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Abstract In the transition from arithmetic to algebra and in light of the disjunction

between the natural and symbolic approach to algebra and the choice of a natural way

of learning, this paper discusses the development of a cognitive control structure in

pupils when they are faced with a mathematical task. Researchers sought to develop,

in novice pupils in both Quebec (12–13 years old) and Mexico (14–15 years old), an

arithmetic-algebraic thinking structure that would promote mathematics competen-

cies in a method based on collaborative learning, scientific debate and self-reflection

(ACODESA, acronym which comes from the French abbreviation of Apprentissage
collaboratif, Débat scientifique, Autoréflexion), and immersed in an activity theory

approach. This paper promotes the equal use of both paper and pencil and technology

in order to solve amathematical task in a sociocultural and technological environment.

Keywords Arithmetico-algebraic thinking • ACODESA • Collaborative learning •

Technology • Polygonal numbers

Introduction

Over the course of the last century, the mathematics curriculum took arithmetic as a

proper subject for study at primary school level education, and algebra as a proper

subject for secondary school level. This dissociation influenced research in math-

ematics education, which, in turn, reverberated through the academic programs

implemented. Examining the work of psychologists before the 1940s, Brownell

(1942) noted that psychologists used “puzzles” in the study of intelligence to
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analyse processes related to the “insight” involved when individuals solved such

problems. Brownell proposed a radical change focusing on the study of the resolu-

tion of the arithmetic verbal problems used in textbooks.

Brownell’s work (Ibid.) attracted the attention of psychologists and educators

interested in studying the skills involved in solving arithmetic word problems as a

means of understanding the phenomena linked to learning mathematics.

The experience of solving puzzle type problems (where, for example, from

9 matches one is required to build four equilateral triangles, and then, from

6 matches, one is asked to build the same number of equilateral triangles) gave

rise to the analysis of solving problems that had single or multiple solutions. From a

psychological point of view, these factors led, in the case of a problem with one

solution, to an analysis of convergent thinking linked to direct efforts towards

achieving a goal. In the case of problems with multiple solutions, this led to an

analysis of both divergent thinking (Guilford 1967) and creativity (Bear 1993). In

fact, Guilford’s model (Ibid.) stressed the importance of developing divergent

before convergent thinking. Gradually, Brownell’s approach led to an extensive

research strand focusing on the phenomena related to the resolution of arithmetic

problems in primary school and the development of arithmetic thinking.

What Is Arithmetic Thinking?

Brownell’s characterisation (Ibid.) of exercises, problems and puzzles encouraged

psychologists and mathematics teachers to focus their research on the study of

arithmetic problem solving. Polya (1945) expanded problem solving to other levels

of education, thus promoting the emergence of a new paradigm. Some mathematics

educators followed this trend and contributed their own new theoretical approaches

(RME through the influence of Freudenthal; Mason et al. 1982; Schoenfeld 1985;

Santos-Trigo 2010). Returning to primary school level, for example, Vergnaud’s
work (1990) on solving arithmetic problems led to the identification of both

arithmetic in problem solving and conceptualisation in primary school, and led to

the theoretical approach related to “conceptual fields”.

Similar approaches led to some research products in order to characterise

arithmetic thinking. For example, Verschaffel and De Corte (1996), taking into

account the research conducted in the 1990s, propose arithmetic thinking related to:

(a) number concepts and number sense; (b) the meaning of arithmetic operations;

(c) control of basic arithmetic facts; (d) mental and written arithmetic; and, (e) word

problems using digital literacy and arithmetic skills.

While progress was made in the study of learning problems linked to the

resolution of arithmetic problems, research continued toward an understanding of

the problems related to learning algebra (Booth 1988). The notion of variable began

to be studied (Sutherland 1993), thus promoting investigation into the learning of

covariation between variables (Carlson 2002) and the identification of the role of

286 F. Hitt et al.



the variable as an unknown, as a large number, and as a variation between variables

from a functional point of view (Trigueros and Ursini 2008).

Given the organisation of the curriculum, which designated arithmetic for

primary school and algebra for secondary school, researchers began to talk

about the problems related to the transition from one level to the other. At the

same time, the emergence of the notion of epistemological obstacle in the

French school (Brousseau 1976/1983) possibly reinforced this idea of a “break”

between arithmetic and algebra. Vergnaud (1988) points out that the transition

from arithmetic to algebra is linked to an epistemological obstacle. Other

approaches, related to the notion of the unknown in solving linear equations,

led to the notion of a “cut” between arithmetic thinking and algebraic thinking

(Filloy and Rojano 1989) or even the cognitive obstacle (Herscovics and

Linchevski 1994). These studies announced the need to characterise algebraic

thinking.

What Is Algebraic Thinking?

As mentioned in the previous section, the research paradigm linked to the

“thinking break” between arithmetic and algebra was essential for the charac-

terisation of algebraic thinking. Under this paradigm, Kieran (2007)

characterises algebraic thinking using a model called GTGm: Generational

algebraic activities involve the forming of expressions and equations; Trans-

formational activities such as factoring, expanding, and substituting; and,

Global/meta-level mathematical activities such as problem solving and model-

ling. An analysis of this model reveals that, in the past, much of the secondary

school level research focused on the teaching of algebra in section G and T of

Kieran’s model. It is likely that the Gm section is linked to the Freudenthal

School’s research results regarding realistic mathematics, at the heart of which

approach is mathematical modelling.

