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Abstract This paper discusses mathematical task design in a collaborative envi-

ronment (the ACODESA teaching method), where activities with both paper and

pencil and technology play a central role in learning mathematics. The use of

problem situations under a sociocultural framework in the mathematics classroom

requires careful mathematical task design to develop mathematical abilities in the

classroom, promote diversified thinking, and achieve balance between pencil and

paper and technological activities within an activity theory framework. While the

task design approach examined in this paper is general, it is exemplified through

mathematics teaching tasks appropriate for secondary school entry level.

Keywords Task design • Paper and pencil • Technology • ACODESA • Socio-

cognitive conflict

Introduction

The literature on mathematics education regarding problem solving is evolving. As

mentioned in chapter “Integrating arithmetic and algebra in a collaborative learning

and computational environment using ACODESA”, Brownell (1942) makes dis-

tinctions among the concepts of exercise, problem and puzzle, thus focusing on

issues related to primary school level. This led to a new trend linked to the solving

of arithmetic word problems and gave birth to, among others, the current problem

solving approach. Thus, a new paradigm linked to problem solving emerged, where

the distinction between exercise and problem was, and is, preponderant. However,
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this distinction is not so simple, in that, depending on the problem, either conver-

gent thinking (using closed type problems) or divergent thinking (problems with

multiple solutions or open problems) could be generated. The latter approach can be

related to the Theory of Didactic Situations (TDS) (Brousseau 1997) and even the

emergence of the notion of the epistemological obstacle (Brousseau 1983). The

design of mathematical tasks under this paradigm took a unique approach. How to

detect an epistemological obstacle in pupils’ activity? How to encourage pupils to

overcome a certain kind of epistemological obstacle? What kind of activity is

needed to promote the overcoming of such an obstacle?

Gradually, design problems became more and more important in research on

mathematics education. For example, in his notion of conceptual field, Vergnaud

(1990) notes that a concept is developed through a set of problems, a set of

operators, and a system of signs. Thus, the type of problems that are proposed in

the classroom will determine to some extent the mathematical concept pupils are

constructing. In the mid 1980s (as seen in Mason et al. 1982; Schoenfeld 1985) the

trend for problem solving took on great force, with, for example, research on

problem solving (see Kilpatrick 1985) generating such curriculums as Standards
in the USA (NCTM 2000). According to Kilpatrik (ibid.), “A problem is generally

defined as a situation in which a goal is to be attained and a direct route to the goal is

blocked” (p. 2).

A different approach to the foregoing is promoted by the Freudenthal School,

which promoted the resolution of problems in context, where, under this approach,

the study of mathematical modelling process is essential in a strand known as

“Realistic mathematics.” Gravemeijer and Doorman (1999) describe the character-

istics of the current Freudenthal School. Realistic mathematics is likely to have

strongly influenced the notion of problem situation, in which the solution is not

necessarily unique. Indeed, realistic mathematics promoted other kinds of curricula

linked more closely to the notion of problem situation. The ensuing discussion leads

to the question as to whether an exercise, a problem and a problem situation are.

Exercise, Problem or Problem Situation

Advances in mathematics education brought about the need to carefully identify the

definition of an exercise, a problem or problem situation. A definition depends on

the theoretical framework that has been selected. Given the interest here in defini-

tions linked to mathematics learning environments when using both paper and

pencil and technology, this paper seeks to associate these definitions with the

notions of non-institutional and institutional representation in order to then link

this to Leontiev (1978) and Engestr€om’s (1999) activity theory.

Exercise If reading a mathematical statement immediately suggests a procedure to

follow, it can be said that the task is an exercise.
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Problem If reading a mathematical statement does not induce the reader to imme-

diately think of a procedure to follow, and requires them to transform the statement

and/or use institutional representations and/or produce non-institutional represen-

tations to understand and make progress in the proposed task, it can be said that it is

a problem.

Problem Situation If the reading of a mathematical statement as in the case of a

problem, neither provides a procedure to follow, but in this case, a model must be

built (possibly not unique), needed to interpret the phenomenon linked to the

statement, then it can be said that this is a problem situation.

