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Foreword

The confluence of advances in mobile computing, wireless sensors, and digitization
of healthcare has led to the emergence of mobile health (mHealth) during the past
decade. mHealth broadly refers to the use of mobile technologies for managing
health and wellness in the natural environment. Wearable fitness trackers and
smartwatches are increasingly popular mHealth accessories and have contributed
to enthusiastic interest on the part of the public in self-monitoring devices and
practices.

Concurrent with growing interest and activity from the technology industry, there
is growing interest in the computing research community in mHealth. mHealth
represents a promising research area in computing that can make important contribu-
tions to society by advancing scientific understanding, driving technology advances,
and improving health and wellness.

mHealth is unusually broad in its need for and relevance to computing research—
cutting across many subdisciplines within computing; they include sensor design,
mobile computing, networking, signal processing, data modeling, bioinformatics,
machine learning, visualization, privacy and security, and human–computer inter-
action. Numerous workshops and conferences have also emerged in the area of
mHealth, including National Institutes of Health (NIH) and National Science Foun-
dation (NSF) backed summer institutes that provide immersive multidisciplinary
training to faculty, postdoctoral fellows, and predoctoral candidates.

Both undergraduate and graduate level courses have also begun to address
mHealth as an important component or as the primary focus, but in both cases
there has not existed a high-quality reference book that provides a comprehensive
introduction to mHealth for the computing community, especially for those just
beginning to work in this area. This book fills this important gap by focusing
on the sensing and modeling aspects of mHealth, while showcasing compelling
and motivating applications, design and evaluation of sensors, markers derived
from mobile sensors, and interventions designed to be triggered by sensor-derived
markers.

vii
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I expect this book to become an indispensable resource for community members
as they address new research problems, prepare publications and grant applications,
plan courses, and act as consultants to other practitioners or researchers. The online
lectures to accompany each chapter will make it particularly valued by students,
faculty, and practitioners.

The authors of this book, led by the editors James Rehg, Susan Murphy, and
Santosh Kumar, represent many of the most respected and accomplished leaders in
this rapidly growing field. They together represent the diversity of disciplines that
make up mHealth.

Robert V. Tishman Founder’s Chair Deborah Estrin
Department of Computer Science
Cornell Tech, New York, NY, USA



Preface

The field of mobile health (mHealth) is focused on the use of mobile technologies
to improve health outcomes through sensing of behavioral and physiological states
and interaction with individuals to facilitate health-related behavior change. Its
promise is the ability to automatically identify and characterize the behaviors and
decisions of everyday life that play a critical role in an individual’s health and
well-being, and provide personalized assistance and interventions under real-life
field conditions to enable an individual to control their health, manage existing
health conditions, and prevent future health problems from emerging. Examples of
mHealth applications include physical activity tracking and encouragement, stress
management, and preventing relapse to addictive behaviors, among many others.

The mHealth field is currently experiencing rapid growth, driven by advances in
on-body sensor technology and its adoption by users, big data analytics, cloud com-
puting, and the increasingly large-scale use of data in medicine. As a consequence
of these diverse influences, the mHealth literature is scattered across a variety of
conference proceedings and journals, making it challenging for researchers to obtain
a holistic view of this emerging technology. This volume provides a solution in the
form of a comprehensive introduction to the current state of the art in mHealth
technology, with the agenda of advancing a systematic approach to mobile data
analysis and exploitation.

This book is designed to be accessible to technology-oriented researchers and
practitioners with backgrounds in computer science, engineering, statistics, and
applied mathematics. The chapters provide a comprehensive overview of the major
topics in sensing, analytics, and mobile computing which are critical to the design
and deployment of mHealth systems. As a result, the book enables researchers and
practitioners who are entering the mHealth field to obtain a complete introduction to
current research and practice. Our contributing authors include many of the leading
researchers and practitioners in the mHealth field.
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Introduction to the Book

Chronic health conditions are a major burden of disease in the United States and
the world, and they are increasing in prevalence due to improvements in critical
care, longer life, and changing lifestyles. Chronic diseases such as cardiovascular
disease, cancer, diabetes, obesity, hypertension, and asthma need to be managed
throughout the entire life of the patient with an appropriate medication regimen and
lifestyle modifications. Mobile health (mHealth) can help both in assisting with the
management of chronic diseases for those who have already become patients and in
helping to prevent their occurrence in at-risk individuals. Chronic conditions such
as smoking and other forms of dependence, along with developmental conditions
such as autism and mental health conditions such as depression, also persist over
time and can benefit from the use of mobile health technologies to support more
effective, individualized approaches to behavior change and management.

Chronic diseases are usually complex in their etiology as they are caused
by multiple risk factors that interact in complex patterns and include genetic,
behavioral, social, and environmental components. The modifiable risk factors
are the behavioral, social, and environmental components that can be monitored
with mHealth in the user’s natural environment. A key promise of mobile health
technology is to provide, for the first time, the ability to not only monitor risk factors
but also monitor the health states of individuals in their natural environment and
quantify the interactions between the risk factors, their temporal dynamics, and out-
comes, in order to gain a deeper insight into the factors that contribute to health and
disease risk. Such activities would yield new levels of biomedical understanding and
significantly improve clinicians’ ability to identify person-specific disease risk and
treatment response. For example, such ubiquitous monitoring with mHealth can help
discover early indicators, antecedents, and precipitants, which can then be used in
preventive interventions to reduce incidence rates of chronic diseases. Moreover, the
availability of mobile computing platforms (in the form of smartphones) provides
new opportunities to develop personalized prevention and treatment programs that
can complement existing clinical mechanisms of care. By measuring the changes
in health states, risk factors, daily behaviors, and medication adherence, mHealth
can also help in detecting trends and adapting treatment and interventions so as to
better manage the health and wellness of chronic disease patients, with a resulting
reduction in adverse health events that require hospital readmission.

Advances in sensing and analytic methods, along with the proliferation of mobile
platforms, have laid the groundwork for the collection of mobile sensor data, the
quantification of risk factors, the measurement of changes in health status, and
the delivery of treatment in the natural environment. However, substantial research
is needed in order to realize the potential of this technology to improve health
outcomes. The chapters in this volume provide a description of the challenges that
must be overcome, along with some promising solution approaches. The chapers
are organized into four parts: I. mHealth Applications and Tools; II. Sensors to
mHealth Markers; III. Markers to mHealth Predictors; and IV. Predictors to mHealth
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Interventions. This organization provides a useful conceptualization of the process
of going from on-body sensor data to mobile interventions.

The first part on “mHealth Applications and Tools” provides a series of examples
of health conditions and biomedical research questions that can be addressed using
mHealth technology and methods. A range of study designs are represented. One
category focuses on a particular mHealth technology and assesses its utility in
the context of a specific health concern or population. A second category focuses
on a specific health condition and prospectively explores the value of mHealth
technologies in characterizing and quantifying trajectories of risk. A third category
offers lessons learned in the design and implementation of mHealth studies or the
use of particular sensing technologies. The populations addressed in these papers
range from college students to older adults. A variety of intervention targets are
described, ranging from the maintenance of circadian rhythms to the reduction in
caloric consumption and the increase of physical activity. These papers collectively
provide a useful introduction to the breadth of mHealth technologies and the current
state of the art in their application.

While the increased availability of affordable sensors with improving battery
life has driven the commercial growth of the mHealth market, the process of
converting noisy on-body sensor data into valid and accurate measurements of
behavioral, physiological, and environmental risk factors remains challenging.
The chapters in Part II, “Sensors to mHealth Markers,” outline these challenges
in detail and describe a variety of solution approaches. The chapters in this
part cover a wide range of sensing technologies, including motion and activity
sensing, acoustic analysis, optical sensing, and radar-based imaging. The central
concern of this part is the development of computational models. Models must be
informed by the physiological mechanisms and behavioral theory that guide our
understanding of mobile health applications. At the same time, models must be
able to address the challenges of streaming sensor data, namely its high volume,
velocity, variety, variability, versatility, and the semantic gap between the data and
underlying mHealth constructs of interest. A variety of modeling tools are used by
the chapters in this part, including both probabilistic data models and classifier-
based approaches. The validation of markers derived from on-body sensors against
existing gold standard measures is another important topic. Validation can be done
under laboratory conditions by collecting reference data from gold standard clinical
instruments simultaneously with mHealth sensors. Validation in the field is much
more challenging and typically involves a combination of self-report and human
annotation to establish a reference. The techniques and approaches described in
these chapters will provide a valuable resource for researchers and practitioners
who are interested in developing novel mHealth markers or in using such markers
in applications.

Given the ability to convert raw on-body sensor streams into mHealth markers,
the next step in the processing pipeline is to convert multiple time series of marker
values into predictions of risk for future adverse outcomes. Predictions of future
risk are vital to the delivery of mobile interventions, as they can be used to pinpoint
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windows of opportunity in which to act, before an undesired outcome occurs. Part
III, “Markers to mHealth Predictors,” presents an introduction to the prediction
task. Prediction is challenging because it requires the ability to make statements
about future events for which no measurements are currently available. Moreover,
the targets for prediction tend to be complex constructs which necessarily draw
upon multiple streams of markers. The prediction of lapse in smoking cessation,
for example, might utilize information about stress, craving, negative affect, and
the presence or absence of social supports. The chapters in Part III cover a range
of topics, from visualization techniques for uncovering patterns in marker streams
to machine learning methods for capturing the temporal dynamics of multimodal
patterns of markers, and finally ending with a case study on stress prediction in
the context of a stress management intervention. While the prediction task has its
own unique challenges, it shares with the task of marker generation the need to
build effective computational models that capture the complex dynamics of noisy
signals. The inherent complexity of the mHealth domain, in which both sensor
signals and their derived markers exhibit tremendous variability in their properties
and dynamics over time, creates a number of exciting research opportunities in
machine learning and stochastic modeling. The chapters in this part provide an
introduction to this exciting research area and will hopefully serve as inspiration
for future research activities.

The final set of chapters addresses the use of predictions of future risk to develop
and deliver mobile interventions. While the widespread adoption of smartphones has
made it feasible to deploy mobile interventions on a large scale, many challenges
remain in bringing about effective behavior change and an improvement in health
outcomes. These challenges, along with a variety of solution approaches, are
presented in Part IV, “Predictors to mHealth Interventions.” A key challenge is
to optimize interventions so that they are tailored to the needs and context of
the participants, and optimize a cost or provide a benefit to the participants. One
approach is to use reinforcement learning algorithms to optimize both the content
of an intervention and the timing of its delivery. Another approach is to formulate
intervention design as a control systems problem, in which a dynamical model is
used to describe the evolution of a participant’s state over time and the intervention
takes the form of a feedback law which maintains the homeostasis of the closed
loop system. In addition to these diverse methodological approaches, Part IV also
provides examples of specific intervention designs for a gamut of behavioral health
applications, including smoking cessation, increased physical activity, and chronic
pain management.

Collectively, these four parts comprise a comprehensive and in-depth treatment
of mobile health technologies, methodologies, and applications. We believe these
chapters provide a useful characterization of the current state of mHealth research
and practice. It is clear that we are at the cusp of a dramatic increase in the
development and adoption of mHealth technologies. Substantial work remains to
be done, however, in order to realize the potential of this new field and bring about
meaningful improvements in health on a large scale. Achieving this goal will require
a transdisciplinary approach and a strong partnership between experts in sensor
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design, mobile systems, machine learning, pattern mining, big data computing,
health informatics, behavioral medicine, experiment design, clinical research, and
health research. This collective effort will be a critical factor in achieving the
broadly held societal goals of reducing healthcare costs and improving individual
and population health outcomes.

Atlanta, GA, USA James M. Rehg
Ann Arbor, MI, USA Susan A. Murphy
Memphis, TN, USA Santosh Kumar
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Introduction to Part I: mHealth
Applications and Tools

Santosh Kumar, James M. Rehg, and Susan A. Murphy

Abstract We begin with six chapters that describe a cross-section of representative
mHealth applications and tools. These works demonstrate the novel utility of
mHealth, present design lessons in developing mHealth applications, and describe
tools for managing mHealth data collection studies.

mHealth applications can be broadly categorized into two themes—those that aim to
explore the novel utility of the data that can be collected with mHealth technology,
and those that develop mHealth sensors, models, and methods which are targeted
to specific health issues. The latter category includes works that are focused on
estimating health states, behavioral states, or mental states of users, as well as those
that aim at designing and delivering novel mHealth interventions.

The first chapter in this part, “StudentLife: Using Smartphones to Assess
Mental Health and Academic Performance of College Students” by Wang et al.
(10.1007/978-3-319-51394-2_2) presents a recent mHealth study that has rapidly
become well-known, due both to the richness of the data which was collected
and to its open access approach to data dissemination. The chapter describes
an mHealth application in which a variety of mobile sensor data was collected
from 48 undergraduate students over a 10 week period. Data was collected from
mobile phones and included continuous streams of accelerometry, light-level, GPS,
and microphone data, among others. In addition to streaming data, ecological
momentary assessment (EMA) self-reports were collected for stress, personality,
sleep, activity, and so forth. These data were used to explore a variety of aspects of
student life that had never been observed at this fine-grained level before. Among
many findings, the authors use this data to predict student’s academic performance
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and find patterns in the time series of mobile data that reveal early indicators of
improving or worsening academic performance. Since the data has been made open-
access, it is likely to lead to many more insights into the lives of students. This
work has also motivated efforts to conduct related studies at other college campuses
so that more generalizable findings can be discovered. Insights and data obtained
from these studies can be used to develop novel mHealth interventions targeted at
improving the physical, mental, and social health and wellbeing of college students.

The second chapter, “Circadian Computing: Sensing, Modeling, and Maintaining
Biological Rhythms” by Abdullah et al. (10.1007/978-3-319-51394-2_3) presents
an mHealth application based on recent advancements in methods and models that
use mobile sensor data to estimate the circadian rhythm and deliver interventions
to minimize disruptions to the rhythm. It provides a very useful introduction to the
circadian phenomena that guide every person’s biological clock and the harmful
health effects that can result from disruptions to the circadian rhythm. This topic is
extremely timely given the rising disruptions to sleep due to job demands and the
intrusions of technology in everyday life. The article presents recent advancements
in methods to estimate the circadian rhythm by using passively-captured mobile
data, and describes the use of such measures in driving mobile interventions to
minimize disruptions to the circadian rhythm. These interventions can also improve
performance by scheduling cognitively demanding tasks when the user is expected
to be at their most productive.

The theme of sensor-based interventions is extended even further by the fourth
chapter, “Design Lessons from a Micro-Randomized Pilot Study in Mobile Health”
by Smith et al. (10.1007/978-3-319-51394-2_4). This work presents the design of
a sensor-triggered just-in-time intervention to encourage walking. It uses mobile
sensor data to identify opportune moments to deliver activity interventions and
uses the feedback received from users to discover intervention adaptations that
are suitable for each individual. This work demonstrates the realization of the
vision of precision medicine based on mobile health. Sensor-triggered just-in-time
interventions represent tremendous opportunities to improve health and wellness in
ways that have never been possible before, in particular through the adaptation of
both the timing and the content of an intervention to best suit an individual and their
current context. Due to its novelty, this approach presents challenges that have not
been encountered previously. The authors provide valuable insights in the form of
design lessons drawn from their experience in designing such an intervention. They
also showcase the use of a micro-randomized trial design to discover adaptation
rules over the course of the user study.

The next chapter, “The Use of Asset-Based Community Development in a
Research Project Aimed at Developing mHealth Technologies for Older Adults” by
Gustafson et al. (10.1007/978-3-319-51394-2_5) continues the theme of presenting
lessons learned in designing mHealth applications. This chapter takes a comprehen-

http://dx.doi.org/10.1007/978-3-319-51394-2_3
http://dx.doi.org/10.1007/978-3-319-51394-2_4
http://dx.doi.org/10.1007/978-3-319-51394-2_5
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sive approach to designing mHealth technologies that can be used by older adults
to lengthen the time in which they can live independently. It includes a description
of the requirement gathering phase, which engaged the target community from the
very start of the project. The project focused on the development of both content
and accessibility to maximize the chance that mHealth technology developed in the
project will ultimately be adopted by the target population. This chapter contains
several key insights for any mHealth project that is seeking a real-life deployment
and rollout of a new mHealth technology for daily use by a targeted group of users.

The fifth chapter, “Designing Mobile Health Technologies for Self-Monitoring:
The Bite Counter as a Case Study” by Hoover et al. (10.1007/978-3-319-51394-2_6)
describes the journey of a group of technologists who set out to design an mHealth
sensing device, called BiteCounter, for the self-monitoring of eating behaviors. The
authors recount their experiences in designing a wrist-worn device and wrestling
with issues such as form factor, wearability, and convenience, which ultimately
determine the adoption of a wearable sensor. The article describes the process of
developing a computational model for analyzing the motion sensor data to identify
the gesture of bringing the hand to the mouth which is associated with taking
an eating bite. They describe key insights that drove the creation of the model
and emphasize the importance of developing an intuitive explanation for such
mHealth models. They also describe the validation process they followed to evaluate
the accuracy of their models. Finally, they describe the utility of BiteCounter
in facilitating self-monitoring of eating behaviors, which can be used to address
unhealthy eating.

The final chapter in this part, “mDebugger: Assessing and Diagnos-
ing the Fidelity and Yield of Mobile Sensor Data” by Rahman et al.
(10.1007/978-3-319-51394-2_7) presents a tool called mDebugger that can be
used to compute data yield from user studies involving mHealth sensors and help
to identify the major sources of data loss. This chapter highlights the importance
of carefully analyzing the data yield from any mHealth study involving mobile
sensors, especially wearable physiological sensors, so as to identify any major data
loss factors early in the data collection process. The chapter presents a systematic
framework to identify major data loss factors and presents computational methods
for estimating their contribution to data loss. It describes the application of the
framework to data from two mHealth user studies that collected 1,200 person-
days of mobile sensor data from 72 users. It presents several interesting findings,
such as the differences in yield between physiological sensors requiring electrode
attachment and those that only require tightness of a belt around the chest. It
also reports yield differences between chest worn sensors and wrist-worn motion
sensors. In summary, the chapter demonstrates that data collection with mobile
physiological sensors is indeed feasible and that the use of appropriate diagnostic
tools can aid in analyzing and improving data yield in studies involving mobile
physiological sensors.

http://dx.doi.org/10.1007/978-3-319-51394-2_6
http://dx.doi.org/10.1007/978-3-319-51394-2_7
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The six chapters in this part illustrate the wide variety of applications and tools
that can be developed using mHealth technology. The subsequent parts delve deeper
into the specific elements of mHealth technology. Part II presents computational
modeling approaches for converting noisy mobile sensor data into robust mHealth
markers of health states, behaviors, and environmental risk factors. Part III presents
pattern mining methods to discover predictors of risk factors from time series of
mHealth markers. Finally, Part IV presents the design of mHealth interventions that
make use of mHealth markers and predictors.
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and academic performance of a single class of 48 students across a 10 weeks term at
Dartmouth College using Android phones. Results from the StudentLife study show
a number of significant correlations between the automatic objective sensor data
from smartphones and mental health and educational outcomes of the student body.
We propose a simple model based on linear regression with lasso regularization
that can accurately predict cumulative GPA. We also identify a Dartmouth term
lifecycle in the data that shows students start the term with high positive affect and
conversation levels, low stress, and healthy sleep and daily activity patterns. As the
term progresses and the workload increases, stress appreciably rises while positive
affect, sleep, conversation and activity drops off. The StudentLife dataset is publicly
available on the web.
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Introduction

Many questions arise when we think about the academic performance of college
students. Why do some students do better than others? Under similar conditions,
why do some individuals excel while others fail? Why do students burnout, drop
classes, even drop out of college? What is the impact of stress, mood, workload,
sociability, sleep and mental well-being on educational performance? In this paper,
we use smartphones carried by students to find answers to some of these pressing
questions.

Consider students at Dartmouth College, an Ivy League college in a small
New England college town. Students typically take three classes over a 10-week
term and live on campus. Dartmouth classes are generally demanding where
student assessment is primarily based on class assignments, projects, midterms and
final exams. Students live, work and socialize on a small self-contained campus
representing a tightly-knit community. The pace of the 10 week Dartmouth term is
fast in comparison to a 15 week semester. The atmosphere among the students on
campus seems to visibly change from a relaxed start of term, to an intense midterm
and end of term. Typically classes at Dartmouth are small (e.g., 25–50 students),
but introductory classes are larger (e.g., 100–170), making it difficult for a faculty
to follow the engagement or performance of students on an individual level. Unless
students contact a student dean or faculty about problems in their lives, the impact
of such challenges on performance remains hidden.

To shine a light on student life we develop the StudentLife [51] smartphone
app and sensing system to automatically infer human behavior in an energy-
efficient manner. The StudentLife app integrates MobileEMA, a flexible ecological
momentary assessment [45] (EMA) component to probe students’ states (e.g., stress,
mood) across the term. We administer a number of well-known pre-post health
and behavioral surveys at the start and end of term. We present the results from
a deployment of StudentLife on Google Nexus 4 Android phones at Dartmouth
College.

StudentLife makes a number of contributions. First, to the best of our knowledge
we are the first to use automatic and continuous smartphone sensing to assess mental
health, academic performance and behavioral trends of a student body. Second,
we identify strong correlation between automatic sensing data and a broad set of
well-known mental well-being measures, specifically, PHQ-9 depression, perceived
stress (PSS), flourishing, and loneliness scales. Results indicate that automatically
sensed conversation, activity, mobility, and sleep have significant correlations with
mental well-being outcomes. we propose for the first time a model that can
predict a student’s cumulative GPA using automatic behavioral sensing data from
smartphones. We use the Lasso (Least Absolute Shrinkage and Selection Operator)
[48] regularized linear regression model as our predictive model. Our prediction
model indicates that students with better grades are more conscientious, study more,
experience positive moods across the term but register a drop in positive affect after
the midterm point, experience lower levels of stress as the term progresses, are less
social in terms of conversations during the evening period, and experience change
in their conversation duration patterns later in the term. Third, we observe trends
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in the sensing data, termed the Dartmouth term lifecycle, where students start the
term with high positive affect and conversation levels, low stress, and healthy sleep
and daily activity patterns. As the term progresses and the workload increases, stress
appreciably rises while activity, sleep, conversation, positive affect, visits to the gym
and class attendance drop.

Related Work

There is a growing interest in using smartphone sensing [9, 10, 12, 13, 17, 38, 50]
to infer human dynamics and behavioral health [8, 20, 24, 26, 29, 34, 36, 41, 42].
The StudentLife study is influenced by a number of important behavioral studies:
(1) the friends-and-families study [8], which uses Funf [4] to collect data from 130
adult members (i.e., post-docs, university employees) of a young family community
to study fitness intervention and social incentives; and (2) the reality mining
project [22], which uses sensor data from mobile phones to study human social
behavior in a group of students at MIT. The authors show that call records, cellular-
tower IDs, and Bluetooth proximity logs accurately detect social networks and daily
activity.

There is little work on correlations between continuous and automatic sensing
data from smartphones and mental health outcomes such as PHQ-9. However, the
authors in [41] use wearable sensors (i.e., Intel’s mobile sensing platform) to study
the physical and mental well-being of a group of 8 seniors living in a continuing care
retirement community over a single week. The retirement community study [41] is
the first to find correlations with depression and continuous sensing measures from
wearables. In [40], the authors monitor bipolar disorder in patients using wearable
sensors, but the project does not enable continuous sensing data. In [11, 25],
the authors present an approach that collects self-assessment and sensor data on
a smartphone as a means to study patients’ mood. They find that self-reported
activity, stress, sleep and phone usage are strongly correlated with self-reported
mood. Health Buddy [28] asks patients a series of questions about symptoms of
depression to help mental health service providers monitoring patients’ symptoms.
No continuously sensing is used. Mobilyze is an intervention system [14] that
uses smartphones to predict self-reported states (e.g., location, alone, mood) using
machine learners. Results indicate that Mobilyze can predict categorical contextual
states (e.g., location, with friends) with good accuracy but predicting internal states
such as mood show poorer predictive power.

There is a considerable interest in studying the health and performance of
students. However, no study has used smartphone sensing to study these issues.
In [49], the authors study the effect of behaviors (i.e., social support, sleep habits,
working hours) on grade points based on 200 randomly chosen students living on the
campus at a large private university. However, this study uses retrospective survey
data manually entered by users to assess health and performance. Watanabe [53, 54]
uses a wearable sensor device to investigate the correlation between face-to-
face interaction between students during break times and scholastic performance.
Previous research [23] aimed at predicting performance has used a neural network
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model to predict student’s grades from their placement test scores. Various data
collected from entering students are used in [37] to predict student academic
success using discriminant function analysis. Kotsiantis and Pintelas [31] proposes
a regression model to predict the student’s performance from their demographic
information and tutor’s records. Romero et al. [43] applies web usage mining in
e-learning systems to predict students’ grades in the final exam of a course. In
[57], the authors propose an approach based on multiple instance learning to predict
student’s performance in an e-learning environment. Recent work [46] showed that
they can predict a student is at risk of getting poor assessment performance using
longitudinal data such as previous test performance and course history. To the best
of our knowledge there is no work on using passive sensor data from smartphones
as a predictor on academic success.

Study Design

In this section, we discuss how participants were recruited from the student body,
and then describe our data collection process. We also discuss compliance and data
quality issues in this longitudinal study.

Participants

All participants in the study were voluntarily recruited from the CS65 Smartphone
Programming class [1], a computer science programming class at Dartmouth
College offered to both undergraduate and graduate students during Spring term
in 2013. This study is approved by the Institutional Review Board at Dartmouth
College. Seventy five students enrolled in the class and 60 participants joined the
study. As the term progressed, 7 students dropped out of the study and 5 dropped
the class. We remove this data from the dataset analyzed in section “Results”.
Among the 48 students who complete the study, 30 are undergraduates and 18
graduate students. The class demographics are as follows: 8 seniors, 14 juniors,
6 sophomores, 2 freshmen, 3 Ph.D students, 1 second-year Masters student, and 13
first-year Masters students. In terms of gender, 10 participants are female and 38
are male. In terms of race, 23 participants are Caucasians, 23 Asians and 2 African-
Americans. Forty eight participants finished the pre psychological surveys and 41
participants finished all post psychological surveys.

All students enrolled in the class were offered unlocked Android Nexus 4s to
complete assignments and class projects. Many students in the study had their own
iPhones or Android phones. We denote the students who use their own Android
phones to run the StudentLife sensing system as primary users and those who use
the Nexus 4s as secondary users. Secondary users have the burden of carrying both
their own phones and the Nexus 4s during the study. We discuss compliance and
data quality of users in section “Compliance and Data Quality”.



StudentLife: Using Smartphones to Assess Mental Health and Academic. . . 11

Table 1 Mental well-being
and personality surveys

Survey Measure

Patient health questionnaire (PHQ-9) [32] Depression level

Perceived stress scale (PSS) [19] Stress level

Flourishing scale [21] Flourishing level

UCLA loneliness scale [44] Loneliness level

Big five inventory (BFI) [27] Personality traits

Study Procedure

The StudentLife study consists of orientation, data collection and exit stages.
In addition, we deployed a number of management scripts and incentive mecha-
nisms to analyze and boost compliance, respectively.

Entry and Exit During the orientation stage, participants sign the consent form to
join the study. Each student is given a one-on-one tutorial of the StudentLife system
and study. Prior to signing the consent form, we detail the type of data to be collected
by the phone. Students are trained to use the app. Students do not need to interact
with the background sensing or upload functions. They are shown how to respond
to the MobileEMA system. A series of entry health and psychological baseline
surveys are administered using SurveyMonkey as discussed in section “Results”
and shown in Table 1. As part of the entry survey students provide demographic
and information about their spring term classes. All surveys are administered using
SurveyMonkey [7]. These surveys are pre measures which cover various aspects
of mental and physical health. Outcomes from surveys (e.g., depression scale) are
used as ground truth in the analysis. During the exit stage, we administered an exit
survey, interview and the same set of behavioral and health surveys given during the
orientation stage as post measures.

Data Collection The data collection phase lasted for 10 weeks for the complete
spring term. After the orientation session, students carried the phones with them
throughout the day. Automatic sensing data is collected without any user interaction
and uploaded to the cloud when the phone is being recharged and under WiFi.
During the collection phase, students were asked to respond to various EMA
questions as they use their phones. This in-situ probing of students at multiple times
during the day provides additional state information such as stress, mood, happiness,
current events, etc. The EMA reports were provided by a medical doctor and a
number of psychologists on the research team. The number of EMAs fired each
day varied but on average 8 EMAs per day were administered. For example, on
days around assignment deadlines, we scheduled multiple stress EMAs. We set up
EMA schedules on a week-by-week basis. On some days we administer the same
EMA (e.g., PAM and stress) multiple times per day. On average, we administer
3–13 EMA questions per day (e.g., stress). The specific EMAs are discussed in
section “StudentLife Dataset”.
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Data Collection Monitoring StudentLife includes a number of management
scripts that automatically produce statistics on compliance. Each time we notice
students’ phones not uploading daily data (e.g., students left phones in their dorms
during the day), or gaps in weekly data (e.g., phones powered down at night), or no
response to EMAs, we sent emails to students to get them back on track.

Incentives To promote compliance and data quality, we offer a number of incen-
tives across the term. First, all students receive a StudentLife T-shirt. Students could
win prizes during the study. At the end of week 3, we gave away 5 Jawbone UPs
to the 5 top student collectors randomly selected from the top 15 collectors. We
repeated this at week 6. We defined the top collectors as those providing the most
automatic sensing and EMA data during the specific period. At the end of the study,
we gave 10 Google Nexus 4 phones to 10 collectors who were randomly selected
from the top 30 collectors over the complete study period.

Privacy Considerations Participants’ privacy is a major concern of our study.
In order to protect participants’ personal information, we fully anonymize each
participant’s identity with a random user id and kept the user id map separate from
all other project data so that the data cannot be traced back to individuals. Call
logs and SMS logs are one-way hashed so that no one can get phone numbers
or messages from the data. Participants’ data is uploaded using encrypted SSL
connections to ensure that their data cannot be intercepted by third-parties. Data
is stored on secured servers. When people left the study their data was removed.

Compliance and Data Quality

The StudentLife app does not provide students any feedback by design. We do not
want to influence student behavior by feedback, rather, we aim to unobtrusively
capture student life. Longitudinal studies such as StudentLife suffer from a drop
in student engagement and data quality. While automatic sensor data collection
does not introduce any burden other than carrying a phone, collecting EMA data
can be a considerable burden. Students typically are compliant in responding to
survey questions at the start of a study, but as the novelty effect wears off, student
compliance drops.

There is a 60/40 split of iPhone/Android users in the study group. Of the 48
students who completed the study, 11 are primary phone users and 37 secondary
users. One concern is that the burden of carrying two phones for 10 weeks would
result in poorer data quality from the secondary users compared to the primary
users. Figure 1a shows the average hours of sensor data we have collected from each
participant during the term. As expected, we observe that primary users are better
data sources, but there is no significant difference. We can clearly see the trend of
data dropping off as the term winds down. Achieving the best data quality requires
24 h of continuous sensing each day. This means that users carry their phones and
power their phones at night. If we detect that a student leaves their phone at the
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Fig. 1 Compliance and quality of StudentLife data collected across the term. (a) Automatic
sensing data quality over the term. (b) EMA data quality over the term

dorm during the day, or it is powered down, then we remove that data from the
dataset. The overall compliance of collecting automatic sensing data from primary
and secondary users over the term is 87% and 81%, respectively.

Figure 1b shows the average number of EMA responses per day for primary
and secondary users. The figure does not capture compliance per se, but it shows
that secondary users are slightly more responsive to EMAs than primary users. On
average we receive 5.8 and 5.4 EMAs per day per student across the whole term
from secondary and primary users, respectively. As the term progresses there is a
drop in both administered EMAs and responses. However, even at the end of term,
we still receive over 2 EMAs per day per student. Surprisingly, secondary users
(72%) have better EMA compliance than primary users (65%). During the exit
survey, students favored short PAM-style EMAs (see Fig. 3a), complained about
the longer EMAs, and discarded repetitive EMAs as the novelty wore off. By
design, there is no notification when an EMA is fired. Participants need to actively
check their phone to answer scheduled EMA questions. The EMA compliance data
(see Fig. 1b) shows that there are no significant differences between primary and
secondary phone users. It indicates that secondary phone users also used the study
phone when they were taking the phone with them. Therefore, the study phone can
capture the participants’ daily behavior even it was not their primary phone.

In summary, Fig. 1 shows the cost of collecting continuous and EMA data
across a 10-week study. There is a small difference between primary and secondary
collectors for continuous sensing and EMA data, but the compliance reported above
is promising and gives confidence in the analysis discussed in section “Results”.

StudentLife App and Sensing System

In what follows, we describe the design of the StudentLife app and sensing system,
as shown in Fig. 2.
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Fig. 2 StudentLife app, sensing and analytics system architecture

Automatic and Continuous Sensing

We build on our prior work on the BeWell App [33] to provide a framework for
automatic sensing in StudentLife. The StudentLife app automatically infers activity
(stationary, walking, running, driving, cycling), sleep duration, and sociability (i.e.,
the number of independent conservations and their durations). The app also collects
accelerometer, proximity, audio, light sensor readings, location, colocation, and
application usage. The inferences and other sensor data are temporarily stored
on the phone and are efficiently uploaded to the StudentLife cloud when users
recharge their phones under WiFi. In what follows, we discuss the physical
activity, sociability/conversation and sleep inferences computed on the phone which
represent important heath well-being indicators [33].

Activity Detection We use the physical activity classifier from our prior work
[33, 35] to infer stationary, walking, running, driving and cycling based on features
extracted from accelerometer streams. The activity classifier extracts features from
the preprocessed accelerometer stream, then applies a decision tree to infer the
activity using the features. The activity classifier achieves overall 94% of accuracy
[35]. (Note, we conducted our study before Google announced the availability of
an activity recognition service for Android phones). We extend our prior work
to compute a daily activity duration, and indoor and outdoor mobility measures,
discussed as follows. The activity classifier generates an activity label every 2 s.
We are only interested in determining whether a participant is moving. For each
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10-min period, we calculate the ratio of non-stationary inferences. If the ratio is
greater than a threshold, we consider this period active, meaning that the user is
moving. We add up all the 10-min active periods as the daily activity duration.
Typically, students leave their dorms in the morning to go to various buildings on
campus during the day. Students spend a considerable amount of time in buildings
(e.g., cafes, lecture rooms, gym). We consider the overall mobility of a student
consists of indoor and outdoor mobility. We compute the outdoor mobility (aka
traveled distance) as the distance a student travels around campus during the day
using periodic GPS samples. Indoor mobility is computed as the distance a student
travels inside buildings during the day using WiFi scan logs. Dartmouth College
has WiFi coverage across all campus buildings. As part of the study, we collect
the locations of all APs in the network, and the Wi-Fi scan logs including all
encountered BSSIDs, SSIDs, and their signal strength values. We use the BSSIDs
and signal strength to determine if a student is in a specific building. If so, we use
the output of activity classifier’s walk inference to compute the activity duration as
a measure of indoor mobility. Note, that Dartmouth’s network operations provided
access to a complete AP map of the campus wireless network as part of the IRB.

Conversation Detection StudentLife implements two classifiers on the phone for
audio and speech/conversation detection: an audio classifier to infer human voice,
and a conversation classifier to detect conversation. We process audio on the fly to
extract and record features. We use the privacy-sensitive audio and conversation
classifiers developed in our prior work [33, 41]. Note, the audio classification
pipeline never records conversation nor analyses content. We first segment the
audio stream into 15-ms frames. The audio classifier then extracts audio features,
and uses a two-state hidden Markov model (HMM) to infer speech segments.
Our classifier does not implement speaker identification. It simply infers that the
user is “around conversation” using the output of the audio classifier as an input
to a conservation classifier. The output of the classification pipeline captures the
number of independent conversations and their duration. We consider the frequency
and duration of conversations around a participant as a measure of sociability.
Because not all conservations are social, such as lectures and x-hours (i.e., class
meetings outside lectures), we extend our conservation pipeline in the cloud to
remove conversations associated with lectures and x-hours. We use student location
to determine if they attend lectures and automatically remove the conservation data
correspondingly from the dataset discussed in section “StudentLife Dataset”. We
also keep track of class attendance for all students across all classes, as discussed in
section “Results”.

Sleep Detection We implement a sleep classifier based on our previous work
[16, 33]. The phone unobtrusively infers sleep duration without any special inter-
action with the phone (e.g., the user does not have to sleep with the device). The
StudentLife sleep classifier extracts four types of features: light features, phone
usage features including the phone lock state, activity features (e.g., stationary),
and sound features from the microphone. Any of these features alone is a weak
classifier for sleep duration because of the wide variety of phone usage patterns.
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Our sleep model combines these features to form a more accurate sleep model and
predictor. Specifically, the sleep model assumes that sleep duration (Sl) is a linear
combination of these four factors: Sl D

P4
iD1 ˛i � Fi; ˛i � 0 where ˛i is the weight

of the corresponding factor. We train the model using the method described in [16]
with an accuracy of C=�32 min to the ground truth. We extend this method to
identify the sleep onset time by looking at when the user is sedentary in term of
activity, audio, and phone usage. We compare the inferred sleep onset time from
a group of 10 students who use the Jawbone UP during the study to collect sleep
data. Our method predicts bedtime where 95% of the inferences have an accuracy
ofC=�25 min of the ground truth. The output of our extended sleep classifier is the
onset of sleep (i.e., bedtime), sleep duration and wake up time.

MobileEMA

We use in-situ ecological momentary assessment (EMA) [45] to capture additional
human behavior beyond what the surveys and automatic sensing provide. The user
is prompted by a short survey (e.g., the single item [47] stress survey as shown in
Fig. 3b) scheduled at some point during their day. We integrate an EMA component

Fig. 3 MobileEMA: first the PAM popup fires followed by one of the StudentLife EMAs—in this
example the single item stress EMA. (a) PAM EMA. (b) Stress EMA
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into the StudentLife app based on extensions to Google PACO [5]. PACO is an
extensible framework for quantified self experiments based on EMA. We extend
PACO to incorporate:

• photographic affect meter (PAM) [39] to capture participant’s instantaneous
mood;

• pop-up EMAs to automatically present a short survey to the user when they
unlock or use the phone; and,

• EMA schedule and sync feature to automatically push a new EMA schedule to
all participants and synchronize the new schedule with StudentLife cloud.

PACO is a self-contained and complex backend app and service. We extend and
remove features and integrate the EMA component into the StudentLife app and
cloud. We set up EMA questions and schedules using the PACO server-side code [5].
The cloud pushes new EMA questions to the phones. The StudentLife app sets up
an alarm for each EMA in the list and fires it by pushing it to the users’ phone
screen as a pop-up. We implement PAM [39] on the Nexus 4 as part of the EMA
component. PAM presents the user with a randomized grid of 16 pictures from a
library of 48 photos. The user selects the picture that best fits their mood. Figure 3a
shows the PAM pop-up asking the user to select one of the presented pictures. PAM
measures affect using a simple visual interface. PAM is well suited to mobile usage
because users can quickly click on a picture and move on. Each picture represents
a 1–16 score, mapping to the Positive and Negative Affect Schedule (PANAS) [55].
PAM is strongly correlated with PANAS (r D 0:71; p < 0:001) for positive affect.
StudentLife schedules multiple EMAs per day. We took the novel approach of firing
PAM before showing one of the scheduled EMAs (e.g., stress survey). Figure 3b
shows an EMA test after the PAM pop-up. We are interested in how students’ mood
changes during the day. By always preceding any EMA with PAM, we guarantee a
large amount of affect data during the term.

StudentLife Dataset

Using the StudentLife system described in section “StudentLife Sensing System
Section”, we collect a dataset from all subjects including automatic sensor data,
behavioral interferences, and self-reported EMA data. Our ground truth data
includes behavioral and mental health outcomes computed from survey instruments
detailed in Table 1, and academic performance from spring term and cumulative
GPA scores provided by the registrar. We discuss three epochs that are evident
in the StudentLife dataset. We uses these epochs (i.e., day 9 am–6 pm, evening
6 pm–12 am, night 12 am–9 am) as a means to analyze some of the data, as
discussed in section “Results”. The StudentLife dataset is publicly available [6].
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Fig. 4 Statistics on class meeting times and sleep onset time (i.e., bedtime). (a) Meeting time for
all classes over the term. (b) Sleep onset time distribution for all students over the term

Automatic Sensing Data We collect a total of 52.6 GB of sensing inference data
from smartphones over 10 weeks. The data consist of: (1) activity data, including
activity duration (total time duration the user moves per day), indoor mobility and
the total traveled distance (i.e., outdoor mobility) per day; (2) conversation data,
including conversation duration and frequency per day; (3) sleep data, including
sleep duration, sleep onset and waking time; and finally (4) location data, including
GPS, inferred buildings when the participant is indoors, and the number of co-
located Bluetooth devices.

Epochs Students engage in different activities during the day and night. As one
would expect, sleep and taking classes dominate a student’s week. Figure 4a shows
the collective timetable of class meetings for all the classes taken by the students in
the study. The darker the slot, the greater proportion of students taking classes in the
slot. We can observe that Monday, Wednesday, Friday slots from 10:00–11:05 am
and the x-period on Thursday 12:00–12:50 pm are dominant across the week; this is
the teaching time for the CS65 Smartphone Programming class which all students
in the study are enrolled in. Figure 4a clearly indicates that the timetable of all
classes ranges from 9 am to 6 pm—we label this as the day epoch. Students are not
taking classes for the complete period. Many class, social, sports, and other activities
take place during the day epoch but class is dominant. The next dominant activity
is sleep. Students go to bed at different times. Figure 4b shows the distribution of
bedtime for all students across the term. We see that most students go to bed between
12 am and 4 am but the switch from evening to night starts at 12 am, as shown in
Fig. 4b. We label the period between 12 am and 9 am as the night epoch, when most
students are working, socializing or sleeping—but sleep is the dominant activity. We
consider the remaining period between the end of classes (6 pm) and sleep (12 am)
as the evening epoch. We hypothesize that this is the main study and socialization
period during weekdays. We define these three epochs as a means to analyze data,
as discussed in section “Results”. We appreciate that weekdays are different from
weekends but consider epochs uniformly across the complete week. We also look
for correlations in complete days (e.g., Monday) and across epochs (i.e., Monday
day, evening and night).
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EMA Data Students respond to psychological and behavioral EMAs on their
smartphones that are scheduled, managed, and synchronized using the MobileEMA
component integrated into StudentLife app. We collect a total of 35,295 EMA
and PAM responses from 48 students over 10 weeks. EMA and PAM data are
automatically uploaded to the cloud when students recharge their phones under
WiFi. Students respond to a number of scheduled EMAs including stress (stress
EMA), mood (mood EMA), sleep duration (sleep EMA)(which we use to confirm
the performance of our sleep classifier), the number of people students encountered
per day (social EMA), physical exercise (exercise EMA), time spent on different
activities (activity EMA), and short personality item (behavior EMA). All EMAs
were either existing validated EMAs (e.g., single item stress measure [47]) found in
the literature, or provided by psychologist on the team (e.g., mood EMA).

Survey Instrument Data Table 1 shows the set of surveys for measuring behav-
ioral and mental well-being and personality traits we administer as part of our
pre-post stages, as discussed in section “Study Design”. These questionnaires
provide an assessment of students’ depression, perceived stress, flourishing (i.e.,
self-perceived success), loneliness, and personality. Students complete surveys
using SurveyMonkey [7] 1 day prior to study commencement, and complete them
again 1 day after the study. Surveys are administered on the phone and stored in
the StudentLife cloud (Fig. 2). In what follows, we overview each instrument. The
Patient Health Questionnaire (PHQ-9) [32] is a depression module that scores each
of the 9 DSM-IV criteria as 0 (not at all) to 3 (nearly every day). It is validated for
use in primary care. Table 2 shows the interpretation of the scale and the number of
students that fall into each category for pre-post assessment. The perceived stress
scale (PSS) [19] measures the degree to which situations in a person’s life are
stressful. Psychological stress is the extent to which a person perceives the demands
on them exceed their ability to cope [19]. Perceived stress is scored between 0 (least
stressed) to 40 (most stressed). The perceived stress scale can only be used for
comparisons within a sample—in our case 48 students. The flourishing scale [21]
is an 8-item summary measure of a person’s self-perceived success in important
areas such as relationships, self-esteem, purpose, and optimism. The scale provides
a single psychological well-being score. Flourishing is scored between 8 (lowest) to
56 (highest). A high score represents a person with many psychological resources
and strengths. The UCLA loneliness (version 3) [44] scale scores between 20 (least
lonely) to 80 (most lonely). The loneliness scale is a 20-item scale designed to

Table 2 PHQ-9 depression scale interpretation and pre-post class outcomes

Depression severity Minimal Minor Moderate Moderately severe Severe

Score 1–4 5–9 10–14 15–19 20–27

Number of students (pre-survey) 17 15 6 1 1

Number of students (post-survey) 19 12 3 2 2
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Table 3 Statistics of mental well-being surveys

Survey Pre-study Post-study

outcomes Participants Mean Std Participants Mean Std

Depression 40 5.8 4.9 38 6.3 5.8

Flourishing 40 42.6 7.9 37 42.8 8.9

Stress 41 18.4 6.8 39 18.9 7.1

Loneliness 40 40.5 10.9 37 40.9 10.5

measure a person’s subjective feelings of loneliness as well as feelings of social
isolation. Low scores are considered a normal experience of loneliness. Higher
scores indicate a person is experiencing severe loneliness. Table 3 shows the pre-
post measures (i.e., mean and standard deviation) for each scored survey for all
students. We discuss these assessments in section “Results”.

Academic Data We have access to transcripts from the registrar’s office for all
participants as a means to evaluate their academic performance. We use spring and
cumulative GPA scores as ground truth outcomes. Undergraduates can receive an
A–E grade or I (incomplete). Students who get an Incomplete must agree to
complete the course by a specific date. GPA ranges from 0 to 4. For the CS65
smartphone programming class we had all the assignment and project deadlines—
no midterms or finals are given in this class. Students provide deadlines of their
other classes at the exit interview from their calendars or returned assignments or
exams.

Results

In what follows, we discuss the main results from the StudentLife study. We
identify a number of significant correlations between objective sensor data from
smartphones and mental well-being and academic performance outcomes. We
also identify a Dartmouth term lifecycle that captures the impact of the term on
behavioral measures representing an aggregate term signature experienced by all
students.

Correlation with Mental Health

We first consider correlations between automatic and objective sensing data from
smartphones and mental well-being. We also discuss results from correlations
between EMA data. Specifically, we report on a number of significant correlations
between sensor and EMA data and pre-post survey ground truth outcomes for
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Table 4 Correlations between automatic sensor data and PHQ-9 depression scale

Automatic sensing data r p-value

Sleep duration (pre) �0.360 0.025

Sleep duration (post) �0.382 0.020

Conversation frequency during day (pre) �0.403 0.010

Conversation frequency during day (post) �0.387 0.016

Conversation frequency during evening (post) �0.345 0.034

Conversation duration during day (post) �0.328 0.044

Number of co-locations (post) �0.362 0.025

depression (PHQ-9), flourishing, perceived stress, and loneliness scales, as dis-
cussed in section “StudentLife Dataset” and shown in Table 3. We calculate the
degree of correlation between sensing/EMA data and outcomes using the Pearson
correlation [18] where r (�1 � r � 1) indicates the strength and direction of the
correlation, and p the significance of the finding.

PHQ-9 Depression Scale Table 2 shows the pre-post PHQ-9 depression severity
for the group of students in the study. The majority of students experience
minimal or minor depression for pre-post measures. However, 6 students experience
moderate depression and 2 students are moderately severe or severely depressed at
the start of term. At the end of term more students (4) experience either moderately
severe or severely depressed symptoms. We find a number of significant correlations
(p � 0:05) between sleep duration, conversation frequency and duration, colocation
(i.e., number of Bluetooth encounters) and PHQ-9 depression, as shown Table 4.
An inability to sleep is one of the key signs of clinical depression [3]. We find a
significant negative correlation between sleep duration and pre (r D �0:360; p D
0:025) and post (r D �0:382; p D 0:020) depression; that is, students that sleep
less are more likely to be depressed. There is a known link between lack of
sleep and depression. One of the common signs of depression is insomnia or an
inability to sleep [3]. Our findings are inline with these studies on depression [3].
However, we are the first to use automatic sensor data from smartphones to confirm
these findings. We also find a significant negative association between conversation
frequency during the day epoch and pre (r D �0:403; p D 0:010) and post
(r D �0:387; p D 0:016) depression. This also holds for the evening epoch where
we find a strong relationship (r D �0:345; p D 0:034) between conversation
frequency and depression score. These results indicate that students that have
fewer conversational interactions are more likely to be depressed. For conversation
duration, we find a negative association (r D �0:328; p D 0:044) during the day
epoch with depression. This suggests students who interact less during the day
period when they are typically social and studying are more likely to experience
depressive symptoms. In addition, students that have fewer co-locations with other
people are more likely (r D �0:362; p D 0:025) to have a higher PHQ-9 score.
Finally, we find a significant positive correlation (r D 0:412; p D 0:010) between
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Table 5 Correlations
between automatic sensor
data and flourishing scale

Automatic sensing data r p-value

Conversation duration (pre) 0.294 0.066

Conversation duration during evening (pre) 0.362 0.022

Number of co-locations (post) 0.324 0.050

Table 6 Correlations between automatic sensor data and perceived stress scale (PSS)

Automatic sensing data r p-value

Conversation duration (post) �0.357 0.026

Conversation frequency (post) �0.394 0.013

Conversation duration during day (post) �0.401 0.011

Conversation frequency during day (pre) �0.524 0.001

Conversation frequency during evening (pre) �0.386 0.015

Sleep duration (pre) �0.355 0.024

the validated single item stress EMA [47] and the post PHQ-9 scale. This indicates
that people that are stressed are also more likely to experience depressive symptoms,
as shown in Table 7.

Flourishing Scale There are no literal interpretation of flourishing scale, perceived
stress scale (PSS) and UCLA loneliness scale instruments, as discussed in sec-
tion “StudentLife Dataset”. Simply put, however, the higher the score the more
flourishing, stressed and lonely a person is. We find a small set of correlations (see
Table 5) between sensor data and flourishing. Conversation duration has a weak
positive association (r D 0:294; p D 0:066) during the 24 h day with flourishing.
With regard to conversation during the evening epoch we find a significant positive
association (r D 0:362; p D 0:022) with flourishing. We also find that students
with more co-locations (r D 0:324; p D 0:050) are more flourishing. These results
suggest that students that are more social and around people are more flourishing.
Finally, positive affect computed from the PAM self-report has significant positive
correlation (r D 0:470; p D 0:002) with flourishing, as shown in Table 7. This is as
we would imagine. People who have good positive affect flourish.

Perceived Stress Scale Table 6 shows the correlations between sensor data and
perceived stress scale (PSS). Conversation frequency (r D �0:394; p D 0:013) and
duration (r D �0:357; p D 0:026) show significantly negative correlation with
post perceived stress. In addiction, we see more significant negative associations
if we just look at the day epoch. Here, conversation frequency (r D �0:524,
p D 0:001) and duration (r D �0:401; p D 0:011) exhibit significant and strong
negative correlations with pre and post measure of perceived stress, respectively.
This suggests students in the proximity of more frequent and longer conversations
during the day epoch are less likely to feel stressed. We cannot distinguish between
social and work study conversation, however. We hypothesize that students work
collaborative in study groups. And these students make more progress and are
less stressed. There is also strong evidence that students that are around more
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Table 7 Correlations between EMA data and mental well-being outcomes

Mental health outcomes EMA r p-value

Flourishing scale (pre) Positive affect 0.470 0.002

Loneliness (post) Positive affect �0.390 0.020

Loneliness (post) Stress 0.344 0.037

PHQ-9 (post) Stress 0.412 0.010

Perceived stress scale (pre) Positive affect �0.387 0.012

Perceived stress scale (post) Positive affect �0.373 0.019

Perceived stress scale (pre) Stress 0.458 0.003

Perceived stress scale (post) Stress 0.412 0.009

Table 8 Correlations
between automatic sensor
data and loneliness scale

Automatic sensing data r p-value

Activity duration (post) �0:388 0:018

Activity duration for day (post) �0:326 0:049

Activity duration for evening (post) �0:464 0:004

Traveled distance (post) �0:338 0:044

Traveled distance for day (post) �0:336 0:042

Indoor mobility for day (post) �0:332 0:045

conversations in the evening epoch are less stressed too. Specifically, there is strong
negative relationship (r D �0:386; p D 0:015) between conversation frequency in
the evening epoch and stress. There is also a link between sleep duration and stress.
Our results show that there is a strong negative association (r D �0:355; p D 0:024)
between sleep duration and perceived stress. Students that are getting more sleep
experience less stress. Finally, we find significant positive (r D 0:458; p D 0:003)
and negative correlations (r D �0:387; p D 0:012) between self-reported stress
levels and positive affect (i.e., PAM), respectively, and the perceived stress scale.
There is a strong connection between daily reports of stress over the term and the
pre-post perceived stress scale, as shown in Table 7. Similarly, students that report
higher positive affect tend to be less stressed.

Loneliness Scale We find a number of links between activity duration, distance
travelled, indoor mobility and the loneliness scale, as shown in Table 8. All our
results relate to correlations with post measures. Activity duration during a 24 h day
has a significant negative association (r D �0:388; p D 0:018) with loneliness.
We can look at the day and evening epochs and find correlations. There is a negative
correlation (r D �0:464; p D 0:004) between activity duration in the evening epoch
and loneliness. Distance traveled during the complete day (r D �0:338; p D 0:044)
and the day epoch (r D �0:336; p D 0:042) show trends with being lonely. Indoor
mobility during the day epoch has strong negative links (r D �0:332; p D 0:045)
to loneliness. Indoor mobility is a measure of how much a student is moving in
buildings during the day epoch. Students that are less active and therefore less
mobile are more likely to be lonely. It is difficult to speculate about cause and
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effect. Maybe these students move around less are more isolated (e.g., stay in
their dorm) because they have less opportunity to meet other students outside of
class. These students could feel lonely and therefore more resigned not to seek out
the company of others. There is also no evidence that people who interact with
others regularly do not experience loneliness. This supports our lack of findings
between conversation and loneliness. The PAM EMA data (positive affect) has
a strong negative association (r D �0:390; p D 0:020) with positive affect. In
addition, stress self-reports positively correlate (r D 0:344; p D 0:037) with
loneliness. Students who report higher positive affect and less stress tend to report
less loneliness, as shown in Table 7.

Predicting Academic Performance

We uses a subset of the StudentLife dataset to analyze and predict academic
performance. We only use undergraduate students’ (N D 30) data because only
undergraduates have GPAs. In contrast, Dartmouth graduate students do not have
GPAs and only receive High Pass, Pass, Low Pass or No Credit in their classes. We
propose new methods to automatically infer study (i.e., study duration and focus)
and social (i.e., partying) behaviors using passive sensing from smartphones [52].
We use time series analysis of behavioral states to predict cumulative GPA. We
use linear regression with lasso regularization to identify non-redundant predictors
among a large number of input features and use these features to predict students’
cumulative GPA.

Assessing Study and Social Behavior The StudentLife dataset provides a number
of low-level behaviors (e.g., physical activity, sleep duration, and sociability based
on face-to-face conversational data) but offers no higher level data related to
study and social behaviors, which are likely to impact academic performance. We
attribute meanings or semantics to locations—called behavioral spaces [52] as a
basis to better understand study and social behaviors. That is, we extract high
level behaviors, such as studying (e.g., study duration and focus) and social (e.g.,
partying) behaviors by fusing multiple sensor streams with behavioral spaces.

We use behavioral space information to determine study behavior [52]. Each
student takes three classes, which are scheduled at specific periods during the
week [2]. Students’ transcripts indicate what classes they took. The registrar office
has the schedule and location for each class. We use location, date (i.e., weekday M-
F) and time to automatically determine if a student attends a class or not, checking
the dwell time at the location at least equals 90% of the scheduled period (e.g.,
110 min). Using this approach the phone can automatically determine the classes a
student is taking and their attendance rates.

We heuristically determine if a student’s dwell time at a study areas (e.g.,
library, labs, study rooms, cafes where student primarily work) is at least 20 min.
We consider periods shorter that 20 min are less likely to be real study periods.



StudentLife: Using Smartphones to Assess Mental Health and Academic. . . 25

In addition to dwell time, we use activity and audio attributes to determine a
student’s level of focus at a study area. The value of activity indicates how often the
phone moves—the person is either moving around in the study area or stationary
but using the phone. We consider a number of scenarios. If a student is in a study
(e.g., a library) and moves around we consider this contributes to a lack of focus.
If the phone is mostly stationary in a study area, we consider this contributes to
focus. We also use the audio attribute to determine the level of ambient noise in
study areas. We consider quiet environments may contribute to study focus and
noisy environments do not. In term of focus, a higher activity value indicates that
the student moves around less and thus is more focused and a higher audio value
indicates that the student is in a quieter environment which is more conducive
to being focused. We do not combine these values but use them as independent
variables in the analysis section.

We consider behavioral spaces (e.g., Greek houses, dorms) and their attributes to
infer if a student is partying [52]. If a student is in a party we assume that they will
be moving and around acoustic sound of conversation or music. We also consider
the day of the week as being significant for the fraternity and sorority parties (i.e.,
Wednesday, Friday and Saturday). We discard dwell times under 30 min at partying
locations.

We partition each Greek house dwell periods (i.e., visit or stay) into 10-min
windows and calculate audio and activity attributes. We hypothesize that the audio
and the activity attributes should be significantly different when the student is
partying or not partying. We use k-means clustering [56] to find the partying
thresholds for both the audio (e.g., music or being surrounded by a large group
of people) and activity (e.g., dancing) attributes.

Capturing Behavioral Change We extract behavioral change features from the
low-level automatic sensing (e.g., sleep duration) and EMA data (e.g., stress) and
high-level study and social behaviors discussed in the previous section. We create
time series of each behavior for each student. The behavior time series samples each
behavior each day. Each time series summarizes a different behavior (e.g., physical
activity, conversation frequency and duration, sleep, social behavior, and study
behaviors). In order to understand behavior changes across the term, we propose
two features [52]: behavioral slope, which captures the magnitude of change (e.g.,
increase or decrease in sleep) over the complete term as well as the first and second
half of the term for all students—from the start of term to the midterm point, and
then from the midterm point to the end of term; and behavioral breakpoints, which
capture the specific points in the term where individual behavior change occurs—
the number of breakpoints a student experiences indicates the rate of change that
occurs. The method to extract these behavioral change features are described in
detail in [52].

Predicting Cumulative GPA Predicting GPA is a regression problem; that is,
predicting an outcome variable (i.e., GPA) from a set of input predictors (i.e.,
features). We evaluate various regression models such as regularized linear regres-
sion, regression trees, and support vector regression using cross-validation. We
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select the Lasso (Least Absolute Shrinkage and Selection Operator) [48] regularized
linear regression model as our predictive model. Lasso is a method used in linear
regression; that is, Lasso minimizes the sum of squared errors, with a bound on
the sum of the absolute values of the coefficients. Considering we have a large
number of features, collinearity needs to be addressed. There are two categories
of methods that address collinearity: feature selection and feature transformation.
Lasso regularization is one of the feature selection methods. Lasso solves the
following optimization problem:
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is the p degree feature vector at observation i; � is a nonnegative regularization
parameter, which controls the number of nonzero components of ˇ (i.e., number
of the selected features); ˇ0 is the intercept; and ˇ is the weight vector. The
regularization parameter � is selected using cross-validation. The optimization
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fitting while keeping the model as simple as possible (i.e., select a minimal number
of features to avoid overfitting). Thus, Lasso automatically selects more relevant
features (i.e., predictors) and discards redundant features to avoid overfitting.

We use the mean absolute errors (MAE), the coefficient of determination
(R2) [15], and Pearson correlation to measure the performance of outcome predic-
tion. MAE measures how close predictions are to the outcomes. The mean absolute
error is given by MAE D 1

n

PN
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i ˇj. Smaller MAE is preferred because
it indicates that the predictions are closer to the ground truth. R2 is a another statistic
that measures the goodness of fit of a model and indicates how much of the variance
our model explains. R2 ranges from 0 to 1, where 1 indicates that the model perfectly
fits the data. R2 can be seen to be related to the unexplained variance where R2 D 0 if
the feature vector X tells us nothing about the outcome. We use Pearson correlation
to measure the linear relations between the ground truth and the predictive outcome.

We apply leave-one-subject-out cross validation [30] to determine the parameters
for Lasso and the weights for each feature. In order to make the weight regu-
larization work properly, each feature is scaled within the range Œ0; 1�. Selected
features have non-zero weights. The MAE of our predicted cumulative GPA is
0.179, indicating that the predictions are within ˙0:179 of the groundtruth. The R2

is 0.559, which indicates that the features can explain 55.9% of the GPA variance.
The predicted GPA strongly correlates with the ground truth with r D 0:81 and
p < 0:001, which further indicates that our predictions can capture outcome
differences using the given features.

Table 9 shows the selected features to predict the cumulative GPAs and their
weights. Interestingly, lasso selects a single long term measure (i.e., conscientious
personality trait), two self-report time series features (i.e., affect and stress), and
three automatic sensing data behaviors (i.e., conversational and study behavior).
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Table 9 Lasso selected GPA predictors and weights

Features Weight

Sensing Conversation duration night breakpoint 0.3467

Conversation duration evening term-slope �0.6100

Study duration 0.0728

EMA Positive affect 0.0930

Positive affect post-slope �0.1215

Stress term-slope �2.6832

Survey Conscientiousness 0.0449

The weights indicate the strength of the predictors. Students who have better GPAs
are more conscientious, study more, experience positive moods (e.g., joy, interest,
alertness) across the term but register a drop in positive affect after the midterm
point, experience lower levels of stress as the term progresses, are less social in
terms of conversations during the evening period between 6–12 pm, and experience
later change (i.e., a behavioral breakpoint) in their conversation duration pattern.

Dartmouth Term Lifecycle

We analyze the Dartmouth term lifecycle using both sensing data and self-reported
EMA data. Figure 5a–c shows key behavioral measures and activities over the
complete term. Figure 5a shows EMA data for stress and positive affect (PA), and
automatic sensing data for sleep duration. Figure 5b shows continuous sensing
trends specifically activity duration, and conversation duration and frequency.
Finally, Fig. 5c shows location based data from GPS and WiFi, specifically,
attendance across all classes, the amount of time students spent in their dorms
or at home, and visits to the gym. We hypothesize that these sensing, EMA and
location based curves collectively represent a “Dartmouth term lifecycle”. Whether
these trends could be observed across a different set of students at Dartmouth
or more interestingly at a different institution is future work. In what follow we
discuss workload across the term, mental well-being using EMA data (i.e., stress
and positive affect) and automatic sensing data measures.

Academic Workload We use the number of assignment deadlines as a measure of
the academic workload of students. We collect class deadlines during exit interviews
and validate them against students’ calendars and returned assignments dates.
Figure 5 shows the average number of deadlines for all student across each week
of the term. The number of deadlines peaks during the mid-term period in weeks
4 and 5. Interestingly, many classes taken by the students do not have assignment
deadlines during week 8. Final projects and assignments are due in the last week of
term before finals, as shown in Fig. 5a. As discussed before, all study participants
take the same CS65 Smartphone Programming class, for which they share the same
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Fig. 5 Dartmouth term lifecycle: collective behavioral trends for all students over the term. (a)
EMA and sleep data. (b) Automatic sensing data. (c) Location-based data

deadlines. Among all CS65’s lab assignment, Lab 4 is considered to be the most
challenging programming assignment. In the last week of term the students need
to give final presentations and live demos of group projects for the smartphone
programming class. The students are told that app developed for the demo day has
to work to be graded. The demo is worth 30% of their overall grade.

Self Reported Stress and Mood Figure 5a shows the average daily stress level
and positive affect over the term for all subjects as polynomial curves. Students are
more stressed during the mid-term (days 22–36) and finals periods. The positive
affect results show a similar trend. Students start the term with high positive affect,
which then gradually drops as the term progresses. During the last week of term,
students may be stressed because of finals and class projects, with positive affect
dropping to its lowest point in the term. Overall, the results indicate that the 10-
week term is stressful for students as workload increases. Figure 5a clearly shows
that students return to Dartmouth after spring break feeling the most positive about
themselves, the least stressed, the most social in terms of conversation duration and
the most active (as shown in Fig. 5b). As the term progresses toward mid-term week,
positive affect and activity duration plunge and remain at low levels until the final
weeks where positive affect drops to its lowest point.

Automatic Sensing Data We also study behavioral patterns over the term by
analyzing automatic sensing data. We plot the polynomial fitting curves for sleep
duration, activity duration, conversation duration, conversation frequency, as shown
Fig. 5b, and location visiting patterns in Fig. 5c. Our key findings are as follows. We
observe from Fig. 5a that sleep peaks at the end of the first week and then drops
off and is at its lowest during the mid-term exam weeks. Sleep then improves until
the last week of term when it plummets to its lowest point in the cycle. As shown in
Fig. 5b students start the term with larger activity duration, which gradually drops as
they become busier with course work and other term activities. Finally, the activity
duration increases a little toward the end of term. Activity duration reaches its lowest
point on day 36 when students are focused on completing the Lab 4 assignment—
considered the most demanding assignment in the smartphone programming class.

The student’s level of face-to-face sociability starts high at the start of term,
then we observe an interesting conservation pattern, as shown in Fig. 5b. As the
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term intensifies, conversation duration drops almost linearly until week 8, and then
rebounds to its highest point at the end of term. Conversely, the frequency of
conservation increases from the start of term until the start of midterms, and then
it drops and recovers toward the end of term. We speculate that sociability changes
from long social/study related interactions at the start of term to more business-like
interactions during midterms when students have shorter conservations. At the end
of term, students are having more frequent, longer conversations.

Figure 5c provides a number of interesting insights based on location based
data. As the term progresses and deadlines mount the time students spend at the
significant places in their lives radically changes. Visits to the gym plummet during
midterm and never rebound. The time students spend in their dorm is low at the start
of term perhaps due to socializing then remains stable but drops during midterm.
At week 8 time spent in dorms drops off and remains low until the end of term.
The most interesting curve is class attendance. We use location data to determine
if students attend classes. We consider 100% attendance when all students attend
all classes and x-hours (if they exist). The term starts with 75% attendances and
starts dropping at week 3. It steadily declines to a point at the end of term were only
25% of the class are attending all their classes. Interestingly, we find no correlation
between class attendance and academic performance. We speculate that students
increasingly start missing classes as the term progresses and the work load rises.
However, absence does not positively or negatively impact their grades. We put this
down to their self learning ability but plan to study this further as part of future
work.

It is difficult in this study to be concrete about the cause and effect of this
lifecycle. For example, stress or positive affect could have nothing to do with
workload and everything to do with hardship of some sort (e.g., campus adjustment,
roommate conflicts, health issues). We speculate the intensive workload compressed
into a 10 week term puts considerable demands on students. Those that excel
academically develop skills to effectively manage workload, social life and stress
levels.

Conclusion

In this paper, we presented the StudentLife sensing system and results from a
10-week deployment. We discuss a number of insights into behavioral trends,
and importantly, correlations between objective sensor data from smartphones and
mental well-being and predicting undergraduate students’ cumulative GPA for a set
of students at Dartmouth College. To the best of our knowledge, this is the first-of-
its-kind smartphone sensing system and study. Providing feedback of hidden states
to students and other stakeholders might be beneficial, but there are many privacy
issues to resolve. Students, deans, and clinicians on campus all care about the health
and well-being of the student body. In this study, the professor running the study
had access to survey outcomes, sensing data, and EMAs for students. In two cases,
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the professor intervened and did not give failing grades to students who failed to
complete a number of assignments and missed lectures for several weeks. Rather,
they were given incomplete grades and completed assignments over the summer.
However, in other classes these students took, their professors did not have such
data available and these students received failing grades. While access to such data
is under IRB and cannot be shared, the data and intervention in grading enabled
those students to return to campus the following fall. If they had received 3 failing
grades, they would have been suspended for one term.
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Circadian Computing: Sensing, Modeling,
and Maintaining Biological Rhythms

Saeed Abdullah, Elizabeth L. Murnane, Mark Matthews,
and Tanzeem Choudhury

Abstract Human physiology and behavior are deeply rooted in the daily 24 h
temporal structure. Our biological processes vary significantly, predictably, and
idiosyncratically throughout the day in accordance with these circadian rhythms,
which in turn influence our physical and mental performance. Prolonged disruption
of biological rhythms has serious consequences for physical and mental well-being,
contributing to cardiovascular disease, cancer, obesity, and mental health problems.
Here we present Circadian Computing, technologies that are aware of and can have a
positive impact on our internal rhythms. We use a combination of automated sensing
of behavioral traits along with manual ecological momentary assessments (EMA)
to model body clock patterns, detect disruptions, and drive in-situ interventions.
Identifying disruptions and providing circadian interventions is particularly valuable
in the context of mental health—for example, to help prevent relapse in patients with
bipolar disorder. More generally, such personalized, data-driven tools are capable
of adapting to individual rhythms and providing more biologically attuned support
in a number of areas including physical and cognitive performance, sleep, clinical
therapy, and overall wellbeing. This chapter describes the design, development, and
deployment of these “circadian-aware” systems: a novel class of technology aimed
at modeling and maintaining our innate biological rhythms.

Introduction

Like that of nearly every terrestrial organism, human physiology has adapted to the
24 h pattern of light and darkness. Within our bodies there are hundreds of biological
clocks, controlled by a “master clock” in our brain—the Suprachiasmatic Nucleus
or SCN [32]. These body clocks control oscillations in our biological processes and
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drive our circadian rhythms. “Circadian” means about (circa) a day (diem), and our
circadian rhythms reflect any biological cycle that follows a roughly 24 h period
such as regular changes in our blood pressure, cortisol, and melatonin levels.

Biological rhythms vary between individuals. Chronotype represents one’s
unique circadian profile and lies on a spectrum from proverbial “early birds”
(early types) to “night owls” (late types). Beyond just influencing one’s preferred
sleep time, these individual differences also impact our daily trends in mental and
physical performance.

Living against our innate biological rhythms can result in social jetlag—a
chronic jetlag-like phenomenon that stems from persistent misalignment between
a person’s biological clock and “social” clock, the latter of which is based on social
demands such as those from evening social schedules or the need to adhere to
work schedules [89]. Such circadian disruption, which often results from waking
up earlier than our internal clock dictates, is becoming increasingly widespread.
Indeed, a large-scale study from Roennberg et al. found that more than 70% of the
population suffers from significant social jetlag, with individuals’ biological and
social clocks differing by more than 1 h [85]; and the U.S. Centers for Disease
Control (CDC) now report that sleep pathologies, often indicative of circadian
misalignment, are reaching epidemic levels, with sleep disorders affecting 50–70
million people in the U.S. alone [70].

Persistent disruptions to our innate biological rhythms can have serious con-
sequences for physical and mental well-being [32]. Shift workers, who often
suffer from chronic chronotype misalignment, are more likely to experience type 2
diabetes, coronary heart disease, cancer, and obesity compared to day-time workers
[78, 96]. For younger populations, disruption can increase the risk of drug and
alcohol use [97, 104] and produce cognitive impairments and learning deficits [15].
Circadian disruption has also been associated with neuropsychiatric illness. Around
30–80% of patients with schizophrenia report sleep and circadian rhythm disruption,
making it one of the most common symptoms [79], and circadian instability has also
been identified as a contributing factor behind the development of schizophrenia in
susceptible individuals [48]. Compelling evidence also establishes a link between
circadian disturbances and the onset of relapse for patients with bipolar disorder
(BD) [8, 36].

This widespread impact that misalignments can have on our well-being helps
illuminate an ever-increasing need for computational approaches that factor in
considerations of the internal body clock. While recently there has been a consistent
focus on making devices and technologies more personalized, such approaches
do not yet support or adapt to individualized variations (e.g., in sleep onset,
cognitive performance, working memory, alertness, or physical performance) that
result from our personal circadian rhythms. The aim of Circadian Computing is
to provide technology that can play to our biological strengths (and weaknesses),
instead of making incomplete assumptions about the steady capabilities and fixed
requirements of its users throughout the day.

Towards that goal, we focus on developing technologies for detecting circadian
rhythms and disruptions and providing in-situ interventions. Our approach draws
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on techniques from mobile sensing, machine-learning, ubiquitous computing, and
chronobiology in order to (1) develop low-cost and scalable methods that can
cheaply, accurately, and continuously collect real-time behavioral data to identify
biological rhythm disruptions; (2) design and build novel computing systems
that help people realign with their individual rhythms by employing circadian
interventions that support “fixing the broken clock”; and (3) deploy and evaluate
these systems among target populations.

Thus, by modeling body clock patterns and identifying circadian disruptions
through passive and automated sensing of behavioral traits, we aim to support
users’ varying needs over time. Specifically, the predictive ability of these models
enables us to develop tools that can adapt to our individual rhythms and provide
more biologically attuned support in the areas of sleep, cognitive and physical
performance, and overall well-being—for instance, by suggesting schedules for
daily activities that align with one’s natural oscillation of alertness throughout
the day. Such tools also have application in the context of mental health, where
identifying disruptions and providing circadian interventions can help prevent
relapse for patients with bipolar disorder and schizophrenia and, overall, serve
to transform existing approaches to mental health care from being reactive to
preemptive.

Background

As the Earth rotates around its axis approximately every 24 h, most organisms are
subjected to periodic changes in light and temperature that result from exposure
to the Sun. Given the constancy of this phenomenon over the course of evolution,
nearly every living creature has developed internal biological clocks to anticipate
these geophysical fluctuations. Jean-Jacques d’Ortous deMairan first reported the
endogenous nature of these biological processes after observing daily leaf move-
ment in heliotrope plants in 1729 [56].

Over the years, chronobiologists have continued to identify such endogenously
generated rhythms in cynobacteria [37], insects [90], birds [38], and mammals [82].
The existence of circadian rhythms in humans was first reported by Jürgen Aschoff
who noted that “whatever physiological variables we measure, we usually find that
there is a maximum value at one time of day and minimum value at another” [6].
Since then, a number of studies have identified underlying biological explanations,
including evidence that rhythm generation for different organisms has a genetic
basis [4, 29].

Franz Halberg first coined the term “circadian” to emphasize the self-sustaining
nature of these biological clocks [16]. That is, these biological rhythms continue
to have a period of nearly 24 h even without external stimuli (e.g., in constant
light or darkness). Under such constant conditions, the time it takes for a circadian
process to complete oscillation is known as the free-running period. Our biological
processes are usually not free-running because they are synchronized with the



38 S. Abdullah et al.

external environment. The process of synchronization is called entrainment, and
environmental cues for entrainment are known as zeitgebers (zeit: time, gebers:
givers). A number of environmental factors such as food intake and exercise can
work as zeitgebers, but light (and darkness) is the most dominant cue. In mammals,
light is transduced through the retina to a group of nerve cells in the hypothalamus
known as the Suprachiasmatic Nucleus (SCN), which acts as a circadian pacemaker.
The SCN uses these environmental cues to coordinate and synchronize our cellular
circadian clocks to periodic changes in the environment.

Humans also show inter-individual differences in the phase and amplitude of
circadian rhythms even in entrained conditions with the presence of external time
cues. Biochemical processes (e.g., the timing of hormone secretions like melatonin)
as well as sleep timing preferences reflect these differences. The phase difference
between individual internal time (i.e. the timing of an individual’s biological clock)
and time cues from the environment (e.g., the cycle of the sun) is known as the
phase of entrainment; and when individuals vary in this trait, they are referred to as
different chronotypes.

Chronotype is a phenotype—a characteristic that results from genetic factors
interacting with a person’s environment. Vink et al. reported that approximately 50%
of chronotype features are heritable [102]. Other demographic and developmental
factors such as age, ethnicity, and gender might also influence chronotype [86].
Children are generally early chronotypes, but they transition to become increasingly
later types during adolescence. After reaching a maximum lateness around 20 years
of age, chronotype then begins shifting earlier once again. In general, people over
60 years old have an early chronotype. The shift to a later chronotype begins
sooner for females than males, which is in accordance with the general biological
phenomenon that females tend to mature earlier. This means that men are relatively
later chronotypes compared to females of same age for most of adulthood [86], until
the chronotype phases for men and women coincide around age 50, the average age
of menopause.

Light exposure can also affect the phase of entrainment; longer exposure to
daylight advances the sleep period and results in an earlier chronotype [89].
Specifically, Roenneberg et al. found that spending more than 2 h outside correlates
with chronotype advancing by more than an hour [88].

A More Complex Sleep Model

The sleep and wakefulness cycle is a ubiquitous process among both invertebrates
and vertebrates, including humans [99]. In fact, sleep-wake patterns are among the
most prominent biological rhythms in humans. Sleep occurs as a result of complex
interactions between a number of biochemical processes (see Fig. 1). Borbély
et al. first proposed that sleep results from two interacting and counterbalancing
processes—a homeostatic process and a circadian process [10]. Homeostatic sleep
pressure (the need for sleep) builds during wakefulness in accordance with the
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Fig. 1 Sleep and the human circadian system

duration of time spent awake and then dissipates during the sleep episode. Simulta-
neously, the circadian process maintains the rhythm of sleep propensity with peaks
and troughs throughout the 24 h period. Thus, as the homeostatic sleep pressure
increases with wakefulness, if sleep propensity is low from the circadian process,
then wakefulness is maintained. Similarly, as sleep pressure dissipates during sleep,
a stronger sleep propensity from the circadian process helps to maintain the sleep
phase [71].

Though, while we are circadian creatures, whose numerous physiological,
mental, and behavioral rhythms are driven by biological clocks, we are also social
beings. As such, our behaviors and sleep patterns are additionally influenced by
a “social clock” based on social responsibilities such as relationships and work
schedules [89]. Overall, the timing and quality of sleep is therefore affected by
three complicated and idiosyncratic factors: our circadian system, a homeostatic
oscillator, and our social clock.

When we sleep and how we perform throughout the day is thus determined
by multiple factors and contingent, in part, on each person’s genetic makeup and
age. Sleep advice, such as when we should sleep or wake, can therefore not be
prescribed generically but rather must be tailored to each person’s complex genetic
and environmental conditions. In particular, not all of us can, or should, maintain a
commonly promoted “early to bed and early to rise” lifestyle.
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Circadian Disruption and Mental Health

As mentioned, the circadian system plays a crucial role in synchronizing our internal
processes with each other and with external environments. However, a number of
factors can disrupt an individual’s circadian systems and, in turn, various aspects of
functioning such as sleep-wake cycles, mood, and levels and timing of hormone
secretions. These symptoms have been associated with a wide range of mental
health problems including alcohol and substance abuse, anxiety, attention-deficit
hyperactivity disorder, bipolar disorder, depressive disorder, obsessive-compulsive
disorder, and schizophrenia. While in the past, biological rhythm disruptions have
been attributed to the pathology of the given mental disorder, recent studies indicate
that the circadian system may be more directly involved in disease etiology [53, 62].

In particular, the role of circadian disruption in schizophrenia and bipolar
disorder has been well-studied. Sleep and circadian disruptions are the most
common and consistent features of schizophrenia [79]. Abnormal phasing, insta-
bility, and fragmentation of circadian rhythms have been observed in patients with
schizophrenia based on rest-activity rhythms assessed by actigraphy [58, 106].
Further, research finds that improvement in sleep regularity may lead to lower
psychotic schizophrenic symptoms [74]. A number of studies have also reported
associations between schizophrenia and the genes involved in the generation of
biological rhythms (“clock genes”) [52]. Similarly, a number of studies have linked
bipolar disorder to genes that govern circadian rhythms [8, 57], and circadian
disruptions are associated with onset of bipolar episodes. Sleep deprivation resulting
from travel, shift-work, medication, or postpartum states can trigger mania; and a
decreased need for sleep is considered to be a fundamental marker of the manic state
[81]. As a result, interventions to effectively manage bipolar disorder often focus on
maintaining sleep–wake rhythms, social rhythms, and light–dark exposure.

Measuring Circadian Rhythms and Disruptions

A number of methods exist to measure circadian rhythms and in turn circadian
disruptions (e.g., see Table 1). Here we discuss the most commonly studied and used
techniques, in the order of most to least invasive and burdensome for the individual
being assessed.

Biological Markers

The core body temperature (CBT) of homeothermic organisms, including humans,
is maintained by a complex thermoregulatory feedback system. Specifically, through
mechanisms of heat-loss (e.g., conduction, convection, and evaporation) and
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Table 1 Methods for assessing circadian rhythms and disruptions

Method Instrumentation Considerations

Core body temperature (CBT) Rectal thermometer [69] Not scalable and highly
invasive

Melatonin Blood (serum and plasma),
saliva, urine [67]

Invasive and not suitable for
longitudinal deployment

Cortisol Blood (serum and plasma),
hair, saliva, urine, feces [63]

Invasive and not suitable for
longitudinal deployment

Heart rate Electrocardiography (ECG)
[45]

External factors (e.g., car-
bohydrate intake) can affect
measurement [67]

Activity Accelerometer based sleep
and circadian rhythm moni-
toring (e.g., actigraphy) [5]

Not suitable for scalable
deployment as it requires
special devices

Sleep journal Manual journaling of sleep
onset and duration [109]

Can be unreliable due to
potential non-adherence and
unreliable recall

Self-assessment survey MCTQ for assessing
chronotype and social jetlag
[89]

Not suitable for monitoring
changes over long periods of
time

Mobile sensing Smartphone usage patterns
and sensors [2]

Individuals must carry their
phones consistently

heat-production (e.g., metabolic thermogenesis), the body maintains temperature at
a stable level. A number of studies have found that core body temperature displays a
circadian rhythm, with a period close to 25 h [24]. Trends in CBT are also associated
with circadian sleep-wake regularization. Specifically, CBT reaches its maximum
during the day, begins to decrease at the onset of sleep, and drops to a minimum
(about 2 h before waking) during the major sleep phase [101]. Studies therefore
widely consider core body temperature as a robust biomarker of circadian rhythms
and circadian dysregulation.

However, current techniques for measuring core body temperature are highly
intrusive. CBT measurement via rectal probes is the most accurate and widely
used method in the scientific literature [69]. While consistent efforts have been
made to perform less-invasive assessment through wearable devices that measure
oral and skin temperature [76], such approaches can be unreliable across different
environments and physical conditions (e.g., sweating) [107]. As a result, using core
body temperature to assess circadian rhythms and disruptions in an unobtrusive,
dependable, and scalable manner is still not feasible and is particularly unsuited to
studies in naturalistic settings.

Several hormones in the human body are also used as circadian biomarkers. Two
of the most studied are melatonin and cortisol. Melatonin, a hormone secreted by
the pineal gland, plays a major role in regulating and reflecting circadian rhythms.
Melatonin secretion essentially indicates the onset of night; circulating melatonin
concentration is low during the day and higher at night [24], and a longer period
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of darkness correlates positively with a longer duration of melatonin secretion
[19]. Compared to other biomarkers such as core body temperature and heart
rate, melatonin is considered more robust against external influences and thus may
provide a preferable form of circadian rhythm assessment [67]. Melatonin levels can
also be used to evaluate the effects of bright light exposure, which is a key circadian
synchronizer for humans [42].

Melatonin concentration can be measured from blood (serum and plasma), saliva,
and urine. By taking melatonin samples at regular intervals (e.g., every hour),
patterns of individual circadian rhythms can be reliability assessed. However, while
a wide range of both laboratory and field based studies have used melatonin to
measure circadian phases and disruptions, the burden of taking regular samples
along with the required chromatography and/or mass spectrometry analysis makes
it less desirable as a scalable instrument.

Cortisol is a hormone produced by the adrenal gland that has been shown
to display circadian patterns [50]. Blood is considered the most reliable way
to measure cortisol, though tests can also use samples of hair, saliva, urine, or
feces [63]. Overall, cortisol is considered a less accurate circadian biomarker than
melatonin [65].

Biophysiological Monitoring

Given that sleep is both a reflector and modulator of our latent circadian rhythms,
tracking sleep-wake patterns can be useful in determining circadian patterns and
disruptions. The gold standard for assessment is polysomnography (PSG), which
monitors sleep and records a variety of biological measurements including brain
waves, blood oxygen levels, blood pressure, breathing and heart rhythms, and eye
and limb movements. However, the required setup, controlled environment, and
specialized equipment makes PSG infeasible for longitudinal or in-situ tracking.

Instead, a wide array of studies use actigraphy, which measures body movement
through the use of a wearable sensor (often on the wrist of a person’s non-dominant
hand) and can conveniently record sleep and activity patterns over spans of days,
weeks, or longer. Accelerometry data captured by actigraphy is used to infer active
and inactive status, which in turn can be utilized for detecting sleep-wake patterns. A
number of studies have found sleep patterns inferred from actigraphy to be reliable
and consistent with PSG [5]. This dependability of actigraphy together with its
ease of use over time has allowed researchers to use actigraphy to assess circadian
rhythms and identify patterns of disruption, for instance to detect circadian rhythm
disturbances in the diagnosis of delayed sleep phase syndrome [22].

While actigraphy is less invasive than some of the procedures associated with
biomarker measurement and is more practical than PSG, it still requires a participant
to wear a specialized device all day and night for the duration of the study period,
which typically lasts at least 7 days but preferably spans 14 days or longer to
ensure capture of the individual’s non-entrained pattern [77]. This condition may
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be less problematic for laboratory or field studies of a short duration, but using
actigraphy to track circadian rhythms over an extended period of time and across a
large population is still difficult due to device-burden and wear-compliance.

Self-Report Instruments

The use of biophysiological assessments such as those mentioned above are mostly
limited to small laboratory studies given their invasive nature. For more broad
scale investigations, manual self-report via survey or diary instruments can be a
more suitable approach for capturing sleep and wake patterns—and the underlying
circadian rhythms.

One of the most prominent survey-based instruments for assessing behavioral
manifestations of circadian rhythms is the Munich ChronoType Questionnaire
(MCTQ) [89]. To measure individual chronotype, the MCTQ includes questions
related to sleep-wake behaviors (e.g., timing, preferences) as well as daily activities
(e.g., light exposure, lifestyle details) for both work and free days. The use of the
MCTQ to assess chronotype has been clinically validated in controlled settings
against biomarkers, actigraphy data, and sleep logs [87].

To provide a quantified, comparable representation of chronotype, the MCTQ
estimates chronotype based on a corrected measure of the halfway point between
sleep onset and waking on free days [104]. Previous studies have found this
mid-sleep point to be the best phase anchor for biochemical indicators, including
melatonin onset [98].

A number of studies have also utilized sleep logs, sometimes in combination with
actigraphy, to determine sleep onset, offset, awakenings, and duration; and they
are often applied as part of diagnosing and treating sleep disorders and circadian
rhythm abnormalities [109]. Comparison with actigraphy-based estimation of sleep
behaviors generally shows reasonable agreement [55]. However, the validity of
sleep logs has not been fully established against circadian biomarkers, plus a diary-
based instrument faces limitations associated with self-report in general, including
non-adherence, inconsistent completion, and potentially unreliable subjective and
retrospective recall.

Mental Health Care

As mentioned earlier, circadian disruption has been associated with a wide range
of mental health issues including bipolar disorder and schizophrenia. A number
of studies have therefore focused on assessing circadian stability in the context of
mental health. These studies often focus on using sleep information as an indicator
of underlying circadian disruptions. For example, in their review paper, Cohrs et al.
[21] note that a large number of studies have investigated the impact of sleep on
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Fig. 2 Sample paper-based Social Rhythm Metric form that is used to assess circadian disruptions
in bipolar disorder

clinical variables in schizophrenia. To assess patterns of sleep, both subjective (e.g.,
sleep diaries) and objective (e.g., electroencephalogram—EEG) measurements have
been used. Other studies have used actigraphy based instrumentations to assess rest-
activity rhythms and circadian disruptions [58, 106].

Further, circadian disruptions can trigger relapse onset for patients with bipolar
disorder. Similar to the case of schizophrenia, subjective and objective sleep
assessments as well as actigraphy based measurement have been used to assess
circadian disruptions in patients with bipolar disorder [46, 47, 64]. The irregular
biological rhythms of individuals vulnerable to bipolar disorder have lead to the
development of the Social Zeitgeber hypothesis, which suggests that the effect of
certain life events on an individual’s social routines may lead to the onset of bipolar
episodes [27]. Specifically, these routines can affect endogenous circadian rhythms
and lead to mood symptoms and, for susceptible individuals, full mood episodes.

The Social Rhythm Metric (SRM), shown in Fig. 2, is a paper-and-pencil based
self-report daily diary measure of social routines designed to quantify the rhythms
of daily life. It has been tested and applied as a therapeutic self-monitoring tool
in psychosocial interventions [35]. The SRM has proven effective for assessing
stability and rhythmicity of social routines [34]; however, it faces the known
disadvantages of paper-based manual self-report, including non-adherence and the
difficulty of longitudinal self-tracking.



Circadian Computing: Sensing, Modeling, and Maintaining Biological Rhythms 45

Mobile Sensing

Altogether, we thus see that a number of techniques exist for assessing circadian
rhythms and disruptions. However, while research has successfully used these meth-
ods over the years to untangle the biological basis of circadian rhythms, most studies
are done either in the artificial settings of a laboratory or through subjective self-
report. Understandably, the methods used in laboratory studies (e.g., participants
sleeping with electrodes fastened to their heads or being asked to provide blood
samples at regular intervals) are not scalable for administration to a large population.
On the other hand, subjective reports and surveys, while more broadly deployable,
are not well-suited for continuous monitoring over longitudinal periods and often
fail to capture subtle details and instantaneous changes regarding the relationship
between the circadian system, individual sleep patterns, and environmental effects.
As a result, chronobiologists have pointed out the need for broad, in-situ data-
collection methods that can record real-time data for a large population spanning
various time zones and geographical locations [84]. Thus, such an ability to detect
and infer behavioral traits of circadian biomarkers in a manner that is low-cost,
reliable, and scalable is necessary to answer fundamental questions about sleep and
circadian rhythms in real-world settings.

The widespread use and deep reach of smartphones in modern life, along
with the rich embedded sensing capabilities of these devices, motivate the use
of smartphones to track behavioral cues related to circadian disruptions in an
affordable, reliable, and unobtrusive way. Similarly identifying this opportunity,
a multitude of recent work has focused on the automatic measurement of sleep
using smartphone sensors. For instance, the systems iSleep [39] and wakeNsmile
[51] use a phone’s microphone to detect sounds and body movement in order
to predict sleep phases, while ApneaApp [75] emits frequency-modulated sound
signals from a phone to detect sleep events through a sonar-like system. Best Effort
Sleep (BES) [18] uses a phone’s light and motion sensors along with information
about application usage to infer a user’s sleep duration, and Toss ‘N’ Turn [66]
collects similar data to classify sleep state and quality.

However, such work typically does not take circadian rhythms into consideration
nor include important endogenous and exogenous factors (e.g., chronotype, light
exposure, social schedules) as part of sleep assessment. Research lacking these
chronobiological underpinnings is thus missing the full picture. Moving towards a
vision of circadian computing that is guided by a deep understanding of the biology
behind sleep and daily behaviors, our research investigates the use of smartphone
data and other types of digital footprints both as a window to gain insights into the
interplay between external factors and internal rhythms and as a means for passively
detecting circadian patterns and disruptions.

In a 97 day study with 9 participants, we demonstrated that smartphone patterns
varied according to chronotype and were reliable in reflecting idiosyncratic sleep
behaviors and circadian misalignments [2]. Specifically, we used smartphone
screen-on/off patterns to detect sleep onset and duration as well as symptoms of
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Fig. 3 Average sleep onset and duration across participants from phone and journal data from
Abdullah et al. [2]. Sleep events coincide with phone non-usage, which can be used to passively
track circadian disruptions (e.g., social jet lag)

sleep deprivation, including the sleep debt that accumulates after undersleeping
on workdays and oversleeping to compensate on free days, as shown in Fig. 3.
We also used this inferred sleep onset and duration to quantify social jet lag
across chronotypes according to the discrepancy between mid-sleep on free days
and workdays. Moreover, we found that smartphone usage patterns could identify
sleep inertia—a transitional period from sleep to a fully awake state that can
be symptomatic of circadian misalignments. Expanding our circadian computing
framework to incorporate social sensor data from phone calls, text-messages, and
social media enabled us to improve the accuracy of detecting sleep events and
interruptions as well as measuring social jet lag [72]. Further analysis, including
of text-based Facebook content, allowed us to also assess the impact of insufficient
sleep on subsequent neurobehavioral functioning with respect to attention, cogni-
tion, and mood—specifically, finding lack of quality sleep to be associated with
increased cyberloafing activity, reduced demonstration of complex thinking, and
more negative mood.

Going beyond sleep modeling, we have also explored relationships between
daily cognitive performance, mobile use, and latent biological traits [3, 73]. In
particular, we focused on the continuous assessment of alertness based on in-situ
data captured using smartphones. Conducting a 40 day study with 20 participants,
we collected alertness data in the wild using the clinically validated Psychomotor
Vigilance Test (PVT) and found variations in alertness patterns between early and
late types, as illustrated in Fig. 4. In addition, we observed that not only chronotype
but Daylight Savings Time, hours slept, and stimulant intake can influence alertness
as well. We also found that mobile application usage can reflect alertness patterns,
chronotype, and sleep-related behaviors, particularly when it comes to the use
of productivity and entertainment oriented applications [73]. Leveraging these
findings, we developed statistical models to passively and automatically infer
alertness from smartphone usage patterns. Our model achieves a root mean square
error (RMSE) of 80:64ms when estimating response time from the PVT test, which
is significantly lower than the 500ms threshold used as a standard indicator of
impaired cognitive ability [3].
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Fig. 4 Relative response time (RRT)—an indicator of alertness based on the Psychomotor
Vigilance Test—of early chronotypes compared to late chronotypes across the day. Blue and red
indicate higher RRT for early and late types, respectively. In the morning, early chronotypes display
much higher alertness than late types, while the opposite is observed later in the day

Our ongoing work continues to explore the use of various forms of personal
data traces in order to better understand, unobtrusively model, and reliably predict
individual biological characteristics and patterns related to circadian rhythms.

Automatically Assessing Stability in Bipolar Disorder

One branch of our circadian computing research has focused on assessing disruption
of the circadian system in the context of mental health—specifically, for the case
of bipolar disorder (BD), which is associated with poor functional and clinical
outcomes. BD has also been linked with high suicide rates [7] and is recognized
as one of the eight leading causes of years lost due to disability [59]. As of 2009,
the direct and indirect costs associated with BD are estimated at $151 billion in the
United States alone [26].

As mentioned before, BD is characterized by circadian disruptions, and a number
of clinical interventions have therefore focused on maintaining circadian stability to
reduce the risk of relapse onset. For example, Interpersonal Social Rhythm Therapy
(IPSRT) is a psychosocial behavioral therapy specifically developed to help patients
with bipolar disorder maintain a stable daily and social rhythm in order to prevent
relapse [33]. IPSRT uses the SRM self-report instrument described earlier and
shown in Fig. 2 to establish and keep track of daily routines, mood, and energy.
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However, this paper-and-pencil based clinical tool poses a number of challenges
for longitudinal self-tracking. In particular, momentary and retrospective recall can
be unreliable, especially during certain stages of the illness. Non-adherence is also a
common problem. As a result, crucial and subtle behavioral cues relevant to bipolar
disorder can often get lost in the process of manual tracking.

The emergence of mobile technologies and aforementioned novel sensing tech-
niques has introduced opportunities for more automated and passive behavioral
monitoring that could help to address these challenges associated with manual
tracking. In the case of bipolar disorder, a smartphone application could facilitate
the completion of the SRM on a device that is likely to be more accessible and more
frequently in a patient’s possession compared to his or her SRM log; and such a
technology could further passively sense behaviors, affective changes, and a range
of other bipolar disorder relevant indicators without requiring a patient’s explicit
input. The recognition of this potential held by technology-driven forms of digital
tracking and intervention led to the development of MoodRhythm [60, 61, 103],
a mobile application designed to track and stabilize daily routines, predict mood
episodes, and provide personalized feedback to users.

In a recent study with MoodRhythm, we used smartphone based sensor data
to automatically predict SRM scores. Specifically, we gave the MoodRhythm app
to seven participants with a confirmed diagnosis of BD for 4 weeks and collected
behavioral (e.g., detected speech, activity, SMS and call logs) and contextual data
(e.g., location). Based on this data, we found that automated sensing can be used to
infer key clinical markers of stability as assessed by SRM scores. Using location,
distance traveled, conversation frequency, and non-stationary duration as features,
our classifiers were able to predict stable (SRM score >D 3:5) and unstable (SRM
score < 3:5) states with high accuracy (precision: 0.85 and recall: 0.86) [1].

Given the importance of maintaining circadian stability as part of effective BD
management, these findings can have a considerable impact on clinical care. First,
our developed method can help overcome issues associated with existing clinical
tools by significantly lowering the user burden of manual tracking. In addition, our
reliable automated sensing can enable capture of much more granular and diverse
data, which can facilitate the development of early-warning systems for relapse
detection. Such systems can also support novel technology-mediated strategies for
providing interventions—enabling preemptive care at the right moment and the right
place.

Beyond bipolar disorder, the SRM has also been used as part of treatment for
a number of other clinical conditions including stroke [13], Parkinson’s disease
[12], myoclonic epilepsy [91], anxiety disorders [93], and unipolar depression [23].
A mobile sensor based method for automatic and passive assessment could thus be
potentially applicable to a wide variety of clinical cases.
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Applications of Circadian Computing

As described, circadian rhythms control numerous biochemical changes that occur
in our bodies over 24 h and consequently have a direct impact on our behavior,
cognition, and emotions. Circadian Computing and the development of technologies
that can both sense and react to our individual circadian variations can significantly
expand the existing role of ubiquitous technology in the domains of sleep, perfor-
mance, health, therapy, and well-being. In particular, the ease of applying our robust
passive sensing approach in an inexpensive, scalable, and unobtrusive manner across
large and geographically diverse populations throws open a range of opportunities
for a class of circadian-aware technology capable of measuring, monitoring, and
maintaining circadian rhythms.

The ability of these technologies to be dynamically aware of variations in our
circadian rhythms can not only facilitate broad scale experimental research that has
the potential to untangle relationships between biological rhythms and behavioral
cues, but it can lead to user-facing “circadian-aware” tools that better accommodate
and support our sleep, daily performance, and overall well-being. Here we discuss
particularly promising application areas.

Cognitive and Physical Performance

Given that our patterns of cognitive and physical performance follow circadian
rhythms, the ability to continuously assess our biological rhythms can lead to
technology that adapts dynamically to the idiosyncratic needs of its users based
on their current or predicted levels of performance.

Scheduling and Activity Management

Since cognitive performance varies across the day, circadian-aware tools can help
improve scheduling of events and tasks based on the cognitive demands of those
activities and the circadian profiles of involved individuals. For example, by taking
chronotype and personal alertness models into account, a circadian-aware calendar
could provide recommendations for when to schedule cognitively-intensive versus
rote tasks, and notifications might alert users when an event is being scheduled at a
non-optimal time.

Systems for collective scheduling could benefit from going beyond mutual
availability to also consider biological rhythms at a particular time of day and
whether participants are likely to be at peak alertness. Similarly, tools to support
organizing group-based activities such as project teams or study sessions could
suggest members who share similar chronotypes and might synchronize more easily.
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Learning and Education

Regarding education contexts specifically, many other relevant aspects of cognitive
performance beyond alertness—including attention, learning, memorization, and
problem solving—also reflect circadian rhythms [9]. For example, research shows
the process of sequence learning is modulated by circadian rhythms [11], and recent
studies have also reported a relationship between circadian phase and academic
performance [25, 49]. At the same time, disruptions in our internal rhythms can
adversely affect our memory and learning capabilities [105] and overall lead to
negative educational outcomes.

Taking biological rhythms of learning into consideration would be particularly
helpful for high school and college students, who are mostly late types given their
ages. However, the early start times of most schooling systems run contrary to their
attentional rhythms, potentially resulting in inefficient memory recall and learning
deficits.

A circadian computing based assessment of academic performance rhythms
could thus both help facilitate large scale chronobiology studies on the biological
suitableness of current high school start times; support educators at both the
institutional or classroom level in making decisions related to the timing of
particular classes, activities, or exams; and help individual university students make
more informed decisions when choosing classes to maximize their own learning.

In addition, and especially applicable considering recent trends towards more
technology-mediated educational approaches in both the physical classroom and
online (e.g., Massive Open Online Courses, or MOOCs), personalized circadian-
aware learning services could tailor delivery of learning tasks, for instance by
factoring in individual chronotype along with chronobiology domain knowledge
like the fact that memory recall is more efficient in the morning while delayed recall
works better in the evening [30].

Accident Prevention

Our cognitive ability to maintain vigilance and alertness has been shown to vary con-
siderably across the day [14]. This circadian trend towards impaired performance
as time goes on can be a serious issue when safety is concerned. Indeed, 20% of
road accidents have been attributed to fatigue and sleepiness [44], with circadian
disruption identified as a significant risk factor [80]. Overall, vehicular accident
patterns display a circadian cycle with major peaks around 2 AM, 6 AM, and 4
PM [44]. Similar patterns have also been noted for industrial accidents [31].

Thus, there is a place for technology capable of assessing and predicting
individual circadian variations in performance, including vigilance and alertness, to
play a significant positive role in preventing such accidents. While a mobile-sensing
methodology dependent on user-interactions may not be applicable, circadian-aware
designs that incorporate alternative passive sensor streams (e.g., acceleration sensors
or steering patterns) to continuously monitor cognitive performance could help to
significantly reduce the risk factors related to vehicle accidents.
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Therapy and Well-Being

Circadian computing can also play a major role in clinical therapy and interventions,
from enhancing the administration of diagnostic testing and medication delivery to
supporting self-care and clinical-management in the context of mental health.

Diagnostic Tests and Medication

Diagnostic test results can be affected by underlying biological rhythms and
therefore need to take a patient’s circadian phase into consideration. For example,
clinical tests for allergies show a time-of-day effect [94], and tests based on blood
pressure monitoring (e.g., hypotension, normotension, and hypertension) similarly
show a circadian pattern [43]. The time of testing is also known to impact the
results of glucose tolerating [110], hematology, coagulation, and hormone [41] tests.
Symptom intensity for a number of medical conditions can also show rhythmic
patterns. Asthma conditions [100], gout [40], gallbladder [83], and peptic ulcer
attacks [68] are all known to worsen during the night; while acute myocardial
infarction, sudden cardiac death [20], stroke [28], and congestive heart failure [108]
peak during the morning.

Moreover, the effect of medications can have markedly different outcome,
depending on the taker’s circadian phase. Medications that are safe and effective for
a given window of circadian phase might be ineffective or even unsafe when applied
during a different biological time [54]. The field of chronotherapeutics focuses
on delivering medications at biologically opportune times by taking circadian
phase, rhythms of disease pathophysiology, and particular characteristics of a given
medication into consideration [95].

By monitoring and predicting patients’ circadian phase and disruptions, circa-
dian computing can play an integral role in chronotherapeutics. Circadian-aware
technologies could not only improve the efficacy of medications by providing
recommendations about delivery times, but they could also enhance the accuracy
of diagnostic tests to assess that efficacy and the associated condition. For example,
depending on the rhythm of the medical condition being tested, such a system can
suggest the best times for attempting to make a diagnosis (e.g., by testing for asthma
conditions during the night).

Mental Health

As mentioned earlier, substantial evidence shows that circadian rhythm disruptions
are associated with a number of neurodegenerative diseases including bipolar
disorder, schizophrenia, and depression. As a result, stabilization of sleep and other
aspects of an individual’s circadian rhythms is an effective management strategy to
reduce the extent and frequency of relapse.



52 S. Abdullah et al.

However, current clinical tools for tracking patients’ circadian rhythms are
typically pen-and-paper based (e.g., the Social Rhythm Metric for bipolar disorder),
which come with known limitations described earlier, plus such forms of manual
journaling for long-term tracking can be particularly challenging for patients with
severe psychiatric disorders. Circadian computing based approaches that use auto-
mated and unobtrusive sensing to track a wide range of behavioral and contextual
patterns make it possible to detect relapse onset in a manner that is less burdensome
for individuals and potentially more accurate, as demonstrated by our recent work
that used passively sensed smartphone data to assess clinically-validated markers of
stability and rhythmicity for individuals with bipolar disorder [1].

By enabling the identification of disruptions, circadian computing can also
facilitate early warning systems for more effective intervention. The result can be
the transformation of mental health care from a reactive to a preemptive practice—
with a focus on detecting relapse even before it happens and giving individuals or
caregivers the sorts of feedback needed to help prevent it.

Fixing a Broken Clock: Sleep and Circadian Interventions

Given the current extent of sleep pathologies, both academic and consumer-
facing industrial researchers have a keen interest in measuring, assessing, and
improving various aspects of individuals’ sleep. However, sleep studies that do not
consider circadian patterns and the effect of zeitgebers are missing half the picture.
Similarly, interventions that only target sleep disturbances may merely be treating
the symptoms of misaligned biological clocks rather than helping to address the root
causes.

We believe a more holistic approach that takes into account individual chrono-
type and sleep-wake patterns would be more effective. Circadian-aware systems
could firstly support individuals in becoming more aware of their underlying
biological rhythms and their resulting idiosyncratic patterns over the day—and in
the process, empower them to make more biologically-informed decisions when it
comes to sleep. Similarly, digital tools could supply interventions that help people
temporally structure meals and exercise in ways that reduce circadian misalignments
[92].

Further, given that many of today’s popular technologies have been associated
with disruptions (e.g., electronic devices for reading, communication, and entertain-
ment) [17], building circadian-awareness of their users directly into these devices
(e.g., so that they could automatically dim or adjust a screen’s white-blue light at
appropriate times of day) could also move people back towards stabilization. As a
final example, circadian-aware home and office environments might adapt lighting
settings to cue light exposure (a key zeitgeber) at opportune moments to realign
“broken clocks”.
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Conclusion

While modern technology, lighting, working conditions, and social conventions
mean that humans no longer lead their daily lives primarily based on the position
of the sun, our internal biological clocks still tick to the 24 h cycles of day and
night. The resulting circadian rhythms these clocks generate impact almost every
neurobehavioral process we experience, including metabolic activity, sleeping, wak-
ing, cognitive and physical performance, and mood. Maintaining stable circadian
rhythms that are synchronized with our external environments and in phase with
these biological functions is therefore key to sustain daily performance, long-
term health, and overall well-being; while consistent disruption of our circadian
system can have serious negative consequences such as an increased risk for cancer,
diabetes, obesity, heart disease, and mental illness.

Given the increasingly widespread incidence of circadian misalignment in
modern society and its significantly negative impact on overall well-being, we see a
pressing need and opportunity for the development of technologies that can assess
and monitor such disruptions in-situ, over long periods of time, and on a global
scale. In this chapter, we described Circadian Computing, a line of work focused
on unobtrusively assessing rhythms, identifying potential disruptions, and helping
to bring about biological stability.

Particularly focusing on the advantages afforded by mobile sensing, this area of
research develops lightweight computational techniques capable of continuous and
passive sensing of daily performance, nightly sleep, and overall circadian stability.
Such assessment strategies can not only support the work of chronobiologists
seeking to more deeply study humans’ innate biological rhythms, but they can
also enable the design and deployment of circadian-aware technologies that can
provide more adaptive, personalized support in a variety of areas including smart
task scheduling, education, clinical therapy, and mental health management—and
ideally, improve everyday life on a broad scale.
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Pilot Study in Mobile Health
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Abstract Micro-randomized trials (MRTs) offer promise for informing the devel-
opment of effective mobile just-in-time adaptive interventions (JITAIs) intended to
support individuals’ health behavior change, but both their novelty and the novelty
of JITAIs introduces new problems in implementation. An understanding of the
practical challenges unique to rolling out MRTs and JITAIs is a prerequisite to valid
empirical tests of such interventions. In this chapter, we relay lessons learned from
the first MRT pilot study of HeartSteps, a JITAI intended to encourage sedentary
adults to increase their physical activity by sending contextually-relevant, actionable
activity suggestions and by supporting activity planning for the following day.
This chapter outlines the lessons our study team learned from the HeartSteps pilot
across four domains: (1) study recruitment and retention; (2) technical challenges
in architecting a just-in-time adaptive intervention; (3) considerations of treatment
delivery unique to JITAIs and MRTs; and (4) participant usage of and reflections on
the HeartSteps study.

Introduction

The recent proliferation of mobile health (mHealth) interventions has enabled the
delivery of interventions to individuals in their natural environments. Although these
interventions hold promise for effectively supporting individuals’ efforts to change
their behavior in order to improve their health, their novelty also presents new
challenges for intervention scientists. For example, intervention scientists must now
determine which intervention components to provide to which individuals. They
must also consider whether intervention components should be made available on
demand (‘pulls’) or, instead, ‘pushed’ to participants at appropriate moments. In the
case of the latter, scientists further have to determine which times are most amenable
to treatment, as well as how much treatment is effective and/or how much treatment
induces disengagement of or burden on participants.
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Just-in-time adaptive interventions (JITAIs) are mobile interventions that can
be composed of both pull as well as push components. The delivery of the push
components is based on decision rules that determine the content of the treatment
as well as when participants should be prompted for treatment and when they
should not be prompted [1]. Using data from real-time sensing devices (e.g., activity
trackers) and/or phone-based data collection, JITAI decision rules can be used to
tailor intervention components and the timing of the delivery of push components
to the precise needs of the individual participant. For example, JITAIs aimed at
increasing physical activity might be able to identify, via sensed data, times of
greatest opportunity for activity and deliver tailored messages encouraging a bout
of activity at these times.

Just as JITAIs enhance the possibility of health improvement through personal-
ization and precision, JITAI development also magnifies challenges facing mHealth
scientists. For one, several scholars have noted that current theories of behavior
change may be inadequate for capturing the complex dynamics and interactivity
of mHealth interventions [2–4]. Additionally, in spite of increasing proliferation
of mHealth studies, efficacy evaluations of individual intervention components
have been limited. In effect, this has kept even simple mHealth interventions as
‘black boxes’, offering only limited information as to how specific intervention
components may work for whom, when, and why [4, 5]. These limitations stymie
the generalizability and dissemination of mHealth studies, while also potentially
driving up costs of study development and implementation by not assessing the
efficacy or mechanism of specific intervention components.

A variety of experimental designs are available for use in optimizing intervention
delivery within the context of a JITAI. Factorial designs [6, 7] can help researchers
decide which intervention components to include for maximal effectiveness at min-
imal cost or burden. Such factorial experiments result in a selection of components
that, together, constitute a maximally effective intervention for most people. Micro-
randomized trials (MRT) [8, 9], on the other hand, can be used to fine-tune the
timing of intervention delivery, optimizing the JITAI decision rules governing who
gets which intervention components, and when.

MRTs allow for individuals to be repeatedly randomized to intervention options
at relevant decision points throughout the study. In a study of smoking cessation, for
example, craving might be evaluated several times during the day; each time an indi-
vidual reports above-average craving, he or she might be randomly assigned to one
of two behavioral interventions. Alternatively, in a weight-loss study, participants
might be randomized at each pre-determined mealtime to either receive a reminder
about their weight loss goals or to receive nothing. MRTs can aid in understanding at
which decision points, and under which contexts, different intervention components
are most effective. MRTs provide data for estimating causal effects of the time-
varying intervention components such as daily goal setting. Random assignment of
participants at decision points to different options of an intervention component or
an intervention vs. no intervention results, on average, in balance across participants
and decision points in terms of unknown factors that may influence outcomes. This
balance in turn provides confidence that observed differences in outcomes across
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treatments can be attributed to differences in treatment effects. Thus MRTs enable
estimation of causal effects of treatment [10]. Furthermore, intervention scientists
can examine whether the causal effects of time-varying intervention components
vary throughout the course of the study.

MRTs also enable scientists to examine the context in which an intervention
component is more or less effective. For example, data from the hypothetical weight
loss study might indicate that, when participants are at work, goal reminders are less
effective when received at dinnertime than those received at breakfast or lunchtime.
This information can be used to further modify decision rules for the next version
of the JITAI, in particular not sending the weight loss reminder at dinnertime if the
participant is still at work. In this way, information from the MRT has informed
delivery of an intervention with maximal effectiveness and minimal burden.

Note in traditional mobile health interventions, everyone is offered the same
options of the intervention components; ideally these options have been shown to
be optimal on average across users. In contrast, the MRT provides data for use in
optimizing a decision rule that would be employed for all users. This means that at
each decision point, different users may receive different options of the intervention
components. The options would be selected, using the decision rule, based on the
user’s current information (sensor and/or self-report data). A further level of per-
sonalization is to personalize the decision rules. Here the goal is to develop decision
rules that are maximally effective for each user and thus the resulting decision
rules may vary by user. For researchers interested in developing personalized JITAI
decision rules, MRTs can be useful for two reasons. First, they allow scientists to
answer key scientific questions about whether and how intervention components
work by testing causal effects; and second, they can provide empirically validated
‘warm start’ decision rules that can then be personalized by on-line data analysis
methods such as reinforcement learning algorithms [11] or systems dynamics-based
methods (adaptive control; see [12]).