Visual Aspects in Curricular Change in Mathematics

In the early 1990s, an important curricular change in the field of mathematics

began. The visual aspects were highlighted in curriculum changes, promoting

displays of the mathematical aspects. A clear example can be seen in the US

Standards (NCTM 2000). In this context, geometric aspects in problem solving

began to be included in algebra. It was explicitly important to approach a concept

through the use of different representations of that concept. From a curricular

standpoint as well as from a general standpoint related to research in mathematics

education, mathematical visualisation has attracted the attention of researchers.

These changes began from a curricular perspective, with a new approach to
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teaching algebra and the promotion of a geometric-algebraic approach to algebra.

Progressing along this research line, for example, Zimmermann and Cunningham

(1991) begin the preface of their book with the question: What is visualisation in

mathematics? This study explicitly referred to an important role in the production

of external representations:

Mathematical visualization is the process of forming images (mentally, or with pencil and

paper, or with the aid of technology) and using such images effectively for mathematical

discovery and understanding. (p. 3)

Technology influenced enormously in these changes. Graphical representations

that caused major programming problems were resolved, thus giving rise to the

production of computer software and enabling an approach to mathematics from the

multiple representations user standpoint.

Early Algebra and the Emergence of a New Paradigm

While the previous section discussed the “rupture” approach to characterise arith-

metic thinking and algebraic thinking, little by little other research programs arose,

which were initially tied to the idea of the “generalization of arithmetic” (see

Mason 1996; and Lee 1996). Along these lines, Radford (1996) comments how

these authors stressed an approach to the learning problem regarding “algebra as a

generalised arithmetic”, and goes on to discuss the role of the unknown and the

equation:

The above discussion suggests that the algebraic concepts of unknowns and equations
appear to be intrinsically bound to the problem-solving approach, and that the concepts of

variable and formula appear to be intrinsically bound to the pattern generalization

approach. Thus generalization and problem solving approaches appear to be mutual

complementary fields in teaching algebra. How can we connect these approaches in the

classroom? I think this is an open question (p. 111).

From this perspective, a new paradigm was born. Kaput (1995, 2000) proposes a

research program under the following guidelines, with the first two at the heart of

the learning of algebra and the other three completing this learning:
1. (Kernel) Algebra as a generalization and formalization of patterns and constraints, with,

especially, but not exclusively, Algebra as Generalized Arithmetic Reasoning and

Algebra as Generalized Quantitative Reasoning

2. Kernel) Algebra as syntactically guided manipulations of formalism

3. (Topic-strand) Algebra as the study of structures and systems, abstracted from compu-

tations and relations

4. (Topic-strand) Algebra as the study of functions, relationships and joint variation

5. (Language aspect) Algebra as a cluster of (a) modelling and (b) Phenomena-controlling

languages. (2000, p. 3)

Kaput called this research program Algebrafying the K-12 Curriculum (2000),

while Carpenter et al. (2003, 2005) initiated the Early algebra research project in
1996. This new paradigm formed part of research programs in the twenty-first
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century. Thus, the Early Algebra movement, in which Carpenter and Kaput played

an important early role, is well situated in the USA. The book Early Algebraization,
edited by Cai et Knuth (2011), shows the progress of research in that area in other

countries. In this book, one can appreciate a division between the “enthusiastic” and

“cautious” researchers with regard to the Early Algebra movement.

Among the enthusiasts are Blanton and Kaput (2011), as are Britt and Irwin

(2011, p. 139), who even criticised Filloy and Rojano’s approach by highlighting

Carraher et al. (2006) with regard to their Early Algebra proposal. Similarly,

Schliemann et al. (2012) show how algebraic notation can be introduced in ele-

mentary school in order to develop mathematical content, stating: “The 5th grade

lessons focused on algebraic notation for representing word problems, leading to

linear equations with a single variable or with variables on both sides of the equal

sign.” (p. 115).

Among the cautious, are Cooper and Warren (2011), who argue that:

The results have shown the negative effect of closure on generalisation in symbolic

representations, the predominance of single variance generalisation over covariant gener-

alisation in tabular representations, and the reduced ability to readily identify commonal-

ities and relationships in enactive and iconic representations. (p. 187)

In this regard, Radford (2011, p. 304) states that: “... the idea of introducing

algebra in the early years remains clouded by the lack of clear distinction between

what is arithmetic and what is algebraic”. On this, the debate remains open, for

example, Lins and Kaput (2004) characterising the movement as:

. . .algebrafied elementary mathematics would empower students, particularly by fostering

a greater degree of generality in their thinking and an increased ability to communicate that

generality. (p. 58)

As spokespersons for the Early Algebra working group at ICMI 12th (Lins and

Kaput 2004), they openly criticised past generations, whose results were exclu-

sively related to “sad histories”, and specified that, in contrast, the Early Algebra

movement presents research results linked to “happy stories” regarding the expe-

rience of learning algebra content.

The Third Excluded Strikes Back!

In light of the research results described above, this study approached the problems

of learning algebra by introducing new variables that could not be left out of the

discussion. As new theoretical approaches about learning algebra are born, so are

different general learning paradigms. Research in the last century was strongly

cognitivist, with Harel et al. (2006), surprised to learn that, in the PME studies on

the period of 1995–2005, most of the investigations related to Advanced Mathe-

matical Thinking were much more cognitive and less socio-constructivist or socio-

cultural. While communication in the mathematics classroom emerges as an
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essential element, the literature begins to show that researchers are inclined towards

a socio-constructivist or sociocultural approach.