This distinction enables the identification of the differences among mathemat-

ical tasks that should be considered when designing an activity for the mathematics

classroom. The followers of problem solving were more interested in the resolution

of problems, as defined above. A different perspective was provided by Lesh and

Doerr (2003), Blum et al. (2007), and Lesh and Zawojewski (2007), among others,

which dealt with problem solving and modelling, and presented an approached to

realistic mathematics and what is meant by the term problem situation.

Indeed, from the perspective of this study, the three types of tasks mentioned

above are required for the organisation of mathematical activities in the classroom.

The difficulty arises in the organisation of those types of tasks that is needed in

order to follow a fixed syllabus. A possible way to overcome this problem may be

for the teacher to use the proposition outlined in Simon (1995) and Simon and Tzur

(2004) as related to a Hypothetical Trajectory of Learning, which is discussed in the

subsequent sections.

One of the first problems to overcome is the fact that the expert (in this case the

mathematics teacher) has already constructed different types of thinking (arith-

metic, algebraic, geometric) that allow her/him to transform their representations

effectively. The beginner (the pupil) has not necessarily built these official repre-

sentations, and, even if they have, the difficulty arises when they are required to

handle them efficiently (as a competence). Generally, learning theories based on the

concept of representation focus on the efficient use of institutional representations

in the construction of knowledge (as is the case, for example, in Duval’s 1995 work
which focuses on the notion of register). In the context of our approach, non-

institutional and institutional representations are of great importance to the con-

struction of knowledge; also a collaborative learning process is of great significance

in a socio-cultural environment, to the refinement of the evolution of the

non-institutional representations in which they are promoted to the level of formal

representation.

Institutional Representation Representation found in textbooks, websites, software

use, or those used by mathematics teachers.

Non-institutional Representation Representation that emerges spontaneously dur-

ing the resolution of a non-routine mathematical task as a result of a functional

representation that has been generated by the action of understanding or solving

a task.
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Functional and Spontaneous Representation A functional representation is a men-

tal representation linked to an activity. From reading the statement of the task, a

need and purpose emerge, which, in terms of Leontiev (1978), mediate the activity

undertaken by the individual as a whole. A mental representation is constructed and

linked to other concepts, providing the spontaneous representation as a product.

The manipulation of objects or artefacts mediates the generation of mental pro-

cesses which become increasingly complex, as do their external productions.

Leontiev’s work (1978) on activity theory is immersed in a sociocultural per-

spective on learning. Leontiev was interested in the subject and object relationship,

while it is in the work of Engestr€om (1999) where the variable community was

explained in the model (see the next section related to ACODESA1).

Socio-cognitive Conflict In the past, many researchers, such as Piaget, Inhelder,

Brunner and others, were interested in the notion of cognitive conflict. In Bruner’s
theoretical framework (1966), cognitive conflict occurred when the individual was

aware of a mismatch between the enactive, iconic or symbolic representation

related to the activity. This study takes Varela et al. (1991) definition of enactive:

Cognition is not the representation of a pregiven world by a pregiven mind but is rather the

enactment of a world and a mind on the basis of a history of the variety of actions that a

being in the world performs (p. 9)

In the context of this study, the term iconic could refer to a drawing related to the

situation, or a symbol as an institutional representation, with the teacher (expert)

easily noticing mismatches between different modes of representation. However,

this study is interested in the processes of communication pupils use to point out a

mismatch between the spontaneous representations they produce, thus creating a

socio-cognitive conflict.

Method of Teaching ACODESA (Collaborative Learning,
Scientific-Debate, Self-Reflection)

Looking within a sociocultural framework, in order to organise mathematical work

in the classroom and create a form of socio-mathematical norms, it is important to

follow a specific educational model. This study is interested in individual work

immersed in a collaborative learning structure for the consolidation of knowledge.

Our experience has shown us that these aims are not easy to achieve in the

mathematics classroom. Thus, the authors designed a teaching model known as

ACODESA which is related to an approach involving collaborative learning,

scientific debate and self-reflection (see Hitt 2007, 2013; Hitt and Gonzalez-Martin

1Acronym which comes from the French abbreviation of Apprentissage collaboratif, Débat
scientifique, Autoréflexion.

