KS            1       
   SW            1        

Test Decision p-value Test stat.

(b) H0 : ẑt ∼ N (0, 1), t =
1, . . . , n

0.1310     0.0294
0.2707     6.3831

    KS            0 
    Chi2         0        

Test Decision p-value Test stat.

(c) H0 : ẑt ∼ GED, t =
1, . . . , n with unit variance and
a = 1.5945

Fig. 8 Histogram and results of distribution testing. Decision equal to 1 denotes the rejection of

the null hypothesis

normality while in remaining tests there was no evidence to reject the hypothesis

evaluating GED distribution. In order to check the testing and estimation procedures

for given data we simulate 1000 Monte Carlo (MC) GARCH(1, 1) samples with

GED distributed innovations and parameters obtained from the real time series, i.e.

𝜔 = 8.207805e−6, 𝛼 = 0.04991, 𝛽 = 0.93224, a = 1.5945. Then, for each MC sam-

ple we proceed through the same steps like in case of the original data with PKN

daily log-returns, namely:

Step 1 We reestimate each MC sample,

Step 2 We test for existence of correlations among newly estimated MC standard-

ized residuals ẑMC
t , MC = 1,… , 1000 using Ljung-Box and Engle’s ARCH test,

Step 3 We test the form of the distribution of ẑMC
t , MC = 1,… , 1000 whether

is Gaussian (Jarque-Bera (JB), Shapiro-Wilk (SW), Kolmogorov-Smirnov (KS)

test) or GED (Chi-square (Chi2) and Kolmogorov-Smirnov (KS) test).

The results are given respectively for each step:

Ad. Step 1 The estimates of GARCH parameters 𝜔, 𝛼, 𝛽 and also GED distribu-

tions shape a can be observed on the boxplots in Fig. 9 while obtained average
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Fig. 9 Boxplots of estimated parameters of 𝜔, 𝛼, 𝛽, a via maximum likelihood estimation based

on 1000 Monte Carlo samples

values of estimates are as follows:

𝜔̂ = 9.086671e−6
𝛼̂ = 0.04968
𝛽 = 0.9303
â = 1.5981

Ad. Step 2 Fig. 10b presents the average results for Engle’s ARCH and Ljung-Box

test. Additionally, to have overall view, we draw the boxplots of p-values as well

(Fig. 10a).

Ad. Step 3 Likewise in Step 2. we plot the boxplots of p-values (Fig. 11a) and give

average results of distribution testing (Fig. 11b and c).

To sum up, average maximum likelihood estimates obtained during MC sampling

are very similar to those based only on PKN daily log-returns. Moreover, the stan-

dardized residuals after MC estimation were uncorrelated since average p-values

corresponding to Engle ARCH and Ljung-Box tests exceed or were close to the sig-

nificance level 0.05, which is needed for accuracy of the model. While evaluating

statistical tests we also confirmed the correctness of the chosen GED distribution

and its shape parameter. Hence, results for MC estimation have given evidences that

assumed model, i.e. GARCH(1, 1) with GED distribution, fits well to our data. Hav-

ing already that knowledge, we can build model to make a forecast of PKN daily log

returns.

All of previous conclusions concerning the choice of the model were made in

order to underline the forecast performance. Namely, we intend to predict future

values of PKN daily log-returns 100-days ahead using analytical methods, Monte

Carlo (MC) or bootstrap as well. The prediction will be based on the 500 MC future

samples and also 500 bootstrap future replications. The results we present in Fig. 12.
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Fig. 10 Average results of Engle ARCH test for {ẑt} and Ljung-Box test for {ẑt} and {ẑ2t } obtained

during 1000 MC trials. For each trial, decision equal to 1 denotes the rejection of the null hypoth-

esis.eps
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Fig. 11 Average results of distribution testing. Decision equal to 1 denotes the rejection of the null

hypothesis HMC
0 , MC = 1,… , 1000
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Fig. 12 100 step ahead prediction of the PKN daily log-returns

6 Conclusions

In this paper we have examined two of the most popular econometric models useful

especially in the analysis of data with observable heteroscedastic behavior, namely

ARCH and GARCH. We have extended the classical models to the case with non-

Gaussian structure, i.e. we have introduced the ARCH/GARCH systems with Gen-

eralized Error distribution that is more adequate to real financial time series than

classical Gaussian. We have given the main properties of examined systems and pro-

posed testing and estimation procedures. In order to illustrate the theoretical results

we have examined real data from Polish financial market in the context of the pre-

sented methodology.
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A Residual Based Method for Fitting PAR
Models Using Fourier Representation
of Periodic Coefficients

Harry Hurd

Abstract In this paper we present a preliminary simulation study of a method for

estimating the Fourier coefficients of the periodic parameters of a periodic autore-

gressive (PAR) sequence. For motivational and comparative purposes, we first exam-

ine the estimation of Fourier coefficients of a periodic function added to white noise.

The method is based on the numerical minimization of mean squared residuals, and

permits the fitting of PAR models when the period T equals the observation size N.

For this paper, algorithms and simulations were coded in MATLAB, but an imple-

mentation will be available in the R package, perARMA.

1 Introduction

There exist many natural random processes in which the probability structure has a

periodic rhythm, which, in the strict sense means that the probability law is invariant

under shifts of length T . To be precise, a process Xt(𝜔) ∶ 𝛺 ⟶ 𝐂 or 𝐑 is called

periodically stationary with period T if for every n, collection of times t1, t2, ..., tn in

𝐙 or 𝐑, collection of Borel sets A1,A2, ...,An of 𝐂 or 𝐑,

Pr[Xt1+T ∈ A1,Xt2+T ∈ A2, ...,Xtn+T ∈ An]
= Pr[Xt1 ∈ A1,Xt2 ∈ A2, ...,Xtn ∈ An]. (1)

and there are no smaller values of T > 0 for which (1) holds. Synonyms for peri-
odically stationary include periodically non-stationary, cyclostationary (think of

cyclically stationary [1]), processes with periodic structure [6], and a few others.

If T = 1, the process is strictly stationary.

When the process is of second order, Xt ∈ L2(𝛺,F ,P) with t ∈ 𝐙, it is called

periodically correlated [2] (PC), or wide-sense cyclostationary with period T if
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m(t) = E{Xt} = m(t + T)∀t, and (2)

R(s, t) = E{XsXt} = R(s + T , t + T)∀s, t ∈ 𝐙 (3)

and there are no smaller values of T > 0 for which (2) and (3) hold. If T = 1, the

process is weakly (or wide-sense) stationary.

A second order stochastic sequence Xt is called PARMA (p, q) with period T if it

satisfies, for all t ∈ 𝐙,

p∑
j=0

𝜙j(t)Xt−j =
q∑

k=1
𝜃k(t)𝜉t−k + 𝜎(t)𝜀t (4)

where 𝜀t is a real valued orthogonal process and real parameters, 𝜙j(t) = 𝜙j(t +
T), 𝜃k(t) = 𝜃k(t + T) and 𝜎(t) = 𝜎(t + T) for every appropriate j, k. Sometimes we

write 𝜃0(t) = 𝜎(t). Under certain constraints of the parameters, expressed by (8)

below, these sequences are PC.

Here we will concentrate on the special case of periodic autoregressive (PAR)

sequences, for which
p∑
j=0

𝜙j(t)Xt−j = 𝜎(t)𝜀t t ∈ 𝐙, (5)

where 𝜀t is an orthogonal process, 𝜙0(t) ≡ 1, 𝜙j(t) = 𝜙j(t + T), and 𝜎(t) = 𝜎(t + T)
for every appropriate j. Although Pagano [8] initiated the recent notation and stream

of effort on PAR sequences, it is clear that Hannan [3] was aware of them.

Essential information may be obtained by blocking Xt into vectors 𝐗n of length

T as prescribed by Gladyshev [2]; then (5) becomes

L𝐗n −
p′∑
j=1

Uj𝐗n−j = 𝛤𝜀n (6)

where L has the form

L =

⎡
⎢⎢⎢⎢⎣

1 0 0 … 0
−𝜙1(1) 1 0 … 0
−𝜙2(2) −𝜙1(2) 1 … 0
⋮ ⋮ ⋮ ⋮ ⋮
−𝜙T−1(T − 1) −𝜙T−2(T − 1) −𝜙T−3(T − 1) … 1

⎤
⎥⎥⎥⎥⎦
, (7)

[Uj]nn′ = 𝜙jT+n−n′ (n),

and 𝜀n = [𝜀nT , 𝜀nT+1,… 𝜀nT+T−1]′. The matrix 𝛤 is similarly arranged as L except the

diagonal is {𝜎(0), 𝜎(1),… , 𝜎(T − 1)} and the condition for Xt to be PC is identical

to the condition for the vector sequence 𝐗n to be stationary, namely that
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det

[
L −

p′∑
j=1

Uj𝜆
j

]
≠ 0, |𝜆| ≤ 1 (8)

The condition (8) was expressed first by Pagano [8] for PAR, and then by Vecchia

[9] for general PARMA.

Of course the vector sequence 𝐗n could also be modeled by a vector AR, (VAR)

model, but we note that the number of real autoregressive parameters for a general

VAR(p) is on the order of pT2
because the autoregressive coefficients are T × T

matrices. But for PAR(p) the number is on the order of pT , which can still be sizable

when compared to the total length of the series available. See Pagano [8, p. 1316].

For a full PARMA given by (4) the parameter count is seen to be (p + q + 1)T . An

alternative parameterization of a PARMA system (see Jones and Breslford [6]) can

sometimes substantially reduce the number of parameters via representing the peri-

odically varying parameters by Fourier series. In the case of PAR we have

𝜙
Aj

j (t) = aj,1 +
[T∕2]∑
n=1

aj,2n cos(2𝜋nt∕T) + aj,2n+1 sin(2𝜋nt∕T) (9)

for t = 0, 1,… ,T − 1, j = 1,… , p. The inverse for the aj,n coefficients is given by

aj,1 =
1
T

T−1∑
t=0

𝜙j(t) (10)

aj,2n =
2
T

T−1∑
t=0

𝜙j(t) cos(2𝜋nt∕T)

aj,2n+1 =
2
T

T−1∑
t=0

𝜙j(t) sin(2𝜋nt∕T)

for n = 2,… , [T∕2], j = 1,… , p. We also denote

Aj = {aj,1, aj,2, aj,3,… , aj,2∗[T∕2]+1}′ (11)

to be a column vector.

When estimating the natural PAR coefficients {𝜙j(t), j = 1, 2,… , p, t = 0, 1,… ,T − 1 or

their Fourier coefficients, {Aj, j = 1, 2,… , p}, there is always an issue of the length of

the sample N relative to the period T . The two important cases are (1) N>>T and (2)

N = T . In the case N>>T , the usual method for estimating the coefficients is through

the Yule-Walker equations and the existence of multiple periods allows the sample

covariance to be estimated and used to solve for the unknown coefficients. In the case

of N = T , although the covariance of the sequence cannot be estimated in the usual

way, the Fourier coefficients can still be successfully estimated via ordinary least
squares (OLS) when the number of coefficients is small relative to N. In this note,
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for the purpose of background, we will briefly review the usual method for N>>T
and then, for N = T , present a simulation study that illustrates the effectiveness of

the OLS method. We also include, for the purpose of motivation and comparison,

results from application of the method to the estimation of Fourier coefficients of a

periodic function added to white noise.

The application of this idea to full PARMA models is of interest but not so

straightforward because of the way that the moving average parameters appear in

(4). Approaches to this problem are currently under study.

2 Determination of PAR Coefficients by Yule Walker
Method

The Yule-Walker method, which is based on minimizing mean square error of a linear

predictor, gives an important way for finding the coefficients {𝜙j(t) = 𝜙j(t + T), j =
1,… , p}.

For some fixed t, the linear predictor of Xt, based on {Xt−p,… ,Xt−1}, that mini-

mizes the MS error is given by the orthogonal projection of Xt onto M (t − 1; p) =
sp{Xs, s ∈ {t − p,… , t − 1}}. We denote

X̂t,t−1;p = (Xt|M (t − 1; p)), and set X̂t,t−1;0 = 0.

Specializing to real sequences we then need to determine the coefficients 𝛼
(t)
j,p in

X̂t,t−1;p =
p∑
j=1

𝛼
(t)
j,pXt−j.

The normal equations arising from the orthogonal projection are

E{[Xt − X̂t,t−1;p]Xs} = 0, s = t − p,… , t − 1

or in matrix form

⎡
⎢⎢⎣

R(t, t − 1)
⋮

R(t, t − p)

⎤
⎥⎥⎦
=
⎡
⎢⎢⎢⎣

R(t − 1, t − 1) ⋯ R(t − p, t − 1)
R(t − 1, t − 2) ⋯ R(t − p, t − 2)

⋮ ⋮ ⋮
R(t, t − p) ⋯ R(t − p, t − p)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

𝛼
(t)
1,p

𝛼
(t)
2,p
⋮
𝛼(t)
p,p

⎤
⎥⎥⎥⎥⎦

and in a shorter notation

𝐫t,t−1∶t−p = 𝐑t−1,p𝜶
(t)
p . (12)
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Any 𝜶
(t)
p = [𝛼(t)

1,p𝛼
(t)
2,p … 𝛼(t)

p,p]
′

that solves (12) (the normal equations) implements

the projection. If 𝐑t−1,p is invertible, the solution is unique but if not, then any

pseudo-inverse still yields a predictor that minimizes MS error. Other results using

this notation may be found in [4, 5].

Since for PC-T processes the covariances are invariant (see (3)) under shifts of

length T , then the prediction coefficients will be periodic in t with period T . So

for a sample of length KT , there are multiple occurrences (order of K) of products

Xt1+kTXt2+kT from which we estimate the covariances 𝐫t,t−1∶t−p and 𝐑t−1,p appearing

in (12). Specifically,

R̂K(t1, t2) =
1
K

K−1∑
k=0

[Xt1+kT − m̂t1,N][Xt2+kT − m̂t2,N] (13)

is the estimator for some entry R(t1, t2).
Then the estimator 𝜶̂

(t)
p is obtained by solving 𝐫̂t,t−1∶t−p = 𝐑̂t−1,p𝜶̂

(t)
p and estimates

for the Fourier coefficients Aj are obtained via (11). But to estimate R(t1, t2) in this

manner requires K to be of nontrivial size, some say at least 40. Here we seek a

methodology to estimate theAj when the number of periodsK available in the sample

is small, say K = 1.

3 OLS Fit for Periodic Function with Additive Noise

In order to develop some intuition for the PAR estimation problem, we first examine

the simpler case of estimating the Fourier coefficients of a periodic function added

to white noise. Given a trajectory of observations {X0,X2,… ,XN−1}, we wish to

minimize

Q(𝐀) =
N∑
t=1

[
Xt −

{
a1 +

[T∕2]∑
n=1

a2n cos(2𝜋nt∕T) + a2n+1 sin(2𝜋nt∕T)

}]2

(14)

where {a1, a2, ...} = 𝐀. Although there is a closed form solution due to the mutual

orthogonality of the set of sines and cosines, we do the minimization numerically to

prepare for the application to PAR, for which there is no closed form solution.

To see the idea in very simple example, suppose we wish to fit just the cos(2𝜋t∕T)
term toXt using ordinary least squares (OLS). The OLS estimate for a2 is well known

to be â2 =
2
T

∑T−1
t=0 Xt cos(2𝜋t∕T) and more generally

â2n =
2
T

T−1∑
t=0

Xt cos(2𝜋nt∕T) â2n+1 =
2
T

T−1∑
t=0

Xt sin(2𝜋nt∕T). (15)



110 H. Hurd

IfXt = 𝜁t + ft for t ∈ {0, 1,… ,N − 1}, where 𝜁t is Gaussian white noise with zero

mean and variance 𝜎2
noise, and ft = A cos(2𝜋t∕T), with T = N, then it is easy to see

that â2n and â2n+1 are Gaussian and that

E{â2} = A, E{â3} = 0, Var {â2} = Var {â3} =
𝜎2
noise

T
(16)

and

E{â2â3} = 4
T2

T−1∑
t=0

T−1∑
t′=0

cos(2𝜋t∕T) sin(2𝜋t′∕T)E{ZtZt′ }

= 4
T2

T−1∑
t=0

cos(2𝜋t∕T) sin(2𝜋t∕T) = 0. (17)

Simulated series of Xt for T = N = 1024, 𝜎noise = 1 and A = 0, 0.2, 0.4, 1.0 were

produced; note the coefficients of the Fourier series in (14) are therefore a1 = 0, a2 =
A and aj = 0, j ≥ 3.

These simulated series were processed by a MATLAB script that implements

the minimization with respect to 𝐀 of Q(𝐀), where the single trajectory

{X0,X2,… ,XN−1} is treated as fixed. Figure 1 (top panel) shows the signal ft =
A cos(2𝜋t∕T) with A = 1 in red, the sum Xt in blue and the estimated signal f̂t =
Â cos(2𝜋t∕T) in green. Although both are present, the difference between the red

and green curves is nearly imperceptible on the scale used.

The middle panel of Fig. 1 is the residual Zt of the OLS fit and the bottom panel is

the sample Fourier transform (computed via FFT) of the residual, showing no clear

residual periodic component.

Some questions that we can address by simulation: (1) Sample distribution of

parameter estimates; (2) Variance of estimates as function of N = T; (3) Variance of

estimates as function of number of frequencies searched.

Figures 2 and 3 are the sample histograms of â2 and â3 when the true values are

a2 = 0.2 and a3 = 0.0; in each, 𝜎noise = 1, N = T = 4096. These histograms were

produced by NSAMP = 500 replicates of the simulation-estimation process. In both

of these histograms the p-value of a Lilliefors test for normality were both ≥ 0.5,

indicating no evidence for rejection of normality. The Lilliefors test is a Kolmogorov-

Smirnov type of test for normality in which the null is normal with parameters esti-

mated from the data [7]; thus a large pL indicates the normality of the sample distri-

bution cannot be rejected.

The sample variances were 0.023 and 0.022, whereas the values computed via

(16) were 0.0221.

For each parameter, the empirical dependence of 𝜎̂ on N = T can be seen by

the least squares fit of a straight line, y = mx + b, to the pairs (N, 𝜎̂), where both N
and 𝜎̂ are transformed to a log scale, so the expected T−1∕2

dependence becomes

m = −1∕2.
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Fig. 1 Top panel red is true signal ft = A cos(2𝜋t∕T) with A = 1, blue is signal plus noise, green
is estimated signal where Â = 0.947 is determined by minimizing Q(𝐀) in (14). Middle panel is

residual series Zt = Xt − Â cos(2𝜋t∕T); bottom is FFT of Zt

Fig. 2 Estimates â2 with

a2 = 0.2, N = T = 4096,

𝜎noise = 1, 𝜇̂2 = 0.199,

𝜎̂2 = 0.023

0.15 0.2 0.25
0

10

20

30

40

50

60

70



112 H. Hurd

Fig. 3 Estimates â3 with

a2 = 0, N = T = 4096,

𝜎noise = 1, 𝜇̂3 = 0.001
𝜎̂3 = 0.022
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Fig. 4 Estimating a2 where

𝜎noise = 1, a2 = A = 0.4,

slope = −0.512
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Fig. 5 Estimating a3 where

𝜎noise = 1, a2 = A = 0.4,

slope = −0.483
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Figures 4 and 5 illustrate this fitting for parameters {a2, a3}, where for each para-

meter the values A = 0.4, N = {512, 1024, 2048, 4096} are used. The resulting slope

estimates arem = {−0.512,−0.483}, where blue lines connect the observed data and

the red lines are the least squares fit to the pairs (N, 𝜎̂).
In order to show the variability of parameter estimates when parameter values

are zero, we set parameters a1 through a17 to be active whereas only a2 = A = 0.4
was nonzero. Figure 6 shows the boxplots, based on 500 replicates, of all 17 para-

meters estimated. Box vertical boundaries are 25th and 75th percentiles and red line

is median. The ability to perceive non-nullity of parameters is visually clear. In the

next section we use the t-test for testing for this non-nullity.
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Fig. 6 Active parameters are {a1, a2,… , a17} with A = 0.4, N = 4096. Boxplots of parameter

estimates are based on 500 replicates

4 OLS fit of a Fourier Series Parametrization of a PAR
Model

For a PAR model as in (5), we designate the following estimating procedure as

parmsef. First we minimize the objective function

Q(𝐀) = 1
N − p

N∑
t=p+1

[
Xt −

p∑
j=1

𝜙𝐀
j (t)Xt−j

]2

(18)

where

𝜙𝐀
j (t) = aj,1 +

[T∕2]∑
n=1

aj,2 cos(2𝜋nt∕T) + aj,2n+1 sin(2𝜋nt∕T)

and we set N = T .

The OLS estimate of 𝐀 is the value of 𝐀 that minimizes Q(𝐀) for 𝐀 ∈ 𝐒1, the

parameter search space, defined as 𝐒1 = sp{ej ∈ 𝐑N ∶ j ∈ I𝐀} where I𝐀 is the set

of indexes identifying the active 𝐀 parameters. If 𝐀∗
minimizes the mean square

residuals Q, then denoting Ẑt as the residual sequence Ẑt = Xt −
∑p

j=1 𝜙
A∗
j

j (t)Xt−j, we

then determine the OLS estimate of 𝜎(t) by minimization of

Q𝜎(𝐁) =
1

N − p

N∑
t=p+1

[
Ẑ2
t − 𝜎2

B(t)
]2
, (19)
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using

𝜎B(t) =
∑
nj∈JB

b2nj cos(2𝜋njt∕T) + b2nj+1 sin(2𝜋njt∕T). (20)

The minimization is with respect to the active parameters bnj in the collection B =
{b0, b1, b2, b3,… , b2∗[T∕2]+1}.

To exercise this program we simulated a PAR(2) by specifying the coefficients

𝜙1(t) and 𝜙2(t), shown in Fig. 7 to be

𝜙1(t) = 1.1 + 0.6 cos 2𝜋t∕4096 (21)

𝜙2(t) = −0.3450 − 0.33 cos 2𝜋t∕4096 − 0.045 cos 4𝜋t∕4096 (22)

and 𝜎B(t) = 1.

Figure 8 is a simulated series of N = T = 4096 samples using 𝜙1(t) and 𝜙2(t)
given in (22) and illustrated in Fig. 7. Note the higher amplitudes and lower fre-

quency fluctuations at the beginning and end of the series in comparison to the mid-

dle section.

In the first experiment with the parmsef algorithm we set the seven autoregres-

sive parameters shown in Table 1 to be active where the true values, the sample mean

and standard deviations and the Lilliefors p-value, pL, are also given in the table.

The sample distributions for all seven of the estimated ajk parameters are found

to be consistent with the normal; six of these are shown in Fig. 9a–f. Additionally,

but not shown here, the sample distribution for the first few b parameters from (20)
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0.5

1

1.5

2
phi(:,1) for PAR2a run1

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−0.8
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−0.4

−0.2

0
phi(:,2) for PAR2a run1

Fig. 7 𝜙1(t) and 𝜙2(t) given in (22) for PAR2a run1, N = 4096
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Fig. 8 Sample series using

𝜙1(t) and 𝜙2(t) given in (22)

and illustrated in this figure

with N = 4096
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25
Sample series of PAR2a run1, N=4096

Table 1 Sample 𝜇 and 𝜎 with N = T = 4096 for selected Fourier coefficients estimated by

parmsef. Estimates are based on NSAMP = 100 replicates

Parameter Value 𝜇̂ 𝜎̂ pL t score p-value for

𝜇 = 0
a1,1 1.1 1.1 0.014 ≥0.5 785.7 0.0

a1,2 0.6 0.601 0.02 ≥0.5 300.5 0.0

a1,3 0.0 0.001 0.017 ≥0.5 0.588 0.721

a2,1 −0.345 −0.345 0.014 0.243 −246.4 0.0

a2,2 −0.330 −0.332 0.019 ≥0.5 −174.7 0.0

a2,3 0.0 −0.001 0.019 ≥0.5 0.526 0.701

a2,4 −0.45 −0.46 0.010 ≥0.5 −460 0.0

are consistent with normal and with sample variances similar to those of the a para-

meters. Finally, for the estimates of each parameter, we include the t-score and the

p-value of the t-test for 𝜇 = 0 based on NSAMP = 100 replicates. Although these

tests correctly differentiate the null from the nonnull parameters, we note that in the

usual time series analysis, there is only one sample available on which one can base

a test.

As in Figs. 4 and 5, for each estimated parameter the dependence of 𝜎̂ on the series

length T = N can be seen by fitting a straight line to the (N, 𝜎̂) as we did in Sect. 3 for

the OLS fit to a periodic function with additive noise. Values of 𝜎̂ were determined

for N = T = (512, 1024, 2048, 4096), and this fitting is illustrated in Fig. 10a, b for

parameters a11 and a14, producing values m = −0.524,−0.508 in the two cases; the

observed data are in blue and and the red line is the result of the OLS straight line

fit. The empirical dependence on N is slightly steeper than the expected m = −1∕2.
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(f) a2,4 = −0.45, μ̂ = −0.46, σ̂ = .01, pL ≥
0.5

Fig. 9 Sample distributions of parameter estimates with N = T = 4096 for selected Fourier coef-

ficients estimated by parmsef. Estimates are based on NSAMP = 100 replicates

As a check that the fit has successfully explained the correlation structure in the

simulated series, the empirical ACF and PACF were computed for the residual Ẑt
of the fit, resulting in the plots of Fig. 11. Both ACF and PACF are consistent with

uncorrelated noise.

Finally, to again see the effect of more coefficients with null values we made a

run in which parameters {a11,… , a19, a21,… , a28} (a total of 17) were estimated,

although only 5 had nonzero true values. Figure 12 illustrates the ability to visually

perceive the non zero values among the 17 from a sample of 100 simulations.

For each parameter, Table 2 presents true values and estimated means and stan-

dard deviations; in addition, the p-value of the Lilliefors test, pL, t-scores and

p-values for t-tests for 𝜇 = 0 are given. As in Table 1, the t-tests correctly differenti-

ate the null from the nonnull parameters, but the more important issue, not addressed
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Fig. 10 OLS fit (red) of y = mx + b to 𝜎̂ (blue) as function of N = T = (512, 1024, 2048, 4096)
using log10 scales
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Fig. 11 PAR2a run1 N = 4096, ACF, PACF of PARMSEF residuals from one realization
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Fig. 12 Boxplots for

PAR2a run1, N = T = 1024.

Active parameters are

{a11,… , a19, a21,… , a28}
(17 total), all null except

a11 = 1.1, a12 = 0.6, a21 =
−0.345, a22 = −0.33, a24 =
−0.045. Boxplots of

parameter estimates are

based on 100 replicates
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Table 2 Sample 𝜇 and 𝜎 for 17 selected Fourier coefficients estimated by parmsef. NSAMP =
100, N = T = 1024
Parameter Value 𝜇̂ 𝜎̂ pL t score pv for 𝜇 = 0
a11 1.10 1.09 0.03 ≥0.50 382.90 0.00

a12 0.60 0.60 0.03 ≥0.50 189.79 0.00

a13 0.00 0.00 0.04 ≥0.50 −0.77 0.44

a14 0.00 0.00 0.04 ≥0.50 0.15 0.89

a15 0.00 0.00 0.04 ≥0.50 0.016 0.99

a16 0.00 0.00 0.04 0.389 −0.83 0.41

a17 0.00 0.00 0.04 0.422 0.33 0.74

a18 0.00 0.00 0.04 0.440 −0.11 0.91

a19 0.00 0.00 0.02 ≥0.50 1.43 0.16

a21 −0.34 −0.35 0.03 ≥0.50 −128.00 0.00

a22 −0.33 −0.32 0.03 0.211 −93.63 0.00

a23 0.00 0.00 0.04 ≥0.50 0.85 0.40

a24 −0.04 −0.05 0.04 0.265 −11.44 0.00

a25 0.00 0.00 0.04 0.278 −0.46 0.65

a26 0.00 0.00 0.04 ≥0.50 0.22 0.83

a27 0.00 0.00 0.03 0.492 −0.03 0.97

a28 0.00 0.00 0.04 0.214 0.98 0.33

here, is the ability of these tests to detect non null parameters from only one sample.

Methods for accomplishing this may be based on (1) computed parameter variances

(2) estimates of parameter variances based on bootstrapping or simulation.
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5 Conclusions

We demonstrated the use of an OLS minimization to estimate the Fourier coefficients

of the periodic parameters in a periodic autoregressive model. This method is shown

to be effective even when the sample size N is small relative to the period T , say

N = T . Simulations show that the empirical distributions of parameter estimates are

typically normal and standard errors diminish as N−1∕2
as expected. Topics for future

research include (1) improvement of computational methods (2) direct (parametric)

computation of estimator standard errors to facilitate the identification of important

Fourier coefficients (3) use of simulation or bootstrapping to characterize empirical

distributions of parameter estimates (4) extension to PARMA.
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1 Introduction

Vectorial periodically correlated random processes (PCRP) are the adequate
mathematical model for the analysis of stochastic recurrence structure of vectorial
physical quantities, for example, density of electrical and magnetic fields, wind and
sea flow speeds, displacement, speed and acceleration of vibration. There is a
number of methods for vectorial processes analysis [1–4]: (a) component-wise one,
where a vector on the plane is considered as a pair of numbers, which corresponds
to its projections in the Cartesian coordinates; (b) a method of rotary components
based on the substitution of the vector by a complex number and representation of
time series in the form of superposition of round oscillations with left and right
polarization; (c) complex-value one, where vector is considered as a complex
number which real and imaging parts coincide with the Cartesian coordinates
vector; (d) vector-algebraic one, where probability characteristics of the random
processes are introduced by means of operations, accepted in Euclid algebra space
[1, 4].

In the case of the last method application main characteristics are: vector of
mean function, covariance function, which is defined as expected value of the
tensor product of the random vector processes taken at moments of time t and t+ u,
and spectral density, that is the Fourier transformation of covariance function on the
time lag u. Covariance and spectral tensors are corresponding tensor-functions.
Each of the invariants allows one to develop one or another property of vectorial
random processes independently of the coordinate system, where its components
are measured.

Covariance and spectral properties of wind and sea flow speeds were investi-
gated, using the characteristics of vectorial stationary random processes in mono-
graphs [1, 4]. Vectorial PCRP methods for investigation of stochastic recurrence
structure of those quantities were proposed in [2]. It is shown in [5, 6] that using the
vectorial algebraic PCRP-approach to vibration signals analysis allows one to
improve the efficiency of mechanical system damage detection as well as separation
of their sources. The importance of a detail analysis of probabilistic characteristics
properties of the given class of random processes proceeds from the above
mentioned.

The analysis of the first and the second order moment functions of vectorial
PCRP, linear and the quadratic invariant properties of covariance tensor-functions
and also the harmonic analysis of these quantities are the aim of this paper.
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2 The First and the Second Order Moment Functions

Definition 2.1 Vectorial random process ξ ⃗ tð Þ= ıξ⃗1 tð Þ+ ȷξ⃗2 tð Þ, where ı,⃗ ȷ ⃗are basis
unit vectors, is called periodically correlated if its mean function m⃗

ξ
! tð Þ=Eξ ⃗ tð Þ is a

periodical vector

m⃗
ξ
! tð Þ= m⃗

ξ
! t+Tð Þ, ð1Þ

and covariance function b
ξ
! t, uð Þ=E ξ

!◦
tð Þ⊗ ξ

!◦
t+ uð Þ, where ξ

!◦
tð Þ= ξ

!
tð Þ

− m⃗
ξ
! tð Þ, and ⊗ is a sign of tensor product,1 is called the time-periodical

tensor-function

b
ξ
! t,uð Þ= b

ξ
! t+T,uð Þ. ð2Þ

For fixed t and u the quantity b
!

ξ
! t, uð Þ is a dyadic tensor. It follows from the

matrix representation of a tensor

b
ξ
! t, uð Þ= bξ1 t, uð Þ bξ2ξ1 t, uð Þ

bξ1ξ2 t, uð Þ bξ2 t, uð Þ
� �

ð3Þ

and condition (2) that auto-covariance functions of vector components ξ
!

tð Þ
bξ1 t, uð Þ and bξ2 t, uð Þ, and also their cross-covariance functions bξ1ξ2 t, uð Þ and
bξ2ξ1 t, uð Þ are periodic functions of time. Covariance tensor function b

ξ
! t, uð Þ

describes correlations between directed fluctuations of vector ξ ⃗ tð Þ at the moments of
time t and t + u, and the variance d

ξ
! t, 0ð Þ= b

ξ
! t, 0ð Þ that is a tensor function of

time t, gives numerical estimate of such variations intensity and their orientation in
a chosen coordinate system.
Random processes ξ1 tð Þ and ξ2 tð Þ are periodically correlated and can be represented
in the form [7–12]:

ξ1 tð Þ= ∑
k∈ Z

ξ 1ð Þ
k tð Þeikω0t, ð4Þ

1The second-rank tensor, which components are defined by the elements of the matrix
axbx axby
aybx ayby

� �
is called the tensor product a ⃗⊗ b ⃗ of the two vectors a⃗= axı +⃗ ayȷ ⃗ and

b ⃗= bxı +⃗ byȷ ⃗ (of the first-rank tensor).