But, just as in other mHealth studies, valid insights from MRTs require effective
deployment of MRTs. In this chapter we describe lessons learned from a pilot MRT
of HeartSteps, a JITAI aimed at increasing physical activity amongst sedentary,
working adults.

The Heartsteps Study

The HeartSteps System and Study Design

HeartSteps is an Android application designed to encourage walking. In the initial
version tested in this pilot study, the HeartSteps app interfaced with the Jawbone
Up Move activity tracker to track steps, and it contained two main intervention
components: (1) contextually-tailored suggestions for physical activity, delivered up
to five times a day; and (2) activity planning for the next day. Activity suggestions
draw on the construct of ‘cues to action.’ Cues to action are part of the larger Health
Belief Model [13, 14], which theorizes that the likelihood of engaging in a particular



62 S.N. Smith et al.

healthy behavior is a function of the perceived benefits of that activity, and the
barriers to engaging in that activity [15]. Cues to action are internal or external
triggers that activate readiness and action. In HeartSteps, activity suggestions were
designed to serve as external cues to action, breaking down perceived barriers
by providing individuals with ideas for how they could be active in their current
situation and amplifying perceived benefits of activity. To make them immediately
actionable, suggestions were tailored to time of day, weather, day of week, and
location (home, work, or other), using information passively gathered by the phone.
Two types of suggestions were offered: suggestions to break sedentary behavior
(e.g., the system might send a suggestion to stand up and stretch), and suggestions
to take a walk, generally of between 5 and 20 min. After receiving a suggestion,
participants are asked to acknowledge its receipt by pressing a thumbs up or thumbs
down button, to indicate whether they liked the suggestion, or by pressing the
‘snooze’ button, which indicates they do not want to receive activity suggestions
for the next 4, 8 or 12 h.

The activity planning component helped users to formulate implementation
intentions [16], a self-regulatory strategy that requires specification of when, where,
and how a person will engage in behavior that encourages goal attainment. Imple-
mentation intentions have been shown to improve engagement in health behaviors,
even when self-regulatory resources are low, by automating action initiation [17].

To optimize the decision rules governing the delivery of intervention components
in HeartSteps, we deployed the system in a 6-week MRT. Notably, we had
questions about how frequently and under what circumstances to provide activity
suggestions and planning. Our randomization was designed as follows: for activity
planning (which was a daily activity, with participants asked to plan for the next
day), participants were equally randomized to either receive a prompt for activity
planning or to not receive a prompt for activity planning. In other words, every
evening each participant had a 50% chance of being randomized to plan physical
activity for the next day. As we also had questions as to what type of activity
planning was more effective for encouraging walking, those individuals randomized
to receive activity planning were further randomized, with equal probability, to
receive either ‘structured’ or ‘unstructured’ planning. In unstructured planning,
participants were provided with an empty text box in which to write out (to their
own specification) their activity plan for the following day. In structured planning, to
reduce burden, participants chose their plan from a list of options that included plans
they had previously entered during unstructured planning. Overall, then, each day
participants had a 50% chance of receiving no planning, a 25% chance of receiving
unstructured planning, and a 25% chance of receiving structured planning.

For activity suggestions, participants specified at their intake interview five times
a day during which they would be open to receiving suggestions. These times
occurred during intervals corresponding to morning, lunchtime, mid-afternoon,
evening commute, and after dinner. These periods were selected based on our prior
data about times when individuals have regular opportunities to be active, and, thus,
when they might be open to following an activity suggestion. At each of these five
decision points each day, participants had a 60% chance of receiving a suggestion
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and a 40% chance of not receiving a suggestion. Thus participants were to receive,
on average, three activity suggestions each day. Participants who were randomized
to receive an activity suggestion were further randomized equally to receive either
a message aimed at disrupting sedentary behavior, or going for a walk. Overall, at
each decision point participants had a 40% chance of receiving no message, a 30%
chance of receiving a walking message, and a 30% chance of receiving a message
to disrupt sedentary behavior. As this pilot study was 6 weeks (42 days) in length,
participants were randomized 42 times for daily planning and 210 (42 days � 5 time
points) for activity suggestions.

In addition to receiving suggestions and prompts to plan their activity, partici-
pants were also asked to fill out a short nightly survey, comprised of nine questions
that asked about stress, busyness, and physical activity barriers and facilitators, in
addition to follow-up questions about their responses to activity suggestions. This
survey was pushed to the participant’s lock screen at a user-specified time each
evening. The survey remained available to participants for 1 h. Figure 1 shows
several screenshots from the HeartSteps application, including a sample activity
suggestion, step count graph, and structured planning.

Study Eligibility and Recruitment

Recruitment for the HeartSteps pilot began in July 2015, with a target of 40 partici-
pants. Participants were required to meet the following eligibility requirements:

• 18 years of age or older;
• Working full-time (30 or more hours a week) or a full-time graduate student;
• Currently able to walk without physical discomfort;
• Not currently using an activity tracker; and
• Using an Android 5.0 or higher smartphone, or using another smartphone but

willing to use an Android phone provided by the study.

Participants were required to attend an intake interview at study start, where
they were introduced to the HeartSteps app, the activity tracker and, as applicable,
their study phone. Data transfer support was also provided for participants using
study phones. After 6 weeks, participants were asked to participate in an exit
interview wherein they provided feedback on the overall application and the
two intervention components. In return for their participation, participants could
receive up to $90 in compensation. Between July and December 2015, HeartSteps
enrolled 44 participants. Three participants dropped out within their first week of
participation; a fourth participant stopped responding to the application after losing
their phone. The remaining 40 individuals completed the study, and 39 provided
exit interviews. Table 1 provides demographic information for the 44 enrolled
HeartSteps participants.
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Fig. 1 Screenshots of components of the HeartSteps app
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Table 1 Descriptive statistics for HeartSteps participants (N D 44)

Number Percent (%)

Age under 25 12 27.3
Female 31 70.5
White 26 59.1
Some graduate school or graduate degree 18 40.9
Married or in a domestic partnership 15 34.1
Have children 16 36.4
Used fitness app before HeartSteps 12 27.3
Used activity tracker before HeartSteps 10 22.7
Used personal phone 21 47.7

Challenges Encountered and Lessons Learned, Across Four
Domains

The rest of this chapter describes challenges encountered and lessons learned in our
implementation of the HeartSteps MRT. These lessons cover four domains: study
recruitment, technical setup, treatment decisions, and participant experiences and
reflections. Throughout we clarify when these challenges were related to the MRT
goal of collecting data for use in optimizing JITAI decision rules as opposed to
challenges that might occur with any mHealth study. Study recruitment describes
some of the challenges we faced in enrolling participants in an mHealth study, and
preparing them for designed variability (via the MRT). Technical setup focuses on
lessons we learned in architecting our data collection systems to capture momentary
actions and contexts, and in integrating the worlds of efficient development and
systematic research. We also discuss the testing that we did (and did not do) in
advance, and provide suggestions for improved implementation of MRTs in the
future. The treatment decisions section covers the challenges in considering when
and how ideas of treatment availability and considerations about treatment time
should be integrated into MRTs. Finally, in participant experiences and reflections,
we pull from more than 30 h of exit interviews to describe participant usage of and
reflections on the HeartSteps app.

Study Recruitment

All mHealth studies introduce complexity into the recruitment process, as par-
ticipants must either install applications and tracking systems on their personal
phones or use phones provided by the study. The use of JITAI decision rules to
provide push components or the goal of collecting data for use in forming JITAI
decision rules introduces further complexity, as this requires participants to provide
constant and consistent streams of data, often through supplementary devices like
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an activity tracker. These requirements may complicate recruitment and narrow the
field of people willing to participate in mHealth studies, and researchers should be
thoughtful in selecting recruitment strategies that balance their study participation
as intended.

Demographic Difficulties

Although this initial pilot of HeartSteps was open to adults 18 years of age and older,
our interest was in testing and developing HeartSteps for its eventual population—
patients transitioning out of cardiac rehabilitation. As the average age of first heart
attack is around 65 for men and 72 for women [18], we were specifically interested
in recruiting middle-aged and older adults.

The HeartSteps pilot tried multiple strategies to recruit eligible participants.
Emails to university listservs and fliers around campus and downtown resulted
in significant interest, but largely amongst college students. Of the non-students
who responded to this initial recruitment, technical requirements (discussed in
more detail below) excluded upwards of 50%. Facebook advertising was used next,
targeting adults over 22 years of age, living within 25 miles of our study location.
Facebook ads were also able to make technical requirements more transparent, thus
minimizing inquiries from individuals ineligible for technical reasons. Facebook ads
proved highly successful in recruiting middle-aged and older women to our study,
but had little to no success in recruiting men. As study recruitment wrapped up
and we reached our target number of participants, we tried a final push to recruit
men above college age into our study. Our strategies included reaching out to local
technology startups and targeting fliers at barber shops and golf courses. Ultimately,
however, our study participants ended up younger and more predominantly female
than we would have liked.

Another recruitment challenge emerged with respect to handling medical disclo-
sures. As this initial pilot was intended as a feasibility trial of HeartSteps and not to
evaluate major health outcomes, our Institutional Review Board oversight was not
directed through the medical school. In our eligibility criteria, we only required par-
ticipants to be able to walk without physical discomfort. As we learned through the
recruitment process, however, motivating change in physical activity—especially
amongst older individuals—is a highly personal topic, and strongly intertwined
with physical health experiences. Individuals interested in HeartSteps participation
often felt the need to share their motivations for joining with our research team.
In some cases, these motivations were based around physical activity or weight loss
goals; however, in other cases, and especially amongst older individuals, these goals
were linked to medical conditions or difficulties, for example uncontrolled Type II
diabetes or multiple cardiac events. These disclosures were not prompted by either
our team or study eligibility criteria, yet participants often included this information
in emails, phone messages or phone conversations presumably to encourage their
selection or approval for study participation. Unfortunately as this particular pilot
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did not have medical oversight, we were advised to exclude individuals who made
disclosures of recent or uncontrolled adverse health conditions. These exclusions
had ramifications for study recruitment, in that it further dampened our recruitment
of older participants. More significantly, however, it prevented our study from
reaching some of the participants who could have benefited from the HeartSteps
intervention the most.

Technical Challenges in Recruitment

The most notable challenge encountered during recruitment was the limitation of
using a single operating system (OS) for the HeartSteps pilot MRT. For this initial
study, we opted to develop only for Android OS, with the intention of expanding to
Apple iOS for later versions. This decision—one common in mHealth feasibility
pilot studies—was made based on Android’s development-friendly platform, as
well as their larger overall market share. However, this restriction required study
participants to either currently use an Android 5.0 or higher device, or be willing
to switch to an Android device as their primary phone for the 6-week duration of
the study. The latter option also came with further restrictions, as the study phone
selected was only compatible with two of the four major cellular networks.

Twenty-three of our 44 study participants used study phones. Study phones were
advantageous for a number of reasons. Most notably when the goal is to implement,
investigate and/or optimize JITAI decision rules, they allowed for efficient phone
set up prior to the intake interview; our study team was able to ensure that all
necessary software was installed on study phones to ensure momentary intervention
delivery and data capture. For participants willing to use study phones, we provided
support for transferring any necessary data from the participants’ personal phones
to their study phones at study start, and back again at study end. To do this, we
used a commercial software package called Wondershare MobileTrans (https://
www.wondershare.com/mobile/), which enabled us to transfer to and from study
phones a broad range of participants’ phone data, including contacts, calendars,
text messages, photos, and other media. In order to ensure participants used the
study phone as their primary phone, we also required transfer of the SIM card from
personal phone to study phone.

In several cases, participants received a study phone due to personal usage of
an older version of Android; these users generally reported few issues or problems.
Most study phone users, however, were current iPhone users, and they reported
more difficulties. Further, more than 75% of inquiries about study participation
from iPhone users resulted in refusals after they were informed of the requirement
they switch to Android phones. Training iPhone users to use an Android phone
also significantly increased intake interview time. Although we provided a user
manual covering the study phone, as well as the activity tracker and the HeartSteps
application, intake interviews for iPhone users generally lasted between 60 and
90 min, compared to 45 min for participants with personal phones. Study dropout

https://www.wondershare.com/mobile
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was also higher amongst study phone users. Notably, two older female participants
dropped out of the study within the first few days due entirely to their discomfort
with using the study phone. In other cases, phone utilization data strongly indicated
that participants were not using the study phones as their primary phones, as activity
was limited solely to accessing the HeartSteps application and making phone calls.

Recruitment Lessons Learned

Given the general appeal and broad eligibility criteria of the HeartSteps pilot, our
team naively expected recruitment to be straightforward. In the end, finding our
40 participants took significantly longer—and significantly more effort—than our
team anticipated, and also resulted in a younger and more predominantly female set
of participants than we had intended.

For future studies, we intend to make two significant changes. First, recruitment
will be limited to the OS for which the application is available. Although in
this case it would likely have extended our recruitment time even further, it also
would have saved us a significant amount of time and effort in both trying to
convert iPhone users to study participants, and in training iPhone users to use study
phones. While this lesson may be generally applicable to all mHealth studies, in
the context of MRTs and JITAIs, limiting usage to personal phones also ensures
that app usage, and other phone usage patterns, are a valid representation of in situ
phone usage—a necessary requirement for understanding momentary assessment
and treatment. Although personal phones come with their own issues (discussed in
the next section), these generally paled in comparison to study phone-associated
problems.

In our experience, this need to focus on participants who can run study software
on their personal phones is relatively new. Using study phones has been a standard
research practice since the early days of smartphone-based mHealth [19–21]. But
user expectations have greatly shifted since those days. While previously study
phones were typically much nicer devices than participants’ personal phones (which
were often feature phones) and participants saw study participation as a way to
experience new technology, with respect to phones at least this is no longer the
case. With high penetration of smartphones, potential participants now often have
phones that they really like and want to continue using. Asking them to give up their
own phones, even for a few weeks, has become a barrier to study participation rather
than a facilitator.

A second change will be the introduction of an automated eligibility screener
to aid with recruitment. In retrospect, the decision tree for HeartSteps eligibility—
especially with respect to technical requirements—was relatively complicated. A
basic website would have allowed interested parties to work through a series of
simple questions, screening themselves into or out of the study. Technical questions
could have been kept especially simple (e.g., “Which picture looks more like your
current mobile phone?”), in an effort to broaden appeal to older and potentially
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less technologically savvy individuals. Further, although our future studies will
be supervised by medical IRB, an automated series of questions also restricts
opportunities for unsolicited medical disclosures. Finally, a web-based screener
could aid broadened participation by older individuals, and particularly older males,
for two reasons. On the supply-side, it keeps interested parties from having to craft
an email or make a phone call to express interest in the study. On the demand-side,
it allows the study team to track how advertising efforts are shaping participation
demographics and, as necessary, to select amongst eligible participants to ensure a
more representative group of participants. Again, this lesson may apply to mHealth
studies generally, but it likely more relevant for JITAIs or MRTs that involve the
use of multiple data streams to determine when and which intervention options to
deliver and, therefore, more complicated technical recruitment requirements.

Technical Setup

In this section, we discuss some of the technical challenges and problems that
emerged in designing the technical architecture necessary for delivering a JITAI
that can be tested with an MRT. We first provide an overview of the systems
architecture adopted for HeartSteps, and the apparent advantages and disadvantages
of this setup compared to alternatives. We then discuss our lessons learned with
respect to selecting and updating an OS for development, testing the HeartSteps
app, and general approaches to development. Before we begin however, two key
definitions:

• Agent is the component of a JITAI that decides the content and timing of the
treatment.

• Actuator is the medium through which the agent delivers the intervention. In
HeartSteps, the actuator was the mobile phone.

An Overview of the HeartSteps System Architecture

In designing the initial HeartSteps architecture, our research team considered two
distinct models of system architecture, one that assigned the cloud backend as
the agent, and another that split the agent role between the mobile phone and the
cloud backend. For multiple reasons, we opted for the latter. First, there was a
time lag between the cloud backend sending any message and the phone’s receipt
of that message, of up to 30 min. Although this lag can be minimized with a
constant connection between phone and cloud, concerns over battery drainage made
this approach unrealistic. JITAIs require timely provision of appropriately-tailored
intervention support; delays in delivery carry the risk that users will receive
treatments that are tailored to sensor data that is no longer accurate. Second, a
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Fig. 2 HeartSteps Study system design

phone-based agent also allowed better accommodation of points in time where the
mobile device lacked an internet connection—no WiFi or data cellular connection.
While the cloud would not be able to deliver an activity suggestion, the phone could
still push the appropriate message at the appropriate time. Figure 2 shows the system
diagram of the HeartSteps pilot.

For the pilot, the mobile phone was responsible for determining when to fetch
activity suggestions from the cloud backend. At each user-specified time, the phone
sent information about the participant’s current context (e.g., weather, location,
current activity) and received an appropriate activity suggestion from the cloud. In
anticipation of decision times when the participant might lack an internet connection
at their specified time, we also programmed the phone to fetch a backup activity
suggestion 30 min prior to the time of actual delivery. If the user was randomized
to receive an activity suggestion, yet lacked an internet connection at their specified
message time yet, the backup activity suggestion was delivered.

Advantages and Disadvantages of the HeartSteps Pilot
Architecture

Post-hoc, the software architecture of the HeartSteps pilot offered a number of
advantages for facilitating JITAI and MRT intervention delivery, but also a few
disadvantages. With respect to advantages, the chosen architecture facilitated a fast
and responsive transmission of each participant’s contextual information, as well
as treatment delivery. It also served us well in planning for future iterations of
HeartSteps, wherein a learning algorithm will be implemented, as it allows for easy
integration of a computationally heavy agent. Finally, we were better able detect
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when the participant did not have an internet connection deliver treatment regardless
of internet connection at the precise time of treatment opportunity.

This architecture, however, also presented two significant disadvantages. First,
from a data collection standpoint, when issues affect the phone’s ability to collect
data—for example if the battery is dead or the phone is turned off—the cloud lacks
the ability to capture this specific source of missing data, leading to collusion of this
source of missingness with other sources of missingness (e.g., failure to respond to
an activity suggestion). In the context of an MRT, the ability to identify sources of
missingness can be crucial for correctly estimating causal effects. In contrast, with
the cloud as agent, missingness due to technical issues can be disentangled from
other sources such as user nonresponse. A second disadvantage with our chosen
setup is that the architecture limits the delivery of treatment to a specific decision
time point; there is no flexibility around the user-specified time point. As we discuss
below, future iterations of HeartSteps may opt for decision windows, in lieu of
specific decision times. Such an arrangement would be better accommodated by a
cloud agent, which could regularly check for the phone’s internet connection during
the time window and then select appropriate treatment.

Operating System Update Challenges

Operating system updates caused trouble for our research team, and required
significant program maintenance and debugging throughout the duration of the
study. In the 6 months the HeartSteps study was in the field, our team rolled out
four major updates to our application to remedy deprecation problems resulting
from Android’s OS updates. One update addressed an implementation change in
setting repeating tasks to the system’s alarm manager; a second dealt with the
transfer of our passive activity recognition module to a different client; the third
was the deprecation of HTTP classes, and handling of URL connections; and the
fourth addressed a change in Google Maps API that disrupted participants’ settings
for home and work locations. Although OS updates are relevant to all researchers
assessing mHealth apps, given the necessity of multiple, often frequently-assessed,
data streams for implementing and informing the development of JITAIs, developers
should be especially prepared to monitor for OS updates and push relevant updates
quickly. Failure to do so may interrupt data collection and/or participant treatment,
and jeopardize study integrity. We also recommend collecting frequent data on
the app version used by participants. Even if developers roll out application
updates quickly, adoption will vary across users. Some may update their app
immediately, while other may wait a few days. Having data recorded as to which
version of the app each participant is using at each decision time point can help
project investigators and analysts account for data problems attributable to OS or
application upgrades.
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Testing (and More Testing : : : )

Seasoned developers know that the majority of software development time is
typically spent on debugging and testing. Our development of HeartSteps proved
no different. In particular, it took several months of testing to uncover various
edge cases where our software did not behave correctly, and, in particular, where
we had unexpected missing data. For example, some WiFi connections require
authentication; pending this, full internet access is not granted (though some
capability is provided). A classic case of this occurs at Starbucks locations, where
the user has to agree to the terms and conditions in order to gain full WiFi access.
In such situations, Android still reports that the phone has a network connection,
and HeartSteps would try to upload data to the server, but the data would never
arrive, resulting in missing data. Again, while complications like this are important
to address in any mHealth study, their impact is magnified in the context of MRTs,
where the purpose of the data is to evaluate effectiveness of timely intervention
delivery.

We also recommend testing apps on old and/or outdated phones, particularly with
many other apps (e.g., more than 30) installed. In the HeartSteps pilot, a number
of participant phones were technically eligible (e.g., running Android 5.0C) but
struggled to render our application’s user-interface and execute the functionalities
necessary for administering the study. In particular, prompts to complete activity
planning and nightly questionnaires sometimes did not execute correctly on such
old hardware, leading to missing data. Unfortunately, we did not discover this
problem until after the pilot was well underway. Understanding how a JITAI runs
on older phones can help with determinations of technical eligibility, in addition to
app refinement.

One final testing consideration from our HeartSteps pilot is to actively include
investigators and particularly data analysts in the testing process to ensure that
data streams are being collected as is necessary to inform planned analyses. We
realized early in the development process that the data that need to be collected in
order to make a JITAI behave as intended (i.e., to appropriately deliver momentary
treatments and self-report questionnaires) are much more limited than the data
that are needed to conduct the statistical analyses to estimate proximal effects and
effect moderation for those intervention components. Unlike in traditional efficacy
studies where the chief statistical comparisons are between baseline and post-study
measures, MRTs require rigorous tracking of data about each treatment delivery
or randomization, participants’ responses to each treatment, and the context in
which the treatment was delivered or randomized. Ensuring that all of these data
are correctly collected requires a much closer collaboration between developers and
data analysts than has been the case for the development of other types of health
technologies, including more traditional mHealth applications.
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Technical Lessons Learned

Research mHealth applications increasingly challenge their commercial counter-
parts in terms of functionality and aesthetic appeal; however research apps also have
to meet several further challenges. Developing an app in a scientific setting—and
particularly one that relies on multiple, complex data streams for timely provision of
support, as MRTs and JITAIs do—requires stringent consideration of data collection
reliability and validity, as well as considerations for how to efficiently troubleshoot
and document bugs for studies in the field. Developers should work closely with the
research team to ensure that all data is collected as intended for planned analyses,
as well as any measures relevant to documenting updates, bugs, or other problems
of attendant data collection.

Treatment Delivery

Effective JITAIs require reliable and valid ‘momentary’ information to inform
timely intervention delivery. In particular, considerations as to when to consider
providing a treatment, as well as how treatment delivery relates to different
considerations of time play a central role in informing the construction of an
effective JITAI.

In HeartSteps, participants were randomized to receive activity suggestions
conditional on being ‘available’ to receive it. Availability was determined largely by
the participant’s activity (measured passively by an activity tracker on the phone)
directly prior to the decision time point, or the pre-specified time the participant
had set for message delivery. In particular, participants were deemed ‘unavailable’
if 90 s before a decision time the phone’s activity tracker determined they were
either (1) currently walking/running/cycling; or (2) determined to be in a vehicle
and not currently using their phone (e.g., texting or viewing apps). These criteria
were chosen for both ethical and practical reasons. Offering a suggestion while
the participant is driving may be distracting and increase the risk of an accident.
More subtly, though, attempting to provide an activity suggestion at an inappropriate
time risks damaging the participant’s relationship with the intervention. Instances in
which the application is insufficiently contextually aware may lead to frustration
or, eventually, disengagement. This is discussed in greater detail in subsequent
sections. Individuals also had some control over their availability through the use of
‘snooze’ button, which allowed participants to turn off activity suggestions from the
application for between 1 and 12 h. This feature was included to allow participants
to take a break from receiving messages in the event of high burden.
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Broadening the Definition of Unavailability

Over the course of the trial, we discovered that our a priori definition of unavail-
ability might not have been sufficiently broad. Our focus had been on availability
from the perspective of the participant, but had failed to consider other drivers
of availability. Most notably, when individuals lacked internet connectivity, even
though we could deliver an intervention, coding errors that we made prevented us
from collecting high-quality data related to context and whether an intervention was
delivered. As a result, we broadened the definition of unavailability to include these
times.

This oversight encouraged us to rethink the relationship between availability and
treatment delivery in the context of JITAIs and MRTs. HeartSteps’ narrow defi-
nitions of availability and decision times occasionally led to missed opportunities
to deliver an intervention. The participant-supplied decision times were interpreted
quite rigidly; so, for example, if a participant was driving within 90 s of a treat-
ment occasion, she was considered unavailable and would not be randomized for
treatment until the next occasion. In practice, this may have been overly restrictive.
A lack of availability precisely at the prescribed time does not necessarily indicate
that the participant cannot be treated for several hours; rather, she may become
available a short time later. To combat this, in future we will treat decision points
as windows of time—rather than specific time points—during which participants
might be receptive to treatment. Within a decision time window, the system could
wait until it detects that the participant is available to randomize for treatment.

This switch, however, may come with additional challenges, including increased
responsibility to anticipate and manage participant burden. Waiting until a partic-
ipant is available to deliver an intervention may not necessarily mean she will be
receptive to treatment. If, for instance, the participant were unavailable because she
is currently exercising, delivering a suggestion shortly after she stops exercising
would be inappropriate. Thus, the application would need to be sufficiently aware of
recent physical activity, and adjust availability accordingly. However, allowance of
windows of time for treatment would allow for nuance in accommodating different
causes of unavailability—for example, a treatment could be delivered immediately
upon driving cessation, but perhaps no sooner than 30 min following a bout of
physical activity. Well-designed MRTs may potentially be useful for informing the
duration and boundaries of such treatment windows.

Considerations of Time in HeartSteps

In the context of a JITAI, time becomes an especially important consideration for
treatment delivery. JITAI scholars have written elsewhere about temporal dynamics,
theories of change, and support provision [1, 22–25], as well as the importance of
considering and defining decision points, or occasions when treatment decisions
must be made.
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The HeartSteps pilot included six decision points every day: five times a day
for activity suggestions, and once per day for planning. The five decision points
for activity suggestions were decided based on prior data that illustrated five
popular opportunities for incorporating physical activity into one’s schedule: around
the morning commute, at lunch time, in the mid-afternoon, around the evening
commute, and after dinner. We thus chose to conceptualize time in our study as
it related to opportunities for physical activity, not necessarily a specific minute or
hour. Nonetheless, within these windows of opportunity, we asked participants to
provide us with specific times (to the minute) when they would be most receptive
to receiving an activity suggestion. These times triggered evaluations of availability,
context, and randomization for treatment.

Throughout our study, we discovered several complications with how and when
these decision points were triggered. For one, several participants in our study
traveled across time zones during their study participation. In these instances, either
(a) decision points could be skipped due to time changes—e.g., participant leaves
Central time zone at 11:59 am and arrives in Eastern time zone at 1 pm, thereby
missing their 12 pm decision point; or (b) decision points could be duplicated—
e.g., participant leaves Eastern time zone at 12:30 pm and arrives in Central time
zone at 11:31 am, thus receiving two 12 pm decision points. In the HeartSteps
pilot, these instances rarely occurred, and posed little issue when they did, as our
concern was not in targeting a specific time but rather common opportunities for
increased physical activity, often driven by social norms. Thus our priority was in
ensuring that treatment delivery was consistent with the participant’s experience of
time. Had our determination of decision points been driven instead by a need for
regular, time-sensitive opportunities for treatment, however, these scenarios would
have been more problematic and steps would have needed to be taken to ensure that
regular time intervals were maintained even as phone timestamp data changed.

The HeartSteps pilot made a significant error with respect to time and determina-
tion of decision points, in that we did not account for differences in appropriateness
of treatment occasion between weekdays and weekends. Less than 2 days into our
study, we received an email from a participant inquiring as to how to set activity
suggestion times for the weekend; they had not been thrilled to wake up to an
activity suggestion at 6:30 am on Saturday. Unfortunately we had not designed the
pilot to accommodate different schedules for weekdays and weekends; therefore
our only solution was to encourage the participant to change their programmed
times on Friday night to accommodate their weekend schedule, and then again on
Sunday night for their weekday schedule. Our future studies will provide users with
opportunities to program more than one schedule, thus accommodating the variety
in opportunities for increased physical activity that occurs over the course of a week.

Treatment Lessons Learned

JITAIs and MRTs offer new and varied opportunities for delivery of timely and
appropriate treatment, but these new opportunities require researchers to consider
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and decide as to when treatment is appropriate and how frequently it should be
delivered. Our experiences in defining availability and conceptions of time in the
HeartSteps pilot forced broader consideration of how intervention scientists should
define and accommodate opportunities for treatment, as well as how measurement
of and participant experience of time inform aspects of treatment delivery. Both of
these areas need further theoretical and empirical development.

Participant Experiences and Reflections

As discussed above, participant usage of HeartSteps revealed several unanticipated
challenges. Exit interviews were conducted at study end to better understand these
challenges, as well as to gather specific feedback on the HeartSteps treatment
delivery and user experience. Of participants who were in the study for at least two
days, exit interviews were conducted with all but one participant. Excluding those
who dropped within the first 2 days. Interviews revealed significant heterogeneity in
participant likes, dislikes, and perceived effects of the HeartSteps pilot, yet several
general themes emerged. Here we discuss two lessons learned from HeartSteps
pilot participants that are particularly relevant for MRTs, JITAIs, and mHealth
studies, more generally: usage of other applications during the HeartSteps study,
and reflections on message tailoring.

Use of Other Applications

The HeartSteps pilot required installation of two additional fitness-tracking appli-
cations: the Jawbone UP app, which connected to the activity tracker and provided
step count data; and Google Fit, which served as a backup source of step count data.
To prevent conflating effects of participants looking at these apps in lieu of or in
addition to the HeartSteps app, notifications from both applications were disabled
and participants were not informed of their installation other than through the study
consent form.

Post-study app usage data revealed that the majority of study participants did not
look at the other fitness apps; however a few participants engaged with the UP app
nearly as frequently as the HeartSteps app. One participant, for example, checked
the UP application almost 500 times during the 6-week study—significantly more
often than they engaged with the HeartSteps app. Several participants also discussed
the UP application in their exit interviews, either as a point of comparison for
the HeartSteps app or (somewhat misguidedly) as a part of the intervention they
particularly enjoyed. Google Fit proved a smaller distraction, garnering far fewer
views and no discussion during exit interviews—perhaps due to its relatively limited
set of features or lower level of novelty.
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Building off of other health apps is an efficient way for researchers to build
JITAIs, particularly when they provide a shortcut to validated sensor-based mea-
sures. However, as we learned in this study, study participants are wont to explore
new apps on their phones, which may risk study contamination. mHealth researchers
have a number of options in guarding against this. One option is to dilute the
novelty of the competing apps by co-opting as many features from the other app
as is feasible. In our study, although HeartSteps provided updated daily step counts
and sleep data, it did not allow users to see more than 1 day of data at a time.
Several of the participants who mentioned looking at the UP app in exit interviews
did so in passing whilst discussing the lack of activity history provided by the
HeartSteps app. This approach, however, is only feasible when the features of the
competing app(s) are compatible with those of the study. A second option is to more
explicitly guard against competing app usage by explicitly asking participants to not
access the applications. Our study took a more passive approach, by not explicitly
mentioning apps other than HeartSteps that were installed on participants’ phones,
other than in the study consent forms. In so doing, we missed an opportunity to
clearly explain to study participants why these other apps were being installed as
well as why their cooperation in not using them was essential to the integrity of the
study. A third approach would be to allow for a burn-in period with the tracker and
native app to establish a baseline measure (e.g., in this case, of daily step count) and
measure JITAI effects from this baseline. This approach would effectively control
for potential competing app contamination, but might also risk reducing potential
effect sizes a priori, particularly when the competing app and the research JITAI
target similar behaviors. Finally, for some MRTs and JITAIs, it is possible to define
proximal outcomes of their intervention components in a way that would enable
their detection even if participants are using other apps on their phones that are
intended to support the same health behavior. For instance, in the case of HeartSteps,
we defined the proximal outcome of an activity suggestion as the step count within
the 30 min following the suggestion randomization. This specific outcome should be
detectable, if the HeartSteps suggestions are effective, even if participants’ overall
step count is shaped by their use of other fitness apps, such as Jawbone UP. For
other intervention components, such clean separation of the components’ effects
and those of other support tools may be less feasible, however.

Reflections on Tailoring

Health communication research has shown consistent improvement in salience
and effectiveness of messages that are tailored, or individualized, to participants’
characteristics, values, and goals [26–28]. Passive detection of context allows for
even more sophisticated tailoring of message delivery by making the messages
more immediately actionable—a promising and innovative advantage of mHealth
interventions. As perceived opportunities for physical activity vary by contextual
factors like time, location, and weather [29–31], for the HeartSteps pilot we
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sought to provide activity suggestions that were tailored so as to be actionable
in the participant’s immediate context. We selected four passively assessed mea-
sures to inform our tailoring: location (home, work or elsewhere); time of day;
weekday/weekend; and weather (good weather/bad weather/snow). All told, we
tailored activity suggestions to fit 90 unique contexts.

To send contextually appropriate suggestions, HeartSteps drew from a library
containing more than 550 unique activity suggestions. At each of the five daily
treatment occasions for activity suggestions, prior to randomization, information
on individual context was assessed and a message was selected at random from
the bucket of messages appropriate for that combination of contexts. Messages
from a bucket were not repeated until all messages in that bucket were exhausted.
Approximately 30 general messages, appropriate for all contexts, were also included
in the message library.

Exit interviews asked participants to reflect on the message tailoring, particularly
with respect to the appropriateness of activity suggestions for their immediate
context. In general participants noted that messages were actionable and had
generally fit with their present context, but more than half of participants were able
to cite an example of a misfit suggestion—for example, a suggestion to go outside
for a walk when it was raining, or a message about cleaning the house while at
the office. Notably, participants were much more likely to recall a message that
did not fit the context than to remember messages that fit the context very well.
Although this potential downside has been discussed in prior literature [32], the
mismatched tailoring is potentially more damaging in the context of a JITAI as
it may undermine participants’ trust in the mobile intervention. Particularly when
tailoring parameters are measured passively—as the four dimensions of context
were in HeartSteps—participants are not aware as to which information is being
used and how it is being measured. As such, they also aren’t as knowledgeable of—
and potentially sympathetic to—sources of error. Researchers designing JITAIs may
consider incorporating validity checks on passive sources of tailoring. In HeartSteps,
for example, we often followed up on participant ratings (thumbs up or thumbs
down) of individual activity suggestions with a question in the nightly survey asking
for further information as to why a particular message received a particular rating.
For suggestions that were rated ‘thumbs down,’ one option was to indicate that the
message was not appropriate for the delivered context. We could have taken this a
step further by asking participants who selected this option to provide more specific
information as to what was incorrect, which we then could have used to update
our decision rules regarding activity suggestion delivery. Alternatively, intermittent
messages asking participants to validate passively measured context would have
added little burden and potentially improved tailored message delivery.

Several participants acknowledged this ‘double tension’ of tailoring within
HeartSteps—i.e., that tailoring the activity suggestions made them more actionable
and thus more likely to be acted upon, but also risked breaching the participants’
trust in the app if mistargeted messages were delivered. One participant described
this succinctly, noting that their relationship with HeartSteps seemed personal and
“intimate,” and as such, “If you tell me to exercise after I [have] just exercised, I get
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angry.” In short, HeartSteps’ success in attaining credibility in correctly detecting
context and tailoring activity suggestions also furthered the potential damage done
by an ill-tailored message.

In spite of this, however, the majority of participants asked for more tailoring of
future activity suggestions. In some cases, their requests were for more targeted
messages, particularly with respect to type of physical activity. The HeartSteps
pilot focused all active messages on walking—a behavior we knew all participants
would be capable of in any context. Most participants, though, noted that they
wanted more variety in types of activity, and suggested collecting information about
participant activity preferences and incorporating those preferences into the tailored
suggestions. Other participants suggested more dynamic tailoring based on more
specific location (e.g., “X coffee shop is ten minutes from here. Why don’t you
walk over and get your morning coffee there?”) or using information embedded in
participant calendars, email or social networking sites to suggest times or locations
for increased physical activity.

Participant Lessons Learned

Participant usage of and reflections about HeartSteps illuminated several important
considerations for our research team in designing our next version. First, we were
reminded that effective JITAIs require more personal information and access than
typical interventions. This increased access offers new opportunities for timely
provision of support, but also for participant disruption. Participants will, for
example, look at any and all new apps installed on their phone—even if they’re
not explicitly told of them. More importantly, and relevant generally to mHealth
apps, is that apps that purport knowledge of participants and participants’ context—
for example, by offering tailored content—might be more effective and appear to
be perceived as more intimate, but are also more vulnerable to losing credibility if
misfires occur. When tailoring content, researchers should consider up front how
and when to validate that participants’ context is being evaluated correctly and
informing content correctly; significant error in either step may lead to suboptimal
intervention delivery and/or reduced participant engagement. While prior work [20]
found that incorrect inferences of participants’ activities degraded participants’ trust
in the system, our study showed that this same dynamic is present—potentially
even more acutely—with regard to incorrect contextual tailoring of treatment. How
to deal with uncertainty in these types of mHealth systems is an open question,
however. Inference based on sensor data will never be perfect, always leaving open
a possibility that the system would do or record a wrong thing. Our results show that
in order to keep users engaged with and trusting the system, these inevitable errors
of inference need to be dealt with explicitly. Developing effective ways to do that is
an important challenge for future work in mHealth.



80 S.N. Smith et al.

Conclusion

New technologies offer new opportunities for intervention scientists to offer support
and encourage behavioral change. In particular, the advent of sensors in tandem with
the JITAI framework allows scientists to push interventions to participants in their
natural environments. However, these new technologies also require intervention
scientists to answer new, and newly specific, questions about when and where to
provide intervention support, as well as how to balance participant treatment with
participant engagement and burden.

The HeartSteps pilot was designed as an MRT to optimize a JITAI for increasing
physical activity. As an MRT, HeartSteps randomized participants multiple times
each day to receive two different intervention components: contextually tailored
activity suggestions and evening planning. This MRT—and other similar study
designs—hold significant potential for informing not only JITAIs, but also new
dynamic behavioral theories of change and empirical understandings of how to
use contextual and environmental data to inform treatment for heterogeneous
populations with heterogeneous needs.

Future papers on HeartSteps will illustrate our contributions to these ideas. This
chapter, however, serves a simpler task—to discuss the challenges encountered and
lessons learned in implementing an MRT. These challenges and lessons learned,
coming from domains of recruitment, technical challenges, treatment decisions and
participant experiences, have helped to inform our next version of HeartSteps,
but more broadly have allowed our team to better understand the complexities
endemic to delivering adaptive, individualized treatment to a variety of individuals
in their natural environments, and the empirical and theoretical challenges these
complexities present.
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Abstract The more we as mHealth researchers get involved in dissemination,
the more important it becomes to engage the community in that activity not only
during needs assessment, solution development, and testing, but also to position
that research for later dissemination. Community-based participatory research is
desperately needed to maximize the impact of innovations.

The number of adults age 65 and older in the US was 45 million in 2013 and will
approach 100 million by 2060. The cost of institutional care for older adults was
estimated to be $134 billion in 2011, which is 1.3% of gross domestic product, a
cost expected to rise—because of the aging population—to between 1.9 and 3.3% of
gross domestic product by 2050, barring innovations that extend the length of time
that older adults can live on their own. The mission of our Active Aging Research
Center is to develop, test, and disseminate mHealth technologies that lengthen the
time that older adults can live independently.

Our Center used Asset-Based Community Development (ABCD) to learn about
the assets and challenges of older adults in their communities, with the explicit goal
of building a technology that used those assets to address community challenges
and lay the groundwork for dissemination of the technology. This chapter describes
ABCD as we used it and reports on what we learned from and about using ABCD
in a community-based research project, lessons that may benefit other researchers
who are developing community-based mHealth technologies.
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Introduction

The number of adults age 65 and older in the US will increase from 40.3 million in
2010 to nearly 100 million in 2060 [1]. In the current model of care, at least 70% of
people over 65 will need long-term care at some point [2], which will be provided
at home (the location preferred by the vast majority of older adults [3]) or in an
assisted living facility or nursing home. The cost of institutional care for those 65
and older was estimated to be $134 billion in 2011 [4], which accounts for 1.3% of
gross domestic product, a cost expected to rise—because of the aging population—
to between 1.9 and 3.3% of gross domestic product by 2050, barring innovations
that extend the length of time that older adults can live independently [4].

In 2010, the federal Agency for Healthcare Research and Quality (AHRQ)
began funding our Active Aging Research Center to develop technology to help
older adults live longer independently. The Active Aging Research Center is
housed at the Center for Health Enhancement Systems Studies (the Center) at
the University of Wisconsin—Madison. The AARC involves researchers from
13 disciplines, including systems engineering, communication science, computer
science, geriatrics, psychology, nursing, and adult education. The Center has been
building and testing information and communication technologies for patients and
their families since the 1970s. Technologies have been created for asthma; HIV;
addiction and other chronic conditions; and cancers of the breast, lung, colon, and
prostate and those requiring bone marrow transplants in pediatric patients. The
technologies have been the subject of numerous randomized trials [5–11]. The
asthma, addiction, and colon cancer programs use smartphones as the means of
delivery. Other programs employ laptops and place-based sensors.

The goal of the Active Aging Research Center is to develop technology for
older adults by working closely with older adults themselves as well as their
informal caregivers, healthcare professionals, community members, and others; test
the technology in a large randomized clinical trial; and, if the technology proves
to be effective, disseminate it first within Wisconsin and then nationally. The new
technology is called Elder Tree. Recruitment for the 18-month randomized trial of
Elder Tree began in November 2013 and ended in May 2015.

Elder Tree is an information and communication technology designed to address
the issues that often cause older adults to move from their homes into assisted
living facilities or nursing homes: isolation and loneliness, transportation, caregiver
burnout, medication management, and falls. The 3-min. video at this link shows
what Elder Tree does: https://www.youtube.com/watch?v=YPV2-eXyUpE. Elder
Tree is safe, has no advertising, and is free for older adults to use. Elder Tree services
include:

https://www.youtube.com/watch?v=YPV2-eXyUpE
https://www.youtube.com/watch?v=YPV2-eXyUpE
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Conversations

• Public Discussion: Members can chat with others from around the state, within
their county, or in custom groups (e.g., a group of widows who attend the same
church).

• Private Messages: Members can send private messages to each other within Elder
Tree.

• Family and Friends: Members can invite family and friends outside of Elder Tree
to communicate with them. Elder Tree automatically delivers the message to the
email address of the family or friend. Family and friends cannot participate in the
public discussion or use other services intended for Elder Tree members.

Information

• Local Resources: Members are given easy access to their local Aging and
Disability Resource Center and other helpful local organizations.

• Bulletin Board: Members are able to post announcements, events, and recipes
and sort by county to find activities in their area.

• Active Living Tips: Members can access expert tips on healthy living such as
preventing falls, caregiving, driving, health, and wellness. Members can add their
own comments to the information for a rich, peer-to-peer learning platform.

• Map Your Trip: Members can enter a destination and Elder Tree creates a
driving map that minimizes left-hand turns, which are when the majority of
auto accidents happen. With an in-car sensor, members’ driving habits can be
monitored to detect speed, swerving, and rapid braking. Older adults receive
feedback on their driving as well as advice on alternate routes and timing that
promote safer drives.

Personal

• Member Directory: The only information shared about members is the anony-
mous username and areas of interest they provided. Online safety and security
is our first priority in Elder Tree. The member directory is a good place to find
others with a common interest and start up a friendly conversation.

• Games: Elder Tree employs a variety of ice-breaker games to increase interaction
among older adults. For instance, members sequentially add four words to create
stories. Other computer-based games distract older adults during periods of
loneliness or anxiety.

• To-Do List: Members can create a to-do list similar to one they may post on
their refrigerator. They can tell Elder Tree to remind them to do something daily,
weekly, or monthly. Many use this feature as a reminder to take their medications.

• My Bookmarks: When members find an interesting discussion or information
post they want to easily find at a later date, they can save it in My Bookmarks for
easy access.

• My Health Tracker: Members can use this feature to keep track of their weight,
exercise, pain, blood pressure, and sleep. They can also choose to track any of 18
other health measures depending on their chronic conditions. Elder Tree enters



86 D.H. Gustafson et al.

the information into a simple line chart to show how the member is doing over
time. Members say that this is a helpful tool for managing their chronic health
conditions.

A current iteration of Elder Tree includes a new service, a Clinician Report. Data
entered into Elder Tree is providing information important to clinicians about a
patient’s health status, though clinicians tend to be already burdened by electronic
health record data and decision supports. To minimize burden, the clinical team sets
thresholds for each datum collected: e.g., Alert me immediately if this patient has
not had a bowel movement in the last 3 days. In over-threshold situations, a human
calls a designated member of the clinical team to alert the team. Clinicians can also
monitor changes in health status over time.

Elder Tree is being tested in a large randomized trial with over 400 older adults
in three areas of Wisconsin: urban Milwaukee County, suburban Waukesha County,
and four rural counties in southwestern Wisconsin (Richland, Sauk, Juneau, and
Crawford). Dissemination has begun to make Elder Tree available eventually in all
of Wisconsin’s 72 counties and the Oneida Indian nation. Thirty-five counties are
taking part so far. The following are a few comments from Elder Tree members:

• “Elder Tree has given me back a sense of belonging.”—Milwaukee member
• “It has become a major part of my life.”—Waukesha member
• “Since my husband died, I rarely get out of my house and Elder Tree has saved

me.”–Richland center member.

In developing Elder Tree, the Agency for Healthcare Research and Quality
specified that grantees use community-based participatory research, a requirement
in an increasing number of National Institutes of Health funding applications
[12]. The rationale was that translating knowledge from conventional research
into effective practice for patients takes too long [13] and that population-based
disparities persist in health outcomes [1]. Hence the need for “collaboration with
those affected by the issue being studied, for purposes of education and taking action
or effecting change.” [14] A systematic review [15] identified major advances in the
understanding and practice of community-based participatory research in the pre-
vious decade, as well as such continuing challenges such as the generalizability of
findings and dissatisfaction common among community members with researchers
who “parachute in.” [13] Our project plans included using a specific participatory
strategy—Asset-Based Community Development (ABCD)—to learn about older
adults and their communities and lay the groundwork for dissemination.

The ABCD Framework

Origin and Relationship to a Research Project. ABCD is a strengths-based,
bottom-up approach to building community capacity. The term “capacity” is at
the heart of the struggles we had with ABCD in a research context. We were
less interested in building capacity to improve in general than in using the ABCD
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method to develop and disseminate a technological solution to address one issue,
the challenges of older adults in the community. Once we used ABCD to help us
develop and disseminate our technology for older adults, we were funded to move
on to disseminate Elder Tree in other settings but not to continue to support the
improvement capacity that we had developed in the original three communities
in the study. This difference in expectations may have been subtle but it became
important to all of us.

ABCD arose as a response to the common approach to community development
that its developers observed: focusing on addressing a community’s needs with
governmental and non-governmental services, while often ignoring the assets of
the community [16–18]. The asset-based approach (and the part that intrigued
us) instead focuses on identifying and tapping into a community’s assets at
three levels—individuals, associations (e.g., churches, Masons, bridge clubs), and
informal networks. Kretzmann and McKnight laid out three characteristics of the
ABCD approach: it is asset-based, internally focused (i.e., ABCD concentrates
on the agenda and capacities of local residents, associations, and institutions),
and relationship driven (i.e., community developers must constantly build and
rebuild relationships between local residents, associations, and institutions) [17].
ABCD focuses on assets but also includes identifying “challenges.” The approach
also focuses more on associations than institutions, with the goal of building the
community by using existing relationships (formal and informal), such as churches
and informal groups, rather than government programs and business organizations,
such as banks.

We have always believed that the development of high-quality information and
communication technology required a deep understanding of the people we were
trying to serve [19]. But our focus had been on meeting needs. We were intrigued
by ABCD’s focus on the assets as well as the needs of older adults. Would this
emphasis yield insights that would help us develop even more effective technology?
And would ABCD speed our ability to disseminate the resulting product? We
expected ABCD to identify assets that could then be made available through the
technology for older adults and their families—e.g., ABCD might identify citizens
with vehicles who would be willing to participate in a ride-sharing program that
would be managed through the technology. By involving older adults from each
community early in the 5-year project, we also expected to engage key stakeholders
to promote the sustainability and dissemination of the technology.

While we were enthusiastic about ABCD, we were also, without knowing it,
placing a constraint on one of its key principles. ABCD focuses on the agenda
and capacities of local residents, associations, and institutions. We came to the
communities with the requirement from AHRQ (which we embraced) that our
solution(s) be technological. This paper attempts to present an unvarnished report
on the successes and challenges of using participatory strategies in this context.

Staffing of ABCD Work. A senior staff member at our Center with extensive
experience in using ABCD was the liaison between our research team and the
three communities where residents helped us develop Elder Tree and where the
system is now being tested. This staff member also guided the implementation of
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ABCD in each county. A junior researcher worked with the ABCD expert, as did
another researcher from our Center who functioned as the evaluator by observing
meetings, taking notes, and sharing information with other team members and in the
communities. In each community, a local county coordinator was hired with funds
from the grant. Each of the county coordinators worked out of the local Aging and
Disability Resource Center (these are quasi-governmental agencies based in most
of Wisconsin’s 72 counties, with the charge to identify needs of older adults and
connect the adults to resources that could meet those needs). With coaching from the
research team, the county coordinators led the ABCD efforts in their communities.
The coordinators worked with other local leaders to convene community meetings,
form strategy teams of local citizens, and work with citizens to define assets and
challenges. It was assumed that the leadership of ABCD would shift at the end of
1 year from the county coordinators to local citizens. As in other applications of
ABCD, this goal of shifting leadership proved to be another challenge.

Steps in the ABCD work. ABCD work takes place in four steps. The following
defines the steps and describes how they were generally adapted for use in
developing Elder Tree.

1. Organize ABCD teams in each community and develop a plan. This step
begins with forming a strategy team of about 10 citizens in each community.
These citizens come from local agencies, businesses, and organizations. In this
project, local professionals from the Aging and Disability Resource Centers
and/or other organizations dedicated to serving older adults met with our ABCD
research team to identify key community residents who might be good members
of a strategy team. These community members were invited to a subsequent
gathering to learn about ABCD. Strategy team members emerged from this
second meeting. The strategy team worked with the ABCD liaison and his team
to learn about ABCD, clarify the primary aim of the ABCD work, and develop a
plan to create an inventory of community assets and challenges related to older
adults living in the community.

2. Create an inventory of community assets and challenges. Each strategy team
member invited several volunteers to conduct interviews with their friends and
neighbors to document the assets, challenges, and aspirations of older adults
in the community and their informal caregivers. Then the team analyzed and
interpreted the inventory data and reported the findings back to the community
in a celebration.

3. Use the assets to improve the community. In this step of ABCD framework,
volunteers plan and carry out initiatives related to the findings from step 2. In
our project, community volunteers and project staff used the information from
step 2 to inform the development and usability of the technology being built.
This focus on technology was a deviation from traditional uses of ABCD that,
while mandated in our grant, created discomfort among those familiar with the
ABCD process. In a typical ABCD initiative, the local community selects and
implements initiatives that use local assets to meet challenges. For instance,
residents may have many used books in their homes. These books could be used
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to reduce boredom and loneliness by making them freely available to anyone who
wants them. Wisconsin is the birthplace of the Little Free Libraries now found
on streets throughout the world. This is an example of a solution coming from
the community, not from the outside. We required that, while the community
had wide latitude in describing the technology, whatever we developed had to be
based on technology.

We should have but did not realize at the start that limiting innovations to those
that were technology based violated a fundamental principle of ABCD. While the
research team tried to be clear about this restriction from the beginning, we were
unsuccessful in communicating it to the ABCD experts. They (understandably)
wanted to focus on solutions identified by the community regardless of whether
they involved technology. We should have conducted much more intensive
dialogue at the beginning to understand and address these differences.

4. Sustain the inventory of assets and disseminate the approach. In this last step of
the ABCD process, community stakeholders develop a plan to keep the inventory
of assets current. In this project, the goal was to sustain not just the inventory of
assets (perhaps through the technology), but also make ABCD available through
the technology for other communities to use. This didn’t work out for reasons
that now seem obvious. ABCD takes a long time because a key goal is to build
and maintain relationships in the community. It can be a very labor-intensive
process with (ideally) much of the labor coming from the community. Our goal as
researchers was to develop a participatory process that could easily and quickly
move from one county to another, setting the stage for tailoring and disseminating
technology. We needed the relationships that ABCD builds, but could not afford
the time and resources needed to build them in the ABCD way.

Results of Using ABCD

The three communities implemented ABCD in various ways. In the rural com-
munity, about 25 citizens were involved in planning and executing the ABCD
effort. This team interviewed more than 100 citizens, analyzed the data, and held a
celebration attended by about 150 citizens to present the results. This ABCD group
addressed the challenges they identified with several community initiatives, such
as installing Little Free Libraries and hosting a tech expo at which middle-school
students taught older adults about using technology. About 15 months after the
grant-funded ABCD work ended, some initiatives had continued or evolved (such as
installing Little Free Libraries more widely), but most—except those that produced
technology developments—have ended. These events point out an important advan-
tage of technology. Technology does require some maintenance, but it can be more
widely disseminated and more easily (and we believe more effectively) maintained
than a process built primarily on labor-intensive ways of building and maintaining
relationships. For instance, Elder Tree has a very active social media program in
which several hundred older adults are now regularly interacting. The technology
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is facilitating the building and maintaining of relationships. In fact, it is extending
these relationships by including homebound older adults who would not be able to
participate by getting out physically into the community. This is important because
most other efforts involve more ambulatory older adults.

In the suburban community, an estimated 20 to 25 citizens took part in planning,
organizing, and conducting the 100 ABCD interviews. More than 100 citizens
attended the celebration to present the assets and challenges in this community.
Two key findings from the interviews were the desire among older adults to improve
transportation and to use technology to reduce social isolation. (As discussed below,
these two priorities were consistently among the top three in each county). Although
the ABCD portion of our work has ended, some citizens in this community became
keenly interested in using technology to help older adults, especially isolated older
adults, and these citizens continue to meet as an advisory board for expanded
dissemination of the technology to other counties in Wisconsin.

In the urban community, leaders of several organizations that serve older adults
in the county welcomed ABCD because it built upon a previous ABCD effort in the
county. These leaders selected a neighborhood with changing demographics and
scarce resources for older adults as the starting point for ABCD in this county.
A strategy team was formed, consisting of residents of that neighborhood. These
citizens spearheaded the effort to identify assets and challenges through interviews,
which culminated in a celebration to present the assets attended by more than 80
people. But by the time the celebration took place, the priorities identified locally
(e.g., more face-to-face contact among older adults in community settings) and the
requirements of continued ABCD work in the neighborhood conflicted with the
goal of the research (to use technological solutions) and the schedule of project
activities. ABCD funding ended sooner than residents wanted. The ABCD process
did not continue in this community although the technology development and testing
process did.

In all the communities, the ABCD process effectively ended when grant support
for it ended, although some initiatives that began in the ABCD work in two of the
three communities continue in some form. In all three communities, some tension
developed when the community-driven agenda of the ABCD work met the research
agenda. (See point 3 under “Lessons Learned” below.)

One of the surprises from the ABCD assessments was the uniformity of
challenges in all three areas. By far the most important challenges were loneliness,
lack of knowledge of community activities that might interest older adults, and
lack of ways to get to community activities. Many professionals had anticipated
that the big needs among older adults in the community would be falls prevention,
medication management, and pain control. But these issues rarely came up among
older adults. Of course both sets of challenges are important. Given our commitment
to meet our users’ challenges as they saw them, much of our focus turned to reducing
loneliness and improving transportation to community events. We also developed
initiatives around safe driving and falls prevention.



The Use of Asset-Based Community Development in a Research Project Aimed. . . 91

In one very important initiative early in the project, the 7-person technology team
of programmers, graphic artists, and database developers started volunteering at
senior centers, conducting classes about using technology such as Facebook 101
and Skype. This gave the tech team a better understanding of the challenges older
adults face in learning about and using technology. The tech team also continually
involved older adults throughout the development process [20]. After assets and
challenges were identified in each community, the tech team, along with researchers
and administrative staff, visited nearly 100 older adults in their homes in the urban,
suburban, and rural areas to get their reactions to paper prototypes and later to the
actual technology. The tech team revised the system according to what they learned.
For instance, initially we had intended to build Elder Tree for smartphones and
tablets, but many older adults were not comfortable with the small screen of even
a large smartphone or tablet. The tech team’s visits with older adults also revealed
that a large majority of frail older adults found it difficult to use a mouse. They
indicated they would not use a computer that required using one. Hence we decided
to use a laptop with a 1500 touchscreen. The tech team also learned of the widespread
distrust of Facebook and all software that included advertisements. This distrust
most likely arises from a fear of scams. As one person noted, they wanted a walled
garden where only others who were vetted could see what they wrote. This need
for privacy remained even after the tech team showed older adults how the use of
passwords and fake names protected their privacy. That same need for privacy arose
in the near disdain we found for the idea of using sensors in the home to monitor
movement and well-being. Older adults did not want to be spied upon. Over time
we were able to partially overcome some of the hesitation—for instance, caregivers
of Alzheimer’s patients, even if they were older themselves, became willing to
allow sensors in the home. But we did not push such services. Our tech team also
discovered the need to set aside many of the conventions that are now common in
interface design. Older adults, for instance, were uncomfortable with rollovers and
complex dashboard designs. Simplicity became a key guide in all of our work.

The relationships established between the tech team and older adults played a
fundamentally important role in the ultimate success of the project [20] and made
Elder Tree very easy to use even though it had many services. The home page is
shown below, followed by a screen showing the menu within the Conversations
service. The overall design is consistent throughout. For example, the upper right
corner has a button that takes the older adult to a brief training video. This video
is specific to the service the older adult is in. The home page video is primarily
motivational; the videos for specific services have some motivational aspects that
address how the service can be used and how it can help, but mostly they guide the
older adult on how best to use the service.
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Lessons Learned

1. We thought we knew a lot more about older adult challenges than we
did. We expected ABCD to make us aware of specific community assets (such
as physical community bulletin boards) that we could build upon and make
available through the technology. Instead, we learned about more generic assets.
We realize now that we did not do a good job of training volunteers about the
level of specificity and the level of documentation we needed; it’s the details
that often give us insight. The more general information we gathered through
interviews still informed the development of Elder Tree in important ways. For
instance, as mentioned above, older adults consistently raised the same three
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challenges in their lives—isolation and loneliness, how to know about and take
advantage of community activities and resources, and transportation to get to
those activities—and our understanding of the importance of these challenges
guided our work. But we would have learned more if we had properly trained
the older adult volunteers on how to interview their peers. At the same time
that ABCD was underway, we were making other efforts to understand older
adults who would be using the system, and these produced unexpected insights.
By reading the literature we had some idea of what we would learn. But it
was mainly the face-to-face conversations we had with older adults individually
and in groups that taught us the details that made a difference. For example,
isolation is important but we learned that loneliness can occur with and without
isolation, and the fear of being scammed (by both family and strangers) was
a source of much loneliness. Transportation is a challenge, but older adults
can usually get to appointments. They struggle, though, to find transportation
to concerts and other community events that make life enjoyable. Medication
management is important, but missed medications are not compared to just five
medications that are responsible for 66% of all medication-related readmissions
and overdose among older adults. As a result of ABCD and related efforts to
understand our users, we learned that older adults not only could help one another
solve their problems but very much wanted to, and that encouraging this social
support among older adults would be one of the most valuable services in the
technology. As a result, discussion groups and wiki-like discussions of expert-
provided tips are prominent parts of Elder Tree. The wiki format has enabled
users to contribute to and comment on the expert-generated information about
transportation, falls, and other topics so that older adults create as well as use the
information and services.

2. ABCD increased community engagement and may benefit dissemination.
Involving older adults and key stakeholders in the ABCD process and the tech-
nology development not only increased awareness of the emerging technology; it
also seems to have eased recruitment for the randomized trial of the technology.
One county coordinator reported that he was able to recruit older adults for the
trial of Elder Tree more easily in the community that used ABCD than in the
neighboring communities that did not because the ABCD process made him
more widely known and trusted in that community. Eventually, this engagement
might also benefit dissemination. In fact, the ABCD group in the suburban
community became so enthusiastic about the promise of technology to reduce
isolation among older adults that they asked for Elder Tree to be installed in
their community while the randomized trial is taking place in other parts of
the county. This is being done, even though Elder Tree has not been proven to
work yet. This installation is functioning as a kind of pilot test to help us learn
about disseminating the technology to other communities. The ABCD process
also allowed us to link into other associations more easily. For instance, in the
suburban community again, the leader of the largest church led the local advisory
group. Through this connection, we were able to integrate Elder Tree with that
church’s widows’ group that met monthly but used Elder Tree to maintain contact
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between meetings. Nonetheless, the labor intensive requirements of ABCD
make it impractical, so another way needs to be developed to raise community
awareness and support.

3. ABCD and a research project have different agendas that must be discussed
and reconciled throughout the project. By design, ABCD is a bottom-up,
community-driven effort. Citizens who work on an ABCD effort set the agenda
for the work. Their ownership of the questions and the answers and their
involvement in the community are essential to ABCD as a community devel-
opment strategy. This focus is a defining characteristic of ABCD. By contrast, a
grant-funded research project is driven by the research project’s agenda, plans,
schedule, and budget. Tension arose when the goals and schedule of the ABCD
group differed from those of the researchers, a challenge noted in the community-
based participatory research literature [21]. For example, the suburban and
urban communities that used ABCD started their work later than the rural
community. In both of these communities, some citizens wanted funding from
the research project to continue after research priorities dictated that funding
for ABCD end. Another problem arose because of the different schedules of
community members and researchers. Through ABCD, we deliberately included
community members early in the 5-year project so their input would deeply
influence the technology. As the project moved forward, we included other older
adults (those we met from the tech team’s volunteer work and other efforts we
made) in reviewing prototypes of the technology. Hence it took time for the
first group’s input to appear in the technology, and this gap between the initial
involvement of community members and their seeing results sometimes tested
the patience of community members. Starting the involvement of community
members later would have reduced this gap but made their input less fundamental
to development. In the end almost 600 older adults were involved in either the
initial asset/challenge assessment or in the technology development phase.

We should have had a much better communication process to keep the early
group up-to-date on our progress and their role in the emerging technology. Com-
municating about this and other differences in aims, constraints, and expectations
between the research team, the ABCD consultants, and community members is
essential to any successful participatory strategy. Unfortunately this is easier said
than done. Clearer expectations and a more detailed plan from the outset for the
engagement of community members would have improved our use of ABCD. As
it turned out, the relationships that lasted were the ones formed by the tech team
through their volunteer work and their almost continuous engagement of older
adults during the design and testing of the technology.

4. Focusing on assets—on strengths—can be very helpful. Although we learned
about general community assets from ABCD rather than more specific assets
we’d hoped for, the focus on assets in general served us well. It reminded us
to build the technology on what older adults can do as much as on what they
need help doing. For example, we encourage users of Elder Tree to comment on
expert-provided information—e.g., when the falls prevention coach writes about
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using walking poles or trip hazards in the home, users describe what they have
learned about these subjects from their own experiences.

5. ABCD is expensive and time-consuming. The ABCD process absorbed many
hours from the county coordinators, community members, and research staff.
We believe that key advantages of ABCD could have been preserved using other
methods and would have produced more efficiently the same understandings
and engagement that we gained through ABCD, though we do not have data
to support this perspective.

If We Had to Do It Over, What Would We Do Differently?

In fact, we must do just this—do it over. Our current dissemination goal is to get
Elder Tree used in another 23 Wisconsin counties. In tailoring Elder Tree to each
county, it will be important to continue to engage a large number of local older
adults and maintain community engagement. We believe that three things will make
this possible: good communication, quickness, and a more efficient group process.

We all know the importance of communication, but it must be especially central
in any development effort that has diffusion in mind. All parties must understand
one another’s expectations from the start. Resources must be committed to make
this happen; it will not happen naturally. A communication strategy needs to be
developed and followed throughout. Who are the key players? What is it like to be
those people? What is our goal with each of them? What will it take to get us where
we need to go?

Now as we start new development projects, we write a story. It starts at the end
and works backward. We pretend (for instance) that an Indian nation has become
an active user of our technology. We describe what it means for members of the
Indian nation to be active users and then we tell the story to ourselves of how that
happened. What were the key events? Who were the key people? We work our way
back, making up the story of what happened to make the Indian nation’s use of the
technology so successful. Then we build our communication plan and other aspects
of our strategy to make that story a reality.

We deeply respect the ideas behind ABCD. But we can’t take several months
to make it happen. People get excited but over time other things come up and
their attention goes elsewhere. We can’t take the time and don’t have the money
to have volunteers visit 100 homes per county when we are disseminating to 23
new counties in the state. Other group processes need to be used. We still form a
leadership team in each community. But we are planning to have each member of
that ten-person team bring nine older adults to one 2-h meeting where the Nominal
Group Technique is used [22]. This technique is a structured process for eliciting
ideas from a small group and then having the group prioritize the ideas. It will be
used to identify and prioritize assets and challenges. Attendees will be divided into
ten tables of nine people each. Each attendee at each table will individually and
silently generate two lists, one list of the most important assets their community
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has for older adults and one list of key challenges older adults face in their lives.
At the meeting, we will define clearly what level of specificity is needed in the
responses. Then each person will read aloud one asset and one challenge he or
she has listed. These will be recorded on flipcharts in front of the table until all
ideas are recorded; these flipcharts provide the documentation needed. After a brief
discussion, each person will select the seven most important assets and seven most
important challenges in each list by putting a check mark next to each. Within
2 h, assets and challenges are identified and prioritized. This use of the Nominal
Group Technique dramatically speeds the collection of ideas and gives participants
immediate feedback. In a second meeting with different people held within 2 weeks
of the first, ideas will be developed for using the assets to meet the challenges using a
variation of the Nominal Group Technique. Because the focus in our research tends
to be on uses of technology, a good proportion of attendees will be people with a
reputation for being creative and having a technological bent, and some of them will
also be older adults. Attendees will use a similar process as used in the first meeting
to identify the ways in which technology could be used to address the challenges
and engage the assets.

Attendees can leave both meetings knowing what priorities have been established
and what will be done with them and how. The ABCD process could take months to
get that far. This other process could also address the issue we had with volunteers
producing responses with widely varying granularity between interviewers; in fact,
some results were not helpful. In a Nominal Group meeting, leaders instruct the
whole group at once on the granularity being sought (e.g., your parks might be an
asset but the key question is what about each park makes it special?).

Another change we would make upon embarking on a new development project
is having the whole research team follow the lead of the tech team by spending time
walking in the shoes of our users. The goal is to deeply understand what it is like
to be someone who will use the technology. Nominal Group Technique is one way
to do this. The critical incident technique is another, as is the walk-through process.
See niatx.net for more information about these and other techniques.

We would do one thing the same for a new project that we did with Elder Tree:
We would continue to make community members the heroes. We regularly praise
older adults and the communities for their support and guidance (which we are truly
are grateful for but can forget to say). Elder Tree is not a system developed by the
university; it is one developed by the older adults. It is not about researchers; it
is about the older adults and their community. ABCD’s biggest strength may be
its focus on relationship building. Our job (if we really want community-based
participatory research to work) is to focus attention on the great work of the
community and not the work of the researchers. For instance, in meetings with
community members, ABCD staff sat at the back of the room quietly watching.
They were not in front leading the meeting. They were role models of setting their
egos aside to build up the community. If we really want our research to succeed, we
need to embody this. So the leaders at each table in the Nominal Group Technique
process (for instance) need to be community members, well trained by the research
team but seen by others mainly as other members of the community.

http://niatx.net
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Finally, we come back to communication. We must be very committed to
keeping everyone informed of what is going on and creating an environment in
which everyone feels comfortable sharing their thoughts. We all know that this is
important, but it is also true that most people are not very good at communicating. A
leader is needed who will be dedicated to that communication and uncompromising
in ensuring that it happens well. In a current project, we have set up a schedule
that we closely monitor so we know who is getting what kind of communication
when. And throughout our communications are praises for the great work of the
community.

Conclusion

ABCD met our expectations, though not always in the ways we expected. It helped
us understand older adults and build a technology responsive to them, and it
promoted engagement. We expect the core of ABCD—the emphasis on assets as
well as challenges—to promote dissemination. But the community-driven agenda
of the ABCD process did not always align with the research-driven agenda of the
Active Aging Research Center, sometimes creating tension between community
members and researchers. We will continue to be influenced by ABCD, but because
it is so labor intensive, we will not use the approach in its pure form in future
dissemination work. Rather we will use processes (such as the Nominal Group
Technique) that can more quickly and consistently identify and prioritize assets
and challenges at the sought-after level of granularity. By speeding up the process
we will increase the likelihood that community leaders and members will remain
engaged and supportive of the initiative.

Much development in technology now involves mobile devices—smartphones
and tablets. Although these devices were too small for the older adults we worked
with to use comfortably, we believe the lessons we learned would also apply to
developing technology for mobile devices and different users. Most importantly,
designing useful technology depends on deeply understanding the needs of users.
Our tech team sought this understanding when they taught tech classes at senior
centers and brought iteration after iteration of the technology to older adults to test.
Methods will vary—the point is for developers to be thoroughly steeped in the users’
point of view. Among other benefits, this understanding of the user can sharpen
focus and help prevent feature creep. Similarly, the need for good communication
is great regardless of platform. In fact, as sensors increase the amount and type of
information available in mobile health devices, keeping all key parties involved and
supportive is critical. For example, how would a clinician want to receive patient
data from a mobile device, and how would the data relate to the electronic health
record the clinician already uses? How would data from mobile devices relate
to billing processes? Understanding who needs to be included when as a project
unfolds is a constant and critical challenge. Finally, rapid testing of features assures
not just speedy development, but useful results.
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Our experience with older adults tells us that they usually don’t want or can’t
afford to pay for technology such as Elder Tree, even if it helps them address
their challenges. This raises the issue of how to pay for it. The answer may lie
in recognizing that Elder Tree may both address challenges and reduce costs of
healthcare. If this turns out to be true, then costs of systems like Elder Tree could
be borne by healthcare payers such as Medicare. In fact, such a business model
already exists in the form of the Silver Sneakers program. Medicare indirectly pays
for the cost of membership to fitness facilities where the Silver Sneakers program
is offered, such as the YMCA, believing that fitness will reduce healthcare costs.
Hence even in today’s financing model, mechanisms are at work that could pay for
Elder Tree, if it reduces health service use. We are about to test that hypothesis in
a study that is beginning as this chapter is being written. Moreover, new financing
models (such as Accountable Care Organizations) in which providers bear part of
the risk will make innovations that reduce costs of care a priority.

We are currently conducting pilot research in one Wisconsin county to examine
whether an enhanced version of Elder Tree (in which information collected by Elder
Tree is shared with healthcare providers on a need-to-know basis) will in fact reduce
costs of healthcare and costs of institutionalization in assisted living facilities and
nursing homes. If the pilot has promising results, a follow-up larger study will
engage one of the largest healthcare providers in the U.S. If Elder Tree reduces
costs of care, a network is in place to disseminate Elder Tree nationally.

Acknowledgments This work is supported by the Agency for Healthcare Research and Quality
(AHRQ) Grant P50 H5019917 and the National Institute on Drug Abuse Grant R01 DA034279-01.

References

1. Administration on Aging (2011) A profile of older Americans: 2011. U.S. Depart-
ment of Health and Human Services, Washington DC. Available at: http://www.aoa.gov/
Aging_Statistics/Profile/2011/docs/2011profile.pdf. Accessed 2016, Apr 12

2. Centers for Medicare & Medicaid Services (2013) Medicare and you 2013. U.S. Department
of Health and Human Services, Washington DC. Available at: http://www.dartmouth.edu/~hrs/
docs/medicare_and_you13.pdf. Accessed 2016, Apr 12

3. AARP Public Policy Institute (2009) Providing more long-term support and services at home:
why it’s critical for health reform. AARP Public Policy Fact Sheet, AARP Public Policy
Institute, Washington DC. Available at: http://assets.aarp.org/rgcenter/health/fs_hcbs_hcr.pdf
Accessed 2016, Apr 12

4. Congressional Budget Office (2013) Rising demand for long-term services and support for
elderly people. U.S. Congress, Washington DC 2013 Jun 26. Available at: http://www.cbo.gov/
sites/default/files/cbofiles/attachments/44363-LTC.pdf. Accessed 2016, Apr 12

5. Gustafson DH, Hawkins R, Boberg E, Pingree S, Serlin RE, Graziano F et al (1999) Impact
of a patient-centered, computer-based health information/support system. Am J Prev Med
16(1):1–9

6. Gustafson DH, Hawkins R, Pingree S, McTavish F, Arora NK, Mendenhall J et al (2001) Effect
of computer support on younger women with breast cancer. J Gen Intern Med 16(7):435–445

http://www.aoa.gov/Aging_Statistics/Profile/2011/docs/2011profile.pdf
http://medicare.gov/pubs/ebook/pdf/Medicare&You_eBook_2013_FINAL_508_sm.pdf.pdf
http://assets.aarp.org/rgcenter/health/fs_hcbs_hcr.pdf
http://www.cbo.gov/sites/default/files/cbofiles/attachments/44363-LTC.pdf


The Use of Asset-Based Community Development in a Research Project Aimed. . . 99

7. Japuntich SJ, Zehner ME, Smith SS, Jorenby DE, Valdez JA, Fiore MC et al (2006) Smoking
cessation via the internet: a randomized clinical trial of an internet intervention as adjuvant
treatment in a smoking cessation intervention. Nicotine Tob Res 8(Suppl. 1):S59–67

8. Patten CA, Croghan IT, Meis TM, Decker PA, Pingree S, Colligan RC et al (2006) Randomized
clinical trial of an internet-based versus brief office intervention for adolescent smoking
cessation. Patient Educ Couns 64(1–3):249–258

9. Gustafson D, Wise M, Bhattacharya A, Pulvermacher A, Shanovich K, Phillips B et al (2012)
The effects of combining web-based mHealth with telephone nurse case management for
pediatric asthma control: a randomized controlled trial. J Med Internet Res 14(4):e101

10. Dubenske LL, Gustafson DH, Namkoong K, Hawkins RP, Atwood AK, Brown RL et al (2013)
CHESS improves cancer caregivers’ burden and mood: results of an mHealth RCT. Health
Psychol 33(10):1261–1272

11. Gustafson DH, McTavish FM, Chih MY, Atwood AK, Johnson RA, Boyle MG et al (2014)
A smartphone application to support recovery from alcoholism: a randomized controlled trial.
JAMA Psychiatry 71(5):566–572

12. Horowitz CR, Robinson M, Seifer S (2009) Community-based participatory research from the
margin to the mainstream: are researchers prepared? Circulation 119(19):2633–2642

13. Wallerstein N, Duran B (2010) Community-based participatory research contributions to
intervention research: the intersection of science and practice to improve health equity Am
J Public Health 100(Suppl 1):S40–S46

14. Green LW, George MA, Daniel M, Frankish CJ, Herbert CJ, Bowie WR, et al (1995) Study of
participatory research in health promotion. The Royal Society of Canada, Ottawa, Ontario

15. Cargo M, Mercer SL (2008) The value and challenges of participatory research: strengthening
its practice. Annu Rev Public Health 29:325–350

16. Kretzmann J, McKnight JP (1996) Assets-based community development. Natl Civ Rev
85(4):23–29

17. The Asset-Based Community Development Institute (2015) Welcome to ABCD. http://
www.abcdinstitute.org. Accessed 2014, Mar 11

18. Kretzmann JP, McKnight JL (1993) Building communities from the inside out: a path toward
finding and mobilizing a community’s assets. ACTA Publications, Chicago, IL

19. Gustafson DH, Taylor JO, Thompson S, Chesney P (1993) Assessing the needs of breast cancer
patients and their families. Qual Manag Health Care 2(1):6–17

20. Gustafson Jr DH, Maus A, Judkins J, Dinauer S, Isham A, Johnson R (2016) Using the NIATx
model to implement user-centered design of technology for older adults. JMIR Hum Factors
3(1):e2

21. Trickett EJ (2011) Community-based participatory research as worldview or instrumental
strategy: is it lost in translation(al) research? Am J Public Health 101(8):1353–1355

22. Delbecq AL, Van de Ven AH, Gustafson DH (1975) Group techniques for program planning.
Scott, Foresman, Glenview, IL

http://www.abcdinstitute.org


Designing Mobile Health Technologies
for Self-Monitoring: The Bite Counter
as a Case Study

Eric R. Muth and Adam Hoover

Abstract Mobile health (mHealth) technologies are envisioned as self-monitoring
tools of health behaviors (Kumar et al., Computer 46:28–35, 2013). They are meant
to empower the individual to make sustainable behavior change that leads to better
health. They are intended to be used long-term, with minimal to no supervision. This
is in contrast to laboratory and clinical testing tools which are typically used short-
term by physicians and researchers under strict patient constraints to resolve urgent
conditions. Because of the individual-empowered focus, mHealth technologies need
to meet the following design criteria: low user burden; low-cost; and long-term
usability under free-living conditions. mHealth technologies present an interesting
opportunity because of the high quantity of inexpensive data generated, which is
far, far greater than what is typically provided by sporadic and expensive laboratory
tests. In this chapter, we discuss this opportunity in the context of the development
of the Bite Counter. The Bite Counter uses sensors embedded into a watch-like
device to automatically track wrist motion to count bites. The device provides the
user intake feedback during a meal, allowing them to self-monitor intake anywhere
and anytime. The behavior change goal is to reduce intake in a way that results in
healthy weight loss.

Key Questions for mHealth Technologies

A mobile health (mHealth) technology is intended to afford individual self-
monitoring of a health behavior in such a way that empowers the individual
to change their behavior and improve health outcomes [1]. In the development
of mHealth technologies, three questions should be considered: (1) what health
behavior is to be monitored; (2) what behavior is intended to be changed; and (3)
what health outcome is targeted for improvement? In contrast to typical clinical
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tools, mHealth tools are intended to be inexpensive and available for long-term use
by the individual with little supervision. Further, in traditional medical technology
development, the behavior being monitored is usually a clinical measurement,
e.g., blood pressure, and there is an obvious gold standard against which the
developed tool is compared, e.g., the mercury sphygmomanometer. However, with
mHealth technologies, a gold standard for long-term monitoring may not exist.
This is because most clinical measurements are made over very short periods and
sporadically, while mHealth technologies measure over long periods and often
continuously. Further, traditional medical technology is developed to be used under
controlled conditions by an expert. However, mHealth tools are often used in free-
living, constantly changing conditions, by laypersons. Therefore, the validity and
accuracy standards for assessing the answers to the above three questions must
be measured in light of the low-cost, long-term, low level of user expertise and
use in uncontrolled conditions design criteria. This chapter discusses these design
challenges in developing an mHealth technology to measure a health behavior using
the Bite Counter as a case study.

The Need for an mHealth Technology to Monitor Intake: The
Bite Counter as a Case Study

The World Health Organization reported that in 2008, 1.4 billion adults (age 20C)
were overweight (BMI > 25) and 500 million adults were obese (BMI > 30) [2].
Obesity is a major risk factor for diabetes, heart disease, high blood pressure, stroke
and cancer [3], and has become one of the largest preventable causes of death [4, 5].
Behavior change programs are still the most cost-effective treatment for individuals
with BMIs <40 kg/m2 [6, 7].

More consistent self-monitoring of energy intake is associated with improved
dietary adherence and weight loss and maintenance [8, 9]. Self-monitoring of energy
intake and expenditure as well as knowledge of current body weight relative to a
future body weight goal is required for successful regulation of body weight. The
problem is that individuals are notoriously bad at self-monitoring their intake. One
study found that individuals underestimate the caloric content of individual foods by
an average of 17% [10]. Even with training and 20 weeks of practice using a calorie
measurement technique, another study found the underestimation still averages 19%
[11]. This underreporting bias has been found to range from 15 to 50% depending
on the foods selected, and the measurement technique used [12, 13]. Furthermore,
regardless of whether individuals use manual or cell phone based methods to self-
monitor their intake, monitoring adherence is often low [14] because users find the
process to be burdensome and overly time consuming [15].

The Bite Counter (see Fig. 1) is a new mHealth tool for self-monitoring of intake.
The wrist-worn device monitors intake by counting the number of times a person
puts food or drink into their mouth, i.e., takes a bite. The device simply has to
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Fig. 1 The commercially available Bite Counter, now marketed as the ELMM (eat less, move
more) watch; see: http://www.myelmm.com. (a) Bite Counter close-up. (b) Bite Counter in siteu

be turned on at the start of eating and off at the end of eating. During eating it
displays bite count for the current eating activity (EA) in real-time. Between meals,
the device has a user review button which when pressed will display the bite count
for the last EA and a total bite count for the day. A time-stamped log of bite count
data is stored in memory for download to a PC to generate a calendar of EAs for
longer term analysis of eating behavior. Hence, the device provides data for real-
time self-monitoring of intake during a meal, daily intake self-monitoring, and long
term analysis of week-to-week and month-to-month EAs.

The behavior change goal is for the individual to use the bite count feedback to
decrease the daily portion of food they are eating. This allows for behavior change to
be targeted at the single meal, e.g., a cue to stop eating before overeating, as well as
at longer term eating patterns, e.g., eliminating overeating on weekends compared to
weekdays. Hence, for a modest upfront cost, the device has the potential to support
sustainable intake self-monitoring with the goal of reducing intake through portion
control, and improve health through weight loss.

However, it is important to note that the story of the Bite Counter told in the above
paragraph was developed over time, and is closer to the ending than the beginning.
Design is an iterative process. Liedtka and Ogilvie [16] discuss design as answering
a series of four questions: “what is, what if, what wows and what works?” In the
case of mHealth technologies, the what-is phase represents an assessment of the
current state of the tools available for measuring the behavior of interest. The what-
if phase is the phase of discovery where a variety of new solutions are considered,

http://www.myelmm.com
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prototyped and tested. The what-wows phase focuses on choosing a solution that
will promote adoption by the potential customers. The what-works phase fully tests
out a solution to see if it measures the intended behavior, if the solution can lead to
behavior change, and if the behavior change leads to the intended health outcome.
In the remainder of the chapter, we discuss our design journey in terms of these
four phases. We use our journey to illustrate how mHealth tools can move from
the bench to the breakfast table when informed by human factors design principles
along the way.

Phase I: Assess the Current State of Measuring the Behavior
of Interest

For a scientist, this phase of design is a familiar step. It is common for us to assess
the current state of a given research area and identify gaps that need to be filled with
research. That is exactly what has to occur here. An idea regarding the measurement
of a behavior develops. In our case, we had a history of using tracking devices to
measure human movements, but mostly for military applications. We thought about
how we could use our knowledge to help the general public. We thought of the
growing obesity problem. We were also familiar with pedometer technologies. As
outsiders to the field of obesity research, we imagined the possibility of applying
our knowledge to build a pedometer-like device that tracked not energy expenditure,
but energy intake. We surmised that it is probably too difficult to be done, or that
someone had already done it. So, we started with a loose idea and a healthy dose
of pessimism. We then set out to try some things and review the literature and get
more specific on what behavior needed to be measured and why.

At the start of the project, we appreciated that eating occurs in a variety of
environments, including homes, restaurants, places of business, and other social
gathering spots. We also could identify a clear gold standard in the calorimeter
that provides a laboratory measure of the energy of a food sample. Food labels
in the United States commonly report calorimeter tests in kilocalorie units (joules
are more commonly used internationally). However, it took very little research to
realize that measuring the energy intake of a free-living person in kilocalories is a
difficult problem. The best clinical tool available achieves 95% accuracy on average,
while commonly used clinical tools typically achieve 60–80% accuracy. For the
layperson, using kilocalorie labels, interpreting serving sizes, or plain guessing
commonly causes errors of 50% or more. Put simply, the calorimeter is a laboratory
tool, producing a measure that was never intended for daily human use in measuring
energy intake [17]. So, we began our mHealth tool development cycle knowing there
was a need for a tool that people could use on a daily basis to improve their ability
to count calories in order to increase self-monitoring to aid in weight loss. However,
we appreciated that the calorimeter was not the gold standard we should, or could
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compare to. Therefore, we investigated the current standards for expert and novices
measuring kilocalories in the lab and the field.

Performance of Experts Measuring Intake Behavior

Table 1 summarizes the best clinical tools for measuring intake in kilocalories when
used by experts. Doubly labeled water (DLW) measures energy expenditure [22]
and utilizes water in which the hydrogen and oxygen have been replaced with
tracing isotopes deuterium and oxygen-18. Daily urine samples collected from a
subject who has consumed DLW can be analyzed to measure the elimination of the
isotopes and thereby compute a metabolic rate and energy expenditure. Combined
with any weight gain or loss over the measurement period, energy expenditure
provides an indirect measurement of energy intake. DLW has been validated in
laboratory studies in which subjects lived in a whole room calorimeter for up to
a week, while all foods eaten were controlled and energy expenditure was directly
measured through respiratory gas analysis. Under these conditions, the accuracy of
the technique was shown to be 2–8% error per day [18]. A meta-analysis [19] of
25 studies using DLW in free living conditions found an 8–15% error range for
repeatability of measurements.

Due to the expense and technical expertise required for DLW, food records are
the most commonly used clinical tool for measuring intake. Tool variations include
7-day food diaries, 24-h recalls, and food frequency questionnaires. A meta-analysis
[20] of 15 studies using food records found a range of 19–41% error per day when
evaluated against DLW. This general range of accuracy of food records has also
been observed in long epidemiological studies when compared to DLW [23] and
blood nutrient analysis [24].

Accelerometer based tools for indirectly measuring intake by measuring energy
expenditure use waist, back and/or leg sensors to measure raw motion throughout
the day. A meta-analysis [21] of 28 articles found correlations between energy
expenditure derived from accelerometry as compared to DLW corresponding to
error rates of 36–91% per day.

Table 1 Error ranges of clinical tools for measuring energy intake of free-living people (meta-
studies)

Tool Period Error (%) References

Doubly labeled water (lab) Day 2–8 [18]
Doubly labeled water (free living) Week 8–15 [19]
Food records Day 19–41 [20]
Accelerometry Day 36–91 [21]
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Table 2 Error in kilocalorie estimation using various tools over various intake periods

Method Unit Error References

Trained calorie counting Weekly intake 19% (avg) [11]
Weighed food record Daily intake 19–23% [25, 26]
Labeled menu Meal 38% (avg) [13]
Guess Meal 49% (avg) [13]
Guess Individual food items 29% (avg) [27]

Performance of Novices Measuring Intake Behavior

Table 2 reviews the accuracy of an individual’s intake estimations broken down
by estimation method (e.g. guess, calorie information present in labels or a menu,
etc.) and unit of analysis (individual food or meal, daily or weekly intake). The
studies presented were chosen because they included both a clinical measure of
kilocalories (provided either by DLW or by kilocalorie look up tables) and a measure
of kilocalories estimated by the participant.

The first study [11] trained individuals in a kilocalorie estimation technique and
gave them practice on this technique. Even after 20 weeks of using the method,
the error in estimating weekly intake still averaged 19%. For perspective, the daily
intake in the US during 1999–2000 was 2618 kcal for males and 1877 kcal for
females [28]; a 20% error in calorie counting over a week would lead to miscounting
by an entire day’s worth of calories. Weighing foods to improve portion size
estimation does not appear to improve kilocalorie estimation as errors still range
between 19 and 23% when weighed food records are compared against DLW
[25, 26].

Given a 20–40% range of error for food records when they are used by experts,
it should come as no surprise that the general population in daily life performs even
worse when trying to apply these tools. Individuals are faced with over 200 food
decisions per day [29]. One common decision is what to order in a restaurant.
Roberto et al. [13] studied 303 people eating a restaurant meal and found that
participants underestimated how much they had eaten by an average of 38% when
provided with labeled kilocalorie information in menus, and 49% when guessing.
Even with individual foods, estimating kilocalories is difficult. Carels et al., [27]
studied 101 college students who were asked to guess the kilocalories in 16 different
individual foods (e.g. apple, orange juice, French fries, fish), all in small portions of
approximately 200 kilocalories, and found that participants erred by 29% average
across all foods.

Clearly, estimating kilocalorie intake is a challenge for individuals. The challenge
requires an individual to have “knowledge of both the energy content and the portion
sizes of the foods consumed” [30]. At the most imprecise end of the spectrum,
this knowledge comes from memory and an individual makes a guess at the energy
content and portion size to estimate intake. At the most precise end of the spectrum,
the food consumed can be measured for both energy content and portion size using
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a combination of food labeling, weights and measures. The precision with which
an individual can estimate kilocalorie intake in free-living settings lies somewhere
in between a guess and the precision available in a laboratory depending on the
tools and methods used and the situation in which the estimate takes place. So, it
was clear to us that self-monitoring of intake could be improved with a tool that
was unbiased, but that accuracy of the tool would need to be based on improving
the ability of individuals to measure kilocalorie intake long-term to maximize self-
monitoring, and not based on the accuracy of short term clinical measurements or
direct calorimetry.

Phase II: Imagine What Might be Measured Given the Design
Criteria

The Phase I assessment ends with a needs statement and a rough set of design
criteria. From our Phase I, it was clear that an mHealth tool for long-term, low-
cost monitoring of energy intake would be useful. This tool needed to relate to
kilocalories in a meaningful way, as kilocalorie is the unit of choice when assessing
intake. However, successful self-monitoring of intake long-term is equally impor-
tant. Therefore, it was critical that the device be wearable, so we chose a wrist-worn
device as a target. A display was needed to provide the user with real-time feedback.
Battery life was a concern as the device needed to be capable of operating long-term.
These criteria led us to begin to test signals that could be acquired from the wrist.

Our Discovery: A Method for Counting Bites

Creativity often occurs when tools of one field are applied to another. Our team
had a great deal of experience with sensor packages and had these sensors readily
available in our labs. We therefore took a magnetic, angular rate and gravity
(MARG) sensor we had in the lab, mounted it on a sweatband and had people
wear the apparatus while eating. The key in our discovery phase was that we were
looking at signals from both linear accelerometers and angular gyroscopes where
others, unbeknownst to us at the time, had been focusing mostly on accelerometers.
We discovered that while eating, the wrist of a person undergoes a characteristic
rolling motion that is indicative of the person taking a bite of food [31]. The concept
is easily demonstrated in Fig. 2: as the woman picks up a bite of eggs and brings
it toward her mouth, her wrist rotates during the motion. The rolling part of the
motion is independent of whatever else the arm does. It can therefore be tracked
using a wrist-mounted gyroscope. Using appropriate filtering and heuristics, wrist-
roll motions can be reliably associated with eating and drinking [31].
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Fig. 2 Wrist roll motion during the taking of a bite of food occurs regardless of the type of food
or utensil

Accuracy of the Measure

In our case, the device counts bites. It should do that accurately. We instrumented
a four-person table with scales, video cameras, and tethered wrist devices to record
raw wrist motion and a video record of what was being consumed during every bite.
We placed that setup inside a university cafeteria that serves a large variety of foods
and can seat over 800 guests. A total of 273 participants (142 F) were recorded
eating 22,383 total bites from 380 different foods and beverages. Participants had
a mean age of 30 years (range D 18–75) and mean BMI of 25 (range D 17–46).
Twenty-six identified themselves as African American, 2 as American Indian or
Alaskan Native, 29 as Asian or Pacific Islander, 191 as Caucasian, 11 as Hispanic,
and 14 as other. It is important to appreciate the massive amount of data that were
collected in a short amount of time at a very low cost, over 20,000 individual bites
from nearly 300 participants and 400 different foods and beverages. The ground
truth bite count as determined by analysis of the video recordings was compared to
the bite count determined by the device.

At the bite by bite level, our method was found to detect 82% of bites (bites
detected/bites detected C bites undetected) with a positive predictive value of 82%
(true positives/true positives C false positives). From a practical perspective, this
means that false positives happened with the same frequency as missed actual bites
(each about 1 in 5 bites), such that the running total is near 100% accurate. Some
variations in accuracy were observed across different foods, but the biggest variation
in accuracy was associated with eating rate.

Now that we had discovered a method for counting bites accurately, clinicians
asked so what? What is the value of counting bites? How does that relate to intake
and more specifically kilocalories? They would point out things like “certainly a bite
of celery is not the same as a bite of a candy bar” and “certainly some individuals
take bigger bites than others and bite size can change depending on the eating
environment and foods being eaten”. We believed the value of counting bites was
the simplicity it afforded for long-term monitoring and the wealth of data that would
result from these affordances. But, in order to get researchers and clinicians to think
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about using the device to collect this wealth of data, we had to show that counting
bites relates to kilocalories. In other words, we had to show that counting bites had
face validity in assessing energy intake.

Face Validity of the Measure

The construct the device measures, bites in our case, needs to relate in some way to
meaningful clinical measures. However, this does not mean that the device needs a
clinical level of accuracy given the design criteria for mHealth tools of low-cost and
long-term use by laypersons. In two separate studies, we set out to first show that
there is a relationship between bites and kilocalories and then to show that counting
bites has utility for helping individuals estimate their caloric intake.

In the first study 83 participants (43 F, mean age D 34, age range 18–66, mean
BMI D 27) wore Bite Counters for a 2-week period. For every meal or snack,
participants were instructed to use the device to record bite count (it displayed
“on” when in use, instead of bite count, in order to limit its impact upon behavior).
Participants used the ASA24 dietary recall [32] to provide a record of what was
eaten for each meal, from which calories were determined. It is important to note
that a dietary recall like this is an imperfect measure. But, our goal was to show a
relationship, not to truly assess the accuracy of that relationship. Collectively, a total
of 4065 meals were recorded. Automatically measured bite count was compared
against ASA24 calories for each meal. Again, note the mass of the data collected in
a short amount of time for a low-cost. Over 4000 meals were recorded. Laboratory
studies rarely, if ever, collect this mass of data.

For 76% of participants the correlation between bites and calories was in the
range 0.4–0.8 [33]. Figure 3 showsan example of data for one participant having a
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Fig. 3 Kilocalories versus bites. Each data point is one meal. Each plot is all meals for one
participant for 2 weeks. The data on the left show a 0.4 correlation for one participant and the
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Fig. 4 Comparison of correlation of our measure with energy intake, versus correlations of
physical activity monitor measures with energy expenditure. (a) Distribution of correlations of
bites with calories. (b) Distribution of correlations of steps with energy expenditure

0.4 correlation (on the left) and a second participant having a 0.7 correlation (on the
right). Each data point is one meal; each plot shows approximately 50 meals over the
2-week period. While there is obviously noise in the kilocalorie-bite relationship for
a single bite, due to the energy density of the food being eaten and natural variability
in bite size, the relationship shows some stability at the meal level.

The left histogram shown in Fig. 4 shows the correlations found for all 83 partici-
pants over the 2-week period. The average correlation was 0.53, but the majority had
a correlation above 0.4. In order to provide context to interpret this result, we present
some histogram data on the right from a meta-study of physical activity monitors.
Westerterp and Plasqui [21] reviewed 41 studies in which the measurement of
energy expenditure as obtained by doubly labeled water was compared against the
measure as obtained by physical activity monitors. The histogram on the right shows
41 correlations, which varied depending upon the types and durations of activities
monitored, model of device, and participant demographics. The similarity of ranges
of correlations in the two histograms suggests that our bite counting method has
the potential to provide an automated measure of energy intake comparable in
quality to the measure of energy expenditure provided by physical activity monitors.
This is compelling because physical activity monitors are widely used in scientific
studies and by general consumers due to their ease-of-use, objectivity, and low
cost. Bottom line, there is a clear relationship between bites and kilocalories. The
more bites a person takes the more kilocalories they ingest. The relationship is not
perfect, but it is ordinal in scale. More research is certainly needed to understand
the relationship and to improve the precision of the relationship. But, counting bites
has the necessary face validity as a measure of intake to warrant the development as
an mHealth technology.

In the second study, the goal was to investigate if counting bites could aid the
individual in estimating caloric intake [34]. Eighty-seven participants (39 F, mean
age 27, age rangeD 18–63, mean BMI of 25) ate a single meal, that was personally
selected by the participant from a wide variety of choices, and had their caloric
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Fig. 5 Human calorie estimation error (HCE error) with and without caloric information (CI)
present versus bite count based calorie estimation error (BCE error) for the same groups

intake measured [34]. Participants were asked to report the number of kilocalories
they consumed either with or without a menu containing caloric information. A
formula derived from the bite count-ASA 24 study described above that transformed
bites into kilocalories was used to calculate a bite count based calorie measure.
Errors between true kilocalories and human and bite measured kilocalories were
calculated. The results are shown in Fig. 5. A 2 (estimation method) � 2 (presence
of kilocalorie information) mixed-design ANOVA revealed a significant main effect
for estimation method (F[1, 83] D 14.38, p < .001), a marginally significant effect
for the presence of kilocalorie information (F[1, 83] D 3.84, p D .054), and a
significant interaction between estimation method and the presence of kilocalorie
information (F[1, 83] D 6.38, p < .05). Post-hoc tests revealed that errors in
human kilocalorie estimations were significantly reduced by the presence of calorie
information (t[46] D �2.73 p < .01). Kilocalorie estimations based on bite count
were significantly more accurate than human measures without the aid of kilocalorie
information (t[32] D �3.6, p < .005), but not statistically different than when
kilocalorie information was available.

The results suggest that bite count has the potential to measure kilocalories when
other aids are unavailable. For example, when a person eats a meal outside of the
home that is prepared and served by someone else and kilocalorie information is
not available. In these situations, individuals typically will underreport their caloric
intake. Importantly, notice the strong negative bias in human estimations in Fig. 5.
The error is not centered on zero. This is the known underestimation bias. The error
for the bite-based estimate is centered on zero. It is unbiased. This is an advantage
of a semi-automated tool. It is not subject to bias in the same way that a human is.
So, while the bites to kilocalorie relationship is ordinal in scale and has variability,
because of the omnipresence of the tool, the relationship appears good enough to
help provide individuals feedback regarding their intake behavior.
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Phase III: Consider the End Customer and If They Will
Embrace the Technology

In Phase I, we identified that intake monitoring could benefit from an mHealth tool.
In Phase II, we discovered that we could count bites. We found our method to be
accurate in counting bites. We found that the measure had a valid relationship to
kilocalories. Finally, we showed the method had the potential to aid human decision
making by showing that it estimated caloric intake more accurately than humans
did when guessing. The challenge in Phase III was to identify a target customer and
take the necessary steps to move the device from the lab to the field in a way such
that the customer embraced the technology.

We started this project to help people change their behavior in order to lead
healthier lives. However, along our design journey, we adopted an intermediary
customer. That customer was researchers, primarily researchers studying the obesity
epidemic and how to reverse the trend. But, throughout our design of the devices,
intended to be used outside of the lab by non-experts, we applied human factors best
practices and kept our ultimate end consumer, the individual trying to lose weight
and sustain the weight loss, in mind.

Use Rapid Prototyping and Human Factors Best Practices

Recall that two of the early design criteria were that the device should be wearable
for the long-term and the device required a display to provide feedback to the
user. Our device design was iterative. At our early phase, we took battery life very
seriously as our initial target customer was a researcher. We thought about how
we interact with participants. We worried about data loss. We made assumptions
about the willingness of participants to charge devices. We assumed that participants
would visit the lab infrequently and we wanted the battery life to last between these
visits. We thought the interval between lab visits might range from a week to a
month. Therefore, we calculated we needed a lot of battery power, assuming the
battery would be recharged infrequently. Our first design concepts revolved around
the large footprint of this battery. We did rapid prototyping of case designs using
paper prototypes (generated with computer assisted design drawings), we sculpted
with clay and we printed 3D prototypes. We asked focus groups to take our 3D
prototypes and place them on a wrist-worn sweatband (attached with Velcro) to see
how potential customers would interact with the device. This saved us a lot of time
and potentially a failed design. Customer interactions with our prototypes showed
us that the large battery would result in a failed device that people would not wear.
Ultimately, we had to sacrifice on battery life in order to meet a new design criterion
that rose from these user tests, that was to minimize total device footprint.

Figure 6 shows the progression of our device design. We began our testing with
a tethered version of a MARG sensor. We then moved to an untethered MARG
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Fig. 6 The design progression of the Bite Counter. (a) Version 1 (2007). Tethered sensor. (b)
Version 2 (2008). Wireless sensor. (c) Version 3 (2010). Self-contained unit, custom case. (d)
Version 4 (2011). Manufactured unit. (e) Version 5 (2015), 2nd generation manufacturing

sensor. By 2010, we had a custom printed circuit board (PCB) that we built into
an off the shelf case. In 2011 we had a custom case and a device available for
researchers outside of our own labs. We refer to this device as the first generation
Bite Counter. You can see that a lot of design iteration took place just to get to
a first generation device that was useable by our intermediary customer. This first
generation Bite Counter measured 44� 44 mm2, with a height of 12 mm. It weighed
25 g. The battery life was approximately 14 h of meal recording which equates to
approximately 2 weeks of regular use. The device had 3.5 digits of an eight segment
display and two user buttons. The memory on the device was capable of storing
approximately 320 meals. A USB connection was used to charge the device and
download data to a PC.

This first generation device was used to complete the research described above
relating bites to kilocalories and our initial weight loss pilot work. The cost of this
device was higher than we would have liked due to the low volume manufacturing.
A limited number of researchers embraced the device. These early adopters are part
of our story as they helped drive the iterative design and push us to the next device
design cycle. Their studies and studies in our own labs allowed us to simultaneously
test and validate the device as we assessed if our ultimate customer, individuals
trying to lose weight, would embrace our device.

Consider User Compliance and Preferences

We learned very early on in our pilot testing that females were more receptive to our
device than males. We are still uncertain how generalizable these findings are, but
they added yet another design criterion, that when it comes to our end consumer,
we needed to make the device gender neutral and/or slightly in favor of female
preferences. Further, with the initial research device we therefore focused primarily
on studying women. We asked 18 overweight and/or obese participants (16 F, age
range 26–81, mean BMI D 32) to wear Bite Counters for 12 weeks to record their
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bites during all EAs. Minimal training was provided to the participants with the only
instruction being to wear the Bite Counter during all EAs and to turn on the device
before taking the first bite of food and off after taking the last bite of food. The
participants had bi-weekly laboratory visits during which Bite Counter data were
downloaded. Compliance was measured as percent of days capturing at least one
EA and average EAs/day.

The participants could be divided into four compliance groups with three
participants identified as super-compliant, capturing an average of 97% of the days
and 4.6 EAs/day. Five were identified as compliant, capturing an average of 86%
of the days and 2.8 EAs/day. Seven were identified as under-compliant, capturing
an average of 63% of the days and 1.4 EAs/day. Finally, three were identified as
non-compliant, capturing an average of 25% of the days and 0.5 EAs/day.

Design teams often develop personas in order to talk about their potential
customers. Here, we developed three personas: Committed Cathy, Reluctant Rita
and Negative Nancy [35]. Committed Cathy represents the �20% of individuals
who will wear and use the Bite Counter with minimal training (the first group
described above). Reluctant Rita represents that majority of individuals (�60%)
who will be able to wear and use the Bite Counter correctly, but will require
training beyond a simple instruction as well as success utilizing the device before
they become committed to its use (the second and third groups described above).
Negative Nancy represents the remaining �20% of customers who will likely not
use the Bite Counter in a way that would accurately track their EAs and will require
an alternative approach to behavior change (the fourth group described above).
Furthermore, data from the 83 free-living participants observed in the bite-ASA24
study described earlier found that 74% of participants preferred using the Bite
Counter over a 24-h recall method, and that the automation provided by the tool
could save people an average of 25 min/day in estimating and recording energy
intake.

These data point out that individuals will indeed use these self-monitoring tools,
even when they require some input, i.e., they have to turn the device on and off.
However, not all individuals will use these tools. That is important as well. While
these tools are often preferred for their simplicity, they are not the tool for everyone.
Furthermore, we learned a great deal about the design of our device from the
participants in these experiments. We learned that participants would charge their
device more often that we thought. We associated this with their willingness to
charge cell phones on a daily basis, which was a concurrent evolution as smart
phones went from not really present when we set out on this adventure to nearly
ubiquitous today. We learned that the device was too big and “ugly”. We learned
that the display was too impoverished. This was also influenced by the progression
of phone display technology from black and white to full color touch screens. We
learned that just providing users with a bite count was not enough to help with
behavior change. Behavior change requires both goal setting and feedback towards
that goal [36]. Finally, we learned that because the device only helped users during
mealtime, their motivation to wear it continually was low.
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Redesign as a Continual Process

Using the feedback from above, we went through another whole phase of rapid
prototyping, considering the end consumer needs identified in the research studies.
We added a pedometer feature to motivate users to wear the device continually and
not just during meals. Throughout this redesign we continued to use human factors
design tools and follow human factors best practices, including rapid prototyping,
focus groups and user testing where appropriate (e.g., see [37]). It is important that
the end consumer is considered in the development of mHealth tools and that the
design be informed by human factors best practices. For us, the end result was the
second generation device shown as the last picture in Fig. 6 and the current state of
our design journey that is summarized in the opening paragraphs of this chapter. We
do not anticipate that this is the end of the story, just the end of the current chapter;
as we learned along the way, design is continued iteration.

Phase IV: Test If It Works

Phases I–III all focus on the first question raised above regarding mHealth tech-
nology development. Specifically, what behavior is targeted for monitoring? Phase
IV focuses on the second two questions: what behavior is targeted for change and
what is the intended health outcome? However, the best practices for Phase IV in
the mHealth field remain open for discussion. Phase IV has the potential to have no
end and consume an endless amount of resources. The gold standard that represents
Phase IV for medical devices and treatments in general is called the clinical trial.
The National Institutes of Health has given a great deal of consideration to the
definition of a clinical trial and further breaks this definition down into four stages of
clinical trials. However, the technology development cycle for mHealth technologies
is so rapid that it challenges this clinical trial model.

The Food and Drug Administration has recognized that mHealth devices do not
fit the classic clinical trial model in their recent positions on mobile medical appli-
cations [38]. Best practices and guiding principles for the development of mHealth
devices are currently being developed. For example, the Consumer Electronics
Association has published privacy and security of wellness data guidelines [39].
These developments are happening concurrently with our design journey. Hence, we
did not even realize that we needed to ask two (or more) questions, when assessing
whether or not our device worked. We jumped right to examining the effect of the
Bite Counter on the weight loss.

In hindsight, given we could monitor intake by counting bites, the first incre-
mental question in assessing if the device works we should have asked was if we
can reduce the number of bites people take. At least one intermediary question then
becomes does a reduction in bite count result in a reduction in intake. Alternatively,
do people change ancillary behaviors in unexpected ways, e.g., take bigger bites,



116 E.R. Muth and A. Hoover

or change their food selection to more energy dense foods. It is important to note
that there may be multiple intermediary questions between the questions of what
behavior is targeted for change and the health outcome. This is a current challenge
for mHealth technologies. There is the potential for an almost endless amount of
laboratory and field science in Phase IV. One question for our field remains: how
much data regarding how the device works is enough to justify the mass adoption
of the technology?

Assess If Individuals Can Reduce Their Bite Count

As I mentioned above, we initially skipped this question. Only after a pilot weight
loss study that had little to modest success did we even think to ask this question.
This is partially because it seemed to us at the time like a trivial question. We can
count bites and give you feedback. If I ask you to stop eating at a given bite count it
seems I am just studying your compliance with an instruction. However, this is not
really the case. A person may be able to comply with the instruction, but may do so
while altering behaviors that we are not asking them to change, such as bite size or
food choice. Once we gained an appreciation for this question, we went to the lab
to study it.

In a recent Master’s Thesis in the lab we found that individuals, not surprisingly,
could indeed stop eating a meal at a given target bite count [40]. In fact, they
could do so with no noticeable effect on their satiety levels and without changing
secondary behaviors like bite size. However, this is only for when they found the
goal in some way reasonable. When the instruction was somehow unreasonable to
them, e.g., too low, they actually took larger bites. We are continuing to investigate
the best ways to utilize the device to reduce intake through bite count feedback
without affecting ancillary behaviors such as bite size and satiety levels.

Assess If Reducing Bite Count Leads to Weight Loss

As we skipped past the question on bite reduction, we moved right to the ultimate
question, could the Bite Counter help people lose weight? It is important to note
that skipping either temporarily or permanently the second question (or series of
questions) is not necessarily a bad thing. The second question has more to do with
understanding how the device effects behavior change that if it will effect behavior
change. Time and cost must be considered and the field needs to assess how much
proof of concept is necessary for these low-cost devices. Nonetheless, if the question
is skipped, it should be by intent. It should also be done with the knowledge that
if the device indeed affects the health outcome, the reason why is not necessarily
understood. There could be pressure to abandon a viable mHealth tool because of a
lack of this connection. It is safest to proceed cautiously and with intent.
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In our case, we chose to perform a pilot weight loss study. We instructed 19
overweight patients (17 F; mean ageD 46, age rangeD 22–81, mean BMID 31) to
wear Bite Counters for 6 weeks to record their number of bites during all EAs. The
participants had bi-weekly weigh-ins at which Bite Counter data were downloaded.
Participants were divided into two groups, one that received feedback (n D 10)
from the Bite Counter and daily bite count targets, and one (n D 9) that received
no feedback or target bite counts. Although the groups did not differ significantly
on weight loss, (t[17] D 0.88, p > .05) there was a trend toward greater loss in the
feedback group (M D 4.6 lbs., SD D 5.7 lbs) compared to the no feedback group
(M D 2.6 lbs., SD D 1.3 lbs). The effect size (d D .43) was found to approach
Cohen’s [24] standard for a moderate effect (d D .50) suggesting that a larger N
or longer weight loss period would produce a difference between groups. We were
lucky. We skipped ahead and the data supported further research on the Bite Counter
as a dietary self-monitoring tool to help individuals reduce intake and thereby lose
weight. But, we appreciated that we needed to go back and study the second question
in more depth to identify the best intervention strategy. We needed to figure out
how counting bites could be used to reduce intake before embarking on another
expensive weight loss trial that would have a modest effect size.

Revisiting the Key Questions

Recall the three questions from above: what behavior is being measured, what
behavior is being changed and what is the health outcome? In our design journey we
found a solid answer to the first question. We built an mHealth tool that is capable
of counting bites. Bites are related to energy intake as measured by kilocalories,
at least at the ordinal level; as bites count increases, kilocalorie count increases.
Bite count can serve as a useful proxy for kilocalorie information that is better than
an individual’s guess regarding kilocalories. So, bite count is accurate and valid
enough to measure intake with an mHealth tool. As intake measurement involves
both portion size and the energy density of the food being eaten, we currently
operationalize bite count as a proxy for portion size at this juncture, rather than
a proxy for kilocalories. More research needs to be done before bite count can be
transformed into kilocalories in a way that is accurate enough to be actionable on a
consistent basis.

We overlooked the question of what behavior we were changing. While we have
shown that bite count can serve as a proxy for energy intake, we have only begun
to assess if we can reduce energy intake by reducing bite count. We did examine if
bite count feedback associated with a goal could lead to a favorable health outcome,
i.e. weight loss. However, our results are modest at this point. Our design journey
is still underway. As pointed out above, for mHealth tools, much more time can be
spent in the final phase of the journey than in the first three. Studying behavioral
interventions can be a lifelong journey in itself. The question of how much of that
journey needs to be completed before an mHealth tool is released to the consumer
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remains open for debate. In the case of the Bite Counter, we feel that the journey
is more complete than many mHealth devices targeted at energy intake and that the
device is ready for release to consumers.

More importantly, along our journey, we generated volumes of data. This is
the key benefit of mHealth devices from a scientific perspective. If the device is
validated to measure a construct related to health behavior, the ease of use of
the device for long-term measurement at a low-cost allows scientists to ask new
questions. These devices represent a paradigm shift. The scientist has to use new
statistical tools to deal with the noise in the data. The ratio of the variance of interest
to the variance of error with these tools is much lower than measurements taken with
laboratory equipment in controlled conditions under the care of an expert. But, as
a good statistician knows, the number of observations (N) overcomes the reduced
effect size. This is a strength of mHealth tools, the cost of collecting a large N is low
to begin with and reduced as adoption increases.

What Is Next on the Journey?

Even as we write and revise this chapter for publication, the journey continues. Tech-
nology development continues. The micro-electromechanical systems (MEMS)
MARG sensors used in the Bite Counter are becoming more and more common.
Other wrist-worn devices such as the Pebble Smart Watch (Pebble, Inc., Redwood
City, CA) and Apple Watch (Apple, Inc., Cupertino, CA) now incorporate similar
sensors. The idea of embedding our technology into other devices is now technically
possible, making consumer scalability on other platforms an alternative design
pathway. In the meantime, a consumer version of our device called the ELMM
watch is available to consumers (see: http://myelmm.com) in a very small, wearable
package at a price point that is competitive with other consumer products in the area.
Our laboratory research continues to improve the bite counting algorithm, as well as
investigate the automatic detection of eating activities [41]. If eating activity can be
detected with a high level of accuracy, it could eliminate the need for a user to turn
on and off the device. So, hopefully the journey continues in a way that blends solid
research with solid tool development, putting validated and useful tools in the hands
of the consumer and ultimately helping individuals with their personal journey to
better health.
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Abstract Mobile sensor data collected in the natural environment are subject
to numerous sources of data loss and quality deterioration. This may be due
to degradation in attachment, change in placement, battery depletion, wireless
interference, or movement artifacts. Identifying and fixing the major sources of
data loss is critical to ensuring high data yield from mobile sensors. This chapter
describes a systematic approach for identifying the major sources of data loss that
can then be used to improve mobile sensor data yield.