Our Theoretical Approach to an Introduction to Learning
Algebra

The research objectives for this study are founded on a cultural approach, which takes

into account the theory of activity and which views communication in the classroom

as essential. The work of Engestr€om (1999) is taken as a culturally unifying approach,

as advocated by Vygostky (1962), incorporating Leontiev’s (1978) activity theory, in
which communication is an essential element in the building of knowledge as

described by Voloshinov (1973). Our approach to Radford’s processes of significa-
tion, is immersed in a mathematics classroom teaching method named ACODESA

(see Hitt 2007; Hitt and González-Martı́n 2015; Hitt et al. 2017), that also take into

account a self-reflection component.

An analysis of the literature on the followers of the Early Algebra movement

shows that some research is aimed at building a “Fast Track” from arithmetic to

algebra. This study posits that a functional approach to algebra should be followed,

such as that developed in both Passaro (2009) and Hitt and González-Martı́n (2015).

This study concurs with some followers of Early Algebra, in that the use of patterns

is able to generate generalisation processes in pupils, and, thus, proposes, in the

context of the use of patterns, the following:

Generalisation. Construction of the subsequent term in a series when the previous

terms are provided. Construction of an intermediate term when the previous and

subsequent terms are provided. Construction of a term when the term in the

series is a “large number” and when the first terms of the series have been

provided. Construction processes for “any term from the series.”

This study considers generalisation in the context of a pattern, where, rather than

as a way of moving quickly from arithmetic to algebra, it is an element used to

integrate into the pupils’ mathematical structure. This will enable the pupils to

develop the skills of prediction, argumentation and validation (Saboya et al. 2015),

and will assist them in their transition from arithmetic to algebra and vice versa.
Indeed, a research program is proposed here that would develop arithmetic-alge-
braic thinking within a sociocultural context of knowledge construction.

As described above, this chapter, seeks to make a modest contribution, in that it

represents the beginning of a research program. Our research is focused on specific

content related to the construction of polygonal numbers in a sociocultural envi-

ronment within Engestr€om’s post-Vygotskian model (1999), and takes into account

the results of those post-Vygotskian authors considered as comprising the fifth

generation, such as Nardi (1997):
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The object of activity theory is to understand the unity of consciousness and activity.

Activity theory incorporates strong notions of intentionality, history, mediation, collabo-

ration and development in constructing consciousness. (p. 4)

As the use of technology in the learning of mathematics is a variable yet to be

mentioned here, Mariotti’s (2012) work on the role of artefacts as mediators in a

learning process is integral to the inclusion of technology in a sociocultural

environment.

The use of patterns, and especially the construct of generalisation, is related to

mathematical visualisation. Visualisation, as mentioned by Duval (2002), is differ-

ent from perception. In our case, then, the following applies:

Visualisation. Considering perception as something created by the individual – a

“transparent” mental image depicting the situation with which s/he are faced –

visualisation requires the transformation of representations associated with the

task at hand, and the ability to articulate other representations that emerge in

pupils’ resolution processes, as associated with the task.

This study is not only interested in institutional representations (which can be

associated with a register of representations, as described by Duval 1995). It is also

concerned with the non-institutional semiotic representations that can be produced

in a visualisation process (diSessa et al. 1991; Hitt 2013; Hitt and González-Martı́n

2015; Mariotti 2012) and which emerge in a semiotic process of signification

(Radford 2003) when pupils follow a process of resolving a mathematical activity

immersed in a technological setting.

Institutional representation. Representation found in textbooks, computer screens

or those used by the mathematics teacher.

Non-institutional representation. Representation produced by pupils, as linked to

actions undertaken in a process of resolving a non-routine activity different of

the institutional representation.

Since the method proposed here is related to polygonal numbers and the use of

technology, ideas related to the construction of polygonal numbers that date back to

the time of the Greeks were considered here. Furthermore, including technology as

one of the variables led to the inclusion of Healy and Sutherland (1990) and Hitt

(1994), who, in Excel environments and Excel and LOGO environments, respec-

tively, conducted investigations into the construction of polygonal numbers by

secondary school and pre-service teachers respectively.

Healy and Sutherland (Ibid.) mention that the result obtained by those secondary

level pupils (in the Excel environment) that expresses a relationship linked to the

calculation of a triangular number “n”, “trig. Δn¼ na beforeþ position”, is a non-
institutional representation linked to a process of iteration. Hitt (ibid.) criticises

these results, indicating that activities in an exclusively Excel environment provoke

“an anchor” which does not allow them to switch to a classical algebraic context.

Hitt (Ibid.) aimed to combine working with paper and pencil with the use of an

applet constructed using the LOGO program. In light of these results and consid-

ering new theoretical and curricular contributions, both approaches are of
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contemporary importance, in that they generate diversified thinking for the produc-

tion of non-institutional representations and iteration processes. Secondly, they

enable the careful design of activities that promote the use of paper and pencil,

while also fostering the evolution of the non-institutional representations that

emerge at the initial stage into institutional representations within meaningful

processes (a broader discussion on task design is provided in chapter “Task Design

in a Paper and Pencil and Technological Environment to Promote Inclusive Learn

ing: An Example with Polygonal Numbers” of this volume).

Methodology

Our research was developed within two populations, with one group from Quebec

comprising 13 first grade secondary school pupils (aged 12–13 years old), and the

other from Mexico, which consisted of 14 third year secondary school pupils (aged

14–15 year-old). Pupils agreed voluntarily to take part in the experiment, which

aimed to gain insight into the problem, as occurring in the two populations

individually, rather than comparing results.

• The Quebec experiment used Excel and an applet called POLY (see below),

which had been designed exclusively for this activity (Cortés and Hitt 2012).

Two researchers, known here as R1 and R2, developed the teaching experiment

in a sociocultural setting. Two cameras and several voice recorders were used in

this experiment.