Vectorial Periodically Correlated Random Processes … 123



ξ2 tð Þ= ∑
k ∈ Z

ξ 2ð Þ
k tð Þeikω0t. ð5Þ

It follows from (4) and (5) that

bξp t, uð Þ= ∑
n∈ Z

einω0t ∑
k∈ Z

R pð Þ
k− n, k uð Þeikω0u, ð6Þ

bξpξq t, uð Þ= ∑
n∈ Z

einω0t ∑
k∈ Z

R p, qð Þ
k− n, k uð Þeikω0u, ð7Þ

where R pð Þ
kl uð Þ=Eξ

◦
pð Þ
k tð Þξ

◦
pð Þ
l t+ uð Þ, R p, qð Þ

kl uð Þ=Eξ
◦

pð Þ
k tð Þξ

◦
pð Þ
l t+ uð Þ. Conditions of

auto- and cross-covariance functions periodicity for random processes ξ1 tð Þ and

ξ2 tð Þ, obtained from (6) and (7), are independent. If stationary components ξ 1ð Þ
k tð Þ

and ξ 2ð Þ
k tð Þ do not correlate the cross-covariance functions bξpξq t, uð Þ degenerates

into a quantity independent of time t—cross-covariance functions of the jointly
stationary random process:

bξpξq t, uð Þ= ∑
k∈ Z

R p, qð Þ
kk uð Þeikω0u.

Definition 2.2 Vectorial random processes with periodic in time mean function
m⃗ξ ⃗ tð Þ and spur of matrix (3) will be called the vector diagonal PCRP.

2.1 The Vector of a Mean Function

Since m⃗
ξ ⃗
tð Þ= ım⃗ξ1 tð Þ+ ȷm⃗ξ2 tð Þ, expression (1) means, that mean functions of each

vector component ξ1 tð Þ and ξ2 tð Þ are also periodic in time: mξ1 tð Þ=mξ1 t+Tð Þ,
mξ2 tð Þ=mξ2 t+ Tð Þ.

It follows from (4) and (5) that

mξ1 tð Þ= ∑
l∈ Z

m 1ð Þ
l eilω0t =m 1ð Þ

0 + ∑
l∈ Z

m̃ 1ð Þ
l cos lω0t+ m̃̃ 1ð Þ

l sin lω0t
h i

,

mξ2 tð Þ= ∑
l∈ Z

m 2ð Þ
l eilω0t =m 2ð Þ

0 + ∑
l∈ Z

m̃ 2ð Þ
l cos lω0t+ m̃̃ 2ð Þ

l sin lω0t
h i

,
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where

m kð Þ
l =Eξ kð Þ

l tð Þ, m kð Þ
l =

1
2

m̃ kð Þ
l − im̃̃ kð Þ

l

h i
, ∀ l≠ 0 k=1, 2. ð8Þ

Thus, we have the following:

Proposition 2.1 The vector of the mean function is represented by the sum of
vectors

m⃗
ξ ⃗
tð Þ= m⃗0 + ∑

l∈N
m⃗l xl, ylð Þ,

where m⃗0 =m 1ð Þ
0 ı +⃗m 2ð Þ

0 ȷ ⃗ is some constant vector while the coordinates of the
vectors m⃗l xl, ylð Þ change harmonically in time, that is

xl tð Þ=Al sin lω0t+φlð Þ, yl tð Þ=Bl cos lω0t+ψ lð Þ, ð9Þ

where Al =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̃ 1ð Þ

l

� �2
+ m̃̃ 1ð Þ

l

� �2
r

, Bl =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̃ 2ð Þ

l

� �2
+ m̃̃ 2ð Þ

l

� �2
r

,

φl = arctg m̃ 1ð Þ
l m̸̃̃ 1ð Þ

l

� �
, ψ l = arctg m̃ 2ð Þ

l m̸̃̃ 2ð Þ
l

� �
, and m̃ kð Þ

l , m̃̃ kð Þ
l are defined by

expression (8).
Consider separately harmonic components of vector m⃗

ξ
! tð Þ. Formulae (9) are

parametric equations of some lines at the Oxy plane that are called the Lissajous
figures [13]. Represent these equations in the form

xl
Al

= sin lω0t+φlð Þ, yl
Bl

= sin lω0t+ψ lð Þ

and assume that φl −ψ l =2kπ , so φl =2kπ +ψ l. Then

xl
Al

= sin lω0t+ψ lð Þ, yl
Bl

= sin lω0t+ψ lð Þ.

Subtracting these equations we obtain

yl =
Bl

Al
xl.

Since xlj j≤Al, ylj j≤Bl, this formula is an equation of the interval with beginning
at the point with coordinates −Al; −Blð Þ and ending at point Al;Blð Þ.
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If φl −ψ l = kπ , where k is an odd number, we obtain

yl = −
Bl

Al
xl,

that is an equation of the interval with beginning at −Al;Blð Þ and ending at
Al; −Blð Þ.
Suppose φl −ψ l = k π

2 . Then

xl
Al

= cos lω0t+ψ lð Þ, yl
Bl

= sin lω0t+ψ lð Þ.

After squaring and summation we obtain the equation of an ellipse, which axes
are defined by the squares of harmonic components amplitudes:

x2l
A2
l
+

y2l
B2
l
=1. ð10Þ

If Al =Bl, then (10) is an equation of a circle.
Equation

x2l
A2
l
+

y2l
B2
l
=1− cos 2lω0t+ φl +ψ lð Þ½ � cos φl −ψ lð Þ

in a general case describes some central closed curve which characteristic sizes are
defined by amplitudes Al and Bl and by phases φl and ψ l.

Taking into account that the curve according to the mean function m⃗
ξ
! tð Þ is the

superposition of the curves, the parametric equation of each of them has the form
(9), we have:

Proposition 2.2 The parametric equations of the closed curve for the vector mean
function m⃗

ξ
! tð Þ on the Oxy plane is represented in the form

x tð Þ=m 1ð Þ
0 + ∑

l∈ℕ
Al cos lω0t+φlð Þ,

y tð Þ=m 2ð Þ
0 + ∑

l∈ℕ
Bl cos lω0t+ψ lð Þ.

8><
>:

The concrete form of the mean function curve is defined by amplitudes Al, Bl

and phases φl, ψ l of the harmonic components. This form reflects ipso facto

properties of random vector ξ
!

tð Þ deterministic part from the geometric point of
view.
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2.2 The Covariance Tensor-Function

Analogically to the matrices for dyadic vector we can define the operation of
transposition of covariance tensor-function (3), which is reduced to changing the
rows by columns with saving their numbers. Thus we have

bT
ξ ⃗
t, uð Þ= bξ1 t, uð Þ bξ2ξ1 t, uð Þ

bξ1ξ2 t, uð Þ bξ2 t, uð Þ
� �

.

Since

bξp t, − uð Þ= bξp t− u, uð Þ, bξpξq t, − uð Þ= bξqξp t− u, uð Þ, ð11Þ

then

b
ξ
! t, − uð Þ= bT

ξ
! t− u, uð Þ.

Taking into account that sum b
ξ
! t, uð Þ+ bT

ξ
! t, uð Þ is symmetrical matrix and

difference b
ξ
! t, uð Þ− b

ξ
! t, uð Þ is asymmetrical matrix, we have:

Proposition 2.3 The covariance tensor-function b
ξ
! t, uð Þ in the only way can be

represented in the form of the sum of symmetrical bC
ξ
! t, uð Þ and asymmetrical

bA
ξ
! t, uð Þ parts:

b
ξ
! t, uð Þ= bC

ξ
! t, uð Þ+ bA

ξ
! t, uð Þ,

where

bC
ξ
! t, uð Þ= bξ1 t, uð Þ 1

2 bξ1ξ2 t, uð Þ+ bξ2ξ1 t, uð Þ	 

1
2 bξ1ξ2 t, uð Þ+ bξ2ξ1 t, uð Þ	 


bξ2 t, uð Þ
� �

, ð12Þ

bA
ξ
! t, uð Þ= 0 1

2 bξ1ξ2 t, uð Þ− bξ2ξ1 t, uð Þ	 

1
2 bξ2ξ1 t, uð Þ− bξ1ξ2 t, uð Þ	 


0

� �
. ð13Þ

Corollary 2.1 The transpositions of the symmetrical and asymmetrical parts of the
covariance tensor-function b

ξ
! t, uð Þ satisfy the relations:

bC
ξ
! t, uð Þ

� �T
= bC

ξ
! t, uð Þ, bA

ξ
! t, uð Þ

� �T
= − bA

ξ
! t, uð Þ, ð14Þ
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bC
ξ
! t, − uð Þ= bC

ξ
! t− u, uð Þ, bA

ξ
! t, − uð Þ= bA

ξ
! t− u, uð Þ. ð15Þ

We obtain relations (14) after transpositions of (12 ) and (13). Relations (15)
follow from Eq. (11).

All the components of tensor function bA
ξ
! t, uð Þ at u=0 are equal to zero, that’s

why the variance tensor for vectorial PCRP is symmetrical.

3 The Linear Invariants of the Covariance
Tensor-Function

Tensor components in general case depend on the choice of the coordinate system,
however there are functions of tensor components that are invariant to the coor-
dinate system choice. Such functions are called tensor invariants [3].

Definition 3.1 The expected value of the scalar product of vector
ξ ⃗ tð Þ= ξ1 tð Þı +⃗ ξ2 tð Þȷ ⃗ and vector ξ ⃗ t+ uð Þ= ξ1 t+ uð Þı +⃗ ξ2 t+ uð Þȷ ⃗ is called the linear
invariant I1 t, uð Þ, i.e.

I1 t, uð Þ=E ξ ⃗
◦

tð Þ ⋅ ξ ⃗
◦

t+ uð Þ
� �

=E ξ⃗
◦

tð Þ










 ξ ⃗
◦

t+ uð Þ










 cos ∠ ξ ⃗
◦

tð Þ ξ ⃗
◦

t+ uð Þ
� �

, ð16Þ

where ∠ ξ⃗
◦

tð Þ ξ⃗
◦

t+ uð Þ is an angle between ξ ⃗
◦

tð Þ and ξ⃗
◦

t+ uð Þ.
The invariant I1 t, uð Þ can be considered as a measure of vectors ξ⃗

◦

tð Þ and ξ⃗
◦

t+ uð Þ
collinearity.

Proposition 3.1 The linear invariant I1 t, uð Þ is defined by the sum of main diagonal
elements of the symmetrical part bC

ξ
! t, uð Þ of the covariance tensor function

b
ξ
! t, uð Þ.

Proof The scalar product of the vectors ξ
!

tð Þ and ξ
!

t+ uð Þ is given by

ξ ⃗
◦

tð Þ ξ ⃗
◦

t+ uð Þ= ξ
◦

1
tð Þ i!+ ξ

◦

2
tð Þ j!

� �
ξ
◦

1
t+ uð Þ i!+ ξ

◦

2
t+ uð Þ j!

� �

= ξ
◦

1
tð Þ ξ

◦

1
t+ uð Þ+ ξ

◦

2
tð Þ ξ

◦

2
t+ uð Þ.
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It follows from the above that

I1 t, uð Þ= bξ1 t, uð Þ+ bξ2 t, uð Þ. ð17Þ

Corollary 3.1 The time changes of the least square value of vector ξ⃗
◦

tð Þ are defined
by the time changes of the invariant I1 t, uð Þ at u=0, i.e.

E ξ ⃗
◦

tð Þ











2

= I1 t, 0ð Þ= bξ1 t, 0ð Þ+ bξ2 t, 0ð Þ.
The last equation follows from (16) and (17) at u=0.
Taking into account the property of symmetry of PCRP covariance (11) we

obtain:

I1 t, − uð Þ= I1 t− u, uð Þ. ð18Þ

Definition 3.2 The expected value of the skew product of vectors ξ ⃗
◦

tð Þ and ξ⃗
◦

t+ uð Þ
is called the linear invariant D t, uð Þ, i.e.

D t, uð Þ=E ξ ⃗
◦

tð Þ× ξ ⃗
◦

t+ uð Þ
� �

=E ξ ⃗
◦

tð Þ










 ξ ⃗
◦

t+ uð Þ










 sin ∠ ξ ⃗
◦

tð Þ ξ ⃗
◦

t+ uð Þ
� �

. ð19Þ
Skew product of vectors is an analogue to the vector product (defined in a

three-dimensional space), but contrary to the last one it is not a vector but a scalar.

Note that in the case, when the angle between vectors ξ ⃗
◦

tð Þ and ξ⃗
◦

t+ uð Þ is equal
to zero, the invariant D t, uð Þ is equal to zero too. Therefore this quantity is often
called a rotation indicator.

Proposition 3.2 The linear invariant D t, uð Þ defines the properties of asymmetrical
part bAξ ⃗ t, uð Þ of covariance tensor-function bξ ⃗ t, uð Þ.

Proof For skew product of vectors ξ⃗
◦

tð Þ and ξ ⃗
◦

t+ uð Þ we have

ξ ⃗
◦

tð Þ× ξ ⃗
◦

t+ uð Þ= ξ
◦

1
tð Þı +⃗ ξ

◦

2
tð Þȷ ⃗

� �
× ξ

◦

1
t+ uð Þı +⃗ ξ

◦

2
t+ uð Þȷ ⃗

� �

= ξ
◦

1
tð Þ ξ

◦

2
t+ uð Þ− ξ

◦

2
tð Þ ξ

◦

1
t+ uð Þ.

Hence

D t, uð Þ=E ξ ⃗
◦

tð Þ× ξ ⃗
◦

t+ uð Þ
� �

= bξ1ξ2 t, uð Þ− bξ2ξ1 t, uð Þ.
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On the other hand the asymmetric part bA
ξ ⃗
t, uð Þ can be represented in the form

bA
ξ ⃗
t, uð Þ= 1

2
D t, uð Þ 0 1

− 1 0

� �

Thus, the quantity D t, uð Þ is the invariant of asymmetrical part of covariance
tensor-function and fully defines its properties.

Since bξ1ξ2 t, − uð Þ= bξ2ξ1 t− u, uð Þ then

D t, − uð Þ= −D t− u, uð Þ. ð20Þ

It follows from this equation that D t, 0ð Þ=0. The invariants (16) and (19) for the
stationary random processes are time-independent, i.e. they are functions of time
lag u only, that is I1 t, uð Þ= I1 uð Þ and D t, uð Þ=D uð Þ. It follows from (18) and (20)
that in this case I1 uð Þ is an even function and D uð Þ is an odd function:
I1 − uð Þ= I1 uð Þ, D − uð Þ=D uð Þ.

Taking into account expressions (16) and (19), we can interpret the invariants

I1 t, uð Þ and D t, uð Þ as the covariance functions of collinear ξ ⃗
◦
jj
tð Þ and orthogonal

ξ ⃗
◦
⊥

tð Þ components of the vectorial process ξ ⃗ tð Þ:

I1 t, uð Þ=E ξ ⃗
◦

tð Þ ⋅ ξ ⃗
◦
jj
tð Þ

( )
=E ξ ⃗

◦
jj
tð Þ ⋅ ξ ⃗

◦

t+ uð Þ
( )

, ð21Þ

D t, uð Þ=E ξ ⃗
◦

tð Þ ⋅ ξ ⃗
◦
⊥

t+ uð Þ
( )

=E ξ ⃗
◦
⊥

tð Þ ⋅ ξ⃗
◦

t+ uð Þ
( )

. ð22Þ

In the general case functions (21) and (22) change their sign, so when inter-
preting them it is advisable to consider their absolute values as coefficients of
intensity of the respective changes, and the signs as coefficients of predominant
direction of these changes.

Absolute value of I1 t, uð Þj j characterizes the intensity of collinear changes of

random vector ξ ⃗
◦

tð Þ and the sign of I1 t, uð Þ characterizes their direction: if the sign is
positive the changes of vector in interval t, t+ u½ � are mainly unidirectional, and if
the sign is negative—multidirectional.

A skew product sign depends on the relative positions of ξ ⃗
◦

tð Þ and ξ ⃗
◦

t+ uð Þ,
because the angle is measured from ξ ⃗

◦

tð Þ to ξ ⃗
◦

t+ uð Þ. If the sign is positive then for

fixed moments of time t and t+ u vector ξ ⃗
◦

t+ uð Þ is located to the left from ξ⃗
◦

tð Þ, and
if the sign is negative—to the right.
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It follows from the mentioned above that invariants I1 t, uð Þ and D t, uð Þ of
covariance tensor (3) allow one to analyze collinear and orthogonal variability of

random processes ξ ⃗
◦

tð Þ independently of the chosen coordinate system.

4 The Quadratic Invariant Properties

Form a quadratic form on the base of the symmetrical part (12) of the covariance
tensor-function (3):

f x, yð Þ= ax2 + 2bxy+ cy2, ð23Þ

where

a= bξ1 t, uð Þ, b= 1
2

bξ1ξ2 t, uð Þ+ bξ2ξ1 t, uð Þ	 

, c= bξ2 t, uð Þ.

Definition 4.1 The quantity

I2 t, uð Þ= a b
b c










= bξ1 t, uð Þbξ2 t, uð Þ− 1

4
bξ1ξ2 t, uð Þ+ bξ2ξ1 t, uð Þ	 
2

which is matrix (12) determinant, is called discriminant of quadratic form (23) or
quadratic invariant of the symmetrical part bC

ξ
! t, uð Þ of the covariance

tensor-function.
The quadratic invariant I2 t, uð Þ is a determining feature for quadratic form (23)

classification [14]. Suppose a= bξ1 t, uð Þ≠ 0.
Then

f x, yð Þ= 1
a

a2x2 + 2abxy+ acy2
� �

=
1
a

ax+ byð Þ2 + I2 t, uð Þy2
h i

. ð24Þ

If I2 t, uð Þ>0 and a≥ 0, formula (24) is positive definite f x, yð Þ≥ 0, and if
a<0—negative definite f x, yð Þ≤ 0. The surface z= f x, yð Þ (Fig. 1a) is cup-shaped
and its isolines f x, yð Þ= k are elipses.

If I2 t, uð Þ=0, f x, yð Þ equals to zero on the line ax+ by=0, and outside the line it
has the same sign as a. The surface z= f x, yð Þ in this case is gutter-shaped and its
isolines are straight lines (Fig. 1b).

For negative I2 t, uð Þ<0 expression (24) is a subtraction of squares and it can be
represented in the form
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f x, yð Þ= 1
a

ax+ b+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− I2 t, uð Þ

p� �
y

h i
ax+ b−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− I2 t, uð Þ

p� �
y

h i
. ð25Þ

This function equals zero on the lines

ax+ b+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− I2 t, uð Þ

p� �
y=0, ax+ b−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− I2 t, uð Þ

p� �
y=0.

These lines cross through the coordinate system origin and divide the plane Oxy
into four sections. When passing to the opposite section one of the multipliers
changes its sign and the other does not change it, that’s why the quadratic form
changes its sign too (Fig. 1c).

If c= bξ2 t, uð Þ≠ 0 expression (23) can be rewritten as

f x, yð Þ= 1
c

cax2 + 2bcxy+ c2y2
� �

=
1
c

bx+ cyð Þ2 + I2 t, uð Þx2
h i

.

The properties of this function are similar to the properties of (24).
If a= c=0, then f x, yð Þ=2bxy and

I2 t, uð Þ= −
1
4

bξ1ξ2 t, uð Þ+ bξ2ξ1 t, uð Þ	 
2 < 0.

In this case function z= f x, yð Þ is alternating.
Proposition 4.1 The quadratic invariant of variance tensor-function I2 t, 0ð Þ is
positive definite I2 t, 0ð Þ≥ 0.

Proof Since for zero time lag bξ1ξ2 t, 0ð Þ= bξ2ξ1 t, 0ð Þ then

I2 t, 0ð Þ= bξ1 t, 0ð Þbξ2 t, 0ð Þ− b2ξ1ξ2 t, 0ð Þ.
Taking into account the known inequality

b2ξ1ξ2 t, 0ð Þ≤ bξ1 t, 0ð Þbξ2 t, 0ð Þ

we conclude that I2 t, 0ð Þ≥ 0.

Fig. 1 Typical graphic dependences of the quadratic form z= f x, yð Þ
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Corollary 4.1 The quadratic form (24) of the variance tensor-function is positive
definite f x, yð Þ½ �u=0 ≥ 0.

The quadratic form is a cup-shaped, if the strong inequality
b2ξ1ξ2 t, 0ð Þ< bξ1 t, 0ð Þbξ2 t, 0ð Þ is satisfied, and it has a qutter-shaped form, if
b2ξ1ξ2 t, 0ð Þ= bξ1 t, 0ð Þbξ2 t, 0ð Þ. In the first case the isolines are ellipses with respective
directions of their axes, and in the second case—the straight lines.

In the general case auto-covariance functions bξ1 t, uð Þ and bξ2 t, uð Þ for some
t and u have the values with different signs, so condition I2 t, uð Þ≥ 0 is not satisfied.
It means that depending on the variations characters of auto- and cross-covariance
functions in time t and lag u it is possible to obtain the given above types of
quadratic forms. Note, that in the case of alternating quadratic forms the isolines
f x, yð Þ= c are hyperbolas.

Write quadratic form f x, yð Þ in the matrix form:

f x, yð Þ=XTbC
ξ
! t, uð ÞX,

where XT = x y½ �. Matrix bC
ξ
! t, uð Þ is real and symmetric, that’s why such orthog-

onal transformation

X = b ̃Cξ ⃗ t, uð ÞS, ð26Þ

exists, where ST = s ν½ �, that reduces this form to a canonical one, that contains
squares of variables s and ν only, i.e.

f s, νð Þ= λ1s2 + λ2ν
2 = STΛS,

where Λ is the diagonal matrix:

Λ=
λ1 0
0 λ2

� �
.

Numbers λ1 and λ2 are eigen-values of matrix bC
ξ
! t, uð Þ, namely

bC
ξ
! t, uð ÞS= λS,

or

bC
ξ
! t, uð Þ− λE

� �
S=0,

where E is unity matrix.
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Write the last matrix equation in the form of the system of equations:

bξ1 t, uð Þ− λ
	 


s+
1
2

bξ1ξ2 t, uð Þ+ bξ2ξ1 t, uð Þ	 

ν=0,

1
2

bξ1ξ2 t, uð Þ+ bξ2ξ1 t, uð Þ	 

s+ bξ2 t, uð Þ− λ

	 

ν=0.

This system has nonzero solutions in case its determinant equals zero:

bξ1 t, uð Þ− λ 1
2 bξ1ξ2 t, uð Þ+ bξ2ξ1 t, uð Þ	 


1
2 bξ1ξ2 t, uð Þ+ bξ2ξ1 t, uð Þ	 


bξ2 t, uð Þ− λ














= λ2 − bξ1 t, uð Þ+ bξ2 t, uð Þ	 

λ+ bξ1 t, uð Þbξ2 t, uð Þ− 1

4
bξ1ξ2 t, uð Þ+ bξ2ξ1 t, uð Þ	 
2 = 0.

Its solutions are:

λ1, 2 t, uð Þ= 1
2

bξ1 t, uð Þ+ bξ2 t, uð Þ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bξ1 t, uð Þ−
− bξ2 t, uð Þ

" #2

+
bξ1ξ2 t, uð Þ+
+ bξ2ξ1 t, uð Þ

" #2
vuut

2
64

3
75

=
1
2

I1 t, uð Þ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I21 t, uð Þ− 4I2 t, uð Þ

q� �
.

ð27Þ

It is clear, that

λ1 t, uð Þ+ λ2 t, uð Þ= I1 t, uð Þ, λ1 t, uð Þλ2 t, uð Þ= I2 t, uð Þ.

Orthogonal transformation (22) is a transition to a new system of coordinates
Osν , obtained by rotating the old system Oxy by angle α (Fig. 2).

It can be represented as

x= s cos α− ν sin α,

y= s sin α+ ν cos α.

Fig. 2 Coordinate points on
the plane in the old and new
coordinate systems
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Substituting these ratios into (20) we obtain

f s, νð Þ= s2 a cos2 α+ b sin 2α+ c sin2 α
� �

+ ν2 a sin 2α− b sin 2α+ c cos2 α
� �

+ sν 2b cos2 α− sin2 α
� �

+2 c− að Þ cos α sin α
	 


.

Component depending on product sν is absent if

2b cos2 α− sin2 α
� �

+2 c− að Þ sin α cos α=0.

From this we obtain

tg2α=
2b
a− c

.

Taking into account the foregoing we can formulate now the following
proposition.

Proposition 4.2 The symmetrical part of the covariance tensor-function bC
ξ
! t, uð Þ

in its own basis Osv which is obtained by rotating the old system Oxy by angle

α=
1
2
arctg

bξ2ξ1 t, uð Þ+ bξ2ξ1 t, uð Þ
bξ1 t, uð Þ− bξ2 t, uð Þ ,

is represented by the diagonal matrix

bC
ξ
! t, uð Þ= λ1 t, uð Þ 0

0 λ2 t, uð Þ
� �

,

where λ1 t, uð Þ and λ2 t, uð Þ are its eigen-values, defined by expression (27).
Central quadratic curve

λ1 t, uð Þs2 + λ2 t, uð Þν2 = 1. ð28Þ

can be put in accordance with the symmetrical part of tensor bC
ξ
! t, uð Þ in its own

basis. Invariants λ1 t, uð Þ and λ2 t, uð Þ, that are eigen-values of symmetrical tensor
bC
ξ
! t, uð Þ, define typical sizes of this curve. They are the extreme values of

covariance functions in the orthogonal direction. The inverse quantities define
squares of the major and minor axes of the central quadratic curve. If λ1 t, uð Þ>0
and λ2 t, uð Þ>0, the tensor curve is an ellipse, and if λ1 t, uð Þ= λ2 t, uð Þ—circle. If
λ1 t, uð Þ>0 and λ2 t, uð Þ<0, then (28) is an equation of hyperbola.

Proposition 4.3 The quadratic curve (28) is an ellipse or a circle if I2 t, uð Þ>0,
and it is a hyperbola if I2 t, uð Þ<0. If I2 t, uð Þ=0, curve (28) degenerates into
straight lines.
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Taking into account (17) and (21) we have

I21 t, uð Þ− 4I2 t, uð Þ= bξ1 t, uð Þ− bξ2 t, uð Þ	 
2 + bξ1ξ2 t, uð Þ+ bξ2ξ1 t, uð Þ	 
2 ≥ 0.

Thus,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I21 t, uð Þ− 4I2 t, uð Þ

p
is a real function ∀ t, u∈R. From (27) it follows that

for I2 t, uð Þ>0λ1 t, uð Þ>0 and λ2 t, uð Þ>0. If I2 t, uð Þ<0 then λ1 t, uð Þ>0 and
λ2 t, uð Þ<0. In case I2 t, uð Þ=0, λ2 t, uð Þ=0.

Corollary 4.2 The quadratic curve (28) accordant with the variance
tensor-function for all moment time t, for which I2 t, 0ð Þ≠ 0, is an ellipse or a circle.

Proposition 4.4 The values of covariance function bC
ξ
! t, uð Þ of the vector projec-

tions onto the direction that forms angle β with own basis are calculated by formula:

bβ t, uð Þ= λ1 t, uð Þ cos2 β+ λ2 t, uð Þ sin2 β. ð29Þ
Proof The vector projections onto chosen direction are given by

η tð Þ= η1 tð Þ cos β+ η2 tð Þ sin β,

where η1 tð Þ and η2 tð Þ are the vector components in own basis. The random pro-
cesses η1 tð Þ and η2 tð Þ are non-correlated. Then

bβ t, uð Þ=E η
◦

1
tð Þ η◦ t+ uð Þ= bη1 t, uð Þ cos2 β+ bη2 t, uð Þsin2β.

Taking into account that bη1 t, uð Þ= λ1 t, uð Þ and bη2 t, uð Þ= λ2 t, uð Þ, we obtain
formula (29).

Note, that analyzing real oscillations for the sake of suitable physical interpre-
tation it is worth considering linear invariants I1 and D, that determine properties of
vectorial processes without preliminary finding the covariance function tensor own
basis. Using invariants I1 and I2 we can determine this basis, define the form of the
tensor central quadratic curve, its typical sizes and orientation of its own basis.
Based on these investigations the typical dependences of the given characteristics
on time t and lag u are obtained, and the conclusions about the properties of objects,
that are the sources of analyzed vector oscillations, can be drawn.

5 The Harmonic Analysis of the Covariance
Tensor-Functions and Their Invariants

Assume that

ZT

0

bξp t, uð Þ



 


dt<∞, p=1, 2, ð30Þ
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ZT

0

bξpξq t, uð Þ



 


dt<∞, p, q=1, 2. ð31Þ

The auto-covariance bξp t, uð Þ and cross-covariance function can be represented
as Fourier series

bξp t, uð Þ= ∑
k∈ Z

B
ξpð Þ

k uð Þeikω0t, bξpξq t, uð Þ= ∑
k∈ Z

B
ξpξqð Þ

k uð Þeikω0t. ð32Þ

Proposition 5.1 If inequalities (30) and (31) are satisfied, the covariance
tensor-function bξ ⃗ t, uð Þ is represented by Fourier series

b
ξ ⃗
t, uð Þ= ∑

k∈ Z
b

ξ ⃗ð Þ
k uð Þeikω0t = bξ

⃗

0 uð Þ+ ∑
k∈N

C
ξ ⃗ð Þ

k uð Þ cos kω0t+ S
ξ ⃗ð Þ

k uð Þ sin kω0t
� �

,

where

b
ξ ⃗ð Þ

0 uð Þ= B ξ1ð Þ
0 uð Þ B ξ1ξ2ð Þ

0 uð Þ
B ξ2ξ1ð Þ
0 uð Þ B ξ2ð Þ

0 uð Þ

" #
, b

ξ ⃗ð Þ
k uð Þ= B ξ1ð Þ

k uð Þ B ξ1ξ2ð Þ
k uð Þ

B ξ2ξ1ð Þ
k uð Þ B ξ2ð Þ

k uð Þ

" #

C
ξ ⃗ð Þ

k uð Þ= C ξ1ð Þ
k uð Þ C ξ1ξ2ð Þ

k uð Þ
C ξ2ξ1ð Þ
k uð Þ C ξ2ð Þ

k uð Þ

" #
, S

ξ ⃗ð Þ
k uð Þ= S ξ1ð Þ

k uð Þ S ξ1ξ2ð Þ
k uð Þ

S ξ2ξ1ð Þ
k uð Þ S ξ2ð Þ

k uð Þ

" #
,

and b
ξ ⃗ð Þ

k uð Þ= 1
2 C

ξ ⃗ð Þ
k uð Þ− iS

ξ ⃗ð Þ
k uð Þ

� �
, k≠ 0. The quantities are called the covari-

ance Fourier tensor-component [2]. Taking into account the equalities

B
ξpð Þ

k − uð Þ=B
ξpð Þ

k uð Þe− ikω0u, B
ξpξqð Þ

k − uð Þ=B
ξqξpð Þ

k uð Þe− ikω0u,

for Fourier tensor-components we obtain

b
ξ ⃗ð Þ

k − uð Þ= b
ξ ⃗ð Þ

k uð Þ
� �T

e− ikω0u, ð33Þ

C
ξ ⃗ð Þ

k − uð Þ= C
ξ ⃗ð Þ

k uð Þ
� �T

cos kω0u− S
ξ ⃗ð Þ

k uð Þ
� �T

sin kω0u, ð34Þ

S
ξ ⃗ð Þ

k − uð Þ= C
ξ ⃗ð Þ

k uð Þ
� �T

sin kω0u+ S
ξ ⃗ð Þ

k uð Þ
� �T

cos kω0u. ð35Þ
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Corollary 5.1 If the inequalities (30) and (31) are satisfied, the symmetrical and
asymmetrical parts of the covariance tensor-function are represented by Fourier
series

bA
ξ ⃗
t, uð Þ= ∑

k∈ Z
b ̃

ξ ⃗ð Þ
k uð Þeikω0t = b ̃

ξ ⃗ð Þ
0 uð Þ+ ∑

k∈N
C ̃

ξ ⃗ð Þ
k uð Þ cos kω0t+ S̃

ξ ⃗ð Þ
k uð Þsinkω0t

� �
,

bC
ξ ⃗
t, uð Þ= ∑

k∈ Z
b ̃̃

ξ ⃗ð Þ
k uð Þeikω0t = b ̃̃

ξ ⃗ð Þ
0 uð Þ+ ∑

k∈N
C ̃̃

ξ ⃗ð Þ
k uð Þ cos kω0t+ S̃̃

ξ ⃗ð Þ
k uð Þsinkω0t

� �
,

where

b ̃
ξ ⃗ð Þ

0 uð Þ=
B ξ1ð Þ
0 uð Þ 1

2 B ξ1ξ2ð Þ
0 uð Þ+B ξ2ξ1ð Þ

0 uð Þ
h i

1
2 B ξ1ξ2ð Þ

0 uð Þ+B ξ2ξ1ð Þ
0 uð Þ

h i
B ξ2ð Þ
0 uð Þ

2
64

3
75,

b ̃̃
ξ ⃗ð Þ

0 uð Þ=
0 1

2 B ξ1ξ2ð Þ
0 uð Þ−B ξ2ξ1ð Þ

0 uð Þ
h i

1
2 B ξ1ξ2ð Þ

0 uð Þ−B ξ2ξ1ð Þ
0 uð Þ

h i
0

2
64

3
75,

C̃
ξ ⃗ð Þ

k uð Þ=
C ξ1ð Þ
k uð Þ 1

2 C ξ1ξ2ð Þ
k uð Þ+C ξ2ξ1ð Þ

k uð Þ
h i

1
2 C ξ1ξ2ð Þ

k uð Þ+C ξ2ξ1ð Þ
k uð Þ

h i
C ξ2ð Þ
k uð Þ

2
64

3
75,

C̃̃
ξ ⃗ð Þ

k uð Þ=
0 1

2 C ξ1ξ2ð Þ
k uð Þ−C ξ2ξ1ð Þ

k uð Þ
h i

1
2 C ξ2ξ1ð Þ

k uð Þ−C ξ1ξ2ð Þ
k uð Þ

h i
0

2
64

3
75,

S̃
ξ ⃗ð Þ

k uð Þ=
S ξ1ð Þ
k uð Þ 1

2 S ξ1ξ2ð Þ
k uð Þ+ S ξ2ξ1ð Þ

k uð Þ
h i

1
2 S ξ1ξ2ð Þ

k uð Þ+ S ξ2ξ1ð Þ
k uð Þ

h i
S ξ2ð Þ
k uð Þ

2
64

3
75,

S̃̃
ξ ⃗ð Þ

k uð Þ=
0 1

2 S ξ1ξ2ð Þ
k uð Þ− S ξ2ξ1ð Þ

k uð Þ
h i

1
2 S ξ1ξ2ð Þ

k uð Þ− S ξ2ξ1ð Þ
k uð Þ

h i
0

2
64

3
75,

and b ̃
ξ ⃗ð Þ

k uð Þ= 1
2

C̃
ξ ⃗ð Þ

k uð Þ− iS̃
ξ ⃗ð Þ

k uð Þ
� �

, b ̃̃
ξ ⃗ð Þ

k uð Þ= 1
2

C̃̃
ξ ⃗ð Þ

k uð Þ− iS̃̃
ξ ⃗ð Þ

k uð Þ
� �

, k≠ 0.