Introduction

Advances in mobile technologies are enabling a new vision of healthcare (called
Precision Medicine [5]), where users can monitor, manage, and improve health and
well-being as they go about their daily lives [17]. Wearable sensors allow the capture
of physiological data associated with health, such as heart rate, respiration rate, and
galvanic skin activity, in the natural environment [8]. In addition to monitoring phys-
iological health and fitness, by applying appropriate machine learning models, data
collected by physiological sensors can also measure behavioral and environmental
states of the wearer such as stress[12, 24], smoking [4, 28], conversation [25], illicit
drug use [11, 21], and the surrounding environment [20, 29]. Automated inference
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of adverse behaviors and potential triggers that may precipitate these adverse
behaviors such as movement and location (captured via GPS and accelerometers
embedded in smartphones [19]), social interactions (captured using microphones in
smartphones [19]), and exposures to media and advertisement (captured using smart
eyeglasses [1, 16]), can facilitate the identification of potent triggers. Automated
detection of these potent triggers can then be used to optimize the timing of just-in-
time health interventions [10, 14].

Realizing such a vision of healthcare, however, hinges on being able to cap-
ture good quality physiological data in the unsupervised natural environment for
long durations. Real-time triggering of intervention also requires streaming of
sensor data from body-worn sensors to the smartphone via wireless radio. In
this chapter, we consider mobile health (mHealth) sensor suites that continuously
collect and wirelessly transmit raw sensor data at high frequency in real-time,
especially from physiological sensors that must be attached correctly at a specific
location.

Recent work has demonstrated the feasibility of capturing physiological data
using streaming mHealth systems in the natural environment; however, diagnosing
and improving sensor data yield is still a challenge. Multiple factors may affect
sensor data yield in streaming mHealth sensor systems. The batteries of smartphones
and sensors cannot support continuous monitoring of multiple physiological signals
for days at a time without recharging, especially when raw sensor data are captured
continuously and streamed to an accompanying smartphone in real time for trigger-
ing interventions or engaging the user [15, 31]. Software responsible for collecting
and processing physiological data may crash and wireless connectivity may be
lost intermittently between the sensors and smartphone [9]. The unsupervised
natural environment introduces even more challenges for sensor attachment and
placement on the body. For example, sensor leads can detach from the body over the
course of a day and physical activity may introduce noise in physiological signals,
degrading their quality [23]. Likewise, participants may take off or turn off sensors
if they are uncomfortable to wear, or the data collected may compromise their
privacy [27].

Example Scenario: Consider a scenario where smoking cessation researchers
are interested in discovering potential predictors of smoking lapse (e.g.,
stress, proximity to tobacco outlets or bars) in the natural environment. The
researchers may want to continuously capture physiological sensor data (to
infer stress) and location data (to detect geo-exposures). The researchers can
recruit daily smokers interested in quitting and provide them with wearable
physiological sensors. In this scenario, a smartphone would wirelessly receive
continuous sensory measurements from the wearables in addition to sampling

(continued)
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its GPS sensor and providing a user interface to capture self-reported mea-
sures (e.g., smoking lapse, craving). To conduct this study, the researchers
may spend a lot of time, effort, and funds in developing or acquiring sensors,
developing data analytic software, drafting a protocol for Institutional Review
Board (IRB) review, training study staff, and recruiting participants. Study
participants also invest their time and effort to provide data. These investments
can advance science and improve health (e.g., by leading to efficacious
interventions) only if the data captured are of good quality.

Data collection from a participant is usually a one-time opportunity,
especially in such contexts as smoking cessation, where it requires significant
preparation by the participant and the researcher to select a quit date around
which data collection is centered (typically, a few days before and a few
days/weeks after). The circumstances may not be easily repeatable. If we fail
to capture good quality data, the invested time, resources, and effort will be
lost forever, at least for the affected participants. Therefore, it is important
to have real-time methods for checking whether the data collection is going
well, so that corrections can be applied quickly.

We have previously proposed a framework to compute data yield and quality
from wearable physiological sensors such as electrocardiogram (ECG) and respira-
tion sensors worn at the chest location [26]. In this chapter, we present an expanded
version of this framework, called mDebugger, that now includes inertial sensors.
We also present algorithms used to compute the active duration (i.e., time window
during which users are actively wearing the sensors), sensor-on-body duration (i.e.,
time window when the sensors are worn on the body), and other factors. To the best
of our knowledge, [26] is the only existing framework to analyze data yield from
streaming mHealth systems. We refer readers to [26] for a treatment of other prior
related works.

We apply mDebugger to data collected via mobile physiological and inertial
sensors in a scientific field study with newly abstinent smokers (n D 72), and
compare our findings to the sensor data yield reported in [26]. We make several
interesting observations. For example, we find that sensor on body episodes in both
studies are between 13 and 14 h per subject per day. We find that data lost due
to wireless disconnection in both studies are negligible, 0.02 and 0.04 h in the two
studies, despite no local storage of sensor data in the event of a disconnection. These
and several other observations are described in section “Application of mDebugger
on Study Data: Key Observations”.
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The mDebugger Framework

Before presenting our framework, we list desired attributes in such a framework.
First, the framework should provide the overall yield (i.e., amount of good quality
sensor data collected) from data collected by a variety of wearable sensors. Second,
for lost data, it should separate them out between those attributed to technological
issues vs. those attributed to human factors or compliance. Third, it should perform
a fine-grained analysis of major data loss factors in each category so as to produce
actionable insights that can then be used to improve technology, human factors,
or compliance, and lead to better data yield. Fourth, the framework should be
computationally lightweight enough to run in real-time on a mobile device so that
it can be used to prompt users to fix human-related issues and improve data yield
during the data collection process itself. Finally, the framework should be open-
source so that it can be used widely and it can be improved upon by the wider
community.

We now present details of the mDebugger framework that is aimed at assessing
and diagnosing the quality of mobile sensor data. Figure 1 shows the high-level
architecture of mDebugger, whose conceptual steps are detailed below. Each box
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Fig. 1 mDebugger framework—a data diagnostic approach for identifying and quantifying major
sources of data loss (and computing data yield) when data are being collected using wireless
wearable physiological sensors and a smartphone in the user’s natural environment



mDebugger: Assessing and Diagnosing the Fidelity and Yield of Mobile Sensor Data 125

in Fig. 1 represents a factor that can affect mobile sensor data quality. Factors
influencing data loss can broadly be categorized as human factors (related to
users’ burden in wearing body-sensors properly and following study procedures)
or technological factors (related to device malfunctions).

Human factors include switching off the phone, stopping the data-collection
app on the phone, turning off the sensor, taking the sensors off, delaying
proper attachment of the sensors upon wearing, and going out of the wireless
range of the phone while wearing the sensors. Technological factors include
battery depletion, wireless losses, and intermittent loosening of the sensor
attachments.

mDebugger makes the following key assumptions.

• Data collection is done using wearable sensors that collect raw sensor data and
wirelessly stream them to a smartphone. Sensors do not store any data locally for
backup due to battery and storage constraints.

• Users collect data in unconstrained daily living conditions, but are expected to
follow instructions provided to ensure good quality of data.

• Quality of physiological sensor data is contingent upon correct bodily attachment
and placement of the sensors at the correct locations on the body.

• Participants are expected to take the sensors off during sleep.

Computation of Data Yield Episodes

We first describe how the study duration, active period, sensor on-body episodes,
and acceptable data quality episodes are computed.

Study Duration This is the total number of days (between the start and end of
study) that users are asked to participate in data collection. Data collected at this step
are raw and may contain invalid data, missing data, and/or no data at all. mDebugger
considers all the collected data in the study duration as raw input for assessment of
quality. mDebugger reports data yield and loss in units of hours per person per day.

Active Periods The active period per day refers to that part of the day when
participants were awake and available for wearing the sensors. We estimate it as
the period between the first and the last time of the day when acceptable data were
obtained from any of the physiological sensors (e.g., respiration or ECG). Figure 2
shows an example of active data capture using wearable wireless physiological
sensors over 1 week in the natural environment. The remaining time of the day
(outside the active period) is labeled as the inactive period. If participants take
the sensors off within the active period (e.g., to take a shower), these episodes are
considered episodes of lost data.

We formally describe the process of calculating active episodes in Algorithm 1.
We note that input to this algorithm are sensor on-body episodes that are computed
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Fig. 2 Pattern of active data capture using wearable wireless physiological sensors over 1 week
in the natural environment. The x-axis shows the time of day, and the y-axis shows each of the 7
days. Each blue horizontal bar indicates the start and end of a sensor on-body episode
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Fig. 3 bi:tstart and bi:tend are the start-time and end-time of sensor on-body segment bi respectively.
Active period is computed by combining consecutive sensor on-body segments based on the users’
sleep or resting time, �

using Algorithm 2, which in turn uses Algorithm 3 to obtain acceptable data quality
episodes, which is obtained directly from time-stamped raw sensor data.

Let b1, b2, b3, . . . , bn be sensor on-body episodes. Then, a sequence of segment
such as (bl, blC1,..., bm), is considered an active period or active window aj (see
Fig. 3), if

.bl:tstart � bl�1:tend/ � �

^.bmC1:tstart � bm:tend/ � �

^.bi:tstart � bi�1:tend/ < �;8l < i � m;

where � denotes the minimum of estimated or reported resting time. It is assumed
here that the gap between the end of an active period on the previous day and the
start of the active period on the current day is longer than any of the episodes when
sensor is not worn during the day. With the above conditions, the active period is
defined as aj:tstart D bl:tstart and aj:tend D bm:tend:
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Algorithm 1: Active periods

Input: Sensor on-body episodes, fb1; : : : ; bng and resting time estimate, �
Output: Active Periods, aj:[t

j
start; tj

end]
a1  b1
j 1

for i D 2 to n do
if bi:tstart � aj:tend � � then

j jC 1
aj  bi

else
aj:tend  bi:tend

return fajg

We note that in some cases when a participant may not wear the sensor during the
entire day (e.g., forgetting to wear it before leaving for work), the above definition
may not yield correct values for the active period. Also, this definition may not
work for sensors that are usually worn during the entire day and continue to be
worn during sleep (e.g., fitness trackers). An appropriate revision is needed to the
definition of active period to accommodate such use case scenarios.

Algorithm 2: Sensor on-body episodes

Input: ı: Duration Threshold and E1, E2, . . . , En that are set of acceptable data
quality episodes for sensors S1, S2, . . . , Sn

Output: Vector of Sensor On-body Episodes bi:[ti
start, ti

end]
Let E D

Sn
kD1 Ek

(e1; e2; : : : ; em) = Sort E by E:tstart

ecur D e1
i D 1
for k D 2 to m do

if ek:tstart � ecur:tend < ı then
ecur:tend D max.ecur:tend; ek:tend/

else
bi D ecur

i D iC 1
ecur D ek

Return fbig

Sensor On-body Episodes It is the time duration when the sensors are worn and
attached to the body and the phone is receiving data from it, even if sometimes
the data may be of poor quality or lost due to occasional losses in the wireless
channel. For the case of ECG and respiration sensors in the chestband, they are
considered on-body if either of them have acceptable data episodes. For the case
of the wristband, it is considered on body if the accelerometer data has acceptable
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quality episodes. The criteria for determining data acceptability for these sensor are
discussed below. Algorithm 2 computes the sensor on-body episodes. Algorithm 2
takes acceptable data quality episodes Ek (obtained by applying Algorithm 3 to
the timestamped raw sensor data) and duration threshold ı as input, and outputs
sensor on-body episodes bi W Œti

start; t
i
end�. Finally, the total duration of sensor on-

body episode during the day is computed as
P

i.t
i
end � ti

start).

Acceptable Data Quality Episodes We first discuss the case of physiological
sensors in the chestband and then the case of motion sensors in the wristband. For
both respiration and ECG in the chestband, signals are labeled as acceptable if they
retain their characteristic morphologies; and unacceptable otherwise. ECG signals
are rendered unacceptable mostly due to improper or loose contact of electrodes
with the body, electrode detachment, loosening of electrical connectors, drying
out of gel, or excessive noise from physical movement. The morphology of an
acceptable ECG signal corresponds to the standard ECG wave (see Fig. 4).

Respiration signals are largely affected by misplacement of the chest band and
slipping of the band from its expected location on the chest. Mere loosening of
the chest band sometimes results in a low-amplitude signal, but it is considered
acceptable if it still retains the characteristic morphology of a respiration signal.
Signal saturation to a point where variation is no longer detectable is considered

Fig. 4 Top left (a) quadrant shows a standard ECG cycle. Top right (b) quadrant shows typical
acceptable and unacceptable ECG data collected in the field. Similarly, bottom left (c) quadrant
shows typical respiration pattern under rest condition and bottom right (d) quadrant shows
acceptable and unacceptable respiration signal captured in the field
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unacceptable (see Fig. 4). We adopt a method that we presented in [23] for
determining the acceptability of ECG and respiration signals.

Unlike the chestband sensors, where we use the morphology of the signals
to determine whether their data quality is acceptable or not, we use a different
method for wrist sensors. This is because for motion sensors, their data quality is
considered acceptable as long as they are worn on the wrist; unlike physiological
sensors, they do not have attachment constraints. To determine whether motion
sensors are worn on the wrist or not, we compute a device orientation independent
feature from accelerometers, standard deviation (	 ), over a certain time window
(e.g., 10 s). We determine via experiments that the 5th percentile of the standard
deviation (	 D 1:6) can distinguish sensor on-body from the sensor off-body
condition.

Using the acceptable data criteria, we exclude unacceptable data and then
construct time-based episodes. Each sample from each sensor is timestamped in
Unix Time Coordinate (UTC). This helps us identify missing packets or gaps
in data after removing unacceptable data. The episode construction algorithm
automatically groups the available timestamps into episodes based on a given gap
duration threshold (e.g., 5 min) between two episodes. Let tk D ftk

1; : : : ; t
k
Tg be

the sample timestamps of kth sensor. Again let Œtstart; tend� be an episode from tstart

to tend. Algorithm 3 converts tk into a set of acceptable data quality episodes, i.e.,
Ek D fŒtstart; tend�g for each sensor k. We note that the output of this algorithm is
used as an input to Algorithm 2 to compute sensor on-body episodes.

The participants in our studies were instructed to remove the sensor from the
body during showers, sleep, and contact sports. On average, the duration of a shower
is around 10 min, sleep is 8 h, and sports 90 min (e.g., soccer). It indicates that two
sensor on-body segments are at least 10 min away from each other. Therefore, we
choose the threshold (ı) = 10 min.

Algorithm 3: Episode construction

Input: tk D ft1; t2; : : : ; tTg: timestamps, ı: duration threshold
Output: Vector of acceptable data quality episodes Ek:fŒtstart; tend�g

Ek  ;

ts  t1
te  t1
for i D 2 to T do

if ti � te � ı then
Ek:insert.Œts; te�/
ts  ti
te  ti

else
te  ti

return Ek
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Confounding Events Given a target inference (i.e., health or environmental state),
confounding events are those conditions during which making the desired inference
is infeasible due to the confounding events overwhelming the signal source. For
example, physiological arousal that are assessed to find a signature of stress response
can be easily obfuscated by physiological arousal due to physical activity. Similarly,
if tracking steps (for physical activity) is the desired event (from wrist-worn motion
sensors), it could be confounded by cooking, washing dishes, or even gesturing
during talking. Thus, it is important to detect such events and exclude confounded
data before applying the desired inference model. For stress detection, physical
activity affected data is usually excluded. In addition, it takes some time for the
physiology to recover after the conclusion of physical activity. Those data are also
excluded from analysis of stress [29].

Valid Data After excluding the data affected by confounding events, mDebugger
generates usable data for a target inference. This is referred to as valid data, for
a target inference. Validity of data may also be affected if the sensor is placed on
an incorrect location of the body. For instance, wearing of wrist sensor on non-
dominant hand may result into missing of eating and smoking episodes. In this
case, the sensor is on, is collecting usable quality data, but is missing the desired
inference episodes and may lead to the wrong conclusion about the inferences of
interest, e.g., missing the detection of first smoking lapse in a smoking cessation
study. Incorporation of automated identification of incorrect placement of a sensor
in mDebugger is a subject of ongoing and future work.

Authentic Data In some cases, even when data is valid, it may not be authentic.
This may occur, for example, when the sensors are worn by someone other than the
participant. Determining the authenticity of mobile sensor data is an active area of
research [6]. Such methods may be incorporated in mDebugger in future.

Identification of Data Loss Factors and Their Contribution to
Data Loss

We now define each data loss factor and describe how mDebugger computes them
and quantifies their contribution to data loss. These were originally described in
[26]. We recall them here for the convenience of readers. We use the example of
AutoSense sensors [8] that is summarized in section “Data Collection in Two User
Studies” together with user study details.

Phone On/Off Within the active period, the time window during which the data
collection application was running on the phone is considered the phone on period.
When the application is running, it saves phone sensor data even if the body sensors
are off or out of range. In our user studies, we did not inform participants how to
stop the application when the phone was on. But participants could use the power
button on the phone to switch the phone off (which would also stop the application).



mDebugger: Assessing and Diagnosing the Fidelity and Yield of Mobile Sensor Data 131

Time within the active period when the phone was turned off, either intentionally or
due to battery drainage, is referred to as phone off.

Sensor On/Off “Sensor on” is defined as the period when the study phone receives
data from body sensors. “Sensor off” is defined as the period when the study phone
is on and the data acquisition application is running, but no data are received from
the body sensors for more than 1 min. We describe later how we distinguish sensor
off from the sensor’s being out of wireless range.

Sensor Battery Down The AutoSense [8] wearable sensor suite transmits battery
level data. A full charge of our battery is 4.1 V, nominal operation is 3.7 V, and the
minimum voltage needed for operation is 3 V. When the battery level is close to 3 V
and the application stops receiving data from the sensors, we define this event as
“sensor battery down”.

Attachment Loss There are several scenarios in which data quality, especially
from physiological sensors, becomes unacceptable despite the sensors’ being worn
on the body. This is because the physiological sensors must be attached correctly
to the body to get acceptable data. We describe below three such attachment issues
that affect data quality. We identify each issue separately as their analysis may help
identify factors that can be addressed to improve data quality.

Delay in attachment occurs when all sensors eventually provide acceptable data,
but data from one or more sensors is initially of unacceptable quality at the start of a
new wearing episode. Whenever users put on the sensors, there is usually some delay
between putting the sensors on the body and properly placing and attaching each
sensor so that acceptable data can begin to get collected. The loss of data between
wearing a sensor and getting acceptable data is defined as delay in attachment. In
our user studies, participants are instructed to visualize the real-time signals on the
smartphone (Fig. 5) and fix the attachment, if the signal looks unacceptable.

Intermittent loosening occurs when, after being acceptable for some time, data
quality becomes unacceptable intermittently (indicated by restoration of data quality

Fig. 5 Users could visualize
their real-time physiological
data on the phone screen.
This helped users ensure that
the attachment of the sensors
was correct
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in the same wearing episode). This may be due to movement, ECG electrode gel
drying out, or loosening of the electrode attachment or the chest band.

Improper attachment occurs when participants attach sensors improperly and do
not fix the attachment for the entire wearing episode.

Loss Due to Jerks When data quality becomes unacceptable immediately after the
onset of physical activity and again becomes acceptable right after the end of the
activity, we define this as a loss due to jerks.

Packet Loss in the Wireless Channel Packet loss (different from disconnection)
refers to time when the phone is wirelessly connected to the body sensors but some
data are lost through the wireless communication channel. Packet loss could occur
due to wireless interference. Interpolation can be used to recover from short bursts
of lost data due to packet loss when the signal retains appropriate morphology even
after interpolation. Otherwise, these packets are labeled as lost packets.

Wireless Connection Loss We log each disconnection and reconnection time
stamp on the phone (determined by the wireless radio layer) and use these time
stamps to identify data loss due to wireless disconnections. In our user studies,
participants can see a green icon (similar to standard the Wi-Fi icon) on their
smartphone to indicate the status of the wireless connection. Wireless disconnection
can result from wireless interference or other issues with the wireless radio software.
But, if it results from physical separation, we detect such events as described below,
as it can be improved with better compliance from the participants.

Physical Separation Wireless disconnection can occur if participants walk away
from the phone while wearing the sensors, causing the distance between the phone
and sensors to exceed the wireless radio range. We attribute a connection loss
to physical separation, if physical movement (detected via accelerometer that is
sampled on both the wearable sensor suite and on the phone) is observed on the
wearable sensors, but not on the phone, preceding the event of a connection loss.

An Example of the mDebugger Process

Figure 6 (to be read from top to bottom) provides an example of mDebugger’s
assessment and diagnosis of mobile sensor data. The first step is to detect episodes
of acceptable quality physiological data from timestamped raw sensor data (using
Algorithm 3). Episodes of acceptable data episodes are composed to obtain sensor
on-body episodes (using Algorithm 2). Via temporal clustering, sensor on-body
episodes are used to determine the active period of the day (using Algorithm 1).
Finally, data yield and loss are computed for the active period, with different sources
of data loss identified.



mDebugger: Assessing and Diagnosing the Fidelity and Yield of Mobile Sensor Data 133

Acceptable ECG

Acceptable RIP

Sensor On body

i

j

k

l

i l

Active Period

a

b d
c e

f g

h

a d e h

ECG raw signal

RIP raw signal

Time of day

a h i l

Data Yield

Both ECG and RIP are good
Either ECG or RIP is good
Both are unacceptable

Fig. 6 An example of mDebbuger process to assess and diagnose mobile sensor data. The first two
rows show raw ECG and respiration (RIP) signal respectively. Several segments of the raw signals
show an irregular heart beat or respiration cycle. Our algorithms automatically identify acceptable
ECG and acceptable RIP data. For example, [b,d], [f,g], [i,k] are acceptable ECG segments and
[a,c], [e,h], [j,l] are acceptable respiration segments. By fusing acceptable segments from both ECG
and RIP data, sensor on-body segments are constructed. For example, [b,d] and [a,c] segments are
used to construct [a,d] on-body segments. Active periods are calculated by merging sensor on-body
periods close enough to each other during waking hours. For example, sensor on-body segments
[a,d] and [e,h] constitute active period segment [a,h]

Data Collection in Two User Studies

To showcase the utility of mDebugger, we apply it on data collected in two
mobile health user studies. Both studies were designed to investigate relationships
among stress, addictive behaviors, and their mediators (e.g., conversations, physical
activity, and location), where these behaviors were tracked via wearable sensors.
Study 1 was conducted with 40 users of illicit drugs; and Study 2 with 72 daily
smokers. Although a previous model of our data diagnostic framework [26] was
applied on data collected from Study 1, we still analyze it in this chapter as some
factors not measured previously are now included in the mDebugger framework.
Also, using this study together with Study 2 helps compare and contrast these
two studies and demonstrate the generalizability of mDebugger. Both studies
were approved by Institutional Review Boards (IRBs) of study sites (NIDA and
University of Minnesota). In the following, we describe the devices and protocols
used.
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Devices and Sensor Measurements

Sensor Suite In both studies, participants wore the AutoSense chestband sensor
suite (Fig. 7) underneath their clothes [8]. AutoSense consists of an unobtrusive,
flexible band worn around the chest. It provides respiration data by measuring
the expansion and contraction of the chest via inductive plethysmography (RIP)
and includes two-lead electrocardiograph (ECG), 3-axis accelerometer, and few
other sensors. The wristband used in Study 2 has 3-axis accelerometers, and 3-
axis gyroscopes. We chose AutoSense instead of commercial sensors such as
Zephyr BioHarness [3] because AutoSense lasts longer between charges (7 days
vs. 3 days) and provides higher-quality respiration waveforms in the field setting.
The measurements collected by AutoSense are transmitted wirelessly using ANT
radio [2] to an Android smartphone. The sampling rates for the sensors are 64 Hz
for ECG, 21.33 Hz for respiration, 10.67 Hz for each accelerometer and gyroscope
axis in both the chestband and wrist sensors, and 1 Hz for the battery level.
Altogether, the sensors provide 11 concurrent time series of data that are all time-
stamped when they are received on the smartphone. These samples are transmitted
in small wireless packets, where each packet is 8 bytes long and contains five
samples.

Smartphone Each participant also carried a smartphone that communicated with
AutoSense via low-power ANT radio. The smartphone had four roles. First, it
received and stored data transmitted by the sensors. Second, it sampled and stored
data from its own sensors—GPS and accelerometers. Third, participants used the
phone to respond to system-initiated requests. Finally, participants reported drug
use or smoking events by using a button on the phone.

Fig. 7 AutoSense chestband and inertial wristband sensors used in user studies. Wrist sensors
were used only in Study 2 (with newly abstinent smokers)
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Field Study Procedures

In both studies, participants were trained in the proper use of the devices. They
were shown how to remove the sensors before going to bed and how to put them
back on correctly the next morning. They were also asked to remove the sensors
before taking a shower or playing contact sports. Participants were asked to wear
the sensors during their waking hours, complete self-reports when prompted, and
log smoking and drug use events. Once the study coordinator felt that participants
understood the technology, participants left the lab and went back to their daily lives.

Participants returned to the lab daily in both studies. The study coordinator
downloaded the data collected the previous day from the smartphone and reviewed
the physiological measurements to ensure that the sensors were working and were
being worn properly. On the final day, participants returned the study equipment and
completed an Equipment and Experience Questionnaire. Lastly, participants were
debriefed on their experiences and comfort with the study.

Study-Specific Information

Study 1: Illicit-Drug Users

Polydrug users from an ongoing study who agreed to wear AutoSense and complete
additional self-reports participated in this study. Because drug use is an infrequent
event, participants were asked to wear the sensors for 4 weeks to maximize the
likelihood of capturing several events per person. More details about the study
design, protocol, participants, and compensation appear in [11, 13, 26].

Study 2: Smoking Cessation Study

Participants in this study were daily smokers who reported smoking 10 or more
cigarettes per day for at least 2 years, and who reported high motivation to quit.
Participants wore the sensors for 1 day prior to quitting and 3 days starting on their
quit date. Participants returned to the lab each day to confirm smoking status by
blowing into a carbon monoxide (CO) monitor. More details about this study appear
in [28].

Application of mDebugger on Study Data: Key Observations

We use mDebugger (Fig. 1) to calculate the overall data yield and its characteristics.
Table 1 shows data yield and loss from the smoking cessation study in comparison
with those from the drug-user study, which we have previously reported [26].
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Table 1 Mobile sensor data
yield and data loss statistics
computed from both field
studies using the mHealth
Debugger proposed in Fig. 1

Factors Study 1 Study 2

Study duration (person days) 922 288

Active period 14.57 15.75

Phone off 0.78 0.58

Phone on 13.73 15.17

Chest sensor off 0.17 0.02

Chest sensor battery down 0.03 0

Chest sensor off body 0.34 1.28

Wrist (left) sensor off body – 1.74

Wrist (right) sensor off body – 1.71

Chest sensor on body 13.22 13.94

Wrist (left) sensor on body – 13.13

Wrist (right) sensor on body – 13.18

Packet loss 0.27 0.46

Wireless disconnection 0.04 0.02

Confounding event (activity) 3.44 3.31

ECG

Delay in attachment 0.22 0.17

Intermittent loosening 1.17 0.66

Improper attachment 0.19 0.10

Acceptable data 11.33 11.35

Valid data 8.00 8.04

Respiration

Delay in attachment 0.12 0.01

Intermittent loosening 0.72 0.26

Improper attachment 0.20 0.02

Acceptable data 11.84 12.48

Valid data (for stress assessment) 8.40 9.17

Average values are in hours per participant per day

The two studies have several similarities such as sensor wearing throughout
the awake part of the day, daily return to the lab, but they have some differences
as well. First, Study 2 was conducted at a later date with a newer version of
the AutoSense sensors as well as an updated version of the smartphone software.
Second, Study 2 involved quitting smoking, whereas Study 1 was observational.
Third, Study 2 involved wearing inertial sensors on both wrists to track hand gesture
for detection of smoking lapses. This study allows us to observe differences in data
yield between chest and wrist sensors. Wrist sensors are usually easier to wear
and have less stringent bodily attachment requirements than ECG and respiration
sensors in a chestband. But, wrist sensors are worn on exposed part of the body
whereas chest sensors are concealed underneath clothing. Fourth, Study 2 involved
concurrent wireless transmission of data from 12 additional sensors (three axes of
accelerometer and three axes of gyroscope on each wrist) than Study 1. We now
discuss some observations.
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Data Yield Differences Between Study 1 and Study 2

As discussed above, there are several differences between the two studies that could
impact their data yield. We now discuss several observations in data yield between
the two studies.

First, Table 1 shows that participants in Study 2 wore the chestband sensors for
15.75 h (vs. 14.57 h in Study 1) and the phone was on for a longer duration in Study 2
than in Study 1 (15.17 h in Study 2 vs. 13.73 h in Study 2). These could be attributed
to the use of newer phones with a bigger battery so that data collection was not as
impacted by battery depletion. Also, the smartphone software was updated to reduce
software crashes. More extensive analysis of the smartphone software and the phone
versions can be undertaken in future to tease out their impact on data yield.

Second, we observe that the chestband sensors are worn for roughly the same
duration (13.94 h in Study 2 vs. 13.22 h in Study 1). We hypothesize that when
wearing chestband sensors daily, users may not feel as comfortable in wearing them
for longer than 14 h. Future studies can investigate comfort level with various body-
worn sensors and establish limits on daily wearing duration.

Third, we observe that amount of data lost due to wireless packet losses is
greater in Study 2 than in Study 1 (0.46 h in Study 2 vs. 0.27 h in Study 1). This
may be expected due to significant increase in the number of sensors concurrently
streaming data to the phone. In Study 1, there was only chestband that streamed
data to the phone. But, in Study 2, two wristbands were also streaming data to
the phone concurrently. The amount of data streamed also doubled. The overall
data rate from the chestband sensors is 120 Hz (64 Hz for ECG, 21.33 Hz for
respiration, and 3 � 10:66 D 32Hz for three axes of accelerometer). Each wrist
sensor adds 64 Hz data (i.e., 10.66 Hz for each of the three axes of accelerometer and
gyroscope). However, we observe that the additional data loss due to packet loss is
still negligible, i.e., 3% in Study 2 (0.46 h out of 13.94 h). As described in [26], most
packet losses (around 80%) are one packet long that can usually be interpolated due
to small size of the packets (i.e., five samples).

Fourth, physical activity is more frequent in Study 1 as compared to Study 2.
Participants in Study 1 are active 26% of the time (3.44 h out of 13.22 h), whereas
participants in Study 2 are active 23.7% of the time (3.31 h out of 13.94 h). This was
also observed in [26], when Study 1 was compared with a week-long study with
college students. As discussed in [26], several participants in Study 1 used walking
as a transportation modality. As a result of more active lifestyle, we observe greater
data loss due to intermittent loosening in Study 1 compared to Study 2, e.g., 0.72 h
in Study 1 vs. 0.26 h in Study 2 for the respiration band.

The above two factors (more packet losses in Study 2 and more losses due to
intermittent loosening in Study 1) cancel each other out and we end up with similar
amount of acceptable and valid respiration data across both studies. In Study 1,
acceptable respiration data is obtained for 89.5% (12.48 h out of 13.94 h) of the
time that the chestband sensors are worn on the body. The value for Study 1 is also
the same, i.e., 89.5% (11.84 h out of 13.22 h).
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Fifth, we observe that the fraction of acceptable ECG data is marginally different
in the two studies. In Study 1, we obtain 85.7% yield (11.33 h out of 13.22 h), but
in Study 2 we obtain 81.4% yield (11.35 h out of 13.94 h). Such a difference was
also observed when Study 1 was compared with a week-long study with college
students, although the magnitude of difference was larger (85.7% vs. 75.3%) [26].
It was observed that the higher yield in Study 1 was a result of learning effect. The
yield in the first week was 78.9%, but it increased significantly in the second week
to 84.3%, and it continued improving in subsequent weeks as participants learned
how to appropriately attach the sensors. If we compare the yield in the first week
of Study 1 with that in Study 2, the yield across the two studies are similar, i.e.,
78.9% in Study 1 vs. 81.4% in Study 2. The slightly lower yield in Study 1 can be
explained by higher loss due to intermittent loosening in Study 1 (1.17 h in Study 1
vs. 0.66 h in Study 2) from greater physical activity.

Finally, we observe that even though the sensors do not store data collected
locally in the event of a wireless disconnection (e.g., due to the sensors and
smartphone getting out of wireless range), data lost due to wireless disconnection
is negligible, i.e., 0.02 and 0.04 h in the two studies. For scenarios when raw sensor
data is to be collected, this is encouraging because storage of raw sensor data on
sensors can quickly drain both the battery and on-board storage as frequent writing
consumes significant energy and raw sensor data can fill up on-board storage quite
quickly. Real-time streaming of sensor data also facilitates their processing that can
be used to trigger real-time interventions. Therefore, such designs for wearable
sensors where they stream raw sensor data directly to smartphones are indeed
feasible.

Data Yield Differences Between Chest and Wrist Sensors

Participants in the smoking-cessation study (Study 2) wore two custom made wrist
sensors on each wrist as shown in Fig. 7. We make several observations when
comparing the yield from the chestband sensors and the wristband sensors (see
Table 1) for yield data.

First, we observe that participants wore the chestband for a longer mean duration
(
 D 13:94) than either the left wristband (
 D 13:13, p D 0:025, two sample
t-test) or the right wristband (
 D 13:18, p D 0:034, two sample t-test). This may
be because the wristband used in the study was a custom-made sensor, larger than
commercially available smart-watches or activity-trackers that exposed its chipsets.
Since the wrist sensors were worn on exposed part of the body, participants may
have taken it off when doing activity involving hands (e.g., cooking, washing, etc.).
Also, taking off wrist sensors was easy as it was housed in a slap band.

In contrast, the chestband was concealed underneath clothing and involved
greater effort for taking off. We also find that four participants skipped wearing
a wristband for four data-collection sessions (full or half day), but only two
participants skipped wearing the chestband. However, the above are only potential
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reasons and a deeper investigation is needed to understand the differences in wearing
pattern between wristband and chestband sensors.

Second, wrist sensors have less stringent bodily attachment requirements as
compared with ECG sensors that require electrode attachment or respiration sensors
that should be worn tightly around the chest. Therefore, we observe that the amount
of acceptable sensor data from wrist sensors is significantly higher than that from
chestband sensors (13.13 and 13.18 h for the two wrist sensors vs. 12.48 h for the
respiration sensor and 11.35 h for the ECG sensor). This is because as long as wrist
sensors are worn on the wrist they can track hand gestures.

We note, however, that when wrist sensors are used to track physiological
parameters (e.g., galvanic skin response or pulse rate from a photoplethysmography
sensor) as is increasingly the case in commercial wrist sensors, their yield will also
be similarly affected by attachment constraints as is the case with chest sensors.
Also, physiological data collected from wrist sensors are more likely to be affected
by physical activity due to more frequent movements involving hands as compared
to the torso. A future study with physiological sensors in both chestband and
wristband may be undertaken to understand differences in data yield from both
sensors.

Discussion and Limitations

Wearable sensors are increasingly being adopted in various kinds of user studies.
They include observational studies (such as the Precision Medicine Initiative Cohort
Program [5]) to understand health and behavioral phenomena where wearable
sensors can provide unprecedented visibility into health states, daily behaviors, and
environmental influences; interventional studies where digital biomarkers obtained
from sensor data can be used to trigger, adapt, or personalize mobile or remote
interventions [29]; and efficacy studies where wearable sensors can be used to
observe the effect (or rate of recovery) of various treatments whether they are
therapies [22] or drugs [7]. mDebugger can be used to observe and explain lost data
so their effect on the study objectives can be accounted for. The data yield analysis
can also be used to improve sensor technology, study procedures, and protocol
compliance.

The software implementation of mDebugger is released as an open-source
software by MD2K Center of Excellence.1 The software can be applied on data
collected by wearable sensors. It can also be extended and improved. We summarize
some potential ideas for future work in this direction.

First, the mDebugger framework has been developed for the case of collecting
high-frequency sensor data where sensor data are streamed to a mobile phone to
be processed in real-time so it can be used to trigger just-in-time interventions. It

1Please see software repository at https://md2k.org.

https://md2k.org
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needs to be revised for cases where sensors can store data locally and send it to
the phone intermittently. This is the case for activity trackers that usually send only
digital biomarkers (e.g., step count, heart rate, etc.) rather than raw sensor data.
Storing raw sensor data consumes significant battery life (due to write operation)
and storage as data volume grows quite quickly. But, collection of raw sensor data
ensures that the quality of biomarkers derived from the data collected is not limited
to the specific computational model available or implemented on the device. If raw
sensor data is collected, then better and new biomarkers can be obtained as and
when computational models for such biomarkers improve or become available. For
example, if raw accelerometer and gyroscope data is collected from wrist-worn
sensors instead of only step count or calories, then smoking [28] and eating [30]
events can also be inferred from this data by applying appropriate models. We also
note that the amount of data lost due to wireless disconnection was observed to be
negligible in our studies, i.e., 0.02 or 0.04 h (out of 13+ h of sensor on body), even
though raw sensor data was being collected without any local storage on the sensors.

Second, the definition of active duration in mDebugger assumes that sensors are
taken off during sleep. This definition will need to be revised for scenarios when
sensors are to be worn during the day and during sleep, as is the case with activity
trackers. Third, the definition of confounding activity is dependent on the target
inference as well as the specific model being used for target inference. For instance,
the puffMarker model for smoking detection from wrist sensors [28] can detect the
smoking event irrespective of whether the wearer of the sensor is seated, standing,
walking, driving, talking, or eating, whereas the cStress model [12] can not infer
stress when the physiology is affected by physical activity.

Fourth, the current version of mDebugger is designed to be applied in the
offline phase after data has been collected. Although this scenario of application
is quite useful, additional utility can be obtained by developing a mobile version of
mDebugger that can run on the mobile phone itself that is collecting data. In such
cases, real-time interventions can also be designed that can alert sensor wearers or
study coordinators in the event of significant data loss.

Finally, a provenance system can be developed that can use the output from
mDebugger to annotate data stream before sharing it with third party researchers.
With such provenance information, anyone analyzing the data can take the factors
affecting data loss to determine how the analysis should be adjusted. For instance,
the outcome of an analysis can depend on whether lost data can be treated as lost at
random or they denote a systematic bias [29].

We would also like to acknowledge that specific yield values reported for the two
studies here should be viewed with their specific contexts of data collection. First,
both studies were monitored or supervised by professional staff. Participants were
trained in proper wearing of the devices and were seen every day. It remains an open
question whether similar or better data yield can be obtained without daily meetings,
and in the absence of micro-incentives to encourage compliance with the protocol.
Also, both studies used gel electrodes for ECG data collection. It is unknown how
the ECG data yield may change with different types of electrodes. For instance,
fabric electrodes have high electrode-to-skin impedance and are susceptible to
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motion artifact, which might make them unsuitable for the types of ambulatory
assessment discussed here [18]. Also, when heart activity data is collected from
smartwatches that are worn on wrists, the yield may be different due to use of
a different body location (only pulses reach limbs whereas electrical activity is
detectable at chest), different sensing modality (i.e., photoplethysmography that
uses light reflectance), and more frequent movements involving hands than torso.

Conclusion

Quality and quantity of sensor data is critical for the success of any mHealth
initiative (such as the Precision Medicine Initiative), especially projects that involve
data collection utilizing physiological sensors in the natural environment. The
mDebugger system provides a method to analyze the major factors affecting data
yield. A deeper understanding of the nature and impact of factors that contribute to
data yield can improve the quality and quantity of data collected.
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Introduction to Part II: Sensors to mHealth
Markers

Santosh Kumar, James M. Rehg, and Susan A. Murphy

Abstract Markers of health, behaviors, and environmental risk factors that influ-
ence health and wellness represent one of the strongest new capabilities that has
been enabled by the advent of mobile health. Once mobile sensor data has been
transformed via computational models into mHealth markers, these markers can be
used to monitor and improve health and wellness in a variety of ways.

We begin by describing four different ways that mHealth markers can be used
to monitor and improve health and wellness. First, they can be used directly
by care providers or by the patients themselves to monitor health and wellness.
Second, mHealth markers can be used to decide the content, timing, and modality
of treatments and interventions. Third, mHealth markers of the current state and
environmental context around a participant can be used to adapt the intervention
to the specific circumstances (e.g., not interrupting a user when they are driving).
Fourth, mHealth markers of health state can be used to assess and predict the
response of a user to specific treatments and interventions, which can in turn be
used to deliver personalized treatments. The two parts following this part (Part II)
in this volume describe how mHealth markers can be used in discovering predictors
of adverse health events (in Part III), and in tailoring the design and shaping the
delivery of mHealth interventions (in Part IV).
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This part (Part II) describes several examples of computational models and data
analysis methods which are used to obtain mHealth markers from mobile sensor
data. The first chapter in this part, “Challenges and Opportunities in Automated
Detection of Eating Activity” by Thomaz et al. (10.1007/978-3-319-51394-2_9)
surveys a variety of different sensors that can be used to automatically monitor
eating events and describes the major challenges in each approach. While the article
“Designing Mobile Health Technologies for Self-Monitoring: The Bite Counter
as a Case Study” (10.1007/978-3-319-51394-2_6) focused on self-monitoring of
eating activity, where users are expected to indicate the start and end of their eating
episodes, the models described by Thomaz et al. do not require any initiation by the
users. Instead, the sensor data is used to automatically detect both eating gestures
and entire eating episodes. Three sensing modalities are covered here—first-person
images captured by wearable cameras, ambient sounds, and inertial sensors mounted
on wrists.

The next chapter, “Detecting Eating and Smoking Behaviors Using Smart-
watches” by Parate and Ganesan (10.1007/978-3-319-51394-2_10), continues
the presentation of computational models for detecting daily behaviors from
inertial sensors mounted on wrists. While the work by Thomaz et al. uses 3-axis
accelerometers, this chapter discusses how to use 9-axis inertial sensors (three
axes each of gyroscope, accelerometer, and magnetometer) to detect smoking
episodes. Also, in contrast to the focus on eating detection in Thomaz et al.,
this chapter focuses on computational modeling for hand gesture recognition.
Specifically, this chapter presents methods for processing accelerometer, gyroscope,
and magnetometer sensor data for the detection of smoking and eating behaviors.
It identifies the challenges in processing these sensor modalities to recognize hand
gestures, and presents various approaches proposed in recent works.

The next chapter, “Wearable Motion Sensing Devices and Algorithms
for Precise Healthcare Diagnostics and Guidance” by Wang et al.
(10.1007/978-3-319-51394-2_11) takes the discussion of activity sensing into
the domain of healthcare. It describes sensing methods for gait that can help in
assessing recovery during post-stroke rehabilitation, post-surgery recovery, and
other clinical conditions. The authors consider the use of accelerometers worn on
various parts of the body along with imaging sensors such as Kinect for activity
monitoring. They present an entire end-to-end system for such scenarios.

The next chapter, “Paralinguistic Analysis of Children’s Speech in Natural
Environments” by Rao et al. (10.1007/978-3-319-51394-2_12) continues with the
theme of obtaining mHealth markers from mobile sensors that can be used by
healthcare providers. This chapter focuses on obtaining estimates of the affective
state of children with developmental disorders from audio signals captured in
the natural environment. More specifically, it focuses on detecting laughter and
whining in such children during naturalistic interactions with caregivers. This
chapter complements the analysis of inertial sensor data in the preceding articles
by describing analysis techniques for audio data.

The role of acoustic sensing is further expanded by the next chapter, “Pulmonary
Monitoring Using Smartphones” by Larson et al. (10.1007/978-3-319-51394-2_13)

http://dx.doi.org/10.1007/978-3-319-51394-2_9
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which describes how audio data can be used for the screening, diagnostics, and
management of chronic pulmonary diseases like asthma, chronic bronchitis, and
chronic obstructive pulmonary disease. Doing so can extend the care for such
diseases into the patient’s natural environment, and facilitate timely diagnosis and
treatment. Of particular interest may be the methods the authors present to conduct
pulmonary assessment passively by analyzing audio data captured during regular
speaking episodes on the mobile phone.

The next chapter, “Wearable Sensing of Left Ventricular Function” by Inan
(10.1007/978-3-319-51394-2_14), moves the discussion of mHealth biomarkers
from the lungs to the heart. It describes the physiology of the left ventricle (LV)
that facilitates the delivery of oxygen and nutrients to—and the removal of carbon
dioxide and waste from—nearly all organs and tissues in the body. By describing
its physiology, key parameters for its modeling, and pathophysiology during heart
failure, the chapter illustrates various opportunities to develop mHealth markers to
assess the health and functioning of LV. This chapter then describes the challenges
and opportunities in processing impedance cardiography (ICG), phonocardiography
(PCG), seismocardiography (SCG), and ballistocardiography (BCG) signals, which
are not as widely understood as the more standard electrocardiogram (ECG). Robust
assessment of LV function can benefit from the use of some of these modalities in
conjunction with ECG.

The next chapter, “A New Direction for Biosensing: RF Sensors for Monitor-
ing Cardio-pulmonary Function” by Gao et al. (10.1007/978-3-319-51394-2_15)
presents a new sensing modality based on radio-frequency signals to non-invasively
monitor the motion of organs within the body, with a specific application to
measuring heart and lung motion. The potential benefit of this new approach
over standard measures is that it does not require either contact with body (as
is the case with ECG) or a direct line of sight to the skin (as is the case with
photoplethysmography sensors). This chapter provides a comprehensive description
of computational models for processing radio-frequency data for the estimation of
heart and lung motion.

The final chapter, “Wearable Optical Sensors” by Ballard and Ozcan
(10.1007/978-3-319-51394-2_16), focuses on wearable optical sensors that have
been employed for sensing heart rate, blood pressure, blood oxygenation, abdominal
and thoracic respiratory rate, targeted localized bending and movement, and even
the detection and quantification of ion, protein, and virus concentrations. Optical
sensors possess some attractive properties as they are capable of probing nanoscale
volumes, allow for noninvasive interrogation of biological matter, and often employ
low-cost, water and corrosion resistant sensing elements. However, obtaining robust
mHealth markers from optical sensors is challenging due to the problem of ambient
light interference with the measurement signal, as well as the relatively poor
penetration of light into skin and other bio-fluids. This chapter describes recently
emerging wearable optical sensors and the methods for obtaining mHealth markers
from them.

In summary, the eight chapters in this part cover the challenges and approaches
that arise in obtaining mHealth markers from a variety of mobile sensors. They

http://dx.doi.org/10.1007/978-3-319-51394-2_14
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include processing the data collected by wrist-worn motion sensors to track
hand gestures, motion sensors worn on other parts of the body to track gait
and physiology, imaging sensors to track movement of limbs, audio sensors to
track physical, mental, and social health states, and various other electrical, radio
frequency, and optical sensors to track physiology. Part III presents methods for
using these mHealth markers to discover predictors of risk factors that can be used
in the design of mHealth interventions, which are in turn covered in Part IV.



Challenges and Opportunities in Automated
Detection of Eating Activity

Edison Thomaz, Irfan A. Essa, and Gregory D. Abowd

Abstract Motivated by applications in nutritional epidemiology and food jour-
naling, computing researchers have proposed numerous techniques for automating
dietary monitoring over the years. Although progress has been made, a truly
practical system that can automatically recognize what people eat in real-world
settings remains elusive. Eating detection is a foundational element of automated
dietary monitoring (ADM) since automatically recognizing when a person is eating
is required before identifying what and how much is being consumed. Additionally,
eating detection can serve as the basis for new types of dietary self-monitoring
practices such as semi-automated food journaling.

This chapter discusses the problem of automated eating detection and presents a
variety of practical techniques for detecting eating activities in real-world settings.
These techniques center on three sensing modalities: first-person images taken
with wearable cameras, ambient sounds, and on-body inertial sensors [34–37]. The
chapter begins with an analysis of how first-person images reflecting everyday
experiences can be used to identify eating moments using two approaches: human
computation and convolutional neural networks. Next, we present an analysis
showing how certain sounds associated with eating can be recognized and used to
infer eating activities. Finally, we introduce a method for detecting eating moments
with on-body inertial sensors placed on the wrist.

Introduction

Eating is one of the most fundamental human activities. Satisfying the hunger urge
is essential for survival and sharing a meal has been one of the most enduring social
practices for thousands of years [11]. Because of the important role eating plays
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in our lives, it has been extensively studied. Anthropologists have investigated the
relationship of eating behavior to culture and society and have claimed that learning
how food is eaten is to learn how a society functions [7]. Food consumption has
been shown to be tied to rituals, symbols, belief systems and identities [26].

For several decades health researchers have also been deeply interested in
studying eating habits and its impact on human health. It is now understood that
good nutrition is vital for optimal growth and development, and prevention of
disease [10, 18]. Dietary intake has been widely examined as it relates to cardiovas-
cular disease, hypertension, obesity, diabetes, cancer, osteoporosis and many other
medical conditions [3]. Despite the importance of eating as an activity, keeping
track of what, where, how much and with whom people eat remains a significant
challenge, particularly in naturalistic settings. Nutritional epidemiologists have
typically relied on validated dietary assessment instruments driven by self-reported
data including food frequency questionnaires and meal recalls [40]. Unfortunately,
these instruments suffer from several limitations, ranging from biases to memory
recollection issues [14, 25].

Over the last 15 years, a large body of research has aimed at automating the
task of food intake monitoring. Despite significant progress, most proposed systems
have required individuals to wear specialized devices such as neck collars for
swallow detection [1], or microphones inside the ear canal to detect chewing [21].
These form-factor requirements have severely limited the immediate practicality of
automated food intake monitoring in health research. Lately, a new class of mobile
and wearable technologies has enabled the monitoring of human behaviors with off-
the-shelf devices such as mobile phones and smartwatches. We refer to this method
as commodity sensing. In the following sections, we present practical techniques for
eating detection using this emerging sensing approach, and discuss its challenges
and opportunities.

First-Person Point-of-View Photographs

With the advent of small wearable cameras such as the Narrative Clip1 and the
GoPro,2 it has become possible to passively capture everyday experiences with
unprecedented richness in detail. A head or chest-mounted camera can be configured
to take first-person point-of-view (FPPOV) images automatically throughout the day
(e.g. every 30 s), and the resulting snapshots capture people performing a wide range
of everyday activities, from socializing with friends to having meals with family
members.

Despite the advantages of this method, one of the difficulties encountered with
automatic photo capture is that only a small portion of the total number of photos

1http://www.getnarrative.com.
2http://www.gopro.com.

http://www.getnarrative.com
http://www.gopro.com
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might depict an activity of interest, such as eating. Therefore, it is necessary to
devise a scalable mechanism to sift through and classify tens of thousands of photos;
the sheer volume of images generated per day makes it impractical to perform
this classification manually. In this section, we demonstrate the feasibility of two
approaches for identify eating moments with FPPOV images, one leveraging human
computation and one using convolutional neural networks.

Another area that deserves special attention when dealing with wearable cameras,
particularly in public settings, is privacy. First-person point-of-view images captured
every 30-s might depict a day in an individual’s life with an unprecedented level of
detail, but there is a good chance that these images also reflect aspects of one’s life
that might be embarrassing or compromising. A growing body of research work has
explored this area. Kelly et al. proposed an ethical framework to formalize privacy
protection when wearable cameras are used in health behavior research and beyond
[17]. People’s perceptions of wearable cameras are also very relevant. Nguyen et
al. examined how individuals perceive and react to being recorded by a wearable
camera in real-life situations [28], and Hoyle et al. studied how individuals manage
privacy while capturing lifelong photos with wearable cameras [13].

Automatically identifying all privacy threats in FPPOV photographs is not a
computationally feasible task today. Therefore, we established a two-phase privacy
mitigation strategy. Firstly, participants are given the opportunity to manually review
all photos and delete any images they choose not to share with researchers. After
this initial pass, researchers review the images and delete any additional photos that
could reveal sensitive information about the camera wearers or bystanders. This
mitigation privacy is particularly relevant when outsourcing image annotation.

Method I: Human Computation

Human computation has emerged as a viable way to tackle problems that can’t be
presently solved by computers. Although human computation has been validated as
a technique for image labeling [30, 33, 38, 39], identifying health-specific activities
in FPPOV photos poses different challenges. As an example, the objects that might
be recognizable in a photo (e.g. trees) are often only loosely connected to human
activities of interest (e.g. having a picnic in the park).

We devised a human computation method for eating detection where images are
presented to a group of trusted and human computation workers for classification.

Generating and Assigning Tasks

In this method, the task of recognizing eating moments in thousands of FPPOV
images is performed by human computation coders on the Amazon Mechanical
Turk (AMT) platform. The human-intelligence task (HIT) on AMT asks workers
to examine a group of photos and indicate whether any of them depicts an eating



154 E. Thomaz et al.

activity. The images are grouped by hour, and formatted into a web-based mosaic-
like interface (Fig. 2) so that workers visualize only around 100 images at a time.

Once a HIT is created, it has to be assigned to workers. On AMT, it is possible
to specify exactly how workers are matched to tasks. To improve the validity of
workers’ results, HITs should be assigned to three or more unique workers, and their
votes coalesced by taking a majority vote. If a majority vote cannot be obtained, the
HIT should be resubmitted until a majority vote is reached.

Evaluation

To evaluated this approach, we conducted a feasibility study with a non-random
convenience sample of participants (n = 5) over 3 days. There were three females
and two males in the study, and they ranged in age from 23 to 35 years old. The
only requirement for being in the study was familiarity with the basic operations of
a smartphone device, which served as the wearable camera. Participants wore the
phone as a pendant around the neck with its back-camera facing forward, as shown
in Fig. 1, while an application running on the phone took photos automatically every

Fig. 1 An application on a
standard mobile phone
passively captured
first-person point-of-view
images (FPPOV)
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Fig. 2 The image grid interface was designed to help Amazon’s Mechanical Turk workers browse
a large number of photos more efficiently. Hovering the cursor over an images expanded it such
that it can be examined in more detail, as shown in the middle of the first row

30 s. Participants were instructed to wear the device as much as possible, ideally
from the moment they woke up until when they went to sleep.

On average, each participant provided 3509 photos. The image exclusion step
where participants reviewed their own images lasted about 15 min per participant
and led to the removal of up to 200 images. Going through the remaining images
and deleting photos that included secondary participants took us at least 45 min per
subject, and resulted in the deletion of an additional 700 images on average in total,
49 instances of eating activity were recorded in the photos.

To assess the performance of Mechanical Turk workers at recognizing eating
activities in photos, a measure of ground truth was estimated for the image data
collected. This was accomplished by having three trusted coders review the images
as well. Their inter-rater reliability was calculated to be 0.65 (Fleiss’ kappa).

The eating detection task was assigned to two classes of AMT workers, regular
workers and so-called master workers. Master workers have been identified within
the AMT platform as superior at performing certain kinds of tasks, such as image
classification, and thus are more expensive to hire. With master workers, overall
precision was 86.11% and overall recall was 63.26%. As expected, performance
was worse when the HIT was assigned to regular AMT workers. In this case, overall
precision was 66.67% and overall recall was 20.4%.

One of the most salient results from the evaluation was the low overall recall
of AMT master workers (63.26%), indicating that they missed many instances of
eating activities. Since each photo group contained upwards of 50 images (Fig. 2),
it is reasonable that even an attentive human might miss important details in the
photos when constrained by time. This was validated when we confirmed that recall
was worse when only one or two photos in a group showed participants eating. This
often occurred when the food eaten was consumed quickly, within a minute or two,
resulting in the eating behavior being captured in only a small number of photos.
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Method II: Convolutional Neural Network (CNN)

Two high-level insights emerged out of the study aimed at identifying eating
moments using human computation. The first one was that there is a positive
correlation between the skill and cost of AMT workers and the quality of inferences.
Although the best case scenario in terms of performance resulted in overall accuracy
in the range of 90%, this could only be achieved when hiring the most expensive
workers. Therefore, it is likely that for most applications, this approach will not
scale. Secondly, and more importantly, it is practically impossible to guarantee the
level of privacy protection that individuals demand with a photographic method that
also makes use of human computation.

In light of these findings and limitations, we explored another approach for iden-
tifying eating activities with FPPOV images [4]. The approach does not make use of
external and potentially untrustworthy annotators; instead, it leverages state-of-the-
art methodologies in machine learning and computer vision to automatically infer
everyday activities from FPPOV photos. More specifically, it uses Convolutional
Neural Networks (CNNs) [20] combining image pixel data, temporal metadata and
global image features. Convolutional Neural Networks have recently been used with
success on single image classification with a vast number of classes [19] and have
been effective at learning hierarchies of features [43].

Data Collection and Annotation

To test and evaluate the method, we compiled a dataset of 40,103 FPPOV images
“in the wild” representing everyday human activities for one subject over a period
of 26 weeks. These photos were manually annotated by the subject into 19 activity
classes such as cooking, eating, cleaning and playing with kids, as shown in Table 1.
While 19 activity classes represent only a fraction of all human activities, and do not
include multitasking tasks, we kept the number of activity choices to a reasonable
size in order to avoid overburdening participants during the annotation process.

The images were aggregated and manually annotated into activity classes by the
subject at their discretion prior to data collection.

The FPPOV photo collection setup used in this study was the same one that was
employed for the human computation experiment: a mobile phone worn around the
neck as programmed to function like a wearable camera. At the end of the day, the
participant could filter through the images in order to remove unwanted and privacy-
sensitive images and annotate the remaining images.
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Table 1 The distribution of the 19 different classes in the dataset

Classes Number of images Percent of dataset

Chores 725 1.79

Driving 1031 2.54

Cooking 759 1.87

Exercising 502 1.24

Reading 1414 3.48

Presentation 848 2.09

Dogs 1149 2.83

Resting 106 0.26

Eating 4699 11.58

Working 13,895 34.24

Chatting 113 0.28

TV 1584 3.90

Meeting 1312 3.23

Cleaning 642 1.59

Socializing 970 2.39

Shopping 606 1.49

Biking 696 1.71

Family 8267 20.37

Hygiene 1266 3.12

CNN Late-Fusion Ensemble

To evaluate the use of CNNs in eating detection, we employed the Caffe CNN
framework [15]. We fine-tuned the CNN using the methodology of Hinton et al. [12]
with ImageNet [5] and applied the classification model introduced by Krizhevsky
et al. [19]. In effect, we retrained the last layer of the CNN using the annotated
dataset of 40,103 FPPOV images.

In terms of parametrization, we set the base learning rate to 0.0001 in order to
converge with the added data and used the same momentum of 0.9 and weight
decay of 0.0005 as Krizhevsk et al. [19] with up to 100,000 iterations. The CNN
had five convolutional layers, some max-pooling layers, and three fully-connected
layers followed by dropout regularization and a softmax layer with an image size of
256� 256. We split the data by classes into 75% training, 5% validation, and 20%
testing; the classifier was never trained with testing data on any of the experiments.
The parameters were chosen using the validation set and the fine tuning in all of the
experiments was only done with the training set.

To combine the CNN soft-max probabilities output with temporal metadata
and other global image features extracted from the collected dataset, we used a
Random Decision Forest (RDF). The RDF received all inputs as separate features
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Fig. 3 Confusion Matrix for the 19 classes of the dataset with columns as the predicted labels and
rows as the actual labels

and produced a final classification result. We called this classification method “CNN
Late-Fusion Ensemble (CNN+LF)”. In practice, once the model was built, we could
feed it an individual FPPOV image and obtain its predicted activity class.

Evaluation

The use of the CNN + LF method resulted in a total accuracy of 83.07% with an
average class accuracy of 65.87% for the 40,103 FPPOV images. A confusion
matrix of the final method’s results is shown in Fig. 3. In particular, eating activities
were recognized with 83.12% accuracy.

It is important to note the difficulty of categorizing certain classes due to their
inherent overlap (e.g., socializing vs. chatting, chores vs. family, cleaning vs.
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cooking, etc.). This class overlap is due to the inherent impossibility of describing a
specific moment with one label (the participant could be eating and socializing).

Comparing Method I vs. Method II

In the best-case scenario, when master AMT workers were used, a study employing
Method I showed that it is possible to detect eating moments using FPPOV and
human computation with 89.68% accuracy. In contrast, experiments with Method
II demonstrated that analyzing FPPOV with a state-of-the-art machine learning
approach resulted in accuracy of 83.12%.

Clearly, in terms of performance, Method I is superior to Method II. However,
its 6% performance gain over Method II comes at a cost. First of all, there is
the financial cost associated with the use of human computation. Even though
the cost of completing one human computation task is low, the need to review
thousands of images and validate annotations causes the overall operational cost to
climb rapidly. Secondly, there is the challenge of addressing privacy concerns when
making FPPOV photos available to human computation workers. As previously
stated, even when employing the most advanced techniques for identifying faces and
other possible sources of privacy threats, it is currently not possible to guarantee that
all privacy concerns can be addressed computationally. These limitations directly
impact the method’s scalability and viability for practical, real-world deployments.

With regards to Method II, it is purely computational. As a result, it sidesteps the
key scaling limitations of Method I: financial cost and privacy. On the other hand,
Method II is centered around training a classifier for identifying eating activities,
which also comes at a cost. The model building process requires the acquisition
of training data under a variety of real-world settings. However, our experiments
suggest that it might be possible to build a general classifier for eating detection
that could be personalized to individuals without too many additional examples
[4]. Under these circumstances, performance results should improve significantly,
highlighting the promise of the approach.

Ambient Audio

There are many sounds associated with, and indicative of eating activities. These
include the background noise of restaurant environments, the opening and closing of
food containers and wrappers, the sound of a microwave oven warming up food, and
the softer but highly distinguishable sounds generated by the mouth when chewing
and biting. In light of the existence of such audible patterns, we built and evaluated
a system to explore whether an eating activity can be detected exclusively from
acoustic signatures.
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Fig. 4 The audio processing pipeline consists of audio framing, audio feature extraction, frame
clustering, frame clustering, and classification

Processing and Classifying Audio

Identifying eating from sounds presents two technical challenges: the extraction of
information-rich features from ambient audio collected with a microphone, and the
design of a binary classifier with the ability to distinguish eating sounds from non-
eating sounds.

The first component of our system was audio capture. Audio was recorded at a
sample rate of 11,025 Hz (16 bits per sample), and audio frames with size 50 ms
were extracted using a Hanning-filtered sliding window with an overlap of 50%
(block size = 552, step size = 276). We extracted 50 features from each frame, using
the Python-based Yaafe tool [24]. Based on previous work that also attempted
to recognize human activities from audio [22, 29], we chose the following time
and frequency domain features: Zero-Crossing Rate [31], Loudness [27], Energy,
Envelope Shape Statistics, LPC [23], LSF [2, 32], Spectral Flatness, Spectral Flux,
Spectral Rolloff [31], Spectral Shape Statistics [9], and Spectral Variation.

Because many ambient sounds that characterize eating activities are often much
longer than a single audio frame, we grouped n = 400 consecutive frames and
calculated the mean and variance of each feature across these frames (Fig. 4). This
step also reduced feature “noise” that could be introduced if we had accounted for
the acoustic characteristics of every single audio frame. For grouping, we applied a
sliding window over the audio frame stream, also with 50% overlap. This resulted
in a frame vector of size 100 (mean and variance of 50 features). We chose 400
frames for each group because that is equivalent to a total of 10 s of audio, a
duration that can encapsulate sounds of interest that are both short (e.g., the clicking
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Fig. 5 Audio was captured
by a smartphone attached to
the wrist running an
off-the-shelf audio recording
mobile application

sound of utensils hitting plates or bowls), and long (e.g., background noise in
a restaurant). We considered classification with three algorithms: Support Vector
Machines (SVM), Nearest Neighbors, and Random Forest.

Deployment and Evaluation

Practicality was of utmost priority in terms of audio data collection, therefore the
system did not rely on any specialized sensors. Audio was captured by a smartphone
attached to the wrist running an off-the-shelf audio recording mobile application
(Fig. 5). We chose to collect data from the wrist in an effort to simulate a smart
watch device or some other wearable piece of technology designed for everyday use.
It is very likely that these devices will be capable of recording and even analyzing
audio, despite their compact size.

To evaluate the system, we conducted an IRB-approved in-the-wild study, where
we recruited participants and examined how the system performed when classifying
ambient sounds collected in the real-world, as individuals performed their normal
everyday activities. We recruited 21 participants (15 males and 6 females) between
the ages of 21 and 55, and participants included students, research scientists,
designers, entrepreneurs and other professionals.

The study lasted between 4 and 7 h on a single day; for 17 participants, the study
began in the morning sometime between 8 AM and 11 AM and ended between 3 PM
and 4 PM, while for three participants it began between 4 PM and 7 PM and ended
before 10 PM. This time period was enough to guarantee that all study participants
had at least one meal (lunch or dinner).

The audio recorder registered sounds continuously throughout the study. At the
end of the study, participants were given the opportunity to review their audio file,
and delete any audio segment that they did not want to share with us. After this
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initial step, we performed a walkthrough of the 4–7 h study period with participants
using the Day Reconstruction Method (DRM) [16]. At the end of this process, we
was able to discover when individuals ate during the study interval and segmented
and labeled their audio clips accordingly.

To obtain ambient audio ground truth for the eating activities, we asked partic-
ipants to recall their activities for the day and list them in order, writing down an
estimated beginning and end time for each activity. This activity list in chronological
order allowed us to discover if and when the participant had a meal. To make sure
that time periods indicated by participants were in fact eating activities, we also
reviewed the audio files for evidence of eating activity during indicated times. The
review was independently performed by two coders after agreeing on a guideline
and then results were compared. Disagreements beyond a range of 5 min at the
beginning or end of an eating activity audio segment were discussed; there were
five disagreements in total.

An alternative approach for estimating ground truth would have been to ask
subjects to press a button on a mobile app before and after an eating event. This
method was not favored because it places the responsibility of acquiring ground
truth completely on participants. To reiterate, the impetus for automating eating
detection is to reduce the effect of bias and recollection errors caused by self-
reported data.

Results

We evaluated the technique using personalized models and reported results in
terms of precision, recall and F-score metrics (Table 2); we performed 10-fold
cross-validation on each study participant’s data and then averaged the results
across all participants to obtain an overall result. For comparison, we tested three
different classifiers: Support Vector Machines (SVM), Nearest Neighbors (n = 5),
and Random Forest. The Random Forest classifier proved to be vastly superior to
the other two classifiers, yielding an F-score of 79.8%. As a means of comparison,
this result is equivalent to what Yatani et al. achieved with BodyScope [42]. On one
hand, BodyScope was able to recognize multiple activities. On the other hand, the
system we built does not require any specialized sensor, and can run in any off-the-
shelf device that is capable of recording and processing audio, such as smartphones
and smartwatches.

Table 2 Person-dependent, tenfold cross-validation results for each classified we evaluated

Classifier Precision Recall F-score

SVM 47.5% 50.5% 48.9%

5-NN 53.3% 51.9% 51.4%

Random Forest 89.6% 76.3% 79.8%

The Random Forest classifier performed significantly better that the SVM and Nearest Neighbors
classifiers
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To understand how well the technique generalizes, we also performed a LOPO
(leave-one-participant-out) cross-validation evaluation, which resulted in an F-score
of 28.7%. It is important to note that F-measures below 50% are not uncommon in
LOPO evaluations, particularly in the context of free-living studies [42].

One factor that hampered the classifier’s ability to identify meal eating was the
short duration of meal events, which were shorter than 12 min in some cases. This
resulted in a small number of eating frame groups for the classifier to examine,
and a misclassification proved very costly. Another difficulty was that some of the
participants had their meals while performing other activities such as attending a
class or working in the computer, which were not labeled as meal eating activities;
it is likely that additional examples would have helped with activity class separation
in this case. A high-level temporal clustering of eating sounds with the aim of
identifying eating moments, and not just acoustic signatures, would have likely led
to better results as well. Finally, classifying meal-eating in quiet environments, such
as one’s office or home, has obvious challenges. This suggests a design rationale
for training the classifier while emphasizing the specific characteristics of different
sounds environments (e.g. home, school, restaurant).

Like with FPPOV images, one of the key issues in audio-based activity recog-
nition is privacy. Understandably, most people object to the recording and analysis
of audio of their everyday lives, particularly if it is done completely autonomously
and without human input. In the implementation we did not address this challenge,
although techniques for protecting privacy in audio streams, and conversational
speech in particular, have been proposed [41].

Wrist-Mounted Inertial Sensing

Perhaps the most distinguishable characteristic of eating is the set of physical
body movements involved in food intake, so called hand-to-mouth gestures. These
gestures are the ones involved in picking up food, with or without utensils, and
bringing it to the mouth. We explored whether the recognition of such food intake
gestures can serve as a foundation to infer eating moments, such as breakfast,
lunch, and dinner. The approach for estimating eating moments was evaluated in
two contexts, in the lab and in-the-wild. The questions we explored in the analysis
were:

• How well does the model recognize food intake gestures and eating moments
with data collected in a controlled setting?

• How does a model trained with lab data perform at recognizing eating moments
in unseen in-the-wild data?

• What is the temporal stability of eating moment recognition in-the-wild using a
model trained with laboratory data?
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(5) Eating Moment
Estimation 

(1) Pre-Processing (2) Frame Extraction (3) Feature Extraction

(4) Intake Gesture
Classification 

2µ , , ...

Fig. 6 The data processing pipeline of the eating moment detection system. In the approach,
food intake gestures are firstly identified from sensor data, and eating moments are subsequently
estimated by clustering intake gestures over time

We addressed these questions with three studies: (1) a laboratory semi-controlled
study with 20 participants; (2) an in-the-wild study with seven participants; and (3)
by collecting 422 h of in-the-wild data for one participant over the course of 31 days.

Method and Implementation

Practicality was one of the key driving forces guiding this work. Thus, to sense
gestures, we relied on a non-specialized, off-the-self device with inertial sensing
capabilities: the Pebble Watch.3 We wrote custom logging software for capturing
continuous 3-axis accelerometer sensor data from the device at 25 Hz. Subjects wore
the smartwatch on the wrist of their dominant hand.

The sensor data processing pipeline consisted of data capture and pre-processing,
frame and feature extraction, food intake gesture classification, and eating moment
estimation (Fig. 6).

The first steps in the data processing pipeline involved filtering the sensor streams
using an exponentially-weighted moving average (EMA) filter and scaling the
resulting data to unit norm (l2 normalization).

We extracted frames from the pre-processed data streams using a traditional
sliding window approach with 50% overlap. The frame size plays an important
role in classification since it needs to contain an entire food intake gesture. The
gesture duration is determined by many factors, such as individuals’ eating styles
and whether they are multitasking (e.g., reading a book, socializing with friends)
while eating. Based on data observed in the laboratory user study, we noticed
that an intake gesture might last between 2 and 10 s. An analysis examining the
sensitivity of window size suggested best classification results when the frame size

3http://www.getpebble.com.

http://www.getpebble.com


Challenges and Opportunities in Automated Detection of Eating Activity 165

was close to the mid-point of this range, around 6 s. A Random Forest classifier
was trained to recognize intake gestures from the feature vectors. For food intake
gesture classification, best results were obtained with the Random Forest learning
algorithm. Random Forests typically perform well with non-linearly separable data,
such as the data in this study.

We estimated eating moments by examining the temporal density of observed
food intake gestures. When a minimum number of inferred intake gestures were
within a certain temporal distance of each other, we called the event an eating
moment. We employed the DBSCAN clustering algorithm for this calculation
[6]. DBSCAN has three characteristics that make it especially compelling for this
scenario; there is no need to specify the number of clusters ahead of time; it is good
for data that contains clusters of similar density; and it is capable of identifying
outliers (i.e., food intake gestures) in low-density regions. A well-defined method
for pinpointing outliers is important because there are many gestures that could be
confused with intake ones throughout one’s day. Once areas of high intake-gesture
densities have been identified as clusters in the time domain, we calculated their
centroids and reported them as eating moment occurrences.

Deployment and Evaluation

To evaluate the method, we conducted three user studies (Table 3), a laboratory
semi-controlled study with 20 participants (Lab-20), an in-the-wild study with seven
participants over the course of 1 day (Wild-7), and a naturalistic study with one
participant where we collected 422 h of in-the-wild data over a month (Wild-Long).

We conducted a user study in the laboratory with 20 participants between the ages
of 20 and 43 and examined how the method performed when discriminating between
eating and non-eating moments. Participants were asked to wear the smartwatch on
the arm they deemed dominant for eating activities.

The study was designed so that participants performed a sequence of activities
(Table 4). The eating moments involved eating different kinds of food, such as rice
and beans, and popcorn. For consistency, all foods offered were vegetarian, even
though many participants did not have any food restrictions. Subjects were provided
with utensils for the activities that required them, and a water-filled cup and napkins

Table 3 To evaluate the system, we conducted laboratory and in-the-wild studies that resulted
in three datasets

Dataset # participants Avg duration % eating

Lab-20 20 31 m 21 s 48%

Wild-7 7 5 h 42 m 6.7%

Wild-Long 1 31 days 3.7%

The duration for the Lab-20 and Wild-7 datasets above represent average duration across all
participants
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Table 4 This table is
showing the average duration
of each activity in the
laboratory user study across
all participants (dominant
wrist-mounted sensing)

Activity Avg duration

Eat (fork and knife) 5 m 1 s

Eat (fork/spoon) 5 m 48 s

Eat (hand) 5 m 54 s

Watch movie trailer 3 m 47 s

Chat 5 m 3 s

Take a walk 2 m 18 s

Place phone call 1 m 28 s

Brush teeth 3 m 54 s

Comb hair 39 s

were made available to them throughout the study. Although drinking is often linked
with food consumption, it was not annotated as an eating moment in this study.

The non-eating activities either required physical movement, or made partici-
pants perform hand gestures and motions close to or in direct contact with the head.
These activities typically lasted no more than a few minutes, and as little as a few
seconds, and were chosen because they are typically performed in daily life and
could be confused with food intake in terms of the gestures associated with them.

Participants were continuously audio and video recorded during the study as
they performed their assigned activities. The acquired video footage served as
the foundation for ground truth estimation; all coding was performed using the
ChronoViz tool [8].

To evaluate the ecological validity of the method, we conducted two in-the-wild
studies. In the first one, seven participants collected data for an average of 5 h and
42 min for 1 day while performing their normal everyday activities, which included
taking public transportation, reading, walking, doing computer work, and eating.
In the second study, one of the authors collected and annotated free-living inertial
sensor data for 31 days, accumulating a total of 422 recorded hours during this
period.

Results

One of the key questions this work explores is whether it is feasible to build a model
for eating moment recognition based on semi-naturalistic behavior data captured in
a laboratory. To answer this question, we trained a model with the Lab-20 dataset
and tested it on both in-the-wild datasets (Wild-7 and Wild-Long).

To reiterate, our eating moment recognition approach consists of two phases, (1)
food intake gesture recognition, and (2) eating moment recognition from inferred
intake gestures. Table 5 provides a detailed picture of how the Random Forest model
performed at classifying food intake gestures in the laboratory study (i.e. phase one).
The data for all laboratory study participants was combined and randomly split into
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one training and one test set; approximately one third of the data was held out for
testing. For purposes of reporting results, we further distinguished three different
eating gestures to gain a richer understanding of model classification and error rates:
eating with fork and knife (i.e., Eat FK), eating with fork or spoon only (i.e., Eat
FS), and eating with hands (i.e., Eat Hand).

The approach for inferring eating moments (i.e. phase two) required calculating
the temporal density of observed food intake gestures using DBSCAN. After
performing this step and comparing estimates to ground truth, F-scores of 76.1%
and 71.3% (65.2% Precision, 78.6% Recall) were obtained when evaluating the
classifier with the Wild-7 and Wild-Long datasets, respectively.

Classification Challenges

To more realistically assess the system’s classification performance in the lab study,
we purposely included gestures that required arm movements similar to food intake
gestures. Activities such as placing a phone call, combing hair and brushing teeth
are all similar to eating in that they all require hand-arm motions around the head
and mouth areas. Other observed movements that occurred in the laboratory study
closely matching eating gestures included wiping the face with a napkin, scratching
the head, and assuming a resting position by supporting the head and chin with the
instrumented hand and wrist. Because of the semi-controlled nature of the laboratory
study, these movements occurred naturally during sessions, and did not have to be
scripted.

Based on the results, shown in the confusion matrix in Table 5, we found that
one of the most challenging activities to discriminate from eating was “Chat”. This
is because when people are having a conversation, they typically gesticulate. This
effect varies in intensity amongst individuals but it was significant enough across
all participants in the laboratory study that between 7.5% and 10% of each eating
intake class (Eat FK, Eat FS, Eat Hand) was misclassified as “Chat”.

In Table 5, it is also possible to see false positives originating from the
“Phone”, “Comb”, and “Brush” activities. This is not surprising since these activities
were specifically included to induce misclassifications. Common to these non-
eating activities gestures was the arm movement bringing the hand close to the
head; the temporality of follow-up movements was one of the key characteristic
differentiating them. In the “Phone” activity, the hand stayed up holding the phone
close to the ear; in effect there is no subsequent “hand down” gesture in this
case. For the “Comb” activity, the hand was lifted up and remained in motion,
moving slowly in a pattern that depended on the hairstyle of the participant. The
“Brush” activity pattern was distinguished by quick-moving hand gestures while
holding a toothbrush. We believe the rate of false positives can be lowered by
incorporating time-dependent features that can better characterize these types of
non-eating activities.



Challenges and Opportunities in Automated Detection of Eating Activity 169

Fig. 7 The accelerometer data (x-axis) of three participants as they ate a serving of lasagna depicts
personal variation in eating styles and makes intra-class diversity evident. The red dots are intake
gesture markers

Intra-Class Diversity

We observed a large amount of variability in participants’ eating styles. Some held
a sandwich with two hands, others with one hand, sometimes alternating between
them. A minority of participants took bites of their food at regular intervals (P4 in
Fig. 7). Others were not so regular; they gesticulated more while talking and eating
(P5 in Fig. 7).

When using utensils, and in the short intervals between bites, some participants
kept mixing their food in a regular pattern. This could be attributed to an individual’s
own eating style or an attempt to cool off the food. There was significant variation
in the way participants ate smaller foods as well. Several participants held several
kernels of popcorn in hand and ate them continuously until they were gone. Others
liked to eat more than one popcorn at a time.

While many participants performed the “traditional” food intake gesture of
bringing food to the mouth using utensils, hands, or by lifting a bowl, many
participants did the opposite; they bent over their plate, brought their head close
to the food and then moved their arm in a modified, shorter and subtler version of
the traditional intake gesture. This was particularly common when participants were
trying to avoid food spillage (P1 in Fig. 7).

In this study, we did not create a separate model for each observed eating style;
all intake gestures were given one label: “eating”. Without any question, this posed
an additional challenge to the classification task. Fitting a model to user-specific
data might be the most effective way to address intra-class diversity.
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Ecological Validity

The evaluation results demonstrate the promise of a minimally-instrumented
approach to eating moment detection. However, it is important to situate the
findings in light of the study design and aspects of the system implementation.
An issue that might arise in practice while collecting data with only one device is
that certain eating gestures might not get captured. For instance, a person might be
wearing a smartwatch on the non-dominant hand while eating with a fork held by
the dominant hand. Although this scenario represents a challenge, we believe it can
be addressed in different ways, such as by modeling non-eating gestures performed
by the non-dominant hand during eating, or by leveraging additional modalities
such as ambient sounds.

Performance and Practical Applications

Despite the importance of high precision and recall measures for both benchmarking
and practical applications, the experiments showed that since there are usually
many intake gestures within one eating moment, a slightly lower recall in food
intake gesture classification does not have a large effect in the results. In contrast,
consecutive false positives have a direct effect in the misclassification of eating
moments. With respect to the applications we envision leveraging this work, there
are two paths to consider. In a system designed to facilitate food journaling, lower
precision means that individuals might be frequently prompted to provide details
about meals that did not occur, which is undesirable. However, as a tool for health
researchers to determine when individuals eat meals, what is critically important is
to not miss any eating activities. In this case, false positives are preferable to false
negatives.

Conclusion

This chapter presented approaches for eating moment detection using three sensing
modalities: first-person images, acoustic sensing, and inertial sensing. Unlike
previous methods that rely on specialized forms of sensing, such as neck collars
for chewing detection, these techniques are particularly noteworthy because they
are highly practical and can leverage low cost, off-the-shelf devices.

At first, we discussed the use of first-person images taken with wearable cameras.
Photographs automatically shot at regularly-spaced time intervals throughout the
day represents one of the best ways to capture the richness of everyday activities
without requiring direct human feedback. Despite promising results, a difficulty
that emerges with first-person photographs taken in naturalistic settings is privacy.
Pictures taken automatically with on-body cameras might result in the recording of
undesirable moments and scenes. To make matters worse, photos taken of computer
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screens might capture sensitive information such as computer passwords and
credit card numbers. These problems are further amplified when photographs are
examined with human computation services like Amazon Mechanical Turk, which
are populated by workers whose real identities are unknown. Leveraging context-
rich first-person images while minimizing privacy concerns motivated the study of
an alternative inference technique; it uses metadata and computer vision features
to classify images without human input. In particular, the technique leverages a
machine learning method, convolutional neural networks (CNN), that has been
shown to perform remarkably well at image recognition tasks.

Images reflecting everyday experiences are compelling, but one must continu-
ously wear a camera in order to compile a meaningful set of photographs portraying
daily life. In the interest of additional practicality, we also investigated whether
eating moments can be inferred through the sensing capabilities of more practical
devices such as mobile phones, smartwatches, and other wearable technologies.
In a study in real world settings, we implemented and evaluated a system that
recognized eating moments from ambient audio. Participants wore a wrist-mounted
audio recorder that captured audio of their everyday experience throughout 1 day.
Results were positive, and demonstrated that identifying certain acoustic signatures
of eating might be one way to infer eating moments, while making use of one of the
most ubiquitous sensors: a microphone.

Finally, we examined eating detection with inertial sensors. Over the last decade,
inertial sensors have become commonplace and are now an integral part of personal
devices, from phones to activity trackers. We built a recognition system for detecting
eating moments with a smartwatch with inertial sensing capability. The performance
of this system was evaluated both in a laboratory setting and also in the wild. One of
the highlights of the analysis was strong evidence that a model trained in the lab can
be successfully used in naturalistic conditions. This strategy is highly compelling
since acquiring and annotating real world data is a difficult and time-consuming
undertaking.

Building a truly generalizable system for eating moment detection, and automatic
food intake monitoring in general, represents a significant challenge. We believe
such a system could provide the foundation for a new class of practical applications,
benefiting individuals and health researchers. Looking towards the future, one of the
most promising areas for evolving the state-of-the-art is to explore automatic eating
detection when multiple modalities are combined. For example, both hand gestures
and ambient audio can be used to infer eating activities. While this direction might
seem like the natural evolution of unimodal eating activity inference, a multimodal
approach presents a new set of technical challenges since different data streams are
captured at different rates, and often originate from different devices.
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Detecting Eating and Smoking Behaviors Using
Smartwatches

Abhinav Parate and Deepak Ganesan

Abstract Inertial sensors embedded in commercial smartwatches and fitness bands
are among the most informative and valuable on-body sensors for monitoring
human behavior. This is because humans perform a variety of daily activities that
impacts their health, and many of these activities involve using hands and have
some characteristic hand gesture associated with it. For example, activities like
eating food or smoking a cigarette require the direct use of hands and have a set
of distinct hand gesture characteristics. However, recognizing these behaviors is a
challenging task because the hand gestures associated with these activities occur
only sporadically over the course of a day, and need to be separated from a large
number of irrelevant hand gestures. In this chapter, we will look at approaches
designed to detect behaviors involving sporadic hand gestures. These approaches
involve two main stages: (1) spotting the relevant hand gestures in a continuous
stream of sensor data, and (2) recognizing the high-level activity from the sequence
of recognized hand gestures. We will describe and discuss the various categories of
approaches used for each of these two stages, and conclude with a discussion about
open questions that remain to be addressed.

Introduction

Human behaviors related to health such as eating, smoking, and physical activity
levels, are widely regarded as among the best predictors of health and quality of life.
An exciting opportunity that has emerged as a consequence of the growing popu-
larity of wearable devices such as fitness bands, smartwatches, and smartphones is
the ability to recognize and track these behaviors in a non-intrusive and ubiquitous
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manner. In turn, such real-time tracking has the potential to enable personalized and
timely intervention mechanisms to alleviate addictive and unhealthy behavior.

A central question that needs to be addressed to enable this vision is whether
we can reliably detect a broad range of behaviors using wearable devices. While
many fitness bands monitor physical activity patterns such as walking, jogging, and
running, this only represents a fraction of the range of behaviors we would like
to monitor. Ideally, we should be able to use wrist-worn wearables to also detect
patterns of hand movement that correspond to other key behaviors such as smoking
and eating. Intuitively, this should be possible since behaviors that we perform with
our hands involve characteristic hand gestures. For example, activities like eating
food with a fork or smoking a cigarette seem to have a set of distinct hand-to-mouth
gestures. For the case of eating, the distinct gesture is when a person takes the food
from the plate using a fork towards the mouth, takes a food bite, and puts back the
arm containing the fork to a relaxed position. Similarly, a set of distinct gestures
appear to be present for the case of smoking a cigarette.

But the challenge is how to detect these gestures using the set of sensor modalities
on a smartwatch, in particular, its inertial sensors (accelerometer, gyroscope, and
compass). Our visual system can easily distinguish various hand gestures since it
has the contextual information about the whole body. However, the inertial sensors
on smartwatches and fitness bands only provide the movement patterns of the
wrist, with no additional contextual information. Thus, the central challenge in
recognizing gestures using a wrist-worn wearable arises from the need for gesture
spotting i.e. matching a meaningful pattern for a gesture type in a continuous
stream of sensor signals. While recognition of gestures from inertial sensors is
commonplace in gaming devices (e.g. Nintendo Wii), these assume structured
environments where the user intentionally makes a gesture that the system can
interpret. In contrast, we need to spot gestures in natural settings where there are
a wide range of hand movement patterns.

This raises three key challenges. The first is that there are many confounding
gestures that have very similar arm movement patterns as the behavior that we want
to detect. For example, a smoking gesture can be confounded by other gestures
that involve hand-to-mouth movements such as eating and drinking. The second is
that there are many irrelevant hand gestures that need to be filtered. For example,
during an eating session, a person may employ a variety of hand gestures such as
cutting food with a knife, switching knife and fork between hands, grabbing a bowl
to fetch food, serving the food on plate and conversational gestures. The third is that
hand gestures associated with the health-related activities like eating or drinking are
sporadic in nature. For example, an eating session may last for half an hour and
yet a person may have taken less than 25 food bites scattered across the session,
with hundreds of irrelevant gestures in between. Fourth is that even for a single
individual, there is variability in the gesture corresponding to the target activity due
to the contextual circumstances, for example, smoking while walking, driving, or
standing still.

In this chapter, we survey state-of-the-art approaches for robust detection of
behaviors such as smoking and eating from the continuous stream of signals
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generated by the embedded inertial sensors on a smartwatch. There are many pieces
to this puzzle including extraction of distinguishing features from inertial signals
(e.g. speed, acceleration and displacement of the arm or angular velocity, roll angle
about the fore arm), robust methods to segment the data streams into potential
gesture windows, and classification methods that leverage domain knowledge
regarding the pattern of wrist movements corresponding to smoking or eating.

Gesture-Driven Activity Recognition: An Overview

The high level goal of gesture-driven behavior recognition is to find a temporal
partition of a given time-series of sensor signals and assign a set of labels to each
partition representing activities performed during that interval. Figure 1 gives an
overview of the general computation pipeline used in detecting hand gestures and
extracting sessions of high level activities. At the lowest layer of the pipeline is a
sensing layer that obtains data from one or more inertial sensors, typically worn on
the wrist for the hand gesture recognition task.

The second layer in the pipeline is the segmentation layer that extracts segments
containing candidate gestures from the continuous time-series of raw sensor signals,
and filters out extraneous data. This is a non-trivial problem since the gesture
durations can vary even for a single individual, hence canonical fixed window-based
segmentation methods are inadequate. The window sizes need to be carefully chosen
for each gesture to ensure that the extracted segments are neither too short to contain
a complete gesture nor too large and contain extraneous gesture data, both of which
can lead to classification errors. This layer should also act as an early-stage filter to
remove segments containing gestures that are unlikely to be relevant for the higher-
level activity recognition.

The third layer of the pipeline is a gesture recognition layer that recognizes
and outputs the label for the recognized gesture type. This layer first computes a
feature vector for each segment identified earlier, consisting of features that can
discriminate hand gestures relevant to the target activity (smoking, eating, drinking,
etc.) from a large number of other confounding gesture candidates. This layer
computes the feature vector from the available sensor signals such as acceleration,
angular velocity, etc. and from the derived signals such as roll and pitch (refer
section “Sensing Layer”). The feature vector is then provided as an input to a
supervised classification algorithm, that outputs the label for the type of gesture
present in a segment (“smoking”,“eating with a fork”,“eating with a spoon”, etc.)
and a probability associated with the output.

The top-most layer in the processing pipeline is an activity recognition layer that
identifies the whole sessions of recognized activities from a sequence of recognized
gestures. The key intuition behind this layer is that each session of an activity such as
smoking involves a continuous sequence of smoking gestures. Sessions for gesture-
driven activities like eating and smoking are often characterized by features such as
inter-gesture interval, session length, and number of relevant gestures in a session.
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Segmentation Layer
SegmentSegmentSegment

Activity Recognition Layer

Gesture Recognition Layer

Segment Extraction

Segment Filtering

Output 
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Raw Sensor
Data

Pre-process

Gesture
Sequence

Activity SessionSession
Detection

Fig. 1 Gesture-driven activity recognition pipeline

This layer utilizes such session characteristics to detect activity sessions and its
boundaries (the start and the end of a session). Further, the detected activity sessions
are used to filter out spurious and isolated gestures recognized at the lower layer,
making the entire pipeline more accurate and robust.

Table 1 gives an overview of the state of the art approaches used in spotting hand
gestures and the algorithms used in the different stages of the computational pipeline
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discussed above. However, not all the approaches follow the computational pipeline
exactly as shown in Fig. 1. For example, the approach used by Dong et al. [6]
does not require explicit segmentation or the feature extraction. In some cases, one
may use the classification algorithms like Hidden Markov Model (HMM) that can
operate over the continuous sensor signals without the need to extract features. We
discuss these variants when we get into details of each layer in the computational
pipeline. We also note that some approaches employ multiple sensing modalities
such as a microphone, a RIP sensor that monitors breathing waveforms, or multiple
on-body inertial sensors. However, we limit our focus on techniques relevant to
gesture spotting using commercial smartwatches i.e. using only the inertial sensors
worn on a wrist.

Sensing Layer

The term inertial sensors is often used to represent a suite of sensors consisting of an
accelerometer, gyroscope, compass and an altimeter (also known as barometer). An
electronic device embedding a subset of inertial sensors is referred as an Inertial
Measurement Unit (IMU). The term IMU is widely used to refer to a device
containing 3-axis accelerometers and 3-axis gyroscopes. However, IMUs including
3-axis magnetometer(also called compass) and 1-axis barometer are increasingly
available in the market. Most commercial smartwatches come fitted with IMUs
including accelerometers, gyroscopes and often, magnetometers.

Frame of Reference

Let us first understand the frame of reference used by the inertial sensors before we
get into the details of signals captured by these sensors. Figure 2 shows the frame of
reference used by commercially available smartwatches based on the Android-wear
operating system. This frame is defined relative to the screen/face of the watch and
has three mutually perpendicular axes. The x and y axis are along the screen surface
whereas the z axis points away from the screen. This frame of reference is local and
is fixed with respect to the body of the watch.

Sensor Signals

An inertial measurement unit captures signals observing the linear translation as
well as the rotation experienced by it. An accelerometer measures the physical
acceleration experienced by an object. An object at rest experiences an acceleration
equal to the earth’s gravity (g D 9:8m=s2) in the direction pointing away
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Fig. 2 Figure showing the
frame of reference and the
axis orientations used in
Android-wear OS based
smartwatches. The x and y
axis of the frame of reference
are along the face of the
watch and are mutually
perpendicular to each other.
The z axis points towards the
outside of the face of the
watch. The coordinates
behind the screen have
negative z values

Table 2 Feature signals
computed from the
accelerometer signals
hax; ay; azi

Signal Notation Definition

Tilt � arccos azp
a2x Ca2y Ca2z

Pitch � arctan
ay

az

Roll  arctan axp
a2y Ca2z

from the ground. On the other hand, a gyroscope sensor measures the angular
velocity or the rate of rotation about an axis, expressed in radians/second or
degrees/second. A compass measures the ambient magnetic field using 
T as the
unit of measurement. An IMU measures these signals along each of the three axis
in its local frame of reference.

Tilt, Pitch, Roll, Yaw

Apart from the raw sensor signals, we can derive more useful signals using one or
more of the inertial sensors. For example, tilt i.e. the angle � between the z axis of
the device and the direction of the gravity, can be computed using the accelerometer
signals. Roll, pitch and yaw are the angles that capture the orientation of a device in
a 3D space. Yaw( ), pitch(�) and Roll ( ) angles at a particular orientation indicate
the amount of rotation around z; y and x axis respectively applied in that order to
reach the particular orientation from the default orientation of the device. Pitch and
roll angles can be computed using the accelerometer signals when there is no linear
acceleration i.e. the device is stationary. Yaw angle can be computed using sensor
fusion algorithms [10] that combine the signals from accelerometer, gyroscope and
compass (optional) to accurately obtain all the orientation angles. Table 2 gives the
mathematical functions to compute these signals using the accelerometer signals.
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Android wear operating system provide APIs to obtain the signals
such as tilt and orientation using several combinations of inertial sen-
sors. Use SensorManager with the appropriate sensor type to get
these signals. For example, sensor type Sensor.TYPE_GEOMAGNETIC_
ROTATION_VECTOR uses accelerometer and compass, Sensor.TYPE_
GAME_ROTATION_VECTOR uses accelerometer with gyroscope whereas
Sensor.TYPE_ROTATION_VECTOR uses accelerometer, gyroscope and
compass to compute the same orientation information.

An Example of Sensor Signals for a Hand Gesture

Figure 3 shows the sensor signals obtained using an Android-wear smartwatch for
a hand gesture representing taking a cigarette puff. We can break this gesture into
the following three stages: (1) the arm carrying the cigarette begins from a relaxing
position and moves to bring the cigarette towards the mouth, (2) the arm remains
stationary at the mouth when the person holding the cigarette takes a puff, and (3) the
arm falls back to the original relaxing position. The watch is worn on the person’s
dominant hand (right hand in this case). At the beginning of this gesture, the arm
is hanging vertically down such that the positive X axis of the smartwatch is in the
direction opposite to the gravity, the acceleration along Y and Z axis is close to
zero as the arm is not moving and these axes being parallel to the ground do not
experience any gravity, and the angular velocities measured by the gyroscope are
close to zero as the arm is not moving. We make the following observations about
the three stages of this gesture:

• The acceleration along the watch’s X axis goes from value closer toCg to a value
close to �g when the arm reaches the mouth. The same transition is observed in
reverse when the arm moves away from the mouth and falls back to the relaxing
position.

• The acceleration along Y and Z axis hovers around zero except for the transitions
when the arm is moving between the relaxed position and the mouth. The
transition when arm is moving towards the mouth is similar but in the reverse
order of the transition when the arm is moving away from the mouth.

• The angular velocities reach its peak when the arm is moving between the two
positions. The reverse of the towards-mouth movement trend is observed when
the arm goes away from the mouth. However, the sign of the angular velocity
changes because the angular movement is now in the opposite direction.

• The transitions are similarly visible in the magnetometer readings. However,
unlike accelerometer and gyroscope signals, the values of the signals depend
on the direction the person is facing. If the person repeats the exact same gesture
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Fig. 3 Sensor signals observed for smoking a cigarette puff hand gesture. The value triplets
hax; ay; azi, hgx; gy; gzi and hcx; cy; czi present the signals of accelerometer, gyroscope and compass
respectively. The first gray shaded area marks the interval when the hand holding the cigarette is
moving towards the mouth. The second gray shaded area marks the interval when the hand falls
back to a resting position. The period in between the two areas is when a person is taking a puff
without moving the hands

once facing north and once facing east, the accelerometer and the gyroscope
signals will look the same but the signals from the magnetometer will look very
different.

Time-Series Segmentation of Sensor Signals

In this section, we present a survey of techniques used in the extraction of segments
from the time-series containing raw sensor signals. The aim of the segmentation
process is to identify temporal segments that are likely to contain candidate gestures
and filter out any extraneous data. This is a critical step in the gesture-driven activity
recognition pipeline because if segments are too long, they result in noisy features,
and if segments are too short, they result in inaccurate features. In the following, we
look at the various categories of segmentation approaches studied in the literature.
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Knowledge Based Segmentation

Some of the most promising approaches for recognizing behavioral activities such
as smoking and eating, rely on the domain knowledge about the gestures in the
activities being observed. In general, hand-to-mouth gestures such as smoking
a cigarette, taking a food bite, or drinking from a cup tend to have different
characteristics in terms of the duration of the gesture and the pace of the wrist
movement while performing the gesture. But one common characteristic is that a
person performing the gesture starts from “a rest position” in which the arm is
relaxed, then move their arm towards the mouth, keep the arm stationary at the
mouth for a short duration, and finally, move their arm back to a possibly different
rest position in the end. Thus, hand to mouth gestures tend to lie between these
resting positions. In the following, we discuss the two approaches that use this
observation to extract gesture segments.

Parate et al. [11] use the characteristic property of hand-to-mouth gestures in
the extraction of segments containing gestures like taking a food bite or taking a
cigarette puff. In this approach, the authors track the rest positions of an arm by
computing the spatio-temporal trajectory taken by the wrist in a 3D space from the
wrist orientation data. Figure 4a shows an example of a spatio-temporal trajectory
of the wrist performing a smoking gesture. Using this spatio-temporal trajectory, the
rest point can be identified as the centroid of the extremely slow moving points in the
trajectory time series. In any hand-to-mouth gesture, the spatial distance of the wrist
from the rest point first increases rapidly when the arm is moving towards the mouth
and away from the rest point, plateaus for a short period when the hand is at the
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 2  4  6  8  10  12  14  16
Time (in secs)
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(a) Wrist coordinates
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Moving Average (8s)

(b) Moving average of gyroscope magni-
tude

Fig. 4 A person performing the smoking gesture starts from “a rest position” in which the arm
is relaxed, then move their arm towards the mouth, and move their arm back to a possibly
different rest position in the end. Thus, hand to mouth gestures tend to lie between these resting
positions. (a) The segment between the resting positions can be identified from the time-series
of wrist-coordinates by tracking the periods of large arm movements. (b) The period of large
arm movements can also be obtained by using two moving averages of the gyroscope magnitude
computed over windows of sizes 0.8 s and 8 s respectively
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mouth, and then decreases rapidly when the arm falls back to the rest point. Thus,
we can extract the segments containing a hand-to-mouth gesture by computing a
time-series of spatial distance of the wrist from the rest point and looking for a
tell-tale pattern of rise, plateau and fall in the time-series.

Saleheen et al. [13] identify the periods of quick arm movements before and after
the smoking puff from the accelerometer and the gyroscope signals. They use the
observation that the arm movements around the stationary smoking puff period is
associated with a change in the angular velocity and can be observed as peaks in
gyroscope signals. The example of such peaks can be seen in the gyroscope signals
in Fig. 3. In this approach, the task of extracting segments between two consecutive
peaks in gyroscope is accomplished using two moving averages computed over
windows of different sizes to detect the rise and fall in the gyroscope magnitude

given by
q

g2x C g2y C g2z /. The first moving average is computed over a small

window (0.8 s) that adapts to the changing values faster than the second slower
moving average computed over a larger window of 8 s. Figure 4b shows an example
of these moving averages for the example smoking gesture from the Fig. 3. Next, the
segment extraction is done by identifying the following points: (1) PR: time when
the fast moving average drops below the slow moving average, and (2) PF: time
when the fast moving average rises above the slow moving average. In a smoking
gesture, PR marks the event when the cigarette reaches the mouth and PF marks the
event when the cigarette moves away. Thus, the segment between consecutive PF

and PR gives a potential stationary-at-mouth segment of the hand-to-mouth gesture.
An additional check is made to ensure that the arm is facing up during the identified
segment by verifying that the acceleration along the x axis is negative.

Training Based Segmentation

In this section, we look at a set of approaches towards segmentation that extract
dynamic size segments by learning the segment characteristics from the training
data. The main intuition behind the approaches in this category is that one can
exhaustively search for a candidate gesture segment among all the possible segments
of varying sizes in a time series of sensor signals. The candidate gesture segment
can be identified by matching each possible segment with the characteristics of true
gesture segments observed in the training data. Segments with a matching score
higher than a certain threshold can be selected as the candidate gesture segment.
However, an exhaustive search over all the segments is not practical as a time-
series containing n data points can have n.n � 1/=2 segments. Thus, we need to
limit the number of segments to search. In the following, we look at the approaches
describing (1) a segment search-space reduction method, and (2) an algorithm to
compute a matching score for a segment.
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Fig. 5 The search space for segments is reduced by limiting the size of the segment and the points
where these segments can begin

Search-Space Reduction

We first look at the ways we can reduce the segment search space.
Varkey et al. [17] propose a simple way to reduce the search space by limiting the

size of the segments being considered. Most gestures have a lower bound Tmin and an
upper bound Tmax on the duration needed to complete a gesture. Thus, we can search
the segments of duration T where the value of T begins with Tmin and is incremented
by a value ı. This limits the number of possible sizes to .Tmax � Tmin/=ı C 1.
Initially, this approach restricts the search of segments in a larger window W in
the time series of sensor signals where the size of window W is equal to Tmax.
Within this window, the segments of size T can be obtained by starting from various
possible positions. The number of such positions can still be large leading to a large
number of segments to search from. To further reduce the search space, we avoid the
segments that are too close to each other. This is done by selecting the starting points
for the segments shifted by a period�. This approach limits the number of segments
of size T to b Tmax�T

�
C 1c. Figure 5 illustrates the segment generation process.

Amft et al. [2] use a technique based on the natural partitioning of a gesture
into “motion segments”. These smaller segments are described as non-overlapping,
atomic units of human movement, characterized by their spatio-temporal trajecto-
ries. For example, a smoking gesture can be divided into three natural partitions:
hand approaching the mouth, hand remaining stationary at the mouth, and hand
moving down towards a relaxed position. Thus, a gesture segment is composed of
two or more consecutive motion segments. Hence, the search for a gesture segment
can be limited to those candidate segments in the data whose boundaries coincide
with the boundaries of the motion segments. To divide a continuous stream of data
into non-overlapping consecutive atomic segments, an algorithm by Keogh et al. [8]
called sliding-window and bottom-up (SWAB) algorithm is used. This algorithm
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Fig. 6 Motion segments generated using the SWAB algorithm [8] over x-axis acceleration
observed for a smoking gesture. A gesture segment is composed of two or more consecutive
motions segments

partitions a time series into segments such that each segment can be approximated
using a line segment. Figure 6 shows an example of such partitioning obtained from
the time-series of acceleration along the x axis of a wrist band for a smoking gesture.
Each segment in this figure can be approximated using a line segment such that the
error in the approximation is below a chosen threshold.

Having identified the motion segments, a coarse search based on the motion
segment boundaries can be used to efficiently find sections that contain relevant
gestures. The search is performed by considering each motion segment’s endpoint as
a potential end of a gesture. For each endpoint, potential start points can be derived
from preceding motion segment boundaries. To further confine the search space, the
following two constraints learnt from the gesture training data are used to limit the
section to be searched:

1. The duration T of a section spanning consecutive motion segments must lie in
the range ŒTmin;Tmax� given by the minimum and the maximum duration for a
gesture observed in the training data.

2. The number of motion segments n in a section must lie in the range Œnmin; nmax�

where nmin and nmax give the minimum and maximum number of motion
segments observed for the gesture in the training data.

Segment Matching

In the previous sub-section, we described how to obtain a reduced number of
segments from the large search space. Now, we look at the process of obtaining
a score for these segments to be used for identifying the gesture segments. As we
described earlier, this approach requires training data with labeled gesture segments.
Since we have the labeled gesture segments, we can potentially use any supervised
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classification approach. For example, Varkey et al. [17] use a support vector machine
(SVM) classification algorithm for identifying segments containing gestures for
activities like smoking, eating, and brushing teeth. The trained SVM classier can
be used to compute a matching score, d, as follows:

d.w; bI x/ D
w:xC b

jjwjj

where x is a feature vector computed for a segment and w is a normal vector learnt
using the training data. The segment with the best score is extracted as the gesture
segment.

Another popular approach for matching segments is using a score based on the
feature similarity. To accomplish this, a feature vector f D f1; f2; ::; fk is computed
from the sensor data for the search segment. Using the training data, the parameters

i and 	i representing the mean and the standard deviation of the ith element of the
feature vector of a true gesture are obtained. Now, a distance metric d is computed
as follows:
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Any segment with distance less than the pre-computed threshold is accepted as a
candidate gesture segment. The threshold is typically chosen using the sensitivity
analysis over the training data containing relevant as well as irrelevant gestures. A
lower value of threshold reduces the number of false positive segments but discards
many true gesture segments. A larger value of threshold improves the number of true
gesture segments identified but also increases the number of false positive segments.
A threshold that results in highest recall of true gestures segments with minimum
number of false positives is chosen. The choice of features is dependent on the type
of sensors being used and the target gesture activity [1–3, 7]. For example, Junker
et al. [7] used relatively simple features such as minimum and maximum values for
pitch and roll angles obtained from the four on-body sensors (one sensor on each
wrist and one sensor on each upper arm) for drinking and eating detection. Amft
et al. [1] used a set of 200 features derived from the 3-axis accelerometer, 3-axis
gyroscope, and 3-axis compass signals.

Sliding Window Based Segmentation

Some recent efforts have studied the problem from a gesture containment perspec-
tive i.e. they seek to verify if a given segment of data contains a partial or a complete
gesture. Unlike the previous two segmentation approaches, this approach does not
give us the precise boundary of the gestures but just seeks to contain it.
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In this approach, a segment is obtained by placing a window of size jWj at the
beginning of the sensor signal stream and selecting the data from that window as the
segment. The next segment is obtained by sliding the window over the sensor signal
stream by a parameter �. This results in removal of the oldest data and adds new
data to the latest segment.The process is continued to get more segments. Typically
the value of � is chosen to be smaller than the window size jWj, and hence, the
consecutive segments obtained using this protocol overlap with each other. One
limitation of this segmentation approach is that if two consecutive segments are
recognized to contain a gesture, one cannot estimate if these segments contain two
distinct gestures or one gesture spread across both the segments. Although this
limitation does not impact activity recognition performance, it can result in mis-
counting the number of gestures.

Selecting the Sliding Window Size

The size of a sliding window is an important parameter as it can impact the
performance of later stages in the activity recognition pipeline. For example, a very
small window size may not be sufficient to capture enough gesture characteristics
to solve the gesture containment problem. In [16], Thomaz et al. use an approach
where the sensitivity of the window size is analyzed. In this approach, the window
size is varied between the minimum and the maximum duration of the gesture
observed in the training data. The window size that results in the best classification
results over the training data is chosen as the window size to be used on the test data.
Scholl et al. [14] use a window of size 5:4 s to generate non-overlapping segments to
detect smoking gestures. The window size is fixed based on the domain knowledge
and is equal to the mean length of two subsequent hand-to-mouth gestures (raising
a hand to take a cigarette to the mouth).

Gesture Classification

Having discussed approaches to extract relevant segments from the continuous time-
series signals from the inertial sensors, we now look at the third layer in the gesture-
driven activity recognition pipeline. In this layer, we recognize the gesture contained
in a segment extracted from the lower layer. This gesture recognition task can be
executed by first extracting a feature vector for each segment and then, by using
a supervised classification algorithm to get the label of the gesture in the segment
represented by the feature vector.
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Features

In Table 3, we describe the set of features proposed in literature for the gesture
recognition task using the inertial sensors.

Acceleration-Based Features Many state of the art approaches for detecting
eating and smoking gestures use a 3-axis accelerometer. Most of these features are
generic features that have been shown to be useful in a range of activity recognition
contexts (e.g. statistical features and zero-crossings). Some look for correlations
across axes and crossings between axes that are observed during hand-to-mouth
gestures.

Orientation and Angular Velocity Based Features Wrist orientation, i.e. pitch
and roll, is often used to extract a range of features. One key challenge in extracting
these features is to determine the specific window during which they need to be
computed—for example, [11] computes these features during the ascending stage
(when the hand is moving towards the mouth) and the descending stage (when the
hand is moving away from the mouth), and [13] computes features over the period
when the hand is stationary at mouth. Several approaches also extract information
about wrist rotation that is useful for gesture-based detection.

Gesture Duration Based Features Gesture duration is an important feature and
is found to be useful in the segmentation: either to define the search space for the
segments [14, 17] or for early filtering of the candidate segments that lack relevant
gestures [2, 3, 7, 13, 16]. For example, Parate et al. [11] found that the duration of
the sub-gestures can be a useful feature in hand-to-mouth gesture classification.

Trajectory-Based Features This class of features were studied in [11] where the
explicit trajectory of the wrist performing the gestures in a 3D space is computed.
From the 3D trajectory, several features were extracted corresponding to different
segments of a hand-to-mouth gesture.

Gesture Classification

We now look at some of the classification algorithms used in recognizing gestures
using the feature vectors computed for a gesture segment. In general, many popular
classification methods including random forests, support vector machines, and
hidden markov models have been used for the classification task.

Random Forest A Random Forest [5] is a popular classification method and
has been shown to achieve high gesture recognition accuracy in many gesture
classification scenarios [11, 15, 16]. This is because hand gestures show variations
in the shape and duration even when performed by the same person. Thus, the type
of gestures are likely to be correlated with a certain range of values of segment
features, which makes decision tree-based methods a good choice. Unfortunately,
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Table 3 The set of features proposed in the literature for gesture classification using inertial
sensors

Feature set

Acceleration features

Statistical Mean, variance, maximum, minimum, median, kurtosis, skew,
signal-to-noise ratio (SNR), root mean square (RMS) computed
for each axis

[1, 15–17]

Peak-peak
amplitude

This feature gives the difference between the maximum and the
minimum acceleration observed over a window. This feature is
computed for each axis

[15, 17]

Correlation
coefficients

This feature measures the correlation between the acceleration
readings for any pair of axes

[15]

Mean-level
crossing rate

This feature computes the rate at which the signal crosses the
mean value over a segment

[1]

Crossing rate
between axes

This feature is computed for each pair of axes and can be
computed as the number of times accelerometer readings in
these axes cross each other. The crossing behavior is often
observed for hand-to-mouth gestures

[15]

Regression fea-
tures

Slope, mean squared error (MSE), R-squared are used as the
features capturing the relative trend change within a segment

[15]

Angular velocity features

Statistical Mean, variance, maximum, minimum, median, quartile devia-
tion computed for each axis. [13] computes these features for
the magnitude of the angular velocity (l2-norm of the three
velocities) as well. Parate et al. [11] compute a subset of these
features separately for the ascending stage (when the hand is
moving towards the mouth) and the descending stage (when
the hand is moving away from the mouth)

[2, 7, 11, 13]

Orientation features

Statistical Mean, variance, maximum, minimum, median, quartile devia-
tion, nine decile features from the distribution computed for the
orientation values (pitch and roll)

[2, 3, 7, 11,
13]

Net change in
roll

This feature computes the net angular change about the axis of
the arm while performing a gesture

[2, 7, 11]

Duration features

Gesture
duration

Gesture duration is found to be useful in defining the search
space for the segments [14, 17], and for early filtering of the
candidate segments that lack relevant gestures [2, 3, 7, 13, 16].
In [11], Parate et al. found that the duration of a sub-gesture
when the arm is ascending towards the mouth is a useful feature
to distinguish between smoking and eating gestures

[2, 3, 7, 11,
13, 16]

Trajectory features

Velocity
features

In [11], Parate et al. use the spatio-temporal trajectory to
compute the instantaneous speeds of the wrist. Using these,
they extract mean, maximum, and variance of the wrist speed
for the various stages in a gesture as features

[11]

Displacement
features

Maximum vertical and horizontal displacement of the wrist
during a hand-to-mouth gesture

[11]

The table describes each feature type and gives the relevant references
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fitting a single decision tree to the training data results in poor performance for
gesture recognition when used across the general population. The reason is that
a single decision-tree yields predictions that are suited only for segments whose
features are very similar to the ones of the training segments. However, there exist
small variations in the way gestures are performed across the population. Thus, the
decision-making thresholds used in a single decision tree do not work for the general
population. Random Forests offer a popular alternative i.e. to build an ensemble of
decision trees where each decision tree is fitted to small different random subsets
of the training data. This leads to decorrelating the individual tree predictions and,
in turn, results in improved generalization and robustness [5]. This ensemble of
decision trees is called random forest classifier.