• The Mexican experiment used a calculator (TI-Nspire) instead of Excel and the

POLY applet. The activities were developed by one teacher, known here as P1,

and another researcher, known here as R3. One camera was used in this

experiment.

This study adheres to a teaching method known as ACODESA is divided into

5 steps (fully explained in chapter “Task Design in a Paper and Pencil and

Technological Environment to Promote Inclusive Learning: An Example with

Polygonal Numbers”):

• Individual work: production of official and non-official representations related to

the task.

• Teamwork on the same task. Process of prediction, argumentation and

validation.

• Debate (could become scientific debate). Process of argumentation and

validation.

• Self-reflection (individual work in a process of reconstruction)

• Process of institutionalisation.

Engestr€om’s (Ibid.) model was used to organise the ACODESA steps, taking

into account a sociocultural learning setting. In previous research undertaken by

these authors (see Hitt 2007; Hitt 2011; and, Hitt and González-Martı́n 2015), the
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self-reflection step was implemented immediately after plenary discussion. Due to

problems of knowledge retention (Hitt and González-Martı́n idem; Karsenty 2003;

Thompson 2002), for this experiment we decided that for the self-reflection step, it

would be interesting to implemented 45 days after the plenary debate.

The two first activities were implemented as an introductory activity in order to

remind pupils of some of the Excel commands and provide a historical approach to

polygonal numbers. The ACODESA method was implemented after the two pre-

vious activities.

1. Resolution of two arithmetic word problems in a paper and pencil setting and a

plenary discussion about how, according to the population, to solve them with

either Excel or a calculator. This was implemented to remind pupils how to use

Excel or a calculator.

2. Introduction to polygonal numbers from a historical point of view.

3. Invitation to the populations to solve the activity in line with the ACODESA

characteristics shown in Fig. 1.

The tasks were used in both countries with only a few changes.

The second part of the activity was designed to work with Excel or CAS and to

be verified with the POLY applet.

Analysis of the Quebec Results

The first introductory part of the session comprised the individual resolution of the

two word arithmetic problems using paper and pencil, and a plenary discussion

about how to solve the same problems using Excel. Researcher R1 conducted the

Fig. 1 ACODESA, as immersed in activity theory in line with Engestr€om’s model
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plenary discussion, immediately after which Researcher R2 conducted a short

historical introduction to polygonal numbers and then initiated the first part of the

ACODESA activity related to polygonal numbers. In this first step, individual work

was required, as was work in a pencil and paper environment.

Once the pupils had undertaken the first individual explorations, R2 organised

the teamwork, with Team G1 comprising three girls, Team G2 comprising 3 girls,

Team G3 comprising 3 boys and a girl, and Team G4 comprising a boy and two

girls. Only one computer was permitted for each team.

1) Look carefully at these numbers. What is the fifth triangular number? Make a 
    representation. Explain how you proceeded. 
2) In your opinion, how are the triangular numbers constructed? What do you 
    observe? 
3) What is the 11   triangular number? Explain how you found it. th

4) You have to write a SHORT email to a friend describing how to calculate the 
     triangular number 83. Describe what you would write. YOU DO NOT HAVE
     TO DO THE CALCULATIONS!
5) And, how do you calculate any triangular number (we still want a SHORT 
    message here).

Triangular
number 1

Triangular
number 2

Triangular
number 3

Triangular
number 4

10631

Fig. 2 First five questions in a paper and pencil environment

Develop the same ideas as in the previous section, but this time using Excel (or a 
calculator). Here is what we are requesting of you: 

What do you do to find the 6        , and 8   triangular numbers? , 7 thth th

Is it possible to calculate the 30   triangular number, the 83   triangular number,  
and the 120   triangular number?

th rd

th

How do you do this? Explain

What kind of limitations and possibilities do you encounter when calculating 
under this approach?

Please show the operations you must undertake when calculating a polygonal 
number.

Fig. 3 Second part of the activity
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Teamwork and the First Results

After pupils exchanged ideas, R2 requested a plenary discussion, asking each team

to present its findings on how to calculate the 11th Triangular number (T11). Three

teams (G1, G2 and G4) presented their findings, while members of Team G3

mentioned that their strategy was similar to the first team (see Fig. 3).

An initial and surprising outcome was the emergence of three different strate-

gies. Their initial production (see Fig. 3) indicates that the pupils have undertaken a

process of visualisation. They realised that it is possible to move along the diagonal,

adding balls progressively, while one can add to the number of balls along the

diagonal in an arithmetic progression. Pupils presented the first three iconic figures

with their respective values and a process of generalisation in order to calculate T11

(see Fig. 4).

It seems that these pupils have undertaken a visualisation process in order to

construct a general numerical progression. The action of adding balls along on the

diagonal is transformed by adding the number of balls to the arithmetic progression,

thus abandoning the iconic representation used to calculate the 3rd triangular

number.

Team G2 presented the results of their calculation of T11 with a single figure,

indicating that, in the first column, one should place 11 balls, and then reduce the

number of balls in the next column by one (10) in order to reach, at the end, only

one ball, imagining the 1st column with 11 balls, the next with 10, and so on (see

Fig. 5). An initial process of visualisation and generalisation is then made with only

one drawing, thus inducing a numerical process which is inverted, as compared to

that presented by the first team in Fig. 5. Team G2’s visualisation process is more

compact than Team G1, in that the team members made a direct iconic represen-

tation of T11, expressing their process arithmetically. This example is generic in

Fig. 4 The representation used by Team G1

Fig. 5 The representation used by Team G2
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that they were able to represent any triangular number under this visual

representation.