ð36Þ
Conditions (33)–(35) for symmetric and asymmetric parts of tensor-components

are written as

b ̃
ξ ⃗ð Þ

k − uð Þ= b ̃
ξ ⃗ð Þ

k uð Þe− ikω0u, C̃
ξ ⃗ð Þ

k − uð Þ= C̃
ξ ⃗ð Þ

k uð Þ cos kω0u−S ̃
ξ ⃗ð Þ

k uð Þ sin kω0u,

ð37Þ
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S ̃
ξ ⃗ð Þ

k − uð Þ= C̃
ξ ⃗ð Þ

k uð Þ sin kω0u+ S̃
ξ ⃗ð Þ

k uð Þ cos kω0u, ð38Þ

b ̃̃
ξ⃗ð Þ

k uð Þ= − b̃̃
ξ ⃗ð Þ

k uð Þe− ikω0u, C̃̃
ξ ⃗ð Þ

k − uð Þ= −C ̃̃
ξ ⃗ð Þ

k uð Þ cos kω0u+ S̃̃
ξ ⃗ð Þ

k uð Þ sin kω0u, ð39Þ

S̃̃
ξ ⃗ð Þ

k − uð Þ= −C ̃̃
ξ ⃗ð Þ

k uð Þ sin kω0u−S ̃̃
ξ ⃗ð Þ

k uð Þ cos kω0u. ð40Þ

It can be easily seen, that linear invariants of the Fourier tensor-components of
symmetric part

B I1ð Þ
k uð Þ=B ξ1ð Þ

k uð Þ+B ξ2ð Þ
k uð Þ,

C I1ð Þ
k uð Þ=C ξ1ð Þ

k uð Þ+C ξ2ð Þ
k uð Þ, S I1ð Þ

k uð Þ= S ξ1ð Þ
k uð Þ+ S ξ2ð Þ

k uð Þ,

are respective Fourier coefficients of linear invariant I1 t, uð Þ, i.e.

I1 t, uð Þ= ∑
k ∈ Z

B I1ð Þ
k uð Þe− ikω0t =B I1ð Þ

0 uð Þ+ ∑
k∈N

C I1ð Þ
k uð Þ cos kω0t+ S I1ð Þ

k uð Þ sin kω0t
h i

.

They define the amplitudes and phases of harmonic components of the expected

value of scalar product for vectors ξ ⃗
◦

tð Þ and ξ ⃗
◦

t+ uð Þ—covariance function of
complementary components of vector ξ ⃗ tð Þ, and if u=0—the amplitudes and phases
of harmonic components of vector ξ ⃗ tð Þ fluctuations intensity.

It follows from (37) and (38) that

B I1ð Þ
k − uð Þ=B I1ð Þ

k uð Þe− ikω0u, C I1ð Þ
k − uð Þ=C I1ð Þ

k uð Þ cos kω0u− S I1ð Þ
k uð Þ sin kω0u,

S I1ð Þ
k − uð Þ=C I1ð Þ

k uð Þ sin kω0u+ S I1ð Þ
k uð Þ cos kω0u.

Similarly, invariants

B Dð Þ
k uð Þ=B ξ1ξ2ð Þ

k uð Þ−B ξ2ξ1ð Þ
k uð Þ,

C Dð Þ
k uð Þ=C ξ1ξ2ð Þ

k uð Þ−C ξ2ξ1ð Þ
k uð Þ, S Dð Þ

k uð Þ= S ξ1ξ2ð Þ
k uð Þ− S ξ2ξ1ð Þ

k uð Þ

define harmonic parameters of the expected value of the skew product for vectors

ξ ⃗
◦

tð Þ and ξ ⃗
◦

t+ uð Þ, i.e. correlations between orthogonal components of vectorial

process ξ ⃗
◦

tð Þ:

D t, uð Þ= ∑
k∈ Z

B Dð Þ
k uð Þeikω0t =B Dð Þ

0 uð Þ+ ∑
k∈N

C Dð Þ
k uð Þ cos kω0t+ S Dð Þ

k uð Þ sin kω0t
h i

.
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Taking into account (39) and (40) we have:

B Dð Þ
k − uð Þ= −B Dð Þ

k uð Þe− ikω0u, C Dð Þ
k − uð Þ= −C Dð Þ

k uð Þ cos kω0u+ S Dð Þ
k uð Þ sin kω0u,

S Dð Þ
k − uð Þ= −C Dð Þ

k uð Þ sin kω0u− S Dð Þ
k uð Þ cos kω0u.

Zero coefficient B I1ð Þ
0 uð Þ is time average of the invariant I1 t, uð Þ. It is an even

function of lag u: B I1ð Þ
0 − uð Þ=B I1ð Þ

0 uð Þ. Zero coefficient B Dð Þ
0 uð Þ is time average of

the invariant D t, uð Þ. It is odd function: B Dð Þ
0 − uð Þ= −B Dð Þ

0 uð Þ. These quantities can
be considered as linear invariants of the stationary approximation of the vector
PCRP [2].

Note, that Fourier coefficients of the symmetrical part of covariance
tensor-function are tensor-functions of lag u and we can also analyze their prop-
erties on the base of their quadratic invariants. For example, for zero
tensor-component (35) we have

I02 uð Þ=B ξ1ð Þ
0 uð ÞB ξ2ð Þ

0 uð Þ− 1
4

B ξ1ξ2ð Þ
0 uð Þ+B ξ1ξ2ð Þ

0 uð Þ
h i2

. ð41Þ

This quantity is a quadratic form discriminant

g x, yð Þ=B ξ1ð Þ
0 uð Þx2 + B ξ1ξ2ð Þ

0 uð Þ+B ξ2ξ1ð Þ
0 uð Þ

h i
xy+B ξ2ð Þ

0 uð Þy2. ð42Þ

Proposition 5.2 The quadratic invariant (41) at u=0 is positive definite I 0ð Þ
2 0ð Þ≥ 0.

Proof For u=0 we have

I 0ð Þ
2 0ð Þ=B ξ1ð Þ

0 0ð ÞB ξ2ð Þ
0 0ð Þ− B ξ1ξ2ð Þ

0 0ð Þ
h i2

. ð43Þ
Consider the inequality

α ξ
◦

1
tð Þ+ ξ

◦

2
tð Þ

� �2

≥ 0.

For its expected value we have

E α ξ
◦

1
tð Þ+ ξ

◦

2
tð Þ

� �2

= α2bξ1 t, 0ð Þ+2αbξ1ξ2 t, 0ð Þ+ bξ2 t, 0ð Þ≥ 0.

Taking into account Fourier series (32) after time-averaging we obtain

α2Bξ1 0ð Þ+2αBξ1ξ2 0ð Þ+Bξ2 0ð Þ≥ 0.
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Hence it follows that

B ξ1ξ2ð Þ
0 0ð Þ

h i2
≤Bξ1 0ð ÞBξ2 0ð Þ

and accordingly I 0ð Þ
2 0ð Þ≥ 0.

Corollary 5.2 The quadratic form at u=0 is positive definite g x, yð Þ½ �u=0 ≥ 0.
Formula (42) can be written as

g x, yð Þ= 1

B ξ1ð Þ
0 uð Þ

B ξ1ð Þ
0 uð Þx+ 1

2
B ξ1ξ2ð Þ
0 uð Þ+B ξ2ξ1ð Þ

0 uð Þ
h i

y
� �2

+ I 0ð Þ
2 uð Þy2

" #
,

when B ξ1ð Þ
0 uð Þ≠ 0 and in the form

g x, yð Þ= 1

B ξ2ð Þ
0 uð Þ

1
2

B ξ1ξ2ð Þ
0 uð Þ+B ξ2ξ1ð Þ

0 uð Þ
h i

x+B ξ2ð Þ
0 uð Þy

� �2
+ I 0ð Þ

2 uð Þx2
" #

.

when B ξ2ð Þ
0 uð Þ≠ 0. It follows from these equalities that g x, yð Þ½ �u=0 ≥ 0.

The matrix (36) is real and symmetric. Taking into consideration the results
obtained in Sect. 4 now we formulate the following corollaries:

Corollary 5.3 The symmetrical part of the tensor-component function b ̃
ξ ⃗ð Þ

0 uð Þ in its
own basis Osv, obtained by rotation of the old system Oxy by angle

α=
1
2
arctg

B ξ1ξ2ð Þ
0 uð Þ+B ξ2ξ1ð Þ

0 uð Þ
B ξ1ð Þ
0 uð Þ−B ξ2ð Þ

0 uð Þ

is represented by the diagonal matrix

b ̃
ξ ⃗ð Þ

0 uð Þ= λ 0ð Þ
1 uð Þ 0
0 λ 0ð Þ

2 uð Þ

" #
,

where λ 0ð Þ
1 uð Þ and λ 0ð Þ

2 uð Þ are its eigen-values, defined by expression

λ 0ð Þ
1, 2 uð Þ= 1

2
I 0ð Þ
1 uð Þ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I 0ð Þ
1 uð Þ

h i2
− 4I 0ð Þ

2 uð Þ
r" #

ð44Þ

and I 0ð Þ
1 uð Þ=B ξ1ð Þ

0 uð Þ+B ξ2ð Þ
0 uð Þ.
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Corollary 5.4 The quadratic curve

λ 0ð Þ
1 uð Þs2 + λ 0ð Þ

2 uð Þv2 = 1 ð45Þ

is an ellipse or a circle if I 0ð Þ
2 uð Þ>0 and it is a hyperbola if I 0ð Þ

2 uð Þ<0. If I 0ð Þ
2 uð Þ=0,

curve (45) degenerates into a straight line.
Since

I 0ð Þ
1 uð Þ

h i2
− 4I 0ð Þ

2 uð Þ= B ξ1ð Þ
0 uð Þ−B ξ2ð Þ

0 uð Þ
h i2

+ B ξ1ξ2ð Þ
0 uð Þ+B ξ2ξ1ð Þ

0 uð Þ
h i2

≥ 0,

then it follows from (44) that λ1 uð Þ>0 and λ2 uð Þ>0 if I 0ð Þ
2 uð Þ>0, and λ1 uð Þ>0

but λ2 uð Þ<0 if I 0ð Þ
2 uð Þ<0. For I 0ð Þ

2 uð Þ=0 we obtain λ 0ð Þ
1 uð Þ= 1

2 I
0ð Þ
1 uð Þ and

λ 0ð Þ
2 uð Þ=0.

Corollary 5.5 Quadratic curve (45) at u=0 is an ellipse or a circle if I2 0ð Þ≠ 0.
Note. It follows from (43) that I2 0ð Þ=0 only in the case in which the variance of

one of the vector components ξ1 tð Þ or ξ2 tð Þ is equal to zero.
Taking into account relationships (24), (30) and (31) we can obtain formulae for

Fourier coefficients of nonlinear invariant I2 t, uð Þ.
Since

bξp t, uð Þbξq t, uð Þ= ∑
k∈ Z

eikω0t ∑
l∈ Z

B
ξpð Þ

l uð ÞB ̄ ξqð Þ
l− k uð Þ,

bξpξq t, uð Þbξqξp t, uð Þ= ∑
k∈ Z

eikω0t ∑
l∈ Z

B
ξpξqð Þ

l uð ÞB ̄ ξqξpð Þ
l− k uð Þ,

so

I2 t, uð Þ= ∑
k∈ Z

B I2ð Þ
k uð Þeikω0t, ð46Þ

where

B I2ð Þ
k uð Þ= ∑

l∈ Z
B ξ1ð Þ
l uð ÞB ̄ ξ2ð Þ

l− k uð Þ− 1
4

B ξ1ξ2ð Þ
l uð ÞB̄ ξ1ξ2ð Þ

l− k uð Þ+
+B ξ2ξ1ð Þ

l uð ÞB̄ ξ2ξ1ð Þ
l− k uð Þ−

− 2B ξ1ξ2ð Þ
l uð ÞB ̄ ξ2ξ1ð Þ

l− k uð Þ

2
664

3
775

2
664

3
775. ð47Þ

Thus we can formulate the following proposition:

Proposition 5.2 The quadratic invariant I2 t, uð Þ is represented by Fourier series
(46), the coefficients of which are defined by formula (47).
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Note, that the expression defining a quadratic invariant is nonlinear, that’s why

the formula for B I2ð Þ
0 uð Þ differs from expression (41) for I 0ð Þ

2 uð Þ that defines the

quadratic invariant of the symmetrical part of tensor-component function b
ξ ⃗ð Þ

0 uð Þ.
Corollary 5.6 Zero Fourier coefficient B I2ð Þ

0 uð Þ at u=0 is positive definite

B I2ð Þ
0 uð Þ≥ 0.

We get the inequality B I2ð Þ
0 uð Þ≥ 0 after time-averaging of inequality I2 t, 0ð Þ≥ 0.

It is difficult to obtain the formulae for Fourier coefficients of invariants λ1 t, uð Þ
and λ2 t, uð Þ in common case because they are defined by a square root of the
invariants I1 t, uð Þ and I2 t, uð Þ. But using the equalities λ1 t, uð Þ+ λ2 t, uð Þ= I1 t, uð Þ
and λ1 t, uð Þλ2 t, uð Þ= I2 t, uð Þ we easily obtain the nonlinear equations determined
these coefficients.

Taking into account Fourier series

λ1 t, uð Þ= ∑
k∈ Z

B λ1ð Þ
k uð Þeikω0t, λ2 t, uð Þ= ∑

k∈ Z
B λ2ð Þ
k uð Þeikω0t ð48Þ

we have proposition:

Proposition 5.3 The invariants λ1 t, uð Þ and λ2 t, uð Þ are represented by Fourier
series (48) and their Fourier coefficients are defined by equations

B λ1ð Þ
k uð Þ+B λ2ð Þ

k uð Þ=B I1ð Þ
k uð Þ, ð49Þ

∑
l∈ Z

B λ1ð Þ
l+ k uð ÞB ̄ λ2ð Þ

l uð Þ=B I2ð Þ
k uð Þ. ð50Þ

Zero coefficients B λ1ð Þ
0 uð Þ and B λ2ð Þ

0 uð Þ determine the time average of the
parameters of the quadratic curve (28). We should note that the non-linearities of
Eqs. (49) and (50) cause that these quantities do not coincide with the invariants of

zero tensor-component function B̃
ξ ⃗ð Þ

0 uð Þ, defined by expression (44).

6 Invariant Covariance Analysis of Modulated Signals

Covariance tensor-components structure can be specified using the harmonic rep-
resentation of vector components (4) and (5). So, in the general case we have:

B Ið Þ
k uð Þ= ∑

l∈ Z
R ξ1ð Þ
l− k, l uð Þ+R ξ2ð Þ

l− k, l uð Þ
h i

eikω0u, ð51Þ

B Dð Þ
k uð Þ= ∑

l∈ Z
R ξ1ξ2ð Þ
l− k, l uð Þ−R ξ2ξ1ð Þ

l− k, l uð Þ
h i

eikω0u. ð52Þ
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Equations (51) and (52) can be significantly simplified for a quadrature model, if
only the first jointly stationary components in relationships (4) and (5) are non-zero

ξ 1ð Þ
±1 tð Þ= 1

2
μc tð Þ∓iμs tð Þ½ �, ξ 2ð Þ

±1 tð Þ= 1
2
νc tð Þ∓iνs tð Þ½ �.

So vector ξ ⃗ tð Þ components are written as:

ξ1 tð Þ= μc tð Þcosω0t+ μs tð Þsinω0t, ξ2 tð Þ= νc tð Þcosω0t+ νs tð Þsinω0t.

On the base of these expressions we obtain

bξ1 t, uð Þ=B ξ1ð Þ
0 uð Þ+C ξ1ð Þ

2 uð Þcos2ω0t+ S ξ1ð Þ
2 uð Þsin2ω0t,

bξ2 t, uð Þ=B ξ2ð Þ
0 uð Þ+C ξ2ð Þ

2 uð Þcos2ω0t+ S ξ2ð Þ
2 uð Þsin2ω0t,

bξpξq t, uð Þ=B
ξpξqð Þ

0 uð Þ+C
ξpξqð Þ

2 uð Þcos2ω0t+ S
ξpξqð Þ

2 uð Þsin2ω0t,

and

B ξ1ð Þ
0 uð Þ= 1

2
Rμc uð Þ+Rμs uð Þ	 


cosω0 +R−
μcμs

uð Þsinω0u, ð53Þ

C ξ1ð Þ
2 uð Þ= 1

2
Rμc uð Þ−Rμs uð Þ	 


cosω0 +R+
μcμs

uð Þsinω0u, ð54Þ

S ξ1ð Þ
2 uð Þ=R+

μcμs
uð Þcosω0u+

1
2

Rμs uð Þ−Rμc uð Þ	 

sinω0u, ð55Þ

B ξ2ð Þ
0 uð Þ= 1

2
Rνc uð Þ+Rνs uð Þ½ �cosω0 +R−

νcνs
uð Þsinω0u, ð56Þ

C ξ2ð Þ
2 uð Þ= 1

2
Rνc uð Þ−Rνs uð Þ½ �cosω0 +R+

νcνs
uð Þsinω0u, ð57Þ

S ξ2ð Þ
2 uð Þ=R+

νcνs
uð Þcosω0u+

1
2
Rνs uð Þ−Rνc uð Þ½ �sinω0u, ð58Þ

B ξ1ξ2ð Þ
0 uð Þ= 1

2
Rμcνc uð Þ+Rμsνs uð Þ	 


cosω0 +
1
2

Rμcνs uð Þ−Rμsνc uð Þ	 

sinω0u, ð59Þ

C ξ1ξ2ð Þ
2 uð Þ= 1

2
Rμcνc uð Þ−Rμsνs uð Þ	 


cosω0 +
1
2

Rμcνs uð Þ+Rμsνc uð Þ	 

sinω0u, ð60Þ

S ξ1ξ2ð Þ
2 uð Þ= 1

2
Rμcνs uð Þ+Rμsνc uð Þ	 


cosω0 +
1
2

Rμsνs uð Þ−Rμcνc uð Þ	 

sinω0u, ð61Þ
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where Rμc, s uð Þ, Rνc, s uð Þ, Rμc, sνc, s uð Þ are auto- and cross-covariance functions of
random processes μc tð Þ, μs tð Þ, νc tð Þ and νs tð Þ, and R±

μcμs
uð Þ, R±

νcνs
uð Þ—odd and

even parts of the cross-covariance functions. Formulae for covariance components

B ξ2ξ1ð Þ
0 uð Þ, C ξ2ξ1ð Þ

2 uð Þ and S ξ2ξ1ð Þ
2 uð Þ are similar to (59)–(61) with the difference in

order of correlations between modulating processes μc tð Þ, μs tð Þ and νc tð Þ, νs tð Þ.
On the base of ratios (53)–(61) we obtain expressions for invariant I1 t, uð Þ

covariance components:

B Ið Þ
0 uð Þ= 1

2

Rμc uð Þ+Rνc uð Þ	 

+

+ Rμs uð Þ+Rνs uð Þ	 

" #

cosω0u+ R−
μcμs

uð Þ+R−
νcνs

uð Þ
h i

sinω0u,

C Ið Þ
2 uð Þ= 1

2

Rμc uð Þ−Rμs uð Þ	 

+

+ Rνc uð Þ−Rνs uð Þ½ �

" #
cosω0u+ + R+

μcμs
uð Þ+R+

νcνs
uð Þ

h i
sinω0u,

S Ið Þ
2 uð Þ= R+

μcμs
uð Þ+R+

νcνs
uð Þ

h i
cosω0u+

1
2

Rμc uð Þ−Rμs uð Þ	 

+

+ Rνc uð Þ−Rνs uð Þ½ �

" #
sinω0u.

For the zeros lags u=0 we have:

B Ið Þ
0 0ð Þ= 1

2
Rμc 0ð Þ+Rνc 0ð Þ+Rμs 0ð Þ+Rνs 0ð Þ	 


,

C Ið Þ
2 0ð Þ= 1

2
Rμc 0ð Þ−Rμs 0ð Þ+Rνc 0ð Þ−Rνs 0ð Þ	 


, S Ið Þ
2 0ð Þ=R+

μcμs
0ð Þ+R+

νcνs
0ð Þ.

As it follows from the obtained expressions the value of the zero covariance

component B Ið Þ
0 uð Þ and the absolute value of the second covariance component

B Ið Þ
2 uð Þ




 


 increase comparatively with the values of the quantities that characterize

the properties of covariance functions of the individual vector components, i.e.
comparatively with the last time-averaged value of invariant I1 t, uð Þ and depth of its
time variation increase. It allows one to estimate the state of the system that gen-
erate vectorial signal ξ ⃗ tð Þ with a higher efficiency.

Covariance components of invariant D t, uð Þ have the form:

B Dð Þ
0 uð Þ= R−

μcνc
uð Þ+R−

μsνs
uð Þ

h i
cosω0u+ R+

μcνs
uð Þ+R−

μsνs
uð Þ

h i
sinω0u,

C Dð Þ
2 uð Þ= R−

μcνc
uð Þ+R−

νsμs
uð Þ

h i
cosω0u+ R−

μsνc
uð Þ+R−

μcνs
uð Þ

h i
sinω0u,

S Dð Þ
2 uð Þ= R−

μsνc
uð Þ+R−

μcνs
uð Þ

h i
cosω0u+ R−

μcνc
uð Þ+R−

νsμs
uð Þ

h i
sinω0u,

where signs “+” and “–” determine the even and odd correlations respectively. The
feature of the second covariance components is that they are defined only by the
odd components of cross-covariance functions of processes that modulate har-
monics of orthogonal components of vector ξ ⃗ tð Þ. This fact, for example, can be
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used in vibration diagnosis for separation of the moving and fixed defects, since the
character of odd correlations for both types of defects, typical of vibration signals, is
different.

7 The Examples of Using the Covariance Invariants
for Vibration Analysis

Vibration oscillations measured at different points on mechanism are different. For
example, in Fig. 3 the graphs of the zeroth covariance component estimators for
vibration acceleration measured at different points on bearing housing are shown. In
the first as well as in the second case the graphs have the form of damping oscil-
lation but these oscillations significantly differ by their power and parameters of
their individual components. It means that analyzing oscillations measured only in
the one direction we may significantly impair the opportunity of damage detection.
So it is reasonable to provide measurement of oscillations at several points
simultaneously and to use for the analysis such their common characteristics which
do not depend on coordinate system where measurements were provided.

Let us bring some results of the analysis of rolling bearing vibrations as a
vectorial PCRP. In order to investigate changes of their invariant characteristics as

Fig. 3 Estimators of the zeroth covariance components for vibration accelerations measured at
angle 135° (a) and 0° (b)

146 I. Javorskyj et al.



bearing state degradation the experiment on the test bench was provided. The
signals of vibration acceleration were measured in two perpendicular directions
with using the vibration diagnosis system Vector created in Karpenko
Physico-Mechanical Institute of NAS of Ukraine. In order to increase bearing
damaging the outer race of the bearing was skewed.

We should note that invariant characteristics for some type of damages can be
built on the base of the mean function of vectorial PCRP. Among them, for
example, can be parameters of the curve in the rectangular coordinate system Oxy
defined by functions which describe components of vector m⃗

ξ
! tð Þ:

xl tð Þ=Al sin lω0t+φlð Þ, yl tð Þ=Bl sin lω0t+ψ lð Þ.

Curves built on the base of the first harmonics of differently directed vector
components are presented in Fig. 4. These harmonics parameters were calculated
using the component method [15, 16] at the beginning of the experiment. As it can
be seen from Fig. 4 these curves have a form of ellipses which parameters and
orientation do not change under coordinate system rotation (coordinate axes were
chosen on direction of mounted sensors (Fig. 4a)).

Fig. 4 Estimators of the vibration signals invariants: a position of sensors on bearing housing;

b the first harmonic of the mean function vector; c the zeroth tensor-component B̂
Ið Þ
0 uð Þ
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Invariant characteristics were computed by formulas which define them
(Sect. 4), i.e. on the base of estimators of auto- and cross-covariance functions of

vector ξ
!

tð Þ. These functions were estimated by the component method [15, 16].

The graphs of the zeroth tensor-component B̂
Ið Þ
0 uð Þ estimators for different

positions of the sensors are shown in Fig. 4c. They prove independence of this
quantity of the chosen coordinate system.

The second order curves built for the fixed time lag u at the beginning of the
experiment have a form of concentric circles which radii slightly differ.

Diagram that illustrates the correlations changes with respect to the direction has
a similar form. Such changes are defined by function bβ t, uð Þ (formula (29)).

When the damage appear the second order curves degrade into ellipses. The
bigger axe of ellipses increases as damage grows and has its own orientation
(Fig. 5a). The diagram of changes of correlation with respect to direction has a
similar orientation (Fig. 5b). As it was found after bearing demounting and its
cutting this orientation showed the place of the outer race damage (Fig. 6).

Fig. 5 The second order curves (a) and changes of correlations with respect to direction (b) at
u = 0

Fig. 6 Damage on the bearing outer race: a bearing elements; b damage zoomed 10 times;
c damage zoomed 20 times
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Based on the results of carried out experiment we can state that the analysis of
vibrations using the vectorial PCRP methods open new opportunities for
improvement of the damages detection efficiency and also their localization and
typification.

8 Conclusions

Methods of vectorial PCRP are suitable for a common analysis of vector compo-
nents time variation for which recurrence and stochasticity are typical. The feature
of this approach is the possibility to analyze the properties of random vector
invariant quantities independently of the coordinate system, where signals were
measured in. This feature is very important for the solution of vibration diagnosis
issues. Use of the linear invariants of covariance tensor function, defined by the
expected values of scalar and skew products of random vectors respectively, allows
one to improve the efficiency of diagnosis, separate moving and fixed defects.
Using quadratic invariants we can investigate the spatial properties of vibration,
compute changes of correlations in arbitrary direction and localize a defect. The
properties of the central quadratic curves, which axes are defined by eigen-values of
symmetric part of covariance tensor-function, are effective features for defects
localization too. These eigen-vales determine the maximal values of covariance
function by the axis direction in the own basis.
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Periodically Correlated Sequences
with Rational Spectra and PARMA
Systems

Andrzej Makagon

Abstract An acronym PARMA is used in different configurations, we talk about

PARMA systems, PARMA sequences, or PARMA models. This paper is a result of

the author search to understand this complex world of PARMAs.

1 Introduction

Periodically correlated sequences (PC) are sequences that are obtained by listing

elements of a multi-variate stationary sequence in a linear order. There is no surprise

therefore that both theories are strictly related. VARMA models are representations

of multi-variate stationary sequences in a form of vector difference equations (VDE).

PARMA models result from nonhomogeneous (periodic) VDE representations and

under mild conditions yield periodically correlated sequences. PARMA models form

a subset of VARMA models. Since only stationary sequences with rational densities

admit VARMA models, it is natural that the study of PARMA models should involve

an analysis of periodically correlated sequences with rational densities.

Sequences with rational densities play an important role in the theory of multi-

variate stationary sequences. These are the only multi-variate stationary sequences

for which the theoretical prediction problem has an explicit solution (under small

additional assumptions), that is the only multi-variate stationary sequences for which

it is possible to explicitly compute the coefficients of the innovation representation of

the sequence from its density. This solution, however, is not fully satisfactory since

it depends on infinitely many parameters (i.e. innovation coefficients). A VARMA

model is an ingenious concept of reducing the number of parameters. The idea is

to represent a sequence as a solution of a vector difference equations that involves

only finitely many terms. In spectral domain this translates to a problem of writing a

transfer function of the sequence (i.e. a square factor of its density) as a “quotient” of

two polynomial matrices. The main purpose of this paper is to transfer these and other
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relevant results known for multi-variate stationary sequences to those periodically

correlated sequences given by PARMA models.

A paper is organized as follows. In Sect. 2 we provide notation and definitions

needed in the sequel. Section 3 contains an extensive review of the theory of peri-

odically correlated sequences and multi-variate stationary sequences that sometimes

goes beyond the needs of this paper. A focus is on the relation between PC and T-

variate stationary sequences and on sequences with rational densities. In Sect. 4 we

discuss a relationship between PC sequences with rational densities and PARMA

systems. The next Sect. 5 contains few remarks about PARMA models. In that

section we limit our attention to full rank sequences; a general case of any rank

sequences seems to be still open even for multi-variate stationary sequences.

Most of the facts about multi-variate stationary sequences come from [11], while

for the theory of VARMA systems from [4, 5]. Up-to-date review of PARMA mod-

els and related topics, with emphasis on statistics, can be found in [2]. Sources of

information about periodically correlated sequences will be cited as needed. To our

best knowledge, periodically correlated sequences with rational densities have not

been studied before.

2 Preliminaries

Sets and Matrices. In what follows  denotes the set of complex numbers, D<r =
{z ∈  ∶ |z| < r} is an open disk of radius r, and Dr = {z ∈  ∶ |z| = r} is a circle

of radius r, r > 0. The interval [0, 2𝜋) will be understood as a group with addition

modulo 2𝜋 and with standard Lebesgue measure structure. The abbreviation a.e. will

mean almost everywhere with respect to the Lebesgue measure on [0, 2𝜋). A function

on [0, 2𝜋) will be interpreted as a function of the unit circle D1 and will be written as

f (eit) or f (z), z = eit
, t ∈ [0, 2𝜋). This notation is convenient in analysis of sequences

with rational densities and we use it all over the paper. The letter T will be always a

fixed positive integer andwill denote the set of integers. The symbols q(m) and ⟨m⟩
stand for the quotient and the nonnegative remainder in division of m by T , so that

m = q(m)T + ⟨m⟩. The entries of matrices and vectors in this paper are indexed from

0 instead from 1. The (i, j) entry of a matrix A will be denoted by Ai,j
. For any matrix

A, A∗
is the complex conjugate of A, i.e. (A∗)i,j = Aj,i. If B is a square n × n matrix

then the adjugate BA
of B is an n × n matrix whose (i, j) entry is given by (BA)ij =

(−1)i+j det(B[j,i]), where B[j,i] is obtained from B by deleting j-th row and i-th column.

A square matrix B is invertible iff det(B) ≠ 0 and if it is then B−1 = (det(B))−1BA
.

An n × n diagonal matrix A will be denoted diag[A0,0,A1,1,…An−1,n−1]. A minor of
degree k, k ≤ min(m, n), of an m × n matrix A is the determinant of a square k × k
sub-matrix of A obtained by deleting m − k rows and n − k columns from A. A rank

of a matrix A is the maximum number of linearly independent columns or rows of A;

rank(A) = r iff there is a minor of order r which is nonzero and all minors of bigger

order are zero. A principal minor of order k of a square n × n matrix A is a minor
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obtained by deleting last n − k columns and the last n − k rows. A square matrix A
is non-negative (A ≥ 0) if for every a ∈ 

T
, aAa∗

≥ 0; A ≥ 0 iff all principal minors

are non-negative. A 1 × n matrix will be called a vector.

A rational m × n matrix R(z) is a matrix whose entries R(z)j,k are rational functions

of a complex variable z ∈ ; that is, each entry is a ratio of two polynomials. We will

be always assuming that the entries of a rational matrix are written in the simplest

form. Note that since minors of a rational matrix are rational functions, if a minor

is non-zero for one z than it is nonzero for all z ∈  except finitely many points.

Therefore the rank of a rational matrix is constant except for finitely many z’s. The

poles of a rational matrix are numbers z such that R(z) does not exist and the zeros of

R(z) are complex numbers z at which the matrix R(z) drops its rank (e.g. [5], or [7],

Sect. 3.2.). A polynomial m × n matrix is a matrix whose entries are polynomials

of a complex variable z. A matrix function R(eit) on [0, 2𝜋) is called rational (or

polynomial) if there is a rational (polynomial) matrix R(z) on  such that R(eit) equals

R(z) a.e. on D1. If P(z) is a polynomial matrix and p(z) = det P(z) is not identically

zero, then p(z) ≠ 0 for all z ∈  except finitely many, and P(z)−1 = p(z)−1P(z)A is a

rational matrix. The most important fact from the theory of rational matrices will be

for us the following theorem proved by Rozanov.