Support Vector Machine (SVM) SVM [4] is another popular supervised classifi-
cation algorithm and has been used in some work on gesture recognitions [13, 15,
17]. In general, SVM is a good choice where the types of classes can be separated
by a set of hyperplanes in a finite-dimensional space defined by the features i.e.
where the training instances of classes are linearly separable. However, this is not
the case with gesture recognition tasks as the several types of gestures cannot be
separated linearly in a space defined by the features. To address this problem, a
kernel function is used that maps the original finite-dimensional space into a much
higher-dimensional space where a set of hyperplanes can be found to perform the
linear separation, but this method increases computational complexity.

Hidden Markov Model (HMM) HMM is a statistical Markov model that can be
applied to analyzing time-series data with spatial and temporal variability. Hand
gestures typically have a relatively strict temporal order of sub-gestures in it but the
same gesture, when repeated by an individual, shows some variability in the shape
of the hand trajectory and in the duration of the sub-gestures. Since HMMs allow
a wide range of spatio-temporal variability, it is a good fit for matching the gesture
data with the reference patterns. Moreover, with a long history of use in various
domains, HMM has elegant and efficient algorithms for learning and recognition.

While there are various topologies used for modeling HMM states, for the task
of gesture recognition, a left-to-right topology (Fig. 7a) is used. In this topology, a
state can transition to itself or can go forward to the following states on the right
but can never go back to a previously visited state. This topology is suitable for
hand gesture modeling as it imposes the temporal order observed for hand gestures.
Another frequently used topology is a left-right-banded topology (Fig. 7b) in which
a state can transition to itself or to the next state only. The skipping of states is not
allowed in this topology.

One important parameter in a HMM is the number of hidden states. In general,
the number of states depends upon the complexity of the gesture being modeled
and is empirically determined. For instance, Amft et al. [2] varied the number
of states between 3–10 for drinking and eating gestures. They observed that the
recognition performance increased marginally with more than five states. Similarly
Junker et al. [7] trained a Left-right-banded model with 4–10 states for various daily
activity gestures where the optimal number of states varied with the type of gestures.
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Fig. 7 Left to right HMM
models are a popular choice
for gesture recognition due to
the temporal ordering of
sub-gestures observed in a
hand gesture. aij gives the
probability of state transition
from si to sj. (a) Left-right
model. (b) Left-right banded
model
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Fig. 8 BiteCounter [6] observes a sequential pattern of threshold-crossing events in the roll-
velocity of a wrist to detect a food-intake gesture. The thresholds t1; t2; ı1; ı2 are learnt empirically

We note that unlike previously mentioned classification models like Random
Forests and SVM where a single feature vector is extracted to represent a segment,
HMM operates on a time-series of feature signals for a gesture segment. For
example, the time series of instantaneous pitch and roll were used as the feature
signals by Amft et al. [2, 3, 7].

Heuristic Methods In addition to classification-based methods, other heuristic-
based approaches have also been proposed for gesture recognition. BiteCounter [6]
is based on recognizing a sequential event pattern in a stream of roll-velocity signals
obtained using a gyroscope (refer Fig. 8). Recall that the roll velocity is given by the
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angular velocity measured around the wrist as its axis. The event pattern is based on
the following observation while taking a food bite.

• The angular velocity about the wrist increases in magnitude and crosses a
threshold (t1) when the hand takes the food towards the mouth. The time of
crossing the threshold marks the event e1.

• After taking the food bite, the hand falls back and retraces its steps in the opposite
direction i.e. the angular velocity about the wrist increases in magnitude but in the
opposite direction and crosses a threshold (t2). The time of crossing this threshold
marks the event e2.

• The time elapsed between events e1 and e2 during the food-intake gesture is
greater than some threshold (ı1). This threshold represents the minimum time
needed to take a food bite.

• The time elapsed between events e2 for a food-intake gesture and the event e1 for
the subsequent intake gesture is greater than some threshold (ı2). This threshold
is chosen because humans cannot have very rapid bites in succession as the
chewing and swallowing of food takes time.

A food-intake gesture is detected upon observing the above mentioned pattern, and
can be tracked without the need to buffer the sensor signals. Using the Android
wear’s frame of reference, the velocity around the wrist is given by the angular
velocity measured around the x axis by the gyroscope. For event e1, the velocity
will become increasingly negative whereas for event e2, the velocity will increase
beyond a positive threshold. The values for various thresholds in this pattern is
selected empirically from the training data such that it maximizes a score given
as 4

7
� precision C 3

7
� recall. Note that similar characteristics can be observed for

other hand-to-mouth gestures such as the puffing gesture while smoking a cigarette
(See Fig. 3). However, the values t1; t2; ı1; ı2 characterizing a smoking gesture will
differ from that of an eating gesture.

Activity Recognition

As we explained in the previous section, gesture classification is done for each seg-
ment independently and can yield noisy gesture label predictions. Thus, recognizing
a high-level activity from the noisy labels can lead us to falsely detect an activity
and give us an incorrect estimation of the activity duration and its boundaries. In
this section, we give an overview of the approaches to perform joint classification
of all the segments to recognize the activity. The activity recognized in this step
can provide a feedback to the gesture classification module and correct some of the
noisy gesture labels predicted earlier. In the following, we describe the key intuition
behind some of the activity recognition approaches and give an overview of some
of the state of the art approaches.
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Fig. 9 In a typical session of gesture-driven activity like smoking, the characteristic gestures (e.g.
taking a cigarette puff) form a temporal cluster i.e. the gestures are repeated at least a few times,
and are found relatively close to each other in time. From the time-series of recognized gestures, we
can extract these temporal clusters to identify an activity session. Any isolated recognized gesture
that is not a member of any cluster can be discarded as a false positive

Temporal Cluster of Gestures in Activity Sessions

Gesture-driven activities like eating and smoking typically involve repeated gestures
in each session (See Fig. 9). Thus, gestures that appear isolated in the time-series are
unlikely to be a part of a true activity session. On the other hand, a gesture that is
preceded by at least a few gestures of the same type in the vicinity is likely to be a
part of an on-going activity. This observation forms the basis of approaches in the
literature that cluster a group of detected gestures to identify an activity session and
its boundaries.

DBSCAN Clustering Algorithm

Thomas et al. [16] use a clustering algorithm called Density-based spatial clustering
of applications with noise (DBSCAN) for recognizing eating activity session from
the noisy gesture labels. DBSCAN has three characteristics that make it useful
for gesture-based activity recognition; (1) there is no need to specify the number
of clusters ahead of time, (2) it is good for data that contains clusters of similar
density, and (3) it is capable of identifying outliers (e.g. food intake gestures) in low-
density regions. DBSCAN requires two parameters: the minimum number of points
required to form a dense region (minPts), and a temporal distance measure given
as a temporal neighborhood ". Using these parameters, DBSCAN algorithm finds
clusters that have at least minPts within the timespan covered by ". Any detected
gesture that does not belong to any of the clusters identified by the DBSCAN
algorithm is considered to be a false positive, and ignored.
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Rule-Based Activity Recognition

Saleheen et al. [13] use a rule-based approach to recognize the session boundaries
for a smoking activity and to filter out isolated puffing gestures that are likely to
be false positives. In their approach, a detected puff is considered an isolated puff
if no other puff is within two standard deviations of the mean inter-puff duration
(28˙18:6 s learnt from the training data across 61 subjects). After removing isolated
puffs, they are left with clusters of (2 or more) puffs in the data stream. A simple
rule-based method is proposed to declare a cluster of puffs as a smoking session,
i.e., if it contains at least mp (minimum puff count) puffs. The appropriate value for
mp is obtained by analyzing the recall rate for the true smoking sessions and the
false smoking session detection rate. The best result was achieved when mp D 4. A
similar set of rules can be learnt for other activities such as eating.

Temporal Consistency of Activity Sessions

One observation that can be used in determining activity boundary is that most
activities have some temporal consistency [12] i.e. they last for a reasonably long
time period. In other words, a person who is currently performing a certain activity
is likely to continue with the same activity in the next time instant. This observation
has been used to smooth out and correct intermittent misclassifications made at the
lower classification layer. Unlike a standard activity recognition task, the modeling
of temporal consistency in a gesture-driven activity is not straightforward as the
output of the lower classification layer is a gesture label and not the activity label.
Now, we look at two such approaches used specifically for the problem of gesture-
driven activity recognition.

Conditional Random Fields

Parate et al. [11] use a graphical model-based approach that uses Conditional
Random Fields (CRF) to jointly classify the sequence of segments (Fig. 10).
This model introduces random variables (shown as top-level nodes in the figure)
representing the type of activity for each segment obtained at the segmentation layer
of the computational pipeline. The edges connecting these random variables are
associated with pairwise factors that model the consistency of activity labels in the
connected graph. The input to this model is a sequence of gesture labels generated
at the gesture recognition layer. The gesture labels along with the classifier’s
confidence scores are given as input. The edge connecting the gesture label node
with the activity label node is associated with a factor that models the consistency
between a gesture label and the activity label. The CRF model outputs a smooth
sequence of activity labels identifying the activity session and its boundaries. The
activity labels are used to correct some of the false positives generated in the gesture
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Fig. 10 Most human activities exhibit temporal consistency i.e. a person currently performing a
certain activity is likely to continue with the same activity in the near future. In a gesture-driven
activity, this means that the consecutive segments in a sequence are more likely to have the same
rather than different activity labels while the gesture labels may change. Conditional Random
Fields (CRF) is a model that takes into account this temporal consistency and outputs smooth
and consistent activity labels based on the input sequence of gesture labels

classification stage. For example, if the CRF predicts that there is no smoking
activity within a time-interval then any smoking gesture (i.e. taking a cigarette puff)
recognized within this interval is a false positive and can be corrected.

Weighted Scores for Variable Length Windows

Tang et al. [15] propose a heuristic-based approach that predicts the state of smoking
at the current time point, using the most recent history of three specific lengths: 1,
4 and 8 min. The longest history length is set to represent the average smoking
session duration observed in the training data. For each history window, the puff
frequency is calculated by counting the number of puffs detected. Then the score of
smoking for the current window is estimated using the Gamma distribution of puff
frequency. Lastly a weighted average of the scores of smoking for the three different
window lengths is computed as the final score of smoking at the current time point.
This approach models continuity by using a larger weight for the most recent 1 min
period in time. The detector uses a threshold on the smoking score to output the
current state.

HMM-Based Model for Gesture Recognition

Another approach for activity recognition is to use hidden markov models (HMMs).
The intuition behind this method is that a gesture is always followed by one or
more non-relevant gestures before the relevant gesture is observed again. Thus, we
can construct a gesture spotting HMM by combining HMM models that recognizes
relevant gestures, with another HMM called garbage model that recognizes all the
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Fig. 11 A non-gesture model constructed using the gesture models. ST and ET are the start and
the end dummy states respectively. (a) Left-right banded models for gestures G1 to Gk. (b) General
non-gesture model

possible non-relevant gestures, in a cyclical manner. However, training a garbage
model is a difficult job since there are infinite number of meaningless or non-relevant
gestures. Lee et al. [9] addresses this problem by introducing a new model called
threshold model that consists of the state copies of all the trained gesture-specific
models.

Let us understand this model using an example. A typical gesture model trained
to recognize a specific type of gesture is usually modeled as a left-to-right model. In
another words, a state in this model can transition next to itself or to the following
states in the model. This is true for most gestures as there exist a temporal order in
the sub-gestures within a gesture. Lee et al construct a non-gesture model (called
threshold model) by collecting all the states of all the gesture-specific models. This
model is constructed such that it is possible to transition from any state to any other
state. Figure 11 shows an example of a non-gesture model constructed from all
the gesture models. This model is a weak model for all the trained gestures and
represents every possible pattern. The likelihood of a true gesture computed using
this model is always smaller than the dedicated model for the given gesture.

Having constructed a non-gesture model, we now show how a model for gesture
spotting is constructed. In a continuous human motion, gestures are sporadic with
non-gestures in between. There is no specific order among different gestures. One
way to define the alternating sequence of gestures and non-gestures is to construct
a cascade connection of gesture models and a non-gesture model. A more effective
structure is a circular interconnection of models: gesture models and then a non-
gesture model which is then connected to the start of the gesture HMMs. An
example of a construction of the gesture spotting model is shown in Fig. 12.

A potential weakness of using a threshold model is the spotting speed. The
threshold model usually has a large number of states in proportion to the number
of the gesture models in the system. Accordingly, the computational requirement
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Fig. 12 A gesture spotting model

increases exponentially and the spotting speed slows down. This problem can be
alleviated by reducing the number of states of the threshold model as described
in [9].

Conclusions

This chapter provides an overview of a wide spectrum of approaches that have been
proposed for behavior detection from wrist-worn inertial sensors. We discussed
the challenges in segmenting the time-series stream from inertial sensors on the
wrist to deal with the temporal dynamics in the gestural pattern, identifying key
features from the inertial sensors, classifying the gestures into hand-to-mouth
gestures of different types, and finally identifying repeated patterns of gestures
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that are aggregated to robustly detect the behavior (e.g. eating or smoking session).
We describe many recent efforts that address some of these challenges.

While existing work has answered several questions, many remain to be
addressed in coming years. While much work has been done in gesture-based
behavior recognition, substantial work that remains to be done in scaling these
methods to the population and dealing with a wider range of confounders in the
field. We also need to understand how these methods can execute efficiently on
power-constrained devices such as fitness bands, to reduce the burden of frequently
charging these devices. Finally, there are also many questions regarding usability to
answer. One question in particular is whether the public is willing to wear fitness
bands (or smartwatches) in their dominant hand to allow such gesture detection
to work accurately. We expect that these questions will be answered in coming
years as gesture-based behavior detection methods mature and are integrated into
smartwatches and fitness bands in the same way that step detection is integrated
into these devices.
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Abstract Activity monitoring is becoming increasingly important to enable pre-
ventative, diagnostic, and rehabilitative measures in health and wellness applica-
tions. While a variety of wearable inertial sensors can discern the behavior of
healthy individuals (e.g. gross activity level, some degree of activity classification),
outcomes of interest to physicians, such as gait quality or smoothness of reach
demand either excessive manual intervention in data processing or detailed review
of the data by an expert. This chapter begins by presenting wearable motion
sensing devices and algorithms that enable large-scale networked and automated
daily activity profiling specifically for healthcare diagnostics and guidance. Addi-
tionally, the urgent need for accurate activity monitoring in healthcare and the
limitations of current platforms are discussed. This is followed by the second sec-
tion, which provides an introduction into microelectromechanical system (MEMS)
based wearable motion sensing devices including accelerometers and gyroscopes.
Furthermore, the section provides a comparison between MEMS and conventional
high precision vision-based motion sensor systems. In the third section, novel
algorithms developed to classify a wide range of activities and track detailed body
motions using inertial sensors are presented. This includes discussion of advanced
machine learning algorithms and signal processing techniques that overcome drift
and broadband noise to provide precise individual activity monitoring. In the fourth
section, a wearable motion sensing system used in neurological clinical trials relying
on a smart phone and ankle mounted wireless sensors is presented. A complete
description of an end-to-end clinical trial including study protocol, sensor systems,
data acquisition, data processing, and patient/clinician interaction is described as an
example of the advancement the new generation of motion sensing systems provide
to healthcare.
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Section 1: Motion Sensing in Healthcare

There is an urgent need in healthcare for the development of functional, accurate,
affordable, and scalable systems that can provide physicians with actionable
information in order to advance healthcare delivery. Motion monitoring platforms
meet this need by providing physicians and researchers with the tools to effectively
measure the type, quantity, and quality of patient activity in order to improve care
and establish cost-effective, evidence-based practices. Furthermore, the small form
factor and low power consumption of microelectromechanical system (MEMS)
based motion monitoring platforms enable the development of novel systems that
can provide remote point-of-care diagnostics and continuous long term monitoring.

In neurological rehabilitation, for example, motion monitoring can provide
solutions for frequent problems faced by physicians including: measuring the gains
and losses of daily function over time, assessing compliance of prescribed exercise,
and providing more frequent performance feedback, enabling physicians to more
quickly update patient instructions [1]. Additionally, portable motion monitoring
platforms provide remote access to laboratory-quality data, enabling the evaluation
of conditions difficult to observe clinically and provide an ecological alternative to
expensive and time consuming laboratory evaluations [2].

Popular consumer motion trackers (e.g. Fuelband, FitBit, MisFit) capable of
providing basic physiological information and activity classification for healthy
patients have proven to be unreliable in accurate characterization of subject motion
[3, 4]. These devices, typically mounted on the wrist, utilize low power triaxial
accelerometers to detect episodic movements which are assessed in real time
for patterns of acceleration and deceleration. Adventitious movements that match
internal algorithms may be interpreted as a motion of interest while abnormal or
weak movements that don’t meet the necessary thresholds may be ignored [1].
Inaccuracies are further exasperated when used by individuals with physical disabil-
ities that exhibit slow or abnormal movements [5]. Additionally, the classification
algorithms employed by fitness trackers suffer from either a small activity set or
low accuracy which limit the range of useful applications [6]. Algorithms such as
those employed by [7, 8] decline in accuracy as the number of potential motions
increases and very few are able to produce meaningful metrics as the classifiers
were designed without consideration for the fine biomechanics of motion. Thus, in
their present configuration motion trackers are not suitable for use in healthcare.

To meet the demands of healthcare, motion monitoring platforms must combine
a multitude of sensors with clinically proven machine-learning algorithms that
enable large-scale networked systems with automated activity profiling to provide
physicians with accurate, reliable, and relevant information. Clinical trials utilizing
purpose built motion monitoring platforms have shown to accurately detect the
presence and severity of various diseases, including Alzheimer’s [9], Parkinson’s
[10], and sleep apnea [11]. In addition to diagnosis, these motion sensors have
enabled researchers to monitor disease progression and therapy effectiveness [12].
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Section 2: Motion Sensing Devices

Visual and inertial sensors platforms are the two most popular technologies used
for human motion sensing. In this section, we provide a brief introduction to the
two systems as well as comparing their capabilities and limitations. Additionally,
we discuss the great advances provided by combining the two sensing technologies
resulting in a system with more reliable motion inference. Furthermore, examples
of sensor fusing algorithms are presented that address errors due to sensor measure-
ment and sensor placement.

Vision-Based System

Vision-based motion sensing systems comprise of two major categories: marker-
based systems and image-based systems.

Marker-based motion capture systems [13, 14] track the movement of reflective
markers or light-emitting diodes placed on the human body, thus indirectly track the
movement of body segments as well as the configuration of body joints. For such
systems, accurate 3D marker positions in a global frame of reference are computed
from the images captured by a group of surrounding cameras using triangulation.
Although such systems can provide high-precision joint position in 3D space, they
are extremely expensive and time intensive in their deployment. Therefore, they are
infeasible for daily activity monitoring.

Marker-less systems use computer vision techniques to derive motion parameters
from the captured video [15]. Recently, low-cost off-the-shelf sensors have exploit
depth cameras to capture the movement of human limbs and extract the 3D position
of body joints. The Kinect, for example, is a motion-tracking device developed by
Microsoft capable of monitoring up to six full skeletons within the sensors field
of view. For each skeleton, 24 joints are defined and their positions and rotations
tracked. Due to the embedded tracking algorithm’s large training data set, the Kinect
provides accurate tracking outcomes which can be considered as the ground truth
[16]. Another example is the Leap Motion controller, which is designed specifically
for motion tracking of hand gestures. In this system, three infrared LEDs and
two monochromatic cameras are used to reconstruct the 3D scene and precisely
track hand position within a small range. Research suggests that the Leap Motion
controller can potential be extended as a rehabilitation tool in the home environment,
removing the requirement for the presence of a therapist [17].

While vision-based systems can provide desirable tracking accuracy, they are
not self-contained and require cameras deployed in the environment. Additionally,
vision based systems raise privacy concerns and are as yet not feasible for large-
scale employment.
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Inertial Sensor Based System

Advances in MEMS technologies have led to the proliferation of wearable inertial
sensor based activity monitoring systems. State-of-the-art inertial sensing platforms
typically include: accelerometers and gyroscopes. MEMS accelerometers sense the
sum of accelerations contributed by gravitation acceleration and motion of the
sensor relative to an inertial reference frame. Detection of acceleration is determined
by measuring the change in capacitance resulting from displacement between silicon
microstructures forming capacitive plates. The measured capacitance may then be
applied to compute acceleration. The MEMS gyroscope measures the Coriolis force
exerted by a vibrating silicon micro-machine mass on its flexible silicon supports
when the sensor undergoes rotation. Silicon microstructures within the gyroscope
use electrostatic forces exerted through capacitive plates to vibrate the suspended
proof mass. The Coriolis force, often referred to as a fictitious force, represents
a mass acting on an object moving in a rotating reference frame. Rotation of the
sensor induces the Coriolis force leading to a displacement of the proof mass that
is proportional to the angular rotational rate. A diagram showing a typical MEMS
accelerometer and gyroscope architecture are shown in Fig. 1.

Activity monitoring using MEMS inertial sensors is rapidly growing. Reference
[18] used one triaxial accelerometer mounted on the waist to classify activities
correlated with movements measured in a controlled laboratory. References [19,
20] utilize a Kalman filter to combine accelerometer, gyroscope, and magnetometer
sensor data to detect slow moving body rotation and linear translation. In [21], the
author developed a biomechanical model to track motions with wearable sensors.

Fig. 1 Typical MEMS architecture diagram showing (a) single axis accelerometer sensitive to
acceleration in the direction of the indicated arrows and (b) single axis gyroscope sensitive to the
rate of rotation for a rotation vector perpendicular to the page
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Furthermore, inertial sensor based activity monitoring systems have been verified
to accurately and reliably characterize the gait of post-stroke patients [22, 23]. In a
large scale clinical trial, a group of physicians and engineers deployed wearable
inertial devices on hundreds of post-stroke patients with feedback provided to the
physicians and patients on a daily basis. The system proved effective in monitoring
activity in the ambulatory community [24, 25].

To detect relative position in 3D space, data from inertial sensors require double
integration. Thus, the drift and broadband noise present in MEMS sensor result in
rapid accumulation of errors. To meet the stringent accuracy requirements for use in
healthcare, algorithms must be developed to reduce the impact of noise on the final
results.

Sensor Fusion of Optical and Inertial Sensing Technologies

With the capabilities and limitations of the above two sensing technologies, sensor
fusion algorithms can be applied to infer subject motion state.

Reference [26] proposed the use of the Kinect system to determine calibration
errors of inertial sensors. The author used a Kalman filter to integrate the Kinect
data with noisy inertial measurements to improve the overall tracking outcomes.
Satisfactory results were obtained through experimentation on healthy subjects
performing various tasks.

Reference [27] demonstrated a system shown in Fig. 2 which fused the Kinect
and inertial sensors to achieve opportunistic calibration of sensor placement errors.
Position data obtained from the Kinect were first smoothed and converted to virtual
measurements (virtual accelerations), which served as the ground truth. The system
opportunistically used this ground truth to detect and compensate placement errors
of inertial sensors. Experiment results indicated that the system could accurately
reconstruct motion trajectories of upper limbs among healthy subjects even when
the sensors were misplaced.

Fig. 2 (a) Subject standing
in front of the Kinect sensor
with inertial sensors placed
on the wrist. (b) Virtual
reconstruction of the subject
by the Kinect sensor. Data
from both the Kinect and
inertial sensors are fused to
achieve opportunistic
calibration of sensor
placement errors
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Section 3: Motion Data Processing

A system supported by multiple inertial sensors with ideal measurement character-
istics may enable computation of accurate subject body motion based upon direct
kinematic computation. However, MEMS gyroscope and accelerometer systems
present errors due to ill characterized drift in measurement which accumulate
rapidly with subsequent integration appearing in kinematic computation [28]. One
approach to avoid computation errors relies not upon absolute measures of accelera-
tion and rotation, but rather, the use of classification techniques to differentiate a pre-
defined activity set from unique features extracted from the inertial sensor data [29].
Despite its wide employment in the state-of-the-art activity monitoring systems, this
method suffers from several shortcomings. First, though most activity classification
systems are very successful in classifying periodic activities (e.g. lower body
activities such as walking or running), their capability to differentiate upper body
activities for example, eating or typing, is largely limited. Second, most activity clas-
sification systems lack the knowledge of detailed kinematic motions that are vital for
healthcare. For example, metrics including gait symmetry extracted from the motion
data can provide insight about the control of walking among post-stroke patients,
which may have a role in guiding the clinician’s treatment decisions [30]. Third,
classification performance usually degrades with larger activity sets [6]. Thus, the
current activity classification systems still suffer from scalability problems.

In this chapter, a new approach is described that enables an advance in activity
classification accuracy. This is based on a method relying upon subject motion
context. This finally leads to a context-drive activity classification and motion track-
ing system. This system provides a robust activity monitoring platform consisting
of three subsystems, context detection, context-driven activity classification, and
activity specific motion tracking. In the following sections, algorithms for each
subsystem will be described.

Context Detection

For accurate activity classification, there are two kinds of contexts that are of inter-
est. One is physical context denoting a subset of a subject’s physiological measures
such as heartbeat and body core temperature. The other is context associated with
characteristic of the subject’s surround environment and the subject’s location.
While the physiological context can be easily determined by using wearable devices,
methods to determine a subject’s environment and location present an additional
challenge.

Here we focus on location categories to describe a subject’s environmental
context. This may include both location in space as well as a description of
location characteristics. Of course, conventional global position systems (GPS)
may indicate a subject’s location in space. However, through the use of mapping
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Fig. 3 Inertial sensor system
within a sealed enclosure

methods, such as data provided by the Google Place API, a description of a location
may be obtained. For example, the city of residence, a retail environment, or a
gymnasium. Determination of location environmental characteristics provides a
benefit for subject motion classification. Detailed characteristics may help pre-
classify some upper body activities, for example, the act of eating may occur in
a restaurant location.

To determine detailed location characteristic requires knowledge of the subject’s
indoor position, where GPS localization may not be available. Thus, a foot mounted
inertial sensor based sensor solution, including a novel navigation algorithm has
been developed. The same inertial sensors previously used for activity classification
and motion tracking, shown in Fig. 3, can be utilized, requiring no additional
hardware for context detection. The combination of this navigational method and
indoor map data was used to infer the subjects absolute position in the environment.
This method exploited also the use of a particle filter for correction of navigational
drift error [31].

Additionally, performance in accuracy and computational throughput can be
enhanced by exploiting other sources of localization, including the discovery of
WiFi access points that may exist in an indoor environment [32].

Context Driven Activity Classification

A hybrid decision tree is able to classify a large lower body activity set with high
accuracy after optimizing the activity set, the feature set, and the classifier at each
internal node [33]. However, experiments indicate that the algorithm performance
deteriorates after including upper body activities. To enable large scale activity
monitoring, context driven activity classification is introduced [34]. This framework
allows personalization, which can greatly improve the classification performance.
Here, personalization is enabled on two levels. First, individuals may have different
sets of contexts under which activity classification is required. Furthermore, within
each context, a set of individualized activities of interest may be present. This leads
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Table 1 Location categories
narrow the possible set of
activities used the
classification algorithm

Location category Activity set

Hallway Stair ascent, stair descent, walking
Exercise room Cycling, running, walking
Dining room Eating, walking
Study room Typing, walking, writing

to the context specific activity models, resulting in increased classification accuracy,
faster classification rate, and improved battery usage efficiency.

However, the above work requires additional sensors (e.g. audio sensor) to
determine a subject’s context. Therefore, in [6] context is simplified to broad
location categories. This simplification adversely limits the classification capability
of the entire system. For example, a variety of activities can be performed in
residence including eating, typing, and running. Thus, it is necessary to know the
subject’s location in greater detail. By determining the subject’s environment (e.g.
dining room or study), eating can be more accurately differentiated from typing.

An important advance was developed through a system utilizing inertial sensors
placed on the subject’s elbows, wrists and feet to monitor their daily activities. Data
from the sensors were first used to determine the user’s environment, which was
separated into several location categories. This was followed by a classification
algorithm [33] that utilized the location category to reduce the size of the decision
tree. The classification accuracy of the subject with location information was
determined to be 99% compared to the 78% accuracy obtained without location
information [32]. Table 1 lists the activity sets associated with each location
category used in the classification algorithm.

Activity Specific Motion Tracking

When analyzing motions, the human body can be decomposed into nine segments
[35]. One method to fully track the motion of the human body is to attach inertial
sensors on each of the body segments and use a kinematic chain to model the
movements [36]. However, this approach suffers from several shortcomings. First,
it requires excessive computation, as both the number of state transition equations
and their complexity are proportional to the number of sensors. Second, the system
will be vulnerable to errors resulting from sensor misplacement. This is due to
the tracking algorithms requirement to know sensor orientation in the body frame,
which is usually assumed to be constant. Third, the algorithm is inefficient in
distinguish specific movements that representing activity of clinical assessment
value.

Therefore, in this subsection, we introduce the framework of activity specific
motion tracking. Based on the results from the context driven activity classification
system, the activity set can be further grouped into upper body activities (e.g. eating,
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typing, etc.), lower body activities (e.g. walking, running, etc.), or sports activities
such as cycling. For each category, the requirements of the tracking protocol are
specified. This includes the sensor set, the kinematic model, and the error reduction
algorithm. In the following paragraphs, we cover the basics of the tracking protocol
for each activity category.

For tracking of upper body activities inertial sensors mounted on the subject’s
elbow and wrist were utilized. A complimentary filter [37], combining accelerome-
ter and gyroscope data were used to calculate the sensor orientation and remove drift
error. Through the assumption that upper limbs are rigid and no relative movements
exist between the sensors and the attached limbs, orientation of the upper arm can
be approximated with that of the elbow sensor. Likewise, orientation of the lower
arm can be approximated with that of the wrist sensor [38]. To align the reference
frames of the two sensors, a calibration method is proposed. The calibration creates
a uniform reference frame allowing the reconstruction and visualization of the upper
limb movements [38]. Metrics including the range of motion of the elbow joints can
then be estimated by calculating the angle between the upper and lower arms.

To verify the upper body motion tracking algorithm, three female and three
male subjects with varying heights performed a range of arm motions after sensor
calibration. A Kinect system was used to capture the skeletal movements and record
the shoulder, elbow, and wrist positions in the individual frames. Based on the rigid
link assumption, the upper arm and the entire arm lengths were estimated as the
distance from the shoulder to elbow and from the shoulder to wrist respectively.
Table 2 presents the estimation accuracy of the calibration algorithm compared to
the Kinect captured ground truth (the Kinect system can report positions to within
2–5 cm of true value). Overall, the average error was calculated to be 4.53%. In
addition, the arm motion reconstructed from the inertial sensors were compared with
the trajectory captured by the Kinect sensors. The results show that our algorithm
was able to accurately reconstruct a variety of upper body motions.

For lower body activities, a single foot mounted inertial sensor is sufficient.
Utilizing the algorithm for upper body motion tracking the foot orientation can be
calculated. This information is used to project the accelerometer data into the global
reference frame, which enables gravity subtraction, leaving only the acceleration
generated by the foot. Since integration will lead to large drift errors, zero velocity
update (ZUPT) [39] is essential in obtaining more accurate foot velocities based
on the acceleration data. A second integration can be performed to determine the

Table 2 Algorithm estimated arm length and deviation from the Kinect sensor for subjects S1
through S6

S1 S2 S3 S4 S5 S6

Upper arm (m) 0.244 0.272 0.232 0.308 0.289 0.265
Whole arm (m) 0.450 0.466 0.481 0.592 0.525 0.532
Upper err. (%) 5.48 7.36 9.94 3.87 1.07 0.86
Whole err. (%) 7.67 2.11 0.65 6.84 0.49 8.07
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Fig. 4 Plot showing: (a) captured accelerometer data, (b) the double integrated result including
drift, (c) estimated linear drift, and (d) double integrated result after ZUPT is used to remove drift

Fig. 5 Sensor based reconstruction of foot trajectory during stair ascent, stair descent, and level
walking

position trajectories of the foot. With the calculated foot orientation and position
trajectories, metrics such as walking distance, walking speed, and gait symmetry
can be extracted [40] (Fig. 4).

To validate the lower body motion tracking algorithm, three healthy subjects
were recruited. Each subject performed two sets of 40-m level walking, ten-step
stair ascending, and ten-step stair descending. A sensor based reconstruction of the
foot trajectory for each test is illustrated in Fig. 5. The reconstructed foot position
and orientation of individual steps were compared with data captured from a Vicon
video motion system. The highly accurate Vicon system is capable of measuring
step length with a standard error of 0.02 cm and gait velocity with a standard error
of 0.06 m/s. The results showed that the lower body tracking algorithm was able to
accurately reconstruct a variety of lower body motions, achieving an absolute error
of (3.08 ˙ 1.77)% for the total travel distance by both the left and right feet [32].

For sports activities, additional motion tracking protocols may be required.
Described here is the protocol to track lower body motions during cycling. Similar
to lower body activities, a single foot mounted inertial sensor is used to calculate
foot orientation during a cycle stroke. However, unlike walking or running, cycling
does not contain any stationary phases of the foot, requiring an alternative to ZUPT
for reducing sensor drift. A unique characteristic of cycling is the repetitive circular
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motion of the feet when a cyclist is pedaling. Through analysis of the accelerometer
data, four waypoints along the circular trajectory (top, bottom, left, and right) can be
recognized. Utilizing the four waypoints, linear interpolation can be applied to infer
the foot position during the entire stroke [41]. Though the algorithm cannot predict
the estimated foot position at a specific point in time, metrics such as cadence are not
affected by interpolation. Similar targeted protocols may be developed for additional
sports activities.

Section 4: System Implementation

In this section, motion sensor systems are discussed in more detail. First, an
accelerometer only system capable of classifying daily activity and providing daily
performance parameters is discussed [12, 42]. Second, activity motion tracking
algorithms utilizing gyroscope measurements and both lower body ZUPT [43] and
non-ZUPT [44] we will be presented.

Accelerometer Only Systems

Triaxial accelerometers are the most widely used inertial sensors due to their energy
efficiency and industrial availability. The data output by accelerometers includes
both gravitational acceleration as well as motion of the sensor relative to an inertial
reference frame, of which both can be used for human activity recognition.

References [12, 44] present one example of an accelerometer based activity mon-
itoring system. In the Stroke Inpatient Rehabilitation Reinforcement of ACTivity
(SIRRACT) clinical trial, a sensor was placed on each of the participant’s ankles
in the morning and removed at night. A Velcro strap secured each sensor proximal
to the medial malleolus, flush against the bony tibia. Upon removal, each sensor
was placed on a wireless power pad for recharge overnight. While charging, data
stored from the sensor was automatically transferred via Bluetooth to an Android
phone running a custom application. The Android phone subsequently packaged
and transmitted the data via a cellular network to a secure central server for
classification. The components of the SIRRACT sensor kit is shown in Fig. 6.

Because gait speed as well as stand and swing symmetry varies greatly among
the post stroke rehabilitation patient population, templates were generated for each
participant’s gait from a set of standardized walks. Prior to receiving a sensor kit,
each participant was asked to perform stopwatch-timed 30-ft walks at self-selected
slow, normal, and fast speeds. These walking bouts were applied as templates in
training of a Naïve Bayes classifier algorithm. Every 2 weeks, additional templates
were collected to refine the model parameters and measure the changes in the
patient’s gait.
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Fig. 6 Components of the SIRRACT sensor kit supplied to subjects is shown. At lower left is
the system smartphone. At upper center is the ankle worn Velcro attachment for the sensor. The
wireless charging unit with a recess accepting the sensor is at lower center. The motion sensor
system is shown at lower right

Table 3 List of metrics
reported by the SIRRACT
clinical trial

Index of metrics Daily metrics reported

1 Steps
2 Walking distance
3 Maximum walking speed
4 Minimum walking speed
5 Average walking speed
6 Number of bouts
7 Average duration for each bout
8 Average distance traveled for each bout
9 Active time

After each participants’ daily motion data were uploaded onto the server, the
binary classifier automatically labelled the walking segments. Subsequently, gait
parameters such as walking speed and walking duration for each identified walking
bout was calculated and compiled into a profile quantitatively describing the gait
performance. A full list of all the metrics classified by the SIRRACT system can be
found in Table 3. In addition, summaries of the metrics were made available to the
therapists.
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Accelerometer and Gyroscope Systems

Though the accelerometer system provided a general understanding of post stroke
activity levels, it lacked the detailed motion trajectory reconstruction that would
enable physicians to better understand the rehabilitation process of a gait-impaired
patient. With the inclusion of a gyroscope, the need for improved motion tracking
can be fulfilled.

Reference [43] discusses a Zero Velocity Update (ZUPT) method that uses both
accelerometer and gyroscope measurements to track lower body motions. Sensor
orientation was calculated through the use of a complementary filter that combined
both the accelerometer and gyroscope measurements. This enabled the subtraction
of the gravity component from the accelerometer with the remaining acceleration
due solely to motion. Double integration of the motion acceleration with zero-
velocity update resulted in accurate trajectory reconstruction in three-dimensional
space [44–46].

In order to meet the clinician’s preference for ankle-mounted lower body motion
tracking sensors [1, 42, 47], the Non-Zero Velocity Update (Non-ZUPT) method
was developed that allowed motion tracking systems with accuracies comparable
to ZUPT [44]. This paper modifies the ZUPT method by updating the expected
velocity with a non-zero value during the stance phase.

For comparison of the ZUPT and non-ZUPT algorithms, two inertial sensors
were mounted on either the shoes [43] or on the ankles [44]. The sensors collected
accelerometer, gyroscope, as well as quaternion orientation data at 200 Hz. Data
were transmitted through the on-board Bluetooth chipset to a PC and locally time
synchronized.

Both the ZUPT and non-ZUPT systems allowed for full 3-dimensional motion
trajectory reconstruction with the minimal number of sensors and resulting in an
average step-length estimation accuracy of 98.99% [43] and 96.42% [44] over the
testing datasets.

Section 5: Summary

This chapter has presented the current state of activity monitoring for health and
wellness applications. Novel activity monitoring platforms that supply data from
inertial and visual sensors were discussed. Clinically proven, machine-learning
algorithms enabling the classification of a wide range of activities were described.
The applications resulting from motion monitoring platforms that combine the
aforementioned sensors and algorithms were shown to provide physicians with
actionable information to improve patient diagnosis and advance healthcare deliv-
ery. One application, utilizing a custom platform developed for neurological clinical
trials was presented to show the critical benefits provided to healthcare by the new
generation of wearable motion monitoring systems.
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Paralinguistic Analysis of Children’s Speech
in Natural Environments

Hrishikesh Rao, Mark A. Clements, Yin Li, Meghan R. Swanson,
Joseph Piven, and Daniel S. Messinger

Abstract Paralinguistic cues are the non-phonemic aspects of human speech that
convey information about the affective state of the speaker. In children’s speech,
these events are also important markers for the detection of early developmental
disorders. Detecting these events in hours of audio data would be beneficial for
clinicians to analyze the social behaviors of children. The chapter focuses on the use
of spectral and prosodic baseline acoustic features to classify instances of children’s
laughter and fussing/crying while interacting with their caregivers in naturalistic
settings. In conjunction with baseline features, long-term intensity-based features,
that capture the periodic structure of laughter, enable in detecting instances of
laughter to a reasonably high degree of accuracy in a variety of classification tasks.

Paralinguistic Event Detection in Toddlers’ Interactions
with Caregivers

Paralinguistic cues are non-phonemic aspects of human speech that are character-
ized by modulation of pitch, amplitude, and articulation rate [2]. These cues convey
information about the affective state of the speaker and can be used to change
the semantic content of a phrase being uttered. For example, the phrase, “Yeah
right”, when modulated with laughter indicates sarcasm [25]. Paralinguistic cues
encompass the commonly produced ones such as crying and coughing to those that
are widely considered to be social taboos such as belching and spitting [20].
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Charles Darwin, in his seminal work on emotions in animals, described laughter
as a paralinguistic cue used primarily to convey joy or happiness [4]. Laughter is a
signal which consists of vowel-like bursts that has been found to be a highly variable
signal. Adults produce laugh-like syllables, which are repetitive in nature and
the production rates in laughter are higher than those of speech-like sounds [3].
Laughter also tends to have a higher pitch and variability compared to speech.
Laughter is a socially rich signal that manifests itself in different forms. Laughter
bouts have been classified as being “song-like” which consists of modulation of
pitch, “snort-like” with unvoiced portions, and “unvoiced grunt-like” [3]. Although,
laughter is considered to be a signal for indicating positive affect, the perception
of laughter can change based on the context in which it is used. In speed dating
situations, women were rated to be flirting if they laughed while interacting with
men [22].

Paralinguistic cues, such as laughter and crying, play an important role in
children’s early communication, and these cues are useful in conveying the affective
state of the speaker. The cues have also been found to differ when infants and
children with autism spectrum disorder (ASD) are compared to controls [5, 9].
The sdiarization of such events in extended recordings has shown preliminary
evidence as a utility in the diagnosis detecting pathologies [18]. These events can
also be used to analyze children’s communicative behaviors in social interactions
with their caregivers. Laughter is primarily used to express positive affect and has
been found to usually follow a state of anticipatory arousal, especially tickling [24].
Fussing/Crying could indicate that the child is upset or disinterested in the task being
initiated by the caregiver in a dyadic setting.

Databases

The research will focus on using long-term syllable-level features to detect laughter
in children’s speech. For this purpose, three datasets will be used. For detecting
laughter in children’s speech, we have used the MMDB, Strange Situation, and the
IBIS datasets.

Multi-Modal Dyadic Behavior Dataset

The Multi-modal Dyadic Behavior (MMDB) dataset [23] consists of recordings of
semi-structured interactions between a child and an adult examiner. The recordings
are of multi-modal in nature and consists of video, audio, and physiological data.
The sessions of the MMDB were recorded in the Child Study Lab (CSL) at the
Georgia Institute of Technology, Atlanta, USA.

The protocol in this study is the Rapid ABC play protocol which is a short
(3–5 min) interaction between a trained examiner and a child whose interaction
skills are assessed based on social attention, back-and-forth interactions, and



Paralinguistic Analysis of Children’s Speech in Natural Environments 221

Fig. 1 Stages of the dyadic interaction between child and examiner in the MMDB

nonverbal communication which have been indicative of socio-communicative
milestones. The Rapid-ABC consists of five stages, which is illustrated in Fig. 1,
and these consist of greeting the child by calling his or her name, rolling a ball
back-and-forth with the child, reading a book and eliciting responses from the child,
placing the book on the head and pretending it to be a hat, and engaging the child in
a game of tickling.

The annotations of the MMDB dataset were performed by research assistants in
the CSL and were coded for the different stages of the Rapid-ABC protocol. For
the speech modality, the child’s vocalization events such as speech, laughter, and
fussing/crying along with the examiner’s transcribed speech events were annotated.

The database currently has recordings from 182 subjects with 99 males and 83
females (aged 15–29 months) and there were 54 follow up visits. The annotations of
the social behaviors were performed using the open-source annotation tool ELAN
and the screenshot of the ELAN software with the annotations for one of the MMDB
sessions is shown in Fig. 2.

The dataset is significant in a multitude of ways, mainly from the fact that this
represents one of the very few datasets available to the scientific community which
has a rich variation in the number of subjects and the range of ages. From the speech
perspective, there are vocalizations involving laughter and fussing/crying that are
present in a significant number, with most of the laughter samples emanating during
the tickling stage of the Rapid-ABC. The child’s vocalizations are recorded using
lavalier microphones which are in close proximity to the child and are generally free
from any type of noise. From the multi-modal perspective, this dataset represents a
challenging prospect to analyze the interaction of laughter and smiling in children
and fuse information from audio and video sources to detect instances of laughter.
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Fig. 2 MMDB session annotations in ELAN

Strange Situation

The Strange Situation Procedure [1] is used for analyzing attachment behaviors
of children with their caregivers. The strange situation protocol consists of eight
episodes, each of which are 3 min in duration. In episodes 1–3, the child (in the
company of the caregiver) is first confronted with a strange environment (a play
room) and then with a stranger (an unknown research assistant). During the fourth
episode, the caregiver leaves the room and the infant is left with the stranger. The
caregiver returns during the fifth episode and the stranger leaves. The caregiver then
leaves again (episode 6), which means the infant is alone in the room. The stranger
returns (episode 7), and eventually the caregiver also returns (episode 8).

The stressful situations which elicit attachment behaviors in children include
the environment in which the child is in, the stranger with whom the child is
with, and the separations from the caregiver. The goal is to evaluate how the child
reacts to being reunited with the mother, specifically, whether he/she approaches
her, is soothed by the contact, and returns to play. Attachment behaviors with the
caregiver on reunion lead to classification into one of three categories: secure,
insecure avoidant, or insecure resistant. These attachment styles along with their
prototypical crying patterns during reunion episodes are shown in Table 1 [26].
Crying is an important behavior in attachment classification from the Strange
Situation Procedure.
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Table 1 Classification criteria using crying in the Strange Situation Procedure for the three
different attachment categories as described by Waters, 1978

Attachment behavior Crying

Avoidant Low (preseparation), high or low (separation), low (reunion)

Secure Low (preseparation), high or low (separation), low (reunion)

Ambivalent
Occasionally (preseparation) , high (separation), separation) moderate
to high (reunion)

Table 2 Risk factor of ASD
for the subjects in the IBIS
study at 9 and 15 months
of age

Low risk High risk

9 months of age 16 37

15 months of age 7 25

The Strange Situation dataset analyzed in was provided by Daniel Messinger
from research conducted at the University of Miami, Coral Gables, FL, USA. This
dataset consists of strange situation recordings from 34 infants of 12 months of
age and were recorded using the LENA device [21]. The annotations provided by
the collaborators consists of child’s speech, crying, and laughter. The dataset is
beneficial from the point of view of testing models trained on the MMDB and testing
it on the Strange Situation corpus. The importance of the dataset emanates from the
fact that the recordings come from noisy conditions and the type of crying produced
in the Strange Situation is that of high intensity while that of the MMDB is more of
low intensity in nature.

Infant Brain Imaging Study

The Infant Brain Imaging (IBIS) study is an ongoing longitudinal study of infants
at high and low familial risk for ASD [6, 27] . The study includes a dataset of
recordings consisting of infants’ speech which has been recorded in the homes of
their caregivers and external environments such as grocery stores, playschools, and
shopping malls. The IBIS study includes four clinical sites: University of North
Carolina, Chapel Hill; University of Washington, Seattle; The Children’s Hospital
of Philadelphia; and Washington University, St. Louis, and data coordination at
Montreal Neurological Institute, McGill University. The current dataset includes
a subsample of IBIS participants from the University of North Carolina and The
Children’s Hospital of Philadelphia. Data was recorded at 9 and 15 months of age
generating a total of 85 recordings. The distribution of the subjects based on their
risk factors is shown in Table 2.

The recordings of the infants’s interactions with their caregivers are 16 h in length
and were recorded using the Language Environment Analysis (LENA) device which
is a portable digital language processor. The LENA device is a light-weight audio
recorder which can easily fit inside the vest worn by an infant. The recorder, shown
in Fig. 3, has the ability to record single channel audio data at a sampling rate
of 16 kHz.
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Fig. 3 LENA audio
recording device used for
infant vocal development
analysis

Table 3 Labels used for the segments using the annotation tool developed at Georgia Institute
of Technology for the IBIS dataset

Type Category of sound event

Child Speech, other vocalizations, fussing/crying, crying, laughter, other child

Adult Male and female (near and far)

Noise Toys, overlap, other

The software provided along with the recorder is a data mining tool, LENA
Advanced Data Extractor (ADEX), which can potentially be useful for analyzing the
various segments in day-long recordings. The tool has the capability of segmenting
and parsing various information about the audio events of interest. These include
the infant’s and adult’s vocalizations, cross-talk, background noise, electronic noise,
and turn-taking events [17].

The LENA software does not provide a fine-grained analysis of the infant’s non-
verbal vocalizations and does not provide timestamps of when the infant laughed,
cried, or produced other paralinguistic vocalizations. These important measures are
potentially valuable in understanding the social behaviors of infants when they
interact with their caregivers. In the context of infants at high-risk for ASD, the
atypical characteristics of paralinguistic vocalizations may inform later development
with the potential to be a useful component to early detection of ASD. For the data
collected in the study, a research assistant at the Georgia Institute of Technology
labeled the segments using the various categories outlined in Table 3. The reasoning
behind relabeling the segments is to ensure that there is ground truth for the
paralinguistic events and to use a majority vote based on the outputs of three voice
activity detectors (VAD).

The importance of this dataset lies in the fact that the recordings were collected
“in-the-wild” and constitute an important move forward in the scheme of validating
models trained in laboratory environments, which are often sound-treated.

The MMDB dataset, which consists of speech, laughter, and crying samples, was
used as the training data and the other two datasets were used as testing data. Table 4
shows the number of samples along with the durations (mean˙ standard deviation)
for all the datasets.
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Table 4 Number of training and testing examples of MMDB, Strange Situation, and IBIS
datasets for speech, laughter, and fussing/crying along with the mean and standard deviation
of duration of the samples

Dataset Type of vocalization
Number of
samples (N)

Duration
(mean˙standard
deviation)

MMDB Speech 200 1.14˙0.66

Laughter 128 1.31˙1.28

Fussing/crying 142 2.65˙4.21
Strange situation Speech 171 1.23˙0.92

Laughter 11 1.12˙0.90

Fussing/crying 129 1.68˙0.83
IBIS Speech 510 1.23˙0.92

Laughter 48 1.12˙0.90

Fussing/crying 421 1.68˙0.83

Long-Term Intensity-Based Feature

A new measure to capture the long-term periodic structure of laughter using the
energy or intensity contour is introduced below. The work by Oh et al. [16] uses a
priori information about the frequency range (4–6 Hz) in which the sonic structure
of laughter is apparent in the magnitude spectrum of the intensity contour of
laughter. The advantage of this measure is that it is not dependent on the bandwidth
of the audio signal and can be generalized for signals recorded at various sampling
rates. The a priori information about the frequency with which the sonic structure
manifests will not be used but uses window lengths of varying sizes that can
encompass different syllable lengths. In the first step, the intensity or energy contour
of the speech signal is computed using a Hamming window of 30 ms length and
10 ms overlap as shown in (1).

EŒn� D
nX

nD1

xŒn�2; (1)

where xŒn� is the windowed speech signal frame and EŒn� is the energy or intensity
of the signal.

In Fig. 4, the repetitive structure of laughter can clearly be seen in the spectro-
gram, while such a structure was not apparent for speech as seen in Fig. 5. Using
the intensity contour, the Hamming window length was again varied from 5 to 45
frames (in steps of 4) for children’s laughter with different overlap window lengths.
The reason for using different window lengths is due to the fact that these were
the ranges of window lengths that resulted in good accuracies as will be discussed
in section “Results”. From this syllable-level segment, the autocorrelation of the
intensity contour is computed as shown in (2).
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Fig. 4 Waveform of laughter sample from the MAHNOB [19] database along with the spectro-
gram displayed below it
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displayed below it
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Then, a polynomial regression curve was fitted to the one-sided autocorrelation
function and the absolute error was computed between the curve and the autocorre-
lation function. The idea behind computing the error was that the greater the periodic
structure of the signal, which would be the case for laughter, the higher would be
the error than for speech. Since the children’s audio signals might consist of noise or
cross-talk, we varied the degree, d, of the polynomial regression curve from 1 to 3.
Also, for the children’s speech there were four different overlap window lengths
used ranging from 12.5 to 50% overlap. This resulted in 36 low-level descriptors for
children’s speech. There were 14 statistical measures computed from the features
and these are shown in Table 5.

The baseline acoustic features were extracted using the open-source audio feature
extraction tool, openSMILE [7]. There were 57 low-level descriptors (LLD), shown
in Table 6 extracted using a 30 ms Hamming window with 10 ms overlap. The delta
and delta-delta measure for each LLD was also computed and the number of LLDs
was 171. There were 39 statistical measures, shown in Table 7, computed from the
LLDs for each sample. The dimensionality of the feature set using openSMILE was
6669.

Table 5 Statistical measures evaluated for syllable-level intensity features

Statistical measure

Arithmetic mean, median, mode, standard deviation, maximum and minimum values, flatness,
skewness, kurtosis, 25th quartile, 75th quartile, inter-quartile ranges, 1st percentile, 99th
percentile

Table 6 Spectral and prosodic acoustic features extracted using openSMILE

Feature

Number of
low-level
descriptors

Log-energy 3

Magnitude of Mel-spectrum 78

Mel-frequency Cepstral coefficients 39

Pitch 3

Pitch envelope 3

Probability of voicing 3

Magnitude in frequency band (0–250Hz, 250–650Hz, 0–650Hz,
1000–4000Hz, and 3010–9123Hz)

16

Spectral rolloff (25th, 50th, 75th, and 90th percentile) 12

Spectral flux 3

Spectral position (centroid, maximum, and minimum) 3

Zero-crossing rate 3
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Table 7 Statistical measures evaluated for openSMILE features

Statistical measure

Max./min. value and respective relative position within input, range, arithmetic mean, three
linear regression coefficients and linear and quadratic error, standard deviation, skewness,
kurtosis, centroid, variance, number of non-zero elements, quadratic, geometric, absolute
mean, arithmetic mean of contour and non-zero elements of contour, 95th and 98th
percentiles, number of peaks, mean distance from peak, mean peak amplitude, quartile 1–3,
and three inter-quartile ranges
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Fig. 6 Features selected for the three classification tasks viz. speech vs. laughter, fussing/crying
vs. laughter, and non-laughter vs. laughter

Results

Models were trained using the MMDB dataset and tested the models on the Strange
Situation and IBIS datasets. The results will be discussed in two categories; the
first set of results deals with classifying laughter against combinations of various
categories (speech, fussing/crying, and non-laughter which consists of speech and
fussing/crying) using only the top 50 features ranked by CFS syllable-level intensity
features and the second category will be the combination of baseline acoustic and
syllable-level features by ranking the top 100 features using CFS. The selected
features for the three classification tasks are shown in Fig. 6.

Using the MMDB corpora for training, the results of the ten-fold cross validation
are shown in Table 8 for the various classification tasks using the top 50 syllable-
level features using CFS.

Using the MMDB corpora for training, the results of the 10-fold cross validation
are shown in Table 9 for the various classification tasks using the top 100 baseline
and syllable-level features using CFS.
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Table 8 Accuracy and recall of ten-fold cross-validation with training on MMDB corpus using
the top 50 syllable-level features using a cost-sensitive linear kernel SVM classifier

Speech vs. laughter (%) Whining vs. laughter (%) Non-laughter vs. laughter (%)

Accuracy 73.17 71.85 75.53

Recall 72.23 71.81 74.63

Table 9 Accuracy and recall of ten-fold cross-validation with training on MMDB corpus using
the top 100 baseline and syllable-level features using a cost-sensitive linear kernel SVM classifier

Speech vs. laughter (%) Whining vs. laughter (%) Non-laughter vs. laughter (%)

Accuracy 84.75 79.25 81.27

Recall 84.82 78.77 80.04

Table 10 Accuracy and recall of training on MMDB corpus and testing on IBIS corpus using
the top 100 baseline and syllable-level features using a cost-sensitive linear kernel SVM classifier

Speech vs. laughter (%) Whining vs. laughter (%) Non-laughter vs. laughter (%)

Accuracy 85.12 81.02 82.53

Recall 85.26 81.12 79.94

Table 11 Accuracy and recall of training on MMDB corpus and testing on Strange Situation
corpus using the top 100 baseline and syllable-level features using a cost-sensitive linear kernel
SVM classifier

Speech vs. laughter (%) Whining vs. laughter (%) Non-laughter vs. laughter (%)

Accuracy 84.06 90 83.6

Recall 87.26 90.41 87.12

Using the MMDB corpora for training and testing on the IBIS , the results of the
test sets are shown in Table 10 for the various classification tasks using the top 100
baseline and syllable-level features using CFS.

Using the MMDB corpora for training and testing on the Strange Situation
corpus, the results of the test sets are shown in Table 11 for the various classification
tasks using the top 100 baseline and syllable-level features using CFS.

The results indicate that the syllable-level features are capable of detecting
laughter from speech and fussing/crying. When both of these events (e.g., speech,
fussing/crying) are treated as a single class, non-laughter rises to a reasonably high
degree of accuracy, and more importantly, a high rate of recall. The significance of
these results lie in the fact that the features trained on the MMDB dataset generalize
well when applied to the Strange Situation and IBIS datasets which consists of data
recorded in completely different conditions, subjects with a different age group, and
with subjects at risk of ASD.
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Multi-Modal Laughter Detection in Toddlers’ Speech
When Interacting with Caregivers

Introduction

Smiling is one of the most common facial expressions used while interacting with
friends or peers [11]. Smiles can manifest as Duchenne smiles, activated using the
Zygomaticus Major and Orbicularis Oculii muscles concurrently, which are used
to express positive affect. When only the Zygomaticus Major muscle is activated,
the smile is considered to be forced [8]. Smiles, like laughter, can also be used to
mask the true affective state of an individual. False smiles can be used to indicate
that a person is happy while masking the true affective state which could range from
deception to disgust [13].

There is limited understanding about the interaction between smile and laughter
and one [12] hypothesis is that smiles have their origins in the silent bared-teeth
submissive grimace of primates, and laughter evolved from the relaxed open-mouth
display. Since, spontaneous smiles have been linked with laughter [14], an attempt
has been made to use the information about smiles to reduce false positives in
detecting laughter using only the audio modality.

The research by Petridis et al. [19] discusses about performing multi-modal
laughter detection in adults’ speech and shows the improvement obtained from
fusing the features from the audio and vision modalities compared to using either
one of them. A logical extension of this work would be to analyze the data from
children’s interactions with caregivers. Previous research on smiling type and play
type during parent-infant play has shown varying conclusions about the frequency
of smiling with infants smiling more at the mother compared to the father during
visual games, object play, and social games. While research which showed smiling
preference for fathers involved games of physical and idiosyncratic nature.

Database

The MMDB corpus was used for the purpose of analysis and the modalities used
were the audio from the lavalier microphones and the Canon side-view cameras
for analyzing the smiles of the child. For the purposes of detecting laughter, the
problem was treated as a laughter vs. non-laughter classification problem where
the non-laughter elements included child’s speech and fussing/crying. There were a
number of difficulties experienced while analyzing the videos of the child. One
major problem was that OMRON’s smile tracker was used to initialize the face of
the child automatically and given that the parent was also in the view of the camera,
the parent’s face would be mistaken for the child’s face. To overcome this issue, a
manual selection of the child’s face was done by selecting the frame when the child’s
face was detected by the smile tracker. This process mitigated the false positives of
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the child’s face being detected. The other issues that were faced while detecting
the child’s face were when the face was obscured from the view of the camera due
to the examiner or parent moving in front of the child, the child turning his or her
face away from the view of the camera, or the child moving away from the view of
the camera by getting distracted by an object in the room. These were issues that
could potentially be addressed by using information from the AXIS cameras, but
that would be pertinent to whether the child’s face can be accurately detected using
them.

Having detected the child’s face and extracting the information about the smile,
the child’s speech annotations were lined up with the frame-level results of the
Canon videos. The annotations in ELAN are relative to the Canon videos and
therefore the synchronization is a simple process of lining up the various events
belonging to other modalities. Once the annotations have been lined up, we need
to take into account that the smile detector can produce false negatives due to the
tracker failing to track the face when the child’s face is in view. For this purpose,
we used a threshold method wherein only the laughter and non-laughter annotations
are used when for more than 70% of the duration of the event, the smile detector
produces a valid output (a vector of non-zero features).

Feature Extraction and Selection

The openSMILE features along with the syllable-level intensity features, described
in section “Long-Term Intensity-Based Feature”, were extracted from the laughter
and non-laughter samples. For the visual features, the OMRON Okao smile
detection system was used to extract the frame-level features and the feature that
were used for analyses was the smile strength. There were two methods employed
for feature selection. The first technique is the combination of the filter and wrapper-
based techniques with the filter-based technique used being the correlation-based
feature selection technique followed by the wrapper-based technique which is the
sequential-forward selection method with a linear kernel SVM as the base classifier.
The other technique employed was using a restricted Boltzmann machine (RBM)
with contrastive divergence and this is widely used in image classification and of
late, in speech recognition for the purposes of learning deep learning models.

An RBM is a undirected graphical model which consists of bipartite graphs.
There are two types of variables in the architecture, a set of visible units, V , and
followed by hidden units, H. There are no connections within V and H, as shown in
Fig. 7, and thus each set of units is conditionally independent of the other.

For every possible connection between the binary visible, v, and hidden units, h,
the RBM assigns an energy and this is given using the equation shown in (3)

E.v; h/ D �
X

i;j
Wijvihj �

X

i
aivi �

X

j
bjhj: (3)
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Fig. 7 Structure of a restricted Boltzmann machine (RBM) with connections between visible
layer, V , and hidden layer, H

where vi and hj are the binary states of the visible unit i and hidden unit j. The a
and b are the biases of the visible and hidden units respectively. Wij represents the
weights or the strength between the visible and hidden units.

The conditional probabilities of each of the visible and hidden units is given in
(4) and (5),

p.hj D 1 j v/ D 	.bj C
X

i
Wijvi/ (4)

p.vi D 1 j h/ D 	.ai C
X

j
Wijhj/ (5)

where

	.x/ D
1

1C e�x
(6)

is the logistic function.
The probability that is assigned to every possible joint configuration .v; h/ is

given in (7),

p.v; h/ D
e�E.v;h/

Z
D

e�E.v;h/

P
u;g e�E.u;g/

(7)

where Z is the partition function. The marginal distribution of the visible units is
given as

p.v/ D
X

h
p.v; h/ (8)
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Fig. 8 Working of the contrastive divergence (CD) algorithm between the hidden and visible units
in an RBM

and the gradient of the average log-likelihood is given as

@logp.v/

@wij
D< vihj >0 � < vihj >1 (9)

The < : >1 cannot be computed efficiently as it involves the normalization
constant Z and it is a sum of over all configurations of the variables making the
problem intractable. This can be avoided by using the contrastive divergence (CD)
algorithm by sampling from the distribution using Gibbs sampling. This involves
setting the initial values of the visible units to the feature set and then sampling the
hidden units given the visible units. After this, the visible units are then sampled
using the hidden units and the process is alternated between the two. This is shown
in Fig. 8. This sampling requires using the conditional distributions given in (4) and
(5) which are easy to compute. The CD algorithm is given as,

@logp.v/

@wij
D< vihj >0 � < vihj >k (10)

For the purposes of research in this section, the Gaussian- Bernoulli RBM was
used to deal with feature sets that used acoustic and visual modalities. In this
method, the visible units are treated as originating from a Gaussian distribution and
the hidden units are binary. The equation of the energy function becomes,

E.v; h/ D �
X

i

.vi � ai/
2

2	2i
�

X

i;j

vi

	2i
hjWij �

X

j
bjhj: (11)

The conditional probabilities of the visible and hidden units are modified as
shown in (12) and (13).

p.vi D v j h/ D N .v j ai C
X

j
Wijhj; 	

2
i / (12)

p.hj D 1 j v/ D 	.bj C
X

i
Wij

vi

	2i
/ (13)
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Fig. 9 Architecture of the system employed for multi-modal laughter detection using combination
of filter and wrapper-based feature selection schemes

Table 12 Acoustic and visual features selected using feature selection based on combination of
filter and wrapper-based methods using the MMDB dataset

Feature Number of features selected

Spectral centroid 2

Syllable-level intensity autocorrelation error 1

Smile confidence 1

where N .� j 
; 	2/ is a Gaussian probability density function with mean 
 and
variance 	2.

Methodology

Two feature selection methodologies for the multi-modal analysis were employed.
In the first part, as shown in Fig. 9, we used the CFS on the acoustic features
and concatenated with the visual features followed by passing the feature set
through a sequential forward selection (SFS) with the base classifier being a linear
kernel SVM.

The features selected using this scheme is shown in Table 12 and include spectral
centroid, syllable-level intensity, and smile confidence features.

For the multi-modal analysis using RBMs, the method employed is the bimodal
deep belief network (DBN) architecture [15]. Here, the lower layers learn the
audio and video features separately followed by concatenating and feeding them
to another RBM, as shown in Fig. 10, which learns the correlations between the
various modalities. For this architecture, we employed the Gaussian-Bernoulli RBM
for the first layers followed by a Bernoulli-Bernoulli RBM for the top-most layer.
This is a similar architecture that has been previously used in multi-modal emotion
recognition by Kim et al. [10]. The only parameter being varied is the number of
hidden units with all the other parameters such as learning rate, number of iterations
for the CD algorithm, and batch size being constant. The number of hidden units
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Fig. 10 Architecture of the system employed for multi-modal laughter detection using RBMs

varied from 10 to 50 with a step size of 10. A grid search is performed for finding
the configuration of the number of hidden units for each RBM that results in the
best accuracy using a ten-fold cross-validation scheme.

Results

Owing to the fact that the number of samples used in this study was small due to
the various limitations in analyzing the videos as described earlier, a ten-fold cross-
validation was performed on the dataset with a linear kernel SVM. Considering the
imbalance in the training data, we used a cost-sensitive classification scheme with
the cost matrix given as,

C D

�
0 1

1:81 0

�

(14)

Classification using the acoustic features from the filter based method, where the
top 100 audio features are ranked, resulted in a confusion matrix for laughter vs.
non-laughter as shown in Table 13.

The accuracy is 86.2% which this is significantly higher than using the features
from either modality alone. The recall rate for the non-laughter class is significantly
higher than either of the two modalities but the one for laughter is slightly lower than
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Table 13 Accuracy and Recall of the ten-fold cross validation results using SVM for the audio,
video, and audio-video modalities

Modality Accuracy (%) Recall (%)

Audio 78.8 77.14

Video 81.1 81.85

Audio C video 86.17 85.48

Table 14 Accuracy and recall of the ten-fold cross validation results using RBMs and SVM
classifier for the audio, video, and audio-video modalities

Modality Accuracy (%) Recall (%)

Audio 83.41 81.88

Video 80.18 9.96

Audio C video 88.94 87.62

that of visual modality alone. Nonetheless, these results are indicative that the use
of multi-modal information would definitely enhance the classification over using
either of the modalities alone.

The best results were obtained using 40 hidden units for the speech RBM, 10
hidden units for the visual features RBM, and finally 25 hidden units for the top
most RBM which uses the outputs of the speech and visual RBMs. The outputs
of the RBMs are then fed as features to an SVM classifier. The results are shown
in Table 14.

With the use of the RBM architecture, the accuracy of the system is 88.94%
and the recall rate for non-laughter, 92.14%, is better than that of the previous
methodology.

The research has focused on using multi-modal information for the detection
of laughter in children’s speech while interacting with their caregivers in a semi-
structured environment. The integration of visual features using the OMRON
Okao smile tracking system has the ability to capture the smile characteristics in
children’s laughter. The audio and the vision modalities on their own are capable
of discriminating between laughter from non-laughter events but when the features
are combined, there is an improvement in the classification accuracy. The use of
the multi-modal architecture using a restricted Boltzmann machine yields in a
significant improvement in the accuracy over using an RBM for features of only
one modality.
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Pulmonary Monitoring Using Smartphones

Eric C. Larson, Elliot Saba, Spencer Kaiser, Mayank Goel,
and Shwetak N. Patel

Abstract Pulmonary assessment is widely employed by medical professionals and
has become an important marker of health. It is used for screening, diagnostics,
and management of chronic pulmonary diseases like asthma, chronic bronchitis,
and chronic obstructive pulmonary disease. However, pulmonary assessment has
mostly been restricted to self-report and routine monitoring at a physician’s
office. Smartphones have disrupted this practice, enabling daily collection of
self-reported symptoms and airway testing from a patient’s home. This chapter
outlines how various markers of pulmonary health are collected from mobile
phones. In particular, discussing the importance of disease specific monitoring
and highlighting research studies that employ mobile phones for pulmonary data
collection.

Introduction to Pulmonary Sensing

Respiratory diseases are among the leading causes of death worldwide. According
to a 2008 WHO survey, pulmonary infections (such as pneumonia), lung cancer, and
chronic obstructive pulmonary disease (COPD) account for more than one-sixth of
fatalities globally [40]. This fatality rate can be mitigated through two mechanisms:
(1) finding pulmonary diseases early through diagnosing and screening, and (2)
managing these lung diseases to keep them from exacerbating.

In particular, early stage diagnosis is critical for preventing complications but
has proven to be difficult. Chronic obstructive pulmonary disease, for example, is
vastly under-diagnosed, with an estimated 50% of sufferers unaware they have the
condition [54]. Factors like high cost, access to clinics and doctors, and limited
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awareness often hinder effective early diagnosis. However, even when lung diseases
are found early, diagnosis is not the only challenge. Many diseases are chronic,
requiring patients to manage triggers and symptoms over a lifetime. While effective
management has shown improved outcomes and reduced healthcare costs, it is
often impeded by factors like access to medication, limited awareness, and non-
compliance to treatment regimens.

The adoption of mobile phones, especially smartphones, promises to disrupt cur-
rent practices of management and diagnosis for pulmonary diseases. In developed
countries, access to mobile phones is all-but-guaranteed and developing countries
are adopting these phones at breathtaking rates [20]. Hence, incorporating phones
into the diagnosis and daily management of chronic pulmonary ailments promises
to save lives and increase quality-of-life.

Phones have advantages over dedicated medical devices such as low-cost and
ubiquity, as well as computing and communication capabilities. Mobile phones can
also help to facilitate communication between patients and care providers. Yun et
al., for example, demonstrated how using the phone’s messaging capabilities can
increase awareness of asthma progression and symptom triggers [75]. Furthermore,
mobile phones can also help automate symptom logging where self-report is
notoriously unreliable. In this chapter, we discuss many such systems and how each
promises to improve diagnosis and management of pulmonary diseases. We also
argue that current mobile monitoring practices have not reached their full potential
because a holistic system that incorporates knowledge from diverse sources has not
yet come to fruition.

Section “Pulmonary Ailments Where Mobile Monitoring May Be Beneficial”
discusses the physiology of chronic pulmonary diseases and how these diseases
can benefit from automated mobile monitoring. Section “Monitoring Through
Daily Symptom Diaries” surveys the landscape of symptom diaries and discusses
challenges of current systems. Section “Continuous Symptom Monitoring” provides
an overview of how automated, continuous monitoring systems can improve health
outcomes. Section “Mobile Spirometry” discusses how mobile phones are making
mobile airway sensing more accessible. Section “Conclusion” concludes with a
discussion of the technical challenges that lay ahead.

Pulmonary Ailments Where Mobile Monitoring
May Be Beneficial

There is no gold standard measurement for monitoring the lungs in general.
Rather, each pulmonary disease has an accepted means for measuring wellness.
In mobile monitoring, most research focuses on diseases that chronically affect
the airway. Chronic lung diseases are the third most common cause of death in
the world [1, 13, 31]. In fact, COPD is the fourth leading cause of death and is
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rapidly becoming more deadly than infectious lung diseases, like pneumonia and
influenza combined [43]. Chronic lung diseases have no cure, but instead must be
diagnosed and monitored for the duration of a patient’s life. Because these diagnoses
are lifelong, it is especially important to diagnose individuals with these diseases
as early as possible, in order to mitigate the irreversible complications caused by
the illness going untreated. The problem is twofold, (1) finding and diagnosing
individuals with lung disorders and (2) monitoring and managing the condition
properly [74].

The most common chronic lung diseases are those that affect the airways and
are further classified as obstructive or restrictive. Obstructive diseases affect the
flow of air from the bronchi and bronchioles through collapsed or inflamed airways.
Asthma and COPD are classified as obstructive diseases. Common symptoms
include shortness of breath, coughing, and wheezing. Restrictive lung diseases are
characterized by reduced lung expansion. There are varied reasons for restriction but
the most severe is typically from pulmonary fibrosis, which restricts lung volume
through scarring of the lung tissue. Cystic fibrosis is considered to be a restrictive
disease, characterized by an increased amount of mucus in the lungs. Chronic
coughing and shortness of breath are common symptoms associated with restrictive
diseases.

The standard of care for diagnosis of chronic lung diseases is based upon
collecting information about symptoms, meeting with a physician regularly, and
seeking measures from a medical device known as a spirometer [40, 74]. This
device measures the velocity and amount of air a patient can exhale from their lungs.
Physicians will take repeated spirometer measures and consult with a patient several
times before diagnosing a chronic condition.

As with many other chronic conditions, physicians have begun to explore
“mobile health” technology as a means of collecting information more efficiently.
This includes the use of electronic asthma symptom journals [8, 14], telemedicine
[19, 48, 58], and mobile spirometry [65]. These mobile sensing methods have been
employed successfully for screening, diagnosis, and continued management tools.
Even so, mobile technologies have not yet disrupted current screening practices.
Mobile technologies that focus on low-cost screening could radically increase
diagnostic rates—which are currently estimated to be below 50% [54]. This is
especially true for mobile spirometry because it has become standard for screening
obstructive ailments.

Beyond screening, mobile technologies can be effective for long term monitor-
ing, especially in evaluating treatment. Treatment regimens for chronic pulmonary
ailments are highly personalized and dynamic over a patient’s lifetime [37, 44].
Careful monitoring of patient perceptions, symptom frequency, and lung function
can considerably increase quality-of-life. However, current practices are too bur-
densome to make such data collection practical. Mobile management tools can
help reduce this barrier, paving the way to efficient, data-centered pulmonary
management. Table 1 provides an overview of the methods discussed in this
chapter.
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Table 1 Summary of methods for monitoring pulmonary ailments via mobile phones

Pulmonary Data
Method target collection Primary purpose Description

Electronic
symptom
diaries

Many
ailments;
especially
asthma

Multiple
choice; text
entry

Perception of
symptoms;
quality of life

Digital version of asthma
symptom diary. For
example, using android
widget [9] or periodic
surveys in custom app [8]

SMS for
symptom
diaries

Short text
entry

Increase
awareness; track
medications or
symptoms

Periodic questions and
micro-learning via SMS
with one letter responses
[76]

Frame-by-
frame audio
cough detector

Asthma,
COPD, cystic
fibrosis

Records
ambient
audio via
lapel
microphone

Assess cough
frequency;
ambulatory and
nocturnal

Classify and parse fixed
duration audio frames as
cough or non-cough.
Recent work has also
investigated privacy
implications [34]

Markov chain
audio cough
detector

Employs HMM model to
identify cough sounds.
Recent work has
deployed system on user
phones [56].

Low cost
phone tethered
spirometers

Obstructive
diseases;
spirometry

Direct
measure of
airflow

Assess all
spirometry
measures

Typically measure
pressure drop along
calibrated tube using
phone a processing
device [18]

Vocal tract
analysis

Indirect
measure of
flowrate via
phone
microphone

Assess
common
spirometry
measures; PEF,
FEV1, FVC

Uses large training
cohort to map vocal tract
sounds to flow rate; not
robust to more severely
ill patients [33]

Vortex whistle Frequency
tracking of
whistle from
microphone

Can be used across a
range of lung functions,
including severely ill
[26]; can be employed
over telephony line [15]

Monitoring Through Daily Symptom Diaries

Daily symptom diaries have been used for patients suffering from a wide variety
of conditions. Traditionally, symptom diaries are paper sheets given to a patient
during a clinic visit. The patient is asked to enter data in the diary on a daily
basis with the intent of reviewing during a follow-up visit. These diaries consist of
questions pertaining to a specific disease or condition—the answers to which may
provide useful information about the patient’s treatment, symptoms, and quality-
of-life. As the mobile health industry has progressed, daily symptom diaries have
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evolved to take advantage of readily available technology such as text messaging
[52] and smartphone apps [9]. They have been used in studies of patients with upper
respiratory conditions, such as COPD [30] and asthma [25], with heart conditions
[49], as well as psoriasis [69], cancer [2, 22, 68], and cystic fibrosis [16].

Applications

The use of daily symptom diaries is associated with many significant positive
outcomes for both adults and children [61]. For example, data from symptom diaries
can be utilized to determine the effectiveness of treatment options [16] and for
effective symptom management [2]. Furthermore, compliance with symptom diaries
is associated with increased survival rates and quality-of-life [50]. Diaries help to
fill in the gaps that traditional testing misses. Data from spirometry measures, for
example, are not able to capture symptom severity or variability [35]. Furthermore,
diaries help to contextualize data gathered via traditional medical devices, providing
the patient’s perceptions alongside their data.

Asthma and COPD have been the center of several studies involving the efficacy
of daily symptom diaries. One such study conducted by Leidy et al. evaluated the
reliability of a daily symptom diary for use with COPD patients [35]. During the
study, many participants with “stable” COPD found significant symptom variability,
indicating further treatment management was necessary. Moreover, results of the
study indicate that “numerical scoring” from the tested diary was appropriate for
quantitative measures across patients (an important finding for using symptom
diaries in clinical trials).

Existing Research

The validity and reliability of symptom diaries and patient compliance have been
the focus of many studies. Several studies focused on evaluating symptom diaries in
the context of alternative methods such as Retrospective Questionnaires. Symptom
diaries have also been custom-tailored for use with monitoring and managing certain
conditions (i.e., Asthma Symptom Diaries). As the mobile health industry has
evolved, the development of electronic symptom diaries has spurred trials focused
on evaluating their validity and reliability. Moreover, studies have investigated how
utilizing native smartphone applications [9] and Short Messaging Service (SMS)
[52, 76] can augment traditional diaries.

Symptom Diaries and Retrospective Questionnaires

Traditional symptom diaries require patients to answer questions using pen and
paper. These face a number of issues affecting patient compliance and data
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reliability such as (1) forgetting to enter or intentionally disregarding data, (2)
omitting questions, (3) fabricating responses, (4) writing illegibly, and (5) losing
the diary altogether [25]. Furthermore, additional issues arise when considering
the data entry process in which a patient’s data is recorded, such as the potential
for transcription errors, difficulty with statistical analysis of the data, and the cost
associated with the data entry itself [25].

To evaluate reliability of symptom diaries, Juniper et al. [25] and Okupa
et al. [47] conducted studies comparing symptom diaries against Retrospective
Questionnaires in the context of asthma management. Retrospective Questionnaires
take place during a clinic visit and patients are asked to recall symptoms for a given
period of time. Given the nature of recall-based questions and the length of the recall
period (often 1–4 weeks) reliability varies [47]. Although the burdensome nature
of symptom diaries introduces several inherent issues, the two studies determined
that symptom diaries and retrospective questionnaires are both valid methods of
monitoring asthma [25, 47], but Okupa et al. determined that symptom diaries may
yield more precise data for managing treatment [47].

Asthma Symptom Diaries (ASD)

While the monitoring and management of asthma can benefit from data derived
from spirometry measures it is becoming more apparent that this data is not, on its
own, an adequate measure of asthma’s impact upon patient quality-of-life [57]. As
a result, several studies have focused on developing and evaluating symptom diaries
specifically for patients with asthma.

Globe et al. reviewed symptom diaries developed for use with asthma patients
[14]. While several diaries were effective for garnering additional information about
asthma sufferers, many required additional validity evaluations. Globe went on to
unify the content and structure of these diaries into what is known today as the
Asthma Symptom Diary (ASD). Globe also conducted studies to determine its
acceptability as an end-point for asthma clinical trials. The study, which included
adults and children who had an asthma diagnosis for at least 1 year, began with an
enrollment process in which each subject completed a version of the Asthma Control
Questionnaire (ACQ-7) and the Asthma Quality of Life Questionnaire (AQLQ).
Both tests focus on gathering information about the impact of asthma, specifically in
terms of items such as nighttime awakening, activity limitation, emotional function,
use of fast-acting inhalers, and spirometry measures [14].

The next phase of the study consisted of subjects participating in 60 min, semi-
structured concept elicitation interviews. During each private interview, subjects
were asked to describe their personal experience with asthma and how their
symptoms impacted them on a typical day. The results of these interviews were
used to identify the key components of the disease which affect overall patient
experience. With this qualitative data gathered, a panel of clinical experts in the
treatment of asthma, patient-reported outcome development experts, and members
of the sponsor’s team revised the previously developed ASD. The updated ASD
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consisted of two sections, morning and evening, having six items and five items
respectively. With FDA guidance, the end result of this study was a revised, 11-item
ASD which addresses the four most relevant symptoms for asthma patients—
shortness of breath, chest tightness, coughing, and wheezing [14].

Electronic Symptom Diaries

As access to electronic devices and smartphones has become more widespread,
electronic symptom diaries have been developed and studied for use with a wide
variety of conditions. Some of these studies have focused on the validity of
electronic symptom diaries in relation to their paper counterparts while others have
focused on the impact of electronic diaries upon overall compliance.

In a randomized crossover study conducted by Ireland et al., the reliability of
electronic symptom diaries was evaluated within a body of subjects diagnosed with
asthma [24]. Participants in both groups of the trial completed the asthma symptom
diary twice daily and either transitioned from a paper-and-pencil diary to an elec-
tronic diary, or vice versa. Over the course of the study, the electronic version of the
diary had adequate test-retest reliability as well as measurement equivalence with
the pencil-and-paper version. Furthermore, the test-retest reliability for Rescue-Free
Days (RFD) for the electronic version of the diary met or exceeded reproducibility
standards while the pencil-and-paper version did not, suggesting the electronic
version may be more reliable [24].

Electronic symptom diaries have also been studied in the context of smartphones.
One such study performed by Choe et al. evaluated the impact of a native
smartphone app upon compliance [9]. The study investigated diary adherence
by developing an Android widget to accompany the app itself. Applications for
Android devices can be developed to include “Widgets” which are essentially
application views that can be embedded within other components of the operating
system, including the lock screen and the home screen. The widget developed for
this study was designed to reduce user burden by allowing participants to provide
time-stamped, self-reflection feedback with just a single tap, such as logging when
the participant consumed a caffeinated drink. Furthermore, widgets also provide
users with shortcuts for accessing certain components of the application itself. For
example, users could quickly open the widget and navigate to the “Daily Sleep
Diary” with a single tap on a specific region of the widget. Throughout the 4-week
study, the participant group which utilized the widget had a 92% compliance rate
whereas compliance dropped to 73% without the widget [9].

As an alternative to more traditional electronic symptom diaries, which are
often web-based, Yun et al. utilized the Short Messaging Service (SMS) as a
method of educating and surveying children with asthma during periods between
physician visits [76]. The study focused on modifying Asthma Therapy Assessment
Questionnaire (ATAQ) questions in order to make them age-appropriate for children
and then dividing the study participants into three study groups. Children who
participated were placed in the “Query” group received fifteen yes/no questions
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Fig. 1 Example text
messages from Yun et al.
(Top: query-based message,
Center: knowledge-based
question, Bottom: response to
knowledge-based
question) [76]

regarding their asthma symptoms and management every other day. Children in the
“Query and Knowledge” group received fifteen questions each day which alternated
between the query questions and true/false educational questions. The true/false
questions were accompanied by responses indicating whether the submitted answer
was correct or incorrect. Finally, children in the control group received no SMS
questions at all. As evidenced by a response rate of 84% for a period of 3–4 months,
Yun et al. determined that SMS is a feasible method of obtaining symptom data
from patients and can be embedded into clinical practice [76] (Fig. 1).

In a study at Mount Sinai, Chan et al. used electronic symptom diaries in an
app powered by Apple’s ResearchKitTM to allow asthma sufferers to participate in
ongoing asthma research [8]. The app allows users to track symptoms, view trends,
and receive feedback on progress (Fig. 2). The app also provides reminders to take
prescribed medications. The focus of the study is to help patients reduce asthma-
related limitations and decrease distress through better symptom control, reduced
medical visits, and a generally improved quality-of-life [8].

Areas for Further Investigation

Over the last decade, dozens of studies have investigated the validity and reliability
of daily symptom diaries, evaluated their impact on specific conditions, and studied
their evolution from paper diaries to electronic instruments. Despite this vast amount
of research, there are still areas that are under explored.
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Fig. 2 Screen shots from the
Asthma Mobile Health study
being conducted by Chan et
al. at Mount Sinai [8]. (Left: a
dashboard highlighting GINA
evaluation results, Right: a
general dashboard indicating
how the user has performed
today)

One area for further investigation is the evaluation of an electronic symptom
diary in conjunction with daily, out-of-clinic patient testing. Many upper respiratory
conditions that benefit from spirometry measurement also benefit from daily
symptom diary data [35]. More studies are required to determine if symptom
diaries and spirometry measurements could dynamically interplay, providing richer
context and more actionable management information. Furthermore, clinicians and
researchers may benefit substantially from the ongoing pairing of spirometry data
and symptom data recorded across several weeks or months. For instance, symptom
diaries could be mined to ascertain when spirometry testing might be most useful.
Similarly, spirometry testing might help patients contextualize their perceptions of
symptom severity in survey responses.

Continuous Symptom Monitoring

Symptom monitoring for pulmonary ailments typically refers to the logging of
coughs and wheezes. Coughs and wheezes are the most common symptoms of
chronic respiratory conditions and have significant impact on a patient’s quality-
of-life [41, 60, 62, 66]. Logging the frequency of these symptoms can provide
valuable insights for disease management, but reliable collection is difficult. This
difficulty stems from discerning symptoms from other bodily functions (e.g., cough
versus throat-clearing) and is influenced by the ambient context of the sensing:
nocturnal versus ambulatory. Nocturnal collection of symptoms is easier to collect
than ambulatory collection because hardware can be less compact and there are
typically fewer noise sources to account for in a sleeping environment. This is
especially true for audio based data collection methods—noises in a bedroom are
far less diverse than noises encountered while a user is active during the day.
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However, nocturnal symptom monitoring and ambulatory monitoring provide
clinically distinct measures. While sleeping, coughing is mostly a reflex of the body.
In this way, symptom logging while a patient sleeps might be linked with perception
of sleep quality or related to sleep apnea [11]. On the other hand, coughing while
active is typically not based solely on reflex—tickles in the throat or perceptions
of breathing may prompt someone to cough or clear their throat more often.
Ambulatory monitoring, then, may be linked with perceptions of cough severity
or daytime triggers (like allergies) [23]. From this perspective, both nocturnal and
ambulatory monitoring should be collected as well as the context around ambulatory
activities (such as running, driving, walking, stationary) in order to help infer why
the coughing was triggered.

A Primer on Medical Practices for Symptom Assessment

Because wheezing is difficult to detect continuously, it is typically assessed from
breathing exercises. A patient sits in a quiet room and an audio recording of the
breathing is made. Severity of the wheeze is then assessed by a specialist that looks
at the amplitude and spectra of the wheeze and also listens to the recording. With
proper visualization, specialists can reach an agreement about the severity of the
wheeze [17, 36, 51, 70]. Some automatic measures of wheeze in nocturnal settings
have been attempted, but are not routine medical practices. As such, most automatic
wheeze measurement is in the form of “spot checks” that measure the number
of detected wheezes over a short duration of breathing (i.e., 30 s) [67]. Clinical
efficacy of this marker is still early on, but may provide usable information about
managing emergency visits or used to predict when a lung function test might be
appropriate [67].

In case of cough, the most common technique for estimating severity is to
have patients self-report using numeric (0–5) or visual scoring [53]. These self-
reported values are most often part of a symptom diary, quality-of-life questionnaire,
or illness control survey. However, the number of coughs a patient self-reports
is more related to their perception of severity than actual symptom occurrence
[11, 27, 45, 64]. Moreover, patients cannot accurately track trends in their cough
frequency from hour to hour or while sleeping. Therefore, a number of systems
have been created to quantify severity of cough automatically and objectively.

According to the European Respiratory Society [42], coughing can be quantified
in a number of different ways, but the most preferred method is to report the
frequency of explosive individual cough sounds (known as cough frequency).
Studies have shown that the number of coughs per hour can allow early detection
of respiratory exacerbation in patients with chronic respiratory diseases such as
asthma, cystic fibrosis, and chronic obstructive pulmonary disease. Early inter-
vention has been shown to decrease hospitalization rates and improve long-term
outcomes, including survival [41, 60, 62, 66]. While a number of research studies
have been carried out investigating objective measurement, they are not currently
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part of routine practice for assessing illness severity. The reasons for this are
straightforward: patient compliance is low and the technology costs prohibitively
high. In the remainder of this section, we enumerate the difficulties with symptom
data collection, introduce a number of existing technologies, and postulate future
research avenues. Ambient audio monitoring has become a popular means of
assessment because of its low cost and reliability, but early systems employed a
number of different sensing mechanisms that attach to the chest or throat. As such,
this section dichotomizes current methods into (1) early devices and (2) ambient
audio based systems.

Early Systems for Ambulatory Monitoring

There is a large body of work in automated symptom sensing. Dating back to the
1950s, researchers developed methods of measuring airflow from the mouth in order
to obtain unbiased measures of cough frequency [4]. This type of research has had
limited utility in medical practice as airflow during coughing fits has not shown any
consistent relationship for diagnostic or screening use. Instead, the detection and
counting of cough fits is of primary importance.

A number of different methods have been proposed that use wearable technology
to monitor the chest during a cough. For instance, Kraman et al. created an
accelerometer-based system that placed an accelerometer at the participant’s chest
wall [29]. Sensor traces were saved to a flash drive and researchers manually
counted coughs based on the visualization of the accelerometer data. However,
automated discovery methods were never investigated.

The VivoMetrics Lifeshirt [10] was a commercial product that incorporated
various physiological sensors to monitor breathing rate, heart rate, activity, posture,
and skin temperature. For cough sensing, the system used a combination of a throat
microphone and respiratory inductance plethysmograph (RIP). RIP is measured
using two inductive coils attached to the rib cage and abdomen. Changes in
inductance are proportional to expansion and contraction of the body. VivoMetrics
was able to combine the RIP and microphone sensors for cough detection by time
aligning the sensor streams and visualizing for human review. During ambulatory
conditions the reported true positive rate was about 80% and the false positive rate
was less than 1%. Methods for automatic detection are documented in the patent
[10] but were never evaluated. The company was, however, liquidated a few years
after the release of the LifeShirt.

Contact microphones also offer a compelling method for assessing cough sounds.
Contact microphones use piezoelectric sensors that adhere to the chest wall, neck, or
abdomen. VitaloJAK [39] is a commercial product that uses a piezoelectric sensor
attached to the chest wall to detect coughs. Barry et al. created a system called
the Hull Automated Cough Counter (HACC) [3], using a lapel microphone and
wearable recording device. The feature set used was motivated by speech recog-
nition; namely, mel-frequency and linear predictive cepstral coefficients (MFCCs
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and LPCCs) fed into a Neural Network classifier. They achieved about 80% true
positive rate and 4% false positive rate—however, the recorded audio was collected
in an outpatient clinic for one hour per person, which is a relatively controlled and
noise-reduced environment.

Why Use Ambient Audio Sensing?

The various sensing methods that can be used for cough detection prompted a
study by Drugman et al. to compare different sensing techniques [12]. In this work,
Drugman collected data in controlled environments, but added noise sources during
data collection and asked users to sit, walk, and climb a ladder while coughing.
They collected data using a number of different sensors including electrocardio-
grams, thermistors, piezoelectric chest belts, chest-worn accelerometers, contact
microphones, and ambient microphones. They used a number of different features
including spectral characteristics and moving windows of aggregated statistics from
the sensor streams. A neural network was then trained to identify cough sounds.
Their results clearly delineated ambient audio sensing and contact microphones
as superior methods, with nearly 20% higher sensitivity than the other sensors.
Ambient microphones slightly edged out the performance of contact microphones,
with sensitivity of about 95% and fewer false alarms. They conclude that ambient
audio sensing is more practical than contact microphones because it is less bulky
to wear and maintain. They also investigated hybrid sensing approaches, but none
clearly outperformed the ambient audio method.

In the same study, Drugman compared the performance of the different sensors
to a commercial product from iSonea (previously named KarmelSonix). The iSonea
system, named PulmoTrack-CC, uses ambient audio sensing combined with contact
microphones and a piezoelectric belt to count coughs, but had a far lower specificity
of about 65% (compared to 95% with Drugman’s method). Previous reports of the
iSonea system had sensitivities in the range of 91% [71]. This highlights the need
for more formalized evaluation of ambulatory monitoring—the location and other
noise sources can dramatically change the performance of the evaluated systems.

Drugman’s study highlights that ambient audio sensing might be the most
reliable method for sensing cough symptoms. Furthermore, dedicated wearable
sensors pose usability issues because they are bulky and require patients to actively
participate in maintaining them. Another advantage of ambient audio sensing is that
it can leverage existing sensors from a mobile phone, potentially reducing patient
costs and increasing usability.

Ambient Audio Techniques for Cough Detection

A number of different studies have investigated the use of mobile phone micro-
phones as cough sensors. We discuss several methods here, dichotomized by (1)
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frame-by-frame analyzers and (2) Markov chain based methods. Both methods use
windows over time series data to extract features for each frame. However, frame
methods classify fixed durations of audio as cough or non-cough and Markov chain
methods classify cough sounds using a sequence of dynamically sized frames.

Frame-by-Frame Analyzers

Larson et al. evaluated an audio system using in-the-wild recordings of users cough-
ing [34]. The recordings were made using microphones from smartphones placed
on a tether around user’s necks (practically, similar to how a lapel microphone
would be worn). Coughs were annotated manually by teams of reviewers. They
extracted spectral features such as the mean decibel energy of the entire spectrum,
the mean decibel energy of the spectrum above 16 kHz, and below 16 kHz. They
also employed principal component analysis of the magnitude spectrum from cough
sound spectra. Larson showed that these components may be used to reasonably
reconstruct the magnitude spectrum of a cough sound but are poor at reconstructing
spectra for other sounds, especially speech. An example spectrogram of cough audio
and various other ambient sounds is shown in Fig. 3.

For classification, incoming audio data was converted to a magnitude spectrum
and projected onto the principal components. Larson found that 10 components
for each 150 ms segment was sufficient for classification, greatly reducing the
computational requirements of the classification algorithm. They employed a two-
stage classification system: The first stage used a shallow decision tree (i.e., a
decision tree with only three nodes) and was effective at screening for cough sounds,
albeit with a high false positive rate. The second classification stage used random
forests to classify the frames as cough or non-cough. They reported good results
with high sensitivity (about 90%) and only a few false alarms per hour.
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Fig. 3 A spectrogram of ambient noises from a lapel microphone. The cough sound has distinct
spectral characteristics from the surrounding noises [34]
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Larson’s system also had the added benefit of compressing the audio spectrogram
of the coughs—the principal components of classified coughs can be transmitted
quickly and used to reconstruct the sound using only a fraction of the samples. They
tested this approach with subjective listeners and showed that coughs were rated as
having good fidelity, but other audio such as speech were unintelligible to listeners,
helping to preserve a patient’s audio privacy.

Drugman et al. [12] evaluated an audio-based system that recorded audio from
a lapel microphone as described previously. Drugman used a number of features of
the audio data including spectral and statistical aggregations of time series windows.
Spectrally, their method used a combination of mel-frequency cepstral coefficients
(MFCCs), bandpass filters magnitudes spaced linearly over the frequency spectra
and spaced using the Bark scale (used in MFCCs), and chroma features (widely
employed in music applications). Chroma features break up the frequency spectrum
in logarithmically increasing bandwidths that coincide with the twelve semitones
of the musical octave. There are few theoretical underpinnings for what the
most effective spectral characteristics should be for discerning cough sounds—
therefore a variety of aggregations were investigated. Statistics of the spectra were
also investigated such as spectral spread, centroid, variation and flux. Drugman
determined through feature selection algorithms that the most useful features for
classification were (1) the total loudness of the microphone, (2) the derivative of
total loudness, and (3) the derivative of the Bark scaled energy from 3.7 to 5 kHz.
The feature selection chosen by Drugman was based upon mutual information,
looking at the monotonicity between features.

These features are then fed into a three layer neural network. Drugman con-
catenated frames over contiguous periods of time to classify every 150 ms of data.
A median filter was then applied to the classifier output over time to smooth the
classifications and eliminate spuriously positive frames. The system requires no user
specific calibration (i.e., it is trained to work on a user’s audio data it has never seen)
and the results show good sensitivity and specificity near 95%.

Markov Chain Analyzers

Matos et al. created a system called the Leicester Cough Monitor (LCM) [38], which
uses a lapel microphone with a portable audio recorder. They used MFCCs (with
derivatives) as features to a Hidden-Markov Model (HMM). The HMMs required
audio calibration data from each participant. Matos collected data in ambulatory
settings. Their average true positive rate was high at 71% and a false alarm rate
of 13 cough events per hour. After applying an energy threshold to discard low
intensity coughs, the average true positive rate for LCM could be boosted to 82%
and false alarms reduced to 2.5 events per hour. However, the tradeoff was to discard
on average 29% (6–72%) of the cough events for each subject. The HMM approach
is very much inline with classical speech recognition techniques and therefore
developers can benefit from many of the standard toolkits available. In follow-up
studies, LCM has reported a true positive rate of 91% and false positive rate less
than 1% [5].
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Rhee et al. also employed the use of HMMs with standard speech recognition
tools [56]. Their system, coined the Automated Device for Asthma Monitor-
ing or ADAM, uses a variety of tools to monitor asthma symptoms including
questionnaires and sound monitoring from a smartphone. They use MFCCs and
average loudness, like Matos et al., but their evaluation includes more than just an
investigation into the algorithms. Rhee et al. evaluated the system while running
on a smartphone—that is, an online evaluation of the system running in real time.
With such an evaluation, implications on battery life and user reaction to wearing a
lapel microphone could be investigated. Rhee et al. found that users were open to
using the lapel microphone, but battery life was a significant drawback with only
a few hours of usability between charging. Rhee et al. report high sensitivity and
specificity in their trials, with about 70% sensitivity and a few false alarms per hour.

In subsequent studies Rhee et al. recruited a number of teens and young
adults to use the ADAM system and monitored cough counts along with a
variety of other data including accelerometer data, self-reported symptom sever-
ity, symptom diaries, and spirometry measures like FEV1 [55]. Their analyses
reveal some interesting correlations between cough frequency and poor spirom-
etry measures, as well as predicting the use of different health care services.
Higher activity from accelerometer data was also correlated with cough frequency.
Exit interviews with teens using the device (for a period of about a week)
revealed that the lapel microphone was an acceptable wearable and the general
attitude towards using a smartphone was positive. Although longer deployments
of the device are needed to assess long-term compliance, these findings are
encouraging.

Areas for Further Investigation

Difficulties with Data Collection

Methods for collecting symptom data in the literature are varied and there is no
standard. Perhaps the most realistic method is to collect data in actual conditions—
users are shown how to use the sensors and then asked to go back to their daily
routines. After use, equipment is collected from the user and a long annotation
process begins with multiple reviewers pouring over the data streams, annotating the
data with symptom labels. While cumbersome, this type of data collection ensures
that rich evaluation of an algorithm can take place with sensitivity and false alarms
per hour easily calculable. Even so, this process is extremely time consuming and
expensive. In many studies, the annotation process for 24 h of collected data might
take 3–5 days of annotation. As such, many studies opt to collect a small amount
of pilot data using this approach, but then abandon the annotation of the data for
larger groups. Data that is not manually annotated can be run through automated
systems and then the output of the system can be reviewed. This is a far more
scalable approach in terms of time and cost, where review of 24 h of recorded data
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takes 10–15 min. The relative ease in review comes at the expense of evaluation—
sensitivity cannot be measured but many evaluation criteria such as specificity and
false alarms can still be estimated from the system outputs.

Mixed Hardware and Algorithmic Designs

Despite the numerous research studies in the area, no technology has become
standard for automated symptom monitoring. Audio based methods that leverage
smartphones appear to be more practical for patients to use, but the processing
speed, battery life, and data storage are still unsolved problems. For example,
compressed audio for a typical day might take up a few gigabytes of storage on
a phone and decrease the battery life to 6 or 7 h.

As an alternative, it is also possible to process the incoming audio in real
time to save on storage and facilitate real time interventions of feedback. How-
ever, the processing will further reduce battery life. Future studies, then, could
leverage a combined software and hardware solution that can process audio in
near real time with sustained battery life. For instance, audio co-processors in
phones may provide a means of tracking audio using specially designed, low-
power signal processing hardware and heterogeneous computing. These systems
would be similar to the motion co-processors in modern smartphones that allow
continuous accelerometer and gyroscope monitoring for periods greater than 24 h.
To some degree, these audio coprocessors already exist: for instance, smartphones
that employ Qualcomm’s snapdragon chip have built-in natural language processing
and Apple’s M9 coprocessor has built-in low power audio listening capability.
Research studies have already begun to exploit them for “always-on” audio sensing
applications [32].

Hybrid methods may also play a potential role. For instance, smart watch
microphones might help to record and process symptom audio when the phone is put
away, potentially also adding arm motion towards mouth as a predictor of coughing.
Such hybrid systems would require an audio coprocessor in each device. Finally,
wheeze detection from ambient audio methods is significantly lacking behind cough
detection. Further research is required to determine if wheezes can reliably be
detected in ambulatory settings.

Mobile Spirometry

As described in section “Pulmonary Ailments Where Mobile Monitoring
May Be Beneficial”, lung ailments are diagnosed in a number of ways. Airway tests
are one of the most prolific diagnostic measures because of their ability to detect
airway obstruction severity and restriction. The most widely accepted objective
airway measurement is known as Spirometry. Spirometry involves analysis of flow
and volume of expelled air, usually through a patient exhaling into a device that



Pulmonary Monitoring Using Smartphones 255

Normal
Obstructive
Restrictive

F
lo

w

Volume

PEF

FVCFEV1

1 second

Fig. 4 Example flow/volume curves showing typical behavior of normal, obstructive, and restric-
tive subjects [33]

directly measures the airflow. Measurements provided by such sensing include peak
flow rate (PEF), total volume of air exhaled (FVC), total volume of air exhaled
within the first second (FEV1), and percentage of total volume exhaled within
the first second (sometimes abbreviated as FEV1% or FEV1/FVC). As part of
the diagnostic process these measures are compared against predicted norms for
patients on the basis of age, height, and gender. Measures that deviate from the
norms typically reflect an obstructive or restrictive pulmonary disease [40]. For
obstructive diseases, the magnitude of the deviation from normal can help diagnose
severity.

In addition to comparing predicted norms, spirometers also generate flow vs.
volume and volume vs. time plots. Health care professionals visually inspect the
shape and curvature of these graphs for evaluating validity of the spirometry efforts
as well making a diagnosis. For example, Fig. 4 shows different flow vs. volume
curves for different patients. For a healthy individual, once the air flowrate reaches
its maximum (i.e., peak flow or PEF), the flow starts decreasing linearly in relation
to volume. When the flowrate is plotted against cumulative volume this results in an
almost straight descending limb. In contrast, when the airflow is obstructed, the
flowrate decreases more rapidly after reaching peak flow. Therefore, it attains a
curved or “scooped” slope. This is because the smaller airways become obstructed
and cannot sustain their maximum flowrate. For an individual suffering from a
restrictive lung disease, such as cystic fibrosis, the entire curve is smaller than
predicted norms.

Spirometry is more than just a diagnostic tool—measurement of spirometry
at home allows patients and physicians to regularly monitor trends and changes
in lung function. Regular spirometry testing can result in earlier treatment of
exacerbations, more rapid recovery, reduced health care costs, and improved quality-
of-life [28, 41, 62, 63]. However, traditional spirometers are notoriously expensive,
require calibration, and may not be approved for use outside of a clinical setting.
As such, spirometry solutions that use the computing power of smartphones have
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grown in popularity. This section explores three methods for leveraging the power
of a smartphone, categorized by the sensing method: direct sensing, indirect sensing,
and hybrid sensing.

Direct Sensing

Direct sensing techniques rely on directly sensing the primary physical phenomena:
airflow. Traditional spirometers operate by directly estimating the amount of flow
exiting a user’s mouth, such as with a mouth piece that directs all flow into a
chamber or tube for sensing. Direct sensing approaches employ various methods
including mechanical turbines and using ultrasonic waves to estimate airflow.
Mobile spirometers also use these direct sensing techniques. One such mobile
device, called MobiSpiro [59] directs the exhaled air past a hot film anemometer,
cooling the hot film according to the fundamental thermodynamic properties of
air, allowing for an accurate estimate of flow rate. Once the flow is measured
over short time intervals, all other measures (e.g., volume) can be calculated and
a full diagnostic report can be generated. While this approach is accurate, low-cost
implementations are limited by the cost of the sensors, manufacturing, and quality
control. Furthermore, anemometers require repeated calibration, limiting their long
term reliability in a patient’s home.

Differential pressure-based methods that leverage a smartphone have also started
to gain popularity. Researchers at Rice University created such a device, called
mobileSpiro [18, 46]. Carspecken et al. created a similar device called TeleSpiro
[7]. These devices measure the pressure drop across a tube of known dimensions.
The difference in pressure is monotonically related to the flowrate. The cost of
manufacturing these types of devices in bulk is estimated to be less than $20 USD.
To reach such a low cost-point, the sensor outputs are directed through low-cost
microcontrollers and sent over USB to a smartphone or tablet. The phone then
interprets and conditions the signal before calculating measures from the sampled
flowrate. While more research is required to determine long-term reliability and
calibration requirements, these designs could be low-cost sensing solutions for many
pulmonary sufferers. Even so, because the devices must be tethered to the phone
(and must be carried with a cable), their usability and long term patient compliance
may be decreased.

Other devices such as the EasyOne mobile spirometer and Cohero Health
wireless spirometer guide the user’s exhalation through a tube with ultrasonic trans-
ducers positioned on either side of the tube [73]. Ultrasonic waves are transmitted
through the turbulent flow of the user’s exhalation, disrupting the generated acoustic
signal before it reaches the receiving transducer. Analysis of the received waveform
yields flow rate with a high accuracy due to the highly controlled environment
through which the user’s airflow can travel. While these devices can be integrated
with smartphones, they employ custom hardware for analysis and therefore are more
costly compared to other designs.
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Indirect Sensing

Indirect sensing techniques rely on side effects of the primary physical phenomenon,
such as the reverberant sound created by the vocal tract as a patient forcibly expels
air during a spirometry effort. This sound is created by the turbulent flow of air
as the patient’s lungs force air through the various resonating cavities that make
up the vocal tract. Larson and Goel et al. [15, 33] developed a system to estimate
the flow exiting a patient’s mouth using the microphone on a smartphone and later
adapted the algorithm to function through the GSM network (i.e., during a phone
call), requiring no custom hardware or software for the patient.

The authors used three signal processing techniques for flow rate estimation.
The first technique uses spectral analysis, finding features in the frequency domain
corresponding to resonances in the patient’s vocal tract. These resonances change
as the vocal tract flexes in response to flow rate through it. The second method
uses temporal envelope analysis. That is, measuring localized energy in the audio
signal. The final method is linear predictive coding, which models the vocal tract as
a filter excited by a white noise source. By estimating the energy in the white noise
source over time, they could estimate the magnitude of airflow from the lungs. All
energy estimates must account for energy lost through dispersion (parameterized
by the distance between microphone and mouth and the diameter of the patient’s
head). Without accounting for dispersion losses, changes in distance between the
microphone and mouth can have drastic effects on the aforementioned features. The
author’s reported accuracy based upon 50 patients, was within 5% of a traditional
spirometer. The authors report that this value is within the normal range for
comparing spirometers, but warn that there are some worrying outliers in the data.

These indirect sensing methods often have a strong machine learning component,
requiring large datasets to build a reliable mapping between the captured features
and the desired diagnostic information. As new phones are created, this mapping
becomes more complicated and must account for differences in sensors, microphone
placement, and firmware. Performing clinical trials and comparing against ground
truth spirometry is therefore an integral part of developing these techniques, as it
is otherwise impossible to build a perfect model of the air escaping from the user’s
vocal tract through purely indirect sensing. Utilizing secondary physical phenomena
to perform airway sensing yields an inherent dichotomy; sensing phenomena such
as the sound of turbulent air escaping the user’s throat is cheaper to sense, but
also requires extensive signal processing and machine learning efforts to generate a
useful end result.

Hybrid Sensing

Hybrid sensing techniques find a middle ground between directly capturing exhaled
air and inferring flow from the vocal tract. In hybrid approaches, a custom transducer
is used as a mouthpiece to alter the sound of the flow as it escapes the mouth. An
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important example transducer is the vortex whistle first introduced by Vonnegut
in 1954 [72]. The vortex whistle (shown in Fig. 5) resonates at a frequency that
is directly proportional to the input air flow rate, thereby transforming the indirect
sensing problem into a frequency tracking problem—which is well-understood in
the digital signal processing literature. In 1999, Sato et al. [21] performed pilot
experiments using the vortex whistle for spirometry measurements. By tracking
the frequency over time and applying a simple regression, the flow rate over time
was determined. A similar study was performed by Brimer et al. using a slightly
different vortex whistle design [6]. However, no formal evaluation of performance
was published.

Goel et al. combined frequency tracking with certain problem-specific con-
straints (such as the fact that flow rate will rise to a peak value, and then fall
monotonically) to create a simple yet robust flowrate estimate using a mobile
phone microphone [15]. Goel et al. performed a study of the system with 50
participants resulting in an error rate of less than 8% for the FEV1% measure when
compared with a ground-truth spirometer (the authors note that when comparing
two ground-truth spirometers, disagreement between the two averaged at 5%). This
hybrid sensing modality has a number of trade-offs with direct and indirect sensing
approaches. First, it eliminates the need to analyze secondary physical phenomena,
thus reducing the complexity of the signal processing and machine learning effort.
However, this advantage is at the cost of needing a physical whistle. In contrast
to direct sensing approaches, the whistle has no moving parts or electronics,
meaning manufacturing costs are extremely low. Companies have already started
to manufacture ultra-low cost injection-molded vortex whistles, such as the design
by DigiDoc Technologies shown in Fig. 5.

Kaiser et al. [26] went on to show that personalizing the whistle to different
individuals allows the whistle to function over a range of healthy and severely
ill individuals. Moreover, personalization increases the accuracy of common lung
function measures using vortex whistles to below 5% error for the majority of
individuals. It was also shown that the addition of a side whistle that was sensitive
to low flowrates could significantly increase the accuracy of volume measurements
like FVC.

R
CC

R
DST

R
IT

L
IT

L
CC

L
DST

Inlet

Cylindrical
Cavity

Downstream
Tube

Fig. 5 Left; The vortex whistle directs incoming air flow into vortex within a resonating chamber,
creating a frequency proportional to the amount of incoming flow. Center; Sato’s [21] design has
many parameters that alter the performance of the whistle. Right; DigiDoc Technologies whistle
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Areas for Further Research

One of the main challenges in performing accurate spirometry is coaching a patient
to exhale properly over repeated tests. A valid spirometry effort requires consider-
able concentration and effort—failing to exert oneself can result in erroneous results.
This problem is currently mitigated by physical presence—trained health care
professionals coach patients through each effort. However, for a mobile application,
future research needs to determine proper coaching methodologies when a patient
is unsupervised.

Indirect and hybrid sensing approaches face many challenges from the nature of
their sensing approach. Analyzing the sound of an exhalation or a whistle requires
that the signal be reliably received, which depends largely on the environment
around the user. Additionally, patient pose and hardware variations between mobile
devices can cause variance in received signals. Therefore, direct sensing approaches
like mouthpieces or other custom hardware that isolate exhalation gain an inherent
advantage in uncontrollable environments. However, for patients where the cost or
inconvenience of custom hardware reduces access or compliance, steps must be
taken to ensure that the environmental factors do not decrease the signal-to-noise
ratio necessary for an indirect or hybrid system to function.

Conclusion

From a global perspective, respiratory diseases contribute to a staggering number of
fatalities each year, possibly due to the diagnosis process and difficulties associated
with managing diseases. There is no standardized method of obtaining information
about general lung health, each disease or illness has its own accepted means
of measuring wellness. The development and evolution of digital methods of
pulmonary monitoring present new opportunities for presenting clinicians with
otherwise unobtainable or unreliable data.

Studies involving daily symptom diaries have shown there is significant potential
for self-reported symptom data to have a serious impact upon the monitoring and
management of upper respiratory conditions and diseases. The use of electronic
symptom diaries through digital mediums such as native smartphone apps and
SMS have also shown improved compliance over traditional daily symptom diaries.
Although the potential for benefit is high, more research most be done to investigate
the implications of their use within new digital devices and mediums. With the
evolution of electronic symptom diaries comes promising research of how data from
these diaries could be paired with at-home testing performed by patients to further
impact disease monitoring and management.

Smartphones are also being increasingly used to as a method of detecting
symptoms. In the future, these solutions will begin to exploit always-on audio
capabilities of smartphones to track trends. The most exciting part of this analysis is
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the potential to gather context information from the smartphone which could be used
to help identify symptom triggers or effective management —pairing symptom data
with activity, location, and previous history may be the key to having personalized
medicine without requiring extensive data analysis or over-utilizing self-reported
data.

As the capabilities of smartphones have improved, spirometry research has
quickly taken advantage of these changes. Traditional spirometers are typically only
utilized in a clinical setting due to their high cost, the challenges of patient coaching,
and required calibration. Indirect sensing methods have been evaluated as a potential
low-cost method of gathering reliable spirometry measures, however, this approach
requires an extensive machine learning component. Mobile spirometry still faces the
challenge of appropriately coaching patients through the measure, however, native
smartphone applications may yield reliable methods of coaching patients at home.

