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 Introduction

As academic centers recruit and hire junior faculty to fill the 
large shoes of senior surgeons who are retiring or are pro-
moted to new positions, the number of new responsibilities 
that are foreign to a recent graduate of a surgical training 
program can be overwhelming. In addition to being the 

mailto:askumarmd@gmail.com


218

primary point-person of complex patient panels, young surgeons 
also juggle medical record upkeep, billing, and practice pro-
motion. Those who land jobs with academic appointments 
may be asked to perform and publish research. Productivity 
in these arenas may influence the new faculty member’s abil-
ity to rise in rank over the years, thus affecting salary.

Even when/if the position is exempt from performing 
research, teaching faculty will be asked to participate and/or 
lead journal review conferences for the department or sec-
tion. An intelligent and insightful review of the literature 
selected can make an indelible impression on a colleague in 
the community. Arrive prepared to discuss the studies that 
have been selected by using this chapter and its pearls 
(Fig. 15.1) as your primer to the daunting, but decipherable, 
world of biostatistics.

 What Is the Study’s Purpose?

A study’s purpose drives the selection of data sources, out-
comes of interest, study design, and analytic plan. In general, 
the purpose of a study falls into two categories: hypothesis-
generating or hypothesis- testing. Hypothesis-generating 
(sometimes called descriptive) studies aim to identify possi-
ble associations and motivate future investigations. 
Hypothesis-testing studies should make clear whether the 
hypothesis concerns superiority, inferiority, or equivalence 
(non-inferiority), and every attempt to exclude the influence 
of chance and bias in evaluating the hypothesis.

To succinctly summarize the research question that a study 
aims to address, we recommend that the discussant uses the 
“PICOT framework:” Population, Intervention (i.e., inde-
pendent variables, exposure, and covariates), the Comparator 
group (if applicable), Outcome (i.e., dependent variable or 
endpoint), and Time frame of outcomes assessment [1–3]. 
Approaching research studies through a PICOT lens can 
guide the reader/reviewer systematically through the perti-
nent considerations when appraising the work.
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•   The research question can be succinctly summarized using the “PICOT” 
    framework (Population, Intervention, Comparator group, Outcome, and
    Time frame) 
•   Recognizing of the minimal-clinically important difference (or MCID) for a 
     particular patient-reported outcome (PRO) is helpful to help the reader 
     distinguish between results that are significant statistically and those which are
     perceived as clinically significant to patients.
•   ITT (intention to treat) analysis is essential because it provides information 
     about how the intervention compares at the moment the decision is being made
     and is particularly useful at counseling patients.

•   If the data are skewed (not normally distributed) the mean will be a biased 
     estimator of the central tendency. In these cases, the median provides a better 
     estimate.
•   As a general rule, the larger the difference being compared and the larger the 
     sample size for a given comparison, the lower the p value, and the less likely 
     that the finding is the result of chance alone.    
•   When multiple comparisons are necessary, corrections (e.g., Bonferonni 
     correction) to appropriately lower the p-value can be made in an attempt to 
     safeguard against Type I errors (a false-positive finding).

•   Type II error (a false-negative finding) most commonly occurs when a study 
     has insufficient power (insufficient size) to detect true differences in outcomes
     between groups.   

•   When the summary measure is the absolute difference or relative risk, a CI 
     inclusive of 0 indicates no statistically significant difference. If the summary 
     measure is an odds ratio, a CI inclusive of 1.0 indicates no statistical difference
     in outcomes.
•   When the continuous variable is not normally distributed, an alternative to the 
     t-test, such as the Wilcoxon rank-sum test, may be more appropriate

•   Fisher’s exact test is more appropriate for such comparisons when the
    sample size is small (<100).

•   As a rule of thumb, a minimum of 10 events (and equivalent number of 
     nonevents) per variable are required for logistic regression (binary outcome) 
     and 10 to 15 observations per variable for linear regression (continuous outcome).

•   Odds ratio will overestimate the probability if the outcome occurs frequently 
     (>10%) in the population. 

Fig. 15.1 Pearls: tips and tricks for deciphering statistical implica-
tions of studies
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 Is the Right Data Being Used?