Theorem 2.1 ([11], Theorem 10.1) Each a.e. nonegative rational square matrix
function F(eit) on [0, 2𝜋) of rank r (i.e. rank of F(z) is r) can be represented in the
form F(eit) = G(eit)G(eit)∗ a.e. where G(z) is rational, analytic on D<1, and the rank
of G(z) is r for all z ∈ D<1.

In terms of zeros and poles the last statement means that all zeros and poles of G(z)
are outside of the open unit disk D<1.

A square polynomial matrix is U(z) is called unimodular if det(U(z)) is constant

(i.e. does not depend on z). An m × m matrix L(z) is called a left (common) divisor
of m × n polynomial matrices A(z) and B(z) if there are m × n polynomial matrices

A1(z) and B1(z) such that A(z) = L(z)A1(z) and B(z) = L(z)B1(z). Note that if det A(z)
is not identically zero, then also det L(z) is not. A left divisor L(z) is called a greatest
left divisor of A(z) and B(z) if for any other left divisor L1(z) of A(z) and B(z) there

is a polynomial m × m matrix T(z) such that L(z) = L1(z)T(z). Polynomial matrices

A(z) and B(z) are called left coprime if the only left divisors of A(z) and B(z) are the

unimodular once. For those and other interesting facts from the theory of polynomial

and rational matrices we refer the reader to [5] or [7], Sect. 3.2.

Hilbert Spaces. A Hilbert space will be denoted  (or ), and (x, y) will denote

the inner product of x, y ∈  (or ). All Hilbert spaces are assumed to be complex

and separable. If  is a Hilbert space and M is a closed subspace of , then (x|M)
denotes the orthogonal projection of x ∈  onto M. If S is any subset of then sp{S}
denote the smallest closed linear subspace of  containing S. A linear mapping

(operator) from  onto  is called unitary if (Ux,Uy)

= (x, y)


for every x, y ∈ .

A sequence (𝜉n), n ∈ , of elements of is orthonormal if (𝜉n, 𝜉m) = 1 if m = n, and

zero otherwise. Important for us will be the space 
T

of all row vectors of the length

T with entries in  and standard Euclidean inner product, the Hilbert space L2
of all

measurable complex functions (in fact equivalence classes of functions) on [0, 2𝜋)
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which are square integrable w.r.t the Lebesgue measure dt on [0, 2𝜋), and the Hilbert

space L2(T ) of all 
T
-valued functions f on [0, 2𝜋) such that their entries are in L2

.

The inner product in L2(T ) is (f , g) = ∫
2𝜋
0 f (eit)g(eit)∗dt. The symbol L2

+ will denote

the subspace of L2
consisting functions f whose Fourier coefficients with negative

indices are zero, i.e. such that f (eit) =
∑∞

k=0 fkeitk
; L2

+(
T ) denotes the subspace of

functions in L2
+(

T ) such that their entries are in L2
+. The standard orthonormal basis

for 
T

is ek, k = 0… ,T − 1, where ek is the row vector that has 1 at the k-th place and

zero otherwise. The standard orthonormal basis for L2(T ) is the family of functions

𝜁n(eit), n ∈ , defined by 𝜁nT+r(eit) = (1∕
√
2𝜋)e−inter, n ∈ , r = 0,… ,T − 1. If

G(eit) is a matrix function then we say that G is square integrable if all entries of G
are in L2

.

Stochastic Sequences. We adopt a Hilbert space approach. A (univariate) sto-
chastic sequence (x(n)) in a Hilbert space  is a sequence of elements of  indexed

by the set of all integers . The correlation function of (x(n)) is the function on 
2

defined by Rx(m, n) = (x(m), x(n)). If (x(n)) is a stochastic sequence then we denote

Mx = sp{x(m) ∶ m ∈ }. Two stochastic sequences (x(n)) in  and (y(n)) in possi-

bly different Hilbert space are said to be equivalent if Rx(m, n) = Ry(m, n) for every

m, n ∈  or, equivalently, if there is a unitary mapping 𝛷 from Mx onto My such that

𝛷(x(n)) = y(n), n ∈ . The concept of an equivalence of stochastic sequences makes

the Hilbert space  appearing in the definition of a stochastic sequence irrelevant

and we will stop writing it unless will be necessary. If T is a positive integer, then

a T-variate stochastic sequence in  is a family of T stochastic sequences (xk(n)),
k = 0,… ,T − 1, in . It is convenient to write it as a sequence of column vectors

x(n) = [xk(n)] with entries in  and x0(n) being at the top. The correlation func-
tion of a T-variate stochastic sequence x(n) = [xk(n)], n ∈ , is T × T matrix val-

ued function Rx on 
2

defined as Rx(m, n)j,k = (xj(n), xk(m)). A T-variate sequence

𝝃n = [𝜉j
n], n ∈ , is called a T-variate orthonormal sequence if Rx(n, n) = I, the

identity matrix, and Rx(m, n) = 0 for all m ≠ n.

If (x(n)) is a T-variate stochastic sequence then we define Mx(n) = sp{xk(m) ∶ k =
0,… ,T − 1,m ≤ n}, Mx = Mx(+∞), and Nx(n) = Mx(n)⊖ Mx(n − 1). A sequence

(x(n) is called regular if
⋂

n Mx(n) = {0}. One of the main goals of prediction theory

is to find an orthogonal projection x̂(n) = (x(n)|Mx(n − 1) ∶= [(xk(n)|Mx(n − 1)]. In

probabilistic terms x̂(n) represents the best linear estimate (predictor) of a random

vector x(n) from the past. All the above notation and definitions are valid for uni-

variate sequences, that is when T = 1.

3 PCs and T-variate Stationary Sequences

A T-variate stochastic sequence (x(n)) is called stationary if for every n ∈ , Rx(n +
r, r) is constant in r ∈ . If it is so, then the function Kx(n) ∶= Rx(n, 0) is called the

(matrix) correlation function of a stationary sequence (x(n)). If (x(n)) is T-variate

stationary then the mapping Uxk(n) = xk(n + 1), n ∈ , k = 0,… ,T − 1, extends
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linearly to a unitary operator on Mx which is called the shift of (x(n)). A T-variate

stochastic sequence (x(n)) is completely described by its shift and the vector x(0);
namely x(n) = Unx(0) ∶= [Unxk(0)]. If we write Un = ∫

2𝜋
0 e−iunE(du), n ∈ , (e.g.

[3]) then we obtain that Kx(n) = ∫
2𝜋
0 e−iunF(du) where F is a T × T nonnegative

matrix measure on [0, 2𝜋) defined by Fj,k(𝛥) = (E(𝛥)xk(0), xj(0)). The measure F is

called the spectrum of a T-variate stationary sequence (x(n)).
An important example is a sequence (H(n)) of T × T matrix valued functions with

rows in L2(T ) defined as H(n)(eit) = e−intH(eit), n ∈ , t ∈ [0, 2𝜋). The sequence

(H(n)) can be viewed as a T-variate stationary sequence in  = L2(T ).
The k-th coordinate Hk(n) of H(n) is the k-th row Hk⋅(eit) of the matrix H(eit) mul-

tiplied by e−int
, the shift of (H(n)) is multiplication by e−it

, the correlation func-

tion of (H(n)) is KH(n) = ∫
2𝜋
0 e−intH(eit)H(eit)∗dt, so the spectrum F of (H(n)) is

F(dt) = H(eit)H(eit)∗dt.
A (univariate) sequence (x(n)) is called periodically correlated with period T

(we will abbreviate it T-PC), if for every n ∈  the sequence Rx(n + r, r) = (x(n +
r), x(r)) is T-periodic in r ∈ . The discrete Fourier transform of Rx(n + r, r) with

respect r will be denoted aj(n); more precisely

aj(n) ∶=
T−1∑
r=0

e−2𝜋ijr∕TRx(n + r, r), j = 0,… ,T − 1. (1)

If (x(n)) is T-PC then the mapping Wx(n) = x(n + T), n ∈ , extends linearly to

a unitary operator in Mx which is called the T-shift of a T-PC sequence (x(n)).
To describe a T-PC sequence we need x(0) and two unitary operators; namely, a

sequence (x(n)) is T-PC iff (x(n)) is of the form

x(n) = Un

[
(1∕T)

T−1∑
j=0

e−2𝜋ijn∕TVjx(0)

]
, n ∈ , (2)

where U and V are unitary operators in some Hilbert space  ⊇ Mx, VT = I, and U,

V satisfy a canonical commutation relation VU = e−2𝜋i∕TUV . If we write operators

U and V in terms of their spectral resolutions as follows Un = ∫
2𝜋
0 e−iunE(du), n ∈

, and Vj =
∑T−1

k=0 e2𝜋ikj∕TPk, j = 0,… ,T − 1, then the formula (2) takes the form

x(n) = UnP⟨n⟩x(0) and we obtain that Rx(n + r, r) = (Unx(0),P⟨r⟩x(0)),
n, r ∈ . Consequently aj(n) = ∫

2𝜋
0 e−iun𝛾 j(du), where 𝛾 j(𝛥) = (E(𝛥)x(0),Vjx(0)),

j = 0,… ,T − 1 (see [9] for details). The vector measure 𝛾 = (𝛾0,… , 𝛾T−1) is called

the spectrum of a T-PC sequence (x(n)). The existence of measures 𝛾 j
can be proved

in a different way (e.g. [6], Sect. 6.2).

If the spectrum F or 𝛾 is absolutely continuous with respect to Lebesgue measure

on [0, 2𝜋), then we call the respective sequence absolutely continuous, and abbre-

viate it a.c.. The Radon-Nikodym derivative of an a.c. spectrum with respect to the

Lebesgue measure on [0, 2𝜋) will be called a density of the sequence. As indicated
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in Sect. 2 we will look at a density as a function on the unit circle rather than on

[0, 2𝜋). Here are the precise definitions:

1. A density of a T-variate stationary a.c. sequence (x(n)) is a T × T matrix function

F on the unit circle D1 with integrable entries such that

Kx(n) =
∫

2𝜋

0
e−itnF

(
eit) dt, n ∈ . (3)

2. A density of an a.c. T-PC sequence (x(n)) is a vector function g = (g0,… , gT−1)
on the unit circle D1 with integrable entries such that

aj(n) =
∫

2𝜋

0
e−itngj (eit) dt, j = 0,… ,T − 1, n ∈ . (4)

A square factor of a density F of a T-variate stationary sequence is a T × T matrix

function H on the unit circle D1 with entries in L2
such that F

(
eit) = H

(
eit)H

(
eit)∗

a.e. A square factor of a density g of a T-PC sequence is defined as a vector func-

tion h on the unit circle D1 with values in 
T

and with entries in L2
such that for

every j = 0,… ,T − 1, gj(eit) = h(eit)h(ei(t+2𝜋j∕T))∗ a.e. If g is a density of a T-PC

sequence then g admits at least one square factor (see [8] or Lemma 3.1). Note that

our definition of a square factor is slightly different from the one given in [8], where

it was defined as gj(eit) = (1∕T)h(eit)h(ei(t+2𝜋j∕T))∗.

Remark 1 In the case of stationary sequences H is often called a transfer function
(the nomenclature seems to come from signal processing). Suppose that (x(n)) is T-

variate stationary sequence with a density F and H is a square factor of F. We can

think about a filter whose input is a T-variate “white noise” on [0, 2𝜋), that is, in our

approach, a Hilbert space valued vector measure z(𝛥) = [zk(𝛥)] on [0, 2𝜋) such that

(zk(𝛥1), zj(𝛥2)) = 𝓁(𝛥1 ∩ 𝛥2) if k = j (where 𝓁 is the Lebesgue measure) and zero

otherwise. The output is a T-variate sequence y(n) = ∫
2𝜋
0 e−intH

(
eit) z(dt) which is

stationary and its spectral density is equal to F, that is (y(n)) unitary equivalent to

the sequence (x(n)). A square factor h of a density g of a T-PC sequence (x(n)) has

a similar interpretation. Now the input of a filter is a univariate “white noise” z(𝛥).
The output of the filter is

y(n) =
∫

2𝜋

0
e−int

[
1
T

T−1∑
k=0

e−i2𝜋nk∕Th
(
ei(t+2𝜋k∕T))

]
z(dt). (5)

Corollary 3.1 shows that (y(n)) is a T-PC sequence equivalent to (x(n)). □

There is a natural one-to-one correspondence between T-variate stationary

sequences and T-PC sequences. Namely, if x(n) = [xk(n)], n ∈ , is a T-variate

stationary sequence then by arranging xk(n)’s in one sequence we obtain a T-PC

sequence x(n) = x⟨n⟩(q(n)), n ∈ , and conversely, if x(n) is T-PC and we define
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xk(n) = x(nT + k), k = 0,… ,T − 1, n ∈ , then x(n) = [xk(n)], n ∈ , is a T-variate

stationary. Given a T-PC sequence (x(n)), the T-variate stationary sequence

(x(n)) = [x(nT + k)] defined above will be called the block sequence corresponding
to (x(n)); given a T-variate stationary sequence (x(n)), the sequence x(n) = x⟨n⟩(q(n)),
n ∈ , will be called the T-PC sequence corresponding to (x(n)). Since Mx(n) =
Mx(nT + T − 1), both sequences are simultaneously regular or not. The following

lemma describes the relation between the spectra and square factors of (x(n)) and

(x(n)).

Lemma 3.1 Let (x(n)) be T-PC and (x(n)) be the corresponding T-variate station-
ary block sequence.

1. Suppose that (x(n)) is a.c. and H
(
eit) is a square factor of its density F

(
eit). Let

Hk⋅ denote the k-th row of H, and let

h(eit) ∶=
T−1∑
k=0

eiktHk⋅(eiTt), t ∈ [0, 2𝜋).

Then (x(n)) is a.c. and h is a square factor of a density g = (g0,… , gT−1) of (x(n)),
that is gj(eit) = h(eit)h(ei(t+2𝜋j∕T))∗ a.e., j = 0… ,T − 1.

2. Suppose that (x(n)) is a.c. and h(eit) is a square factor of a density g of (x(n)).
Define

fk(eit) = (1∕T)
T−1∑
j=0

e−ik(t+2𝜋j∕T)h(ei(t+2𝜋j∕T)), k = 0,… ,T − 1.

Then fk is 2𝜋∕T-periodic, and hence there is a function hk(eit) such that fk(eit) =
hk(eiTt). Let H(eit) be the T × T matrix function which k-th row Hk⋅ is equal hk.
Then (x(n)) is a.c. and H is a square factor of its density F, that is F(eit) =
H(eit)H(eit)∗ a.e.

The lemma is a consequence of Lemmas 3.2 and 3.3 from [8] (applied for 𝜇 to be

the Lebsgue measure). For a convenience of the reader, and because the proof for

a.c. sequences is much easier than in a general case, we will give a full proof in

Appendix. The proof is not a replacement nor a simplification of the proof given in

[8] since it works only for a.c. sequences.

We will express the above relations in a matrix form. To simplify the notation

we denote eit = z and ei2𝜋∕T = d. Note that dk = d⟨k⟩
and that

∑T−1
k=0 djk = 0 unless

j = 0 modulo T when it is equal to T . Let H = [Hj,k] and h = (h0,… , hT−1) be the

square factors defined in Lemma 3.1. Given h we define the companion matrix func-
tions Hd(z) by Hj,k

d (z) = hk(zdj). Note that h is just a first row of Hd. Further let

Dz = diag[1, z, z2 … , zT−1], and let D be the matrix with entries Dj,k = djk
. Easy com-

putation shows D−1 = (1∕T)[d−jk]. Under these notations the part 1 of Lemma 3.1

says that h(z) = (1, z,… , zT−1)H(zT ), while part 2 says that
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Hk⋅(zT ) = (1∕T)z−k
T−1∑
j=0

d−jkh(zdj) = (D−1
z D−1Hd(z))k⋅, (6)

which also shows that Hd(z) = DDzH(zT ). Summing up we have that

h(z) = (1, z,… , zT−1)H(zT ) (7)

H(zT ) = D−1
z D−1Hd(z), where Hj,k

d (z) = hk(zdj) (8)

The operations (7) and (8) are inverse to each other, that is if we start with H, con-

struct h as in (7), and then use (8), we will end up with the same H; indeed

H(z)
(7)
⟶ h(z) = (1, z,… , zT−1)H(zT )

(8)
⟶ D−1

z D−1Hd(z) = H(zT ).

Therefore the correspondence h ↔ H described in Lemma 3.1 is one-to-one and

onto.

The substitution z = eit
is not just symbolic convenience. In many cases it defines

a concrete function of complex variable; for example if R(eit) is a rational function

of t then R(z) is a rational function of complex variable that coincides with R(eit) on

the unit circle D1.

From Lemma 3.1 we obtain the following functional model for a.c. T-PC

sequences, which is a special a.c. case of [8], Theorem 3.2 (and also [9], Theorem

3.3).

Corollary 3.1 Let (x(n)) be an a.c. T-PC sequence with density g and let h be a
square factor of g. Let (y(n)) be a sequence in L2(T ) defined as

y(n)(eit) = (1∕T)
T−1∑
j=0

e−in(t+2𝜋j∕T)h(ei(t+2𝜋j∕T)), t ∈ [0, 2𝜋).

Then (y(n)) and (x(n)) are unitarily equivalent.

Proof From (6) it follows that, in terms of z = eit
, d = ei2𝜋∕T

and H(z), y(n)(z) =
(1∕T)

∑T−1
j=0 z−nd−jnh(zdj) = z−q(n)TH⟨n⟩⋅(zT ). Hence y(n)(ei⋅), n ∈ , is a T-PC

sequence in L2(T ) that corresponds to a T-variate stationary sequence (y(n)) in

L2(T ) defined by yk(n)(eit) = e−iq(n)TtH⟨n⟩⋅(eitT ). Since for any integrable 2𝜋 peri-

odic function 𝜙, ∫
2𝜋
0 𝜙(eiTt)dt = ∫

2𝜋
0 𝜙(eit)dt, (y(n)) has the same covariance as the

T-variate block sequence corresponding to (x(n)), and hence (y(n)) and (x(n)) are

unitarily equivalent. □

An immediate consequence of Lemma 3.1 is that the corresponding sequences

(x(n)) and (x(n)) are simultaneously a.c. or not. Since their densities are respec-

tively F(z) = H(z)H(z)∗ and g(z) = h(z)Hd(z)∗ = e0Hd(z)Hd(z)∗, z = eit
, where e0 =
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(1, 0,… , 0), the relations (7) and (8) yield the following relations between the den-

sity g of a T-PC sequence (x(n)) and the density F of the corresponding T-variate

stationary block sequence:

F(zT ) = (1∕T)D−1
z D−1G(z)DDz, (9)

where G(z) = Hd(z)Hd(z)∗, that is G(z)j,k = h(zdj)h(zdk)∗ = g⟨k−j⟩(zdj); and

g(z) = e0DDzF(zT )D∗
z D∗. (10)

Remember that in the above formulas z = eit
and d = ei2𝜋∕T

. Therefore we have

obtained the following corollary.

Corollary 3.2 Let (x(n)) be T-PC and (x(n)) be the corresponding T-variate sta-
tionary block sequence. Suppose that both are a.c., and let g and F be their densities,
respectively. Then

Fj,k(zT ) = (1∕T2)zk−j
T−1∑
p=0

T−1∑
q=0

dkq−jpg⟨q−p⟩(zdp),

gk(z) =
T−1∑
p=0

T−1∑
q=0

zp−qd−qkFp,q(zT ),

where z = eit and d = ei2𝜋∕T .

For not a.c. sequences, the relation between spectral measures of (x(n)) and (x(n))
can be found in [8].

Definition 3.1 A T-PC sequence (x(n)) is said to have a rational density if (x(n)) is

a.c. and there is a rational vector function g(z) of complex variable such that g(eit) is

a density of (x(n)). A T-variate stationary sequence (x(n)) is said to have a rational
density if (x(n)) is a.c. and there is a rational T × T matrix function F(z) of complex

variable such that F(eit) is a density of (x(n)).

The formulas (9) and (10) show, in particular, that F is rational iff g is rational. We

summarize our discussion in the following theorem.

Theorem 3.1 Let (x(n)) be an a.c. T-PC sequence and (x(n)) be the corresponding
T-variate stationary block sequence. Then (x(n)) has a rational density iff (x(n)) has
a rational density. Moreover, if F(z) is a rational density of (x(n)) and H(z) is a
rational square factor of F(z), then h(z) defined by (7) is a rational square factor of a
density g(z) of (x(n)); and vice verse, if g(z) is a rational density of (x(n)) and h(z) is
a rational square factor of g(z), then H(z) defined by (8) is a rational square factor
of a density F(z) of (x(n)). Everywhere above z = eit, t ∈ [0, 2𝜋).

Sequences with rational density may have square factors which are not rational.
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A T-PC sequence (x(n)) is called a moving average (MA) if there exist an orthonor-

mal system (𝜉n) in some Hilbert space  ⊇ Mx and a set of scalars (ck(n)), n, k ∈ ,

such that each (ck(n)), k ∈ , is T-periodic in n,

x(n) =
∞∑

k=−∞
ck(n)𝜉n−k, n ∈ . (11)

and UTx(n) = x(n + T), n ∈ , where U is the shift of (𝜉n) defined by U𝜉n = 𝜉n+1.

Note that we allow some 𝜉k’s to be outside Mx; and we allow some c0(n)’s to be

zero. If two sequences (x(n)) and (y(n)) are unitarily equivalent and one has an MA

representation, then the other also does. A sequence may have many different MA

representations. We recognize an MA representation of (x(n)) (if it exists) by listing

its coefficients (ck(n)). A T-PC sequence has an MA representation iff it is a.c.. An

MA representation (ck(n)) of a T-PC sequence (x(n)) in called an innovation repre-
sentation of (x(n)) if for every n ∈ 

Mx(n) = sp{c0(m)𝜉m ∶ m ≤ n} ∶= Mc𝜉(n). (12)

For (12) to be true for every n it is enough that it is true for n = 0,… ,T − 1. An

MA representation (ck(n)) of (x(n)) is an innovation representation iff ck(n) = 0
for all k < 0 and n ∈ , and c0(n)𝜉n is a one-step prediction error at n, that is

x(n) − (x(n)|Mx(n − 1)) = c0(n)𝜉n, n ∈ . A T-PC sequence (x(n)) has an innova-

tion representation iff it is regular. If it does then the number of nonzero elements in

the set {c0(m) ∶ m = 0,… ,T − 1}, is called the rank of (x(n)).
A moving average (MA) representation of a T-variate stationary stochastic

sequence (x(n)) is a representation of (x(n)) in the form

x(n) =
∞∑

k=−∞
Ck𝝃n−k, n ∈ , (13)

where Ck’s are T × T matrices, and 𝝃n = [𝜉j
n] is a T-variate orthonormal sequence in

some space  ⊇ Mx such that Wxk(n) = xk(n + 1), n ∈ , k = 0,… ,T − 1, where

W is the shift of (𝝃n) defined as W𝜉k
n = 𝜉k

n+1. An MA representation of (x(n)) (if

exist) will be recognized by listing its matrix coefficients (Ck). A T-variate stationary

sequence (x(n)) has an MA representation iff (x(n)) is a.c.. An MA representation

(Ck) of a T-variate stationary sequence (x(n)) is called an innovation representation
of (x(n)) iff for every n ∈ ,

Mx(n) = sp{aC0𝝃m ∶ m ≤ n, a ∈ 
T}, (14)

that is iff Ck = 0 for all k < 0 and for each n, x(n) − (x(n)|Mx(n − 1)) = C0(n)𝝃n, n ∈
. Here (x(n)|Mx(n − 1)) = [(xk(n)|Mx(n − 1))]. For (14) to be true it is enough that

it is true for n = 0. A T-variate stationary sequence has an innovation representation
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iff it is regular. If it does then then dimension of the space Nx(0) = sp{aC0𝝃0 ∶ a ∈


T} (which is equal to the rank of matrix C0) is called the rank of the sequence. Note

that since Nx(0) = Nx(0)⊕…Nx(T − 1), the rank of a regular T-PC sequence (x(n))
is equal to the rank of the corresponding T-variate stationary block sequence (x(n))
and is equal to the (matrix) rank the matrix

𝛴 ∶= (x(n) − (x(n)|Mx(n − 1))(x(n) − (x(n)|Mx(n − 1))∗.

If (Ck) is an innovation representation of (x(n)) then 𝛴 = C0C∗
0 .

There is a one-to-one correspondence between MA representations (ck(n)) of a

T-PC sequence (x(n)) and MA representations (Ck) of its corresponding T-variate

stationary block sequence (x(n)) given by

Ci,j
k = ckT+i−j(i) or ck(n) = C⟨n⟩,⟨n−k⟩

−q(n−k) . (15)

Recall that q(m) and ⟨m⟩ stand for the quotient and the remainder in division of

m by T , respectively. To see (15) note that after substituting xj(n) = x(nT + j) and

𝜉k
n−p = 𝜉(n−p)T+k into (13) we obtain that

∞∑
p=−∞

T−1∑
k=0

Cj,k
p 𝜉(n−p)T+k = x(nT + j) =

∞∑
r=−∞

cr(j)𝜉nT+j−r,

because cr(nT + j) = cr(j). Multiplying both sides by 𝜉(n−p)T+k we obtain that

Cj,k
p =

∞∑
r=−∞

cr(j)(𝜉nT+j−r, 𝜉(n−p)T+k) = cpT−k+j(j)

On the other hand multiplying both sides by 𝜉nT+j−r and noting that (n − p)T + k =
nT + j − r iff −p = q(j − r) and k = ⟨j − r⟩, we obtain that cr(j) = Cj,⟨j−r⟩

−q(j−r).

We will refer to the two MA representations described in (15) as corresponding
to each other. The relation (15) is visualized in a matrix form below:

[… cT (0) cT−1(0) … c1(0) c0(0) c−1(0) … c−T+1(0) …
… cT+1(1) cT (1) … c2(1) c1(1) c0(1) … c−T+2(1) …
… … … 𝐂𝟏 … … … 𝐂𝟎 … …
… c2T−1(T − 1) c2T−2(T − 1) … cT (T − 1) cT−1(T − 1) cT−2(T − 1) … c0(T − 1) …

]

If (ck(n)) in (15) is an innovation representation of (x(n)) then (Ck) is an innovation

representation of (x(n)). The converse is not true even if C0 is lower triangular, a

counterexample is given in [10]. However, if additionally to being lower triangular

C0 is invertible (i.e. (x(n)) is of full rank), then (ck(n)) is an innovation representation

of (x(n)).

Lemma 3.2 Let (x(n)) be a regular T-PC sequence and (x(n)) be the corresponding
T-variate stationary block sequence. Let (Ck) be an innovation representation of
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(x(n)) and (ck(n)) be the corresponding MA representation of (x(n)) defined in (15).
If C0 is lower triangular and invertible, then (ck(n)) is an innovation representation
of (x(n)).

Proof Recall that xk(0) = x(k), 𝝃k
0 = 𝜉k, k = 0,… ,T − 1, Mx(0) = Mx(T − 1), and

Mx(−1) = Mx(−1). Also note that since C0 is invertible and C0 is lower triangular,

then all Ck.k
0 are different than zero. By assumption C0𝝃0 is equal to the orthogo-

nal projection of x(0) onto Nx(0) = Mx(0)⊖ Mx(−1). Since C0 is lower triangular,

we have that x(k) − (x(k)|Mx(−1)) = Ck,0
0 𝜉0 +⋯Ck,k

0 𝜉k, k = 0,… ,T − 1. Suppose

first that k = 0. Then from Mx(−1) = Mx(−1) it follows that x(0) − (x(0)|Mx(−1)) =
x(0) − (x(0)|Mx(−1)) = C0,0

0 𝜉0. Since C0,0
0 ≠ 1, we conclude that Nx(0) = Mx(0) −

Mx(−1) = sp{𝜉0}. Assume that we have already shown that x(j) − (x(j)|Mx(j − 1)) =
Cj,j
0 𝜉j for j = 0,… , k − 1, 0 < k < T − 1. Then x(k) − (x(k)|Mx(−1)) = Ck,0

0 𝜉0 +⋯ +
Ck−1,k−1
0 𝜉k−1 + Ck,k

0 𝜉k, and hence

x(k) − Ck,k
0 𝜉k = (x(k)|Mx(−1)) + Ck,0

0 𝜉0 +⋯Ck−1,k−1
0 𝜉k−1 = (x(k)|Mx(k − 1)),

i.e. x(k) − (x(k)|Mx(k − 1)) = Ck,k
0 𝜉k. Note that the proof will not work if C0,0

0 = 0
but both C1,0

0 and C1,1
0 are different than zero. □

There is an obvious one-to-one correspondence between MA representations (Cn)
of a T-variate stationary sequence (x(n)) and square factors H of a density F of (x(n))
given by

x(n) =
∞∑

k=−∞
Ck𝝃n−k ⟷ H

(
eit) = (1∕

√
2𝜋)

∞∑
k=−∞

Ckeikt. (16)

This relation is easily seen if we choose 𝝃
j
n = (1∕

√
2𝜋)e−intej. Square factors of F

that correspond to innovation representations of (x(n)) are called maximal factors
(Rozanov [11]). The corresponding notion for PC sequences was introduced in [10]

under the name an i-factor. Maximal factors can be characterized in terms of sub-

spaces of L2
+ spanned by their coordinates (see for example [11] for T-variate sta-

tionary case, and [10] for the PC case). Finding a maximal factor is equivalent to

finding coefficients of an innovation representation of a sequence. The latter consti-

tutes a solution to so called prediction problem. So far the prediction problem has

been solved only for full rank stationary T-variate sequences having rational densities

[4, 5, 11]. Theorem 3.1 and Lemma 3.2 allow us to obtain the solution for full rank

PC sequences with rational densities. A procedure is following: given a full rank

T-PC sequence (x(n)) with rational density g compute the rational density F of the

corresponding T-variate block sequence (x(n)) using formula (9), find a maximal

rational square factor G of F using a construction given in [5] or [11], multiply G by

a proper unitary matrix Q so that the “zero” term of Fourier series of H(eit) = G(eit)Q
is a lower triangular matrix, and then use Lemma 3.2 to recover innovation coeffi-

cients of (x(n)).
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4 PARMA Systems

A VARMA system of dimension T ≥ 1 is a system of vector difference equations

(VDE)

l∑
j=0

Ajx(n − j) =
r∑

j=0
Bj𝝃n−j, n ∈ , (17)

where Aj’s, and Bj’s are complex T × T matrices, A0 is invertible, Al,B0,Br are

nonzero, and 𝝃n, n ∈ , is a given T-variate orthonormal sequence in some Hilbert

space . A proper stationary solution to a VARMA system (17) is a T-variate sta-

tionary sequence (x(n)) which satisfies the system and such that xj(n) ∈ M
𝝃

and

Wxj(n) = xj(n + 1), n ∈ , j = 0,… ,T − 1, where W denotes the shift of (𝝃n). In

many publications and books the last requirement is replaced by some additional

assumptions about the coefficients of the system or by a requirement that the solution

has an MA representation (see for example in [5]). Without any additional assump-

tions the system (17) may have multiple or not regular stationary solutions ([5],

p. 13). A PARMA system is an infinite system of difference equations

l∑
j=0

aj(n)x(n − j) =
r∑

j=0
bj(n)𝜉n−j, n ∈ , (18)

where l, r ≥ 0, aj(n) and bj(n) are T-periodic (in n) sequences of complex numbers,

a0(n) = 1 for every n ∈ Z, and none of the sequences (b0(n)), (al(n)), and (br(n)) is

identically zero. Let U be the shift of (𝜉n), that is U𝜉n = 𝜉n+1, n ∈ Z. We will be

interested only in T-PC solutions (x(n)) to the system whose T-shift coincides with

UT
, that is such that x(n) ∈ M𝜉 and UTx(n) = x(n + T), n ∈ . We label them proper

PC solutions. The assumption UTx(n) = x(n + T) allows us to avoid having multiple

or not regular PC solutions. If we arrange the coefficients aj(n) into an T × (L + 1)T
matrix [AL … A1 A0] where L is such that the matrix contains all nonzero aj(n)’s as

shown below

[ … aT (0) … a2(0) a1(0) a0(0) 0 … 0
… aT+1(1) … a3(1) a2(1) a1(1) a0(1) … 0
… … A(1) … … … A(0) … …

…… a2T−1(T − 1) … aT+1(T − 1) aT (T − 1) aT−1(T − 1) aT−1(T − 1) … a0(T − 1)

]

and do the same for the bj(n)’s creating T × (R + 1)T matrix [BR … B0], then, using

matrices Aj and Bj, the system (18) can be written as a VARMA system

L∑
j=0

Ajx(n − j) =
R∑

j=0
Bj𝜉n−j, n ∈ , (19)

where A0 and B0 are lower triangular, and (x(n)) and (𝝃n) are T-variate block

sequences corresponding to (x(n)) and (𝜉n) respectively, that is x(n) = [xk(n)] with
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xk(n) = x(nT + k) and 𝝃n = [𝜉k
n] with 𝜉k

n = 𝜉nT+k. The system (17), and hence the

system (18), is completely described by a pair of polynomial matrices (A(z), B(z))
defined as

A(z) =
L∑

k=0
A(k)zk

and B(z) =
R∑

k=0
B(k)zk. (20)

In the sequel we will identify both (17) and (18) by giving the corresponding pair

(A(z), B(z)). The only difference between PARMA and general VARMA systems is

that in PARMA systems A0 and B0 are lower triangular, and Ai,i
0 = 1 for each i =

0,… ,T − 1, so PARMA systems form a subset of the family of VARMA systems.