Pulmonary monitoring using smartphones has already made a significant impact
to respiratory research and many of the discoveries are already being utilized
to increase the quality-of-life of those suffering from respiratory diseases. As
researchers continue to investigate new avenues of improving data retrieval and
patient compliance, mobile devices promise to further shape the future of pulmonary
health.
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Wearable Sensing of Left Ventricular Function

Omer T. Inan

Abstract Cardiovascular diseases (CVDs) cause nearly one third of all deaths
worldwide, and are projected to afflict 40% of all Americans by the year 2030.
According to the World Health Organization, CVDs can be prevented by early
detection and management of risk factors—and consequent changes in behavior
such as reducing tobacco use, increasing physical activity, and improving diet.
Many CVDs are fundamentally associated with a weakening or damaged left
ventricle (LV). Recent advances in wearable hemodynamics and cardiac timing
measurement technologies present an exciting opportunity to achieve early detection
and continuous monitoring of changes in LV function, and to then potentially
affect behavior to reduce CVD prevalence. This chapter will (1) provide a brief
introduction to LV physiology, (2) a description of key parameters such as stroke
volume, cardiac output, and arterial blood pressure that capture LV function, (3)
an introduction to heart failure as a key example of LV pathophysiology, (4) a
discussion of wearable technologies for continuous and ubiquitous sensing of LV
parameters using mHealth approaches, and (5) future directions and trends.

Introduction and Motivation

The combination of a rapidly growing population of older Americans [1], increasing
prevalence of cardiovascular risk factors such as obesity [2, 3], an upcoming
shortage of physicians [4], and rising healthcare costs has led scientists, engineers,
physicians, and policymakers to aim for a new paradigm in cardiovascular medicine:
proactive, wellness-centered healthcare [5–7]. Currently, approaches are reactive,
and disease-centric, with patients presenting at the emergency room or hospital with
symptoms, and expensive procedures being used to perform triage and treatment. In
contrast, researchers and physicians alike envision a new system that is proactive,
with patients taking a greater role in their care, treatments being tuned based on
patients’ changing physiology and symptoms continuously/periodically at home,
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and the need for emergency room visits and hospitalizations being greatly reduced.
The proactive approach has the potential to improve the quality of care and life
for patients with chronic cardiovascular diseases and the elderly population in
particular, while also decreasing overall healthcare costs.

Such proactive approaches can leverage the recent advances in miniaturized
sensors, embedded computing, wireless connectivity and data analytics. Specif-
ically, non-invasive and/or unobtrusive sensing systems used by patients in the
home can provide continuous information regarding the underlying physiology, and
potentially be used widely due to their low cost and ease of use. Recent review
articles by Zheng et al. and Ha et al. describe some of the latest advances technolog-
ically in the areas of unobtrusive sensing using wearable devices, and circuits and
electrode interfaces for noninvasive physiological monitoring, respectively [8, 9].
As described in these review articles, significant progress has been made in terms
of sensor miniaturization and enabling noninvasive sensing of health parameters
using wearable and/or unobtrusive systems. Some of this work is very relevant
to cardiovascular monitoring in particular, which is a major societal need due to
the large percentage of Americans with cardiovascular disease. However, one area
of noninvasive cardiovascular sensing that has not been addressed as strongly is
with regards to the mechanical aspects of cardiovascular function and, in particular,
sensing the health of the left ventricle (LV).

The responsibility of the LV is to pump oxygenated blood from the heart
to the body through the systemic circulation [10]. Thus, the LV facilitates the
delivery of oxygen and nutrients to—and the removal of carbon dioxide and waste
from—nearly all organs and tissues in the body, as required to sustain life. This
chapter provides a brief introduction to LV physiology (Section “Brief Introduction
to LV Physiology: Detailed Description of a Cardiac Cycle”), a description of
key parameters that capture LV function (Section “Key Health Parameters Cap-
turing LV Function”), an introduction to heart failure as a key example of LV
pathophysiology (Section “Heart Failure as an Example of a Disorder Associated
with Severe LV Dysfunction”), discussion of wearable technologies for continuous
and ubiquitous sensing of LV parameters using mHealth approaches (Section
“Wearable Technologies for Ubiquitous Sensing of LV Health Parameters”), and
future directions and trends (Section “Technical Challenges and Future Directions”).
The physiological and pathophysiological underpinnings of parameters that can,
and should, be sensed by mHealth systems in Sections “Brief Introduction to LV
Physiology: Detailed Description of a Cardiac Cycle,” “Key Health Parameters
Capturing LV Function,” and “Heart Failure as an Example of a Disorder Associated
with Severe LV Dysfunction” will serve as a foundation for the discussion of
system design architecture and considerations in Sections “Wearable Technologies
for Ubiquitous Sensing of LV Health Parameters” and “Technical Challenges and
Future Directions.” Table 1 provides a list of acronyms used in this chapter, and
their corresponding definitions.
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Table 1 Table of
acronyms/symbols used in the
text and their associated
definitions

Acronym/symbol Definition

ABP Arterial blood pressure
BCG Ballistocardiogram
BP Blood pressure
CO Cardiac output
CP Cardiopulmonary
CPX Cardiopulmonary stress test
ECG Electrocardiogram
FDA Food and drug administration
HF Heart failure
ICG Impedance cardiogram
LA Left atrium
LV Left ventricle
LVET Left ventricular ejection time
PA Pulmonary artery
PAT Pulse arrival time
PCG Phonocardiogram
PEP Pre-ejection period
PTT Pulse transit time
SCG Seismocardiogram
SV Stroke volume

Brief Introduction to LV Physiology: Detailed Description
of a Cardiac Cycle

The cardiac cycle is composed of two main components: diastole (filling) and
systole (ejection). Figure 1 illustrates the relative timing of various phenomena
at play during each cycle, including the electrocardiogram (ECG), valve sounds,
LV and aortic pressure curves, and the LV volume waveform. The time intervals
associated with these events composing the cardiac cycle can provide key informa-
tion regarding the overall health of the heart, and can potentially be measured and
quantified using inexpensive and wearable devices. During diastole, the LV pressure
is lower than left atrial (LA) pressure, and thus the mitral valve separating these
two chambers remains open; LV pressure is also lower than aortic pressure, and
thus the aortic valve remains closed. With the LV pressure being lower than LA
pressure (and thus also lower than central venous pressure), the LV fills mainly
passively during diastole until the sinoatrial (pacemaker) node of the heart located
in the atrium depolarizes and leads to atrial contraction. Note that this atrial
contraction is responsible for only approximately the last third of the volume of
blood filling the LV, while the passive filling corresponds to the remaining two
thirds. Simultaneously with the mechanical contraction of the atria, the electrical
depolarization wave travels through the atrio-ventricular node of the heart, from
which the wave propagates rapidly through the ventricular muscle using dedicated
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Fig. 1 From [11]. Diagram
illustrating the relative timing
of the ballistocardiogram,
phonocardiogram, and
impedance cardiogram
signals with respect to other
more well-known cardiac
signals. The pre-ejection
period is the isovolumetric
contraction time of the heart,
or the delay from the start of
ventricular depolarization to
the outflow of blood from the
ventricles. Stroke volume can
be seen in the left ventricular
volume curve as the minimum
volume subtracted from the
maximum volume value
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internal wiring structures in the heart. The heart muscles in the ventricles then
begin to contract efficiently and concurrently, marking the start of systole. As the
LV muscle contracts, LV pressure increases above LA pressure (but not yet above
aortic pressure) and the mitral valve closes, thus allowing the LV pressure to build
up further against two closed valves. This component of systole is referred to as
the pre-ejection period (PEP), since LV volume remains constant while LV pressure
increases. Specifically, PEP is defined as the interval between the Q-wave of the
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ECG and the opening of the aortic valve, and is a surrogate measure of cardiac
contractility [12–14]. As soon as LV pressure rises above aortic pressure, the aortic
valve opens and blood begins to eject from the LV into the aorta, marking the
beginning of the component of systole referred to as systolic ejection. The LV
continues to eject blood into the aorta until its pressure drops below aortic pressure
(but not yet below LA pressure), at which point the aortic valve closes and the LV
cardiomyocytes relax. This component of diastole is referred to as the isovolumetric
relaxation time, since the LV volume remains constant while LV pressure decreases.
As soon as LV pressure decreases below LA pressure, the mitral valve opens and
blood begins to passively fill into the LV from the LA and the pulmonary vein,
marking the beginning of the component of diastole referred to as diastolic filling.
Figure 2 illustrates the four chambers of the heart, the valves, the aorta and the
pulmonary artery during these phases of diastole and systole.

Key Health Parameters Capturing LV Function

This chapter will focus on three key health parameters associated with LV function:
cardiac output, arterial blood pressure, and cardiac contractility. These parameters
are by no means comprehensive in terms of assessing LV health; they are,
however, often at the core of diagnosing or assessing diseases and disorders of the
cardiovascular system. Cardiac output (CO) is the average volumetric flow rate of
blood in the arteries and veins, and is typically expressed in units of L/min. CO is
defined as the product of stroke volume (SV)—the volume of blood ejected by the
heart during one cardiac cycle, in mL—and heart rate (HR). For healthy adults at
rest, CO is typically in the range of 3–5 L/min, and can elevate by 3–4� during
exercise [15]. Arterial blood pressure (ABP) represents the pressure experienced by
the arterial walls due to the blood, and is typically expressed in units of mmHg. The
values for ABP vary greatly for healthy adults, depending on the artery in which
the measurement is made, and usually are given as two values: one for systole and
one for diastole. For aortic BP, normal systolic values are typically in the range
of 90–120 mmHg for healthy adults, and corresponding diastolic values in the
range of 50–80 mmHg; during exercise, these values can increase by approximately
2�. Cardiac contractility represents the inherent capability of the heart muscles to
contract, independent of all other factors such as preload, afterload, and HR [16].
There is no unit for contractility per se, as it is typically inferred based on surrogate
measures such as the maximum time derivative of LV pressure (dP/dtmax) increase
during PEP, or the inverse of the duration of PEP. During exercise, contractility
will elevate to allow the heart to meet the increased demand of the body for blood
flow, leading to increased dP/dtmax and thus shortened PEP. For patients who have
experienced a heart attack, the overall strength of the heart muscle decreases due to
the presence of dead tissue, and thus contractility is decreased compared to a normal
heart.
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Fig. 2 Illustration of the heart in the four phases of the cardiac cycle. The four chambers of the
heart are shown—the left and right atria (LA and RA) and ventricles (LV and RV)—in addition
to the two arteries allowing blood to flow out from the ventricles—the pulmonary artery and the
aorta. The valves separating the atria and ventricles (mitral and tricuspid valves on the left and
right side, respectively) as well as the valves separating the ventricles and main arteries (aortic and
pulmonary valves for the left and right, respectively) are also shown. The top two phases (1 and
2) correspond to diastole, and include isovolumetric relaxation (where all valves are closed, and
the ventricular pressures are decreasing as indicated) and diastolic filling; the bottom two (3 and
4) correspond to systole, and include the pre-ejection period (where all valves are closed, but the
ventricular pressures are increasing as indicated) and systolic ejection. Blood only flows in and out
of the heart during phases 2 and 4
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Heart Failure as an Example of a Disorder Associated
with Severe LV Dysfunction

In heart failure (HF), the heart cannot pump a sufficient amount of blood to meet the
demands of the organs and tissues (i.e., low CO). The heart muscle has weakened,
and typically stiffened, and thus cardiac contractility is depressed (i.e., typically
long PEP). There are nearly 6 million Americans with HF, 300,000 lives lost
each year, $30 billion spent each year on the disorder, and a less than 2-year life
expectancy for a patient following initial diagnosis [17]. Moreover, the quality of
life for HF patients is unfortunately very poor, as 1–2 week hospitalizations every
several months are common. The number of hospitalizations associated with HF
have increased by 155% over the past 20 years, and represent 70% of the total
costs associated with the care [18]. Beyond initial diagnosis and treatment, these
hospitalizations include multiple readmissions, with the readmission rates following
discharge for HF being 25% within 30 days, and 45% with 6 months [19–21]. This
rapid time to readmission has necessitated the development of home monitoring
solutions, ranging from periodic phone calls from a nurse [22] to implantable
hemodynamic monitoring devices [6]. Unfortunately, over the past decade, the
30-day readmission rate has still remained constant at 25%, with improvements
being shown in only a limited number of studies. One device that has recently
obtained regulatory approval for use in HF patients is the CardioMEMS implantable
hemodynamic monitor (acquired by St. Jude’s Medical), which, when implanted in
the patient’s pulmonary artery (PA), senses PA pressure as an index of volume status
and thus allows titration of care based on changes in the patient’s condition [23]. The
main objective in personalized titration of care based on PA pressure measurements
is to prevent HF exacerbations, thus keeping the patient home rather than in the
hospital with better care and quality of life.

Predicting and preventing an HF exacerbation fundamentally requires the
accurate measurement of CO, and/or the components CO is derived from. The
implantable devices such as the CardioMEMS sensor approved by FDA and
currently in use clinically—that have been shown to predict and prevent HF
exacerbations—focus on the estimation of filling pressures in particular (i.e., PA
pressure), as the measurement of CO itself is not currently possible with any home
monitoring device for HF. In addition to the measurement of CO, assessing the
intrinsic contractile properties of the heart muscle would also be of benefit, as
insufficient CO results from insufficient SV, primarily driven by a combination of
sub-optimal preload and contractility. Wearable or unobtrusive sensing systems that
can also accurately assess LV function can potentially complement implantable
hemodynamic monitors, providing a non-invasive and inexpensive alternative for
managing the care of a larger number of HF patients at home. Nevertheless, it
should be noted that monitoring LV function accurately is only one aspect that
must be accomplished to reduce HF related rehospitalizations; novel algorithms for
predicting exacerbation risk from a combination of sensor data, symptomatology,
and clinical information would also be needed.
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Wearable Technologies for Ubiquitous Sensing of LV Health
Parameters

Much of the work that has translated from the research to the clinical/consumer
domain in the area of cardiovascular monitoring has focused on electrophysiology
and, specifically, the ECG signal. The ECG is a measurement of the electrical
activity of the heart, and is typically detected using electrodes on the surface of the
skin connected to an instrumentation amplifier front-end; this front-end amplifies
the small (milli-Volt level) surface potentials associated with the depolarization
and repolarization of the heart muscle cells generating a familiar waveform pattern
as shown in Fig. 1. Measurements can be obtained with adhesive-backed gel
electrodes, polymer-based “dry” electrodes, or even electrodes woven into textile
[24]. ECG signals are analyzed with regards to the following five aspects: rate,
rhythm, axis, hypertrophy, and infarction [25]. While these five areas are of great
value in diagnosing or monitoring rate or rhythm disturbances (arrhythmias),
identifying an enlarged heart muscle (hypertrophy), and detecting dead or damaged
tissue (infarct) in the heart associated with a prior heart attack, the information that
can be gained regarding LV function in an ECG is somewhat limited. Specifically,
ECG signals alone cannot provide information regarding the three above-mentioned
parameters of CO, ABP, and cardiac contractility, and thus have not been shown to
reduce hospitalizations or provide direct value in the monitoring of HF patients,
for example. With the goal of addressing this limitation, researchers have studied
several other wearable sensing modalities for directly assessing LV function.
The most commonly used methods in the research domain include impedance
cardiography (ICG), phonocardiography (PCG), seismocardiography (SCG), and
ballistocardiography (BCG). These signal modalities are discussed below in detail
and contrasted. Typical sensor options and placements for these modalities are
depicted in Fig. 3.

ICG: As electrical current passes through biological tissue, the degree to which
its flow is impeded can be quantified based on the voltage dropped across the
medium [26]. Since blood is more conductive than bone, muscle, and fat, the
changes in blood volume contained in a particular volume of tissue can greatly
impact the overall electrical impedance of the tissue, as the blood volume creates a
low impedance parallel path for current flow that dominates the overall calculation
of tissue impedance. ICG is a measurement that exploits this property to provide
indirect measurements of blood volume (and flow) in the body, and in particular
in the thorax [27]. Four to eight electrodes are placed at the neck and chest, and
a small, safe, electrical current is passed through the thorax while the resultant
voltage drop is measured; the impedance as a function of time is defined as the
ratio of voltage drop to current (i.e., Z(t) D V(t)/I(t)). The ICG signal, itself, is
the time derivative of the impedance measurement taken across the thorax (dZ/dt),
and characteristic points on the waveform have been correlated in time to particular
events within the cardiac cycle (see Fig. 4). The B-point, for example, represents
the opening of the aortic valve [29, 30]. Multiple researchers over the past several
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Fig. 3 Sensor type and typical placement options for wearable left ventricular function sensing.
The typical labeling conventions for the inertial measurements (i.e., ballistocardiogram and
seismocardiogram signals) is shown in the upper left

decades have developed equations, based on modeling the thoracic cavity using a
parallel column, for estimating blood flow velocity—and thereby CO—from ICG
signals [27, 31]. One commonly-used formula for computing SV (and thereby CO,
since COD SV � HR) is the Kubicek equation:

SV D �b

�
L

Z0

�2
.LVET/

dZ

dtmax
(1)

where �b is the resistivity of blood, L is the length of the thoracic volume (from the
electrodes on the neck to the electrodes at the chest, as shown in Fig. 3), Z0 is the
baseline (average) impedance of the thoracic cavity, LVET is the left ventricular
ejection time, and dZ/dtmax is the maximum value of the time derivative of the
chest impedance as a function of time. With this equation, and other variants,
multiple researchers have demonstrated high correlation and agreement between
ICG and echocardiogram [32, 33], Fick’s method/thermodilution (catheter based)
[34, 35], and gas rebreathing [36, 37] methods as the gold standard. However, some
studies have also reported weak correlation between ICG and such gold standard
measurements for CO estimation [38, 39], and thus the reliability of ICG-based CO
estimation is not widely accepted in the clinical community. One possible source of
error is in the placement accuracy of the electrodes on the neck and chest, which can
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Fig. 4 Adapted from [28]. Diagram of the impedance cardiogram (ICG) signal’s characteristic
points shown below an electrocardiogram (ECG) waveform. The B-point corresponds to the
opening of the aortic valve, and thus the interval from the ECG Q-point to the ICG B-point is
the pre-ejection period (PEP). The X-point of ICG corresponds to the closure of the aortic valve,
and thus the left ventricular ejection time (LVET) is measured from the B- to the X-point of the
ICG. The calculation of SV from the ICG waveform is typically performed using these timing
intervals together with the maximum derivative of the impedance, and thus the maximum value of
the ICG waveform (dZ/dtmax)

greatly impact the quality of the CO estimation. Another is that ICG measurements
for persons of high bodyweight are typically inaccurate. Finally, it should be noted
that high quality ICG measurement requires the use of gel electrodes with low skin-
electrode interface impedance, and thus the measurement may not be convenient for
the user. Specifically, as compared to the ECG signal where all three electrodes can
be located close to each other and thus be connected directly to the hardware without
wires (such as on a small chest-worn patch [40]), the electrodes for ICG must be
placed on the neck and thorax and thus require wires to the wearable instrumentation
hardware.

PCG: The closures of the heart valves produce acoustic events that can be
detected at the surface of the skin using microphones; the signal representing these
sounds as a function of time is called the PCG [41, 42]. Physicians have used
stethoscopes to measure such valve sounds for more than a century and, in the
past decades, digital stethoscopes have been developed to capture these sounds,
amplify them, and store them digitally (as PCG signals) for subsequent analysis.
Wearable systems have also been developed for PCG measurement [43, 44], but
the selection and packaging of the sensor is sometimes misunderstood and signal
quality is thus compromised. Between biological tissue and air, there are several
orders of magnitude of difference in acoustical impedance, and thus most (>95%)
of the acoustical energy generated inside the body (i.e., from the valve closures)
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is reflected at the interface between the body and air; accordingly, a standard
electret type microphone—which measures pressure changes in air—placed on
the chest will result in poor quality recordings. Instead, PCG signals should be
measured by contact microphones, such as piezoelectric film sensors or wideband
accelerometers. Though the PCG signal is a measurement of mechanical origin, its
utility in terms of CO, ABP, or cardiac contractility assessment is limited. PCG has
no known relationship to CO or ABP, since it simply provides a measure of the
sounds produced by valve closure. Additionally, since the first complex (S1) of the
PCG represents the closure of the atrio-ventricular valves, not the opening of the
aortic valve which marks the beginning of systolic ejection, PCG cannot provide
an indication of PEP towards assessing cardiac contractility. Importantly, while
outside the scope of this chapter, PCG signals can provide information regarding the
presence of other mechanical defects which influence CO, ABP, and contractility,
such as valve regurgitation or stenosis [45–47].

SCG/BCG: The SCG signal is a measure of the local chest wall vibrations
associated with the heartbeat [48]. As with the PCG, SCG is typically measured
by an accelerometer placed on the sternum; however, its frequency components
are infrasonic (sub-audible, <20 Hz), and thus the signal origin is not related to
valve closures but rather internal movements of the heart and blood registering as
vibrations of the chest. Accordingly, the SCG signal has distinct features coinciding
with the opening of the aortic valve, as shown in Fig. 5 [49]. The SCG is frequently
confused in the literature with the related BCG signal, which is also a measurement
of body vibrations in response to the heartbeat, but at the whole body level as
compared to chest wall vibrations [49], as shown in Fig. 5. Notethat the BCG signal
shown in this figure is measured using a weighing scale rather than a wearable
accelerometer, and thus the units are in N as it is a measurement of force, and only
the head-to-foot direction is captured. Indeed, the difference between the SCG and
BCG signals is, in fact, not simply a matter of nomenclature: because the BCG
measures whole body vibrations, the signal is less influenced by local anatomical
and sensor placement factors, and thus provides a better indication of hemodynamic
information (e.g., CO) [50–52]. For example, in Inan et al. changes in the root-mean-
square (RMS) power of BCG signals measured during exercise recovery were found
to be strongly correlated to changes in CO measured by ICG signals (rD 0.92) with
an absolute error of�0.5%˙ 37% in the prediction of�CO [50]. On the other hand,
BCG signals cannot be measured as readily as SCG signals with wearable devices,
but rather with weighing scales [53], tables [52], beds [54], or chairs [55]—devices
that can capture whole body movements. Recently, groups have demonstrated that
BCG signals can also be measured using wearable accelerometers [56, 57], but
research is ongoing currently to better understand how such local measurements
of body vibrations correspond to more traditional BCG measures (i.e., via weighing
scales or tables) [58]. For example, the placement of the accelerometer on the body
is known to greatly influence the shape of the measured BCG [57].

Fusing Sensing Modalities: Many of the most salient methodologies available
for extracting clinically relevant information regarding the mechanical health of the
heart and vasculature involve fusing multiple modalities of these measurements.



276 O.T. Inan

Fig. 5 From [49]. Simultaneously acquired Lead II electrocardiogram (ECG); three-axis seismo-
cardiogram (SCG) with z indicating the dorso-ventral axis, x indicating the right-to-left lateral
axis, and y indicating the head-to-foot axis; weighing scale based head-to-foot ballistocardiogram
(BCG); impedance cardiogram (ICG); and arterial blood pressure (ABP) measured at the finger,
signals from one subject, illustrating the relative timing and amplitude features of the signals

In particular, computing time intervals between the different measurements yields
great insight into LV function. As discussed above, the PEP can be computed as the
interval between the ECG Q-wave and the opening of the aortic valve. The interval
from the aortic valve opening to the arrival of the pulse in a distal location (e.g.,
the finger or toe) is pulse transit time (PTT), and can be used to estimate ABP [59–
61]. Thus, while CO has always been derived from a single measurement modality
(e.g., ICG or BCG alone), PEP and ABP are always derived from a combination of
modalities through the examination of inter-measurement time intervals and known
physiological relationships between cardiovascular events.

PEP Measurements and Correlation Studies: The gold standard non-invasive
PEP measurement is provided by echocardiography; however, since echocardiog-
raphy requires a trained medical professional (i.e., sonographer) to administer the
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exam, and expensive imaging equipment, researchers have since moved toward
using ICG signals as a reference standard measure against which other methods can
be compared. Studies have demonstrated that the correlation and agreement between
ICG and echocardiogram-based PEP estimates is sufficiently high to facilitate use
of ICG for this purpose [33, 62, 63]. Accordingly, wearable systems with electrodes
on the thorax can be used to measure simultaneous ECG and ICG signals, and
thereby provide a beat-by-beat measurement of PEP [64–66]. Such ambulatory ICG
systems have been proven to provide high quality estimates of PEP and SV, but
are inconvenient for the user as multiple (four to eight) electrodes with adhesive
backing must be worn on the neck and chest. Thus, researchers have investigated
solutions based on the PCG, SCG, and BCG signals that can also provide an accurate
estimate of aortic valve opening—to pair with an ECG to estimate PEP—but may be
measured with a form factor that is more comfortable and convenient for the user.
PCG based approaches have yielded reasonable correlations to echocardiography
or ICG based reference standard measures: Paiva et al. found that PCG based
PEP estimates were moderately correlated to echocardiogram based measurements
(r D 0.58) with 7.66 ˙ 5.92 ms absolute error [67]. However, the underlying
physiology does not support the use of heart sounds for detecting aortic valve
opening, but rather atrio-ventricular/aortic valve closure, and thus the performance
of PCG-based systems for PEP estimation may be limited. With a similar form factor
to PCG—through using an accelerometer on the chest as the sensor—SCG- and
BCG-based approaches have also been explored for PEP estimation, with higher
accuracy and correlation results. Etemadi et al. demonstrated a high correlation
between BCG- and ICG-based PEP estimates (r D 0.93) with 0˙ 6.45 ms absolute
error [11]. Similar results were obtained by Tavakolian et al. using the SCG aortic
valve opening point [68]. Such SCG and BCG based approaches can leverage
convenient and minimally obtrusive hardware, such as small wearable patches on
the chest [40, 69], ear-worn devices [56], or hardware built into textiles [70].

Pulse Transit Time (PTT) for ABP Estimation: When used in tandem with a
distal pulse measurement technique, such as photoplethysmography (PPG), the
timing of the aortic valve opening can also be used to provide an estimate of
blood pressure based on PTT and the Bramwell-Hill/Moens-Korteweg equations
[59, 71]. Specifically, PTT and ABP tend to have an inverse relationship, as shown
in Fig. 6 [72]. Ideally, themeasurement of PTT should consist of a “true” proximal
reference—one that provides the precise timing of the aortic valve opening event—
and a distal reference—such as the arrival of the pulse wave to the femoral artery.
However, for purposes of convenience, in many studies the R-wave of the ECG
signal has been used as a surrogate proximal timing reference, and the measured
time interval from this R-wave timing to a distal pulse arrival is then called the
pulse arrival time (PAT). Note that PAT D PEP C PTT, and thus PAT can change
both as a result of changes in cardiac contractility (and thus changes in PEP) and
changes in ABP (and thus changes in PTT). Studies have thus shown that PAT is
not an adequate surrogate for PTT, and can be confounded by contractility changes
[73, 74]. Nevertheless, in certain conditions—such as exercise recovery—where
PEP and PTT change in the same direction, reasonably strong correlations have
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Fig. 6 From [59]. Pulse transit time (PTT) provides a basis for ubiquitous blood pressure (BP)
monitoring. (a) PTT is the time delay for the arterial pressure wave to travel between two arterial
sites and can be estimated simply from the relative timing between proximal and distal arterial
waveforms. (b) PTT is often inversely related to BP

been found between PAT and ABP (systolic blood pressure in particular) in several
studies [75–78]. In addition to these PAT-based approaches, multiple systems have
been developed for ubiquitous cuffless blood pressure measurement based on PTT
[79–86]. Most of these studies used the B-point of the ICG signal as a proximal
timing reference, and the PPG at the finger as the distal reference for calculating
PTT. Two of the recent studies employed BCG as the proximal reference and
obtained reasonably strong correlation to ABP in a wide variety of physiological
conditions [83, 86]. Because PTT is a measure of time, while ABP is a measurement
of pressure, estimating ABP from PTT measurements is not straightforward. Several
approaches are possible, including subject-specific calibration, universal calibration,
and machine learning techniques, but the most commonly employed methods in
the literature have been based on subject-specific curves. Specifically, PTT and
ABP measurements are taken simultaneously as a subject’s physiological state is
perturbed from rest; this perturbation can include a variety of challenges such as cold
pressor [87], hand grip [88, 89], mental arithmetic [90], and exercise [15]. These
perturbations cause ABP to change from the resting state, and a calibration curve
is then formed relating PTT to ABP. Following this initial calibration, theoretically,
only PTT would need to be measured and the calibration curve could be used to then
estimate ABP. The validity of such curves over longer periods of time have not been
extensively established, however, and are the subject of ongoing research efforts.

Current State-of-the-Art: Currently, the most accurate measurement modality for
wearable LV sensing is considered to be ICG and, in fact, the signal is typically
used as a reference standard against which other modalities are compared. However,
it must be noted that there are significant technical/physiological challenges with
the ICG that should be considered in addition to the fact that the measurement is
obtrusive requiring multiple electrodes on the neck and thorax, though researchers
are investigating wearable systems that can capture ICG signals in more convenient
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form factors [91]. Changes in blood volume in other cardiovascular structures in
the chest other than the aorta, such as the atria, can significantly contribute to the
magnitude and morphology of the ICG [92]. Most importantly, ICG signals can be
of low quality in many subjects such as obese individuals, critically ill patients, and
HF patients [31, 93, 94]. Thus, for consumer personal health and fitness applications
of mHealth, ICG signals may be a good option as the parameters measured (CO, SV,
HR, and PEP) will be accurate, and many of these aforementioned challenges will
be mitigated in the mainly healthy population. However, for HF patients and other
critically ill patients, other modalities may be preferable provided that they can be
sufficiently validated and verified in large clinical studies.

Technical Challenges and Future Directions

Although many of the approaches discussed above include wearable sensors and
electronics, nearly all of the measurements have been tested and validated for
subjects at rest, and typically in clinical or lab based settings. Additionally, the signal
features which have been used for detecting key events—such as the opening of the
aortic valve—may be accurate for measurements from certain users, but not from
others due to high variability in the waveform shape for these signals of mechanical
origin. The systems-level packaging of the sensors is also still at an early stage in
development, and can have a significant impact on the quality of the measurements
being recorded. These three challenges are discussed in more detail below: motion
artifacts, inter-subject variability, and systems-level sensor packaging.

Motion Artifacts and Reduction Algorithms: One of the most interesting times
during which the measured signals should be analyzed is during exercise, when
the heart is being stressed to meet the elevated demands of the skeletal muscle
and skin for blood flow. In particular, exercise in hot environments is known to
pose major stresses on the cardiovascular system, requiring CO to increase by
3–4� while venous return can, in some cases, actually decline due to increased
skin blood flow needs and the reduction in blood volume due to sweating [95–
97]. Thus, not surprisingly, the cardiopulmonary (CP) system may first manifest
signs and symptoms of HF only during exertion. Cardiopulmonary stress testing
(CPX) is a clinical gold standard methodology that measures a broad range of
CP health parameters during measured exertion, and yields better prognostic value
for HF patients’ survival than any measure at rest [98]. However, CPX requires a
cumbersome setup, with the patient walking on a treadmill or riding a bike while
wearing a breathing mask to analyze the expired gases and thus assess the ability of
the CP system to increase its supply in proportion to the increased skeletal muscle
demand for blood flow [98]. Wearable devices that assess LV function, if used
during exercise, could potentially allow sub-maximal exercise stress testing to be
conducted regularly during users’ normal daily living activities, with the degree of
exertion being measured using inertial sensors on the device and the cardiovascular
response being measured with the signals of mechanical origin. However, unlike
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ECG signals which—though they are affected by motion artifacts—can generally
be measured and interpreted even during exercise, the signals of mechanical origin
described above are typically severely hampered by motion, and in many cases
rendered unreadable [49, 99]. The most common approach to mitigating motion
artifacts in cardio-mechanical signals is the use of ensemble averaging, with the
ECG R-wave as a fiducial point [53, 68, 100]. Since artifacts related to motion
can be considered zero mean, and uncorrelated to the heartbeat, this approach is
effective and can lead to improved signal quality for the measured signals. However,
in many cases, ensemble averaging is not sufficient, and further improvements are
required. Some researchers have focused on data analysis during exercise recovery
as compared to exercise itself, such that the effects of the exercise stressor can still
be quantified without the presence of motion [40, 50]. This approach requires the
user to be aware of the measurement objective, and to comply with the instructions
to stand/sit still immediately following exercise, and is thus not a convenient method
that can be scaled up for ubiquitous use. Further research in this area is needed such
that ICG, PCG, SCG, and BCG signals can be measured readily from ambulatory
subjects performing activities, and the effects of these activities on LV function can
be quantified.

Inter-Subject Variability in Waveform Morphology: Another challenge is that,
while the ECG signal is fairly consistent in shape from person to person, the
signals of mechanical origin can vary dramatically in shape within even a healthy
population of subjects. As an example, Fig. 7a shows BCG waveforms measured
using a weighing scale system from six different healthy adult subjects; the inter-
subject variability in the BCG signal features, and overall signal shape, is clear from
these waveforms. Similar variability is seen in PCG and SCG signals, while the ICG
is—in general—more consistent from person to person. This variability renders the
automatic detection of characteristic points in the signals problematic, as simple
peak detection algorithms such as those used with ECG signals may detect different
points in the signal from one person to another. This inter-subject variability is
unfortunate, as it indicates that population based diagnostics using such signals is
unlikely to be successful. Instead, most researchers have recently focused on intra-
subject characteristics, and thus the monitoring of changes in one person’s signal
morphology over time to indicate improving or worsening LV function. As shown
in Fig. 7b—BCG waveforms from one subject taken on 50 separate recordings—the
intra-subject variability in BCG morphology is actually low, with only the amplitude
varying significantly from one recording to the next, likely due to underlying
changes in cardiovascular physiology that are expected from one day to another.
Importantly, many scenarios in which such signals could provide clinically relevant
benefit involve longitudinal monitoring: for example, in monitoring HF patients
at home, the goal is not to diagnose the disorder, which has already been done,
but rather to quantify whether the patient’s condition is improving or worsening
and, ultimately, whether an exacerbation is imminent. For this application, the
same person would be monitored over time, and thus the inter-subject variability
would not be a detriment. Nevertheless, better understanding the sources of inter-
subject variability—such as body mass and composition, arterial stiffness, sensor
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Fig. 7 After [53]. (a) Ballistocardiogram (BCG) heartbeat signatures from six different healthy
subjects (all shown on the same time and amplitude scales). The inter-subject variability in
BCG features is high. (b) BCG heartbeat signatures from the same subject taken on 50 different
recording dates and times over the period of 2 weeks. The intra-subject variability in the key BCG
features is minimal

attachment to the body, anatomical differences, etc.—could lead to breakthrough
improvements in the ability to use cardiovascular signals of mechanical origin to
perform diagnostic or screening functions outside of clinical settings.

Systems-Level Sensor Packaging: The mechanical attachment and placement
location can greatly influence the quality and repeatability of the measurements.
For example, in calculating SV from ICG measurements, the length of the segment
between the electrodes at the neck and thorax is one of the input parameters. If
the electrodes are misplaced by a small amount, errors in excess of 5–10% are
very possible in the estimation of SV and thus CO. Similarly, for wearable BCG
measurements, the placement of the sensor on the body influences the quality of
proximal timing detection toward PEP estimation. Thus, this placement must be
controlled either by the careful positioning of the sensor on the body via anatomical
landmarks—which would require a medical professional or a trained caregiver to
perform the placement—or through the improved design of systems-level packaging
to ensure robust placement by any user herself. Such packaging approaches could
include, for example, the use of sensor arrays on bands or patches which could then
be used to derive a more robust BCG signal even when positioning is not ideal.
Additionally, automatic calibration efforts could be designed between different
sensing modalities through the use of heterogeneous sensor arrays in wearable
systems—as one example, the combined use of BCG and ICG signals has not
been explored in wearable devices, but could allow one modality to overcome the
disadvantages of the other. Finally, in-depth characterization of the effects of sensor-
skin interface properties such as contact pressure could yield a better understanding
of how sensor packaging for patches, bands, harnesses, watches, and other wearable
systems should be tuned to optimize the quality of the mechanical signals of
cardiovascular origin that are obtained.
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Conclusion

The growing percentage of the population with cardiovascular disease, and in
particular disorders related to LV dysfunction, provides a compelling need for
sensing modalities beyond ECG that assess the mechanical aspects of LV function
outside of clinical settings. A new class of wearable systems with the capability
to measure key parameters of cardiovascular function such as CO, ABP, and
contractility could allow the management, for example, of HF patients at home, thus
potentially improving the quality of care for this prevalent condition and reducing
the overall healthcare costs dramatically. Through leveraging underlying physiolog-
ical relationships and properties, convenient and affordable wearable systems can
be designed to measure each of these parameters. In designing such systems, it will
be important to concordantly develop novel algorithms and techniques for reducing
motion artifacts, mitigating inter-subject variability in the measured signals, and
optimizing the design of the packaging to maximize signal quality and repeatability.
Such systems can then bridge an important gap in the area of mHealth with regards
to the clinically relevant assessment of the mechanical aspects of cardiovascular
function using wearable, convenient, and inexpensive systems.
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A New Direction for Biosensing: RF Sensors
for Monitoring Cardio-Pulmonary Function

Ju Gao, Siddharth Baskar, Diyan Teng, Mustafa al’Absi, Santosh Kumar,
and Emre Ertin

Abstract Long-term monitoring of physiology at large-scale can help determine
potential causes and early biomarkers of chronic diseases. Physiological monitoring
today, however, requires wearing of sensors such as electrodes for ECG and
belt around lungs for respiration, and is unsuitable for monitoring of patients
and healthy adults over multiple years. In this chapter, we review advances in
a novel sensing modality using radio frequency (RF) waves that can provide
physiological measurements without skin contact in both lab and field environments.
This chapter presents fundamentals of RF biosensing with experimental results of
a new experimental bioradar platform illustrating the concepts. The focus is on
new approaches to monitor heart motion and respiratory effort. Experimental results
using both an articulated heart phantom and human subjects show that RF sensing
modality can match the performance of state-of-the-art physiological monitoring
devices in terms of retrieving features and statistics of clinical significance.

Introduction

Physiological monitoring in the mobile environment [6, 10, 12, 28] can provide
immense visibility into the health status of individuals such as cardiac health,
respiratory health, psychological health (e.g., stress, depression), behavioral health
(e.g., addictive behaviors), and social health (e.g., patterns of conversations). These
systems have improved considerably in recent years so they can now be worn for
multiple days at a time in the natural field environment and provide good quality
data [6, 27]. These advances are poised to revolutionize research and practice in
diagnosing and treating health conditions that are usually persistent in healthy
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populations (e.g., stress, addictive behaviors, social anxiety, autism). Physiological
monitoring today, however, require wearing of ECG electrodes, or respiration belts,
and are therefore only suitable for small-scale (i.e., 100 healthy subjects) research
studies for short-term (i.e., few days to several weeks) data collection in the field.
They do not scale to population level measurement for long-term field usage.
Applying the same physiological monitoring to revolutionize our understanding,
diagnosis, and treatment of other diseases such as cancer, heart diseases, and
respiratory diseases that are major causes of mortality [23] requires new methods
of physiological measurement that can be adopted at large population scale (i.e.,
tens thousand subjects) and can be used for long-term monitoring (i.e., several
months/years).

To make physiological monitoring feasible for long-term and scale to population
level monitoring, we will develop low-power miniature non-contact radio frequency
(RF) sensors for Doppler sensing of movement of chest, heart motion, pulse
points, and respiratory monitoring. It is critical to note that the movement of the
heart provides more information than just the heart rhythm since it informs on
stroke volume, cardiac output and operation of heart valves. Similarly, non-contact
respiration monitoring can inform on episodes of speech, smoking and apnea. In
addition, given the convenience of heart and respiration monitoring, such non-
contact sensors can be put by the bedside to prevent cardiac death during sleep,
especially among obstructive sleep apnea patients (20 million in U.S.), who are
twice as likely to die during sleep than other hours.

RF frequencies penetrate all skin, fat, muscle tissue. Each interface (air-skin,
skin muscle, muscle-bone, etc.) causes a different reflection. The movement of the
reflection points can be tracked since it causes the phase of the reflected wave to
change. Some experimental non-contact RF sensors exist today. They are, however,
typically narrowband (single or dual frequency) Doppler sensors that can monitor
chestwall movements through the change of the phase of the reflected waves. These
sensors suffer from gross motions of body, limbs, and the sensor itself, since there
is no spatial sensor diversity in range or cross range; all motion sources are coupled
in a single signal. Therefore, they are more suited for fixed sensor installations and
subjects with limited mobility.

Chapter Overview

In this chapter, we present fundamental theories of RF biosensing with applications
to heart and lung motion detection and imaging as well as experimental results.
In section “Contactless Physiological Sensing”, we first review principles of RF
based physiological sensors and briefly discuss the limitation of general RF sensors.
Next, we propose a system model for UWB (Ultra-Wideband) radar sensing
and introduce an experimental hardware platform we designed for monitoring
physiological signals using a multichannel radar sensor. In section “Heart Motion
Tracking Using RF Sensors”, we discuss heart motion tracking based on RF
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sensors measurements. We first present an approach to track HR (Heart Rate) based
on spectral analysis. Next we present a novel method to detect high resolution
beat-to-beat heart motion based on a matched subspace model. In section “Lung
Motion Tracking Using RF Sensors”, we provide methods for estimating respiratory
rate and effort from measurements collected with RF sensors. We also provide
experimental results in comparison to standard respiratory effort signal captured by
respiratory inductance plethysmography band. In section “RF Cardiac Imaging”, we
introduce an RF imaging technique for spatial analysis of internal cardiac motion.
We analyze imaging geometry with respect to the sensor array topology and present
a method to highlight regions in the image which has high mutual information with
simultaneously collected ECG signal. Finally, we conclude with remarks on future
directions.

Contactless Physiological Sensing

Background on Using RF Waves for Biosensing

The problem of detecting humans behind walls, survivors under rubble and in
closed containers for surveillance and rescue operations motivated the early research
in developing sensor technologies for remote physiological signal detection and
monitoring. Early systems for search and rescue employed infrared (IR) body
heat sensors which were limited due to large attenuation of IR waves when
passed through walls, rubble, and foliage. This led to the development of radar
devices operating at frequencies with relatively better propagation characteristics.
Measurement of respiration and heart motions using Doppler radars have a history
of 35 years [18, 19]. Early systems using commercially available X-band Doppler
radars and horn antennas were able to detect respiration and heart beats when
respiration was suspended. Several signal processing techniques were developed
after these initial experiments to be able to extract the small amplitude heart beat
signal in the presence of the relatively stronger respiration signal. Early systems
used a single mixer stage to determine the phase of the reflected echo with respect
to the local oscillator, which resulted in reduced sensitivity at periodic null points
along the range dimension. Nowogrodzki and Mawhinney [25] proposed the use
of two radars operating at distinct frequencies to resolve the null point problem. In
subsequent work, Seals et al. [32] demonstrated the usage of quadrature receivers
to disambiguate the direction of the motion and alleviate the problem of reduced
sensitivity at null points. These IQ receivers have been miniaturized into low-cost
compact integrated circuits for Doppler monitoring [5]. Lubecke et al. [20, 21]
considered the use of wireless communication signals for detection of heart and
respiration signals with commercially available wireless terminals. These systems
have shown promise in detection of both surface and internal cardio-pulmonary
motion signals.
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All these Doppler radar systems use continuous wave sources and have the
advantage of measuring velocity without any ambiguities and typically provide
higher signal to noise ratio since the transmitter is operating continuously. In
addition, since the system is narrow-band, analog RF frontend circuitry design is
simplified due to a single operating point. These systems have not been adopted
for mobile monitoring applications since subjects’ gross-level motion of limbs and
torso is combined with all the weak motion signal of the chest surface. The problem
is compounded due to limb/torso motion occupying the same frequencies as the
respiration and heart signals between 0.01 and 1 Hz. The single phase reading of
a Doppler radar does not provide any degree of diversity to separate sources of
motion. In particular, for a narrowband system there is no range discrimination
capability to focus on the internal chest motion.

Recently UWB systems [33, 37] have been proposed for contactless monitoring
applications. These wideband pulsed radar systems have range resolution capability
in the order of few inches theoretically enabling to extract returns from the heart
muscle and lungs. At this stage, UWB radar systems use analog correlators for
detecting echoes since direct digitization of these widebands require high power,
high complexity Analog Digital Converters (ADC). The resulting analog designs
are low power and compact, but do not allow adaptive receive processing required
to combat motion interference with low signal-to-noise ratios. In particular, the
waveform is fixed to typically sinusoidal-Gaussian monocycle and the correlator
is made of a fixed analog delay line and integrator not suitable for controlling the
range gate and mismatch between the transmitted wave and the reference used
in correlation. These challenges can be overcome with an all-digital design that
provides diversity in space and frequency on a low power platform.

Model for UWB Sensing

The behavior of radar pulses interacting with the different tissue boundaries can
be modeled as a convolution with the impulse response of the scattering process.
Specifically, each tissue boundary (air-to-muscle, muscle-to-bone, bone-to-muscle,
etc) will be a reflection point for the transmitted pulse. As the heart muscle is not a
point mass, the reflected pulse will not be a single return but a mixture of multiple
reflections. Moreover, even though the UWB pulse generator in the EasySense
sensor produces Gaussian pulses, the RF antenna placed close the body cause
the actual transmitted and received waveforms to be distorted due to imperfect
impedance match. Therefore, we are faced with the problem of recovering the
position of multiple scattering points while at the same time identifying the
unknown transmitted pulse. The corresponding system model Fig. 1:
which can also be expressed using following expression:

yi D H.p/xi C ni (1)
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+x(t)

n(t)

y(t)H(p)Qm

Fig. 1 System model for UWB radar sensor

where yi is the ith frame received by the radar, xi is the estimated reflectivity profile
for frame i quantized using Qm to range m, p is the UWB pulse convolved with the
transmitter and receiver antennas’ impulse response. H.p/ is the Toeplitz matrix of
the pulse p, i.e. p � x D H.p/x. ni is the channel noise with respect to the ith frame.

Our goal is to recover the reflectivity field xi from the backscattered measure-
ments yi. The proposed model is a linear model based on Born Approximation,
neglecting multiple reflections among objects in the scene. We assume the reflector
distribution to be sparse and smoothly varying with time. The pulse p is considered
to be unknown, which also needs to be learned from the measurement yi, because the
antennas’ impulse response highly depends on the placement and has to be estimated
in situ. A sparse reconstruction method for jointly learning the pulse shape and
deconvolving it from the measurement was given in [11].

EasySense: An Experimental UWB Radar Platform
for Biosensing

RF frequencies penetrate all skin, fat, muscle tissue that makes up the human body
as shown in Fig. 2. Each interface (air-skin, skin muscle, muscle-cartilage, etc.)
causes a different reflection. The movement of the reflection points can be tracked
since it causes the phase of the reflected wave to change. Separating sources of
motion in space, however, requires high resolution, since the major return from air-
to-skin interface at the chest wall is only� D 5 cm away from the heart. Nominally
this will require a system bandwidth of �c=2 D 3GHz. FCC’s rules limit the
power of indoor UWB devices operating in 3.1–10.6 GHz to �41:3 dBm per MHz
bandwidth [8].

Our prototype UWB microradar platform for biosensing dubbed as Easy-
Sense have a bandwidth of 3GHz resulting in a maximum total power of
�41:3 dBmC34:77 D �6:53 dBm (0.22 mW). EasySense operates with 0.2 mW
power emission and isotropic antenna with unity gain (0 dBm), to respect the FCC
spectral mask. We note that typical low power radios such as 802.15.4 devices
have 1 mW power and Wifi 802.11 transceivers use typically 20–100 mW transmit
power, making the proposed sensors emissions to 1/5–1/500 of the EM radiation
emitted by common mobile devices. Hence, EasySense is not expected to pose any
new radiation threats to the human body.
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Fig. 2 Cryosection of a human thorax from visible human project

UWB backscatter data can be collected with standard benchtop laboratory equip-
ment such as network analyzers or high speed waveform generators/oscilloscopes
in static settings. To perform repeatable experimentation in the mobile setting
with higher temporal resolution we developed an experimental platform called
EasySense. EasySense features a MIMO UWB sensing architecture that can inte-
grate information spatially and temporally to identify and track weak physiological
signals of interest. We have integrated NVA6100 transceiver chip by Novelda
that implements a UWB pulse generator and strobe sampler with two 1 � 4

antenna switching matrices that connect to two sets of four wideband antennas.
The receive channel includes a low noise amplifier (LNA) in a small form factor
sensor (measuring 2 in. � 3 in.), suitable for field measurements. The sampling and
data read out is controlled by a local processor. A six axis IMU sensor provides
information about sensor orientation and motion. The system diagram is given in
Fig. 3a. The NVA6100 transceiver generates monocycle pulses and samples the
returns on a window of 512 samples using strobe-sampling at a virtual rate of 36
Gsamples/sec. The 512 samples cover a range window of 2.13 m when measured
in free space. Since the relative permittivity of the tissues in human body is much
higher, the range window will be shortened. The MIMO switching matrix enables
random compressed sampling using a single transmitter and receiver to identify
and separate signal sources due to physiological processes and background clutter,
motion artifacts. For the results presented in this chapter, the measurements are
taken at the front of the torso directly over the sternum as shown in Fig. 3b.

Heart Motion Tracking Using RF Sensors

Internal heart motion can be monitored using an RF sensor that records reflections
from various surfaces of the heart. The backscatter signals from multiple channels
have to be processed jointly to provide an estimate the timing of the heart beats.
In this section, we first present a simple approach for heart-rate detection based on
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Fig. 3 EasySense system. (a) EasySense system architecture, (b) EasySense measurement setup

spectral analysis that can provide average heart rate information over short time
windows. Next, we present a novel approach based on matched subspace detection
for high resolution beat-to-beat heart motion detection.
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Frequency Domain Methods for Heart Rate Estimation

For many applications such as physical activity monitoring, a summary statistics
such as number of heart beats per minute provides sufficient information. A classical
approach to compute average heart rate is to analyze heart motion signal in the
frequency domain and locate the peak frequency corresponding to quasi-periodic
motion of heart. Radar sensor provides samples x.n; t/ of the backscatter signal
corresponding to different range-bins n, for a pulse transmitted in slow-time index t.

Here, we simply perform one dimensional Fast Fourier Transform (FFT) to each
range bin to obtain X.n; f /, where n is the fast time index representing the depth
(range) of the measurement and f is the frequency. In transform domain, the peak
value in frequency domain is identified as the heart rate value:

HR D arg max
f

n
max

n
X.n; f /

o
(2)

This implicitly assumes largest reflection in the desired frequency band will be the
cardiac motion. This detection strategy can be applied to each channel (transmitter-
receiver) pair independently and median over the channels can provide a more robust
measure of heart rate.

To test the performance of the FFT based approach, we continuously track the
heart rate of a heart phantom. To track the heart rate variation, we implemented a
sliding window form of (2) as follows:

HR.t/ D arg max
f

n
max

n
Xt�wWt.n; f /

o
(3)

where Xt�wWt.n; f / is the FFT calculated using only samples within a window of
length w before current time slot t. We measure the heart motion using SIMUTEC
heart motion phantom shown in Fig. 4. The heart motion phantom is simulating real
human heart’s stretching and compression motions at a user configured rate. In our
experiments, we configure the rate to 30, 60, and 90 bpm. After data collection, the
heart rate is estimated through the FFT spectrum of the EasySense measurement.
In this FFT approach, the maximum frequency component in the FFT spectrum
over a prespecified observation window is identified as the current heart rate. The
estimated heart rate and EasySense observations are plotted in Figs. 5 and 6. We can
see that the EasySense produced heart rate estimation can successfully track the
true beating rate throughout the test. And in the FFT spectrum, the corresponding
frequency component can be easily identified according to the highest intensity
frequency component after suppression of the DC level.

Even though the FFT based approach is simple yet powerful in terms of average
heart rate computation, it has several drawbacks. First, by transforming the signal
into frequency domain, information about the short term non-periodic peak to peak
variations around the average heart rate is lost. Second, even though heart beating
event is almost periodic, considering the heart motion itself, the observed signal
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Fig. 4 Experimental setup with the heart phantom. (a) Heart phantom, (b) Heart phantom with
EasySense
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Fig. 5 Heart rate tracking with simple FFT algorithm. (a) 30 bpm EasySense heart rate estimate,
(b) 60 bpm EasySense heart rate estimate, (c) 90 bpm EasySense heart rate estimate

might not be suitable to be approximated as a mixture of sinusoids. In contrast,
the FFT approach provides approximately Maximum-Likelihood Estimates (MLE)
of the frequencies of a mixture of sinusoids. In the next section we will present a
time-domain algorithm applicable to a general class of motion patterns which can
produce beat-to-beat information for heart motion detection.

Learning Matched Subspace Detection

To overcome the drawbacks of FFT spectrum based approach, we introduce here an
alternative statistical approach. This novel approach is capable of producing peak
locations from the 2D radar observation at high temporal resolution to support heart
rate variability index calculations.

Let X be the observation matrix X D Œx1; x2; x3; : : :� with each column being a
fast time frame. Due to the repeatability of heart beat motion our problem can be
modeled as a hypothesis testing problem:
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Fig. 6 Measurements with the heart phantom in time and frequency domain. (a) 30 bpm
EasySense measurement CH1, (b) 30 bpm EasySense measurement CH2, (c) 30 bpm EasySense
measurement CH3, (d) 30 bpm EasySense measurement CH4, (e) 30 bpm EasySense FFT CH1,
(f) 30 bpm EasySense FFT CH2, (g) 30 bpm EasySense FFT CH3, (h) 30 bpm EasySense
FFT CH4, (i) 60 bpm EasySense measurement CH1, (j) 60 bpm EasySense measurement CH2,
(k) 60 bpm EasySense measurement CH3, (l) 60 bpm EasySense measurement CH4, (m) 60 bpm
EasySense FFT CH1, (n) 60 bpm EasySense FFT CH2, (o) 60 bpm EasySense FFT CH3,
(p) 60 bpm EasySense FFT CH4, (q) 90 bpm EasySense measurement CH1, (r) 90 bpm EasySense
measurement CH2, (s) 90 bpm EasySense measurement CH3, (t) 90 bpm EasySense measurement
CH4, (u) 90 bpm EasySense FFT CH1, (v) 90 bpm EasySense FFT CH2, (w) 90 bpm EasySense
FFT CH3, (x) 90 bpm EasySense FFT CH4
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H0 W z D S�C n (4)

H1 W z D U� C S�C n (5)

where z 2 R
N is the received frame within a time window T that is chosen to

contain a heart beating cycle (e.g. zi D
�
xT

i ; � � � ; x
T
iCl

	T
, l D T � Fs, Fs is the slow

time sampling rate), U 2 R
N�p is the signal subspace, � 2 R

p is the combination
coefficients associated with U, S 2 R

N�q is the interference subspace, � 2 R
q is the

combination coefficients associated with S, n � N .0; 	2IN/.
Subspace spanned by the columns of U corresponds to the desired heart beating

pattern that can be learned by applying Principal Components Analysis (PCA) to
labeled training samples an S models background drift and fluctuations due to
spurious motion. For the solution of this hypothesis testing problem we follow the
technique developed in [31]. The generalized likelihood ratio is defined as follows:

OL.z/ D
p.zI O�1; O	1/

p.zI O�0; O	0/

D

�
O	21
O	20

�� N
2

exp

�

�
1

2 O	21
kz � O
1k22 C

1

2 O	20
kz � O
0k22

�

D

�
O	21
O	20

�� N
2

exp

�

�
1

2 O	21
kOn1k22 C

1

2 O	20
kOn0k22

�

(6)

In this problem, the sample variance estimator is O	2i D
1
N kOnik

2
2, and the maximum

likelihood estimator for Oni can be obtained using:

On1 D .I � PU;S/z D P?
U;Sz (7)

On0 D .I � PS/z D P?
S z (8)

The resulting GLRT (generalized likelihood ratio test) leads to the following test
statistics:

OL.z/
2
N D

zTP?
S z

zTP?
S P?

GP?
S z

(9)

where PS D S.STS/�1ST, P?
S D I � PS, and G D P?

S U. Here P?
S is the orthogonal

projection matrix, P?
S z is the orthogonal projection of z onto hSi? which is the

subspace that is orthogonal to hSi, where hSi represents the subspace spanned by
the column of S.

In (9) the numerator denotes the orthogonal projection of z onto the subspace
which is orthogonal to the subspace of interference S, while the denominator is
the orthogonal projection of z onto the subspace that is orthogonal to the subspace
defined by both S and U. Once the likelihood ratio statistics is obtained, we can
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Fig. 7 GLRT statistics of the subspace detector provides localization of heart-beats

use a simple threshold to isolate peaks that represent heart beats. Experimental
results are presented in Fig. 7 using a dataset collected on a human subject under
minimal motion. We observe that the resulting GLRT statistics produces sharp
peaks at heartbeat locations which can be detected with an appropriately chosen
threshold.

The GLRT matched subspace approach can be extended to enable the heart
motion pattern detection process being performed using multi-channel randomly
sampled data. In the scenario of multi-channel random sampling, only one channel’s
observation is available at a particular time slot. Our objective is to recover the
1D statistics using only an incomplete observation matrix using a single sample
from each column of the full observation matrix. This problem can be formulated
as a compressed matched subspace detection problem which has been studied
in [22]. Accordingly, the detection formula for producing the 1D statistics takes
the following form:

L.�/.z.�/c / D
z.�/Tc .I � P˚.�/S/z

.�/
c

z.�/Tc .I � P˚.�/ŒU;S�/z
.�/
c

(10)

where ˚.�/ is the compression matrix (in our scenario ˚.�/ can be generated
according to the channel switching sequence) associated with time � , and z.�/c is the
observed samples from all the channels within time � to � C T . One should notice
that the time slot index � is chosen to match the original sampling rate Fs, and thus
the recovered 1D statistics has the same resolution at the original sampling rate.
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Fig. 8 Assessing R-peak location accuracy of EasySense using ECG as the standard measure.
(a) ECG measurement v.s. EasySense GLRT statistics, (b) Comparison of RR intervals extracted
from ECG and EasySense measurements

To assess the quality of the peak recovery from RF sensor measurements
we simultaneously collect EasySense data from frontal chest and standard ECG
measurement using AutoSense [6] on the same human subject. We first plot on top
of the ECG measurement the matched subspace GLRT produced result in Fig. 8a.



302 J. Gao et al.

Table 1 HRV energy in different frequency bands for EasySense and ECG

VLF energy LF energy HF energy VHF energy

(<0.04 Hz) (0.04–0.15 Hz) (0.15–0.4 Hz) (>0.4 Hz) Total energy

EasySense 3.1446e�5 0.6935e�3 1.2210e�3 0.2909e�3 2.2370e�3

ECG 3.3315e�5 0.7067e�3 0.6407e�3 2.4067e�5 1.4048e�3

Next, we plot the RR-interval comparison obtained from the two 1D sequences in
Fig. 8b. As we can see, the RF sensor result matches the peak location in the ECG
result.

Finally, we try to measure in terms of Heart Rate Variability (HRV) the qualify
of RF sensor results. HRV is a widely used set of indices that can be obtained
from ECG signal [1]. HRV is calculated by measuring the time difference between
neighboring R-peaks in the ECG signal, with one coordinates being the time
index and the other coordinates being the RR interval value. HRV has been
identified as a quite informative measure for autonomic nervous system (ANS)
[30], blood pressure [2], myocardial infarction [29], diabetes [26, 36] and renal
failure [17]. Typically, in addition to the time domain characteristics, the spectrum
of HRV signal, which can be approximately calculated using FFT based Welch’s
periodogram on resampled equidistant data, is also of great interest. Medical
researchers usually divided HRV spectrum into three different frequency bands:
VLF (0:0033 � �0:04Hz), LF (0:04 � �0:15Hz) and HF (0:15 � �0:4Hz). Each
of those regions corresponds to different clinical information, and by analyzing
the information within different regions simultaneously might reflects deeper level
health problem. In Table 1, we compared the HRV result in different energy range.
We note that the EasySense recovery results match standard ECG results in VLF and
LF components, but are only accurate for the HF component till 0.3 Hz. A potential
explanation for the discrepancy in the HF region could be the heart muscle is acting
like a low pass system and masking some of the higher frequency jitter present in the
electrical signal. It remains an open research question for future efforts. The HRV
energy spectra for the two modalities are plotted in Fig. 9.

Lung Motion Tracking Using RF Sensors

In the previous section, we proposed two methods for heart motion detection using
RF sensors and presented experimental results. In this section, we turn our attention
to the problem of tracking lung motion using RF sensors.

Compared with heart motion, lung motion is relatively stronger in its spatial
extent. Therefore the technique in tracking lung motion can be relatively simple.
Here we implement a 1D respiration signal recovery technique based on identifying
correlation maximizing delays. Specifically, we select a reference vector r 2 R

l that
includes range window of lung tissue underlying the respiratory signal. Then for
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Fig. 9 HRV energy spectrum computed using the Welch’s periodogram

each time slot t, we calculate a delay index as the instantaneous shift in range that
maximizes the correlation with the reference waveform

d.t/ D arg max
�

corr.X.� W � C l; t/; r/ (11)

where corr.�; �/ is the standard sample correlation coefficient calculated as:

corr.x; y/ D
< x � Nx; y � Ny >
kx � Nxkky � Nyk

(12)

where Nx and Ny are the sample mean replicated to length l. We assume that the
received pulse shape corresponding to the reflection from the lung tissue remain
unchanged while the position they appear varies due to lung movement, therefore we
can find for each frame a relative shift that maximize the similarity to the reference
frame (in our expression (11) this frame refers to the common reference vector, and
thus the delay value becomes the desired relative shift). Repeating this for each radar
pulse and stacking the correlation maximizing delay sequence, reveals an estimate
of the 1D respiration effort signal.

In the following we present the EasySense recovered 1D respiration signal
and compare it with the standard respiration signal measured using AutoSense
by reading tension variations of a respiratory inductance plethysmography (RIP)
band. The comparison between AutoSense and EasySense calculated respiration
rate is plotted in Fig. 10a and to assess the agreement between the two sequences in
Fig. 10a we generate a Bland-Altman plot in Fig. 10b. We compare our recovered
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Fig. 11 Respiratory effort recovery result. (a) AutoSense respiratory effort v.s. EasySense
recovered respiratory effort. (b) AutoSense respiratory effort with EasySense measurement
(background)

respiratory effort result with respiratory effort measurement using AutoSense in
Fig. 11a, b. The results show EasySense recovered respiratory statistics is in with
the respiratory effort measured by the respiratory inductance plethysmography band
measurements.

RF Cardiac Imaging

In this section, we introduce an RF imaging algorithm based on EasySense measure-
ments collected with a MIMO antenna array that can monitor internal organ motion
in real time. The idea of using RF sensors in inner body tissue motion imaging is not
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novel, similar algorithms have been suggested in literature [3, 7, 14, 15] using data
obtained with benchtop equipment. Our focus is to design a real time imager with an
easily maneuverable probe which gives immediate visualization feedback that can
potentially become an alternative modality to incorporate into clinical practice. We
start with a review of our switched MIMO antenna array and collection of multi-
channel measurements. Then we present a fast back-projection algorithm that maps
the backscatter data to spatial distribution of sources of motion. The imager works
in complex baseband providing better visual imagery as compared to passband
technique.

Antenna Array Placement

To provide a better understanding of the tissue movement in spatial domain,
we design an imaging algorithm that processes returns for multiple antennas
simultaneously observing a common area of interest. A single transmit receive
antenna system cannot identify the spatial location of a reflection point but can only
measure the reflection point’s distance from the antenna phase center. In contrast,
if measurements collected with multiple transmit-receive antenna pairs, reveals the
spatial location of reflection points essentially triangulating combining knowledge
of the antenna phase center locations with the corresponding range measurements.

Here, we choose to switch between four pairs of antennas lying on a 2D plane.
We assume the center of each pair of antennas would be physically approximating a
transceiver antenna. If we treat the four centers as virtual antenna phase centers, we
would be obtaining measurements in the 2D plane orthogonal to the antenna board.
The antenna array placement is depicted in Fig. 12. A drawback of this setting is
that any movement in the plane direction to orthogonal to the image plane will be
not detected. This could be remedied by including a larger number of antennas on a
2D pattern at a cost of reduced temporal resolution due to the delay introduced by
sequential sampling of the larger array.

Imaging in Baseband

An image providing spatial distribution of reflectors can be produced by coherently
summing up multiple channels’ returns based on an algorithm known as back-
projection. Ideally, if the medium was vacuum and the target is a single point
mass, we would be receiving a single focused intersection as illustrated in Fig. 12.
However, in practice, since we are monitoring diffuse body tissues, which are not
point mass, the resulting image is harder to interpret. As introduced in the previous
section, the EasySense radar transmits a wide band Gaussian pulse centered around
2 GHz. The ripple present in the radar returns due to the center frequency is not
informative and can be eliminated by downconverting [13] the received pulses from
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the different antennas to complex baseband before summing them up using the
back-projection algorithm. The advantage of the conversion to complex baseband
is that after the conversion, the ripples that correspond to the 2 GHz carrier will
be eliminated thus reveals baseband pulse shapes, which is consistent with the
bandwidth of the system. The raw pulse and its complex baseband amplitude are
plotted in Fig. 13 as an illustration.



RF Sensors for Monitoring Cardio-Pulmonary Function 307

0 100 200 300 400 500 600

Position(sample)

-60

-40

-20

0

20

40

60

M
ag

ni
tu

de

Passband Pulse
Baseband Pulse(absolute value)

Fig. 13 UWB pulse in passband and baseband

An Information Theoretic Approach for ECG Assisted Motion
Highlighting

The imaging technique discussed in previous sections is suitable for online imple-
mentation, with relatively moderate computational complexity. The resulting imag-
ing can be sufficient for monitoring gross motion of the cardiac tissue and its
extent. Nevertheless, there could be clinical applications where higher contrast
and resolution can be beneficial in capturing precise heart motion morphology. In
addition, if measurements are collected simultaneously using different modalities
(e.g. impedance cardiography or ultrasound), they could be potentially processed
jointly which results in better imaging quality. In this section, we provide a statistical
tool, based on Mutual Information (MI), to guide the imaging process to better
identify heart motion with the assistance of standard ECG sensor.

We start with a brief review the concept of mutual information. MI originally
proposed by Shannon is a measure of dependence between two random variables
defined as follows:

I.x; y/ D
Z

p.x; y/ log
p.x; y/

p.x/p.y/
dxdy (13)

Essentially, the MI decrease as the random vectors become more independent, since
the joint density in the independent case is equal to the product of the marginals.
A square loss version of MI, captures similar dependence relation between random
vectors while providing a computationally attractive form:
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I.x; y/ D
Z

.p.x; y/ � p.x/p.y//2 dxdy (14)

Next, we apply MI as a method for enhancing RF image product with side
information provided by simultaneous ECG measurements. If we treat the Easy-
Sense measurement as one random vector, and the ECG measurement as another
random vector, MI can be used to identify regions of the EasySense image that
with highest statistical dependency to ECG measurements, due to the fact that the
heart’s movement is commonly captured by the two modalities upto a delay factor
between the electrical signal and resulting motion. To estimate the MI between the
two modalities, one can employ the following empirical form

I.x; y/ D ExEyŒp.x/p.y/� � 2ExyŒp.x/p.y/�C ExyŒp.x; y/�

D
1

N2

NX

iD1

NX

jD1

Qp.xi/Qp.yj/ �
2

N

NX

iD1

Qp.xi/Qp.yj/C
1

N

NX

iD1

Qp.xi; yi/
(15)

where Qp.x; y/, Qp.x/ and Qp.y/ can be obtained using kernel density estimation
method. We calculate the MI between a window of fast time range(depth) of
Easysense measurement and ECG. By applying a sliding window of the fast time
range bins of Easysense data, we obtained different MI values for different ranges.
It is not hard to understand that the MI between ECG and Easysense measurements
within the range corresponds to the position of heart will be large. After calculating
the MI, one may choose a threshold value to censor the return signal (to set the
data within ranges that has lower MI to zero) to be used in the back-projection
step, resulting in better focus on the heart motion. The approaches to estimate
the MI quantity and designing MI maximizing feature extractors are not limited
to the brief discussion we presented here and we refer the interested readers to
[4, 9, 16, 24, 34, 35].

Experimental results obtained by this MI approach is presented in Fig. 14 which
gives the depth in EasySense measurements versus the MI with the ECG signal
over three collection trials. We observe that maximum correlation corresponds of
range bin 150 in each case. This is verified by comparing the FFT of the EasySense
measurements with the FFT of the ECG signal as given in Fig. 15, once again the
strongest spectral component of ECG corresponds to range bin location of 150.

Next, we compare the imaging result using MI guided technique to the original
result in Fig. 16. MI guided result provides a higher contrast and less clutter
by preserving most heart motion related components while suppressing other
interfering patterns due to sensor/subject motion.
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Fig. 14 Estimated MI value on the same subject from three different measurements collected
sequentially

Fig. 15 EasySense FFT (top) v.s. ECG FFT (bottom)

Conclusion

In this chapter, we introduced an emerging modality for monitoring cardio-
pulmonary function based on near field UWB radar sensing. We presented algo-
rithms for tracking heart and lung motion as well as cardiac motion imaging.
Our empirical results show that RF sensing enables heart beat detection at high
temporal resolution suitable for heart rate variability analysis. In addition, UWB
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Fig. 16 Original heart motion image v.s. MI guided heart motion image

sensor can simultaneously detect heart beat as well as lung motion for assessing
respiratory effort and assessing respiratory sinus arrhythmia component of HRV.
These biomarkers of the cardio-respiratory system then in turn can be used to make
higher layer inferences such as stress and fatigue. The potential of using cardiac
RF images and derived motion parameters in assessing chronic and acute heart
problems is an area of future research. Finally, RF sensing can also inform about
body composition (muscle, fat, bone, fluid) as EM wave propagation is modulated
by the dielectric properties of the various tissues that are in the field of view the
sensor.
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Wearable Optical Sensors

Zachary S. Ballard and Aydogan Ozcan

Abstract The market for wearable sensors is predicted to grow to $5.5 billion
by 2025, impacting global health in unprecedented ways. Optics and photonics
will play a key role in the future of these wearable technologies, enabling highly
sensitive measurements of otherwise invisible information and parameters about
our health and surrounding environment. Through the implementation of optical
wearable technologies, such as heart rate, blood pressure, and glucose monitors,
among others, individuals are becoming more empowered to generate a wealth
of rich, multifaceted physiological and environmental data, making personalized
medicine a reality. Furthermore, these technologies can also be implemented in
hospitals, clinics, point-of-care offices, assisted living facilities or even in patients’
homes for real-time, remote patient monitoring, creating more expeditious as
well as resource-efficient systems. Several key optical technologies make such
sensors possible, including e.g., optical fiber textiles, colorimetric, plasmonic, and
fluorometric sensors, as well as Organic Light Emitting Diode (OLED) and Organic
Photo-Diode (OPD) technologies. These emerging technologies and platforms show
great promise as basic sensing elements in future wearable devices and will be
reviewed in this chapter along-side currently existing fully integrated wearable
optical sensors.
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Introduction

The advent of portable computing, big data, and expanding wireless and cellular
networks, has paved the way for continuous, mobile imaging, sensing, and diag-
nostic modalities which can accurately measure and monitor various vital signals
related to the human health as well as the environment [1–3]. Coupled with advances
in materials science, nanofabrication, signal processing and computation, sensor
platforms will continue to be miniaturized and proliferate into personalized use
whether that be for monitoring a chronic health-condition, or for simply gaining
frequent and accurate information from our bodies or the environment in order to
better understand our health status and the world around us. Wearable technology is
a natural extension of this general trend. Designing devices around the human body
gives sensing technology immediate access to a wealth of physiological information
encoded in e.g., our blood flow, breathing, movement, and bio-fluids such as sweat
and tears. Moreover, wearables can act as valuable hands-free tools, leveraging
computational power of remote servers to rapidly process data and report back
the results. Taken together, the ultimate goal of such wearables is to record and
analyze vital data, monitor health status and inform the user in real time, completely
unobtrusively, existing as a device which the user can ‘wear and forget’.

The global wearable sensing market is predicted to be $5.5 billion by 2025 with
roughly a third of this market being comprised of currently emerging technologies
[4]. In fact, almost one-tenth of Americans already own a wearable sensing device
in the form of e.g., a dedicated fitness tracking device, exhibiting a threefold growth
from 2012 [5]. With mobile phones and cloud connectivity, fitness trackers and
smart watches can build individualized wellness profiles by accumulating informa-
tion on heart rate, blood-oxygen level, movement, speed, step count, even eating
and sleeping habits. Such devices also have appeal for at home health monitoring,
specifically for the growing portion of the aging population living independently.
By empowering elderly users, their families, care-takers, and healthcare providers
through remote health monitoring capabilities, wearables can provide reliable and
detailed patient health history, reduce the resource burden on hospitals, and shorten
the response time in the case of emergencies. Such devices are already beginning
to make an impact, with the total device shipments related to wearable technologies
for elderly health monitoring projected to reach 44 million in 2019 [6]. Wearables
are also emerging as new tools for health care professionals and doctors, featuring
ergonomic displays and voice control capabilities for hands-free, computationally
aided, rapid diagnostics and other medical decision making. Augmented reality
can also can be realized via wearables for the purposes of e.g., better visualizing
key organs and tissue during surgery. Even environmental monitoring is creating
a demand for wearable sensing technology. The ability to conveniently monitor
plant health, air quality, or contaminants over a large area through the use of
crowd-sourcing is quite attractive and also further enabled by some of the emerging
wearable technologies.

Although both electronics and photonics are integral to the future of wearable
technology, this chapter will be focused on wearable optical sensors. It is predicted
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that by 2020 13% of the wearable market will be based on optical sensors, with opti-
cal and optoelectronic technology also playing roles in other sectors of the market
such as chemical or stretch and pressure sensors [7]. Optical sensors are unique as
they are immune to electromagnetic radiation, are capable of probing nanoscale
volumes, allow for noninvasive interrogation of biological matter at relatively
large penetration depths, and often employ low-cost, water and corrosion resistant
sensing elements. These capabilities have been employed for sensing heart rate,
blood pressure, blood oxygenation, abdominal and thoracic respiratory rate, targeted
localized bending and movement, and even the detection and quantification of ion,
protein, and virus concentrations. However in the context of wearable devices,
optical sensors, like all other sensors need to address the amplified challenges of
sufficient signal-to-noise ratio (SNR), limited dynamic range, signal specificity, and
user variability. Furthermore, specific to optical sensors, is the problem of ambient
light interference with signal measurements, as well as poor penetration of light
into skin and other bio-fluids. Emerging optical sensing elements and integration
schemes such as photonic textiles, novel colorimetric and fluorimetric materials, and
flexible photonics, are currently being investigated to address these challenges and
will comprise the first section of this chapter. The second section will then discuss
fully integrated wearable optical sensors, their capabilities, and future trends.

Emerging Sensing Elements for Wearables

Optical sensing elements respond to biological, chemical, or physical changes of
the environment via an optical signal. Each sensing element or substrate discussed
in the following section has a unique principle of operation which enables them to
measure different stimuli in the context of a wearable sensing device. Often times
these sensing elements require external optical components to extract the signal.
Optical fibers, for instance, are sensitive to physical changes in the environment
such as applied bending, stretching, or pressure, due to their geometry dependent
light guiding properties [8–11]. However, to actually measure the physical changes
applied to the fiber, light must first be coupled into the fiber such that it interacts
with the fiber geometry at the point of interest (e.g., at the inflection point or along
the stretch axis). The light must then subsequently be measured after this interaction
via a photodiode, CMOS camera, or any other light detector.

Colorimetric, plasmonic, and fluorometric sensing elements form some other
classes of optical sensor elements typically used for measuring chemical or biolog-
ical changes in a given environment. Colorimetric-based sensing refers to sensing
elements which undergo a simple color change in the presence of an analyte of
interest through a biological or chemical reaction [12–15]. Such a color change is
typically deduced through an absorbance measurement where the sensing element
is illuminated and the reflected or transmitted light is recorded and used to cal-
culate a sensor response. Plasmonic sensing involves metal-dielectric interfaces or
nanostructures which exhibit an optical resonance at a specific geometry-dependent
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wavelength. The wavelength at which this resonance occurs is also subject to change
when the plasmonic sensor is in contact with a specific biological or chemical target.
This change in resonance, similar to colorimetric-based sensing, often manifests as
a color change however the optical spectra of the plasmonic structure is typically
more complex and rich in features. Furthermore, plasmonic sensing has the capacity
for greater sensitivity over colorimetric sensing due to the enhanced electric field
created by the plasmon resonance. This surface electric field can interact with
nano-scale volumes of analytes and yield a measurable signal not achievable with
a colorimetric based assay [16–19]. Fluorometric sensing, on the other hand, is
distinguished by the use of fluorescent molecules such as organic dyes, fluorescent
proteins, or quantum dots. These sensing elements rely on an excitation light source
to excite the fluorescent molecules such that they emit light at a given emission
wavelength through radiative electron transitions. Normally the strength of the
fluorescent signal or the change in this fluorescent signal over time is correlated
to the concentration of a given analyte. Because the excitation and emission
wavelengths are separated in the optical spectrum, fluorometric sensing elements
often require optical filters to reduce the background created by the excitation light
in order to sufficiently read the considerably weaker emission signal. This type of
‘dark-field’ imaging/sensing modality however, if performed with adequate optical
filtering, can be more sensitive than simple absorbance based colorimetry [12, 15,
16, 20–22].

One common thread connecting all of these previously mentioned optical sensing
elements (colorimetric, plasmonic, and fluorometric) is their reliance on chemistry.
The specificity and sensitivity of these sensing elements are dictated by the affinity,
repeatability and lifetime of the underlying chemistry. Therefore these methods,
though sensitive to small concentrations of a vast number of different chemical and
biological targets, face many practical challenges when being adapted to wearables
[23–25]. Issues of bio-compatibility, life-time, quality control/assurance and cost of
reagents, as well as user-to-user and environmental differences such as temperature
and humidity place a greater burden on the robustness of the chemical reaction
designed for specific and sensitive capture of a target analyte. Therefore truly
integrated, colorimetric, plasmonic, and fluorometric wearables have thus far been
relegated to pH sensing or sensing of analytes which exist in large concentrations in
the human body (e.g., ions in sweat) or surrounding environment [26–29].

Lastly, the following section also emphasizes emerging Organic Light Emitting
Diode (OLED) and Organic Photo-Diode (OPD) technologies due to their potential
application as wearable sensing elements for pulse oximetry, Photoplethysmograms
(PPG), and as an integral part of other sensing schemes. These sensing elements
are of special importance because they enable light generation and detection
using low-cost, bio-compatible, flexible, and scalable elements [30–32]. Though
complete integration of these sensing elements into working wearable devices
is currently limited, their future impact on wearable optical sensors could be
paramount, enabling integrated devices that are compact, disposable, and fully-
flexible (Table 1).
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Optical Fiber Based Sensors and Textiles

Optical fiber textiles pose a unique niche for wearable sensors, as they are immune
to electromagnetic radiation, lightweight, flexible, and are able to be integrated
with everyday clothing or medical textiles [8, 79]. Optical fibers made of silica
as well as polymers, typically polymethacrylate (PMMA), are low-cost, water
resistant, chemically durable, and thus largely compatible with standard textile
processing and treatment. The mechanical properties of optical fibers largely
suggest feasible integration with traditional textiles. Optical fibers have tensile
strengths that are two to three orders of magnitude larger than those of textile fibers
and yarns, with comparable diameter, and coating-dependent texture, suggesting
durable integrated textile materials with thickness and texture mostly unchanged
from their conventional counterparts [8]. It is the limited bending radius and low
elasticity of optical fibers that make a noticeable difference in comfort and feel for
everyday clothing. Here, polymer optical fibers (POFs) have a distinct advantage
and are thus more suitable for woven and embroidered integration over silica based
optical fibers. Weaving and knitting schemes for optical fiber integration have
been actively explored and evaluated based on sensor dynamic range, sensitivity to
macro-bending events, and input light coupling efficiency [8, 42, 80, 81]. Polymer
optical fibers (POF) also demonstrate some unique advantages as sensing elements
due to their low Young’s modulus, larger break down strain, and low-cost [82]. As a
platform, optical fibers enable a wide array of applications due to their multifaceted
sensing mechanisms. They are sensitive to applied strain, pressure, micro and macro
bending, temperature, subtle changes in permittivity both inside and outside the fiber
waveguide, and can further be configured in versatile interferometric schemes (e.g.,
Mach-Zehnder, Michelson, Fabry-Perot, Fizeau, etc.) to provide localized sensing
controls and thus greater signal strength and specificity. To this end, near seamless
integration of optical fibers as sensors into everyday textiles is a real possibility,
making optical fiber textiles an undeniably attractive material platform for wearable
optical sensors [38].

As one important example, strain measurements are widely used in optical
sensing textiles. By integrating an optical fiber strategically into a garment along
a desired bending profile, the intensity of the reflected or transmitted signal through
the optical fiber can be measured and then correlated to a bending angle or
elongation. This class of optical fiber textile sensors can therefore be used, for
example, to measure and inform on the posture and spinal curvature of people
sitting for long periods of time [33, 34]. Additionally simple band based garments
can be cinched around the chest of a patient to report on the respiratory or
cardiac cycle. Macro and micro bending events, like strain can also elucidate
information on body movements. For example, hetero-core fibers are often deployed
in garments at strategic joints or flexions to act as targeted sensing probes or ‘optic
nerves’, reporting very high changes in attenuation based on subtle bending, flexing,
twisting, or stretching events [83, 84]. This sensing mechanism is possible due
to mismatched fiber core sizes which are spliced together to form the hetero-core
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junction. In this configuration, leakage of the guided mode into the cladding layer is
heavily modulated by any sort of bending action in the junction region. Hetero-core
structures, typically comprised of a 9 �m core single mode fiber (SMF) with a 2 mm
long 5 �m core bridge, can be incorporated into optical fiber waveguides without
adding considerable loss (e.g., �l dB). Most successfully integrated into gloves,
such optical fiber sensors have been demonstrated to provide precise biomechanical
information and body movement in real time for motion capture and physical
therapy applications [35, 36].

Pressure sensing has also been successfully demonstrated with polymer optical
fibers embedded into textiles. A deformable cylindrical polymer waveguide can be
designed such that direct pressure onto the waveguide in the transverse direction
can yield a measureable attenuation [9, 85]. To improve upon the mechanical
sensing capabilities of optical fiber sensors, some groups have shown material
optimization for specific sensing goals. For example Krehel et al. demonstrated
the force sensing characteristics of multi-mode fibers made of different mixtures
of silicon and polyurethane, showing a promising detectable force range (0.05–
40 N) with conversely muted attenuation responses to temperature and longitudinal
strain [85]. Material optimization can also be applied to integration of fibers into the
desired textile, i.e., specifically designed coating which match the texture of the host
textile, or engineering the polymer matrix of the waveguide to match the elasticity
of the host fabric. This type of engineering is not yet fully realized, but is expected
to be a major target of interest for commercial products aiming at optical fiber textile
technology.

Another widely explored optical fiber sensing element with potential use in
textile integration is the Fiber Bragg Grating (FBG). FBGs are based on multiple
interference effects induced by engineered modulation of the effective refractive
index of the fiber optic waveguide which can act as a wavelength selective reflector,
transmitter, or filter [85, 86]. Such spatial variations of the refractive index can be
readily induced in the optical fiber by means of phase mask lithography, or direct
writing techniques. Any changes to the periodicity, refractive index, or modal index
will induce a shift in the reflected or transmitted wavelength or optical band [87].
FBGs have long been used as necessary optical elements in fiber lasers, signal
filtering, narrow band sources, and numerous optical devices used by the telecom
industry. They also are quite conducive to sensing as they have small form factor,
allow for multiplexed sensing due to spectrally separated reflection/transmission
bands, and are sensitive to mechanical and environmental perturbations to the
grating periodicity or material permittivity [82, 88]. POF based FBGs have
demonstrated a markedly higher strain sensitivity (1.46 pm/�m at 1535 nm) than
that of silica optical fibers, and demonstrated a significant spectral shift of 32 nm
due to applied strain, far more than that of silica based optical fibers which have
markedly lower elasticity. FBGs are also bend-sensitive and have been integrated
into bedsheets, successfully identifying sleeping patterns related to sleep apnea [83].
FBGs have also demonstrated remarkable temperature sensing capabilities through
the implementation of polyester resin packaging around the FBG which helps
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amplify and restrict the signal responsivity to temperature, achieving a 150 pm/ıC
response, 15 times higher than that of a bare FBG [37]. They have also been
successfully integrated into medical garments as all-optical temperature sensors
with an accuracy of 0.8 ıC for patients undergoing hyperthermic therapy [11]. Such
temperature sensors embedded into medical garments could also inform doctors of
early signs of fever or infection, thus reducing the response and treatment time.

Another successful use of optical fiber textiles is for use inside magnetic
resonance imaging (MRI) machines. Due to the high magnetic field used in MRI,
electronic sensors are not functional while all optical sensors remain as a viable
alternative. Monitoring patients undergoing MRI is often times necessary if the
patient is in a high-risk state, or when patients are prone to hyperventilation phe-
nomenon within the claustrophobic MRI chamber [38]. Optical fiber based sensor
platforms embedded into textile have successfully been used to monitor the entire
respiratory cycle of MRI patients by tracking abdominal and thoracic movements by
means of macrobending, FBGs, and optical time-domain reflectometry [11, 39–41]
(Fig. 1).

Fig. 1 (a) All optical respiratory monitoring harness for use during MRI with both abdominal
(white band, lower middle) and thoracic (black band, upper right) sensing textiles, (b) example
of textile-integrated macro-bending fiber sensor for abdominal respiratory monitoring, (c) FBG
sensor for thoracic respiratory monitoring, and (d) embedded Optical Time Domain Reflectometry
(OTDR) sensor made from 500 �m core PMMA step-index POF for abdominal respiratory
monitoring [38, 39, 48]
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Distributed Bragg Reflector (DBR) based fiber lasers have also been proposed
for arterial pulse monitoring [89]. By positioning a fiber laser above an artery
which applies subtle changes in pressure during the cardiac pumping cycle, the beat
frequency of the laser is shifted due to a purely laterally applied pressure which in
turn induces birefringence in the fiber laser. This sensing mechanism for Heart Rate
Monitoring (HRM) applications is exciting, however it also appears to be inherently
prone to motion artifacts, as the embedded fiber could also sense many different
sources of pressure as subjects are moving. Therefore this technology might be
best restricted to applications where other instruments cannot be implemented
due to various limitations, such as in an MRI device. The same concept has also
been proposed to noninvasively monitor respiratory patterns and temperatures of
newborns at risk of Sudden Infant Death Syndrome [38].

Although fiber optical textiles offer exciting and versatile sensing platforms,
several challenges must be addressed to make this sensing technology more feasible.
For example, power-loss can easily be monitored over a given integrated fiber,
however relating that signal over time to precise movements with multiple degrees
of freedom is a significant challenge [79, 90]. Advanced computational methods
and modeling are thus necessary to decouple the desired information from the
convoluted signal that is detected. Such signal processing methods will be discussed
in a later section. Secondly, although the optical fibers themselves are easily woven
to form traditional textiles, the light-source and photo-detector components are
primarily rigid and require precise input and output coupling to achieve adequate
SNR and robustness over time. Especially if the light is external to the wearable inte-
grated system, coupling becomes a major limitation of performance. Furthermore,
sensors which rely on tunable light sources or optical spectrum analyzers must be
reconsidered for lower cost and ‘on-the-go’ types of use. It is simply not practical
for various applications to have a user tethered to a bulky, fragile, and costly piece
of optical equipment. Therefore, innovative approaches must be researched which
use simple and low-cost laser diodes, LEDs, OLEDs, photo diodes, or CMOS
technology to fully realize these types of wearable textile sensor platforms.

Colorimetric Sensing Elements

Colorimetric sensing elements have a promising future as wearable optical sensors.
Such sensing substrates have the advantage of simple reflection based read-out
and intuitive signal recovery as the burden of specificity is typically shifted to the
chemically modified substrates or colorimetric reactions. Specifically, these sensors
enable continuous monitoring of targeted analytes in sweat or other bio-fluids such
as tear or saliva, and could even be used in medical bandages to monitor wound
healing. Colorimetric sensors have yet to reach commercial applications within the
context of wearable optical sensors as many challenges remain in finding sensitive
and reliable dyes or reaction elements that can be integrated into textiles or wearable
lateral flow assays.
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Specifically, for analyzing sweat, fitness tracking applications could greatly
benefit from pH sensitive colorimetric sensors, by providing a sensing substrate
around which integrated devices can be developed [66]. Understanding sweat pH as
well as concentration of specific analytes such as sodium, potassium, and lactate, is
crucial to fully evaluating physical exertion and athletic performance, and also has
the possibility of anticipating health problems in real time [28, 29, 91]. Several
groups have demonstrated integration of colorimetric sensors into textiles. For
instance, bromothymol blue is a pH sensitive dye which has been integrated into
textiles by using ethyl cellulose as an enabler layer. Ammonium bromide was
then added as a fixing layer to ensure a durable sensing material. Absorption of
this dye can be readily measured with a simple one color illumination scheme to
determine the pH of sweat of exercising subjects in a patch based configuration
with an accuracy of 0.2 pH [29, 66–68]. Other recent work has shown that pH
sensitive dyes can be combined with pH insensitive dyes to tailor the color change
to one that is more visible to the human eye, or that exhibit more intuitive, ‘traffic-
light’ like color changes for applications like wound healing monitoring [69]. These
classes of tailored dyes can then be covalently bonded to conventional fabrics
such as clothing or washcloths for real-time pH measurements. Additionally real-
time pH measurement in sweat has also been achieved using 7-hyroxyphenoxazone
chromophore which has a wider, and thus more versatile, pH range of 4.3–8.3 with
an associated red to blue color change. By using litmus as an anchoring material
in a mesoporous SiO2 sol-gel matrix, a fast response to pH changes was readily
established with albeit lower accuracy of 0.5 pH than previously demonstrated [26].

Although much progress in viable sensing substrates has been made, only a few
fully integrated optical devices have been demonstrated for sweat analysis thus far
with limited success [29, 67]. One group has developed a specially designed fluid
handling system with integrated colorimetric textile and simple optical measuring
method including a red LED (660 nm) and photodiode in reflectance mode for
absorption measurements. The overall system is compact and low-cost, and could
be multiplexed with parallel colorimetric textiles embedded in a fluid handing
chamber with corresponding LEDs and photodiodes. The system demonstrated an
accuracy of 0.2 pH when tested on exercising users. One major drawback of this
integrated system is that the sweat collection method takes roughly half an hour
to draw a substantial amount of sweat to conduct a measurement, leading to a
major time lag between the sweat analysis and patient body chemistry. On the other
hand, other more recent electronic sensors have had improved success in this area,
demonstrating multiplexed measurements of multiple ions, temperature, and pH all
with an entirely wireless wearable device [92, 93].

Additional effort is still being made for tackling other niche applications.
Colorimetric sensing substrates have also been actively explored for specific ion
sensing, therefore providing a specific, multi-analyte platform to understand bio-
fluid composition and reaction to physiological or environmental changes. Recently
Lawsone (2-hydroxy-1,4-naphthoguinone or HNQ) was demonstrated as an effec-
tive chemical solution for detecting and quantifying the presence of NaC and KC

ions, which are important biomarkers in sweat, which elucidate the onset or active
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condition of de-hydration. As outlined by Al-Omari et al., HNQ could readily be
incorporated into a wearable skin patch which could be read with a portable UV
reflection based reader. HNQ, extracted from henna leaves, is not known to be
harmful to human skin, and thus is a promising bio-compatible sensing substrate. It
shows strong absorbance between 400 and 500 nm when doped with electrolytes,
and has recently been fully realized as part of an electrolyte sensing assay [27, 28].

Though many exciting materials and reactions have been demonstrated within
the context of wearables, research into colorimetric sensing substrates still must
overcome issues of reversibility, calibration (including person-to-person variations),
and bio-compatibility. There is also a need for compact and cost-effective optical
systems with an ergonomic form factor such that they can be integrated into a
patch like configuration. Such compact readers could also potentially remove the
burden of large sample volumes, and thus avoid long sample collection times
by requiring only small active areas with which bio-fluids can be absorbed and
reacted. Furthermore, optical systems must be designed with smart self-referencing
to remove the need for frequent calibration that is required by many current
colorimetric assays due to the inconsistent nature and environmental variations of
some reactions [94].

Plasmonic Sensing Substrates

Plasmonic substrates also hold promise as wearable optical sensing elements [95].
The fundamental operation of these sensors involves coupling incident light into
plasmonic resonances, defined by collective electron oscillations which occur at
the interface of negative and positive permittivity material. Such coupling is highly
dependent on the nano-structure geometry and the refractive index environment
in the near field of the interface. Therefore such substrates can be engineered to
have highly localized electric field intensities in specialized locations which can be
functionalized to selectively capture analytes. The captured analyte in turn changes
the local refractive index and induces a spectral shift of the plasmonic resonance
which can be read in the far field via a transmission or reflection based optical
readout scheme. Additionally the localized enhanced electric field intensity of
plasmonic structures can be used to effectively enhance the Raman scattering of
molecules. Therefore highly sensitive molecular detection measurements can also
be made with such sensing substrates. Much progress has been made in fabricating
plasmonic sensors with low-cost large-area patterning techniques, and many groups
have demonstrated the fabrication and transfer printing of plasmonic sensors on
flexible substrates such as paper, PET, PDMS, and even conventional tapes and
plastics [96–98]. Recently, bacterial-cellulose (BC) paper has been showcased
as a low-cost, bio-compatible, bio-degradable, sustainable, and flexible substrate
for plasmonic nano-particles and quantum dots [25]. Synthesized by Acetobacter
xylinum (A. xylinum), which is a nonpathogenic bacteria often found in fruits,
this material can be made into transparent paper with a dense nano-network of
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cellulose fibers. Due to its optical transparency, BC based paper with embedded
plasmonic nanoparticles demonstrated �2.5 fold improvement in signal intensity
over conventional nitro-cellulose based membranes, indicating BC paper as an
effective pre-concentration platform and also a strong colorimetric sensing substrate
for wearables. These flexible substrates pose a unique niche for plasmonics, where
sensing can be performed on uneven surfaces such as on the human body, making
conformal contact with the skin or clothing. Therefore future research directions
in wearable plasmonic sensors aim to demonstrate highly sensitive measurements
in robust sensing schemes such as sweat patches for ion or protein detection, on
medical garments for wound healing analysis, or integrated into other textiles for
ubiquitous monitoring of environmental factors around a user.

Flexible plasmonic sensors, however, must first address a few challenges before
being integrated as wearable optical sensors. First, although surface chemistry has
been successfully implemented for a large range of analytes, including proteins,
allergens, and even whole viruses such as HSV and HIV, further testing must be
done to ensure robustness, specificity and sensitivity in a wearable configuration
[99]. Surface modification of such sensors must be convincingly demonstrated to
be repeatable, specific, and tolerant to the body chemistry and motion of the user
during its entire operation and sample collection. Furthermore, such chemistry, if
in contact with the human subject, must be shown to have no negative biological
or health effects. Secondly, the effects of mechanical deformations on the sensor
signal must be carefully examined. For example inelastic stretching, micro-cracks,
and material degradation can dramatically affect the coupling or resonance location
as well as the quality-factor (Q-factor) of the plasmonic sensor, adding unwanted
noise and/or bias to the measurements. Therefore, smart, built-in references must be
included in the sensor structure, and computational techniques and adaptive learning
must be considered to derive the desired signal from the sensor response and various
forms of noise and deformations that are actively tracked. Additionally, integrated
spectral readers similar to those already demonstrated for colorimetric wearables,
or detached mobile readers which obtain spectral shift information after sample
collection must still be developed and extensively tested.

Fluorometric Sensors

Fluorescence based sensors also show potential to be integrated into wearables.
Though, not yet widely investigated, improvements in wearable optical hardware
and signal processing suggest potential use of fluorometric sensing techniques in
wearables which either obtain a fluorometric signal inside the human body such as in
blood, or in entirely external devices which emit a fluorescence signal encoded with
chemical, mechanical, or biological information imposed by the user. For example,
work by Azenbacher et al. proposed fluorescent attoreactor mats as sensor arrays,
[70] where electro-spun nanowires doped with amine or fluorophore precursors are
overlapped in a grid oriented orthogonal to each other such that attoliter sized
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Fig. 2 Detection of multiple heavy metal ions via fluorescent attoreactor matts. (a) Response of
cross-reactive attoreactor matts over four emission channels; (b) Linear Discriminant Analysis
(LDA) classifying heavy metal ions; (c) attoreactor mask fabricated onto a glove via shadow mask
deposition; (d) fluorescence of attoreactor matt under 365 nm; (e) Partial immersion into 20 �m
Co2C ion solution and (f) the resulting fluorescent attenuation with 365 nm excitation [70]

fluorescent reactions occur at the junctions of these fibers. Metal ion detection
can be achieved through the use of fluorophore-polyamines which bind to metal
ions and exhibit changes in their characteristic fluorescence [100]. Multianalyte
discrimination was demonstrated with the proposed attoreactor mats, by fabricating
them with three different fluorophore precursors (dansyl chloride, fluorescamine,
and 7-chloro-4-nirobenz-2-oxa-1,3-diazole) thus creating a cross reactive sensor
array. With the aid of Linear Discrimination Analysis (LDA), individual ions in
a panel of ten different heavy metal solutions were uniquely identified. These
attoreactor mats can be fabricated in situ onto textiles using a shadow-masking
technique, having the ability to conform to rounded and even surfaces providing a
unique wearable fluorometric platform for applications on hazmat suits, laboratory
gloves, or sensing skins. However, the small volume of these fluorescent probes
provides a very weak signal, thus far only demonstrating metal ion detection with
relatively large concentrations on the order of 200 �M (Fig. 2).

Organic Light Emitting Diodes (OLED), Organic Photo-Diodes
(OPD) and Display Technology

Display technology has been rapidly progressing due to the commercial electronics
industry. OLEDs have analogous operation to that of their non-organic counterpart,
however involve organic semiconductor materials, often polymers, which can offer
several key advantages. For instance, compared to current flat panel displays,
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OLEDs exhibit improved color contrast, increased power efficiency for darker
colors, lower cost due to scalable roll-to-roll type fabrication, and can be produced
on flexible substrates [101, 102]. For similar reasons OPDs have been of interest
to the photovoltaic community. Their solution-based processing allows for low-cost
large-area fabrication, and their large absorption coefficient allows for ultra-thin
films to absorb large amounts of incident light. Another attractive feature of OLEDs
and OPDs is the wide range of emission and absorption peaks defined by the choice
of organic semiconductor molecule or polymer. Taken together, this technology is
naturally of interest for application in wearable optical devices due to its low-cost,
large area fabrication, and flexible nature. Additionally, transfer printing techniques
have similarly brought inorganic optoelectronics to flexible substrates, and exist in
parallel as a viable technology [43, 103, 104].

For example, current pulse oximeter devices are limited in impact and perfor-
mance by the rigid nature and large scaling cost of conventional optoelectronics
[30]. Such devices would greatly benefit from light emitters and sources which
could conform over a large area of a user to obtain more, perhaps also spatially
encoded, information of blood profusion over a wider area of interest. Additionally
their cost-effectiveness would allow for the creation of one-time use type designs
with less stringent life-time requirements which could also help prevent the spread
of infections and reduce the burden of sanitization for hospitals or clinics [31, 101].

Recent work has moved towards this goal of fabricating an all-organic optical
sensor for measurement of PPG and pulse oximetry [30]. In this study, green and
red OLEDs (532 nm and 626 nm, with 20.1 mWcm�2 and 5.83 mWcm�2 irradiance,
respectively) were successfully used to measure heart rate, blood pressure, and
blood oxygen levels. This study showed the benefits of flexible devices in reducing
the parasitic current caused by the intrusion of ambient light. Using skin phantoms
representing the human finger, a 90% reduction of parasitic current was demon-
strated when the all-organic pulse oximeter was conformed around the perfuse
object as opposed to a rigid design which is prone to the leakage of ambient light.
The PPG signal received with the all organic device was strong enough to extract the
relevant cardiac metrics, however, had overall a lower signal strength than the non-
organic device with 3 and 2.5 mVp-p signal as comparted to 26 and 16 mVp-p for
green and red wavelengths, respectively [30]. Such a demonstration paves the way
for all organic devices which have the potential for one time, disposable operation,
providing much cheap alternatives to conventional devices [30, 44] (Fig. 3).

Furthermore, since OLEDs and OPDs are made from thin films deposited
by low temperature fabrication techniques, they can be more easily integrated
with polymer/plastic microfluidic systems. Many groups have already successfully
integrated OLEDs and OPDs with microfluidic systems mainly for dye concen-
tration assays [31]. Such integration of microfluidic devices with emitters and
photo-detectors might be important for wearables dealing with bio-fluid collection
systems, including e.g., sweat patches [105].

However, there are also various challenges facing OLED and OPD based
wearable technologies and devices. For example, the maximum optical power of
OLEDs and responsivity of photodetectors must still be improved by 150 and
50 times, respectively, to compete with their inorganic counterparts [31, 101].
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Fig. 3 (a) An all-organic pulse oximeter prototype. (b) Example of fully integrated future all-
organic pulse oximeter made for disposable, one-time-use [30]

Otherwise, the benefits of the OLED and OPD technology might not be fully
realized due to poor SNR performance, especially when dealing with transmission
based set-ups which rely on optical penetration through thick and dense tissue
as well as blood. There is therefore an imperative need for collaborations across
the fields of polymer science, bio-medical optics, and signal processing to bring
these type of devices to fruition [31, 105]. Also, one limitation of OLED and OPD
devices is their relatively short lifetime. To mitigate this limitation, encapsulation
technology is actively being explored to enable longer lifetimes [106, 107].

Integrated Wearable Systems

In addition to fundamental research currently being pursued in sensing materials
and substrates, many successful fully integrated wearable optical sensors have also
been demonstrated and even made their way into commercial space. Continuous
monitoring of physiological signals, such as heart rate, blood oxygen level, blood
pressure, and respiratory rates is now routinely possible [49–58]. Other wearable
sensing systems have also been designed for more specialized applications, enabling
information about the human body to be measured non-invasively during physical
exertion, high-stress moments, or in response to other stimuli [59, 108]. Wearable
optical sensors have also been produced for specialized medical purposes, monitor-
ing of chronic conditions, and for monitoring of patients at home [52, 109].

Continuous Human Body Monitoring Systems

Photoplethysmogram (PPG) Sensors and Fitness Tracking

Basic physiological signals contain a wealth of information about our health.
Consumers are now well-versed with the idea that every step, heartbeat, and breath
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are to be recorded and can be processed to provide continuous feedback on their
health and daily activities. This trend is therefore putting tremendous incentive on
companies to make accurate, affordable, and robust continuous body monitoring
systems [7]. Thus far, much of the emphasis of wearable optical sensors has
been on cardiac monitoring. Specifically, optically acquired photoplethysmogram
(PPG) signals, have been at the focus of many wearable devices. PPG signals are
volumetric measurements of an organ, commonly blood vessels in the subcutaneous
tissue. By illuminating a perfuse area of the skin and measuring the reflected or
transmitted signal, expansion and contraction of arterial volume due to the pumping
of blood can be monitored through changes in optical absorption. The frequency
of the fluctuating optical absorption (i.e., the AC component of the PPG signal)
is therefore the pulse rate, and the magnitude of the AC component corresponds
to the blood pressure in both the systolic and diastolic parts of the cardiac cycle.
Blood oxygenation (SO2) can also be measured this way through the use of two
illumination wavelengths which have different relative absorption by oxygen loaded
hemoglobin [42, 45, 46]. Transmission mode PPG sensors typically produce a
stronger signal and less distortion due to motion artifact when compared to reflection
mode. However, to obtain a signal, transmission mode PPG sensors are limited in
their possible signal site/location as they need to be located in places with significant
blood profusion, where optical signals have a chance of penetrating to the other side
of the tissue to be captured by the receiving photo-didoes.

Wearable optical heart rate monitors (HRM) based on PPG have become
wildly popular, with numerous tech companies and products being developed and
marketed. Sony, Microsoft, Apple, Motorola, FitBit, MioGlobal, and Masimo, and
others, have all created optical PPG sensors to be worn on the wrist, around the
chest, and even in-ear designs with headphone based optical sensors operating in
reflection mode [50, 51, 54, 57, 60–62]. Also of interest are ring PPG sensors due
to their compactness and ability to achieve stronger signals through transmission
based measurements due to location on the finger [63]. Today, commercially
available sensors perform a myriad of different functions, both optical and electrical,
measuring PPGs for heart rate monitoring as well as blood oxygen levels, tracking
the number of steps, respiratory rate, temperature, and even sleep quality estimation.
Though they have had commercial success, much controversy exists about the
absolute accuracy and reliability of these “wellness” devices especially during
high intensity activities [46]. To our knowledge no large-scale participant, peer-
reviewed studies exist confirming the accuracy, tolerance to motion artifact, and
user-to-user variability of commercial wearable HRMs [64, 65]. One of the reasons
for much of this controversy is due to the fact that the intensity of the detected
PPG signal is heavily position dependent, limiting the accuracy and repeatability
of the wearable PPG instrument when users do not have the sensors properly or
consistently secured. To combat this difficulty, Smith et al. suggest a checkerboard
type design of alternating OLED and pin photodiode pixels [102]. Upon start-
up operation, the PPG signal would be recorded across the array of sensors and
eventually lock onto the sub-region within the checkerboard that has the strongest
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signal, and subsequently reduce DC background noise by turning off OLED
pixels not directly adjacent to the perfusion location responsible for the strong
signal [102].

Additional all-optical methods have been proposed for monitoring the cardiac
cycle within an MRI. For example, Rothmaier et al. demonstrated the use of
photonic textiles for pulse oximetry readings. By weaving polymer optical fibers
into the forefinger of a glove, the authors were able to retrieve a PPG in transmission
mode when the finger was illuminated by an external source (690 nm, 830 nm). This
dual wavelength illumination was in turn used to calculate arterial oxygen saturation
from the modified Lambert-Beer Law. By examining the coupling efficiencies
of different weaving and embroidered configurations, the authors were able to
optimize their POF integration to achieve nearly 100 times improvement of in-
coupling efficiencies over the un-altered woven POF fibers by using a combination
of coupling enhancement techniques such as roughening the fiber surface, adding
fiber back reflectors and strategic fiber cuts in the direction of the incident light
[42]. This novel approach is attractive, however it must still be further improved
in terms of coupling efficiency to obtain a strong SNR in the PPG signal, and must
also address the same major challenges related motion artifacts as conventional PPG
optical sensors face.

Wearables for Monitoring Environmental Conditions
and Exposure

One example of a wearable technology for environmental monitoring is a golf-
ball sized device made by Tzoa [110]. This air-quality and UV exposure monitor
operates as a wearable clip-on, e.g., to be worn on a boot, coat, purse, or briefcase.
By utilizing a low power air pump and analyzing the scattering of micron sized
particles in the air from a laser diode, this environment monitor claims to count
air particles down to 1 �m in size, giving the user quantitative data on air quality
[111]. This type of device can further be used to create crowd-sourced maps of
environmental quality to inform possible health risks via a cloud-connected app. It
further can alert the user if they have been exposed to an abundance of UV radiation;
although the value or health relevancy of this metric is questionable since it does
not report the real UV exposure of the skin or the protective condition of the skin
(Fig. 4).

Similarly L’Oreal, in collaboration with healthcare company MC10 which
focuses on flexible electronics, has proposed a UV sensitive temporary tattoo,
dubbed ‘My UV Patch’ [113]. This temporary tattoo can be applied before a day
outside and will undergo color changes when exposed to harmful amounts of UV
radiation indicating to the user to protect their skin.
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Fig. 4 Tzoa enviro-tracker and mobile app for air-quality mapping. Image credit: Clad Wearables
LLC [112]

Mobile Computing Trends Enabled by and to Improve Wearables

Commercial electronics and the rapid progress of mobile computing have enabled
powerful platforms and new modalities for wearable optical sensors. Augmented
reality, pattern recognition and classification of both the external environment and
the user’s own body movements are emerging as part of the wearable optical sensor
tool-box [114–116]. Additionally, CMOS and CCD sensors are currently trending
towards capturing giga-pixel images, at ever-increasing frame rates from a user’s
immediate environment [1, 117]. This massive amount of information can be viewed
as a gold-mine for the field of health informatics, having the potential to provide
data-driven diagnosis for physicians, learn and monitor chronic conditions, and
even detect possible health-related warning signs as anomalies in the continuously
monitored health metrics.

Specifically, recent work has showcased the usefulness of the Google Glass
platform as a tool for surgery, diagnostics, environmental tracking, and even at home
health monitoring [71, 72, 108, 115, 118]. With an incorporated dual core processor,
2 GB of RAM, a heads-up-display (HUD), and 5 MP camera, the Google Glass
is especially useful as a platform in scenarios where professionals need a quick,
hands-free, and voice-activated interface that is connected to e.g., local or remote
servers. For example, rapid diagnostic tests (RDTs) provide a widely used, low-cost
diagnostic platform for a wide array of bio-markers [73, 119, 120]. By leveraging
the imaging and processing capabilities of Google Glass, Feng et al. demonstrated
high-throughput, accurate reading and quantification of HIV and Prostate-Specific
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Antigen (PSA) RDTs [71]. Images were taken entirely hands-free, and a support
vector machine based algorithm was used to process the acquired images to arrive
at a diagnostic result for each RDT. Quick response (QR) codes were also used to
tag the read RDT of interest so that supplementary information corresponding to
the test and/or the patient can be acquired in addition to the colorimetric test. In this
example, the computation was done on a server (which can simply be a local PC) and
the final processed results were returned to the screen of the Glass for visualization
by the professional user. Other recent work with Google Glass demonstrated
nondestructive quantification of chlorophyll concentration in leaves over a wide
range of plant species [118]. With a custom-designed hand-held sample holder
and illumination unit, multi-spectral images of leaves were taken using a Google
Glass application. These images were then analyzed and mapped into chlorophyll
measurements through a plant-independent calibration curve, suggesting the use of
Google Glass as a viable wearable platform for monitoring plant health even in field
settings. Additionally, due to its cloud connectivity, Google Glass, similar to the
Tzoa enviro tracker, can also be used to create spatio-temporal measurement maps
[71, 118, 121] (Fig. 5).

Fig. 5 (a) Google Glass based chlorophyll measurement; (b) custom-designed leaf holder and
illumination unit; (c) Google Glass based RDT reader; (d) image capture of the test strip and the
QR code as well as the associated processing flow [71, 118]
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Recent work has also utilized Google Glass for Image Guided Surgeries (IGS)
[72]. IGSs leverage emerging image capture technologies, computational power, and
HUD hardware to provide additional visual information to enhance the surgeon’s
abilities to monitor the surgical area of interest, classify tissue types (e.g., cancerous
versus healthy), and make informed decisions throughout the surgery [74–76]. To
better exemplify the scale of the problem, nearly a quarter of breast cancers are not
fully resected, leading to recurrence, and nerve damage anywhere from 20,000 to
600,000 patients a year, just in the U.S. [72, 116]. Therefore, there is much interest
in developing wearable IGS platforms to provide hands-free, voice-controlled, and
real-time augmented reality interfaces through the use of wearable optical sensors.
One of the main emerging modalities for these IGS devices is to capture, e.g.,
via a CCD camera, the near-infra-red (NIR) fluorescence that is emitted from
fluorophores chemically tagged to a tissue of interest, and then to digitally fuse and
display in real time the fluorescence emission with the standard reflectance image
being viewed by the surgeon [72, 74–77]. NIR is a popular wavelength regime
for such a platform as it is around the minimum absorption window of various
biomolecules including blood, water, and lipids enabling deep light penetration into
tissue [75]. Various IGS technologies are currently being translated into clinical use,
and if successful could transform surgery, greatly reducing re-excision procedures,
surgeon-based errors, and deaths caused by cancer or other operable diseases
[76, 78, 122].

Another vital computation-driven feature of wearable optical sensors is the
development of robust algorithms to extract signals from complex and motion-
spoiled data. With the abundance of computational power that has come with
the advance of Moore’s Law, processing times are becoming less of a concern,
especially with server based processing schemes. Therefore more attention has
been placed on the utilization of advanced machine learning (deep-learning) and
computer vision algorithms for the purposes of extracting the relevant signal reliably
over many different human specimens in a wide array of environments, ambient
light conditions, and active scenarios [47, 123–126]. A common misconception in
the field about the use of server based computation to empower mobile imaging,
sensing and diagnostic tools is its relevance to resource limited settings, where
internet connectivity, bandwidth or cost could be troublesome. In fact, without
internet connectivity, almost all of these advanced processing schemes, signal
reconstruction and machine learning algorithms can simply be implemented using
a laptop computer functioning as a local server for the mobile units deployed at the
point of interest.