60 F. Hitt et al.



2015) and which includes several steps to be implemented in the mathematics

classroom when solving a mathematical task. It is described below in more depth:

1. Individual work. Production of spontaneous non-necessary institutional repre-

sentations related to the task, with prediction processes encouraged.

The design of mathematics classroom situations should follow a structured plan

for the use of both paper and pencil and technology. The activity starts when

reading the statement of the situation. This mental activity, as mediated by paper

and pencil, produces the spontaneous representations linked to the activity of

understanding and searching for a goal, even if this is not a well-defined or easy

process. Reference to the use of paper and pencil is made in a broad sense2. Thus,

the use of paper and pencil is intended to be a mediator between pupils’ mental

representations (i.e. functional representations) as linked to the situation and the

activity of understanding, and thus promotes the production of spontaneous repre-

sentations linked to actions that are not necessarily institutional (Hitt 2013; Hitt and

Gonzalez-Martin 2015). This first stage provides the pupil with preliminary ideas

that she/he discusses with other members of her/his team. Following an approach

where activity and communication go hand in hand (activity theory) creates a link

between activities, motives, actions, objectives and operations in the context of

Leontiev’s work in this area. This stage and that described below are crucial to the

production of spontaneous representations and to the commencement of the process

of their evolution.

2. Teamwork on the same task. Process of prediction, argumentation and valida-

tion. Pupils refine their representations in response to their results.

Teamwork helps to refine both the initial ideas and the ability to follow a path

towards the resolution of the problem situation. The functional representations that

gave rise to spontaneous representations in the individual phase initiate a new

process of refinement, which takes into account both the manipulation of physical

objects and communication with others. This process is linked to argumentation

(persuasion in many cases), prediction and validation, and both testing and taking a

position. It is at this stage where cultural norms come into play directly, with

teamwork and organisation crucial for the distribution of partial tasks. The question

then arises as to how many people are to be allocated to each team. For example,

Sela and Zaslavsky (2007) show the difference between teams of two and four

people, stressing the fact that, in a two-person team, participation is more balanced,

while, with four people, there is an immediate tendency that one of them may take a

leadership role with the others becoming followers. As such, teams of two or three

people are suggested. It is necessary for the team members to determine who

2Touchscreens are used more and more in schools (see the chapter on this matter in Bairral et al.,

this volume). The paper and pencil component can be converted to the use of an electronic

notebook in the production of (not exclusively) institutional representations. Currently, there are

some electronic devices, such as notebooks, that can be connected to an iPad for simultaneous use

with other applications.
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manipulates physical objects (and how they are manipulated), who uses the com-

puter (e.g., see Hoyles 1988), who notes the progress of the team, and who comes

forward to present the achievements of the team for plenary discussion. In fact, it is

here that both activity theory and Engestr€om’s (1999) model are very important (see

Fig. 1). At this stage, the teacher’s role is to guide rather than provide their opinion

on how the teams performed.

3. Debate (could become scientific debate). This is related to a process of argu-

mentation and validation and the refinement of representations. According to

Legrand (2001), the teacher’s role is crucial at this stage for the promotion of

scientific debate. In general, if the design of the task is related to a problem

situation or an open problem, different results from the teams will be presented

for discussion. In general, teams will have a natural tendency to protect their

results, with the teacher required to regulate the discussion (socio-cultural

norms) and decrease the persuasion and argumentation that can lead to predic-

tion and validation. Again, spontaneous representations that have surely under-

gone a process of refinement first through working in small teams can be refined

in large group discussion.

4. Self-reflection (individual work – the reconstruction of what has been carried out
in the classroom).

Given that the literature has shown, in the classroom, consensus to be ephemeral

(Thompson 2002; Hitt and Gonzalez-Martin 2015; Hitt et al. 2015), this study

included a stage involving a reconstruction process activity. The teacher must

collect everything produced during the previous stage and provide a new copy of

the task. Karsenty (2003) demonstrates that after a certain period of time, adults

forget the mathematics they have learned. The question as to how to build stable

knowledge is one that led to this stage being implemented here and also to the

Fig. 1 ACODESA and the Engestr€om model as adapted to the aims of this study
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importance attached here to individual reconstruction. It is at this stage that the

notion of historicity has a strength action; where the pupil has been influenced by a

socio-cultural process of learning and is prone to a sociocultural construction of

knowledge. This stage also requires reconstruction related to achievements in terms

of individual work, teamwork and plenary discussion designed to strengthen

knowledge.