Note that since a(z) = det(A(z)) is a polynomial and by assumption a(0) = det(A0) ≠
0, a(z) ≠ 0 for all z ∈  except finitely many points, and consequently A(z)−1 exists

for all z ∈  except finitely many points.

Theorem 4.1 A PARMA system (A(z),B(z)) has a proper PC solution iff the rational
matrix function A(z)−1B(z) has no poles of modulus 1. If a proper PC solution (x(n))
exists, then it is unique, absolutely continuous, and its density g = (g0,… , gT−1) is
given by

gj(eit) = h(eit)h(ei(t+2𝜋j∕T))∗, a.e. (21)

where h(z) = (1, z,… , zT−1)H(zT ) and H(z) = (1∕
√
2𝜋)A(z)−1B(z), z = eit.

The theorem remains true when in the above formulation we replace PARMA by

VARMA, PC by T-variate stationary, (x(n)) by (x(n)), g by F, and the formula (21)

by F(eit) = H(eit)H(eit)∗, where H(z) = (1∕
√
2𝜋)A(z)−1B(z).

Proof From the preceding discussion it follows that a PARMA system (18) has a

proper T-PC solution (x(n)) iff the associated VARMA system (19) has a proper T-

variate stationary solutions (x(n)), and if it does then (x(n)) is the T-variate stationary

block sequence corresponding to (x(n)). Because (x(n)) is to be proper, it is enough to

find x(0) since then x(n) = Wnx(0). Therefore it is enough to solve (19) just for n = 0,

that is solve the equation
∑L

j=0 Ajx(−j) =
∑R

j=0 Bj𝝃−j. Substituting x(−j) = W−jx(0)
and 𝝃j = W−j

𝝃0, we can write the above equation as

L∑
j=0

AjW−jx(0) =
R∑

j=0
BjW−j

𝝃0, (22)

or symbolically, using polynomials A(z) and B(z) defined in (20), as A(W−1)x(0) =
B(W−1)𝝃(0). To solve (22) let us consider a T-variate orthonormal system 𝜻n = [𝜁 k

n ]
in L2(T ) defined as 𝜁 k

n = (1∕
√
2𝜋)e−intek, where (ek) is the standard basis in 

T
, and

define the unitary operator 𝛷 ∶ M
𝝃
→ L2(T ) by 𝛷(𝜉k

n) = 𝜁 k
n , n ∈ , k = 0,… ,T −

1. Note that the shift of (𝜻n) is the operator of multiplication by e−it
and that 𝜻0 =

[𝜁 k
0 ] = (1∕

√
2𝜋)I, where I is the T × T identity matrix. The mapping 𝛷 transfers the

equation (22) into matrix equation
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A(eit)H(eit) = (1∕
√
2𝜋)B(eit), (23)

where H(eit) is a T × T matrix function with rows Hk⋅(eit) = 𝛷(xk(0)). Summing

up, (22) has a solution x(0) ∈ M
𝝃

iff there is a T × T matrix function H with

rows in L2(T ) that satisfies (23). Since A(eit)−1 exists a.e., the only candidate for

H is H(eit) = (1∕
√
2𝜋)A−1(eit)B(eit). Hence (22) has a solution iff all entries of

A−1(eit)B(eit) belong to L2
. Since (eit − c)−1 is square integrable always except when

|c| = 1, we conclude the system (19) has a proper T-variate stationary solution iff

A−1(z)B(z) has no poles of modulus 1, assuming as always that all entries of the

rational matrix A−1(z)B(z), are written in the simplest forms. If this condition is sat-

isfied then the solution (x(n)) to (19) is given by xk(n) = 𝛷−1(e−intHk⋅(eit)), where

H(eit) = (1∕
√
2𝜋)A−1(eit)B(eit). The uniqueness follows from the fact that, because

of a.e. invertibility of A(eit), H(eit) defined above is the only matrix function satisfy-

ing (23). The covariance of (x(n)) is

Kj,k
x = (𝛷−1(e−intHj⋅(eit)), 𝛷−1(Hk⋅(eit))) =

∫

2𝜋

0
e−intHj⋅(eit)Hk⋅(eit)∗dt,

and hence (x(n)) is a.c. and its density is F(eit) = H(eit)H(eit)∗. A proper T-PC solu-

tion the original PARMA system (A(z),B(z)) is therefore the T-PC sequence that

corresponds to (x(n)), that is x(n) = x⟨n⟩(q(n)), n ∈ . From Theorem 3.1 we con-

clude that (x(n)) is a.c. and that h(z) = (1, z,… , zT−1)H(zT ), z = eit
, is a square factor

of the density g of (x(n)), which proves the formula (21). □

The first part (existence) of Theorem 4.1 is well known but difficult to attribute to a

particular name. In fact more is known. From a description of all solutions to (19)

given for example in [4], p. 11, it follows that if additionally det A(z) ≠ 0 for all

|z| = 1, then the system has only one bounded solution which therefore must be a

proper T-PC solution. Regarding computing a density of a proper T-PC solution,

two other different procedures were given in [12, 13]. Our formula seems similar

to [13].

The formula (21) shows that a density of a proper PC solution to any PARMA

system is a rational function. From the next theorem it follows that the opposite is

also true.

Theorem 4.2 Let (x(n)) be a T-PC sequence. Then the following conditions are
equivalent:

1. (x(n)) is a proper T-PC solution to some PARMA system.
2. (x(n)) has a rational density.
3. there exists a PARMA system (A(z),B(z)) such that:

a. polynomial matrices A(z) and B(z) are left co-prime,
b. A(z) has no zeros in an open disk D<r of a radius r > 1, and B(z) has no

zeros in the open disk D<1 of radius 1,
c. (x(n)) is the only T-PC solution to the system (A(z),B(z)).
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The theorem remains valid for T-variate stationary sequences, that is when in the

above formulation we replace T-PC by T-variate stationary, (x(n)) by (x(n)), and

the word PARMA by VARMA.

Proof Let (x(n)) denote the T-variate stationary block sequence corresponding to

(x(n)) and F be its spectrum.

(1. ⇒ 2.) From the proof of Theorem 4.1 it follows that if (x(n)) is a proper PC

solution to some PARMA system (18), then the corresponding block sequence (x(n))
satisfies the associated VARMA system (19) and that (x(n)) is unitary

equivalent to the T-variate stationary sequence (H(n)) in  = L2(T ) defined by

H(n) = e−intH(eit), where H(eit) = (1∕
√
2𝜋)A−1(eit)B(eit), n ∈ . Note that

H(z) = (1∕
√
2𝜋)A(z)−1B(z) is rational. The correlation function of (H(n)) is KH(n) =

∫
2𝜋
0 e−intH(eit)H(eit)∗dt. Hence (x(n)) is a.c. and its spectral density is F(eit) =

H(eit)H(eit)∗ a.e., that is H(z) is a rational square factor of F(z). From Lemma 3.1

part 1. we conclude that the spectrum of (x(n)) is a.c. and h(z) =
∑T−1

k=0 zkHk⋅(zT ) is

a square factor of the density g of (x(n)). Since H(z) is a rational matrix, h(z) is also,

and consequently all gj(z) = h(z)h(djz)∗, d = e2𝜋∕T
, are rational.

(2. ⇒ 3.) Suppose now that (x(n)) is a.c. and its density g is rational. Then

the corresponding T-variate stationary block sequence (x(n) is a.c. and, by The-

orem 3.1, its density F(z) is rational. The Rozanov’s Theorem 2.1 implies that

F(z) has a factorization F(z) = G(z)G(z)∗ where G is rational, analytic in the the

open disk D<1 and G(z) has no zeros in D<1. Since entries of F(eit) are inte-

grable, the function G(z) has no poles of modulus 1. Therefore G(z) is analytic in

some open disk D<r, r > 1. The matrix G(0) is different than 0 since otherwise

z = 0 would be a zero of G(z). If we factor the least common multiple, say q(z),
of all denominators of entries of G(z), then we can write G(z) = P(z)∕q(z) where

P(z) is T × T polynomial matrix with no zeros in D<1 and q(z) is a scalar polyno-

mial with all zeros outside D
≤1, and hence outside of a certain disk D<r of radius

r > 0. In particular z = 0 is not a zero of q(z), so q(0) ≠ 0. Let A0(z) = (q(z)∕q(0))I
and B0(z) = (1∕q(0))P(z). Then both are analytic polynomial matrices, the constant

term of A0(z) is the identity matrix I, A0(z)−1 = (q(0)∕q(z))I and A0(z)−1B0(z) =
(q(0)∕q(z))(1∕q(0))P(z) = G(z). Factoring out the left greatest common divisor L(z)
of A0(z) and B0(z) we obtain that A0(z) = L(z)C(z) and B0(z) = L(z)D(z). Since

det A0(z) ≠ 0 on some D<r, r > 1, both det L(z) ≠ 0 and det C(z) ≠ 0 on D<r, r > 1.

Hence L(z)−1 exists and we conclude that C(z)−1D(z) = A0(z)−1B0(z) = G(z). Let

S be an invertible matrix such that SC(0) is lower triangular, and let Q be a uni-

tary matrix such that SD(0)Q is lower triangular. Define A(z) = SC(z) and B(z) =
(
√
2𝜋)SD(z)Q. Since A(0) and B(0) are lower triangular, (A(z),B(z)) is a PARMA

system. Polynomial matrices A(z) and B(z) satisfy conditions a. and b. of 3., and

(1∕
√
2𝜋)A(z)−1B(z) = C(z)−1D(z)Q, z ∈ . Define H(z) = (

√
2𝜋)A(z)−1B(z). Then

H(z) = G(z)Q, and hence H(z)H(z)∗ = G(z)G(z)∗ = F(z). Hence (x(n)) is a proper T-

variate stationary solution to the system (A(z),B(z)). Since (x(n)) is a block sequence

corresponding to (x(n)), the sequence (x(n)) is a proper T-PC solution to the system

(A(z),B(z)). Since det A(z) = (det S)(det A0(z))∕(det L(z)) ≠ 0 on the circle |z| = 1,
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the system (A(z),B(z)) has only one bounded solution, and hence only one T-PC

solution.

(3. ⇒ 1.) In view of Theorem 4.1, the condition b. itself implies that that system

(A(z),B(z)) has a proper T-PC solution. Moreover it implies that det A(z) ≠ 0 on the

circle |z| = 1, and hence that the system has only one bounded solution. Therefore

the sequence (x(n)) must be a proper T-PC solution to (A(z),B(z)). □

An immediate consequence of the above theorem is regularity of every T-PC

sequence with rational density.

Corollary 4.1 Every T-PC (or T-variate stationary) sequence with rational den-
sity is regular. Consequently, if a PARMA (or VARMA) system has a proper PC (or
proper T-variate stationary) solution, then this solution is regular.

Proof Suppose that (x(n)) is a T-PC sequence with rational density g, and let (x(n))
be the corresponding T-variate stationary block sequence. From Theorem 4.2, part

3., we conclude that there is a PARMA system (A(z),B(z)) such that (x(n)) is a proper

T-variate stationary solution of the system (A(z),B(z)) and the rational function

H(z) = (
√
2𝜋)A(z)−1B(z) is analytic in some open disk D<r of radius r > 1. Moreover

H(eit) is a square factor of the density of (x(n)). Being analytic, H has an expansion

H(z) =
∑∞

k=0 Ckzk
, |z| < r, r > 1. Therefore the corresponding MA representation of

(x(n)) is one-sided and hence (x(n)), and also (x(n)), are regular. □

5 PARMAModels

We failed to find a precise definition of a PARMA (or VARMA) model, so we have

assumed the following.

Definition 5.1 A PARMA (or VARMA) system (A(z),B(z)) is called a PARMA (or
VARMA) model if the polynomial matrices A(z) and B(z) satisfy the conditions a. and

b. of part 3 of Theorem 4.2

Theorems 4.1 and 4.2 show that every PARMA (or VARMA) model has a unique

T-PC (or T-variate stationary) solution and this solution has rational density, and

vice verse, that every T-PC (or T-variate stationary) sequence with rational density

admits a PARMA (respectively VARMA) model. The sole reason that we added the

condition a. saying that A(z) and B(z) are left co-prime is to reduce the set of allowed

models. Theorem 4.2 remains valid if we remove this condition from part 3.

Why do we like to have a model? Because then the sequence (b0(n)𝜉n) in (18) or

(B0𝝃n) in (17) are innovation sequences for (x(n)) and (x(n)), that is sp{b0(n)𝜉n} =
Nx(n) and sp{aB0𝝃n ∶ a ∈ 

T} = Nx(n), respectively. At least we believe so, since so

far we can prove it only under some additional assumptions: a miniphase assumption
about B(z), or a full density rank assumption about the sequence. If (b0(n)𝜉n) (or

(B0𝝃n)) are innovations then the one step prediction of an element x(n) (or x(n)) based
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on the immediate past is obtained by simply setting 𝜉n = 0 in the model equation (18)

(or 𝝃n = 0 in (17), respectively).

The miniphase assumption is the assumption that det B(z) is not identically zero

([5], p. 25). In the case of VARMA systems, the miniphase assumption implies that

a proper T-variate stationary solution (x(n)) of the system is a full rank sequence

and, hence, its density F(eit) is a.e. invertible. It is easy to see that inverse also

holds true, that is if a T-variate stationary sequence (x(n)) has a rational density

F with det F(eit) ≠ 0 a.e., and if (A(z),B(z)) is a VARMA model for (x(n)), then B(z)
must satisfy the miniphase assumption and (x(n)) is full rank. Below we discuss a

consequence of the miniphase assumption for PARMA models. Note that until this

moment we have not assumed anything about the rank of a sequence or the matrix

rank of a polynomial matrix B(z).

Definition 5.2 For any a.c. T-PC sequence (x(n)) with density g let G(eit) be the T ×
T matrix function defined by Gj,k(eit) = g⟨k−j⟩(ei(t+2𝜋j∕T)), t ∈ [0, 2𝜋), k, j = 0,… ,

T − 1. If det G(eit) ≠ 0 a.e. then we say that (x(n)) is of a full density rank.

Note that if h is a square factor of g, then G(z) = Hd(z)Hd(z)∗, where z = eit
and

Hd(z) is the matrix whose k-th row is equal h(zdk) as in (8). Also recall that the

rank r of a T-PC sequence (x(n)) is the number of nonzero elements in a sequence

x(k) − (x(k)|Mx(k − 1)), k = 0,… ,T − 1. A T-PC sequence (x(n)) is said to be of full
rank if r = T .

Theorem 5.1 Suppose that a T-PC sequence (x(n)) has a rational density g and that
(A(z),B(z)) is a PARMA model (18) for (x(n)). Assume additionally that det B(z) is
not identically zero (a miniphase assumption). Then (x(n)) has full density rank and
the sequence (𝜉n) in (18) is an innovation sequence for (x(n)). Consequently x(n) is
of full rank.

Proof Let (x(n)) be a T-stationary block sequence corresponding to (x(n)) and F
be its density. Let (A(z),B(z)) be a PARMA model for (x(n)). Then H(z) = (1∕

√
2𝜋)

A(z)−1B(z) is a square factor of F. Since A(z) has no zeros in an open disk D<r, r > 1,

det A(z) ≠ 0 for all |z| < r. By assumption b(z) = det B(z) is not identically zero and

hence, because b(z) is a polynomial, b(z) ≠ 0 everywhere except finitely many z’s.

Since B(z) has no zeros in the open disk D<1, det B(z) ≠ 0 everywhere on D<1. Sum-

ming up, H(z) is analytic on D<1 and det H(z) = (1∕
√
2𝜋)(det B(z))∕(det A(z)) ≠ 0

on D<1. From [11], p. 76, we conclude that H(z) is a maximal factor of F, which

means that if we write H(z) as a power series H(z) = (1∕
√
2𝜋)

∑∞
k=0 Ckzk

, |z| < r,

then

x(n) =
∞∑

k=0
Ck𝝃n−k, (24)

is an innovation representation of (x(n)). Note that, because B(z) =
√
2𝜋A(z)H(z)

and all three are analytic in D<r, B(0) =
√
2𝜋A(0)C0. Also A(0) is invertible because

otherwise z = 0 would be a zero of A(z). This and the fact that by definition both
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B(0) and A(0) are lower triangular imply that C0 = (1∕
√
2𝜋)A(0)−1B(0) is lower

triangular and invertible. From Lemma 3.2, we conclude that the MA representation

of (x(n)) generated by (24)

x(n) =
∞∑

k=0
ck(n)𝜉n−k, ck(n) = C⟨n⟩,⟨n−k⟩

−q(n−k) ,

is an innovation representation of (x(n)), that is (c0(n)𝜉n) is an innovation for (x(n)).
Since by (15), c0(mT + j) = c0(j) = Cj,j

0 ≠ 0 for all j = 0,… ,T − 1, and m ∈ , (𝜉n)
is also an innovation for (x(n)). This implies that the rank of (x(n)) is T . Moreover,

since det H(eit) ≠ 0 a.e., the matrix function Hd(eit) appearing in (8) is also invertible

a.e., and hence G(eit) = Hd(eit)Hd(eit)∗ is also invertible a.e., that is (x(n)) is a full

density rank. □

The next theorem is sort of inverse and shows that if (x(n)) is a T-PC sequence

with full rank rational density, then any PARMA model for (x(n)) must satisfy the

miniphase assumption.

Theorem 5.2 Suppose that (x(n)) is T-PC with a rational density g of full density
rank. Let (A(z),B(z)) be a PARMA model for (x(n)). Then det B(z) is not identically
zero, and (𝜉n) in (18) is an innovation sequence for (x(n)). Moreover (x(n)) is of full
rank.

Proof Full density rank means that det G(eit) = | det Hd(eit))|2 ≠ 0 a.e. From the

relation (8) it follows that also | det H(eitT )| = (1∕T)| det Hd(eit)| ≠ 0 a.e. Hence

H(z) = (1∕
√
2𝜋)A(z)−1B(z) is invertible except finitely many z’s. Consequently (A(z),

B(z)) satisfies a miniphase assumption and the rest follows from Theorem 5.1. □

We do not know whether Theorems 5.1 or 5.2 are true for sequences of not full

density rank r or without a miniphase assumption.

An immediate consequence of the two theorems is that if a T-PC sequence (x(n))
has a rational density, then (x(n)) is of full rank iff it has a full density rank (we

already know that every T-PC sequence (x(n)) with a rational density is regular).

In some publications a VARMA (as well as a PARMA) model is defined as a

system (A(z),B(z)) which additionally to the condition b. of part 3 of Theorem 4.2,

satisfies the so called invertibility assumption which says that det B(z) ≠ 0 for all

|z| ≤ 1 (e.g. [1], p. 409). The invertibility assumption (together with b.) immediately

gives that a T-variate stationary solution (x(n)) to the system is proper, full rank,

and (𝝃n) an innovation sequence for (x(n)). The invertibility assumption is much

stronger that a miniphase assumption which allows det B(z) = 0 for finitely many z’s

of modulus 1, and significantly reduces a number of T-variate stationary sequences

with rational densities that can be modeled in that way. For example a pair A(z) = 1
and B(z) = 1 − z is a model for a univariate stationary sequence x(n) = 𝜉n − 𝜉n−1,

n ∈ , but B(z) does not satisfy an invertibility assumption.

Note is that a construction of the rational matrix G(z) in Rozanov’s Theorem 2.1

is explicit, as well as all constructions presented in this paper are explicit. Therefore
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given a PARMA system we can explicitly compute a density of its T-PC solution

via Theorem 4.1, while a construction given in the proof of Theorem 4.2 allows us

to construct a PARMA model for any T-PC sequence with rational density given its

density g. A needed procedure for finding a left greatest common divisor of poly-

nomial matrices A0(z) and B0(z) can be found in [5], p. 38, or in [7], Sect. 1.15.2.

Moreover, if g is if full density rank then the proofs of Theorems 5.1 and 5.2 show

us how to find coefficients of an innovation representation of (x(n)).

Remark 2 For each T-PC sequence (or T-variate stationary sequence) with ratio-

nal density one can find many different PARMA (respectively VARMA) mod-

els, even if we assume the miniphase assumption. This is because there are many

pairs (Ak(z),Bk(z)) satisfying the conditions of Definition 5.1 and such that that

Hk(z)Hk(z)∗, where Hk(z) = (1∕
√
2𝜋)Ak(z)−1Bk(z), coincide a.e. on the unit circle

|z| = 1. Although each model serves its prediction purpose, this lack of unique-

ness is not convenient in model identification for it would be nice to have a unique,

preferably minimal, set of model coefficient to be estimated. Because of this Han-

nan introduced the notion of identifiability. The idea is to impose some constraints

on allowable models such that each sequence with rational density would have one

and only one model satisfying these constraints. Identifiability problem for VARMA

models is discussed in [5]. We do not address this question in our paper. □

Appendix: Proof of Lemma 3.1

Let (x(n)) be T-PC, (x(n) = [xk(n)]) be the corresponding T-variate stationary block

sequence, and 𝛾 and F be respectively their spectral measures.

1. First we prove that: if (x(n)) is a.c., H
(
eit) is a square factor of its density F

(
eit)

of (x(n)), Hk⋅ denotes the k-th row of H, and we define h(eit) =
∑T−1

k=0 eiktHk⋅(eiTt), then
(x(n)) is a.c. and h is a square factor of a density g = (g0,… , gT−1) of (x(n)). Write

Hk⋅
as a Fourier series Hk⋅(eit) =

∑∞
n=−∞ Hk

neint
. Then

h(eit) =

[ ∞∑
n=−∞

T−1∑
k=0

Hk
nei(nT+k)t

]
=

∞∑
p=−∞

hpeipt, where hp ∶= H⟨p⟩
q(p).

Denoting d = e2𝜋∕T
, we obtain that

bj(n) ∶=
∫

2𝜋

0
e−inth(eit)h(ei(t+2𝜋j∕T))∗dt

=
∞∑

p=−∞

∞∑
q=−∞

hph∗qd−jq
∫

2𝜋

0
ei(p−q−n)tdt = 2𝜋

∞∑
q=−∞

hq+nh∗qd−jq.
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Because
∑T−1

j=0 dj(r−q)
is nonzero only if q = mT + r for some m ∈ , the inverse

discrete Fourier transform of bj(n) is

(1∕T)
T−1∑
j=0

djrbj(r) = (2𝜋∕T)
∞∑

q=−∞
hq+nh∗q

T−1∑
j=0

dj(r−q)

= 2𝜋
∞∑

m=−∞
hmT+r+nh∗mT+r = 2𝜋

∞∑
m=−∞

H⟨r+n⟩
m+q(r+n)(H

r
m)

∗,

r = 0,… ,T − 1. Recall that the spectrum of (x(n)) is a vector measure 𝛾 = (𝛾0,… , 𝛾T−1)
such that aj(n) = ∫

2𝜋
0 e−int𝛾 j(dt), and that Rx(n + r, r) = (1∕T)

∑T−1
j=0 e2𝜋ijr∕Taj(r).

Since for r = 0,… ,T − 1,

Rx(n + r, r) = K⟨n+r⟩,r
x (q(n + r)) =

∫

2𝜋

0
e−iq(n+r)tH⟨n+r⟩⋅(eit)Hr⋅(eit)∗dt

=
∞∑

p=−∞

∞∑
m=−∞

H⟨n+r⟩
p Hr

m ∫

2𝜋

0
ei(p−m−q(n+r))tdt

= 2𝜋
∞∑

m=−∞
H⟨n+r⟩

m+q(n+r)H
r
m, (25)

comparing this with the inverse discrete Fourier transform of (bj(n)), we conclude

that bj(n) = aj(n), n ∈ , j = 0,… ,T − 1, and hence 𝛾 is a.c. and the density of 𝛾 j

is equal gj(eit) = h(eit)h(ei(t+2𝜋j∕T))∗ a.e.

2. We will show opposite, that is assuming that (x(n)) is a.c., from a factor h(eit)
of a density g of (x(n)) we will construct a square factor H of the density of F(eit)
of (x(n)), showing at the same time that (x(n)) is a.c.. Write h(eit) =

∑∞
p=−∞ hpeipt

,

so that e−ikth(eit) =
∑∞

q=−∞ hq+keiqt
. We want to construct a function whose Fourier

coefficients are equal hq+k if q = mT , and other are zero. It is easy to see that the func-

tion fk(eiu)) = 1
T

∑T−1
j=0 e−ik(u+2𝜋j∕T)h(ei(u+2𝜋j∕T)) has this property. Indeed, denoting as

previously d = e2𝜋i∕T
we obtain that

fk(eit) =
∞∑

p=−∞

(
1
T

T−1∑
j=0

d(p−k)j

)
hpei(p−k)t =

∞∑
m=−∞

hmT+keimTt.

Clearly each function fk is a function of tT , hence there is hk(eit) such that hk(eiTt) =
fk(eit). The Fourier series of hk is hk(eit) =

∑∞
m=−∞ hmT+keimt

. Let H(eit) be the T × T
matrix function which k-th row Hk⋅

is equal hk, i.e.

Hk⋅(eit) =
∞∑

n=−∞
Hk

neint, where Hk
n = hnT+k,
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and let (y(n)) be a T-variate stationary sequence with the density H(eit)H(eit)∗.

Repeating computation (25) we conclude that the covariance of the T-PC sequence

(y(n)) corresponding to (y(n)) equals

Ry(n + r, r) = 2𝜋
∞∑

m=−∞
H⟨n+r⟩

m+q(n+r)(H
r
m)

∗ = 2𝜋
∞∑

m=−∞
hTm+n+rh∗mT+r.

On the other hand, as it was computed in part 1.,

Rx(n + r, r) = (1∕T)
T−1∑
j=0

djr
∫

2𝜋

0
e−inth(eit)h(ei(t+2𝜋j∕T))∗dt

= 2𝜋
∞∑

m=−∞
hmT+r+nh∗mT+r.

Comparing this with the previous formula we see that Rx = Ry, and hence they have

the same spectrum. We therefore conclude that (x(n)) is a.c. and its density F(eit) =
H(eit)H(eit)∗ a.e.
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Fault Detection in Belt Conveyor Drive
Unit via Multiple Source Data

Piotr Kruczek, Jakub Sokołowski, Jakub Obuchowski,
Mateusz Sawicki, Agnieszka Wyłomańska and Radosław Zimroz

Abstract The fault detection for the belt conveyor drive unit gives a possibility to
avoid unexpected breaks in production and to plan the repairs for the most con-
venient time. Trouble-free operation of the belt conveyor system in an underground
mine is one of the most essential requirement in case of production plan realization.
In order to maintain the system, several features (energy consumption, output,
temperature, vibrations, belt speed etc.) might be monitored. For instance, belt
conveyors can be equipped with sensors, which measure the temperature of their
transmission and the drive unit electricity consumption. The paper aims to examine
the possibility of multivariate data analysis application for fault detection. The
authors focused on the extraction of additional information from the relation
between the transmission temperature and electrical energy consumption (electric
current). Namely, in the first step, the electric current signal is smoothed in order to
reduce its high-frequency volatility. Then the relationship between smoothed cur-
rent signal and the temperature is examined. It was observed that the specifically
smoothed current might explain the variation of the temperature. Variability of fitted
model parameters may indicate a change in the drive unit condition. The findings
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are illustrated by analysis of signals acquired on the machine and it covers period
before damage occurred till the repair. Finally, model outputs for the three stages
have been analyzed: before the damage, during its development and after repair.
The obtained results prove that the relationship between current and temperature
depends on the condition of the drive system. The outcome confirms that there is a
possibility to apply context-based, multiple sources data analysis for fault detection
in belt conveyor drive unit.

Keywords Belt conveyor ⋅ Fault detection system ⋅ Drive unite diagnostics ⋅
Multiple source data analysis ⋅ Gearbox temperature dynamics

1 Introduction

Trouble-free operation of mechanical systems is of high importance in many
industries. Automotive, chemical, aerospace and mining industries are prominent
examples of branches, where condition of mechanical systems plays an important
role [1–9]. Any unexpected break might result in problems with fulfillment of the
production schedule. Today’s technological opportunities give possibility to mon-
itor a lot of informative features related to operational condition of machinery
systems. This raises a need to develop continuous-time fault detection systems that
would help to maintain complex systems that consists of many machines. Surely,
mining networks of belt conveyors are illustrative examples of such systems. Belt
conveyors, especially these that are connected serially, are exposed to unexpected
downtimes due to fault of their elements. One of the most crucial components of the
belt conveyor is the conveyor belt. There are many systems that quantify condition
of the belt. Each type of conveyor belt is related to specific approaches which can
be beneficial in terms of fault detection. For instance, belts with steel cord might be
diagnosed using systems that measure magnetic disruptions [10–14]. Condition of
fabric conveyor belts might be assessed using X-ray imaging or other
non-destructive methods [15, 16]. Both of these approaches require advanced
methods of signal processing [17, 18]. Another crucial part of belt conveyor net-
work is the drivetrain, which usually consists of electric motors, shafts, gearboxes
and pulleys. In this case, monitoring systems are often equipped with sensors that
measure vibrations, temperatures, weight of the transported material, electricity
consumed by motors, etc. [19–25]. Fault detection systems require not only to
monitor the acquired data, but the main purpose is to provide decisions whether the
considered part of the conveyor is faulty or not. In this paper we propose a data
processing method that integrates recordings from different sources in order to
indicate technical condition of the considered machine—a part of the belt conveyor
system. Namely, it is presented that the electric current of engines and temperature
measured on gearboxes might provide a reliable diagnostic information that might
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help to minimize stall time of the belt conveyor network in the underground mine.
The methodology presented in this paper is based on the concept presented in [26,
27], where the Authors analyze not the diagnostic signals themselves, but their
relations to another, auxiliary parameters.

The paper is structured as follows. In Sect. 2 comprehensive data description is
provided. Data pre-processing required for further analysis is presented in Sect. 3.
Methodology that helps to assess condition of the belt conveyor drive unit is
contained in Sect. 4. Application of the proposed methodology to real data from a
commercial monitoring system is presented in Sect. 5. The last section contains
conclusion.

2 Analyzed Data Description

In this paper temperature and current records acquired by commercial, multichannel
low frequency data logger are analyzed. The measurement systems operate con-
tinuously in an underground copper ore mine. Data is collected on the four gear-
boxes and electric motors installed on the same belt conveyor. Scale of the belt
conveyor system causes that the monitoring system measures a lot of signals. In
order to avoid overwhelming sizes of the data files, variables are quantized into
finite sets denoted T= τ1, τ2, . . . , τntf g: τj < τj+1 for temperature, and
I = i1, i2 . . . , inif g: ij < ij+1 for current. Namely, the system saves a particular
observation if it differs from previous one more than a given threshold. Therefore,
when the phenomena is relatively stable, the records are not registered. Each record
possesses information of time (year, month, day, hour, minute and second) and
related physical quantity. Unfortunately, this memory saving solution comes with
difficulties in signal processing. During specific time interval each channel might
possess different amount of values recorded in different time points. Therefore,
integration of data from different channels might be difficult. Thus, signal inter-
polation is strongly recommended and can solve this problem. Moreover, in ana-
lyzed observation one can notice some outliers. Let τj be a temperature recorded at
the k-th time point, and assume that it corresponds to j-th value from the predefined
set of quantized temperature data, namely xk = τj. Due to nature of temperature and
continuous work characteristic of a system, xk +1 should belong to fτj− 1, τj+1g.
However, some records do not fulfill this pattern. They might take values from a set
{−30 °C, 129 °C} for a few seconds or minutes and afterwards return to usual
values of temperature. Such observations are recognized as errors and should be
removed from the data sample, since temperatures of transmission in this mine are
not lower than 20 °C nor higher than 90 °C (even for overheated faulty gearbox). In
the Fig. 1 the exemplary conveyor belt gearbox and the temperature sensor are
presented.
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3 Data Pre-processing

As it was mentioned in previous section, analysis of relation between raw tem-
perature and current signals are difficult since sampling is time-varying and it is
different for each channel. Firstly, error values should be erased from data and both
temperature and current have to be interpolated at identical time axis for each
channel in order to make analysis simpler. It was decided to interpolate data at
equally spaced time points with one minute time intervals. Due to physical prop-
erties of analyzed quantities it was decided to use linear interpolation of tempera-
tures and stepwise for electric current. Linear interpolation of temperature is
motivated by its slow variation in time. Jumps and periods with constant value of
the electric current (engine is switched off) lead to stepwise interpolation. The
procedure of such data pre-processing is presented in Fig. 2. The linear interpola-
tion is curve fitting by the first order polynomial. Namely, the interpolated values
between two records are calculated from fitted linear function. The stepwise method
is even simpler. All of the interpolated variables are equal to the last recorded
quantity.

3.1 Data Smoothing

We assume that electric current consumed by the conveyor belt engine has an
impact on the gearbox temperature. Moreover, it is expected that the temperature
depends rather on past current values measured through some period than on its
instantaneous value. In order to process the real data the smoothing algorithms can
be used. They provide somehow averaged time series corresponding to a given time
horizon. There are many well-known methods that can be applied. In this article we
present two of them. The first one is moving average (MA) and the second one is
exponential smoothing.

Fig. 1 Conveyor belt gearbox and the temperature sensor
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3.1.1 Moving Average

This method is based on averaging the data on the given time period with the series
of weights. The formula for signal Xt, smoothing length k (horizon) and weights wi,
where i=1, . . . , k is given:

Yt = ∑
k

i=1
wiXt− i. ð1Þ

In our data we use the equal weights for all i=1, . . . , k, i.e. wi = 1
k. Then all past

k electric current recorded values have the same influence on the averaged tem-
perature Yt. The discussion on appropriate choice of the time horizon k is contained
in Sect. 5.