Team G3 mentioned that they had a similar approach to Team G1. A boy from

Team G4 (named G4-1 hereafter) then approached the blackboard. From his first

representation onwards, this pupil substituted the iconic ball-based representation

for a more practical one, explaining that whenever one passed from one triangular

number to the next, one had to add the appropriate number (see Fig. 6, below and

left).

While giving his explanation, he suddenly changed the strategy without

discussing this with his team members. He changed the representation he was

using to calculate T11 for one which enabled him to construct both an iterative

process to calculate T11 and a generic algorithm for any Triangular number (see

Fig. 6). It seems that, through a process of signification (Radford 2003), the pupil

was constructing a sign that enabled him to arrive at an iterative process for the

calculation of triangular numbers.

An analysis of the pupils’ written productions reveals that there were pupils in

each team who undertook iconic calculations solely counting ball by ball. One

female member of Team G3 said nothing in response to the “leader” of the group

indicating that they had done something similar to Team G1, when in fact she had

actually done something similar to Team G2.

Process of Generalisation

R2 then requested that teamwork continue, approaching team G4 and mentioning

that, when undertaking a calculation, they should show their working. A female

member of Team G4 (known as G4-2) interjected by saying that she did not

understand how to calculate T83, thus initiating a dialogue between G4 and R2,

with G4-1 and G4-2 mainly involved in the discussion.

R2 You must calculate it ... and show what you did.

(...)

G4-2 I do not understand.

G4-2 I do not understand.

R2 Well, here we do not tell you the number of....

G4-1 Is this number related to the diagonal?

Fig. 6 The representations used by Team G4 to calculate T11

296 F. Hitt et al.



G4-2 The number on the side?

(...)

G4-1 I take 83 on the side or on the diagonal and then you can count 1, 2, and 3 up to

83.

R2 It’s interesting, you have two different strategies.

In this excerpt, trying to assimilate that which was presented to the whole group

by her teammate G4-1, G4-2 ceases to refer to the iterative process, instead only

associating the number of balls, either vertically, at the base, or on the diagonal,

and, thus, jumping from one triangular number to the next.

Once the pupils had worked in teams, R2 again requested a process of recapit-

ulation in a large group discussion, asking pupils how they would perform the

calculation of the triangular number T83 (Fig. 7).

This extract is extremely important to the research conducted in this study.

Pupils proposed a calculation of T83 that is identical to that proposed by Team G1

for the triangular number T11 – namely T83¼ 1þ 2þ 3þ � � � þ 83. R2 tried to

verbalise the calculation in terms of a generalisation for any triangular number.

Pupils had no difficulty with this kind of process of generalisation. The symbolic

process was executed naturally, with the assignation of a variable seeming not to

disturb pupils at all. Even when the researcher proposed the use of a heart (♥) as a
variable, this did not appear to disrupt the pupils in any way.

While, right up until this point, it is possible to say that pupils have been

following various processes of generalisation, the question remains as to who,

precisely, undertook this process. Throughout this process, pupils generally seemed

to show that there was consensus. How stable was the pupils’ knowledge as it

emerged from a process of communication in the mathematics class? Can these

pupils retain these results in the future?

Once this part of the activity had been completed, R2 asked the pupils to return to

work in teams, suddenly announcing “I can calculate any triangular number with

three operations. Can you?” This was a question that resonated with some pupils, as

described below.

Generalisation and Emergence of the Concept
of the Variable

At this stage, pupils could use Excel in order to continue the activity. The idea of

using a single computer introduced an unanticipated variable. The owner of the

computer determined the user. For example, in Team G3, the owner of the computer

(a boy) was the only user. This reminded researchers of Hoyles’ (1988) recommen-

dation that attention should be paid to the constitution of a team when mixing boys

and girls in a computational setting.

Once teamwork had commenced, pupil G4-1 called R1 over, saying that his

group had formed a strategy to calculate any triangular number. He mentioned that
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their strategy involved taking any triangular number, for example 101, adding

1, dividing by two and multiplying the result by 101. R1 told them to use another

number, such as100. Then, G4-1, stating that he would add one to 100 and divide the

result by two, suddenly stopped, turned to his companion (G4-2) and asked whether

it made sense to get a decimal number when dividing by two. R1 suggested that they

discuss their strategy again and use the Poly applet to verify their results. R1

remarked that the team had used Excel to calculate the triangular numbers up to

T84 in a column and that they had the operation (indicated in Fig. 8) in their

workbook.

Dialogue between the researcher and pupils Interpretation 

Pupil 1: Uh ... you have to add up all the numbers 
    from 1 to 80 for the triangular number of 80 ... er 
    from 1 to 83 for the triangular number of 83. 

R  : Yes, but if you give me a number, which can 
     change, it can always change. What kind of 
     operation do I have to do?

2

 

G4  1: You added together 1 + 2 + 3 + 4 +5 + 6 etc.,
     until you arrive at your number. Ben! Then the 
     answer is the ... your answer is the triangular 
     number.

-  

 

R  : Ok. So there I would do 1 + 2 + 3 + ...2  

G   1: ... 4 + 5 + 6 ...4-  

R  : until my number.2  

Pupil 1: Etc, until your number. You add up all this
    and it gives you your triangular number. 

R  : How do I write my number I do not know?2  

G   1: Question Mark!4-  

R  : Question Mark? Do you all agree? Yes? That's 
     going to be my number I do not know?

2

 

G   1: + x.4-  

Pupil 3: Yes + x. 

R  : x? Do I put something else? Yes, do I? (Point to a 
     pupil)

2

 

Pupil 4: Any letter. 

R  : Any letter, yes. There? A heart? Can   we put a 
     heart?