Many sources of information exist to conduct clinical research, 
and the selection of a data source is driven by a balance 
between the study purpose, resources (i.e., money), and feasi-
bility (i.e., acceptance, ethics, and time). Table 15.1—Data 
sources provides a synopsis of commonly used data sources. 
The strengths and limitations of each are highlighted. For 
example, many datasets rely completely on administrative 
data (i.e., Medicare claims). These datasets are readily avail-
able to researchers and relatively inexpensive to obtain and 
analyze. However, they only reliably include metrics related 
to the billable aspects of care.

 What Is the Measured Outcome?

Outcomes assessment cannot determine which intervention 
is better for the patient, but it can inform patients and provid-
ers about differences between competing diagnostic or thera-
peutic options. It is therefore important to determine which 
outcomes were assessed in a study, from what perspective, 
and whether these were consistent with the study’s purpose. 
Outcomes may be subjective (e.g., patient satisfaction) or 
objective (e.g., death). There are categories of outcomes that 
the study designer or evaluator should be familiar with: (1) 
clinical outcomes, (2) patient-reported outcomes (PROs), (3) 
financial outcomes.

Clinical outcomes are well-defined, validated, and rela-
tively easy to measure. Those related to in-hospital safety 
(safety outcomes) only require a short follow-up period. 
Operative mortality and postoperative complications (mor-
bidity) are the most commonly measured safety endpoints. 
While, fortunately, mortality and complications tend to be 
infrequent events, the statistical implications are that safety 
studies often need to be quite large in sample size to be able 
to identify differences. One approach to address the costs of 
large samples or long lag times of development of infrequent 
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clinical events is to report surrogate endpoints. Surrogate 
endpoints are intermediate outcomes that might serve as a 
surrogate for the actual clinical effect. However, the reader 
must consider whether the selected outcome is a meaningful 
clinical endpoint or simply a more easily measured surrogate 
[4]. Alternatively, when events are rare or there is no single 
optimal outcome, studies may report composite endpoints. 
For composite endpoints to be meaningful, however, they 
should be of similar importance and frequency. Imbalance in 
the components will not allow reviewers to judge which indi-
vidual outcome contributed most to the composite endpoint.

Patient-reported outcomes (PROs) measure experiences or 
events that are reported by the patient. Sometimes, PROs are 
regarded as subjective outcomes because the response can-
not be verified by a provider or researcher. Examples of com-
mon PRO concepts are health-related quality of life 
(HRQOL), satisfaction with care, functional status, well-
being, and health status. Discrete concepts (PRO domains), 
include physical (e.g., pain), psychological (e.g., depression), 
and social functioning (e.g., the ability to carry out activities 
of daily living). Researchers are advised to use existing 
instruments to measure PROs (rather than creating their 
own) because the appropriate development of a question-
naire requires significant time, resources, testing, and valida-
tion before application. Recognition of the minimal-clinically 
important difference for a particular PRO distinguishes 
between results that are significant statistically and those 
which are perceived as clinically significant to patients [5].

Increasingly, financial outcomes are being added to con-
temporary studies. In these scenarios, it is important to note 
the difference between charges (the amount of money 
requested for health services and supplies) and costs (the 
actual amount of money spent). In addition, it is important to 
recognize that handling cost data requires special statistical 
approaches because costs are highly skewed (a few patients 
experience disproportionately higher costs than the majority) 
and exist as point masses (where many patients incur no 
costs). As an alternative to cost data, some authors report 
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resource utilization which can range from pre- hospital 
resources (such as clinic visits and preoperative tests) to 
hospital resources (length of stay, readmissions, pharmacy 
services) to post-hospital care (skilled nursing facilities and 
home care). Similar to cost data, resources utilization data suf-
fers from skewing and clustering. Three common approaches 
to cost- outcomes are cost-benefit, cost-utility, and cost-effec-
tiveness analyses.

 What Is the Hypothesis Being Tested?