3.1.2 Exponential Smoothing

In the second method impact of the historical electric current data decreases with
respect to time (according to the smoothing parameter m), what might be more
relevant for real data than equally weighted moving average. The formula for given
smoothing parameter m∈ 0, 1ð Þ and signal Xt is presented below:

Yt =mXt + 1−mð ÞYt− 1, t>1

Y1 =X1.
ð2Þ

Import temperature 
and date records

Delete outliers from the temperature 
and corresponding data records

Interpolate temperature linearly

START 

STOP 

Import current and 
date records

Delete outliers from the current and 
corresponding data records

Interpolate current stepwise

START 

STOP 

(a) (b)

Fig. 2 Data pre-processing steps for temperature (A) and electric current (B)
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Moreover the explicit form of smoothed signal can be expressed by following
equation:

Yt = ∑
t− 2

j=0
m 1−mð Þ jXt− j + 1−mð Þt− 1X1. ð3Þ

In this method the smoothing parameter m has to be specified. Smaller value of
m results in slow decrease of weights, thus past values has relatively large influence
on current Yt. Higher value of m stands for high influence of latest values on the
smoothed signal. Thus, the output of the smoothing procedure might still contain
some high-frequency variations. The parameter m equals to 1 results in Yt =Xt for
each t. From the above equation we can derive the sum Sm, l of weights applied to
l latest recordings:

Sm, l = ∑
l

j=0
m 1−mð Þ j = ∑

l+1

j=1
m 1−mð Þj− 1 = 1− 1−mð Þl+1. ð4Þ

From above equation one can estimate the influence of the l latest observations
to the currently calculated Yt for given m. Moreover, the formula for smoothing
parameter m depending on given sum Sm, l can be derived:

m=1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− Sm, ll+ 1

p
. ð5Þ

Therefore, one can require that latest l observations are responsible for p% of
currently calculated Yt. Alternatively, one can assume a smoothing parameter and
calculate the influence of l latest weights to Yt. For example, for sampling frequency
of data equal to 1 min and smoothing parameter m= 1

120, the sum of weights related
to 120 latest recordings (2 h) is S1 1̸20, 120 ≈ 0.6367. Therefore, 120 latest recordings
account for about 64% of currently calculated Yt.

In further analysis we exploit temperature signals interpolated linearly at equally
spaced one-minute intervals and stepwise-interpolated current signals smoothed
using both mentioned methods, i.e. moving average with equal weights and
exponential smoothing.

4 Diagnostic Methodology

In this section we propose the methodology for fault detection in belt conveyor
drive unit. It is relies on the change in the relation between electric current and
temperature acquired on the electric motor and the gearbox, respectively. The
analysed data is sampled on one minute basis. In the first step the pre-processed
signals are separated into 24 h groups starting at 6 a.m. This is motivated by the fact
that the working day in the mine starts at 6 a.m. and it consists of 4 complete shifts
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of equal duration. Due to the work cycle, the belt conveyors usually do not work
from Saturday, 6 a.m. till Monday, 6 a.m. Moreover, signals obtained on Mondays
(Mon, 6 a.m.–Tue, 6 a.m.) are significantly different from the rest of the week, since
on Mondays the machines start working after a long brake. Therefore, signals from
4 working days (Tuesday 6 a.m.–Saturday 6 a.m.) are easily comparable.

From the diagnostic point of view, the most informative parts of the monitored
signals are related to periods with high load (the load of conveyor is often high, if
only the conveyor operates) or operation without load (increasing energy con-
sumption during idle state might indicate increasing resistance). The monitoring
system installed in this particular underground mine covers the most important
conveyors among the network. These conveyors operate usually under high load,
thus there might be insufficient amount of data related to idle operation to perform
diagnostics. In order to select data related to high load, the proper thresholding for
smoothed electric current might be used. Namely, we investigate relation between
current and temperature for which the averaged current is higher than a given
threshold. Moreover, in the analysis different values of thresholds are being tested,
that the best one can be chosen.

Clearly, the data records can be separated into two groups with respect to
temperature trend. The authors decided to consider only data for which the tem-
perature does not decrease, since it corresponds to heating dynamics.

The last stage is focused on the proper model selection. Authors observed that
for such pre-processed data the linear regression is suitable. Namely, the following
model might be applied:

T tð Þ= aES tð Þ+ b, ð6Þ

where T is temperature, t is time point, ES smoothed electric current and a, b are the
model parameters to be estimated. In order to test the goodness of fit the R2 measure
is applied. Linear regression can explain the relation between variables. Changes of
the model parameters during machine operation might indicate damage, similar to
the methodology presented in [26] for wind turbines condition monitoring. To wit,
faulty machine would reach higher temperature than the healthy one, for a given
load. Moreover the model is simple, does not require time-consuming calculations
and it is easy to interpret. In order to diagnose a machine the regression line
(namely slope and intercept) can be analysed. The results of the application of
proposed method for real signals are presented in the next section.

5 Real Data Application Results

The analysed data consist of temperature and electric current recorded on 4 gear-
boxes from one belt conveyor. Signals are pre-processed as it is described in
Sect. 2. Furthermore, one of the machine (no. 54) was damaged and repaired during
the analysed period. The main goal is to show capability of damage detection with
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proposed methodology. Thus, the model was applied to faulty gearbox. The
comparison of the result with transmission in good condition is also provided.

First of all, the signal of electric current and temperature recorded on gearbox 54
are presented in the Fig. 3.

Clearly, before the fault component was replaced, the anomaly temperature is
observed. After the repair the temperature returned to normal level. Additionally,
one can be interested in developing an automatic procedure for detection of such
anomaly. As it was mentioned in previous sections the model parameters are
estimated on the smoothed electric current instead of the raw signal. The com-
parison of two introduced averaging methods is depicted in Fig. 4. Furthermore, the
corresponding values of temperature are also plotted. The exponential smoothed
parameter was set to 1

120 and MA parameter is equal to 180 (180 min, half of one
shift). One can observe specific relation between current and temperature. The
increase of smoothed electric current implies increase of the temperature.

In order to compare the smoothing methods the linear regression was applied.
Then the R2 measure provides information, which averaging procedure is more
suitable for the real signals. The whole data can be divided into three subgroups,
depending on the stage of damage development. First one, before the damage
appeared, corresponds to relatively low temperature (usually below 70 °C). When

Fig. 3 Current and Temperature signals recorded on damaged gearbox. Red box marks the period,
when the temperature increased significantly. The green box shows the period when the machine
was repaired
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the temperature rises, the second subgroup can be noticed—it stands for damage
development. Finally, the third subgroup consists of signals acquired after repair,
which corresponds to a good condition. In Fig. 5 there are presented the linear
regression results for each day during the experiment. The plots on the top are
related to the day before the growth of the temperature observed in the Fig. 3. The
middle plots represent the day after the anomaly increase. The temperature-current
relation is presented on the bottom panel. Furthermore, two electric current aver-
aging methods are also compared. One could expect that the exponentially
smoothing is more adequate, because the weights decrease with respect to time.
Indeed, the goodness of fit for this smoothing method is much better. All R2 are
higher than 0.7 and for good condition they are even higher than 0.9. It means that
temperature data, during heating periods, can be well explained by exponentially
smoothed electric current. On the other hand, one can easily observe that moving
average method is not good enough. The R2 are much smaller (except one day) and
the linear regression should not be applied for such data.

Once the smoothing method is chosen, the performance of the proposed diag-
nostic method can be examined. Apparently, the differences between healthy and
faulty machine can be observed. Plots for days before temperature growth and after
repair looks similarly (Fig. 6). On the contrary, the middle plot is almost shifted in
parallel, with the higher value of intercept b and similar slope a.

Figure 5 presents only exemplary results from the analysed time horizon. In
Fig. 6 there are presented the outputs of the fitted models for each analysed day. As
it could be expected, the difference between healthy and faulty condition states is
clear. The parallel shift of regression lines is noticeable, the ones from the damage

Fig. 4 Smoothed electric current and temperature comparison
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development period are much above the other ones. Thus, the linear models fitted to
conveyor belt data can be considered as an indicator of machine’s condition.

The presented result are obtained for the exponential smoothing parameter equal
to 1

120. The lower bound for smoothed electric current was set to 100 A—it indicates
that the load is applied to the system. Moreover, only the data acquired during
temperature increase is analyzed and signals during weekends and one day after
them are not considered. Thus, the data from different days are comparable and it
can be concluded that the changes in fitted model parameters are related to change
of machine condition.

The comparison of the outputs of the model fitted to different gearboxes is
presented in Fig. 7. Condition of each gearbox is represented by value of the fitted

Fig. 5 Linear regression applied to temperature versus current. A day before damage (top panels),
during damage (middle panels) and after repair (bottom panels). The results are presented for
exponentially smoothed (left side) and MA smoothed (right side) data
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Fig. 6 Regression lines for days divided into 3 groups with respect to machine condition

Fig. 7 Values of the regression lines at smoothed electric current equal to 100 A, two different
gearboxes. The damaged one is no. 55. Red box marks the period, when machine was in faulty
condition
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regression line at electric current equal to 100 A (diagnostic feature). The damage
of gearbox no. 55 can be clearly noticed therein. After the repair, the value of the
proposed diagnostic feature returns to the level before damage development.
Clearly, only on the gearbox no. 55 the diagnostic feature changes significantly.
Furthermore, the proposed feature does not increase significantly during the entire
considered period. Thus, the proposed model that combines smoothed interpolated
data of temperature and electric current is able to detect abnormalities in technical
condition of the gearbox.

6 Conclusions

In this paper the temperature and electric current signals from belt conveyor were
analyzed. One of the gearboxes revealed a damage during the investigated time
horizon. The main goal was to propose a damage detection method based on
available quantities, i.e. electric current from engines and temperatures measured on
gearboxes. The data was pre-processed and two different smoothing methods were
investigated. Selection of appropriate parts of the data was motivated by their
usability to indicate temporal influence of electric current to heating dynamics. The
regression model was proved as suitable connection between two investigated
quantities. Exponential smoothing method turned out to be the most suitable in
terms of coefficient of determination. Upon the fitted model parameters, appropriate
diagnostic feature was proposed. It was shown that there is a possibility to indicate
temporal condition of the machine using the proposed feature. Due to simplicity of
this parameter, the proposed method might be easily applied in the underground
mine from which the data originate. Although, there is a need to analyze whether
such idea of combining temperature and load might be applied to other parts of the
belt conveyor system, e.g. pulleys or rollers. It has to be mentioned that proposed
method needs a training period when the machine is healthy, thus it cannot be
applied for one-off measurements. It is suitable for continuous monitoring of the
machine condition and is able to detect abnormal cases.

References

1. Jardine, A. K., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and
prognostics implementing condition-based maintenance. Mechanical Systems and Signal
Processing, 20(7), 1483–1510.

2. Czech, P., Wojnar, G., Burdzik, R., Konieczny, Ł., & Warczek, J. (2014). 1268. Application
of the discrete wavelet transform and probabilistic neural networks in IC engine fault
diagnostics. Journal of Vibroengineering, 16(4).

3. Konieczny, Ł., Burdzik, R., & Łazarz, B. (2013). 1113. Application of the vibration test in the
evaluation of the technical condition of shock absorbers built into the vehicle. Journal of
Vibroengineering, 15(4).

184 P. Kruczek et al.



4. Randall, R. B. (2011). Vibration-based condition monitoring: industrial, aerospace and
automotive applications. Wiley.

5. Yin, S., Li, X., Gao, H., & Kaynak, O. (2015). Data-based techniques focused on modern
industry: an overview. IEEE Transactions on Industrial Electronics, 62(1), 657–667.

6. Trutt, F. C., Sottile, J., & Kohler, J. L. (2002). Online condition monitoring of induction
motors. IEEE Transactions on Industry Applications, 38(6), 1627–1632.

7. Blazej, R., Jurdziak, L., Kirjanow, A., & Kozlowski, T. (2015). Evaluation of the quality of
steel cord belt splices based on belt condition examination using magnetic techniques.
Diagnostyka, 16(3).

8. Kołowrocki, K., & Soszyńska-Budny, J. (2015). Statistical identification of complex technical
system operation process. Diagnostyka, 16(4).

9. Figlus, T. (2015). 1592. The application of a continuous wavelet transform for diagnosing
damage to the timing chain tensioner in a motorcycle engine. Journal of Vibroengineering,
17(3).

10. Mao, Q., Ma, H., Zhang, X., & Zhang, D. (2011). Research on magnetic signal extracting and
filtering of coal mine wire rope belt conveyer defects. In 2011 3rd International Conference
on Measuring Technology and Mechatronics Automation (ICMTMA) (Vol. 3, pp. 18–22).
IEEE.

11. Błażej, R., Kirjanów, B., & Kozłowski, T. (2014). A high resolution system for automatic
diagnosing the condition of the core of conveyor belts with steel cords. Diagnostyka, 15(4),
41–45.

12. Langebrake, F., Klein, J., & Gronau, O. (1998). Non-destructive testing of steel-cord
conveyor belts. Bulk Solids Handling(Switzerland), 18(4), 565–570.

13. Harrison, A. (1985). A magnetic transducer for testing steel-cord deterioration in high-tensile
strength conveyor belts. NDT International, 18(3), 133–138.

14. Alport, M. J., Basson, J. F., & Padayachee, T. (2007). Digital magnetic imaging of steel cord
conveyor belts. In 14th International Materials Handling Conference (pp. 1–2).

15. Fourie, J. H., Alport, M. J., Basson, J. F., & Padayachee, T. (2005). Condition monitoring of
fabric-reinforced conveyor belting using digital x-ray imaging. Bulk Solids Handling,
25(5), 290.

16. Harrison, A. (1996). 15 years of conveyor belt nondestructive evaluation. Bulk Solids
Handling(Switzerland), 16(1), 13–19.

17. Xian-Guo, L., Chang-Yun, M., Wen, W., & Yan, Z. (2011). Research on fault detection
algorithm of steel cord conveyor belt based on gabor filtering and image fusion. Journal of
Convergence Information Technology, 6(11).

18. Obuchowski, J., Wylomańska, A., & Zimroz, R. (2014). Recent developments in vibration
based diagnostics of gear and bearings used in belt conveyors. In Applied Mechanics and
Materials (Vol. 683, pp. 171–176). Trans Tech Publications.

19. Zimroz, R., Hardygóra, M., & Blazej, R. (2015). Maintenance of belt conveyor systems in
poland–An overview. In Proceedings of the 12th International Symposium Continuous
Surface Mining-Aachen 2014 (pp. 21–30). Springer.

20. Stefaniak, P. K., Wyłomańska, A., Zimroz, R., Bartelmus, W., & Hardygóra, M. (2016).
Diagnostic features modeling for decision boundaries calculation for maintenance of
gearboxes used in belt conveyor system. In Advances in Condition Monitoring of Machinery
in Non-Stationary Operations (pp. 251–263). Springer.

21. Kacprzak, M., Kulinowski, P., & Wedrychowicz, D. (2011). Computerized information
system used for management of mining belt conveyors operation. Eksploatacja I
Niezawodnosc-Maintenance and Reliability, 2, 81–93.

22. Stefaniak, P. K., Wyłomańska, A., Obuchowski, J., & Zimroz, R. (2015). Procedures for
decision thresholds finding in maintenance management of belt conveyor system–statistical
modeling of diagnostic data. In Proceedings of the 12th International Symposium Continuous
Surface Mining-Aachen 2014 (pp. 391–402). Springer.

23. Peruń, G., & Opasiak, T. (2016). Assessment of technical state of the belt conveyor rollers
with use vibroacoustics methods—preliminary studies. Diagnostyka, 17(1), 75–81.

Fault Detection in Belt Conveyor Drive Unit … 185



24. Hardygóra, M., Bartelmus, W., Zimroz, R., Król, R., & Błażej, R. (2009). Maintenance,
diagnostics and safety of belt conveyors in the operations. Transport and Logistics
(Belgrade), 6, 351–354.

25. Zimroz, R., Krol, R., Hardygora, M., Gorniak-Zimroz, J., Bartelmus, W., Gładysiewicz, L., &
Biernat, S. (2011). A maintenance strategy for drive units used in belt conveyors network. In
22nd World Mining Congress & Expo, Istanbul, September (pp. 11–16).

26. Bartelmus, W., & Zimroz, R. (2009). A new feature for monitoring the condition of gearboxes
in non-stationary operating conditions. Mechanical Systems and Signal Processing, 23(5),
1528–1534.

27. Zimroz, R., Bartelmus, W., Barszcz, T., & Urbanek, J. (2014). Diagnostics of bearings in
presence of strong operating conditions non-stationarity—A procedure of load-dependent
features processing with application to wind turbine bearings. Mechanical Systems and Signal
Processing, 46(1), 16–27.

186 P. Kruczek et al.



Application of Independent Component
Analysis in Temperature Data Analysis
for Gearbox Fault Detection

Jacek Wodecki, Pawel Stefaniak, Mateusz Sawicki
and Radoslaw Zimroz

Abstract In the real multisource signal analysis one of the main problems is the
fact that true information is divided partially among the individual signals and/or
measured signal is a mixture of different sources. This comes from the fact that
input channels are typically related, and carry information about different processes
occurring during the measurement. Those processes can be thought of as inde-
pendent sources of vaguely understood “information”. In many cases separation
and extraction of those sources can be crucial. In this paper we present the usage of
Independent Component Analysis as a tool for information extraction from real-life
multichannel temperature data measured on heavy duty gearboxes used in mining
industry. Original signals, due to operational factors reveal cyclic variability and
detection of damage was difficult. Thanks to proposed procedure, from four
channels acquired from 4 gearboxes driving belt conveyor we have extracted one of
4 components, that is related to change of condition of a single gearbox. For new
signal visibility of change is clear and simple automatic detection rule can be
applied.

Keywords ICA ⋅ Gearbox ⋅ Belt conveyor ⋅ Multichannel data ⋅
Temperature

J. Wodecki (✉) ⋅ P. Stefaniak ⋅ M. Sawicki ⋅ R. Zimroz
KGHM Cuprum Ltd., CBR Sikorskiego 2-8, 53-659 Wrocław, Poland
e-mail: jwodecki@cuprum.wroc.pl

P. Stefaniak
e-mail: pkstefaniak@cuprum.wroc.pl

M. Sawicki
e-mail: msawicki@cuprum.wroc.pl

R. Zimroz
e-mail: rzimroz@cuprum.wroc.pl

© Springer International Publishing AG 2017
F. Chaari et al. (eds.), Cyclostationarity: Theory and Methods III,
Applied Condition Monitoring 6, DOI 10.1007/978-3-319-51445-1_11

187



1 Introduction

Information extraction is a very important topic in many branches of the field of
signal processing. It is not easy for individual signals, but multivariate (multi-
channel, multidimensional) signals can provide some interesting opportunities. For
example, we can assume that information is hidden and distributed among many
input channels and/or measured signal is a mixture of different sources. Blind
Source Separation (BSS) methods come in handy in that case [1–6]. The idea is the
separation of a set of source signals from a set of mixed signals, without the aid of
information (or with very little information) about the source signals or the mixing
process. In that case we consider the input channels to be mixtures of some
underlying sources, processes or events. This problem is in general highly un-
derdetermined, but useful solutions can be derived under a surprising variety of
conditions. One of very useful methods is called Independent Component Analysis,
and its approach can be particularly effective if one requires not the whole signal,
but merely its most salient features [7–11]. It is a computational method for sep-
arating a multivariate signal into additive subcomponents. This is done by
assuming that the subcomponents are non-Gaussian signals and that they are sta-
tistically independent from each other. This paper presents the usage of ICA to
extract feature carrying information about non-typical failure-related signal changes
over time.

2 Methodology

In this section we present the methodology which we use to real temperature signals
from the set of heavy duty gearboxes of belt conveyor driving station used in
mining industry. Functional scheme of the procedure is presented in Fig. 1.

Temperature data acquired from SCADA systems are frequently used for con-
dition monitoring purposes especially for mechanical system with relatively hard
access as wind turbines farm, off shore or mining machines operating underground
[12–21]. However, in our case, due to several factors influencing variability of
temperature, raw data are difficult to process and decision making process related to
damage detection is problematic.

In previous work we have tried to simplify structure of the signal by segmen-
tation, data driven or model based decomposition etc. In this paper we provide the
alternative to those approaches using ICA. It is well known that segmentation is
commonly used as pre-processing stage in many applications (speech, seismic,
physics, radiation etc. [20–27]) where one can extract information related to
“event”, cycle, or specific signal properties. In our case such segment might be
related to week or shift related cycles.

However, it is believed that “optimal” procedure should be quick and exploit
information hidden in all channels simultaneously. It was proved in condition
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monitoring, especially for nonstationary context, that multidimensional analysis
(for several channels or for several variables) might be very powerful in the context
of removing redundancy and environmental influence (for example loading con-
ditions) [28–32].

It is worth mentioning here that validation of signals acquired in harsh under-
ground mining conditions is often a critical stage. In our case we have tried to
minimize all indirect stages of processing, however some basic “data cleaning” and
resampling was required.

Presented method consists of four main steps: preprocessing of the raw data,
feature extraction with Independent Component Analysis, selection of desired
informative feature, and event detection according to selected feature.

2.1 Preprocessing

Firstly, outliers have been removed. It turned out that there were several samples of
negative values, which had to be measurement errors. They were replaced with the
previous value for simplicity. Secondly, non-uniform sampling had to be dealt with.

Raw data are sampled with time-varying period depending on dynamics of the
signal (i.e. temperature variability). If temperature is nearly constant, sampling
frequency becomes small, if temperature is changing sampling of signal becomes

Fig. 1 Functional scheme of the algorithm
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more frequent. It helps to monitor behavior of the process and in the same time
saves storage required to store measurements.

Data vectors have been resampled with linear interpolation, which is a way of
curve fitting with first-order polynomial. Although it is the simplest way of inter-
polation, it is very appropriate for this application, because we know that newly
created sample between two already existing is going to take value between them.
Otherwise, change-sensitive acquisition system would have register it in the first
place. It also matches the character of the signal with its other property: slow
variations of value.

2.2 Independent Component Analysis (ICA)

Independent component analysis was originally designed to solve so called
“cocktail party problem” [7–11]. Consider two people speaking at the same time,
being captured by two microphones positioned in different places, that capture two
different records and producing two time signals. Let’s denote those signals by
xi(t) and original speech signals by si(t). This situation can then be expressed as a
linear combination:

x1ðtÞ
x2ðtÞ

� �
=

a11 a12
a21 a22

� �
s1ðtÞ
s2ðtÞ

� �

where aij are coefficients related to distances from microphones to speakers. Those
coefficients are not known, so the problem cannot be dealt with by solving the
equation with traditional methods. ICA on the other hand is designed to estimate
those coefficients based on statistical independence of original sources. In our
problem we treat measured signals as mixtures xi(t), and we hope to obtain distinct
features from the ICA.

If we assume that the set of measured signals X = {x1(t), x2(t), …, xn(t)} is the
linear combination of independent sources S = {s1(t), s2(t), …, sm(t)} where
m ≤ n, then matrix form of the ICA problem is

X =AS

where A is the coefficient matrix consisting of aij elements, and we don’t know either
A or S matrices. We regard the noise to be one of the sources. ICA method attempts
to estimate a separating matrix WT = A−1 to be able to obtain the sources S:

S=A− 1X =WTX

From the Central Limit Theorem we know that the distribution of a sum of
independent random variables tends to the Gaussian distribution. Hence, since sum
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of sources is expected to be more Gaussian than the sources, maximizing the
non-Gaussianity of WTX will result in obtaining independent components. There
are many measures of non-Gaussianity. In this application, the one proposed by
Hyvarinen and Oja [8] based on maximum-entropy principle is used, where
negentropy is defined as follows:

JðyÞ∝ E GðyÞf g − E GðygaussÞ
� �� �2,

where ygauss has ideal Gaussian distribution, ygauss and y are centered and have unity
variance, E{} is an averaging operator, and G is nonlinear function. This application
of ICA algorithm uses approximation where y = WTX and G(y) = tanh(y).
Unfortunately the ICA method cannot identify uniquely neither correct ordering of
the source signals, nor their proper scaling (including sign). The sign issue however
can be sometimes dealt with, if our understanding of type and character of signals
permits us to modify the unmixing matrix WT.

Selected properties of ICA:

• ICA can separate only linear combinations of sources;
• Order of input signals is irrelevant;
• ICA separates sources basing on maximization of non-Gaussianity, so if there

were two or more perfectly Gaussian sources, they cannot be separated;
• Even if sources are not perfectly independent, ICA finds such space, in which

they are maximally independent.

In the case analyzed here physical meaning of sources is obviously different than
for original cocktail party context. We assume that we have mixture of four sources
(processes) that describe weekly variation and showing weekend drops of value;
change of state in the process connected to failure of a machine; oscillating char-
acter of signal during the days and shifts; and finally an additive white Gaussian
noise which is present in every physical measurement as well as in every real-life
process.

2.3 Feature Selection

Afterwards, algorithm selects feature that carries viable information about the
failure-related changes in the process. For every ICA feature we search for such
point in time, that splits the data into two parts of highest difference in mean. Then
we check for which of features the mean difference is greatest for found point, and
this is the feature that we are interested in. After that, cross-correlation of selected
feature with all input signals, provides us with information which signal the mis-
behavior is coming from.
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2.4 Event Detection

As a last step, selected feature is segmented into individual days basing on
knowledge of our resampling parameters. After that, daily variance is calculated. To
emphasize differences in values even more, variance is squared. At the end,
threshold for variance is defined basing on variance mean, to enable automatic
event detection and localization.

3 Application to Real Data

Described method was used to analyze temperature data measured on set of four
heavy-duty gearboxes used in belt conveyor driving station in underground mine.

3.1 Description of Real Data

The data acquisition system used for performing measurements is a commercial,
multichannel low frequency data logger that is operating continuously. The system
stores the value of a variable only if it changes by some predefined value ±ΔT. This
allows to reduce amount of data being recorded, which is convenient for very low
frequency processes. On the other hand it can lead to some difficulties from the
signal processing point of view. Firstly, measurement channels will have a different
amount of samples for the same time period. Data is not distributed uniformly over
time, although there is common clock for all of them, so they are in practice
synchronized. It causes problems even to try to simply compare the data. Because
of this situation such signal cannot be considered a time series, and it has to be
preprocessed before any further actions [33].

Although signals originate from different physical sources, gearboxes drive the
same conveyor within the same station, so their behavior is heavily connected.
Basing on this assumption we can consider the signals describing one process in a
multidimensional manner (Fig. 2). It was proven by Cempel and other authors that
multidimensional analysis for condition monitoring, especially under nonstationary
operations is very interesting approach [28–31]. Signals were checked for sta-
tionarity with the result of nonstationary character, due to changes in mean value.

3.2 Results

At first, signals had to be preprocessed according to methodology described in
Sect. 2.1, and the output sampling period was set to 15 min. To better visualize
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relative changes in signal behavior, four data vectors are presented together in
Fig. 3.

First conclusion when comparing Figs. 2 and 3 is that looking of each signal
separately is non-effective from diagnostic point of view. It is hard to notice change
in the signal, but even simple presentation all signals together shows that there is a
change in the middle of week 2.
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Fig. 2 Preprocessed input signals
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However, we are looking for an automatic technique that will allow to extract
process related to change of condition only. So, ICA approach was used. In our case
ICA returns four features with estimated unmixing matrix WT :

WT =

0.469
− 0.104

0.006
− 0.151

− 0.504 0.076
− 0.586 0.725

− 0.304 0.335 − 0.035 − 0.019
− 0.343 − 0.163 0.417 0.165

2
64

3
75

For reasons described in Sect. 2.2 arrangement of output features will be dif-
ferent every time. As we can see in Fig. 4 features 1 and 4 carry information about
common factors of signals behavior, feature 2 presents highest frequency details,
and feature 3 informs about trend of behavior change, so in this case third feature is
selected for further analysis. Besides, cross-correlation provides the information
that selected feature is connected with behavior of signal coming from gearbox 022.

Selected feature along with daily variances is presented in Fig. 5. One can see
that two events can cause an alarm. Event occurring during 12th day can be clearly
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Fig. 4 Four features obtained after ICA
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visible in Fig. 3 for signal from gearbox 022. On the other hand, event occurring
during 9th day is not easily visible. Figure 6 presents this situation. One can see that
during 24th of February, temperature of gearboxes 026 and 022 dropped unusually
compared to behavior from previous work cycles.
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Fig. 5 Selected feature with consecutive days indicated. Daily variance squared has been
proposed as event selector

Fig. 6 Event from day 9
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4 Conclusions

In this paper we have presented application of Independent Component Analysis for
signal feature extraction applied to real temperature signal from set of heavy duty
gearboxes used in mining industry. The methodology is based on the analysis of
multichannel time series. In order to extract information about the damage we
analyze the features obtained by applying the ICA to four-channel input signal.
Extracted features allow to detect unusual behavior of gearboxes, identify misbe-
having device and provide behavioral feature for further analysis and interpretation.
By using ICA we are able to separate different sources influencing shape of mea-
sured temperature signal, or in other words, we are able to remove from signal
contribution related to operational factors.
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Time-Frequency Identification
of Nonlinear Phenomena for Mechanical
Systems with Backlash

Rafał Burdzik, Łukasz Konieczny, Jakub Młyńczak, Piotr Kruczek,
Jakub Obuchowski and Maciej Zawisza

Abstract The paper presents result of non-linearity analysis in the steering gear
with various backlash. Due to mechanism of steering gear clearance of gear teeth
usually generate non-linearity of movement transfer. Thus, it can be considered as
main source of non-linearity in vibration signal. The main goal of the article is to
observe how the gear backlash level influences the vibration signal and nonlinear
phenomena. The signal was recorded on automobile steering system model with
a special modified steering gear. The experiment consists of vibration measure-
ments in 3 orthogonal directions for steering gear without backlash, 0.5 mm of
backlash and with 0.9 mm of backlash. The advanced non-stationary signal pro-
cessing methods for evaluation of steering gear backlash were applied. The pre-
sented methodology allows complex observation of the vibration signal, especially
when non-linear processes occur in the system. Therefore, energy and dynamics of
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the signal can be observed. Furthermore, it is possible to analyse amplitudes of
time-frequency representation for different gear backlashes, which enables evalu-
ation of non-linearity of the signal.

Keywords Steering gear ⋅ Backlash ⋅ Non-linear vibration

1 Introduction

Drivers and vehicle operators are continuously exposed to vibrational stimulus.
Vehicle steering process is one of the most important due to its role in controlling
the vehicle and informing the driver of the vehicle’s dynamic state. The steering
system can be considered as a multiple-element mechanism that converts rotational
movement of steering wheel into horizontal movement of driving wheels. It consists
of shafts, joints, pinion, and rack. It has to be assumed that the driver must select the
steering wheel angle to keep deviation low. However, there is no definite rela-
tionship between the turning angle of the steering wheel performed by the driver
and the change in driving direction, because their correlation is not linear.

In the typical steering gear there is a reduction of movement between the steering
wheel and road wheels. Thus, the effort required to turn the steering wheel is
decreased. Recently, the predominant proportion of rack-and-pinion steering sys-
tems used as steering gears might be observed in automotive engineering. This
applies for hydraulic or electrically servo-assisted steering systems and for
non-servo-assisted steering systems. These steering gears generally have a dis-
placeable steering housing with a rack and pinion mounted therein in the longitu-
dinal direction. A steering pinion is rotatable arranged in a pinion housing and
engaged in compatible gearing of the rack. The steering pinion in turn is connected
to a steering column and a steering-wheel in order to operate the steering system
[1, 2].

The paper presents novel approach for nonlinear phenomena observation by
using time-frequency representation (TFR) of vibration signals measured on
steering gear housing.

2 Steering System as Vibration Transmitter

In the steering system forces and vibration are transferred from road into driver and
the other way around. On the other hand, front wheels shocks with high intensity
and small amplitude are transmitted through the steering gear to the driver’s hands.
Therefore, vibration measurements on steering gear can provide a valuable infor-
mation. Comprehensive investigation might contain analysis of damping of
vibration transferred from road roughness into the steering system, through
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evaluation of technical condition of steering gear or vibration gear properties
identification.

The analysis of perception of rotational hand–arm vibration transferred from
steering wheel is one of the most common issues. Indeed, steering system is the
vibration source which affects the driver. It is particularly important due to the
sensitivity of the hand tactile receptors and lack of intermediate structures which
can attenuate vibration (e.g. shoes or clothing). During the driving process, power
spectral densities of steering wheel vibrations can reach frequencies of up to
350 Hz [3–5]. Vibrational modes of the steering wheel and column often produce
large resonances in the frequency range from 20 to 50 Hz [6]. Steering wheel
vibration might cause discomfort and annoyance of the driver. Interestingly, it has
been already proved that translational hand–arm vibration might produce similar
levels of perceptible discomfort to translational whole-body vibration when its
acceleration level is 5–7 times larger [7]. The European Parliament and the Council
of the European Union prepared Directive on the minimum health and safety
requirements regarding the exposure of workers to the risks arising from physical
agents (vibration)—Directive 2002/44/EC. The Directive defines ‘hand-arm
vibration as mechanical vibration that, when transmitted to the human hand-arm
system, entails risks to the health and safety of workers, in particular vascular, bone
or joint, neurological or muscular disorders’.