5. Process of institutionalisation. The teaching undertaken by the teacher takes the
pupils’ results into account and uses the official representations.

In a sociocultural knowledge construction process, where the pupil is an active

actor in that environment (activity theory), a mathematical concept is not produced

through a dogmatic presentation by the teacher. Institutionalisation occurs at the

end of those preliminary stages, where the teacher takes pupils’ productions into
account while refining the concept and, if necessary, providing both the institutional

position and its official representations.

ACODESA takes Engestr€om’s model into consideration in the organization of

pupils’ classroom activities by placing special attention on the artefacts they use.

Task Design

As seen in previous sections, task design is not a new feature in mathematics

education. For example, when conducting a teaching experiment, it is important

to build a hypothetical model to guide the researcher in the teaching process. More

precisely, as described above, both Simon (1995) and Simon and Tzur (2004)

proposed the Hypothetical Learning Trajectory (THA) method, which allows the

teacher to organise and design mathematical activities for use in the mathematics

classroom.

Interested in the learning of mathematics in a sociocultural environment and

given the technology involved, researchers in this study considered, for example,

the following elements, as described by Arcavi and Hadas (2000, pp. 25–27), as

being of fundamental importance to a design based on a Dynamic Geometrical

System (DGS):

1. Visualization. “Visualization generally refers to the ability to represent, trans-

form, generate, communicate, document, and reflect on visual information”.

2. Experimentation. Besides visualization, playing in dynamic environments

enables students to learn to experiment.

3. Surprise. It is unlikely that students will fruitfully direct their own experimen-

tation from the outset. Curriculum activities, such as problem situations, should

be designed in such a way that the kinds of questions students are asked can

make a significant contribution to the depth and intensity of a learning

experience.
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4. Feedback. Surprises of the kind described above arise from a disparity between

an explicit expectation of a certain action and the outcome of that action. The

feedback is provided by the environment itself, in that it reacts as requested.

5. Need for proof and proving. Dreyfus and Hadas (1996) discuss and exemplify

how one can capitalize on such student surprises in order to instil and nurture the

need for justification and proof.

An analysis of the above characteristics reveals that the DGS is an important

element. Under this view, Duval’s 2002 approach to Arcavi and Hadas’ mathemat-

ical visualisation process is very pertinent, since it relates to the discrimination of

visual variables on a register as possibly associated with corresponding elements on

another register.

The problem with these approaches is that spontaneous representations in the

resolution of problem situations are not fully considered in these contexts. These

spontaneous representations generally do not belong to a register. This study is

interested in the unofficial representations that pupils produce in a paper and pencil

environment (Hitt 2013; Hitt and Gonzalez-Martin 2015) and the evolution toward

institutional representations (e.g., those on a computer screen) through a process of

communication with others and the use of technology.

As the notion of learning with which this study is concerned is linked to

collaborative work, other perspectives must also be considered, such as those of

Prusak et al. (2013), who, with respect to the creation of tasks to promote produc-

tive argument, suggest the following:

1. The creation of collaborative situations,
2. The design of activities that trigger socio-cognitiveconflicts,
3. The provision of tools for checking hypotheses.

Indeed, for the perspective of this study, Arcavi and Hadas, as well as Duval and

Prusak et al., can be taken into account in both paper and pencil and technological

approaches (Hitt and Kieran 2009; Hitt et al. chapter “Integrating arithmetic and

algebra in a collaborative learning and computational environment using

ACODESA”) formulated using ACODESA.

In this context, visualisation refers to the ability to represent, transform, and find

significant visual variables that may be associated with other elements from another

separate representation through a process of communication with others. This thus

promotes an evolution where the mathematical activity in question is “seen” and

creates an improved approach to the resolution process.

Healy and Sutherland (1990), on one side, and both Hitt (1994) and Hitt et al.