2

 

G   1: You can put anything that is not a number.4-  

Addition of 1 + 2 + 3 + ... + 83 

R  tried to promote a 
generalisation.

2  

    Using words, the pupils could
describe the last number "until you 
arrive at your number." 

    R   repeated the question, but 
continued to say "until your 
number."

2

    As there had been no change, R
directly asked “how do I write the 
number I do not know?”

2

    Here pupils have shown that 
they have mastered the situation, 
suggesting several symbolisms. 

   Even the      (heart) proposed  by 
R  did not bother the pupils.

 
2  

Fig. 7 Dialogue between R2 and the group in a plenary session
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This is another key episode in this research. Pupils already had an algorithm to

calculate T83, which was to add 1þ 2þ 3þ � � � þ 83. It was G4-1who put the

iterative algorithm on the board (see Fig. 6), using it with Excel to calculate up to

T84. The hypothesis explored in this study is that, using T83 and T84, the pupil built

his new algorithm.

Both the design of the activity and the pupils’ processes show the possibility of

reconciling work with pencil and paper and technology. In addition, and very

importantly, the team destabilization generated by R1’s question about using an

even triangular number (T100) caused the team to reflect on that which is expressed

by the use of the letter “x” in the arithmetic operations (see Fig. 9). It seems that

pupil G4-1 had written 100 þ 1 divided by two (“no matter what you get”), in this

case x, the result (x) must be multiplied by 100. Finally, the pupils used the POLY

applet to ensure that the conjecture obtained might work with other triangular

numbers.

The POLY applet is able to show a series of polygonal numbers or to give a

specific polygonal number (as in Fig. 10). Due to screen limitation problems, if a

polygonal number is too big, the applet can only provide the numeric result and thus

excludes the figure.

Discovery of an Algebraic Expression for Calculating any
Polygonal Number

The session was ending and R2 called for a plenary discussion. G4-1 asked to

present what his team had found. G4-1 exemplified their strategy with T46 and

explained their algorithm. After R2 explicitly asked him to explain how they had

discovered their strategy, he repeated the algorithm, but did not mention how the

discovery was made. It seemed that he did not understand R2’s question.

Fig. 8 Technology and

paper and pencil – the

construction of a strategy
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When the bell rang and R2 had finished the session, a girl’s voice, almost

drowned out by the noise made by the pupils, indicated that she would have liked

to know how the three operations could be used to calculate any triangular number.

R2 mentioned that there was no time for that explanation and that she would show it

to her later. However, as G4-1 mentioned that he knew this, R1 and R2 asked him to

write it on the blackboard, even though the entire class was on their feet and ready

to leave the classroom, whereupon G4-1 wrote the following algebraic expression

(see Fig. 11).

The researchers reacted very positively to this development at the end of this

stage of ACODESA, deciding at that time to interview G4-1 to obtain more

Fig. 9 Construction of a general strategy to calculate any triangular number

Fig. 10 Examples using POLY (series of triangular numbers and the fifth pentagonal number,

including partition into triangles if required)

R  : x + 1, x... So it is your triangular number? [Trying to interpret 
      what the pupil wrote]

2

G4  1: x is not my triangular number, it is my base number, plus one, 
       divided by two, it's going to give y  y times x gives the triangular 
       number.

-
. 

Fig. 11 Symbolising in a communication process
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information about the process of constructing the algebraic expression. The inter-

view provided a few elements of which researchers were already aware. While G4-1

insisted that it was through the POLY applet that he had come to discover the

formula, both pupil productions (Fig. 9) and R1’s discussion with Team G4 seem to

indicate that the discovery took place while working with either Excel and pencil

and paper, with Poly allowing them to check their conjecture.

Self-Reflection Phase Without Technology. What Happened
45 Days Later?

Aware of the problem with student retention of the mathematics that they learn and

also aware, thus, that “consensus is ephemeral”, the authors decided to make the

self-reflection phase as different as possible to that which had had been undertaken

in other experiments. Also, given that a talented pupil had been discovered in the

sample, it was decided that an additional challenge would be added to the self-

reflection activity (which, while generally the same, excludes technology) exclu-

sively for him. So, in addition to the reconstruction process related to triangular

numbers, he was asked to work with pentagonal numbers, something which was not

dealt with in the classroom experiment.

It seems that G4-1 did not pay attention to the examples given about triangular

numbers, as he wrote that he already knew the formula to calculate any triangular

number. He applied a wrong formula and did not check his results against the

examples provided. However, and to the researchers’ surprise, in a paper and pencil
task (the use of technology is not allowed in this phase) that followed a similar

process of finding relationships among the first four examples provided for pentag-

onal numbers, he constructed both the fifth pentagonal number and a general

expression that allowed him to calculate any pentagonal number.

The results obtained are presented below. The data was collected on an individ-

ual basis before the teamwork and self-reflection phase 45 days later, with only

eight pupils sampled from the other phases, plus others that could not be taken into

account. Pupils 1–13 (the last being G4-1) were identified in order to observe

progress and setbacks.

Fig. 12 G4-1
0s production in the self-reflection phase
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Table 1 shows two setbacks and four advances, not counting pupil G4-1, who

used an incorrect algebraic expression to calculate the triangular numbers. The

female pupil (subject 11) followed her teammates from Team G3 passively.

While her strategies were different, she did not discuss them with her teammates.