Anomaly detection, prediction, and diagnostic decision making from immense
amounts of low-level sensor data are the current cornerstones of machine learning
algorithms [125]. To name some examples, artificial neural networks have been
actively explored for analyzing attenuation data from a series of macrobending
events amid motion artifacts in complex hetero-core fiber network based sensors
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[84, 127–129]. Most successfully, the development of motion tolerant algorithms
for PPG signal extraction has been successful to bring that technology to the
commercial market [90, 130]. Specifically, Masimo’s signal extraction method and
algorithm for pulse oximetry implement radiofrequency and light shielded optical
sensors, digital signal processing, and adaptive filtration to combat various errors
introduced by motion and misalignment [46].

Conclusions

This chapter has outlined emerging sensing elements for future wearable sensing
devices as well as discussed fully integrated systems and their recent trends.
Taken together, optics will play a pivotal role in wearable technologies, enabling
noninvasive measurements of e.g., movement, blood flow, various biomarkers in
bio-fluids, and the user’s external environment, among many others. Going forward,
optical fibers as well as colorimetric, plasmonic, and fluorometric sensors with
optical readout will begin to emerge as sensing units in wearables. As issues of
specificity and sensitivity are better addressed, these types of sensing elements
when coupled with wearables can enable highly personalized health tracking,
preventative care, and medical treatment. Even ingestible sensing schemes are
conceivable, with external wearable optical readout platforms that can be used
for monitoring drug delivery, sensing specific analytes, or opto-genetics [131].
Existing optical wearables, including PPG monitoring, environmental trackers, and
hands-free physician assistant tools, are currently experiencing significant growth in
terms of their market size and user base. As a result, wearable optical sensors will
become more ubiquitous in our everyday lives, playing an active role in capturing
an elaborate ensemble of data and useful information, and acting as an impactful
tool with which we can improve our overall health and well-being.
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Introduction to Part III: Markers to mHealth
Predictors

James M. Rehg, Susan A. Murphy, and Santosh Kumar

Abstract Given the ability to extract physiological and behavioral markers from
continuous streams of sensor data, a key challenge is to convert the resulting marker
sequences into predictions of risk for adverse outcomes, that can be used to inform
interventions. The four articles in this part cover visualization, models for temporal
data, and a case study on predicting high-stress events.

Parts 1 and 2 provided examples of the wide variety of mobile health applications
which are enabled by a diverse array of sensing technologies. The physiological
and behavioral markers that can be derived from these sensors provide a powerful
set of measures for assessing an individual’s current state of health and predicting
their risk for adverse health outcomes. The ability to predict risk is critical because
it provides an opportunity to prepare an individual pre-emptively for an anticipated
challenge or stressor, increasing the likelihood that they can maintain homeostasis
and avoid the precipitation of an unwanted outcome. During an attempt to quit
smoking, for example, the goal is to maintain abstinence and avoid taking even a
single puff of a cigarette (i.e. a lapse), to prevent a return to smoking (relapse).
Research has shown that individuals who experience a steep increase in stress are
at a much higher risk for lapse or relapse. Therefore, stress management is an
important concern in smoking cessation. The ability to predict a state of increased
risk for high stress before it occurs would enable novel mobile interventions for
managing stress and maintaining abstinence. Similarly, individuals who are trying
to maintain a healthy diet could benefit from knowing in an advance about the risk of
potential triggers (including stress and exposure to fast food outlets and advertising)
that could precipitate a bout of unhealthy eating.
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There are three factors that make it challenging to predict future states of risk
from streams of marker data obtained from on-body sensors. First, states of risk can
be difficult to measure, as they may be only indirectly-related to available markers
and the markers themselves can be noisy and ambiguous. For example, consider
the construct of negative affect, which refers to a dimension of negative mood that
includes a variety of aversive emotional states including anger, fear, and disgust.
The presence of negative affect is known to increase the likelihood of relapse during
a quit attempt, and negative affect and stress are both important predictors for lapse.
While stress can be measured by sensing changes in physiology, measuring negative
affect is more challenging due to its complex manifestation in facial expressions,
speech (with linguistic and paralinguistic elements), and social behavior, which can
be difficult to measure in the mobile environment. The development of effective
predictors is also hampered by a lack of validated theoretical models that link
core behavioral constructs such as affect to available sensor-based markers. The
second challenge is the need to develop personalized models for prediction, since
individual differences are a substantial cross-cutting factor in mobile health. This
requires access to significant amounts of longitudinal data and raises the question
of how to label and organize such data to support the application of supervised
machine learning methods, without creating undue burden on participants. The third
challenge is the need to make predictions of risk in real-time using continuously-
worn devices, so that interventions can be triggered at the most appropriate times
and in the most appropriate forms to maximize health outcomes. This implies that
markers and predictors should be computable with a sufficiently low latency to
produce adequate response times and under a suitably small power budget so as
to maximize battery lifetimes.

Two basic issues in designing a predictor are to first identify which marker
streams have predictive value and second determine the temporal patterns of
marker values which are informative about the desired prediction. This can be
achieved using tools for the exploratory analysis of temporal data, a process which
combines signal modeling, pattern mining, and visualization. The first chapter
in this part, “Exploratory Visual Analytics of Mobile Health Data: Sensemaking
Challenges and Opportunities” by Polack et al. (10.1007/978-3-319-51394-2_18)
describes five key issues that arise in designing an exploratory visual analytic
system that is tuned for the properties of mHealth data. These issues are: analysis
of provenance and uncertainty to support the identification of errors and noise in
marker streams, effective visualization approaches for multimodal temporal signals,
pattern mining and trend analysis, interactive cohort selection and formation, and
the need to support a diverse set of users (including participants and clinicians)
and accommodate their diverse interests and goals in the analysis of mHealth data.
Each of these issues is discussed at length and possible approaches and solutions
are presented.

The second and third chapters describe two complementary machine learning
approaches to modeling the temporal structure of multiple sequences of markers. In
general, there is a choice between generative models, which provide a probabilistic
description of a data sequence in terms of latent (hidden) variables evolving in time,
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and discriminative models, which attempt to directly predict the target values of
interest from a set of samples. Each approach has its strengths and weaknesses.
Generative models are easily interpretable (hidden states often have clear semantics)
and it is easy to incorporate priors and constraints on the model structure, which
can compensate for having only limited amounts of training data for model fitting.
Discriminative models, on the other hand, can be optimized for a specific prediction
task without the need to model the data distribution, and can yield higher accuracy.
Generative models can be particularly useful for forecasting problems where the
goal is to predict not just a single point estimate but a sequence of future values, and
in situations where uncertainty about the predictions should be explicitly modeled.
A classic example of a generative model for temporal data is the Hidden Markov
Model (HMM), which is widely used for applications such as automatic speech
recognition (ASR) and biological sequence analysis.

The standard HMM is suitable for data which is regularly-sampled in time, such
as a sequence of speech samples or other time series data. In the second chapter,
“Learning Continuous-Time Hidden Markov Models for Event Data” by Liu et al.
(10.1007/978-3-319-51394-2_19) the authors develop a Continuous-Time HMM
(CT-HMM) which is suitable for data that arrives irregularly in time (e.g. event
data), where both hidden state transition times and observation times are distributed
on a continuous timeline. A CT-HMM is well-suited for event data, which arises
frequently in health applications. A standard example is an Ecological Momentary
Assessment, which can be conducted at arbitrary times throughout the day. Other
examples of physiological and behavioral markers that constitute event data are
moments of high stress and visual exposure to advertising. The focus of the article
is on developing efficient computational methods for model fitting, by addressing
the computational cost of marginalizing out the unknown, unobserved state tran-
sitions in the course of Expectation-Maximization-based parameter learning. The
performance of the method is illustrated through visualizations of a CT-HMM state
transition model trained on a longitudinal glaucoma progression dataset.

In contrast to the generative approach to temporal data modeling, the discrimina-
tive approach offers the most direct path to developing a model with high prediction
accuracy. This is particularly true of recent deep learning models, which can
synthesize a highly-tailored feature representation given a sufficiently-large quantity
of training data. Deep models have led to the highest accuracies on benchmark
datasets across a variety different domains including computer vision and speech
recognition. The third chapter, “Time Series Feature Learning with Applications to
Health Care” by Che et al. (10.1007/978-3-319-51394-2_20) addresses the problem
of developing deep models for the kinds of heterogeneous time series data that arise
in mobile health applications. Their solution to the challenge of insufficient training
data is to leverage the availability of domain knowledge in the form of clinical
ontologies (such as the ICD-9 system) which impose a hierarchical relationship
structure on the space of output labels. This can be represented as a tree-based prior
which is incorporated in the training loss via a graph Laplacian regularizer.

A second problem that arises in the case of temporal data is the need to
model trajectories of varying duration in order to be able to detect patterns that
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occur at different temporal scales. For example, in a sliding window approach to
event detection, it may not be clear a priori what window size and stride length
will give the best performance. A brute force approach would involve training
multiple independent models with varying window sizes. The authors demonstrate
that speedups of more than 50% can be obtained through incremental training, in
which the weights for a longer duration network are initialized using a previously-
trained shorter duration model. This approach also supports the combination of
features across multiple temporal scales, improving classification accuracy. The
final contribution of the article in an approach to the problem of interpretability
based on mimic learning.

The fourth chapter in this part, “From Markers to Interventions: The Case of
Just-in-Time Stress Intervention” by Sarker et al. (10.1007/978-3-319-51394-2_21)
presents a case study on the development of a predictor for episodes of high stress
which can be used to trigger stress interventions. The article ties the themes of
this part together in the context of a smoking cessation application. The goal is
to develop a predictor for episodes of high stress that can be used as a trigger
for stress reduction interventions. The starting point for predictor development is
the collection of time series data from ECG and respiration sensors during both
a laboratory study where stress is induced, and a field study containing naturally-
occurring periods of stress. A continuous stress measure, cStress, is produced by
classifying the time series data at one minute intervals using a hand-designed feature
set. Particular care is taken to address potential confounds such as physical activity,
which produces a physiological response that can be confused with high stress.
Based on a conceptual model of the temporal dynamics of high and low stress
events, a detector for stress episodes is developed from the cStress marker using
MACD trend analysis. Based on the trend analysis, it is possible to identify the
situation in which a participant is experiencing recurring bouts of high stress. In this
situation, the likelihood of continuing periods of stress is high, and this provides the
basis for triggering a smartphone intervention to reduce stress. The integration of
the detection of stress events with the design of the stress intervention is beneficial
in that it clarifies the tradeoff between the different types of detection errors (false
positives and negatives) and increases the likelihood that the intervention design will
be effective. The stress marker was validated under field conditions using data from
53 smokers over a 3-day post-quit period, by comparing the sensor-derived measure
of stress with a participant’s EMA data, resulting in a median F1 score of 0.65.

In summary, the four chapters contained in Part III illustrate the broad gamut
of challenges, approaches, methods, and applications which arise in the context of
mapping noisy, multivariate, streaming sensor data into predictions of risk which
can inform interventions. Part IV presents a detailed look at intervention design,
which builds on our discussion of risk prediction.

http://dx.doi.org/10.1007/978-3-319-51394-2_21


Exploratory Visual Analytics of Mobile Health
Data: Sensemaking Challenges
and Opportunities

Peter J. Polack Jr., Moushumi Sharmin, Kaya de Barbaro, Minsuk Kahng,
Shang-Tse Chen, and Duen Horng Chau

Abstract With every advancement in mHealth sensing technology, we are
presented with an abundance of data streams and models that enable us to make
sense of health information we record. To distill this diverse and ever-growing data
into meaningful information, we must first develop tools that can represent data
intuitively and are flexible enough to handle the special characteristics of mHealth
records. For example, whereas traditional health data such as electronic health
records (EHR) often consist of discrete events that may be readily analyzed and
visualized, mHealth entails sensor ensembles that generate continuous, multivariate
data streams of high-resolution and often noisy measurements. Drawing from
methodologies in machine learning and visualization, interactive visual analytics
tools are an increasingly important aid to making sense of this complexity. Still,
these computational and visual techniques must be employed attentively to represent
this data not only intuitively, but also accurately, transparently, and in a way that is
driven by user needs. Acknowledging these challenges, we review existing visual
analytic tools to identify design solutions that are both useful for and adaptable to the
demands of mHealth data analysis tasks. In doing so, we identify open problems for
representing and understanding mHealth data, suggesting future research directions
for developers in the field.

Introduction

Mobile health (mHealth) seeks to improve individuals’ health and well-being by
continuously monitoring their physiological status with devices and sensors that
are mobile or wearable [37]. A revolutionizing aspect of mHealth is its potential
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to support the development of precision medicine,1 allowing medical decisions
and practices to be tailored to individual patients and mitigating one-size-fits-all
solutions [1].

Shneiderman et al. highlight how visual analytics methods will transform the
domains of personal health programs, clinical healthcare delivery, and public health
policy making [50]. They present seven challenges for researchers to motivate
further advances in those avenues. We draw inspiration from that survey and extend
its scope, focusing our discussion on how characteristics of mHealth data may
exacerbate the identified challenges and present new ones. For example, whereas
traditional health data such as electronic health records (EHR) often consist of
discrete events that may be readily analyzed and visualized, mHealth data are often
collected using sensor ensembles that generate continuous, multivariate data streams
of high-resolution and often noisy measurements (e.g., heart rates, respiratory rates).

In each subsequent section, we will frame our discussion using a “problem-
solution” format, where we will open with a general description of the section’s
topic and its associated challenges, and then describe relevant works that address
them. Throughout we include research directions and opportunities for future work.

In section “Visualizing the Characteristics of mHealth Data”, we describe the
characteristics of mHealth data (e.g., high dimensionality, high resolution) that lead
to unique challenges for designers and developers of visual analytics techniques.

Section “Addressing and Leveraging Temporality in mHealth Data” then delves
into the critical needs for health researchers to explore and understand the tempo-
rality of mHealth data. Although the notion of time is also important in traditional
EHR context, the nature of mHealth data significantly increases the complexity of
analysis.

Section “Interactive Trend and Pattern Mining” discusses how to leverage
computational, interactive, and visual techniques to make sense of diverse and
complex mHealth data, drawing from the fields of machine learning, data mining,
visualization, and human-computer interaction.

Section “Interactive Cohort Selection” describes techniques and systems for
cohort analysis (e.g., defining, constructing and discovering cohorts) that represents
significant steps for reaching ultimate goals of personalization.

Just like the need to developing personalized care for individual patients, any
computational and visual techniques developed must be implemented attentively to
represent mHealth data not only intuitively, but also accurately, openly, and in a way
that is driven by user needs. Section “Designing for Diverse User Needs” discusses
the importance of acknowledging user diversity based on their expertise levels and
domains.

1An initiative proposed by U.S. President Barack Obama in his 2015 State of the Union address.
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Visualizing the Characteristics of mHealth Data

For mHealth data, missing values, duplicate records, improperly formatted values,
and incorrect data entry is customary—health data can be incomplete, inconsistent
with other sources, inaccurate, or entirely incorrect [60]. Whether these problems
arise as a result of temporarily disabled sensors or human error, analytic tools
should expose, or at least help users to identify, where these lapses cause noteworthy
discrepancies in the data. Problematically, there is no universal solution for finding
faulty data entries: what constitutes “dirty” data must be defined on a case-by-case
basis for every task, and for every data type. Although classifications of errors in
EHR data have been developed to outline the breadth of this problem [51, 58, 60, 63],
errors in practice are highly source- and domain-specific [9]. As such, existing tools
for identifying them can at times be too specific in scope, and broadening this scope
is an ontological challenge.

Altogether, domain knowledge about a given dataset, its provenance, and its
purpose can aid in understanding whether values are either incorrect or anomalous.
Addressing data provenance, in particular, is a good starting point for examin-
ing the properties of a given dataset and thereby identifying value errors. Data
provenance refers to the series of processing steps required to procure and process
data [23]. As most visualized data values in mHealth entail a complex series of
transformations that cannot readily be seen by end users, it is useful to provide
documentation of these transformations and their underlying rationales. However,
it is a challenge in itself to identify these transformations and to visualize them in
a useful manner. Due to the diversity of methods and potential complications in
procuring mHealth data, visualizing these errors succinctly and informatively is not
trivial.

Tools like VisTrails [10] and a history mechanism for visual data mining [35]
focus on rendering the transformations imposed on data as a data flow diagram,
and let users interact with this diagram to visualize its output at any given node.
Doing so requires that users define “provenance objects” that each represents a
computational transformation. This approach can be readily applied to sensor data,
as in the ProvDMS project [26], which is concerned namely with establishing a
system that is adaptable to researcher needs, and provenance “granularity,” or the
specificity with which provenance is defined. Understandably, whereas it is useful
to identify and model all transformations that have been imposed on mHealth data,
doing so is tedious and potentially costly. Establishing a balance between specificity
and efficiency in thus a primary concern in provenance modeling [55], and future
work should assess the relevance of these trade-offs to mHealth data procuration
and processing. In particular, as sensor kinds and processing strategies continue to
diversify, we need new methods to generalize or specify provenance frameworks
that are applicable across mHealth datasets.

Gotz et al. define a particular sort of data provenance called insight prove-
nance [21], which reflects transformations on data enacted by users during analysis.
Whereas VisTrails [10] imposes transformations on data by interacting with the
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provenance objects themselves, insight provenance tools can track user interactions
with a concomitant visualization tool. In its most advanced form, information
gathered by insight provenance can be used to assist user exploration of data.
Adaptive Contextualization [20] exemplifies this by visualizing user navigation
through patient health data: filters imposed on patient data are displayed graphically,
helping to contextualize what processing actions have been employed. Adaptive
Contextualization also works to prevent selection bias: users are made aware of
how their analytic actions affect the extent of data that they can see visualized [20].

Providing users with visual representations of self-imposed biases suggests a
similarly important task: representing where and how data is uncertain. Uncertainty
visualization is an increasingly acknowledged and important challenge across the
entirety of data visualization [8, 48, 50]. Complicating the inherent challenge of
rendering uncertainty visually is the fact that uncertainty can arise in variegated
ways. Models and simulations of data can contain uncertainty, data processing and
visualization can enact transformations with uncertain results, and—particularly
relevant to mHealth—data procuration and sampling can be uncertain [8]. For
example, physical conditions (e.g., temperature, humidity), loosening of sensor
attachment, errors in placement (on the human body), and disruption of wireless
transmission are just a few uncertainty sources that are not conventionally encoun-
tered in EHR [36]. Differentiating between these uncertainty kinds and visualizing
them intuitively is an open, multifarious problem. Future work should determine
whether uncertainty can be described and depicted consistently across mHealth
measurements, or whether it needs to be designated on a case-by-case basis.

The complexity and variety of uncertainty in mHealth data processing points
to that of mHealth data itself. Whereas mobile sensors and their derived sensor
values are many in kind, the processing strategies applied to this data are equally
diverse. As a result, visual analytics tools for mHealth face the outstanding challenge
of representing multiplicitous data values and formats in a comprehensible
display. Midgaard [4] approaches this complexity by adjusting the format of
data representations to the space allotted to them. Employing more algorithmic
strategies, [7] and [30] automatically extract meaningful features from datasets
that are then used for visualization. Unifying machine learning and visualization
techniques, DICON [11] uses data features to cluster the data into groups that
are each represented with a graphical glyph. Giving users increased control over
this selection process is an open challenge both in terms of interaction design and
machine learning.

Addressing and Leveraging Temporality in mHealth Data

Temporal representations of data play an imperative role in the mHealth domain
by enabling the representation of events of interest, their relationships, and their
changes over time [56]. Due to their effectiveness as memory cues, temporal visual-
izations of different aspects of life at different timescales (e.g., momentarily, daily,
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weekly, yearly) enable users to discover trends and patterns in data, understand
baseline conditions and contextual factors for health problems, and examine user’s
reactions to them, which aids the design of appropriate intervention techniques. In
addition, such visualizations can influence long-term behavior change by supporting
historical reflection. However, supporting analysis and exploration of longitudinal
temporal data streams is challenging, demanding interactive manipulations of
mHealth data across multiple timelines and in multiple resolutions [2, 49].

To support exploration, discovery, decision making, and reflection, users need
access to data represented in different time scales that can be adjusted with ease.
However, designing such visualizations is challenging, as consolidating multiple
data streams into visual timelines is non-trivial [2]. For example, to understand
stress experienced in daily life conditions and factors that contribute to stressful
episodes, users need to explore at-the-moment stress intensity along with location
of stressful episodes (home, work, public places), user activities (driving, walking),
and associated social contexts (with friends, alone, in a party). However, location,
activity, social context, and stress intensity are collected at different frequencies
and utilize different types of sensors and device. For this reason, representing them
in one timescale requires a process of abstraction or aggregation. A challenge in
creating such visualizations is the identification of acceptable and effective units of
time to visualize all associated data streams.

To address challenges of visualizing multiple data streams in a single timeline,
TimeStitch represents mHealth data as discrete events and utilizes a summarization
technique based on frequent sequence mining. This approach enables interactive
exploration of event sequences, their frequencies, and their relationships to patients
and one another [46]. Visualization techniques used in [49] utilized abstraction and
details-on-demand principles to enable users to explore multiple data streams at
different levels of temporal granularity. If an analyst is interested in the events
that surround a particular behavior, EventFlow [42] uses a technique called event
alignment to visualize the timelines of all participants that have a target behavior.
By specifying an event of interest such as smoking lapse, the health records of all
participants that have a smoking lapse are combined into a single timeline; as a
result, the common events that happen before and after lapse are aggregated into a
tree-like display.

Another approach to temporal visualization of health data—primarily for EHR—
focuses on data aggregation based on events of interest, utilizing time intervals to
reflect progression of health condition in individuals or groups of users [42, 61, 62].
The primary focus of such visualizations is to support sense-making, analysis, and
identification of cohorts based on event similarity. While useful, applying event-
based visualization techniques to mHealth data is challenging due to an absence of
clearly defined events of interest and a lack of structure in mHealth data streams.
Specifically, future research should focus on addressing challenges stemming from
combining data streams with different time scales (e.g., discrete vs. continuous,
hourly vs. minute-by-minute) and supporting the exploration of data in different
temporal resolutions within a common frame of reference. Similarly, an equally
important challenge is to support the instantiation of user-defined events of interest
at these varying temporal resolutions.
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Interactive Trend and Pattern Mining

By providing the capability to automatically retrieve meaningful patterns and
trends in mHealth data streams, visual analysis tools can expedite the process of
finding interesting aspects and high-level properties of mHealth data. Providing this
functionality, however, is usually task-dependent, and requires user participation in
the interactive discovery process. Therefore, systems must provide effective means
for users to query and select data elements or subsequences of interest. As non-
expert users can be overwhelmed by the high-volume, multivariate mHealth data
streams, thereby affecting their ability to construct queries, analysis tools might
suggest some interesting patterns to the user to help initiate the discovery process.

While the definition of “interestingness” varies among different health applica-
tions, most existing techniques fall into two broad categories: frequent sequence
mining and anomaly detection. A key challenge that frequent sequence mining
aims to address is to find meaningful and interesting patterns and sequences
in a large search space. Many sequence mining algorithms are based on the a
priori algorithm [45, 52, 64], but for many mHealth applications that require real-
time computation, one may need to resort to approximation [15] or incremental
algorithms [28] to speed up computation. Meanwhile, anomaly detection techniques
aim to find rare or unusual patterns in data. This is often achieved by first building
a predictive model, either by supervised [54] or unsupervised [39] approaches,
and then identifying anomalous subsequences that are far from the predicted
values. More recently, many more advanced anomaly detection methods have been
proposed, such as ones that are based on wavelets [31] and hidden Markov models
(HMMs) [18].

Equipped with these techniques for identifying interesting patterns, the next step
is to provide the interactive functionality for users to query, filter, and explore
presented data. There is a trade-off between the expressiveness of the user queries
and the system’s complexity. For example, VISITORS [33] proposes a language
that can flexibly select a subset of the subject population, but it is not as intuitive
as PatternFinder [16], which only allows users to enter values for certain criteria,
or TimeSearcher [27], which allows users to draw boxes directly on raw time-
series data and select only those sequences that go through the specified regions.
In general, future work should strive to develop intuitive entry points through which
new users can approach mHealth data intuitively, and to progressively provide more
complex functionalities for more advanced analysis.

Another important issue is how to present the system-suggested or user-queried
patterns in balanced, and synergistic ways. CareCruiser [24] uses color intensity
to indicate time series intervals that fall in different value ranges, so for example
a clinician can easily find the times where a patient’s blood pressure is outside
the normal range. TimeRider [47] utilizes the animated scatter plot to show the
development of medical parameters over time. GrammarViz [38] adopts a grammar-
based approach to generate hierarchical rules and displays patterns from these rules.
Finally, for mHealth applications it is important to show the results in a small
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screen [17, 43]. Future work should leverage the growing power of mobile devices
to develop new approaches to interacting with users efficiently, such as by providing
just-in-time information to users [49].

Ultimately, the above techniques only allow systems to reveal data denoted as
explicitly interesting to users. However, high-volume, multivariate mHealth data can
still be challenging for non-expert users to understand. Therefore, future research
should focus on extracting higher-level information from this data to support user
pattern discovery and decision making. Meanwhile, methods should be developed
that enable users to progressively reveal lower-level information in an intuitive way.

Interactive Cohort Selection

Analysts often define cohorts to group participants that have common character-
istics. By defining participants as related to one another by some criteria, such as
age, gender, or whether they have a recorded event in common within a certain
period, we can classify a large number of participants into a set of cohorts. For
example, by specifying an event of interest such as smoking lapse, the health records
of all participants that have a smoking lapse are combined into a single group. This
cohort-based analysis has been widely applied—especially to the medical domain—
in order to allow analysts to analyze data produced from large populations at an
aggregated rather than individual patient-level [5].

The process of cohort selection (or construction) can be approached by specify-
ing queries over databases, such as with query languages like SQL, but specifying
queries using structured languages is difficult for non-experts to use. This difficulty
can be resolved by providing interactive querying interfaces to users [34]. One
popular solution is to use faceted filtering interfaces, widely-used in product
search interfaces, that allow users to create queries using form-based filtering
interfaces [5, 57]. Visualization researchers have further improved this by allowing
users to directly manipulate interfaces that render data selection visually. This
process is demonstrated in Cohort Comparison (CoCo) [40], where, for example,
choosing two cohorts with “lived” and “died” outcomes indicates the factors that
contributed to each outcome. As a result, CoCo significantly reduces the overhead
of needing to display all health data simultaneously: a summary of a cohort’s data
reflects all of the participants within it. Coquito [34] also enables users to visually
define queries, and dynamically updates the data distributions for the specified
queries as they are iteratively constructed. These visual cues help users to easily
understand the results of data selection and to interactively find meaningful and
interesting patterns that cohorts comprise [6].

Defining cohorts over mHealth data is more challenging than that over other
types of data, such as EHR. As we discussed, mHealth data is inherently diverse: an
assortment of sensor devices generate a number of physiological metrics of various
data types, which are then processed with a complex series of transformations. Most
existing work on interactive cohort selection and visualizations is based on discrete
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event data consisting of sequences of events [34, 40]. Cohort selection tools for
mHealth data should be able to be defined over the various types of data found
in mHealth data, including continuous variables, discrete events transformed from
raw continuous variables, temporal data, and temporal patterns found from pattern
finding algorithms. The way of specifying this criteria would be different for each
data type, and the combination of multiple criteria could also be challenging. The
burden of considering a large number of variables, of many different types, might
result in user selection bias, which should be relieved by visually showing data
distributions in diverse angles [20]. All these challenges should be considered when
developing interactive cohort selection tools for mHealth data, by providing users
with intuitive ways to specify cohorts and visual representations of cohort selections.

Designing for Diverse User Needs

Users of mHealth data visualizations vary in terms of their information needs,
expertise, and relationships to data. Oftentimes, for instance, the same dataset is
used by different groups of users (e.g., doctors or patients, health researchers or
end users) for supporting very different needs (e.g., model creation or personal
reflection). In addition, these user groups have varying levels of expertise in
interpreting the presented information. For example, presenting data on heart
rate variation to reflect momentary stress may be useful for stress experts but
overwhelming for end users who want to understand their overall stress profile.
A critical problem in mHealth data visualization is our lack of understanding about
how to meaningfully represent data to a wide variety of target users [19, 49].

Existing research on visualizing mHealth data focuses on creating either personal
visualizations for self-reflection or expert-centric visualization for pattern explo-
ration, analysis, and model construction. In the former domain, researchers focus on
representing user data in a personal context to promote awareness, sense-making,
and reflection, as opposed to decisive decision making [29, 59]. Expert-centric
visualizations, on the other hand, focus on supporting fine-grained interaction
with data for feature extraction, cohort selection, or construction of individual or
population-scale models [42, 46]. Although choosing or reconciling differences
between these alternatives is a challenge, the variety of user demographics in
mHealth suggests new opportunities for developing visualizations that hybridize
tasks.

While user demands are evolving to call for new visualization formats and tasks,
the widespread adoption of mHealth data for analysis is also changing the rela-
tionships between these users. Consider the fundamental issue of privacy: although
mHealth data is intrinsically personal, it has the capacity to be distributed widely and
applied to an assortment of analytic tasks [25]. As mHealth sensing technologies
expand in their scope, analytic tools must be sensitive to the personal nature of
this data, not only in terms of data confidentiality, but also data security [53].
Interestingly, whereas existing work [32] seeks to design means for elucidating
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privacy concerns to monitored individuals, other research [3] is concerned with
determining how to prevent awareness about these concerns entirely. Whether
visualization designers choose to expose privacy vulnerabilities or optimize user
buy-ins, they should recognize that privacy politics are inherent to mHealth analysis.

Further, privacy concerns in mHealth are intertwined with trust: if users
perceive that their personal information is not confidential or secure, they cannot
be expected to trust or participate in the process of mHealth sensing [3]. Also
affecting trust, fundamentally, is the reliability of decisions that result from mHealth
analysis. This factor is more relevant to visual mHealth analysis tools than it might
seem; for one, unloading the responsibility of health analysis from doctors onto
patients can threaten user confidence in the system. Namely, decisions in healthcare
involve a great deal of uncertainty that, if displayed immediately to patients, could
cause patients to doubt the reliability of made decisions. Meanwhile, [44] argue
that patients should be empowered to participant in these uncertain decisions—
withholding this information could result in a loss of trust altogether.

Should the information—and analytic capabilities—bestowed to patients and
doctors by visual analysis tools be different? Are patients or doctors the domain
expert of the patient’s data? In the wake of these ambiguities and reshaping roles,
narrative medicine [14, 22] suggests a compromise where both patients and
doctors are active in the examination and resolution of patient health concerns.
This approach both establishes trust by way of engaged discussions about patient
concerns, and opens the door to more subjective inferences that are critical to effec-
tive clinical decision making [13]. Recent work encourages the application of this
methodology to visual analytics [41], as well as to interactive environments [12].
These developments imply a wealth of new roles for mHealth visual analysis
platforms—each with the potential to redefine roles, relationships, and analytics in
healthcare for the foreseeable future.
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Learning Continuous-Time Hidden Markov
Models for Event Data

Yu-Ying Liu, Alexander Moreno, Shuang Li, Fuxin Li, Le Song,
and James M. Rehg

Abstract The Continuous-Time Hidden Markov Model (CT-HMM) is an attractive
modeling tool for mHealth data that takes the form of events occurring at irregularly-
distributed continuous time points. However, the lack of an efficient parameter
learning algorithm for CT-HMM has prevented its widespread use, necessitating
the use of very small models or unrealistic constraints on the state transitions.
In this paper, we describe recent advances in the development of efficient EM-
based learning methods for CT-HMM models. We first review the structure of the
learning problem, demonstrating that it consists of two challenges: (1) the estimation
of posterior state probabilities and (2) the computation of end-state conditioned
expectations. The first challenge can be addressed by reformulating the estimation
problem in terms of an equivalent discrete time-inhomogeneous hidden Markov
model. The second challenge is addressed by exploiting computational methods
traditionally used for continuous-time Markov chains and adapting them to the
CT-HMM domain. We describe three computational approaches and analyze the
tradeoffs between them. We evaluate the resulting parameter learning methods in
simulation and demonstrate the use of models with more than 100 states to analyze
disease progression using glaucoma and Alzheimer’s Disease datasets.

Introduction

The analysis of mobile health data can utilize a wide range of modeling and analysis
tools for stochastic signals. One particularly attractive choice is the latent state
model, which encodes measurement signals via the temporal evolution of a hidden
state vector which emits the observations. Latent states define a level of abstraction
over measured signals. States can be defined to correspond to behavioral constructs
such as stress or craving, which are then connected to the underlying measurements
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via an observation model. The observation model also provides a means to describe
the stochastic variability in the measurement sequence. Furthermore, any prior
knowledge or constraints on the temporal evolution of the latent states can be
captured by a model of the state dynamics. The interpretability of latent state models
is an attractive feature. Since the latent states have a direct interpretation in the
context of an experiment, the examination of latent state trajectories (following
model fitting) is a potentially-powerful tool for gaining insight into complex
temporal patterns. This is particularly important if the probability distributions
obtained from latent state modeling are to be used in subsequent analysis steps,
such as adjusting the tailoring variables in a mobile health intervention.

A standard latent variable model for mobile health data is the Hidden Markov
Model (HMM). The Discrete Time HMM (DT-HMM) is widely used in speech
recognition, robotics, signal processing, and other domains. It assumes that mea-
surement data arrives at a fixed, regular sampling rate, and associates each measure-
ment sample with an instantiated hidden state variable. The DT-HMM is an effective
model for a wide range of time series data, such as the outputs of accelerometers,
gyroscopes, and photoplethysmographic sensors. However, the fixed sampling rate
assumptions that underlie the DT-HMM make it an inappropriate model choice for
data that is distributed irregularly in time, such as event data. A classic example
of a mobile health paradigm that generates event data is the use of Ecological
Momentary Assessment (EMA) to ascertain the cognitive or emotional state of a
participant. When an EMA is triggered, the participant is asked to respond to a
number of questions using a smartphone interface. Since an EMA can be triggered at
arbitrary times throughout the day, EMA data are most effectively modeled as event
data. Even when EMAs are triggered at regular intervals, the participant usually has
the option to postpone their response to the EMA (if they are driving or otherwise
unavailable), and in addition the participant can choose to provide additional EMA
datapoints at any time. In addition to EMA, many mHealth markers which are
extracted from time series sensor data, such as periods of high stress or craving,
also constitute event data since they can arise at any time.

A further disadvantage of using DT-HMMs to model event data is the fact that
transitions in the hidden state are assumed to occur at the sample times. Since event
data may be distributed sparsely in time, a more flexible model would allow hidden
state transitions to occur between observations. One potential approach to using
DT-HMMs with event data would be to set the sampling period fine enough to
describe the desired state dynamics and then use a missing data model to address
the fact that many sample times will not have an associated measurement. While
this approach is frequently-used, it has several undesirable properties. First, the
treatment of missing measurements can be both inefficient and inaccurate when
the number of observations is sparse relative to the sampling rate. On the other
hand, if the discretization is too coarse, many transitions could be collapsed into a
single one, obscuring the actual continuous-time dynamics. Second, the sparsity of
measurement can itself change over time. For example, during a demanding work
week the frequency of high stress events could be high, while during a vacation
the frequency of events could be much lower. The need to tradeoff between the
temporal granularity at which state transitions can occur and the number of missing
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Fig. 1 The DT-HMM and the CT-HMM. In the DT-HMM, the observations Ot and state
transitions St occur at fixed time intervals �t, and the states St are the only source of latent
information. In the CT-HMM, the observations Ot arrive at irregular time intervals, and there are
two sources of latent information: the states St and the transition times .t01; t

0
2; : : :/ between the

states

measurements which must be handled is a consequence of using a discrete time
model to describe an inherently sparse, continuous-time measurement process.

A Continuous-Time HMM (CT-HMM) is an HMM in which both the transitions
between hidden states and the arrival of observations can occur at arbitrary
(continuous) times [7, 13]. It is therefore suitable for modeling a wide range of event
data that is irregularly-sampled in time, including both mHealth data and clinical
measurements [3, 17, 31]. However, the additional modeling flexibility provided
by CT-HMM comes at the cost of a more complex inference procedure. In CT-
HMM, not only are the hidden states unobserved, but the transition times at which
the hidden states are changing are also unobserved. Moreover, multiple unobserved
hidden state transitions can occur between two successive observations. Figure 1
gives a graphical model comparison of the CT-HMM and a regular HMM. The
process of learning the parameters of a CT-HMM model from data is significantly
more challenging computationally than the standard DT-HMM learning problem.
There has been relatively little prior work on CT-HMM parameter learning. An
approach by Jackson directly maximizes the data likelihood [13], but this method
is limited to very small model sizes. A general Expectation-Maximization (EM)
framework for continuous-time dynamic Bayesian networks, of which CT-HMM is
a special case, was introduced in [24], but that work did not address the question of
efficient learning. In general, the lack of an efficient parameter learning method for
CT-HMM has been a barrier to the wide-spread use of this model [16], particularly
for problems with large state spaces (hundreds of states or more).

This article describes a computational framework for CT-HMM learning which
can efficiently handle a large number of states within an EM framework. It is
based on [18], but includes additional algorithmic details and analysis of the
computational cost of model learning. Further, we have improved the complexity
of one of the approaches by a factor of the number of states. We begin in
section “Continuous-Time Markov Chain” by introducing the mathematical defi-
nition of the Continuous-Time Markov Chain (CTMC). In a CTMC, the states are
directly observable and there is no measurement process. It turns out that the key
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computations that are required for CT-HMM learning also arise in fitting CTMC
models to data [12, 21, 28]. Section “Continuous-Time Hidden Markov Model”
describes the addition of a measurement process which extends the CTMC model
into a CT-HMM, and introduces the key equations that arise in parameter learning.
Multiple approaches to the problem using EM are presented in section “EM
Algorithms for CT-HMM”. These approaches differ in the specific computational
methods used in the E-step, and represent different approaches to solving the core
computational problem that underlies EM for CT-HMM. In section “Experimental
Results”, we describe the results from an experimental evaluation of CT-HMM using
both simulation studies and real-world clinical datasets. These results demonstrate
the practical utility of CT-HMM for clinical data modeling. Note that our software
implementation is available from our project website.1

Continuous-Time Markov Chain

A continuous-time Markov chain (CTMC) is defined by a finite and discrete state
space S, a state transition rate matrix Q, and an initial state probability distribution
� . The elements qij in Q describe the rate at which the process transitions from
state i to j for i ¤ j, and qii are specified such that each row of Q sums to zero
(qi D

P
j¤i qij, qii D �qi) [7]. In a time-homogeneous process, in which the qij are

independent of t, the sojourn time in each state i is exponentially-distributed with
parameter qi: fi.t/ D qie�qit with mean 1=qi. The probability that the process’s next
move is from state i to state j is given by qij=qi. If a realization of the CTMC is fully
observed, it means that one can observe every state transition time .t00; t

0
1; : : : ; t

0
V0/,

and the corresponding states Y 0 D fy0 D s.t00/; : : : ; yV0 D s.t0V0/g, where s.t/ denotes
the state at time t. In that case, the complete likelihood (CL) of the data is

CL D
V0�1Y

v0D0

.qyv0 ;yv0C1
=qyv0 /.qyv0 e

�qyv0 �v0 / D

V0�1Y

v0D0

qyv0 ;yv0C1
e�qyv0 �v0

D

jSjY

iD1

2

4
jSjY

jD1;j¤i

q
nij

ij

3

5 e�qi�i (1)

where �v0 D t0
v0C1� t0

v0 is the time interval between two transitions, nij is the number
of transitions from state i to j, and �i is the total amount of time the chain remains in
state i.

In general, a realization of the CTMC is observed only at discrete and irregular
time points .t0; t1; : : : ; tV/, corresponding to a state sequence Y , which are distinct
from the transition times. As a result, the Markov process between two consec-
utive observations is hidden, with potentially many unobserved state transitions.
Thus, both nij and �i are unobserved. To express the likelihood of the incomplete

1http://www.cbs.gatech.edu/CT-HMM

http://www.cbs.gatech.edu/CT-HMM


Learning Continuous-Time Hidden Markov Models for Event Data 365

observations, we can utilize a discrete time hidden Markov model by defining a
state transition probability matrix for each time interval t, P.t/ D eQt, where Pij.t/,
the entry .i; j/ in P.t/, is the probability that the process is in state j after time t,
given that it is in state i at time 0. This quantity takes into account all possible
intermediate state transitions and timing between i and j which are not observed.
Then the likelihood of the data is

L D
V�1Y

vD0

Pyv ;yvC1
.�v/ D

V�1Y

vD0

jSjY

i;jD1

Pij.�v/
I.yvDi;yvC1Dj/ (2)

where �v D tvC1� tv is the time interval between two observations, I.�; �/ is the indi-
cator function that is 1 if both arguments are true, otherwise it is 0. Note that there
is no analytic maximizer of L, due to the structure of the matrix exponential, and
direct numerical maximization with respect to Q is computationally challenging.
This motivates the use of an EM-based approach.

An EM algorithm for CTMC learning is described in [21]. Based on Eq. (1), the
expected complete log-likelihood takes the form

jSjX

iD1

2

4
jSjX

jD1;j¤i

log.qij/EŒnijjY; OQ0�

3

5 � qiEŒ�ijY; OQ0� (3)

where OQ0 is the current estimate for Q, and EŒnijjY; OQ0� and EŒ�ijY; OQ0� are the
expected state transition count and total duration given the incomplete observation
Y and the current transition rate matrix OQ0, respectively. Once these two expectations
are computed in the E-step, the updated OQ parameters can be obtained via the M-
step as

Oqij D
EŒnijjY; OQ0�

EŒ�ijY; OQ0�
; i ¤ j and Oqii D �

X

j¤i

Oqij: (4)

Now the main computational challenge is to evaluate EŒnijjY; OQ0� and EŒ�ijY; OQ0�.
By exploiting the properties of the Markov process, the two expectations can be
decomposed as [6]:

EŒnijjY; OQ0� D

V�1X

vD0

EŒnijjyv; yvC1; OQ0�

D

V�1X

vD0

jSjX

k;lD1

I.yv D k; yvC1 D l/EŒnijjyv D k; yvC1 D l; OQ0�

EŒ�ijY; OQ0� D

V�1X

vD0

EŒ�ijyv; yvC1; OQ0�
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D

V�1X

vD0

jSjX

k;lD1

I.yv D k; yvC1 D l/EŒ�ijyv D k; yvC1 D l; OQ0�

Thus, the computation reduces to computing the end-state conditioned expecta-
tions EŒnijjyv D k; yvC1 D l; OQ0� and EŒ�ijyv D k; yvC1 D l; OQ0�, for all k; l; i; j 2 S.
These expectations are also a key step in CT-HMM learning, and section “EM
Algorithms for CT-HMM” presents our approach to computing them.

Continuous-Time Hidden Markov Model

In this section, we describe the continuous-time hidden Markov model (CT-HMM)
for disease progression and our approach to CT-HMM learning.

Model Description

In contrast to CTMC, where the states are directly observed, none of the states
are directly observed in CT-HMM. Instead, the available observational data o
depends on the hidden states s via the measurement model p.ojs/. In contrast
to a conventional HMM, the observations .o0; o1; : : : ; oV/ are only available at
irregularly-distributed continuous points in time .t0; t1; : : : ; tV/. As a consequence,
there are two levels of hidden information in a CT-HMM. First, at observation
time, the state of the Markov chain is hidden and can only be inferred from
measurements. Second, the state transitions in the Markov chain between two
consecutive observations are also hidden. As a result, a Markov chain may visit
multiple hidden states before reaching a state that emits a noisy observation. This
additional complexity makes CT-HMM a more effective model for event data in
comparison to HMM and CTMC. But as a consequence the parameter learning
problem is more challenging. We believe we are the first to present a comprehensive
and systematic treatment of efficient EM algorithms to address these challenges.

A fully observed CT-HMM contains four sequences of information: the under-
lying state transition time .t00; t

0
1; : : : ; t

0
V0/, the corresponding state Y 0 D fy0 D

s.t00/; : : : ; yV0 D s.t0V0/g of the hidden Markov chain, and the observed data O D
.o0; o1; : : : ; oV/ at time T D .t0; t1; : : : ; tV/. Their joint complete likelihood can be
written as

CLD
V0�1Y

v0D0

qyv0 ;yv0C1
e�qyv0 �v0

VY

vD0

p.ovjs.tv//D
jSjY

iD1

2

4
jSjY

jD1;j¤i

q
nij

ij

3

5 e�qi�i

VY

vD0

p.ovjs.tv//

(5)

We make two simplifying assumptions. First, we assume that the observation
time is independent of the states and the state transition times. Second, we assume
that individual state trajectories are homogeneous, in that all sequences share the
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same global rate and emission parameters, which do not vary over time. With the
first assumption, we do not require any further assumptions on the distribution of
observation times. Furthermore, the observation time is not informative of the state.

We will focus our development on the estimation of the transition rate matrix
Q. Estimates for the parameters of the emission model p.ojs/ and the initial state
distribution � can be obtained from the standard discrete time HMM formula-
tion [26], but with time-inhomogeneous transition probabilities, which we describe
in section “Computing the Posterior State Probabilities”. That is, the transition rates
stay constant, but in the discrete-time formulation, the transition probabilities vary
over time.

Parameter Estimation

We now describe an EM-based method for estimating Q from data. Given a current
parameter estimate OQ0, the expected complete log-likelihood takes the form

L.Q/ D

(
jSjX

iD1

2

4
jSjX

jD1;j¤i

log.qij/EŒnijjO;T; OQ0�

3

5 � qiEŒ�ijO;T; OQ0�

)

(6)

C

VX

vD0

EŒlog p.ovjs.tv//jO;T; OQ0�: (7)

In the M-step, taking the derivative of L with respect to qij yields

Oqij D
EŒnijjO;T; OQ0�

EŒ�ijO;T; OQ0�
; i ¤ j and Oqii D �

X

j¤i

Oqij: (8)

The challenge lies in the E-step, where we compute the expectations of nij and �i

conditioned on the observation sequence. The expectation for nij can be expressed
in terms of the expectations between successive pairs of observations as follows:

EŒnijjO;T; OQ0� D
X

s.t1/;:::;s.tV /

p.s.t1/; : : : ; s.tV/jO;T; OQ0/EŒnijjs.t1/; : : : ; s.tV/; OQ0�

(9)

D
X

s.t1/;:::;s.tV /

p.s.t1/; : : : ; s.tV/jO;T; OQ0/

V�1X

vD1

EŒnijjs.tv/; s.tvC1/; OQ0�

(10)
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X
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(11)

D
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by marginalization (12)

D

V�1X

vD1

jSjX

k;lD1

p.s.tv/ D k; s.tvC1/ D ljO;T; OQ0/

EŒnijjs.tv/ D k; s.tvC1/ D l; OQ0� (13)

In a similar way, we can obtain an expression for the expectation of �i:

EŒ�ijO;T; OQ0� D

V�1X

vD1

jSjX

k;lD1

p.s.tv/ D k; s.tvC1/ D ljO;T; OQ0/

EŒ�ijs.tv/ D k; s.tvC1/ D l; OQ0�: (14)

Note that, in contrast to the CTMC case, during CT-HMM learning we cannot
observe the states directly at the observation times. Therefore, while the sum of
expectations is weighted via indicator variables in the CTMC case, the weights are
probabilities obtained through inference in the CT-HMM case.

The key to efficient computation of the expectations in Eqs. (13) and (14) is
to exploit the structure of the summations. These summations have an inner-outer
structure, which is illustrated in Fig. 2. The key observation is that the measurements
partition the continuous timeline into intervals. It is therefore sufficient to compute
the distribution over the hidden states at two successive observations, denoted
by p.s.tv/ D k; s.tvC1/ D ljO;T; OQ0/, and use these probabilities to weight
the expectation over unobserved state transitions, which we refer to as the end-
state conditioned expectations EŒnijjs.tv/ D k; s.tvC1/ D l; OQ0� and EŒ�ijs.tv/ D
k; s.tvC1/ D l; OQ0�. We present three methods that can be used to compute the
end-state conditioned expectations in section “EM Algorithms for CT-HMM”.
We now describe our approach to computing the hidden state probabilities at the
observations.
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Fig. 2 Illustration of the decomposition of the expectation calculations (Eq. 13) according to their
inner-outer structure, where k and l represent the two possible end-states at successive observation
times .t1; t2/, and i; j denotes a state transition from i to j within the time interval. pkljO represents
p.s.tv/ D kI s.tvC1/ D ljO;T; OQ0/ and nijjk; l denotes EŒnijjs.tv/ D k; s.tvC1/ D l; OQ0� in Eq. (13)

Fig. 3 Illustration of the computation of the posterior state probabilities p.s.tv/ D k; s.tvC1/ D

ljO;T; OQ0/. An equivalent time-inhomogeneous HMM is formed where the state transition
probability matrix varies over time (denoted as Pv.�v/ here). ˛ and ˇ are the forward and backward
variables used in the forward-backward algorithm [26]

Computing the Posterior State Probabilities

The challenge in efficiently computing p.s.tv/ D k; s.tvC1/ D ljO;T; OQ0/ is to avoid
the explicit enumeration of all possible state transition sequences and the varying
time intervals between intermediate state transitions (from k to l).

The key is to note that the posterior state probabilities are only needed at the
times where we have observation data. We can exploit this insight to reformulate the
estimation problem in terms of an equivalent discrete time-inhomogeneous hidden
Markov model. This is illustrated in Fig. 3.

Specifically, given the current estimate OQ0, O and T , we divide the timeline into
V intervals, each with duration �v D tv � tv�1. We then make use of the transition
property of CTMC, and associate each interval v with a state transition matrix
Pv.�v/ WD e OQ0�v . Together with the emission model p.ojs/, this results in a discrete
time-inhomogeneous hidden Markov model with joint likelihood:

VY

vD1

ŒPv.�v/�.s.tv�1/;s.tv//

VY

vD0

p.ovjs.tv//: (15)
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The formulation in Eq. (15) allows us to reduce the computation of p.s.tv/ D
k; s.tvC1/ D ljO;T; OQ0/ to familiar operations. The forward-backward algo-
rithm [26] can be used to compute the posterior distribution of the hidden states,
which we refer to as the soft method. This gives the probabilities p.s.tv/ D
k; s.tvC1/ D ljO;T; OQ0/, which sum to 1 over k and l. Alternatively, the MAP
assignment of hidden states obtained from the Viterbi algorithm can provide an
approximate distribution, which we refer to as the hard method. This gives p.s.tv/ D
k; s.tvC1/ D ljO;T; OQ0/ D 1 for a single value of k and l, and p.s.tv/ D k; s.tvC1/ D

ljO;T; OQ0/ D 0 for all the others. The forward-backward and Viterbi algorithms are
then the same as in [26], except that we replace the transition matrix with Pv.�v/ for
each observation.

The hard method is potentially faster, but is less accurate in the case of
multimodal posteriors. The soft method is more accurate, but requires expectation
calculations for every k and l. Note that the hard method is only faster when the
computation of the end-state conditioned expectations for a single start and end
state is less expensive than computing them for all states, which we will see is not
always the case.

EM Algorithms for CT-HMM

Pseudocode for the EM algorithm for CT-HMM parameter learning is shown in
Algorithm 1. Multiple variants of the basic algorithm are possible, depending
upon the choice of method for computing the end-state conditioned expectations,
along with the choice of hard or soft decoding for obtaining the posterior state
probabilities in Eq. (15).

The remaining step in finalizing the EM algorithm is to discuss the computation
of the end-state conditioned expectations (ESCE) for nij and �i from Eqs. (13)
and (14), respectively. The first step is to express the expectations in integral form,
following [11]:

EŒnijjs.0/ D k; s.t/ D l;Q� D
qi;j

Pk;l.t/

Z t

0

Pk;i.x/Pj;l.t � x/ dx (16)

EŒ�ijs.0/ D k; s.t/ D l;Q� D
1

Pk;l.t/

Z t

0

Pk;i.x/Pi;l.t � x/ dx: (17)

From Eq. (16), we define � i;j
k;l.t/ D

R t
0

Pk;i.x/Pj;l.t � x/dx D
R t
0
.eQx/k;i.eQ.t�x//j;l dx,

while � i;i
k;l.t/ can be similarly defined for Eq. (17) (see [24] for a related construction).

Three primary methods for computing �
i;j
k;l.t/ and � i;i

k;l.t/ have been proposed in
the CTMC literature: an eigendecomposition based method, which we refer to as
Eigen, a method called uniformization (Unif ), and a method from Van Loan [30]
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Algorithm 1: CT-HMM Parameter Learning (Soft/Hard)
1: Input: data O D .o0; : : : ; oV / and T D .t0; : : : ; tV /, state set S, edge set L, initial guess of Q
2: Output: transition rate matrix Q D .qij/

3: Find all time intervals between events �v D tvC1 � tv for v D 1; : : : ;V � 1, where
t1 D t0 D 0

4: Compute P.�v/ D eQ�v for each �v
5: repeat
6: Compute p.v; k; l/ D p.s.tv/ D k; s.tvC1/ D ljO;T;Q/ for all v, and the

complete/state-optimized data likelihood l by using Forward-Backward (soft) or Viterbi
(hard)

7: Use Expm, Unif or Eigen method to compute EŒnijjO;T;Q� and EŒ�ijO;T;Q�

8: Update qij D
EŒnijjO;T;Q�
EŒ�ijO;T;Q�

, and qii D �
P

i¤j qij

9: until likelihood l converges

for computing integrals of matrix exponentials, which we call Expm. Eigen and
Unif both involve expressing the terms Pk;i.x/Pj;l.t � x/ as summations and then
integrating the summations. Eigen utilizes an eigendecomposition-based approach,
while Unif is based on series approximations. Expm notes a connection between the
integrals and a system of differential equations, and solves the system. We describe
each method, show how to improve the complexity of the soft Eigen method, and
discuss their tradeoffs.

Across the three methods, the bottleneck is generally matrix operations, partic-
ularly matrix multiplication. Our finding is that with our improvements, soft Eigen
is the preferred method except in the case of an unstable eigendecomposition. It is
efficient due to having few matrix multiplications and it is accurate due to being
a soft method. We find in our experiments that it is very fast (see Fig. 5) and that
the stability of Eigen is usually not a problem when using random initialization.
However, in the case where Eigen is unstable in any iteration, the alternatives are soft
Expm, which has the advantage of accuracy, and hard Unif, which is often faster.
Note that one can switch back to Eigen again once the likelihood is increasing.

The Eigen Method

The calculation of the ESCE � i;i
k;l.t/ and � i;j

k;l.t/ can be done in closed-form if Q can be
diagonalized via its eigendecomposition (the Eigen method [20, 21]). Consider the
eigendecomposition Q D UDU�1, where the matrix U consists of all eigenvectors
associated with the corresponding eigenvalues of Q in the diagonal matrix D D
diag.�1; : : : ; �n/. Then we have eQt D UeDtU�1 and the integral can be written as:

�
i;j
k;l.t/ D

nX

pD1

UkpU�1
pi

nX

qD1

UjqU�1
ql ‰pq.t/ (18)
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where the symmetric matrix ‰.t/ D Œ‰pq.t/�p;q2S is defined as:

‰pq.t/ D

(
tet�p if �p D �q

et�p �et�q

�p��q
if �p ¤ �q

(19)

We now describe a method for vectorizing the Eigen computation, which results
in improved complexity in the soft case. Let V D U�1, ı be the Hadamard
(elementwise) product, and VT

i refer to the ith column of V , and Uj the jth row
of U, then

�
i;j
k;l.t/ D ŒUŒV

T
i Uj ı‰�V�kl (20)

This allows us to perform only one matrix construction for all k; l, but still requires
two matrix multiplications for each ij with an allowed transition or edge.2

We now show how to reuse the matrix-matrix products across edges and
replace them by a Hadamard product to improve efficiency further. A similar
idea was explored in [19], but their derivation is for the gradient calculation of
a CTMC, which we extend to EM for CT-HMMs. The intuition is that since
matrix multiplication is expensive, by rearranging matrix operations, we can do one
matrix multiplication, cache it, and reuse it so that we only do elementwise matrix
products for every possible transition combination i and j, rather than doing matrix
multiplications for every such combination.

Let F be a matrix given by Fkl D
p.s.tv/Dk;s.tvC1/DljO;T; OQ0/

Pkl.t/
, and let Aij D VT

i Uj ı‰.
Then

jSjX

k;lD1

p.s.tv/ D k; s.tvC1/ D ljO;T; OQ0/EŒnijjs.tv/ D k; s.tvC1/ D l; OQ0� (21)

D qij

jSjX

k;lD1

.ŒUŒVT
i Uj ı‰�V� ı F/kl (22)

D qij

jSjX

k;lD1

.ŒUAijV� ı F/kl (23)

Now note these two properties of the trace and Hadamard product, which hold for
any matrices A;B;C;D:

X

ij

.A ı B/ij D Tr.ABT/ (24)

Tr.ABCD/ D Tr.BCDA/ (25)

2Note that a version of Eq. (20) appears in [21], but that version contains a small typographic error.
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Then

jSjX

k;lD1

.ŒUAijV� ı F/kl D Tr.UAijVFT/ (26)

D Tr.AijVFTU/ (27)

D
X

kl

.Aij ı .VFTU/T/kl (28)

D
X

kl

.Aij ı .UTFVT/
„ ƒ‚ …

reuse

/kl (29)

The term UTFVT is not dependent on i; j: only Aij is, and Aij does not require
any matrix products to construct. Thus for each event or time interval, the naïve
implementation of (20) required two matrix products for each i; j that form an edge.
Through the preceding construction, we can reduce this to only two matrix products
in total. We replaced all the other matrix products with Hadamard products. This
improves the complexity by a factor of S, the number of states. The case for the
ESCE of the duration �i is similar. Letting Ai D VT

i Ui ı‰ and using the subscript v
to denote the matrix constructed for observation v, the final expectations are

EŒnijjO;T; OQ0� D qij

V�1X

vD1

X

kl

.Aij
v ı .U

TFvV
T//kl (30)

EŒ�ijO;T; OQ0� D

V�1X

vD1

X

kl

.Ai
v ı .U

TFvV
T//kl (31)

Note that the Hard eigen method avoids explicitly summing over all k and l states.
The key matrix manipulation then is the construction of matrices where the rows
and columns correspond to k and l, respectively. Therefore, hard eigen has the same
complexity as soft eigen when it is formulated as in Eqs. (30) and (31). Thus, soft
eigen is the preferred choice.

Computing the ESCE using the Eigen method Algorithm 2 presents pseu-
docode for our Eigen method using the Hadamard product and trace manipulations.
The algorithm does two matrix multiplications for each observation, and does only
Hadamard products for each state and edge after that.

Stability of the Eigen Method

In general, soft Eigen is the fastest soft method, but Qt can suffer from an ill-
conditioned eigendecomposition which can prevent the method from being usable.
In prior CTMC works [20, 21], Metzner et al. mention that the eigendecomposition
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Algorithm 2: Eigen Algorithm for ESCE

1: Perform eigendecomposition Q D UDV using balancing, where V D U�1

2: for v D 1 to V � 1 do
3: Compute �v D tvC1 � tv , set t D �v
4: Compute ‰ with t D �v ) O.S2/

5: Compute Fk;l D
p.s.tv/Dk;s.tvC1/DljO;T; OQ0/

P.t/

6: Compute B D UT FVT

7: for each state i in S do
8: A D VT

i Ui ı‰

9: EŒ�ijO;T;Q�C D
PjSj

k;lD1.A ı B/kl ) O.S2/
10: end for
11: for each edge .i; j/ in L do
12: A D VT

i Uj ı‰ ) O.S2/

13: EŒnijjO;T;Q�C D qij
PjSj

k;lD1.A ı B/kl ) O.S2/
14: end for
15: end for

can potentially be ill-conditioned, but do not characterize the scope of this problem,
which we discuss now in more detail. Both the eigenvalue and eigenvector estima-
tion problems can be ill-conditioned. For the eigenvalue problem, the primary issue
is the condition number of the eigenvector matrix. This follows from the Bauer-Fike
Theorem [4], which gives a bound on the error in estimating the eigenvalues (as a
result of a perturbation �Q of the Q matrix):

min
�2�.Q/

j� � 
j � jjUjj � jj�Qjj � jjU�1jj (32)

D �.U/jj�Qjj: (33)

The error between an eigenvalue 
 of QC�Q and the true eigenvalue � is bounded
by the matrix norm of the perturbation, jj�Qjj, and the condition number �.U/
of the eigenvector matrix U of Q. We now discuss the impact of each of these two
terms. The perturbation of Q, jj�Qjj, is often due to rounding error and thus depends
on the norm of Q. A class of methods known as balancing or diagonal scaling [25]
can help reduce the norm of Q. In our experiments, balancing did not provide a
significant improvement in the stability of the eigendecomposition, leading us to
conclude that rounding error was not a major factor. The condition number �.U/
captures the structural properties of the eigenvector matrix. We found empirically
that certain pathological structures for the Q matrix, such as sparse triangular forms,
can produce poor condition numbers. We recommend initializing the Q matrix at the
start of EM with randomly-chosen values in order to prevent the inadvertent choice
of a poorly-conditioned U. We found that uniform initialization, in particular, was
problematic, unless random perturbations were added.

Having discussed the eigenvalue case, we now consider the case of the eigenvec-
tors. For an individual eigenvector rj, the estimation error takes the form
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�rj D
X

k¤j

lk�Qrj

�j � �k
rk C O.jj�Qjj2/; (34)

where lk are left eigenvectors, rj and rk are right eigenvectors, and �j; �k are
eigenvalues of Q (see [5] for details). Thus the stability of the eigenvector estimate
degrades when eigenvalues are closely-spaced, due to the term �j � �k in the
denominator. Note that this condition is problematic for the ESCE computation as
well, as can be seen in Eq. (19). As was the case for the eigenvalue problem, care
should be taken in initializing Q.

In summary, we found that randomly initializing the Q matrix was sufficient
to avoid problems at the start of EM. While it is difficult in general to diagnose
or eliminate the possibility of stability problems during EM iterations, we did
not encounter any significant problems in using the Eigen approach with random
initialization in our experiments. We recommend monitoring for a decrease in the
likelihood and switching to an alternate method for that iteration in the event of a
problem. One can switch back to Eigen once the likelihood is increasing again.

Expm Method

Having described an eigendecomposition-based method for computing the ESCE,
we now describe an alternative approach based on a classic method of Van Loan [30]
for computing integrals of matrix exponentials. In this approach, an auxiliary matrix

A is constructed as A D

�
Q B
0 Q

�

, where B is a matrix with identical dimensions to

Q. It is shown in [30] that

Z t

0

eQxBeQ.t�x/dt D .eAt/.1Wn/;.nC1/W.2n/ (35)

where n is the dimension of Q. That is, the integral evaluates to the upper right
quadrant of eAt. Following [12], we set B D I.i; j/, where I.i; j/ is the matrix with a
1 in the .i; j/th entry and 0 elsewhere. Thus the left hand side reduces to � i;j

k;l.t/ for all
k; l in the corresponding matrix entries, and we can leverage the substantial literature
on numerical computation of the matrix exponential. We refer to this approach as
Expm, after the popular Matlab function. This method can be seen as expressing the
integral as a solution to a differential equation. See Sect. 4 of [12] for details.

The most popular method for calculating matrix exponentials is the Padé
approximation. As was the case in the Eigen method, the two issues governing the
accuracy of the Padé approximation are the norm of Q and the eigenvalue spacing.
If the norms are large, scaling and squaring, which involves exploiting the identity
eA D .eA=m/m and using powers of two for m, can be used to reduce the norm. To
understand the role of Eigenvalue spacing, consider that the Padé approximation
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involves two series expansions Npq.Qt/ and Dpq.Qt/, which are used to construct
the matrix exponential as follows:

eQt 	 ŒDpq.Qt/��1Npq.Qt/ (36)

When the eigenvalue spacing increases, Dpq.Qt/ becomes closer to singular, causing
large errors [22, 23].

The maximum separation between the eigenvalues is bounded by the Gershgorin
Circle Theorem [9], which states that all of the eigenvalues of a rate matrix lie in
a circle in the complex plane centered at the largest rate, with radius equal to that
rate. That is, all eigenvalues � 2 �.Q/ lie in fz 2 C W jz � max qij � max qig. This
construction allows us to bound the maximum eigenvalue spacing of Qt (considered
as a rate matrix). Two eigenvalues cannot be further apart than twice the absolute
value of the largest magnitude diagonal element. Further, scaling and squaring helps
with this issue, as it reduces the magnitude of the largest eigenvalue. Additional
details can be found in [10, 22, 23].

Because scaling and squaring can address any stability issues associated with the
Padé method, we conclude that Expm is the most stable method for computing the
ESCE. However, we find it to be dramatically slower than Eigen (especially given
our vectorization and caching improvements), and so it should only be used if Eigen
fails.

The Expm algorithm does not have an obvious hard variant. Hard variants involve
calculating expectations conditioned on a single start state k and end-state l for the
interval between the observations. However, Expm, by virtue of using the Padé
approximation of the matrix exponential, calculates it for all k and l. The output
of the matrix exponential gives a matrix where each row corresponds to a different
k and each column a different l. Developing a hard variant would thus require a
method for returning a single element of the matrix exponential more efficiently
than the entire matrix. One direction to explore would be the use of methods to
compute the action of a matrix exponential eAtx, where x is a vector with a single 1
and 0’s elsewhere, without explicitly forming eAt (see [2]).

Computing the ESCE using the Expm method Algorithm 3 presents pseu-
docode for the Expm method for computing end-state conditioned expectations.
The algorithm exploits the fact that the A matrix does not change with time t.
Therefore, when using the scaling and squaring method [10] for computing matrix
exponentials, one can easily cache and reuse the intermediate powers of A to
efficiently compute eAt for different values of t.

Uniformization

We now discuss a third approach for computing the ESCE. This was first introduced
by Hobolth and Jensen [12] for the CTMC case, and is called uniformization (Unif ).
Unif is an efficient approximation method for computing the matrix exponential
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Algorithm 3: Expm Algorithm for ESCE
1: for v D 1 to V � 1 do
2: �v D tvC1 � tv , set t D �v
3: for each state i in S do

4: Di D
.eAt/.1Wn/;.nC1/W.2n/

Pkl.t/
, where A D

�
Q I.i; i/
0 Q

�

5: EŒ�ijO;T;Q� C D
P

.k;l/2L p.s.tv/ D k; s.tvC1/ D ljO;T; OQ0/.Di/k;l
6: end for
7: for each edge (i; j) in L do

8: Nij D
qij.eAt/.1Wn/;.nC1/W.2n/

Pkl.t/
, where A D

�
Q I.i; j/
0 Q

�

9: EŒnijjO;T;Q� C D
P

.k;l/2L p.s.tv/ D k; s.tvC1/ D ljO;T; OQ0/.Nij/k;l
10: end for
11: end for

P.t/ D eQt [12, 14]. It gives an alternative description of the CTMC process and
illustrates the relationship between CTMCs and DTMCs (see [27]). The idea is that
instead of describing a CTMC by its rate matrix, we can subdivide it into two parts:
a Poisson process fN.t/ W t � 0g with mean Oq, where N.t/ refers to the number of
events under the Poisson process at time t, and a DTMC and its associated transition
matrix R. The state of the CTMC at time t is then equal to the state after N.t/
transitions under the DTMC transition matrix R. In order to represent a CTMC this
way, the mean of the Poisson process and the DTMC transition matrix must be
selected appropriately.

Define Oq D maxi qi, and matrix R D Q
Oq C I, where I is the identity matrix. Then,

eQt D eOq.R�I/t D

1X

mD0

Rm .Oqt/m

mŠ
e�Oqt D

1X

mD0

RmPois.mI Oqt/; (37)

where Pois.mI Oqt/ is the probability of m occurrences from a Poisson distribution
with mean Oqt. The expectations can then be obtained by directly inserting the eQt

series into the integral:

�
i;i
k;l D

1X

mD0

t

mC 1
Œ

mX

nD0

.Rn/ki.R
m�n/il�Pois.mI Oqt/ (38)

�
i;j
k;l D

Rij
P1

mD1Œ
Pm

nD1.R
n�1/ki.Rm�n/jl�Pois.mI Oqt/

Pkl.t/
(39)

The main difficulty in using Unif in practice lies in determining the truncation point
for the infinite sum. However, for large values of Oqt, we have Pois.Oqt/ 	 N .Oqt; Oqt/,
where N .
; 	2/ is the normal distribution and one can then bound the truncation
error from the tail of Poisson by using the cumulative normal distribution [28].
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Algorithm 4: Unif Algorithm for ESCE

1: Set Ot D max t�; set Oq D maxiqi.
2: Let R D Q=Oq C I. Compute R;R2; : : : ;R OM , OM D �4C 6

p
OqOt C .OqOt/� ) O. OMS3/

3: for v D 1 to V � 1 do
4: �v D tvC1 � tv , set t D �v

5: M D �4C 6
p

Oqt C .Oqt/�;
6: for each state i in S do

7: EŒ�ijs.0/ D k; s.t/ D l;Q� D

PM
mD0

t
mC1 Œ

Pm
nD0.R

n/ki.Rm�n/il �Pois.mIOqt/

Pkl.t/
) O.M2/

8: EŒ�ijO;T;Q�C D p.s.tv/ D k; s.tvC1/ D ljO;T; OQ0/EŒ�ijs.0/ D k; s.t/ D l�
9: end for

10: for each edge .i; j/ in L do

11: EŒnijjs.0/ D k; s.t/ D l;Q� D
Rij

PM
mD1Œ

Pm
nD1.R

n�1/ki.Rm�n/jl�Pois.mIOqt/
Pkl.t/

) O.M2/

12: EŒnijjO;T;Q�C D p.s.tv/ D k; s.tvC1/ D ljO;T; OQ0/EŒnijjs.0/ D k; s.t/ D l�
13: end for
14: end for
15: Soft: O. OMS3 C VS3M2 C VS2LM2/; Hard: O. OMS3 C VSM2 C VLM2/

Our implementation uses a truncation point at M D �4 C 6
p
Oqt C .Oqt/�, which

is suggested in [28] to have error bound of 10�8.
Computing the ESCE using the Unif method Algorithm 4 presents pseu-

docode for the Unif method for computing end-state conditioned expectations. The
main benefit of Unif is that the R sequence (R;R2; : : : ;R OM) can be precomputed (line
2) and reused, so that no additional matrix multiplications are needed to obtain all of
the expectations. One main property of Unif is that it can evaluate the expectations
for only the two specified end-states, and it has O.M2/ complexity, which is not
related to S (when given the precomputed R matrix series).

One downside of Unif is that if Oqit is very large, so is the truncation point M. The
computation can then be very time consuming. We find that Unif ’s running time
performance depends on the data and the underlying Q values. The time complexity
analysis is detailed in Algorithm 4 line 15. This shows that the complexity of
soft Unif is unattractive, while hard Unif may be attractive if Eigen fails due to
instability.

Summary of Time Complexity

To compare the computational cost of different methods, we conducted an asymp-
totic complexity analysis for the five combinations of hard and soft EM with
the methods Expm, Unif, and Eigen for computing the ESCE. The complexities
are summarized in Table 1. Eigen is the most attractive of the soft methods at
O.VS3 C VLS2/, where V is the number of visits, S is the number of states, and
L is the number of edges. Its one drawback is that the eigendecomposition may



Learning Continuous-Time Hidden Markov Models for Event Data 379

Table 1 Time complexity comparison of all methods in evaluating all required expectations
under Soft/Hard EM

Complexity Expm Unif Eigen

Soft EM O.VS4 C VLS3/ O.MV3 C VS3M2 C VS2LM2/ O.VS3 C VLS2/

Hard EM O.VS4 C VLS3/ O.MS3 C VSM2 C VLM2/ N/A

S number of states, L number of edges, V number of visits, M the largest truncation point of the
infinite sum for Unif, set as �4C 6

p
OqOt C .OqOt/�, where Oq D maxi qi, and Ot D max��v)

become ill-conditioned at any iteration. However, in our experiments, with a random
initialization, we found Eigen to be successful, and other papers have found similar
results [21], although generally with a smaller number of states. If Eigen fails, Expm
provides an alternative soft method, and Unif provides an alternative hard method.
Hard Unif is often faster than Expm in practice, so we recommend running that first
to get a sense of how long Expm will take, and if it is feasible, run Expm afterwards.

The time complexity comparison between Expm and Unif depends on the relative
size of the state space S and M, where M D �4C 6pmaxi qit C .maxi qit/� is the
largest truncation point of the infinite sum used in Unif (see Table 1). It follows
that Unif is more sensitive to maxi qit than Expm (quadratic vs. log dependency).
This is because when Expm is evaluated using the scaling and squaring method
[10], the number of matrix multiplications depends on the number of applications
of matrix scaling and squaring, which is �log2.jjQtjj1=13/�, where 13 D 5:4 (the
Pade approximant with degree 13). If scaling of Q is required [10], then we have
log2.jjQtjj1/ � log2.S maxi qit/. Therefore, the running time of Unif will vary with
max qit more dramatically than Expm.

When selecting an EM variant, there are three considerations: stability, time, and
accuracy. Overall, soft Eigen offers the best tradeoff between speed and accuracy.
However, if it is not stable, then soft Expm will generally have higher accuracy than
hard Unif, but may be less efficient.

In some applications, event times are distributed irregularly over a discrete
timescale. For example, hospital visits may be identified by their date but not by
their time. In that case, the interval between two events will be a discrete number.
In such cases, events with the same interval, e.g. with 5 days between visits, can be
pooled and the ESCE can be computed once for all such events. See [18] for details,
including the supplementary material for complexity analysis.

Experimental Results

We evaluated our EM algorithms in simulation (section “Simulation Performance on
a 5-state Complete Digraph”) and on two real-world datasets (section “Application
of CT-HMM to Analyzing Disease Progression”): a glaucoma dataset using a model
with 105 states and an Alzheimer’s Disease dataset with 277 states. This is a
significant advance in the ability to work with large models, as previous CT-HMM
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works [13, 16, 31] employed fewer than 100 states. We initialized the rate matrix
uniformly with a small random perturbation added to each element. The random
perturbation avoids a degenerate configuration for the Eigen method, while uniform
initialization makes the runtimes comparable across methods. We used balancing
for the eigendecomposition. Our timing experiments were run on an early 2015
MacBook Pro Retina with a 3.1 GHz Intel Core i7 processor and 16 GB of memory.

Simulation Performance on a 5-state Complete Digraph

We evaluated the accuracy of all methods on a 5-state complete digraph with
synthetic data generated under different noise levels. Each qi was randomly drawn
from Œ1; 5� and then qij was drawn from Œ0; 1� and renormalized such that

P
j¤i qij D

qi. The state chains were generated from Q, such that each chain had a total duration
around T D 100

mini qi
, where 1

mini qi
is the largest mean holding time. The data emission

model for state i was set as N .i; 	2/, where 	 varied under different noise level
settings.

The observations were then sampled from the state chains with rate 0:5
maxi qi

, where
1

maxi qi
is the smallest mean holding time, which was ensured to be dense enough

to make the chain identifiable. A total of 105 observations were sampled. The
convergence threshold for EM was a change in the relative data likelihood of�10�8.
The average 2-norm relative error jjOq�qjj

jjqjj
was used as the performance metric, where

Oq is a vector of the learned qij parameters, and q is the ground truth.
The simulation results from five random runs are given in Table 2. Expm, Unif,

and Eigen produced nearly identical results, and so they are combined in the
table, which focuses on the difference between hard and soft variants. We found
Eigen to be stable across all runs. All soft methods achieved significantly higher
accuracy than hard methods, especially for higher observation noise levels. This
can be attributed to the maintenance of the full hidden state distribution, leading to
improved robustness to noise.

Application of CT-HMM to Analyzing Disease Progression

In the next set of experiments, we used the CT-HMM to analyze and visualize dis-
ease progression patterns from two real-world datasets of glaucoma and Alzheimer’s

Table 2 The average 2-norm relative error from five random runs on a 5-state complete digraph
under varying measurement noise levels

Error 	 D 1=4 	 D 3=8 	 D 1=2 	 D 1 	 D 2

Soft 0:026˙ 0:008 0:032˙ 0:008 0:042˙ 0:012 0:199˙ 0:084 0:510˙ 0:104

Hard 0:031˙ 0:009 0:197˙ 0:062 0:476˙ 0:100 0:857˙ 0:080 0:925˙ 0:030
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Fig. 4 Visualization of disease progression from two datasets: (a) Nodes represent states of
glaucoma, with the node color encoding the average sojourn time (red to green: 0–5 years and
above). The blue links between nodes indicate the most probable (i.e. strongest) transitions between
adjacent states, selected from among the three allowed transitions (i.e., down, to the right, and
diagonally). The line width and the node size reflect the expected count of patients passing through
a transition or state. (b) The representation for AD is similar to (a) with the strongest transition
from each state being coded as follows: Aˇ direction (blue), hippo (green), cog (red), Aˇ+hippo
(cyan), Aˇ+cog (magenta), hippo+cog (yellow), Aˇ+hippo+ cog(black). The node color represents
the average sojourn time (red to green: 0–3 years and above). http://www.cbs.gatech.edu/CT-HMM

Disease (AD). Both are examples of degenerative disorders where the time course
of the disease plays an important role in its etiology and treatment. We demonstrate
that CT-HMM can yield insight into disease progression, and we compare the timing
results for learning across our family of methods.

We begin by describing a 2D CT-HMM for glaucoma progression. Glaucoma is
a leading cause of blindness and visual morbidity worldwide [15]. This disease is
characterized by a slowly progressing optic neuropathy with associated irreversible
structural and functional damage. We use a 2D-grid state space model defined by
successive value bands of the two main glaucoma markers, Visual Field Index
(VFI) (functional marker) and average RNFL (Retinal Nerve Fiber Layer) thickness
(structural marker) with forwarding edges (see Fig. 4a).

Our glaucoma dataset contains 101 glaucomatous eyes from 74 patients followed
for an average of 11:7 ˙ 4:5 years, and each eye has at least five visits (average
7:1˙ 3:1 visits). There were 63 distinct time intervals. The state space is created so
that most states have at least five raw measurements mapped to them. All states that
are in a direct path between two successive measurements are instantiated, resulting
in 105 states.

In Fig. 4a, we visualize the model trained using the entire glaucoma dataset.
Several dominant paths can be identified: there is an early stage containing RNFL
thinning with intact vision (blue vertical path in the first column). At RNFL range
Œ80; 85�, the transition trend reverses and VFI changes become more evident (blue
horizontal paths). This L shape in the disease progression supports the finding
in [32] that RNFL thickness of around 77 microns is a tipping point at which

http://www.cbs.gatech.edu/CT-HMM


382 Y.-Y. Liu et al.

functional deterioration becomes clinically observable with structural deterioration.
Our 2D CT-HMM model reveals the non-linear relationship between structural and
functional degeneration, yielding insights into the progression process.

We now demonstrate the use of CT-HMM to visualize the temporal interaction
of disease markers of Alzheimer’s Disease (AD). AD is an irreversible neuro-
degenerative disease that results in a loss of mental function due to the degeneration
of brain tissues. An estimated 5.3 million Americans have AD, and there is no
known method for the prevention or cure of the condition [29]. It could be beneficial
to visualize the relationship between clinical, imaging, and biochemical markers as
the pathology evolves, in order to better understand AD progression and develop
treatments.

In this experiment, we analyzed the temporal interaction among the three kinds
of markers: amyloid beta (Aˇ) level in cerebral spinal fluid (CSF) (a bio-chemical
marker), hippocampus volume (a structural marker), and ADAS cognition score (a
functional marker). We obtained the ADNI (The Alzheimer’s Disease Neuroimaging
Initiative) dataset from [29].3 Our sample included patients with mild cognitive
impairment (MCI) and AD who had at least two visits with all three markers
present, yielding 206 subjects with an average of 2:38 ˙ 0:66 visits traced in
1:56 ˙ 0:86 years. The dataset contained three distinct time intervals at 1 month
resolution. A 3D gridded state space consisting of 277 states with forwarding links
was defined such that for each marker, there were 14 bands that spanned its value
range. The procedure for constructing the state space and the definition of the data
emission model is the same as in the glaucoma experiment. Following CT-HMM
learning, the resulting visualization of Alzheimer’s disease in Fig. 4b supports recent
findings that a decrease in the A level of CSF (blue lines) is an early marker
that precedes detectable hippocampus atrophy (green lines) in cognition-normal
elderly [8]. The CT-HMM disease model and its associated visualization can be used
as an exploratory tool to gain insights into health dynamics and generate hypotheses
for further investigation by biomedical researchers.

Figure 5 gives the average runtime comparison for a single EM iteration between
soft Expm, soft Eigen, and hard Unif for both datasets. Soft Eigen with our
improvements is 26 times faster than soft Expm for the glaucoma experiment, and
35 times faster for the AD experiment. Hard Unif is slightly slower than soft Eigen.
We did not include soft Unif due to its poor complexity or hard Eigen due to its
minimal computational benefit in comparison to soft Eigen.

3Data were obtained from the ADNI database (adni.loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and neuropsychological assessment
can be combined to measure the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD). For up-to-date information, see http://www.adni-info.org.

adni.loni.usc.edu
http://www.adni-info.org
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Fig. 5 Time comparison for the average time per iteration between soft Expm, soft Eigen and hard
Unif for both experiments. Soft Eigen is the fastest method, over an order of magnitude faster than
soft Expm in both cases. Thus, it should be used unless the eigendecomposition fails, in which case
there is a tradeoff between soft Expm for accuracy and hard Unif for speed

Conclusion

This article introduces novel EM algorithms for CT-HMM learning which leverage
recent approaches [12] for evaluating the end-state conditioned expectations in
CTMC models. We improve upon the efficiency of the soft Eigen method, demon-
strating in our experiments a 26–35 times speedup over Expm, the next fastest
soft method. To our knowledge, we are the first to develop and test the Expm
and Unif methods for CT-HMM learning. We present time complexity analysis for
all methods and provide experimental comparisons under both soft and hard EM
frameworks. We conclude that soft Eigen is the most attractive method overall,
based on its speed and its accuracy as a soft method, unless it suffers from an
unstable eigendecomposition. We did not encounter significant stability issues in our
experiments. We evaluated our EM algorithms on two disease progression datasets
for glaucoma and Alzheimer’s Disease, and demonstrated that the CT-HMM can
provide a novel tool for visualizing the progression of these diseases. The software
implementation of our methods is available from our project website.4

4http://www.cbs.gatech.edu/CT-HMM

http://www.cbs.gatech.edu/CT-HMM
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In future work, we plan to explore the use of CT-HMMs in modeling event data
in a mobile health context, including the analysis of EMA data and moments of
high stress or craving identified from mobile sensor data. Other future directions
include the combination of event data with regularly-sampled data in a joint model,
the incorporation of covariates to model heterogeneous populations, and explicitly
incorporating event times into the model. In addition, more work could be done
to improve the computational efficiency of the Expm and Unif methods. As an
example, [1] describes potentially more efficient ways to compute Expm by noting
that the upper right corner of the matrix solution is a Frechét derivative, which has
its own Padé approximation. It appears that the Hadamard and trace manipulations
we introduced could be applied to this approach as well. Scaling and squaring would
cancel much of the benefit, so it would have to be replaced by balancing, which has
the same goal of reducing the matrix norm. Additional improvements in efficiency
would support the development of large-scale state models.
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Appendix: Derivation of Vectorized Eigen

In [20, 21], it is stated without proof that the naïve Eigen is equivalent to Vectorized
Eigen. Here we present the derivation. Let

�
i;j
k;l.t/ D

nX

pD1

UkpU�1
pi

nX

qD1

UjqU�1
ql ‰pq.t/ (40)

where the symmetric matrix ‰.t/ D Œ‰pq.t/�p;q2S is defined as:

‰pq.t/ D

(
tet�p if �p D �q

et�p �et�q

�p��q
if �p ¤ �q

(41)

Letting V D U�1, this is equivalent to

�
i;j
k;l.t/ D ŒUŒV

T
i Uj ı‰�V�kl (42)

www.bd2k.nih.gov
www.bd2k.nih.gov


Learning Continuous-Time Hidden Markov Models for Event Data 385

To see why, first, note that for the outer product,
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Time Series Feature Learning with Applications
to Health Care

Zhengping Che, Sanjay Purushotham, David Kale, Wenzhe Li,
Mohammad Taha Bahadori, Robinder Khemani, and Yan Liu

Abstract Exponential growth in mobile health devices and electronic health
records has resulted in a surge of large-scale time series data, which demands
effective and fast machine learning models for analysis and discovery. In this
chapter, we discuss a novel framework based on deep learning which automatically
performs feature learning from heterogeneous time series data. It is well-suited
for healthcare applications, where available data have many sparse outputs (e.g.,
rare diagnoses) and exploitable structures (e.g., temporal order and relationships
between labels). Furthermore, we introduce a simple yet effective knowledge-
distillation approach to learn an interpretable model while achieving the prediction
performance of deep models. We conduct experiments on several real-world datasets
and show the empirical efficacy of our framework and the interpretability of the
mimic models.

Introduction

The breakthroughs in sensor technologies and wearable devices in health domains
have led to a surge of large volume time series data. This offers an unprecedented
opportunity to improve future care by learning from past patient encounters.
One important step towards this goal is learning richer and meaningful features
so that accurate prediction and effective analysis can be performed. Represen-
tation learning from time series health care data has attracted many machine
learning and data mining researcher [17, 40, 45]. Most work has focused on
discovering cluster structure (e.g., disease subtypes) via variations of Gaussian
processes [23, 29].

Learning robust representations of time series health care data is especially
challenging because the underlying causes of health and wellness span body systems
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and physiologic processes, creating complex and nonlinear relationships among
observed measurements (e.g., patients with septic shock may exhibit fever or
hypothermia). Whereas classic shallow models (e.g., cluster models) may struggle
in such settings, properly trained deep neural networks can often discover, model,
and disentangle these types of latent factors [5] and extract meaningful abstract
concepts from simple data types [19]. Because of these properties, deep learning has
achieved state of the art results in speech recognition [15] and computer vision [39]
and is well-suited to time series health data. Several recent works have demonstrated
the potential of deep learning to derive insight from clinical data [18, 22, 38].
Nonetheless, the practical reality of neural networks remains challenging, and we
face a variety of questions when applying them to a new problem:

First, do we have enough data? Deep learning’s success is often associated with
massive data sets, with potentially millions of examples [10, 34], but in medicine
“big data” often means an Electronic Health Records (EHRs) database [14, 23]
with tens of thousands of cases. Other questions regard data preprocessing, model
architecture, training procedures, etc. Answering these questions often requires
time-consuming trial and error.

Second, in health domains, model interpretability is not only important but also
necessary, since the primary care providers, physicians and clinical experts alike
depend on the new healthcare technologies to help them in monitoring and decision-
making for patient care. A good interpretable model is shown to result in faster
adoptability among the clinical staff and results in better quality of patient care [20,
27]. Therefore we need to identify novel solutions which can provide interpretable
models and achieve similar prediction performance as deep models in healthcare
domain.

In this chapter, we explore and propose solutions to the challenges above. By
exploiting unique properties of both our domain (e.g., ontologies) and our data
(e.g., temporal order in time series), we can improve the performance of deep neural
networks and make the training process more efficient. Our main contributions are
as follows:

• We formulate a prior-based regularization framework for guiding the training
of multi-label neural networks using medical ontologies and other structured
knowledge. Our formulation is based on graph Laplacian priors [1, 3, 37, 43],
which can represent any graph structure and incorporate arbitrary relational
information. We apply graph Laplacian priors to the problem of training neural
networks to classify physiologic time series with diagnostic labels, where there
are many labels and severe class imbalance. Our framework is general enough to
incorporate data-driven (e.g., comorbidity patterns) and hybrid priors.

• We propose an efficient incremental training procedure for building a series of
neural networks that detect meaningful patterns of increasing length. We use the
parameters of an existing neural net to initialize the training of a new neural
net designed to detect longer temporal patterns. This technique exploits both
the well-known low rank structure of neural network weight matrices [11] and
structure in our data domain, including temporal smoothness.
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• We propose a novel knowledge distillation methodology called Interpretable
Mimic Learning where we mimic the performance of state-of-the-art deep learn-
ing models using well-known Gradient Boosting Trees (GBT). Our experiments
on a real-world hospital dataset shows that our proposed Interpretable Mimic
Learning models can achieve state-of-the-art performance comparable to the
deep learning models. We discuss the interpretable features learned by our
Interpretable Mimic Learning models, which is validated by the expert clinicians.

The proposed deep learning solutions in this chapter are general and are
applicable to a wide variety of time series healthcare data including longitudinal
data from electronic healthcare records (EHR), sensor data from intensive care
units (ICU), sensor data from mobile health devices and so on. We will use an
example of computational phenotyping from ICU time series data to demonstrate
the effectiveness of our proposed approach.

Related Work

Deep learning approaches have achieved breakthrough results in several sequential
and temporal data domains including language modeling [24], speech recogni-
tion [9, 15], and paraphrase detection [31]. We expect similar results in more general
time series data domains, including healthcare. In natural language processing,
distributed representations of words, learned from context using neural networks,
have provided huge boosts in performance [35]. Our use of neural networks to learn
representations of time series is similar: a window of time series observations can
be viewed as the context for a single observation within that window.

In medical applications, many predictive tasks suffer from severe class imbalance
since most conditions are rare. One possible remedy is to use side information, such
as class hierarchy, as a rich prior to prevent overfitting and improve performance.
Reference [32] is the first work that combines a deep architecture with a tree-based
prior to encode relations among different labels and label categories, but their work
is limited to modeling a restricted class of side information.

Our incremental training method has clear and interesting connections to ongoing
research into efficient methods for training deep architectures. It can be viewed as
a greedy method for building deep architectures horizontally by adding units to
one or more layers, and can be connected to two recent papers: Zhou et al. [44]
described a two-step incremental approach to feature learning in an online setting
and focused on data drift. Denil et al. [11] described an approach for predicting
parameters of neural networks by exploiting the smoothness of input data and the
low rank structure of weight matrices.

As pointed out in the introduction, model interpretability is not only impor-
tant but also necessary in healthcare domain. Decision trees [28]—due to their
easy interpretability—have been quite successfully employed in the healthcare
domain [6, 13, 41] and clinicians have embraced it to make informed decisions.
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However, decision trees can easily overfit and they do not achieve good performance
on datasets with missing values which is common in today’s healthcare datasets.
On the other hand, deep learning models have achieved remarkable performance in
healthcare, but hard to interpret. Some recent works on deep learning interpretability
in computer vision field [12, 33, 42] show that interpreting deep learning features
is possible but the behavior of deep models may be more complex than previously
believed. Therefore we believe there is a need to identify novel solutions which can
provide interpretable models and achieve similar prediction performance as deep
models.

Mimicking the performance of deep learning models using shallow models
is a recent breakthrough in deep learning which has captured the attention of
the machine learning community. Ba and Caruana [2] showed empirically that
shallow neural networks are capable of learning the same function as deep neural
networks. They demonstrated this by first training a state-of-the-art deep model,
and then training a shallow model to mimic the deep model. Motivated by the
model compression idea from [7, 16] proposed an efficient knowledge distillation
approach to transfer (dark) knowledge from model ensembles into a single model.
These previous works motivate us to employ mimic learning strategy to learn an
interpretable model from a well-trained deep neural network.

Methods

In this section, we describe our framework for performing effective deep learning
on clinical time series data. We begin by discussing the Laplacian graph-based prior
framework that we use to perform regularization when training multi-label neural
networks. This allows us to effectively train neural networks, even with smaller
data sets, and to exploit structured domain knowledge, such as ontologies. We then
describe our incremental neural network procedure, which we developed in order
to rapidly train a collection of neural networks to detect physiologic patterns of
increasing length. Finally we describe a simple but effective knowledge distillation
framework which recognizes interpretable features while maintaining the state-of-
the-art classification performance of the deep learning models.

General Framework

Given a multivariate time series with P variables and length T , we can represent it
as a matrix X 2 R

P�T . A feature map for time series X is a function g W RP�T 7!

R
D that maps X to a vector of features x 2 R

D useful for machine learning tasks
like classification, segmentation, and indexing. Given the recent successes of deep
learning, it is natural to investigate its effectiveness for feature learning in clinical
time series data.
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Fig. 1 A miniature illustration of the deep network with the regularization on categorical structure

Suppose we have a data set of N multivariate time series, each with P variables
and K binary labels. Without loss of generality, we assume all time series have the
same length T . After a simple mapping that stacks all T column vectors in X to one
vector x, we have N labeled instances fxi; yig

N
iD1, where xi 2 R

D; yi 2 f0; 1g
K ;D D

PT . The goal of multi-label classification is to learn a function f which can be used
to assign a set of labels to each instance xi such that yij D 1 if jth label is assigned
to the instance xi and 0 otherwise.

We use a deep feed-forward neural network, as shown in Fig. 1, with L hidden
layers and an output prediction layer. We use � D .�hid;B/ to denote the model
parameters. �hid D fhW.`/; b.`/igL`D1 denotes the weights for the hidden layers

(each with D.`/ units), and the K columns ˇk 2 R
D.L/ of B D Œˇ1ˇ2 � � �ˇK � are

the prediction parameters. For convenience we denote h.0/ D x and D.0/ D D.
Throughout this section, we assume a neural network with fully connected

layers, linear activation (W.`/h.`�1/ C b.`/) and sigmoid nonlinearities (	.z/ D
1=.1 C expf�zg/). We pretrain each hidden layer as a denoising autoencoder
(DAE) [36] by minimizing the reconstruction loss using stochastic gradient descent.
In the supervised training stage, without any regularization, we treat multi-label
classification as K separate logistic regressions, so the neural net has K sigmoid
output units. To simplify the notation, we let hi D h.L/i 2 R

D.L/ denote the output of
top hidden layer for each instance xi. The conditional likelihood of yi given xi and
model parameters � can be written as

log p.yijxi;�/ D

KX

kD1

h
yik log 	.ˇ>

k hi/C .1 � yik/ log.1 � 	.ˇ>
k hi//

i

Our framework can easily be extended to other network architectures, hidden
unit types, and training procedures.
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Prior-Based Regularization

Deep neural networks are known to work best in big data scenarios with many
training examples. When we have access to only a few examples of each class
label, incorporating prior knowledge can improve learning. Thus, it is useful to
have a general framework able to incorporate a wider range of prior information
in a unified way. Graph Laplacian-based regularization [1, 3, 37, 43] provides one
such framework and is able to incorporate any relational information that can be
represented as a (weighted) graph, including the tree-based prior as a special case.

Given a matrix A 2 R
K�K representing pairwise connections or similarities, the

Laplacian matrix is defined as L D C � A, where C is a diagonal matrix with
kth diagonal element Ck;k D

PK
k0D1.Ak;k0/. Given a set of K vectors of parameters

ˇk 2 R
D.L/ and

tr.ˇ>Lˇ/ D
1

2

X

1�k;k0�K

Ak;k0kˇk � ˇk0k22;

where tr.�/ represents the trace operator, the graph Laplacian regularizer enforces
the parameters ˇk and ˇk0 to be similar, proportional to Ak;k0 . The Laplacian
regularizer can be combined with other regularizers R.�/ (e.g., the Frobenius norm
kW.`/k2F to keep hidden layer weights small), yielding the regularized loss function

L D�
NX

iD1

log p.yijxi;�/C �R.�/C
�

2
tr.ˇ>Lˇ/

where �; � > 0 are the Laplacian and other regularization hyperparameters,
respectively. Note that the graph Laplacian regularizer is quadratic in terms of
parameters and so does not add significantly to the computational cost.

The graph Laplacian regularizer can represent any pairwise relationships
between parameters. Here we discuss how to use different types of priors and
the corresponding Laplacian regularizers to incorporate both structured domain
knowledge (e.g., label hierarchies based on medical ontologies) and empirical
similarities.

Structured Domain Knowledge as a Tree-Based Prior
The graph Laplacian regularizer can represent a tree-based prior based on hierarchi-
cal relationships found in medical ontologies. In our experiments, we use diagnostic
codes from the Ninth Revision of the International Classification of Diseases (ICD-
9) system [25], which are widely used for classifying diseases and coding hospital
data. The three digits (and two optional decimal digits) in each code form a natural
hierarchy including broad body system categories (e.g., Respiratory), individual
diseases (e.g., Pneumonia), and subtypes (e.g., viral vs. Pneumococcal pneumonia).
Right part of Fig. 1 illustrates two levels of the hierarchical structure of the ICD-9
codes. When using ICD-9 codes as labels, we can treat their ontological structure as
prior knowledge. If two diseases belong to the same category, then we add an edge
between them in the adjacency graph A.
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Data-Driven Similarity as a Prior
Laplacian regularization is not limited prior knowledge in the form of trees or
ontologies. It can also incorporate empirical priors, in the form of similarity
matrices, estimated from data. For example, we can use the co-occurrence matrix
A 2 R

K�K whose elements are defined as follows:

Ak;k0 D
1

N

NX

iD1

I .yikyik0 D 1/

where N is the total number of the training data points, and I .�/ is the indicator
function. Given the fact that Ak;k0 is the maximum likelihood estimation of the
joint probability Pfyik D 1; yik0 D 1g, regularization with the Laplacian constructed
from the co-occurrence similarity matrix encourages the learning algorithm to find
a solution for the deep network that predicts the pair-wise joint probability of the
labels accurately. The co-occurrence similarity matrices of the labels in two datasets
are shown in Fig. 6c and d.

Incremental Training

Next we describe our algorithm for efficiently training a series of deep models to
discover and detect physiologic patterns of varying lengths. This framework utilizes
a simple and robust strategy for incremental learning of larger neural networks from
smaller ones by iteratively adding new units to one or more layers. Our strategy
is founded upon intelligent initialization of the larger network’s parameters using
those of the smaller network.

Given a multivariate time series X 2 R
P�T , there are two ways in which to use

feature maps of varying or increasing lengths. The first would be to perform time
series classification in an online setting in which we want to regularly re-classify
a time series based on all available data. For example, we might would want to
re-classify (or diagnose) a patient after each new observation while also including
all previous data. Second, we can apply a feature map g designed for a shorter
time series of length TS to a longer time series of length T > TS using the sliding
window approach: we apply g as a filter to subsequences of size TS with stride RS

(there will be T�TSC1
RS

). Proper choice of window size TS and stride RS is critical for
producing effective features. However, there is often no way to choose the right TS

and RS beforehand without a priori knowledge (often unavailable). What is more,
in many applications, we are interested in multiple tasks (e.g., patient diagnosis and
risk quantification), for which different values of TS and RS may work best. Thus,
generating and testing features for many TS and RS is useful and often necessary.
Doing this with neural nets can be computationally expensive and time-consuming.

To address this, we propose an incremental training procedure that leverages a
neural net trained on windows of size TS to initialize and accelerate the training of
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a new neural net that detects patterns of length T 0 D TS C�TS (i.e., �TS additional
time steps). That is, the input size of the first layer changes from D D PTS to
D0 D DC d D PTS C P�TS.

Suppose that the existing and new networks have D.1/ and D.1/Cd.1/ hidden units
in their first hidden layers, respectively. Recall that we compute the activations in
our first hidden layer according to the formula h.1/ D 	.W.1/xC b.1//. This makes
W.1/ an D.1/ � D matrix and b.1/ an D.1/-vector; we have a row for each feature
(hidden unit) in h.1/ and a column for each input in x. From here on, we will treat
the bias b.1/ as a column in W.1/ corresponding to a constant input and omit it from
our notation.

The larger neural network has a .D.1/C d.1//� .DC d/ weight matrix W0.1/. The
first D columns of W0.1/ correspond exactly to the D columns of W.1/ because they
take the same D inputs. In time series data, these inputs are the observations in the
same TS�P matrix. We cannot guarantee the same identity for the first D.1/ columns
of W0.1/, which are the first D.1/ hidden units of h0.1/; nonetheless, we can make a
reasonable assumption that these hidden units are highly similar to h.1/. Thus, we
can think of constructing W0.1/ by adding d new columns and d.1/ new rows to W.1/.

As illustrated in Fig. 2, the new weights can be divided into three categories.

• �Wne: D.1/ � d weights that connect new inputs to existing features.
• �Wen: d.1/ � D weights that connect existing inputs to new features.
• �Wnn: d.1/ � d weights that connect new inputs to new features.

We now describe strategies for using W.1/ to choose initial values for parameters
in each category.

Similarity-Based Initialization for New Inputs
To initialize �Wne, we leverage the fact that we can compute or estimate the
similarity among inputs. Let K be a .D C d/ � .D C d/ kernel similarity matrix
between the inputs to the larger neural network that we want to learn. We can
estimate the weight between the ith new input (i.e., input DC i) and the jth hidden

Fig. 2 How adding various units changes the weights W
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Algorithm 1 Similarity-based initialization

Input: Training data X 2 R
N�.DCd/; existing weights W.1/ 2 R

D.1/�D; kernel function k.�; �/
Output: Initialized weights �Wne 2 R

D.1/�d

1: for each new input dimension i 2 Œ1; d� do
2: for each existing input dimension k 2 Œ1;D� do
3: Let KŒD C i; k� WD k.XŒ�;D C i�;XŒ�; k�/
4: end for
5: Normalize K (if necessary)
6: for each existing feature j 2 Œ1;D.1/� do
7: Let �WneŒj; i� WD

PD
kD1 KŒD C i; k�W.1/Œj; k�

8: end for
9: end for

unit as a linear combination of the parameters for the existing inputs, weighted by
each existing input’s similarity to the ith new input. This is shown in Algorithm 1.

Choice of K is a matter of preference and input type. A time series-specific
similarity measure might assign a zero for each pair of inputs that represents
different variables (i.e., different univariate time series) and otherwise emphasize
temporal proximity using, e.g., a squared exponential kernel. A more general
approach might estimate similarity empirically, using sample covariance or cosine
similarity. We find that the latter works well, for both time series inputs and arbitrary
hidden layers.

Algorithm 2 Gaussian sampling-based initialization

Input: Existing weights W.1/ 2 R
D.1/�D

Output: Initialized weights �Wen 2 R
d.1/�D, �Wnn 2 R

d.1/�d

1: Let Nw D 1
DD.1/

P
i;j W.1/Œi; j�

2: Let Ns D 1
DD.1/�1

P
i;j.W

.1/Œi; j�� Nw/2

3: for each new feature j 2 Œ1; d.1/� do
4: for each existing input dimension i 2 Œ1;D� do
5: Sample �WneŒj; i� � N . Nw; Ns/
6: end for
7: for each new input dimension i 2 Œ1; d� do
8: Sample �WnnŒj; i� � N . Nw; Ns/
9: end for

10: end for

Sampling-Based Initialization for New Features
When initializing the weights for Wen, we do not have the similarity structure to
guide us, but the weights in W.1/ provide information. A simple but reasonable
strategy is to sample random weights from the empirical distribution of entries in
W.1/. We have several choices here. The first regards whether to assume and estimate
a parametric distribution (e.g., fit a Gaussian) or use a nonparametric approach, such
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Fig. 3 Weight distributions for three layers of a neural network after pretraining
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Fig. 4 Weight distributions for three layers of a neural network after finetuning

as a kernel density estimator or histogram. The second regards whether to consider
a single distribution over all weights or a separate distribution for each input.

In our experiments, we found that the existing weights often had recognizable
distributions (e.g., Gaussian, see Figs. 3 and 4) and that it was simplest to estimate
and sample from a parametric distribution. We also found that using a single
distribution over all weights worked as well as, if not better than, a separate
distribution for each input.

For initializing weights in Wnn, which connect new inputs to new features, we
could apply either strategy, as long as we have already initialized Wen and Wne. We
found that estimating all new feature weights (for existing or new inputs) from the
same simple distribution (based on W.1/) worked best. Our full Gaussian sampling
initialization strategy is shown in Algorithm 2.

Initializing Other Layers
This framework generalizes beyond the input and first layers. Adding d0 new hidden
units to h0.1/ is equivalent to adding d0 new inputs to h0.2/. If we compute the
activations in h0.1/ for a given data set, these become the new inputs for h0.2/ and we
can apply both the similarity and sampling-based strategies to initialize new entries
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Fig. 5 Training pipeline for mimic method

in the expanded weight matrix W0.2/. The same goes for all layers. While we can
no longer design special similarity matrices to exploit known structure in the inputs,
we can still estimate empirical similarity from training data activations in, e.g., h0.2/.

Intuition suggests that if our initializations from the previous pretrained values
are sufficiently good, we may be able to forego pretraining and simply perform
backpropagation. Thus, we choose to initialize with pretrained weights, then do the
supervised finetuning on all weights.

Interpretable Mimic Learning

In this section, we describe our simple and effective knowledge distillation
framework—the Interpretable Mimic Learning method also termed as the
GBTmimic model, which trains Gradient Boosting Trees to mimic the performance
of deep network models. Our mimic method aims to recognize interpretable features
while maintaining the state-of-the-art classification performance of deep learning
models.

The general training pipeline of GBTmimic model is shown in Fig. 5. In the first
step, we train a deep neural network with several hidden layers and one prediction
layer, given the input features X and target y. We then take the activations of the
highest hidden layers as the extracted features Xnn from that deep network. In the
second step, we train a mimic model, i.e., Gradient Boosting Regression Trees,
given the raw input X and the soft targets ynn directly from the prediction layer
of the neural network, to get the final output ym with minimum mean squared error.
After finishing the training procedure, we can directly apply the mimic model from
the final step for the classification task.

Our interpretable mimic learning model using GBT has several advantages over
existing methods. First, GBT is good at maintaining the performance of the original
complex model such as deep networks by mimicking its predictions. Second, it
provides better interpretability than original model, from its decision rules and
tree structures. Furthermore, using soft targets from deep learning models avoid
overfitting to the original data and provide good generalizations, which can not be
achieved by standard decision tree methods.
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Experiments

To evaluate our frameworks, we ran a series of classification and feature-learning
experiments using several clinical time series datasets collected during the delivery
of care in intensive care units (ICUs) at large hospitals. More details of these datasets
are introduced in section “Dataset Descriptions”. In section “Benefits of Prior-Based
Regularization”, we demonstrate the benefit of using priors (both knowledge- and
data-driven) to regularize the training of multi-label neural nets. In section “Efficacy
of Incremental Training”, we show that incremental training both speeds up training
of larger neural networks and keeps classification performance. We show the quan-
titative results of our interpretable mimic learning method in section “Interpretable
Mimic Learning Results”, and the interpretations in section “Interpretability”.

Dataset Descriptions

We conduct the experiments on the following three real world healthcare datasets.

Physionet Challenge 2012 Data
The first dataset comes from PhysioNet Challenge 2012 website [30] which is a
publicly available1 collection of multivariate clinical time series from 8000 ICU
units. Each episode is a multivariate time series of roughly 48 h and containing over
30 variables. These data come from one ICU and four specialty units, including
coronary care and cardiac, and general surgery recovery units. We use the Training
Set A subset for which outcomes, including in-hospital mortality, are available. We
resample the time series on an hourly basis and propagate measurements forward
(or backward) in time to fill gaps. We scale each variable to fall between Œ0; 1�. We
discuss handling of entirely missing time series below.

ICU Data
The second dataset consists of ICU clinical time series extracted from the electronic
health records (EHRs) system of a major hospital. The original dataset includes
roughly ten thousand episodes of varying lengths, but we exclude episodes shorter
than 12 h or longer than 128 h, yielding a dataset of 8500 multivariate time series of
a dozen physiologic variables, which we resample once per hour and scale to [0,1].
Each episode has zero or more associated diagnostic codes from the Ninth Revision
of the International Classification of Diseases (ICD-9) [25]. From the raw 3–5 digit
ICD-9 codes, we create a two level hierarchy of labels and label categories using
a two-step process. First, we truncate each code to the tens position (with some
special cases handled separately), thereby merging related diagnoses and reducing
the number of unique labels. Second, we treat the standard seventeen broad groups

1http://physionet.org/challenge/2012/.

http://physionet.org/challenge/2012/
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of codes (e.g., 460–519 for respiratory diseases), plus the supplementary V and E
groups as label categories. After excluding one category that is absent in our data,
we have 67 unique labels and 19 categories.

VENT Data
Another dataset [21] consists of data from 398 patients with acute hypoxemic
respiratory failure in the intensive care unit at Children’s Hospital Los Angeles
(CHLA). It contains a set of 27 static features, such as demographic information
and admission diagnoses, and another set of 21 temporal features (recorded daily),
including monitoring features and discretized scores made by experts, during the
initial 4 days of mechanical ventilation. The missing value rate of this dataset is
13.43%, with some patients/variables having a missing rate of >30%. We perform
simple imputation for filling the missing values where we take the majority value
for binary variables, and empirical mean for other variables.

Implementation Details
We implemented all neural networks in Theano [4] and Keras [8] platforms. We
implement other baseline models based on the scikit-learn [26] package. In prior
and incremental frameworks, we use multilayer perceptron with up to five hidden
layers (of the same size) of sigmoid units. The input layer has PT input units for
P variables and T time steps, while the output layer has one sigmoid output unit
per label. Except when we use our incremental training procedure, we initialize
each neural network by training it as an unsupervised stacked denoising autoencoder
(SDAE), as this helps significantly because our datasets are relatively small and our
labels are quite sparse. In mimic learning framework, our DNN implementation has
two hidden layers and one prediction layer. We set the size of each hidden layer
twice as large as input size.

Benefits of Prior-Based Regularization

Our first set of experiments demonstrates the utility of using priors to regularize
the training of multi-label neural networks, especially when labels are sparse and
highly correlated or similar. From each time series, we extract all subsequences
of length T D 12 in sliding window fashion, with an overlap of 50% (i.e., stride
R D 0:5T), and each subsequence receives its episode’s labels (e.g., diagnostic
code or outcome). We use these subsequences to train a single unsupervised SDAE
with five layers and increasing levels of corruption (from 0.1 to 0.3), which we
then use to initialize the weights for all supervised neural networks. The sparse
multi-label nature of the data makes stratified k-fold cross validation difficult, so we
instead randomly generate a series of 80/20 random training/test splits of episodes
and keep the first five that have at least one positive example for each label or
category. At testing time, we measure classification performance for both frames
and episodes. We make episode-level predictions by thresholding the mean score
for all subsequences from that episode.
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Fig. 6 Similarity matrix examples of different priors for the ICU (a–c) and Physionet (d) data
sets. x-axis and y-axis refer to the tasks. Colors represent the similarity values, black: 0; white: 1

The ICU data set contains 8500 episodes varying in length from 12 to 128 h.
The above subsequence procedure produces 50,000 subsequences. We treat the
simultaneous prediction of all 86 diagnostic labels and categories as a multi-label
prediction problem. This lends itself naturally to a tree-based prior because of the
hierarchical structure of the labels and categories (Fig. 6a, b). However, we also test
a data-based prior based on co-occurrence (Fig. 6c). Each neural network has an
input layer of 156 units and five hidden layers of 312 units each.

The Physionet data set contains 3940 episodes, most of length 48 h, and yields
27,000 subsequences. These data have no such natural label structure to leverage,
so we simply test whether a data-based prior can improve performance. We create
a small multi-label classification problem consisting of four binary labels with
strong correlations, so that similarity-based regularization should help: in-hospital
mortality (mortality), length-of-stay less than 3 days (los<3), whether the patient
had a cardiac condition (cardiac), and whether the patient was recovering from
surgery (surgery). The mortality rate among patients with length-of-stay less than
3 days is nearly double the overall rate. The cardiac and surgery are created from
a single original variable indicating which type of critical care unit the patient was
admitted to; nearly 60% of cardiac patients had surgery. Figure 6d shows the co-
occurrence similarity between the labels.

We impute missing time series (where a patient has no measurements of a
variable) with the median value for patients in the same unit. This makes the cardiac
and surgery prediction problems easier but serves to demonstrate the efficacy of our
prior-based training framework. Each neural network has an input layer of 396 units
and five hidden layers of 900 units each.

The results for Physionet are shown in Fig. 7. We observe two trends, which
both suggest that multi-label neural networks work well and that priors help. First,
jointly learning features, even without regularization, can provide a significant
benefit. Both multi-label neural networks dramatically improve performance for
the surgery and cardiac tasks, which are strongly correlated and easy to detect
because of our imputation procedure. In addition, the addition of the co-occurrence
prior yields clear improvements in the mortality and los<3 tasks while maintaining
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Fig. 7 Physionet classification performance

Table 1 AUROC for classification

Tasks No prior Co-occurrence ICD-9 tree

Subsequence All 0:7079˙ 0:0089 0:7169˙ 0:0087 0:7143˙ 0:0066

Categories 0:6758˙ 0:0078 0:6804˙ 0:0109 0:6710˙ 0:0070

Labels 0:7148˙ 0:0114 0:7241˙ 0:0093 0:7237˙ 0:0081

Episode All 0:7245˙ 0:0077 0:7348˙ 0:0064 0:7316˙ 0:0062

Categories 0:6952˙ 0:0106 0:7010˙ 0:0136 0:6902˙ 0:0118

Labels 0:7308˙ 0:0099 0:7414˙ 0:0064 0:7407˙ 0:0070

the high performance in the other two tasks. Note that this is without tuning the
regularization parameters.