(in this volume), on the other, illustrate how pupils or pre-service teachers “see” the

task of constructing a process for the generalisation of polygonal numbers differ-

ently. For example, both Hitt (1994) and Hitt et al. (chapter “Integrating arithmetic

and algebra in a collaborative learning and computational environment using

ACODESA”) found different approaches, such as that related to changing the

number of elements on the diagonal in order to obtain the next triangular number

(Fig. 2), or that focusing on the number of elements on the base or on one side of the
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triangular arrangement. Both Healy and Sutherland (Idem) and Hitt (1994) used a

triangular arrangement, specifically with an equilateral triangle, while this study

used an isosceles triangle rectangle. This arrangement generated the conjecture (see

chapter “Integrating arithmetic and algebra in a collaborative learning and compu

tational environment using ACODESA”) relating to calculating any triangular

number using the formula for calculating the area of a triangle (base * height/2).

Pupil conjecture thus created a socio-cognitive conflict, as pupils pointed out that

calculating T6 and T8 (triangular numbers 6 and 8) visually did not obtain the same

result.

The expert (the mathematics teacher) “sees” triangular numbers institutionally

in order to complete a rectangular array, as seen in Fig. 3. The visual triangular

number is duplicated and a transformation performed, thus obtaining a similar

arrangement that is able to show a rectangular arrangement (Fig. 3), thus revealing

the conclusion that:

Tn ¼ n nþ 1ð Þ
2

:

Pupils’ visual processes do not necessarily agree with the ways in which teachers
visualise. The teacher uses official representations that enable her/him to be effi-

cient in handling the institutional representations. They, as experts, are able to

articulate representations that have developed ways to “see” into the passage,

distinguish from one representation to another. Thus, the expert is able to

Fig. 2 Process of

visualising and articulating

visual information in a

numerical approach

Fig. 3 Transformation of

the triangular number to

find a general rule
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immediately identify the important visual variables (as described by Duval) to be

transformed and/or converted into another representation.

The question thus arises in terms of how to develop this expertise by our pupils.

The purpose of this study was to create socio-cultural norms in the mathematics

classroom through the design of activities that promote a learning process based on

the manipulation of physical objects, the production of representations, and the

processing of devices for the efficient use of such representations in order that

pupils are able to solve problems and problem situations. Furthermore, the aim was

to ensure that:

1. individually, the pupil begins, as a result of the preparatory work undertaken in

relation to the mathematical activity, to attack the same activity from a socio-

cultural perspective using teamwork.

2. by comparing their results with other pupils (in teams of two or three), the pupil

possibly creates socio-cognitive conflicts involving productive arguments, with

action and communication linked through objectives that they have to follow.

3. the plenary discussion furthers productive arguments, as well as anticipatory

processes, the promotion of reconciliation among representations, validation

processes, the production of counter-examples and the ability to check hypoth-

eses. Once again, action and communication go together.

4. self-reflection promotes the strengthening of knowledge in order to stabilize it,

with historicity (that which was undertaken collaboratively as an essential

element of the process of reconstruction) a main component of reconstruction.

5. the process of institutionalisation enables the review of that which has been

undertaken by pupils in order to promote the official representations and com-

munication that will further advance their mathematical knowledge.

Considering these characteristics, the design of the activities used in this study

begins with a presentation page (the front page). General pupil information is

obtained in order to identify their work on an individual basis, as well as their

results from the teamwork activity. It can be useful to include, on this page,

instructions for the use of different colour inks when working either individually

or with others in order to identify any development or evolution.

During the first stage, the mathematical task begins with the promotion of

diversified thinking and, therefore, requires an open problem or problem situation.

The statement outlining the activity will promote the production of functional

representations that will trigger the production of spontaneous representations.