Hypothesis testing is used to determine whether observed 
differences between two or more groups are true findings or 
are attributable to chance alone. Prior to testing a hypothesis, 
it is important to first define the null and alternative hypoth-
eses. A null hypothesis is the principle that there is no differ-
ence among groups. The alternative hypothesis is the idea that 
there is a difference among two groups. A researcher needs 
to know with an acceptable level of accuracy whether an out-
come is occurring due to the alternative hypothesis being 
correct or by chance alone. The p-value is a statistical sum-
mary measure for hypothesis testing and is interpreted as the 
probability that the observed difference in outcomes between 
groups is the result of chance (i.e., the difference is not actu-
ally based on the effect of the intervention). A significant 
level of 5% (p = 0.05) is widely accepted in medical literature 
to indicate a statistically significant finding. This threshold is 
rather arbitrary and for some measures a lower (large data-
bases where false positive are to be avoided) or higher level 
(when a higher noise-to- signal ratio is acceptable as in safety 
evaluations) may be appropriate. As a general rule, the larger 
the difference being compared and the larger the sample size 
for a given comparison, the lower the p-value, and the less 
likely that the finding is the result of chance alone.

There are two types of errors which can occur with any 
hypothesis testing. Understanding how to address them is 
pertinent to the study purpose, design, and analytic plan. A 
type 1 error or false positive occurs when one observes a 
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difference in outcomes when one does not actually exist. In 
this case, the null hypothesis is incorrectly rejected. For 
example, if a threshold of 5% (p < 0.05) were considered 
statistically significant, 5 of 100 statistical tests could poten-
tially demonstrate a statistically significant finding that is 
attributable to chance alone. If one repeats a comparative 
analysis in different subgroups (i.e., multiple comparisons), 
then there are more opportunities to observe a false-positive 
result. When multiple comparisons are necessary, corrections 
(e.g., Bonferonni correction) to appropriately lower the 
p-value can be made in an attempt to safeguard against type 
I errors. A type II error occurs when no difference in out-
comes is observed when a difference truly exists (a false-
negative finding). That is to say, the null hypothesis was 
inappropriately accepted as correct. This type of error most 
commonly occurs when a study has insufficient power (insuf-
ficient size) to detect true differences in outcomes between 
groups.

Hypothesis testing can also be performed by examining 
confidence intervals (CI) of summary measures. Often the 
difference between groups are provided as an estimated ratio 
(in the study group divided by the control group) or as an 
absolute difference, with a 95% CI. The CI provides an esti-
mate of the uncertainty around a given value. A wide CI sug-
gests a lack of precision and a tight (small) interval indicates 
minimal uncertainty. When the summary measure is the 
absolute difference or relative risk, a CI inclusive of 0 indi-
cates no statistically significant difference. If the summary 
measure is an odds ratio, a CI inclusive of 1.0 indicates no 
statistical difference in outcomes.

The power of a given study is the probability of rejecting 
the null hypothesis when it is in fact false. In more simple 
terms, power is a study’s ability to find an association between 
two variables if one exists. Power is a value calculated based 
on a fixed and known sample size. Power is based on both 
study sample size and magnitude of difference observed or 
predicted in the dependent (response) variable in response to 
the independent variable. Power analysis should be done 
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prior to completing any statistical analysis of a study and a 
reasonable power for a study is widely regarded as 0.8. If 
the power of a study is not found to be acceptable, the 
reverse calculation can be made to determine a necessary 
sample size to determine a statistical association. Power 
analysis is often required for grant funding for experimental 
research study designs. Retrospective studies of clinical or 
epidemiological data with large sample sizes seldom have a 
preliminary power analysis.

 What Are the Implications of the Study 
Design That Was Chosen?

Several study designs are commonly used in surgical research 
and depend on the study purpose (hypothesis-generating 
versus hypothesis-testing) and the feasibility and resources 
for conducting the research. A synopsis of the most common 
study designs in surgical literature is provided in Table 15.2—
Study designs.

Randomized controlled trials (RCTs) provide the highest 
level of evidence supporting causality. Subjects are randomly 
assigned to an intervention group, where they receive an 
experimental intervention or to a control group, where they 
receive a controlled measurable alternative. If the number of 
randomized individuals is sufficiently large and randomization 
is performed properly, confounding variables will be distrib-
uted equally between groups and outcomes can be compared 
without concern for bias. However, conducting an RCT is chal-
lenging because of issues concerning equipoise, ethics, willing-
ness to be randomized, costs, and generalizability.