The owner of the computer in team G3 became the leader, which corresponds to

Sela and Zaslavsky’s research (2007) with four people working together. This male

pupil, when using the computer, showed his colleagues various things not related to

the task, thus creating a situation unrelated to the requested task. Teams G1 and G2

were more homogeneous and presented more balanced participation, with both

teams composed of girls. The computer owner from team G4 was strongly com-

mitted to the task and adapted very quickly to the rhythm of his colleagues, with one

of the setbacks for the team posed by G4-2 (G4-3 was not present during the self-

reflection phase). More careful study is required to analyse the role of technology in

sociocultural learning. In fact, this, bearing in mind Hoyles (1988) on Girls and
computers and the results reported by Sela and Zaslavsky (2007), leads to the

realisation of the importance of creating teams consisting of a maximum of two

or three subjects, and of trying to balance the use of technology in each team.

Experiment Conducted in Mexico

The experiment conducted in Mexico proceeded as follows. Once the initial

problems were resolved in order to introduce pupils to the TI-Nspire calculator,

the teacher asked the pupils to work on the first five questions individually (see

Fig. 2). Four teams with three pupils and one team with two pupils were formed,

and in which each pupil had a calculator (TI-Nspire).

Individual Work

Two types of strategies emerged from the individual work – one linked to the

drawings as shown in the examples, and the other to the formation of a table of

values. Again, spontaneous representations linked to functional representations

appeared in the communication process (Fig. 13).

Table 1 Results from the ACODESA self-reflection phase after 45 days

I. Anchor

to the

drawing

II.

Drawing

þ addition

III. Abandoning

drawing þ
addition

IV. Abandoning

drawing þ another

strategy

“Algebraic expression”,

triangular or pentagonal

numbers

1, 2 3, 4, 5, 6, 7 8, 9, 10, 11 12 13

45 days without technology

4, 8 1, 5, 7, 12 11, 13
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Teamwork

One team made up of Diana, Karla and Omar underwent a reconciliation of

strategies, with Diana and Karla making the calculation by counting balls from

the drawings, while Omar used a table of values. Through this strategy integration

process, Diana and Karla left their strategy and decided to use the table of values.

The pupils’ individual productions and the film of the plenary session are the

only evidence of the individual work carried out by the subjects. A useful research

technique was that pupils were asked to write with red ink when working in teams

(see Fig. 14).

There is no evidence of how the formula was obtained. The formula appeared in

Karla’s productions and was written in red ink during the teamwork phase. This

shows that, in her team, she adopted the table of values and proposed an algebraic

expression. At this secondary level pupils had already learned about the notation of

variables, and can clearly be seen to use the variables x and y. The formula enables

pupils to estimate the calculation of polygonal numbers. Our hypothesis is that

1. Adding 1 to the first 
range.

2. With 1 added to the first 
range and both the line at 
the base of the and the 
diagonal \ | .−

Fig. 13 Spontaneous representations used by one pupil

Fig. 14 Karla’s individual work and teamwork
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having used y ¼ x2/2 (related to base * height/2) and having realised that it did not

work with the examples given in the table, these pupils decided to approximate the

results, thus giving y ¼ 0.52 * x2. They did not present their proposal in the large

group discussion.

A surprising result is that many Mexican pupils participating in this research

immediately associated the triangular arrangement of the triangular numbers, base
* height/2, with the calculation of the area of a triangle, thinking that this was the

algebraic expression required.

This was the first thing that emerged during the large group presentation, having

been captured from the beginning of the pupil discussion.

Plenary Discussion

Monica, facing the blackboard, gave as example the T8 (see Fig. 15), describing the

following as necessary in order to calculate it.

R3 intervened, saying that, at this point, it was necessary to review her theory.

She was then interrupted by the pupil Rob.

Rob ... But... this, the triangular number 8 would be 36 and not 32 – then it

cannot be.

R3 Please come to the blackboard Rob.

Rob This is number 6 [pointing to the figure just produced by Marı́a]. We apply

the formula that says the base multiplied by height would be 6 by 6 giving

36 divided by 2, giving us 18, while the triangular number would be 21.

This, therefore, is not the formula [points to the base * height/2 formula].

P1 What is the difference between. .. if you apply the formula that tells you,

apply the formula. Write it there.

Marı́a [Writes the formula].

P1 In this case, what is the basis?

Rob [Writing] 6 * 6/2 is 18 and there is the triangular number.

P1 What is the triangular number?

Pupils 21 [answering chorus]

Rob The difference would be 3.

P1 The difference would be...?

Monica: To calculate the area of the triangle would 
require 8 times 8, giving 64, which, divided 
by 2, is 32...

Another pupil: [a girl is heard addressing her 
classmate in a very low voice] But no, that 
would be 36!

Fig. 15 Monica presenting the calculation of T8

304 F. Hitt et al.



Rob 3.

Rob calculates the Triangular 8, and, typing the formula, obtains 32.

P1 And what is it for the triangular number 8?

Rob It’s 36.
P1 The 8?

Rob starts counting the balls for the figure that was already on the blackboard,

and says that it is 36.

Pupils The difference is 4.

Rob realizes that the formula does not work and that he has shown a counter-

example (similar to the comment made by the unidentified girl). However, so far he

is not able to build the exact formula for triangular numbers.

EUREKA! Rectification of the Formula in a Scientific Debate

In the midst of the discussion, a surprised voice is heard, saying, “and from 8 it is

four, then it would be half.”

Gaby Half of 8 is 4, and 4 is what is missing from 32 to 36 in the formula, then we

have to put the base multiplied by height divided by two more.... [PAUSE]

plus the half of [PAUSE] plus the half of the triangular number, half

[PAUSE] half of the base.