This study proposes a block of five questions which allows pupils to individually

create their own strategies (for a full outline of the experiment, see chapter

“Integrating arithmetic and algebra in a collaborative learning and computational

environment using ACODESA”). The task design depends on the use of artifacts in

the construction of knowledge. For example, in Hitt and Gonzalez-Martin (ibid.),

pupils used a rope, flexible wire and a rule, as well as paper and pencil, when

attacking the mathematical task. Another example, as seen in Hitt and Kieran

(Idem), sees the first stage designed to generate a strategy for a paper and pencil

environment. This was then confronted with a second stage that featured the pupils’
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own algebraic productions as well as those provided by a CAS calculator, thus

requiring them to reconcile their own productions with those produced technolog-

ically, as well as requiring team discussion. A third stage is related to the promotion

of a specific conjecture and the need to convince others, with proof not taught at this

educational level.

This study aimed to explore this approach with pupils who are beginning

secondary school and, as such, are yet to be introduced to algebra, with the design

intended to promote the construction of the concept of a variable through a process

of collaborative learning under a sociocultural approach (see chapters “Integrating

arithmetic and algebra in a collaborative learning and computational environment

using ACODESA” and “Problems Promoting the Devolution of the Process of

Mathematisation: An Example in Number Theory and a Realistic Fiction”). In

fact, researchers in this study considered it necessary to construct an algebraic-

geometric-arithmetic thinking before developing an “exclusively” algebraic think-

ing detached from arithmetic itself. As such, the design of this experiment took into

account Healy and Sutherland’s (1990) work, who followed an Excel-based

approach to polygonal numbers as well as Hitt’s (1994) paper and pencil model

which also used an applet that exclusively generated the value of any polygonal

number. This experimentation also was implemented with a Mexican population in

order to generate a comparison with the type of strategies used by those pupils who

have already taken an algebra course (see chapter “Integrating arithmetic and

algebra in a collaborative learning and computational environment using

ACODESA” for details).

A first block was thus designed to promote visualisation, abstraction and gener-

alisation processes from a perspective that seeks to create diversified thinking (see

Fig. 4).

1) Look carefully at these numbers. What is the fifth triangular number? Make a 
representation. Explain how you proceeded. 

2) In your opinion, how are the triangular numbers constructed? What do you 
observe? 

3) What is the 11th triangular number? Explain how you find it. 
4) You have to write a SHORT email to a friend describing how to calculate the 

triangular number 83. Describe what you would write. YOU DO NOT HAVE 
TO DO THE CALCULATIONS! 

5) How do you calculate any triangular number (we still want a SHORT message 
here).

Fig. 4 First task design block for the generation of diversified thinking and spontaneous

representations

Task Design in a Paper and Pencil and Technological Environment 67

http://dx.doi.org/10.1007/978-3-319-51380-5_13
http://dx.doi.org/10.1007/978-3-319-51380-5_13
http://dx.doi.org/10.1007/978-3-319-51380-5_13
http://dx.doi.org/10.1007/978-3-319-51380-5_19
http://dx.doi.org/10.1007/978-3-319-51380-5_19
http://dx.doi.org/10.1007/978-3-319-51380-5_13
http://dx.doi.org/10.1007/978-3-319-51380-5_13
http://dx.doi.org/10.1007/978-3-319-51380-5_13


It is expected that spontaneous representations and personal strategies make

their appearance during this first stage. Based on the same questions, it is expected

that pupils will work in teams before engaging in plenary discussion.

In the example considered here, teamwork is required in the second block of

questions. The aim is to promote in pupils the ability to generate the iteration

processes related to a spreadsheet environment (Excel or CAS), similar to that

obtained in Healy and Sutherland (1990).

As we can see in the two blocks of questions (see Fig. 5), the pupils generate

different types of strategies. It is intended that pupils acquire a broad vision of how

to address a problem situation and the various products linked to different strategies

in order to promote different kinds of representations.

A comparison was sought between the strategies used in Healy and Sutherland

(Excel and secondary school pupils) and Hitt (1994), which involved a group of

secondary and primary teachers using Excel, and another group of teachers using

paper and pencil and an applet. Generally, there are several kinds of generalisations

used to calculate a triangular number:

• trig. Δn ¼ na before þ position (Healy and Sutherland 1990),

• Tri(n) ¼ 1 þ 2 þ 3 þ . . . þ n (Hitt 1994),

It is noteworthy that the task generates the production of different types of

representations, with the type depending on the technological environment. This is

the case with pupil production in this new approach to the construction of polygonal

numbers (see chapter “Integrating arithmetic and algebra in a collaborative learning

and computational environment using ACODESA”).