An important analytic issue with RCTs is intent-to-treat 
(ITT). When an analysis is conducted following the ITT prin-
ciple, outcome comparisons between control and treatment 
groups are based on the initial randomization and disregard 
subjects who cross over across intervention arms. If analytic 
approaches other than ITT are used, an equal balance of 
confounders across comparison groups cannot be guaranteed, 

V.V. Simianu et al.
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Table 15.2 Important considerations in design types

Study type
Exposure/outcome 
relationship Considerations

Randomized 
controlled 
trialT

Randomly assigned an 
exposure and followed 
for outcome

Equipoise?
Choice of control 
(placebo vs. standard of 
care)
Generalizability?
Blinding?
Intention to treat?
Superiority versus non-
inferiority

Cross- 
sectionalT,G

Exposure and 
outcome are assessed 
at the same point in 
time

Not suitable if disease has 
short duration or is rare

CohortT,G Identified by 
exposure, followed for 
outcome (prospective 
or retrospective)

One exposure, multiple 
outcomes
Confounding
Inefficient for rare 
outcomes or those which 
occur long after exposure

Case–
controlT,G

Identified by outcome, 
assessed for exposure
(prospective or 
retrospective)

One outcome, multiple 
exposures
How was control group 
chosen?
Confounding
Recall bias

Case report, 
seriesG

Generalizability

Adapted from Rosenthal et al. [3]
Can be considered hypothesis-testing (T) and/or hypothesis-gener-
ating (G)

and the benefits of randomization may be lost. ITT analysis 
is essential because it provides information about how the 
intervention compares at the moment the decision is being 
made and is particularly useful at counseling patients. When 
considering whether the patient should undergo a particular 
intervention, neither the patient nor the surgeon knows 
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whether the patient will be able to complete the intervention 
strategy or will require another approach. Instead, the ITT 
will communicate the intended benefit for recommending a 
particular intervention.

While any one study may be underpowered to answer a 
given research question, meta-analysis is a technique that 
pools available published data in an effort to increase the 
statistical power of an analysis. Meta-analysis can be applied 
to RCT data or observational studies. Readers should con-
sider that guidelines have been developed to ensure the qual-
ity and validity of results obtained through RCTs, the 
Consolidated Standards of Reporting Trials (CONSORT) [6, 
7] and meta-analysis, the QUOROM (Quality of Reporting 
of Meta-Analyses) [8] and MOOSE (Meta-Analysis of 
Observational Studies in Epidemiology) [9] meta-analysis. 
Regardless of the type of pooled data, in all cases, an impor-
tant consideration in appraising a meta-analysis is the homo-
geneity of the pooled studies. Significant heterogeneity 
indicates more variation in study outcomes than chance 
alone can explain. This is particularly a concern when obser-
vational data have been aggregated because these studies 
tend to have less control of variability and minimal control of 
confounding and bias. One approach to increasing the trans-
parency of pooled results from observational studies is to also 
pool the baseline characteristics of the comparison groups.

Cross-sectional studies use data collected at a single point 
in time and are best used for hypothesis generation. This 
study design is commonly used to explore relationships 
between variables and disease burden though the data can be 
stacked over time to look at temporal trends. The main limi-
tations arise from how a population is sampled and detection 
or recall bias.

Cohort studies follow patients non-randomly assigned to 
different groups to determine whether outcomes vary across 
groups. While cohort data may be captured prospectively or 
retrospectively, the onset of observation begins with the 
group assignment (i.e., exposure) and continues over time to 
determine whether a particular event occurred. Cohort studies 
are useful to estimate the rates (i.e., incidence) of exposures 
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and outcomes, assess multiple outcomes, but are inefficient 
for evaluating outcomes that are rare, or occur a long time 
after exposure.

Case–control studies compare the frequency of exposures 
between patients who have and have not experienced an out-
come of interest. These studies begin by enrolling subjects 
with and without the outcome of interest and then look back 
in time to search for differences in potential risk factors. 
Advantages of the case–control design include efficiency in 
evaluating the factors associated with rare outcomes or out-
comes occurring a long time after exposure and the ability to 
evaluate multiple exposures simultaneously. Case–control 
designs are infrequently used in the surgical literature.

A case report or series aim to highlight an unusual or unex-
pected procedure or event. These studies propose a potential 
benefit or adverse effect of surgical therapy and may prompt 
more rigorous scientific evaluation. These studies are distinct 
from cohort investigations because there is no comparison 
made between competing strategies or interventions.