The human subjective response to hand-arm vibration caused by the automotive
steering wheel depends on the amplitude modulation of the waveform, the fre-
quency bandwidth contained in the steering wheel vibration and the repetition rate
of transient events caused by the road surface irregularities [8–11]. In [12] influ-
ences of vibration level, direction of vibration, grip force and hand–arm posture on
the absorption of translational energy by the hand–arm system are presented.
Authors concluded that energy absorption depends mainly on the frequency and
direction of vibration. Moreover, sensation curves developed for translational
vibration have contributed to the definition of the frequency weighting which is
currently used in both International Organization for Standardization and British
Standards Institution [13–17]. Frequency weighting was primarily defined in order
to measure and report hand–arm exposures for the purpose of quantifying health
effects and it is based on simplification and an extrapolation of sensation data
[18, 19]. It can be also used in the automotive industry for evaluating steering wheel
vibrational discomfort.

The properties and spectral content of steering wheel vibration depends on
numerous factors including the direction of vibration [20], the nature of the road
surface irregularities [21], the dynamic characteristics of the tires and the design of
the vehicle main suspension and steering mechanism. Thus, steering gear vibration
properties should also be considered. Moreover, it is very important element
responsible movement transfer and rotation and, in consequence, vibration transfer.
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3 Problem Definition

Due to construction of steering system the most dangerous situation occurs when
the connections between elements are broken or some clearance occurs. There is
lack of well-known methods for evaluation of connections state between elements
of steering system [22–25]. The gear is one of the most important part of the
steering system, therefore in this paper we analyze signals acquired on the steering
gear. Furthermore, the steering gear is the most common source of backlash in
steering system. Thus, we would like to apply advanced non-stationary signal
processing methods for evaluation of steering gear backlash level [26–28].

4 Test Rig and Experiment Description

In this paper we provide the analysis of non-linear steering gear vibration process
for various gear backlash. Intuitively, once the investigated object and exciter
mechanism do not change in time, vibration response of the object should be almost
constant. Thus, technical state of the steering system model was identified and all
adjunctive parameters were constant during the experiment. Additionally, kinematic
inductor used as vibration exciter was generating the same programmed induction
cycle. The only varying parameter was gear backlash. Due to the mechanism of
steering gear function clearance of gear teeth generate non-linearity of movement
transfer. Hence, it can be considered as main source of non-linearity in the vibration
signal [29, 30].

Backlash can be treated as clearance or lost motion in a mechanism. It is
quantified by the maximum distance or angle through which any part of analyzed
system may be moved in one direction. Thus, gear backlash is defined as the
amount of clearance between mated gear teeth. Backlash of an ideal system, in
theory, should equal to zero. Nevertheless, due to lubrication and some manufac-
turing errors or even thermal expansion some backlash is used.

The investigated object is a model of automobile steering system with specifi-
cally modified steering gear. There is a possibility to adjust the gear backlash size.
The test rig contains model of steering system with modified steering gear and
kinematic inductors. The studied object is depicted in Fig. 1. Vibration measure-
ments were performed for system without backlash and steering gear with backlash
equal to 0.5 and 0.9 mm.
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5 Methodology

In this section the proposed methodology for identification of nonlinear phenomena
in system with backlash is described. The algorithms are based on the time fre-
quency representation of the signals. Data acquired during the experiment consists
of signal from three different axes and three different backlash levels. Furthermore,
the measurements are not equal in phase. Thus, in the first step the signals with
different backlash should be synchronized. This procedure is performed using
cross-correlation, which for parameter m and signal x is given by formula:

Rx, yðmÞ=E xn+my*n
� �

. ð1Þ

We are looking for such parameter m which maximizes the cross-correlation
value. In our case we compare the signals with backlash with the reference signal
without backlash. The proposed shift for the signal backlash 0.5 ðsh05Þ and 0.9
ðsh09Þ are:

sh05= maxmfRx0, x05ðmÞg,
sh09= maxmfRx0, x09ðmÞg,

ð2Þ

where x0, x05, x09 are signal without backlash, with backlash 0.5 and 0.9,
respectively. Moreover, the length of analyzed signals is not equal, thus they have
to be truncated. Once the signals are synchronized and have the same length we can
proceed the analysis. Firstly, the data is decomposed into time-frequency repre-
sentation. Then the absolute value of short-time Fourier transforms are calculated:

S(t, f) = STFT t, fð Þj j= ∑
N − 1

k=0
Xkw t− kð Þe− 2jπfk

N

����
����, t∈T , f ∈F, ð3Þ

Fig. 1 Test rig and modified steering gear
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where t is a time point, f is a frequency, xt input signal of length N and wðt− kÞ is a
shifted window function. Then the time-frequency representation of the signal can
be compared. In order to perform the comparison, the new map is calculated. For
each point from the spectrograms with backlash (S05ð ⋅ , ⋅ Þ, S09ð ⋅ , ⋅ Þ) the new
value is calculated:

SD05ðt, f Þ= S05 t, fð Þ− S0ðt, f Þ
S0ðt, f Þ ,

SD09ðt, f Þ= S09 t, fð Þ− S0ðt, f Þ
S0ðt, f Þ ,

ð4Þ

where S0ð ⋅ , ⋅ Þ is the spectrogram from the signal without the backlash. Such maps
provide an information how the backlash influences the energy in given frequency
bands. Finally, we are able to integrate this map with respect to time or frequency.
As a result one dimensional function are obtained:

ITSDðtÞ= 1
n
∑
f
SDðt, f Þ,

IFSDðf Þ= 1
n
∑
t
SDðt, f Þ.

These functions inform the reader for which frequency bands and time points the
impact of backlash to the result is the greatest. It enables to identify nonlinear
phenomena in the system with backlash. It is expected that values of ITSD and
IFSD are influenced by system’s backlash level.

6 Real Data Application

This section contains the results of proposed algorithm application to the real data
acquired during the experiment. Firstly, let us present recorded signals with three
backlash levels (0, 0.5, 0.9). In Fig. 2 waveforms for different backlash level from
the x axis are presented. Signals are normalized, hence their amplitudes are between
[−1, 1]. Moreover, the signal lengths vary with respect to backlash. One can
observe that signals are inconsistent in phase. Thus, in the first step we would like
to synchronize them.

Such procedure can be performed from z axis waveforms. The cycles are easily
observed in these plots (Fig. 3). It gives a possibility to equalize signals in phase.

The synchronization is performed with cross correlation (Fig. 4). We are looking
for the shift lag for which the highest value of cross correlation is obtained. Due to
the cyclic behavior of the signal cycles in cross correlation are detected. One can
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Fig. 2 Waveforms for different backlash level for x axis

Fig. 3 Waveforms for different backlash level for z axis
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Fig. 4 Cross correlation for z axis signals. Backlash 0 is the reference signal. Backlash signal 05
has to shifted 0.4864 s to the left. Backlash signal 09 has to shifted 1.3176 s to the left

Fig. 5 Waveforms for different backlash level for synchronized x axis
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observe that both backlash signals 05 and 09 should be slightly shifted, 0.4864 and
1.3176 s to the left, respectively.

The output from cross correlation gives a possibility to analyze signals consistent
in phase. The sensor is three-axial, it means that the measurements for all axis are
recorded simultaneously. Thus, the same shift can be applied for each axis. In Fig. 5
the synchronized time plots for x axis are presented. One can observe that the phase
is almost equal among the signals, thus such signals can be compared.

In order to detect for which carrier frequencies the excitations reveal, let us
present signals in time-frequency domain. In Fig. 6 the spectrogram for signals
from x axis are presented. The highest energy concentrates for low energy fre-
quency bands [0 Hz, 50 Hz]. On the other hand, for frequencies [50 Hz, 300 Hz]
the differences with respect to the backlash can be observed. Once the backlash is
obtained in the system the periodic impulses reveal. Moreover, the higher backlash
results in higher energy of such impulses.

In the next step the differences between the reference value and the spectrogram
for signals with backlash are computed (Fig. 7). Clearly, nonlinearity in the energy
pattern changes can be observed. In case of the system with backlash equal to 0.5
some impulses reveal in frequency band [200−300 Hz]. Furthermore, the spec-
trogram of system with backlash 0.9 contain the cyclic excitation with higher
amplitude.

Finally, the quantification can be obtained from the integrated SDðt, f Þ differ-
ences map. The results for integration with respect to time (Fig. 8) and frequency
(Fig. 9) are attached. Intuitively, bigger differences are obtained for higher backlash

Fig. 6 Spectrograms for different backlash for x axis. Spectrogram parameters are: 2500 length
Hamming window with 96% overlapping and 4096 FFT points. The energy amplitude is in the
interval [−84, 50]
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level. One can observe that peaks are detected for some time points and the level of
noise is similar to system with both backlash levels.

Moreover, according to Fig. 9 signals are not similar only for frequencies lower
than 300 Hz. Furthermore, the influence of the nonlinear components is the biggest
for frequencies around 200 Hz. Indeed, the amplitudes from integrated maps have
the highest values, thus system with backlash differs significantly from the refer-
ence one. Results ensure that the backlash influence the vibration signals and give
a possibility to distinguish signals with different backlash.

Fig. 7 Differences between spectrogram and reference spectrogram for backlash 0. Left panel
reference spectrogram for system without backlash, middle panel SD05 map and right panel SD09

map

Fig. 8 The percentage difference between the reference signal without backlash and signals with
backlash in time domain
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7 Conclusions

Presented set of signals allows complex observation of the vibration pattern,
especially when we consider non-linear processes that occur in the system.
According to the results, the increase of backlash influences vibration of steering
gear housing. Furthermore, it is not sufficient to compare the waveforms RMS
(Root Mean Square) [1]. Analysis of frequency or time-frequency representation of
the signal allows to identify high energy components which reveal for system with
backlash. It was observed that nonlinear phenomena cause low energy changes in
the signal, but after application of the proposed signal processing method it is
clearly visible especially for the frequency range 100−300 Hz.

Presented methodology contains the synchronization process performed with
cross correlation. In result it allows observation of non-linearity increase based on
differences between spectrogram and reference spectrogram for backlash 0. Such
time-frequency maps provide an information of backlash influence on energy in
given frequency bands. The maps can be integrated with respect to time or fre-
quency as one dimensional function, which are easier to analyze. It can be observed
for which frequency bands or time points the influence of backlash on vibration
level is the highest.
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Vibration Signal Processing
for Identification of Relation Between
Liquid Volume and Damping Properties
in Hydraulic Dampers
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Jakub Obuchowski, Piotr Kruczek and Dariusz Laskowski

Abstract The paper presents analysis of vibration transferred on the car body
under different damping properties of suspension. Vehicle must be considered as
a multi-technical system in which non-linear phenomena occur. The springing
elements in modern cars are coil springs with non-linear characteristics, and the
damping elements are telescopic shock absorbers with asymmetrical, strongly
non-linear damping characteristics. The scope of the research contains relation
between liquid volume and damping properties in hydraulic dampers and analysis
of vibration of vehicle forced to vibration by an exciter machine. For compre-
hensive analysis of the vibration signals their representation in time, frequency and
joint time-frequency domains are computed. The paper investigates several different
liquid volumes, i.e. from 0% to 100%. The methodology is based on advanced
signal analysis designed to determine the influence of fluid volume on the damper
characteristics.
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1 Introduction

Vibration phenomena occurring in vehicles are very relevant for safety, comfort and
reliability issues. It is worth mentioning that vehicle vibration can increase the fuel
consumption, accelerate the elements wear and might even cause vibration of
roadside buildings. The evaluation of comfort is a very challenging task because of
subjective human perception of vibration. The balance between comfort and safe
driving is very difficult to achieve. For the driving safety it is extremely important to
provide continuous contact of vehicle wheels with the road surface. It requires
a relatively high damping coefficient. On the other hand, comfort of the passengers
requires minimization of the vibration perception. It can be achieved by the gradual
and smooth vibration absorbing [1–4]. The driver and passengers’ exposure to
whole-body vibration of the vehicle can cause short-term body discomfort, as well
as long-term physiological damage. The vibrations of the vehicle body are the main
problem in ride comfort [5–7]. Thus, the analysis of complex vibration occurring in
vehicle should be conducted.

Vehicle must be considered as a multi-technical system with non-linear char-
acteristics. The maximum response amplitude depends on damping properties of the
system. These properties can be described as inverse proportion between damping
coefficient and vibration amplitude arise. Within low damping, there is a sudden
increase in amplitude as the excitation frequency approaches the natural frequency.
While the damping level is higher, the increase to the maximum amplitude is much
more gradual. Consequently, one of the major reasons for vibration analysis is to
predict when these types of resonances may occur and determine what should be
done to avoid them. The magnitude can be reduced if the natural frequency is
shifted away from the excitation frequency by changing the stiffness or mass of the
system. This is why the choice of a correct analytical tool for observation of the
relation between fluid level and damping characteristics is so important. The data
recorded during the experiment and analyzed in this paper belongs to a group of
non-stationary signals. Thus, time-frequency methods should be applied in order to
analyze them. Such signals are described as time-varying because their frequency
content varies with respect to time. The signal processing methods (e.g. short-time
Fourier transform) allow for information extraction concerning the time-frequency
structure of the signal and comprehensive relation identification between fluid level
and the damping properties.

The paper presents new signal processing approach for identification of
hydraulic damper properties. The instantaneous frequency (IF) provided by Hilbert
transform was calculated and tracked in further analysis. An estimator proposed in
this study is the average ratio of harmonics of order higher than 1.
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2 Experiment Description

Our main goal was to analyze vibration transferred into car-body under different
damping properties of suspension. Thus, the series of experiments were conducted.
The research can be divided into two main parts. The former one is focused on
damping properties of shock absorber and the latter one is dedicated to vibration of
vehicle forced to vibration by exciter machine i.e. a wheel stroke shaker. It allows to
force vibration with continuous frequency regulation in predefined range, controlled
by an inverter.

Shock absorbers are main elements of the vehicle responsible for vibration
absorption and converts vibrations into thermal energy. Properties of shock
absorbers determine the transfer of vibrations to the car-body, pressure forces of
wheels and traction coefficient of tires. Their asymmetrical, strongly non-linear
damping characteristics determine rebound and compression areas of wheels
pressure forces, and vibration transferred to car-body [8] (Fig. 1).

In our experiment the damping properties of the shock absorber were changed
and determined during indicatory tests. As the main component related to damping
factor of hydraulic shock absorbers the volume of liquid flowing by the valves was
assumed. Moreover, the phenomenon of liquid leakage is one of the most common
defects and influences the result of shock absorbers. It is similar to car technical
state diagnostic examination. Liquid leakage might be simulated by changing its
volume in shock-absorber. This modification directly affects damping factor. The
scope of research includes liquid level starting from empty shock absorber and
ending with 100% liquid level with 20% gradation steps.

The second part of the study is related to vibration test performed on encased shock
absorbers with different damping properties in the vehicle. The car was set in motion
and tested with harmonic forced vibration methods. Therefore, it can be considered as
a mechanical system generating a vibration signal, which is a non-stationary random
process. The concept of the conducted analysis is presented in Fig. 2.

The accelerations of the platform, sprung and unsprung mass were recorded. The
signals were acquired in digital form with 2500 Hz sampling frequency.
The acceleration sensors were placed on the test platform (Fig. 3), unsprung mass

Fig. 1 Working velocity
loops of shock absorber and
determination of damping
characteristics (non-linear
function—black line)
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(on the arm near the wheel) and sprung mass (on the point of upper McPherson strut
mount) of vehicle.

For the vibration measurements the accelerometers were used. An accelerometer
is a piezo-electric device that is frequently used to monitor vibration. The reason to
choose such sensors is related to some problems which encountered in estimating
the errors of laser interferometer measurement of resonance frequencies and the
quality factor from the resonance curves of vibration amplitudes [9]. The scheme of

Fig. 2 The illustrated concept of the conducted research

Fig. 3 Points of sensors mounted: A—on sprung mass, B—on unsprung mass
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measurement system is depicted in Fig. 4. The acceleration of vibration were
measured by ADXL 204 and ADXL 321 sensors. Those are modern parametric
sensors built in chip. For the data acquisition the analog-digital card was used. The
μDAQ 30 adapted for use with PC computers support the USB interface. The main
technical parameters of the μDAQ 30 are 14-bit resolution, max 250 kHz sampling.

The main source of vehicle vibration is excitation of rough road. This source
should be considered as a non-stationary random vibration process when traveling
at variable speeds [10, 11]. Thus, force excitation process during conducted
research consists of three phases: increase of frequency, vibration with constant
frequency and decrease of frequency (Fig. 5).

Fig. 4 Scheme of the measurement system

Fig. 5 Example time
realization of unsprung mass
accelerations
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In consequence, the vehicle tested on a vibration exciter can be regarded as a
non-linear and non-stationary mechanical system. To investigate a system of this
type, the methods of non-stationary random signal analysis can be useful [12–22].

3 Problem Definition

The main problem of our studies is to determine a simulator of fluid leakage in
a hydraulic damper. Such problem is of high importance, because fluid is the
medium of force transmission and the volume of the fluid determines the damping
characteristics (Fig. 1). The vibrations occurring in the vehicle during the test are
non-stationary signals. Moreover, the elements of the suspension system (shock
absorber, spring elements, bushing, etc.) are subject to considerable dynamic loads.
Complex suspension system is a strongly non-linear system. Thus, for the proper
observation of the vibration signal a time-frequency transformation has to be
applied. The paper presents novel methodology of advanced signal processing
application as a multiple tool technique for identification of relation between liquid
volume and damping properties in hydraulic dampers.

4 Methodology

In this section we present the methodology allowing for analysis of the relation
between input and output in a hydraulic damper system. We propose to analyze this
relation using time frequency representation of the vibration signals acquired during
the experiment. Due to time-varying frequency characteristics of the input provided
to the system the output signal is expected to be nonstationary, thus analysis in
time-frequency domain might provide viable information about phenomena
occurring in the system. Upon analysis of the entire data acquired during the
experiment, the vibration signals are segmented and further processed. Finally, two
features are proposed in order to quantify relation between liquid volume and
dumping.

In the first step we decompose the signals into time-frequency domain using the
short-time Fourier transform defined as [23]:

STFT(t, f Þ= ∑
N − 1

k=0
Xkwðt− kÞe− 2jπfk

N , t∈T , f ∈F, ð1Þ

where t—time point, f—frequency, Xt—input signal of length N and wðt− kÞ—
shifted window. Further analysis are performed on the squared amplitude of STFT
called spectrogram, namely S½t, f �= STFT t, f½ �j j2. We propose to involve relatively
long window, since sampling frequency is much higher than dominating frequency
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of input. Moreover, accurate identification of dominating frequency and its har-
monics is required for calculation of the proposed features quantifying the relation
between fluid level and damping characteristics.

In the next step an algorithm for automatic identification of dominating fre-
quency of the input signal is proposed. Given spectrogram S½t, f � the frequency
D dominating in the signal in time t might be specified as:

DðtÞ= argmaxf ∈F S½t, f � ð2Þ

where F is the set of frequency bins in which the STFT is calculated. We compare
the frequency indicated by DðtÞ with the instantaneous frequency (IF) provided by
the Hilbert transform. In order to obtain IF using the Hilbert transform the con-
sidered signal is required to be a monocomponent. Therefore, we apply a nar-
rowband bandpass filter on the acquired signals. Firstly, we compute the discrete
Hilbert transform of the signal Xk [24]:

HðkÞ= ∑
N − 1

p=0
hðpÞ ∑

N − 1

m=0
Xme−

2jπpm
N

� �
e
2jπkp
N , k=1, . . . ,N, ð3Þ

where h pð Þ is defined as:

hðpÞ=
1 for p=1, n

2 + 1
2 for p=2, . . . , n

2
0 for p= n

2 + 2, . . . , n.

8<
:

In other words, HðkÞ is computed as inverse DFT of an element-wise product of
DFT of the signal and hðpÞ.

Next, the analytic signal is designed as

AðkÞ=XðkÞ+ jHðkÞ ð4Þ

where j is the imaginary unit. Finally, the phase of AðkÞ is unwrapped and
normalized:

IF kð Þ= fs
2π

unwrap arg A kð Þð Þð Þ− unwrap arg A k− 1ð Þð Þð Þð Þ, ð5Þ

where fs is the sampling frequency, arg zð Þ is the argument (phase) of the complex
number z and unwrapðrÞ is the unwrapping operator that minimizes the incremental
angle variation by constraining it to the range − π, π½ �.

In this study we analyze the vibration signals on the time interval Tc during
which the dominating frequency was nearly constant. Visual inspection of both
D and IF as functions of time allows to determine this period, although some
automatic algorithms might be designed e.g. to find the longest period with a priori
defined maximum deviation of dominating frequency. The next step of the
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methodology for quantification of the relation between input and output in a
hydraulic damper system consists of designing two features describing the
input-output relation in context of damping system properties. The first feature f1
we define as

f1 =
∑t∈ Tc Sn D tð Þ, t½ �
∑t∈ Tc Sp D tð Þ, t½ � . ð5Þ

In other words, the first feature is the ratio of average amplitude of the domi-
nating frequency related to the signal acquired on the vehicle body to average
amplitude related to the vibration platform. In general, lower ratio indicates better
damping characteristics. One exception of such rule is the case when the wheel
loses the contact with the vibration platform. Then the vibration level registered on
the vehicle body might be considerably low, but it indicates a dangerous operational
mode rather than excellent damping properties. The second feature proposed in this
study is an average ratio of harmonics of order higher than 1, i.e. f2 is defined as
follows:

f2 =
∑t∈ Tc, k≥ 2 Sn kD tð Þ, t½ �
∑t∈ Tc, k≥ 2 Sp kD tð Þ, t½ � . ð6Þ

where k is the iterator of dominating frequency harmonics, k=1, 2, . . . up to the
Nyquist frequency. Therefore, f2 is focused on harmonics of order higher than 1
which reflects a non-linear character of the damping system. Such features are
calculated for each level of liquid volume in the damper that is considered in the
experiment. Thus, the relation between the liquid level and damping characteristics
might be analyzed using f1 and f2.

5 Real Data Application

In this section we apply our algorithm to real data acquired during the experiment.
Recall that there are 2 measurement points and several levels of liquid have been
investigated, namely 0, 20, 40, 60, 80 and 100% of liquid in the damper. Exemplary
waveforms and time-frequency representations of the considered signals are pre-
sented in Fig. 6.

One can notice that the vibration signal acquired on the platform in case of
empty damper reveals a resonance phenomenon. It appears in 20th and 55th second
of the experiment. This phenomenon is manifested as raised amplitude of the signal
in time domain. Amplitudes are even higher than these related to maximum fre-
quency of the input. In Figs. 7 and 8 spectrograms of all signals acquired during the
experiment are presented. The liquid volume varies from 0% to 100% by 20%;
sensors are located on the vibration platform and the vehicle body. It can be noticed
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that in all cases amplitudes of the excitation signal are comparable. Dominating
frequency as a function of time is piecewise linear—it increases up to about
21.5 Hz, then stays on this level for approx. 10 s and finally decreases. The highest
amplitude in the excitation signals (acquired on the vibration platform) reveals at
the frequency of 21.5 Hz and many harmonics of this component might be noticed.
Moreover, there are also sub-harmonics of order 1:2 in almost every signal except
the case of sensor located on vehicle body and fluid level of 40%—there are
harmonics of order 1:3 therein. The resonance frequency that is manifested mainly

Fig. 6 Waveforms (a, c) and spectrograms (b, d) of signals acquired in case of 0% (a, b) and
100% (c, d) of liquid in the damper. Sensor located on the vibration platform
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in Fig. 7a–c is close to 19 Hz. This phenomenon is barely visible in other signals.
In the signals acquired on the vehicle body the amplitudes are significantly lower
for liquid level 0%, 20% and 40% comparing to amplitudes for 60%, 80% and 100%.

Figure 9 presents results of two different algorithms applied to the signals from
the vibration platform acquired under every considered liquid level, from 0% up to
100%. It can be noticed that the Hilbert transform-based method results in some

Fig. 7 Spectrograms of signals acquired under liquid volume 0% (a, c), 20% (b, e) and 40% (c, f).
Sensor located on the vibration platform (a, b, c) and on the vehicle body (d, e, f)
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significant outliers, i.e. instantaneous frequency indicated by this method might be
completely different than this obtained by the method proposed in this paper.
Although, even the latter one does not indicate properly the frequency set on the
vibration platform when it reaches the resonance frequency. Nevertheless, both
methods properly indicate the period with nearly constant frequency (21.5 Hz),
despite some short-time artifacts (Figs. 7a, c and 8b, c). Duration of these time

Fig. 8 Spectrograms of signals acquired under liquid volume 60% (a, c), 80% (b, e) and 100% (c,
f). Sensor located on the vibration platform (a, b, c) and on the vehicle body (d, e, f)
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intervals is close to 10 s—they begin in 30th second of the experiment and end in
40th. In the next step of the methodology the average spectra have to be calculated.
Figure 10 illustrates averaged spectra calculated from the signals acquired during
the periods of almost constant dominating frequency. One can easily notice that in
case of liquid levels 0%, 20% and 40% the system behaves close to the linear one,
since the set of harmonics of the input (vibration platform) is similar to the set of

Fig. 9 Comparison of dominating frequency obtained using Hilbert transform and the proposed
method involving argmax function on the spectrogram. Sensor located on the vibration platform
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harmonics of the output (vehicle body) signal. On the other hand, the output signals
in case of liquid level 60%, 80% and 100% contain of a long train of harmonics, up
to the Nyquist frequency. Thus, the system is very non-linear here, since new
harmonics are created in the output.

Fig. 10 Averaged spectra calculated during the period of almost constant dominating frequency
for each considered liquid level. Sensors located on vibration platform and on the vehicle body
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Values of features proposed in this paper are contained in Fig. 11. They prove
that the ratio of dominating frequency amplitudes (output to input) is two orders
lower in case of liquid level equal to 0%, 20% and 40% while compared to 60%,
80% and 100% (Fig. 11a). The difference between these ratios is lower when
higher-order harmonics are considered (Fig. 11b). This indicates that the relative
amplitudes of high-order harmonics in the output signal are higher than these in the
input. Thus it can be assumed that the higher liquid level result as more non-linear
system in such a case.

6 Conclusions

The results of conducted analysis provide interesting conclusions. The proposed
methodology allows to determine an estimator that reflects the volume of fluid in the
damper. Values of features proposed in this paper are presented in Fig. 11. It proves
that the ratio of dominating frequency amplitudes (output to input) is two orders lower
in case of liquid level equal to 0%, 20% and 40% while compared to 60%, 80% and
100%. The analysis leads to the conclusion that changes in the volume of fluid in the
shock absorber generally have a step change (the fluid volume of less than 60% of the
shock absorber in practice stops damping of vibrations). Thus, the higher liquid level,
the more non-linear system is. The proposed method is based on advanced transfor-
mation of vibration signals and it is effective in the identification of amount offluid in
the shock absorber. Furthermore, studies based on the methodology presented in this
article will be continued for the different cases of damage in the vehicle suspension
system elements.

Fig. 11 Values of the features f 1 (a) and f 2 (b) for each level of liquid
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The lower level of vibration registered for empty shock absorber is caused by
possible loss of wheel-platform contact. Such phenomenon results in decrease of
transmission of force into car body by the damper.
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Modified Protrugram Method for Damage
Detection in Bearing Operating Under
Impulsive Load

Piotr Kruczek and Jakub Obuchowski

Abstract The problem of damage detection in rotating machines is related not only

to specific speed or load fluctuations. Sometimes the environment of a gear or bear-

ing makes the diagnosis a challenging problem. In this paper a novel signal process-

ing method based on cyclostationary approach is proposed. It is designed in order

to indicate and separate source of the signal that could be related to damage of the

machine. The vibration signal related to such source can be considered as a cyclic

pulse train. Thus, it is worth to benefit not only from impulsivity of the signal but also

from its cyclic nature—taking advantage from these two properties in the same time

might be more beneficial. We propose a method that indicates frequency bands where

the cyclic pulse train occurs. On the other hand, the method is robust to contamina-

tion which might be observed in real-world examples, e.g. non-cyclic high-energy

impulses or amplitude modulated sine waves. The motivation for such method is

derived from a real-world example—a rolling element bearing operating in a hum-

mer crusher. We compare our method with two other well-known methods for dam-

age detection in rotating machines, namely protrugram and spectral kurtosis.

1 Introduction

Diagnosis of rotating machines is a key part of many industrial mechanical systems.

Vibration-based methods play an important role in modern condition monitoring

systems [1]. Many signal processing methods that help to understand the vibration

signal are available. In general, these methods are often designed to find a series of

impulses that arise when force is applied to the faulty area (e.g. inner/outer race,

rolling element, gear tooth). The choice of method used to process the vibration sig-

nal has to be followed by understanding of machine’s operation and the environment
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in which the machine operates. For instance, time-varying speed or/and load have

an effect on frequency or/and amplitude modulation of the vibration signal. Thus,

it is worth to analyze the signal in domains other than time or frequency i.e. time-

frequency domain [2], order domain [3–7], bi-frequency domain [8–12] etc. The

time-frequency domain allows for instance to track time-varying speed and load [13–

16]. Such information could be beneficial, since distances between impulses related

to damage and their amplitudes vary in time, thus it is impossible to notice a spe-

cific fault frequency in the signal. Availability of the speed profile allows to analyze

the signal in order domain in which the distances between impulses related to dam-

age are approximately constant [17, 18]. Bi-frequency domain illustrates amplitude

modulation of the signal with respect to carrier and modulation frequency [9, 19].

Such representation might be used in order to indicate the frequency band where

carrier waves are modulated by an impulsive function (a lot of harmonics of the

modulation frequency appear therein). This frequency band can also be indicated

from the time-frequency or scale-frequency representation assuming that the local

damage is revealed by series of wideband excitations, not necessarily equally distrib-

uted in time [20–26]. Cyclic impulsive signal can be indicated automatically using

a filter bank and an indicator of impulsive pulse train. In [27] the Authors propose

a method called “protrugram” that indicates the frequency band for demodulation

using kurtosis of envelope spectrum for each narrowband signal obtained from a fil-

ter bank. Protrugram is known for its excellent properties: identification of cyclic

pulse train, robustness to impulsive noise and high-energy discrete-spectrum com-

ponents. Although, the main drawback of protrugram occurs for signal components

which are modulated by a sine wave or another function with discrete amplitude spec-

trum [28, 29]. Therefore, kurtosis of envelope of these components could be higher

than for cyclic pulse train [30]. Thus, the signal filtered using protrugram could not

represent cyclic pulse train even if the considered machine reveals a local damage.

This drawback can be avoided using an additional information (“extraction crite-

rion”) about construction of the machine [31]. Although, incorporation of such infor-

mation in the damage detection step could make the diagnostics time-consuming and

more complicated. It is more convenient to detect the damage blindly and search for

the (eventually) obtained fault frequency in the list of characteristic frequencies. It

is worth to notice that vibration signal processing methods based on cyclicity of

the pulse train related to damage are often robust to impulsive noise. This is a use-

ful feature in industrial applications where impulsive noise is often related to the

environment or to specific operation of the machine [30, 32–34]. In this paper we

propose another method that quantifies presence of cyclic pulse train in given fre-

quency band, designs a filter characteristic and, finally, filter the vibration signal. The

method is designed to be robust not only to impulsive noise or high-energy discrete-

spectrum components—it is also robust to components modulated by a sine wave

or other discrete-spectrum function. Such requirements are motivated by analysis of

real vibration signal from a copper ore crusher operating in a mineral processing

plant. Impulsive noise in vibration signal is related to the crushing process. Series

of experiments on different crushers revealed presence of narrowband signal modu-
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lated by a sinusoidal signal [33]. Thus, envelope spectrum of the signal demodulated

around this frequency band contains a single spike.

The paper is structured as follows. Model of the synthetic signal that follows structure

of the real one is described in Sect. 2. Section 3 describes the method that filters the

signal in order to extract cyclic pulse train. Results that illustrate effectiveness of the

proposed method are presented in Sect. 4. The last section contains conclusions.

2 Model of the Signal

In order to validate the proposed method and illustrate its properties we simulate

a signal, which resemble the real one. Length of the signal is 1 s and sampling fre-

quency is 25,000 Hz. The signal consists of the following components: (a) two ampli-

tude modulated sine waves with frequencies 500 and 1000 Hz (4 Hz sine wave as

the modulation function), (b) non-cyclic impacts (Gaussian-shaped impulses with

center frequency 5000 Hz and random bandwidths between 0 and 12500 Hz), (c)

cyclic impulses located in 2 frequency bands—2500–3000 Hz and 8500–9500 Hz,

(d) background Gaussian noise. The cyclic impulses were simulated using Matlab

function gauspuls with center frequencies Fc1 = 3000 Hz and Fc2 = 9000 Hz and

random bandwidth uniformly distributed on intervals [5000–6250 Hz] and [2500–

3750 Hz], respectively. Each impulse is replicated in order to obtain cyclicity of the

signal of interest (SOI). Cyclic frequency of this pulse train is 30 Hz. The signal

is designed in order to follow the real vibration acceleration signal from a hummer

crusher. Amplitude modulated sine waves (500 and 1000 Hz) correspond to ampli-

tude modulated harmonics. Non-cyclic impulses might be related to the crushing

process—raw material stream enters the crusher and a lot of impulses appear in the

vibration signal measured at the bearing housing. These impulses appear at random

and their amplitudes are random, as well. Cyclic pulse train corresponds to a local

damage. Its cyclic frequency—30 Hz—is related to local damage of the outer race

(ball pass frequency outer—BPFO). Two frequency bands where the cyclic impulses

occur correspond to two resonance frequency bands. The entire list of the bearing

characteristic frequencies might be found in [33]. It is worth to notice that the cen-

ter frequency of the non-cyclic component is located between two frequency bands

where the periodic impulses occur. There are 30 non-cyclic impulses uniformly dis-

tributed on the time axis. The time series and a spectrogram of the simulated signal

are presented in Fig. 1. We used Kaiser 500-sample length window with 470 over-

lapping samples and 1024 FFT points.