While speaking, Gaby paused several times while she completed the transforma-

tion of her numerical idea into a geometric-algebraic idea. It is clear that the control

element was provided by the arithmetic relationship and the transformation from that

into a geometric relationship. However, something else occurred in the process of

communication when Gaby was verbalising what she was thinking: there was a

process of deduction. At this very moment, the pupils were rejecting their initial

conjecture in favour of a new one, using the arguments to refute the conjecture.

P1 Write it!

Pupil I think that we, all together, are arriving at something, not alone!

The sociocultural construction of knowledge has occurred at this stage of

scientific debate, in accordance with ACODESA. The pupil openly expresses the

co-construction generated through the debate.

Gaby goes to the blackboard to write the idea that she had just thought of.

Gaby How do I represent half the base?

Interestingly, at this point, Gaby has difficulties in transforming the geometric

argument “half the base” into algebraic terms:
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R3 . . . One half, or that in half.

Gaby writes b�h
2

þ 1
2
.

Many pupils worked together to undertake the final writing activity. In this

process, Gaby was guided by her colleagues because she did not fully understand

the process of algebrafying “half the base”. Finally, she wrote: b�h
2

þ b
2

P1 And how do you represent the triangular number in that formula you are

writing there? How do you represent the triangular number?

Pupils .... The base or the height...

Gaby writes the formula b�h
2

þ b
2
.

P1 Precisely, what she said, the height is the same as the...

Pupils The base.

P1 Replace it and do not write the height.

Pupil It would be base times base.

Gaby misspelled the formula and was corrected by her peers, after which she

wrote: b�b
2

þ b
2
.

P1 Ok then, base times base is what?

Pupils Base squared.

Gaby writes finally the formula b2

2
þ b

2
.

P1 Do you think that is the formula? Verify it with the triangular number 15

Gaby Do I have to count the balls in a drawing?

P1 No, no, no you have already got the formula!

Self-Reflection Phase Without Technology. What Happened
30 Days Later?

This phase, referred to here as self-reflection without technology, comprised a

questionnaire (with slight modifications) similar to that completed by the partici-

pants 30 days previously. Only 10 of the 14 pupils participated, with the main idea

at this stage being a reconstruction of what had been undertaken in the classroom.

The questionnaire for the self-reflection phase had three questions:

1st Question Calculate the 27th triangular number.

2nd Question Write the formula for calculating any triangular number.

3rd Question Using your formula, calculate the 313th triangular number.

The results are as follows: from the ten pupils, two continued the process of

“drawing balls and counting”, while four of the ten rebuilt a similar expression related

to the area of a triangle – b � h/2. A pupil was able to reconstruct the formula, but

mistook the result of calculating T27 by finding a triangular number to provide 27 as a
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result, with the closest being T7 ¼ 28. It is possible that he made a mistake when

counting the balls. He followed the same strategywhen calculating T313. Among those

who were able to reconstruct the right formula were Alejandra, Omar and Rob.

Conclusions

These results reveal the importance of building arithmetic-algebraic thinking in

order to support algebraic thinking. The experiment conducted in Quebec with 1st

year secondary pupils (11–12 years old) revealed the following:

• It was performed in a sociocultural environment, with a gradual construction of

the concept of the variable, and patterns built from the visual work.

• The strategy consisted of visualisation processes that related drawings, arith-

metic addition series, iterations and formulas. Pupils used natural language with

letters representing variables.

• The validation process was supported by the use of technology.

• The availability of a device on the table, shows that its use is delicate (Hoyles

1988). In the case of one team, it was the owner of the computer who exclusively

used it. In the team with a boy and two girls, the boy mostly used his computer,

the girls used it when he was at the blackboard.

• Even though there was more progress than setbacks in the self-reflection phase,

the results show that concluding that consensus had occurred should be under-

taken with caution.

The experiment conducted in Mexico with 9th grade secondary pupils

(14–15 year old) revealed the following:

• It was performed around visualising a process related to the area of a triangle,

with use of variables to represent the variation (x, y, b, h).

• The validation process rested more on visual configurations.

• The technology was not widely used by the pupils. Plenary discussion and

co-construction attracted the pupils’ attention.
• Again, it showed that “consensus is ephemeral”, with only four out of ten able to

rebuild the formula and one of them mistaking the number of the triangular with

the result.

A surprising fact is that the institutional representation n (n þ 1)/2 did not

emerge in neither of the two populations. This demonstrates the importance of

pupils’ spontaneous representations in the construction of mathematical concepts

(Hitt 2013; Hitt and González-Martı́n 2015). This reveals that evolution of sponta-

neous representations is important in a signification process. During the institu-

tional stage under the ACODESA model, the teacher must collect different ideas

and productions and relate them to the institutional representations.

Our research is taking into account the importance made in the 40s when

psychologists payed attention to the importance to moving from analysis of pupils’
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performances when solving puzzles to the analysis of pupils’ problem solving

activity (see Brownell 1947). Our approach, in this technological era goes from

an arithmetic context to an algebraic one, in a natural way using technology as a

tool in a process of generalization and, in a sociocultural context of learning. In this

way, pupils construct arithmetic relations (product of this is what is shown in Fig. 9)

that permit them to control their process of generalization to an algebraic context in

a milieu of creativity and autonomy (see Fig. 12). The results are showing the

importance to promote the production of spontaneous representations and conver-

sions among them even if they are not the institutional representations. This

contrast directly with Kirshner’s approach (2000) concerning his ideas of exercises,
probes and puzzles; and, about his restricted approach to learning algebra focusing

on the algebraic register about visually salient rules (Kirshner 2004). Our research

takes as central a task-design where the but is related to enchained tasks, to be

solved by the pupils in a sociocultural milieu, and the teacher role is to promote

students’ reflexion and productions of spontaneous representations, not only the

algebraic one.
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