 What Is the Variable Being Tested?

In simple terms, scientific investigation is the examination of 
variables. The first objective of a study is to identify the inde-
pendent or predictor variable and the dependent or response 
variable. The dependent variable is that which changes in 
response to the independent variable. In experimental 
research, the independent variable can be manipulated to 
observe effects it has on the dependent variable. When it is 
not feasible to manipulate the independent variable for logis-
tic, legal, or ethical reasons, nonexperimental studies attempt 
to show association between an independent and dependent 
variable through statistical inferences.

Categorical variables have discrete values and are typically 
described in proportions or frequencies. The simplest cate-
gorical variable is a binary variable that can only take on one 
of two values (i.e., yes/no). Ordinal variables are ordered 
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categorical variables (i.e., ASA class). Nominal variables are 
unordered categorical variables (i.e., ethnicity). A continuous 
variable is one that can take on any number of values within 
a specified range of possibilities. Age is an example of a con-
tinuous variable. Descriptive statistics are used to describe 
the central tendency of continuous variables. The arithmetic 
mean provides a good estimate of central tendency for nor-
mally distributed (Gaussian or bell-shaped) data. If the data 
are skewed (not normally distributed), the mean will be a 
biased estimator of the central tendency. In these cases, the 
median or geometric mean provides a better estimate.

Time-to-event variables consist of two variables, a continu-
ous variable that measures the time interval from an estab-
lished start point (e.g., date of diagnosis or therapy) to a 
binary failure event (e.g., death or disease recurrence) or the 
end of the observation period. Time-to-event variables are 
typically reported as a probability of an event occurring at a 
certain point in time (i.e., survival at 5 years). Typically, time-
to-event methods (the most commonly used is Kaplan-
Meier) consider that number of patients at risk for an event 
decreases over time. Because of this, some methods may 
overestimate risk in the setting of competing risks (the dis-
ease evolves and prompts re-intervention; over time, a con-
traindication to re-intervention may develop, or death may 
occur, in which case a patient is no longer at risk). However, 
methods exist for handling time to event variables in the set-
ting of competing risks [10].

 Was the Correct Analysis Performed?

 Central Tendency

The point at which observations tend to cluster is a frequent 
point of interest in scientific investigation. The mean, median, 
and mode of a group of observations each provide an assess-
ment of this tendency and have their own practical uses. The 
mean is the summation of all observations for a given group 
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of data divided by the number of observations in that data. 
The mean is highly sensitive to outlying observations within 
a dataset and can be an invalid assessment of central ten-
dency if the data are skewed to one direction. The median is 
not as influenced by outlying observations and is defined as 
the observation at the 50th percentile for a group of observa-
tions. The third most commonly used and reported measure 
of central tendency is the mode, which is the set of values in 
a group of observations that occurs most frequently.

When considering a measure of central tendency, it is also 
important to consider the dispersion of the observations 
around the measure. The range of a group of measurements 
is the difference between the largest and smallest observation 
in a dataset and can give a crude assessment of the dispersion 
of observations. This value is again heavily influenced by out-
lying observations. The variance of a set of observations is the 
sum of squared distance from all observations to the mean in 
a given group of observations divided by 1-number of obser-
vations, and standard deviation is the square root of the vari-
ance. Standard deviation is the most widely reported 
assessment of dispersion due to its properties. For a relatively 
symmetric group of data, 67% of the observations will be 
within +/− one standard deviation from the mean and 95% of 
the observations will be within +/− two standard deviations 
from the mean. The 95% confidence interval of a mean is 
thus bounded by the values two standard deviations below 
and above the mean, respectively. Furthermore, a mean from 
one group of observations can be said to be significantly dif-
ferent from a mean of another set of observations if the 95% 
confidence intervals do not overlap.

 Rates

Some demographic data describing a population can be 
reported through measures of central tendency such as age 
and BMI. Not all data can be reported using these measures. 
Many demographic variables such as gender, race, comor-
bidities, and behavioral attributes such as smoking must be 
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reported as rates. Other vital statistics such as births, deaths, 
and disease prevalence and incidence are also reported as rates.