Table 1 shows the results for the ICU data set. We report classification AUROC
performance for both individual subsequences and episodes, computed across all
outputs, as well as broken down into just labels and just categories. The priors
provide some benefit but the improvement is not nearly as dramatic as it is for
Physionet. We face a rather extreme case of class imbalance (some labels have
fewer than 0.1% positive examples) multiplied across dozens of labels. In such
settings, predicting all negatives yields a very low loss. We believe that even the
prior-based regularization suffers from the imbalanced classes: enforcing similar
parameters for equally rare labels may cause the model to make few positive
predictions. However, the Co-Occurrence prior does provide a clear benefit, even
in comparison to the ICD-9 prior. As Fig. 6c shows, this empirical prior captures
not only the category/label relationship encoded by the ICD-9 tree prior but also
includes valuable cross-category relationships that represent commonly co-morbid
conditions.
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Efficacy of Incremental Training

In these experiments we show that our incremental training procedure not only
produces more effective classifiers (by allowing us to combine features of different
lengths) but also speeds up training. We train a series of neural networks designed
to model and detect patterns of lengths TS D 12; 16; 20; 24. Each neural net has
PTS inputs (for P variables) and five layers of 2PTS hidden units each. We use each
neural network to make an episode-level prediction as before (i.e., the mean real-
valued output for all frames) and then combine those predictions to make a single
episode level prediction. We combine two training strategies:

• Full: Separately train each neural net, with unsupervised pretraining followed by
supervised finetuning.

• Incremental: Fully train the smallest (TS D 12) neural net and then use its
weights to initialize supervised training of the next model (TS D 16). Repeat
for subsequent networks.

We begin by comparing the training time (in minutes) saved by incremental
learning in Fig. 8. Incremental training provides an alternative way to initialize
larger neural networks and allows us to forego unsupervised pretraining. What
is more, supervised finetuning converges just as quickly for the incrementally
initialized networks as it does for the fully trained network. As a result, it
reduces training time for a single neural net by half. Table 2 shows the that the
incremental training reaches comparable performance. Moreover, the combination
of the incremental training and Laplacian prior leads to better performance than
using Laplacian prior only.
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Fig. 8 Training time for different neural networks for full/incremental training strategies
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Table 2 AUROC for
incremental training

Size Level Full Inc Prior+Full Prior+Inc

16 Subseq. 0:6928 0:6874 0:6556 0:6581

Episode 0:7148 0:7090 0:6668 0:6744

20 Subseq. 0:6853 0:6593 0:6674 0:6746

Episode 0:7022 0:6720 0:6794 0:6944

24 Subseq. 0:7002 0:6969 0:6946 0:7008

Episode 0:7185 0:7156 0:7136 0:7171

Interpretable Mimic Learning Results

We categorize the methods for our mimic learning framework into three groups:

• Baseline machine learning algorithms which are popularly used in the healthcare
domain: Linear Support Vector Machine (SVM), Logistic Regression (LR),
Decision Tree (DT), and Gradient Boosting Trees (GBT).

• Neural network-based method (NN-based): Deep Neural Networks (DNN).
• Our Interpretable Mimic Learning methods: For the NN-based method described

above, we take its soft predictions and treat it as the training target of Gradient
Boosting Trees. This method is denoted by GBTmimic-DNN.

For evaluating the mimic learning approach, we conduct two binary classification
tasks on VENT dataset.

• Mortality (MOR) task—In this task we predict whether the patient dies within
60 days after admission or not. In the dataset, there are 80 patients with positive
mortality label (patients who die).

• Ventilator Free Days (VFD) task—In this task, we are interested in evaluating
a surrogate outcome of morbidity and mortality (Ventilator free Days, of which
lower value is bad), by identifying patients who survive and are on a ventilator for
longer than 14 days. Since here lower VFD is bad, it is a bad outcome if the value
�14, otherwise it is a good outcome. In the dataset, there are 235 patients with
positive VFD labels (patients who survive and stay long enough on ventilators).

We train all the above methods with five different trials of fivefold random cross
validation. We do 50 epochs of stochastic gradient descent (SGD) with learning
rate 0.001. For Decision Trees, we expand the nodes as deep as possible until all
leaves are pure. For Gradient Boosting Trees, we use stage shrinking rate 0.1 and
maximum number of boosting stages 100. We set the depth of each individual trees
to be 3, i.e., the number of terminal nodes is no more than 8, which is fairly enough
for boosting.

Table 3 shows the prediction performance comparison of the models. We observe
that for both the MOR and VFD tasks, the deep model obtains better performance
than standard machine learning baselines; and our interpretable mimic methods
obtain similar or better performance than the deep models.
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Table 3 Classification results

Task

MOR VFD

Method AUC (mean) AUC (std) AUC (mean) AUC (std)

Baseline SVM 0.6431 0.059 0.7248 0.056

LR 0.6888 0.068 0.7602 0.053

DT 0.5965 0.081 0.6024 0.044

GBT 0.7233 0.065 0.7630 0.051

NN-based DNN 0.7288 0.084 0.7756 0.053

Mimic GBTmimic-DNN 0.7574 0.064 0.7835 0.054

AUC(mean): Mean of Area under ROC
AUC(std): Standard Deviation of Area under ROC

Table 4 Top features and corresponding importance scores

Task Model Features (importance scores)

MOR GBT MAP-D1 (0.052) PaO2-D2 (0.052) FiO2-D3 (0.037)

GBTmimic-DNN MAP-D1 (0.031) ıPF-D1 (0.031) PH-D1 (0.029)

VFD GBT MAP-D1(0.035) MAP-D3 (0.033) PRISM12ROM (0.030)

GBTmimic-DNN MAP-D1 (0.042) PaO2-D0 (0.033) PRISM12ROM (0.032)

Interpretability

One advantage of decision tree methods is their interpretable feature selection
and decision rules. Table 4 shows the top useful features, found by GBT and our
GBTmimic models, in terms of the importance scores among all cross validations.
We find that some important features are shared with several methods in these two
tasks, e.g., MAP (Mean Airway Pressure) at day 1, ıPF (Change of PaO2/FIO2
Ratio) at day 1, etc. Another interesting finding is that almost all the top features
are temporal features, while among all static features, the PRISM (Pediatric Risk of
Mortality) score, which is developed and widely used by the doctors and medical
experts, is the most useful variable.

Discussion on Mobile Health

The deep learning solutions proposed in this chapter are general and are applicable
to a wide variety of time series healthcare data including longitudinal data from
electronic healthcare records (EHR), sensor data from intensive care units (ICU),
sensor data from mobile health devices and so on. Our frameworks are well suited
for mobile healthcare data. For example, our incremental training approach allows
us to perform time series classification tasks in an online manner and thus, is able
to efficiently utilize the real-time sensor data collected on mobile devices. Thus, we
can perform real-time mobile health data analytics to improve prediction outcomes
and reduce healthcare costs.



Time Series Feature Learning with Applications to Health Care 407

Summary

In this chapter, we introduced a general framework based on deep learning for
representation learning from time series health data. It can incorporate prior knowl-
edge, such as formal ontologies (e.g., ICD-9 codes) and data-derived similarity,
into deep learning models. Moreover, we presented a fast and scalable training
procedure which can share deep network architectures of different sizes. We also
proposed a simple yet effective knowledge-distillation approach called Interpretable
Mimic Learning, to learn interpretable features for making robust prediction while
mimicking the performance of deep learning models. Experiment results on several
real-world hospital datasets demonstrate empirical efficacy and interpretability of
our mimic models.
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From Markers to Interventions: The Case
of Just-in-Time Stress Intervention
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Abstract The use of sensor-based assessment of stress to trigger the delivery of
just-in-time intervention has the potential to help people manage daily stress as it
occurs in the person’s natural environment. The challenge is to mine the continuous
stream of sensor data and identify those few opportune moments for triggering an
intervention—when there is sufficient confidence in the accuracy of the sensor-
based stress markers, in order to limit interruptions to the daily lives. In this chapter,
we describe the process of developing a real-time method to identify stress episodes,
from a time series of stress markers, to inform the triggering of just-in-time stress-
management interventions.
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Introduction

Data collected by wearable sensors can now be used to assess stress continuously in
a person’s natural environment [11]. Computational models convert data collected
by wearable sensors into a continuous measure of stress by recognizing the
physiological responses exhibited during stress [17, 19, 33]. These advancements
have inspired new research to analyze and visualize the dense time series of stress
measurements together with associated contexts (e.g., location, activity, driving,
etc.) [36, 38]. The goal of these works is to inform the development of just-in-time
stress interventions that can help individuals manage their daily stress in the natural
environment.

Management of stress via providing just-in-time-intervention (JITI) at the most
opportune moments can help in coping with stress. Managing stress in daily life can
directly improve health and wellness. For example, it can help individuals deal with
migraine and panic attacks. It can also help manage heart diseases, diabetes, and
addictive behaviors, such as smoking, drinking, illicit drug use, overeating, etc. [2,
7, 27, 37, 39, 43]. We use the case of smoking cessation to illustrate our proposed
methods for designing just-in-time stress intervention.

Smoking cessation is an important health issue because smoking causes the
largest number of deaths, accounting for one in every five death [10, 28, 28].
Smoking is very difficult to treat as most smokers trying to quit eventually
lapse. Stress is one of the major triggers for smoking lapses [5, 9, 39], and it is
usually elevated in early phases of smoking cessation, which is when most lapses
occur [4, 9]. But, individuals who continue to be abstinent experience a gradual
decrease in their stress level [8].

During abstinence, in addition to coping with nicotine withdrawal effects,
participants have to deal with numerous other issues, especially if participating in
a mHealth smoking cessation study. They are usually asked to wear sensors (in the
form of a chest band and wrist bands) for measurement of stress and detection of
smoking lapses. In addition, participants are asked to respond to frequent (about 10
per day) Ecological Momentary Assessments (EMAs) where they self-report their
mental state and surrounding contexts, which are not readily available from sensors
(e.g., experiencing craving). Therefore, just-in-time stress interventions (which can
also be perceived as an interruption) should be limited to reduce the interruption
burden on participants.

There are several other considerations in the design of an effective just-in-
time stress intervention. First, when an intervention is triggered, we should have
high confidence in sensor-derived stress assessments. Second, the timing of the
intervention trigger should be selected to maximize efficacy. For example, providing
an intervention when a user is found to be stressed may further increase their stress,
whereas providing intervention during moments of low stress with high likelihood
of stress in the near future may help them prepare to better tolerate a future stress
event.
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Third, stress assessments and the triggering of interventions occurs in real time
on resource-constrained and battery-operated wearable sensors and smart phones.
Although there are major advancements in technology, battery life is still a major
issue for continuous stress assessment in the natural environment. Therefore, the
computational model for providing just-in-time stress intervention needs to be
efficient computationally and in power consumption. Computational efficiency is
also needed to ensure that the entire computation method keeps pace with the rapidly
flowing stream of sensor data and does not fall behind. Otherwise, the computational
process will introduce a lag between measurements and trigger generation that will
grow larger with time. This chapter takes all of these constraints into account in
designing a just-in-time stress intervention to help with stress management during
smoking cessation.

Presented work analyzes the time series of stress measurements and identifies
non-overlapping periods, classified as stressed, unsure, not-stressed, and unknown.
The unknown class occurs when data is noisy, missing, or affected by confounders
such as physical activity. The unsure class occurs when the physiological data
cannot be classified into stressed or non-stressed with sufficient confidence. We
use data collected in a lab stress study to train our models.

We applied our proposed model on data collected from a smoking cessation field
study to discover the stress patterns among nicotine dependent participants in their
natural environment. We found that experiencing stressful episodes increased the
likelihood of additional stress episodes in the near future. Similarly, participants in
a not-stressed state are likely remain in the same state. Furthermore, transitioning
from not-stressed to stressed is less likely than transitioning from not-stressed
to unsure, and then from unsure to stressed. Observations like these suggest that
providing a stress intervention when a user experiences a stressful episode may help
him/her better cope with future stress episodes.

Related Works

Continuous assessment of stress usually requires a continuous assessment of phys-
iology. Significant advances have been made in assessing physiology continuously
in the natural environment from wearable physiological sensors [11], electrodermal
response [24], photoplethysmography from the fingertip [23], or near-infrared
spectroscopy from the forehead [14]. The stress intervention method described in
this chapter can be adapted to stress measurements obtained from any of the above
methods.

The works focusing on assessing interruptibility or availability [12, 20, 21, 42]
have a similar goal, i.e., of identifying appropriate moments from sensor data when
the user can be interrupted to deliver a prompt for intervention, self-report, or a
phone call. But, their goal is to decide when to defer or delay a trigger, and hence
they can be used to decide whether to deliver a stress intervention after a trigger
has been generated using the proposed method of this chapter. Also, their method
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of data analytics is not directly applicable to our problem because the goal in the
interruptibility/availability work is mainly to assess the data for each moment (e.g.,
minute) independently of the past to decide the current state of the user, whereas the
goal here is to mine the time series to identify entire stress episodes.

The closest work related to the presented work is one of our recent works [36],
where we developed a method to provide stress interventions using a stress episode
detection method that addressed real life challenges such as physical activity
confounds and missing data. However, this model involved very frequent stress
assessments (every 5 s), which is not feasible to implement on a smartphone with
limited computational capacity and battery life. Finally, the classification of stress
episodes was not based on lab stress data, but left as a user-defined parameter
that can be tuned on the basis of a global expected daily stress frequency. Stress
occurrence in the field setting varies widely between individuals and between days
for the same individual. Hence, the model has limited utility in real-life.

In contrast, the presented work uses data collected in a lab stress study for model
development, where well-accepted stress tasks were performed. These protocol
labels are used to learn the parameters of a stress episode detection model. Finally,
the presented method is sensitive to the resource limitations of mobile phones, so it
can be deployed in a real-life. In fact, the source code and the app version of our
method is available for free use, as part of the MD2K software platform [1].

Overview of Sensors-to-Marker-to-Intervention

As shown in Fig. 1, sensor-triggered mobile intervention has three main stages. First
stage is the acquisition of data by sensing physiological parameters from wearable
sensors in the user’s free living condition. Sensor suites, such as AutoSense [11]
can collect physiological signals (e.g., ECG, respiration, and accelerometer) at a
high enough frequency (approximately five million samples per day) that suffices
for continuous assessment of stress.

Fig. 1 Three stages of sensor-triggered intervention delivery process. First, sense using wearable
sensor suite AutoSense [11] and a smart phone. Second, develop a computational model to analyze
physiological data acquired from the first stage and assess stress [19]. Third, obtain stress time
series, identify stress episodes, and act via triggering intervention at appropriate moments. This
third stage is the main topic of this chapter
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The second stage involves analysis and modeling of this high volume data
obtained from the first stage. The outcomes of this stage are personalized machine
learning models that convert raw sensor data into bio-markers of health, behavior,
and environment (e.g., stress [19] and activity [34]). This stage reduces the data from
five million per day to approximately ten thousand samples per day. Section “Stress
Inference from Physiological Data” discusses the computational procedure for
assessing stress and activity.

The third stage is tasked with identifying stress episodes from the stress marker
time series obtained from the second stage. This stage reduces the data from ten
thousand per day to usually 5 or less per day when an intervention should be
delivered. This third stage is the main topic of this chapter.

Figure 2 shows an overview of the approach in this chapter. First, we infer
stress from ECG and respiration data, and (confounding) physical activity from
accelerometers. Second, we identify and filter out physical activity confounded
stress assessments. Third, we develop our stress episode identification model on
lab study data and apply the model on smoking cessation field study data. Finally,
we present stress patterns observed in the smoking cessation field study data.

Data Description

Data collected in two user studies—a lab stress study and a smoking cessation field
study—was used to train the stress inference model and design the just-in-time stress
intervention. Each study was approved by the Institutional Review Board (IRB),
and all participants provided written informed consent. This section provides an
overview of the wearable sensor suite and a data description of lab stress study. The
data description of smoking cessation field study is presented in section “Smoking
Cessation Field Study”.

Wearable Sensor Suite

The sensors worn by the all participants in both studies are part of a large suite of
wearable biosensors, called AutoSense [11]. These unobtrusive sensors are worn
mostly under the clothes, and include a two-lead electrocardiograph (ECG), 3-axis
accelerometer, and respiration sensors, among others. Participants in the smoking
cessation study also wore an inertial sensor on each wrist that includes a 3-axis
accelerometer and a 3-axis gyroscope. Each sensor transmits the data continuously
to a smartphone using a low-power wireless radio transmitter. The AutoSense chest
band (with ECG, respiration, and accelerometer sensors) has its own 750 mAh
battery that can last a week on a single charge. The phone, which collects GPS
data continuously and keeps its wireless radio on for data reception, can last 13 h
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Fig. 2 Overview of the approach. First, we infer stress from ECG and respiration data, and
confounder physical activity from accelerometer. Second, we remove physical activity confounded
stress assessments. Third, we develop our stress episode identification model on lab study and
apply the model on smoking cessation field study. Finally, we discover stress patterns from the
smoking cessation field study

on a single charge. The wrist sensor, using a 500 mAh battery, can last 3 days. The
sampling rate is 128 Hz (downsampled to 64 Hz at the sensor) for the ECG sensor,
21.3 Hz for the respiration sensor, and 16 Hz for each axis of the accelerometer and
gyroscope in both the chest band and wrist sensors.

Participants were given a smartphone to carry at all times. It receives and stores
all sensor data. It is also used to fill out and store all the self-reports which capture
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instantaneous ground-truth assessments of stress and craving, as well as record
various situational factors and events, such as physical activity levels, places visited,
consumption of food and alcohol.

Lab Stress Study

We use ground-truth labeled data collected in a lab study that was reported in [19,
33]. The stress lab session lasts 2 h including instrumentation (for 30 min), resting
baseline (for 30 min), stress protocol (for 30 min), and post-stress rest (for 30 min)
sessions.

Participants came to a lab where they wore the sensors for continuous data
collection throughout the session. Participants were asked to sit in a comfortable
chair and rest for 30 min during the initial baseline. The study includes three
validated stress protocols, in the form of socio-evaluative, cognitive, and physical
challenges.

During the socio-evaluative challenge, the participant was given a topic and asked
to prepare (for 4 min) and deliver (for 8 min) a speech in front of a research staff.
For a cognitive challenge (4 min), the participant was given a three digit number
and asked to add three digits of that number, and then add the sum to the three
digit number. Participants in the train study repeated this while seated and standing
(counterbalanced). Participants in the test session completed only a single instance
of this task while seated (because no significant effect of change in posture on stress
response was observed in the train dataset). Finally, during the physical stressor, the
participant was asked to leave his/her hand submerged in ice cold water, for 90 s.
This was followed by a 30-min rest period to allow the participants’ physiology and
mental state to return to baseline.

These tasks have been shown to reliably induce stress-related physiological
changes [3]. Therefore, the lab protocol is used to label the data (i.e., gold standards)
that are used to train and test the models. Time-stamping each distinct rest and stress
period allows us to construct ground-truth labels for each minute of the lab-session,
designating a minute as stressed, if the participant was undergoing a stress task
during that minute, and not-stressed otherwise. These labels are subsequently used
to train the cStress model and obtain continuous stress assessments.

Stress Inference from Physiological Data

The first step in stress intervention is the inference of stress from physiological
sensor data in real time. In this section, we describe the procedure we used to
infer physiological stress from wearable sensors. We adapt a recent model called
cStress [19].
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cStress Model for Stress Assessment

For the sake of completeness, we provide a brief summary of the cStress model
that is presented in [19] and summarized in [36]. The cStress model uses electro-
cardiogram (ECG) and respiration data to infer stress. Acquiring these physiological
signals in the field setting has several challenges. Wearable sensors sensing ECG and
respiration signals, wirelessly transmits data to the smartphone. Data is timestamped
when received by the phone. Data losses and software delays on the phone introduce
variability in the time-stamping process. The granularity of stress is at the level of a
minute while the errors in timestamps may be on the order of milliseconds. The main
issue of time synchronization occurs due to data loss. A dynamic-programming
based approach is used to correct the timestamps [19]. In addition, this time-stamp
correction process identifies any losses in the sensor data stream. A small amount
of missing data (one packet) is imputed using cubic Hermite splines, which is
known to be appropriate for interpolating physiological measurements [31]. Most
packet losses involve only one packet, containing five samples (8% of an ECG or
respiration cycle). Imputation of five missing samples reduces the data loss rate from
10% to less than 1.5%.

ECG data processing contains three phases. First, identification of the acceptable
portions of an ECG signal, which is considered acceptable if it retains characteristic
morphologies of standard ECG, i.e., contains identifiable QRS complexes where
R-peaks can be located. Otherwise, it is treated as unacceptable. Second, R-peaks
are detected using Pan and Tompkins’s algorithm [32]. The time difference between
two successive R-peaks is R-R interval. Outlier R-R intervals (i.e., due to missing R-
peaks) are removed from analysis. Third, the R-R intervals are normalized in order
to develop a user-independent model. Respiration signal processing has similar
phases, i.e., identifying and discarding unacceptable data, finding peaks and valleys,
removing outliers, computing respiration features (i.e., inhalation duration), and
normalizing the features.

As a next step in the stress assessment, a set of features is extracted from each
non-overlapping minute’s ECG and respiration sensor measurements. Based on
this feature vector, the model determines whether that minute’s sensor readings
correspond to a physiological response to stressors. Among the many features
used by the model are such ECG features as 80th percentile of R-R intervals and
variance of R-R intervals, and respiration features such as mean IE ratio and
the median of Stretch [19]. This model was shown to classify stress and non-
stress minutes collected in a lab stress protocol with 95% accuracy (F1 score of
0.78) on independent subject validation (different from the training set) [19]. In
contrast to other stress inference works, such as [25, 26], which use only Heart-
Rate Variability (HRV) features extracted from the ECG signal, the cStress model
uses a richer feature set, containing other (non-HRV) ECG and respiration features.
The authors of cStress paper show that adding these features significantly improves
the performance of the model—F1 score jumps from 0.56 to 0.78.

Finally, the model was evaluated against self-reports collected in a week-long
field study from an independent population of 23 participants and was found to
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have an F1 score of 0.71 [19]. In [36], the cStress model was evaluated with self-
report collected from another independent population of 38 participants who wore
the sensors for 4 weeks and provided self-report of their stress level multiple times
daily. In this validation, the F1 score was reported to be 0.72.

The cStress model provides a continuous measure of stress, scaled to be between
0 and 1, for every 1 min of sensor data. These time-series of probability-like
measures of stress is hereafter referred to as stress likelihood. To assess stress within
intervals longer than a minute, we use a different measure, called stress density,
from [36]. Stress density is defined as the area under the stress-likelihood time series
divided by the length of the interval, which accounts for likely duration variation in
contexts and activities (e.g. morning vs. afternoon, home vs. work).

Reducing The Impact of Physical Activity Confounds

Although physiology is influenced by several kinds of events in daily life, the
main confounder for our sensor-based stress assessment is physical activity such
as walking, which occurs frequently in our daily life. To isolate data affected by
activity, we first detect physical activity from chest-worn 3-axis accelerometer data,
using an existing model [34]. Although the stress assessment window is 1 min,
physical activity inference is available for every 10-s window. If the majority of
6 activity windows in a stress assessment minute window show presence of activity,
the entire minute is excluded from stress assessment, i.e., considered missing.

Missing data due to sensor non-wear, sensor detachment, sensor loosening,
sensor displacement [30, 34], or excluded due to the presence of physical activity
confounds introduce discontinuity in the stress likelihood time series. In [36],
missing data was imputed using via k-nearest neighbor method [13, 41, 44] where
the imputation was based on other known contextual variables such as day of the
week, time of day, previous stress levels, and the slope and intercept of previous
time-series samples of the same user.

Such methods may be useful for offline analysis where we have access to
an entire day’s data, which is not the case during real-time computation on a
smartphone. Therefore, we impute the missing stress assessments by simply carry
forwarding the last known value. A stress episode containing majority of these
imputed data is marked as unknown for intervention purposes. This may lead to
some loss in accuracy, but makes it amenable to real-time efficient computation on
a smartphone.

Time Series Smoothing

A basic fact of stress likelihood time series is that, because they are produced by
a model that is imperfect, they undergo rapid fluctuations and may not be accurate
for each minute. On the other hand, the number of stress interventions delivered
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Fig. 3 Classification performances for different smoothing window length applied on stress
likelihood time series in the lab study. We get the best performance with a kappa of 0.817 for
a window length of 3 min

per day should be limited (e.g., few times daily). It is also highly desirable to
acquire high quality sensor outputs when triggering an intervention. Consequently,
we first smooth the stress likelihood time series using a simple moving average.
Then, in order to find the optimal window length, we compare the original labels
(derived from the lab stress protocol) with each 1 min assessment in the smoothed
cStress-based classification. Figure 3 shows classification performances for different
smoothing window lengths. We get the best performance with a kappa of 0.817 for
a smoothing window length of 3 min. We considered only odd-numbered window
lengths to avoid introducing lag in the time series.

Determining the Timing of Intervention Delivery

Stress likelihood time series is a continuous time series of the outputs of cStress
model for each minute. Just like any time series, the stress time series consists of
peaks and valleys. The interval between two successive valleys is considered to be
an episode. Figure 4 shows such a conceptual time series. In response to a stressor,
stress likelihood starts increasing at ‘a’. At ‘b’, stress likelihood starts decreasing
down to point ‘c’, where there is another upward trend. We define a stress episode
as an increasing trend immediately followed by a decreasing trend. Based on this
definition, we mark the entire period from ‘a’ to ‘c’ in the stress likelihood time
series as a potential stress episode.

At the conclusion of an episode, we calculate the area under the stress likelihood
time series of the concluded episode (at time ‘c’). The higher the area, more likely
it is that the user had a stressful experience. However, duration of an episode is not
constant. A short duration with a high area is more likely stressful in comparison
with the same area for a longer duration. Hence, we divide the area by the duration
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Fig. 4 A conceptual stress likelihood time series. We observe an increasing trend from ‘a’ to ‘b’
and a decreasing trend from ‘b’ to ‘c’. An episode contains an increasing trend and immediately
followed by a decreasing trend, marked as from ‘a’ to ‘c’. For intervention (at ‘c’) we compute the
stress density from ‘a’ to ‘c’ and if stress density is above a specific cutoff we mark the episode as
stressed

of the episode and refer to it as stress density. A higher stress density indicates that
the person has most likely experienced stress and the corresponding episode is a
stress episode. On the other hand, a lower stress density in an episode indicates that
the person is less likely to have experienced stress; hence we can mark the concluded
episode as a not-stressed episode. If the concluded episode is identified as a stress
episode, and the stress likelihood starts increasing again, as it does at ‘c’, we can
instantly provide an intervention (at ‘c’). An example of an appropriate intervention
can be the recommendation of a breathing exercise [22], allowing the person to be
better prepared for subsequent stress occurrences.

In this chapter, we discuss the identification and delivery of an intervention
at the conclusion of a stress episode (at ‘c’), which is also the beginning of an
increasing trend for the next episode. As an alternate approach, we can consider
the identification of the peak (at ‘b’) and deliver an intervention when the person is
highly likely to be experiencing stress. The approach proposed in this chapter can
also be adapted to identify the stress episode when it is at peak (‘b’).

To generate triggers for stress intervention, we first need to locate and mark
episodes in the stress likelihood time series. Next, we need to train a model to
classify the episodes as stressed or not-stressed, which can then be used to decide
the timing of stress interventions.
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Locating Episodes in the Time Series

To provide an intervention, we first identify episodes in the rapidly varying stress
likelihood time series. In addition, we need to identify increasing and decreasing
trends in the time series. We now describe the computation of the starts and
ends of all stress episodes. This approach is similar to the one proposed in [36],
but the model parameters in [36] were based on field study data. In contrast,
here we estimate the parameters based on a lab study where gold standard labels
are known.

To find episodes and trends in our rapidly varying time-series data, we adapt
the Moving Average Convergence Divergence (MACD) approach. This approach
is commonly used in the stock market to inform buyers to purchase a stock when
there is a positive trend in the time series and it is highly likely that the stock price
will increase in near future. Similarly, it informs to sell the share when there is a
negative trend in the time series. This MACD has recently been used to detect trends
in physiological data [18, 36]. MACD estimates the trend based on short-term and
long-term Exponential Moving Average (EMA). It provides one signal when the
trend is going up and another signal when it is going down. When applied on the
(simple moving average of the) stress likelihood time series, MACD can provide
a signal when the stress likelihood is going up (positive trend) and another signal
when the stress likelihood is going down (negative trend).

MACD is computed as follows:

M D EMA.LIwslow/ � EMA.LIwfast/

S D EMA.MIwsignal/;
(1)

where L is the stress likelihood time-series, M is the so-called MACD line, and
S is the so-called MACD Signal Line. As the formula shows, M is calculated by
subtracting a fast-moving, short-term EMA line from a slow-moving, long-term
EMA line. The intersection of M and S indicates a change in trend, and if S�M > 0

then the trend is positive, otherwise the trend is negative. Thus, MACD divides the
stress-likelihood time series into smaller variable length, increasing and decreasing
stress trends in the time periods between intersections of M and S.

We tune the window length parameters, wslow, wfast, and wsignal, used in Eq. (1)
using the lab study data, seeking to maximize gain=N, where gain is defined as
the total area under the stress likelihood time series curve during positive-trend
intervals, whereby the start and end of each positive-trend interval are dictated by
the MACD rule, mentioned above, and N is the number of positive-trend intervals.
Dividing by N discourages window lengths that result in a very large number
of short positive-trend intervals. To estimate parameters <wslow, wfast, wsignal> we
conduct a grid search with progressive zoom, with initial grids covering the range
from 1 to 30 min for each parameter, with the goal to maximize gain=N. In our
analysis, we found that the optimal window lengths are: wslow D 19min, wfast D
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7min, and wsignal D 2min, which maximize gain=N. In the lab time series using the
specified parameters, we obtained 119 episodes across 21 participants.

Threshold Selection for Identifying Stress Episodes

Conclusion of an episode also marks the start of an increasing trend for the next
episode. We need to assess whether the just concluded episode is a candidate stress
episode worthy for an intervention.

However, there are missing data (imputed) in the episodes of the time series,
which can be attributed to sensor detachment, equipment non-wear, lack of good
quality data, or discarded data due to the presence of confounder physical activity.
If more than 50% of the minutes in an episode are missing, we mark the entire
episode as unknown and discard the episode from the threshold selection step. If a
detected episode in the time series contains the majority of a lab stressor, we mark
it as a stress episode.

In the lab, we have the precise timings of the start of lab stressors, allowing us to
easily identify each stress episode. In the field, when we do not have such markings
of stressors, we require a metric for assessing or marking an episode as stressed or
not-stressed. We found that the aforementioned stress density is a great candidate
for such a metric. A high stress density identifies a stress episode and low stress
density identifies a not-stress episode. However, using a single stress density cutoff
to make this binary decision can lead to misidentifying those ‘gray-area’ episodes
having stress density near the decision cutoff. To address this issue, we assign all
such gray-area episodes into class unsure. Thus, rather than picking one threshold,
we pick two thresholds for these three episode classes.

In summary, an episode is classified as not-stressed if its stress density is below
the first threshold (threshold 1), as stressed if its stress density is above the second
threshold (threshold 2), and as unsure if its stress density is between the first and
second thresholds. Using this approach allows us to identify stressed and not-
stressed episodes with high confidence.

Out of 119 episodes in the lab study, 24 are unknown due to missing data or poor
quality data. Figure 5 shows the stress density for each of the remaining 96 episodes
in the lab study. Labeling episodes with stress density between two thresholds (0.29
and 0.44) as unsure ensures both precision and recall for stressed and not-stressed
class above 95% while keeping the unsure episode count as low as possible. Table 1
summarizes the calculation of precision and recall for stressed and not-stressed
class. Table 2 presents the confusion matrix. Precision and recall for stressed class
are 95.8% and 95.8%, respectively and for not-stressed class are 98.3% and 98.3%,
respectively.

In case we want to ensure 90% precision and recall in identifying stress episodes,
we can pick different thresholds—<0.29, 0.42>. For 85% precision and recall,
the thresholds are <0.29, 0.29>; in this case there is no unsure class and the two
threshold method simplifies to a binary decision with a single threshold. Table 3
summarizes these results.



424 H. Sarker et al.

Fig. 5 Stress density of each session in the lab study. Discarding episodes with stress density
between two thresholds (0.29 and 0.44) ensures both precision and recall of stressed and not-
stressed class above 95% with episodes discarded due to being unsure is minimum

Table 1 Computation of stress episodes classification performance metric—precision and recall
from Fig. 5

Precision of stressed = Number of red squares above threshold2/Total shapes above thresh-
old2

Recall of stressed = Number of red squares above threshold2/Total red squares above
threshold2 or below threshold 1

Precision of not-stressed = Number of green circles below threshold1/Total shapes below
threshold1

Recall of not-stressed = Number of green circles below threshold1/Total green circles below
threshold1 or above threshold2

Table 2 Confusion matrix of stress episode identification for thresholds 0.29 and 0.44, ensuring
95% precision and recall, where we excluded 13 unsure episodes and 24 unknown episodes

Classified by model

Stress Not stress Total

Actual Stress 23 (95.8%) 1 (4.2%) 24

Not stress 1 (1.7%) 57 (98.3%) 58

Total 24 58 82

Smoking Cessation Field Study

Stress is prevalent among nicotine-dependent individuals, especially during their
abstinence. We applied our proposed model on smoking cessation field study data
to observe the stress patterns of abstinent smokers during their first 3 post-quit days.
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Table 3 Stress episodes
classification statistics for
ensuring different precision
and recall (95%, 90%, and
85%)

Precision and recall

95% 90% 85%

Lab study (stress
density)

Threshold 1 0.29 0.29 0.29

Threshold 2 0.44 0.42 0.29

Field study (per
day)

Not-stressed 28.3 28.3 28.3

Unsure 2.7 2.5 0

Stressed 1.5 1.7 4.2

Data Description

Participants We use data collected in a smoking cessation study that was reported
in [35]. In this study, the participants were cigarette smokers who reported smoking
10 or more cigarettes per day for at least 2 years, and who reported high motivation
to quit. To qualify, participants had to pass a screening session prior to being enrolled
in the study. The screening includes assessment of current medical and mental
health status and history of any major medical and psychiatric illness. Screening also
includes assessment of smoking behavior, mood, and other behavioral health mea-
sures. Participants were excluded if they had ongoing major medical or psychiatric
problems and if they had other comorbid psychiatric and substance use problems.
Also, participants who did not follow a normal day/light diurnal cycle were excluded
to control for variation in diurnal physiological activity and behaviors.

Protocol Once enrolled, the participants picked a smoking quit date. Two weeks
prior to their quit date, subjects wore the sensor suite for 24 h in their natural envi-
ronment. After completion of the 24 h monitoring, which we call the pre-quit ses-
sion, subjects come back to the lab for their second visit. Smoking cessation coun-
seling is provided starting at this second visit to the lab. Then the subjects come back
to the lab on the assigned quit date to attend a counseling session and to begin the
72 h of monitoring in the field; this is referred to as the post-quit session. They come
back to the lab each day to confirm smoking status by capturing an expired breath
sample in a carbon monoxide (CO) monitor. During each day of monitoring (24 h
pre-quit and 72 h post-quit), the participants wear the sensor suite during awake
hours, and complete 12 Ecological Momentary Assessments (EMAs) [40] daily.

Data Collected We collected data from 53 participants. The participants wore the
sensor suite for a total of 2,706 h with 1,350 h of stress assessments after excluding
intermittently missing data, and excluding all stress assessments confounded by
physical activity. A total of 2,526 EMA prompts were delivered (11.9 per day) with
a completion rate of 94.2%.

We apply the proposed model on this smoking cessation field study data to
observe the stress patterns in the first 3 days after quitting. We compute the stress
likelihood for each minute from ECG and respiration data, impute the missing data,
apply simple moving average to smooth the time series, identify the stress episodes
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Fig. 6 F1 score between self-report and sensor assessment range from 0.36 to 1.00 with median
0.65

using the MACD based approach, and mark them as stressed, unsure, not-stressed,
and unknown based on the stress density of each episode.

Validation of Stress Assessments in the Smoking Cessation Study

The cStress model was validated against lab study and independent field studies [19,
36] as described earlier. To validate the cStress assessments in this new data set, we
followed the similar approach presented by Hovsepian et al. [19]. First, we check the
consistency of self-reports as they are subject to bias and careless responding [36].

We use Cronbach’s alpha [6] to assess the consistency of the self-reported
responses. This metric is widely used in the field of psychometrics. Cronbach’s
alpha measures the internal consistency of items that are intended to measure the
same psychological construct. An alpha score of 0.7 or higher is regarded as accept-
able [6] in most studies. We compute the Cronbach’s alpha using five affect items of
self-report—“Cheerful?”, “Happy?”, “Frustrated/Angry?”, “Anxious/Tense?”, and
“Sad?” (The two positive items, “Cheerful?” and “Happy?”, were reverse-coded).
The overall consistency score across all participant’s self-reports is 0.76, suggesting
an acceptable consistency (�0.7).

We then compare the sensor-inferred stress markers (for each minute) with
participant’s self-reported EMA. We used F1 as a metric, which is a harmonic mean
of precision and recall. Figure 6 summarizes the F1 scores across participants from
this smoking cessation field study. They range from 0.36 to 1.0 with a median of
0.65. This is lower as compared to those reported in the two previously reported
field studies, i.e., 0.71 in [19] and 0.72 in [36].

There are several potential reasons for a lower F1 score. First, the presented work
validates stress assessments in a smoking cessation phase when participants may not
fully available to provide accurate self-reports. We find some evidence of it in that
the self-report consistency of this presented study is significantly lower as compared
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to [36] (0.76 vs. 0.84). In general, the median F1 score of 0.72 in [36] should be
viewed against its self-report consistency of 0.84, while the median F1 score of 0.65
for the present study should be viewed against its self-report consistency of 0.76.

We compute Cronbach’s alpha for the participants who have F1 score below
median (see Fig. 6). They have unacceptable self-report consistency scores with a
median Cronbach’s alpha of 0.58. Participants with above median F1 score have
median Cronbach’s alpha 0.68. Median F1 score for participants with acceptable
Cronbach’s alpha score (�0.7) is 0.68 while for participants with unacceptable
Cronbach’s alpha score (<0.7), F1 score is 0.63. In summary, in cases of poor
agreement between self-reports and cStress assessments, the consistency of self-
reports are poor, which may prevent obtaining a good F1 score.

Second, in comparison to [19] that excluded missing or physical activity
confounded data from validation analysis, we use all the data (with imputation
where necessary). Imputation was also done in [36], but using a heavy-weight and
potentially more accurate method. In contrast, we use a simple and computationally
efficient method for imputation to make it feasible to run in real time on the phone.
This may have also introduced some loss in accuracy.

Finally, in comparison to [36], which used overlapping windows with a 5 s
moving increment for smoothing the time series (resulting in computation of 12
stress values during a minute worth of data), we do not use any overlapping windows
for computational efficiency and to avoid any lag between data and generation of
stress trigger due to computational delays. This may have led to some additional
loss in accuracy.

The above validation is for the minute-level output from the cStress model. To
evaluate stress episodes rather than the minute-level outputs, we compare them
against self-report response to the item “Anxious/Tense?.” To remove participant’s
biases in self-report, we compute z-scores from the self-report. By using this z-score,
we can directly compare one participant’s response to another. Values of z-score
above 0 indicates stressed while values of less than 0 indicates not-stressed. Out of
the 2,526 prompted EMAs at random moments, 22 were triggered at moments when
our model identified that the participant was stressed. We found a median z-score
of 0.21 in such cases which indicates stressed from self-report. For the 673 EMAs
triggered during when our model suggests not-stressed, we found a median z-score
of �0:20 indicating not-stressed from self-report.

Stress Patterns Observed in the Smoking Cessation Study

We apply the approach proposed in sections “Stress Inference from Physiological
Data” and “Determining the Timing of Intervention Delivery” on smoking cessation
field study data collected from 53 participants. We obtain stressed, unsure, not-
stressed, and unknown episodes in the field using stress density as a metric.

As discussed in section “Threshold Selection for Identifying Stress Episodes”,
to ensure 95% precision and recall for both stressed and not-stressed class we need
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Fig. 7 Time series of stress likelihood of one participant on pre-quit day

to pick stress density threshold <0.29, 0.44>. As shown in Table 3, we find 28.3
not-stressed, 2.7 unsure, and 1.5 stress episodes per day on average. Figure 7 shows
the episodes for one participant and on pre-quit day.

If we relax the constraint by considering above 90% precision and recall, we can
pick stress density thresholds <0.29, 0.42> for episode assessing. We observe 1.7
stress episodes per day as compare to 1.5 in case of 95%. In case we relax even
further, for 85% precision and recall we get stress density thresholds <0.29, 0.29>
meaning there is only one threshold and no unsure class. We observe 4.2 stress
episodes per day in such a case.

Transitions Between Episodes of Different Classes

Stress episodes are classified as stressed (yes), unsure, not-stressed (no), and
unknown. We analyze transition probabilities among these classes which can inform
the intervention design and the modeling of the time-series data. Figure 8 shows the
estimated transition probabilities between these types of episodes for the field study
of 53 participants.

Stress episodes more likely to be of similar kinds in successive episodes.
From Fig. 8, we observe transition probabilities for no-no (71.3%), unsure-unsure
(23.1%), and yes-yes (30.7%). It was shown in our earlier work in [36] as well that
there is a correlation between the durations of successive stress episodes. This can
be explained by theory and evidence [15, 16, 29] suggesting a spiral process where
current exposure to stressors attenuate the stress coping capability of the person.
This can lead to subsequent reactivity to other stressors. For example, a person in
a conflict with a colleague at work produces negative feelings and emotions that
makes it difficult for the person to manage his or her workload during the day,
making him/her more prone to making mistakes at work, which can lead to further
stress.
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Fig. 8 State transition probabilities between different stress episode types, stressed (yes), unsure,
not-stressed (no), and unknown

If a person is not-stressed in the current episode it is likely that next episode in
the time series is also going to be a not-stressed one with probability 71.3%. It is
less likely to make a transition directly to stressed state (0.3%). The more likely
transition is from not-stressed to unsure (2.5%), and then to stressed (9.2%).

Observations like these suggest that providing a stress intervention when the
person experiences a stressed episode or an unsure episode followed by a not-
stressed episode can help that person to cope with future stress occurrences. As an
alternate application, we can also feed the previous minute’s stress estimate into the
computational model (such as cStress) for estimating stress in the current minute.
Such recursive relationships may increase the accuracy of stress assessment.

Discussion, Limitation, and Future Work

There are several limitations in the presented work. First, in addition to physical
activity, stress can be confounded by pharmacological factors such as caffeine,
smoking, or drugs. Automated detection of such events can improve stress assess-
ment accuracy.

Second, wearing of ECG and respiration sensors in a chest band is not very
convenient and unlikely to scale widely. Collection of physiological data from
other devices such as smartwatches may capture stress more conveniently. Also,
assessment of stress from multiple sensors (e.g., PPG and galvanic skin response in
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smartwatches) can improve data yield. In case data is missing from one modality,
one can use data from the other modality for stress assessment.

Third, this work demonstrates a mechanism for determining the timing for an
intervention. It does not directly provide any efficacious intervention, which requires
making choices on not only the timing of delivery, but also the right content, the
adaptation mechanisms for personalizing it to the individual, the user’s context, and
the selection of the right modality for delivery (e.g., on the phone, on a smartwatch).
Right now, it’s not clear whether we should provide an intervention when somebody
is going through a stressful experience and may not be receptive to receiving
intervention. On the other hand, we may consider providing an intervention when
somebody is not-stressed so that they can better tolerate future stress episodes.
These issues can be investigated via conducting a micro-randomized trial.

Fourth, the presented work identifies a stressed or not-stressed episode at the
conclusion of the episode. Intervention delivered at that time is aimed to prepare the
person for future stress occurrences. As an alternative approach, we can also identify
the timing for proactive intervention. When stress likelihood is in an increasing
trend, a rapid rise in the stress likelihood time series may indicate that the episode
may build up to become a stress episode. Machine learning models can be developed
that can look into such time series patterns (e.g., slope, prior stress density, and
skewness) and predict whether the episode is going to be a stressful one. As soon as
the model is confident enough, a proactive stress intervention can be triggered.

Finally, we have presented the relationship between stress episodes among the
nicotine dependent individuals who are going through abstinence. Detection of the
first lapse during abstinence [35] made it feasible to investigate the relationship
between stress episodes and smoking relapse via objective sensor based approach.
Discovery of additional insights from such data can contribute to designing an
efficacious smoking cessation intervention.

Conclusion

Identifying the appropriate timing of intervention is a critical component in a just-in-
time stress intervention. Providing frequent interventions will increase user burden
and hence it is critical to identify the opportune moments when there is sufficient
confidence in sensor-based stress assessment. In this study, we presented such an
approach to determine the timings of stressed and not-stressed episodes from sensor
based measurements in the context of smoking cessation. While there are numerous
ways to further improve the presented approach and the eventual intervention, the
overall framework for data analysis may be applicable to several other biomarkers
obtained from sensor data.
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Part IV
Predictors to mHealth Interventions



Introduction to Part IV: Predictors to mHealth
Interventions

Susan A. Murphy, James M. Rehg, and Santosh Kumar

Abstract The previous three parts provided examples of mobile health applica-
tions, a description of methods for sensing an individual’s internal and external
states (such as cognitive/emotional states or current social environment and loca-
tion), and an overview of how we might use time series data to infer, detect
and predict these states. In the end, this work is in service of providing the
most effective mobile intervention[s]. The interventions might be in the form
of various services that are available 24/7. In the lingo of mobile health, these
interventions could be delivered in the form of a “pull,” that is, the user initiates
access to these interventions. Pull interventions depend upon the individual to
be sufficiently motivated, sufficiently in-the-moment-aware, under sufficiently low
cognitive burden so as to be able to recognize that they need help, able to remember
that help is available on the mobile device, and able to know exactly what help
they need. In many settings, however, the participant may either be insufficiently
self-aware to recognize his/her need for help or may not remember how to access
help. An alternate to a pull intervention is to “push” an intervention to the user. This
part is focused on the use of both sensor data and self-reports from a participant to
optimize the content and delivery of pull and push interventions.

The previous three parts are in service of providing the most effective mobile
intervention[s]. The interventions might be in the form of various services that
are available 24/7. For example, consider the case of individuals recovering from
alcohol use disorder; here an application may provide the nearest, in terms of
location and time, Alcoholics Anonymous meeting. Sensors on the phone, along
with information from the internet, are used in this context to assess the user’s
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location/time and identify the closest meeting. In another example, individuals who
are aiming to lose weight might have access to a mobile application with which
they can take pictures of their meals and subsequently receive feedback on caloric
count. Additionally, individuals aiming to lead a more physically active lifestyle
might use a wearable sensor as well as a smartphone to monitor their step count
and bouts of activity. One of the roles of sensor data is to individualize the type
of support that is provided. For example, a stress reduction app might provide a
list of stress reduction exercises that are actionable in the current context of the
individual (e.g. home, work, other). In the lingo of mobile health, these interventions
could be delivered in the form of a “pull,” that is, the user initiates access to
these interventions. A sophisticated pull is exemplified by the MyBehavior activity
intervention as described in the fourth chapter by Rabbi et al. (see the summary
at the end of this article). If the user opens the application, they will see a list of
suggested activities. This list changes daily and is based on the previous days’ data
from phone-based sensors and prior self-reports.

Pull interventions depend upon the individual to be sufficiently motivated,
sufficiently in-the-moment-aware, under sufficiently low cognitive burden so as to
be able to recognize that they need help, able to remember that help is available on
the mobile device, and able to know exactly what help they need. In many settings,
however, the participant may either be insufficiently self-aware to recognize his/her
need for help or may not remember how to access help. An alternate to a pull
intervention is to “push” an intervention to the user. Here delivery is not initiated
by the user, rather delivery of the intervention is initiated by the mobile device. For
example, a wearable band or smartphone can vibrate or audibly ping to indicate
to the user that an intervention is recommended. A rather simple push would be
a reminder to take a medication, which could be delivered via an audible ping
indicating a smartphone notification or an SMS message. In a more complex
example, if sensors on phone indicate that the user is approaching a high-drinking-
risk location, then an alert might be pushed to the participant as well as to a mentor.
Similarly, if a prediction based on the sensed amount of fluid in the lungs indicates
that the participant is at high risk of a cardiovascular event, then an alert might be
pushed to a caregiver as well as to the individual.

This part is focused on the use of both sensor data and self-reports from a
participant to optimize the content and delivery of pull and push interventions.
Optimization involves learning the answers to questions such as: “Which list of
five activity suggestions is most effective at improving activity?”; “What level of
risk should trigger a push intervention?”; “If an individual received an intervention
in the past x minutes, is it effective to push another intervention to the user now?”;
and “Which type of push intervention, (e.g., activity suggestion vs. disruption of
sedentary behavior suggestion) is most effective in a given context (e.g., location,
time of day, stress level, busyness of calendar, etc.) in producing the desired
behavior?” As all four chapters in this part describe, these questions are related
to the construction of a policy, also called a controller or a “Just in Time Adaptive
Intervention.” A policy is composed of (explicit or implicit) decision rules linking
the sensed or self-report data to an action, also called a control action or an
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intervention option. The sensed or self-report data available at a given time is called
the state or context or set of “tailoring variables.” The action may be a list of activity
suggestions to provide if the user opens the application (as in the case of Rabbi et al.)
or, in the case of a push intervention, the action may be whether or not to deliver
a push along with the selection of a physical activity goal and a certain number of
points which can be earned by achieving the goal (see the second chapter by Rivera
et al. described in more detail below). The action is intended to influence the user
in some way, such as their subsequent physical activity, stress level, or adherence.
Critical to all of the methods in these chapters is the ability to observe (e.g. through
sensors) the variables that reflect the influence of the action. Rabbi et al. and Tewari
and Murphy (in the third chapter, described below) call these variables the reward.
Rivera et al. call these variables the output. For example, in a smoking cessation
intervention the action might be intended to influence subsequent smoking-related
behaviors, whereas in a physical activity intervention the action should influence the
subsequent step count. A major focus of the chapters in this part is to describe data
analysis algorithms that utilize a user’s data related to state, actions and reward in
order to construct decision rules. The decision rules are constructed so as to optimize
a criterion. This criterion is a function of reward/output, state, and actions, and it can
be interpreted as a cost (optimal decision rules will minimize the cost) or benefit
(optimal decision rules will maximize the benefit).

The first chapter in this part, “Modeling Opportunities in mHealth Cyber-
Physical Systems” by Nilsen et al. (10.1007/978-3-319-51394-2_23) describes
research challenges in developing models to predict the efficacy and safety of
mHealth interventions. The authors discuss four challenges in using ideas and
analytics from the field of Cyber Physical Systems to improve mHealth. These
challenges are: (1) obtaining high quality, high density data capture on individuals;
(2) developing a suite of data analytic models that can be used to inform intervention
development; (3) closing the loop, that is, the development of methods that use
individual context, dynamics, physiological condition and environmental conditions
to determine the intervention content and the timing of delivery; and (4) obtaining
better understanding of the potential use of quantitative models in informing health
policy. Next the authors focus their discussion on a type of data analytic modeling,
namely the use of dynamical systems modeling. Dynamical systems model[s] are
models that describe how the state of an individual evolves over time. See the
second chapter by Rivera et al. for several examples of dynamical systems models in
different health domains. Nilsen and her coauthors discuss the need for experimental
designs that can be used to inform the development of these models, the challenges
that arise in using existing health theories to inform model development, the
importance of understanding when a dynamical systems model is good enough to
inform effective intervention development, and the creation of approaches that better
incorporate uncertainty in the model along with the development of individual-
specific dynamical models.

The second chapter, “Control Systems Engineering for Optimizing Behavioral
mHealth Interventions” by Rivera et al. (10.1007/978-3-319-51394-2_24) provides
an overview of the use of dynamical systems modelling followed by control systems
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engineering to design behavioral interventions. The chapter illustrates the creative
transfer of modeling concepts developed in an engineering setting to their use in
developing models based on theories from behavioral psychology. For example,
in the context of a physical activity intervention, behavioral theory informs the
development of a dynamical systems model for social cognitive theory based on a
fluid-flow analogy. Using this model, the authors develop a Hybrid Model Predictive
Control (HMPC) approach for designing the behavioral intervention, that is, for
developing the controller. In addition to physical activity intervention, the article
also presents applications of the control systems approach to smoking cessation and
pain management for Fibromyalgia.

The third chapter, “From Ads to Interventions: Contextual Bandits in Mobile
Health” by Tewari and Murphy (10.1007/978-3-319-51394-2_25), introduces a
different data-based design approach in comparison to the previous chapter. Instead
of fitting a dynamical systems model and then using this model to derive a policy, the
method surveyed here combines these two steps via a “reinforcement learning algo-
rithm;” the class of reinforcement algorithms considered in this chapter are called
contextual bandit algorithms. Bandit algorithms are used to learn policies that aim
to maximize an immediate response to an action. These methods originated in the
field of statistics but the most recent and active development is in computer science,
due to the use of these algorithms in web advertising. This survey chapter focuses
on the speed with which an online learning method can learn optimal actions. The
speed of learning the optimal actions is important in mobile health, since we aim
to provide the most effective intervention support to the user as quickly as possible;
we aim to minimize user aggravation and disruption due to inappropriately-timed
delivery of actions. At each time point, the state/context is observed, then the online
learning algorithm selects the action, and then subsequently the reward is observed.
This occurs repeatedly and the critical question is, “After T such interactions, how
close are the accumulated rewards to the accumulated rewards in a setting in which
we knew a priori, the optimal actions?” The authors survey a variety of algorithms
and the speed at which they learn in different settings.

The last chapter in this part, “Towards Health Recommendation Systems: An
Approach for Providing Automated Personalized Health Feedback from Mobile
Data” by Rabbi et al. (10.1007/978-3-319-51394-2_26) describes MyBehavior, a
mobile health intervention that tailors activity recommendations to both the current
user context and prior patterns of user behavior. MyBehavior has been implemented
in both case studies as well as in a small randomized trial. MyBehavior uses a bandit
algorithm to continuously optimize and update (activity) suggestions. In particular,
each day the user can access a list of tailored activity suggestions (a pull). Here the
action is a list of ten tailored activity suggestions. The bandit algorithm is used to
determine which suggestions are presented in the list of ten. Furthermore, the entire
set of activity suggestions (from which the list of ten is selected) can grow and shrink
over time. MyBehavior uses clustering algorithms to cluster activity patterns (e.g.
walking patterns and locations of stationary behavior) and if the user engages in a
new activity then this activity is added to the set of activity suggestions. Similarly
a user can remove an activity from consideration, by swiping out this activity if it
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appears in the list of ten. The authors discuss two generalizations to MyBehavior,
one to improve healthy eating and the other to help people manage chronic pain by
encouraging low effort physical activity.

In summary, the four chapters contained in Part IV illustrate the issues and
challenges that arise in constructing a policy for a mobile health intervention
which can connect sensor data and self-report data to actions. These chapters cover
the two major approaches to modeling, namely control systems engineering and
contextual bandits, and present examples of data-driven intervention designs across
multiple application domains including physical activity, smoking cessation, and
pain management. Taken together, Parts II, III, and IV provide a complete end-
to-end characterization of the elements of a sensor-triggered mobile intervention,
while Part I provides a broad depiction of the application contexts which motivate
and validate the development of mHealth technology.



Modeling Opportunities in mHealth
Cyber-Physical Systems

Wendy Nilsen, Emre Ertin, Eric B. Hekler, Santosh Kumar, Insup Lee,
Rahul Mangharam, Misha Pavel, James M. Rehg, William Riley,
Daniel E. Rivera, and Donna Spruijt-Metz

Abstract Cyber-physical systems, with their focus on creating closed-loop sys-
tems, have transformed a wide range of areas (e.g., flight systems, industrial
plants, robotics, etc.). However, even after a century of health research we still
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lack dynamic computational models of human health and its interactions with the
environment, let alone a full closed-loop cyber-physical system. A major hurdle to
developing cyber-physical systems in the medical and health fields has been the
lack of high-resolution data on changes in both outcomes and predictive variables
in the natural environment. There are many public and private initiatives addressing
these measurement issues and the health research community is witnessing rapid
progress in this area. Consequently, there is an emerging opportunity to develop
cyber-physical systems for mobile health (mHealth). This chapter describes research
challenges in developing cyber-physical system models to build effective and
safe mHealth interventions. Doing so involves significant advances in modeling
of health, biology, and behavior and their interactions with the environment and
response of humans to the mHealth interventions.

Introduction to mHealth Cyber-Physical Systems

Recent advances in mobile health (mHealth) technology have opened up enormous
opportunities for scientific advancement and development of new tools that may
improve patients’ health and well-being. mHealth technologies offer real-time mon-
itoring of both health outcomes and predictive variables at timescales varying from
infrequent to continuous, to detect changes in health status, support the adoption and
maintenance of a healthy lifestyle, provide rapid diagnosis of health conditions, and
facilitate the implementation of interventions ranging from promoting patient self-
care to providing remote healthcare services. However, to realize the potential of
mHealth, significant innovations in computing are needed. The availability of new
means for continuous behavioral, biological, physiological and social monitoring
in combination with ecological momentary assessment (EMA) self-reports and new
channels for delivery of interventions/treatment provide the basis for a radical new
class of cyber-physical systems to improve health [1, 2].

Cyber-physical systems are defined as “engineered systems that are built from,
and depend upon, the seamless integration of computational algorithms and physical
components” [3]. Often cyber-physical systems are referred to as closed-loop
systems because the measurement, actuation and control is all done automatically
by complex and dynamic computational models. An example of a cyber-physical
system in health is the artificial pancreas which measures the body’s glucose and
then administers a balance of insulin and glucagon to keep the body’s insulin levels
in balance without human input [4].

More recently, people have begun to discuss human-in-the-loop cyber-physical
systems because the measurement and activation can be done automatically, but
the control of the intervention needs to be done by a human. An example of
these systems could be an emergency room sensing system which collects all the
patient information and merges it with the electronic health record data. When
there is a change in status (e.g., a precipitous drop in blood pressure), the health
care team (i.e., human-in-the-loop) is notified to intervene. The intervention (e.g.,
administration of drug, fluids, etc.) that the team administers is also logged in
the system and then the effects are monitored, thus closing the loop. Over time,
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this system will “learn” which interventions have the desired effects for the events
sensed. Thus, while it will start as a human-in-the-loop cyber-physical system, over
time it may become a closed loop for some interventions.

Mobile cyber-physical systems might be developed to measure and model
relevant behaviors and the varied influences on health behavior, e.g., emotional,
cognitive, physical, social, biological and environmental. These could be used to
develop formal methods for identifying, quantifying, modeling, retaining, repur-
posing or rejecting variables in a model of any individual’s health behaviors. Such
health-related cyber-physical systems have the potential for low-cost data capture,
model-based approaches for analytics and closing-the-loop interventions/treatments
that are personalized, contextualized, delivered just-in-time (i.e. when and where
needed), and ecologically valid. Implementing policy through data driven and
quantitative models will provide increased transparency, efficiency and safety in
person-centric and population-wide health and healthcare.

As an example, consider just-in-time interventions as a showcase of the com-
puting research challenges. Just-in-time interventions (JIT) are a long-standing
component of cyber-physical systems and are the next evolution of behavioral
interventions in personalized and precision medicine [5–7]. Current perspectives
of personalized medicine focus on tailoring the intervention based on the patient’s
genetics, socio-demographics, stage of change, or other baseline variables. JIT
extends its intervention tailoring beyond baseline status and by sensing status
changes, the cyber-physical system is actuated and adjusts or adapts the intervention
over the course of the intervention [6].

The concept of adapting treatment to the patient’s current state and situation
is not new. Clinicians have been adapting interventions for decades in an analog
manner based on clinical judgments of a patient status at each visit. What has
not happened in the conventional health model is to close the loop and measure
the immediate and sustained effect of the intervention the provider prescribed. A
patient could get better, die, be admitted to the emergency room or see another
doctor for a completely different medical or non-conventional treatment without the
original provider knowing of any changes. Thus, the ability to adapt interventions
using cyber-physical systems to automatically sense on a nearly continuous basis
by employing a range of adjustment variables including current physical state,
environment, social context, and responses to prior intervention attempts [6] closes
the loop in the system.

This chapter explores the research challenges in building mHealth cyber-physical
systems. Although intuitively appealing as an improvement over current inter-
vention approaches, there are numerous challenges to implementing mHealth
cyber-physical systems. We identify three challenges to establish a scientific agenda
for research on health-related cyber-physical systems to develop methods and
systems for acquiring low-cost, high density data needed for modeling, integration
of critical variables into model development and developing accurate models for
cyber-physical system development.
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Acquiring Low-Cost, High Density Data for Model
Development

The current approaches for data capture ‘in the wild’ (i.e. ambulatory) are ad hoc
and fragmented, often obtrusive and not easy to use, with little standardization
on the interfaces and annotation, which lend themselves poorly for model-based
analytics [8].

For each health-related need, determining which data should be sampled, at
what rate and which are good enough data to assess context (emotional, cognitive,
physiological, biological, social, and environmental) and state inference is an
essential first step. This first step requires temporally dense and accurate data with
minimal patient burden. Indeed if a participant has to keep manually inputting
data [9], then the participant is likely to become disengaged and non-adherent.
Passive sensor data offer promise to deliver some of this data, but more research
and development is needed to provide comprehensive and field-tested sensing of the
relevant adjustment variables, and integrating and making sense of these data.

This first ‘step’, which probably comprises of many ‘steps’, will need scientists
from across disciplines to identify what needs to be, as well as what can, be
measured [10]. Determining what to monitor (from among a vast array of possible
behaviors and influences) and how frequently to monitor (i.e., what are valid
segments or sampling time-frames) will provide a basis to our understanding of the
specificity and elasticity of different influence factors in individual health-related
behavior, health promotion, and treatment. Identifying how uncertainty in data (due
to measurement, estimation and training error) affects individual model accuracy,
and how that in turn, affects closed-loop feedback in terms of signaling, intervention
and behavioral change, will be key.

To support this infrastructure, we need to establish data and metadata capture
standards, standardize interfaces and annotations; and provide controllable privacy
for repositories. Given the prevalence of data from low cost sensors that are
intermittent and of poor quality [8], developing delay tolerant network architectures
to deliver data with minimal information loss is vital to the scalability and credibility
of the data capture system. Further, as new sensor technologies and sources of data
become available, sensor fusion algorithms that are cognizant to the timescales,
contexts and criticality of the use of this data (i.e., accuracy required for electro-
physiological pacing vs. dietary intake over more relaxed timescales) are necessary.

New Experimental Designs to Guide Data Collection for Model
Development

To accurately model a closed-loop cyber-physical system, appropriate data must
be on hand. But these appropriate data need to not only include high quality data,
but data at the correct timescale and at the appropriate granularity. These data could
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reveal at what frequency the phenomena should be or could be (in the case of patient-
generated data) collected. How the data collection impacts the phenomena under
study and how the humans in the loop can be incentivized to use the system so that
functions optimally.

An example of this arises in the physical activity literature where efforts have
been made to identify which prompts are most helpful and how often they might
be delivered before they have an adverse effect (e.g., [11]). Generating new
experimental designs geared to populate these models would provide the data and
validation for new cyber-physical systems. The focus could be on idiographic
(i.e., single-subject) experiments, such as system identification experiments [12],
appropriate for idiographic or group-level estimates of phenomena such as time-
varying moderation of an intervention, such as micro-randomized trials [11] that are
informative, recognize participant limitations and phenomena, etc. While research
efforts have already begun in this domain, additional research is required to identify
the duration of these experiments, and how many participants may be required to
understand between participant variability [13].

Identification and Integration of Critical Variables into
Closed-Loop Models

Along with a need for high quality data, is the need for the identification and
understanding of the full range of critical variables in these cyber-physical systems.
With the development of multi-scale models, we need to develop closed-loop
approaches that consider the individual context, dynamics, physiological condition
and environment effects to ensure interventions are safe and effective. Further,
new models should move beyond specific areas of health and integrate models of
biopsychosocial processes.

Physiological, biological, behavioral and social factors are intertwined, and
measures can shed valuable light on emerging health risks and potentially serve
to build complete cyber-physical systems. In order to inform prediction of risk,
modeling the dynamic interplay of these systems is critical. Multiple modes of
delivering individual-specific feedback need to be explored with an appreciation
of the tradeoff between invasiveness and effectiveness.

While exploring automated (closed loop) or semi-automated (human-in-the-
loop) feedback approaches, it is important to consider the extensive literature in
health behavior change. Furthermore, new ‘variables’ will emerge because we are
capturing behavior and its influences with unprecedented density and in new ways
[10, 14].

Interdisciplinary collaborations between computer scientists, engineers, and
biobehavioral researchers will be required to tease out these new variables, and
access their usefulness in the dynamic modeling of ongoing health-related behavior.
Therefore, the integration of computational models with semantically informal
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observations on individual behavior that have direct linkages to control frameworks
are essential to the success of closing-the-loop on individual-specific interventions.

Developing Appropriate Model-based Approaches for
mHealth

Identifying ‘good’ models and modeling techniques (across the spectrum of
regression-based statistical, purely data-driven black-box models, reduced-order
grey-box models and complex high-order glass-box) is an essential building block
for cyber-physical systems to incorporate the dynamics, context and environmental
conditions in determining the appropriate level of intervention. A statistically
rigorous framework is required for model training/tuning with minimal data to
minimize false positive/negative alarms. This will not only reduce the overhead
of monitoring a large population of individuals in the wild, but also provide a
minimum level of credibility in the decision support service. It will also let us
model uncertainty (beyond standard additive and multiplicative bounded-input,
bounded-output disturbances) and acknowledges the inherent complexity and time
variant structure of biobehavioral processes.

Despite the successes of the data-driven approaches, the complexity of human
behaviors currently limits their generalizability and predictive power. In contrast,
principle-based or mechanistic models frequently studied in laboratory environ-
ments characterizing the underlying neurophysiological, biomechanical and psy-
chological processes may not have the capability to account for the uncertainties and
diversity of contexts in the wild. When mechanistic models alone are not feasible or
do not provide a complete account of the phenomenon, it is useful to combine data-
driven approaches with the mechanistic models as regularizers forming so called
data assimilation approaches that have been successful in a number of application
areas [15].

To support this cyber-physical systems approach for person-centered and
population-wide health, we will need to develop open model repositories for
competitive analysis of feature identification, classification and matching with
an appropriate feedback approach. While all models may be considered to be
flawed because they do not perfectly reflect the real world, some models are useful.
Detailed models allow us to use high-fidelity simulations that take real system
dynamics into account in designing interventions for any person. After developing
these individual based models, we can perturb the model parameters and inputs to
generate a large number of virtual models for parametric model-based interventions.

Ultimately, these efforts will let us build models for cyber-physical systems that
do not have to predict perfectly, but “good enough” for the end-use application. For
example, if the target is control of blood pressure, one might create or deploy a
model that predicts blood pressure values within a range that is considered safe
rather than pinpointing specific blood pressure value. This model will create a
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more generalizable and understandable intervention for a cyber-physical system and
one in which the model can learn about responses for each individual. Further,
explicit use of models in which good enough is explicitly identified will allow
practitioners/scientists to make effective use of these models, and be able to develop
these automatically (or via a guided manager) without having to be experts in the
underlying technology.

Modeling Safety in mHealth Cyber-Physical Systems

An overarching goal of mHealth research is to create the tools that support systems
and individuals so that people can live healthy, fulfilled lives. But, ensuring safety
of the user and efficacy of the intervention are equally important.

This section highlights the research challenges in dealing with safety in mHealth
cyber-physical systems. These issues include: ways in which researchers can capture
adverse events and potential points of danger in model development; methods by
which sub-models around safety, effectiveness and burden can be merged to create
true closed-loop systems and the need to develop models based on both experimental
lab data and those collected in the wild.

Capturing Risks to Enhance Safety

At present, mHealth systems, particularly interventions, are not balancing the need
to be safe, effective, and fit into a person’s life. A core stumbling block, particularly
with clinical populations, is that the models that are developed around each of
these metrics of optimization (i.e., safety, effectiveness, and usability) are largely
developed within siloed research areas.

Further, for each of these metrics to be optimized they have idiosyncratic model-
ing requirements and constraints placed upon them. For example, related to safety,
closed-loop models are being developed that can provide a better orchestration of the
medical cyber-physical systems within hospitals that contribute to improved patient
management.

An example of this would be a cyber-physical system for medication regulation.
The system would sense the variables of interest, actuate the system when the
medication is to be taken (either by prompting the patient or directly releasing the
medication into the system) and then monitoring the patient and system’s response
to the medication. This will allow for better administration of medications, as well
as determine for whom and when is the medication effective. Important to this work
is articulating best strategies that can foster model generation, particularly by taking
advantage of moments of exploration for improving the model for an individual as
opposed to simply exploiting the model for increasing safety.
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The core problem is that these points of exploration are, by design, moments
when the risk of detrimental outcomes are greatest. Thus, in the medication regu-
lation example above, adverse reactions to the medications are highly informative
for model development and tuning, but not for the patients. This issue presents a
fundamental research challenge of how to fully populate the model to asses both
safety and burden. Thus, this challenge requires a balance of experimental data
and real world observation (e.g., from mHealth data or electronic health records)
to create models that fully encompass safety and effectiveness.

Merging Sub-models of Safety, Effectiveness and Burden

The problem of model generation where each of the sub-models is developed
individually and the issues are not aggregated into a complex model is common in
mHealth. For example, work is currently underway to develop closed loop systems
for Type I diabetes management that balances glucose levels via the delivery of
insulin and glucagon [4]. Interestingly, the current work largely ignores human
behavior (e.g., food consumption, activity, sleep patterns), with the implication that
the human provides too much noise to provide appropriate signals for creating safe
and reliable systems (and thus potentially introducing a large safety risk when an
individual engages in actions that are outside of the constraints of the closed loop
controller). However, if human behavior is ignored here, the loop can never be truly
‘closed’, but it will rather be ‘leaky’, with the model endlessly trying to extract the
monkey wrench that poor human health behavior throws into the works.

Other examples of this safety versus effectiveness siloeing is currently underway
within the realm of mHealth behavioral interventions that are explicitly trying to
model the balance between effectiveness and usability. For example, Hekler and
Rivera [6, 12, 16] are currently working to develop a robust cyber-physical systems
focused on increasing walking among otherwise healthy individuals. By design,
the focus within this cyber-physical systems effort is modeling the dynamics for
determining exactly when, where, how, and how much to intervene for promoting
and increasing walking. Since walking, particularly among healthy individuals is
effectively “safe”, safety is largely ignored in the current phase of research.

Finally, when safety is considered, the measurement device, software, and
systems must also be considered in the context of other cyber-physical systems. For
example, between 1990 and 2000, 600,000 devices for pacemakers and implantable
cardioverter defibrillators were recalled by the Food and Drug Administration
(FDA) because of issues in the software systems [17]. As Jiang [12] notes, in the
device development process, the FDA does not look at code, but, instead, explores
the medical outcomes. Given the many software issues that can disrupt these cyber-
physical systems, the mHealth research community needs to integrate formal and
functional models that will allow us to know exactly how a system is functioning,
so that we can identify system issues before they affect safety.
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Using Experimental and Real World Data to Enhance Models
of Safety

An example of how multiple sub-models have been merged can be found in one
common cyber-physical systems, the pacemaker. To develop an effective cyber-
physical systems to address abnormal heart rhythms, a model of what the heart
does and how it works had to be developed. Researchers used electro-physiological
signals and then mapped the signals to timers. They captured these into nodes
and paths to see progression of the system over time and actually captures the
physiological phenomena of the heart. These data were merged with information on
abnormal heart events (e.g., when the heart was malfunctioning). With these data,
researchers and physicians could examine the conduction pathways and model the
natural timings of the heart.

These models lead to the development of the closed-loop strategy the pacemaker
uses for interrupting conduction and correcting the signals of the heart. This allowed
for formal and functional validation of the pacemaker. Thus to enhance effectiveness
and safety, we need a model based on the desired level of complexity. This is because
there is no single “golden” model, but instead multiple models that build on the
complexity inherent in human systems.

Over time, it is likely that more complex models will be chosen, but researchers
can take advantage of model simplifications and increasing complexity to help
identify the ambiguities for poor responses within the system. This allows for a
debugging strategy to increase confidence in the software. For the pacemaker, this
model-based framework can be verified through all the possible interactions with
the heart [18], including the code for a pacemaker process to ensure reliability,
effectiveness and safety.

Thus, creating safe, effective, and usable mHealth interventions will require the
development of robust dynamical sub-models for optimizing each outcome (e.g.,
usability, safety, and effectiveness) that can then be combined. The development of
these sub-models, particularly those that can then be combined is no simple task.
For example, the dynamical models for physical activity and eating currently being
developed by Hekler and Rivera and others [6, 12, 15, 16] could likely provide
valuable insights for improved management of diabetes, particularly when comple-
mented with a continuous glucose monitor and an insulin pump that incorporates
delivery both of insulin and glucagon. Integrated models will also support model-
based clinical trials for implantable cardiac devices that will let researchers have
confidence in a cyber-physical system before a trial begins in humans. Much more
work is required both for developing sub-models on safety, security, usability, and
effectiveness, and on techniques for composing them into models that can be used
to analyze and balance the competing interests [19].
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Conclusion

This chapter highlights the some of the research challenges in generating effec-
tive mHealth cyber-physical systems. Many research challenges are apparent and
include the development of valid, temporally dense and precise data collection
systems with minimal patient burden. They also require the development of new
dynamical models of health that can be deployed in both fully closed-loop cyber-
physical systems in which all of the control decisions are made by the system and
with human-in-the-loop, semi-closed loop systems where activating and deactivat-
ing the system under specific conditions is controlled by a human (user, care team,
etc.). Creating either type of cyber-physical systems requires an understanding of
effectiveness and safety, based on the quality of the data and compromises inherent
in giving the user control. Over time, these cyber-physical systems will evolve to
handle the unpredictability that are the results of poor data or user error.

Advances in mHealth cyber-physical systems also usher in the just-in-time (JIT)
interventions that can help realize the promise of personalized medicine. These
changes will also move us to models of interventions that can be tested in-situ
before they are deployed in humans at both great cost and potential risk. The models
inherent in these cyber-physical system should also speed up the evaluation process
and allow effective systems to be deployed much faster than is currently possible
in health. Overall, the future of mHealth cyber-physical systems is clear as a way
forward to both improve health, increase safety and speed up the evaluation process.
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for intensively adaptive interventions in behavioral mHealth applications. The role
that behavioral theory plays in determining model structure and enabling semi-
physical system identification is explained. The combined system identification-
model predictive control strategy is illustrated with examples of interventions for
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Introduction

A behavioral intervention can be defined as a program aimed at modifying behavior
for the purpose of preventing or treating disease, promoting health, and/or enhancing
well-being [7]. Behavioral interventions play an important role in addressing
many important challenges to public health, among them substance abuse, obesity,
sexually transmitted diseases, and cancer. The traditional approach to intervention
development is that these are “fixed,” involving a single composition and dosage
is given to all participants. However, recent efforts in behavioral health center
on the development of “adaptive” interventions in which the dosage and type
of treatment varies according to measures denoting participant response [8]. The
variables used in determining treatment are referred to as tailoring variables;
decision rules translate current and previous values of tailoring variables into
dosages and forms of treatments at multiple time intervals within the intervention.
Prior work has established that adaptive interventions can be interpreted in terms of
closed-loop dynamical systems [42].

The rise of mobile and computerized technologies has led to increased access
to intensive longitudinal data (ILD) from human participants. ILD is generated in
behavioral settings where quantitative or qualitative measurements are recorded at
more than a handful of time points [52]. The diary studies of the past have given
way to ILD obtained in the field via ecological momentary assessment (EMA),
which consists of a variety of methodologies collecting data on a subject’s current
state over multiple time instances in real-world environments [43]. With the rise in
availability of ILD comes the opportunity to study an intervention’s time-varying
effect on behavior change, and consequently, the opportunity to estimate dynamical
system models that may form the basis for optimized adaptive interventions using
control engineering strategies. The mobile devices that accomplish EMA and
generate the ILD can be further used to deliver tailored health behavior interventions
in an ecological setting; this is an important part of the increasing interest in mobile
health (mHealth) and ultimately more effective interventions relying on mobile
technologies among the medical community [39, 40].

In this chapter, our goal is to show how mHealth behavioral interventions can
benefit from a control systems engineering perspective through descriptions of con-
trol engineering applications in diverse behavioral settings. The control engineering
approach comprises two major sub-themes: (1) system identification, in which
dynamical systems models are empirically or semi-empirically estimated from data
and (2) control design using the dynamical models estimated from system identifi-
cation to develop decision frameworks that optimize the intervention. Our treatment
cannot possibly be comprehensive but nonetheless is substantive; through a set of
illustrative examples, we seek to convey how these tools can be meaningfully used
by engineers and scientists. Alternatively, the applications in this chapter can com-
municate to individuals outside of the technical fields of engineering and computer
science the impact that these topics can have in the social and behavioral sciences.
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The chapter is organized as follows. Section “Hybrid Model Predictive Control”
provides a general description of Hybrid Model Predictive Control, which forms the
algorithmic basis for decision policies in intensively adaptive interventions (IAIs)
that feature daily decision-making [40]. Each application example then presents
distinct approaches to dynamical modeling via system identification. The first exam-
ple (in section “Control Systems Engineering for a Fibromyalgia Intervention”)
discusses a pain management intervention for a condition know as fibromyalgia;
black-box system identification relying on AutoRegressive with eXogenous input
(ARX) models is used here. Section “Control Systems Engineering for Smoking
Interventions” describes the use of self-regulation, a behavioral theory, to obtain
dynamical models for a smoking cessation intervention based on control engi-
neering principles. Section “Control Systems Engineering for a Physical Activity
Intervention” in turn describes identification modeling approaches for a physical
activity intervention using a semi-physical identification approach relying on a fluid
analogy of Social Cognitive Theory, and the use of informative experimental designs
to obtain the data from which to estimate these models. Section “Summary and
Future Work” briefly summarizes the main conclusions of the chapter and suggests
some topics for future work and exploration in this important and emerging field.

Hybrid Model Predictive Control

In control engineering problems, the primary goal is to keep outcomes of interest
(known as controlled variables) within specification by adjusting dosages of inter-
vention components (manipulated variables) subject to disturbances (exogenous
factors) that have an influence on the outcome. These control objectives are referred
to as setpoint tracking and disturbance rejection [36].

As described in [42], in a control engineering approach to adaptive interventions,
the controller assigns dosages to each participant as dictated by model dynamics,
problem constraints, and disturbances (both measured and unmeasured). Model
Predictive Control (MPC) is ideally suited for such a role given its usefulness
in multivariable systems under constraints. This control technology effectively
combines feedback and feedforward control action by online optimization of a
cost function using a receding horizon philosophy (depicted in Fig. 1) and is
particularly suited for designing treatment regimens. An important consideration in
many adaptive interventions is that intervention dosages can assume only discrete
values, and therefore it is necessary to consider decision algorithms that involve
hybrid (i.e., continuous and discrete) signals. To this purpose we apply the improved
algorithm for hybrid MPC (HMPC) developed by Nandola and Rivera [34].

In [34], Mixed Logical Dynamical (MLD) models are used to represent linear
hybrid systems which feature real and integer states, inputs and constraints [4]:

x.kC 1/ D A x.k/C B1u.k/C B2ı.k/C B3z.k/C Bdd.k/ (1)

y.kC 1/ D C x.kC 1/C d0.kC 1/C v.kC 1/ (2)
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Fig. 1 Receding horizon representation that is the basis for Model Predictive Control (MPC).
A set of future dosages is computed but only the first one is implemented, prior to re-calculating
the optimization problem with fresh measurements

E2ı.k/ � E5 C E4y.k/C E1u.k/ � E3z.k/ � Edd.k/ (3)

where x D ŒxT
c xT

d �
T ; xc 2 R

nc
x ; xd 2 f0; 1g

nd
x , and u D ŒuT

c uT
d �

T ; uc 2

R
nc

u ; ud 2 f0; 1g
nd

u are system states and inputs with continuous and discrete
elements; y 2 R

ny is the vector of outputs; d, d0, and v are measured disturbances,
unmeasured disturbances, and measurement noise respectively. ı 2 f0; 1gnı and
z 2 R

nz are discrete and continuous auxiliary variables that are introduced in
order to convert logical and discrete decisions into their equivalent linear inequality
constraints, represented in (3). Variables nx D nc

x C nd
x , nu D nc

u C nd
u, ndist,

and ny are the total number of states, inputs, measured disturbances, and outputs,
respectively. Equations (1) and (2) are augmented forms of the classical linear time
invariant (LTI) state-space model that capture both continuous and discrete-valued
states, while (3) denotes a linear inequality that specifies logical and discrete-event
behavior in the system from system states and permutation matrices. Dimensions of
auxiliary variables and the number of linear constraints in (3) depend on the specific
character of the discrete and logical decisions in the particular hybrid system.

A standard quadratic cost function is used to calculate the decision vector for the
optimization problem as:
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J �
pX

iD1

ky.kC i/ � yrk
2
Qy
C

m�1X

iD0

k�u.kC i/k2Q�u
C

m�1X

iD0

ku.kC i/ � urk
2
Qu

C

p�1X

iD0

kı.kC i/ � ırk
2
Qı
C

p�1X

iD0

kz.kC i/ � zrk
2
Qz

(4)

where p is the prediction horizon and m is the control (or move) horizon. k.�/kQ�
�p

.�/TQ�.�/ is the vector 2-norm weighted by matrix Q�, where the matrices
Qy;Q�u;Qu;Qı; and Qz are penalty weights on the control error, move size, control
signal, auxiliary binary variables, and auxiliary continuous variables respectively.
The optimization problem is formulated as a tracking control system where yr; ur; ır;

and zr are reference values for the output, input, discrete and continuous auxiliary
variables, respectively; it consists of finding the sequences of control actions
u.k/,..,u.k C m � 1/, ı.k/,..,ı.k C p � 1/, and z.k/,..,z.k C p � 1/ that minimize
J as:

min
fŒu.kCi/�m�1

iD0 ;Œı.kCi/�
p�1
iD0 ;Œz.kCi/�

p�1
iD0 g

J (5)

subject to the mixed integer constraints in (3) and additional process constraints:

ymin � y.kC i/ � ymax; 1 � i � p (6)

umin � u.kC i/ � umax; 0 � i � m � 1 (7)

�umin � �u.kC i/ � �umax; 0 � i � m � 1 (8)

Ultimately, (5) corresponds to solving a mixed integer quadratic program (MIQP).
The HMPC framework presented in this chapter features the option of three

degree-of-freedom tuning (3 DoF), where setpoint tracking, measured and unmea-
sured disturbance rejection can be adjusted independently by the user through
varying parameters ˛j

r, ˛
l
d and f j

a (in Kf ) from 0 to 1, for j D 1; � � � ; ny, and
l D 1; � � � ; ndist. This process is depicted schematically in Fig. 2, where P and Pd are
transfer functions for the multivariable plant and disturbance models, respectively.
For setpoint tracking the filter matrix F.q; ˛r/ is:

F.q; ˛r/ D diagff .q; ˛1r /; � � � ; f .q; ˛
ny
r /g (9)

where each f .q; ˛j
r/ is a discrete-time filter [32] defined as:

f .q; ˛j
r/ D

.1 � ˛j
r/q

q � ˛j
r

; j D 1; � � � ; ny (10)

q represents the forward-shift operator. For measured disturbance rejection the
formulation relies on an externally generated forecast that is processed through the
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Fig. 2 Block diagram depicting three degree-of-freedom tuning (accomplished through the
adjustment of ˛j

r , ˛
l
d and f j

a (in Kf )) applied within Hybrid MPC

filter F.q; ˛d/. In this work Type-I filters (leading to no offset for asymptotically
step signals) are considered:

F.q; ˛d/ D diagff .q; ˛1d/; � � � ; f .q; ˛
ndist
d /g (11)

f .q; ˛l
d/ D

.1 � ˛l
d/q

q � ˛l
d

; l D 1; � � � ; ndist (12)

however a Type-II filter structure should be used if integrating system dynamics
(resulting in ramp disturbances) are present [34]. The optimizer uses the model and
current measurements y.k/ to compute future states through an observer, described
in detail in [34]. The observer weights the effect of the unmeasured disturbances
through a gain matrix Kf :

Kf D Œ0 FT
b FT

a �
T (13)

where, for the case of white noise, is defined as Fa D diagff 1a ; � � � ; f
ny
a g, and

Fb D diagf.f 1a /
2; � � � ; .f

ny
a /

2g. The use of 3 DoF tuning increases user flexibility
in individualizing treatment, as well as enables robustness of the decision algorithm
to model uncertainty and mismatch that always exists in real-life applications.

Control Systems Engineering for a Fibromyalgia Intervention

Chronic pain can have a significant effect on the quality of life of an individual [51].
Fibromyalgia (FM) is a chronic pain condition which primarily involves widespread
musculoskeletal pain. Other typical symptoms include fatigue, altered sleep and
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mood patterns and bowel abnormalities. Like many chronic pain conditions, the
etiology of FM is not completely clear [51]. In addition, some subjects may not
experience the associated symptoms at the same severity level [54]. However, there
is an increasing evidence that opioid antagoinists such as naltrexone are potentially
effective for some subjects with FM [26, 55].

Given the limited understanding of the biology of this disorder, we take a
‘black-box’ approach to model the dynamics of drug (low dose naltrexone (LDN))
on outcomes of interest (pain and sleep quality). In this section, the goal is to
build a predictive dynamical model using tools from system identification [21].
Subsequently, HMPC (as described in section “Hybrid Model Predictive Control”)
is used to prescribe drug dosages over time, and thus serves to showcase the potential
of the algorithm for closed-loop pain management. Salient features of this problem
have been discussed in [9–11, 13, 41].

Clinical Data and Variables

The authors had access to data from clinical trials conducted by Dr. Jarred Younger
at the Systems Neuroscience and Pain Lab at Stanford. The study was conducted
in two phases: a single blind pilot study on 10 subjects [55] and a double blind full
study on 30 subjects [56]. For any given participant in the clinical trial, the collected
time series was classified into four phases: baseline, placebo/drug or drug/placebo
and washout, i.e., each subject acted as their own control. The primary data collected
was self-reported daily by participants on a handheld computer to questions like
“Overall, how well did you sleep last night?” on a scale of 0–100. The collected
data consists of one primary endpoint “Overall, how severe have your FM symptoms
been today?” [FM sym] and 13 secondary endpoints: fatigue, sadness, stress, mood,
anxiety, satisfaction with life, overall sleep quality, trouble with sleep, ability to
think, headaches, average daily pain, highest pain and gastric symptoms [55].

Data for a representative participant in the clinical trial is shown in Fig. 3.
With introduction of drug LDN (lowest subplot), there is a clear dynamical effect
in reduction of pain symptoms (first subplot) and improvement in sleep quality
(second subplot). Additional variables were self-reported in the clinical trial such
as anxiety (third subplot), stress (fourth subplot) and mood (fifth subplot). For the
purpose of system identification, the variables associated with the clinical trial are
classified as inputs and outputs. Inputs include intervention components (such as
drug and placebo) which are external to the system and can be manipulated by the
clinician. In this application, we are primarily interested in the magnitude and speed
at which LDN affects the main FM symptoms. Hence, LDN dosage and placebo
are classified as the primary inputs in this analysis. In addition to these inputs, there
are measured disturbance variables known to affect the symptoms of an individual
such as anxiety, stress, and mood. Outputs are the primary outcomes of interest in
this disorder. Typical symptoms like pain, fatigue, sleep disturbance correspond to
dependent variables in the system, which we classify as outputs. The classification
is summarized in Table 1.
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Fig. 3 Primary variables associated with naltrexone intervention of fibromyalgia as shown for a
representative participant from the pilot study. When LDN is introduced, a significant decrease in
FM symptoms and substantial increase in sleep quality over time can be observed. This effect is
not observed with placebo

Table 1 Summary of classification of variables from the FM clinical study [55, 56]

Inputs Outputs

Manipulated Disturbance

Drug, placebo Anxiety, stress, mood, gastric, headache, sadness, : : : Pain, sleep quality

System Identification Method

The “black-box” system identification methodology considered in this application
is applied in three stages: data pre-processing, ARX prediction-error estimation, and
model simplification (and representation) in continuous-time.

Data preprocessing. A quick examination of Fig. 3 shows that the dynamical
effect of drug on pain is lagged by a few days. Consequently, the clinical
data (for both inputs and outputs) is filtered using a 3-day moving average
filter to reduce high frequency changes in the measured data.
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Prediction-error method using the ARX structure. Next, the filtered data is fitted
using a prediction-error method with the AutoRegressive with eXogenous
input (ARX) model structure [21]. The ARX structure models the value
of output y.k/ (FM sym/pain) as function of past outputs .y.k � 1/; y.k �
2/; : : : / and past inputs .u.k � 1/; u.k � 2/; : : : /. For multiple inputs nu,
the ARX equation can be written as:

A.q/y.k/ D
nuX

iD1

Bi.q/ui.k � nki/C e.k/; k D 0; 1; 2; : : : (14)

where A.q/ D 1C
Pna

jD1 ajq�j and Bi.q/ D
Pnbi

jD1 bjq�jC1 are polynomials
in q, u.k/; y.k/ are the filtered input-output signals, and e.k/ is the one-
step ahead prediction error. The model is represented in short hand as
ARX-[na, nb, nk] where the coefficients represent the number of delayed
terms of the output, input plus one and model time delay, respectively.
The estimation problem for this model structure is linear least squares
and hence is computationally efficient [21]. The primary inputs (drug and
placebo) are expected to account for most of the output variance. Figure 4
shows the model fits for an ARX-Œ2 2 1� using various inputs.
Because of the short data set, crossvalidation was not performed on the
estimated models. Instead, we have been careful by checking the model
percent fits, Akaike Information Criterion (AIC) values, and by keeping
the model order low. More discussion on these issues can be found in [11].

Model simplification and conclusions. In order to glean important dynamical sys-
tem information such as gain and time constant, the step response from the
discrete-time ARX model is curvefit to a continuous-time second-order
transfer function with the following structure:
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Fig. 4 Estimated model output (darker line) vs. actual (FM sym; lighter line) using the ARX
[2 2 1] structure for a participant from the pilot study. Model 1 uses drug, Model 2 uses drug
and placebo, and Model 5 uses drug, placebo, anxiety, mood and stress as inputs. The value in
parenthesis describes the percent variance accounted by each model. (a) Model 1 (46.57%). (b)
Model 2 (59.26%). (c) Model 5 (73.99%)
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Table 2 Model estimate summary for the drug-FM model for the pilot study participant

Model %fit AIC Kp, �; �; �a Tr(days) Ts(days)

1 46.5 3.64 �12:03, 5.67, 4.14, 21.3 75.5 139.69

2 59.2 3.58 �0:91, 3.5, 2.67, 44.4 0.43 75.06

3 64.7 3.54 �1:02, 2.09, 1.5, 15.3 0.43 25.6

4 71.8 3.42 �3:11, 1.62, 1.24, 0.22 7.53 14.38

5 73.9 3.44 �2:47, 1.57, 1.26, 1.96 5.12 11.49

Percent (%) fit and Akaike Information Criterion (AIC) measure correspond to the multi-input
ARX-Œ2 2 1� model structure

y.s/

u.s/
D G.s/ D

Kp.�asC 1/

�2s2 C 2��sC 1
: (15)

Table 2 summarizes the modeling results for the specific case of the naltrexone
drug input. The final model (Model 5) has a gain of �2:47, indicating a nearly
2.5 point drop in the pain report per mg dose of naltrexone. The negative gain
for drug suggests that this participant was a responder to LDN treatment. A rise
time (Tr) of slightly over 5 days, and a 98% settling time (Ts) of nearly 11.5 days
characterizes the naltrexone response for this participant. Table 2 also shows how
including additional inputs improved the goodness-of-fit. Drug, placebo and anxiety
are used as inputs for Model 3 and drug, placebo, anxiety and mood as inputs for
Model 4.

Table 3 summarizes the transfer functions for the Model 5 structure. For all these
transfer functions, the settling times and rise times (with the exception of Mood-
FM) are essentially similar. The positive gain (45.81) for the placebo input indicates
that in the case of this participant, the administration of placebo has a detrimental
effect. Examining the gains for the measured disturbance models (anxiety, stress,
and mood), these correspond to 0.86, 2.29, and �0.091, respectively. The positive
values for the anxiety and stress gains agree with the clinical observation for
how these variables worsen FM symptoms. The low magnitude of the mood gain,
coupled with the relatively small contribution of this input to the percent goodness
of fit (approximately 2% as shown in Table 2) indicates the low importance of this
variable as a contributor to FM symptoms for this subject. The positive value for
sleep gain (4.98) suggests that the administration of drug improved sleep quality.

Closed-Loop Pain Management

We now demonstrate the action of the hybrid MPC controller as an IAI algorithm,
using the models estimated from the representative participant. The use of MPC
as a decision framework has several advantages for this application, as the dosage
decisions are not just based on the current state of the system, but also on how
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Table 3 Model parameter tabulation for various inputs-FM continuous models as well as the drug-
overall sleep (Drug-Overall Sleep) model for pilot study participant

Model Kp, �; �; �a Tr(days) Ts(days)

Drug-FM �2:47, 1.57, 1.26, 1.96 5.12 11.49

Placebo-FM 45.81, 1.57, 1.26, 1.15 6.59 13.06

Anxiety-FM 0.86, 1.57, 1.26, 0.24 7.45 14.24

Stress-FM 2.29, 1.57, 1.26, 0.49 7.31 13.94

Mood-FM �0:091, 1.57, 1.26, 4.67 0.8 11.93

Drug-Overall Sleep 4.98, 2.13, 1.04, �3:35 7.06 15.83

The participant shows reduction in pain and improvement in sleep with drug intake

current and previous dosages affect future states. In addition, the controller can
directly incorporate dosage constraints which is important to prevent drug toxicity.

The tailoring variables for the intervention are the self-reported FM symptoms
(the controlled variable) and anxiety (a measured disturbance); the hybrid MPC
controller systematically assigns naltrexone dosages (the manipulated variable) over
time. The continuous model from estimated ARX Model 5 is used as the nominal
model. The drug dosages u.k/ are constrained to lie at pre-determined eight dosages
levels between 0 and 13.5 mg. The controller horizons are p = 25 and m = 15, and
weight Qy D 1. The simulation shown in Fig. 5 considers a scenario where the
controller has to maintain setpoint under an unannounced anxiety disturbance. The
disturbance variable is modeled as a stochastic process generated by an ARMA
.2; 1/ model driven by a Gaussian noise. The closed-loop control performance
is contrasted with a constant dosage intervention (a common clinical practice) as
shown in Fig. 5a. The performance of these interventions is measured by the tracking
error Je D

PN�1
kD0 .y.k/� yr/

2, total change in drug dosage J�u D
PN�1

kD1 �u.k/2 and
total amount of drug dosage consumed in the intervention Ju D

PN�1
kD0 u.k/.

The controller is tuned using the parameter fa, while the other tuning values
(˛r D 0:5; ˛d D 0:5) remain constant. Setting fa D 1 results in more aggressive
control action in which the variation around the pain target is minimized, but
this is accomplished at the expense of large variation in drug dosage changes.
A de-tuned controller from setting fa D 0:1 reduces the variation in drug dosage
changes, but at the expense of increased variation in the participant’s pain report.
The dosage profiles under tunings fa D 1; 0:1 are compared with a fixed dose
equal to 1:92mg in Table 4 to highlight the benefits of adaptation in the presence
of unmeasured disturbances. The adaptive intervention offers lower tracking error
(for both fa D 1; 0:1) while also consuming less drug (for fa D 0:1) compared
to the fixed dosage case, as shown in Table 4. Similarly, the plot shown in Fig. 5b
demonstrates the feedback-based adaptations in cumulative sum of drug prescribed
by the controller, in contrast to the static clinical practice.

In summary, the simulations show that the controller can be tuned to achieve a
tighter control while at the same time delivering less drug. As a result of feedback
action, the controller responds to daily swings in pain levels caused by varying
anxiety levels (which is unknown to the controller) by increasing or decreasing
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Fig. 5 Closed-loop responses of MPC for an unmeasured stochastic anxiety disturbance. Con-
troller tuning corresponds to fa D 1 (dashed) and fa D 0:1 (solid). The fixed dosage case is set at
1:92mg (dash-dotted). (a) FM response and drug strength. (b) Cumulative sum of drug strength

Table 4 Comparison of the
performance of the
intervention from the control
system (fa D 1; 0:1) with a
fixed dosage of naltrexone
(1:92mg) under stochastic
disturbances

Scenario Je J�u Ju

MPC (fa D 1) 6204 1205.1 275.79

MPC (fa D 0:1) 9211.3 55.791 144.64

Constant drug dosage 12328 3.6864 170.88

The control system offers lower tracking error Je for
the cost of higher variability in drug dosage J�u. In
comparison with a constant dosage, the case fa D 0:1

also offers lower total drug consumption Ju

drug dosage. In a real-life setting, participants would enter their daily diary reports
(measured disturbance) to a smartphone which can supply endpoint values in
real-time to the controller. The ensuing section illustrates a smoking cessation
application that is modeled using self-regulation.

Control Systems Engineering for Smoking Interventions

With nearly 17% of U.S. adults remaining active smokers [28] and an expected rise
in the global smoking population to 1.7 billion by 2025 [14], cigarette smoking
remains a prominent public health issue. Smoking’s continued importance as a
public health issue is due in part to the fact that approximately 90% of cessation
attempts fail [27]; these persistently high rates are despite many behavioral and
pharmacological treatments (e.g., cognitive behavioral therapy [50] and Nicorette®

gum [29], respectively). Consequently, a smoking treatment paradigm may sig-
nificantly benefit from control systems engineering principles, which personalizes
treatment in a mathematically optimized manner. Overall, the sections below reflects
intervention development work first presented in [49] and much more extensively
established and evaluated in [45].
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Intervention Framework

In the following subsections, we cast development of an individualized, time-
varying smoking cessation intervention as a controller design problem. Although
an engineering-based cessation intervention can take many possible forms, we
focus on the basic intervention architecture depicted in Fig. 6. Generally, the
intervention proposed in Fig. 6 employs a model-based predictive control algorithm
that calculates an optimal combination of daily counseling, bupropion, and lozenge
dosages that promote a successful cessation attempt.

As seen in the block diagram, the intervention-design problem consists of
formulating a decision algorithm where:

• CPD and Craving are controlled variables,
• CPDr and Cravingr are the corresponding set points (CPDr = Cravingr = 0 as of

the Target Quit Date (TQD)),
• Quit is a measured and anticipated disturbance,
• uc, ub, and ul are the manipulated variables, i.e., dosages of the treatment

components, and
• the decision algorithm takes the form of hybrid MPC (as described in sec-

tion “Hybrid Model Predictive Control”).

Here, CPD is the total number of cigarettes smoked per day by an intervention
participant, and Craving is the average level of craving reported by the participant
over a day; Quit denotes the transition from not attempting to quit smoking to
attempting to, which occurs on a pre-determined target quit date (TQD); uc denotes
the number of brief counseling sessions in which the participant engages per day,
ub denotes the number of 150 mg dosages of bupropion (a psychoactive medication
commonly prescribed to support a cessation attempt [50, 53]) to be taken by the
participant per day, and ul denotes the number of nicotine replacement lozenges
(which delivers low doses of nicotine orally [37, 50]) to be taken by a participant in
a day. The block Behavior Change Mechanisms represents the processes by which
changes in treatment component dosages and Quit affect CPD and Craving over
time.

CPDr

Cravingr

uc
ub
ul

HMPC Decision
Framework

Quit

Behavior
Change

Mechanisms

CPD

Craving

Fig. 6 Block diagram depicting the architecture for a smoking cessation intervention using
HMPC. Cigarettes per day (CPD) and craving are to be kept at reference setpoints, in spite of
the disturbance introduced by quitting. Dosages of counseling (uc), buproprion (ub), and lozenges
(ul) are adjusted over time for this purpose
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In describing the formulation in the following sections, we illustrate a number
of aspects of the smoking cessation problem that make the intervention-design task
interesting from a control systems engineering perspective. Notably:

• the intervention revolves around a distinct, central event—initiation of the quit
attempt on the TQD—that influences the intervention as a disturbance and
dictates when the controlled variable set point changes;

• the primary intervention goal (achieving full cessation) means the controlled
variable set points go from fully “on” prior to TQD to fully “off” as of TQD;

• since TQD is typically determined weeks in advance [50], the setpoint changes
and Quit disturbance can be anticipated at every decision point;

• the Quit disturbance initially affects CPD such that CPD achieves its set point;
• the open-loop model psychological model around which the controller is

designed is itself represented as a feedback control system [47, 48].

Ultimately, the goal is to design an HMPC-based intervention framework that
effectively and flexibly achieves good performance—i.e., is an effective interven-
tion, tracking the CPD and Craving targets in a desirable manner—and assigns a
reasonable treatment dosage schedule that is acceptable to the participant.

Open-Loop Models for Smoking Cessation

In the following sections, we first discuss the open-loop models upon which the
controller is based. Next, we outline details of the smoking intervention formulation,
and then briefly evaluate the potential clinical utility of the intervention through
select simulations. Additional detail regarding these topics can be found in [45].

When formulating the controller, we first define the set of linear open-loop
models that describe how the controlled variables respond over time to changes in
the manipulated and disturbance variables. Specifically, the block labeled Behavior
Change Mechanisms in Fig. 6 is represented by:

�
CPD

Craving

�

D

�
Pcpdc

Pcpdb
Pcpdl

Pcravc Pcravb Pcravl

�
2

4
uc

ub

ul

3

5 C

"
PcpdQ

PcravQ

#
�

Quit
	

(16)

where Pyc , Pyb , and Pyl are the linear, time-invariant differential equations that model
how the respective outcome y (CPD or Craving) respond to unit dosage changes in
counseling, bupropion, and lozenge. PcpdQ and PcravQ are the disturbance models
describing the response of CPD and Craving to initiation of the quit attempt.

For the intervention formulation described here, each process model in (16)
was developed as a continuous-time transfer function before ultimately being
transformed into the discrete-time state-space equation form required for the HMPC
formulation [4, 34, 46, 47].
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Self-Regulation Behavior Change Model

Although PcpdQ and PcravQ are treated as the disturbance models in (16), they arise
from a fundamental psychological, self-regulatory process. This process, which is
studied in previous work [46–48], depicts the psychological quit attempt process as
the closed-loop system in Fig. 7.

In this homeostatic mechanism that we depict as a natural control system,
cigarettes are smoked in order to regulate craving levels. Specifically, CPD is the
input to a subprocess, P, and Craving is the output. CPD, though, is the summed
result of two paths: the first is a feedback path by which deviations in Craving
from an inherent psychological craving set point, rcrav (i.e., ecrav), lead to changes
in smoking levels via the C subprocess; the second is the effect initiation of a quit
attempt has on CPD via the Pd subprocess. From a control systems perspective, C,
the self-regulator, is an internal psychological controller, while Pd is a disturbance
model.

Using intensive longitudinal data (ILD) from a University of Wisconsin Center
for Tobacco Research and Intervention (UW-CTRI) clinical trial [30], ordinary
differential equations (ODEs) were estimated for P, C, and Pd using system
identification methods [21, 46–48]. It was determined that for rcrav D 0, transfer
functions corresponding to high goodness-of-fit values could be estimated using the
low order ODE structures in:

P.s/ D
K1 .�asC 1/

.�1sC 1/
; Pd.s/ D Kd; C.s/ D

Kc

.�csC 1/
(17)

where K, Kc, and Kd are the gains for the respective transfer functions, �1 and
�c are the time constants for the P.s/ and C.s/ transfer functions, and �a is the
system zero for the P.s/ transfer function. The first order with zero structure for P.s/
accounts for the inverse response in observed Craving data—i.e., Craving initially
increases before ultimately decreasing. The Pd.s/ structure indicates that a change
in Quit, corresponds to a direct and immediate reduction in CPD by Kd cigarettes.
C.s/ models the psychological self-regulatory mechanism that affects CPD based
the difference between rcrav and Craving; that is, C.s/ models the continuous
interrelationship between smoking and craving. Overall, the input-output dynamics

Quit

CPD

Pd

Craving+

-
C

ecrav
rcrav

+
+

P

Fig. 7 Block diagram depicting smoking behavior change during a cessation attempt as a self-
regulatory process
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denoted by Fig. 7 can be represented by the closed-loop transfer functions that
represent a classical feedback system. In the remainder of the chapter, we apply
the finding in [47] that rcrav D 0 on average to this feedback system.

Open-Loop Models for a Hypothetical Participant

The prediction step of the HMPC smoking cessation decision algorithm relies
on models of how a smoker trying to quit smoking responds to initiation of
the quit attempt and to dosages of the treatment components. In principle, a
personalized intervention algorithm relies on participant-specific Quit-response and
dose-response models. While the smoking cessation literature provides insights that
inform developing these models, experimental designs to accomplish this modeling
in single-subject settings remain an open area of research. Here, we tune the HMPC
algorithm based on models from a representative yet hypothetical smoker. This
simulated participant has baseline CPD and Craving levels of 9.25 and 16.40,
respectively.

The open-loop self-regulation models for the hypothetical participant are
informed by single subject data observed in the UW-CTRI data [30]. The specific
parameterized models are in (18) (and were derived from estimated forms of (17),
where Kd equals the baseline CPD level); the corresponding CPD and Craving
responses to Quit are in Fig. 8 (where the Quit step occurs on day 0). As seen in
Fig. 8, this participant initially fully quits smoking on TQD, which corresponds to a
large increase in Craving. As time goes on, one sees a resumption in smoking and
decrease of Craving to approximately baseline levels. These models, represented by

PcpdQ.s/ D
�0:24 .90:53sC 1/ .10:76sC 1/

5:072s2 C 5:98sC 1
; PcravQ.s/ D

�0:24 .90:53sC 1/

5:072s2 C 5:98sC 1
(18)

were chosen to be the basis for HMPC as they reflect well-known trends. Namely,
it is common that a quit attempt features at least 1 day of not smoking [30, 37, 50],
rapid increases in craving levels that correspond to significant decreases in smoking
[30, 47], and ultimate failure of the quit attempt within weeks of TQD [50].

Open-loop dose-response models were also determined for the simulated par-
ticipant. Based on data (when possible), theory, and literature, these models are
documented in (19) (where y is either CPD or Craving) and Table 5:

Pyc.s/ D
Kyc

�2yc
s2 C 2�yc�yc sC 1

; Pyb.s/ D
Kyb


�yb sC 1
�nb
; Pyl.s/ D

Kyl



�aylsC 1

�



�yl sC 1

�

(19)

The responses of CPD and Craving to a unit step changes in uc, ub, and ul are
found in Fig. 9. Generally, they account for relatively fast but modest effects of
single lozenges and more gradual and significant effects of unit bupropion dosages.
The figure suggests a significant effect of counseling, but assigning counseling each
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Fig. 8 Response of CPD and Craving to initiation of a quit attempt by the hypothetical simulated
intervention participant in the absence of treatment

Table 5 Parameter values for the dose-response models according to (16) describing the simulated
participant

Model Parameters Parameter values

Pcpdc
Kc; �c; �c �30:00, 4.00, 1.50

Pcravc Kc; �c; �c �50:00, 3.75, 1.50

Pcpdb
Kb; �b; nb �1:28, 0.45, 3.00

Pcravb Kb; �b; nb �1:16, 0.50, 3.00

Pcpdl
Kl; �al ; �l �0:50;�0:44, 0.88

Pcravl Kl; �al ; �l �0:70;�0:44, 0.50

day is likely unrealistic, so the ongoing significant effect of uc depicted in the figure
will not be observed in reality. Overall, the figure highlights how a unit dosage in
any treatment component favorably affects both outcomes. This will be meaningful
in terms of dosing decisions and set point tracking.

Controller Formulation and Simulation Scenarios

By employing HMPC, the treatment regimen of the intervention is determined
according to the following steps (performed daily):

1. The participant self-reports CPD and Craving via a smartphone application.
2. Using the CPD and Craving measurements, the open-loop models, and known

dosing history, the algorithm predicts how CPD and Craving will deviate from
target levels over the next p days (where p is the prediction horizon).
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Fig. 9 Unit step responses of CPD and Craving to treatment dosages on day 0. The uc

(counseling) response is dashed, ub (buproprion) is dash-dot, and ul (lozenges) is dotted

3. An objective function (J) is minimized to determine the next m days worth of
uc, ub, and ul changes that will drive CPD and Craving toward set point levels
(where m is the move horizon).

4. The first of the m dosages calculated are assigned, with the intervention
participant being notified of these uc, ub, ul levels via the smartphone application.

This decision-making process is repeated on each subsequent day, using updated
CPD and Craving measurements for the duration of the treatment period. In this
problem setting, the quantified optimality criterion, J, in which dosing decisions are
based, takes the quadratic form in (20):

J D
pX

iD1

jjCPD.kCi/�CPDr.kCi/jj2Qcpd
C

pX

iD1

jjCraving.kCi/�Cravingr.kCi/jj2Qcrav

(20)

where Qcpd and Qcrav are the penalty weights on controlled variables and promote
tracking of the CPD and Craving set points. In this case study, no penalty weights
are imposed on the dosage levels or their day-to-day changes, i.e., Q�u�

D Qu�
D

Qı D Qz D 0.
J is minimized subject to constraints (see (6) through (8)). Here, we impose a

lower limit of 0 on CPD, Craving, and u�; ub, uc, and ul have upper limits of
two 150 mg bupropion doses, one counseling session, and 20 lozenges per day,
respectively. Per clinical guidelines, we impose move restrictions on ub such that
bupropion dosage assignment can only increase by one dose per day, and must stay
at a constant dosage for at least 3 days [50]. We also constrain u� assignment to
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pre-defined, discrete levels; for example, ub can only equal 0, 1, or 2 whole dosages.
Finally, we limit the total number of counseling sessions during the quit attempt to
five to reflect real-world logistical and financial considerations.

The HMPC decision framework formulated up to this point is most easily
evaluated through simulation. Below, we present two simulations to briefly examine
nominal performance (i.e., when the participant receiving the intervention is
described by the open-loop models integrated into the HMPC formulation) The
work in [45] contains a more thorough simulation study, presenting the results
of approximately 800 simulations, including cases of robust performance (when
unmeasured and/or unmodeled errors exist that affect the outcomes).

These simulations are generated as follows: we consider a 50 day timespan where
TQD is day 15 (which implies a 2 week period in which the changes in Quit, CPDr,
and Cravingr are known and anticipated) followed by about a 1 month quit attempt
period. The HMPC objective considers p D 30 days and m D 7 days; 3 DoF tuning
parameters for these simulations are kept fixed at .˛r; ˛d; fa/ D .0; 0; 1/.

The simulations are presented through three plots such as Fig. 10. The x-axes are
the same 50 day timeline. The lower three plots depict the overall dosing schedules
resulting from the 51 individual daily decision computations (days 0 through 50).
The two upper plots depict the participant’s pre-set controlled variable targets
(solid black) and predicted daily outcomes in response to the dosing decisions
depicted (solid blue). The simulated outcomes in the absence of any treatment are
also depicted for comparative purposes (dashed grey). The Quit disturbance is not
shown, but is accounted for in the decision algorithm itself.

Case 1: Nominal Performance

In this nominal performance case, the simulated participant receiving the interven-
tion is described by the open-loop models of the hypothetical participant described
by the models in (18) and (19). Pre-TQD levels of the controlled variables for this
participant are CPD D 9:25 and Craving D 16:40; the controlled variable targets
remain at these levels until day 15, at which point CPDr and Cravingr change to 0.

In the intervention-free scenario, this intervention participant would smoke a
total of 297.01 cigarettes and report a cumulative Craving score of 667.48 during the
quit attempt. However, we first consider a scenario in which the participant receives
an HMPC-based intervention where Qcpd D 10 and Qcrav D 1. This penalty weight
combination means that each decision computation treats the CPD-tracking goal as
more important than tracking the Craving-tracking goal. In the absence of other
penalty weights, we do not directly affect the character of the dosing schedules. The
results of the HMPC intervention are depicted in Fig. 10.

Examining the figure, we find that the control system hesitates to dose around
and immediately following the quit attempt. This is largely due to the fact that
initiation of a quit attempt initially pushes CPD to its target, even without the aid of
any treatments (as seen in the open-loop—dashed-grey—responses). Furthermore,
aggressive dosing around TQD would decrease CPD further, violating its lower
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Fig. 10 Case 1: Nominal Performance. Predicted CPD and Craving responses in the intervention-
free (dashed line) and adaptive intervention (solid line) scenarios for Qcpd D 10 and Qcrav D 1.
Treatment dosages are depicted in the lower three plots

bound of 0. At day 20, however, there is abruptly aggressive dosing. In particular, ul

increases by more than 10 lozenges in 1 day, remains above 9 lozenges per day for
the duration of the intervention, and 430 are assigned in total. Around day 25, the
algorithm trades off between more aggressive ub and ul dosing in order to reject the
resumption that would otherwise occur. Despite this aggressive dosing, nontrivial
smoking and craving levels occur after TQD: 16.33 total cigarettes are smoked, and
Craving cumulatively equals 147.88 during the quit period. Furthermore, only 11
days are smoke-free and 2.77 cigarettes are smoked on the peak lapse day.
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Case 2: Nominal Performance with Dosage Tuning

Considering that treatment adherence rates are inversely related to the demanding
nature (i.e., burden) of a treatment protocol [37], it may be beneficial to examine an
intervention formulation that can mitigate the aggressive dosing found in Case 1. To
more easily tune the character of dosing all treatment components as a whole, we
incorporate (21) into the open-loop models describing the system:

UT.k/ D uc.k � 1/C ub.k � 1/C ul.k � 1/: (21)

UT.k/ quantifies the total number of doses assigned for a day from all three
intervention manipulated variables. Correspondingly, we incorporate the following
additional term into the objective function in (20):

pX

iD1

jjUT.kC i/jj2QUT
(22)

where QUT is the weight by which total daily dosing is penalized.
Figure 11 depicts the scenario where Qcpd D Qcrav D 10 and QUT D 1.