In the third block of the task, interest focused on the use of an applet that gives

pupils the opportunity to immediately verify their generalisation strategies, or to

request a polygonal number, etc. Thus pupils are able to receive immediate

Develops the same ideas as in the previous section but using Excel (or CAS). 
Here we ask you to find:

What would you do to discover the 6th, 7th, and 8th triangular number?
Is it possible to calculate the triangular number 30, triangular 83, and triangular 
120?
How do you do this?
What are the limitations and possibilities of this approach?
Provide the operations to be performed in order to undertake this calculation with 
any polygonal number.

Fig. 5 Second part of the task
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feedback on the veracity of their conjecture using the applet. The applet (see Cortés

and Hitt 2012) is to be used precisely in this 3rd block.

The applet is able to request the first four polygonal numbers selected (triangu-

lar, square, pentagonal, etc.) and is also able to request a “large polygonal number”

(see Fig. 6). Paper and pencil work with the use of the applet allows pupils to check

their guesses. If the pupil’s conjecture does not agree with the result given by the

applet, the pupil must return to their team and review the process that led to the

construction of their conjecture, which, thus, fosters productive communication

among pupils.

Pupils are asked to use the Poly applet for the proceeding set of questions in

which the arrangement of the triangular numbers was changed, using an equilateral

triangle (which corresponds to the institutional representations that pupils usually

encounter in textbooks) (Fig. 7).

Fig. 6 Examples of the use of the POLY applet with polygonal numbers

a) Here are the five first triangular numbers.

Find a formula to calculate the numerical value of any triangular number. You can 
use the POLY applet to find the formula. 

APPROACH (OPERATIONS, DRAWINGS…)

Write the rule or formula you found: 

Using your rule or formula, calculate the following triangular numbers.
Position Corresponding value

Triangular 10
Triangular 20

With the formula, can you calculate the triangular number 120?
Triangular 120 = _____________

Fig. 7 Third block of questions and use of the POLY applet
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From a psychological point of view, the framing of the triangular numbers,

which does not leave enough space after the first 5 examples, promotes a tendency

to abandon the drawings (see Hitt 1994), while the presentation of the activity

promotes the generalisation process.

Building on strategies produced byHitt (idem) has lead to the following output (it is

important to stress that this study is carried out with primary and secondary school

teachers and focuses on pupil performance, with chapter “Integrating arithmetic and

algebra in a collaborative learning and computational environment usingACODESA”

discussing secondary school pupils):

• f xð Þ ¼ x2þx
2

(Hitt 1994)

A summary questionnaire, which does not include the use of technology, is used

for the self-reflection stage. Pupils are expected to be able to rebuild their repre-

sentations, as well as any algebraic expressions that they have produced, thus

enabling them to calculate any triangular number (Fig. 8).

As stated above, the reconstruction stage is very important. Research results

(Karsenty 2003; Thompson 2002; Hitt and González-Martı́n 2015) show the fra-

gility of knowledge and the importance of implementing, in the mathematics

classroom, activities that can strengthen the construction of such knowledge.

In the case of pupils who are beginning to study algebra, validation can be

restricted, while, in the case of the use of the task with pre-university students

and/or future teachers, one can request demonstrations using mathematical induc-

tion processes. For example, the applet does not work when using large numbers.

Furthermore, working with both the official representations of the polygonal

Here there are the first four triangular numbers

1) What is the 11th triangular number? Explain how you found it. 
2) Write a SHORT email to a friend describing how to calculate the triangular 

numbers 30, 83 and 120. Describe what you would write. YOU DO NOT 
HAVE TO DO THE CALCULATIONS! 

3) How do you calculate any triangular number (we still want a SHORT message 
here).

4) The following configuration of a triangular number can be found in some 
textbooks:

Does your strategy always enable you to calculate any triangular number?

Fig. 8 Task designed for the self-reflection stage (reconstruction activity)
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numbers and the construction of algebraic expressions associated with those num-

bers, another block of questions could be added. These would request a further and

higher generalisation process (see Table 1), which would be built as a single

algebraic expression that enables any polygonal number to be calculated.