 Probability

An extension of rates is probability. The relative risk (RR) is 
a comparison of probabilities. RR is the probability of an 
event such as death, disease, or complication in subjects with 
a given exposure compared to the probability of death, dis-
ease, or complication in subjects without this exposure. A 
relative risk of 1.0 would indicate that the risk for death 
among the diseased group would be identical to those with-
out disease. The odds ratio is a comparison of the odds as 
opposed to the probability of an event. While probability is 
proportion of outcome of interest to all observations, odds 
are the outcome of interest in proportion to the alternative 
outcome. The odds of an event are not a risk or probability or 
risk per se. As such, it is a more appropriate statistic to com-
pute in retrospective studies such as case–control or cross-
sectional studies, where risk cannot be determined. In 
prospective cohort studies and RCTs, relative risk is an 
acceptable statistic.

It is important to note that the odds ratio will overestimate 
the probability if the outcome occurs frequently (>10%) in 
the population [11]. When the outcome is rare, the odds gen-
erally provide a good approximation of the probability. It is 
particularly relevant when conducting multivariable analysis 
that a minimum number of events are included to achieve a 
reliable estimate. As rules of thumb, a minimum of 10 events 
(and equivalent number of nonevents) per variable are 
required for logistic regression (binary outcome) [12] and 
10–15 observations per variable for linear regression (con-
tinuous outcome) [13]. This should also be considered when 
multiple variables are being controlled for in a multivariable 
model.
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 Diagnostic Testing

Probability forms the basis for the value of a diagnostic test. 
The probability of disease given a test result is paramount to 
accurately diagnosing or ruling out disease in a patient. 
Multiple measures of probability are used to assess the accu-
racy of a given diagnostic test. The sensitivity of a test is the 
probability of a positive test given a patient has the disease 
being tested. Another assessment of accuracy is specificity 
which is the probability of a negative test given a patient does 
not have the disease. These are important measures of accu-
racy for establishing the usefulness of a screening tool. Many 
times an individual will wonder what the probability of dis-
ease is given they test positive or the probability that they 
don’t have disease given a negative test result. These mea-
sures are the positive and negative predictive values, respec-
tively. Positive and negative predictive values are heavily 
influenced by disease prevalence while sensitivity and speci-
ficity are not. As a result of this variation in diagnostic power, 
PPV and NPV are less favored to the positive and negative 
likelihood ratios as both of these tests can be calculated using 
sensitivity and specificity. The positive likelihood ratio can be 
calculated as (sensitivity)/(1-specificity) and the negative like-
lihood ratio can be calculated as (1-sensitivity)/(specificity). 
Positive and negative likelihood ratios greater than 10 and 
less than 0.1, respectively, offer significant shifts in likelihood 
of disease. Positive and negative likelihood ratios less than 2 
and greater than 0.5, respectively, do not suggest significant 
impact on likelihood of diagnosis.

 Statistical Testing

The Student’s t-test is one of the most common tests for ana-
lyzing sample means. The t-test is based on null and alterna-
tive hypotheses. Notwithstanding the type of t-test being run, 
the null hypothesis is always that no difference exists. A one 
sample t-test is used to test if a sample mean is different from 
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a known population mean. A two-sample t-test can be either 
paired or independent. A paired, two-sample t-test is used to 
test the difference between matched samples, such as the 
mean systolic blood pressure in patients before starting a 
drug and those same patients after 6 months on therapy. An 
independent, two sample t-tests are used to test the differ-
ence in sample means between two unrelated samples, such 
as the difference in mean systolic blood pressure between 
patients with diabetes and patients without. A one-sided 
t-test is used if it is known that the test sample will either be 
less than or greater than a reference point. A two-sided t-test 
is used if this is not necessarily known.