The effect of this formulation change is clear. First, there is less variability in ub;
what is seen here—stepping up to and staying at a dosage of two 150 mg pills—
is actually the recommended bupropion treatment protocol [50]. ul dosing is also
much more modest. Specifically, only 257 lozenges are assigned in total, which is
about 40% fewer lozenges than assigned in Case 1. The controller’s decision to
rely more heavily on bupropion is intuitive; QUT penalizes single doses of ub and ul

equally, but that single dose of ub reduces CPD and Craving more significantly than
a single dose of ul (see Fig. 9). Note that a second counseling session is also assigned
here around day 23, likely in order to reduce CPD and Craving in the absence of
additional lozenge assignment. Altogether, the maximum number of doses of any
kind assigned per day is 15 (max.UT.k// D 15).

In terms of outcomes, this scenario features more successful cessation than in
either of the previous two simulations: only 5.55 cigarettes are smoked during the
quit attempt and only 0.91 cigarettes are smoked on the peak lapse day. However,
the more participant-friendly treatment regimen and improved CPD outcome does
come at the expense of Craving: cumulative Craving during the quit attempt is
169.31, although this is only approximately 23% larger than in Case 1. Overall,
incorporating a UT term into the objective function significantly increases the
clinician-friendliness of the intervention algorithm: QUT is clinically meaningful,
easy to understand conceptually, and offers a single tuning knob to affect dosing.

In summary, the intervention algorithm described here offers a means to sys-
tematically adapt smoking cessation treatment to the circumstances of an individual
participant over time. Additional cases described in [45] (not included for the sake
of brevity) include robustness scenarios in which the HMPC algorithm is shown to
be effective on participants whose behavior change model differs from the one used
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Fig. 11 Case 2: Nominal performance with dosage tuning. Predicted CPD and Craving responses
in the intervention-free (dashed line) and adaptive intervention (solid line) scenarios for Qcpd D
Qcrav D 10 and QUT D 1

for controller design. While the approach described in this section is promising, it is
just one possible formulation of a smoking treatment algorithm based in control
systems engineering principles. Other manipulated, controlled, and disturbance
variables could be incorporated, such as nicotine replacement patches [50], self-
efficacy [16], and environmental factors, respectively. Similarly, a formulation that
features even more frequent decision-making, i.e. on a within-day basis could be
developed (as is briefly outlined in [45]). Furthermore, much more experimentation
is required to definitively assess the effectiveness and clinical relevance of this
intervention approach. Specifically, further clinical trials are needed to estimate
dose-response models that more accurately capture the time-varying effects of
counseling, bupropion, and nicotine replacement lozenges.



Control Systems Engineering for Optimizing Behavioral mHealth Interventions 477

Control Systems Engineering for a Physical Activity
Intervention

A variety of serious health conditions, among them breast and colon cancer, obesity,
diabetes, and cardiovascular disease, are linked to physical inactivity [31]. Estimates
suggest that the risk of developing these conditions can be reduced by 20–30%
by engaging in 30–60 min of moderate-intensity physical activity (PA) per day [6].
In this section, we consider the use of system identification and Social Cognitive
Theory (SCT) to develop an innovative IAI for physical activity. SCT [2] is a well
substantiated and accepted illustration of the causal elements of human behavior;
it basically describes how different components interact to influence behavior and
other constructs, and it has been used as the basis for many behavioral interventions.
To make further use of SCT in control engineering settings, a dynamical model
has been developed using fluid analogies to represent the different constructs of
the theory and their interactions [25, 38]. The term “plant” is used in this section
to refer to behavioral systems defined as dynamical models based on SCT. An
appropriate model of the behavioral dynamics should be obtained first; for this
purpose, a semi-physical system identification procedure is considered to search and
refine the individual SCT model parameters. One important goal of the experimental
input design is to satisfy identification requirements such as persistence of excitation
while at the same time keep the variations within user-defined, “patient-friendly”
[12] constraints. An additional challenge is to obtain outputs that are consistent
with the goals and practical demands of the intervention. Relying on these ideas is
a pilot mHealth intervention called “Just Walk” [17] which seeks to examine daily
“ambitious but doable” step goals and reinforcements (i.e., points) for achieving
goals.

To accomplish our goal, experimental (input signal) design, together with a
parameter estimation procedure, are proposed to provide an adequate plant model
and at the same time enable achieving desired behavioral outcomes during the
course of the experiment. The proposed strategy will present the development of an
open-loop informative experiment, which is designed based on a priori knowledge
from behavior change theory and previous experience with behavioral interventions.
This experiment will provide insights regarding the dynamics of the system and lead
to an initial model. The experimental design considers internal logic conditions that
are present in behavioral settings, and will be properly specified.

Relying on the estimated dynamical model, the next step is to develop a decision
algorithm based on HMPC [34] for an adaptive mHealth intervention intended to
promote PA (measured in terms of daily steps) among sedentary adults. To achieve
successful outcomes of the intervention in the long term, two phases are included:
a behavioral initiation training stage where individuals are progressively driven to
a healthy status through the introduction of daily step goals and rewards, and a
maintenance training phase where rewards are gradually diminished based on the
enhanced capacity of individuals to continue engaging in the required behavior.
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The MLD framework included in the HMPC-based decision policy is used
to describe discrete sets of goals and rewards as the intervention components.
It is also used to represent the logical process of awarding rewards only if daily
goals are achieved. The formulation employs three degree-of-freedom functionality
to independently adjust the speeds of set-point tracking, measured disturbance
rejection and unmeasured disturbance rejection. Controller reconfiguration through
the manipulation of penalty weights is proposed to address the transition between
the initiation and maintenance phases. Simulation results showing a hypothetical
scenario for a PA intervention are presented to illustrate the benefits of the
proposed approach in addressing the hybrid nature of the system, set point tracking,
disturbance rejection, and the transition between the two stages of the intervention.

Social Cognitive Theory Dynamical Model

SCT describes a human agency model in which individuals proactively self-reflect,
self-regulate, and self-organize [3]. SCT estimates the ability of an individual to
engage in a targeted behavior, based on internal and external parameters and their
interrelationships, with some self-perceived and others externally measured. SCT
components are generated as a consequence of variation of external or internal
stimuli. From the engineering point-of-view, these can be considered as outputs;
a sampling of these components are:

• Self-efficacy, which is the perceived confidence in one’s ability to perform a target
behavior. It is an essential factor that influences behavior and that is influenced
by behavior and the environment.

• Outcome expectancies is the perceived likelihood that performing a target
behavior will result in specific, anticipated outcome.

• Behavior, the action of interest. It may correspond, for example, to a metric
of physical activity (e.g. daily steps, minutes spent in daily moderate intensity
physical activity) or involvement with an addictive substance (e.g. cigarettes or
alcoholic drinks consumed per day).

• Behavioral outcomes are outcomes obtained as a result of the behavior. These
are directly related to outcome expectancies and the future behavior. In the case
of physical activity, for example, a behavioral outcome could be weight loss
(positive) or pain resulting from exercise (negative).

According to the theory, there are variables that act as stimuli to promote
(or relegate) behavior and the components. These can be considered inputs to the
system, and can be external or internal to the individual. Some of them are:

• Environmental context in which the behavior occurs, and which influences
directly the resultant behavioral outcomes. In physical activity, this can include
factors such as weather, or whether it is a weekday or weekend.
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Fig. 12 Fluid analogy for a simplified version of the SCT model. Inputs are represented as inflows
and outputs as inventory levels

• Internal and external cues to action that directly influence behavior. In SCT,
beliefs (e.g., self-efficacy) are conceptualized as predispositions for engaging in
a behavior that is then triggered by a cue to action.

A fluid analogy of SCT has been developed [25, 38]. It depicts how the various
components relate with one another over time, particularly to understand behavior.
A simplified version of the SCT model is presented in Fig. 12. It represents a
“behaviorist” articulation of the determinants of behavior [15]. Main constructs
are treated as inventories; other components and properties are depicted as inflows
and/or outflows. In the schematic, behavior .�4/ is represented as a fluid inventory
that increases and decreases in frequency and/or duration over time. Self-efficacy
(SE; �3), is represented as an inventory of varying levels that differs not only
between individuals and specific behaviors but also fluctuates within an individual.
Prior experience engaging in the behavior .ˇ34/ is a critical learning feedback loop
that adds or depletes SE to subsequently engage in the behavior.

Behaviors are inherently followed by positive and/or negative consequences that
could be proximal or distal. For example, engaging in physical activity could result
in the short term in feeling fatigued or invigorated. Social reinforcement may ensue
from engaging in physical activity. Over the long-term, physical activity may lead
to improved health, or conversely injury. These behavioral outcomes .�5/ produce a
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feedback loop to outcome expectancies .�2/ through ˇ25 in which positive outcomes
increase outcome expectancies and negative do the opposite. As noted previously,
behavioral outcomes are also influenced by the environmental context .�7/.

Cue to action .�6/ directly influences behavior. Given the daily time-frame of
this model, however, we have treated �6 as an inventory that represents the various
cues to action that accumulate during the day. These cues can be external (e.g., a
friend asks you to take a walk) or internal (e.g., getting tired or stiff from sitting).
They can occur naturally (e.g., the sky clears) or artificially (e.g., a reminder). To
complete the fluid analogy model, disturbances .�/ have been added. Disturbances
are any uncontrolled factors that influence the inventories.

For the case of the proposed intervention, the main goal is to promote physical
activity among sedentary individuals, with the specific goal of achieving 10,000
steps per day (or C3000 steps/day more than baseline) on a weekly average. This
intervention relies on the systematic delivery of the following components, based
on the actual performance of individuals:

• Daily goals (u8), to establish in a quantitative form the desired behavior, e.g.,
10,000 steps per day.

• Expected points (u9), the announced daily reward points that will be granted to
individuals if they achieve the daily goal.

• Granted points (u10), given every day if individuals reach the set goal; this feature
is represented by an “If/Then” block. Points can later be exchanged for tangible
rewards, e.g., gift cards.

Three additional inputs are included in the SCT model of Fig. 12 for intervention
purposes:

• Outcome expectancy (OE) for reinforcement (�9; expected daily reward points).
• Reinforcement (�10; received daily reward points resulting from behavior).
• Goal attainment (�11) computed as the difference between the daily goal and the

actual performed behavior, affecting self-efficacy. This signal is used to represent
the ideal step-goal range feature, where individuals might react negatively to too
high a goal that they consider difficult to reach.

To obtain a mathematical model, it is necessary to describe how the inventories
and their respective inflows and outflows fit within a dynamical system. This
process was described by Navarro Barrientos, Rivera and Collins in a dynamic
model for the Theory of Planned Behavior [5]. Five inventories are considered
in the diagram represented by the variables �2,..,�6. The exogenous inputs are
represented by �4; �7; �8; �9; �10, and �11. From each inventory there are a number of
inflow resistances represented by the coefficients �25,..,�68, and outflow resistances
represented by ˇ25,..,ˇ46. One way to think about these resistances is that they can be
considered the fraction of each inventory or input that leaves the previous instance
and then feeds the next inventory.
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There are other parameters that represent the physical characteristics of each
inventory and flow; these have an important effect on the dynamic behavior of the
system. First we have time constants �2,..,�6 that represent the capacity and allow
for exponential decay (or growth) of the inventory, also time delays (2,..,22) for
each flow signal are used. Unmeasured disturbances (which may reflect unmodeled
dynamics) are also considered as �2,..,�6.

In the fluid analogy, the principle of conservation of mass is used such that,
for each inventory, the sum of all the inflows minus all the outflows results in
an accumulation term, denoted by the time constant � times the rate of change
(derivative) in the inventory level. The following equations define the system for
each tank:

�2
d�2
dt
D �29�9.t � 21/C ˇ25�5.t � 14/ � �2.t/C �2.t/ (23)

�3
d�3
dt
D �311�11.t � 22/C ˇ34�4.t � 13/ � �3.t/C �3.t/ (24)

�4
d�4
dt
Dˇ42�2.t � 6/C ˇ43�3.t � 8/C ˇ46�6.t � 17/C ˇ45�5.t � 19/

� �4.t/C �4.t/

(25)

�5
d�5
dt
D �57�7.t � 15/C �510�10.t � 20/C ˇ54�4.t � 12/ � �5.t/C �5.t/ (26)

�6
d�6
dt
D �64�4.t � 11/C �68�8.t � 18/ � �6.t/C �6.t/ (27)

The system is shown using first-order differential equations, but to describe
a more elaborate transient response (such as overdamped, critically damped or
underdamped responses), second-order derivatives could be used. This would lead
to an extension of the fluid analogy which includes a self-regulatory controller for
each inventory, as is described in [35]. More in depth descriptions of the constructs,
model considerations, simulation scenarios, and additional features that can be
incorporated to the model are described in [25, 38].

Two stages are proposed to effectively accomplish the design of the physical
activity behavioral intervention. In the first stage, a set of system identification
experiments at an idiographic (i.e., single subject) level are designed using an open-
loop intervention as a reference, to search and refine the model parameters and
for validation purposes. In the second stage a closed-loop adaptive intervention is
developed, relying on HMPC ideas using the estimated model. Here, environmental
context is considered as the measured disturbance d D �7, the unmeasured
disturbance is assumed Gaussian and affecting only performed daily steps (i.e.,
output y4 D �4).
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Design of the Open-Loop Intervention for Identification

In order to design effective intervention decision algorithms, an adequate plant
model is required. Since the main hypothesis of this work is that physical activity
interventions can be represented and estimated via SCT, the model structure
according to section “Social Cognitive Theory Dynamical Model” is known a priori.
This is done through semi-physical modeling [20] using a grey-box parameter esti-
mation procedure [21], where input-output data from an experiment under real-life
circumstances must be collected. Proper measurement is crucial for success of the
identification procedure, and steps must be followed to guarantee reliability of the
information, i.e., observational studies, equipment selection, software development,
prototyping, among others.

Based on previous experimental studies using smartphones [18], measurements
will be taken daily. The basic choice of inputs and outputs for identification
corresponds to those that will be used by the intervention, as depicted in Fig. 13.
Inputs (e.g. goals, reward points) and outputs (e.g. performed steps) should be
delivered and collected through the smartphone. The informative experiment relies
on results from previous PA behavioral interventions. This experiment will provide
insights regarding the dynamics of the system and lead to an initial model.

In the ensuing formulations N 2 N is the number of days and un 2 R
N

and ym 2 R
N are the design inputs and outputs respectively, where n and m are

the signal indexes that matches the SCT model labels. For input signal design,
a subset of the inputs and outputs used for subsequent parameter estimation will
be considered. The input signals to be designed are goal-setting (u8) and expected
points (�9 D u9); the signals granted points (u10) and goal attainment (u11) will
be internally generated by the “If/Then” and summation blocks, as was described
in Fig. 13. Environmental context (�7) is not considered because it is an external
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Fig. 13 Conceptual diagram for the proposed open-loop/closed-loop intervention based on the
simplified SCT model. Input/output profiles consider symbols �i/�i for modeling and simulation,
and ui/yi for experimental formulation
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variable that cannot be manipulated by the user. Input design must be implemented
under strict clinical conditions, therefore the following general constraints must be
considered:

1. Bounds must be imposed on the magnitude of the intervention components:

umin
n .k/ � un.k/ � umax

n .k/; k D 1; : : : ;N (28)

where umin
n ,umax

n 2 R
N are vectors containing the minimum and maximum

allowed daily value for each input, where in absence of any additional constraint:

umin
n .k/ D Zmin

n ; k D 1; : : : ;N (29)

umax
n .k/ D Zmax

n ; k D 1; : : : ;N (30)

2. Inputs can be constrained for a late start, e.g. if the input un starts at day Dn then:

un.k/ D 0; k D 1; : : : ;Dn � 1 (31)

The primary goal of the informative experiment is to gain insights about the
basic dynamics of the system. An initial approach would be to use constrained yet
standard input signals (i.e., random, RBS, PRBS, multisine, [21]) with sufficient
excitation; however, this could cause undesired variations on the participant’s
behavior. Therefore an initial judicious experiment will be developed; the proposed
inputs will rely on an a priori study [18] designed to produce data according to
an expected profile, combined with the mentioned standard input signals that will
facilitate capturing the dynamical relationships among variables. Assuming that the
individual starts the experiment with an average value of daily steps that we called
baseline (Bs), the vector goal-setting (u8) will take samples from a discrete uniform
distribution, that represents an increment of 0%, 20%, 40%, 60%, 80% or 100% of
Bs, such that:

W D fw1; : : : ;w6g D fBs; 1:2Bs; 1:4Bs; 1:6Bs; 1:8Bs; 2Bsg (32)

P.u8.k/ D wi/ D
1

6
; 8wi 2 W; k D 1; : : : ;N (33)

where P.�/ represents an event probability. The vector expected points (u9) will take
a set of random uniform values from 100, 300 or 500 such that:

Z D fz1; z2; z3g D f100; 300; 500g (34)

P.u9.k/ D zi/ D
1

3
; 8zi 2 Z; k D 1; : : : ;N (35)

The inputs must comply with the constraints described by Eqs. (28)–(31). The
randomization of the variables supports the orthogonal delivery of information
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required by the identification technique. Having specified these input signals, the
informative experiment must be executed. The collected input-output data will be
used in a grey-box parameter estimation procedure. As a result an informative model
is obtained which represents an initial version of the system model.The informative
model can also form the basis for subsequent optimization in experimental design;
an optimized experimental design procedure is described in [22] and [23].

Grey-box parameter estimation relies on two sources of information: prior
knowledge of the SCT model structure, and experimental data [20]. This technique
allows the use of a specific state space structure where the value of a set of unknown
model parameters must be estimated. The adapted state space representation of
the system is based on Eqs. (23)–(27) for the simplified SCT model, and the
representation of the self-regulator csr that increases the order of the system [23]. To
estimate the set of model parameters, the well-known prediction-error identification
methods (PEM) [21] are used.

Simulation Study of the Open-Loop Intervention

The proposed system identification procedure is tested over a reference “simulation
plant” for physical activity with SCT model parameters selected to resemble results
from a prior intervention development experiment using intensive data and mobile
devices [18]. The selected SCT model parameters are:

• �2 D 40; �3 D 30; �4 D 0:8; �5 D 2; �6 D 0:5

• �29 D 2:5; �311 D 0:4; �57 D 1; �510 D 0:6; �68 D 1; �64 D 1:5

• ˇ25 D 0:5; ˇ34 D 0:2; ˇ42 D 0:3; ˇ43 D 0:9; ˇ45 D 0:5; ˇ46 D 0:9; ˇ54 D 0:6

• Ksr D 0:8; � D 1

Delays (i) are set to zero, while environmental context (�7) is considered as
auto-correlated noise generated from a Gaussian signal with zero mean, variance
of 9 and autoregressive coefficient (�) of 0.9. Uncertainties in all the inventories
are represented as �i.k/ � N .0; 10/. Effect of output noise vm.k/ is considered as
ysim

m .k/ D ym.k/ C vm.k/ with v2.k/ � N .0; 1000/, v3.k/ � N .0; 100/, v4.k/ �
N .0; 30;000/, and v5.k/ � N .0; 500/.

The simulation is projected for 273 days to obtain sufficient data for analysis.
Based on previous studies [18] and the desired goal of achieving 10,000 daily steps,
a baseline (Bs) of 5000 steps is selected, and signals u8 and u9 are computed as was
described in Eqs. (32)–(35). Design constraints described in Eq. (28) through (31)
are considered with the values listed in Table 6.

These signals are shown in Fig. 14 as well as ysim D ysim
4 obtained by evaluating

them with the simulation plant. Since this experiment occurs in open-loop, the
resulting behavior exhibits an initial increment and later a non-settling pattern with
random elements that does not achieve the main goal of 10,000 steps during the
whole experiment.
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Table 6 Values of design
constraints for the open-loop
informative experiment

Input Min. value Max. value Start day

un Zmin
n Zmax

n Dn

u8 5000 10,000 8

u9 100 500 15

u10 0 500 15
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Fig. 14 Input/output data for the informative experiment

With the resulting data, the described grey-box parameter estimation procedure
is implemented in MATLAB via the functions idgrey and greyest, including
the following general conditions 8i:

0:1 � �i � 200; 0:1 � ˇi � 0:9; 0:1 � �i � 100

0:01 � Ksr � 1; 0:1 � � � 50 (36)

For crossvalidation purposes a different input/output data set is obtained; in this
case study the validation inputs are applied to the identified model. The goodness of
fit for each output is calculated via Eq. (37),
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%fitm D 100

�

1 �
kym � Oymk

kym �mean.ym/k

�

(37)

where ym 2 R
N is the evaluated output (m D 4; 5) from the simulation plant (real

model) and Oym 2 R
N is the simulated output value from identification.The results

are 39:94% for behavior and 61:49% for behavioral outcomes.

Design of the HMPC-Based Closed-Loop Intervention

The proposed closed-loop intervention is depicted in Fig. 13. It relies again in a
simplified version of the SCT model, and considers the same self-regulator via
internalized cues and the intervention components described in the open-loop case.
The intervention considers measurements of the actual steps (Behavior y4) that are
used within the decision algorithm, now designed using HMPC ideas.

The purpose of the adaptive intervention is to have individuals achieve a desired
level of daily steps, while considering some important physical and operational
constraints such as:

• Maximum and minimum values for goals and points (u8, u9 and u10) depending
on physical conditions (e.g., maximum and minimum daily step goals for an
individual). Financial limitations lead to bounds on the expected reward points,
since these have a direct conversion into monetary value.

• Goals and reward points must be drawn from discrete sets of integer values that
may represent meaningful effects on the intervention. As prior physical activity
experiments have shown [1, 18], having a fixed set of goals and points could be
important to analyze specific aspects of interest on the intervention.

• The intervention may be configured in different stages where some of the inputs
may be deactivated or partially activated. For instance, when the behavior has
reached the desired level and is successfully sustained, a gradual decrease on
rewards may be activated.

The control strategy for intervention design must incorporate the defined require-
ments and constraints for the physical activity behavioral intervention. HMPC
[24, 34] is applied to this problem since it incorporates hybrid dynamics through
mixed logical dynamical (MLD) representations [4]; this feature can be used
to represent the natural constraints of the problem. Hybrid dynamical systems
consider discrete and continuous events simultaneously; they can be represented
by differential (or difference) equations and logical conditions describing their
categorical or binary response. The aim of the control design will be directed to
the following tasks:

• Setpoint tracking: Goals and expected reward points are assigned to obtain the
desired amount of daily steps following continuous and discrete constraints.
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• Measured disturbance rejection: The controller manipulates goals and expected
points to mitigate the effect from measured external disturbances (e.g., environ-
mental context) using the subsection of the identified SCT model that is related
to those signals. For instance if some environmental event (e.g., bad weather) is
known a priori, then goals or rewards can be adjusted to compensate for that
disturbance.

• Unmeasured disturbance rejection: Inputs are manipulated to mitigate the effect
of unknown and possibly unmodeled external influences. For example, any
unexpected situation that may impact the disposition of the individual for
physical activity (e.g., sickness of a family member, sudden party invitation) can
be mitigated by adjustments on goals or points by the controller.

For the physical activity intervention, the input and output vectors are:

u D Œu8 u9 u10�
T ; nu D 3 (38)

y D Œy2 y3 y4 y5�
T ; ny D 4 (39)

Maintenance Training Stage

Once the desired goal has been reached and sustained for a predetermined number
of days, a maintenance training stage of the intervention is initiated. Here the HMPC
algorithm must be reconfigured so as to maintain the daily performed steps in
spite of a reduction of the number of points, and, if needed, reactivating the use
of points if a significant relapse occurs. To adapt the HMPC performance to these
new considerations, the penalty weights in the objective function are adjusted during
the course of the intervention.

During the initiation phase, the main goal is to achieve the required daily steps.
The reference output set point is yr D Œyr2 yr3 yr4 yr5 �

T , where yr4 is the
desired amount of daily steps (e.g., 10,000). Considering vectors u and y defined
in (38) and (39), the following weight matrices Qu and Qy are considered in the
objective function (4) to impose a set point tracking only on the variable y4 (daily
steps):

Qu D

0

@
0 0 0

0 0 0

0 0 0

1

A ; Qy D

0

B
B
@

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

1

C
C
A (40)

The remaining weight matrices in (4) are set to empty.
The maintenance stage is enabled when the goal has been achieved and sustained

at least ns�2 times during the last ns days. The goal is considered achieved when the
difference between the actual steps and the reference is within a predefined tolerance



488 D.E. Rivera et al.

Tol4. A new auxiliary logical variable ıgoal.k/ that was not part of the general HMPC
formulation per (1)–(3) is defined as:

ıgoal.k � i/ D 1, jy4.k � i/ � yr4 j � Tol4 i D 0; � � � ; ns � 1 (41)

hence the second phase is activated at the sample time k if:

ns�1X

iD0

ıgoal.k � i/ � ns � 2 (42)

During this phase it is necessary to reconfigure the controller to target a low use of
points (u9). If the target inputs are: ur D Œur8 ur9 ur10 �

T , an appropriate value for
ur9 must be selected (e.g., ur9 D 0 points) and the weight matrix Qu is changed to:

Qu D

0

@
0 0 0

0 wu9 0

0 0 0

1

A (43)

The value of wu9 depends on the expected performance of the set point tracking
versus the input targeting. The matrix Qy remains as was defined in (40) and the rest
of the weight matrices are null. If at any time k the condition specified in (42) is not
accomplished (e.g., a relapse), the initiation phase is reactivated.

Simulation Scenario for the Closed-Loop Adaptive Intervention

The simulation results presented in this section assume a hypothetical individual
with a sedentary lifestyle, performing an average (i.e., baseline) of 5000 steps per
day with an intervention starting at day zero. This simulation scenario considers the
same model parameters used in the open-loop intervention. Delays (i) and internal
disturbance parameters (�i) are considered zero. The sampling time is T D 1 day;
controller horizons are p D 7 and m D 5 days, while maximum and minimum
bounds on u, �u, and y are:

• umin D Œ5000 0 0�T , umax D Œ10;000 500 500�T ,
• �umin D Œ�1000 � 500 � 500�T , �umax D Œ1000 500 500�T ,
• ymin D Œ0 0 0 0�T , ymax D Œ10;000 10;000 12;000 10;000�T

the weight matrices are defined as is shown in (40) including the reconfigured matrix
Qu described in (43) with wu9 D 0:005. The categorical values of the intervention
components are defined by the sets:

• U8 D f5000; 6000; 7000; 8000; 9000; 10;000g,
• U9 D f100; 200; 300; 400; 500g
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Fig. 15 Simulation results for the HMPC based adaptive intervention for a participant with low
physical activity

The unmeasured disturbance is assumed Gaussian with d0.k/ � N .0; 40;000/,
additionally no plant-model mismatch is considered. To allow for a progressive
increase on the performed steps and a fast disturbance rejection the tuning parame-
ters are:

˛r D Œ0 0 0:96 0�T ˛d D 0:1 fa D Œ0 0 0:3 0�T

Simulation results are shown in Fig. 15 where goals (u8) and available points
(u9) are generated by the HMPC algorithm. It is observed that the value for granted
points (u10) is taken from the available points only when the previous day goal is
achieved, as was enforced by the MLD constraints. The maintenance stage of the
intervention is illustrated via a shaded region; this phase starts when the goal has
been achieved for at least four times during the last ns D 6 days with a tolerance
of Tol4 D 600 steps. During this stage a reduction in the amount of available
and granted points can be observed. The impact of measured disturbances (e.g.,
environmental context) is tested via a downward pulse starting at the day 100,
and lasting for 15 days, as a result participants tend to reduce their steps and the
controller reacts by deactivating the maintenance phase and hence using the points
back to compensate any deviation.
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Summary and Future Work

In this chapter, our goal has been to show how mHealth behavioral interventions can
benefit from a control systems engineering perspective. This has been accomplished
through descriptions of a comprehensive control engineering methodology that is
illustrated in three behavioral application settings. The control engineering approach
consists of two major steps: (1) system identification to estimate (empirically
or semi-empirically) models from data and (2) control algorithms that rely on
these estimated dynamical models to optimize decision-making in the intervention.
System identification approaches ranged from black-box analysis of secondary data
(in the fibromyalgia problem) to a designed informative experiment leading to an
estimated semi-physical model based on a fluid analogy of behavior (in the physical
activity problem). Behavioral theory influenced the task of system identification;
behavioral theory demonstrated includes self-regulation (to describe smoking activ-
ity and cessation) and Social Cognitive Theory (to describe physical activity). In
all cases, the common algorithmic framework for control design is hybrid Model
Predictive Control (HMPC), which consists of a constrained optimization problem
that is solved in real-time via a receding horizon approach. Through the choice
of horizon lengths, weights values, and filter parameters, HMPC can be tuned to
achieve desired levels of performance and robustness, and thus represents a flexible,
extensible framework for decision-making in mHealth behavioral interventions.

It is hoped that this chapter will encourage additional activities from engineers
and computer scientists on this problem, particularly those resulting in practical
application. The ideas presented in this chapter have inspired the development of
a study called “Just Walk” [17], that is examining black-box and semi-physical
identification from informative identification experiments conducted on a cohort of
participants. Experimental evaluation of HMPC is anticipated in a not-too-distant
future.

The intensively adaptive interventions (IAIs) presented in this chapter involve a
daily timescale for decisions. Augmenting an IAI with a “Just in Time” adaptive
intervention (JITAI; [33]) that can provide support when needed, multiple times
within a day, represents an important future direction for this work. Developing an
effective JITAI requires recognizing Just In Time (JIT) states when a participant
has both the opportunity to engage in a behavior and is receptive to support. State
estimation techniques as Model on Demand [44] or machine learning can be used to
infer the existence of JIT states on the basis of available measurements and models.
This research activity calls for alternative approaches to system identification
experiments (e.g., micro-randomization; [19]) in order to generate informative
databases.
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From Ads to Interventions: Contextual Bandits
in Mobile Health

Ambuj Tewari and Susan A. Murphy

Abstract The first paper on contextual bandits was written by Michael Woodroofe
in 1979 (Journal of the American Statistical Association, 74(368), 799–806, 1979)
but the term “contextual bandits” was invented only recently in 2008 by Langford
and Zhang (Advances in neural information processing systems, pages 817–824,
2008). Woodroofe’s motivating application was clinical trials whereas modern inter-
est in this problem was driven to a great extent by problems on the internet, such as
online ad and online news article placement. We have now come full circle because
contextual bandits provide a natural framework for sequential decision making in
mobile health. We will survey the contextual bandits literature with a focus on
modifications needed to adapt existing approaches to the mobile health setting.
We discuss specific challenges in this direction such as: good initialization of the
learning algorithm, finding interpretable policies, assessing usefulness of tailoring
variables, computational considerations, robustness to failure of assumptions, and
dealing with variables that are costly to acquire and missing.

Introduction

The classic multi-armed bandit problem (see, e.g., [1]) is perhaps the simplest
model of a sequential decision making problem where one wishes to maximize the
cumulative sum of rewards received over some time horizon. Faced with a finite
number of alternatives, called actions or arms, the decision maker must choose
between them at every time point. One has to balance the exploration of actions that
have hitherto yielded low rewards, with exploitation of current knowledge about
actions have yielded high rewards so far.

Woodroofe [2] noted that, in most sequential decision making scenarios, there
is likely to be some additional information available that can be useful for decision
making. For example, in a clinical trial with two drugs, we might have people’s
genetic or demographic information available as features. If so, then rather than

A. Tewari (�) • S.A. Murphy
University of Michigan, Ann Arbor, MI, USA
e-mail: tewaria@umich.edu; samurphy@umich.edu

© Springer International Publishing AG 2017
J.M. Rehg et al. (eds.), Mobile Health, DOI 10.1007/978-3-319-51394-2_25

495

mailto:tewaria@umich.edu
mailto:samurphy@umich.edu


496 A. Tewari and S.A. Murphy

thinking about a two-armed bandit problem, one should think about the clinical
trial as a contextual bandit problem where we want to learn how to map user
features into one of the available actions, i.e., one of the two drugs in this case.
Woodroofe defined this problem, albeit in the case of just one feature, but he did not
call it a “contextual bandit” problem. Instead he called it a “bandit problem with a
concomitant variable”.

As it sometimes the case with broadly useful problems, contextual bandit prob-
lems have been considered by many different communities by many different names.
They have been called “bandit problems with side observations” [3, 4], “bandit
problems with side information” [5], “associative reinforcement learning” [6–8],
“reinforcement learning with immediate reward” [9], “associative bandit problems”
[10], and “bandit problems with covariates” [11–14]. The term “contextual bandits”
was coined by Langford and Zhang [15] and we stick to it because it is descriptive
yet short.

Recent interest in contextual bandits has been driven to a large extent by
personalization problems arising on the web. How to use user and webpage features
to select the best ad to show to the user on a given webpage [16]? How to
show personalized news articles to web users based on their interests [17]? With
the emergence of mobile health, we expect that many ideas developed to show
personalized ads to users on the web will be found useful in personalizing mobile
health interventions to a specific person in a particular context.

The framework of Just-In-Time Adaptive Interventions [18] has recently been put
forward to unify a number of decision making problems that arise in mobile health
across a variety of behavior change domains including alcohol abuse, depression,
obesity, and substance abuse. There are five keys components of JITAIs: decision
points, decision rules, tailoring variables, intervention options, and proximal out-
comes. Contextual bandit algorithms can be used for personalizing JITAIs. The
tailoring variables, such as GPS location, calendar busyness, and heartrate, form
the context. The intervention options are the actions. For simplicity, we assume
throughout this chapter, that there are only two intervention options: whether to
intervene or not. For example, in a physical activity JITAI, the two intervention
options might be whether or not to send an activity encouraging message. Once an
intervention option is chosen, a proximal outcome (i.e., reward) is obtained. Again,
to use the example of the physical activity JITAI, our proximal outcome might be
the number of steps the person walked in the 1 h following the decision point. In
JITAIs, the fundamental pattern that repeats over time is the following.

1: at a given decision point do
2: mobile phone collects tailoring variables (the context)
3: a decision rule (or policy) maps the tailoring variables into an intervention

option (the action)
4: mobile phone records the proximal outcome (interpreted as a reward, so

higher is better)
5: done
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In the rest of this chapter, we will see how the contextual bandit problem is a
good way to think about the problem of personalizing JITAIs in a mobile health
setting. We will look at online learning algorithms that learn good decision rules
(policies) over time by interacting with the environment using a protocol very
similar to the fundamental temporally-repeating pattern described above. We will
first survey existing contextual bandit frameworks and algorithms to give the reader
a sense of the breadth of work that has occurred in this area across several different
fields including computer science, electrical engineering, operations research, and
statistics. Then we will highlight the unique challenges that arise in mobile health
and discuss how existing contextual bandit algorithms will need to be modified
before they can be used successfully in mobile health.

Online Learning in Contextual Bandits

In this section we will review the online learning literature on contextual bandit
problems. The focus will be on algorithms that minimize their regret. Regret
measures the difference between the reward that could have been accumulated
with prior knowledge of the problem, and the reward accumulated by the learning
algorithm. The precise definition depends on the setting in which one is analyzing
the learning algorithm. We will consider three settings that make increasingly
weaker assumptions about the data generating process. In the first setting, contexts
and rewards are all stochastically generated from an iid process. In the second
setting, contexts are arbitrary but rewards are stochastic. Finally, in the third setting,
contexts and rewards are all arbitrary.

Stochastic Contextual Bandits

In the stochastic setting, we assume that the context and reward triples
f.Xt;R0t ;R

1
t /g

T
tD1 are generated by sampling independently from an underlying

distribution D . The following online learning protocol is followed.

1: for t D 1 to T do
2: receive context Xt

3: algorithm takes action At

4: receive reward Rt D RAt
t

5: end for

The contexts Xt are drawn from some context space X . Unless otherwise
specified, we will assume that the context Xt 2 R

p is a vector with p components
so that X 
 R

p. The literature has considered situations both less general (e.g.,
finite context space [19]) and more general (e.g., contexts in a general metric
space [20]). The actions At lie an action space A which we will assume, unless
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indicated otherwise, to be f0; 1g with 1 corresponding to the option of providing an
intervention and 0 to not providing.

A policy or decision rule � WX ! A decides which action gets taken in which
contexts. The value of a policy � is defined as the expected reward obtained when
actions are chosen according to � :

V.�/ D E.X;R0;R1/�D

�
R�.X/

	
:

The value of a policy, in turn, depends on the expected reward functions �a; a 2 A ,
defined as:

�a.x/ D E.X;R0;R1/�D ŒR
ajX D x�:

Note that the value of a policy and the expected reward functions are related to each
other as follows:

V.�/ D EX�DX

�
��.X/.X/

	
:

Here DX is the marginal distribution of contexts. The optimal policy �?, among all
possible policies, is given by

�?.x/ D argmax
a2A

�a.x/: (1)

An online learning algorithm L is a sequence of maps Lt; 1 � t � T , where
Lt maps the history just prior to time t, f.Xs;As;Rs/g

t�1
sD1, along with the current

context Xt to an action At 2 A . If any of the maps Lt are stochastic, i.e., the
algorithm uses some internal randomization, then we call it a randomized online
learning algorithm. Otherwise, we call it a deterministic online learning algorithm.

We will look at several different notions of regret. All of them will be of the form:

“best expected cumulative reward in a comparison class” �
TX

tD1

EŒRt�

where the first term, referred to as the “benchmark” or “comparator” term measures
the total expected reward that would have been obtained with advanced knowledge
of the distributions (in the stochastic case) or nature’s moves (in the adversarial
case). The second term is the expected reward accumulated by the online learning
algorithm. Note that this expectation is taken with respect to any randomness in
nature’s generation of contexts and rewards, as well as any randomness used by the
algorithm (if it is a randomized online learning algorithm).

Contextual bandit problems can be approached through several perspectives.
We can adopt a regression perspective and view the problem as one of estimating
the expected reward functions �a.x/. Given estimates b�a, we can choose the
corresponding “greedy” policy GREEDY.b�a/ defined as
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GREEDY.b�a/.x/ D argmax
a2A

b�a.x/:

Note that the optimal policy defined in (1) is nothing but GREEDY.�a/.
In the case of two actions, one can also adopt a binary classification perspective

and fix a set˘ of policies that can also be thought of as a set of classifiers. The best
policy in this class is

�?˘ D argmax
�2˘

V.�/:

Instead of estimating the underlying expected reward function, one can instead
simply try to compete with �?˘ .

In the rest of this section, we first review approaches, both parametric and non-
parametric, based on the regression perspective. Then we will consider classification
based approaches that search for good policies in a restricted class.

Parametric Estimation of Expected Reward Functions

In addition to assuming that the triples .Xt;R0t ;R
1
t / are iid, let us also assume that

Ra
t D ˇ

>
a Xt C �

a
t ; (2)

where Xt; ˇ
>
a 2 R

p and �a
t are iid mean-zero random variables. This implies that

the expected reward functions �a.x/ D ˇ>
a x are linear in the context x. Under this

assumption, the best policy takes the form

�?.x/ D GREEDY.ˇa/.x/ D argmax
a2A

ˇ>
a x:

Expected reward of this optimal policy over T time steps is T �V.�?/. The expected
regret of a learning algorithm is defined as

T � V.�?/ �
TX

tD1

EŒRt�: (3)

A simple approach for online learning in this setting is to adopt what has been called
a “certainty equivalence with forcing” strategy in the adaptive control literature [21].
The idea is to choose a predetermined sequence of time points when the learning
algorithm simply explores different actions. On rounds other than the exploration
rounds, the algorithm “exploits” the current knowledge. “Greedy” or “certainty
equivalent” exploitation means that the algorithm believes its current estimates
of the expected reward function and takes the optimal action according to those
estimates.
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Algorithm 1 Linear Response Bandit Algorithm [22]
Inputs: n0 (initial exploration length), Ta (exploration times for action a), h (localization
parameter to decide which estimates to use)

for t D 1 to 2n0 do
Take action At D 0 or At D 1 depending on whether t is odd or even

end for
for t D 2n0 C 1 to T do

if t 2 Ta then
=? Exploration round ?=
Take action At D a
Update b̌

a using least squares on previous rounds when action a was taken
Update ě

a using least squares on previous exploration rounds when action a was taken
else
=? Exploitation round ?=
if j.ě1 � ě

0/
>Xtj > h=2 then

Take action At D argmaxa.
ěa/>Xt

else
Take action At D argmaxa.

b̌a/>Xt

end if
end if

end for

The algorithm of Goldenshluger and Zeevi [22] (Algorithm 1) adopts such an
approach with a slight twist: it maintains two sets of estimates for the expected
reward functions. The first set of estimates, ě

a, are computed from data obtained
during forced exploration rounds and the second set of estimates, b̌

a, are computed
from data obtained in all previous rounds. At an exploitation round, the algorithm
checks to see if there is enough gap between the quality of the two actions according
to ě

a. If there is enough gap, then it selects an action using the policy GREEDY.ěa/,
otherwise it uses the policy GREEDY.b̌a/.

Goldenshluger and Zeevi establish an O.p3 log T/ regret bound for Algorithm 1
under several assumptions including the assumption that �a

t are normally distributed
and that a “margin” condition holds. Goldenshluger and Zeevi had earlier brought
the margin condition from the classification literature into the contextual bandit
literature [23]. The margin condition ensures that the contexts Xt are distributed
such that, with high probability, the treatment effect magnitude j.ˇ1 � ˇ0/>Xtj is
large enough. A margin assumption is problematic in a mobile health setting where
treatment effects are often expected to be small.

Recently, Bastani and Bayati [24] have extended Algorithm 1 to the high
dimensional case where the vectors ˇa are sparse, i.e., the number kˇak0 of non-
zero elements in ˇa satisfies kˇak0 D s � p. They improve the O.p3 log T/ regret
rate to O.s2 log2 T C s2 log T log p/ after making assumptions similar to those made
by Goldenshluger and Zeevi.

Linearity of the expected reward function is not the only case that been
considered for modeling the expected reward. Agarwal et al. [25] consider a setting
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where the expected reward function is assumed to lie in a general class with finitely
many members. However, extending their results to general, finite dimensional,
expected reward function classes is an open problem.

Nonparametric Estimation of Expected Reward Functions

Instead of assuming the linear model (2), we can consider the model

Ra
t D fa.Xt/C �

a
t ; (4)

where fa are functions chosen from a non-parametric class of functions, say,
those satisfying certain smoothness conditions, and �a

t are iid mean-zero random
variables. Assume that the contexts are normalized such that Xt 2 Œ0; 1�

p.

Algorithm 2 Randomized Allocation with Nonparametric Estimation [13]
Inputs: n0 (initial exploration length), NPR (nonparametric regression procedure such as
nearest neighbor regression), �t (sequence of exploration probabilities)

for t D 1 to 2n0 do
Take action At D 0 or At D 1 depending on whether t is odd or even

end for
Get initial estimatesbf a by feeding data from previous rounds to NPR
for t D 2n0 C 1 to T do

Let Gt D argmaxa
bf a.Xt/ // greedy action

Let Et D action selected at random // random exploration
With probability .1� �t/ take action At D Gt, else At D Et // �-greedy
Collect reward Rt and feed into NPR to get updated estimatebf a for a D At

end for

Yang and Zhu [13] initiated the study of contextual bandits in this non-parametric
setting and looked at the “competitive ratio”:

PT
tD1 fAt.Xt/

PT
tD1 maxa2A fa.Xt/

:

Their algorithm, given as Algorithm 2, estimates the functions fa using some
non-parametric procedure such as the histogram method or the nearest neighbor
method. It selects actions using the so-called �-greedy strategy. That is, with some
small probability a random action is selected. Otherwise, the action that looks best
according to the current estimatesbfa is taken.

Assuming that fa is non-negative and continuous on Œ0; 1�p and that DX has a
density bounded away from zero, Yang and Zhu show that the competitive ratio
of their contextual bandit algorithm converges to 1 almost surely, for both the
histogram and nearest neighbor methods provided that the width of histograms and
number of nearest neighbors are chosen in an appropriate manner as T !1.
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The results of Yang and Zhu are asymptotic and assume only continuity of the
function fa. Assuming a smoothness condition of the form

8x; x0; a; kf a.x/ � f a.x0/j � L � kx � x0kˇ;

Rigollet and Zeevi [14] gave finite sample expected regret bounds where the
expected regret is still defined as in (3) except that now

�?.x/ D GREEDY.fa/.x/ D argmax
a2A

fa.x/:

They also assumed a margin condition that controls the probability of observing a
context where the treatment effect is non-zero but too small: there exists ı0 2 .0; 1/
such that

8ı 2 Œ0; ı0/; 9Cıs:t:PX�DX Œ0 < jf0.X/ � f1.X/j < ı� � Cıı
˛:

If ˛ˇ > 1 then the optimal policy �? does not depend on x and always pulls
the same arm. Therefore, to ensure a non-trivial optimal policy, they assume that
˛ˇ � 1. Their expected regret guarantees are polynomial in T where the exponent
depends on the dimension p of the contexts, the margin parameter ˛ and the
smoothness parameter ˇ. They also provide almost matching lower bounds. Note
these polynomial in T regret rates are much worse than the logarithmic rates in T
achievable in the parametric case under margin assumptions.

Perchet and Rigollet [26] extend the work of Rigollet and Zeevi to the case when
the number of arms might be (much) larger than 2. They also extend the range
of the margin parameter where the bounds hold and eliminate logarithmic gaps
between upper and lower bounds. However, their algorithm requires knowledge of
the smoothness parameter ˇ. In practice, the smoothness parameter is not known.
Qian and Yang [27] show how to use “Lepski-type” procedures from the non-
parametric function estimation literature to select the smoothness parameter ˇ in
a data-dependent way and still achieve (near) minimax regret bounds that would be
obtained assuming that the smoothness is known in advance.

Competing Against a Policy Class

In this section, we consider approaches that dispense entirely with the task of
estimating the expected reward function. Instead they fix a class ˘ of policies and
aim to minimize the expected regret relative to the class ˘ , which is defined as

T � V.�?˘/ �
TX

tD1

EŒRt�; (5)

where �?˘ is the best policy in ˘ .
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Algorithm 3 Epoch Greedy Algorithm [15]
Inputs: Function `.D/ that given a data set D, outputs the number of exploitation rounds to do
next

D0 D fg; t1 D 1

for Epoch j D 1; 2; : : : do
t D tj
=? Single exploration step ?=
Select At uniformly at random from A
Dj D Dj�1 [ f.Xt;At;Rt/g

=? Update policy ?=
Compute b�j D argmax�2˘

P
.x;a;r/2Dj

r1 Œ�.x/ D a�

=? Exploitation phase ?=
tjC1 D tj C s.Dj/C 1

for t D tj C 1 to tjC1 � 1 do
Take action At D b�j.Xt/

end for
end for

If the policy class˘ is finite (j˘ j <1) and small enough that one enumerate all
the policies at every time step, then the Exp4 algorithm, given later in section “Com-
peting Against a Fixed Class of Policies”, can be used. With two actions, it enjoys an
expected regret bound of O.

p
T log j˘ j/ in the fully adversarial setting where the

context and reward triples are assumed to be completely arbitrary. If an algorithm
enjoys an regret bound in the adversarial setting, it can be shown that it will also
satisfy the same bound when the stochastic setting, i.e., when the contexts and
rewards are generated by an iid process and regret is measured as in (5) above.

If the policy class is huge or infinite, then enumeration of all policies is infeasible
and Exp4 cannot be applied. However, in the stochastic setting, one can use
the “certainty equivalence with forcing” idea described in section “Parametric
Estimation of Expected Reward Functions” above. Langford and Zhang’s [15]
Epoch-Greedy algorithm (Algorithm 3) does just that. On an exploration round,
it takes one of the two actions at random with probability 1=2. After an exploration
round, it builds an unbiased estimator of the value of any policy � as:

bV.�jD/ D
1

jDj

X

.x;a;r/2D

2r1 Œ�.x/ D a�

where D is the dataset consisting of context, action, reward triples from exploration
rounds so far. Since each action is selected at random with probability 1=2 on

exploration rounds, it is easy to see that E
h
bV.�jD/

i
D V.�/ where the expectation

is taken over the distribution of contexts and rewards as well as with respect to the
algorithm’s uniform randomization to select the actions on exploration rounds. The
policy selected for the next exploitation phase is then simply
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argmax
�2˘

bV.�jD/ D argmax
�2˘

X

.x;a;r/2D

r1 Œ�.x/ D a� : (6)

This is where the computational advantage of Epoch-Greedy comes in. It never
accesses the policies in ˘ except via the operation above. All we need is a
computational blackbox or “oracle” that can answer the “argmax” queries above.
Let us call such an oracle an AMO (for Arg Max Oracle). If a cost-sensitive classifier
implementation exists for the class ˘ then it can serve as an AMO. Therefore, ˘
can even be infinite as long as an efficient AMO is available for it. The regret bound
of Epoch-Greedy, with a finite class ˘ , is O.T2=3.log j˘ j/1=3/. This is obtained by
having O.T2=3.log j˘ j/1=3/ epochs till time T resulting in the same number of AMO
calls since exactly one AMO call is made per epoch. Langford and Zhang note that
˘ need not be finite and that a similar regret bound can be shown for an infinite
class with finite VC (Vapnik-Chervonenkis) dimension. Note that for such policy
classes, the regret bound of any algorithm that depends on the cardinality of the
policy class (such as the one for the Exp4 algorithm in section “Competing Against
a Fixed Class of Policies” below) becomes vacuous.

Epoch-Greedy’s regret guarantee of O.T2=3.log j˘ j/1=3/ might appear to be
much worse than logarithmic regret guarantees presented in section “Parametric
Estimation of Expected Reward Functions” above. Recall that those guarantees were
under additional assumptions such as margin conditions and the constants hidden in
the O.�/ notation depend on distribution dependent parameters such as the margin
parameter. Logarithmic regret guarantees for Epoch-Greedy are possible if one is
willing to make additional assumptions and allow distribution dependent constants
to appear in the regret guarantee. For instance, consider a finite policy class ˘ such
that there is a unique maximizer �? of the value V.�/ over � in ˘ . Let � > 0

denote the gap between the value of �? and that of the second-best policy:

� D V.�?/ � max
�¤�?

V.�/:

Langford and Zhang show that Epoch-Greedy also enjoys a regret bound of
O..log j˘ j C log T/=�2/. Note that this bound is logarithmic in T but blows up
as �! 0.

Dudik et al. [28] gave an algorithm called RandomizedUCB that achieves

O.
p

T log.Tj˘ j=ı/C log.j˘ j=ı//

regret with probability at least 1� ı. Moreover, it requires only polynomially many
calls to the AMO at every round. However, its practical utility is still limited as
the polynomial involved is of moderately high degree (it invokes the AMO QO.T5/
times per round where QO hides logarithmic factors). More recent work of Agarwal
et al. [29] has managed to bring down the total number of AMO calls to just
O.

p
T= log.j˘ j=ı// over all T rounds, with probability at least 1 � ı, while still

preserving the regret bound of RandomizedUCB.
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The bandit algorithms discussed above appear quite attractive for use in mobile
health due to the fast rate at which the regret decreases to 0. That is, user aggravation
and disruption due to inappropriately timed delivery of intervention options would
be minimized due to the fast rate at which the algorithm learns the best action for
a given context. This is a critical point due to the high levels of app abandonment
present in mobile health [30]. However these algorithms achieve these high learning
rates under the assumption that the contexts and rewards are all generated from an iid
process. Suppose the context includes the user’s stress level; user stress at different
time points are clearly not independent. That is, a user who was stressed during
the morning is more likely to be stressed in the afternoon than a user who was not
stressed during the morning. Also, stress at different time points are unlikely to be
identically distributed. For example, the probability that a smoker is stressed on the
day before she quits smoking is probably quite different from the probability that
the same smoker is stressed on the day after she has quit smoking. However, it may
be that the noise level in the dynamics of the context will be sufficiently high so that
a model assuming iid contexts and rewards provides a good approximation. Indeed
Lei [31] found that in simulated experiments mimicking mobile health studies, the
regret of a bandit algorithm similar to those above is robust to dependence between
contexts at different times.

Adversarial Contexts with Stochastic Rewards

The assumption that the contexts are drawn iid from a fixed distribution is quite
unrealistic in a lot of practical settings, including mobile health. Researchers have
therefore considered a model where the contexts are arbitrary but the reward given
context and action is still stochastic in the following sense. Let fDa.�jx/ W x 2
X g, for a 2 f0; 1g, be two families of distributions over rewards indexed by the
context x. Note that we are considering the case of two actions, i.e., A D f0; 1g. The
following online protocol is followed. The contexts are denoted by lower case letters
to emphasize that they are not random variables but from an arbitrary deterministic
sequence.

1: nature generates fxtg
T
tD1 in advance

2: for t D 1 to T do
3: receive context xt

4: algorithm takes action At

5: receive reward Rt which is drawn from DAt.�jxt/

6: end for
Let �a.x/ be the expected value of the distribution Da.�jx/. The optimal policy is

given by:

�?.x/ D argmax
a2A

�a.x/;

and we define the expected regret of an online learning algorithm as:
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TX

tD1

��?.xt/.xt/ �

TX

tD1

EŒRt�:

All regret bounds mentioned in this subsection hold uniformly over all possible
sequences fxtg

T
tD1 of contexts (with some mild restrictions like boundedness of the

contexts).
Li et al. [17] gave an algorithm called LinUCB that is based on the following

linearity assumption:

�a.x/ D ˇ
>
a x; (7)

where x; ˇa 2 R
p. LinUCB is here presented as Algorithm 4. It follows a long line

of work in bandit algorithms that use upper confidence bounds for action selection.
To each action’s current estimate, it adds a confidence term which reflects the
algorithm’s current uncertainty about that estimate. The action selected is the one
that maximizes the sum of the estimated reward and the confidence bound.

Algorithm 4 LinUCB Algorithm [15]
Inputs: ˛ (tuning parameter used in computing upper confidence bounds)
Aa D Ip�p;ba D 0p�1 for all a

for t D 1 to T do
Compute Ǒa D .Aa/�1ba for all a // ridge regression
Compute Ua D . Ǒa/>xt C ˛

p
x>

t .Aa/�1xt for all a // upper confidence bound
Take action At D argmaxa Ua and observe reward Rt

For a D At, update Aa D Aa C xtx>
t , ba D ba C Rtxt

end for

LinUCB performs well empirically as demonstrated by Li et al. in the context
of personalized news article recommendations on the web. However, its theoretical
analysis is complicated by the fact that its estimates are not based on iid samples
(recall the reward depends on the action and the action is selected using data on
prior rewards and prior actions) and there are no known regret bounds. Chu et al.
[32] provide an algorithm called SupLinUCB that calls BaseLinUCB as a subroutine

and show that it enjoys a regret bound of O
�p

Tp log3.T log T=ı/
�

with probability

at least 1 � ı. The idea of taking a basic procedure like BaseLinUCB, whose
statistical analysis is simplified by assuming independence among the samples, and
then using a master algorithm SupLinUCB to ensure the assumption holds, goes
back to the work of Auer [33]. His work also considered arbitrary context vectors
with linear expected reward functions as in (7) and followed some early line of work
in the computer science literature [6–8, 34]. His basic and master algorithms were
called LinRel and SupLinRel. SupLinRel was also shown to enjoy a regret bound
of O.

p
Tp log3.T log T=ı// with probability at least 1 � ı. However, LinUCB has
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practical advantages over LinRel. It is easier to implement and numerically more
stable as it relies on ridge regression as its computational core and not on full
eigendecompositions like LinRel. We would like to also point out that LinUCB has
been generalized from the standard linear setting as in (7) to the generalized linear
setting [35] for use with non-continuous rewards such as binary rewards.

Nonlinear Expected Reward Functions

Readers familiar with the literature on kernel methods and support vector machines
in machine learning will recall that these methods deal with non-linearity by
embedding the contexts xt into a high, or even infinite, dimensional space via a
feature mapping �.xt/ 2 HK , where HK is a reproducing kernel Hilbert space
(RKHS) corresponding to the kernel K.x; x0/ D h�.x/; �.x0/i. The kernel K
thus measures similarity between contexts using the inner product in a higher
dimensional space. LinUCB has been extended to the RKHS setting by Valko et al.
[36]. They also provided regret bounds that depend on the “effective dimension”
which is, roughly speaking, the number of principal dimensions in which the
embedded data points in the RKHS are mostly contained.

Other work on contextual bandits with arbitrary contexts and non-linear expected
reward functions includes the Query-ad clustering algorithm of Lu et al. [37] and the
RELEAF algorithm of Tekin and van der Schaar [38].

Thompson Sampling

Thompson sampling, also called “posterior sampling” [39] or “probability match-
ing” [40], is a Bayesian approach to designing online learning algorithms for bandit
problems. In the linear setup as in (7) above, it involves choosing prior distributions
for the unknown reward parameters ˇa and choosing conditional distributions for
the rewards given context and action. Algorithm 5 chooses the prior to be a
multivariate normal distribution with mean zero and covariance matrix 	2Ip�p. It
also assumes that the reward given context x and action a is drawn from a normal
distribution with mean ˇ>

a x and variance 	2. At every time step, it draws samples
ě

a from the posterior distribution for ˇa and chooses the action with the highest
mean ě>

a xt according to the drawn posterior samples. Once the action is taken
and the corresponding reward observed, it updates the posterior distribution for the
corresponding reward parameter.

Agrawal and Goyal [41] analyze Algorithm 5 and prove a regret bound of

O

�

p
q

T1C�

�
.log T log.1=ı//

�

with probability 1 � ı. Here � 2 .0; 1/ is a tuning

parameter. Thompson sampling had been applied to contextual bandits [42] before
Agrawal and Goyal’s work but finite time regret bounds were not available. Agrawal
and Goyal’s regret analysis holds under much weaker assumptions that made to
derive the Thompson Sampling algorithm itself. First, the regret analysis itself
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Algorithm 5 Thompson Sampling Algorithm [15]

Inputs: 	2 (variance parameter used in the prior and in the reward linear model)
Aa D Ip�p;ba D 0p�1 for all a

for t D 1 to T do
Compute Ǒa D .Aa/�1ba for all a
Sample ěa from NORMAL. Ǒa; 	2.Aa/�1/ for all a // Sample from the posterior
Take action At D argmaxa.

ěa/>xt and observe reward Rt

For a D At, update Aa D Aa C xtx>
t , ba D ba C Rtxt

end for

makes no use of the prior. It holds for every ˇa choice as long as it is bounded.
Second, it does not assume that the rewards are actually drawn from a normal
distribution. It does require the linearity assumption in (7) to hold but the rewards
are only assumed to be sub-gaussian.

As discussed above, this section does not require that the contexts are iid.
Thus the bandit algorithms considered here can accommodate settings in which the
contexts can have arbitrary relationships one with another. Despite this, as discussed
above, for some algorithms one can guarantee how fast the algorithm learns with
time. This may be useful in mobile health particularly in areas of science where the
dynamic evolution of the contexts over time are not yet well understood, for example
when the context includes craving for substances or alternately physiological and
perceived stress. However, this setting continues to be potentially problematic in
that how users respond to interventions (e.g., reward distribution given context) can
change with time. For example, the relationship between self-efficacy and relapse to
smoking appears to change as time increases from the quit date [43]; this is likely to
mean that the distribution of the reward as a function of an intervention option and
a context involving self-efficacy is likely to change with time as well.

Fully Adversarial Contextual Bandits

In this section, we further relax our assumptions on how the contexts and rewards
are generated. First, we consider a setting where the adversary chooses a sequence
of contexts and reward distributions. In this setting, the aim is do well with respect
to a policy that knows the sequence of distributions in advance. Second, we consider
a setting where the adversary chooses a sequence of contexts and reward values. In
this setting, the aim is do well with respect to a pre-defined class ˘ of policies.

Competing Against Greedy Policies with Changing Reward Distributions

Here the context sequence as well as the sequence of reward distributions given
context and action are chosen arbitrarily. Denote the choice of the action a’s reward
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distribution given context x at time t by Da
t .�jx/. Denote the expected reward under

this distribution by �a
t .x/. Consider the following online protocol.

1: nature generates f.xt;D0
t .�jx/;D

1
t .�jx//g

T
tD1 in advance

2: for t D 1 to T do
3: receive context xt

4: algorithm takes action At

5: receive reward Rt drawn from the distribution DAt.�jxt/ with expectation
�

At
t .xt/

6: end for
At the end of T rounds, the time-average of the expected reward functions for

action a played by nature is N�a.x/ D 1
T

PT
tD1 �

a
t .x/. The regret definition below

compares the learning algorithm’s expected reward to that of the greedy policy with
respect to N�a:

�?.x/ D GREEDY. N�a/.x/ D argmax
a2A

TX

tD1

�a
t .x/:

Regret is now defined as

TX

tD1

�
�?.xt/
t .xt/ �

TX

tD1

EŒRt�:

Note that in the protocol above, there are two sources of randomness. First, there
is randomness in nature’s realization of the rewards unless the distributions Da

t .�jx/
are point masses. Second, the online learning algorithm may be a randomized one
and could be using additional randomization to select its actions At. The expectation
above is with respect both possible sources of randomness.

We know of only one paper that gives bandit algorithms in this setting.
Slivkins [20] considers this setting in Section 7 of his paper. In this chapter, we have
mostly focused on the case of two actions, i.e., A D f0; 1g and our context space
X has often been a subset of Rp. He considers a much more general case when
A ;X are metric spaces. In our specific setting, his assumptions on the expected
reward functions is that they are Lipschitz with respect to some norm k � k defined
on R

p:

8t; x; x0; a; a0; j�a
t .x/ � �

a
t .x

0/j � kx � x0k:

His algorithm achieves a regret bound of O.T1�1=.2CdX /.log T// where dX is the
covering dimension of the context space X under the metric kx � x0k. Note that
the covering dimension of a metric space is defined as the smallest integer d such
that the number of balls of radius r required to cover the space is O.r�d/. When
X 
 R

p is a bounded set, we always have dX � p.
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Competing Against a Fixed Class of Policies

In the previous section, the policy we compete against was indirectly defined by
the expected reward functions played by nature. Here we fix a class ˘ of policies
in advance and try to compete with the best policy in ˘ . The protocol is now as
follows. Note that now nature generates arbitrary contexts and reward values for the
two actions.

1: nature generates f.xt; r0t ; r
1
t /g

T
tD1 in advance

2: for t D 1 to T do
3: receive context xt

4: algorithm takes action At

5: receive reward Rt D rAt
t

6: end for
Regret is now defined as

max
�2˘

TX

tD1

r�.xt/
t �

TX

tD1

EŒRt�:

Regret bounds in the adversarial setting hold uniformly over all choices of the
context, reward sequence f.xt; r0t ; r

1
t /g

T
tD1.

A special case of the above setup when there is only one unchanging context,
xt D x, reduces to the adversarial multi-armed bandit problem with K arms (we
have focused on the K D 2 case in this chapter). This problem was first considered
by Auer et al. [44]. Their Exp3 algorithm obtains an expected regret bound of
O.
p

KT log K/ which can be improved to O.
p

KT/ using a different algorithm
[45, 46]. They also present a variant Exp3.P that enjoys a bound on the regret not
just in expectation but with high probability. More interesting in the contextual
bandit setting is their Exp4 algorithm. Exp4 applies in the case when there are
a finite number of “experts” each suggesting an action to take at a given round.
We can identify their experts with policies in the set ˘ if the set is finite. We
present the Exp4 algorithm as Algorithm 6. They prove an expected regret bound of
O.

p
KT log.j˘ j// for Exp4 which reduces to O.

p
T log j˘ j/ when K D 2. Even

though the regret bound can tolerate very large policy classes, the implementation
of the algorithm itself is practical only for very small policy classes since Exp4
maintains a weight for each policy in the class.

High probability guarantees matching those of Exp4 have been obtained by
Beygelzimer et al. [47] using their Exp4.P algorithm. Note that the same paper also
presents an algorithm VE for the stochastic setting when the context and reward
tuples are drawn iid from a fixed distribution. Even if ˘ is an infinite class but the
VC dimension of ˘ is d < 1, VE enjoys a regret bound of O.

p
dT log.T=.dı///

with probability at least 1 � ı.
At least conceptually, the Exp family algorithms provided in this section appear

rather promising because they require the least restrictive assumptions on the
rewards in order to learn. However these algorithms, because they are designed to
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Algorithm 6 Exp4 Algorithm [15]
Inputs: � 2 .0; 1� (learning rate/step size; also used an exploration parameter)

w� D 1 for all � 2 ˘ // set equal weights for all policies initially
for t D 1 to T do

Compute W D
P

�2˘ w�

=? convert policy weight into action probabilities ?=
For all a, compute pa D .1� �/ 1W

P
�2˘ w�1 Œ�.xt/ D a�C �=2

Choose At D a with probability pa and observe reward Rt

Set Ora D Rt=pa if At D a and 0 otherwise // estimate rewards for both actions
For all � 2 ˘ , set w� D w� exp



� Or�.xt/=2

�
// update policy weights

end for

work in the worst cases, may learn too slowly for a large subset of a particular
population such as the population of smokers who are trying to quit. At this time,
we do not have good rules of thumb for selecting the type of algorithm to employ
for optimizing mobile health interventions depending on the type of populations and
behavior change problem.

Challenges in Mobile Health Applications

We have seen that a wide variety of contextual bandit algorithms and theoretical
frameworks to analyze them already exist in the literature. These ideas serve as
useful starting points for the design of online learning algorithms in mobile health.
However, to truly make an impact in mobile health, significant work needs to be
done to deal with challenges that arise in the mobile health setting. In this section,
we consider some of these challenges and explore ways to start addressing them.

Finding a Good Initial Policy

Good initialization of the learning process is very important. If the algorithm
chooses very bad actions in the beginning, it can have a negative impact on health
outcomes and user engagement. One possibility is to consult domain experts and
use an expert derived policy at the start. However, it might turn out to be difficult to
turn intuitive judgements of domain experts into a precisely stated policy. Moreover,
mobile health is a relatively new area and often domain experts lack sufficient
knowledge of what works and what does not when interventions are delivered
through mobile devices and wearables.
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We think that it is much better to proceed in an evidence-based manner and
initialize the policy using data previously gathered, say in a microrandomized trial
[48]. Data from a microrandomized trial can be used for a variety of purposes
including estimation of the value of a policy in question. If candidate policies can be
evaluated then a good one can be selected from a set of policies. Microrandomized
trials offer very high-quality data. But even less high quality data can be useful.
For example, if the policy that generated data in a mobile health study is exactly or
partially known then one can still form reasonable estimates of the value of a given
policy. The problem of using an existing batch of data gathered under one policy to
reason about the value of another policy is called the problem of “offline learning”
or “offline evaluation”. There is work in both the computer science [49–53], as well
as the statistics literature on this problem [54–57].

Interpretability of the Learned Policy

Progress in mobile health will occur when human-computer interface researchers,
machine learning researchers and statisticians work in close collaboration with
domain scientists such as behavioral scientists. On the one hand, we need guidance
from theories of behavior change to guide the development of mobile health
interventions. On the other hand, the policy learned using online learning algorithms
needs to be communicated back to behavioral scientists so that they can interpret
it in light of their theories or use it to change and refine existing theories. This
communication is facilitated by learning interpretable policies. Using policies
represented by large decision trees, deep neural networks or kernel methods may
not lend themselves easily to interpretation.

Lei [31] has explored the use of actor-critic methods from the reinforcement
learning literature in setting of contextual bandits. The critic part is responsible for
estimating the expected reward function and can use very flexible non-parametric
and non-linear regression methods. The actor part is responsible for generating a
policy using the estimates provided by the critic. Since only the policy needs to be
communicated to the domain scientist, we just need to keep the actor architecture
simple by choosing a low-dimensional interpretable policy parameterization.

Assessing Usefulness of Contextual Variables

Contextual variables in mobile health are often costly to acquire. If they are
passively sensed by the phone (e.g., GPS location) or a wearable (e.g., heartrate),
acquiring them drains the battery. If they are actively acquired by asking the user a
self-report question (e.g., about their mood), acquiring them incurs user burden.
Therefore, it is important to develop methods that enable researchers to decide
whether or not a contextual variable is useful for deciding which intervention to
deliver. For example, suppose we use the following interpretable parameterization
for a stochastic policy
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�.x/ D
exp.ˇ>x/

1C exp.ˇ>x/
:

Note that � maps the context to Œ0; 1� instead of f0; 1g and should be interpreted
as the probability to taking action 1. This is called the “Gibbs” or the “expit”
parameterization. If we simply output an estimate b̌ at the end of the learning
process, it is not very useful for assessing usefulness of variables. We need to
provide confidence intervals for these estimates. Then, we can see whether a 95%
confidence interval for, say, b̌

1, contains zero or not. This will provide researchers
with an evidence-based method to decide whether the first contextual variable in the
context x is useful or not. We have not seen many tools to enable such reasoning
in existing contextual bandit algorithms. An exception is the work of Lei [31]
mentioned above that does construct confidence intervals for the policy parameters
estimated using their actor-critic online learning algorithm.

Computational Considerations

Computation on mobile phones consumes resources. If we perform computations
on the phone we need to think about implementing the learning algorithms very
efficiently in order to not put an undue burden on the phone’s performance and
battery life. If we perform computations on the cloud, we need to minimize data
transfer between the phone and the cloud to save the phone’s resources. We also
need to take into account occasional failures, due to a bad network reception or
drained battery. These failures can cause the learning algorithm to not be able to
push fresh data to the cloud or pull the latest policy or action recommendation from
the cloud. There is little work on designing and proving guarantees about contextual
bandit algorithms that are resilient to such failures.

Another question that needs work is how to tradeoff the frequency of learning
with the noise level in the data. All algorithms presented above make an update
whenever an action is selected and a reward is observed. If the data is very noisy
then we might have the learning algorithm update its policy at larger time intervals
so as to acquire more information. What should be the time intervals at which our
learning algorithm updates the policy? To answer this question, one will have to
consider the computational complexity of the update as well the amount (governed
perhaps by a step size parameter) by which a single update changes the policy.

Robustness to Failure of Assumptions

Algorithms designed for the worst-case adversarial framework can perform sub-
optimally when data is actually generated stochastically. Algorithms that have
guarantees under stochastic assumptions can behave badly when the specific
stochastic assumptions underlying their analysis are not met. In mobile health,
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where the consequence of such non-robustness is worse health outcomes for people,
we need to pay serious attention to such issues. Three assumptions that make
repeated appearance in the theoretical analyses of contextual bandit algorithms
are independence, stationarity, and absence of the impact of actions on the user’s
future contexts. Any candidate online learning algorithm needs to be tested for
reasonable departures from these ideal assumptions in simulations before being
deployed in a real study with users. Existing algorithms need to be analyzed under
weaker assumptions, if possible. Otherwise, attempts should be made to quantify
the degradation in performance in non-ideal settings. New algorithms that are more
robust to failure of assumptions need to be designed and associated guarantees
provided.

Some contextual bandit algorithms enjoy regret guarantees only in expectation.
But an algorithm whose regret is small in expectation, but has high variance, can
have very serious consequences in mobile health. High variance in regret means
that occasionally, the algorithm performs very poorly and its regret is much larger
than the provided guarantee. The will translate into adverse health outcomes for
some people in the cohort being studied. High probability guarantees on the regret
are better than guarantees in expectation but they are simply the first step in the
direction of designing learning algorithms that better manage the risk of hurting
people’s health outcomes. There is some work on risk-aversion in multi-armed
bandit problems [58, 59]. It is possible that some of the techniques developed there
can be useful for contextual bandit learning algorithms too.

Costly to Acquire or Missing Contexts and Rewards

As noted above, contextual variables can be costly to acquire in a mobile health
setting. Even rewards can be costly to acquire especially if they cannot be passively
sensed and we have to rely on user self-reports. If a variable is indeed useful
for decision-making then choosing not to acquire it will lead to sub-optimal
decisions. Similarly, we cannot simply decide to not acquire the reward variable
because doing so will hamper the ability of the learning algorithm to learn from
observed rewards. The key is to acquire costly variables judiciously. We can
maintain predictions of such variables and acquire them only when uncertainty
about them increases beyond a threshold. If the costs associated with acquisition can
be quantified then it can be formally included in the definition of regret. Currently,
we do not have much guidance on how to deal with costly to acquire contexts
and rewards.

Another aspect not treated properly in the existing literature is missingness of
contextual variables and rewards. Maintaining predictions of variables that can be
potentially missing, of course, helps. However, missingness of self-reported data can
also indicate one or more of the following: high user stress, high user busyness and
low user engagement. Thus, missingness can itself be used as a contextual variable
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to use in decision-making. More research is needed to fully integrate support for
missing data in existing contextual bandit algorithms.
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Towards Health Recommendation Systems: An
Approach for Providing Automated Personalized
Health Feedback from Mobile Data

Mashfiqui Rabbi, Min Hane Aung, and Tanzeem Choudhury

Abstract Personal data acquisition using smartphones has become robust and
achievable in recent times: improvements in user interfaces have made manual
inputting more straightforward and intuitive, while advances in sensing technol-
ogy has made tracking more accurate and less obtrusive. Moreover, algorithmic
advances in data mining and machine learning has led to better a interpretation and
determination factors indicative of health conditions and outcomes. However, these
indicators are still under-utilized when providing feedback to the user or a health
worker. Mobile health systems that can exploit such indicators could potentially
deliver precision feedback personalized to the user’s condition and also lead to
increases in adherence and improve efficacy. In this book chapter, we will provide an
overview of the state of the art in mobile health feedback systems and then discuss
MyBehavior, an example of a feedback system that utilizes individual data streams
and indicators. MyBehavior is the first personalized system that provides health
beneficial recommendations based on physical activity and dietary data acquired
using smartphones. The system learns common healthy and unhealthy behaviors
from activity and dietary logs, and then prioritizes and suggests actions similar to
existing behaviors. Such prioritization is done to promote a sense of familiarity to
the suggestions and increase the likelihood of adoption. We also formulate a basis
framework for future systems similar to MyBehavior and discuss challenges with
regard to transference and adaptation.

Introduction

Modern smartphones are almost unanimously endowed with a multitude of sensors.
Data streams include inertial measures from accelerometers, geo-locations from
GPS signals, audiovisual data from the camera and microphone and even ambient
information from barometers and light sensors. Given this sensing capacity coupled
with well constructed signal processing and machine learning frameworks along
with the correct appropriation of application domain knowledge, smartphones
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can be used as monitoring devices which can infer a surprisingly wide range
of states and conditions of the user. It is easy to see how the more directly
measurable states such as mobility or momentary movement [40] or gait [39] can
be inferred, but research has extended to more complex states such as levels of
social interaction [8], emotional arousal [38, 56] and situational context [35, 55].
In addition to this, phenomena that can not be inferred using current sensors
alone e.g. complex physical actions, psychological experiences such as stress [2],
emotional valence [50] or dietary behavior [47] can be manually logged with
well designed interfaces that are both easy-to-use and deliver truthful quantities.
Moreover, research has also progressed to find state related patterns at larger time
scales. For example, Rabbi et al. [51] showed that the amount of physical activity
and face-to-face dyadic interaction determined from audio signals can characterize
active lifestyle and depressive symptoms in older adults. Similarly, Saeb et al. [59]
demonstrated that variations in mobility pattern and rhythm inferred from location
data can be indicative of depression. Wang et al. [66] showed information extracted
from sensor data and EMA reports correlate with physical activity, emotional state,
productivity and academic performance of students.

However, the utility of smartphones is not limited to sensing and behavioral
inferences. We know that mobile phones are habitually carried and are frequently
in close proximity, therefore they lend themselves as natural platforms to deliver
feedback; which can be potentially be more personalized and timely [20]. To this
end, several studies have explored the issuance of health related feedback using
smartphones. Generally, we can group these studies by their underlying strategy
for giving feedback in a threefold way. (1) Aggregation of data into summary
statistics: Ubifit [15] and BeWell [36] used the phone’s background wallpaper to
show overall physical activity, social interaction and sleep data. In principle, the
purpose of this type of feedback is to set goals and prime the user towards it [14].
(2) Data visualization: these systems rely on the users to visually explore the data
and self-reflect as a way to incite behavior change [11, 29]. (3) Direct explicit
recommendations: these systems can either be generally applicable or tailored to
specific subsections of a population based on demographics, culture or overall
lifestyle [33, 49]. However, it is noticeable that these strategies are blunt instruments
and do not make use of any in-depth analysis or interpretation of the acquired data.
Such approaches are likely to be sub-optimal in terms of timeliness, persuasiveness
and ultimately in efficacy.

That said, it is possible to go beyond these existing methods and generate
feedback that is based on deeper analyses. Mobile data in particular is rich in
idiosyncratic information. e.g., Fig. 1 contains several examples of a user’s behavior
found by analyzing movements. Figure 1a and b respectively show places where
a user stayed stationary and a location where the user most frequently walked,
while Fig. 1c shows similar walking behaviors from a different user. An intelligent
agent can make use of these patterns to generate more personalized feedback.
For example, the system may suggest an activity goal but within the context
of specific locations where the user regularly goes; this principle of contextual
personalization could be applied to other modalities. Figure 2c–e illustrates three
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Fig. 1 Visualization of a user’s movements over a week. (a) Heatmap showing the locations where
the user is stationary everyday. (b) Location traces of frequent walks for the user. (c) Location
traces of frequent walks for another user

Fig. 2 Three separate dietary behaviors. (a) Pizza eating behavior for a user. (b) Banana eating
behavior for the same user. (c–e) SMS communication pattern for 3 users. White nodes denote the
users and the black nodes denote the SMS receivers. The edge weights represents the percentages
of the user’s total SMSs directed to a receiver

respective networks of people that three users commonly communicate with by
SMS. This information could be used within feedback systems to suggest seeking
social support from specific people when the user is stressed. Another example is if
dietary habits are logged by the user by taking photographs such as in Fig. 2a,b.
Feedback could be issued that suggest the specific avoidance of pizzas and to
specifically encourage eating bananas instead. Such personalization would make
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feedback more compelling, since each user would naturally relate the contextual
details and as such a greater likelihood of adherence.

However, there are several computational challenges in creating an automated
system that can personalize suggestions. A degree of interpretative processing is
needed to transform the low level mobile data into more data that is contextually
more meaningful. First, the system must find recurring behavioral patterns that are
indicative of habits or preferences. This can be done by finding clusters or groups
that are similar. For example, k-means clustering was used to group locational
data where a user tends to stay stationary [5, 69]. For more complex data such
as the picture based food logging, deep models can achieve accurate and robust
classification [32, 42]. Once a user’s behavioral patterns is understood, feedback
can be generated that leverages the specific details within the data. However, the
generation of the said feedback is itself a learning process. This is because not all
feedback would necessarily be adhered to. This generates a further need to adapt
the feedback according to adherence; this can be viewed as a reinforcement learning
task, upon which models can be honed iteratively [64].

In this book chapter, we will discuss a pioneering example of one such system
that successfully addressed these requirements. To the best of our knowledge,
MyBehavior is the first mobile system that provides context-based personalized
recommendations by leveraging continuously collected data from a smartphone.
The system issues suggestions such as “you are sitting for 6 h near 123 Fourth
Ave. You can get 18 min of walk here if you take 3 min walking breaks every hour”.
We describe in detail how such suggestions are created and discuss findings on
the persuasiveness of MyBehavior’s feedback compared to generic non contextual
feedback. Then we detail examples of the extension of MyBehavior’s idea in order
to create suggestions for domains other than physical activity. We conclude with
a discussion on the success of MyBehavior and what that might entail for future
systems based on this system. In the next section we will formally describe the
general requirements that motivate the design choices for auto-personalizing health
recommendation systems.

Requirements for Personalizing Health Recommendations

In this section, we formally discuss the requirements for personalized health
recommendations. We constitute these requirements by drawing insights from
psychology theory and also from patterns observed in data, these insights underpin
the form of the generated recommendations.

Everybody Is Different Research in N-of-1 interventions [24, 57], personal (preci-
sion) medicine [22], and small data [19] demonstrate that every individual is unique
based on their age, culture, childhood development and life context. Therefore
personalized treatment or interventions catered to individual uniqueness should
out perform one-size-fits-all approaches. With the availability of large amounts of
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idiosyncratic mobile data, health recommender systems have the potential to deliver
truly N-of-1 treatments at scale.

Personalization Can Increase Adherence Modern recommender systems for
movies, music or web-content, personalize their suggestions by understanding
its users’ behaviors and preferences. Similarly for health recommender systems,
personalized suggestion should relate to a user’s life and behavior. Such correspon-
dence to existing behaviors ensure that users are familiar to the suggestions and
there is a lower barrier to entry. Indeed, behavior change models from psychology,
namely health belief model [26] and theory of planned behavior [4], corroborate
that such low-barriers can increase adherence to recommendations. In addition, if
the recommendations ask for small changes to existing behaviors, e.g., to take small
walks near home, then the suggestions would be perceived as easier or needing less
effort to follow. B.J. Fogg [21] argues that low-effort is as important as motivation
to make changes for a healthier lifestyle.

Intra-User Diversity in Behaviors In addition to individual variability, the diver-
sity of behaviors for each user can be substantial. For instance, we tracked one user’s
physical activity with location tags over a year. We differentiated the walks based
their shape, length and location. Over 100 different types of walking patterns or
behaviors were found in the data [52]. Furthermore, user behaviors can change. For
example, seasonal variations or significant life events can have a drastic impact to
lifestyle. Any feedback generation process should be capable of accounting for a
diverse range of behaviors as well being adaptive.

Human-Supervision Health recommendations from mobile data falls into the
category of proactive computing [65], where the recommendations come to the
user proactively. Proactive computing is different from the interactive computing
counter part, where user is actively involved in the information creation and sense-
making process. Human supervision is often required in proactive computing, since
machines or algorithms can not often capture all the complexities of human values
and motivations [48]. Since distinct individual choices and preferences are even
harder to predict proactively, human supervision is specially important in pro-
active personalization. Therefore, personalized health recommender systems require
some human supervision to better fine-tune the recommendations to individual
needs [10, 68].

MyBehavior: A Case Study

In this section, we will detail how the concepts and principles described above can
be operationalized algorithmically. MyBehavior is an Android based smartphone
app that can monitor mobility state: walking, stationary, running or in-vehicle
classified using tri-axial accelerometery, along with simultaneous geo-locations
taken from GPS data. This in turn is used to obtain behavioral information in terms
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of mobility and traveling in a contextualized way, see Fig. 1. This information is then
subsequently used to recommend actions that relate to the contextualized behaviors,
e.g., taking small walks in location where the user tends to be stationary. The system
also has the capacity to monitor which suggestions are actualized, and overtime can
recommend actions that have a high probability of being followed. Given this test,
the system is able to optimize towards the issuance of the most followed suggestions
by way of reinforcement learning. Within this learning process the capacity for
adaptive decision making is implemented using the explore-exploit principle using
Multi Armed Bandit (MAB) models. In the following, we will give a brief overview
of reinforcement learning and also discuss how MyBehavior’s suggestion generation
is modeled as a reinforcement learning problem.

A Brief Overview of Reinforcement Learning and Multi-Armed
Bandits

Reinforcement learning (RL) is a branch of machine learning that deals with
problems where an agent has to learn to act optimally in an environment by
interacting with that environment (Fig. 3a). The environment is modeled as a
collection of states X D fx1; x2; :::; xNg, and the agent can act from a set of available
actions A D fa1; a2; :::; aMg. Initially, optimal actions in specific environmental
states are unknown to the agent. Overtime the agent learns optimal action a�

i for
each state xi 2 X using a trial-and-error process by interacting with the environment.
This trial-and-error learning is often referred as policy learning. Typically the policy
learning is carried out as follows: at different states the agent tries out different
actions and receives a reward signal. Let at time t, the agent has taken an action aj

in state xi and receives a reward or feedback �tC1.xi; aj/. The best action a�
i at state

xi is the action that results in most total expected reward in the long term. Policy
learning in RL-problems is most studied for the model called Markov decision
process (MDP). MDPs have been studied at length for the past few decades, and
have been applied to real world problems of autonomous driving [30], adaptive
clinical trials [45] and game playing [43].

However, for many real world problems the determination of all relevant states
is a complicated problem. This in turn can make policy learning difficult. There
is substantial literature in RL devoted to approximation techniques to policy
learning [64]. Despite these solutions, a sufficient amount of data is still needed
to find optimal state and action pairs. But for some applications, where there is only
a single user’s data, a sufficient amount of data is hard to acquire. However, the
problem can sometimes be simplified with an assumption that the world has one
state, and the task is to learn actions that entail the higher immediate rewards. This
RL setting is commonly referred to as the classic Multi-armed bandit (MAB) [58].
A commonly used description for MABs is the gambler analogy; consider a gambler
facing a row of slot machines. Pulling each machine means taking an action from
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Fig. 3 (a) Operations of a canonical reinforcement learning agent. (b) Operations of MyBehavior
using a MAB

a set of available actions A D fa1; a2; :::; aKg, with unknown reward distributions
f�1; �2; :::; �Kg (with respective means f
1; 
2; :::; 
Kg). The gambler has to pull
the arms of n slot machines in a sequence over time with repetition permitted. After
each pull the gambler receives reward which is randomly sampled from the reward
distribution of the pulled slot machine. Stated this way, if the gambler’s goal is to
maximize total long-term reward then the decision to try new machines (explore)
to stick with a known machine (exploit) is straightforward. Clearly the long term
reward would be maximized by pulling the arm whose mean payoff is the highest.
Finding this arm however, requires some exploration - each arm pull provides
incremental information about the payoff distribution for that particular arm. Several
strategies have been proposed to efficiently optimize the exploit or explore decision
process so that total end reward is maximized [9]. These strategies addressed both
the stochastic case where the underlying reward distribution for f�1; �2; :::; �Kg is
fixed, and the adversarial case where the reward distribution can change. Finally,
similar to MDP, MAB has been well-studied before, and MABs have been used in
online advertising [31], news recommendations [37] and information retrieval [68].
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Personalized Physical Activity Recommendation as a
Multi-Armed Bandit

We can model the generation of personalized physical activity suggestion as a Multi-
Armed Bandit problem (MAB) (Fig. 3b). The use of MABs does not require the
exhaustive determination of model states. Quantifying states is a hard problem for
this application with an large number of potential factors (e.g. weather, physical
condition, stress) that could be included in the determination of state, thus would
need a large amount of data to learn effective actions/suggestions for the different
values of the states. In the following, we describe how the suggestion generation
is setup as a MAB. We will first discuss how we construct the actions for MAB.
Then we focus on selecting the optimal actions or suggestions using MABs that
also ensure sustained satisfactory health outcome over a long term.

Constructing the Actions for MAB

Taking an action in the MyBehavior MAB is equivalent to making a suggestion.
e.g., an action can be a suggestion to take small walks near the office. However,
MyBehavior also personalizes the suggestion to existing user behaviors. Therefore,
an action not only suggests what to do, but also it specifically tells which existing
user behaviors relate to the suggestions. e.g., MyBehavior will not just suggest
“Continue or increase your existing behaviors”, but it will also find where a user’s
existing walking behaviors happen and tell the user specifically to walk at those
locations. In order to achieve such personalization, user behaviors must be extracted
in a principled way. This can be done by grouping similar activities by way of
unsupervised clustering. Recall this system continuously monitors a user’s mobility
state namely stationary, walking, running, and driving, along with his/her geo-
locations. Other type of exercise can be manually added with a few clicks.

The clustering of behaviors work as follows. Manually logged exercises are
grouped by type. For instance, yoga or other types of gym workout would be
clustered together. For “stationary” activities, we use the GPS distance between
the two stationary entries, and if the distance falls within 150 meters of each
other then we put the two points in the same cluster. We choose 150 meters, since
stationary locations are often indoors, and indoor locations can have error margins
up to 150 meters. Intuitively under this clustering scheme, all stationary locations
near an office would fall under the same cluster. Figure 1a shows two stationary
behaviors of a user: one of which corresponds to sitting behaviors in home and
another corresponds to office.

Walking and running activities are not as straightforward to cluster as stationary
events, because they constitute trajectories of location points. To this end, we have
to determine similarity between two trajectories. We repurpose a distance metric
from handwriting recognition literature called Fréchet distance [63]. A common
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Fig. 4 (a) Two paths assigned to the same cluster by the Fréchet distance clustering; (b) Two paths
not assigned to the same cluster by the Fréchet distance clustering. (c) A real-world walking cluster
constructed by Fréchet distance clustering

analogy to explain the Fréchet distance is as follows: consider a dog owner taking
her dog for a walk. Although the owner and the dog take the same path, each
can choose their own trajectory. Given the trajectory of the owner and the dog,
Fréchet distance computes the minimum length of the leash required to support
these trajectories. i.e., if the two trajectories are very similar then Fréchet distance
would be low. Agglomerative hierarchical clustering is used to find a threshold for
Fréchet distance, and any two trajectories that has a Fréchet distance below the
threshold are put into the same cluster. Figure 4a,b shows two real-world examples
of walk instances, where each of the figures contain two trajectories of walks. For
the Fig. 4a, the two walks are similar and the Fréchet distance is below the threshold;
these two walks are grouped in the same cluster. For the Fig. 4b, the two walks are
not similar and Fréchet distance is also high. Therefore the walks in Fig. 4b are not
grouped in the same cluster. Figure 4c shows an example walking cluster from a
user, which is constructed using Fréchet distance based clustering.

Once the behaviors have been tracked and clustered, the resultant suggestions
(or actions) should appear to be very similar to these tracked but for some small
differences. For stationary behaviors, the suggestions would be to make small
changes by taking walking breaks for every hour sitting. e.g., one suggestion can
be “you are staying 7 h stationary in your office. Take 3 min of walking breaks to
get 21 min of walk in your office”. For non-stationary behaviors; namely walking,
running and exercise; the suggestions would be continue doing the physical activity.
e.g., a suggestion may say “you went to the gym 14 times last 40 days. Let us keep
up the good work”.
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Personalized Suggestions with MAB to Maximize Calorie Loss

The goal of the MAB in real terms is to learn effective suggestions or actions that
maximize the chances of calorie loss due to adhering to activity related suggestions.
In the following, we formulate how the MAB in MyBehavior accomplishes such
calorie loss maximization. We bring back some notations introduced earlier. Let us
denote A D fa1; a2; :::; aKg as the set of actions. Note, each action ai is a physical
activity suggestion that asks to change or continue an existing physical activity
behavior. At the start of a day t, a subset of these suggestions are given to the
user. Throughout the day, the user performs fx1.t/; x2.t/; x3.t/; :::; xTt.t/g activities in
chronological order. One of these activities, for instance, can be a walk from home
to office that the user takes.

At the end of each day, MyBehavior estimates the reward for the actions or
suggestions. In this case, the rewards are measured by how many of the suggested
activities are actually followed along with their respective calorie loss. If we denote
�tC1.ai/ as the reward for suggestion ai after day t then �tC1.ai/ is defined as follows,

�tC1.ai/ D

TtX

jD1

calorie.xj.t// � 1fxj.t/2aig (1)

where calorie.xj.t// denotes calories burnt by doing activity xj.t/. We estimate
whether xj.t/ means a suggestion ai has been followed by clustering xj.t/ using
the methods described earlier. In other words, we implicitly1 estimate whether a
suggestion has been followed. Defined as Eq. (1), the history of rewards or caloric
loss for an action or suggestion would give a good indication of future expected
reward. e.g., if “walk near office” is suggested and a user followed the suggestion
while loosing high calorie in the past then the MAB would bet the suggestion to
yield more calorie loss in future.

For stationary activities, we face a problem with the reward definition in Eq. (1):
stationary behaviors would get high reward, since sitting incurs some calorie loss
and people normally stay sitting for long durations. Therefore, if Eq. (1) is applied
then stationary sessions would always get high rewards and the MAB would suggest
the users to stay stationary. Intuitively a suggestion to stay stationary is not useful,
because it keeps users in their prior stationary lifestyle which MyBehavior intend
to change in the first place. As a result, it would make sense to suggest some
activity to break the stationary episodes. We suggest to break some of the stationary
episodes with small walks. We do so by formulating a modified reward function for
stationary behaviors: we suggest users to take 3 min of walking breaks for every
hour stationary. e.g., if a user regularly stays 6 h stationary in the office per day

1There is an existing literature in information retrieval and ranking on implicit feedback [10, 48].
The counter part is explicit feedback where the user says which suggestions are more applicable.
We explore explicit feedback later where we combine explicit and implicit feedback.
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then we suggest the user to take 3 min walking breaks per hour in office. Given
this intuition, we set up the payoff function �tC1.ai/ for stationary suggestion ai as
follows:

�tC1.xi/ D
3

60
� c �

TtX

jD1

minutes.xj.t// � 1fxj.t/2aig (2)

here c is a constant multiplier and gives calorie loss when it is multiplied with
minutes of walking. A simple formulation of c can be the multiplication of a
user’s body weight in kilograms and metabolic equivalent of walk [3, 25]. minutes
represent number of minutes user spent performing the stationary activity xj.t/. Now
if user spends 6 h stationary at office on day t then reward function in Eq. (2)
represents the amount of calorie the user can burn by taking 3 min walk breaks
for every hour stationary (i.e., calorie equivalent of 3 � 6 D 18 min of walk).
Finally, note the payoff in Eq. (2) is not equivalent to the traditional reinforcement
learning where the payoff is the reward for taking the action. i.e., in this case, if
the user follows the suggestion to take small walking breaks then the suggestion
itself is not getting a reward like walking or manually logged exercises in Eq. (1).
The suggestion is added to the MAB algorithm to ensure that users who are very
stationary would continue to receive something to remedy their sedentary times.

With the definitions of rewards in Eqs. (1) and (2), we create recommendations
under the MAB framework. Initially, MyBehavior has little information to reliably
estimate user behavior. Therefore, MyBehavior MAB explores for the first 7 days.
After 7 days, the MAB uses the EXP3 strategy to generate suggestions at the
start of each day. We point Bubeck and Cesa-Bianchi [9] for details on the EXP3
strategy. But, in short, EXP3 uses an exploit-explore strategy where most rewarding
suggestions from the past are suggested most of the time with some random
suggestions as exploration. In MyBehavior, we exploit 90% of the time, and issue
10 suggestions at the start of the day. i.e., on the average one of the 10 suggestion
is a randomly selected suggestion due to exploration. In addition to exploit-explore,
EXP3 considers the MAB as an adversarial problem. i.e., if there are changes in
underlying reward distribution then EXP3 would adjust to the new distribution. For
physical activity, the underlying reward distribution can change due to changes in
the users’ lives. Some behaviors from the past may not happen again soon, e.g.,
seasonal variations, or users may start doing new behaviors that they did not do in
the past.

Figure 5 shows different suggestions generated or actions taken by MyBehavior.
As seen in the screenshots, semantically meaningful messages are added with
all suggestions to make them understandable and actionable. MyBehavior uses
three distinct predefined templates; one each for walking, exercise and stationary
behaviors. For walking or exercise, MyBehavior asks to continue or increase
the behavior. For stationary episodes, MyBehavior recommends to make small
changes by taking walking breaks. Several texts are added below the suggestions
to explain specifics about the suggestions and why the suggestions are shown. Such
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Fig. 5 MyBehavior app screenshots. (a) A set of activity suggestions for a user. (b) A set of
suggestions at a different time for the same user. (c) A set of activity suggestions for a different
user

explanation also increases user trust on why the suggestions are issued. Finally, for
suggestions generated during exploration phase, we add some extra text that asks
the user to try out something they do not often do.

All MyBehavior suggestions can change overtime and they are different for
different users. Figure 5a and b are physical activity suggestions from the same
user on different days. Figure 5c shows suggestions generated for a different user
demonstrating the personalization capability of MyBehavior.

Before concluding this subsection, we make a final remark regarding the MAB
formulation. The suggestion generated by the MAB are low-effort and easy-to-
follow. This is because, the suggestions are located inside the environments where
the users already live in [21]. As a result, there is a less-barrier to entry to the
suggestions [4]. Furthermore, the reward function in Eq. (1) would get a reward
if the suggestion is followed and get nothing or zero reward if the suggestion
is not followed. Therefore the MAB would prioritize suggestions that have been
followed many times before, and MAB would ask for the repeat of following
the suggestion again. In other words, by definition of the reward function, the
MAB of MyBehavior would encourage more and more repetitions of suggestions
that were frequently followed before. Such repetitions are in fact welcome for
behavior change. According several psychology theories, people acquire skills or
self-efficacy through repetitions, which makes following the suggestion easier to
follow in future [7]. Imagine that going to the gym 100th time is way easier than
going to the gym 5th time. In summary, the MAB ranks low-effort or easy-to-do
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suggestions higher, and several behavior theories from psychology contend low-
effort to be effective for persuasion and behavior change [4, 7, 21, 26, 34].

Incorporating Human Inputs

The MAB setup introduced in the earlier prioritizes low-effort and high calorie
burning suggestions that its user has followed many times in the past. However
health behavior change literature also suggest [21] that people may do high effort
actions if they are sufficiently motivated. e.g., people are often more motivated to
go to gym even though it is hard. MyBehavior includes provisions to include such
user preference, by giving them control on choosing what suggestions they prefer.
MyBehavior users can incorporate their preference in three different ways as shown
in Fig. 6: (1) swipe out to dismiss a suggestion to be irrelevant like Fig. 6a and the
suggestion is never considered again; (2) up vote a suggestion above as shown in
Fig. 6b; (3) down vote a suggestion below as Fig. 6c.

Once a user finishes removing and reordering the suggestions, there is a new
ordering of the suggestions that reflects the user’s preference. From now onwards,
we denote user preference and MAB preference for suggestion a as p.a/ and �.a/
respectively. Note a higher p.a/ value means user prefers that suggestion a more and
are motivated to following a. On the other hand, �.a/, which has been discussed

Fig. 6 Keeping human in the loop. (a) Dismissing a suggestion by removal. (b) Moving a
suggestion above. (c) Moving a suggestions below
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in detail in the earlier section, represents the low effort required to follow the
suggestion and associated caloric benefit. According to the behavior Model of B.J.
Fogg [21], an actionable suggestion can be either low effort to implement or users
are motivated to follow or both. Therefore the final ranking should prioritize both
�.a/ and p.a/ simultaneously to ensure the top suggestions are most actionable.
Now �.a/ and p.a/ can go in the same direction (e.g., MAB suggests reducing
stationary behavior in the office and user also prefers that suggestion) or in the
opposite direction (e.g, user hardly goes to the gym and the value of �.a/ is low but
user prefers to go to the gym). One way to resolve these issues is to use the standard
pareto frontier algorithm to create the final list of recommendations.

Pareto-frontier (PF) algorithm is a strategy for making decisions when there
are multiple objectives. Specifically, let for some input domain x 2 X we have
objective functions f1.x/; f2.x/; :::; fn.x/ that we have to maximize simultaneously.
Now according to PF algorithm, x1 2 X maximizes these objective functions more
than x2 2 X (also referred as x1 pareto-dominates x2) if

1. fi.x1/ � fi.x2/ for all i D 1; :::n
2. fj.x1/ > fj.x2/ for at least one j D 1; :::n

For MyBehavior, pareto-frontier works as follows. A suggestion ai is always
better (or pareto dominating) than aj whenever one of the following is true: (i) ai

has higher user preference than aj and ai’s MAB ranking is not lower than aj (i.e.,
p.ai/ > p.aj/ and �.ai/ � �.aj/), (ii) ai has higher MAB ranking than aj and ai’s
user preference is not lower than aj (i.e., p.ai/ � p.aj/ and �.ai/ > �.aj/). If ai and
aj can not pareto dominate each other then we can not distinguish between ai and
aj on which one is better. From now onwards, we would denote ai � aj if ai pareto
dominate aj. If ai and aj can not pareto dominate each other then we denote that by
aj � ai. Given this definition, a suggestion ai receives a higher rank than aj when
ai � aj and receives the same rank when aj � ai. Therefore the algorithm finds a
balance and optimize both MAB ranking � and user preference p.

An example of the pareto-frontier algorithm can be the following. Let us assume
that there are three suggestions for a user: walking near the office, walking near the
home, and going to gym. The user frequently walks near the office and prefers doing
so. User also has a high preference for going to the gym, but is not good at gym work
and goes to gym infrequently. In addition, the user frequently walks near her house
but is not keen on this activity. In this scenario, pareto-frontier would suggest that
walking near the office is the most actionable, since both user motivation is high and
effort required is low. However, choosing between walking near home and going to
gym would be a tie since one is easier to do while the other is more preferred.

In the above, we ignored a small detail regarding user preference or p values.
We have assumed that we know the value of p.a/ for all the suggestions. However
preference values are not known for suggestions that are generated after a user
explicitly changed the preference values, e.g., the new suggestions. For suggestions
with unknown p.a/, we use the notion of fair policy. In fair policy, any suggestion
ai with unknown p.ai/ is not pareto dominated by another suggestion aj if
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�.ai/ > �.aj/. In other words, fair strategy ensures that a suggestion with unknown
preference do not get pareto-dominated by another suggestion which is ranked as
harder-to-follow and has yielded lower calorie in the past by the MAB.

Evaluation

We evaluated MyBehavior’s physical activity suggestions within a 14 week study
with 16 participants. The adherence to the system generated suggestions was
compered to generic suggestions prescribed by a health expert. These health-expert
generated suggestions include “walk for 30 minutes” and “eat fish for dinner”.
Details of the results can be found in [52]. However here we report a summary of the
findings here. In a daily survey questionnaire, we asked participants to rate how the
suggestions relate to their life in a likert scale between 1-7 (1-do not relate, 7-relates
perfectly). We found that users rated MyBehavior suggestions .
 D 4:5; 	 D 1:2/
to be more related to their life compared to the non-personalized counter part
.
 D 3:8; 	 D 1:1/, which is also statistically significant .p < 0:05; d D 0:58/. Fur-
thermore, in a comparison to the non-personalized control condition, MyBehavior
users walked 10 min more (p < 0:05). In addition to walking, they also lost a
further 42 calories in other physical exercises (p < 0:05).2 Therefore MyBehavior
outperformed non-personalized suggestions from health coaches in early evaluation
trials. Longer studies with large number of participants are required to validate these
results.

Other Examples of Personalized Health Recommendation

In the earlier section we described how MyBehavior provides actionable and
persuasive physical activity suggestions to maximize calorie loss. In this section,
we will briefly describe how two further applications to demonstrate different ways
in which MyBehavior can be re-purposed to serve other requirements. (1) The
encouragement of better diet which uses a different data acquisition modality but
the same underlying function and (2) chronic pain management where we discuss
how the same activity data stream is used but with an adjusted reward function for
a different goal.

2Other physical exercises include activities like running, yoga, exercise etc. and exclude calories
lost in sedentary activities.
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Personalized Recommendation for Healthier Dietary Habits

Smartphones are increasingly being used as diaries to log diet. They are sometimes
augmented with crowd-sourcing approaches to increase journaling adherence [47,
54]. Using the entries within a food diary as tracked data, we can generate
personalized food suggestions using the MyBehavior framework. The process
can be implemented as follows: similar to the determination of frequent activity
(as above), we need to find the user’s eating patterns, i.e. a method to classify
and cluster similar food types. If food ingredients tags are available [54] then
this information can be utilized. We can group foods into the same category if
they have matching tag. Such tag matching can be done with metrics like cosine
similarity [41]. Figure 7a–c shows three dietary behaviors mined for different users
using cosine similarity based tag matching. Another way to categorize foods can
be to use photographs of the food item. Advances in image interpretation such
as deep learning models are becoming increasingly robust at object classification
within images [32]. Recently these methods have even addressed to food ingredient
recognition from images [42, 67].

Once items have been categorized, the task of personalized recommendation is
similar to section “MyBehavior: A Case Study”. Each suggestion or action for MAB
relates to a dietary behavior. Each day, MAB takes a set of action that suggest from
existing eating behaviors. Specifically, the reward function follows Eq. (3):

�tC1.ai/ D

TtX

jD1

calorie.xj.t// � 1fxj.t/2aig (3)

where xj.t/ is the j-th meal on day t. i.e., a reward is earned for an action if a food
is consumed that is same as the action. However, a caveat in reward formulation as

Fig. 7 Three separate dietary behaviors. (a) Pizza eating behavior for a user. (b) Banana eating
behavior for the same user. (c) Bagel eating behavior for the another user. (d) Food suggestions
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Eq. (3) is both unhealthy and healthy eating behaviors will be rewarded. In fact,
unhealthy behaviors would receive more rewards because they are high calorie.
Now, if a user has frequent behaviors of eating unhealthy then a top action of MAB
would be to suggest a unhealthy food. We remedy such scenarios by dividing the
action into two groups: “avoid” actions and “continue” actions, where avoid and
continue actions pertain to unhealthy and healthy foods respectively. If a user eats
unhealthy then the corresponding avoid action ai receives a reward/reinforcement
and corresponding “Avoid ai” message receives more consideration. On the other
hand, if a user eats healthy then the corresponding “continue” action aj receives a
reward and corresponding “Continue aj” message receives more priority. Figure 7d
shows a set of food suggestions that are generated using this technique.

Personalized Exercise Recommendation for Chronic Back Pain

One major barrier to effective rehabilitation for people with chronic pain is adher-
ence to therapy. Globally lower-back pain is particularly prevalent [60]. The benefits
of regular and sustained exercise is well known for the reduction and management
chronic back pain (CBP). However, within CBP populations one of the main clinical
challenges is a lack of adherence to this regular exercise. This lack of motivation
stems from negative psychological associations between movement and pain [18].
Therefore personalized low-effort activity suggestions could hypothetically be more
persuasive than generically prescribed therapies [21].

However, in this case the goal is not the maximization of activity (to maximize
calorie loss) but rather the sustainment of regular activity with incremental daily
increases if necessary. The encouragement of more activity time is desirable which
ought not to be high effort or difficult. Therefore we attribute higher rewards to
suggestions with longer durations which are also low effort. To this end, we modify
the reward function from (1) as follows:

�tC1.ai/ D
1

effort.ai/

TtX

jD1

minutes.xj.t// � 1Œxj.t/2ai� (4)

We base the perceived effort level needed to perform a suggestion on the
following. First the frequency of actualization, if followed frequently then it can
be perceived as easy [7], there is also its inherent difficulty level (e.g., running is
more difficult than walking). This can be quantified by using a standard index like
YPAS [16].

The further modification that is needed is to apply a constraint to the reward.
This is because the overall aim is not to encourage the user to do as much activity
as possible (such as in calorie loss) but to regularly adhere to a sustained level of
exercise with small increments. Algorithmically this translates to the standard Multi-
armed bandit (MAB) with a constrained maximization problem. Such constrained
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maximization bandits are often called the “Bandit with Knapsack” problem [6]. As
such, we can apply the method in [6] to create more suitable suggestions for CBP
patients.

Discussion and Future Work

In this concluding section, we will discuss the lessons learned during the develop-
ment of MyBehavior and it’s related systems. Moreover, we distill key points that
would benefit researchers and developers interested in re-purposing this framework
for future systems.

A Framework for Personalizing Health Recommendation from
Mobile Data

In sections “MyBehavior: A Case Study” and “Other Examples of Personalized
Health Recommendation”, we discussed three examples of personalizing recom-
mendation from mobile data. In each case, there are two common procedural steps
needed for the conversion of raw data into personalized recommendations. The first
step is to convert the raw tracked data into meaningful behavioral patterns. Second
step is to create recommendations that are based on these behaviors. We believe
this two step procedure raw-data to behavior to recommendation is a generalizable
scheme that future systems can follow.

However, computational demand and algorithmic complexity needed for these
two steps are different for each application. For instance, in the applications related
to activity, k-means and Fréchet distance clustering (section “Constructing the
Actions for MAB”) were used for the first step. Whereas with the food application
object recognition with deep learning or cosine similarity (section “Personalized
Recommendation for Healthier Dietary Habits”) was used. For other applications,
such as detecting socialization patterns from audio data, we would need human
voice detection and speaker identification [12]. The second step of behavior to
recommendation is also problem dependent. We have already seen that the reward
function is different for weight loss versus a pain therapy scenario even though they
both intend to promote physical activity. Furthermore, the recommendations may
not directly target a health outcome, and instead target a sub-outcome that leads
to the desire health outcome [44, 46]. For instance, MyBehavior intends to promote
weight loss, which is a complex process and can involve more than caloric reduction.
But calorie reduction is one of the means to reduce weight loss, which MyBehavior
targets. Similarly, physically active lifestyle is one of the components of managing
chronic pain that section “Personalized Exercise Recommendation for Chronic Back
Pain” desired to accomplish [23].
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Finally, there are usability and system building challenges to personalizing health
recommendations. For instance, MyBehavior in section “MyBehavior: A Case
Study” underwent several iterations of pilot studies and re-designs in order to be
a usable application that can be used on a daily basis [52, 55]. On a similar note,
the interface for CBP patients must take into account factors such as using positive
images with softer colors and edges as to avoid any potential visual associations
to pain [27]. From a systems perspective, modular and extendible architectures
are highly beneficial, many processes or derived data can be reused for other
recommendations; e.g., physical activity clusters are needed for both the pain and
weight loss applications. To this end, we have developed an extendible architecture
that is open source and can be used to build systems that use the MyBehavior
framework [53].

Open Problems for Future Work

Individualized and Generalized Model All the systems described in this chapter
used data from one person to construct the recommendations. A potential benefit
of only using a single person’s data is that the recommendations will be uniquely
relevant which can make them more effective (section “Requirements for Personal-
izing Health Recommendations”). However, there are factors that are more generally
influential; bad weather for example could hamper physical activity across large
populations. Also, if data from other people can be leveraged, then cold-starts can
be avoided potentially leading to shorter periods needed to convergence to optimal
suggestions [61]. In future research, the balance between individual and generalized
model can be studied.

Behavioral vs Local-Social Influence MyBehavior is currently based on lever-
aging a user’s own behavior. However, people by nature are not solitary and are
influenced by social contexts [17]. Therefore behavioral changes can be influenced
by the interactions of other people. For instance, the food recommendation in
section “Personalized Recommendation for Healthier Dietary Habits” could be aug-
mented by foods that nearby friends are consuming. Such local-social information
can increase likelihood of adherence. Systems could leverage which food items are
more easily accessible if local information is known [21] or a user may be more
influenced by food items present in a current social group [13]. Computationally
the inclusion of local-social factors mean that we are moving from a single agent
to a multi-agent problem. There is already extensive literature on multi-agent
systems and game theory, which could be utilized to build intelligent local-social
recommender system [62].

Problem Domains with Rewards that Are Hard to Quantify The personaliza-
tion scenarios in this book chapter had well-defined rewards for actions. But for
several problem domains, the rewards can be harder to quantify. Let us consider
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personalized sleep recommendation as an example. Coffee drinking, stress level,
late-night exercises and early morning sun light exposure can influence sleep
quality [1, 11]. If “less coffee drinking” and “avoiding late-night exercise” are
suggested then the question is what are the rewards or loss if the suggestions
are followed or not-followed. This leads to a non-trivial problem because explicit
numerical functions that relate these factors to sleep quality are unknown. With
our initial application we could estimate the calorific content of food items or
energy expenditure from certain activities. Future research will need to examine
how recommendations can be constructed for scenarios where there are no suitable
pre-existing reward function [28].

Conclusion

Health data acquisition using smartphones is becoming more commonplace with
myriad of health apps. In addition, hardware manufacturers, such as Apple and
Google, now support efficient sensing and processing at the hardware level, which
is making data collection even more achievable. However, these improvements
in measurements or acquisition did not match with health feedback application
that utilizes the finer details in the data. In this chapter, we presented an in-depth
case study of MyBehavior, which is the first attempt to bridge the gap between
mobile data and health recommendation with a deeper analysis of data. MyBehavior
provides specific personalized health recommendation from physical activity data,
using off-the-shelf reinforcement learning techniques. MyBehavior has also shown
to promote higher level of physical activity than generic suggestions from health
coaches. We have also presented several extensions to the MyBehavior idea in
domains of food and chronic back pain. Several takeaways for future MyBehavior
alike systems, along with open questions for future explorations, are also discussed.
We believe this is just the start, and we envision MyBehavior like systems would
be more common as we move into a future, where large amount personal data are
available through mobile sensors, health apps, phone usage traces, and wearables.
Similar automated technologies for personalized recommendations, namely netflix
for movies or google for web search, have already revolutionized the way we
consume entertainment and information. MyBehavior and alike technologies can
do the same, and can provide personalized health recommendations automatically
at scale.
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