3 Methodology

The algorithm presented in this paper can be treated as an extension of the protru-

gram. Recall that the protrugram is a signal processing method that indicates the

center frequency and frequency band where kurtosis of the signal’s envelope is the
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Fig. 1 Original signal (a) and spectrogram (b)

highest. It is known that for signals with amplitude modulated sinusoidal compo-

nents the protrugram cannot detect the proper fault frequency (when the modulation

function is with discrete spectrum). It is due to the fact that modulation function with

discrete spectrum results in high kurtosis of the envelope spectrum. In this chapter

we propose solution for the issue mentioned in the Sect. 1. The problem is to detect

periodic impulsive excitation (cyclic pulse train). The solution should not be sensi-

tive to non-cyclic impulses and narrowband amplitude modulated components. The

problem raises to the fact that a locally damaged bearing can be associated with the

periodic pulse train. It can be observed in the envelope spectrum of the signal, as a lot

of equally spaced spectral components. Moreover, envelope spectrum of the ampli-

tude modulated components consists of a small number of harmonics. Thus, kurto-

sis of such envelope spectrum is higher. Presence of a lot of equally spaced spectral

components could be indicated using e.g. the empirical autocorrelation function. A

desirable feature of the algorithm is a possibility to detect more than one frequency

band with cyclic impulses. Furthermore, it would be beneficial to introduce a proce-

dure, in which user does not have to precise fault frequency to detect the damage.

The idea is presented in the flowchart (Fig. 2). First of all, the bandwidth and step

size have to be indicated. Then, using a band-pass filter the sub-signal (SRFCF,BW ) is

obtained. The envelope of the SRF is calculated via Hilbert transform. Namely:

eSRFCF,BW = |SRFCF,BW + i ∗ (SRFCF,BW )|, (1)

where (⋅) is the Hilbert transform and | ⋅ | is the absolute value. Hilbert transform

(y(t)) of y(t) is simply a convolution of y(t) with h(t) = 1∕𝜋t. Afterwards we cal-

culate the mean-normalized amplitude spectrum of the envelope in order to indicate

periodicity of the envelope. It is given by Eq. (2).
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Fig. 2 Flowchart of the

double protrugram

P1CF,BW (k) = ||DFTk(eSRFCF,BW − 𝜇e)|| =

=
||||||

N∑
n=1

(eSRFCF,BW (n) − 𝜇e) ∗ e−iw𝜋kn∕N
||||||
,

(2)

where 𝜇e and N are the mean and length of the envelope, respectively. The envelope

amplitude spectrum indicate both the cyclic impulses and amplitude modulated com-

ponents with discrete-spectrum modulation function.. In order to distinguish these

two components one can benefit from the property that cyclic impulses are repre-

sented by a lot of harmonics in the envelope spectrum. We propose to use autocor-

relation function (ACF) in order to indicate whether the envelope spectrum consists

of a lot of equally spaced harmonics or not. For a given lag k it is defined by Eq. (3):
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ACFP1(k) =
1

N − 1

∑N−k
n=1 (P1(n) − P1)(P1(n + k) − P1)

𝜎2
0

, (3)

where N is length of the vector P1, P1 is the mean value of the vector P1 and 𝜎2
0

is sample variance. This function measures the normalized correlation between the

signal and its shifted (by k samples) copy. Because of that it is easy to detect the

periodicity in the data, since a cyclic signal is similar to its shifted copy. ACF of an

envelope spectrum with a lot of equally spaced harmonics should reveal significantly

high values at lags corresponding to the spacing between harmonics. Thus, kurtosis

of such ACF should be high. On the other hand, ACF of an envelope spectrum that

consists of a single spike should not be spiky. Equation (4) presents formula for

kurtosis of the autocorrelation function calculated for envelope spectrum P1.

Fig. 3 Flowchart of the

thresholding procedure
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K(X) =
𝜇4

𝜎4 =

1
N

N∑
k=1

(
ACFP1(k) − ACFP1

)4

(
1
N

N∑
k=1

(
ACFP1(k) − ACFP1

)2
)2 , (4)

which can be considered as an measure of impulsiveness. It is worth mentioning that

for small k it is expected that the autocorrelation function would have high values

for the mean-normalized envelope spectrum, despite occurrence of cyclic pulse train

in the analyzed signal. According to this fact kurtosis should be calculated from the

envelope spectrum with few first observations omitted. In our algorithm we decided

to start from lag 10. Lags from 1 to 10 are related to spacing of envelope spec-

trum harmonic greater than 2500 Hz (under sampling frequency 25,000 Hz). Clearly,

such high value cannot stand for a modulation frequency, thus the first lags can be

removed. This procedure will provide the kurtosis with respect to frequency.

In order to enhance the filter, a thresholding procedure was applied (Fig. 3). Using

the Monte Carlo method and choosing a high quantile (e.g. 0.95) of the generated

values we can automatically obtain enhanced amplitude response of the filter. In

short, when the kurtosis at a consider frequency is smaller than the quantile, we put

0 as the filter’s amplitude response.

4 Results

In this section we compare three methods for damage detection in a rolling element

bearing. The comparison is performed for the data described in Sect. 2. Recall, that

the signal consists of amplitude modulated sine wave, cyclic and non-cyclic impulses

and background noise. It will be shown that for such signal neither spectral kurtosis

(SK) method nor protrugram can properly select informative frequency bands. The

proposed algorithm outperforms these methods.

It can be expected that spectral kurtosis will detect the non-cyclic inputs as the

SOI. It has been already described in [27] that in such signal SK method fails. This

procedure is sensitive to impulsiveness, but it is unable to highlight periodicity. In

case of the crusher, non-cyclic impulses can come from the crushing process, thus

they appear regardless the condition of the bearing. On the other hand, protrugram,

as it will be presented, assigns the largest kurtosis to the spectral frequencies related

to the sinusoidal amplitude modulated discrete component of the signal. Indeed, in

such case the discrete envelope spectrum consists of only one impulse. Obviously, it

results in high value of kurtosis.

In Fig. 4 we present amplitude responses of filters obtained using double pro-

trugram, protrugram and spectral kurtosis. Predictably, protrugram (Fig. 4b) assigns

the largest kurtosis to the frequency corresponding to the amplitude modulated sinu-

soidal components (500 and 1000 Hz consist of one harmonic only). Furthermore,
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Fig. 4 Filter amplitude responses obtained using: a double protrugram, b protrugram, c spectral

kurtosis. Red line is a cut off applied to a filter, everything below is assumed to be equal 0

as it was expected, SK (Fig. 4c) method indicates both the non-cyclic impulses and

SOI. The proposed algorithm detects properly both of the carrier frequencies of the

SOI (Fig. 4a). The thresholding procedure is beneficial, since it leads to automatic

enhancement of the amplitude response of the filter.

The comparison of the original and filtered signals in the time domain is pre-

sented in Fig. 5. One can clearly notice that the signal filtered using protrugram con-

sists only of amplitude modulated sinusoidal components and in SK case there are

non-periodic impulses only. Spectrograms of the original and filtered signals are pre-

sented in Fig. 6. In the raw data (Fig. 6a) we can clearly see all of the components

(amplitude modulated sine waves, cyclic and non-cyclic impulses). The proposed

method leads to the signal with cyclic impulses in frequency bands 2000–3500 Hz

and 8000–10,000 Hz and low-energy remains after the thresholding procedure (∼600
and ∼7000 Hz). Finally, envelope spectra are presented in Fig. 7. In case of double

protrugram the modulation frequency is 30 Hz and a lot of harmonics are revealed.

This stands for an impulsive modulation function, thus a local damage with fault

frequency 30 Hz occurs. Envelope spectra of the raw and protrugram-filtered signals

indicate modulation frequency of 4 Hz. Only one harmonic is presented, which cor-

responds to a sinusoidal modulation function. It means that the novel method is able

to highlight the SOI in the signal contaminated by amplitude modulated sinusoidal

components and non-cyclic impulses with high amplitudes.
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Fig. 5 a original signal and signals filtered via: b double protrugram, c protrugram, d spectral

kurtosis

Fig. 6 Spectrograms of the a original signal, b double protrugram, c protrugram, d spectral

kurtosis
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Fig. 7 Envelope spectrum of the a original signal and signals filtered via: b double protrugram,

c protrugram, d spectral kurtosis

5 Conclusions

The main goal of this paper was to introduce a method for fault detection in bear-

ings operating in machines or environment with sources of additional vibration sig-

nals (amplitude modulated sinusoidal and non-cyclic impulsive components). It was

already shown [30] that in such situation an extension of protrugram could be bene-

ficial. In this paper we present how to obtain an enhanced filter that separates cyclic

impulsive source from other contaminating sources, which can occur in a signal.

The algorithm takes advantage of both impulsive and cyclic character of the signal

of interest. Moreover, the thresholding procedure is exploited in order to enhance the

filter.

The proposed double protrugram algorithm is designed in order to indicate peri-

odic pulse train. Moreover, it is not sensitive to contaminations like amplitude mod-

ulated sinusoidal components and non-cyclic wideband impulses. The presented fil-

tering method does not only search for the highest value of an indicator and use a

band-pass filter around appropriate frequency. It assesses for every frequency of the

spectrum and automatically provides an enhanced amplitude response of the filter.

This improvement is obtained via application of the thresholding procedure. This

method is highly effective, although it is also time consuming, since it incorpo-

rates Monte Carlo simulations. This property can be seen as an major drawback

of the method. In the future a faster algorithm for thresholds calculation is of high

importance.
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Use of Cyclostationarity Based Condition
Indicators for Gear Fault Diagnosis Under
Fluctuating Speed Condition

Vikas Sharma and Anand Parey

Abstract The vibration based gear health monitoring is one of the condition
monitoring techniques, widely used in industry. Under fluctuating speed conditions,
vibration based conventional gear fault diagnosis methods like FFT and condition
indicators (CI) like rms and kurtosis, fails to differentiate a faulty gear from a
healthy one. Under such conditions, cyclic changes are observed in mean and
variance of a vibration signal. CI using such statistical parameters for non-stationary
gear vibration signal may mislead the entire fault diagnosis approach. In this
chapter, CI based on cyclostationarity has been explained and used for gear fault
diagnosis for fluctuating speed conditions. This chapter shows an advantage of
using cyclostationarity based CI over conventional CI, for example rms and kur-
tosis, to diagnose fault. Result shows the effectiveness of the cyclostationarity based
CI in differentiating gear health.

Keywords Condition indicators ⋅ Cyclostationarity ⋅ Fluctuating speed ⋅ Gear
fault

1 Introduction

The variation in speed regulates the torque at the output of the gearbox. This
variation in speed and the sliding friction [1–3] between the gears tooth pair is one
of the contributors of vibrations produced in gearbox. In real life, these fluctuations
in speed may appear in any fashion. Under such the fluctuating speed conditions the
vibration signals generated are non-stationary. But, the present techniques for signal
processing and statistical analysis used for gearbox fault diagnosis assume the
vibration signal to be stationary.
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According to signal processing concepts, fluctuations in speed result in modu-
lation of vibration signals. Such modulations contribute and hide the existing
modulations which were present due to fault. And because of this, conventional CI
like rms and kurtosis fails to sense fault under fluctuating speed conditions [4–10].
Thus, vibration based gearbox fault diagnosis methods and conventional CI are
inefficient under real life condition, i.e. fluctuating speed conditions.

The cause of modulation in vibration signal and its detection has been a topic of
substantial research for over two decades. In order to detect modulation caused due
to fault in gears, there are two possible approaches: feature-based (FB) methods
[11, 12] and similarity based or likelihood-based (LB) methods [13, 14]. Signals
acquired under real-life situation are not accurately stated as non-stationary; rather
they can be represented as cyclostationary. Cyclostationary signals are defined as a
class of non-stationary signals which are characterized by the periodic variation in
their nth order moment with respect to period T. The demonstration of cyclosta-
tionarity of a signal is based on cyclic moment. Fault detection on the basis of
cyclostationarity is a FB technique.

Gearboxes produce cyclostationary signals which are combination of both first
order and second order cyclostationarity. The deterministic part of gearbox vibra-
tion signal results in first-order cyclostationarity (CS1) components appeared due to
unbalances, eccentricities, etc. whereas; second-order cyclostationarity (CS2)
results from phenomenon of random nature which is observed due to impacts,
frictions etc. [15]. Cyclostationary analysis detects modulation caused due to faults
by evaluating time varying cyclic cumulants and cyclic spectrum. This makes the
cyclostationarity based CI to detect fault successfully even in low signal to noise
ratio environments. Therefore, early fault detection using CI based cyclostationary
analysis could prove to be novel as well as robust approach under fluctuating speed
conditions.

This chapter explores the use of cyclostationarity for vibration based gear fault
diagnosis under the fluctuating speed conditions. The cyclostationarity based CI
(Sect. 3.2) has been explored for detecting gear fault. The gearbox is subjected to
fluctuating profile of speed which has been imitated as the working conditions of
wind turbines [16, 17]. The chapter is organized as follows. The state-of-art liter-
ature review about cyclostationarity is presented in Sect. 2. The fundamentals of
cyclostationarity process and statistical properties of indicators are explained in
Sect. 3. An experimental illustration is presented in Sect. 4. Discussion of results
and the fault highlighting capacity is shown in Sect. 5. Future prospects and con-
clusions are presented in subsequent Sect. 6.

2 State of the Art Literature Review

In the year 2000, Dalpiaz et al. [18] compared the results based on wavelet
transform and cyclostationarity analyses to time-synchronous average and cepstrum
analysis. Moreover, the sensitivity to fault severity in terms of the fourth statistical
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central moment was assessed by considering two different depths of the crack. Later
in 2004, Antoni et al. [19] investigated the relationship between angle and time
cyclostationarity by proving that rotating machine signals are intrinsically cyclo-
stationary in angular domain rather than time domain. He also differentiated
between degrees of pure cyclostationarity and impure cyclostationarity. In 2005,
Zhu et al. [15] presented the usefulness of first order to the third order cyclosta-
tionarity in gearbox health monitoring. Both the spectrum of the second-order
cyclic cumulant and the cyclic bispectrum of cumulant were found efficient in
proving the degradation of the gearbox by the interactions between cyclic fre-
quencies and, rotating and meshing frequency. Later in 2005, Bonnardot et al. [20]
designed a time-varying linear-periodic Wiener filter, to discriminate noise without
knowing its source, so that second-order cyclostationary source can be extracted for
vibration analysis. Afterwards in 2007, Estupinan et al. [21] focused on the fault
detection in the roller bearing using the cyclostationary analysis by using a
cyclostationarity index and compared it with rms value; his proposed indicator
demonstrated better sensitivity with respect to the occurrence of a fault. In 2009,
vibration diagnostic methods for planetary gearbox synthesized by Bartelmus [22],
also aimed cyclostationary analysis for fault signature extraction. Meanwhile in the
same year, for monitoring planetary gearbox used in the mining industry, Zimroz
and Bartelmus [23] explored the application of cyclostationary properties of signals
to develop a diagnostic feature on the basis of spectral coherence map.

Till early/mid 2009, gear fault diagnostic analysis using cyclostationarity based
CIs were restricted to stationary conditions. But later, gear fault diagnosis using
cyclostationarity was considered at varying speed conditions. Fu and Li [24] in
2009, evaluated degree of cyclostationarity as a diagnostic feature for gear fault
diagnosis under run up situation by converting the time domain transient signal into
angular domain stationary signal. In 2011, Feng et al. [25] proposed a ratio of the
sums of the cyclic spectral density magnitude at the cyclic frequencies of modu-
lating frequency to 0 Hz along the frequency axis to figure out localized gear fault
from amplitude modulated-frequency modulated (AM-FM) signal. By 2015,
second-order cyclostationarity analysis was also used to analyze the model’s
non-linearity of the propagating crack during fatigue damage and expressed that
random component which increases with fatigue fault. This magnitude of the cyclic
frequency can be used as an effective indicator for fatigue damage [26]. For fluc-
tuating speed conditions, Abboud et al. [27] in 2015, demonstrated analytical and
experimental effectiveness of the angle/time strategy over classical cyclostationary
approach for the vibration emitted by rolling element bearing fault.

Recently in 2016, cyclostationarity has been widely accepted in the field of early
fault diagnosis at fluctuating speed profiles by scientific communities, as evident in
two fine reviews [28, 29] where by the problems of statistical function estimation,
signal detection and cycle frequency estimation is discussed. A summary of the
authors focusing different methods or issues related to cyclostationary for the gear
fault diagnosis is presented in Table 1.
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3 Cyclostationarity for Gear Fault Diagnosis

A non-stationary stochastic process is said to be nth order cyclostationarity on the
basis of periodicity in nth statistical moment with time period T. The fundamental
frequency; α of the periodicity is called cyclic frequency of the signal.

3.1 The First-Order and Second-Order Cyclostationarity

Cyclostationarity as stated above is defined on the basis of periodicity of their
moments. A possible reason of failure of conventional CI i.e., in terms of detecting
fault under fluctuating speed could be the periodicity of the moments. The char-
acterization of signals can be done by using CI based on cyclostationarity.

Let us consider a time domain signal xðtÞ which can be referred as nth order
cyclostationary with period T. When the first-order moment, i.e. mean mxðtÞ is
periodic with period T, then it is said to be a first-order cyclostationary (CS1) signal,
which can be expressed as:

mxðtÞ=E xðtÞf g=mxðt+ TÞ ð1Þ

where, E ∙ð Þ is the expected value and implies ensemble average.
Signals which exhibits a time varying auto-correlation function (ACF) can be

termed as signal with second-order cyclostationarity (CS2) [28, 31]. Either
amplitude modulations or frequency modulations or both appearing in stochastic
processes are typical examples of CS2 signals. The ACF of a signal xðtÞ is a
periodic function with period T and is expressed as:

Rxxðt, τÞ=E xðt+ βτÞxðt− βτÞ*� �
=Rxxðt+ T , τÞ ð2Þ

Table 1 Summary of the authors focusing on cyclostationary

Methodologies or issues Authors

Modeling strategies Gardner [30], Antoni [28], Antoni et al. [19]
Effect of fluctuating
speed

Abboud et al. [27], Fu and Li [24], Baudin et al. [31]

Cyclostationary
indicators

Estupinan et al. [21], Girondin et al. [32], Napolitano [29], Kebabsa
et al. [33], Feng et al. [25], Raad et al. [34], Delvecchio [35],
Borghesani et al. [36], Léonard [37]

Application in gear
fault diagnosis

Kidar et al. [4], Feng and Chu [38], Zhu et al. [15], Dalpiaz et al.
[18], Bonnardot et al. [19], Boungou et al. [26], Eltabach et al. [39],
Randall and Antoni [40], Leclere and Hamzaoui [41], Assaad et al.
[42]
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For a second order stationary signal, autocorrelation function is independent of t,
i.e., Rxxðt, τÞ=RxxðτÞ. When a gearbox is operating, it will show cyclic behavior;
this cyclic behavior is due to inherent periodicities embedded in it as kinematic
variables viz. loads and speed fluctuates which are periodic to some angles. It
implies that the signals are fundamentally cyclostationary in angular domain rather
than time-cyclostationary [19]. Therefore to preserve their intrinsic cyclostationarity
property, signal can be sampled as a function of an angular variable ϑ and a cyclic
period Θ in the angular domain with angle lag as φ. It implies that the signal defined
in angular domain can be written as xðϑÞ. Therefore, for angular domain both
Eq. (1) and (2) can be rewritten as:

mxðϑÞ=E xðϑÞf g=mxðϑ+ΘÞ ð3Þ

Rxxðϑ,φÞ=E xðϑ+ βφÞxðϑ− βφÞ*� �
=Rxxðϑ+Θ,φÞ ð4Þ

3.2 Cyclostationarity Based Condition Indicators

Cyclostationary approach has been used for fault diagnosis by estimating the
cyclostationarity based CI: indicators of nth order cyclostationarity (ICSnx) and the
degree of second-order cyclostationarity (DCSα) [34]. In order to define cyclosta-
tionarity based CI for signals, cumulant or moments can be used. The use of
cumulants is worthy because the nth order cumulant gives significant information
which is not carried in lower-order moments.

Assuming the signals to be cycloergodic, ensemble averaging can be replaced by
synchronous averaging with the period T for evaluating first order cumulants [30].
Therefore, first order cumulant for period T with N number of averages is calculated
as:

C1x =
1
N

∑
N − 1

n=0
xðt− nTÞ ð5Þ

For first order, the cumulant and the moment are same. So, subtracting the first
order moment from the signal will derive the residual signal i.e.,
rxðϑÞ= xðϑÞ−mðϑÞ. With this expression, the characteristics frequencies and their
harmonics are subtracted. This residual signal is used to calculate the second order
cumulant. The second order cumulant is the autocovariance function of residual
signal with zero mean and is expressed as:

C2xðϑ,φÞ=Rxxðϑ,φÞ=E rxðϑÞrxðϑ−φÞf g ð6Þ

Angle lag will affect the second order cumulant as expressed in Eq. (6), because
it measures the similarity between different observations as a function of angle lag
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in angular domain and as a function of the time lag in time domain. With con-
sidering the angle-lag φ=0, the Eq. (6) modified as:

C2xðϑ, 0Þ=E r2x ðϑÞ
� � ð7Þ

In angular domain both cumulants C1xðϑÞ and C2xðϑ,φÞ are considered periodic
with period Θ, which can be expanded into a Fourier series as follows:

C1xðϑÞ= ∑α∈A C
α
1xðφÞej2παðϑ Θ̸Þ ð8Þ

C2xðϑ,φÞ= ∑α∈A C
α
2xðϑ,φÞej2παðϑ Θ̸Þ ð9Þ

And the cyclic cumulants can be written as:

Cα
1x = lim

Θ→∞

1
Θ

Z
Θ

Cα
1xðϑÞe− j2παðϑ Θ̸Þdϑ ð10Þ

Cα
2xðφÞ= lim

Θ→∞

1
Θ

Z
Θ

Cα
2xðϑ,φÞe− j2παðϑ Θ̸Þdϑ ð11Þ

where, A is the set of cyclic orders. As per Raad et al. [34] at zero angle lag φ=0ð Þ,
the cyclic cumulants summarizes all the spectral information of second-order
cyclostationary content of the signal. Therefore, they can be conveniently used to
define the following indicators of cyclostationarity (ICS1x and ICS2x)

ICS1x =
∑α∈A, α≠ 0 Cα

1x

�� ��2
Cα
2xð0Þ

�� ��2 ð12Þ

ICS2x =
∑α∈A, α≠ 0 Cα

2xð0Þ
�� ��2

Cα
2xð0Þ

�� ��2 ð13Þ

where, A is the set of interested cyclic frequencies which is possibly a subset of
A. These indicators are dimensionless and they are normalized by the energy of
residual signal.

Using Eq. (12) and (13) the ICS1x and ICS2x can be evaluated. Additionally, to
find the information about components of the CS2 present in a signal for a cyclic
frequency α by computing another CI the degree of cyclostationarity (DCS) as
mentioned below [35]:

DCSα =

R
Sα2xðυÞ
�� ��2dυR
S02xðυÞ
�� ��2dυ =

R
Cα
2xðφÞ

�� ��2dφR
C0
2xðφÞ

�� ��2dφ ð14Þ
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where Sα2xðυÞ is the cyclic spectrum, which implies the measure of the cyclic power
distribution of the signal as a function of spectral order.

CIs for the cyclostationarity like ICS2x and DCSα fundamentally have the same
physical interpretation as of CS2 signal. Nevertheless ICS2x and DCSα show some
different characteristic features:

(1) DCSα can provide information about the fault, if the signal shows some CS2
components; on contrary ICS2x provide only a numerical value which being a
summation over a cyclic frequency range A.

(2) DCSα is slow to evaluate, as it requires computation of cyclic cumulants for all
angle lags; while, the evaluation of ICS2x is much faster as it is based on FFT
algorithm.

Concluding the characteristics of indicators with respect of gear fault diagnosis it
can be stated that,

• For identifying fault periodicities, DCSα can be used.
• To specify the gearbox state by means of simple numerical parameters, ICS2x is

useful and can be used as a suitable CI for neural network based intelligent
pass/fail algorithms.

In Sect. 5, an attempt has been made to use cyclostationary based CI i.e., ICS1x,
ICS2x and DCSα on signals captured from gearbox under fluctuating speed condi-
tions for fault detection.

4 Experimental Investigation

4.1 The Test Rig

The gear test rig uses an assembly of motor-drive-brake type, where gear can easily
be mounted/dismounted to mesh. Figure 1 shows the pictorial view of the gear test
rig for the present study. The drive to the test rig was provided by an AC drive
motor using a 2.237 kW, 3 phase motor via a flexible coupling. A wide range of
continuously variable speed from 0 to 3000 rev/min was provided by the control
panel of the AC motor. The test rig can withstand a maximum radial load of 24.5
Nm (at the test gear) by magnetic brake type loading arrangement as shown in
Fig. 1. The load on test gear and the speed of AC motor was programmed through
NV Gate software. The transducer was attached on the bearing case of the test gear
shaft and remains outside the gearbox. The layshaft of the gearbox is connected to
the magnetic brake.
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4.2 Test Gears

Spur gears with 20º pressure angle were used in this study with involute profile of
medium carbon steel (AISI1045). Different crack on teeth were introduced in the
gears by wire electro-discharge machining. Gears with no crack, initial crack and
advanced crack as shown in Fig. 2 were tested under fluctuating speed conditions.
The details of gears are listed in Table 2.

Fig. 1 Experimental test rig

Fig. 2 a Healthy gear; b initial crack gear; c advanced crack gear (crack lengths in mm)
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4.3 Measurement Conditions

The speed was varied sinusoidally as shown in Fig. 3, for 750 rpm ranging from
600 to 900 rpm by keeping the load constant at 25%. Vibration signals were
acquired with a sample rate 6.4 kHz for 6.25 s resulting total length of signal i.e.,
40000 samples and 10 datasets comprising 5 signals each. These datasets were used
to track the error in signal acquisition and processing.

A tachometer signal with 1pulse/rev was used to determine the angular position
of the gear shaft and to resample the accelerometer signal in the angular domain
with an angular resolution of 1°.

5 Results and Discussion

This section presents the results of experimental analysis of vibration signals
captured, when the gearbox are made to work under fluctuating speed. Figure 4
shows the vibration signals for one revolution of different gear health, (a–c) in time
domain and (d–f) in angle domain. From Fig. 4, the vibration signal of advance
crack is undoubtedly noticeable as it produces a series of high transients while
meshing. This implies that the occurrence of the tooth root crack fault possibly

Table 2 Gear specification Parameter Input gear Output gear

Number of teeth 32 80
Dimeteral pitch (per mm) 0.6299 0.6299
Module (mm) 1.5879 1.5879
Face width (mm) 12.5 12.5

Fig. 3 Sinusoidal fluctuating
profile of speed
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match an increase in order of cyclostationarity for the gearbox vibration signals.
Comparison of the power spectral densities is shown in Fig. 5. It suggests that there
is a considerable increase in cyclostationarity behaviour, because of occurrence of
heavy sideband density around the gear-mesh and its harmonics with advancing
fault under fluctuating speed conditions.

Both rms and kurtosis are computed for time domain and angular domain
vibration signals. Table 3 provides information about the rms and kurtosis value for
the faulty gears under both constant speed and fluctuating speed conditions.

It has been observed from Fig. 6 that rms and kurtosis both are sensitive towards
fault for constant speed condition. However, in time domain, kurtosis fails to sense
the fault under fluctuating speed condition. Similarly, in angular domain, rms fails
to respond against fault. Therefore, under fluctuating speed conditions, these CI
could be unreliable. The effectiveness of cyclostationarity based CI can now
experimentally evaluated by identifying the fault within the gearbox.
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Fig. 4 Gear vibration signal for one revolution in time domain (left column) angular domain
(right column), healthy gear (a and d), gear with an initial crack tooth (b and e), gear with
advanced crack (c and f)
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5.1 Application of Cyclostationarity Based CI

Under the effect of fluctuating speed conditions, synchronous averaging fails to
detect the fault transients [8, 9, 43–45]. This restricts us to compute the first order
cyclic cumulants and ICS1x. However, the central information i.e., the residue more
or less remains same, thus residue of the signal can be evaluated. Therefore, on the
basis of this assumption, the cyclic cumulants for second order are estimated.
Figure 7 illustrates the behaviour of estimated cyclic cumulants Cα

2xð0Þ, as calcu-
lated from Eq. (10) in the cyclic order range of 0–70 and computed for the signals
of healthy and faulty conditions of gearbox.

Second-order cyclic cumulants Cα
2xð0Þ displays few important components at this

cyclic order for healthy gear vibration signal (Fig. 7a), on the other hand for faulty
conditions, i.e., initial crack and advanced crack (Fig. 7b, c). It also depicts sig-
nificant components above the threshold level of cyclic cumulants i.e., 0.075.
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Fig. 5 Power spectral density for captured vibration signals of different gears under sinusoidal
fluctuating speed environment

Table 3 CI evaluated for different conditions

Time domain Angular domain
Features No

crack
Initial
crack

Advanced
crack

No
crack

Initial
crack

Advanced
crack

(a) Constant input speed
RMS 1.086 2.245 6.967 1.1547 1.2057 3.574
Kurtosis 3.440 4.060 9.243 3.2715 5.142 7.8514
(b) Sinusoidal fluctuating input speed

RMS 0.195 0.351 1.247 1.2245 0.9814 1.8757
Kurtosis 3.299 3.651 2.932 3.5461 4.5801 8.0841
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The threshold value is considered as 0.75 times of the maximum value of cumulants
for healthy gear. Cyclic order 0–70 has been taken as cyclic order the range and
order 70 as maximum value so as to generalize the validity of the indicator eval-
uation. The ICS2x are evaluated separately for every gear, by considering the two
sets of cyclic frequencies one for healthy signal and another for faulty signal, i.e.,

ϖh = z ⋅Ohf g+ Z
z= − Z and ϖf = q ⋅Of

� �+Q
q= −Q; where, Of =0.5 is the fundamental

faulty order, Oh =2 is the fundamental healthy order. The fundamental faulty order
and fundamental healthy order is represented by Z and Q respectively. Order refers
to frequency multiple of the reference rotational speed. Thus, healthy order and
faulty order corresponds to healthy and fault frequencies. Also ϖh is a subset of ϖf .
Mathematically,ϖf⊆ϖh.

Values computed for ICS2x are displayed in Table 4 for 10 datasets under
sinusoidal fluctuating speed conditions. First of all, it is seen that ICS2x associated
with the healthy gear is found low when the system assumed in good operation and

Fig. 6 Performance of rms and kurtosis for a time domain signals, b angular domain signals
under different speed and gear health conditions
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suggest that no fault development on the gear. On the other hand, the vibration
signal with the help of ICS2x exhibits a sudden increase of CS2 cyclic cumulant
with the initiation of gear crack. This specifies that even though the speed of
gearbox is fluctuating, cyclostationary based CI shows significant impact on the

Fig. 7 Estimated cyclic cumulantsCα
2xð0Þ plotted in the cyclic order range 0–70 for vibration signals

in different condition a healthy gear, b gear with initial crack tooth, c gear with advanced crack

Table 4 Value of ICS2x for
sinusoidal fluctuating input
speed

Dataset # No crack Initial crack Advanced crack

1 0.5701 10.24 16.101
2 0.3991 9.651 15.932
3 0.2975 10.144 16.814
4 0.0914 8.651 14.905
5 0.1975 10.824 16.984
6 0.3394 9.151 15.152
7 0.4571 9.054 15.870
8 0.3498 9.887 15.932
9 0.2570 9.751 15.778
10 0.3299 9.315 15.852
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diagnosing capability, even if the fault becomes critical enough to modulate the
vibration signals significantly. This phenomenon justifies the second-order cyclo-
stationary properties of this faulty signal. Further, with an increase in crack length,
the DCSα in cyclic order range 0–10 also increases showing a characteristic fault
periodicity and its harmonics (Fig. 8). It is because of the fact that fault (crack in
present study), produces CS2 components, occurring once in each cycle of gear
rotation and mesh.

6 Conclusion

This chapter deals with the concepts and application of cyclostationarity based CI.
The objective being gearbox fault diagnosis using CI, particularly ICS2x and DCSα

under fluctuating speed condition. Unfortunately, conventional CI like rms and
kurtosis fails to detect faults reliably under fluctuating speed condition; in both time
and angular domain. In present study cyclostationarity based CI viz. ICS2x and
DCSα were evaluated for gear fault diagnosis. ICS2x was found sensitive toward
both the crack levels for fluctuating speed conditions. DCSα exhibited increase in
amplitude of cyclic order for different gear health conditions. Thus, for fluctuating
speed conditions, CIs based on cyclostationarity were found effective.

Fig. 8 DCSα plotted in the
cyclic order range 0–10 for
vibration signals in different
condition a healthy gear,
b gear with initial crack tooth,
c gear with advanced crack
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