The Student’s t-test is limited in its utility to two samples. 
If a study design calls for multiple samples such as repeated 
measurements on a sample group or sampling from more 
than two groups, repeatedly running the Student’s t-test 
increases the chance of a type I error, or finding an associa-
tion by chance. In this setting, Analysis of Variance (ANOVA) 
is a more appropriate test. The ANOVA as its name would 
suggest creates a test statistic from of the dispersion or vari-
ance of a variable. The term variance in this instance is refer-
ring to general dispersion of the sample data, rather than the 
variance value described above. For the ANOVA, the disper-
sion or variance is calculated using the sum of squares 
method, which is again beyond the scope of this chapter. This 
variance (dispersion) is partitioned into, or calculated for, all 
subjects within- groups and between-groups. In this way, a 
single test statistic termed the F-statistic can be used to effec-
tively determine if the means of three or more groups are 
different from each other. The F-statistic also correlates to a 
probability that is determined from the F distribution and 
this probability is again, the p-value. In a one-way ANOVA, 
the variation in the response variable is attributed to a single 
factor, i.e., the difference of the different sample groups. For 
example, suppose a research team is interested in recurrence 
of Crohn’s ileitis after surgery and the effects of multiple 
types of drugs on remission, such as budesonide, methotrex-
ate, and infliximab. The different drug regimens a subject is 
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taking is the source of variation. A two-way ANOVA can be 
done if there are two factors such as anti-inflammatory medi-
cations and diet routines that could potentially affect recur-
rence. The two-way ANOVA will give a statistic for both 
medications and diet and the interaction of these two factors. 
The important thing to remember with ANOVA is that it will 
not indicate which groups are significantly different from 
each other, only that there is significant variation by group. 
Two group means may be the same, statistically speaking, 
while only the third is significantly different. In this instance, 
a t-test may be used to determine which group mean is differ-
ent. However, it is important to again state that running mul-
tiple t-tests will raise the likelihood of a type I error. This can 
be overcome by lowering the threshold for significance below 
0.05–0.01 or even lower. Additionally, multivariable methods 
can be employed to determine the individual group effects on 
the response variable.

The above tests are designed to assess the differences in 
group means. Often times, a study doesn’t collect data that 
can be reported as a mean. As described above, the response 
variable is a yes or a no, disease or no disease, complication 
or no complication. Also, as described above, this can be 
described in terms of probability, risk, and odds. An alterna-
tive means of assessing categorical data of this nature is the 
chi-square test. The chi-square test makes use of contingency 
tables which, in their simplest form, are 2 × 2 tables with 
dichotomous dependent and independent variables. A 2 × 2 
table could be constructed for patients who undergo chole-
cystectomy. Columns are patients who underwent either lapa-
roscopic or open procedures and rows are bile leak versus no 
bile leak. The odds ratio or relative risk could be calculated in 
this instance. The chi-square test can also tell if the rate of bile 
leak is different between the two procedure types. The bene-
fit of the chi-square test is that it can be extended to categori-
cal data with more than two responses. For example, rates of 
bile leak could be compared to ASA class which has six 
responses. The chi- square test can be used to determine if 
rates of bile leak are increased based for patients with higher 
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ASA classifications. The chi-square test again utilizes a test 
statistic calculated based on the observed and expected 
counts for each cell in the contingency table and a p-value is 
obtained from the chi-square distribution. A test called 
McNemar’s test can be employed when data are paired.

Regression is a tool that is useful predicting response from 
some predictor variable. There are multiple regression meth-
ods that can be applied to different variable types. A simple 
linear regression is the most basic example and can be used 
when the response variable and predictor variable are con-
tinuous. For example, blood pressure changes with changes in 
subject age can be evaluated in this way. Regression makes 
use of the variation in response variables as they relate to the 
dependent variable. Another way to say this is, it uses the 
average of the response variable when the predictor value is 
fixed (i.e., the BP ranges for patients at age 35). If this aver-
age changes significantly when the predictor variable is 
changed, the predictor variable is a significant predictor of 
the response variable. Mathematics is unimportant as they 
are typically done by statistical analysis programs. With that 
said, a p-value is obtained that gives the probability that the 
variation in response due to the predictor is seen by chance. 
Multivariable linear regression can be utilized when there are 
multiple predictor variables being assessed. This is not to be 
confused with multivariate regression which is used for mul-
tiple response or dependent variables. Regression can also be 
performed on dichotomous or categorical outcome variables. 
In this instance, the logistic regression model is used. The 
logistic regression model will also provide a p-value for the 
association between the predictor and response but it will 
also provide an odds ratio for the given predictor variable.