Conclusion

This paper proposes task design elements to be developed in the mathematics

classroom under a sociocultural approach. While some authors point out the

importance of creating sociocognitive conflicts in the mathematics classroom,

they suggest an organisational schema for performing an activity, with, for exam-

ple, Prusak et al. (2013) proposing the following for a 75-min class:

For the first 15–20 minutes, the instructor facilitated a whole class discussion to create a

shared understanding of the activity; then, for approximately 5 minutes, each student

engaged in the task individually; during the following 45 minutes, students worked in

dyads or triads, solving tasks collaboratively and writing a common justification on a

worksheet; for the final 5–10 minutes, there was a plenary, where the instructor led a

whole class discussion to summarise. (p. 270)

In contrast to the methodological approach outlined above, the methodological

approach advocated here takes into account the fundamental point that consensus is
ephemeral and, as such, it is therefore necessary to consider a knowledge recon-

struction stage (referred to as self-reflection in this methodology) in order to

strengthen and stabilize knowledge (Karsenty 2003; Thompson 2002; Hitt and

González-Martı́n 2015).

This task design is more related to problem situations that generate diversified

thinking and, as a possible consequence, socio-cognitive conflicts in a process of

action and communication. To overcome a socio-cognitive conflict, the authors of

this study suggest the promotion of signification processes, as described by Radford

(2003), in the mathematical classroom (see chapter “Integrating arithmetic and

Table 1 Generalisation for calculating any n polygonal number of p sides

Calculation of polygonal n Expression for generalisation

Tn ¼ n nþ1ð Þ
2

T 3� sidesð Þn ¼ n n�1ð Þ
2

Cn¼ n2 C 4� sidesð Þn ¼ n2 ¼ 2n nþ0ð Þ
2

¼ n 2nþ0ð Þ
2

Pn ¼ n 3n�1ð Þ
2

P 5� sidesð Þn ¼ n 3n�1ð Þ
2

Hn¼ n2þ n(n� 1) H 6� sidesð Þn ¼ 2n 2n�1ð Þ
2

¼ n 4n�2ð Þ
2

En ¼ n 5n�3ð Þ
2

E 7� sidesð Þn ¼ n 5n�3ð Þ
2

. . . . . .

Polygonal p� sidesð Þn ¼ n p�2ð Þn� p�4ð Þð Þ
2
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algebra in a collaborative learning and computational environment using

ACODESA” on this issue). Consequently, some of our problem situations may

take more than one session of a course. In fact, the task design in Hitt and Gonzalez-

Martin (ibid.) aimed to create a chain of activities that encompassed the concept of

covariation between variables, function in context, and mathematical modelling,

over the course of 13 class sessions.

Practice has shown that, as a method such as ACODESA is not easy to imple-

ment in the mathematics classroom, it is very important that, working together,

researchers and teachers can create learning situations such as those suggested in

this chapter for the mathematics teacher. Generally, it is not possible to fully present

in research articles the complete activity implemented in an experiment, due to a

lack of space. The problem situations dealt with here usually occupy several pages

permitting regulate, in some extent, pupils’ productions and promoting their

evolution.
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R. Miettinen, & R. L. Punamäki (Eds.), Perspectives on activity theory (pp. 19–38). Cam-

bridge: Cambridge University Press.

Gravemeijer, K., & Doorman, M. (1999). Context problems in realistic mathematics education: A

calculus course as an example. Educational Studies in Mathematics, 39(1), 111–129.

72 F. Hitt et al.

http://dx.doi.org/10.1007/978-3-319-51380-5_13
http://dx.doi.org/10.1007/978-3-319-51380-5_13


Healy, L., & Sutherland, R. (1990). The use of spreadsheets within the mathematics classroom.

International Journal of Mathematics Education in Science and Technology, 21(6), 847–862.
Hitt, F. (1994). Visualization, anchorage, availability and natural image: Polygonal numbers in

computer environments. International Journal of Mathematics Education in Science and
Technology, 25(3), 447–455.

Hitt, F. (2007). Utilisation de calculatrices symboliques dans le cadre d’une méthode
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