All of the above tests rely on multiple assumptions for 
their validity. One of the most significant assumptions is that 
the parameter, or numerical characteristic of the population 
from which the study sample is drawn, fits a specified distri-
bution. Typically, the assumption is a normal distribution. The 
central limit theorem makes this assumption true for most 
variables. However, this is not always the case. Nonparametric 
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tests do not require this assumption, but have similar procedures 
to the above tests making use of other statistics such as the 
median. The Wilcoxon Rank Sum is the nonparametric equiv-
alent of the Student’s t-test and makes use of group medians 
rather than means and the Kruskal–Wallis test is the nonpara-
metric equivalent of the ANOVA. Additionally, data trans-
formations can be done, such as log(Variable) or ln(Variable) 
that can give the sample data a normal distribution. The deci-
sion to transform data and the method of transformation 
should be decided on during the design phase of a study and 
not part of post hoc analysis.

Table 15.3 summarizes the types of tests according to the 
categories of variables used.

 How to Interpret the Study Findings?

One of the most important issues to consider in the evalua-
tion and conduct of outcomes research, especially when 
observational data is being used, is confounding. A con-
founder is a measured or unmeasured variable associated 
with the exposure of interest and associated with the out-
come. This dual relationship can influence the degree and 
direction of, or even completely mitigate, an observed asso-
ciation between exposure and outcome [14]. RCTs can 
address confounding through randomization. On the other 
hand, investigators who perform observational studies must 
address confounding both with analytical approaches (i.e., 
multivariable regression and propensity scores), and acknowl-
edge potential residual confounding in their discussion of the 
study’s limitations, noting variables that were not measured, 
their relationship with the exposure and the outcome, and 
their implication on the potential direction and magnitude of 
confounding bias.

It is important to consider the many forms of bias when 
evaluating research. For instance, there any many forms of 
selection bias which can favor administration of a particular 
intervention to those thought to need it the most. Propensity 
score analysis is an alternative method of risk adjustment to 
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reduce the bias in estimating treatment effects when analyz-
ing nonrandomized, observational data. Because patients 
receiving one treatment tend to be different than patients 
receiving another (e.g., minimally invasive [MIS] as com-
pared with open surgery), a propensity score is calculated 
using logistic regression to determine a subject’s probability 
of having the exposure of interest (propensity to undergo 
MIS). The outcomes of interest for patients who do and do 
not undergo MIS (but have a similar propensity to undergo 
MIS) can then be compared through matching, stratified 
analyses, or regression (adjusting only for propensity) [15].

While propensity score analysis cannot adjust away all 
confounders, known or unknown, as these are intrinsic to 
observational data. However, there are three circumstances 
in which the use of propensity scores may be appropriate: (1) 
there are many confounders relative to the number of events 
(i.e., less than ten events per covariate) resulting in an 
unpowered regression  analysis; (2) there is no interest in the 
association between the adjustment factors and outcome; and 
(3) the relationship between the exposure and propensity for 
treatment can be estimated more accurately than the rela-
tionship between the exposure and outcome [16].

Generalizability refers to the application of research find-
ings to routine, clinical practice. While RCTs provide the high-
est level of evidence about the efficacy of competing 
interventions, they are conducted in a highly controlled envi-
ronment, limiting other providers’ ability to reproduce the 
delivery of care and outcomes in a non-research setting. In 
addition, generalizability issues apply to observational studies 
as well. Critical readers should consider why care patterns and 
outcomes described in research studies might not be repro-
ducible in other clinical settings and patient populations.

 Conclusions

Although not all jobs in surgery require academic productiv-
ity in the form of original clinical research, a basic familiarity 
with data sources, study design, and statistical testing can 
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greatly enhance a young surgeon’s ability to intelligently 
contribute to discussions involving the scientific literature. 
Early in our careers, this proficiency can manifest in many 
beneficial ways that stretch well beyond the surgical journal 
club setting: engaging our peers in multidisciplinary confer-
ences, incorporating evidence-based principles into our own 
practices, volunteering to adjudicate scientific abstracts for 
society meetings, and providing peer-review for editorial 
boards, to name a few. We encourage you to approach any 
review with these five questions in mind: (1) What is the 
study’s purpose? (2) Is the right data being used? (3) What is 
the measured outcome? (4) What are the implications of 
the study design that was chosen? (5) Was the correct 
analysis performed (and adequately powered to support the 
conclusion)?
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